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ABSTRAC

There has been a continuing problem of estimating a

radar signal when the noise and the signal have the same

power spectra. This is particularly troublesome when one

tries to resolve two close targets with a tracking radar.

The purpose of this research is to show theoretically that

there are practical ways to solve the problem.

Two approaches are introduced here. The first is to

add a process filter to the radar, and the second is to

design a new measuring technique with processing such that

the signals will be separable. These two main approaches

have led to several new or extended theories which were

developed in the course of this work:

The Probability filter.

A modified Kalman filter (MKF)

.

- A measurement modification technique for monopulse

radar.

A new approach to the design of a monopulse tracking

radar.

Simulations were performed to check the two major

theories (the M.K.F. and the probability filter). According

to the simulations we can say that a tracking radar can be

modified in order to solve the problem of separating

unresolved targets.
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I. INTRODUCTION

A. SEPARATION OF SIGNALS

In many cases we would like to separate two signals

from a measurement which is a function of their combination,

such as their sum. One of the signals is usually "noise"

and the other the "signal" or "information." Techniques of

separating two signals if they have different power spectra

are well known, for example, the Kalman filter or the Weiner

filter. The case when the two signals have almost the same

power spectra does not appear in the literature, mostly

because each problem must be treated in a different way.

The following are two basic approaches to this problem:

(i) Use all of the statistical information about

the signal to effect the separation.

(ii) Design measuring techniques such that the two

signals will be separable in some sense.

The specific application to be addressed in this research is

the tracking radar case where it is necessary to separate a

target return from chaff. The sections which follow present

a summary of the basic theory with reference to the litera-

ture. Some new results have been achieved and are presented

in the body of the text. They include:

a) The separation of the two signals by means of a

probability filter - Appendix D

b) A modified Kalmak filter approach - Appendix A.
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c) A new measurement modification technique for mono-

pulse radar - Section (IV. A)

.

d) A new approach to a tracking radar design - Chapter IV,

The following examples are given as part of this intro-

duction to show that separation of two signals with the

same power spectra is plausible.

The objective is to estimate the strength of a signal

in the presence of noise when the noise and the signal have

identical or almost identical power spectra. In those cases

(where we can't effectively separate the signals in the

frequency domain) we will consider the processes of iden-

tifying the signals in the probability or statistical

domain. Consider the following:

Example 1-1

It is desired to separate a signal from noise when

they both have a uniform probability density function

(p.d.f.) of different widths. The amplitude of the noise

and the signal are unknown and it is assumed that there is

no correlation between them. The measurement is the sum

of the signal and the noise. Thus, we assume that:

1) The noise and the signal are statistically independent.

2) Both have uniform distributions.

3) The measured signal is given by:

Z = S + N

11





It is desired to estimate the amplitude of the signal.

From statistics we know that Z has a p.d.f. which is given

by the convolution between the two p.d.f., (see Fig. 1-1).

By inspection of this figure we can see that the p.d.f. of

Z contains information about the amplitude of the two sig-

nals. Note that without prior information about A, or A^ we

can only determine the two amplitudes, without being able

to state which is signal and which is noise. The separa-

tion technique would involve calculation of the p.d.f. of

Z. Also, this filter can only give us the amplitude of

the signal and not the whole signal.

Example 1-2

Consider the case where the signal is a square wave

between levels, (A, +A2) and A^, where the switching

time, T, is a random variable with given statistics. The

noise is the same type of signal with levels (B, +8^) and

Bj. Assume that the amplitudes ratio is given:

A, /A- — K,

B^/B^ = K2

(1-1)

Figure 1-2 identifies the signal and the noise. Figure 1-3

identifies the p.d.f. of the combined signal plus noise.

With the p.d.f. for Z = S + N and the given ratios K-j^ and

12





1 /A,

fs(s)

1 /A.

A,

A.

n

1 /A

f,(z)

Figure 1-1. p.d.f. of two signals and the p.d.f. of
their sum. (Refer to example 1-1).
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Figure 1-3. The p.d.f. of the signal plus noise
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^21 one can compute the amplitudes and even determine the

signal S uniquely as follows:

Let us assume that A, > B,, then the estimated values

of S denoted by S will be (refer to fig. 1-3)

:

S = <

\-
At + A,

if Z, or Z^

if Z^ or Z.

(1-2)

And for the case, B-, > A, :

S = <

if Z, or Z^

A, + A^ if Zj or Z

.

(1-3)

Notes

:

(i)

(ii)

(iii)

In this example there is no assumption one way or

the other about correlation between the signal

and the noise.

The two cases (A-. > B-, or A-, < B, ) can be easily

determined by checking the p.d.f., (the four levels)

and comparing K-, and K^

.

The levels can be computed easily by the four

equations

:

Z^ = A^ + B^

16





^2 =<

Z3 =<

A^ + B2 + B^ if A^ > B^

A^ + A + B2 if A, < B,

A2 + B2 + A if A > B^

B2 + A^ 4- B^ if A^ < B^

(1-4)

Z4 = A2 + A^ + B^ + B^

And the cases A^ > B, or A^ < B, can be determined

by the two ratios

Aj/A^ = K^

B^/B^ = K2

(iv) The signal can be determined even if the noise is

the sum of a square wave plus random noise (for

example, white Gaussian) . In this case we have to

introduce the statistics of the switching time

T (t) and the random noise.

In the noise free case we can show the processor by a

simple block diagram given in Fig. 1-4.
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In these two simple examples, it has been shown that

in some cases signals can be separated from the noise, or

the parameters of the signal determined, even if they have

the same power density spectrum. Thus, the idea of filtering

a signal in the probability domain seems plausible.

A second possibility of separation to somehow change the

measurement, seems reasonable. An example would be in a

control system where we design our measurement such that

the system will be observable (see next example)

.

Example 1-3

Consider the case where the measurement and the state

equation is given by:

X(K+1) = X(K) + U(K)

Z (K) = CX(K) + V(K)

In the case where the system is not observable there is no

way to estimate X unless we change something in the system.

One way to do it is to change the matrix C, so that the

system will be observable. Let's now consider a practical

example related to the dissertation. We will consider the

conical scan radar (see next chapter for details). In c.s.

we often have the problem of cross talk between the two

channels (Az and Fl) • A simplified block diagram of the

radar is given in fig. 1-5. The system can be described by:

19
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e(K) X(K) - U(K)

Z(K) = C(e(K) + n(K) )

where all the vectors are two dimensional and the matrix C

is given by:

C =
j

I
b 1

e(k) contains the errors in both An. and E^ . a and b are

the cross table factors in the measurem.ent

.

Obviously where a = b = 1 the system is not observable and

we can't estimate the error (the target position). In the

case of an observable system, but with a and b close to one, the

regular Kalman filter estimator converges slowly. In order

to improve the time constant of the estimator one suggestion

is to change Z to Z ' by (see fig. 1-5 suggestion #1)

:

Z' (K) = E • Z (K)

where

E =

-b

-a

21





This will lead to a new measured vector (Z' (K) ) given

by:

Z' (K) = (1-ab) (e(K) + n(K)

)

This suggestion will solve the cross talk problem but

it will increase the effects of the noise n . The problem

will be solved only if a-b 7^ 1. So another way must be

found. This can be done quite easily by changing the modulator

reference signals. The solution will be that C -> I and the

statistics of the new measured noise will be almost the same

as the given noise and this is indeed an improvment of the

system performances (see fig. 1- 5 suggestion #2) . The

details are beyond the scope of this chapter.

The situation of having the signal and noise with

approximately the same power spectra occurs in radar. For

example, we may have:

(i) Target plus clutter,

(ii) Target plus target in the same resolution cell.

The work which follows will concentrate on the tracking

radar case. We will treat the problem with two major

approaches

:

(i) Assume that the radar receiver is given and we have

to process the output signal. This will give us the

possibility to try to work the problem using the

first proposed technique.

22





(ii) Assume that we can change the receiver and also

make some changes in the antenna such that we will

get a new measured signal from the receiver which

will allow us to separate the two signals coming

from two different sources (targets) . This is the

second proposed technique.

Because the second approach will give us the most power-

ful results, we will concentrate mainly on this approach,

but we will include all of the information necessary for the

first approach.

B. APPLICATION TO TRACKING RADAR

In radar tracking we can have the real target and the

false target (chaff, clutter) which are in the same resolution

cell. (AR<|-^t, AaO^^j^, where At = pulse length, 6 = beam-

width of the antenna.) Because of the false target, we

cannot measure the position of the real target

(angles and range) . For tracking, we must be able to

measure the error in range, azimuth and elevation where the

error equals the deviation of the actual target position

from the estimated position as given by the midpoint of the

resolution cell. In order to accomplish this, the radar has

two (at least) windows for each coordinate. The "weight" of

the target in each window is measured by the difference

between the normalized weights of each window for each

coordinate, which is used in calculation to determine

target position.

23





Example 1-4

In range we have two gates, the early and late gates.

By measuring the weight of each gate we compute the error

in range as

:

where

'^ - ^° ^^7^

R = c • Atr/2

(1-5)

(i) AR - the computed error in range,

(ii) 2A1f - the width of the range gate.

(iii) t - the position of the range gate

(iv) C - velocity of light.

t
o

(V) V^^ = / V(t) dtEG
t -At
o

t H-A-tf
o

(vi) V^^_ = / V(t) dt

t_
LG

(vii) V(t) - the received signal

The time representation of the range gates , received

signal (video), V and V , is given in Fig. 1-5.
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The same type of equation holds for the angle. In

this case we have two or more antennas for azimuth, and

two antennas for elevation. In this technique we estimate

the weight of the real target in each window, and compute

the error to close the tracking loop and try to reduce the

errors to zero. When we have two targets in the same reso-

lution cell, the computed error would depend upon the

"center of gravity" (radar center) of the radar return of

the two targets. Because the two targets have the same

(or almost the same) power density spectra, we cannot dis-

tinguish between them by spectral analysis; thus we have

the problem discussed in Section I. A.

The object of this research is to estimate the true

position of the target when the false target is near the

true target. In the research -we apply the following

practical constraints:

(i) An estimator which can be used on small missiles.

We need simple algorithms so that the memory

size and the amount of computation will be

reasonable,

(ii) The size of the antenna is fixed, and we are

restricted to an antenna of reasonable structure.

For example we can use a monopulse antenna with

changes (referred to regular monopulse) but we

cannot use an antenna with more than four outputs

26





(iii) We will not search for a solution in the r.f.

range because for each r.f. it is possible to

have counter measure chaff adapted to that fre-

quency or frequencies,

(iv) We will restrict ourselves to surface targets

which imply no reasonable Doppler shift between

the two targets. In the problem of air targets

the difference in velocity between the target and

the chaff is distinguishable and they can be

separated easily by a moving target indicator

(MTI)

.
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II. BACKGROUND THEORY

A. INTRODUCTION TO TRACKING RADAR

Before we establish the problem and our solution

we present a short summary of pertinent tracking radar

theory.

The function of tracking radar is to select a particular

target and follow its course in range, angle and sometimes

frequency (a direct measurement of velocity) coordinates.

B. TRACKING BY RADAR

Tracking systems can be achieved by two different

techniques

.

Track-while-scan (TWS)

This method of tracking basically uses data from search

radar. The idea is to take a sample measurement of the

target each time that the antenna is pointed to the tracked

target- This tracking class is not of interest in this

study.

Continuous Tracking Radar

In this method of tracking, the antenna is always

directed at the target due to function of a control system.

There are several methods of tracking (i.e., method of

generating the error signals to close the antenna position

and the range loops). The important methods are:

(i) Conical scan (C.S.)

(ii) Lobe switching (L.S.)

(iii) Monopulse.

28





Those methods are distinguished by their difference in

angle tracking. The principle of range tracking is almost

the same for all the radars. Since the most accurate and

interesting case for us is the monopulse, we will concen-

trate on it. However the theory of the other techniques

is summarized.

1. Angle Tracking

a. Conical Scan (C.S.). In C.S. systems, angles

are measured by a single antenna, whose radiation pattern

rotates periodically about a certain axis. When the tar-

get is in the axis direction, the radar will have a constant

return signal. The coordinates of the off axis target is

determined on the basis of comparison to the envelope of

received signals with a reference signal. For this reason

we can not measure the error in one pulse but we have to

wait at least one period of antenna scan to get the informa-

tion. A simplified block diagram of the C.S. system is

given in Fig. 2-2.1. The antenna A, scans in space with

angular frequency, Q. Two references for the phase detec-

tor are generated by the antenna (Az . ref. and EL. ref.).

The position of the antenna is controlled by the control

system. Assume a target at position T. Because the target

is assumed to be off the axis of rotation, the echo signal

will be modulated at frequency Q. (the C.S. frequency) . The

amplitude of the signal depends on the position of the

target with respect to axis of rotation, and the phase will

29
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depend on t±ie direction of the angle between the target

and the rotation axis. When the antenna is on the target

we will get zero modulation at the receiving signal (see

Fig. 2-2.2). The modulation pulses pass through a receiver

which is controlled by an AGC (automatic gain control)

.

We will see later on why the AGC is needed. The signal

then passes through a "box-car" circuit which changes the

amplitude modulated pulses into a signal close to sinusoid.

This signal passes through two-phase detectors (for Az . and

EL. ) . The outputs from the phase detectors are the errors

in EL and Az , and by using these errors we can close the

loop on a control system which will move the antenna to

reduce the error to zero, so that the antenna "looks" towards

the target. We can write the amplitude of the signal at

the output of the receiver as

:

S'(t,e^) = S^.Gav(9^) [l+m(9^)cos(fit+^^) ] (2.2-1)

where

S' (t,9„) = envelope of the amplitudes of a

sequence of radar return pulses.

S = the amplitude of the signal (dependent

on the RCS (Radar Cross Section) of

the target, the range, the gain of

the receiver, etc.)
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Gav (9 ) = the average gain of the antenna, in

the direction of the target, which

can be determined approximately by

GO - e ) + GO + 9 )

Gav(9^) = o i o 1
T' 2

(2.2-2)

to a first order of approximation,

this average gain is constant, i.e.,

independent of drp-

9 = The position angle of the target.

^ = Conical scan frequency of the antenna.

(p = Phase of signal relative to C.S.

frequency.

m(9 ) = The modulation index which is approxi-

mately equal to:

rr.fa\ - max T min "TmO^) - 2—-^ (2.2-3
av

G(e^-9^) - G(9^+9^)

GO^- 9^) + G(9^+ 6^)

where (see Fig. 2.2-2)

S - is the maximum received signal
max

= S^(G(9^-9^) + G(9^+9^))

.
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S_ . - is the minimum received signalmm ^

= s^(G(e^-e^) - Gce^+e^))

s
av

S + S .

max mm

Because we would like to have the same amount of error for

the same error angle, independent of the target and range,

we have to measure the modulation index. The method which

is usually used to achieve this objective is the AGC (auto-

matic gain control) . The purpose of the AGC is to fix S

such that S will be a constant. This can be accomplished
av ^

by controlling the gain of the receiver. The signal can be

represented by:

S'(t,e^) = C[l + m(6^)cos(fit+<t)^) ] (2.2-4)

where C is a known constant, independent of the target RCS

and other parameters.

If we pass the signal through a highpass

filter, we will get (after the Box-Car)

:

S(t,0^) = Cm(9^)cos(J^t+^ )
(2.2-5)IT T C

Now we have a signal with its amplitude pro-

portional to m(e ) , and phase equal to cj) . With both of these

we can determine the error signal after the phase detector:
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AAz = K*m(0 )cosc|)

AEL = K-m(e )sin(j)

(2.2-6)

Because m(9rp) depends on the antenna parameters,

the error measured by the system will not be a linear func-

tion of 9 . The error signals can be determined linearly

only for small displacement angles.

b. Lobe Switching (L.S.) The method of L.S. is

achieved by switching the antenna beam between four posi-

tions (two positions per direction) . We will describe the

method in one dimension since the two dimensions case is a

straightforward extension of the one-dimensional situation.

