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PREFACE
TO TIIE SECOND EDITION.

It is not easy to adapt a Treatise on Trigonometry to .all

descriptions of Students
;

to state, in its beginning, within a small

compass, and with their simplest solutions, those Propositions *

which relate merely to the cases of oblique-angled triangles,

and then, on the ground of those propositions and by the

method of their solutions, to proceed to investigations of greater

intricacy.

The Student, if he be supposed to possess a knowledge of the

first six Books of Euclid, may thence, by a few easy inferences,

and by the aid of some simple constructions, arrive most readily

at the Trigonometrical solutions of the cases of oblique-angled

triangles. If his views extend no farther, he cannot take a better

guide than Ludlam or Robert Simson : nor proceed by any easier

method than the Geometrical.

But few Students are content with such confined views.

Trigonometry is now extended far beyond its original object, and

to other investigations than those of the relations of the sides

and angles of Triangles. The collateral uses of the science have

become the most numerous, and are not the least important.

To the knowledge of many of these, however, the Geometrical
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II PREFACE.

method is unable to conduct us. At some point or other of our

enquiries (we speak of its present and actual state) it must be

abandoned, and recourse be had to that which technically is called

the Analytical Method.

Since this latter is the sole thoroughly efficient method, will

it not be better to make it, in a Treatise on Trigonometry, the

predominant one, instead of being compelled merely to call in its

aid, when the resources of the former are exhausted ?

The Author of the present Treatise has endeavoured to con-

struct it on such a plan
;
and, with this view, he has had as little

recourse as possible, to Geometrical constructions and the pro-

perties of figures. What he thence has borrowed are not so much

to be considered as the first steps in his process of demonstration,

as the data and ground-work from which the process itself is to

commence and to be instituted.

By these means the process is made uniform and systematical.

But uniformity may be purchased at too dear a rate
;
and the

main purpose of the Work, which is utility, would be sacrificed,

if, for the sake of system, the analytical method were reluctantly

compelled to submit to modes of proof that are strange to its

nature and genius.

The specimens of demonstration contained in the following

pages must determine whether or not such sacrifice lias been

made.

The great practical use of Trigonometry is the resolution

of rectilinear triangles; but, that it is capable of being extended,

and to objects, not merely curious, but of real interest, we may

learn from the history and actual state of the science.

The first considerable extension of Trigonometry, beyond its

original object, was made about twenty years after the death of
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PH EFACE. HI

Newton. It was then, on the ground-work laid down by that great

man, that three Mathematicians of the Continent, Clairaut, Da-

lembert and Euler, and Thomas Simpson our countryman, began

to establish a system of Physical Astronomy more perfect than

what its Author had left. With this view, they laid aside the Geo-

metrical method which Newton had used, and which they thought

iucompetentlo their purpose, and adopted the Analytical. Pursuing

this method, they perceived the formula; of Trigonometry to be

of continual use and recurrence, and the language, by which the

process of demonstration was conducted, to be formed, in a great

degree, of symbols and phrases borrowed from that science. In

order, therefore, to render the process precise and expeditious, it

became necessary to improve the means and instruments by which

it was carried on; and, accordingly, at the time spoken of, the

advancement of Trigonometry, the pure and subsidiary science,

was contemporaneous with that of Astronomy, the mixed and

principal one.

This general statement would be confirmed by an examination

of the Memoirs and Treatises on Physical Astronomy published

about the year 1750.

Clairaut and Dalembert in their Lunar Theories embody in

those Works, or introduce as prefatory matter, several, now

commonly known, Trigonometrical formula;*. In the Volume

of Tracts which Thomas Simpson published, the Author evidently

* It will hardly be believed that theorems, such as are given in

pp. 2S, 29, &c. were almost unknown. Yet Clairaut, (Mem. Acad. 1 745,

p. 342, and Thcoric dc la Lunc, edit. 2, p. 9.) alluding to these

Theorems, says, ‘ M, Euler est le premier, que je sgache, qui ait fait

usage de ces Tbeoremes pour operer sur les sinus ct cosinus dangles,

sans avoir recours a leurs formes imaginaires.'
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IV PREFACE.

intended the one which is inserted at p. 76, as preparatory to the

succeeding Theory of the Moon
; and Euler distinctly states as

a reason for cultivating the algorithm of sines, its great utility in

the mixed Mathematics.

In the arrangement of the Treatise, which the Table of

Contents sufficiently explains. Spherical succeeds to plane Tri-

gonometry. Now, the former has not, like the latter, been ex-

tended beyond its original purpose. It has no collateral and indirect

uses; it has not enriched the general language of analysis, by

its peculiar phrases. But, notwithstanding this confined range,

and apparent simplicity in the object of the science, its propositions

are more easily established by the Analytical method than the

Geometrical. And, (at least in the opinion of the Author of this

Treatise) this would be the case, even if there existed no simi-

larity and artificial connexion, between the processes by which

the series of formula: in the two branches of Trigonometry

were respectively established. But, so far from there being no

similarity, the corresponding propositions can be deduced by

methods so analogous, that to know the one is almost to know

the other.

This will appear to be the case, if we refer to pages 25 and

142, &c. of this Treatise. We shall there find similar Algebraical

derivations of formulae from two fundamental expressions for the

cosine of an angle. The principle of the derivation, however,

is not new
;

it originated with Euler, who inserted in the Acta

Acad. Petrop. for 1779, a Memoir entitled Trigonometric Spherica

Universa, ex pritnis principiis breviter et dilucide derivata. Gua

next, in the Memoirs of the Academy of Sciences for 1783, p. 291,

deduced, but by awkward and complicated processes, Spherical

Trigonometry “ from the Algebraical solution of the simplest of

its Problems.” In 1786, Cagnoli, in his excellent Treatise,

derived without “ similar triangles or complicated figures,” the
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PREPACK. V

fundamental expressions for the sine and cosine of the sum of

two arcs. And lastly, Lagrange and Legendre, the one in the

Journal tie L'Ecole Polytechnique, the other in his Elemens de

Geometrie, have followed and simplified Euler’s method, and

instead of three fundamental expressions, have shewn one to be

sufficient.
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ADVERTISEMENT

TO THE FIFTH EDITION.

In the present edition, the work, although much enlarged,

retains its former plan. Usefulness has been studiously kept

in view, in the alterations which have been made. The prin-

cipal additions will be found in the Spherical Trigonometry;

which contains an entirely new Chapter, on the late Trigono-

metrical Survey.

CAMHRincF.,

.Vorcin6« 1827.
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ERRATA et ADDENDA.

Page 10. 1. 7- for :: cotan A
,
read :: r : cotan A.

30. Note. Supply this Diagram.

p

29- 1 . 10. far p. 27- 1. 24, read p. 29- 1. 3.

44. L 1 4. far rsin.*^4, read r sin. 2 A.

76'. 1 . 18 for \/(5 + 3), read s/(3 +
202. 1. 10. for AE, read AQ.

217. 1. 8. for depressions, read depression.
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PLANE TRIGONOMETRY.

(I

CHAP. I. V
ti:~

"\ %
o' \\ ;/

,
j

0« </te Division of the Circle into Degrees, Minutes, Secondi, —
Definitions of Sines, Cosines, &;c.

ARCS THE MEASURES OF ANGLES.

Art. 1. It is proved in the S3d Proposition of the sixth

Book of Euclid, that, in equal circles, angles have the same

ratio to each other, as the arcs on which they stand. Hence

also, in the same circle, the angles vary as the arcs on which

they stand
;

and consequently we may assume arcs as the

measures of angles.

In the circle ABDE, the arcs All, AD, are measures of

the angles ACB, ACD; and of the same angles, in the smaller

circle aide, ah, ad, are the measures; which latter arcs have

the same ratio to the arcs AB, AD, that the radius Ca has

to the radius CA. For, since, in the circle abde, the measure

of four right angles is the whole circumference abde,

A
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z aCb : 4 right Zs :: ab : abde, therefore

.
a b

Z a C b = 4 right Z s x
abde

Similarly, z .AC2J, or £ aCb — 4 right Zs x
AB

ABDE'
tt aide Ca . _ , . , _
Hence, — = ^ » ®mce, (Playfair s Geometry,

edit. 2. p. 219*) the circumferences of circles arc to one another

as their radii.

2. If from the points B, b, two lines BF, bf be drawn

making with CA equal angles CFB, Cfb, then, by the similar

triangles CFB, Cfb, we have

BF CB
bf ~ Cb ’

and hence, if, in a circle ABDE, we have once determined the

value of a line such as BF, we can always assign the value of a simi-

lar line bf in another circle abde, provided the ratio of the radii

CB, Cb, be known : for instance, if CB be called 1, and Cb, r,

bf= BF x - = BF x r, or BF= %£.
J

1 r

3. *It is usual to divide the circumference of a circle into

360 equal parts, which parts are called degrees, and of which

the symbol is w° or 3°, if n or 5 be their number : each degree is

also divided into 60 equal parts, which parts are called minutes

;

and of which the symbol is m or f, if m or 7 be their number

:

and, finally, each minute is divided into 60 equal parts, which

parts are called seconds, and of which the symbol is t" or 35", if

t or 35 be their number: thus, if AB (Fig. p. 1.) equals one-

fourth of the circle ABDE, A

B

contains 90 degrees, or, symbo-

lically, AB= 90°. If AB = fith of the circumference ABDE,
A B contains 30° or AB = 30

n
. If AB = j-th of the circumference

* See the Note at the end of the Chapter.
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S s fin*

ABDE, AB= i 360° = 51°H— i°= 5l° +

—

7 '7 7

= 51° 25'+ - l' = 51° 25' 42" + - l".

7 7

The values of - l" and of like quantities are, usually, ex-

* g
pressed by means of decimals

;
thus, - l", retaining only the

two first figures, equals o".85 ; and ^th of the circumference

would be expressed by

5 1° 25' 42". 85.

But it is occasionally useful (see Aslron. edit. 2. p. 779.) to ex-

tend the division of the circle beyond that of seconds, and to in-

troduce, with their proper symbols, thirds,fourths, &c. In such

an extension, - l" would equal 5l"' 25
iT
.7 and the foregoing arc,

the seventh of the circumference, would be expressed by

51° 25' 42" 51"' 25 ,'.7.

4. The arcs of circles, it has appeared, are proper measures

of the angles which they subtend ; if the angles be increased, the

arcs are also increased, and in the same ratio; and knowing the

value of one, is, in fact, knowing the value of the other. But,

in Trigonometry, the values of angles are made to depend on

the values of certain right lines, drawn according to certain rules,

but not varying, in the mathematical sense, as the angles vary.

The lines just alluded to are called sines, tangents, secants, 8tc.

which it now becomes necessary to define.

The Sine of an Arc is a right line drawn, from one extre-

mity of an arc, perpendicularly to a diameter passing through

the other extremity.

The Cosine of an Arc is a right line intercepted between

the centre of the circle and that point in the diameter (the foot

of the sine) at which the sine of the same arc drawn perpendi-

cularly to the diameter meets it.
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The Tersed Sine is a part of the diameter intercepted

between the common extremity of the arc and diameter, and the

foot of the sine.

The Tangent of an Arc is a right line, drawn from one ex-

tremity of it and perpendicularly to a diameter passing through it,

and terminated by its intersection with another diameter passing

through the other extremity of the arc and produced beyond it.

The Secant of an Arc is a line intercepted between the

centre of the circle and that extremity of the tangent of the same

arc which lies without the circle.

The Chord of an Arc is the straight line joining its two ex-

tremities.

The Complement of an Arc less than a quadrant is its defect

from a quadrant. The Co-tangent, Co-secant of an arc are, re-

spectively, the tangent, and secant of its complement, and,

therefore, may be drawn according to the preceding directions,

by considering the complement of the arc to be the arc itself.*

If we now illustrate these definitions, and assume, in the

annexed diagram, A

B

to be the arc: then, sec p. 3. 1. 24.

BF is the sine of AB, and F is what we have called the

foot of the sine.

CF is the cosine of AB (see p. 3. 1. 27.)

AF is the versed sine of AB (1. 1.)

AT is the tangent of AB (1. 4.)

CT is the secant of AB.

A line joining A and B would be the chord of AB: as Bgb,
bfl! (see fig. p. 7.) are the chords of the arcs BQ b, bob'.

* Besides these, there have, of late years, been introduced terms

such as co-versed sine, su-versed sine, su-co-versed sines (see Mendoza’s

Tables) : and the reason of their introduction is certain facilities af-

forded by their use in computation, such as that of clearing the

Moon’s distance, &c.
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The complement of AB is (p. 4. I. 12 .) BQ, siuce AB+BQ
= quadrant : now BQ being considered as the arc of which the

sine, tangent, secant, &c. are required, its sine, cosine, tangent,

secant, by the preceding definitions, are (see fig. p. 7 .) respec-

tively, Bg, Cg, Qt, Ct

:

and, accordingly, (see pp. 3, 4.) those

same lines are respectively, the cosine, sine, co-tangent, co-secant

of the arc AB.

The lines that have hitherto been drawn expound the sine,

cosine, 81c. of an arc AB less than a quadrant: but if we tale

A b greater than a quadrant, then, according to the above defini-

tions, bf is the sine of the arc ,4Ci6.

Cf is the cosine,

Af is the versed sine,

CS the secant,

AS is the tangent.

Jn order to determine the co-tangent and co-secant of this

arc A b we must vary and extend the definition of the complement
of an arc: now, (see p. 4. I. 12.) the arc being less than a

Digitized by Google



6

quadrant, its complement was defined to be its defect from that

quantity : but an extended definition which should make the

complement of an arc to be the difference between it and a

quadrant would suit both arcs greater and less than a quadrant;

and, according to such definition, Qb (fig. p. 5.) would be the

complement of A b, and Qi (AQ being a quadrant) the tangent

of Qb would be the co-tangent of A b. Cs the secant of Qb,

would be the cosecant of Ab.

Let the arc be called A, then when A is less than a quad-

rant (Q),

4 + (Q-4) = Q,

or, A - (4— Q) = Q,

when A is greater than a quadrant (Q),

A - (A— Q) = Q,

therefore, by what has preceded,

sin. A = cos. (4 — Q), and sin. (4 — Q) = cos. A,

tan. A— co-tan. (4 — Q), and co-tan. .4 = tan. (A — Q),

sec. A = co-sec. (4 — Q), and co-sec. A — sec. (4 — Q).

Let now the arc be greater than two quadrants but less

than three: and let AQad represent such an arc, then, by the

preceding definitions (fig. p. 5.),

de is the sine,

Ce the cosine,

Ae the versed sine,

A T the tangent,

CT the secant.

Lastly, let the arc be greater than three quadrants but less

than four, or less than the circumference of the circle ; and let

AQak represent such an arc, then

kg is its sine.

Cg the cosine,

Ag the versed sine,

A m the tangent,

Cm the secaut.
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We may also use the definitions of p. 3, 4, and draw the

siues, cosines, &c. of arcs greater (if we may so call them) than

the circumference : for instance, suppose the arc to be equal to

the circumference plus the arc AB\ then, guided by the defini-

tion (see p. 3,) begin from A, one extremity, and go round the

circle in the direction AQaB1

till you arrive at B the other

extremity of the arc (= AQa A +AB): from B draw BF
perpendicularly to A a passing through A, and BF is the re-

quired sine of the arc, CF is the cosine, AF the versed sine,

AT the tangent, and CT the secant: which are evidently the

sine, cosine, &c. of the arc AB. Hence, admitting the existence

of arcs greater than a circle, and applying to such the original

definitions of p. 3, 4, we have these equalities

sin. AB= sin. (circumference+ A B),

or sin. A = sin. (2 ir + 4),

calling AB, A, and the circumference 2?r; also

cos. A = cos. (2 tt + A),

tan. A = tan. (2ir + A),

sec. A — sec. (Sir + A),

and in a similar manner we might easily obtain more like

equalities.

The sine, cosine of an arc are thus expressed by means
of the sine, cosine, &c. of other arcs: but they may also be
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expressed in terms of one another: thus, since by the forty-

seventh Proposition of the first Book of Euclid,

CJT = CF°- + BP,

we have, making r = CB,

r* = cos.
5 A +sin.® A,

and, accordingly,

sin.
s A=r9 — cos.

9 A.

Again, since CT* = CA S + AT*, r

sec*. A = r
s

4- tan
2
. A,

and, accordingly,

tan.
2 A =sec.

! A — r*.

Again, by the similar triangles CFB, CAT,

CF : FB :: CA : AT;

FBAT=CAx 7nji ,

sin. A
or, tan. A =r .~——-

,

cos. A

and, by the same similar triangles.

cr=c*x§

= rad. x
rad.

cos. AB

cos. A

In like manner we may easily deduce from the similar tri-

angles CQt, CgB, the values of Qt and Ct, the co-tangent

and co-secant (see p. 6.) of the arc A B, ( = A ),
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for, Q, =COx |S = ™t.
Cg cos. QB

rad.
cos. j4B

sin. AB
r . cos. A

sin. A
and.

n , nrt CQ rad.Ct= CB x— = rad. - —

-

Cg sin. AB

sin. A
Or, we may dispense with this second set of similar triangles

(CQt and CgB) and deduce the values of the co-tangent and
co-secant from the previous values of the tangent and secant, by
means of their definition (see p. 6.).

Thus, the co-tangent of an arc is the tangent of the com-
plement of that arc. If A be the arc and Q, a quadrant, Q— A
is the complement : now by 1. 19. of p. 8.

,n> a %
sin. (Q— A)

tan. (Q- A) = r. ———

;

cos. (CJ— A)

but, sin. (Q— A) = cos. A,

cos. (Q— A) = sin. A;

cotan. A [the same as tan. (Q— A)\ = r .

'

sin. A
In like manner,

co-sec. A = sec. (Q— A) = —
cos. (O— A)

sin. A
If it were worth the while, it would be easy to express, under

different terms, the preceding equalities : for instance, we may
express the two latter, after the manner of stating a Theorem,
thus

:

B
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The radius is a mean proportional to the secant and cosine of

an arc, and, also, to the co-secant and sine.

The radius is also a mean proportional to the tangent and

co-tangent: which may be thus deduced,

sin. A . cos. A
tan. A = r . 7 , co-tan. A = r .

—
;

cos. A •
sin. A

tan. A X co-tan. A = r*.

or, tan. A : r :: cotan. A,

and this same proportion is immediately deducible from the

similar triangles CGf, CAT (fig. p. 7.).

The right line AB is (see p. 4.) the chord of the arc AB.
If the right line be bisected at n and Cn be drawn perpendicularly

to AB, then the point m, where Cm produced meets the circle,

bisects the arc AB (Euclid, Book III, Prop. 30.); therefore

AB A
the arc A m = Bin = —— — — (supposing A — the arc AB).

But An is by the definition of p. 3.1. 24, the sine of Am,
the chord (AnB), therefore, of an arc A is double the sine (A n)

of half the arc
(i)

: or, which is the same proposition, the

sine of an arc (A ) is half the chord of twice that arc (2 A).

Instead of making A = the arc AB, make, for convenience,

2

A

to represent it, and let i' represent win the versed sine of Am
or Bm (= .4): then, since (IJuclid, Book III. Prop. 35.),
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mn x up — An ,

v x (2 r— v) = sin.
2
A,

or, 2rt> = sin.
3 A + t>*.

But Aw3 + win* = Am3
(the line Am),

A> 3

•, sin.
8 A + v

s = (2 sin. -) (see p. 10. II. 17, &c.);

•
,A

(see 1. 3.) 2r» = 4 . sin. —

;

but Cn = Cm — mn,

or, cos. A — r—v
2 . ,4

= , therefore, r sin. —
7 r x

= i(?-2si.i.s

!),

or, = i(2cos.!

|
- r*)

since

.. A . 2
A a

cos. — + sin. — = r •

2 2

If we multiply the two last expressions (11. 13, 14.) for cos. A,

we have

cos. A x cos. A, or cos.
8 A =

ijar
8 (cos.

!

^ + sin-
9 -r9-4 sin.

3

^
cos.

3

-j

= ?(r4 -4.si„.
8 ^cos.3

|).

4.0 A 2 A 2 a .1

Hence, sm. — cos. — — —cos. A
T X 2

= sin.
? A,

and consequently.

• A A . .

2 sin. — cos. — — r sin. A.
2 2
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The supplement of an arc is the difference between it and a

semicircle : accordingly,

BQa is the supplement of AB,
ad is the supplement of AQ&,

and ad is the supplement of AQad.

Now (see the definition) BF is the sine of BQa: for BF is

drawn from one extremity B of the arc BQa perpendicularly to

the diameter aA passing through a the other extremity : but, as we

have seen (p. 4.), or by the same definition, BF is the sine of

AB. Similarly, b

f

is the sine equally of the arc ba and of the

arc AQb: ed the sine of ad and aQd: aud, generally, the sine of

the supplement of an arc is equal the sine of the arc itself.

«•« We have already (see pp. 6, 7.) in one or two instances, ex-

pressed by means of general symbols certain equalities that subsist

between the sines and cosines of arcs, which, though different, may
be said to be related. Such modes of expression are, in the actual

The parts included within *„* are less essential, or less

elementary, than the other parts, mid may, in a first or partial perusal,

be passed over by the Student.
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operations, carried on by the aid of the Trigonometrical Analysis,

of frequent and considerable use. It is desirable, therefore, to

extend them, which may be done without much difficulty. Thus
with regard to the equality which has just been stated: if 2ir*

represent the circumference of a circle, of which the radius is 1,

and A be the arc, then

sin. A — sin, (ir — A),

and since A may represent any arc, if instead of A we substitute

7T .— — A in the preceding equation, we have

sin. Q - A) = sin. Q+A),
and if, instead of A, we substifutc

- ir — A, we have
n

sin. ^ ir — A^ = sin. —— it+ .

We may also obtain other general expressions ;
thus, by ex-

tending the definition of a sine (see pp. 4, 7.) the subjoined

equations are true

sin. A = sin. (2ir + A) = sin. (4ir + A), and generally,

sin. A = sin. (2nir + A),

n being a whole number.

For like reasons,

sin. (tt — A) = sin. (S7r— A) = sin. (5ir — A),

and generally,

sin. (ir — A) — sin. {(2n+ 1) ir— A},

n being any number in the progression, 0, 1, 2, 3, &c. Hence,

* The numerical value of ir, that of the circumference of a circle of

which the diameter is 1, is 3.14159, &c. : 2ir, or 2 X 3.14159, &c. ex-

presses, then, the value of the circumference of a circle, of which the

radius is 1.
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siuce by p. 12, sin. A = sin. (tt — A) there results this general

equation,

sin. (2 nir + A) = sin. {(2 m + l) it — A },

or, what amounts to the same thing, if s be the sine of any

arc A, it is also the sine of all arcs comprehended under the two

formulas,-

(2«7T + A), {(2m 4- 1)tt — A),

in which n may be any term of the progression, 0, 1,2, 3, &c.

11. The definition of a cosine being (see p. 7.) like that of a

sine, extended to designate the cosiues of arcs, that are greater

than the circumference, we may, in like manner, obtain general

expressions for it. Thus, CF, which is the cosine of AD,

may be considered as the cosine of the (circumference + AB)
&c. Hence, as before the following equations will be true;

cos. A — cos. (2tt + A) = cos. (47t+ j1) = cos. (2n7r + A), n

being any term of the progression, 0, 1, 2, 3, 4, 5, &c. But,

since the same CF is also the cosine of the arc ABaB, we have

CF= cos. (2 ir— A) = (for reasons just alleged) cos. (47r— A) =
cos. (2m7t — A), n being any term of the progression, 1, 2, 3, &c.

or, CF, generally, =

cos. {(2 m + 2) 7r — A},

n being any term of the progression, 0, 1, 2, 3, &c.

Hence CF is the cosiue of all arcs comprehended within the two

formula;

(2?i7r -f- A), {(2m + 2)7t — A}.
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12. In a similar manner we may investigate the general

formula: of arcs that have the same negative cosine,

Cf— cos.(tt — jD= cos.(3jt— j1)=, generally, cos.{(2« + lV — A ],

11 being any term of the progression, 0, 1,2, 3, &c.

and since the same Cf is the cosine also of ABbab' otttA-A

Cf — cos. (7r+ A) = cos. (3 7T A ) = cos. {(2n + 1) v -f A}.

Hence, Cf is the cosine of all arcs comprehended within the

two formula:,

{(2m + 1) ir — A\ ,
{(2n + 1) ir + A}.

The arcs of which/# is the sine, are

ir + A, Sir + A, and generally {(2n + l)7r + A}.

The arcs of which FB! = fb' is the sine, are

2 ir — A, 4ir — A, and generally (2 m + 2) ir — A.

Hence FB1

is the sine of all arcs comprehended within the

two formulae,

{(2n •+ l)ir + A} and {(2 m + 2) ir — A},

n being in each case any term of the progression, 0, 1,2, 3, &c.

In calculations, where FB, FB!

,

and other quantities are

involved, if s be the symbol for FB, —s must be the symbol for

FB'. For, conceive a line to be drawn a tangent to the circle,

at the point opposite to Q in QC produced, and let the distance

of any point in the circumference from this line be called z, then

FB (s) = z — r, and FB! = r — z, or Fff — — (z — r).

Hence, if in any equation subsisting between trigonometrical

lines we wish to pass from the consideration of the point B to

that of the point B we must in such equation substitute — (z—r)

instead of z—r, or — s, instead of «.•

13. The preceding results may be conveniently represented

in a Table, s and c representing the sine and cosine of an

arc A.

* This hinges on the general doctrine of negative quantities : the

scrupulous Student, who is not satisfied with what is here said, is

referred to Carnot’s Geometric de position, and his subsequent work on

the Theory of Transversals, &c.
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It is easy from this Table and the expressions for tan. A ,

co-tan. A, sec. A, 8tc. namely,
’

sin. A cos. A 1 .

a > 1 > a (
rad - = l ’

cos. A sin. A cos. A

to determine the values of the tangent, co-tangent, secant, 8tc.

sin. (ir + A) — *

thus tan. (ir + ./i) =

co-tan. (Sir — A) =

sec. (7 ir+ -/!)=

cos. (ir + A) — c

= tan. A,

cos. (3 ir — .4) _ — c

sin. (3 ir— A) s

= — co-tan. A,

1= = — sec. A.
cos. (7 ir + A) — c

18. In some of the preceding expressions, a radius = 1 has been

used, and, solely for the purpose of lessening the number of symbols

in the Trigonometrical formulae. For, 1, or any power or root of

it, used as a multiplier or divisor of an expression, may be expung-

ed from such expression; thus, instead of
S--—~ , we may more

simply write sin.® A. Still, however, it is, on many occasions,

necessary to use, for the radius, a general symbol such as r, or,

an arithmetical value such as 10,000. For this reason, it is de-

sirable to be possessed of some easy and expeditious rule, for

converting formula: constructed with a radius = 1 into other

formulas that shall have a different radius. Such a rule may be

obtained from the following simple considerations

:

If (see fig. of next page) BF, bf be drawn similarly inclined

to CA, then by similar triangles,

CT1 l

BF= bf. , or BF= bf. - (if CB= 1, Cb = r).
Co r

In like manner, CF=Cf. -, AF=af -. Now, sines, co-
r t

sines, tangents, 8tc. arc drawn after the manner that these lines

are
;

if the angle BFC be a right angle, BF is the sine of the

angle BCF to radius 1, bf is the sine to radius r; and, CF, Cf,

C
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are the cosines. Hence, in any formula involving sin. A, cos. A, &c.

calculated for a radius = 1, substitute instead of sin.il, cos.il;

S
-
“
- -

,

C°3'—
, and the resulting formula will belong to lines

r t

drawn in a circle, of which the radius is r : for instance,

sin. A „ tan. A sin. A ’ r
tan. il = r, radius = 1 ;

.’. = X
cos.il

sin. A , .

or, tan. A = r . — , (radius = r).

cos. il
’

cos. il

Again, sec. A = (radius = 1), then

sec. A = 7 ,
(radius = r).

cos. A

Again, tan. A . co-tan. A — 1, then,
tan. A co-tan. A = 1 ,

and tan. A . co-tan. A = r
,
.

And if in any formula, any power of sin. A, or of cos. A, such as

sin.
5
A, sin." A, cos.

4 A, or cos." A, occurs, the radius being 1, then,

sin.
3 A sin.” A cos.

1 A cos.” A .

by substituting — — , —p;— j
—

>

p;
> tlie result-

ing formula will belong to a circle of which the radius is r.
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This is the rule; but, since it would leave a Trigonometrical

formula with fractional terms (the denominators being powers of

the radius) it may, with advantage, be modified and made more

convenient. Thus, suppose a form should occur such as

cos. nA = a . cos." A + b . cos."
-2 A + &c. to radius 1

;

then, by what had preceded, the reduced form to a radius r, is

cos. nA a . cos." A , cos."
-
’

A

I
= 7 + *•— + &c -

r r t

and, cleared of fractions, is

r“
-1

cos. nA = a . cos.” A -f- b . r
2

. cos.
M-s A + Arc.

Here, cos. nA is multiplied by r"
-1

, cos."
-2 A by r9, Arc.;

that is, if we choose to call cos." A a quantity of n dimensions,

cos.”
- * A, a quantity of n — 2 dimensions, cos. A X sin. A, a

quantity of two dimensions, we may announce the preceding rule

under the following simple form :

Multiply each term of a Trigonometricalformula, in which the

radius = 1 , by such power of r, as shall make it of the same
dimensions with the term of the highest dimensions ; the resulting

formula will be true when the radius is = r.

Thus, if

cos. 3A = 4 . cos.
3 A — 3 . cos. A (rad“. = l),

since cos.
3 A, the term of the highest, is of three dimensions, and

cos. 3 A, cos. A, are of one dimension, we have

r* . cos. 3A = 4. cos.
3 A — 3r* cos. A.

19 . The Trigonometrical symbols, such as sin. A, tan. A, &c.
that have been obtained, are merely general ones, and, hitherto, no
methods have been given of assigning their values in specific

values of the angles. The general methods for this purpose will

be given in a subsequent part of the Treatise
;

but, even at this

stage, by peculiar artifices, we may, in certain simple cases, assign

the arithmetical values of the sines and cosines of angles. For
example,
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If (fig. p. 14.) AB= BQ, that is, if AB = half a quadrant, or

expressed in degrees, if AB or z2\BC=45°, since / BCQ= 45°,

also cos. 45° = sin. 45°, but cos.
9A +sin.\4 =1,(1 = radius in this

case); therefore, 2 (sin. 45°)*= 1, and sin. 45°=—^-= .7071068,
v 2

or (see the preceding rule)= 707 1.068, to a radius = 10,000.

IfACB= - 90° =30°, since BCBf = 0..ACB= 60°, and since
3

/ CBff = /. CB'B = 60°, the triangle BCB! is equilateral, and

consequently BR (the chord of 60°)= the radius CA = 1, and,

BF= sin. 30° = - BR = - = .5, and cos. 30° or sin. 60°
2 2

(see Art. 10.)=\J ~ = .8660254, and (see p. 18.)=

i *

8660.254 to a radius = 10,000,

and 8660254 to a radius = 10,000000.

Hence may be proved, what was asserted in p. 3, that the

sines of arcs do not vary as the arcs themselves. For, the

sin. 30° = - radius =, .*., -1 sin. 90°; in other words, the sines
2 2

are as 1 to 2, whilst the arcs are as 1 to 3.

The values of the tangent may be found, in the above cases,

from the expression tan. A = 8 'n ‘

. Thus
cos. A

rad*. = 1.

tan. 45° =

tan. SO' —

sin. 45°

cos. 45®

1 g

2
X

1/3

= 1

= .5773503

l/3 2
tan. 60° x - = 1.7320508

2 1

0 sin. 90° 1

tan. 90° = — = - =
cos. 90f 0

rad*. = 10,000

= 10,000

= 5773.503

= 17320.508
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We may here direct the Student’s attention to the superior

augmentation of the tangent above that of the sine
;
for, we have

corresponding to

* Arcs 0, 30° 45° GO
0 90°

Sines 0, 5000, 7071, 8660, 10000,

Tangents 0, 5773, 10000, 17320, 00 .

* We have adhered, in this Chapter, to the antient and common
division of the circle. But, in most of the French scientific treatises

that have, of late years, been published, the circumference is divided

first, into 400 equal parts or degrees, then, each degree into 100 equal

parts, or minutes, then, each minute into 100 equal parts or seconds:

so that a French degree is less than an English in the proportion of

90 to 100: a French minute less than an English, in the proportion of

90 x 60 to 100x 100: and a French second less in the proportion of

90 x 60 x 60 to 100 x 100 x 1 00 : hence, if n be the number of French

degrees, the corresponding number of English equals , or

or n— which last form points to an easy arithmetical operation for

finding the number of degrees in the English scale from the number
in the French scale: since from the proposed number we must subtract

the same, after the decimal point has been moved one place to the

left:

Examples : What number of degrees, minutes, &c. in the English

scale correspond to 73°, to 71° 15', and to 26°.0735, in the French

scale,

73 71-15 26.0735

7-3 7.115 2.60735

65.7 64.035 23.46615

6 6 6

65° 42' English. 2.10 27 • 9690

6 6

6

64° 2' 6"

58.140 Answer 23° 27' 58".
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In the same manner as we have found, in the preceding cases,

the values of the tangents, we may find those of the versed sine,

secant, &c.

In the next Chapter we will proceed to investigate certain ex-

pressions for the sine and cosine of the sum and difference of

two arcs, in terms of the sines and cosines of the simple arcs.

Such expressions are, in this science, very important, since from

them, by an easy derivation, may be made to flow almost all

other Trigonometrical formula;.

The conversion of English degrees. See. into French, is to be

effected by increasing the number of English degrees, &c. by one-

ninth: for

10 £=9F; F=E+
|:

for instance, if the English arc be

23° 33' 54" = 23.565,

the equivalent French arc is

23.565

2.6183333

26.183333

that is, 26° 18' 33" 33"', &c.

Tire operation of reducing French to English degrees may be

superseded, and rendered less liable to mistake, by means of the '

following Table, in which as it is usual, the reduction is effected

simply by addition.

Example to the Table.

Reduce 26°.0735 to English degrees, &c.

French. English.

By the Table, 20° O' 0" 18° O' 0"

6 0 0 . 5 24 0

0 .07 0 ..... 0 3 46.8

0 0 30 0 0 9-72

0 0 5 0 O 1.62

26 . 0735 23 27 58.14 the same as before.
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Reduce 2°.7483 to English degrees, &c.

French.

By Table, 2° O' 0"

0 .70 0

English.

1° 48' 0"

0 37 48

0 4 0 0 2 9.6

0 0 80 0 0 25-92

0 0 3 0 .972

2°
. 7483 28 24.492
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TABLE
For Reducing French Degrees, fyc. to English.

French Division:

400° in the circle, 100', in a degree, 100" in a minute.

English division

:

360° 60' 60".

French. English. French. English.

Degrees. 1° 0° 54’ 10° .
9°

2 1 48 20 18

3 2 42 30 27

4 3 36 40 36
5 4 30 50 45

6 5 24 60

7 6 18 70 63
8 7 12 80 72

9 8 6 90 81

10 9 0 100 90

Minutes. 1'. o' 32".4 10

2 1 4.8 20
’

3 1 37-2 30 16 12

4 9-6 40

5 2 42 50

6 3 14.4 60 32 24

7 3 46.8 70
8 4 19.2 80 43 12

9 51.6 90 48 36
10 5 24 100 54 0

Seconds. 1" .0"324 10 3". 24
2 .0.648 20 6.48

3 .0.972 30 9-72

4 .1.296 40 12.96

5 .1.62 50 16.2

6 .1.944 60 19-44

7 . 2.268 70 22.68

8 .2.592 80 25.92

9 . 2.916 90 29-16

10 .3.24 100
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CHAP. II.

Expressions, for the Sines and Cosines of the Angles ofa Triangle,

in Terms of the Sides: for the Sine and Cosine of the Sum and

Difference of two Arcs or Angles, fyc.

The first step in this investigation will be made by the

solution of the following Problem

:

Problem I. In an oblique-angled triangle, it is required to

express the cosines of the angles in terms of the sides.

Let the 3 angles be A, B, C, the opposite sides, a, b, c.

Let the line between the vertex of the angle C and the point

3

where a perpendicular from the vertex of A on the line a cuts a

be p; then, p is called the cosine of C to the radius b, and (bv

p. 17.)= b .cos. C, when the radius = 1.

Now, by Euclid, Book II, Prop. 12 and 13,

c* = a’ + 6* - <2ap

= a 4- b
1 — 2a b . cos. C;

C i 12 4

.1 n a + b — c
consequently, cos. C = —

.

2 ab

Ifwe investigate cos. B

,

and cos. A, the process will be exactly

similar, and the result similar, that is

cos. B =

1 )
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cos. A = b' + c» - a'

2 be

Prom these expressions, the angles of a triangle may be found
when the sides are given.

Ff C be obtuse, then p = b. cos. (•* — C),

and c' = a* + b' + 2ap

— a* + b* + 2ab . cos. (ir — C)

= a
t
-\-b

t — Zab . cos. C {since cos. (tt — C)=— cos. C};

consequently, cos. C = —^
, as before, or the expression

is the same, whether C be less or greater than a right angle.

Pkoblem 2. Let it be required to express the sines of the

angles in terms of the sides.

By Euclid, Book I. Prop. 47. sin.* A = (rad*.)’ — cos.* A
= (when rad’. = 1) 1 — cos.* A — (1 + cos. A) (1 — cos. A );

since the difference of the squares of two quantities is equal to

the product of their sum and difference. Hence we may find the

value of sin.
8 A, by finding, from the preceding Problem,

1 + cos. A, and 1 — cos. A, and, then, by multiplying together

those quantities.

XT t , ,
b* + C* - O’

.Now, 1 — COS. A — 1 - ;

2 be

- a" - (6* - 2 6c + c*)

2 be

a* - (b - c)*

Q.bc

(a+ b — c) (a + c — b)

Ibc
,
(by 1. 14, &c.)
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similarly, *1 + co». A =
(6* + 2 b c+ c*) — a

f

2 6c

(6 + c)* — n~

2 6c

(a + 6+ c)(6+c— a)

2 be
(by p. 26. 1. 13, See.)

Hence multiplying, 1 + cos. A, and 1 — cos. A,

(a + 6+ c) (6 + e — a) (a+ 6 — c) (a + c — 6)
sin.* A = 46V

/a+6+c x /a+6+c \
r, since a + 6— c — 2 ^— cj, 6+c —a=2^—— aJ

,

2. 2. 2. 2 (/a + 6 + c\ sa + b+ c \ sa + b + c ,\“W {(—

r

-
)

• +v (—5 V
* (i±*±! -

.)}
=

This is the expression for the sin.* A, formed by means of

that for cos. A. But, the expressions for cos. B, cos. C are pre-

cisely similar to that for cos. A, and, therefore, the sin.* B and

sin* C formed from them, by the same process, must be expressed

by similar fractions; in which fractions, the numerators must, from

the nature of their composition, be the same as the numerator

for sin.* A, and the denominators will be, respectively, aV, a*6*.

Let N* represent the numerator, then

. . N 'N N
sin. A = —

- , am. B = —
, sin. C = —- .

be ac ab

* 1 + cos. A = ver. sin. (180°— A)-,

(b 4> c}* —• a*
.-. ver. sin. (180°— A) = -—

> or
>

differently expressed,

4 be : (6 + c)
1 —

a

1
:: 2 (the diameter) : ver. sin. (180°— A)

which is Halley's Theorem. Phil. Trans. No. 349- p. 466. Halley

calls it “A new Theorem of good use in Trigonometry.”
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X N
Coh. 1. Since sin. B — — , and sin. C — —

,

we have
ac ab

sin. B
sin. C

or, if this equality be thrown into a proportion,

sin. B : sin. C :: b : c.
>

This relation, however, of the sines of the angles to the sides

opposite, may be immediately deduced from (Fig. 3.); for the

perpendicular (q) on a from the vertex of A, is the sine of B to

the radius c, or q = c sin. B (radius = 1); similarly, q is the sine

of C to the radius b, or, q—b sin. C (rad. 1.); .‘. since q—q ,

c sin. B=b sin. C.

Cor. 2. Hence the area of a triangle may be expressed in

terms of its sides, for, (see Fig. 3.) area =
a perp . nc n——-.sin. IS=

2

v^c-^) (^-)
. C-4^-0 .

(^--«)}
a + b+ c

if = S,
/V

= {S.(S-a).($-6).(S-c)}.

Problem. 3. It is required to express the sine of the sum
of two arcs, in terms of the sines and cosines of the simple arcs.

From the two preceding Problems,

• ,
N ... V
be a c

„ «
S+ c

2 -6*
, b’-Af-a*

and, cos. B = , cos. A =

lienee,

sin. A . cos. B+ cos. A . sin. B =

2 be

N (<P+ c' — // + 6* + c" — a')

2 « be*

2 Nc2

_ X
2 a be* a b

Digitized by Google



29

But sin. C— and sin. C = sin.
{
ir—(A + B)

}
= sin. (A + B),

ab

for A + B is supplement to ir — (A + B) as A + ii+ C = ir.

Hence sin. (4 + 7J) = sin. A . cos. B+ cos. A . sin. B. (!)•

* It has been rightly objected that the above formula is not obtained

by direct investigation, but discovered to be true by observation on the

values of sin. A

,

cos. A, sin. J3, cos. B, and by previous knowledge of

their values. If we use a construction, or Geometrical diagram, there

is no difficulty in proving, by direct investigation, the above formula.

For instance, Mr. Cresswell, in his Treatise on Spherics, has thus simply

demonstrated the fundamental formula of p. 27

.

1. 24.

let AB = 2 A, BD =2/1,

and draw Bs perpendicularly to AD, then

AD = A s
-f.

.v D ;

but (see p. 10.) AD= 2sin. = 2sin. (A+ B),
2

BD
2

As=AB .cos. BAD=AB cos. (Euclid, Book IK. Prop. 20.)

=2 An . cos. B

—2 sin. A . cos. B,

Ds=BD . cos. BDA= 2 sin. B . cos. A

;

sin. (.f+B)=sin. A . cos. B-f-cos. .4. sin. B.

But a solution still more simple, is the following, of which a young

Student of Caius College is the Author.

The
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This is the fundamental form, from which almost all other

Trigonometrical forms may be deduced.

Cor. 1.

cos. (A + B) = (p. 6.) sin. —(A + B —

(p. 13.) sin. + (A + B)^);

but, sin. + (A + jB)) = sin. 4- A^ + b| .

= sin. G +J0 .
cos. JB+ cos. + A^ . sin B,

which is derived from the form (1), by substituting, instead of

* (1+0-

But by pp. 6, 13. sin. (1+0 = cos. A,

and cos. + A') = — sin. A.

The two arcs are AB, BD, their sum AD,

their respective sines are Ap, Dq, Dr.

Since Ap, Dq are parallel,

the triangle ApD = the triangle Apq;

that is, (putting instead of the wholes their parts,)

Apn-\-pnD= Apn~\- Anq\

pnD= Anq,

but A q C+ C nD =.- A q C -f- CnD;

therefore, adding, AqC-{-CpD= AnC-\- CnD=ADC ;

.’. ApxCq+CpxDq =ACxDr,
or, sin. ABxeos. DB-|-cos. /ifixsin. X)B= rad. xsin, AD.
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Hence, cos. (A + B) = cos. A . cos. B — sin A .sin B . . . . (2) *.

Cor. 2. By page 6,

sin. (A — B)= cos. —(A — B)^ =cos. —A^ + jb| .

But, by the formula (2) that has just been established,

cos. {(|-a) +b| =

cos. — A^ . cos. B — sin. — A^ . sin. B

= sin. A . cos. B — cos. A . sin. B,

(by p. 6.)

Hence, therefore,

sin. (A — B) = sin A . cos. B — cos. A . sin. B (3).

Again, by page 6,

cos. (A — B)= sin. — (A — B)^ =sin. — A^ — b|.

* Hence may be derived, and simply, a theorem relative to the

cosines of the angles A, B, C of any rectilinear triangle. In such

triangle,

A + B+ C=180°;

.*. cos. A=cos.
j
ISO0— (B-f-C)

J
= —cos. (B-f-C);

similarly, cos. B= , —cos. (A+C).

But cos. A . cos. B— sin. A .sin. B = cos. (A+B);

therefore, by multiplying the three equations,

cos. A cos. B
|
cos. A . cos. B— sin. A . sin B

}

= cos.(A-f-B) . cos. (A+C) . cos. (B+C),

and the right-hand side of the equation being a constant quantity, the

left is.
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But, by the formula (1),

sin.{(- — A^ +b| = sin.^- — A^.cos. B+cos.

—

A^.siu.jB

= cos. A . cos. B+ sin. A . sin. B (by p. 6.)

Hence, therefore,

* cos. (A — B) = cos. A . cos. B + sin. A . sin. B (4).

Cor. 3. Add together the forms (1) and (3), and there

results sin. (A + B) + sin. (

A

— B) = 2 . sin. A . cos. B. .

.

.(a).

Subtract (3) from (1), and

sin. (A + B) — sin. (A — B) = 2 . cos. A .fin. B......(6).

Multiply (1) and (3),

and, the right-hand side of the equation is =
sin.* A x cos.* B — cos.* A x sin.* B =

sin.* A . ( 1 — sin.* B) — (1 — sin.
2 A) . sin.* B =

sin.* A — sin.* B.

Hence,

sin. (A + B) x sin. (A — B) = sin.
4 A — sin.* B (c).

Add (2) and (4), and

cos. (A — B) + cos. (A + B) = 2 cos. A . cos. B (d).

Subtract (2) from (4), and

cos. (A — B) — cos. (A + B) — 2 sin. A . sin. B (e).

* We may from these formulx easily derive expressions for the sine

and cosine of A + B + C

:

thus sin. (A -f- J3 C) = sin. (A -f- B) . cos. C + cos
- (A -f- B) . sin. C

= sin. A . cos. J? .cos. C -f- cos. A . sin. B. cos. C
-f cos. A . cos. B. sin. C — sin. A . sin. B . sin. C.
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If we substitute in the preceding formula (a), (b), (c), &c.

the quautity (m + 1) B instead of A, we shall have

sin. (« -f- 2) B + sin. nB = 2 sin. (« + 1) B . cos. B,

sin. (n + 2) B — sin. n B = 2 cos. (n + 1) J3 . sin. B,

sin. (n + 2) B x sin. nB — sin.
s
(n + 1) B — sin.

8 B,

cos. nB + cos. (« + 2) B = 2 cos. (# + 1)5. cos. B,

cos. nB — cos. (/i + 2) B = 2 sin. (n + 1) B. sin. B.

Cor. 4. Some ot the preceding forms may be differently

expressed, for

. A + B A ~ B
since A == +

and B =

2

A + B
2

4 - B

3 D r making

2 2 ^ D = A — B,

we have from (a).

sin. S +• sin. D = 2 sin.
) • cos. (““77“) •

and from (6),

'S - JD>

o n „ /S + £>\
. /* -

sin. A — sin. D = 2 cos.
^ ^

. sin. ^ ——

J

,

<$ - D>

or, since S and D are any arcs subject to this condition alone,

namely, that S > D, and since, in a series of formula?, it is con-
venient to use the same characters, instead of S and D we may
use A and B, and then,

• A • * /'A + jB\
sm. A + sin. B = 2 sm. ^ —

J

. COS. • •(5;,

. A • Tl /jl "f*
sm. A — sm. B = 2 cos. ^ —

J

. sin.
\(tt*)" ..(6).

By a similar process we may transform (d) and (e) into these,

.
. t) + B\ /A — B\

cos. A + cos. B = 2 cos. ^—-—

j

. cos. ^—-—j .

.

. .(7).

n , + B\
cos. B — cos. A = 2 sm. I —

1

. sin.
|

..(8).
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Cor. 5. Divide (5) by (G), and

sin. 4 + sin. B
fA. + B\

' \ 2 /
cos.

(

'

A

—

)

sin. 4 — sin. B /4
COS. I

+ £
)2 /

sin.
(

A—)'

2 /

= tan.
^

'A + B>

, 2 >)
. cot. C:

B
)•

or.

tan.
(

<A + B'

< 2 J)

tan.
(

<A - J3>

s 2 >)

similarly.
cos. 4 + cos. B
cos. B— cos. 4

l

,
sin. A + sin. B

and ’ T~T T> = tan -

cos. 4 + cos. B
h, i

sin. 4

/A+B\ /A- B\
tan (—

)

•
tan <\-t~)

A + B

• •(g).

e-f2
)

W,

which, in a particular case, that is, when B = 0, becomes

4 1 — cos.* 4 * . / 1 — cos. 4 4
. — tan. — .or —

,
or\r — = tan. —

.

1-f-cos. A 2 l + cos. 4 1+cos. 4 2

From this last expression, we may express cos. 4, in terms

of the tan. — ,
&c.; for, since

,4 1 — cos. A
tan. — =

,

2 t + cos. A we have

1 — tan. —
cos. 4 =

„ A
1 + tan." —

2

*% Cok. 6. The forms for the sine and cosine of 4 + B being

obtained, it is easy to deduce from them, the sine or cosine of any

mir
arc, such as + 4, and nearly with as much convenience as by

n

reference to the Table that is given in page 16, thus, by ....(1),
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sin. (ir + A) — sin. ir . cos. A + cos. ir . sin. A,

but sin. 7r — Oj and cos. ir = — 1 ;

sin. (ir + A) = — sin. A.

. . /Sir \ . Sir Sir .

Again, sin. I — A 1 = sin.— . cos. A — cos. — .sin. A;
V 2 / 2 2

. . /Sir\
. / ir\ . ir . ir

but, sin.
J = sin. ^ir + -J

= sin. ir . cos. - +cos.ir. sin. —

= — 1, since cos. — = 0, and cos. ir = — 1,
2

ir . ir

cos. ir . cos. - — sin. ir. sm. - = 0.
2 2

Sir / ,
ir

\

cos. — = cos. I ir + - 1 =
2 V 2 /

The sin. — A^ , therefore, = — cos. A.

/3ir \ Sir Sir
Again, cos. SA

^
=cos.— . cos.

S

A 4- sin.-^- . sm.

3

A

. . . Sir . Sir= — sm. S A, since cos. — = 0, and sm. —- = — 1.
2 2

Again, cos. (t + *) cos.
g

.cos. A sin.
2

.sin. A,

5ir / ir\ ir .ir
but cos.—= cos.l 2ir+ - 1 = cos.Sir. cos. sin.2ir. sin.- =0,

2 V 2/ 2 • 2

5ir / ir\ ir ir

sin. — = sin. ( 2ir + - 1 =sin. 2ir.cos.—|-cos. 2ir. sin. - = 1:

2 V 2-r 2 2

4* A^ = — sin. A-cos.

and, in like manner, other instances may be reduced ***f.

* The above instances are neither intended as specimens of analytical

dexterity, nor as mere trials of skill for the student : but they are cases,

such as frequently occur in the computations of Practical Astronomy.

For
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VVe will now proceed to deduce expressions for the tangents

of the sums and differences of arcs : and, the first step will be

the solution of the following Problem, which, indeed, is little else

than a corollary from the preceding results

:

For instance' (see Astronomy, Ed. 2. Vol. I. pp. 273. &c.). The quan-

tities of aberration and nutation, to be applied in order to reduce the

apparent right ascensions and north polar distances of stars to their mean,

are most conveniently found by formulae such as

m

.

sin, (O-M).
in which m is a numerical coefficient dependent on the star, 0 the Sun’s

longitude, and A a certain number of degrees, minutes. Sec. dependent

also on the particular star, to be added to the Sun’s longitude in order to

form a sum such as 0 + A, technically called the argument. For

instance, the term representing the aberration in right ascension of the

pole star for the year 1 826, is

44".303 sin. (® + 8’ 14° 6' 44"),

and in order to compute the aberration for any particular day, we have

merely" to substitute for © the Sun’s longitude for that day : for instance,

on January 1st, 1826,

© the Sun’s longitude = fj*
10° 37' 41"

add to this 8 14 6 44

and the sum is >7 24 44 25

and in order to find the sine of this arc, we must use the table p. 16, or

the formula of p. 35 : and since 12* is equal to the circumference, the

sine of the above arc is the same as the sine of

5* 24° 44' 25",

the same as the sine of

6* - (5° 15' 35"),

the same as the sine of

5° 15' 35",

so that the quantity of aberration in right ascension of Polaris on Jan. 1,

1 826, is

44 .303. sm. (J” 13 35"),

that
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Problem 4. It is required to express the tangent of the

sum and difference of two arcs in terms of the tangents of the

simple arcs.

Since (p. 8.) the tangent of an arc is equal to the sine divided

by the cosine, if the arc be 4 + B,

sin. (4 ± B) sin. A . cos. B + cos. A . sin. B
tan. (A ± ^) —

cos + jg) Cos. A . cos , ft + sjn. A . sin. IS

Now’, since the object is to obtain an expression involving

tan. A, tan. B, we must divide both numerator and denominator

of the above fraction by cos. A . cos. B, an operation which will

not change its real value ;
beginning then with the numerator,

sin. A .cos. B + cos. A .sin. B sin. A sin. B .= = + — = tan. A + tan. IS
cos. A . cos. B cos. A cos. i>

cos. 4. cos. B + sin. 4. sin. B
, _ sin. 4 .sin .

B

, _ . ..

i n = 1 + 1 + tan. 4.tan. Xl
cos. 4 . cos. IS cos. A.cos . IS

i , , , ... tan. 4 ± tan. B
consequently, tan. (4 ± B) =

toil, lx i uni. xr . . . v— j— — (rad. = l) (9).
1 + tan. 4 . tan. B

This formula may Ire used for determining the tangents of

such arcs as 90° ± 4, 180° + 4, &c. exactly, as in Cor. 6. p. 34,

we shewed the formula for sin. (

A

+ B), &c. might be used in

determining sin. for instance,

that is,

44".303X.091669 = 4v.(X)l2n7.

Again, on April 16,

© = 0- 16° 9' 4"

add 3 14 6 44

sum 9 0 15 48

and sin. (9* 0° 1
5' 48").

= -cos. (0° 15' 48") = -.9999R,

and the aberration is — 44".302.
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tan.(90°+^) =

1

tan. 90^ + tan. A co + tau A co

1 — tan. 90°. tan.^ 1— co.tanA — oo.tanyl

tan. 180°— tan. A 0 — tan. A

tan.A
: again, tan.(180°— A)=

1 -Han. I80°.tan.4 l+0.tan.4

(?)•

Cor. 2. Since tan. 45° = Sln ~ = 1, if we make A = 45°,
cos. 45

there will result from the preceding expression,

1 + tan. B
tan. (45° + B) = —=E T> •“

1 + tan. B

Cor. 3. Let t, t', t", 8ic. be the ungents of the arcs A, B
y

C, &c. then by the formula (9), considering A + B as one arc,

tit t, i
‘an- (A + B) + tan. C

v
X — tan. (

A

+ B)

.

tan. C

But, tan. (4 + B) =

therefore the numerator of the fraction (q) equals

t + t' + t"- tt't"

1 - tt'

and the denominator of the same fraction, equals

1 - (tt' + tt" + t't")

1 - tt'

Hence,

! + (' + ("- tt't"

tan. (A + B + C) —
j _ (a' + tt

" + t't")
'

If A + B + C = ir, (which is the case when A, B, C, are

the three angles of a triangle), since Un. tt = 0,

t + t
' + t" - tt't" = 0, or

t + t' + t" = tt't",

which is the theorem given in Phil. Trans. 1808, p. 122.

But the theorem has an origin much more remote
;

for, the
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above formula for lan. (A + B + C) and similar formula; for the

tangents of A + B + C + D, &c. were given as far back as

the year 1722, by John Bernoulli, and are inserted in the Leipsic

Acts for that year, p. 36l, and in the second volume of his Works,

at p. 526.

The formulae for the tangents of the sums of any arcs A , B,

C, &c. are symmetrical in their composition, and their law is

easily defined: suppose, the symbols S3 (tt'), {tt't"), &c. be

made to represent, respectively,

tt' + tt" + t't",

tt't" + tt't'" + tt"t'" + tft"t'", &c.

then, tan. (A + B + C) =
S3 (t)- S3 (tt't")

l -S3 (tt')
’

tan. (A -J* B -f- C -f* D) —
S<{t)-S<(tt't")

1-Sdtt')+ S<(tt't"t'")’

tan. (A 4* jB 4- C+D 4* E)

&c.

s,(t)-s,(tt’t")+si(tt'...n

l - Ss(tt')+Si(tt
,

t"t'")
J

These formula; are easily shewn to be true on the principle,

that, if the formula for the tangent of n arcs be true, the formula

for (» + 1) arcs must be true also: the latter inference being

made by means of the form (9), p- 37.

If, instead of a radius = 1, we would introduce a radius = r

into the preceding formulae, we must avail ourselves of the rule

laid down in p. 19. Thus the formula (1), p. 29, becomes

r . sin. (A + B) = sin. A x cos. B + cos. A x sin. B,

the formula (c), p. 32, is the same, whether the radius be 1

or r.’
>

m. , , o A 1 — COS. A
The formula; tan." — = to a radius = 1

2 1 + cos. A

A r3 - r’ . cos. A
becomes tan. — = ;— when the radius = r.

2 r+cos. A
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Tlie formula (It) becomes

sin. A 4- sin. B /

A

+ B>
r x

I. B /A + B\_ = ,a „. (_—) ;

cos. A + cos.

but, the formula ( f), p. 34, remains the same, whether the radius

be equal 1 or r.

*** We will now subjoin a few additional formula; for the sines

and cosines, &c. of the sums and differences of arcs, the investi-

gation of which the Student, by pursuing a track similar to what

has been already proceeded on, will easily discover,

cos. A + sin. A
sin. (45° ± A) =

cos. (45° T A) =

/2

cos. A + sin. A
v's

sin. (GO" + A) — sin. (60
w — A) = sin. A,

cos. (60° + A) + cos. (60° — A) — cos. J,

1 + tan. A
tan. (45" + A) =

1 — tan. A ’

, „ 1 — tan. A
tan. (45° — A) = ,

1 + tan. J

tan.
s A — tan.

! B =

cot.
8 A — cot.

8 A =

sin. (A — £).sin.(A + B)

cos.
1 A x cos. B

sin. (A — B) . sin. (A + B)

sin.
8 A x sin.

2 B

M. Cagnoli, in his Trigonometry ,
has collected into a Table,

under one view, and for the purpose of reference, formulae

similar to the preceding. He lias also in another Table (which

is subjoined) exhibited the various values for the sine, cosine,

and tangent of the angle A.
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Table.

Values of sin. A.

cos. A tan. A.

cos. A
cot. A’

\/(l — cos.* A).

1

V'( 1+C°t-
1 A)'

tan. A
-t/(l+tan.* A)

'

0 . A A
2 sin. - . cos. - .

2 tan.

—

2_

1 + tan.* ~

. sx . yi
cot. - + tan. ~

sin. (30°+y<)-.sin. (30°-A)
1/3

2 sin.1 ^45° -f-
^^

— 1

.

Values of the cos. A.

sin. A . cot. A.

V/(l — tan.1 A)

.

1

•^/(l+tati.-* A)
'

cot. A
l/(l 4-cot.

1
A)'

- A . _A
is.* - — sin.* - .

1 — 2 sin.* - .

2

2 cos.* - — 1.

^/(l±2±My

I+tan. s

^

,
A

.
A

cot. ~ - tan. -

,
A

, .cot. - + tan. -

1+tan. A . tan, -

tan. ^45°+^+cot. ^45°+

2 cos. ^45°+^.cos. ^45°

-

cos. (6o°-\-A)-~ cos. (6o°— A).
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s.

3.

4 .

5.

Table.

Values of tan. 4

.

sin. 4
cos. 4

1

cot. A

v/(dw - 0
sin. .4

l/(l —sin/ 4)

V( 1 — cos.
9 A)

cos. 4
4

2 tan. —
2

,4‘
1 — tan. —

4
2 cot. —

2
'

cot/ 1

2

9.

10 .

11 .

12 .

13.

4 4
cot. - — tan. -

cot. 4—2 cot. 24.

1 — cos. 24
sin. 24
sin. 24

1 + cos. 24

/ /• 1 — cos. 2 4X
^ Vi + cos. 2 a) '

tan. (4.5° + 0 - tan. (43° -0
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The investigation of some of these expressions has been already

given
;

end, by pursuing its plan, the Student will, without dif-

ficulty, be able to accomplish that of the others.

But the Student, whose object is utility, will feel averse from

their investigation, should he suspect them to be mere Trigono-

metrical curiosities. Such however is not their character; on the

contrary, they, in many instances, (we have shewn it in some),

materially expedite calculation, and furnish to the general lan-

guage of analysis convenient forms aud modes of expression.

It is, in accomplishing this latter purpose, that Trigonometrical

formula: are chiefly useful : they serve to conduct investigation

where the object has no concern whatever with the properties of

triangles.

Yet, the investigation of the properties of triangles was the

object for which Trigonometry was originally invented; and the

Student, if he purposes to limit his enquiries to that object alone,

need not, in quest of the requisite formula:, advance farther

than the present Chapter. He may immediately pass on to the

fifth Chapter aud apply what he has already learned. If, how-

ever, his views should extend farther, and he should wish to be

possessed of Trigonometry and its formulae as instruments of

language, he must pursue his researches, become conversant

with expressions merely analytical, and, for a time, defer their

application.

In order that this latter plan may be adopted, we will, in.

the next Chapter, continue the deduction of Trigonometrical

formulae.
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CHAP. III.

On the Sines, Cosines, Sfc. of multiple Arcs.—Powers of the Sine

and Cosine of the simple Arc.—Series of the Cosines Of Arcs

in Arithmetical Progression .— Vieta's, Waring’s, and Cotes s

Properties of Curves.—De Moivre’s Expression for the Sine

and Cosine of a multiple Arc by means of imaginary Symbols.

Problem 5. It is required to express the sine and cosine

of twice an arc, in terms of the sine and cosine of the simple

arc.

By form (l), p. 29,

sin. (A + B) — sin. A . cos. Ji + cos. A . sin. B.

Let B — A
;

.•. sin. (2 A)= sin. A .cos. A + cos. A .sin. A = 2 sin. A .cos. A ;

or, by the Rule of p. 19. to rad‘. r, r sin.* A = 2 sin. A .cos. A.*

Again, by the form (2) of p. SI,

cos. (A -f- B) = cos. A . cos. B — sin. A

.

sin. B.

Let A =» B; .'. cos. 2 A = cos.* A — sin.’ A;

or, = cos.* A — (1 — cos.* A) = 2 . cos.* A —
1

;

or, = 1 — sin.
9 A — sin.* A = 1 — 2 sin.* A.

If we employ a radius = r, then, by the Rule of p. 19,

r . cos. 2 A = 2 cos.* A — »•*, or = r* — 2 . sin.
2
A, (see p. 11.)

* This result has been (p. 12.) already obtained, but it is here re-

peated, as being the first of a series of formula: deduced on the same

principle.
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Con. I. By transposition,

r" — r . cos. 2A, or r (r — cos. lA) = 2 sin.
5 A (see p. 11.).

Now, r — cos. 2A = ver. sin. 2 A, consequently,

r.(ver. sin. 2 A) — 2 siu.
9 A (see p. 11.)

which equality, under the form of a proportion, becomes

ver. sin. 2A : sin. A :: sin. A : - :

2

or, expressed in general terms, announces, that the sine of an

angle is a mean proportional between the versed sine of twice the

same angle and the semi-radius.

Again, r
4 + r . cos. 2A = 2 cos.

2 A,

or r (r + cos. 2 A) = 2 cos.
9 A,

or r(ver. sin. supp1
. of 2 A) = 2 cos.

2 A
;

or, (if we call the ver. sin. of the supplement of an arc, the

suversed sine) r.suversin. (2 A) = 2 cos.
4 A, which equality, like

the preceding, may be expressed either uuder the form of a pro-

portion, or in general terms.