Refer to Fig. 2.2-3. Because we have two antennas and we

switch between them, the receiver output belongs to antenna

1 (S, ) and to antenna 2 (S-) . As in the C.S. system because

of AGC, S, + S^ equal a constant and the error can be

determined by the difference between S-, and S-., i.e..

error (9^) = K[S^(9^) - S2(9^)] (2.2-7)

If we have four antennas, by AGC, we keep

1, + S- + S^ + S. equal to a constant, so then:

AAZ = K[ (Sji + S^) - (S3 + S^) ]

AEL = K[ {S^ + S^) - (S^ + S^)

]
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c. Monopulse Method. In the two previous methods

(C.S. and L.S,), the measurement of angular error in two

coordinates (AZ and EL) requires that a minimum of three

pulses be processed. In practice, the minimum number of

pulses in L.S. usually requires four pulses (one for each

antenna). C.S. usually requires much more than four (20

pulses is a "good" number - which is dependent on the fre-

quency of the C.S. and the P.R.F.). The requirement for

both of them is that during the scanning or switching the

signal amplitude does not contain additional modulation

components other than the modulation given by the antenna.

If the amplitude contains additional modulation components,

the tracking accuracy might be degraded, especially if the

frequency components of the fluctuations are close to the

C.S. frequency or the L.S. rate. These functions* can be

caused, for example, by a fluctuating target cross-section.

In order to avoid this problem, we prefer to base our

measurements on one pulse rather than many. When a signal

is received by two different antennas, the difference between

the two signals might be one of phase and/or amplitude.

This is the premise of the monopulse radar, i.e., use the

difference between signals arriving at the same time by the

antenna. The name monopulse is used to describe those tech-

niques which derive angle-error information on the basis of

a single pulse. (Note: In some cases monopulse is called

"simultaneous lobing.")

37





Two major techniues are used in monopulse:

(i) Measuring the relative phase of the carrier of

the I.F. between the pulses coming from each

antenna.

(ii) Measuring the relative amplitude of the pulse

received in each beam.

Fig. 2.2-4 presents a block diagram of general monopulse

(i.e., amplitude - phase type), for one coordinate. We

will see later that by zeroing the distances between the

antennas, i.e., d = 0, the system reduces to amplitude

comparison monopulse, and by zeroing the tilted angle,

i.e., 9 = 0, it reduces to phase-comparison monopulse.

The extension into two dimensions is straightforward. In

most of the cases the sum and the difference are taken with
«

the r.f. signal (right, after the antenna), after which

there are two receivers (one for sum channel and one for

the difference channel) . This is because of practical

reasons

:

(i) Only the r.f. channel receiver must be

identical

.

(ii) For two-dimensions we save one receiver (3 versus 4).

In the analysis which follows we will show the

sum and difference taken in the i.f. This change does not

make any difference for monopulse radar but it is necessary

for the complex angle (CA) method. The signals received

from the target at antennas A, and A are fed to the receiver
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anfd then the sum (7) and the difference (A) are forming

Thus we can write the following cos term of oj :

IF

l{e^,t) = S^ + S2 = K^S^[G^(9^)cos(G0^^t+ ^)

+ G2(e^)cos(ajj^t- ^) ] (2.2-9)

A(9^,t) = S^-S2 = K^S^[G^id^)cos{^^^t+ ^- ip^)

- G2(e^)cos(aj^j,t - ^ - il;^) ]

where:

I = Target's position.

I = Fixed antenna offset angle.

Kvf K^ = Gains of sum and difference channels

respectively.

V «A

S = The average constant signal in the sum

channel determined by the AGO.

^ = The phase shift between the sum channel

and the difference channel caused by

the circuits

.

(p = The phase shift in antenna A, and A^

caused by the displacement of target by

angle 9 relative to the bore sight
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direction (see Fig. 2.2-5), and is

given by;

S,/ S^ = the I.F. signals within a

single radar return.

R^ = R + d sin 9

R^ = R - d sin 9^ (2.2-10)

A - 277 477d . Q

2d = Distance between phase centers of

antenna A, and A^ (see Fig. 2.2-5)

.

G, , G- = Radiation patterns of antenna A-, and

A^ respectively 7 for most of the cases

they have the same shape only shifted,

so we can write;

G^(9) = G(9^ - 9)

G^(9) = G(9^ + 9)
i. o

(2.2-11;

where G is a standardized radiation pattern, and s is an

arbitrary direction.

Let us assume that the gains in the sum and

the difference are the same (not a necessary condition)

:

Ky = K^ = K (2.2-12)
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Figure 2.2-5. 1/avefrcnt relationships
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By means of the AGC we fix the average sum channel to

remain constant, as in C.S., we can assume that after the

AGC we have:

K • S = constant (2.2-13)

Thus, for any level of signal we will have the same output

error characteristics. After the phase detector we have

an output which is the average of the multiple signal

(^ • A) . It is shown later on that this quantity is pro-

portional to the error between the direction of the target

relative to the antenna.

error (9^) = K' • Average {[ ( 8^, t) • A (9^, t)

}

= a'[G^(9Q-9^) - G^(9^+9^)]cosi|;^ (2.2-14:

+ [2aG(9^-9^) •G(9^+e^)sin2(})]sini|;^

where:

K' is a constant determined by the AGC.

a' is a known constant.

From the last equation we can see that the

error is only a function of 9 and equals the deviation

from the bore sight (the rest are known constants determined

only by the system and not by the target) . So from
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Eq. 2.2-14 one can determine 9 . To simplify the computations,

we can choose the parameters ^ , d and 6 . In the two major
o o

types of monopulses, we choose these parameters:

(i) Amplitude comparison monopulse:

Choose ^ = or d = . Practically, we choose both

of them equal to zero. We would get, for the case

^ = and d = :

o

error (6^) = [G^(e^-e^) - G^iB^+Q^)] (2.2-15)

(ii) Phase comparison monopulse:

Choose ^ = Tr/2, or 9 =0*. Practically, we choose
o o ^

both. Then, for the case 6 =0 and i|^ = Tr/2:GO
error (e_) = 2aG^(0_) sin i^^T To

= 2aG^(e^) sin(Ysine^) (2.2-16)

Y ^ 8TTd/A

From the last equation we see that 9 can be

determined. Near the origin ( 9^
"*" 0) . Then we

can assum.e:

*
Assuming G(9) = G(-9).
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G(e^) z G (2.2-17)To
and

sin(Y -sin 9^) ~ y 9^

so that:

0.error(9^) (2.2-18)

where 3 = known constant, where the error is the

output after the phase detector

(3 = 1/aG^^y)

.

When we wish to determine the position in two

coordinates, theoretically we need only the addition of one

antenna; practically, four antennas are used. The theory

is almost the same; the only difference is that now we

have three channels:

(i) Sum channel = I

(ii) Difference channel in AZ = ^^ryAZ

(iii) Difference channel in EL = A
,

where (refer to Fig. 2.2-6):

I = s, + S^ + S^ + s

\z " ^^1 ^ ^3^ " ^^2 ^ ^4^ (2.2-19)
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Figure 2.2-6. Relative location of the antennas
in two-dimensional monopulse.
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^EL = ^^1 ^ ^2^ - (^3 ^ ^4^

and

S. = the output from antenna i

2. Range Tracking

The most widely used technique for tracking in range

is based on two range gates. There are no special tech-

niques as for the method of angle tracking. Information about

the range is taken in most of the cases from the sum

channel in the monopulse radar and from the incoming

pulses in C.S. or L.S. We will briefly cover the prin-

ciple of automatic range tracking. A block diagram for

the range loop tracker is given by Fig. 2.2-7 and the

time representations of the signals are given in Fig. 2.2-8.

We have two major signals in the loop:

(i) The video pulses - S(t)

They contain information about the range position

of the target,

(ii) The range estimate - R.

The main idea is to open two gates, g, / g- , before and

after the estimated time of the center of arrival of the

pulse (t = —^—, R = taraet range, c = velocity of the light)

.

c

One is the early gate (g, ) , and the other is the last^ gate

(^2^^ ' '^^^ portion of the signal contained in the early gate

is subtracted from the portion of the signal contained in
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the late gate after integration. The error is calculated

after the end of the late gate. The magnitude of the error

signal (Ar) is a measure of the difference between the cen-

ter of gravity of the video signal, S (t) , and the estimated

range, which is the center of the two gates. The error is
'

fed into a control system to estimate the range. The output

of the control loop is the estimated range, R. To convert

the range into time (to generate the gate's pulse) we use a

converter which has the time of the transmitting pulse as

a refernce input. The outputs of the converter are:

(i) The two range gates (g, and g^)

(ii) A reset pulse to reset the integrator before the

range gates.

Because we want to have the same output error, ^R

for all the targets, independent of the target, we must

normalize the pulses, and this is done by AGC , which has

already been applied in angle tracking.
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III. STATEMENT OF THE PROBLEM

A. INTRODUCTION. INTERFERENCE CAUSED BY TWO TARGETS

Let's consider the problem of tracking a target when

a false target is in the same resolution cell, i.e..

AL <

3db

AR < At- g/2

where

:

9-,-,, = the beamwidth of the antenna (in radians)
Jdb

2At = pulse length

R = range of the target

AL = the difference between the true target

and the false target perpendicular to

the line of sight of the antenna

AR = the difference between the true target

and the false target in range (parallel

to the line of sight)

c = the velocity of light.

For simplicity, let's consider the two-dimensional

case only (range and elevation) . The principle in three

dimensions is the same but more complicated, and the results
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can be obtained by a straightforward extrapolation of the

two-dimensional case. We will consider the case of point

targets for developing the theory, but we will implement

the results when the targets have complex structure.

B. INTERFERENCE IN ANGLE CREATED FROM TWO TARGETS

Consider the case of two point targets (or spheres)

in the same resolution cell of the radar with spacing

AL (i.e., -^ < 93^1-/ ^R < ~2~' ^ ^^ ^^^ velocity of light).

As the relative path lengths between the radar antenna

and the two sources vary (i.e., R-, and R2)/ the two sig-

nals will alternately add and subtract, and so the amplitude

and the phase of arrived signal will change. Although such

a simple situation (two points targets) may be fictitious,

it will illustrate the main behavior. The relative ampli-

tude between the RCS of the two targets is assumed to be a

constant "a" and the relative phase difference also constant,

a. The difference in phase is due to difference in range

(Ar) or to reflecting properties. The relative angular

error (A9/e_^) is given by [23]:

A9. ^ ^^
^

^ ^Q^ ^
(3.2-1)

D 1 + a + 2a cos a

The position of the stronger target corresponds to

Ae = 0, while the smaller target position is at Ae/9 = 1.

(See Fig. 3.2-1.) The position of the tracking system depends

52





can be obtained by a straightforward extrapolation of the

two-dimensional case. We will consider the case of point

targets for developing the theory, but we will implement

the results when the targets have complex structure.

B. INTERFERENCE IN ANGLE CREATED FROM TWO TARGETS

Consider the case of two point targets (or spheres)

in the same resolution cell of the radar with spacing

AL (i.e., ^ < 93^1^/ AR "^ ~2~' ^ ^^ ^^^ velocity of light).

As the relative path lengths between the radar antenna

and the two sources vary (i.e., R-, and R2) , the two sig-

nals will alternately add and subtract, and so the amplitude

and the phase of arrived signal will change. Although such

a simple situation (two points targets) may be fictitious,

it will illustrate the main behavior. The relative ampli-

tude between the RCS of the two targets is assumed to be a

constant "a" and the relative phase difference also constant,

a. The difference in phase is due to difference in range

(Ar) or to reflecting properties. The relative angular

error {AQ/Q^) is given by [23]:

A9 ^ a^ ^^a cos a
^3^2-1)

D 1 + a + 2a cos a

The position of the stronger target corresponds to

A9 = 0, while the smaller target position is at AQ/Q^ = 1.

(See Fig. 3.2-1.) The position of the tracking system depends
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on the relative phase a and the ratio a . One can show

that for <_ a <_ 1 and <_ a <_ 27t - the values of A9/Ae

will be between

-c» < -M_ < 0.5 (3.2-1)

When the echo signals are in phase (a = 0)

,

the error reduces to ;

—

-z-, which corresponds to the so-
a + 1 ^

called "center of gravity" of the two targets.

Now, when we have a complex target, i.e., the

ratio a is a random variable which changes from pulse to

pulse ^ Also a is random variable which changes from pulse

to pulse ^ Taking these into the given servo loop of the

radar system, one can compute the statistics of the random

variable A9, and this can give us a good approximation of

the error (for example, mean and variance) caused by the

addition of two targets in the same resolution cell. How-

ever, the simple case results are sufficient for our problem,

i.e., to show that the result of two target returns in the

same resolution cell causes an error in the estimation of

the position of the true target which depends on the signal

ratio between the two targets. When the two targets have

a complex structure rather than a point, the results are

much more complicated and we have to take into account the

circuits involved and the statistics of the target's returns.
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C. INTERFERENCE IN RANGE CAUSED BY TV70 TARGETS

In range measurements we have a similar effect, called

glint, i.e., we will get an error range depending on the

difference of range between the targets and the phase

difference. We can write the measured error in range as:

t t +At
o o

AR = K[ / S(t)dt - / S(t)dt] (3,3-1)

o o

where

S(t) = Sj_(t) + S2(t)

2At = the width of the range gate

t = the estimated range of the target (i.e.,

the position of the range gate)

.

The behavior in range is strongly influenced by the

radar parameters and the circuits used for measurements

(for example. Ax), but a "good" estimation of the behavior

can be taken as when the two targets are totally in the

range gate (i.e., the two targets are very close in range,

or there is a large range gate compared to At) , so that the

range gate will be at the central gravity of the two targets

Also we will assume that the video pulses are rectangular.

Refer to Fig. 3.2-1; the center of gravity of the two

pulses will be:

T^g =
I t s(t) dt / j s(t) dt

[t] [t]
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s(t)

Si(t)

t

t

t

S3(t)

t

s =

^1
=

^2
=

S3 =

Amplitudes of the two signals, separately.

The two signals combined in phase.

The two signals for combined out of phase.

Received signals for the general case.

• The center of gravity of the target.

The center of gravity of the two combined pulses

Figure 3.2-2. Range errors caused by two targets.
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, T +T^-2At
T = -{ r-^!^ =
eg b"- ^ 2

T^-At

S(t)dt] (3.3-3)

Tj_-At

+ [

T^+T2
T^+At

T^-At

S(t)dt] + [

T^+T2+2At
T^+At

S(t)dt]

}

T^+At

where in case of T, < T^', and 2 At - AT > 0;

B ^

S(t) =<

t < T^-At

^1 ' "^l"^^
< t < T2-At

a* ; T2-At < t < T^+At

a^ ; T,+At < t < T^+At

; t > T2+At

T^+At

T,-At

S(t)dt

30.a* = |a, + a2 e

a is the relative phase between the two

returned pulses

.

In general T 7^ T, where T, is the position of the true
eg 1 1 ^

target. Thus we get an error in the computed range. This

error is between the two extremes given by the cases when

the two pulses are combined in phse and out of phase. When

the two pulses are combined in phase we get a simple

expression for (3.3-3):

58





a T + a T

^cgs = a, ^a, ^ "^1 <3-3-4)

The error due to the addition of the second target is

given by (for the case that they are in phase)

:

^''s - ^1-^cgs = Fr^(^i-T2' '3-3-5'

which is not equal to zero when T, ^ '^2'

D. CONCLUSION

In the last two paragraphs we have shown that when

there is an additional target in the resolution cell, the

radar will not track on either of the targets, but on

their center of gravity. In order to eliminate this

phenomena, we must change the design of the radar so that

it will track on the two targets.

There are two main ways for accomplishing this objec-

tive which have been developed in this study.

(i) Extract information of the location of the target

by processing the signal after the recevier. This

leads to the implementation of what we have called

the probability filter (Chapter V)

.

(ii) Modify the receiver and the filtering process after

the receiver in order to extract the information of

the two targets.

This leads to an antenna modification and a new type of

modified Kalman Filter (Chapter IV) . We will consider later
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the case of a ship as the true target and chaff as the false

target. This implies very small Doppler shift between

the two targets. In the problem of air targets the differ-

ence in velocity between the target and the chaff is

distinguishable and they can be separated easily by a

moving target indicator (MTI) . In summary, the following

techniques are presented in this dissertation:

(1) Antenna modification plus a Modified Kalman Filter

(M.K.F) . In this case the location of the targets

are resolved on a pulse to pulse basis (see Chapter

IV-A) . Thus it can include the case of air targets

where doppler shift is not applicable rather than

be restricted only on surface targets.