*

Cor. 2. Hence the sine of 30° = j, radius = 1,

for, sin. 60" = sin. (2.30°) = 2 sin. 30°. cos. S0n
, (Prob. 5.),

but, cos. 30° = sin. (90° — 30°) = sin. 60°;

.'. sin. 60° = 2 sin. 30°. sin. 60°;

V^3
or sin. 30° = and consequently sin. 60°, or cos. 30° = .

Cor. 3. Since, the radius being equal to 1,

sin.
4 A + cos.

3 A = 1,

and, (p. 11.) 2 sin. A. cos. A = sin. 2 A,

we have, by the solution of a quadratic equation such as

** + / = a,

xy = b,

sin. A = + sin. 2 A) + ^ V^(l — siu. 2 A),

cos. A = V{\ + sin. 2A) + t^(l — sin. 2A),
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in which expressions the upper or lower sign that affects the

second term is to he used, accordingly as sin. 4 is greater or less

than cos. A, that is, in arcs not exceeding a quadrant, accordingly

as A is greater or less than half a quadrant.

These two formula; are useful either to compute arithmetically

the sines, cosines, &c. of arcs, or to examine their accuracy when

computed by other formulae
;
and, performing the latter office,

they are called Formula of Verification. It is easy to perceive

their use in computing sines, cosines, &c.; since, if we take

sin. 2 A, a known quantity, for instance, the sin. 30* which

equals i, we may, by successive substitutions, regularly deduce

the sines of 15°, 7° SO', &c. Thus,

sin. 15° = j- t/(l + i) - \ Vf\ ~
j) = .258819,

sin. 7° 30' = ± t/( 1.2588 19) -7 /(.741181) = .1305262,

sin. S° 45' = , &c.

Problem 6. It is required to express the sine and cosine

of 3 times an arc, 4 times an arc, &c. in terms of the sine and

cosine of the simple arc.
«

If we substitute, in the formula for cos. (

A

+ B) (p. 31.),

2A instead of B, we have

cos. (4 -f- 2A) = cos. 2 A . cos. A — sin. 2 A . sin. A ;

but, by the preceding Problem,

sin. 2A = 2 sin. .<4. cos. A,

and cos. 24 = 2 cos.
2 A — 1

;

.'. cos. 3A = (2 . cos." A — I ) cos. A — 2 cos. A . sin.
2 A

= 2 . cos.
3 A — cos. A — 2 cos. 4(1 — cos.

1
A)

— 4 cos.
3 4 — 3 cos. 4, when the radius = 1,

4 cos.'
- 4

=
1

— 3. cos. 4, when the radius = r.

This form, if we substitute therein, instead of the arc 34, the aic
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(t “ 3i
)
= 4

-C
co,

‘ f
“ “ 3,cos

- (I
” ^) ;

but, by Cor. 6, Prob. 3, p. 35.

r3ir
cos. 34^ = —sin. 3A, cos. — 4^ = sin. A;

consequently,

sin. 34=3 sin. A — 4. sin.
3
A, when the radius = I,

= 3 sin. A —
4 . sin.3 A

when the radius = r.

By a similar method may the cos. (4 4) = cos. (3 A+ 4) or =
cos. (24 + 24), and the cos. (54) = cos. (4 4 + 4) or =
cos. (3 4 +24), &c. be deduced. But, the successive formation

of the cosines and sines of multiple arcs tnav, most easily, bs

effected after the following manner

:

By the form (d), page 32,

cos. (4 + B) + cos. (4 — B) = 2 cos. 4 . cos. B 4 >B,

or cos. (7? 4* 4)+ cos. (B— A) = 2 cos. B . cos. A B>4.

Let B = n4, then, by transposing

cos. (n + 1)4 = 2 . cos.n4.cos. 4 — cos. (m — 1) 4,

and hence from cos. (« — l)4, and cos. >iA, may be assigned

cos. (» + 1) 4 : for instance,

if n = 1, cos. (m — 1)4 = cos. 0=1:
.'. cos. 24 = 2 cos.* 4 — 1 (c").

If n = 2,

cos. 3 4=2. cos. 24 . cos. 4 — cos. 4=4. cos.’’ 4 — 3 cos. 4 (e
,H

).

If n = 3,

cos. 44=2 cos. 3 4 . cos. 4 — cos. 24
= 2 (4 cos.3 4 — S cos. 4) cos. A — (2 cos.* 4—1)
= 8 cos.

1 4 — 8 cos." 4 + 1 (c
iv

),

And, by a like process, if « = 4,

cos. 5 4 =
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16 cos.
6 4 — 16 cos. ' 4 + 2 cos. A — (4 cos.

3 A — 3 cos. A)

= lOcos.'’ 41 — 20 cos.
3
.4 + 5 cos. A (c

1

),

or, 2 cos. 54 = (2 cos. 4)'"’ — 5 (2 cos. 4)’ + cos. 4.

Similarly, if (n = 5),

cos. 64 = 32 cos.6 A — 40 cos.
4 4 + 10 cos.* 4

— (8 cos.
4 4 — 8 cos.* 4 +1)

= 32 cos.
6 4 — 48 cos.

4 4 + 18 cos.’ 4 — 1 . .

.

.(c
rl

),

6 .3
or, 2

.

cos. 64=2®. cos.
6 4 — 6 .

2

4
cos.

4 4 4—j- 2* cos.
4 4 — 2,

and the general form is

2 cos.»i4 = (2cos. 4)”*— wi(2cos. 4)m-3
m.(m— 3)

+ .(2 cos. 4)”

(c*)

m . (in— 4) (m— 5)

2 ! 3
' (2 cos. 4)™-6+ &c.

A

The formula for the sines of multiple arcs may be deduced

from those of the cosines, and, on the same principle as that which

lias been already used in deducing sin. 34. By substituting,

57T
for instance, in the form for cos. 5 A, — — 5 4 instead of 5 4,

we have

5 • cos
- (s

“ -*) »

but by Cor. 6. Prob. 3, cos.(t-^) = sin. 54,

cos. — 4^ = sin. 4

;

consequently, sin 54 = 16 sin.
5 4 — 20 sin.

3 4 + 5 sin. 4.

Or, the sines of multiple arcs may be successively deduced

as the cosines have been, on the same principle, and by like

formula:; thus, by the form («), p. 32.
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sin. (B 4- A) + sin. (B — A) = 2 sin. B.cos. A

Let B = nA, then, by transposing

sin. (« + 1) A = 2 sin. nA . cos. A — sin. (« — l) A,

hence, if « = 2, sin. 3 A = 2 . sin. 2 A . cos. A — sin. A,

(sin. 2 A = 2 sin. A . cos. A) = 4 sin. A . cos.
5 A— sin. A . . . .(s

H
)

= 3 sin. A — 4 sin.’ 4. (s
m

).

Similarly, if n = 3,

sin. 4A =2 cos. 4. (3 sin. A — 4 sin.
3

.4) — sin. 2 A,

= 6 sin. A . cos. A — 8 cos. A . sin.
3 A — 2 sin. A . cos. A

= (4 sin. A — 8 sin.
3 A) cos. A,

or, = (8 eos.
3 A — 4 cos. A) sin. A (s

,r
)>

J

Similarly, if ;« = 4, sin. 5 A = <

(4 sin. A — 8 sin.
3 A) 2 cos.

2 A — (3 sin. A — 4 sin.
3 A)

= 8 sin. A — 16 sin
3 A — 8 sin.

3

A + 16 sin.
s A — (3 sin. A —

4 sin.'
3
A)

= 5 sin. A — 20 sin.
3 A + lG sin.

5 A (s
r
),

or, 2 sin. 5 A =5.2 sin. A — 5 . (2 sin. Af + (2 sin. A)5
.

The general expression for sin. mA (m oild) is

sin. mA =

, w . (m
2— 1) : „ ,

m(m — ))(m
2 — 9) . s , „m . sin. A — sin. A + - sin. A — &c.° ° 2.3.4.

5

and (

m

even) is

, , f m .
(to" — 4) . ,

• sin. m A = cos. A 1 m . sin. A sm. A +
l 2.3

m . (wr — 4) (m4 — 16) .

2 . 3 . 4.

5

sin.* A - &c.j

The sine and cosine of the multiple arc (mA) have been

• For the general demonstration of these forms, see the Appendix.

G
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expressed in powers of the sine and cosine of the simple arc (>!):

but, if we express the cosine of the arc (A) by a particular

binomial, the cosines of the multiple arcs will, in that case admit

of an expression rather remarkable; or, in other words, they may

be said to possess a curious property : thus, let

2 . cos. A = x + -
;x

then, 2 cos. 9, A = 2 (2cos.
? A — 1) = 2 ^x + —

1 j

= x + — .

x

By the form of p. 47.

2 . cos. Sil = 4 cos. 2 A . cos. A — 2 cos. A

= (*+?) 0 + !)-0 +
-I)

— X
s + — •

x3

Generally, if 2 . cos. (n— 1) A = xn
~ 1 4

—

—j
,

and, 2 . cos. n A = i" + ,
then, since (p. 3$,)

X

cos. (» + l) A = 2 .cos. nA . cos. A — cos. (n — 1)A,

2 cos. (» + l)A = (x"+^) (x +
J) - (*»" +^)

— „M + I

x" +
1 '

Hence, if the form were true for two successive inferior numbers,

n — 1, and w, it would be true for n + 1 ;
but, it has been proved

to be true in those cases, when n— 1 =2, and «=S: consc-

* This mode of denoting the cosines of multiple arcs, which leads

to
i

several curious results, occurs first in De Moivre's Miscellanea

tica, pages 8 and 16..AnrUyti
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quently, it is true for n + 1 = 4, and so on successively for all

whole superior numbers.

91 -f- 1

The above expression holds good also for cos. A} when

n is an even number. For, since

„ A Cos. A + 1

cos. — = .

„ A A 1

4 . cos.* — = 2 . cos. j4+2=jt + 2+ -;
2 x

A
. , 1

.". 2 . cos. — = vi H —

.

2 Vx

Now,

n + 1 . n A n — 1

cos. A — 2 . cos. - A X cos. cos. A ;

n 2 2 2’
2 . cos.

n + 1

A=(x* + j)(\/x + 1
^)-(x* +i)

»+l
|

= *
8 + —

;

therefore, as before, if tiic expression be true for cos. ———- A,
2

it is (since it certainly is so for cos. - A, n being an even

number) true, for cos. . A. But, (1. 5,) it is, when «= 2,

A 3
true for cos. — ; therefore, it is true for cos. ; therefore for

2 2

5A
cos. , and, by virtue of these successive inferences, generally

2

true.

The above mode of expressing the cosines of multiple arcs

is useful on several occasions : for instance, iu finding the sum

of a scries, such as
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cos. A + cos. 2 A + cos. 3 A + 8ic. + cos. nA,

for, retaining the former notation, the sum is equal the sum of

the two following series,

1

o- (x + ** + x
3 + kc. + x

n
),

2

and - (- 4—j + — + &c. + —} ;

2 \x x x x*S

1 /’x"
+l

---

-

l(~r -+ ^r,)
'*

i/(/-i)(/ +, + i)\ i ]
** a' 2

(.

~ 2\ x" (.r — 1 ) / 2

|
_ 1

£

Now,

X v',+ "7j)

= n/(
V — cos.

2 /
-

1
-V

n A \
2

\A r
o /

n A
o

A *
sin. O

1

«A
Sill.

: consequently the sum

sill. —
2

using

Digitized by Google



53

the above notation, directly investigate the sum of a series sucli

as

sin. A + sin. 2A + sin. 3 4 + &c.

except by introducing imaginary symbols.
r
I lie investigation,

however, is not difficult, and may conveniently be effected,

(although by something like an artifice of calculation) in the fol-

lowing manner

:

In the form (8) of p. S3, if we substitute, instead of B and A,

... A
,
3A 3 A

,
5A . . ...

successively the arcs — and — ,
— and , etc. there will

J
2 2 2 2

result

A 3A . . A
cos. cos. = 2 . sin. A . sm. ,

2 2 2

3 A 5 A . A
cos. cos. = 2 sm.24 . sm. — ,

2 2 2

5A 7 A . . .A
cos. cos. = 2 sm. S A . sm. —

,

° 2 22

&c. &c.

XT L ...
.' A 2« 4- l

Hence, by addition, cos. — — cos. A =
’ J 2 2

2 sin. ^ (sin. A + sin. 2 j1 + sin. 3A + &c. +• sin. nA)\

consequently, sin. A + sin. 2 4 + sin. 34 + &c. =

4
2

4 2 n + 1 , n . n + 1

cos. — — cos. A sin'. - . 4 x sm. 4

. 4
2 sm. — sin. —

Q

By a similar artifice may the sum of the series

1 A 1 4 1 4
- tan. — tan. h - tan. h cc c.
2 2 4 4 8 8

be found.

For, if in the expression for tan. (4 + C) we make A — B,
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(an. 24

cot. 24

2 tan. A
1 - tan.

8 A ’

and, therefore (p. 10.)

1 — tan.
2 A 1 tan. A

2 tan. A
~

2 tan. A 2

— cot. A — - tan. A (which agrees with the 9th expression for
2 2

tan. A in the Table, p. 42.).

Hence, transposing, and substituting, instead of 24, A , suc-

A A A
cessively the arcs, A and — ,

— and — , &c. there results (by
2,2 4

continually dividing each successive formula by 2),

1 A . l A
- cot. cot. A — - tan. —

,

2 2 2 2
’

1 A i A l A
- cot. — cot. — = - tan. —
2 4 2 2 4 4

1 A 1 A 1 A
- cot. — cot. — — - tan. —
8 8 '4 4 8 8

&c.

Hence, by addition

1 A
J

1 A 1 4 1 4— cot.— — cot. A — - tan. — + - tau.—- + - tan. — + &c.
2n 2” 2 2 4 2 8 8

By a similar process,

co-sec. .4+ co-sec. 2 A +co-sec.

4

A +8tc. = cot. — — cot.
2’‘~‘ A.

See Cagnoli’s Trigonometry, second edit. p. 122.

We will now return to the expression 2 cos. nA = a"+~ , and

shew its use in demonstrating a property of curves given by
__

Waring, in his Proprieties Cunarum, p. 110. The property

is this

:

If in a circle ABCD, &c. the radius of which is 1, equal arcs
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the coefficient of the second term of the quadratic equation

2? — pZ + 1=0, of which the roots are, a, /3

;

then, PB = a + /3, or = a + - , since a/3 = 1,
a

PC = a' + /3
2
, or = a

5 +
a

PD = a3 + /S
3
, or = a3 +

a

&c. = &c. or = &c.

Now, PBm chord (tt — jlP) = 2sin. = 2 . cos.
V2 2 / 2

similarly, PC= chord(ir-ztC)= 2 sinY-—— = 2.cos.^,
V2 2 ' 2

Pi>= = 2 cos. ——

,

2 ’

PP = &c.

and it has been already proved, that if, (putting for A),
2

„ AB
,

i

2.COS.—

then 2 . cos. 2 ) . or 2 cos. — ** + A

;

2 . cos. 3
fAB\ AD -i.l
VfaV »

or 2 • cos - ~T = r + ?

»
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hence, PB being x -\— , or a H— , or, a -H (i,
x a

PC = a
s + (P,

PD = a3 + (i\

Sic. = &c.

Vieta, p. 295, Opera Mathematica, Leyden, 1646, expresses

the values of these chords, not by the sums of the powers of the

•oots, but by expressions equivalent to such sums : thus, he

puts for PB, 1 N, or N
;
(N)"

2
he represents by 1 Q, (N )' by 1 C,

N

f

by 1 QC, &c. then

1 q—

2

= pc } r jv
! — 2= pc

J C—’JN=PD f orin ]N i-3N=Pn
1 QQ — 4 Q+ 2 = PE £ modem notation,

J
N4— 4 N’+ 2= PE

1 QC-5C + 5N=PF) (N5~5N5+5tf=PF,
•&c. &c.

but, N' — 2, N 3 — 3N, Sic. express the sums, of the squares,

of the cubes, &c. of the roots of an equation x" — Nx + 1; for,

the formula for the sum of the mth
powers is

Nm—rnNm~ a+m .— .

rlZ±. N"- 6+&c.
2 2 3

Vieta, therefore, is not to be entirely excluded from the

honour due to the invention of the preceding theorem.

Vieta calculated by means of the chords of arcs; and, his

formula:, which we have just given, are, in fact, the same as the

expressions for cos. 2 A, cos. 3 A, Sic. given in pages 46 and 47.

Vieta also has, p, 297, given another form, exhibiting the

relations between the chords of AB, AC, AD, Sic. He puts

the chord of AB= 1 and the relation of the chord of AC to the

chord of AB, N, consequently, N = C-°K
| e=

chord AB

* See Simpson’s Essays, p. 106.
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AC - , AB AB
2 . sin. ... 2 sin. . cos.

2 sin. AB 2 2 AB
7 AB

~ ~ AB AB " 2 C°S '

~s~
2 . sin. sm. sin.

He then forms this Table

:

1 Q — 1 = chord AD ) f N* — 1 = chord A

D

I C— 2N ?= chord AE
1 QQ— 3 Q + 1 = chord AF

&c.

or in

y modern ^
nutation,

Now since the chord AD= 2 sin. 3 a,,d ^1C chord AE =

N s — 2N= chord AE
N i— 3N'+\= chord A

F

8tc.

AJi\
2

.
/A B\ . . „„ .

2 sin. 4 j , &c. and since 2 sin. —— is put = I, the

AB
preceding formula? become, if we put = A,

(2 cos. A)s —1=2 sin. 3 A,

(2 cos. A )
3 — 2x2. cos. A = 2 . sin. 4 A,

&c.

which are the same, in fact, as (s“) (s
,r

) given in page 49.

We may also employ the above mode of expressing the

cosines of multiple arcs, in deducing De Moivrc’s formula,

which is

AB .

* (cos. A + y/ — 1 .sin. A)m = cos. 7/i

A

+ y/ — 1 • sin. mA,
for since

cos. A = ^ (* + i)
, sin.

^ \/ (
~ ^ + 2 “?)

* Lagrange, p. 1 16 . Culcul des Functions, says, that this form is as

remarkable for its simplicity and elegance, as it is for its generality and

utility : and M. Laplace, in the Lc(ons des Ecolcs Normales, considers

the invention of this formula to be of equal importance with that of the

llinomial Theorem.

H
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— i

or 2 — 1 sin

and similarly, 2 V — l.sin. = im — —

;

hence, cos. A + >/ — 1 sin. j4 = j, cos. v/TT . sin. A = - ,

and, cos.mA+*J — 1 . sin.mvl = x’
n
,cos.wtvl— l/— lsin.mA =—

-

consequently,

(cos. A+*y —
1 . sin. jl)

m = cos. i»A+^/-l. sin. mA,

and (cos. A — — 1 . sin. yl)’" = cos. mA — — 1 . sin. mA.

If we expand these expressions, and then add them, vve shall

have

cos. mA —
_. *».(»»— 1) „ g . . c . m(m— l)(m— 2)(m — 3)

cos”! cos.
M-£Axsm.s^+— ——— x

2.3.4

cos.

If we subtract them

A X sin.' A — &c.

iA =

. . . m . {m — 1 )(m— 2) . . - . , .
m.cos. Mxstn.i4 cos. Mxsin.A +&c.

2.3

From the above mode of representing the cosines of multiple

arcs we may also deduce, and concisely, the formulae of Cotes,

page 113, &c.» Theor. Log. Prasf. in Harmonia Mensurarum,

and of De Moivre, Misc. Analyt. p. 16, &c. thus,

* The Theorem of Cotes was not announced to the public by its

Author, but by the Editor of bis Works, Dr. Robert Smith, who informs

us, page 113, Preface, that after various conjectures and trials, he ex-

tracted it and its meaning from the deceased Author’s loose papers " Rc-

vocavi tandem ab interitu Thcortma Pulchcrrimiim." M. Lagrange con-

jectures, and with probability, that Cotes arrived at his Theorem by the

.vay of Vieta’s Theorems. See page. 56.
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In the expression,

2 . cos. mA = xm + 4-. make mA = 0:
xm

then x” + m = 2 cos. 9, or, xim — 2 . cos. 9 . xn •+• 1 = 0,

l 9 9
and x + - = 2 . cos. —

,

or, x — 2 . cos. — x + 1 =0.
x m m

l 0 l

Now, from x H— = 2 . cos. — , x
m
H——= 2 cos. 9 was deduced;

x m x

therefore, if x were deduced from the first expression in terms

9
of cos. — ,

or, in other words, if a were the root of the equa-
m

9
tion, x* — 2 cos. — x + 1 =0, that same value of x, or root a,m

substituted in the second expression, x" -f = 2 cos. 9, would

make it a true equation, or a would be a root of the equation

x3m - 2 cos. 9. xm + 1. = 0.

Hence, by the doctrine of equations, x — a, is a divisor, both of

. 9
x — 2. cos. — x+ 1, and of x m— 2 cos. 0.x”*+ 1 ;

and, similarly,

1 0
since - is the other root of x

2 — 2 cos. — x+1, provided a be
a m

1 . 9
one root, x — - is a divisor both of x — 2 cos. —x + 1, and of

a in

x*
m— 2 cos. 9 . xm + 1 ;

and consequently, (x - a
) (*- ) , or,

x* — 2 . cos. — x -f- 1 is a divisor of
m

x'
m - 2 cos. 9 . xm + 1.

Now, by Table, p. lG, and by the preceding reasoning, it

appears that the arcs

Digitized by Google



60

2tt — 0, 4 7r — 0, 8tc. (2rt + U)w — 0,

2w + 0, 47r + 0, &c. <2nir-\-0,
*

have llic same cosine as the arc 0 has : but if, instead of the

equation

1 0
x d— = 2 cos. — ,

we assume
x m

x + - =2. cos.
X

(
27T—0\ /47T—y\ /I— ^or = 2.cos. ^ ^or = 2cos.^

the resulting expressions will be respectively

1 /27r+0\ _ /47t+0\ _ 2»i7r+0'v= o cm
^

j

or=2.cos. ^ —^or = 2cos.^ J

)
4ir—0\ X2n + 2)ir—0

i
m+—= 8. cos. (2 7r

+

6) or= 2 . cos. (4 7r+ 0) or = 2 cos. (2mtt+0)

;

or = 2 . cos. (2 tt — 6), or = 2 cos. (47r — 0), or

= 2 . cos. (2n + 2) 7r — 0,

which expressions, by what has just appeared, (see II. 1, 2, &c.)

arc all of equal value.

Hence, of the same expression

**" - 2 . cos. 0 . xm + 1,

„ 0 , 2tt+0
r — 2 cos. — x + I, * — 2 cos. x + \,

m m
27r — 0 „ 47t + 0

2 . cos. x + 1, x — 2 . cos. x + 1, &c.
m m

are divisors; in other words, x'
,H — 2 cos. 0 .x'

n + 1 may be re-

presented by a product, of which these latter quantities arc the

factors
;

accordingly.

— 2 cos. 0 . xm + 1 =

/ 2 0 \ 27T+0
,

\
( x — 2 . cos. - i + 1 ) x ( x — 2. cos.— v + 1 ) x
\ m / \ m s

2tt + 0

m

(x2 - 2 . cos.
2 7T — 0

,r + l) x &c.
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, n ,
. . 2tt + 0 <2n—6

Ifwc make 6 = 0, we have cos.6= 1 ,
and cos. = cos.—

—

m m
and x'

m - 2xm + 1, or (x* - 1)* =

(x* —2t+ l).fx*- 2cos.— x+ l) (** — 2. cos.— x+ A x
V m ' V my

&c.

and accordingly,

xm - 1 =

(x— 1) .
(x3— 2. cos.— x + 1^ . (x°— 2. cos.^-^ x+ 1 V&c.
V m y V my

which is the analytical expression of Cotes’s Theorem. See

Harmonia Mensurnrum, p. 1 14, 8tc. and De Moivre’s Miscellanea

A nalytica, p. 17, &c.

We will now proceed to investigate expressions for the powers

of the cosine and sine of an arc, in terms of the cosines and

sines of multiple arcs, which expressions are highly useful in

all Mathematical investigations connected with Physical Astro-

nomy.

Problem 7. It is required to express the powers of the

cosine and sine of an arc, in terms involving the cosines and

sines of the multiple arc.

2 . cos.

' t + nx

2" cos.

01— 1
'

(collecting into pairs the terms equidistant from each extremity

of the series)

* I'or the expansion of the Binomial, see Wood's Algebra, page 109,

first edition ;
or Vince's Fluxions, p. 45 ; or Woodhouse’s Principles of

Analytical Calculation
,
page 24, &c.
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(* + ?) +"0"'+^) + “V ("”“+7^) + «“•

by page 50, 2n ~ ' cos." 4

= cos. n A + n . cos. (»» — 2) A + » •
—-— cos. (n— 4) A + 8tc.

The number of terms is n + 1, therefore, if n be even, the

last term is

n . (n - 1) (n - 2) (« -
i
+ 0 |

1 .2.3 -
2

x -.cos. (n — n) A.
2

Now,

»».(«— 1) (»— 2) ...^h — - + 1^ 2n(2« — — - + 1^

» 2.4.6 n
1.2.3 -

2

2« . (2n — 2).&c. 1.3.5 (m — 1)= x =
2.4 1.3.5 ( n — 1)

ft. (ft— 1 )(m — 2). . (- + 1^
„ / n \ \2 /

2x2x2, 8cc. (to - terms ) x - —
V 2 J l . 2 . 3, &c («-!)«

x 1.3.5

(«- 1) = 2
s
x

1.3.5 (»— 1)

1.2.3 -
2

consequently, since cos. (« — n) A — 1, the last term =

l- 1 1.3.5 (ft— 1)
2 x .

n
1.2.3 -

2

Hence, as instances of the general form,

«= 2, 2 . cos.* A — cos. 2 A + 1 (
etI

)

« = 3, 2* . cos.
3 A = cos. 3 A + 3 . cos. A (e

m
)

tt = 4, 2*
. cos.

4 A — cos. 4 A + 4 . cos. 2.4+3 (e
,r

)

n = 5, 2*. cos.
4 A — cos. 5 .4 + 5 . cos. 3 4 + 10 cos. A (e )

n~ 6,

2

s
. cos.

6
.I = cos. 6 4+6 cos. 44 + 15 . cos. 2 A + 10 (e*

;
)

&c. &c.
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In order to obtain a general form for sin." A, in the expression

for cos.” A substitute instead of A, - — A, then

2" - ’
. cos." — A^

= cos. w - A^ + n .cos.(»— 2)^- — A^

+ 2Jiii2. e„, („-4)(-;-^) + &c.

Now, let n be even, and of the form 2s
™. p, p being an odd

number, or let n be, as it is called, pariter par;

then — = 2
, '"-l

p . it = p .<Zir, but 2im~*.p is a whole

number, and therefore cos. (2
m-!

/> . 2ir) is = 1.

.
Again, (» - 2)^ = (2

5w
p— 2)^ = (2

!m_,
p - Dtt,

but(2
s," - ‘p— l)isanodd number, and. -

. cos. (2
Im-1p— l)ir= — 1;

hence, sin cos. — A^ = sin. A, and cos. ~ «
A^

=

MIT
. , / . H7T \

cos. — cos. « A = cos. n A, I since sin.— = 0 ) , etc.
2 ’ V 2 /

2"~ 1

. sin." A =

cos. w A — m . cos. (m — 2) A d ——- . cos. (m — 4) A — &c.

If n be even, but of the form 2 p, or impariter par

wir ir . ,— = 2p - = p 7r and cos. pir = — I, and consequently,
2 2

since cos. (pir — n A) = cos. ptr . cos. m A = — cos.mA,

2" -1
. sin." A =— cos.mA + m.cos. (n— 2) A — &c.

and, in both these cases, the last term is, as before,

1.3.5 («- 1) . 2s

1 .2.3

- I,

, ,, nir /Mir \ Mir .

when n is odd, cos.—.
= 0. and cos. I n A 1 = sin.— sin.nA

2 V 2 / 2
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= + sin. nA, where the upper sign is to be taken, if « be

1, 5, 9, &c. Hence,

+ 2’’" 1
. sin." A .

—

sin. nA — n. sin. (« — 2) A + — sin. (n — 4) A — &c.

Hence, as instances of the general form,

n = 2, 2 . sin.
9 A — — cos.24 + 1 (f

11
)

« = 3,

2

C
. sin.

3A= — sin. 3A + 3 .sin. A (f
m

)

n = 4,

2

3
. sin.

4A = cos. 4A — 4 . cos. 2A 4- 3 (f
ly

)

ti = 5,

2

5
. sin.

5 A — sin. 5 A — 5 . sin. 3A + 10 sin. A (f
y
)

n = 6, 2
s

. sin.
6 4 = — cos. 6A+ 6 cos. 4 A — 15 cos. 2 A + 10 (f

ri
)

Problem 8. It is required to express the tangent of twice,

thrice, &c. an arc in terms of the tangent of the simple arc.

By Prob. 4, page 37,

tan. (A + B) =
tan. A + tan- I)

1 — tan. A . tan. Ji

'

consequently.

tan. (4 + A), or, tan. 24 = tan. A + tan. A
1 — tan. A . tan. A

2 tan. A

1 - tan.
4 A '

Again, tan. (2A + A) = tan. 2 4 + tan. 4
1 — tan. 24 . tan. A ’

and the numerator,

tan. 2 4 4- tan. 4 = 2 tan. 4 3 tan. 4 — tail.
3 4

i—r 4- tan. 4 = ,

1 — tan*. 4 1 — tan.’ 4 ’

the denominator, which is

1 — tan. A

.

tan. 24 = 2 . tan.' 4
1 — tan.

4 4
1 — 3 . tan." A

1 — tan.
4 4

Hence

tan. 3 4 {
= tan. (2 4 4- 4)} = 3 . tan. 4 — tan.

5 4
1 - 3 tan.

2 A
and.

by a similar method, since 4 4 = 344-^ an (l 54 = 44 -1-4,
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tan. 4 A —

tau. b A =

4 tan. A — 4 . tan.
1 A

1 — 6 . tan.
4 A + tan.

4 A ’

5 tan. A — 10. tan.
3 A + tan.

s A
i — 10 tail.

4 A + 5 tan.
4 A

These expressions for the tangents of multiple arcs may also

he derived from those given in p. 39. For instance, since A, B,

C, D are equal, t, t'
,

t", t"' are, and S4 (<) = 4 1

„ , ,/v
4x3x2,

,

54 <"> =rr

i

,8 = 6i
’

S4 (tfVY") = t\

consequently,

4< — 4t
5

tan. (A + A + A + A) = tan. 4A =
,

as before, in I. 1.

In like manner, we may deduce tan. 5 A from the expression

for tan. (i+B + C + D+E) (see p. 39.).

For,

Ss (t) = 5 1,

5x4x3
S5 («'<") = " V = 10<

s
5 1x2x3

•S5 (tf' t
IV

) = t
3

Ss (tt') =

Ss {tt’t"D =

tan. 5 A =

5x4, ,= 10/
1 x 2

5 X 4 x 3 x 2

1 X 2 X S X 4

5f - 10/* -f ?

1 - 10f5 + bt*

f
4 = bt

;

as before.

It is not, perhaps, necessary to multiply farther trigonometrical

formula?
;
such as are chiefly useful, and usually occur in invcs-

I
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tigatiou, have been given; and the Student, who thoroughly

apprehends the principle and inode of their deduction, will be

able, by his own dexterity, to deduce others.

A sufficient number of formula: having been given, it may
now be thought proper to proceed to their application

;
and, the

first object of their application seems naturally to be that for

which the science of Trigonometry was originally invented;

namely, the Solution of Rectilinear Triangles. Now, this solution

consists of two parts
;

first, it is necessary to express the relations

of the sides and angles of triangles by Trigonometrical symbols

;

and, secondly, to afford the means of arithmetically computing, in

specific instances, the values of such symbols. For instance, if *

two sides, a, b, and an angle A of a rectilinear triangle should

be given, the value of the angle B (see p. 28.) would be truly

expressed by

r. . . b
sin. B = sin. Ax-.

a

But this is an algebraical value; in order to obtain a practical

result, we must be able, when b and a are expounded by numbers,

and A by degrees, minutes, &c. to express B in degrees, minutes,

&c. we must, therefore, possess the means of assigning sin. A
from a given value of A, and also of assigning B from a re-

sulting value of sin. B. These means, in practice, are afforded

by Trigonometrical Tables, and their formation, or, what tech-

nically is called the construction of the Trigonometrical Canon,

is an easy consequence from the preceding results.

We will, in the next Chapter, proceed to the construction of

this Canon, which may be viewed either as a distinct application

of the preceding formula:, or as a preparatory step to their appli-

cation in the solution of rectilinear triangles.
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CIIAP. IV.

Oil the Construction of the Trigonometrical Canon.—Methods of

computing the sine of l
'.—The Sines and Cosines of successive

Axcs.—Formula of Verification, or Methods of examining the

Accuracy of Computed Tables.

Problem 9- It is required to find a numerical value of

the sine of 1 minute
;

the circle being divided into .360 x 60 or

21600 minutes, and its radius being 1.

By Proh. 5, cos. A — t/{^(l + cos. 2.4)} (a), and by

Cor. 2, Prob. 3, if 2

A

= 60°, cos. 2A = ~ = .5,

consequently, cos. 30* = + ^)} = .8660254;

substitute this value into the form (a), and we shall have cos. 15°

:

and, by a repetition of the operation, successively, the cosines

,
60° 60° 60* 60°

, i ii o , .

of —r, —r-, — —75-: so that, if c, c , c ,
etc. stand for the

successive cosines, the operation must be thus exhibited

:

cos. or, cos. 30°= y/ ^1 + =c1= .86G0254, &c.

60° / / \ x
cos.—

,
or, cos. 15°=V (1 +C 1

))
= c"= .9659258, &c.

cos.—
, or, cos. 7* 30'= V 0 + c

IT

)j
= c

111= .99

1

4449, &c.

cos. or, cos. 3° 45'-\f(^(l+c"7)) = c
lv= .9978589, &c.

&c. ike.
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6o°

2 1

’cos. —jj-, or, cos. 52’' 44'

99990996732 .

From this value of the cosine, the sine = .000255663462.

In order to fiud the sin. 1, we must compute on this prin-

ciple, namely, that the sines of very small arcs are to one another

as the arcs themselves t; and then, since the arcs 52”.44
,

".3/f
.45 ,

, , ,
60 60

and 1 are to another as —rr '• ~
,

1 2
U

60 x 60

60°
* The values of may be shortly obtained by the following

inode of decomposing numbers

:

60° Co. GO. 60 , , .• , . (64— 4) (64— 4) (64— 4)—
• = — (the units being seconds) = -

—

2“

(2‘— 2*/ (2
4— 1 )*

2u — 5»

but *26 + = 6*4". 45"'
t

3 . 2* + — = 12". 0 . S6,r
. 15 r

,1 06

6o°
subtracting, —jj- = 52". 44'". 3,r

. 45r.

t If from the two extremities of an arc there be drawn two lines

touching the arc and meeting each other, such lines will be equal. By
the principle assumed by Archimedes, the arc is < sum of tangents but >

chordjoining the two ends of the arc ; consequently i arc < tangent and >

— chord or > sine of \ arc : and therefore tan. — — sin.^-> ^
— sin. ~ :

hence, if, in the instance given in the text, we' find the difference be-

tween the tangent and sine of 1' ^computing tan. 1' from
C(|j ! j

1

^ >
it

will be found to be .0002.003882 16- .000290883204= .000000000012 :

consequently, the arc of T differs from its sine by a quantity less than

000000000012: so that, it is plain, the principle of very small arcs

varying as their sines, is very little remote from the truth ; or, rather,

if assumed will entail on the computation a very small numerical error.
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or, as 3600 : 4096,

40Q6
we have, sin. l'= .000255663462 x —— = .000290888204*.

jOUU

This method of computing the sine of l', although very operose,

is of no great difficulty, since it requires only the knowledge of the

simplest arithmetical operations. But, even if we avail ourselves

of the formulae and inventions of the Analytic art, the computa-

tion of sin. l' cannot, in any case, be very expeditiously effected;

more expeditiously, however, than by the preceding method.

If we employ the expression for sin. A which was given, in

* Since the sines of small arcs may be assumed, with very little error,

equal to the arcs themselves, we have, very nearly,

f= .000290888204,

the radius being 1 ;
let x be the number of minutes of an arc that is equal

to the radius, then

* X r, or x X .000290888205 = 1

'

and x= 3437'.75, nearly

= 206265" (= 57° 17' 45").

The arc, therefore, that is equal to the radius contains nearly

206265" (20626'4'.8),

consequently any one of these seconds, or any one part, whether it be an

inch, foot, or yard, subtends an angle of ]", when the radius is cither

206265 inches, or 206265 feet, or 206265 yards. A straight line of

one foot, therefore, placed perpendicularly to the line of sight, and at

the distance of 206265 feet, or of 39“““. 1151*, subtends, at the eye of
’

the observer, 1": and the same line of 1 foot subtends at the distance of

206265~
1)6 ’

that is, of 1 1 45rd*. 5, one minute : and (for it is easy by

the common Rule of Three, to multiply these inferences) one foot, at

the distance of 1 mile, subtends an angle equal to

20(i26‘5"

5280“
or 39".06, nearly.

and at the distance of 2 4 miles an angle neatly equal to 15".625.
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page 45, we may successively deduce the sines of 80“
,

13®,

7° So’, Sec. by operations analogous to those already given; thus,

since sin + (l+sin.2^)— f 4/(1 — sin. QA), and sin. 30" = §.

A= 30°

A=\5°
A=7° 30*

A =3° 45'

sin. 30° =4 =.5

sin. 15° = £t/(l+£)- * 4/0-i) =*' =-253819

sin. 7° 30'= |i/(l+4')-| 0 =*"=.1305262

sin. 3° 45' = 1 !/( 1
+s")- i i/( 1 - s")= *"'= .065403

1

... 30
and so we may compute on till vve obtain the sin. y .

Tlie preceding computation was made to begin front 4=30°,

because the sin. 30° is known ; but we might have begun from

any other arc, the sine of which is known : thus, if we take 2 A
= 18°, the sine of 18°= -j chord 36°, but the chord 36° = the

side of a regular decagon inscribed in a circle, = HZ) (the base of

the isosceles triangle described in the 10th Proposition 4th Book
l/5 — 1 V5 — 1

of Euclid,)* = : hence, sin. 18° =
, and sub-

2 4

sliluting this value for sin. 2 A in the above form, we have

sin. 9° =iv'(3+V''-’)—i 4/(5— )=* = .156434

sin. 4° 30'=1^(1+ *) -^(l-s) = *' = .0784591

sin. 2° I5' = iv/(14-*') - 1^/(1 - 4') =*"=.0392598

&c. = &c.

Having thus computed the sine of a small arc that is nearly

l', the method of determining the sin. l' is, in principle, pre-

cisely the same as in Prob. 9- There is, however, a third method,

considerably different in its principle, which finds the sine of l’

by the quinquesectiou and trisection of an arc. It may be thus

explained.

By the form (**), page 49,

sin. 5 A = 5 sin. A — 20 sin.
3 A + 16 sin.

5 A.

* BA£>+2,4flD=180°, but AIW=2BAD; .-. 5BAD= 180";

10 BAD=360" and BAD= 36°: again, by the Prop. AB . BC= AC*

= BDJ
,
consequently, if BD=x, AB= 1, I .(1 — ,t)=.r

:

,
and ,r=— -—* .
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Let 5 A = 30°, then sin. 5.4 =y and A =6°; let 2 sin. A = x,

then 1 = 5 1 — 5x3 + .r*.

by approximation, find the value of x

:

thus, suppose a to be

a near value, and a + v to be the true, then

1 = 5 (a + v) — 5 (a
3 + 3a\>) + a5 + 5a4

r,

neglecting the terms that involve v*, v3, &c. consequently,

_ 1 — 5a + 5a
3 — a5

V ~
5(1- 3 a

2 + a4
)

'

Now, since sin. 5A = - , assume, as a first approximate value
2

2 . . ...
of x, a = — = .2 : substitute in the expression for v this value,

and find the resulting value of v
;

it will appear to be = .009,

the corrected value of a then, or a-\-v, is .209; with this, find a

new value of v, and another corrected value of a, and repeat the

operation till x is found exact to a certain number of decimals,

seven for instance
;

in which case

x = .2090569, and consequently sin. A = .1045285.

Having thus obtained the sine of 6°, in the form (s") of page 49,

that is, in sin. 3 A = 3 sin. A — 4 sin.
3 A

,

put 3 A =6°, and

2 sin. A = x, then the equation becomes .2090569 =3.r—x3
. Find,

as before, by the method and formula of approximation, a value of

x, which, to seven places of figures, will be .0697989, conse-

quently x or 2 sin. 2° = .0697989, and sin. 2° = .0346993-

In order to find sin. 1°, take the form (p. 44,)

sin. 2

A

= 2 sin. A .cos. A,

then sin.* 2A = 4 . sin.
2 A — 4 . sin.

1 A : substitute for sin.* 2A,
or sin.* 2°, its value, and by the solution of a quadratic equation

find sin* A, and thence, sin. A, or sin. 1°, the value of which to

seven places of figures is .0174524. Repeat the operation, and

1
°

we have sin. — , or sin. 30' the value of which is .0087265.
2

By this method then we have descended from the sin. 30" to
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the sin. 1° and sin. ISO*; and, consequently, by like operations, we

can descend from sin. 30’ to sin. l' and sin. SO": and by this

method, which is however extremely operose, we are able to

find the sin. 1 without a proportion, and, accordingly, to avoid

the use of a principle, which some may think doubtful ;
which

principle is, that the sines of small arcs are to one another as the

arcs themselves.

The above method is, in fact, the same as that which is given,

with all its detail, at page 451, &c. in the sixth Volume of the

Scriptores Logarithmici, edited by Baron Maseres. It is plain,

however, that there is no necessity for beginning the computation

from an arc of SO0 ; we may make it begin from any arc, the sine

of which is known ; for instance, by the form, page 70,

sin. 9° = i V^(3 + y/$) - \ V'(5 - %/5)=. 156434;

since, therefore, sin. 9° — sin. (3 . 3°) = 3 sin. 3° — 4 sin.
1
3°,

solve, as before, by approximation, the equation

.156434 = Sx — 4x3
,

and the result gives x the sin. 3°. Again, solve a similar equation

by the same inode and formula, and the result gives sin. 1°. And
many like methods will suggest themselves to the mind of the

intelligent Student.

We shall now proceed to the second part of the construction

of Trigonometrical Tables, the object of which will be under-

stood from the succeeding Problem.

Problem 10. It is required from the sin. SO** and sin. l', to

compute the sines of 2, 3, 4, &c. minutes, and also the sines of

1, 2, 3, &c. degrees.

By the form (a), page 32,

sin. (A + B) = 2 sin. A .cos. B — sin. (A — B)

= 2 sin. A
^
1—2 sin.* — ^

—
- sin. (A — B)

= sin. A -f- {sin. A — sin. (A — B)} — 4 sin. A sin.* — .
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If B = l
u
,
then

sin. (A + l°) = sin. A -{-sin. A — sin. (A — 1°) — 4 sin. A sin.’ Sf/

which is Delambre’s formula.

Let B=\' and let A successively equal l', 2
r

, 3', Sec.

sin. 2' = sin. 1' + (sin. l' — sin. 0 )
— 4 sin. 1'

.
(sin. 30")*

sin. 3' = sin. 2' — (sin. 2' — sin. X') — 4 sin. 2'
.
(sin. 30")’

sin. 4' = sin. 3'
-f- (sin. 3' — sin. 2') — 4 sin. 3'

.
(sin. 30")*

sin. 5' = sin. 4'
-f- (sin. 4' — sin. 3') — 4 sin. 4'

.
(sin. 30")’

&c. = &c.

and thus may the sines of all succeeding arcs be computed, by

a process not very tedious, since the only part of it at all long is

the multiplication of sin. $!

,

sin. 3', &c. by the constant factor

(2 sin. 30'')a
, which is the square of the chord of l'.

In the above form substitute, instead of B, 1°, and, instead of

A, successively 1, 2, 3, &c. degrees; then

sin. 2° = sin. 1° + (sin. 1° — sin. 0) — 4 sin. 1° (sin. 30")*

sin. 3° = sin. 2°
-f- (sin. 2° — sin. 1°) — 4 sin. 2° (sin. 30"),

&c.

and so on for the sines of all succeeding arcs.

In order to compute the sines of arcs composed of degrees

and minutes; arcs, for instance, such as 3° l'
,

3° 3', substitute

for B, l', and for A successively 3° l', 3° 2’, 3° 3*, Sec. then

sin. 3° 2' = sin. 3° 1'
-f (sin. 3° 1'— sin. 3°) — 4 sin. 3° l' (sin. 30")*

sin. 3° 3' = sin. 3° 2' + (sin. 3° 2'— sin. 3° X') — 4 sin. 3° 2' (sin. 30")*

&c.

or, if we wish to compute for every ten minutes, put B = 10',

and for A write successively A + 10', A + 20', A + 30', &c.

thus, if A = 7°,

sin. 7° 20'= sin. 7° I0'+(sin. 7° 10'— sin. 7°)— 4 sin. 7° 10'. (sin. 5”)*

sin. 7“ 30'= sin. 7° 20'+(sin. 7“20'-sin. 7»10')— 4sin. 7° 20'. (sin. 57*,

fiC.

By the preceding methods we are enabled regularly to com-

pute the sines of all arcs from l' or l' up to 90°; but, when the

K
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arcs exceed 60°, the application of the Trigonometrical formula,

page 32, renders the arithmetical computation more simple and

concise; thus, since

sia (B + A) = sin. (J8 — A) + 2 . cos. B . sin. A.

Let B — 60°, then cos. B = cos. 60° = £, consequently,

sin. (60° + A) = sin. A + sin. (60° — A).

(see form 15 of Table, p. 39.)

Hence, instead of the preceding, we may use this latter

method, and compute the sines of all arcs exceeding 60°, by the

simple addition of the sines of arcs previously computed ; for

instance,

sin. 63° 5' = sin. 3° 5'+ 56° 55'

and, since sin. 3° 5' = .0537883, and sin. 56° 55' = .8378775

the sin. 63° 5' = .891665.

The sine of all arcs from 0 to 90° being computed, the

cosines of all the arcs of the quadrant are known from the equation

cos. A = sin. (90° — A); for instance,

cos. 63° 15' 7"= sin. 26° 44' 53", cos. 13° 47' = sin. 76° 13', &c.

The sines and cosines being computed, the tangents tnay be

computed from this expression, tan. A = and the co-
cos. A

, , cos. A
tangents from co-tan. A — — .

sm. A

When the tangents of arcs up to 45° have been computed, the

Trigonometrical formula;, previously given, may be conveniently

used in computing the tangents of arcs that lie between 45° and
90°: thus, by Prob. 4, page 37,

tan. (

A

+ B)
tan. A + lan. B

1 — tan. A . tan. B
(if B= 45°)

1 +tan. A
1 — tan. A *

hence, as instances, putting A = 1 °, 2
n

,
3°, &c.
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Ian. (46° + 1°), or, Ian. 46" = 5

1 — lan. 1

tan. (45® -f- 2°), or, tan. 47° = 1 + tan ' a

1 — tan. 2*

&c. &c.

or, we may thus avoid the fractional form,

> . .A * , .
t 4* tan. A n .. 1 " tan. A

tan. (45° -|- A) = -———7 and tan. (45°— A) =•
1 —tan. A

.-. tan. (45° + A)— tan. (45° - A) =

1 + tan. A ’

( 1 + tan. A? — ( I - tan. A)%

1 — tan.
4 A

4 . tan. A
1 — tan.

2 A
’

2 t<l!l A.
but, by the form of page 37, tan. 2 A = ;— .

1 — tan. A

Hence, tan. (45° + A) — 2 tan. 2A + tan. (43° — A), con-

sequently,

tan. (45°
-f- 1°), or, tan. 46° = 2 tan. 2® tan. 44°,

tan. (45°+ 2°), or, tan. 47° = 2 tan. 4°
-f- tan. 43°,

&c.

By these formulae and methods may the sines, tangents, &c.

of arcs be computed. If we attend, however, to the history of

the construction of Trigonometrical Tables, we shall find that all

Tables have not been computed exactly by the same formula?

and methods: modem Tables, from the improved state of analytic

science, having been computed by the most certain and expeditious

methods. In the immense Tables du Cadastre, formed at the

expense of the French Government, the sines of arcs are com-

puted regularly by successive addition, according to the formula?

given in page 73; but, in such a construction, an error committed

in the sine of an inferior arc would, it is plain, entail errors on

the sines of all succeeding arcs. Hence is created the necessity

of some check on the computist, and of some independent mode
of examining the accuracy of the computation. For this purpose,

formula:, such as those given in pages 45, 69, derived immediately
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from established properties, are employed; if the numerical results

from these formulae agree with the results obtained by tire regular

process of computation, then, it is almost a certain conclusion

that the latter process has been rightly conducted.

As there is, in these formula;, called Formula of Verification,

besides their practical utility, something curious, several are

subjoined and proved.

[1] sin. 30° = sin. 45° = ;
sin. 60° = .

[2] sin. 18° = —-, by the Note to p. 70, or, it may be

independently proved thus

:

sin. 36°= cos. 54°. or, sin. (2.18°)= cos. (3 . 18°). Let x= cos. 18°
;

then by form [r'"], page 47, cos. (3 . 18°)=4i5— 3.r, and by form, p. 44,

sin. (2. 18°) = 2ary''(l —

x

l
) = .-. 4-r

5— 3x, or, 2 ^/(l — xI
)= 4.ra— 3.

This equation, cleared of radicals and reduced, is

\6x' - 20^+5 = 0 ;

.whence ,r® = and .•. 1 — x1 = -— and V 1 — x*, or,
O O

sin. 1 8° s —- which is also cos. 72°.
4

[3] sin. 9°, or, cos. 81°= $i/(5+3) — i v/(5— l/S), by the form,

of p. 45, on substituting for sin. 18° its value,

cos. 9°, or, sin. 81°= | ^(3+ ^/5)+^ y/(5 — y/5), by the same form.

[4] sin. 27°, or, cos. 63° = £ V,
(5+V/

’

5
)
— t/5)

cos. 27°, or, sin. 63° = — \/5)

for, in the preceding proof of the arithmetical value of sin. 18°,

(cos. 18°)* = J
and (sin. 18°)a = -— ; v. cos. 2. 18°, or,

o o

cos. 36° = (cos. 18°)’ — (sin. 180)
1 — 1 = sin. 54°,

o 4*

since cos. 36° = sin. 54°,

substitute this value of the sin. 54° in the forms of page 45, for sin. 2 A,
and there will result the above values for the sine, and cosine of 27°.

- 1/-5+J t/(lO-2t/S)
Since, ros. 36° =. ——p— , sin. 36° = v ‘ —-—- .
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The subjoined Table contains the sines of arcs from 0° to 90®

that differ by 9°, or in the French division of the circle, that

differ by 10 degrees.

French Scale. English Scale.

sin. 1(>>, or, cos. 90° sin. 9°, or, cos. 81*=$4/(34- 4/5)— $4/(5.- 4/5)
sin. 20, or, cos. 80 sin. 18, or, cos. 72 =$(4/5— 1)

sin. 30, or, cos. 70 sin. 27, or, cos. 63 =$4/(5+4/5)— $4/(3— 4/0)
sin. 40, or, cos. 60 sin. 36, or, cos. 54 =$4/(10— 2 4/5)

sin. 50,

sin. 6o,

sin. 70,

sin. 80,

•sin. 90,

or, cos. 50 sin. 54, or, cos. 45 = —

—

4/2
or, cos. 40 sin. 54, or, cos. 36 =$ (4/5 + *

)

or, cos. 30 sin. 63, or, cos. 27 =$\/(5+4/5)+$ t/(3 — 4/5)

or, cos. 20 sin. 72, or, cos. 18 =$4/(10+24/5)
or, cos. 10 sin. 81, or, cos. 9 =$4/(3+4/5)+$4/(5— 4/5).

But the most general formula of verification is this, which is

to be found in Euler’s Analysis lnjinitorum
,

page 201, vol. I.

(Lausanne, 1748).

[5] sin. A + sin. (36° — /) + sin. (72° + /) =
sin. (36° + /) + sin. (72° - A).

In order to prove this formula, we will use the numerical

values of the cosines of 36° and 72°.

sin. (36°+ A) — sin. (36°— A) =2. cos. 36°. sin. A =—5 +
- .sin. A

Q

* There is a large Table of this kind in Cagnoli’s Trigonometry,

p. 58, &c. edit. 2. And, it is easy to see how additional formulas may
be obtained : for instance,

sin. 15°=sin. (45 — 30”) = sin. 45° (cos. 30°— sin. 30°)

Similarly, sin. 75° = •

And these and like expressions, besides that utility which is pointed out

in the text, may have a farther one, in the theory of Polygonals.

Digitized by Google



78

and siii. (72°+A)— sin. (72°— j4)= 2 . cos.72°. sin. A — —-• sin. A;

subtract the latter equation from the former, and

then we have, sin. (36^ -j-jl) + sin. (72°— A)— sin. (72°+j4)

—

sin. (36°— -z/) = sin. A, which transposed is the equation (5).

If in the above equation, we substitute 90°— .d. instead of A,

there will result

sin. (90°—A) -f- sin. {A— 54”) 4- sin. (18°+ A) =
sin. (54°+A) — sin. (18*— A), or

sin. (90°— A) =
sin. (54° 4" -d) + sin. (54°— A) — sin. (18°+A) — sin. (18°— A),

which is Legendre’s mode of expressing the equation. But, it is

plain from the mode by which the latter has been deduced, there

is no real difference between the two formula;, and, with regard

to their application, it is quite indifferent, whether we adopt

Euler’s or Legendre’s.

In using these formuls, different values must be substituted

for A, thus : in Euler’s,

if A =9°, then, sin. 9" + sin. 27“ + sin. 81” = sin. 45° 63°;

or, sin. 9“ + sin. (3 . 9“) + sin. (9 . 9°) = sin, (5 . 9°) + sin. (7. 9°).

If in Legendre’s formula we make A = 81°; then

sin. 9°= sin. 45" — sin. 27“ — sin. Sl° + sin. 6'3°;

or sin. 9° + sin. 27“ + sin. 81° — sin. 45° + sin. 6'3°,

tlie same as before; which proves what we have just asserted,

(I. 11, &c.)

Again, if A = 1 8°, then, by the formula [5]

sin. 18°4-sin. (36°- 18°) -f sin. 90°=sin. (36°+ 18®) + sin. (72°- 18°);

or, 2 sin. 18° + 1 = 2 sin. 54n.

If A = 10°, then sin. 10°
-f- sin. 26° + sin. 82° = sin. 46° -f sin. (>2°.
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Examples.

Take Sbcrwin’s Tables, in which the natural sines of arcs arc inserted

:

from these it appears, that

sin. 9°= 1561345

sin. 27 = 4539905 sin. 45° = 70? 1068

siu. 81 = 9876883 sin. 63 = 8910065

15981133

sin. 10°= 1736482

sin. 26 =4383711
sin. 82 = 9902681

16022874

15981133

sin. 46° = 7193398

sin. 62 = 8829476

16022874

Here the numerical results of the two sums exactly agreeing, as they

ought to do according to the formula, we may conclude, almost with

certainty, thatin Sherwin’s Tables the sines of 9, 27, 81, 45, 63, 10, 26,

46, 62 degrees are rightly computed.

These formulae are most convenient for practice
; but if, from

the solution of an equation of three dimensions, as (s
111

) p. 49, or,

from that of an equation of five dimensions, as (s
r
)> the value of

A A
sin. —

, or of sin. — be computed, such value would become a
3 5

means of ascertaining the accuracy of Trigonometrical Tables.

In 1610, Pitiscus published great Trigonometrical Tables,

inserted in his Mathematicus Thesaurus, and, from the account of

this Work, given in the Berlin Memoirs of 1786, page 24, it

appears, that formula:, which, in fact, are formula: of verification,

were employed by that mathematician : thus, in order to ascertain

whether the chord of 30° had been rightly computed, he sub-

stitutes in the equation,

‘ 4 r
i — x

1 = c" (x = chord of 30°, c = chord 60°)

* Pitiscus’s notation is like Vieta's, given in page 54 ; the form of his

equation
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instead of a the computed value, and lie finds the resulting value

of c to be 1000; as it ought to be, since the chord 00° = radius:

and accordingly he concludes x to have been rightly computed.

Again, in order to ascertain whether the chord of 10° be rightly

computed, he substitutes its computed value in an equation, such

as chord 30°= 3 chord 10° — (chord 10)
3
[see form {s") page 49]

and the chord 30° thence computed ought to agree with its value

(x) previously ascertained to be right
;
and he pursues a similar

course, in order to verify the computation of the chord of the

fifth part of an arc.

Previously to quitting this part of our subject, we wish to

employ the arithmetical values of the sines of 18° and of 36°,

w'hich have been just deduced, in proving that which may be

announced as a geometrical property.

By the form p. 77, cos. 36°=——^—, and .'. sin.
3 36°=

;

4 8

3 — 1/h
consequently, 4 sin.® 36°— 1 = — = 4 sin.

3
1 8°, see page 76,

or (chord 72°)® — 1 = (chord 36°)®, but the chords of 72° and

36° arc respectively the sides of an equilateral pentagon and

decagon, inscribed in a circle. Hence, the square of the side

of an equilateral pentagon inscribed in a circle, is equal to the

square of the radius plus the square of the side of an equilateral

decagon inscribed in the same circle.

Having now obtained methods of arithmetically computing the

sines, cosines, 8ic. of angles, when the auglcs are expounded by

a specific number of degrees, minutes, &c., we may proceed to

apply our formula; to express the various relations that subsist

between the sides and angles of rectilinear triangles.

equation is \q— 1 b r/=s(|uare of chord of twice the arc. Another account

of this Work of Pitiscus, and of similar Works, published about the

same time, and now very rare, is given in the 5th Volume of the

Memoir* of the Institute.
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CHAP V.

On the Resolution of the Cases of Rectilinear Triangles— 1st,

When the Triangles are Right-angled.—Id, When Oblique .

—

Reasonsfor introducing different Solutions of the same Case.

Examples, Sfc.

In a triangle there arc 3 sides and 3 angles: any three of

these being given, the remaining may be obtained. There is one ex-

ception to this, which takes place when the three quantities given

are the 3 angles. The reason of the exception is this: take any tri-

angle, then, externally or internally, oilier triangles may be formed

with sides parallel to the sides of the proposed triangle, which

triangles shall have the same angles, but greater sides or less

sides: the magnitudes of the sides therefore are independent of the

angles, and consequently cannot be determined from them.

We will begin with the solutions of the cases of right-angled

triangles.

1st Case of right-angled triangles, in which two sides are given.

Here, besides the right angle C, a, h, are given, and c, A, B are

required.

Solution,

c determined.

1st. c=y/(al-}-6
1
)
Euclid 47. Book 1.

A and B determined.

2d.
S ‘n

'

'f: = ^ by Cor. 1 . to Prob. 2.
sin. B b J

but A-\-B = ^
or 90° sin. B=cos. A

...
sin-jl

or A (rad.= 1), or
cos. A h ' "

tan. A=r .2 and expressed in log™.

log. tan. A = log. r -f log. a— log. b

B = 90° - A
A being determined, c may : for

_ b . sec. A _ br

r
~

cos. A
log. c=Iog. r-j-log. b— log. cos. A.

Example.

a= 43; .-. a*= 1849
b = 55 ;

.-. 6*= 3025
.-. c’ = 4874

and r = 69,81, &c.

Computation.

r the tabular radius= 1010

log. r = .... 10

log. 43 = .... 1 .6334685

11.0334085

log. 55= 1.7403627

log. tan. -4 = 9-8931058
.-.A = 38° 1' 8"

and B = 51 .58 52
Again, log. r= 10

log. 55 = 1.7403627

11.740362

7

log. cos. 38° 1' 8"= 9.8964202

log. c= 1.8439425
c= 69, 81, &c. as before.

L
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?d Caw, in which tht hypothenuse and one of the acute angle* are

given.

Here c, B, and C = 90®, are given,

and a, b, A required.

Solution,

b determined.

sin. B b sin. B b= - or = -
csin. C c

°r

„ sin. B .

o= c .sm. B = c — (rad.=r)

In logarithms,

log. A= log. c+log. sin. B— log. r.

A = 90* — B = 48° 48'

sin. 48° 48'

Example.

r= 36l . 4, B =41° 12'

Computation,

log. 361.4= 2.5579881

log. sin. 41° 12'= 9-8186807

log. 5= 2.3766688

... 6= 238 . 05

sin. 48“ 48'

sin. 90“ c
’

or a = c . and, consequently, a may be deter-

r

mined exactly as 6 has been; or thus, from 5,

o= v/(c
1-51

) = \/{{c+b) (c-&)}-

In Log™, log. a = I {log. (c+5) +h>g. (c— 6)}-

3d Case, in which a side and the acute angle (which is not opposite to it)

are given.

Here, 6, A and C=90“are given,

and a, c, B, are required.

Solution.

B determined.

B = 90°- A
a determined.

Sln‘4 = t [Cor. 1. Prob. 2.]
sm. B 6

,
sin. A ,

sin. A
• a = 6 —= = 0 . v

sin. B cos. A
b tan. A—-
—————

,

r

.-. in logarithms,

log. a = log. 5-f-log. tan. A— 10

c determined.

c

riiTS*" 6
: —

"'sin. B
since C=90° and sin. B =cos. ^

6 r6 . , .

c sa t = (rad. = r)
cos. A cos. A

In' logarithms,

log. r= 104- log. 6- log. cos. A.

c= b.
sin. C

Example.

6= 31 .76^ = 17° 12' 51"

... B = 72° 47' 9"-

Computation for a.

log. 6 or log. 31.76= 1.5018805

log. tan. 17° 12' 51"= 9-491H32

log. a 4- 10=10.9929937

... a= 9.8399

Computation for c.

log. 10“ = 10

log. 31.76 = 1.5018805

~104-log. 6. = 11.5018805

log. cos. 17* 12’ 51"= 9-9800967

log, C = 1.5217838

... c = 33.249.
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We now proceed to the Casti of Oblique-angled Trianglet.

First Case, in which two angles and a side opposite to one of the angles

are given.

Here, A, B, a, are given, and 6, c, C, are required.

Example.

A =
41° 13" 22", B = 71* ID

1

5", a= 55

Solution.

C determined.

A+B+Cs: 1 800.-.C= ISO*- (A+B)

b determined,

by Cor. 1, Prob. 2.

sin. B b . sin. B
sin. A a sin. A
In logarithms,

log. b= log. a + log. sin. B— log. sin. A
The side c is similarly determined.

C=
180*- (112° 32* 27') =67° 27' 33"

log. a or log. 55= 1-7403627

log. sin. B
or log. sin. 71° 5"= 9-9764927

log. a -f-
log. sin. B= 11.7 168554

log. sin. A = 9-8188779

•'.log. 6= 1.8979775

I 6=79-063.

Second Case of oblique-angled triangles, in which, two sides and an

angle opposite to one of the sides are given.

Here, a, 6, B are given, and A, C, c are required.

Solution.

A determined.

, A _ a

6
. sin. ,4= sin. B - .

0sin. B
In logarithms,

log. sin. A= log. sin. B-j-log. a— log. 6

This case may be ambiguous, or

will admit of two solutions, when

a > b, and B is acute : for, let MN
= a, IMP= 6, t MNP=B, take Mn
= MN, then MP( <Mn) falls between

iV. *,

Example 1. (ambiguous).

a= 178.S, 6= 145, B= 41* 10'

Computation for A.

log. sin. B
or log. sin. 41° 10'=9.8183919

log. a or log. 178 .3= 2.2511513

12.0695432

log. 6 or log. 145 = 2.1613680

logTsin. /f= 9.908 1752
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N, n, and another line MQ., also between

N, n, can be taken equal to it; .•• the

triangle may be MNP, or MNQ, and

the angle A may be either MPQ or

its supplement MQN; but, if b or

MP be > a or AIN, MP would fall

beyond N and n, as MP' does, and no

other line equal to it can be drawn

between P and N : in this case, A has

one value only. If B be obtuse, A
cannot ;

therefore here also the case is

not ambiguous.