(2) Probability filter . This solution is suggested in

case of C.S. or L.S. radars. Here the location of

the targets cannot be resolved on a pulse to pulse

basis (see chapter II) , and many pulses must be used

in order to solve the problem. Because the dynamic

of a surface target is slow, we can assume a

stationary process for the target's RCS. Thus a

time average over a small interval can used as a

good estimate for the mean of a function of the

RCS.





V. A MODIFIED ANTENNA AND KALMAN FILTER SOLUTION FOR
UNRESOLVED TARGETS - FOR A MONOPULSE SYSTEM

A. THE THEORETICAL SOLUTION

1. Introduction

The problem of two targets in the same resolution

cell is discussed in the literature, mostly from the point

of view of resolution and multipath [Refs. 12,13,14,15,16,

17, 18, 19, 20]. The principles involved in the multipath

problem are similar to the two-target problem, and it is

proposed that they be adopted for this case. The major

difference between the two problems is that in the multi-

path problem the amplitude ratio and the relative phase

between the two return signals are known. This information

is missing in the two-target problem. The method used to

solve the multipath problem is called the "Complex Angle"

method (CA) . In this chapter we resolve in a new way the

positions of the targets in a single pulse and demonstrate

how to filter the data. We break the problem into two

parts

:

a. Resolve the positions of the targets and their

amplitudes, assuming that there is no noise. This

gives us the positions of the targets plus estimation

noise.

b. Filtering the positions of the targets. Since the

foregoing yields the position of the target plus

estimation noise, an additional filter must be used.
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Furthermore, the estimate of the positions is with-

out the decision of target vs chaff. Thus this

filter must select the two positions related to the

chaff and the target.

The general assumption is that in the input to the antenna

there is a white Gaussian noise. Since the first block

includes a non-linear transformation of the signal (see

fig. 4.1-1), there is non-Gaussian noise at the output.

This output is the input to the filtering block. Our

filtering procedure is complicated even with the assumption

of a Gaussian process. Thus, to save a lot of computation,

the assumption is made (similar to the usual monopulse analysis)

,

that all the variables are Gaussian. In regular monopulse

systems the measurement process requires multiplication

A^ (see II. B). The variables A and I are assumed to be

Gaussian. Hence the measured error is not a Gaussian varia-

ble although in most of the regular monopulse radar, a[ is

assumed to be Gaussian variable. The same type of assumption

is made in this application.

The block diagram is given in Fig. 4.1-1. We

start with the first block, i.e., the resolving procedure.

2 . Resolving Targets with Monopulse System

This paragraph introduces a new technique for

resolving two targets, based on the "complex angle" method.

The uniqueness of this solution is that we use only a four

element antenna, which is the regular monopulse. However
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we require four output channels from the antenna rather

than three channels as in regular monopulse. The resolved

positions, similar to regular monopulse, are made in one

pulse.

For monopulse system and two targets, the output

of each antenna is:

^i " -^l^i ^^I'^l^
"^ ^2^i^^2'^2^ ^" 1,2,3,4 (4.1-1)

or, in vector form:

where

e = A^G(X^) + A2G(X2)

G. - the voltage pattern of the i received

beam

X - coordinates of target a: (X ,Y ) x= 1,2

A - effective complex voltage due to target =^

(normalized to the range) , and is given by

*a = Ka^°tt5al^^Pf^[-dat + 9^]} (4.1-2)

cjo^ = the doppler frequency of target a

9 - phase associated with target'

a

a - The a target voltage cross-section
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G - one-way voltage pattern of the transmitted

beam

K - normalized factor.

Note: For implementation, it is much simpler to assume

y, = and then solve the equations. This is reasonable

if we deal with surface targets, and so y-i^ 0, and this

assumption would simplify our decision procedure. However,

the reason that we do not assume Y, = is because

Y-, is a random variable with almost zero mean but with

variance not equal to zero. For example, a ship is tilted

by the waves and the e.g. of the ship is changing with

time. Thus, the assumption that Y, = can cause an

error. Also, the assumption Y = would lead to a special

case solution which is not desirable.

There are four unknowns for each target:

The positions - X = (X ,Y )

The amplitudes - A = (Re A , Im xA )

Because eq. 4.1-1 is a complex equation and we have

four antenna elements, we have a total of eight equations.

After solving (4.1-1), one can use (4.1-2) to solve for a

and the angle (t'co, + ). By using at least two different

samples, we can also separate oj, from and have the

doppler information about the target. The main approach of

this section is the solution to (4.1-1). Because this

equation is quite complicated, the main idea is:
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(1) Solve it by approximation, using Taylor series [12]

as is usually done in regular monopulse analysis.

(2) Solve the non-linear equation with .-a starting point

given by the first step.

The Taylor series solution for this case follows

with the solution given by (4.1-18,19).

Our assumption is that the beam is composed

of factors, each related to a particular angular

dimension, i.e.:

G^(X) = X^(x)-Y^(y), 1=1,2,3,4 (4.1-3)

We solve the equations for the unknowns by expanding the

gains, X- and Y. by Taylor series up to first order about

the boresight line, i.e.:

X^(X) = /i" (1 + a^X) + 0(x2)

(4.1-4)

Y^(Y) = /g (1 + 3j_Y + O(Y^), i = 1,2,3,4

where

g - is the boresight gain

a. - is the slope of the beam near the boresight

line for X direction

S .
- is the slope of the beam near the boresight

line for Y direction.
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From (4.1-3) and (4.1-4) we get:

G^(X) = g(l+ a^X + e^Y + a^e^XY) (4.1-5)

i = 1,2,3,4

Equation 4. 1-1 can be approximated by:

®i
" gA^(l + a^X^+ e^Y^ + a^e^X^Y^) (4.1-6)

+ gA^d + a^X^ + 6^Y^ + a^e^X^Y^) i = 1,2,3,4

Those are four complex N.L. equations. Let us now

"linearize" the equations by substituting new variables:

Z^ = A^ + ^2

Z2 = A^X^ + A^X^ (4.1-7)

^3 ~ '^l^l ^ "^2^2

Z4 = ^l^l^l -^ ^2^2^2

In this case the linear approximation of (4.1-6) is

!. = (Z, + a . Z„ + 3. Z^ + a. 6 • Z J .g , i = 1,2,3,4 (4.1-8)
1 1 1 2 1 3 11 4' ^ '
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or in short form:

e = B • Z (4.1-9)

where

:

z 4

-Z4-

fl

B ^ g

a^^ B-j^ ^1^1

4 4 4 4

(4.1-9a)

We can assume that B exists and so the solution of Z is

given by:

Z = b"-^ e (4.1-10)

From the knowledge of Z we have to find the location of

the targets (X), and the amplitudes. By equation 4.1-7 it

is easy to determine the amplitudes, given the locations:
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Z^Y„ ~ X_Z_ Z,X„Y_ ~ Z.
, _ 2 2 2 3 _ 12 2 4

2 - X^Y^ - X^Y^ - X^Yj - X^Y^

T ALet's now define nev7 variables (a = [a, ,a^ ,a^ ,a . ] )12 3 4

A ^1^2 ^^2 " ^1^
a -

(4.1-11)

1 X^Y^ - X^Y^

A ^2 " ^1
a ~
2 X2Y2 - X^Y^

A V2^^2 - ^1^
(4.1-12)

^3 - X^Y^ - X^Y^

Y - Y
A 2 1

a
4 X^Y^ - X^Y^

This gives us a new linear form of equations 4.1-11

Zl^l + 24^2 = 22

^1^3 ^ ^4^4 " ^3

(4.1-13)

The last two complex equations (4.1-13) are four equations,

and we have to write Z,- as it is the sum of real and

imaginary parts.
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'i
" ^i + J ^i / i = 1, . .. , 4 (4.1-14)

Let's define

R &

L«4J

I &

L 4

where:

Z = R + j I

We now can return to eq. 4.1-13 by defining

H,

\ R4

^1 h
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b
~7

"''2'

^2

^3

bi

Then we write equation 4.2-13 in short form;

«z • ^ = 5z (4.1-15)

Solving this equation gives

5 = «z"^ ^Z R1I4 - ^^1

(R2I4 - R4I2)

(-R^Ii + R3_l2)

(R3I4 - R4I3)

(-R3l^ + R^l3)

(4.1-16)

Assuming H_ exists, then a is determined. Now we have to

solve X.. First we notice that:

^2 " ^1

Y - Y
2 ^1

a. = X,X.
4 14 (4.1-17)

Y Y14

X^ - X.

^2^2 ^1^1
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For convenience we define a new variable:

U = H X

X i

~^r

^1

""2

\j2_

(4.1-18)

H
u

_o ; D^

-1 1

1 1

The inverse transform is given by:

X = ^ H U
2 u ~

(4. 1-19)

Solving (4.1-17,18) for U gives, by eliminating x:
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u = (4.1-20)

when S is a variable which can be +1 or -1. In determining

U one solves for U^ and U. first. Using these values one

can find U-. and U-,. This is illustrated in Fig. 4.1-2.

The variable S occurs because we have a nonlinear

equation. It is easy to see that changing S from +1 to

-1 will cause the whole solution to change indices. (I.e.

given e 4.1-10 yields Z, R, I and b2 ^ 4.1-16 yields a,

4.1-10 gives U, 4.1-19 gives X, 4.1-11 gives A, and A^)

see figure 4.1-2):

When S = 1

X =

^1

^1

=^2

L''2_

A =
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or when S = -1

X =

-x^-

^^2

^1

_^1_

A =

L-2J

From which it is clear that in both cases we have the solu-

tion of the location of the two targets. For the solution

(n ) assume an arbitrary that S = +1.

solution
for S=l

'n"'"

.<"'
L- J

— *"

'^i

^1

~i

=^2

^2
i

' A

'— _

Then we have a unique solution for the positions of the

targets but we can't match the position of the target to

the measurement. There are two possibilities for target #1

position (and the same for target #2), i.e.: the position
X X

of target #1 can be ( ,^) or (
^)

.





The block diagram of solving the positions and the

amplitudes of the two targets is given in Fig. 4.1-3.

Everything is straightforward in the block diagram except

the amplitude vector for the range, which will be explained

in the following paragraph.

Solution for Range

As was mentioned in Sec. II. B, the error in range

is given by:

^R = Kj, V^^ ^ v'*^^
(4.1-21)

eg Jig

where

:

V - is some measure of the amplitude of the
xg ^

X gate (early or late)

K_ - constant.

In our case we cannot take the amplitude in each range

gate and substitute into the formula because at each gate

we have the sum of two amplitudes. Thus we have to use the

technique developed for resolving the angle. The simplest

way is to use the procedure for solving the amplitudes for

each target, but now we have to consider two amplitudes for

each target (for the early and late gates) . The procedure

is described in the block diagram 4.1-3.

(1) For solving the regular araplitude we use

formula 4.1-11. We need the delay because we need to wait

for the solution for X and Y.
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(2) We take (at least) two samples of 7. in the

late gate and in the early gate (Z.^Z ) and we use the

same formula for obtaining the amplitudes at each gate,

where

:

?s

?4

Z
~e

For the purpose of tracking in range we do not need the

complex signals. Thus we give the output only for the

absolute value of each amplitude.

Note that here we cannot use integration as sug-

gested in Sec. II. B because we have to take a sample of

the amplitude. To perform a process like integration we

have to take many samples. Our process involves a phase

detector plus a computation for each sample, and this limits

the samples that we can take. In our case in order to save

the amount of computations, only two samples are taken.

Furthermore, we can save even more calculations by assuming

the range of the target and the chaff to be the same.

After we have the approximate solution for the

unknowns, one can substitute these values in eq. 4.1-1 as

a first approximation and iterate the N.L. equations for

a more accurate solution where we can assume that:





sin C. (u -
. )

U^(u) = K^
F \vi - d

^^ ' ^ " !'•••' 4 (4.1-22)
^i oi

with:

U. - is X. or Y.
1 11

u - is the coordinate x or y

F, . , K. - parameters of antenna i

9 .
- the offset of antenna i

oi

Let us now observe that this method gives us exactly the

same solution for the single target case. In this case,

A2 = and so (4.1-7) reduced to:

H = H

^2 ~ ^1^1

Z3 = A^Y^

Z4 - ^^1^1

(4.1-23)

And so

= !2 _ ^
^1 - A^ - Z,

Z3 Z3
(4.1-24)

^1 A, Z
1
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Now, let's assume the same beam shape for all the antennas

(i.e. ,
I

a. = a) . Then the matrix B becomes
1 ' '1

(refer to Fig. 2.2-6 and equation (4.1-9a;

B = g •

1

1

1

1

a

-a

-a

a

-a

a

-a

a

-a

-a

a

a

(4.1-25!

Solving for B :

B
-1

4ga'

a

a

-a

-1

a

a

a-

a

-a

-a

-a.

-a

-1

(4.1-26)

Now we can solve for x,,y, (4.1-19):

1 (^2 ^^4^ - ^^1^^3^

a e, + e2 + e^ + e>
1 "x
a T (4.1-27)

1 (e^^ + e^) - ie^ + e^) _ ^ \
a e, + e~ + e-, + e.12 3 4

a E

which is the well known solution for regular monopulse

systems. Thus, from this result we can say that regular

monopulse system is a special case of our development.

80





3. The Filtering Procedure

In the last paragraph we investigated a way to

resolve the unresolved targets where we have a monopulse

system with phase detector. The development was based on

the assumption that we have no noise. We could work this

problem as was suggested by [20] but this leads to a lot

of computations, and the estimator functions on a pulse to

pulse basis ([20] does not use the prior information). Thus,

after our estimator we have to use a filter. Furthermore,

we have also to make a decision about target vs chaff.

For simplicity we assume that the outputs r] (see

Fig. 4.1-1) are Gaussian variables, so we must solve two

problems

:

(1) Selection - i.e., at each pulse we have to
«

distinguish the origin of the measured data, which means

that each measurement gives us two sets of data, target

and chaff, but we cannot distinguish between the two.

(2) Filtering - After we make the decision, our

data is not noise free. Furthermore, the decision may

be wrong. For this purpose, we have to filter the data

output from the selection block. In the previous analysis

we assumed that measurement noise does not exist. In

reality we should have started with the equations:

e. = A,G. (x, ) +A^G. (x^) + n. i = 1,2,3,4 (4.1-28)
1 li~.l 2i~2 1
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where n. is a complex white Gaussian noise:

n . = n . + j n .

1 ci - SI
4.1-29

n ./n^. - white Gaussian noise with zeroci si

mean, each of them with variance

2
a , assuming no correlation

between n and n .

c s

However we used (4.1-1) so that after our processing, we

can assume that a Gaussian noise is introduced. The

computed information needed for Gaussian variances are:

i) The means

ii) The variances
«

iii) The correlation between the noises.

That is, we have to include, for the random process n:

y = E{n} (4.1-30)

A = COVAR{n} (4.1-31)
n

which is straightforward.

Once we have n output of the resolved block positions with

the approximated statistics of the noise, we can make our

decision and filter using the information about the ampli-

tudes of the signals and the dynamics of the targets.

The decision and filtering process is described in the

block diagram given in Fig. (4.1-4).
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Our information comes from the monopulse antennas,

and we compute the positions and the amplitudes of the

targets in the resolving block. The outputs from the

resolving block are n and n which include the posi-

tions and the amplitudes of targets number one and two,

and we have for the filtering procedure to decide if n

belongs to the target or the chaff. The information needed

to decide is the predicted position of the targets and

the covariance matrix of the error of our prediction.

After the selection block, we get the information

needed for the filtering, i.e., the amplitudes and the

positions of the target and the chaff. The output of the

filtering block is the estimated position of the target

and may be, if needed, the position of the chaff and the

velocities

.

There is also an outside output to the filtering

block, i.e., during the process we change the position of

the antenna in order to zero in on the target. Because our

model refers to the absolute coordinate we have to take

the change of the relative position antenna-target into

account. In our case we make the above assumption for

simplicity;

i) The process is sequential. This means that we

calculate the estimator output and the covariance

matrix from pulse to pulse. We do not have to store

all the measured information so far. This assump-

tion comes from the desire for a simple procedure
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and reduces the amount of storage and computation

needed for a non-sequential process,

ii) Our variables are Gaussian.