A and B being known, C = 180°

— (A + B) is known.

.-. A = 54° 2' 22"

and C = 84 47 38

or A = 125 57 38

and C = 12 52 22

Example 2. (not ambiguous).

a= 145, 6= 178.3, 71=41° 10'

log. sin. 41° 10'= 9.8183919

log. 145=2.1613680~
1 1.9797599

log. 178.3= 2.2511513

log. sin. A= 9-7286086

... A= 32° 21' 54".

In this instance the supplement

of A cannot belong to the case

proposed.

c determined.

sin. C c . sin. C
• •— • - •

sin. B b sin. B ’

or c may directly, that is without the

intervention of the process for finding

A, be determined from this expres-

sion.

cos. B = , whence,
2ac

c = a cos. B + v^(6
1 -o* sin.

1 B).

Computation of c in 1st Example.

log. 145 = 2 1613680

log. sin. 84° 47' 38" 9-9982047

12.1595727

log. sin. 41° 10'= 9.8183919

log. c|= 2.3411808

c = 219.37

Third Case, in which two sides and the included angle are given,

Here, a, b, C are given, and A, B, c are required.

Example.

a— 562, 6 = 320, C=128° 4',

Computation.

_ „ „ , a sin. A
By Cor. 1, Prob. 2. — j = =

6

a _ sin. A
b ~ sin, B

a—b sin. A— sin. B

sin. B

— 1

sin. B

similarly
a-pb sin. A -{-sin. B

sin. B

o~6 = 242

o+6 = 882

A pB=\ 80°— (128° 4')= 51° 56'

,
A+B = 25” 58'.

log.
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a— b sin. A— sin. B
tun.

A—B

tan.
A+Ba+6 sin. A-\- sin. B

by [/], page 34.,

compute .*. tan. from this ex-

, 4-B . ,pression, and —-— is known from

the Trigonometrical Tables, and

since

A+B = 1800— C we shall have A
and B, for if

A+B jA-B
,—2

='. and — = d

then, A—s-j-d, and B=s— d,

c determined.

sin. C c sin. C
sin. A a ‘sin. A‘

In logarithms, log. c =
log. a 4- log. sin. C — log. sin. A,

or c may directly be found, thus

:

cos. C = „*+6*_c*

2 ab

.•. 2ab cos. C)

log. tan. 25o 58' = 9-6875402

log. 242 = 2.3838154

12.0713556

log. 882 = 2.9454686

log. tan.— = 9-1258870

A-B
= 7° 36' 40"

— OK= 25° 58'

-. A = 33° 34' 40"

B= 18’ 21' 20''

Computation of c.

log. 562 = 2.7497363

Ic’g.'i". 128°
l'|= 9.896 ,369

|or log, sm. 5 1 56 J

12.6458732

log. sin. 33° 34' 4tf'= 9-7427789

log. c = 2.9030943

.-. c = 800.01

which form however is not suited to

logarithmic computation.

The above is a complete solution of the case, in which
two sides and the included angle are the quantities given.

But, the analytic art is required to furnish, besides merely ade-

quate solutions, commodious and concise ones. And, of this latter

character are the solutions which have been given of the third

case by Dr. Maskelyne, in the Jntroduction to Taylor’s Lo-
garithms, and by Legendre, in his Trigonometry, p. 369, 4th edit.

These solutions wc now proceed to explain.
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a
Let a>b: find in the Tables an angle 9, such that tan. 9 = r~

and from this logarithmic expression

:

log. tan. 9 — 10 + log. a — log. b (a)

in this case, since a>b, 9 is >45^, for when 9= 45°, tan. 9— r.

a . _ /a _ \ a + b
Now, since tan. 9= r

.

-, tan. 0 + r =r^-+
\ J
— r—-—

;

<A-B'
tan. 9— r a — b

/A-B\
ta“' V 2 s

tan. 9+ r a + b
ff tan.(^)

/tan. 9 - rx
but by Prob. 4, pp. 35, 36, &c. tan. (0—45 ) =r

(. tan 9+ r)

hence, r tan. ^—-—)— tan.
^

' tan.(® — 45°). . . ,(/3)

consequently, since 9 is known from the expression (a),

talK may be computed
;
and thence, by means of the

2

A B
Trigonometrical Tables, —-— is known, and A and B may be

determined as in the former case.

Solution of the preceding Example by this method.

Computation of 6 by the formula [a].

10 + log. 562 = 12.7497363

log. 320= 2.5051500

.-. log. tan. 6 = 10.2445863 fl= 60» 20' 35'

0 - 45° = 15° 20' 35"

A — B
Computation of—-— by the formula [/3]

log. tan. 15° 20* 35" = 9-4383476

log. tan. ^
,
or log. tan. 25° 58' = 9.6875402

10 + log. tan. ^-5 = 19-1258878
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= 7° 36' 40"

and since — 25° 58'
2

A = 33° 34' 40" and B = 18° 21' 20"

the same result as was obtained by the preceding method, and

obtained in practice, almost with equal facility, even when it

is necessary to take from the Tables the logarithms of a and b.

The demonstration of this method is not more concise than

that of the preceding
;

but, the rule and the connected com-
putation are, and, especially, in those cases in which the loga-

rithms of a and b should happen to be given
;

for then 6 would

A — B
immediately be determined from the form (a), and — from

2

the form (/3), so that the whole of the rule would be expressed by

the two forms (a), (/3).

The above method of determining the angles A, B, is the

same as that which is contained in the fourth Proposition of

Robert Simpson's Trigonometry

,

p. 486, of his Elements of

Euclid, 6th edition : and, in substance, is the same as the method

given by Dr. Maskelyne, p. 36. Introduction to Taylor’s Loga-

rithms: the sole difference of the two methods is in the ex-

pression : instead of the formula,

r.tan. I —-—j
— tan. (—-—

)

tan. (0— 45°)

Dr. Maskelyne directs us to employ

/A — B\ C .

r.tan. ^———

j

= co-tan. — . tan. (0 — 45 )

but, since A + B + C = 180, — ( 90° — ——

}

2 V 2 /

C /A + J5\
consequently, co-tan. — = tan. ^— J

.

Two methods of computing the side c, have been already

given, one, from A and B previously determined; the other,

independent of such determination : the latter method, however.
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is not adapted to logarithmic computation; but, it may be by the

introduction of an angle, called a subsidiary angle, such as 9 is

in the preceding demonstration, thus : from page 85,

c = V'(d
2 4- — Soft. cos. C)

= V(a" — lab + 5' + 9,ab — lab . cos. C)

= \^{{a — 6)
s + 2a6 (1 — cos. C)}

= (a — b) \/^1 + ^ ver. sin.

4o 6 ver. sin. C an- , . ,Assume — : = tan. o, in which case

consequently.

(a - b)* 2

4ab ver. sin. C = 1 + tan.
! 0 = sec.* 0;

c = (a — b) . sec. 9, or =

sec. 9

a — b

or c = (a — b)

cos. 9

(a— b)r

cos. 9

(rad. = I)

(rad. = r)

and in logarithms,

log. c=log. (a— i)+ log. sec. 0—10, or=log. (a— b)+ 10— log. cos. 9.

This agrees with Dr. Maskelyne’s determination of c, given

in p. 36. of his Introduction to Taylor’s Logarithms: and the

sole difference in the process is that, instead of

ver. sin. C
,

. „ C
, he uses, sin. —

;

o’ o’

which two values, as it appears from p. 45, are equal.

Example of the computation of c : a and b being 562 and 320, and

C— 128° 4'.

2 log. tan.0— 10=log. 2-f-Iog. a-f-log. A-J-log. ver. sin. C— 2 log. (a— 6)
Now, log. 2 = 0.3010300

log. 562 = 2.7497363

log. 320 = 2.5051500

log. ver. sin. 128° 4' = 10.2085966

15.7645129

2 log. 242 = 4.7676308

1 0.9968821
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.-. log. tan. 6— 10.4984410; .-. log. sec. 0 = 10.519282:1

log. c = 10.5192823 + 2.3838154- 10 = 2.9030977

c = 800.01.

If we make the value of c equal to

/(a‘ + 2a A + b
t — 2 rib — 2ab cos. C)

we shall h3ve c = (a + b) \/( ' - “ + °)

4a b /1+cos. C\ . . n
, • ( I = sin. 9,

(a + bf \ 2 Jand, if wc assume

there will result, c = (a + b ) . cos. 0,

1 + cos. C is the versed sine of the supplement of C, which

Mr. Mendoza, in his valuable Tables on Nautical Astronomy,

calls the * suversed sine; hence the rule for the solution alge-

braically expressed is, log. sin. 9

= 10+log. 2 + log. suver. sin. C+log. a+ log. b—2log.(a+ 6)}

log. c — log. (a + b) + log. cos. 9 — 10.

Of the preceding solutious of the third Case, one alone, as

it has been remarked, is, in strictness, sufficient : the others

have been added, for the sake of rendering, in certain cases, the

computation more expeditious. And, when a specific instance is

presented, it will not be difficult to determine which method of

solution it is, that ought to be adopted. If, for example, the side

opposite the included angle be alone required, we ought to com-
pute it by the method of p. 88, I. 14, avoiding, as unnecessary,

the calculation of the angles (A, B,) at the base.

Fourth Case, in which the three sides are given.

Here, a, b, c, are given, and A, B, C, are required.

,
* In these Tables the log. suversed sine = log.

1 +cos.

2

M
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First Solution.

By Prob. 2, page 27, sin. A —

and, in logarithms, putting
a+

^
— = S, and instead of sin. A,

sin. A
r

log. sin. A — 10 = log. 2 +•

i{log. S + log. (S-a) + log.( S— 6)+ log. ($— c)} -log. 6-log. r

and' similarly, log. sin. C is expressed by the same form, sub-

stituting in the negative part, instead oi — log. c, — log. a, so is

also

log. sin. B, substituting instead of — log. 6. — log. a.

Second Solution.

By Prob. 2, page 26.

1 — cos. A =

raArb + c

IC-lte (V

(a + 6— c) (a + c— 6)

26c

a + 6 + c

) o-t* - os

But 1 -cos. A = 2. sin.
8

(page 44.) hence, introducing the
2

radius r,

-i
S ‘n '~

2 _ (S-6) (S — c)

r
a be

In logarithms,

2 log. sin. - = 20 + log. (S — 6)+ log. (S — c) — log. 6 — log, c,

and similarly,
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Third Solution.

By Prob. 2, page 26,

1 + cos. A — (a + b + c) (c + b-a) „S.(S-o)
2 be be

But 1 + cos. A = I — cos.

(

tt— A) = 2sin.
11 ——— = 2sin.

8

2 \ 2 2 /

= 2 . cos.
8 — . Hence,
o

, A , S . (S— a)
cos. .

— = r X ; .

2 be

In logarithms,

2 log. cos. — = 20+ log. S + log. (S— a) — log. b — log. c

and similarly,

C
2 log. cos. — = 20 4- log. S + log. (S — c)— log. a — log. b.

Fourth Solution.

. A A
Divide the expression for the sin. — by that for cos. — , and

since the tangent is equal to the radius multiplied into a fraction

of which the numerator is the sine and the denominator the

, . 2 A. f (S-6HS-C) •

cosine, we have, tan. — = r x —-— —

.

’
’ 2 S.(S-a)

In logarithms,

2 log. tan. — = 20+log. (S— 6)4-log. (S — c)— log. S— log. (S— a)

and similarly,

2 log. Ian. - =204 log. (S— /»)4log. {S— a)— log. S— log. (S—c).

Digitized by Google



92

Example by the first method of solution.

o= 33 log. = 1 .5185139 .-. log. «+log. 6=3.5479235 [C]*

6= 42.6 log. = 1.6294096 V log. 6+log. c= 3.3585744 [A]

c= 53.6’ log. = 1.7291648 I log. a+log. c=3.2476787 [B]

°+b+c =64.6 log.= 1.810325
2

a+Hf - 0= 31-6 log.= 1.4996871

.fj±±.
r _6= 22 log.= 1 .3424227

O

0+6+' ,._n log.= 1.0413927
O

2 |

5-6937350
|

2.8468675 C = log. area: Cor. 2. Prob. 2.

(10 + log. 2). ..1 0.3010300 t area = 702.858

13.14789*5.

Hence, (see the formula of solution) if we subtract from this loga-

rithm (13.1478975) the values [C], [/<], [B], w. shall have, re-

spectively, the log. sines of the angles C, A and B:

18.1478975 13.1478975 13.1478975

[C] 3.1479235 [A"} 3-3585744 3.2476787

9 9999740= log. sin. 09789323?= log. sin. A 9-9002188= tog. sin. B

A=37° 59' 53" B= 520 37' 46"£

B = 52 37 465

. C= 89 22 20a

180 0 0

In this case, if we had not determined A and B, the value of C

(determined from its logarithm of seven places of figures) would have

been doubtful to the extent of 4": consequently, for the finding the

exact value of C, in this instance, the first method is not proper.

* [C] C-/fD [B] are merely marks of reference.

C=89° 22' 21"

or 89 22 22

to 89 22 25
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By the second method ; the same Example.-

Angle C computed.

log. (S-o)= 1.4996871

log. (S-6)= 1.3424227

(20 added) 22.8421098

or log. a + log. b = 3. 1 479235

r
2 log. sin. — = 19.6941863

,
. C

log. sin. — = 9.8470931

.-. C = 2 (44° 41' 10"i)

= 89 22 20
|,

Angle A computed.

log. (S— 6) = 1.3424227

log. (5— c) = 1.0413927

(20 added) 22.3838154

M 3.3585744

2 log. sin. — = 19.0252410

log. sin. - = 9-5126205

.% A =z 2 (18° 59'
56'I?)

= 37 59 52g.

By tliis method the angle C is determined at once with great accuracy.

Bv the third method.

Angle C computed.

log. S= 1.8102325

log. (S - c) = 1.0413927

(20 added) 22.8516252

[C] 3.1479235

19.7037017

.
C

log. cos. — = 9.8518508,5

.-. C = 2 (44° 41' 10"£)

= 89 22 20247 81

Angle A computed.

log. S = 1.8102325

log. (S — «) = 1.4996871

(20 added) 23.3099196M 3.3585744

19.9513452

yf
log. cos. - =B 9.9756726

.-.A =2(18° 5& 56".5)

= 37 59 53.

As C, in these two last methods, is determined to a great degree of

exactness, the value of B is not computed from the formula, but it may

he had by subtracting A + c from 1 80°.
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By tlie fourth method.

Angle C computed,

log. (S — b)= 1.3424227

log. (S - a) = 1.49968/1

(20 added) 22.8421098 (c)

Again,

log. S= 1.8102325

log. (S-c) = 1.0413927

2.8516252 (d

)

(c)-('0 = 19-9904846

f
log. tan.— = 9-9952423

.-. C= 2 (44° 41' 10"£)

= 89 22 2o£

Angle A computed,

log. (S-6)= 1.3424227

log. (S-c) = 1.0413927

(20 added) 22.3838154 (a)

Again,

log. S = 1.8102325

log. (S — a) = 1.4996871

3.3099196 (6)

(«)-(<.)= 190738958

.•. log. tan.
^
= 9.5369479

A = 2(18° 59' 56". 5)

= 27 59 53.

As far as instances prove, any one of these three latter methods may

be used for determining the angle C, and angles nearly of the same

magnitude ; and, it is of no material consequence which it is that is

used. The first method is plainly, from a mere comparison of results,

insufiicient to give exactly the value of such an angle as C is : and we

need not go through the labour of the arithmetical computation in

order to ascertain its insufficiency : for, if we perceive that the square

of the side, such as c, is nearly equal to the sum of the squares of the

other two sides, we shall know that the value of C does not differ much

from 90°.*

It may now be worth the while to enquire, more minutely,

why, since compendium of calculation is a desirable object, several

methods of solution have been given.

* This 4th case of oblique triangles is commonly (see Robert

Simpson’s Euclid, page 488 ; I.udlam, page 220,) solved by means of

this proposition. The sum of the two sides of a triangle is to the base as

the difference of the segments of the base is to the difference of the

sides ; but the demonstration of this proportion, since the case is other-

wise more conveniently solved, is purposely omitted.
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Now, each of the preceding methods is adapted to logarithmic

computation, and each, in an analytical point of view, affords a

complete solution. One solution, therefore, would have been

sufficient, and one alone given, if the same applied, with equal

convenience and equal numerical accuracy, to all instances; but

the fact is otherwise. If an example were proposed in which the

angle A should be nearly 90°, as C is in the former example : the

log. sin. A might be deduced from the first solution
;

but, to

such logarithmic value, there would not, in the Tables, correspond

a precise value of the angle A: for instance, if the numerical value

of log. sin. A should be 9-9999998, A might equal (by the

Tables) either 89° 5(3' 19", or 89° 57' 8", or any angle inter-

mediate of these two angles. The reason of this is, the very

small variation of the sine of an angle nearly equal to 90°. And,

this small variation is apparent from the mere inspection of the

Geometrical diagram, in which two contiguous sines should be

drawn to two arcs each nearly equal to a quadrant
;

or, ana-

lytically, it may be thus shewn. Let A be an arc nearly = 90°;

let it be increased by a small quantity (l" for instance), then by

the formula (1), p. 29, making B = l",

sin. (A + l") = sin. A . cos. l" + cos. A . sin. l".

Subtract sin. A from each side of the equation, then

sin. (

A

+ l") — sin. A = sin. A (cos. l" — 1) + cos. A sin. l",

j"

(by p. 44,) = — sin. A . 2 sin.
s — + cos. A sin. l".

\”

Now, sin. A x 2 sin,'
1 — may, from the smallness of the

i l"
factor 2 sin." —

,
be neglected; and, accordingly,

sin. (A + l") — sin. A = cos. A . sin. \"

,

nearly
;

therefore, the difference of two contiguous sines, or what has

been called, the variation of the sine, varies nearly as cos. A

;

and the cos. A is when A = 90
n
, nearly, a very small quantity

relatively to its other values, in which A is of a mean value.
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It must nut, however, be unnoticed, that the want of precision

in the determination of the angle is partly owing to the con-

struction of the Logarithmic and Trigonometrical Tables. The
Tables referred to, and in common use*, are computed to seven

places of figures; but, if we had Tablest computed to a greater

number of places, to double the number, for instance, then the

logarithmic sines of all angles between 89° 56* 18”, and 89° 57
>

9",

would not be expressed, as they are in Tables now; in use, by the

same figures. In such circumstances, we should obtain conclu-

sions very little remote from the truth; but, then, such Tables

would be extremely incommodious for use, and would, in all

common cases, give results to a degree of accuracy quite superfluous

and useless. Moreover, such Tables, even in the extreme cases

which we have mentioned, are not essentially necessary : since their

use can be superseded, by abandoning the first method of solution,

and recurring either to the 2d, .3d, or 4th method.

When the angle {A) sought then is nearly = 90°, the first

method must not be used, but one of the latter methods, in

which either the sine, cosine or tangent of half the angle is deter-

mined
;

and, in such an extreme case, it is a matter of indiffer-

ence whether, instead of the first method, we substitute the 2d,

or 3d, or 4th. But, in other cases, it is not a matter of

indifference : for since, as it has been shewn, the variation or

the increment of the sine is as the cosine, and of the cosine as

the sine, these two variations arc equal at 43°, but beyond 43°,

up to 90°, that of the sine is less, and that of the cosine greater;

* Sherwin’s 8vo. Hutton’s 8vo. Taylor’s 4to.

t In Vlacq's Tables, published at Gouda, 1663, we-hnve

Arcs. Log. Sines.

CO 56’ 10" 9.9999997300

20 97530

40 97958

50

89 57 0 98346

10 08525
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and, the contrary happens between 45° and 0 ;
consequently we

have this Rule:

If the angle sought be < 90°, use,the second method;

if > 90°, use the third method.

The 4th method may be used, and commodiously, for all

values of the angles sought from 0 up to angles nearly =* 180°:

when, however, the angle (.4) is nearly = 180°, tan. — , which is

nearly tan. 90°, is very large, and its variations, (which are as

the square of the secant*) are also very large and irregular. If,

therefore, we use Sherwin’s Tables, which are computed for

every minute only of the quadrant, the logarithms corresponding

to the seconds, taken out by proportional parts, will not be

exact: for, in working by proportional parts, it is supposed, if the

difference between the logarithmic tangents of two arcs differing

by 60 seconds be d, that the difference between the logarithmic

tangents of the first arc, and of another arc, that differs from it

only by n seconds is — d:
60

now, this is not true for arcs nearly

equal to 90°
;
and an example will most simply shew it : by

Sherwin’s Tables,

• For by the formula, p. 37,

. / a i
tan - A + bin. 1"

' ' '
1 — tan. A.Um. 1

Subtract tan. A from each side, and

tan. 1"
-f- tan.

1 A tan. 1"
tan. {A+ 1") — tan. A =

1 — tan. A . tan. 1"

b, ™P.»di.g „d ^ ^
mg terms involving tan* '

= tan. 1" (1 -f- tan.* A) nearly;

since tan. l" is an assigned quantity,

tan. (A+l") — tan. A oc l-J-tan.* A oc sec.’ A.

N
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log. tan. 89° 30' = 12.0591416

log. tan. 89 29 = 12.0449004 (2)

log. diff. corresponding to 60" = 142412

diff. corresponding to S0" = 71206 (4)

by Rule, log. tan. 89° 29' SO" ([2] + [4]) = 1 2.05202 10

whereas true log. tan. 89° 29’ SO'', by Taylor’s Log. = 12.0519626

Again,

log. tan. 89° 50' = 12.5362727

log. tan. 89 49 = 12.4948797

log. diff. corr*. to Go” = 413930

.*. diff. corrg*. to 6” = 41393

/. by the Rule log. tan. 89° 49* 6" = 12.4990190

whereas the true log. tan. 89° 49’ 6", by Taylor’s Log 1”’. = 12.498845

In these instances, the log. tangent, determined by the pro-

portional parts, is too large, which it plainly must be; for, the

logarithmic increment of the tangent increasing as the arc does,

that is, the increment during the last 30" being greater than the

increment during the first SO'*, if we take half the whole

increment for the increment due to the first SO", or one-

tenth of the whole increment, for the increment due to the first

6", we plainly take quantities too large. The same reason would,

it is true, hold against calculating logarithmic tangents of any

arcs by proportional parts, if the values of logarithmic tangents

were exactly put down in Tables ; but, (we speak of the Tables

in ordinary use) the values are expressed by seven places only of

figures ;
and, as far as seven places, the irregularities in the suc-

cessive differences of the logarithmic tangents of arcs that are

of some mean value, between 0 and 90°, do not appear ; thus,

by Shcrwin’s Tables,

log. tan. 44° SO' = 9-9924197

log. tan. 44 29 = 9-9921670

log. diff'. corresponding to 60" = 2527
.’. diff. corresponding to 30 = 12635

by the Rule log. tan. 44° QQ' 30" = 9-99229335
and the true log. tan. by Taylor’s Tables = 1.9922934-
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It appears (lien, from the assigned reason, and by (lie instances

given, that an angle nearly 90° cannot exactly be found from its

logarithmic tangent. The determination of the angle by means of

proportional parts will be wrong in seconds by Sherwin’s Tables;

and will be wrong in the parts of seconds by Taylor’s Tables.

From the whole of what has been said then, it appears that in

computing the values of angles, two inconveniences may occur,

either when the successive logarithmic numbers are too nearly

alike, as in the case of sines of angles nearly 90°, or too widely

different, as in the case of the tangents of angles nearly equal to 90°.

It is the business of the Analyst to provide formulte, by which these

inconveniences may be remedied or avoided
;
and hence have

arisen the different methods for attaining, apparently, the same

end.

Before we entirely relinquish this digression, we wish to

observe, that, although the log. sine or log. tangent of the angle

A may be determined exactly either by the first or the fourth

method, yet, if it should be very small, its value cannot, with

sufficient exactness, be determined by the Tables in common use.

For, very small angles cannot be exactly found from their loga-

rithmic sines and tangents; not exactly in seconds, by Sherwin’s

Tables, nor exactly, in parts of seconds, by Taylor’s Tables ; and

therefore, as great exactness may be required, and is commonly
required, in those cases, in which a very small angle is to be de-

termined, the Tables are not to be used. They are to be super-

seded by a peculiar computation, of which, without demonstration,

Dr. Maskelvne has given the rule in his Introduction to Taylor’s

Logarithms, p. 1 7 and 22. This rule and similar rules will be

stated and demonstrated in a subsequent part of this Work, when

the analytical scries for the sine and tangent of an arc are deduced.

To the several cases of the solution of oblique triangles,

examples have been given, but, merely arithmetical examples

;

it may be proper therefore, to subjoin a feigned case of practice

and observation, in order to shew, more plainly, the use and ap-

plication of the formulas of solution.

An observer at A wishes to determine his distance from two

inaccessible objects B, C, and also the distance BC, of the same

objects.
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The observer takes a new station D, and measures the distauce

AD ; suppose it to equal I76S yards : at A and D, by means
of proper instruments, he makes the following observations

:

sBAC = 45° T S'\ ,BDC = 36° 13' 5
at A

’ \CAD = 30
0 0' 2'V ’ at VDDA = 33° / 40'V

consequently,

CDA = 69® 22' 45", ACD = 180° — (ADC + CAD) =80°S7'lS"

BAD = 75° T 5", ABD — 180° — {BAD 4* BDA)= 71°5l' 15"

AB determined.

By 1st Case ofoblique triangles, p. 83

AB sin. ADB
AO- sin. ABD'

log. AB = log. AD -f- log. sin.

ADB — log. sin. ABD.

log. 1?6'8 = 3.2462523

log. sin. 33° 7' 40" = 97375966

12.9838489

log. sin. 71° 51’ 15''= 9.9778456

log. AB = 3.0060033

.*. AB = 1014.

AC determined.

By 1st Case of oblique triangles,

AC _ sin. ADC
AD ~

sin. ACD
’’

log. AC = log. AD -f- log. sin.

ADC — log. sin. ACD.

log. 1763 = 3.2462523

log. sin. 69
° 22' 45'= 9-9712441

13.2174964

log. sin. 80° 37' 13'= 9.9941543

log. AC = 3.2233421
.-. AC = 1672.4.
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CB determined.

By the formula of computation

given in page 88,

tan.*0 2 ab .— jTi ver. sin. C
r (a— 6)

1

and, log. tan. 6

fl°+l0g-2+log.a+log.6 1

(+Iog. versin.C— 2 log. (a— 6))

and CB or c = — - x (a— 6)
cos. 0 v '

and

log. c= 10+log. (a— 6)— log. cos. 6

here,a=AC= 1672.4, 6=/fB=1014
C=zBAC= 45° 1' 3", a-6= 658.4

10-f-log. 2 = 10.3010300
log. 1672.4= 3.2233421

log. 1014 = 3.0060033

log. versin. 45° 1' 3"= 9.4670294

25.9974048
2 log. 658.4 5.6369796

20.3604252
log. tan. 0 = 10.1801466

and log. cos. 6 = 9.7412271 [a]

.•. since

10-j-log. 658.4= 12.8184898 [6]

log. c = 3.0772627 . [6]— [a]

and c = II94.7.

The last part of this Example (the determination of CB)
belongs to the third case of oblique-angled triangles, in which two
sides and the included angle are given; but, since the angles at

the base, (the angles ABC, ACB,) are not required, the method
of solution given (see p. 84,) was not adopted : BC, indeed,

may be computed, and, according to the common practice of
calculators, would be computed, by first determining the angles

ABC
, ACB from the form

/ABC— ACB\ AC—AB /ABC + ACB\
an

' C 2 / ~ AC +JB
tan

‘ ( 2 )

and then BC from this expression, BC=AB

.

sin. BAC
sin. ACB : but it

is plain, that the computation, without being at all more exact,

would be longer than that by which BC has been already

determined.

The last part of the Example will also serve to illustrate the
use of that solution of the third case, which was given in page 87:
for, the logarithms of AC and AB being determined in the
previous part, we have immediately

log. tan. 9 = 10+ (3.2233421 - 3.0060033)= 10.2173388;
whence 8 = 58° 46' 23", and 9 — 45° = 13° 46' 28";

consequently, since log. tan. 13° 46' 23".8 = 9.3893876,

Digitized by Google



10*2

log. Inn. (^
Bi Lfi

') or co-tan. 22° 30' 31 ".5 = 10.383588 1

;

,
ABC- AC

B

log. tan. — =9-7729757

,
ABC-ACB , , „

and 30° 39 48"
2

ABC +ACB a . , „
but ^ = 67° 29 28 .5

consequently, ABC = 98° 9* 16".5

ACB = 36° 49' 40".5

The process had been somewhat more tedious if we had

found these angles by the formula given in page 84, in the

solution of the third case; for then we must have computed

AC — AB, AC + AB, and have taken out their logarithms.

This instance, and the remark on it, have been introduced to

shew, not that the common and general solution is insufficient,

but that other solutions may conveniently, that is, with some

gain of expedition, be introduced. The Student, however, who
shall peruse this Treatise in order to be initiated into Trigo-

nometry, is advised, in the first perusal, to attend solely to the

general solutions, and to postpone to a time of leisure and of ac-

quired knowledge, the consideration of the methods that arc

either more expeditious, or are adapted to particular exigencies*.

• With the view of rendering every thing as easy as possible to the

Student, separate investigations of the 'cases of right-angled triangles,

have been made to precede those of oblique-angled triangles ; but, con-

sidered generally, the former cases are really included in the latter, and

their solutions comprehended within the general solutions ; we will shew

this in two instances : suppose in the third case of oblique triangles,

that the included angle is a right angle, then, by the solution,

tan. ^^-^-?)=tan. vr—) • hut A+B + C= 180° and (7=90°

consequently.
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We will terminate this Chapter with one or two Problems,

the solutions of which may be deduced, almost immediately,

from the preceding formula;.

1. In a triangle of which the sides are a,b,c, and the angles

opposite. A, B, C, it is required to determine C, when a, b, and
A — B are given.

By the formula of p. 85,

/A-2?x /A + B\ a-b / _ C\
tan

-(—)
= tan

’(—) * J+J
= tan

' (9° " i) x
<A + B\ a— b

2

. C a — b= (see p. 9,) cot. - x —

—

2 a + b

a+ b

= (see p. 1 10,)
1

C
tan. —

2

a—b
a+b

a — b

a+ b
5

. A—B . ...a—b a — b
consequently, tan —= tan. 45».—— = —— , since tan. 45° = 1

2 a-J-o a+b
but A ss 90°— B

;

A-B
2

45°— J3; .-. tan. (—5—) = tan. (45°-J3) = (by Prob. 4,

_ . 1 —tan. B
Cor - 2> p- 81

->r+^rs ;

a—b 1— tan. B b ,hence —
Y^_ tan g

and tan. B = - the same solution, in fact, as

was given, page 81, in the solution of the first case of right-angled

triangles.

Suppose next, in the same instance, we employ the form used in the

fourh case of oblique-angled triangles, thus :

l+^^_(S±|±Sxt±pi),l-.t±|±i x i±Jri
be

b' + c* - a
1 + 2bc b'+bc , , . „= = —

;
since c* = a + ® :

hence, l -f- cos. A = s - 4- 1 and cos. A = - ,
• be c c

and .*. c = •

cos,
—j the same result as that which was obtained, page 81

:

so that it is plain the variety of cases might have been diminished, but

not without a considerable loss of simplicity and facility.
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.*. tan. — =

m
a — 6

x cot.
A - B

2 a + b 2

2. Given, A, B, C, and a ± 6 ;
required a and 6.

C A-B
If the upper sign be used, then a— 6= (a +6) X tan.— X tan.

If the lower sign be used, then, a + b = (a — b) . cot. — cot.

2

A-B

~ (a + b + c) (b + c - a)
2 . cos. — =

and in each case, by adding and subtracting, we obtain 2 a, and

2 bj and thence a and b.

3. Given A, a and b + c; required b, c, &c.

By the third formula of solution, p. 01,

A
2 be

Hence be is known, let it = p, and let b + c = s;

then b + c = s

be = p;

*, (by the solution of a quadratic equation)

'

v/(£-r)

iVd-t).
4. Given a + b + c, the sum of the sides, the area of the

triangle, and the angle A; it is required to find the side a (see

Newton, Arith. Univ. Prob. 8.)

By Prob. 2, p. 27, 1. 2.

(6 + c)
4 - a* (a+ b + c — a)

4 — a*
1 + cos. A =

26c 26 c

Again, the area (K) = sin. A X —

;

*

(a + 6+ c)
8 — 2a(a + 6 + e) . ..

.*. 1 + cos. A — - X stn. A ;
4 A

« — £(a-f 6+ c) - 2K
a + 6+ c

1 + cos. A
sin. A
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= 2 (a + i + f) —
<2K A—— x cot. — ;

a + b + c 2

since (Cor. 5. p. 34.)
gin. A

1 + cos. A

The formula? of Trigonometry have now been applied to

the resolution of rectilinear triangles
;

the original object, for

which the science was invented. And, it is to be observed, such

application is the most easy, and is of very extensive practical

utility. In the next Chapter we will continue to apply, still

farther, the preceding formulae. The first instances will shew

their utility in expediting Arithmetical computation : the latter,

selected from Works and Writings on Physical Astronomy, vvill

shew their utility in subjects of great importance and of arduous

investigation. In this last application, tiie original object of the

science, the Properties of Triangles, seems entirely to be lost sight

of, and the Trigonometrical analysis is peculiarly and almost

solely useful, because it confers precision and pow'cr on mathe-

matical language.

O
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CHAP. VI.

Instances of the Utility of Trigonometrical Formula.

1 . It is required to compute the logarithm of a + b,

a ± b = a
^

.

Assume, for the upper sign, - = tan.* 9, for the lower, - = sin.*
a a

then log. (a + b) =
log. a + log. (I + tan.

8
0) = log. a + 2 log. sec. 9 — 20,

and log. (a — b) =
log. a + log. ( 1 — sin.* 9) = log. a + 2 log. cos. 9 — 26.

In the application of this method, a aud b are not supposed

to be numbers : for, then, the simple way would be to add them

and to take the logarithm of the sum; but a and b arc com-
pounded quantities, formed of the sines and cosines of angles :

thus, in finding the Moon’s distance from a star,

versin. dist. = versin. (d' — d) + cos. d

.

cos. d'. versin. A
(d.d’ being the declinations, and A the difference of the right

ascensions) a is = versin. (d‘
— d) and b — cos. d . cos. cT

versin. A, and tan.
2
9 is assumed =

cos. rf.cos. d! versin. A
versin. — d)

or.

= cos. d. cos. d'

.

sin.*

sin.
t ct-dl

2

A

2

and then, by the process above stated, the form is adapted to

logarithmic computation.
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M. Sejour solves this instance somewhat differently (see his

Traite Analyt. tom. 1. p. 103.)

Thus, let a + b — y»

then, a sin. 45°+ b cos. 45° = y .sin. 45
u

(1).

b
Assume tan. z =

sin. z b= ~ , and
cos. z a

a sin. z — b cos. z — 0 (2).

Eliminate a from the equations (1) and (2), and

b (sin. z cos. 45° + cos. z . sin. 45°) = y sin. 45° sin. z,

or b . sin. (45* •+ z) = y sin. 45° sin. z,

b . sin. (45° + z)

and .*. v, or a + b = —:——5—:
.

•7 sin. 45 . sm. z

Again, in order to compute the logarithm of a + b + c,

, > c
since «+6 +c=y+c, make tan. z — -

V

c sin. 45°. sin. z

6 '
sin. (45°+ *)

,
then, as before,

sin. (45° + z)
a -b b + c = c .

-——j—

:

r.
sm. 45 . sin. z

and so on for a + b -f c + d, &c.

2. It is required to compute the sine of an angle
;

for

instance, the sine of 3°.

Sin. 3° = sin. (2°+ 1°) = sin. 2° cos. 1° + cos. 2° sin. 1°,

sin. 1° cos. 2°
. -n n / sm. 1 cos. 2 \= sm. 2° cos. 1 ( 1 -I To :

—— )V cos. 1 sm. 2"/

/ tan. 1°\
= sm. 2° cos. 1 I 1 H -z 1

.

V tan. 2V
tan. I

Assume .’. tan.®0 =— 5, and wc shall have, in a logarithmic
tan. 2

form.

Digitized by Google



108

log. sin. 3° = log. sin. 2°+ log. cos. 1°+ 2 log. sec. 0 — 30.

3. Let it be required to compute a quantity P, such, that

P= (1 + e) ( 1 + e") (1 + e") * 8tc.
;
the law of the formation

of e', e", e", Stc. being

, l-t/(l-e!

) „ l-/(l-e,J
) 1 - t/(l — e"*)

^ ! : /. f9\ » c

T+ 1/(1 -e*)
’ ‘ ~

1 +1/(1 - e *) ' ‘ “
1 + V'O - e"*)

’

The computation is conveniently effected thus, put e = sin. 0

;

1 — cos. 0 u &
.% V^(l — e

a
) = C06. 0, and e = — = (page 34) tan. —

1 -f* cos. U X,

, ,
,0 .0

and, 1 + e = 1 + tan. - = sec. - .

x Q>

Again, put e — sin. 0";

„ I - cos. 0’
, & „ ,

0'

e = = tan. - and ] -f e = sec. — .

1 + cos. & 2 2

Again, put e"= sin. 9 '

;

1 —COS. &'
s
0"

J „
0"

e = 2y7 — tan -
—

>
antl 1 + e — sec. — , &c.

1 + cos. 0 2 2
1

0 0' 0”
Hence P = sec.

1 - . sec.
4 —

. sec.*— . &c.
2 2 2

and log. P = (supplying the tabular radius)

/ 0
,

&
,

0" n
2 ^log. sec. - + log. sec. — + log. sec. — + &c.^

- 2(10 + 10 + 10 + &c.)

4. * Required the integrals of the differential expressions,

dO

.

sin. 0 . cos. 0; dO . cos.® 0; rJ0 . sin.® 0; dd cos.® 0;

rf0 . cos. 0 . cos. >10 ;
.

cos. 0

* This, in other words and symbols, is to require the fluents of the

/hixionary expressions 0- . sin. 0. cos. 0; 0- cos.* 0, &c.
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In order to integrate these expressions, it is necessary to

premise (see Simpson’s Fluxions, Vol. I. p. 165.) 0 being any

arc, that

d9 =
d (sin. 6)

cos. 9
’ or

(</ cos. 9) d (tan. 9)—
T
—

7T~ * or = •

sin. o sec. a

1st. J d9 . cos. 9 . sin. 9.

By the formula of p. 44,

cos. 9 . sin. 9 = - . sin. 20;
2

.fd9 . cos. 0 . sin. 0 = ^fd9 .sin 20 = -^Jld9 . sin. 20

= — - cos. 20 + c (c = correction).

2d. /d9 . cos.* 0.

By the formula of p. 44,

cos.
J 0 = - (l + cos. 20);

2

.'.Jd9. cos.
! 0 = J — + -J d9 . cos. 20

2 2

=
*/*t + i

f

idd - cos - id

9 l= —h sin. 20 + c.
2 4

3d. y'rf0.sin.*0.

By the fornuila of p. 44,

sill.
2 0 = ~

(1 - cos. 20);

Jd9 . sin.
1
0 =J'~ - 1fd9.cus.l9

2 2
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=J~ — -/2#0.cos. 2#

9 1= - — - sin. 09 + c.

0 4

4th. J<19 . cos.
1
9.

By the formula of p. GO,

1 3
cos.

5 # = - cos. 3 9 + - cos.#:
4 4

.'.J'd9 cos.
3 0 = -•Jd6 . cos. 3# + ~yd9 . cos. #

1 s= f3d9 . cos. 3# + - sin. #
3 . 4 *' 4

1 . „ 3 . -
. sin. 3# H— sm. # + c.

3.4 4

5 tli. fd9. cos. 9 . cos. n#.

Bv the formula of p. 47, 1. 16,

cos. # . cos. «# = - {cos. (n — 1) # + cos. (» + 1) Oh
2

. COS. 0.COS.M9= ^fd6. cos.(n— l)# + d#.cos.(«+ 1)#

=
a~T(n- i

)

/(
"- 0 d 0 • cos. (» - 1) #

+
1

2 .(«+ 1 )

i

2.(n- 1)

/*(»+ l)d#.cos. (» + !)# =

sin. (n — I)# +
1

2 (»+ 1 )

_. f d9
6th. / -r-r .^ cos.

4 #

sin. (n+ 1) # + c.

By p. 8, rjr = see.
1
9 = (sec.* #)* = (I + tan.

3
#)*;

cos. 9
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/
>

-i^=/t/0(l+tan.
s
0)

, =/<i0(l+ta...^)x(l+tan.“0)
<y COS. 0

= /{<) (tan. 0) (1 + tan.® 0)} = tan. 0 + > tan.
3 0 + c.

. - -ua. y . . . ,
* » „

6. If - = , it is required to express — , -? , etc.

y l — e y
1

y
in terms involving the cosines of multiples of the arc s; see

Mayer’s Theory of the Moon, p. 14.

1 1 — e . cos. s

y
~ = 1 + 6* — e . cos. v.

l — e’

rejecting* the terms involving e
3

, e\ &c.

= (I + e*)* — 2.(1 •+- e*) e . cos. s + €*. cos.’ s,

y
. . fl cos. 2s)= 1 4- 2e — 2e . cos. s + e j- + —-—

J

5e* e®
= 14- 2 e . cos.H— cos. 2s.

' 2 2
;

Again,

i = (1 +e®)
3 — Se

. (1 +e5
)® cos. s + 3e’(l + e

1
) cos.’s

y
cos. 2 s)

{

l cos. 2 s)

2 2 t

= 1 + 3t — Se . cos. s + 3e +

9e®
,

3e
= 1 -H

— — Se . cos.s i cos. 2s.
2 2

And generally

— = (1 +e*)" — « (1 +e2 )"
-1

e

.

cos. s+h . (1 +eI
)"~®e®. cos.’s

y 2

* The rejection of the terms involving e’, f4, &c. is not, as it is

plain, essential to the illustration of the use of Trigonometrical formula1
,

but, we have given the instance as Mayer has, and as all similar

instances in Physical Astronomy will be circumstanced, in which c de-

notes the eccentricity of an orbit.
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, « ,

«—
1 ? (

I ,
cos. 2v)= I + w e — « e . cos. s + n . e < - + 1

2 (2 2 )

= 1 +
n . n + 3

e
a — »e . cos. ? +

n ,ii— 1

e cos. 2y.

In this instance, it is plain, if all terms involving higher powers

of e than that of the square be rejected, that no higher multiple

of v than 2v can be introduced. The quantity s is the mean
anomaly, and y is the radius vector.

,

6. Ifs = V(f-9.fr . cos. t + r
s
), it is required to express

by a series of terms involving the cosines of the multiples of

the arc 1. (See Mem. Acad, des Sciences, 1754, p. 538. Clairaut

sur I’orbite apparent du Soleil).

Let 2fr

.

cos. t — r' = a, then

s = V(J
' — a), and by the binomial theorem,

1 1 3a 15a* 35a3 315 a*

s' ~f +
2/3 +

8f
+

T6f>
+

128 /" +

But, a* = r
4 — 4/r3

. cos. t + 4/V2
. cos.

9
1,

(by Prob. 6,) = r* — 4fr
s

. cos. t + 2\f* r* (1 + cos. 21)

— r
4 + 2If* r

1 — \fr . cos. t + 2'/* r*. cos. 21.

Again,

a
3 = — i

fi+ 6/r’. cos. 1 — 12/V. cos.' 1 + 8f3 r
5

. cos.
3

1

= - r
6 — 6f r

4 + (6/r5 + 6f
3
r
3
) cos. 1 -

6/* r*. cos. 21 + 2f
3
r
3

. cos. 31. (Prob. 7,

Substituting these values in the series for *y , there results

1 1 9rs
225 r"

7~f +
4?

+
64f

+ (

<3r
,

45 r\

<7
r + r: 1 cos 1

8j"/
' 1 3 r

2
1 05 r

1

\ . .

+ (
=- 4- —

—

* 1 COS. ( •+*

. 4/ 10/ /
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In this instance, r is the radius of the Earth’s orbit, andf that

r
of Jupiter’s, and since - is a small fraction ( = .19245) the terms

r r6

involving p, &c. are rejected, (see Phi/s. Astron. p. 283.)

The quantity — is a factor in a term dependent, in the theory
s

of a planet disturbed in its orbit, on the disturbing force
;

and,

the object of the above resolution is to resolve the term into a

series such as

A (0) + A(1)
. cos. t + A (i)

. cos. 2 t + &c.

T
which is easily effected when - is a small fraction, and may be,

r
but not without artifice, whenj-. is nearly equal 1, that is, when

the radii of the disturbing and disturbed body are nearly equal.

(See Phil. Trans. 1804. pp. 265, 8tc. Mem. Acad. 1764, p. 545,

and Phys. Astron. Chap. XVIII.)

7. If the terms of the series

A <0) + A (l
\ cos. t + A^\ cos. 2 1 + &c.

be multiplied by cos. mt, it is required so to transform the terms

that the series shall preserve its original form.

By the formula (d) of p. 32,

cos. *i t

.

cos. mt = -
. { cos. (m — n) t + cos. (m + n)

t

}

Hence,

cos. t . cos. m t = - { cos. (m — l ) t -f- cos. (m + l ) t
}

1
,

cos. 2t .cos. mt = - (cos. (m — 2) f + cos. (m + 2)<!
2

&c.

which values being substituted in

A(0)
. cos, mt + A (,)

cos. t

.

cos. mt + A <i>
. cos. 2/ . cos. mt + &c.

P
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and the terms properly arranged, what is required will be done.

(See Laplace, Mem. Acad. 1785, pp. 54, &c. and Mecanique

Celeste, p. 263.)

8. Required the sin. t, cos. t, sin. 2 1, &c.

2c
when t = nv — — (1 — n) sin. mv.

rn

2e
the coefficient— (1 — n) being a very small quantity.

m
(See Acad, des Sciences, 1745, p.539: also for similar instances,

Acad, des Sciences, 1754, p.348, and Ciairaut’s Theory of the

Moon, p. 20, and Phys. Astron. p. 140, &c.

By the formula (l), page 29,

sin. t = sin. nt> . cos

— cos. nv . sin

2e

(2e , , . )

. |— (1 — n) sm. fwiij

(2e 1

. j— (1 — n) sm. mvj

Now the quantity*— (1 — n) sin. mv, by the hypothesis, is very
m

small; therefore its cosine is nearly = 1, and its sine is nearly the

arc which it is supposed to represent : consequently,

2e
sin. t = sin. nv (1 — n) sin. mv . cos. nv,

m
£

fby(5) p. 32,) = sin. nv (1 —«){sin.(n+»i)» — sin. («—!»)»}
m

Again,

2e
cos. t = cos. nv + — (1 — w) sin. mv . sin. nv

tn

£
£by (c)p.32,] =cos.«tH— (1— n) {cos.(«-*m) v— cos. («+m)

• As in the former instance, (sec Note, p. 1 1 1 ,)
so in this, the

2e
smallness of the quantity — (1 — n) is, in no wise, essential to the illus-

tration of the use of the Trigonometrical formula'.
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anclj by a like process, may sin.Sf, cos.21, &c. be deduced.

g. Required the value of

•sin. vfQ cos. v. dv — cos. vfQ, sin. v .dv,

when Q is represented by a series of terms

a . cos. nv + b . cos. mv + &c.

(See Clairaut, Acad, des Sciences, 1745, p. 341, also Iris Theoriede

la Lune,
edit. 2. p.9. Lalande, Acad, des Sciences, 1760, p. 313.

Laplace, Mec. Celeste, p. 241. Thomas Simpson’s Tracts, pp-92,

&c. Cousin’s Physical Astronomy, pp.23,Stc. Vince’s Astronomy,

Vol. II. pp. 168, &c. and Woodhouse’s Phys. Astron. pp.99,

If we substitute the first term a . cos. « v of the series in the

expression, then

sin. vfQ cos. v .dv = a. sin. vf cos. v . cos. nv . dv

[form (d) p. 31,] = fl.sin.n ^/{cos. (n— l)o+ cos. (n + l)v) dv

a . fsin. («— l)v sin. (rr + l)v

(p. 109.) = 5
. M. v

i ,,

-

J
— + ,,+ i— + C

|

where C, the correction, will = 0, if the integral = 0 when

v = 0.

Again,

cos. vfQ sin. v . dv = a . cos. vf sin. v . cos. nv . dv,

(form [6] p. 32,)= a . cos. v \f\ sin. (»+ D v-sin. (n- l)} dv

fcos.(n— l)v cos.(n+l)v
(p. 106,) = a .cos. v «(„+— >

in which, according to the preceding hypothesis of the correction,

1 1

0 =
2.(rr-l) 2.(n+l)

+ C',

and C = — m
s— 1

dv is the differential of r answering to v the fluxion of v.
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Hence, combining the two parts of the expression,

sin. vj Q . cos. nv .dv — cos. vfQ sin. nv . dv =

— {sin. (« — l)v. sin. v — cos. (« — 1) t; . cos.

a
+ {cos. («+ I) v . cos. v + sin. (n+ 1) v sin.v}

= [by the forms (2) and (4) pp. 31, 32.3

2.(n+l)

a . cos. v

a . cos. it v a . cos. nv a . cos. v

2(n — 1)
+

2
.
(n + 1 )

+
n

!—
1

a . cos. v a . cos. nv

n‘ — 1 n - 1

If, instead of a . cos. nv for Q, we had substituted b . cos. mr,

the resulting value of the integral would have been

b . cos. v b . cos. rnv

in‘ — 1

Hence, the whole integral, when Q is represented by the scries

a . cos. n«-+" b . cos.»it»+ 8tc. is equal

\-r- 1 r- h &c.j cos. v
l n

!— 1 nt — 1 j— I

* /a. cos. nr b . cos. tnv . \— (
— H —- 1- &c. 1 .

V M* — 1 lit*— 1 /

10. Expand (see Ex. 5.)— s into a series of cosines of arcs,

when

n = -7 ( 1 + e cos. cm v)
a

u ~ - (1 + e cos. cv)
a

s = y . sin. (g v — 9)

e c
, y being very small quantities, (sec Pliys. Ativan, p. 247.)«
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1st, nearly, ti
rj = — ( 1 + Se' cos. c'mv)

a

—^
= a* (I — 4e cos. cr);

u

U U , / .— -T. (1 — 4e . cos. cv + 3e cos. c mv)
u a

but s = y sin. (gv — 0);

sin. (gv — 0)

— 2e . sin. (gv + c® — 0)

a
1 — 2e . sin. (gv — cv — 0)

7s7 < 3e'
+ — . sin. (gv + c mv — 0)

Se' . ,

H . sin. (gv — c mv — 6)
2 .

1 1. Required the value (/) offdz. cos. mz x cos. nz x

cos,pz. (See Simpson's Tracts, p. 8Q.)

cos.wir x cos. nzx cos.pz = - {cos. (m—n) r+ cos. (m+ n) cos. p z

= -
{
cos. (m — n—p) z + cos. (m — n +p) z }

+ - { cos
.
(mi+ n - p) z + cos. (m -f- »+ p) * }

consequently the integral (I) equals

+

sin. (m — n — p) z
^

sin. (m— n +;>) z

4 . (mi — ?i — p) 4 . (mi— n + p)

sin. (mi + n — p) z sin. (m + n +p) z

4 (mi + n — p) 4 (wi + « + p)

12. Let it be required to compound (F).

sin. (2® — 20) + sin. (2®' — 2 0) — sin. (2® — 2®')

into one term, the product of three sines or cosines (see P/iys.

Astron. pp. 441, 442.)
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By forms (5), (6), p. S3,

/’=2sin. {(» — 0) + (d'

—

0)} {cos. (xi— r')} — sin. (2 d — 2d')

= 2sin.
^ { (i> — 0) +- (v

1— 0)} — sin. (v— «')| x cos.(d-i)')

= 4 cos. (d — 0) sin. (v — 0) cos. (d — v).

This process is, in its nature, the reverse of that in the pre-

ceding example.

13. It is required to resolve (r
s — 2rr' cos. <o+r 2

)
-m

« (JP)

into a series such as

A + B

.

cos w + C . cos. 2 at 4- D . cos. 3at + &c.

(see Phys. Astron. p. 260: also Lacroix, tom. II. p. 132,

Laplace, tom. I. pp. 271, &c.)

Make 2 cos. at = x 4— ,
then

r* — 9,rr cos.ee + r*= r*

—

r'r ^x + + r'*

= (r'-rx) (r-

= r * 0 - ?
x
) (

l ~7x) ;

.-. F=r

Now, .

(
r \~ m

.
vi r m . (:

1 -?*) =1+7-^+ —m.(m + 1) /r
'

f 1

m (

m

+ 1) (r/r + 2) /r

\

3

1 .2.3 (?)
x
3 + Stc.

(

r 1\
m mrl m Am + 1) /r \ I

1 7-I = 1 + ~t .—I —
~ ( - )

•
—

r x' r x 1.2 Vr s x

+
m (m + 1) (m + 2) /r \ 3

1

1.2.3 G) ? * **

* See Examples 6 and 7-
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1 ( /ot?V /m.m + l\ a /r\ {

A =73 {! + (-) + ( iTF" ) ' (?)

B

m.(m + 1 ) (m 4- 2)

1.2.3

fmr *"4

)’©-}+ (

2 fm r
f

fit m + 1 / r ^
T3*" IT + T3 ' 2 '?/

^ 2 /m.m-t-i r
(

wr
( = 7^ v i .2 •

+ V
D = Sec.

7rt 771 -f 1 7tt+ 2 7'

.^ + Scc.)

14. In the Lunar Theory, one of the equations (that of the

evection) is represented by —2 r . sin. (2X— Z), r being supposed

to be of a mean constant value: if r should vary and proportionally

to 1 — 3c. cos. Y, what is the new equation that would thence

arise ? (See Vince’s Astronomy
,

vol. II. p. 53.)

Let rn be the mean value of r, then

the evection =* — 2m (1 — 3c . cos. Y) sin. (2 X — Z)

= — 2 m sin. (2 X — Z)+ 6 me cos. T sin. (2X— .£.)

Therefore, since the first term denotes the mean value, the

second, or, 6m c cos. Y sin. (2X — Z), denotes the variation

from that mean value, or the uc\6 equation.

Now’, 6me . cos. T. sin. (2 A' — Z) = (by form Q/J p. 32.)

3mc {sin. (2 X — Z + Y) -f sin. (2 X — Z — F)}

which is the form of the new equation, in which, the angles

2 X — Z + Y, 2 X — Z — Y, are technically denominated the

arguments, and 3 me (= 2' l") is the coefficient.

The Student, perhaps, may now be inclined to believe that

the formula: demonstrated in the preceding pages, are not entirely

without their use, nor invented and shewn as mere specimens of

analytical dexterity. 'Hie instances, indeed, have been, almost
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all, taken from Tracts on Physical Astronomy; and it is, there-

fore, on the assumption of the utility of that science, that the

Trigonometrical analysis has been affirmed to be useful.

We will now proceed to apply the formula; of Trigonometry to

the resolution of certain numerical equations : an application

less extensive than the preceding, and of more doubtful utility.
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CHAP. VII.

On the Solution of certain Numerical Equations by means of

Trigonometrical Formula and Tables.

In this application of the Trigonometrical Analysis, the utility,

whatever it be, relates to the expedition and convenience of the

resolution of the equations, and not to any thing novel or curious in

its principle and method
;
moreover, the expedition and conciseness

of the resolution depends not on any essential and real abridg-

ment, but on that sort and kind of abridgment which registered

computations or tables afford : for instance, we shewed (page 7

1

•)

that a cubic equation, such as

sin. 3 A = 3 sin. A — 4 sin/ A

when solved by approximation, might be used for the computation

of sines, or the construction of Tables. Reversely, the Tables

constructed may be used for the resolution of similar cubic equa-

tions. Again, we shewed (page 70) that an equation of 5 dimen-

sions, such as f

2 sin. 5 A, or s = 5 x — 5 x
3 + x

s

solved by approximation, might be made subservient to the con-

struction of Tables. Reversely, Tables constructed either by the

approximate solution of equations, or by other methods of ap-

V. proximatiou, may be employed in the numerical resolution of

similar equations. De Moivre solved equations of the third and

fifth degree by the cosines of the third part and fifth of an arc
;

and Vieta divided an arc into three and five equal parts, by equa-

tions of the third and fifth degree. This is sufficient, perhaps, to

explain the real principle of the solution of equations by Trigo-

nometrical Tables. The convenience or expedition of the method,

as we have already said, is of the same nature as the expedition of

computation by logarithms. If we do not avail ourselves of com-

puted Tables, the whole process of the solution of a cubic equa-

tion, for instance, will be tedious; we must employ some method

Q

Digitized by Google



122

of approximation. Now, if Trigonometrical Tables are employed,

the process is short and easy, but only so, because the most labo-

rious part of it is already done for us. In these cases, we avail

ourselves of the registered computations of preceding mathe-

maticians.

Solution of a Cubic Equation.

It may be proper, however, to shew, more in detail, the method

of solving equations by the aid of Trigonometrical Tables.

If we take the equations (e'") and (s'") pp. 47, 49, supply a

radius r, and put c and s for cos. 34, and sin. 3 A, respectively,

and x for cos. A and sin. A, then

2.1 a » 3 f1 cr
4

cr — 4 or — SrV, or ,r
3 — r — — =0 (1)

4 4

3 s
and sr' = — 4ts, or, a

5
x 4 =0 (2)

4 4

Hence, c being given, find in the Tables the arc 3.4 cor-

responding to it, and, from the same Tables, take out the cosine

of A
;

this latter value is the root of the equation (1). If s be

given, find 34 corresponding to the sine s, and then take from

the tables the sine of A, which is the root of the equation (2).

But, cubic equations have 3 roots
;
now, by the Table of

p. 16, or by Cor. 6. page 35, if c = cos. 3.4, then also c =
cos. (2 tt — 3 4) = cos. (2rr + 3.4)= cos. (47r— 34), &c. hence,

. . . 2 7T 2 7T
substituting instead of the arc A, the arcs, 4,— + A,

3 3

— A, Sic. any and all, of the following equations, are true,

cr* = 4. ^cos.
27

r

X
3

— Aj —3 . r
2

. cos. Cf-4- ... (a)

T*IIVi ^cos.
2 7T

3

5

+ A
^
—3 . r\ cos. i(t +4 • • • • (b)

IIVi ^cos.
4tt

3
- Aj — 3. r*. cos.

|(t - A
)

... (d)

&c.

I
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But, cos. (g - A) = cos.
{
2, - (ip + a)} =

cos. 2ir. cos. ^-g-+A^ = cos. +A^ (since sin. 2ir = O,

and cos. 27r = l). Hence, the equation (d) is precisely the same

as the equation (A).

Again, if we take the equation that would follow the equation(d),

the cosine in it would be cos, (t + *) !
but

’ cos (t + a
)

= COS. ^ 27T —
/2ir \ 1 /2ir \
|
— A) > = cos. 27r . cos. ( A )

l V 3 /.1 V 3 J

cos. (t “0 Hence this equation is precisely the same as

the equation (a); and, in like manner, succeeding equations would
recur, so that, essentially, there are only 3 different equations

0)» (a), (6), and hence, iu the equation

_*

cr' = 4X3 — Sr'x,
, Sr cr"

or, x — —x — — = 0,
4 4'

.r may, either, = cos. A, or, = cos.

r2?r

Of-').-.-

(
27t ,\— + Aj , c being the cosine of 3 A.

The same reasoning applies to the equatiou (2), and similar

conclusions will follow.

Example.

Let x3 — 147x— 285 .5 = 0; compare this with

,
"Sr* cr*

= 147, and r= 14 : andc=^£
4 49

10000 x
285.5

49x 14

0 ;

and the tabular cosine —

= 416.808, &c. Now the arc, corresponding to this cosine, or
the arc 3 A, is 65° 24';
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.-. ,4 = 21° 4-8' nat. cos. =9284858 .-.to rad. 14= 12.9988012, first root.

Again,

120°— 21°. 48'= 98°. 12', liat. cos. =-.1426289;
to rad. 14= — 1.9968046, second root.

Again,

120“ -{-2 1° 48'= 1410.48
,

nat. cos. = - .7858569

;

.•. to rad. 14 =— 11.0019966, third root,

and the sum of these two last roots, that is, of the second and third

roots, exactly equals the first root, which ought to be the case, since the

coefficient of the second term in the proposed equation is = 0.

But, cubic equations of any form may be solved by substi-

tuting Trigonometrical lines, sines, or tangents, instead of the quan-

tities under the radical sine in Cardan’s form : as Dr. Maskelyne

has done in page 57 of his Introduction to Taylor’s Logarithms.

Not only cubic, but quadratic equations may be solved by the

aid of Trigonometrical Tables, and conveniently so, when the

coefficients are expressed by many figures.

Solution of a Quadratic Equation.

Let ,r
2
4- px — q = 0,

S ± \/<£+0~si.*n/(. + ?)}.

Assume = tan.
a
d, then, x = — - (1 + sec. 6).

P 2

Now by l’rob. 3. Cor. 5, p. 34.

0

cos.0 =
1 - tan.

a
•

2

1 + tan. -
2

1 -j- tan.
4 -

sec. 0 =
1 - tan,* -

O
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2 tan.
1
0

1 — sec. 0 = —

1 — tan.
0

, 1 + sec. 0 =

But by Prob. 8, p. 64,

tan. 0 =

0
2 tan. -

2

. 0
’

1 — tan. -
2

. 0
1 — tan. —

.'. 1 — sec. 0 = — tan. 0 . tan. n ,

, , a tan. 0 0
and 1 + sec. 0 — — = tan. 0

.

cot. - .

0 2
tan. -

2

p 0
Hence, one root (a) = - tan. 0 . tan. - ,

2 2

the other (/8) = -r - tan. 0 . cot. - .

2 2

And the whole formula of solution, in logarithms, is

log. tan. 0 = % (20 + log. 4+ log. q — 2 log. p),

and log. a = log. - + log. tan. 0 + log. tan. - — 20,
2 2

t

^
and for 2d root, log. /3 = log. - + log. tan. 0 + log. cot. - — 20.

2 2

The solution may be exhibited under a different form, thus

:

0

. / cos. 0+1 \ , /cos. W+I\

0— (with the lower sign) — V

q

x cot. -
, and

= (with the upper sign) V

n

. tan. - .1 2
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Example. Let x
% + lS.56x - 72.31 = 0.

Computation of 0.

10 ..

log. 2

i log. 72.31

log. 13.56

log. tan. 0

.-. 0 = 51°. 26'. 2",

and - = 25 . 43 .

1

= 10

= .3010300

= .9295992

11.2306292

= 1.1322597

= 10.0983695

Computation of positive root.

log. 6.78= .8312297

log. tan. 5 1° 26' 2"= 1 0.0983695

log.tan.25 43 1 = 9-6827151

20.6123143

.. log. x = .6123143

and x, or a = 4.09557

Computation of negative root.

log. 6.78= .8312297

log. tan. 5l°.26'.2"= 10.0983695

log. cot. 25 . 43 . 1 = 10.3172849

21.2468841

.% log. (-*) = 1.2468841

and— x, or—(3— 17.6556

Hence the two roots are 4.09557 and — 17.6556, and the sum

of these two roots is — 13.56, the coefficient of the second term of

the equation, as it ought to be.

The equation that has been solved is x'
2 +px— q = 0; if it

had been x
1 —px — q = 0, the two roots would have been

that is, the two roots of the former equation taken negatively.

If the equation to be solved be x2— px q = 0, then

4f
/ _ •

assume —r = sin.‘ 9
P

and x = - (1 ± cos. 9) = p . cos.‘ -
,

or — p sin. -
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Hence the rule of computation, logarithmically expressed,

is log. sin. 9 =
-J-

(20 + 2 log. 2 •+• log. q — 2 log. p) and

9 . 9
log. x= log

.

p

+2 log. cos. - —20, or = log. p+2 log. sm. - — 20.
— 2

If the equation be x* +px-\-q = 0, its roots are the roots

of the preceding equation taken negatively.