The theory of the selection and filtering is given

in Appendix A. We give here a short description of the

procedure.

i) The dynamic model:

X(K+1) = <I'X(K) + AU(K) + W(K)

X(K)

(T)X^^ (K)

X^"^^ (K)

== the amplitudes, (4.1-32)
A and the
positions of
the targets

,

X

(T)

(C)

(i)

A ^

the transition matrix of each target
(i=T or i=C)

(T)

(C)
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ii) The measure model:

n(K) = L(K) • C • X(K) + V(K)

c = [c'^' I
c'C'i

n(K) S

n'^'(K)

n'2'(c)

L(K) - is the random switching matrix

(see eq. A-1)

.

iii) The statistical information about the states and the

noise is given in Appendix A.

a. The Selection Procedure. All the procedure is

described in Appendix A. Hence only the block diagram is

given here (4.1-5).

Description: We have in this block the above inputs:

i) The resolved information about the targets - n (K)

The estimate predicted positions and amplitudes

of the targets - Y(kIk-I)

The covariance matrix of the error of the estimate

prediction - A.

The output from this block is the assumed information about

the target. The resolved information of the target is

transferred into two forms:

ii)

111,
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i) ^1

(1)

(2

which is the original input

ii)
^2

(2)"

(i:

which is the switched input

After we form the two possibilities t., we subtract the

predicted measure Y(K|K-1) with the formed t. and we get

a two error vector r. . We now form the likelihood test,

and we decide t, or t2 according to I, > l^ or l^ < 5,, .

The output from this block is the assumed information about

the target.

b. Filtering.

After the decision about target vs chaff is

made, we have to filter the output from the selection block

(4.1-5). The filtering could be straightforward if we have

high confidence that our selection is correct. In our case

we are not sure if our selection is correct, and we must

take this into account. Since we cannot tell if our selec-

tion was correct or not, we can only take into account the

probability that the selection was correct, i.e., we cannot

reject or accept the data, we can only "weight" the data

depending on the computed probability that our data is

correct or not.
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The two possibilities are:

i) A true data available, i.e., we decide the right

selection,

ii) A false data available, i.e., we decide the wrong

selection.

We must assign a certain "weight" (depending

on the probability that this data is true) to the data.

Because all the procedure is descibed in Appendix A,

only the block diagram is given here, (Fig. 4.1-6).

B. SIMULATION OF THE MODIFIED KALMAN FILTER

1. Introduction

The M.K.F. is very important in our system, and

we must show that the concept of the modified filter works.

We will use only one component of measurement to show how

it performs. Because the most distinguishable component

between the chaff and the target is in the height, the

simulation is only for height. To take into account the

variance and the bias of the estimation error the probability

of missing is used as a criterion. The probability of

missing includes both the bias and the variance of the

estimation error. Furthermore the radar system is assumed

to be in a missile.

We have chosen only one component of measuring,

i,e. , the height. The target which is assumed to be on the

surface has zero net velocity in this direction. The chaff

has no negative velocity in height. Thus we can define,

according to (4.1-32):
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X(K) =

X^(K)

X^(K)

X^CK)

X^*^^ (K)

X^^^^ (K)

X^^*^^ (K)

(T)X^^ (K)

X^^^ (K)i

(4.2-1)

where:

X^(K) = X^^' (K)

X2(K) = X^^^ (K)

is the height of the
target at time K

is the height of the
chaff at time K

X^(K) = X^^^^CK) is the velocity of the
chaff at time K

and

A = 0.

According to the above assumptions, we can relate (4.1-32),

(A-2) and (A-2a) with the proper matrices. The matrices

are changed according to the simulations performed.

Note: In the simulation we use the terms (refer to (4.1-32)

"without switching" which means

L(K) I for all K's

"with switching" which means that L(K) is

as defined in (A- lb)

.
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In the simulations we compare the M.K.F. "with switching"

to the R.K.F. "without switching" as a reference (ideal)

,

and to the R.K.F. "with switching" to show the improvement

that we get.

A Monte Carlo simulation with 200 ensemble members

is performed. The results are given in comparison to the

regular Kalman Filter (R.K.F.) (where there is no switching

in the input). The criterion for missing is as follows:

The missile is simulated as an inertial mass

and it is guided to reach the estimated height

of the target, i.e.:

Xj^(i+1) = KXj^(i) + (l-K)X^'^^ (i+1) (4.2-2

where

X^^^d) - the missile's position at time i

^ (T) .

X (i) - the estimation of the height at
time i, see (4.2-1)

K - transition constant of the missile
It is chosen to be 0.8.

The criterion of missing:

X^(TTG) - X^*^^ (TTG)
j 1 6 S ^

where
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TTG

(T)

time to go (chosen to be 40 sec)

X'*' (i) - the height of the target at time
i, see (4. 2-1)

.

In our case 3 is chosen to be 0.75 which experi-

mentally gives a probability of missing of about

0.5.

We study the performance of the two filters by changing

three significant parameters;

variance of the noise-

- mean of the initial states.

standard deviation of the initial position of

the chaff, i.e.:

E{ [X2(0) - X2(0) ]"]

Note: In the simulation instead of the formula (A-13) for

a(K) the following formula was used; by mistake:

a(K)
1 + Y(K-1)S(K)

where

:

T(K-l) =
-L/2

L = b'^fK)A~^(K)b(K)

T &
b^(K) =

X^(K|K-1) - X2 (k1k-1)

X^CKJK-l) - X-j_(k!k-1)

and 6(K) is the same as 3(k) given in (A-13a) , and

a" (K) is defined in (A-6). This leads to an a(K)

slightly higher than the real a(K). Apparently this
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change in a(K) will not affect the simulation results

significantly. Hence it should not change the

simulation conclusion.

2 . Simulation Results

a. Influence of the noise on the Performance of
the Filter

The following parameters and matrices are chosen:

d) =

C =

R =

M =

X(0)

Q =

1

1 1

1

1

1

1 0"

1_

50

5000

10

100

-1

a

a/100

0.5

a/4

where

is a parameter to be changed
is changed from 0.1 to 100.
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Three results are given here:

(1) . The probability of missing as a function of -10 lOg (a)

(Fig. 4.2-1). From the simulation results we see

that:

(i) The R.K.F. (without switching) gives a better

result than the M.K.F. (without switching),

but they are close. Thus the MKF approaches

the ideal.

(ii) The M.K.F. gives significant improvement over

the R.K.F. where the input to both is switched

randomly. (The probability of a miss for the

R.K.F. in this case is almost one).

(2). The difference in gain between the M.K.F. and the

R.K.F. as a function of -10 log (a) (Fig. 4.2-2).

The comparison of the gains at TTG is given here.

As was expected, the gain of the M.K.F. is lower than

the R.K.F. and reaches the regular gain as a ->0

.

This is an example where the M.K.F. approaches the

R.K.F. in the limit.

b. Influence of the Mean of X(0) to the
Performance of the Filter^

The height and the velocity of the chaff are

taken in this case as parameters. Both are distinguishable

parameters between the target and the chaff. Thus we

study in this simulation how they influence the performances
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of the filter. The most distinguishable parameter is the

initial height. The following parameters and matrices

are taken for this test:

1 0"

1 1

1

c =

Lo

R =

Lo

M =

50

5000

0.5

Q =

1.0

.

,-4
9-10 "

0.25
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10"

X(0) = a

.-1

where "a" is a parameter to be changed.

Two results are given here:

(1) The probability of missing a's a function of

"a" {X^){0)) (see Fig. 4.2-3). We see

from the results that the probability of

a miss is larger than that of the R.K.F.

without switching, as can be expected, and

it reaches the performance of R.K.F. in the

limit (when at the instant TTG the two

heights are far apart, a > 100 or a < 10)

.

The maximum probability of missing is

reached at about a ~ 50 (target and chaff

as approximately at the same height at TTG)

(2) The initial gain as a function of "a" in

Fig. 4.2-4). Here we see that in the limit

the gains are the same as for the R.K.F.,

and reduce to 0.5 when the two heights are

indistinguishable as expected.

The following inputs for testing the influence

of the velocity are now chosen:
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10
oil

1

c =

R =

Q =

1.0

_

9-10
-4

M =

25

25

.

X(0) =

10

10

a

where

is a parameter to be changed (the initial
velocity of the chaff)
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b = O.la+0.01

c = 2b

Note that in this test the mean of the initial height of

the target and the chaff are the same. So the only dis-

tinguishable part is the velocity. The target has velocity

zero, so the most difficult decision is at velocity zero.

In order to check the case when the target and the chaff

have the same dynamics, we choose b and c so that for a = 0,

the chaff remains at almost zero velocity. For this case

(chaff velocity about zero) we must expect about 0.5 proba-

bility of missing. As the difference in the two velocities

increases, we can expect that the probability of missing will

approach the probability of missing for the R.K.F. On the

other hand, for the R.K.F. where there is switching in the input,

the probability of missing is at the lowest value for

velocity zero (because both of the targets have the same

height) , and approaches one as the velocity varies from

zero. The results < of the simulation are given in Fig. 4.2-5.

The results agree with the discussion above.

c. Influence of the Standard Deviation of the
Initial State to the Performance of the Filter

The standard deviation of the initial state of

the chaff changes the probability of the decision at the

beginning of the process

.

Thus it is interesting to see how it influences

the performance of the filter. The following matrices

and parameters are taken for this simulation:
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10 0"

oil
1

c =

R =

Q =

1.0

9-10

_

-4

"

0.25

X(0) =

10

100

L-lJ

M =

50

a^

. 0.5

where "a" is the parameter to be changed.

The difference in probability of missing, as

a function of "a", between the M.K.F. and the R.K.F. (without

switching) is given in Fig. 4.2-6. We see that in the
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limit (a ^ 0) , the two performances are quite close, and

when the standard deviation increases, the performances are

far apart. I.e., the probability of missing for RKF is

better by . 1 over the MKF for a = 100). The difference in

gain between the two filters is given in Fig. 4.2-7. in

the case 0^2^^^ is most influenced by the parameter and

we show this difference in Fig. 4.2-7. As expected, the

difference between the gains increases as the standard

deviation increases.

d. The Gain as a Function of Time

To illustrate the behavior of the gain as a

function of time, a typical example is given here. We know

that the gains, contrary to the R.K.F. are data dependent;

so for different data we get different gains.

The inputs to the system are:

1

1 1

1

c =

R =
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Q

1.0

- 0.25

X(0)

10

100

L-iJ

M =

50

10

L 0.5

An explanation of Fig. 4.2-8 follaws. At K = 1, a is about

0.5, thus the gain is reduced to about .5 of the R.K.F.

gain. At K = 4 , a becomes almost one and the gain first

increases and becomes larger than the R.K.F. gain, and then

it decreases below the R.K.F. gain because a is about 1

(a = 0.998). It then reaches a steady state gain. At

K = 35, a is reduced to a low number (a = 0.57) , because of

the large noise in the input. Hence the gain reduces to

almost half of the steady state gain. At the next instant

(K = 36) 06 becomes again about 1 and the gain is above the

R.K.F. gain. After that a remains almost 1 and the gain

decreases again and reaches the steady state value.

For the M.K.F., the steady state value is

reached only for the intervals where cL is almost one for

several K's. It can deviate from this value for short

transients because of spurious noise.
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3. Conclusion of the M.K.F. Simulations

Based upon the simulation results we can conclude

a. The performances and the behavior of the M.K.F

is as expected.

b. The M.K.F. is applicable to the chaff-target

problem and handles the ambiguity problem in

the monopulse solution (see Chapter IV. A)

.
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V. SOLUTION FOR UNRESOLVED TARGETS FOR C.S. OR L.S.
- THE PROBABILITY FILTER

A. THEORETICAL SOLUTION

In case of L.S. or C.S. it can be assumed that a phase

detector is not available. Thus we get only amplitude

from the receiver. The approximated p.d.f. of the return

signal exists in the literature [ 8 ] , [ 9 ] . Our purpose is

to approximate the amplitude of the target or the chaff as

received at each antenna so that the position of the target

can be calculated. In case of C.S. we can separate the

signals received during one conical scan period as equiva-

lent to n separate antennas where n can be as large as the

number of pulses in one rotation.

The information of the amplitude of the target at each

antenna is sufficient to determine the position of the

target with respect to the antenna (see Chapter II. B).

The probability filter proposed here seems to be the

most practical solution to our problem because:

(1) It gives a good estimation for parameters

(signal amplitudes in this application)

.

(2) It is easy to implement.

(3) The probability filter does not depend upon an

exact knowledge of the p.d.f. of the signals,

and an approximation is sufficient. This filter

can be implemented with a premeasured reference

signal which is used with an approximate p.d.f.
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to obtain the solution. This is an advantage over

a likelihood filter which cannot be implemented here

because the p.d.f. of the signals is not know exactly.

The theory for the probability filter is developed in

Appendix D. The application of this general approach follows

with simulated examples to demonstrate its effectiveness.

Because we restrict ourselves to surface targets we can

assume a stationary process for the amplitudes measured at

the receivers.

Thus we can use (D-12b) as an approximation to the time

average (i.e. with reasonable "T" compared to the missile's

flight time)

.

B. PROBABILITY FILTER SIMULATION

1. Introduction

In this section we give some results using the proba-

bility filter concept. The difference between the likelihood

filter and the probability filter is that for the likelihood

filter we need more information about the process, i.e., we

need to know the joint p.d.f. (f (x, ,X2 / • • wX^) , while in

the proposed probability filter we have to know only the

marginal p.d.f. (f^ (x) ) or its approximations. The relation-
1

ship between the samples involved the expected value of a

function of the samples, and for this the sample average

is used (assuming an ergodic process), i.e.:

E{f(Z)} = f(Z) =
I [f(Z(i)) (5.2-1)

where the symbol "~" means time average.
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In order to estimate a parameter vector 9 we develop

the theory of the probability filter given in Appendix D.

The main idea of the probability filter is to minimize the

difference / in some sense, between the conditional p.d.f.

f[Z|e] (where 6 is the stimate of 9), and the measured p.d.f,

of the process, Z, which contains the information of 9,

f(Z) =f(z|9). We choose the norm to be (D-11)

:

I = y /[f„(z|9) - f„(Z)]^ dz -> min,

This leads to a necessary condition (D-12;

ar 3f7(Z|9) ^ 3f„(Z|9),

do ~ ~

Our task is to solve this equation for 9.

Summary of notations:

9 = estimation of 9

6 = true value

9. = j"^" iteration in the process of finding 9.

9 (K) = 9 at the end of N data block.

From D-12 we want to determine 9 = 9 so that 31/89. =

for all i. In order to accomplish this the following procedure

is used: (D-11) and (D-12) can be rewritten as

I =
I / [f2(z|Y) - f^i'Z.)]'^ dZ (5.2-la;

— CO

„ <»'3f„(Z|Y) »3f (Z|Y)^ .

W= / 3Y

'

fz'^l?'^^ - / 3Y~ fz(Z)dZ & f^(Y,9)
^ — OO ^ —00 ^
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The experimental value of 8I/3Y is given by

;^T -3f„(z!Y) N 3f„(Z(i) \Y) .

~ E -<» - 1= 1
(5.2-lb)

Note that f„(Y,9) does not depend explicitly on 9, although

9 of course influences the Z(i).

We are seeking 9 such that f (9,9) = 0. Usually we

solve this iteratively; 9 is guessed, and then 9. , is

obtained from 9., = 9. - £«f(9.,9) for j > 0, where e is^3+1 -^j .-.hj-^j-^ —

an arbitrary number. If the sequence 9. converges to 9,
-J

then clearly f (9,9) = 0. If e is very small, the convergence

is slow. On the other hand, if e is large we might get

oscillations. Thus we must use for this method an optimal

£, which might be a function of f.^. A different way to

solve for 9 is to use Eqs. (5.2-la) and (5.2-lb) that can

be iterated so that

/-^ /\

?e(?j'?) = Jt(?j'?j+1^ (5.2-lc)

^
th '^

where 9. is the j approximation for 9. Eq. (5.2-lc) is

solved successively for 9. ,, for n-1 steps, until
" A

'^

f„(9„,9) = 0, and we conclude that 9 = 9„ = 9.
z, ~n ~ ~ ~n ~

After we iterate (5.2-lc) for the first N samples of Z(i)

we get 9(1). Then we take a new sequence of N samples and

(5.2-lc) is iterated again to produce 9(2). Thus after the

probability filter we get a sequence of the estimated parameters:

{9(1) , 9(2) , . . . , 9(K) , . . . } .





If actually 6 (K) changes between blocks of N samples, we may

want to smooth the estimates 9 (K) with a Kalman filter. In

the discussion which follows the following terms are used:

"Open loop" means the estimation of 9 (K) with a

single block of N samples Z(i).

"Closed loop" means the estimation of 9 (K) with

the "open loop" followed by a Kalman filter.

As we know (see Appendix F) , the outputs from

the Kalman filter are

9(K|K) - the update estimation of 9 (K)

9(k|k-1) - the predicted estimation of 9 (K)

The concept of the "closed loop" is discussed and

simulated for the estimation of one parameter (parts 2 and 3)

2. Open Loop Performance - One Parameter Estimation

In this section we give the open loop output for

estimating one parameter. We choose the exponential

distribution. The p.d.f. is given by:

f„(z|9) = 9 e"^^ Z > (5.2-2)
it

—

9 is the parameter to be estimated. The equation for the

probability filter is as follows:

3f (Z I Y) _^„ _y„—5_ = e ^^ - YZ e
^^ (5.4-2a)

°°9f ( Z I Y) °° °°

/
'^ f^(Z|Y)dZ = / Y e"^^^dZ- / Y^Ze'^^^dZ = 0.25
'^^ ^

(5.2-2b)

Thus we can rewrite equation (5. 2- lb) for our case by

substituting (5.2-2a) and (5.2-2b) into (5.2-lb).





N
f (Y,e) = [||] = 0.25 -i

I [l-YZ(i)]exp[-yz(i)] (5.2-3)
E i=l

The first term in (5.2-la) is given by:

00
I

OO 00

/ !£zii^f^(Z|9)dZ = / ee-'S^^'^dZ- / 9YZe-<«^^>^dZ

= [e/(e+Y)]^ (5.2-4)

Note that (5.2-2b) is a special case of (5.2-4). From

equations (5.2-2b) and (5.2-4), (5.2-la) can be written

for our case as

f_(Y,e) ^ [|^] = 0.25 - [9/(e+Y)]^ (5.2-5)
T 9Y

^

Now we iterate our solution according to (5.2-lc) using

Eqs. (5.2-3) to (5.2-5). This leads to the solution:

I-,. = 6- [a./(l-a.)] (5.2-6)
J -^ J J J

where:

A
a . =
3

r N z
~

-yi
I [l-e Z(i)]exp[-e_Z(L)]

Y IN
j_=3_ J J
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Note: If the argument under the root turns negative then

one may take a larger N.

To show that this concept works, we now test the "open

loop" criterion. For this simulation = 1 is taken. We

perform three simulations:

- Testing 8I/8Y

The purpose of this simulation is to show that

the experimental 3I/oY contains the information

required for the iteration.

Estimating 6 in an open loop. In this simulation

6. is iterated and we try to find:

(i) The convergence of the iteration by

(5.2-6)

.

(ii) The number of iterations needed for

estimating 9

.

(iii) The variance and the bias error of

0.

Estimating of 9 in a closed loop.

The open loop estimate of 9 acts like a measuring

device for 9. The R.K.F. is used here as a filter for

this data and we test the performances of the overall

system. The design of the R.K.F. is influenced by

the variance of the error and the bias in the output

from the open loop probability filter, i.e., we assume

that after the probability filter we have a measured

signal with noise.
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e (K) = 9 (K) + V(K) (5.2-7a)

where

9 (K) is the true value, and

V(K) is the measurement noise at instant K.

In this case the statistics of V(K) are a function of

9 (K) , and this function can be evaluted approximately by

assuming that 9 (K) = 9 (K) . We are interested in the

variance of V(K) which is denoted by R(K). Thus,

A ^

R(K) = VAR[V(K)] = R[9(K)] = R[9(K)] (5.2-7b)

The process 9 (K) is assumed to be described by a linear

difference equation similar to (F-2) and the statistics

similar to (F-3,4,5). I.e.,

9 (K+1) = $9 (K) + W(K)

(5.2-7C)

9(K) = 9 (K) + V(K)

where, in (F-2), 9 (K) replaces X(K), and 9 (K) replaces Y(K).

The R.K.F. can be implemnted only when

R(K) = R[9(K)1 = Rt.9^(K)] ,

M, Q, and 9(0) are given.
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a. Testing the Experimental 3i/9y

The purpose of this simulation is to show that

8I/3Y contains sufficient information to close the loop by

iteration.

In this case we take the following parameters:

(1) 9 = 1.0

(2) Sample size - 1000

(3) Number of ensemble members = 1. The

results are given in two figures:

- Fig. 5.2-1 and Fig. 5.2-2 which give the

results of 3I/3Y for 9 /9 = 0.5 to 5.0.

It is significant to note that:

(i) At 9/9 = 1 the error between the

experimental gradient and the analytic

gradient is almost zero.

(ii) The values of the results are very close

to the analytic values for all 9 .

o
3

1

(iii) The curve for [-^^-s-lr^ approaches the

asymptotic line 0.25 which is the

correct analytic value.

The results show that the concept of the

probability filter works.

b. Estimation of 9 in an Open Loop

From the first simulation we have seen that

3I/3Y contains information about 9. The purpose of this

experiment is to study the bias error and the variance of

estimation of 9 for two cases

:
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- when 9 = 9 we will see the influence of

the number of samples on estimating 9, by

one iteration (9-,).

when 9 is a parameter, we will see that

the open loop estimator always converges

toward the true value of 9

.

In both of these cases the number of ensemble members is

500. The results are given in Figures 5.2-3 and 5.2-4

and in Tables 5.2-1 and 5.2-2.

Refer to the first simulation, i.e. one changes

the number of samples, N, of (5.2-3). According to the

figures it seems that the estimator behaves similar to the

likelihood estimator, i.e.:

The estimator seems asymptotically unbiased

(see Fig. 5.2-3)

.

The variance of the error reduces inversely

with N (see Fig. 5.2-4).

Refer to the 2 simulation, i.e., we change

9 as a parameter, and look one step forward to see the

error of 9,. We define a new variable:

a(j) = 9./9, j = 0,1,2, ... (5.2-8)

The number of samples, N, for this simulation = 1000.

Refer to Table 5.2-1. From the table we see

that the open loop estimator gives a very good estimate of
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TABLE 5.2-1

THE ERROR AND VARIANCE OF ESTIMATING

e, WHEN e IS A PARAMETER
1 O

a(0) E{1.0 - a(l)} VAR{a(l)}

0.1 -1.2- 10-4 9.4 •
10-*

0.2 -1.1 .10-3 1.1 •
10-3

0.5 -1.9 .
10-4 1.4 •

10-3

1.0 -2.0 .
10-3 2.1 •

10-3

1.5 1.7 . 10-3 3.1 •
10-3

2.0 8.7 . 10-4 4.2 •
10-3

5.0 1.8 .
10-2 2,2 •

10-2
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TABLE 5.2-2

THE INFLUENCE OF THE ABSOLUTE VALUE

TO THE RELATIVE ERROR AND VARIANCE

Absolute Value Relative Value
/\ y\ ^ /\ ^

e E{9-9^} Var{e^} E{l-a(l)} Var(e^/e )

0.1 -2 • 10~^ 2.06-10"^ -2 • 10"^ 2.06-10"^

0.2 -4.5-10"'^ 7.5 -lO"^ 2.3 • lo"^ 1.88-10"^

0.5 2.9 -lO""^ 5.2 -lO""^ 5.8 • lO"^ 2.06-10"^

1.0 -2 • 10~^ 2.06-10"^ -2 • 10~^ 2.06-10"^

2.0 9 • 10~^ 7.9 -10 ^ 4.5 -lO"^ 1.96-10~^

5.0 5.6-10~^ 5.1 -10 ^ l.l-lO"^ 2.05-10"-^

10.0 5.9-10
^

0.206 5.9-10~^ 2.06-10~^
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the parameter, even if we are far away from the true

parameter value initially. Thus it seems that a few itera-

tions are good enough to estimate the parameter since the

single iteration used here gives such accurate results. We

can use two criteria for determining the number of iterations

a fixed number of iterations or a flexible number of itera-

tions. For example, a stopping criterion might be

ll.O - a*(K) I
< £ (5.2-9)

where

a*(K) = ^r^- (5.2-10)

In this example, it seems that a fixed number of iterations

are enough. A simulation is now performed to prove this.

We start with 9 =9 and calculate d -, for a
o 1

range of values of 9. The results are given in Table 5.2-2

2
and indicated that the relative variance of 9-,/9 is

independnet of the value of 9. The variance is about

-3
2 '10 for all the tested values. And the relative error

-3
IS a very low number and it is of the order ot 10 . Thus

we can conclude that our results are generally independent

of the values of 9.

To prove that a fixed number of iterations are

enough (two iterations give a very good estimate) , we make
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several runs with different initial conditions. The number of

iterations is 10 and N=1000 . The results are given in Table 5.2-3

From the table we see that there is no significant improve-

ment after two iterations, even if our first value is far

away from the real one (a(0) = 100 or a(0) = 0.01). Thus

for the estimator we use two iterations . From the table

we see that we get a bias error on the order of 0.2%.

The relative variance is given by:

VAR[a(2)] = 0.002

Thus we can say that

VAR[e2] " 0.002 e^

and can be approximated by:

VARLe^] = 0.002 02 (5.2-11:

This equation will be used for the noise in the closed

loop simulation which follows.

3. Closed Loop Performances - One Parameter

After we have examined the open loop performance

of the filter, we can close the loop with a Kalman filter

and estimate the parameter as a function of time. The

conceptual block diagram is given in Fig. 5.2-5. The con-

cept of the filter is very simple. The open loop estimate
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of 0, acts as the input to a R.K.F. The difference equation

of 9 is given by (5.2-7c). The random measurement noise is

data dependent according to the simulation in the last para-

graph (5.2-11). So the variance of the estimation noise,

R(K) , is computed on line. Hence the Kalman gain must be

computed on line.

Explanation to the figure: We use the open loop

estimator for Q^ as a measurement of plus noise. The

initial guess for 9, 92 / is the predicted state from R.K.F.

(i.e. 9 = 9(k|k-1)). We compute on line the variance

according to the assumed R(K) using equation (5.2-11):

R(K) = 0.002 9^^ (5.2-12)

The R.K.F. receives the input 9 , the computed R(K) , and we

then estimate the state 0(K|K) and the predicted state 9(K|k-1).

In summary; N = 100 samples of the data are taken, two

iterations are used to estimate 9 (K) , so that the Kalman filter

updates 9 (K) in probability filter in successive blocks of

1000 samples. The random generators which provide W(K) and

9(0) are Gaussian (see 5.2-7c). Since 9 (K) is positive the

above procedure is made in order to avoid this problem:

b if b >

(0) = '

_
9 (0)/5 if b <_

where b is the output from the generator which produces 9(0).

And:

4)9 (K) + W(K) if it became positive
9(K+i)

;

9(K)/5 elsewhere.
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The first simulation that we perform is a case where we

have a process which has the following parameters:

<l>
= 1.0

Q = 0.1

e"(0) = 1.0

VAR{9(0)} = 1.0

For the Monte Carlo simulation 250 members of the

ensemble are taken. The performances come out as expected

with:

- Variance of the error over the ensemble is of

the order of 4 • 10~^, for all K.

- Bias error over the ensemble is of the order of

2 • 10"^, for all K.

The second simulation is identical to the first one but

with different parameters. In this simulation we want to

examine two things

:

- The estimation error bias and variance as a

function of K.

- The theoretical variance of the random measure noise

which is computed according to the experiment formula

(5.2-12) by comparing the calculated variance in the

estimation using (5.2-12) and (F-10) with the measured

variance of the estimation of an ensemble of 250

experiments.

The input parameters are:

$ = 0.9

Q = 0.5
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9(0) = 5.0

VAR [0(0)} = 2.0

Ensemble members = 250

The results (see Fig. 5.2-6 and Fig. 5.2-7), show

that:

- The variance of the estimation error is on the

-2
order of 2 • 10 .

-2
- The bias error is on the order of 10

- The theoretical variance of the estimated error

is very close to the simulated variance. Thus

our experimental formula (5.2-12) is accurate.

- We know that our error is biased but it

is one order less than the standard deviation of

the error. Hence the bias error is negligible.

4. Estimation of Several Parameters by the
Probability Filter

a. Introduction

In the last two sections we estimated one

parameter in an open loop and a closed loop simulation. In

this section the open loop probability filter performance is

tested for more than one parameter. For multiple parameters

it appears that we often cannot find a close form formula

for iteration procedure for the parameter values, some have

to solve for them numerically. Performances of the probability

filter is compared to the likelihood filter.
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EO(k)-9(k/k)}

_2

3-10

_2

2-10 "*

_2

10

K
I II »

Fig. 5.2-7. The bias error
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b. Mathematical Equations

As an example we take a Gaussian p.d.f. with

two unknown parameters

y - the mean

a
2 A 1

where

:

a - is the variance of the process.

The p.d.f. of this process is given by

f^{7./a,\i) expi- 2^ (Z-y) }

/ItF
(5.2-13)

Let's define the parameters*:

a

a
2 J L"2 J

(5.2-14)

Define a new variable related to the real

parameter (a and u) and the estimated parameters {B^/Q^^i
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«2 A o 2 _^ 2
S = 9p + a

A 1 '^ 2'' 2

6

2 A r2 2 2 2 2 2,
c = [02 e^ + ct y ] (5.2-15)

K ^ 2 2 ^2
b = c - Y '3

" 2

A 2 "^22 ^ ^ ^ ^ y^ y

= 1 - -^ - 9/(Y-0 )^

The equation of the probability filters follows

according to (5.2-la,b,c) as:

^^Z ^2 12 2^ = _^_ (z-Y,)exp{- yY„^(Z-Y,)^}^^1/2?^ 2 2 1

7 T 9 9 19 9^- = ^^ [1 - Y^^(Z-Y,)^]exp{- i-Y_^(Z-Y,)^}^^2/27 2 1 2 2 X

Thus from (5.2-lb) we get for this case
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!e<?'

'^^l E
~ n" .

^ Y
i=l ^1

1 N 3f2(Z(i)|Y^,Y2)

9Y.

4/7T

The theoretical 3I/3Y. comes out to be.

according to (5.2-la):

(5.2-16)

!t^I'-^®^

^8Y ^

1 T

2 T

-|^|expt-|b].[Y - YJ

a

4/7? -I? • B

exp[- |b]-d

(5.2-17)

We cannot find an iterative formula relating a.,,, y-,T

to a. and y . directly. However, we still need to be able

to solve the relationship

f (0,9) = fp(e,e)

= (5.2-18)

Assume that we are close to the real parameters and then:

u
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= a

y =

b =

^ = JL

" 2

d = 1 --2^
2a

We estimate the parameters in the experimental

equation as suggested in Appendix D by using a reference

signal (see Fig. D-5)

.

Our system measures [3I/8Y.]„. The analytical functions

[8I/3Y.] are given by equation (5.2-17). Using the form of

(5.2-lc), (5.2-18) leads to the approximate equations

- " .81 , 2/7

(5.2-20)

2 "" 2,, rdl, . / >

a = a (1 - [—]g • 4.TT)

We see that in the limit, i.e., when [3I/9Y.]„ = , we

get the estimation of the parameters

.

It can be seen from (5.2-17) that the sign of

the error in \i is independent of a . , and it is dependent

only on the error (y - y) itself. Consequently, the
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convergence is better if a . is fixed and y . is changed until

[dl/d]s.]„ ^ 0. Then y. and a. are changed until [3I/8Y,]„
3 tj J J

•" IE
and i'bl/'^Y^] approach zero. In this case it appears that

we can not use a fixed number of iterations, we have to

iterate until [8I/3Y.]^ -> 0.

c. Open Loop Performances

In the last paragraph it has been shown that it

is sufficient to treat the open loop probability filter as a

measurement device and add a Kalman filter to it with measure-

ment noise R(K) dependent on the data. We perform two experi-

ments, in which we use the probability filter with a reference

signal (see fig. (5.2-9.))-

The first experiment is to show that the performance

of the filter is independent of the mean, 9, = y. The second

-2
experiment tests the influence of the variance, 9^ on the

performance of the filter.