The preceding solutions are, in fact, the same as those given

by Dr. Maskelyne, at page 56 in the Introduction to Taylor's

Logarithms.

If, in mathematical researches, equations, like those that have

been given of the second and third degree, presented themselves

to be solved, their solution would be conveniently effected by

the preceding methods, and by the aid of the Trigonometrical

Tables ; but, the truth is, in the application of Mathematics to

Physics, the solution of equations is an operation that very rarely

is requisite, and consequently the preceding application of Trigo-

nometrical formulae is to be considered as a matter rather of

curiosity than of utility.
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SPHERICAL TRIGONOMETRY.

CHAP. VIII.

Definitions.

1. A sphere is a solid terminated by a curve surface, of

which all the points are equally distant from an interior point,

called the centre of the sphere.

The surface of a sphere may be conceived to be generated by

the revolution of a semi-circle round its diameter.

2. Every section of a sphere, made by a plane, (so it will be

demonstrated) is a circle. A great circle is that, the plane of which

passes through the centre ;
a small circle, that, the plane of which

does not pass through the centre.

3. The pole of a circle of a sphere, is a point in the surface,

equally distant from every point of the circumference of the

circle. .

4.

A plane is said to be a tangent of a sphere, when it has

one point only common with the sphere.

5.

A spherical triangle is a portion of the surface of a sphere

included within three arcs* of three great circles, which arcs are

called sides of the triangle.

• Each arc is supposed to be less than a semi-circle, for the pro-

perties of a triangle that has its sides a, b, and r = -n
-f. x are always

known from those of a triangle that has its sides a, b, and a third side

= tr — (T.
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6. The angles of a spherical triangle, arc the angles contained

between the planes in which the arcs or sides lie. (See Euclid,

. Book XI. Def. 6.)

A spherical triangle is called rectangular, isosceles, equi-

lateral, in the same cases that a plane triangle is.

Proposition I.

Every section of a sphere made by a plane is a circle.

Let AnBn be the plane, draw CO* perpendicular to it,

which consequently, (by Euclid, Book XI. Def. 3.) is perpen-

dicular to every straight line meeting it in that plane; hence,

since

Cn — Cm, and, / Con — C Com = 90°.

On* = Cn9 — CO*, Om3 = Cm2 — CO*; On = Om,

and similarly, On — Op; .'.Om, On, Op are equal; .'. ApBm
is a circle, and O is its centre.

Cob. 1. When CO= 0, or when the plane passes through the

centre C of the sphere, On=zOm = Cm = CB, the radius of

the sphere.

• CO is not drawn in the diagram.

R
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Cor. 2. Hence two great circles always bisect each other;

for, their common intersection passing through the centre is a

diameter.

Cor. 3. Through two points on the surface of a sphere,

such as A, p, a great circle, (part of which is represented in the

Figure by the dotted curve from A to p) may be made to pass

;

for, the two points A, p, with C the centre as a third point, de-

termine the position of a plane, the intersection of which with

the surface of a sphere is a great circle passing through the points

A, p. In like manner a great circle may pass through the points

P> q-

Ifthe two points, instead of being A, p, be A, a, the two ends of

a diameter, then the three points A, C, a lying in the same line,

do not determine the position of a plane
;
but, through these three

points, innumerable planes may pass.

Prob. II. In every spherical triangle as Apq, (Fig. p. 129.)

any one side is less than the sum of the two others.

For the arcs Ap, Aq, pq, measure the angles ACp, ACq,
pCq; but by Euclid, Book XI. Prob. 20, any angle, as ACp*,
is less than the two others ACq, pCq\ Ap is less than

Aq + pq.

Prop. III. The sum of the three sides of a spherical triangle

is less than the circumference of a great circle (2ir).

Let ACB be the spherical triangle; then, CB<CD-\~ BD

by the former Proposition, and AC + AB = AC -f- AB;

• Conceive, in Fig. 129, a straight line to be drawn from A to the

centre C.
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AC+CB+AB< (AC + CD) + (BD + AB)-, < ACD +
ABD-, < (tt-J-it); < Stt.

Cor. Hence, the sum of the sides of a polygon ACEFGA
(the sides being arcs of great circles) is less than <l-n.

For, by the Proposition, AD+ DH+AH is < hr;

or, AC + (CD + DE) + EF + (FH + IIG) + AG < 2ir,

but CD + DE > CE, and, FH + IIG > FG
;

a fortiori, AC + CE + EF + FG + AG < Q.ir. .

Prop. IV. If CD be drawn from the centre C, perpendicularly

to the plane of the circle ANMB, then, D is the pole of the

circle ANMB and of all small circles, such as anmb, that are

parallel to it.

For, since DC is perpendicular to the plane of ANMB, it is

perpendicular to all lines in it, as CN, CM, &c. (See Euclid,

Book XI. Def. 3.). Hence, DCA, DCN, DCM, each = 90®;

consequently, since DC is common, and CA, CN, CM, are

equal, the hypothenuses, which are the chords of the arcs DA,
DN, DM, are equal; the arcs D.4

,
DN, DM are equal to

one another and to Q0°, and .\ D, (by Def. 3.) is the pole of

ANMB.
r *

Again, in the small circle anmb, ca, cn, cm, are equal, as are

the angles Dca, Den, Dcm; as before, the chords of Da
Dn, Dm, are equal, and the arcs Da, Dn, Dm-, D is

equally distant from every point of the circumference of anmb,
and therefore is its pole.
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Cor. 1 . By Definition 6, the spherical angle AMD isequal

to the inclination of the planes AMBC, DCM, and therefore is

a right angle.

Cor. 2. Hence, to find the pole of a great circle, draw, from

the point M, a great circle perpendicular to AM, and take

MD — 90°; then D is the pole: and, reversely, ifD be the pole,

DMN, DNM are right angles, and DN, DM are quadrants.

Cor. 3. Hence, to describe a great circle, of which D is the

pole, take DN, DM, each = 90°; then let a plane pass through

N, M, and C, and its intersection with the surface of the sphere

is the circle required.

Cor. 4. Since NDM may be of any magnitude from 0 to •

180°, and since the angles DNM, DMN, are, each =90°, the

sum of the three angles of a triangle, as DNM, may be any angle

between 180° and 360°, which are the two limits.

Cor. 5. The radius of a small circle an mb is Cn, which

is the sin. Dn, or, cos. Nn
;

and, if the great circle ANMB be

divided into any number of equal parts, each equal to NM, the

small circle atimb will be divided into the same number of equal

parts, each part being equal to tim; but, the magnitude of nm
will be to the magnitude of NM, as the circumference of anmb
to that of ANMB, consequently, as the radius cn to the radius

CN; or, as sin. Dn to sin. DN; as sin. Dn to radius; or, as

cos. Nn to radius.

Prop. V. If a plane TDl is perpendicular to CD, it is a

tangent to the sphere.

For, take any point T, join DT, then CDT is a right angle;

CT is greater than CD; .*. T is without the surface, and since

this is true of every point in the plane, except the point D, the

plane TDl (by Def. 4.) is a tangent to the sphere.

Prop. VI. If DT, Dt be drawn, in the planes DCA, DCN
respectively, tangents to the arcs Da, Dn, at the point D,
the angle TDt is equal to the angle ADN, both of which angles

are measured by the arc AN.
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For, DT
,
Dt are perpendicular to DC, which is the inter-

section of the planes DCA, DCN; .'. by Euclid, Book XI.
Def. 6. TDt measures the inclination of the planes, and there-

fore is equal to the angle ADN; but TDt, the inclination of the

planes, =ACN, of which AN is the measure; .’.AN is the

measure of TDt and of ADN.

Cor. If two arcs of great circles intersect each other, their

vertical angles are equal.

Prop. VII. If from the points A, B, C, of the triangle ABC,
as poles, the arcs EF,FD, DE, be described, forming a triaugle

DEF; then, reciprocally, the points D, E, F are the poles of

the arcs BC, AC, AB.

Since A is the pole of EF, the arc of a great circle drawn
from A, to any point in EF, and therefore to a point as E, is a quad-
rant; similarly, since C is the pole of DE, the arc of a great

circle from C, to any point in DE, such as E, is a quadrant.
Hence, E is distant from two points A, C, in an arc AC, by
the quantity of a quadrant; .'. by Cor. 2, Prop. 4, E is the pole
of AC; and similarly, F is the pole of AB, and D of JBC.

Prop. VIII. The former construction remaining, the measures
of the angles at A, B, C, are the supplements of the sides

opposite, that is, of EF, DF, DE; and, reciprocally, the mea-
sures of the angles at D, E, F, are the supplements of the

sides BC, AC, AB.
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For, the measure of the angle at A (see Prop. 6.) is GH.
Now, GI1= EH- EG = EH — (FE- EG) = EH+FG-
JFjE = 9O0+ 90°— EE = 180°— FE = (p. 12,) the supplement

of FE.

Again,

themeasureoftheangleatl?,orK/= FK — FI= FK-(DF-DI)
= FK+DI- DF= 90° -f 90°— DF= 1 80»-DF= supp*. DF;
and similarly, EM, the measure of the angle at C, is the supple-

ment of DE.

Secondly, the measure of the angle at D, orMI= MC+ Cl—
MC + IB-BC=90°+90°-CB=\800- CB = supp*. CB;
and similarly, EH, KG, the measures of the angles at E and F,

are the supplements of AC and AB.

From its properties, the triangle DEF has been called, by

English Geometers, the Supplemental Triangle; and from the

mode of its description, by the French, the Polar Triangle.

Cor. 1. If any angle as E,= 90°, then DF= 180°—90° = 90°,

or is a quadrant : and if B and C each = 90°, DF, DE, each is

equal to a quadrant.

Cor. 2. If (Cor. 4. Prop. 4.), the angles at B and C each =
90°, and the angle at A is nearly 180°= 180°— a', x being a

very small angle, then the side of the supplemental triangle

opposite to A is equal to x; and the sum of the three sides of

the supplemental triangle = semicircle + x, = 180° + x.

Prop. IX. The sum of the three angles of a spherical triangle

is > 2 right angles < 6 right angles.

For, the angles of the triangle+ sides of the supplemental triangle

= 180° + 180°+ 180°= 6 x 90°; since the sides of the sup-

plemental triangle must have some magnitude, the angles of the

triangle must be less than 6 X 90°: again, by Prop. 3, p. 130, the

sides of any triangle, and the sides of the supplemental triangle,

are less than 4 X90°, = (let us suppose,) 4 x90— x; consequently,

the angles of the triangle = 6 x 90
n— (4.90° — x) = 2 x *J(f+ x.
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Cor. 1. Hence a spherical triangle may have two or three

right angles, two or three obtuse angles.

Cor. 2. If the angles at B and C are right angles, AB, AC
are quadrants, and A is the pole of BC: if also the angle at A is

a right angle, the triangle ABC coincides with the supplemental

or polar triangle, and the triangle ABC is contained eight times

in the surface of the sphere.

Prop. X. The angles at the base of an isosceles spherical

triangle are equal.

In the triangle ACB, let AC= BC, draw the tangents AS, BS,
which are equal and which cut their secant OS in the common

point S. Draw also from A and B two tangents AT, BT, which,

by Euclid, Book III. Prop. 37. are equal.

Hence, in the triangles SAT, SB1'; SA, AT, ST, are re-

spectively equal to SB, BT,ST; by Euclid, Book I. Prop. 8, the

angle S^T=the angle SBT, and by Prop. 6, page 132, the

spherical angle at A = the spherical angle at B.

To prove the reverse proposition, that is, to prove if the angles arc

equal, the sides are equal; take the supplemental triangle; then
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since its sides opposite to the angles at A and B are supplemental

of equal angles, the two sides are equal, and the supplemental

triangle is isosceles; by this proposition, the angles at the base

are equal; .*. their supplement? which are the sides AC, BC, are

also equal.

Prop. XI. In a spherical triangle the greater side is opposite

to the greater angle.

In the triangle ACB, let L ACB be greater than ABC *;

make BCa = CBa; Ca— aB (Prop. 10.); but Aa+aC is

greater than 4C; .’. A a + &B, or AB is greater than AC,
by Prop. 2, page 130.

Prop. XII. The surface of the sphere included between the

arcs DN, DM, is proportional to the angle NDM or the arc

NM. See Fig. 9-

For, if the circumference ANMB be divided into equal parts

as NM, and great circles be drawn from D through the points

of division as N, M, the portions of the surface, such as NDM,
will be all similar and equal; hence, if AM contains NM,

p times, or, if AM=pX NM, the surface ADM will= p x

NDM.

Cor. When DM coincides with DB, the angle ADB and

its measure AMB= 180°: hence, if S = the whole surface of

a sphere, and if a = the angle NDM, or the arc NM, the surface

5 ClNDM = — x
; or, since S = area of 4 great circles of a

4 180 6

sphere, (see Simpson’s Fluxions, page 189, vol. I. or Vince’s,

• a
page 89,) =4ir (7r = 3.14159, 8tc.-) the surface NDM= w .

1 80

The surface may be differently expressed, thus: ir is the cir-

cumference of a circle the radius of which is-j; .’. 2 it represents

* See Fig. p- ISO.
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the circumference of a circle, such as ANMB, the radius of which

is supposed = 1, and as we represent arcs of great circles by the

onumber of degrees which they contain, Sir = 360 , and— =ir =

180°: hence, the surface NDM= 180°. = a
0

.

180

Prop. XIII. The measure of the surface of a spherical tri-

angle is the difference between the sum of its three angles and

two right angles.

Let the triangle be A BC, a, b, c, representing the magnitudes

of the angles at A, B, C; let P = surface BCrnB, Q— mCnm,
R —ACnA\ produce the arcs Cm, Cn till they meet at <r

(which will be on the hemisphere opposite to that represented

by ABmnA) then, each of the angles at C and e, equals the

angles of the planes in which the arcs Cme, Cne, lie; the

angles at C and e are equal.

Again, the semicircles ACm, Cme-, BCn, Cne are equal;

or, AC + Cm — Cm + me, and jlC= wie, and BC= we:
and the triangle «/en = the triangle ABC-, let x = its area, then,

by Cor. to Prop. |2.,

S
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S u
i 4- P = - .

2 180

r + Q =
f •'Jio*

a,u1, X+ P+ Q + R =f
T. S b

x + R = - . — - ;

2 180

consequently, by addition,

5 S /a + b + c\
2x+(x+P + Q + R) or 2, + - = n (~JS J !

s s
x — — (« + 5 + c) — - — a + b + c— 180°,

4.(180) 4

by the Coi'T
. to the last Proposition.

This result is the same as that given by Caswell, in Wallis's

Works, vol. II. page 875, who attributes the Theorem to Albert

Girard*.

In order to obtaiu a more commodious form for compu-
tation, let r be the radius of the sphere, 7r = 3.14159, the cir-

cumference of a circle in parts of the radius when the radius

is j,
then since 5 the surface of a sphere is equal to four times

the area of a great circle of that sphere

S = 47rr
2

;

1

x =~ {A! + B + C— 180°}.
180° 1 ’

Now 7r, to a radius is the circumference containing 360*:

to a radius 1, therefore, it expresses, in terms of the radius, the

* This expression for the value of the area was a merely speculative

truth (see a subsequent note), and continued barren for more than 1 50

years, till 1787, when General Roy employed it, in correcting the

spherical angles of observation made in the great Trigonometrical Survey,

Phil. Tram. vol. VIII, year 1790, page l63. See also Man. Acad.

Paris, 1787, page 358, and Mem. Inst. vol. VI, p. 5ll.

Digitized by Google



139

value 180°, or of 180 x 60 x 60 ( =648000). Hence the value

of l", or, which is nearly equal to 1*, of sin. l", in parts of the

7T 3.14159 . .

;
therefore the area mayradius, must equal or -

648000 ' 648000
be thus expressed

:

x = r*. sin. l" {A +B+C- 180®},

which is an expression for the area in terms of a great circle

of the sphere, when the spherical excess (the excess of the

3 angles above two right angles) is expressed in seconds; for

instance, if

A = 121° .36' 20

B = 42 15 14

C = 34 15 o
“J

A + B + C - 180® = 18* £i'
36'

= 65196",

now log. sin. l" 4.6855749

log. 65196 4.8142210

(N°. = .316079) 9.4997959;

the area of the spherical triangle = r® X .316079, the whole

surface of the sphere being

r‘ X 12.56636.

In an ensuing part we will shew how to express the area

of a spherical triangle in terms of its sides, and also explain the

use of the latter expression.

Cor. 1 . Since by Prob. 9, page 134, the limits of a + 6+ c

are 180® and 540°, the area of the triangle ABC may be equal

to any number of degrees between 0 and 360°.

Cor. 2. If each of the angles a, h, c, =90", the area of the

triangle ABC — 270®— 180®= 90^, which is ^th of the whole

surface, since 4ir = 8(90
0
): this agrees with Cor. 2. Prop. 9-
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<S 6

Cor. 8. The area of DMA (see Tig. 9.), = - x—— (if « be
4 1 80

its angle), = e; if we conceive DN, DM, to be continued till

they meet in the opposite pole, and name the space, included be-

tween the great circle, a Lune, then the lune= 2 . DNM— 2e:

but the area of ^J3C= a+ 6 + c— 180°: equate this with the

area of the lune, and

e
a + b+c

2
- 90°;

which is the value of the angle NDM, when the area of the

lune equals the area of the triangle.

Prop. XIV. If ti be the number of the sides of a spherical

polygon, its surface equals the sum of its angles, minus the product

of two right angles multiplied by n— 2.

Let the polygon be AGFECA : divide it by the means of the

arcs of great circles into triangles, then

area AGF — z AG

F

+ z GFA 4- z GAF — 180°

area AFC = z FAC + z AFC + Z ACF - 180°

area CFE = Z CEF + ^ CFE + c FCE - 180°

.". area of polygon = i. AGF + ( £ FAC + i. GAF) +
( i. GFA + / AFC + i CFE) + z CEF + ( i. FCE +
z ACF) - 3 x 180°

= z AGF + z G4C + z GFE + z CEF + t ECA
- (5 - 2) 180°.

This demonstration proves the Proposition to be true for a

polygon of five sides, and a similar demonstration will prove

it true for a polygon of n sides : for, it is plain, if, instead of AC,
we introduce Ca, A a, that is, if we introduce an additional

side, we introduce an additional triangle, and consequently we must

introduce an additional 180° to be subtracted, that is, the negative

part will become — {(5 — 2) 180° + 180°} or —(6 — 2) 180°.
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The preceding Propositions belong, more properly, to Sphe-

rical Geometry than to Spherical Trigonometry
;

they have, how-

ever, been here inserted, because they exhibit certain properties

of spherical triangles rather curious, and very easy of demon-

stration ; so that, if not of essential use in assigning the relations

between the angles and sides of spherical triangles, (which it is the

special object of Trigonometry to assign,) they will not materially

divert or impair the Student’s attention.

In the next Chapter, we will proceed to deduce those formula;,

by which the relations between the sides and the angles of sphe-

rical triangles are expressed.
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CHAP. IX.

On the Expressionsfor the Cosine and Sine of the Angle ofa Sphe-

rical Triangle in terms of the Sines and Cosines of the Sides.

W e will begin this Chapter by establishing, in the fol-

lowing Problem, the fundamental formula, from which all the

methods and forms of solution will be deduced. It corresponds

to the fundamental one of Plane Trigonometry, inserted in page

25; and the Student who understands, in principle, the use made

of the latter formula, possesses, in fact, the clue to the sub-

sequent demonstrations of Spherical Trigonometry.

Prop. XV. Problem.

It is required to express the cosine of the angle of a spherical

triangle in terms of the sines and cosines of the sides.

Let the triangle be mtn

,

let the sides be a, b, c, and the

opposite angles A,B,C\ conceive 0 to be the centre of the sphere,
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and draw the two tangents t Q, tP, at the point t, to the arcs

tm, tn; then i. QtP = Z A: by Prop. 6; and the angle at

O is measured by mn, or a; and, by the definition of the secant,

OQ is sec. b

OP is sec. c.

The principle of the demonstration that follows, is, to obtain

two values of QP, one from the triangle POQ, the other from

P t Q, and then to compare them: now by Euclid, Prop. 13,

Book II, or Prob. 1 of this Treatise:

in APOQ, PQ! = sec.
2
i+ sec.*c — 2 sec .b . sec.ecos.a (rad. 1.)

in A PtQ, PQ* = tan.
2
b + tan.* c — 2 tan. b . tan. c . cos. A.

Subtract the lower expression from the upper,

then, since sec.
2
b — tan.

4
b — (rad.)* = 1, we have

0 = 1 + 1 + 2 tan. b . tan. c . cos. A — 2 sec. b . sec. c . cos. a

and thence.

cos. A — cos. a .sec. b. sec. c — 1

tan. b . tan. c

= (since cos. b . tan. b = sin. b)

cos. a — cos. b . cos. c

cos. b cos. c . tan. b . tan. c

cos. a— cos. b . cos. c

sin. b

.

sin. c
(a)

and similarly, since the process for finding cos. B, cos. C, will

be exactly the same, changing u for b, b for o, &c. the result

must be similar for cos. B &c., that is,

cos. B =
cos. b — cos. a . cos. c

(h\

sin. a . sin. c

COS. C = cos. c — cos. a . cos. b

sin. a . sin. b

Cok. 1. Hence, since

cos. c = sin. a . sin. b . cos. C + cos. a . cos. b

by substituting this value of cos. c in the expression (a), we
have

cos. a — cos. b . sin. b . sin. a . cos. C— cos. a . cos.
s
b

cos. A — : ; : — .

sin. b

.

sin. c

But, cos. a — cos. a. cos.
2
b = cos. a (1— cos.* b) = cos. «.sin.°6;
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cos. a sin. ‘ b — cos. b . sin. b . cos. C . sm. a
.'. COS. A =

: ; :

sin. b . sin. c

cos. a . sin. b — cos. b . sin. a . cos. C

Similarly, cos. B —

sm. c

cos. b . sin. a— cos. a . sin. b . cos. C
sin. c

(cos. a .sin. b + cos. b. sin. a) (1 — cos. C)4+ cos. B = :

sm. c

C
sin. (a + b) 2 sin.

8 —

,C
sin. (6 — a) . 2 cos.* —

and cos. A — cos. B =
sin. c

Prop. XVI. Problem.

It is required to express the sine of the angle of a spherical

triangle in terms dependent on its sides.

„ . cos. a — cos. b . cos. c
Jjy the last Proposition, cos. A = ———: ;

sin. b . sin. e

1 +cos. A =

cos. a— (cos. b . cos. c— sin. b . sin. c) _ cos. a— cos. (6 + c)

sin. b . sin. c sin. ft.siu. c

by the form (2), p. 31 : and by the form (8), page S3,

. , . . 0 /« + 6 + c\
.

/b+ c — a
cos. a — cos. (A+ c) = 2sin. ^ J

sin. ^
j

Hence,

[

)

l + cos. A = —
sin. b sin. c

x sin.
(
a + b+c\ . sb+ c— a\

- j
sin.

^
-

j
b+ e— a>

sin. b sin. c
X sin

(
a+6+c\ Sa + b+ c \

2 /
' S,n

‘ V 2

a + b+ c
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and cos. — =
2

Similarly,

-X sin.

1 — cos. A = cos . b . cos. c+ sin. b sin. c — cos. a

sin. b sin. c

cos. (6 — c) — cos. a _—: — fby the form (4), p. S2.J
sin. b . sin. c

2 . /a+6+e\ . /a+c—o\
= ——— x sin. ( I sm. I 1 by form (8), p.33;

sin. b sin. c V 2 / v 2 s

2 . sa+ b + c . sa + b+c x= ——— x sin. ( b ) sin. I cl,
sin. b sin. c V, 2

' V 2 /

and consequently

.

Bin * « •

2 sin.

1
. /<

sin. — =~— :
. sin. I

i. 6 . sm. c V
a +6+c

0 - sin -

If we multiply together 1 +cos. A, and 1 — cos. A, the pro-

duct of which is sin.
2
A, and substitute S instead of —————

,

2

we shall have sin.* A =
4

sin.* b . sin.* c

and consequently,

X sin. S . sin. (S — a) sin. (S— b) sin. (S— c),

sin. b . sin. c

sin. A =

V^sin. S . sin. (S— a) sin. (S— 6) sin. (S— c)}\

Con. 1. If we wish to compute sin. B, we must begin

cos. 6 — cos. a . cos. c .

from cos. if = : :
,
and proceed exactly in

sin. a . sin. c

* The Student, for his own convenience, is desired to compare these

expressions and the manner of deducing them, with the corresponding

ones in Plane Trigonometry.

T
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the steps of the former process : the result will be a fraction,

the numerator of which is the numerator of the above fraction

for the sin. A, and the denominator will be sin. a sin. c; call the

common numerator N, then

N . N N
sin. A — -

—

-—:

,
sin. B = -

, sin. C = — :—-

.

sin. o. sin. c sin. a. sm. c sin. a. sin. o

Cob. 2. Hence
sin. A N
sin. B sin. b . sin. c

X
sin. a . sin. c

N
sin. a sin. A sin. a

•
r

i > 300 ~
~T\ "" • >

sin. b sin. L sin. c

or (if these equations be expressed, after the manner of expres-

sing a proposition) The sines of the sides of a spherical triangle

are proportional to the sines of the opposite angles.

A B
The expressions for sin. —

, sin. — , &c. enable us easily

,. , . /A±B\ SA±B\
to deduce expressions for sm. ^

—

J , cos. ^—-—J
.

Thus, since

. A / (am. (S— b) sm. (S —c)\
sm. — = V i

•

—

7
—:

1 >

2 c sm. b

.

sin. c J

A _ / fsin. S . sin. (S — a)\

2 •'l sin. b . sin. c )
’

B _ /fsin. (S— a) sin. (S — e))

2 '
t sin. a

.

sin. c )

B _ / fsin. S . sin. (S— 6)1

2 ' 1 sin. a

.

sin. c f
'

C /(sin. (S - a) sin. (S— A))
ln - ~ V

( sin. ,i . sin. b )
*

C f (sin. S . sin. (S — c)|

2 ' t sin. a . sin. b '
’

cos

cos,
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/A+J3\ . A B
,

A . B
I 1 I = sin. •— cos. cos. — sin. —
V. 2 / 2 2 2 2

. / fain. S. sin.(S— c)l .

.

= V • }sin.(S— A)+ sin.(5— o)},* Ism. a.sin.o.sm. c)

but the first factor =
cos. —

o

and by formula (5), p. SS.

sin. (S— b) + sin. (S — a) = 2 . sin. - . cos. -—-

;

2 2

C
. , „ cos. —

. A-\- B 2 . c a— b
sin. s= . 2 sin. - . cos. ——-

2 . c c 2 2
2 sin. - . co9. —

2 2

C
cos. — .

2 a- b
-.CO..— ,

cos. —
2

and in like manner.

A— B C0
*'

2 . a-b
sin.

2 - c •
s,n

- 2 ’

cos. —
2

Again,

A+B A B . A . B
cos. = cos. — . cos. sm. — . sin. —

2 2 2 2 2

/fsin. (S— a) sin. (S — ft)

-

) rsin. S— sin. (S — c))

l sin. a . sin. b ] ( sin. c J

£ 12 sin. ^.cos. +
= sm.-.-
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. C
sin. —

2

c
cos. -

2

cos. \ (a + 6),

A — B 8in
' 2*

and cos. = — sin. \ (a+6).
c

cos. -
2

TT • /4 + B\
Hence may be derived tan. ^—-—

J

.

Right-angled spherical triangles may be considered as par-

ticular cases of oblique. The solutions of the latter, then, would

necessarily include those of the former; and, accordingly, if we

wished to generalise as much as we could generalise, it would

not be requisite to consider separately the former. Since, how-

ever, one main object of this Work is to render investigation as

simple and as easy as it is possible to the Student, we will not

avail ourselves of this abridgment and seek to be compendious,

but proceed, in the ensuing Chapter, to treat distinctly of the

cases of right-angled spherical triangles.
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CHAP. X.

Formula of Solution for Right-angled Spherical Triangles .

—

Affections of Sides and Angles.—Circular Parts—Naper's

Rules.—Quadrantal Triangles.—Examples.

Prop. XVII. Problem.

It is required to investigate formulae of solution for all the

cases of right-angled spherical triangles*.

These are to be derived from the fundamental expressions (a),

(i), (c), given in page 143, in which if C be the right-angle and

= 90°; cos. C = 0;

hence,

_ cos. e — cos. a. cos. b
cos. C, or 0 = :—;

, and . . cos. c = cos. a .cos. 6(1)
sin. a . sin. b

cos. c ,
cos. c

hence, cos. a = , cos. b = ; substitute these values
cos. b cos. a

respectively, for cos. a and cos. b, in the expression for cos. A
,

cos. B, and we have

cos. a— cos. b . cos. c
cos. A = :—,—: =

sin. o . sin. c

1 /cos. c

sin. b . sin. c Vcos. b

cos. c (1— cos. b)

cos. b . sin. b . sin. c

— cos. b . cos. c

cos. c . sin.
1
b

cos. b . sin. b . sin. c

‘ Spherical triangles that have one right angle only, are the subject

of investigation : and spherical triangles that have two right angles, and

three right angles, arc excluded.
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COS. S • $11). 0

cos. b . sin. c

Similarly,

= cot. c . tan. b • (2)

cos. B-
cos. c(l — cos.

5
a) cos. c. sin. a = cot. c. tan. a. ..(3)

cos. a. sin. a. sin. c cos. a. sin. c

Now in (l) a, b, c are involved, and, two of these being given, the

third may be found : in (2) A, c, b are involved : and if we
choose to represent, symbolically, by (A, c, b) the form in which

three quantities as A, c, b, are involved, then, similarly, the other

several forms, that can arise by combining angles and sides, may
be thus represented:

(c, a, b); {(A , c, b), (B, c, a)}; {(J3, c, b) (A, c, a)}

{(A, a, b) (B, a, 6)}; {(A, B, a) (A, B, &)}; (A, B, c):

which are in number 10, as they ought to be; the combination

5.4.3
in 5 things, 3 and 3 together, being = 10: those combi-

1.2.3
nations that are similar, such as the second and third, are included

within brackets.

The forms (1), (2), (3), have been already deduced, and the re-

maining ones must be deduced from them, and from the form-!-
^

sin. B

, by the common process of substitution and elimination.

I

sin. a

sin. b

(c, a, b), that is, cos. c =cos. a . cos. b (1)

(A, c, b

)

cos. A= co\. c . tan. b (2)

(B,c, a) cos. B = cot. c . tan. a (3)

{B, c, b)

. . . „ _ _ , sin. B sin. b
this is Cor. to Prop, lo, for-

sin. C
since sin. C= 1.

sin. c

sin. h
. .

sin. B — —
, or sin. b — sin. c . sin. B (4)

kA,c,a) is exactly similar;

sin. a
. sin. B — , or sin. a = sin. c

.

sin. A (5)
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(A , a, b): cos. A = cot. c . tan. b by (2), but cot. c = —cos. c

sin. c

and cos. c— cos. a. cos. b by (1), and sin. c=——-by (5), p. 144.
sin. A

cos. A = tan. b .

cos. a . cos. b . sin. A

sin. a

cot. A =cot. a. sin. b (6)

(B,a,b) \s similar, and .*. cot. /J = cot.Z».sin. a (7)

cos. c

(A , B, a)

:

divide (2) by (4), then = cos. a1 \-j *•/• \“/ u; \ M/> “*VM • r> — i.

1 sm. B cos. b

1 from (I) or, cos. A = cos. a. sin. B (8)

v. (^4, B, b) is similar, and cos. B — cos. b. sin. A (9)

(A, B, c): multiply together (6) and (7)

and cot. A . cot. B= cos. b . cos. a = cos. c (10)

Thus are all the forms easily deduced from (l), (2), (3).

Indeed, the quantities that are to be combined, indicate plainly

the proper process of elimination ; but these forms, although

very simple and fitted for logarithmic computation, are not easily

remembered, and therefore an artificial memory has been supplied

to the Student and Computist, by rules, known by the title of

Naper’s Rules for Circular Parts

;

and in the whole compass of

mathematical science there cannot be found, perhaps, rules

which more completely attain that, which is the proper object

of rules, namely, facility aud brevity of computation.