In each of these cases, our ensemble number is 50,

and N = 1000. For reference we include the performance of

a likelihood filter for competition. The results are given

in Tables (5.2-4) and (5.2-5).

The first experiment (see Table 5.2-4) shows clearly

that the error in the variance of 9-, and 9^ is essentially

independent of 9,. We hold 9^ fixed (in our case 9- = 1.0)

and changed 9 from -50 to +50. The results for each value

of 9, are very close.

The parameter 9, is chosen to be zero and 99 "^^

changed from 0.01 to 100. From Table 5.2-5 we see that the

variances can be expressed empirically.
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Peak Z(i) i=l/ . • • /N

±.

^ Peak X(i) i=l, . . . /N

±
Compute fp^?!^

^
Solve for

NO

^
YES

^

Fig. 5.2-5. Block Diagram of estimating
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VAR(e^) = 1.4 • 1Q~^/Q^

(5.2-21)

VKrCq^) = 1.3 • lO"^ Q^

If we compare the results of the probability filter to the

likelihood filter (Table 5.2-4,5) we see that the performances

are close, but the likelihood filter gives better results.

The experimental results, which are given by

formula (5.2-21), must be used when closing the loop with

a Kalman filter as discussed in the last section.

We will now examine the influence of the number

of samples, N, on the estimation for open loop probability

filter. The number of samples has great influence on the

estimation process because as the number of samples increase,

the accuracy of the estimation increases. But, we have to

look at the whole system, i.e.:

The dynamics of the process generating Z (t)

when the dynamics of the process are rapid,

we would like to take a minimun number of

samples

.

A good estimation after N samples does not

mean that we cannot get a better estimation

with fewer than N samples (for example

N/10) . If we can filter the output of the

probability filter by a Kalman-type filter

we may get a better estimation. For example
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N = 5 might be sometimes better than N = 1000

if we place a Kalman-type filter after the

probability filter.

Thus, the information about the influence of the number of

samples is very important when we are going to design a

whole system. The results of the test of the influence of

the number of samples, are given in Table 5.2-6 and Figures

5.2-9 and 5.2-10. From the results we see that the variances

of the estimation errors decrease almost inversely (except

for N = 2) v/ith the number of samples. From the results it

seems that the variances of the probability and likelihood

filters decrease almost inversely with the number of samples.

The likelihood filter (except at very small N) gives results

for most of the cases better than the probability filter.

d. Estimation of Parameter in Case of p.d.f.
Not Known Exactly

As was discussed in Appendix D, by having a refer-

ence signal we can estimate parameters even if we have only

an approximation for the p.d.f. (See equation D-12b.)

In this section we would like to show how this

concept works. We take at first a Gaussian process including

a limiter, which is very common in any practical measurement.

We want to estimate the parameters with a minimum influence

of the accuracy of the assumed p.d.f. We test this case with

the probability filter with reference signals, and we compare

it to the likelihood filter. The block diagram of the pro-

cess is given in Fig. 5.2-11.
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For the probability filter the reference signal

is taken to be a limited Gaussian signal and the assumed p.d.f

is Gaussian. For likelihood filter the assumed p.d.f. is

taken to be Gaussian also.

We test first the case of a symmetrical limiter,

i.e./lz.|=Z . The mean of the output is not influ-
' mm ' max '^

enced by the limiter. The estimation of Q^ is influenced by

the limiter. The bias error of 9„ is strongly influenced

by the limiter. The following parameters are taken for this

test.

# of samples (N) = 100 ;

# of ensemble members = 100 ;

From the first simulation (see Fig. 5.2-12) we can conclude

that:

(i) The probability filter is much better than

the likelihood filter when Z < 3; formax

Z > 3 the likelihood filter becomes a
max —

better filter than the probability filter.

(ii) The bias error of the likelihood filter

depends very much on the knowledge of the

p.d.f., while for the probability filter

error it is almost constant.

The second simulation (with a non symmetrical limiter is

performed), i.e., Iz.It^Z . We choose Z . = -1, and^ '
' ' mm '

^ max mm
we change Z . The unsymmetrical limiter influences the

max -^
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TABLE 5.2-7

THE INFLUENCE OF NON-SYMMETRICAL LIMIT

ON ESTIMATING THE PARAMETERS

^nax ^^l""
''2^ 'h ^9/

5.5 • 10 ^ -1.3 • 10"^ 0.32 -1.5

0.01 5.6 • 10"^ -1.4 • 10"^ 0.31 -1.5

0.5 1.1 • 10 ^ -1.3 • 10"^ 0.11 -0.74

«

1 3.8 • 10~^ 2.4 • 10~^ -2 • 10"^ -0.41

5 1.4 •
10"^ -4.1 • 10"^ -7.2 • 10"^ -0.18

10 -6.7 • 10 ^ -7.6 • 10 ^ -9.0 • 10 ^ -0.16

Z . = -1
min
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variances and the means, so we have to check the bias error

of estimating 9^ and 6 . The results are given in Table

7.2-7. The results show that the bias errors of the proba-

bility filter are influenced weakly by the p.d.f . while for

the likelihood filter there is a great dependence upon the

knowledge of the p.d.f.

It should be mentioned that the likelihood filter used

for comparison here is a "straw man" in the sense that the

probability filter is given the correct class of p.d.f 's

(indirectly through the reference signal) , whereas the like-

lihood filter is not. In this example, one could design a

likelihood filter using the correct class of p.d.f. 's that

would probably outperform the probability filter. However,

our point is that the probability filter is robust (in this

example - further work is in order) with respect to errors

in establishing the class of p.d.f. 's used for gradient

computations when a reference signal is available. In prac-

tice, the choice between filter types would depend on whether

the correct class of p.d.f. 's can be well approximated

(likelihood filter) or not (probability filter) by simple

analytic expressions.

5. Conclusion of the Probability Filter Simulations

After the simulations we conclude the following:

a. It has been proven that the probability filter

can be implemented quite easily.

b. The performance of the probability filter is

(in our example) not sensitive to errors in
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estimating the form of the p.d.f. f„(z|6) when

a reference signal is available.

c. The performances of the filter when the p.d.f.

is known exactly, is of the same order of magni-

tude compared to the likelihood filter, but

gives worse performance most of the time.

d. In the target/chaff problem we do not know the

exact p.d.f. because there are several types of

chaff and targets. It is quite easy to provide

a reference signal for the probability filter

which will fit to the exact p.d.f. Thus the

probability filter may be found to be the

practical solution. Further investigation is

needed.
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VI. SUMJyiARY AND CONCLUSION

In this research we tried to solve a realistic and

practical problem of separation of time signals when they

have almost the same power spectrum. As an example, we

took the chaff-target problem in tracking radar where Doppler

separation is impossible. We started with a discussion of

the background of the problem and developed two possible

solutions

.

a. The M.K.F. with antenna modification. This is one

solution to the problem in the case of maximum

information available (for example in the case of

monopulse radar with phase detector)

.

b. The probability filter. This is one possibility

of the solution to the problem in case that minimum

information is given (in the case of concical scan

radar or lobe switching)

.

To demonstrate our solution to the problem we have proven

by simulations that the two main filters, the M.K.F. and the

probability filters work as expected.

The following items remain to be investigated as an

extension of the work.

a. The complete solution in case of C.S. and L.S.

b. The optimum number of samples (N) for the

probability filter as a function of the dynamics

of the signal process.
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c. The probability filter extended to nonergodic

processes

.
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APPENDIX A

MODIFIED KALMAN FILTER FOR THE CASE THAT THE MEASUREMENT
COMES FROM TWO DIFFERENT SOURCES

1. Introduction

In many cases we have to filter data which is not

the regular data assumed by the Kalman filter. The Kalman

filter is well established and sometimes it is convenient

to modify the problem such that it will fit the Kalman

filter, so we will have a modified Kalman filter. In our

case (see Chapter IV) such a problem arises. The problem

can be described briefly as follows (refer to Fig. A-1) :

we have a regular process described by (F-2) which gives

us the output vector Y(K). Y(K) can be split into two

vectors (Y^-^^(K) and Y ^^^ (K) ) :

Y(K)

Y^-'-^ (K)

(2)
Y^^^ (K)

where Y and Y are vectors of the same dimension.

The vectors are transfered through a random process,

which switches between them. After the switching block we

get our measurement vector, Z (K) . The vector Z (K) can be

equal to one of the two possibilities:

Z(K) =

Y^-^^ (K)

Y^^^ (K)
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or:

Z(K) =

(2)
Y^^' (K)

Y^-*-^ (K)

The problem statement is: given the measurement Z(l), .../

Z (n) find the state vector X(n).

Four papers deal with a similar problem [2 6,27,28,29]

The first two papers cannot be implemented straightforward

because both of them formulate the problem in a different

way. The first one [26] deals with multi-target measure-

ments giving information about the location of each target.

The system must identify the type of the target and estimate

its position which is a more general problem than ours,

because we assume that we know the nature of the targets.

The second and third references [27,28] deal with

tracking in a cluttered environment. This could be adapted

for our problem (by treating the clutter as chaff) but the

assumption is that the undesirable returns occur completely

at random which is not the case in our problem. There is

no underlying dynamical process from which the returns are

generated. Hence, no prediction from past data can be made

on the location, nature or number of these returns at the

next measurement time.

The last reference [29] is close to our problem but

uses a different starting point. It does not give the

optimum filter, which is known to be:
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X(K|K) = / Xf (X|Z^^^ ) dX

(for minimiim variance estimates, see Appendix F) . The

(K)vector Z is all the measured data up to time K. The

(K)
p.d.f.'s f(x|z ) are not Gaussian, which makes the evalua-

tion of X(k|k) very difficult to implement. It is extremely

difficult to implement on a computer, since the p.d.f. is

conditioned on all available measurement data. Thus [2 9 ]

uses approximate p.d.f.'s. Our goal is to develop a filter

similar to the Kalman. In order to achieve this we use:

A selection block which transforms the measured data

for input to a Kalman like filter.

- The assumption that all the p.d.f.'s are Gaussian

(like in [29 ] ) ••

Refer to Fig. a-2: we try to reverse the switching

in the data in the first block, by selecting one from the

two possibilities of Z (K) . Thus after this block if our

selection was correct we have the correct input to the

Kalman filter. In a regular Kalman filter (R.K.F.) the

input components (Z (K) and Z (K) ) are not switched.

Hence in our case if we made an error in the selection the

output is biased.

In our problem we have a positive probability to

select a wrong combination of Z (K) and Z (K) . We

shall modify the R.K.F. so that it will be able to handle

this error. The next block is a modified Kalman filter (M.K.F.)
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This leads to a form like a Kalman filter but with

modified gain and covariance matrices. In the R.K.F. we

have two types of estimated states.

One is X(k|k) which is called the update estimated

state. This is the optimal estimation of X(K) taking

into account all the observations so far (i.e., at times

up to and including K)

.

The second estimated vector is X(k|K-1), which is the

optimal estimation of the states given all the

observations up to the last measurement (i.e., the

observations at times up to and including K-1)

.

This vector is called the predicted estimated states.

The M.K.F. has similar types of estimated states,

an update estimated state and a predicted estimated state.
<

Intuitively we can say that:

If we trust our new measurement, we can use the

update estimated state.

- If we do not trust our new measurement, we have to

use the predicted estimated state.

If it is in between, the output must be weighted

somehow between the two estimated states.

The weighting depends on the probability of a

correct solution.

The estimated states are not optimal, in the sense

of minimum variance of error, because of our

assumption that the p.d.f.'s are Gaussian.
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2. Modified Kalman Filter

Assumption

(i) We have two separate, independent sources of

states with a given dynamic:

X^-^^ (K+1)

(2)
X^'^^ (K+1)

^"^X^-^^ (K) + A^-^^U(K) + W^-^^ (K)

(A-1)

^^^X^^^(K) + A^^^U(K) + W^^^ (K)

(ii) The measurements are given by

Z(K) = L(K) [C^-^^ C^^h

X^^^ (K)

I

(2)X^^ (K)

if H.

+ V(K)

(A-la;

L(K) =
<^

I

1

(A-lb)

^ L, if H,

(iii) The statistics of the random variables involved

here are (assume all are Gaussian processes)

:

E[V(K)] = Af K

E[V(K)V"(J)] = R(K) 6 y. K j :a-2)

w^-^^ (K)

(2)
W^^^ (K)

= V K
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E[W(K)-W (K)] =

Q^-^^
(K)

I (2)
^Kj

= Q(K)6j^^ Af- K^j

x^^Uo)

(2)
X^^' (0)

COVAR

X
~0

x'l'(O)

x<2'(0)

= M

E[X(0) -V^ (K) ] = V K

E[X(0)-W (K)] = Y K >

Prob (H^) Prob (H^) = f

NO correlation exists between H(k) at time K to H(j) at

time j for all K 7^ j . In other words, there is no

a priori information about the switching between

H;L and H^

.
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For convenience we define:

X(K) =

X^-'-^ (K)

(2)
X^^'' (K)

r^(i)

h-

_ I 4) _

A ^

r,(i)

LA^2)_,

(A-2a;

W(K) =

W^-^^ (K)

(2)W^^ (K)

Solution

We would like to have a sequential estimator

because we like to estimate in real time with minimum delay.

The non-sequential estimator (Bayesian approach) will be

more accurate (i.e., with minimum variance error) but much

more complicated, needs more storage, and has delayed output.

For these reasons we will restrict ourselves to sequential

estimators. Also, we will use a linear estimator. Because
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the Kalman-like filter is linear, and we have to store only

the last information about our estimation, we will build

our estimator in two steps - the first one will be a selec-

tion block and the second one will be a modified Kalman

filter. Because the Kalman filter is optimal for second

order statistics and is a linear estimator, the only

thing that we have to store is the previous values of the

(i) Covariance matrices and (ii) Predicted state.

The modified Kalman filter has two main blocks

(see Fig. A-2)

:

a. The Selection Block.

In this block we make the decision H = H, or

H2. Let's define

^(1) A ^(1) ^(1)

^(2) A ^(2) ^(2)

(A-3)

By this definition we can write:

Z(K)

r y(1)

L_y(2) J

,.(2) -,

(1)

if H, is true

if Hp is true
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(see Fig. A-1)

.

Z(K) =

Z^-'-^ (K)

Z<2>(K)

When the processing continues we have the predicted states

(measured state) with the covariances of the error associated

with the predicted states (measured state) . Then by the

likelihood ratio we can decide H, or H2.

:a-4

Thus the decision is:

L > 1

L < 1

decide H.

decide E,

(A-5)

By the knowledge of the covariance matrix, and assumed

Gaussian distribution of the state, L can be computed.

The predicted measurement is determined in the

filter procedure:

A(K) = the covariance error of the predicted
measurement, y(KlK-l) (A-6)

167





Y (K) = Y(K|K-1) =
; the predicted measurement

By defining

r^(K) = Yp(K) - t^(K)

r2(K) = Yp(K) - t2(K)

t^(K) ^

r,a)

(2)

(A-7)

t^CK)

-Z(2)

(1)

Thus:

L^(K) = r^'^(K) •A\K).r^(K) i = 1,2

"^ -^^ J. ^ ^

m = dimension of the measurement vector.

168





Substituting into Eq. (A-4) we get the decision law:

L (K) < L^CK) decide H,

L, (K) > L2(K) decide H2

(A-8)

See the block diagram in Fig. A-3 for details,

b. The Filtering Block

After the decision about the measured state is

made, we have now the problem of filtering the data. The

filtering could be straightforward if we have high confidence

that our decision was correct, which is assumed in the

regular Kalman filter. In our case we are not sure if our

decision was correct, and so in the filtering process, we

must take this into account. Because we cannot tell if our

decision was correct or not we cannot reject or accept the

data, we can only "weight" the data and depend on the

computed probability that our data is correct or not.

We have two possibilities:

(i) A true data available, i.e., we decide

the right decision, we will call this event D(K) - the

data is desired, in sample K.

(ii) A false data available, i.e., we decide

the wrong decision, we will call this event F(K) - the data

is f_alse, in sample K.

So we can write:
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f(X(K)|Z(K)) =a(K)-f[X(K) D (K) , Z (K) ] + [1-a (K) ] f (X (K) j F (K) , Z (K)

)

(A-9)

where

a(K) = Prob{decision K was desired}

= Prob{D(K) I Z(K)

}

(A-10)

(K)
Assume that L2 >L, (K). Then:

a(K) = P{D(K) |Z(K) } = P{H, (K) | Z (K)

}

f{Z(K) |H^(K) }-P(H^(K))

fiZ(K) iH^(K) }-P(H^(K)) +f (Z(K) !H2(K) •P{H2(K) }

(A-li:

Observe that:

P{H^(K)} = P{H2(K)} = I

Then:

a(K) =
-^ ^ g_ ^^^

i = 1,2 (A-12)

where, in case of L2(K) > L,(K):

^ f{Z(K) |H2(K) } -(L2-L^)/2
^1^^^ f{Z(K) |H^(K)

}

= e

and in case of L, (K) > L2 (K) , then:

^ f{Z(K) |h^(K) } -(L^-L2)/2
^2^^^ " f{Z(K) IH^(K) } ^ ^
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Then we can conclude that:

""^' = 1 + i(K)
'^-"'

where:

. -|L, (K) - L^(K) 1/2
3(K) = e

^
(A-13a)

From Equation (A-9) we see that:

X(K|K) = E{X|Z(K)} = a(K)E{X(K) |D(K) ,Z(K)

}

(A-14)

+ [1 - a(K)]E{X(K) |F(K) ,Z(K)

}

i.e, the new estimate of the state will be weighted with

the results of a filter when assuming true data, and the

predicted estimate of the state (assuming false data) . The

question now is, what kind of filter to use here? It seems

reasonable to use a modified Kalman filter, because Kalman

filter is the best linear sequential filter (when only the

second order statistics are given) . We use here the notation

"modified Kalman filter" because it is not a regular Kalman

filter in the sense that the covariance matrices and the

gain are data dependent (because the output is a function
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of a) . Furthermore, there is additional selection block

which does not appear in R.K.F.

The only way not to have extremely time con-

suming computations is to assume that the p.d.f. is

Gaussian. The Kalman filter gives us the information that

is used to evaluate an approximation of the p.d.f., assuming

a Gaussian distribution.

Because our gain and the covariance matrices

are data dependent, we must compute them on line rather

than off line.

Let's summarize the results first and then

derive them:

a. The estimator is characterized by:

X(K|K) = X(K|K-1) + G^(K)[C(K) - CX(KiK-l)]

(A-15)

X(KlK-l) = $X(K-1
I

K-1) + AU(K-l)

where c is the input vector after the selection

b. The gain is given by:

G,,(K) = a(K) G(K) (A-16)
M

where

G(K) = P(K|K-1) c'^[CP(K|K-1) C^ + R]~"^

G(K) - is the regular Kalman filter gain,





c. Update covariance error matrix, and predicted

error covariance matrix:

p(k+i|k) = <I>J(K|K)
^"^ + Q (A-17)

J(K|K) = a^(K)P(K|K) + [1 - a(K) ]^P(K|K-1)

+ 2a(K) [1 - a(K)]{[I - G^^ (K) C] $5^ (K-1 1 K-1) $

+ [I - G^(K)C]Q}

where

P(K|k) = [I - G(K)C] P (K|K-1)

P(K|k) = the regular Kalman filter.

d.

a(K) = I

1 + e(K)-

- IL-, (K)-L^ (K) j/2
3(K) = e ' -^ 2 1/ (A-18)

a, (K) , L2 (K) are given by (A-7)

e. Initial conditions:

P(0|-1) = M (A-19)





X(0|-1) = Xq

f. The predicted measured error covariance

matrix is given by:

A(K) = CP(K|K-1) c"^ + R(K) (A-20)

(See Fig. A-4 for details.)

Explanation and Notation

1. The differences between the Kalman filter

and this filter are:

The gains are data dependent, and so they
must be computed online.

— The error covariance matrix is not the
same as in the Kalman filter.

— We do not use the measured vector Y but
the vector Z.

2. The Modified Gain - G,.

:

M

In the regular Kalman filter the estimate

equation of the state is given by:

X^^Nk|K) = X(K|K-1) + G(K) [C (K) - CX(K|K-1) ]

(A-21)

X(k|k-1) = $X(K-1|k-1) + AU(K)

where

^ (V)
X (k|k) is the update estimate state in R.K.F
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In our case, when we compute the state X(k|k) we must take

into account both the updated states assuming that our

measurement is correct, and the predicted states assuming

that our measured vector is not correct (A-14,15), i.e.:

X(K|K) = a(K)X^^^ (KJK) + [1 - a (K) ] X (K |
K-1)

(A-22)

= X(k|k-1) + a(K)G(K) [C (K) - CX(kIK-I)]

Thus we see that the modified gain is G-.(K) = a(K)G(K).

3. Covariance matrix of the error:

The covariance matrix of the error is

defined by:

5;(KlK) = E[e(KlK) •e'^(KlK)] (A-23)

And:

e(KlK) = X(K|K) - X(K)

a(K)X(K|K) + [1 - a(K) ]X(k1k-1) - X(K)

Substituing e into ^ we get:
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(KlK) = a^(K)P(K|K) + [1 - a (K)
]

^P (K I K-1)

+ 2a (K) [1- a(K)]E(e(K|K)e'^(K|K-l)]

where P(k|K), P(K|K-1) are the regular Kalman filter error

covariance matrices. Now we have to evaluate the estimation

of

e(K|K)e'^(K|K-l) ;

It can be shown that: [35,38]:

e(K|K) = (I - Gj^^ (K)C]$e(K-l|K-l) + C^ (K)V(K)

- [I - G^ (K)C] W(K-l)
M

e(K|K-l) = $e(K-l|K-l) - W(K-l)

Thus:

e(K|K)e'^(K|K-l) = { [I-(^ (K)C](5e(K-l|K-l)+<Gj^(K)V(K)-G^(K)V(K)

- [I-G^(K) ]W(K-1) }{$e(K-llK-l) -W(K-l)}

= [I-Gj^(K)C]$e(K-llK-l)e'^(K-l|K-l)$'^

+ G^(K)V(K)e'^{K-l|K-l)$^-[I-G^(K)C]W(K-l)e^(K-l|K-l)

- [I-G, (K)C l<l>e(K-l |k-1)w'^(K-1)-G, (K)V(K)W^(K-1)

+ II - G (K)C]W(K-1)WT(K-1)
M
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Using the properties:

E{e(K-l|K-l) v'^(K)} =

E{e(K-l|K-l) W^(K)} =

E{W(k-l) v'^(K) } =

we get

E{e(KlK)e'^(K|K-l) } = [I-G (K) C] $[ (K-1 1 K-1)
^"^

M

+ [I - G^(K)C]Q

Substituting the result into the equation for 1 we get:

7(K|K) = ct^(K)P(K|K) + [1 - a(K) ]^P(k|K-1)

+ 2a(K)[l - a(K) ] { [I-Gj^(K)C]$5; (K-llK-D^"^

+ [I-G (K)C]Q}
M

4. The predicted measured error covariance

matrix (A(K) )

:

A(K) = E{[Y(KiK-l) - Y(K)] [Y(K|K-1) - YCK)]*^}

Y(K|K-1) = CX(K|K-1) (A-24)
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Y(K|K-1) - Y(K) = C{X(K|K-1) - X(K) - V(K)

From Eq. (A-24) we get

A(K) = cp(k|k-i) c*^ + r(k;

These equations are simulated and tested as discussed

in Chapter IV.
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APPENDIX B

THE MULTIVARIABLE NORMAL DISTRIBUTION

In this dissertation the multivariable normal distribu-

tion appears in many cases. As with the M.K.F., this

appendix summarizes the equations of such a process.

Let's denote the random variables x, , ..., x by the
1 ' n -^

column vector:

X =

=^il

X
I- n

(B-1)

The covariance matrix A is defined as

A =

^11 ^12

a
21

nl

In

ann

(B-2)

where the elements a. . are given by
13

a. . = E{ (X. - U, ) (X. - U.)] } (B-3:
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The matrix is syininetric because

a . . = a . .

ID 31
(B-3)

And the vector u (the vector mean of x) by

^1 "^1

u
A

E
•

•
__

•

•

• •

u
_ n _

(B-5)

It can be shown that, for the n-variate case, the joint

density f(x) is given by:

f (X) (2tt)~^/^| Al'^'^^expl- j(X-U)'^A "^ (X-U) } (B-6)

where

A I
= det [A] (B-7)

Also, we can write in matrix notation that

A = E{ (X-U) (X-U) "•} (B-8)

And:

U = E{X}
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As a natter of interest/ we note that the n-variable

normal moment generating function can be written as

M(t) = exp{u\ + t'^At/2} (B-9)

where:

t ^

t
L_ n

(B-10)

M(t) = E{exp(t X)

}

(B-11)

And by direct differentiation we can find that:

12. ^ , a . b
0L«^ ^'^ ••• t=0

(B-12)

The results are for the four moments, in four dimensional

case

:

E[X^X2X3X^] = E[X^X2]E[X3X^] + E [X^X3 ] E [X^X^]

+ E[X^X^]E[X^X^] - 2E[X^]E[X2]E[X2E[X^]

(B-13)
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One of the interesting and useful properties of normal

random variables is that they are invariant to linear

transformations. In other words, a linear transformation

of a normal random variable is a normal random variation

too.

The result is that for the transformation

Y = A X (B-14)

where

:

Y =

Y

IS

A = n X m matrix

U^ = E[Y] = A U (B-15)

A^ = COVAR[Y] = AAA*^ (B-16

Let's take a special case but very useful for bivariate

normal distribution with:
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E[X^] = E[X^] =

VAR[Xj_] = VAR[X2] = a' (B-17:

then;

E[X^X2] = a p

A = a'

and we can write the p.d.f. by

1/2
f^CX^^X^) = 2 ^^-"-"^ exp[-

2-no

X '^+X^ +2pX^X^

2 2 -^
(B-18)

The p.d.f. of one variable given by

f^(X)
1 r X^—
:zzzii ^^P L- —J

-^ /o 2 2a^
(B-19)

The conditional p.d.f. is

^X IX (^2'^1^ " f^(X^,X2)/f (X^) (B-20)
x^ix^

Thus
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^X2|X^^^2'^1^
"

\J 27Ta^(l-p^)

exp [-
2

2 2 2
p^X^^+X2 +2X^X2

2a''(l-p'-)

(pX^+X2)

/
2 2

27Ta (1-p )

exp [- —2 2~^ (B-21)
2Q^a-Q )





APPENDIX C

TRANSFORMATION OF RANDOM VARIABLES

Consider the problem that arises when a random variable

X is transformed to a new random variable y through a

functional relationship y = h(x). The usual problem is,

find the distribution of y, given the distribution of x.

For a monotonia function, it can be shown that [22] , [1]

f^iY) = f^(X) ||^1 (C-1)

Or by writing:

X = h"^(y) (C-2)

Then:

f^CY) = f^[h ^(Y)] ||^[h ^(Y)] I
(C-3)

This only applies when h exists and it is continuously

differentiable function of x. For this case, we must

start from the basic idea which is:

P(Y < b) = P(Set of X corresponding to Y < b) (C-4;
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y^ A(x)

V- i.

For example, the set of x corresponding to Y <_ b is the

intervals

(-=°,x^) / (X^/X^)

So by the definition of f„(X) we can write:

P(Y < b) = F^(b) = /f„(X)dX (C-5)

where

r = {all the values of x for which Y <_ b}.

A very useful example of transformation is the square

law transformation:

y = X (C-6)

Then
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F^Cb) = / f^(X)dX ; b > (C-7)/

differentiating with respect to b, we have:

f^(/E + f-,(- /^)

2^

Replacing b by y we get:

f^(/Y) + f„(- /Y)

fv(Y) - — (C-8)
^

2/Y

Now let's take the normal Gaussian density; then we get:

fy(Y) = ^ [exp(-Y/2) + exp(-Y/2)]
2/2TrY

or

f^CY) = (27TY) '-^^ exp[-Y/2] (C-9)

Now, let's take the case of two variables:

^1 ~ h^Cx^/X^)

(C-10)

^2 = ^^(x^^x^)
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It can be shown that if y, and y^ are related to x, and

x^ through continuously differentiable transforms then

[1], [22]:

f^m = f^(X)|j(XlY) (C-11)

where

J(x|y) = det

3X^

3X,

ax
l1

8Y.

(C-12)

J is called the Jacobian of the transformation. Where the

transformations are not one to one, we must start from the

definition:

FY(b^,b2) = / /f(X^,X2) dX^ dX^ {C-12)

r = (set of X, fX^ such that y, <_ b.

and y^ 1 ^2^

Now , by differentiating F with respect to b, and b- and

setting b, = Y-,r ^2 ~ ^2' ^^ ^^^ ^^® proper p.d.f.
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APPENDIX D

SEPAEATIQN OF SIGNALS BY PROBABILITY FILTER

1. Introduction

The general problem of separation of two signals is

well discussed in the literature and the most familiar

are Kalman and Weiner filters. We, in general, call one

signal "noise" and the second signal is called simply

"signal", and the problem is to estimate the signal when

we have a noisy measurement. The most discussed and

developed method of separation is for linear models, i.e.,

in control theory we have a general discrete model:

X(i+1) = (|)X(i) + /\U{i) + r W(i)

(D-1)

Z(i) = C X(i) + D V(i)

When X is the state vector, Z is the measured vector, W

and V are noises, U is known control input, (^, A/ "/ C, D

are matrices (may be a function of time)

.

A problem arises when the system is not linear. There

are many possibilities to solve this problem, and the most

widely used are the extended Kalman filter, maximum likeli-

hood filter, and the Bayesian approach. Here we use a new

method which will be called the "probability filter." The

advantage of this filter is that the knowledge required for
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this filter is less than for the likelihood or Kalman

filters, i.e., the only required knowledge is at most the

a priori p.d.f. of the measured signal (sometimes even the

knowledge of the p.d.f. might be non accurate). We will

show that this method is an extension of the method known

as "method of moments." In the next paragraph we will

describe briefly the method of moments and after that we

will introduce the new approach.

2. Review of the Method of Moments

The method of moments is simple and intuitive. It is

practical in the sense that it leads to a computationally

reasonable estimator. This method can be established without

the a priori knowledge of its p.d.f., but it requires a

conditional p.d.f. on the observation. In practice, it

requires even less than this — only knowledge of the several

first moments of the process. It yields an estimation that

is not necessarily optimal in any sense. On the other hand,

the estimate approaches the true value as the amount of

data processed becomes infinite. So, on the one hand, it

is sometimes slow in obtaining results because the amount

of data required for the estimation is high, but, on the

other hand, in many cases the result is guaranteed to estimate

the true value. We conclude that, in general, this method

simply estimates the true value, but it is not an efficient

estimator.
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Now let us introduce the basic concept of this method

(according to Ref . [1] and [51]). The two references do

not refer to the ambiguity problem which we have discussed

above. Suppose that we have unknown vector parameter

i"^ = [9w ..., 9^] (D-2)
i n

and we have sampled data from Z(t);

Z. = Z(t .) , j = 1,2, . . . , m

Z — [Z,, •••/ Z J

(D-3)

which depends on the vector parameter. Let's assume that

the knowledge of the conditional moments from 1 to J of

Z(t) is given, and exist, i.e..

a^ = E{Z ^je} = f.(9) , i = 1,2, ..., J (D-4

Let's suppose now that we have J estimators of the J

moments, so we can write:

^1 = ^i^V

(D-5)

^'j = ^j^V
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Now we have J equations with n unknown parameters, 9,, 6^,

. . . / 6 . In general J > n because the functions are not
n ^ —

linear.

If we have the same number of equations as unknowns

it can lead to a non-unique solution. So for uniqueness

we can use more equations than the number of the unknowns.

Note: The problem of ambiguity can be also addressed by

the Modified Kalman filter (see Appendix A)

.

Example: D-1. (Refer to Fig. D-1.)

If we are given only two equations, f-](6) and f (9), with two

parameters, 9, and 9-, we have two possibilities for the

vector 9 : 9 and 9 . To decide what is the acceptable

solution, we must have at least one more equation- With

the addition of a third equation we accept one of the

solutions. Note that the third equation does not lead to

the same solution as the first two equations, because of

the error in estimating the moments . Because in many of

the cases, the estimation is an increasing function of J,

the last equation is used only for decisions and not for

estimation, i.e., our solution is:

if: |f3(9^ M - a3| < |f3(9^ M - a3
|

choose 9^-"^

(2 ) ^ f -I \ ^ (2)
if: |f3(9 )

- a3| < |f3(9^ M - a3
|

choose 9^^

The block diagram of the method of moments is given in

Fig. D-2.

(D-6)
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In most of the cases the computational method of

estimating the moments are simply by the definition of

the moments, i.e.,

m
1

a = h I (2.)^ (D-7)m ^ 13

i=l

It is not difficult to generate examples in which the

method of moments does not even lead to an acceptable

estimator (see Ref. [1]). In the following section we will

see a new method which is a generalization of the method

of moments.

3. The "Probability Filter"

In the method of moments we saw that when one wants

to estimate the parameters the first J moments of the

observed data is taken and we equate these to the J functions,

the moments, and solve for the unknown parameters. Let's

now suppose that J ^ <». We choose the parameter in such

a way that these infinite equations will lead to minimum

error in some sense. For example;

I [a. - f . (9) ]^ • w. ^ min (D-8)

i=l

when w. >_ 0. In general, w. is chosen as a decreasing

function of i, for example w. = l/var{a. - f.(9)}. The
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method of moments is one example of D-8 , i.e., by choosing:

w. =1 i=l,...,n

w. = £. > i = n, ..., J (D-9)

w. = i > J
1

We get exactly the method of moments discussed before. Now,

let's understand what we mean by Equation D-8. If we take

w. > ¥• i, then we are trying in some sense to minimize

the difference between the conditional p.d.f. and the

measured p.d.f. That is, we can modify Equation D-8 by:

f^CZle) - f^CZ) II
-> min (D-10)

where

f^CZ) = f^iZiS))

when f^^Z) denotes the estimation of the p.d.f. of the data.

(We will see later that for the probability filter we do

not even have to estimate the p.d.f.) In the last equation

we try to choose 9 in such a way that the norm of the differ-

ence between the two p.d.f. 's is minimized.
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Example D-2. (Refer to Fig. D-3.)

Let's assume that we have only one parameter to esti-

mate; from the figure we choose 6, and not 9^ because 9,

gives a theoretical p.d..f. which is closer to the measured

p.d.f. than 92*

Let us now choose the norm:

00

I = J / [f^{z\Q) - f^(Z)]^ dZ ^ min (D-11)

— 00

That is, we choose 9 in such a way that it minimizes the

difference between the two p.d.f. 's in a mean square sense.

Now, let us take the derivative of I with respect to

9, and set it equal to zero to find the minimum, i.e., a

necessary condition for minimization is:

^-r ^ ^ 9fr7(Z|9)
= ^ = / [f„(Z|9) - f„(Z)] • —^ — dZ

89.
Z . Z

^g_
1 -co 1

.T
"^

3f„(zl9) .
°° 9f„(Z|9) .^ = / ^ ~ f^(Z|9) dZ - / \ -

f,(Z) dZ
39. 39. 39.

1 -co 1 -oo 1
Z

3f„(Z|9) . 3f (Z|9)
= g. (9) - ^ = g. (9) ^ :— (D-12a)

^ ^ 39. ^ ~ 39.
1 1
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where the symbol ""-^^'^ means time average. The time average

can be approximated by:

9f,.(Z| 9) , T 8f„(Z(t) 16)^'"'^'
- ^ I —^ ^ dt (D-12b)

39

.

39 .

1 1

In our problem we try to estimate the amplitudes

received at each receiver (which is porportional to the

RCS of the target, see Chapter IV. A) . Since we restrict

ourselves to surface targets (which means low dynamic)

,

the RCS of each target (ship and chaff) can be assumed to

be stationary compared to the missile's flight time.

Hence we can use "T", the time interval at the last

equation (D-12b) , small enough compared to the missile's

flight time.

Eq. (D-12,D-12a) follow because:

3f (Z|9)
g-{Q) = / —^—^f„(z|e) dz
^ ^

39. ^ ^
-00 1

is a known function of 9 and can be computed a priori.

Also

/ -^ £.(2) dZ
36 . ^

-co 1

sf^czje)
is the mean value of the function

:::
with respect to

ae.
1
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Z. Because we are assuming ergodic processes, the ensemble

mean and the time mean are the same . So we can write

:

3f [Z(t)|9]
g. (6) ^^ ^ = (D-13)
^ " 99.

1

Because we have n parameters, we have n equations.

Note that also in this case as in the method of moments,

the equations are not linear and we may get a non-unique solu-

tion. Thus we may have to add more equations to the set of

equations D-13; for example, the equations of moments as

discussed previously. Alternately we propose to use the

M.K.F. (Appendix A) with all the possible solutions.

A block diagram of the probability filter is given in

Fig. D-4. The input signal Z (t) is substituted into

3f2(Z(t) |6)

38 .

1

and the function is averaged by the block following. Also,

g(6) is produced. If the difference between the two is not

zero, the value of 9 is changed until the difference between

the two approaches zero. The initial condition for the

integrator can be determined by the method of moments or

as in the Kalman filter, the statistical mean of the

parameters.
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Example D-3 .

In this example we introduce a simple case of estimating

a parameter by the probability filter. We choose the

exponential distribution. The p.d.f. is given by:

f„(Zl6) = e e ^^
Z > (D-14)

We can get the equation for the probability filter:

^^z'^l^' -6z , , -ez
Tg = e - e Ze (D-15

sf^czle) ,

g^L^e) = / ^Q f2(Z|9) dZ = + J (D-16)

Thus g, (0) has a very simple expression, i.e.,

g^(e) = + 0.25 (D-17)

Thus the equation for the probability filter is, from

Eq. (D-13),

N
- ~ 6 Z . /^

+0.25 + ^ j; e ^(ez^ - 1) = (D-18)

i=l

The last equation is the probability filter equation. It

is a non-linear equation and we must solve it numerically

for 0.
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Until now we have seen the direct implementation of

the filter, i.e., determine the probability filter equation

and solve for the parameters. Direct implementation of

the filter is only one possible way of implementation.

There are other possible implementations which give the

filter its uniqueness. We introduce two possibilities of

using the filter. In many cases we do not have the exact

p.d.f. of the process but we have an approximation of it

and a reference signal which represents the signal (e.g.

,

by recording the signal previously) . We give here two

ways of using the probability filter when the exact p.d.f.

is not known.

(i) The solution when only the approximate p.d.f. is

given and a reference signal is available.

This filter gives us the opportunity to estimate parameters

even if our information about the data is not precisely

given; that is, if we have a record of this kind of data,

we can compare the two systems very easily.

Let's return to Eq. D-12b. We have:

.-r
°° af„(z|e) . °° 8f (z|e) ^^ = / —^—^f„(z|e)dz - / ,

"
f^(z) dz

'^9. ae. ^ - 39. ^
— oo j_ — oo 2.

set
= (D-19)
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Let us assume that f (z|0) is only an approximation of the

p.d.f., so we cannot "trust" this given p.d.f. completely.

Like in the Kalman filter, we assume an approximate model

of the system, and by 'closing the loop we guarantee that

the estimator behaves quite well even if our model does

not precisely describe the real model.

Equation D-19 gives us the possibility to close the

loop as in a Kalman filter. Eq. D-19 has two terms. The

first one is computed "off" line if the p.d.f. f2(Z|9) is

completely known. If the p.d.f. is unknown exactly, then

the technique of comparing two terms is the best that we

can do. We see that the two terms are almost the same.

Assume we have a reference signal X with the p.d.f.:

f^(X|e) = f2(X|6) (D-19a)

Thus:

Thus we can write

:

,_ 3f„(X|e) 8f„(Z|6) set

H- = ^w- If— = °
^°-^^^^11 1
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X = x(t,e)

z = z(t,e)

The first teinn comes from the reference system, so by

computing the two terms we can assume that when the

difference between the two terms becomes zero, 9 is close

to the true .

Figure D-5 demonstrates the idea. We measure the data,

Z(t,6), transform the data to get the function h . (Z , 6 ) , where

h.(aj ,9) = -^^ a(aj|9) (D-20)

and g(co|9) is an approximation of f(aj|9) that has been

chosen for its analytic form.

In the original form of the probability filter equation

(D-12a) , we get an error when f (y|9) is not known exactly.

Thus by implementing the probability filter equation (D-12a)

we get a biased estimator. On the other hand if we have

a reference signal, in case that f_ is not known exactly,

we get:

h^(X(r,9),9) - h^(Z(t,9) ,9) = e^ (D-21a)
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For this case when 9=9:

ej_ = E[h^(X(t,9) ,9) - h^ (Z (t , 9 ) , 9 ) ] (D-21b)

/ h.(?,9) f (^|9)dC - / h. (c,9)f„(c|9) d^

=

This result follows because of the assumption that we have

a reference signal with the same p.d.f. as the signal,

(D-19a)

.

Thus where the reference signal has the same functional

equation as the measured signal, we get an unbiased estimator,

independent of h. (C/9), which is a function of the assumed

p.d.f. However the feedback process can only be expected

to converge when g(w|9) is a reasonable approximation to

f2(^le) .

In the regular "probability filter" we get a bias

estimator when the p.d.f. is not known exactly.

(ii) Indication of Change in a System

Sometimes we like to check if parameters in a system have

been changed. By taking a reference signal (from similar

systems with nominal parameters or by recording the output

from the system from the past) , we can easily check if some

parameters have been changed.
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Indication of change in the system is that:

e^l > £j_ (D-23)

where z . is a constant dependent upon the acceptable false

alarm. The block diagram is given in Fig. D-6

.

By adding more calculations we might determine the

value of the parameters that were changed, by simply

applying the probability filter.

The probability filter implementation for the unresolved

targets and the simulation of the probability filter are

given in Chapter V.
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APPENDIX E

THE MAXIMUM LIKELIHOOD ESTIMATOR

A reasonable estimate of a parameter is one which

makes a given observation most likely, i.e., choose for

the parameters 9, that value which maximizes the conditional

p.d.f. f(z|e). The p.d.f. f(Z|9) is called the likelihood

function. Because of the exponential character of many

density functions, it is convenient to deal with the natural

logarithm of the likelihood function - ln{f(z|9)}. Clearly,

because f(z|9) >_ 0, In f{(z|9)} exists, so by choosing 9 to

maximize ln{f(z|9)} it maximized also f(zi9). A necessary

condition that 9 maximize the likelihood function is;

^ In f(z|9) =0 i = 1,2,. ..,m (E-1)
39.

1

By setting all the m equations with m unknowns, one can

solve for the unknown vector 9. It can be shown that in

many cases the maximum likelihood function is a biased

estimator, but the bias tends to zero [30]. Also the

variance of the error tends to zero as numbers of samples

increase. We can say that the likelihood estimator is

asymptotically efficient.
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APPENDIX F

ESTIMATORS FOR SYSTEM DESCRIBED BY
DIFFERENTIAL/DIFFERENCE EQUATION

1. INTRODUCTION

In this dissertation we deal with estimators. The

purpose of this appendix is to summarize the approaches

given in the literature and establish the symbols and

terminology used. There are two major approaches: the

discrete and the continuous time. For our case, we deal

with discrete time process.

The difference equations for the discrete time and the

measurement is given by:

•

X(K+1) = t|;(X(K) ,K+1,K) + r(X(K) ,K)W(K) )

(F-1)

Y(K) = h(X(K) ,K) + V(K)

where

ijj,r,h - are known matrices

W(K) , V(K) - are independent sequences of indepen-
dent random variables (not Gaussian
in general)

The only known case when the equations can be effectively

solved (computed) exactly is the linear process plus

213





Gaussian noise. This solution was obtained by Kalman [2]

and Kalman and Bucy [3] . The known existence of this exact

solution led to the approximate solution for the case where

the plant and the measurements equation are almost linear

and the noise processes are nearly Gaussian [10]. But the

Gaussian approximation and/or linearization are not adequate

for many problems due to strong nonlinearity , as well as for

non-Gaussian noise process. This has led to the development

of many other kinds of approximations, for example, Gaussian

sum approximations [5] , [6] . A good reference for many

approximations can be found in the proceedings of the 6th

nonlinear estimation theory symposium [7].

From equation (F-1) we see that the frequent problem

is :

The measurement noise and the plant noise are

additive, with at most a state dependent multiplier, when

the noise is in the form of Brownian motion.

2. LINEAR SYSTEM - KALMAN ESTIMATOR

Let's assume that our system described by a linear

difference equation which is given by [31] :

X(K+1) = $X(K) + AU(K) + W(K)

Y(K) = CX(K) + V(K)

:f-2)

where
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X(K) - are the states of the system at time K

U(K) - the control input to the system at time

K (it is a known, deterministic)

W(K) - the random forcing input

V(K) - the measurement noise

Y(K) - the measured vector

The statistical properties of the variables are given by:

(1) The measurement noise:

E[V(K) ] = K >

E[V(K)v'^(j) ] = R6^j k,j >_

(2) The initial state

E[X(0)] = Xq

COVAR [X(0)] = M

(3) The forcing random process

E[W(K)] =

E[W(K)w'^(j)] = Q6^. k,j >
~ ~ JS.J

—
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(4) The correlation between the variables:

(a) The measurement noise and the initial states

are uncorrelated:

E[X(0)v'^(K) ] = K > (F-6

(b) The random forcing input and the initial

state are uncorrelated:

E[X(0)W^(K) ] = K > (F-7)

(c) The forcing random process and the measurement

noise are uncorrelated:

E[W(K)v'^(j)] =0 K,j > (F-8)

The requirements for the filter are:

(a) The estimator is characterized by linear

relationship.

(b) Unbiased estimator.

(c) The estimator minimizes the trace of the

error covariance matrix, i.e.:

Trace {P(K K) } ^ min (F-9)

where
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P(KiK) = C0VAR{X(K|K) - X(K)}

X(k|K) is the estimated state depending on the

input data up to and including sample K.

The results of the Kalman estimator are given by [ 31] ;

X(K|K) = X(K|K-1) + G(K)[Y(K) - CX(K|K-1)]

X(K|K-1) = $X(K-1|K-1) +Au(K-1) (F-10)

X(0|-1) = X(0)

where

:

G(K) = P(KiK-l)c'^[CP(K|K-l)c'^+R]"^

P(K|K) = [J- G(K)C] P(K|K-1)

P (K+1|K) = $P(K|K)a'^ + Q

P(0|-1) = M

Notes

:

(i) The Kalman filter is the optimum linear estimator

for the given knowledge of the second order

statistics only.
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(ii) There are other estimators, like nonlinear, which

are superior to the Kalman filter for the general

case,

(iii) If all the variables are Gaussian, the optimal

minimum variance estimator turns out to be the

Kalman filter.

3. THE BAYESIAN APPROACH

The Bayesian approach simply takes the expected value

of the state, given all the measured data, i.e.:

X(K|K) = E{X(K)lY(0), ..., Y(K)} (F-11)

If we define:

Y^^^ = [Y(0) , ..., Y(K)

]

Then (F-11) can be formed as:

X(K|K) = E[X(K) lY^^^ ]

( K)
If we have the p.d.f. of the state given Y , we can

find the expected value of X, i.e.:

X(K|K) = / X(K) f[X(K)|Y^^h dX(K) (F-12)

[X]
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So the problem is to find the p.d.f.

(rr. f [X(K) |Y^^"^hf [Y(K) |X(K)]
f[X(K)lY^ M = —

f [Y(K) |Y^^"^)

]

f [X(K) |Y^^"-^h = / f [X(K-l) |Y^^"-^^]f [X(K) |X(K-l)]dX(K-l)

[X]

f [Y(K) |Y^^~^^ ] = / f [X(K) |Y^^"-^^ ]f [Y(K) |X(K) ]dX(K)

[X]

f [x(0) |y^~-^
] = ffX (0)

]

Those equations, theoretically, give the complete solution

of the estimation. The problem is that the integration

can not be carried out in closed form. Thus, in most of

the practical cases this solution is not used.
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