The rules and their description are as follow

:

Description of Circular Parts,

The right angle is not considered; the complements of the

two other angles, the complement of the hypothenuse, the two

sides, making in all five quantities, are called by Naper, circular

parts. Any one of these circular parts may be called a middle

part (AT), and then, the two circular parts immediately adjacent

to the right and left ofM are called adjacent parts

;

the other two

remaining circular parts, each separated from M the middle part.
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by an adjacent part, are called opposite parts, or opposite extremes:

thus, let the side a be M,

then, comp. B, or 90° — B, and b are adjacent parts,

and, comp, c, or 90° — c, and 90°— A, are opposite parts.

If 90° -Abe M,

90® — c and b are adjacent parts; 90°—B and a, opposite parts.

This necessary explanation being premised, we come to

Naper’s Rules.

1 , The rectangle of the sin. M and radius = rectangle of

the tangents of adjacent parts.

2. The rectangle of the sin. M and radius = rectangle of the

cosines of the opposite parts.

There is no separate and independent proof of these rules; but

die rules will be manifestly just, if it can be shewn that they com-

prehend every one of the ten results, (1), (2), (3), &c. giveu, in

pages 150, 151; for, those results solve every case in right-

angled spherical triangles.
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This is a complete proof of the truth of the rules, and, as we
have already said, the only kind of proof which the rules admit

of; but, after the proof, the rules ought to be used, and the

formula: having performed the service of proving the rules, are

then superseded. The rules ought to be used also, not only in the

immediate solution of right-angled spherical triangles, but in de-

ducing, where they can be so made subservient, the properties of

oblique triangles. We here allude to those properties announced in

the Propositions 24, 25, 26,27 of Robert Simpson’s Trigonometry.

These immediately appear on the application of Naper’s Rules,

and their deduction is so obvious, that it is, practically, against

the interest of the Student to make them the subject of three or

four formal Propositions; since it is not worth the while to

burthen the memory with the terms and enunciation of a Pro-

position, for the sake of formally making one or two steps in the

process of deduction.

The forms for the solution of right-angled triangles have been

deduced from the general expressions for the cos. A, cos. J3, cos. C,

in which, as in a particular case, C = 90°. The same general

expressions may also be used for any other case, in which, to any

one or more of the sides or angles particular values should be

assigned; for instance, the side c may be a quadrant = 90°, in

which case the triangle has been called a quadrantal triangle; in

this case

os. C =
cos. c — cos. a . cos. b cos. a .cos. b

siu. a . sin. b sin. a . sin. b

and .‘. sin. (90° — C)— — cot. a . cot. b

= - tan. (90° -a) tan. (90°-6)..

cos. b

(since cos. c = 0)

(«)

„ cos. b — cos. a . cos. c
Again, cos. It — ; r

sin. a . sin. c

cos. a — cos. b . cos. c
cos. A = : —

:

sin. b . sill, c

sin. <i

cos. a'

sin. b

From these three equations, and the additional one, viz.

sin. si sin. a .

^ = —
, may be deduced all the cases m quadrantal, as

sin. H sm. b

they have already been, iu right-angled spherical triangles.
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If, in the above expression (a), we call <JO°—C the middle

part, and 90°— a, 90° — b which are the complements of the

sides, the adjacent parts, the above result might be comprehended

under a Rule like Naper’s; but, should such a case occur, the

surest method, and, perhaps, on the whole, the most expeditious

for the Student and Computist, would be to take the supplemental

or polar triangle, and to solve it by Naper’s Rule; for, the angle

in the supplemental triangle opposite to c — 1 80° — c = 1
80° — 90°,

is a right angle. Thus, in the case adduced, the angles of the

supplemental triangle are 180°— a, 180°— b, and the hypothenuse

is 180° — C; therefore by Naper’s first Rule, 1 x sin. (C — 90°)

= tan. (« — 90°) . tan. (b — 90°) the same result as (a).

Examples of the solution of right-angled spherical triangles.

Example I

.

, A = 23° 27' 42"

Given J Required

\ b = 10 3.9 40

r determined.

90°—A middle part, 900-— r, b, adjacent parts;

.•. r . cos. A = cot. c . tan. b [1st rule]

,\ log. cot. c = log. r-J-log. cos. A— log. tan. b

log. r= 10;

.-. log. r -f log. cos. 23° 27' 42" .= 1.9-9625240

log. tan. 10 39 40 = 9 2747329

log. cot. c = 10.6877911

.-. r = 11* 35' 49".
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a determined.

b middle part, <)0' — A, a, adjacent parts

;

r .sin. b — cot. A. tan. a [1st rule, p. 152,

J

.-. log. tan. a = log. r -f- log. sin. b — log. cot. A
10 + log. sin. 10° 39' 40" = 19.2671709

log. cot. 23 27 42 = 10.3624932

log. tan. a — 8.9046777

o = 4° 35' 26".

B determined.

90°—B=:M, 90°—A , b opposite parts;

.•. r . cos. £=rsm. A . cos. b [2d rule]

.•. log. cos. B+log. j =log. sin. .id-f-log. cos. ^
log. sin. 23° 27’ 42” — 9.6000308

log. cos. 10 39 40 = 9.9924380

log. cos. B + 10 = 19.5924688

B = 66’ 58' 1".

The above is the solution of a Problem in Astronomy, in which

from the obliquity A, and the right ascension b, as given quantities, the

longitude c of the Sun, and the declination a are required.

Example 2.

Given
{

a = 27°. 48'

c = 71 .39-37

b determined.

90— c ss A/, a, b, opposite parts.

r . cos. c = cos. a .cos. b 2d rule;

•\ log. cos. b = 10 + log. cos. c — log. cos. a,

10 -j- log. cos. 71° 39' 37" = 19-4978286

log. cos. 27 48 0 9.9467376

... log. cos. b =9-5510910

and b — 69° 9’ 48".
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B determined.

yo- B—M, 90°— c, a, adjacent parts;

r.cos. B= cot. c.tan. a by 1 st ru *e

log. cos. B -f 10 = log. cot. c + log. tan. a,

log. cot. 71° 39' 37" = 9-5204674

log. tan. 27 +8 ~ 9-722008a

10 + log. cos. B = 19.2424759

.-. 23=79° 56' 4".

This is the solution of an Astronomical Problem, in which, from

the latitude of a place = 90°- 27° 48' = 62° 12', and the latitude of

the Sun at six o’clock = 90°-71° 39' 37"= 18° 20' 23", it is required

to find the Sun’s declination, which, by the result, would be 90 —

69° 9' 48"= 20° 50' 12"; the angle B = 79° 56 11", in the same

Problem, is the Sun’s azimuth.

Example 3.

C not a right angle, but c, the side opposite to it, = 90°.

«- ^ {c

C determined.

IVy the expression p. 143,

cos. c— cos. a . cos. b

cos. C = •

sin. a . sin. 6

cos. a . cos. b
~ ~

sin. a . sin. b ’

= — cot. a

.

cot, b ;

in locarithms,

since cos. c = 0

Now

log. cos. C = log. cot. a + log. cot. b - 10.

10 + log. cot. 32° 57' 6" = .1882850

log. cot. 66 32 0 =9.6376106

... cos. =9-8258956

... C— 180°- (47° 57' 16") = 132° 2' 44".

The supplement of 47° 57' 16" is taken, since from the expression

cos. C = — cot. « . cot. b

cos. C is negative, .•. C > 90°.
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B determined.

By the expression [b~\, page 143,

„ cos. b — cos. a . cos. c
COS. B = :

:

sin. a

.

sin. c

cos. b
=z , since cos. c = 0

;

sin. a

log. cos. B r= 10 -J-log. cos. b — log. sin. a

10+ log. cos. 66° 32' O'" = 19.6001181

log. sin. 32 57 6 = 9-7355441

log. cos. B = 9.8645740

.-. B = 42° 56' 12".

Here, the Problem is most simply resolved from the founda-

rnental expressions for the cosines of the augles: and there is no

need that we recur to the supplemental triangle : if however wc
do, then since its two angles are 180° — r, 180® — b

,
and the

adjacent side = 180°

—

C, by Naper’s first Rule, r sin. (C — 90°)

= tan. (a— 90°) tan. (b — 00°) or — r.cos. C = cot. <7 . cot. b,

as before; and similarly for B.

The above is the solution of an astronomical Problem, in

which, from the latitude = 90® — 32° 57’ (¥' = .57° 2' 54", and

the Sun’s declination = 90°— f>6° 32' = 23® 28', it is required

to find the time at which the Sun rises.

In the solution of plane triangles, one of the cases, sec p. 84,

is ambiguous : in spherical right-angled triangles, there are three

ambiguous cases : and these are when the quantities, a, f, A are to

be found from b and B given: now, by Naper’s Rules, a,c, A
are given by these three equations

;

r . sin. a = tan. b . cot. B
r . sin. b = sin. c . sin. B;

r . cos. B = sin. A . cos. b ;

but alter that sin. a, sin. c, sin. A, have been deduced from these

equations, there is nothing to determine us, whether we ought

to take o, c, A, or 180°— a, 180®- c, 180®- A\ for, the

sines ol the 3 latter quantities are the same as the sines of the 3
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i’ormcr : and it is easily shewn, that there are two right-angled

spherical triangles, which have an angle and side opposite the same

in both, but in which the remaining sides, and the remaining

angle of the one, are respectively the supplements of the remain-

ing sides and the remaining angle of the other.

The other cases are not ambiguous, and Naper’s Rules, with

an attention to the signs of the quantities involved, will enable

us to remove the ambiguity which some of these cases appear to

have : thus, if b be the middle part, 90° — c, and 90° — B,
the opposite parts, then sin. b = sin. c . sin. B : if b be

required from this equation, will it not be doubtful, whether

b or 180° — b, [[since sin. b — sin. (180°— 6)^ ought to be taken r

The ambiguity is removed by this property, that, if B be > or

< 90°, b is > or < 90°: for by Naper’s 1st Rule, sin. a =
cot. B . tan. b. Now, sin. a is positive when a is between 0 and

1 80°, and if B be > 90°, cot. B is negative
;
and consequently,

tan. b = —
, is negative, and b > 90°. If B< 90®, cot. B is

cot. B
sin. a . . . , , „

positive; .'. tan. b — — is positive: and b < 90 .

cot. B
Similarly, make 90°—B = M, and 90°— c, and a adjacent parts,

theu, cos. B — cot. c . tan. a; if c be sought,

tan. c = If a be > 90®, and B > Q0°, then tan. a and
cos. B

cos. B are both negative; .‘. tan. c is positive, and consequently,

c is < 90°: if a >90°, and B < 90°, or, if a < 90°, and

,, n i
*an - a . . . . 0

£>>90 , then — is negative; .'. tan. c is negative; .*. e>90 .

cos. B

These considerations arc so simple and so easily made, that

it is, perhaps, better to let the Student endeavour to avail him-

self of similar ones, than to burthen his memory with the terms

and results of formal Propositions: for it must be noticed that,

in order to prevent the ambiguity of solutions in right-angled

triangles, terms have been invented and propositions framed

relative to the affections of the sides and angles : sides and their

opposite angles being said to have the same affection, when each
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is less or greater than 90°: see Simpson’s Euclid, Prop. IS,

p. 500, 8vo. edit. 178).

It has been already proved, that sides and the opposite

angles are each greater or less than 90°, that is, have the same

affection: again, since by the form (1), p. 149,

cos. c — cos. a . cos. b,

if a and b be both > 90°, cos. a and cos. b are both negative;

their product, which = cos. c, is positive, and c < 90°; .\ if

both be < 90°, cos. c is positive, and c < 90°: if a be > 90°, and

b < 90°, or if a < 90°, and b >90°, the product cos. a , cos. b

is negative; cos. c is negative; c is > 90°. This may be

easily translated into the terms and language which Robert

Simpson uses in his Trigonometry. See Prop. 14, Spherical

Trigonometry at the end of Euclid’s Elements, p. .500.

The several cases of right-angled spherical triangles being now
solved, we will proceed in the next Chapter to the solution of

oblique-angled triangles.
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CHAP. XI.

Equations exhibiting the Relations of the Sides and Angles of

Oblique-angled Spherical Triangles.—Formula of Solution

deducedfrom, such Equations.—Examples , &;c.

In the cases of oblique-angled spherical triangles six quan-

tities are concerned, a , b, c, A, B, C: and the general problem

requires us to determine three of the six by means of the three

others. We must have equations then between four of

these quantities combined all possible ways
;
but the number

of the combinations of six quantities, taken four and four.

equals
6 . 5 . 4.

3

1 .2.3.4’
or 15. These combinations are

(abcA), (abcB), (abcC

)

(.ABCa), (ABCb), (ABCc

)

(<aCbA ), (aCbB), (aBcA ), BcC), (bAcB), (bAcC)

(aA bB), (aCcA ), (bCcB).

Now, the number of combinations essentially different is the

number of the horizontal rows, or four : for instance, the com-
binations of the first row depend on three similar equations

:

cos. a — cos. b . cos. c .

cos. A =
;
—-

—

: (l)
sin. b .sin. c

cos. b — cos. a . cos. c
cos. B = : : (2)

sin. a

.

sin. c

„ cos. c — cos. a . cos. b
cos. C = : : (3).

sm. a . sin. b

The combinations of the fourth row depend on three similaf

equations,

sin. a sin. A sin. a sin. A sin. b sin. B
sin. b sin. B' sin. c sin. C' sin. c sin. C ’

and similarly for the remaining two rows: hence the solution of all

X
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the cases of oblique-angled triangles is reduced, in fact, to four

equations, and these four equations must he deduced, as the equa-

tions in p. 150 were, by the ordinary processes of substitution

and elimination.

We will now proceed to deduce these four equations.

First equation belonging to the form {a beA),

cos. a— cos. b . cos. c
cos. A = : —:

.

sin. b . sm. c

Second equation belonging to (ABC a).

In order to obtain this, eliminate cos. b, cos. c, sin. b, sin. r

from the equations (1), (2), (3): or, more simply to obtain it,

take the supplemental triangle ; then, if a', b', e' are its sides,

A', B', C, its angles, we have, by the form (1),

cos. A' = cos. d— cos. b' cos. c'
. —

; ; j

sm. b . sin. c

but cos. videos. (180°— a) — — cos. a

cos. d = cos. (180° — A) = — cos. A
cos. b'

~ cos. (180°— B) — — cos. B
cos. c' =cos. (180° — C) = — cos. C
sin. b’ = sin. (180°— B) = sin. B
sin. r' = sin. (180°— Q = sin. C;

— cos. A — cos. JB . cos. C
consequently, — cos. « = : ——r

—

y; i

sm. o . sm. L

or, cos. a
cos. A +cos. B . cos. c

sin. B . sin. C

Third equation belonging to (aCbA).

In order to obtain this, substitute in the equation (1), instead

of cos. c, its value derived from the equation (3): and instead

, . , . sin. C .

of sin, c, substitute — sin. a,
sin. A

then, cos. A .

sm. C .

sin. b .
— . sm. u —
sm. A
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cos. a— cos. b (cos. C . sin. a . sin. b + cos. a . cos. b)

= cos. a sin.
2 b — cos. C . sin. a sin. b . cos. b.

Hence, after dividing each side of the equation by sin.rr x

sin. b, there results

cot. .1 . sin. C= cot. a , sin. b— cos. C . cos. b.

Fourth equation belonging to
(aAbB).

This equation is deduced in Cor. 2. to Prop, lti, where it is

sin. a sin. A
proved, that

sin. b sin. B

These four equations analytically resolve the Problem; or, by

means of them, any three quantities being given, the fourth may
be found. But it is plain, from their inspection, that they do

not afford convenient solutions, since none of them are under a

form adapted to logarithmic computation; and even, if, in order

to find one of the quantities involved in the equation, we were to

express the equation under a form adapted to a logarithmic com-
putation, such modified form would be useless, except in the

case for which it was contrived : that is, would be useless, if one

of the quantities, by which the required quantity was expressed,

should itself be required to be computed, the previously required

quantity becoming, in this second case, one of the given quan-

tities. For instance, in the combination (tibcA ) if A be the

quantity sought, we have, by p. 144
,

1 + cos. A, or, 2 cos.
2— =

’ ’ o

a + b -f- c

sin. b . sin

f .
/a +6-pc\

.
/a + b

•ism. ( 1 sin. I
—

in. c l V 3 x v 2

whence, by a logarithmic computation, cos. A and A can be

found
;

but, from such form, if A were given, and a required,

a could not be immediately and conveniently found : and, on this

account, something more is required of the analyst, than mere

equations that exhibit the possibility of solutions : he ought to

furnish formula*, from which, the quantity, whatever it be, side

or angle, may by a direct, certain, and commodious process, be

found. Formal* then, as it will easily be seen, by which one
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quantity may be computed from others that are given, must be

more in number than the equations which merely exhibit the re-

lations of the quantities. This does not take place in right-angled

spherical triangles; in which the formulae of solution need not

exceed in number the equations. For instance, the equation

cos. c — cos. a .cos. b represents the relation between r, a, 6; and

from the same equation may be found, by a like logarithmic com-

putation, either c from a and b ;
or a from b and c ;

or b from a

and c
;

the same may be said of the second equation, that is, of

cos. A = cot. c . tan. b: cither A, or c, or b, may, from the equation

as it stands, be found with equal facility.

The solution of oblique-augled spherical triangles will be found,

by what follows, to require six cases
;
and in using the ioregoing

forms of combination such as (a beA), the quantity sought will

be placed last.

Cases of Oblique-angled Spherical Triangles .

Prop. 18. Case 1st, (abcA ).

The sides a, b, c, are given, and the angle A is required.

First Method of Solution.

By Prob. 16,
page 144, if S = a + 6 + c

sin. A
2 . V^sin. S . sin. (S - a) . sin. (S — b) sin. (S — e)}

sin. b . sin. c

and, log. sin. A = jr {20+2 log. 2 + log. sin. S+ log. sin. (S—a )

+ log. sin. (S— b) + log. sin. (S — c)} — log. sin. b — log. sin. c.

In order to find log. sin. B, subtract, in the above form,

instead of log. sin. b and log. sin. c, log. sin. a and log. sin. c;

and, to find log. sin. C, subtract, instead of log. sin. b, and log.

sin. b, log. sin. a, and log. sin. b.
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Second Method.

By Proposition 16, page 144,

sin. S . sin. (S — a) -A sin. S. sin. ($— a)
1 +cos. A = 2

;
—

;
—

; : cos. — =
:

:

sin. b . sin. c 2 sin. o. sin. c

and loss* cos.— =s6
2

{20+ log. sin. S + log. sin. (S — a) — log. sin. b— log. sin. e}.

Third Method.

By the same Proposition, in the same page,

1 — cos. A =
sin. (S — b) sin. ($ — c)

_ . „ A sin. (S— A) sin. (S — c)

sin. b . sin. c ’ 2 sin. 6 . sin. c

and log. sin. — =

§ {20+ log. sin. (S — 6) + log. sin. (6' — c) — log. sin. 6 — log. sin.c}

Fourth Method.

Divide the third equation by -the 2d, and

A
sin. —

2

A’
cos, —

A
or tan. —

2

sin. (S— b) sin. (

S

— c)

sin. S . sin. (S — a) )

and, log. tan. — =

i{20+log. sin.(S— 6)-f log.sin.(S—c)— log. sin»S— log.sin.(S— a)}

r
2

since sin. b = log. sin. 6 = 20 — log. cosec. b\
cosec .

b

instead of subtracting log. sin. b, ike. in the above forms, we
may (which with certain Tables is a convenient operation) add

log. cosec. b — 20, 8tc.
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Example.

a= 500 54' 32"

6= 37 47 18

c =74 51 50

163 33 40

5 _ £_+^±£_ s i
0 46' 50'

5 — a = 30 52 18

5- 6 = 43 59 32

5 - c = 6 55 0

Numerator computed.

20 + 2 log. 2= 20.6020599

.sin. = 9.9955158

.sin. = 9.7102163

sin. = 9-8417102

sin. = 9-0807189

2 |
59.2302211

29.6151105 [a]

B determined.

log. sin. 50° 54' 32"= 9.8899424

log. sin. 74 51 50 = 9-9846660

[c] 19.8746084

0]-M= 9 7405021

.-. B = 33° 22' 45"

A determined.

log. sin. 37° 47' 18"= 9-7872806

log. sin. 74 51 50 = 9-9846660

19.77 19166

(V]-[/)] = 9.843 1639

z/=44° 10' 40"

C determined.

log. sin. 50° 54' 32" = 9-8899424

log. sin. 37 47 18 = 9-7872806

[/«]= 19.6772230

[«]— [m]= 9.9378875

.-. C = 180°- {60° 4' 54"}

= 119 55 6,

’ ('. is greater than 90°, since

„ cos. c—cos. a . cos. 6
cos. C = -. ;—r-

—

sin. a .sin. 0

which is negative, since cos. c < cos. a cos. 6.

The sum of the three angles, or

A+B+C= 197° 28' 31".
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Solution of the former Example by the Second Method.

20 = 20

S =81° 46' 50"...

5— a= 30 52 18 ...

39.7057321 [d]

5— 37° 47' 18"

r-74 51 50

19.7719466 [A]

[d]- [A] = 19-9337855

4(M-CG) = 9.9668927 = log. cos.

.-. ^- = 22* 5' 20",

and A = 44 10 40.

By the Third Method.

20 = 20

S-A= 43° 59' 32" sin. = 9.8417102

S-c= 6 55 0 sin. = 9.0807189

38.9224291.. ••••LG

[6] =19.7719466

[/]-[6]= 19.1504825

i (C/]-M)= 9.5752412 = log. sin. d

.•. d — qoo 5/ 2o"i and A= 41° 10* 40'', as before.

By the Fourth Method.

20= 20

log. sin. (S— b) + log. sin. (.9— c), by last, or [/]= 38.92242.91

log. sin. 5 -Flog. sin. (S—a), by 2d solution, or =39-7057321

19.2166970

.-. log. tan. d— 9.6083485

d = <22
° 5' 20", and A = 44° 10' 40", as before.
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The solution of this Example becomes the solution of an Astrono-

mical Problem, when from the co-latitude of the place b, or 37° 47' 18",

the co-declination of the Sun c, or 74° 51' 50", and the zenith distance

a, or 50° 54' 32", the time from noon or the angle A is required ; the

angle C is the azimuth.

Any one of the four preceding methods ntay be used, but

not, in point of brevity, with equal advantage : if one angle only

be required, the shortest solution is plainly by means of one

of the three last formulae: but, if all the angles of the spherical

triangle be required, the first method is as short, and quite

as convenient, as the three last methods*.

Any one of these four methods may be used, but not, with

regard to numerical accuracy, in all cases, with equal advantage.

If the angle sought, A for instance, should happen to be nearly

90°, then the first method is to be superseded by one of the three

latter, and this for reasons precisely the same, as those which have

been stated in page 95, to which the Reader is referred.

Case 2d, (ABCa).

The angles A, B, C, arc given, and the side a required.

First Method of Solution.

Let the sides and angles of the supplemental or polar tri-

angle be a, V, c\ A', C', C'

:

then, by the last Case,

,
v'Jsin. S. sin. (S — a

1

) . sin. (S — 5') sin. (S — c')}

sin. A = 2— : w : ;
?

•

sin. b sin. c

* In the Logarithmical Aritlimctike
,

published in 1631, the first

case is solved by the second method, and in Vlacq’s Tables, published

at Gouda in 1633, the year in which the Tngonometria Brttannica was

published, the solution is by the third method: the rules of solution,

then, 200 years ago, were as plain and precise as they now are
:
yet,

in the mode of proof we have gained something, which is certainly more

plain and direct than Vlacq’s.

Digitized by Google



169

a'+h'A-r' f

but S = - - - = -5- (180°— A + 1
80° — B + 1 80° — C) =

n *

270° - A+B+C = (270° -S'), if
.A+B+C

= S';

lienee, sin. S= — cos. S'.

Again, S-a' = 270°- S' — ( 180°- A) = 90°— (S' -A)

.*. sin. (S — a) = cos. (S'— A);

also, S— b’ = 90°— (S'— jB)

;

.'. sin. (S-&')= cos. (S'- H);

and similarly, sin. (S— c') = cos. (S' — C).

Again, sin. ft' = sin. (180° — B) — sin. B; sin. c =sin. C, and

sin. A' = sin. a.

Hence,

— cos. S', cos. (S'— A) . costs'— B) . cos. (S'— C)l
sin. a = 2 : 7;—:

sin. B . sin. L

and in logarithms,

log. sin. a = j (2 log. 2 + 20 + log. cos. S'+ log. cos. (S' — A)
+log. cos. (S' — J3)+ log. cos. (S'— C)} —(log. sin. Ji+ log. sin. C)

and sin. b, sin. c, are represented by fractions that have the same

numerators as sin. a, and denominators, which are equal to

sin. A . sin. C, and sin. A . sin. B, respectively.

The cos. S' under the vinculum is affected with the negative

sign. Now, by Prop. 9, page 134, A + B + C > 180°, and

< 5409 ;
.*. — ^

> 90°, and < 270°; .\ cos. S' is nega-

tive, or— cos. S' is positive. Again, S'— A =
^—— : but, by

Prop. 2, page 130, b' + c>a'; .'. 180°— B+180°— C>180°— A;

B + C- A < 180°, and < qqo.
cos> (S'_ A >

is positive; so are, by similar proofs, cos-(S' - B) and

cos. (S' — C).

Y
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Hence, in the foregoing expression for sin. a, the quantity

under the radical sign is really a positive quantity.

As the expression for sin. A has, by the aid of the supple-

mental triangle, been employed to represent a side in terms of the

jl
angles, so, in like manner, may the expressions for cos. — , sin.

tan.—; thus by the expression, page 164,
2

A

.

//sin. S . sin. (S— a')\
cos.— = y I 7—77—: ;— ) ,

2 r V sin. b . sin. c /

or, since cos.
A (180°-a) .a

, „ ,— = cos. = sm. - , we shall nave a
n n n 1

Second Method of Solution,

And, a may be found from the expression,

. a . / / — cos. S', cos. (S' — A)
sm.- = V (

and similarly, a

sin. B . sin. C )•

Third Method,

And, a may be found from the expression,

a //cos. (S'— JB) . cos. (S — C)
cos.- =V(f

and similarly, a

sin. B . sin. C )

Fourth Method,

And, a may be found from the expression,

tan. - = V
2 V Vcos, (S' - B) . cos. (S'- C)/
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Example by the First Method.

a determined.

A = 44° 10* 40" sin. =9.8431624 CO
B = 33 22 45 sin. =9-7405025 £2]

C = 119 55 6 =9-9378874 [3]

197 28 31

S' = 98 44 15.5 cos. =9-1815867

S-A = 54 33 35.5 cos. =9.7633172

S'— B = 65 21 30.5 cos. =9.6200732

S'—C= — (21 19 50.5) cos. =9.9696235

20+2 log. 2 = 20.6020599

2)59.1366605 ...

29.5683302

P3+W= 19-6783899

log. sin. a = 9-8899W3

and a =50° 54' 30". 8.

b determined.

(YJ =29.5683302

CO+C3] =19-7810498

sin. b 97872804
and, b =37° 47' 18".

c determined.

|V] =29.5683302

CO+DO =19.5836649

sin. c = 9-9846653

and c =74° 51' 49".

By the Second Method.

log. 7* 20

S'=98° 44' 15". 5 cos. = 9-1815867

S'~A= 54 33 35.5 cos. = 9-7633172

ra+co. or log. sin. fl+log. sin. C . .

.

38.9449039

, . = 19-6783899

2)19-2665140

.-. log. sin. -= 9.6332570

.-. - = 25° 27' I5"i

and a = 50 54 30*.

•CO
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By the Third Method.

log. r* =20
S'— B = 65°2l'30".5 cos. = 9-6200732

S'- C= — 21 10 50.5 cos. = 9.9696235

39.5896967

P3+KI 19-6783899

2)19.9113068

.-. log. cos. ~ = 9-9556534

.-.t = 25° 27' 15",*,

and a = 50 54 30^

.

By the Fourth Method.

log. r1 = 20

log. cos. S -f-Iog. cos. {S'— A) 1 8.9449039

log. cos. (S'—B)-flog. cos. (S'— C) = 19.5896967

2)19.3552072

log. tan. “ = 9.6776036
2

.-.| = 250 27' I5"j,

and a = 50 54 30£.

Case 3d. (aCbA ).

a, b, two sides and C the included angle are given, and the

angle A is required.

By Cor. 2. Prop. 16, page 146,

sin. A sin. a
_

sin. A ± sin. B _ sin. a + sin. b

sin. B sin. b ’ sin. B sin. b

By Cor. to Prop. 15. cos. A +cos. B = 2 .
——r

^
sin.

a —

;

3 r
SID. C 2

Digitized by Google



173

sin. A + sin. B
but — — — tan

cos. A + cos. B
sin. c . sin. B

sin. a + sin. B sin. c . sin. B

lx . *<
A-b) sin. -

i

^
page 37, and

sin. A-fsin. B
cos. A+cos. B ”

2 _ sin (0+ b) sin .* £ sin - 6

X

c c
= sin. C = 2 sin. — x cos. —

, p. 42, and
sin. b 2 2

t
c

. cot. —
2

/A + jB\ sin. a -(-sin. b
ta" ( 2 )

2sin-(^) ,C0S
- (

'a +b\
< 2 /

'a + b\
1 . COS.

e 2 / (^) c.
cot. —

2/a+b\ /«+ *\

\ <>

'

) '
C0S ’

\ 2

(A + B\
COS.

1(t-*)
' ( 2 /

'

/a+6\
cos. (—

)

.cot.- (1)
2

Similarly,

sin. A — sin. B sin. a — sin. b

cos. A+ cos. B . , i l\ • « B
2 sin. (a+ o) . sin. —

2

.sin. C

2 . sin
a + b>

2~

<i+ 6\ /n + fc^
2 COt

' 2
’

2.2. sm. ;
cos.

0-r)/A— JB'y

or, tan. - . cot. — ••»••••••• (2)
*

a + b\ 2. sa + b\
sm. ;

• The above is a simple deduction of the forms (1), (2), (which, in

substance, are Naper's Analogies), and a compendious one, supposing the

formula: for sin. —~j~— ,
cos.—==— ,

not to have been previously de-

duced : sec p. 146.
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Hence, since by the formulae ( l), tan. ^
—

)
is determined,

^
becomes known, let it = S : and, by the formula (2),

tan. ^ is determined, and —-— becomes known; sup-
A-B

pose it equal to D, then, since

A + B
2

A-B

= S

= D;

by addition, A = S+ D,

by subtraction, B = S— D.

Example.

C = 36° 45' 28"

a = 84 14 ‘29

5 = 44 13 45

yl -(-determined.

- = 18° 22' 44".. ..cot. = 10.4785395
2

= 20 0 22 .... cos. = 9.9729690
o

20.4515085

Ijr/' = 64 14 7 cos.= 9.6381663
2

log, tan. — = 10.8133422

^4^= 81° 15' 44'.41
2

A — B determined.

r
- = 18° 22' 44" cot.= 10.4785395

= 20 0 22 sin. = 9.534178

9

20.0127184

= 64 14 7 .... sin. = 9.9545255

10.0581929
A-B—— = 48 49 38'.
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A and B determined.

A-B
2

A+B
2

= 81° 15' 44".41

= 48 49 38

A = 130° 5' 22".41

B = 32 26 6.41

c determined.

Bin. 36° 45' 28" = 9-7770158

sin. 44 13 45 = 9.8435629

19-6205787

sin. 32 26 6 * 9.7294422

log. sin. c = 9-8911365

c= 5l° 6' 12"

The expressions for tan. (tt?)
and tan. <TT?) ,

expand-

ed into a proportion, are called, from their Inventor, Naper's

Analogies.

The angles A and B being determined by the above forms,

the side c may be determined, as it has been in the foregoing

Example, from the expression
sin. b

: but it may be
sin. C sin. B

desirable, as in the corresponding case of rectilinear triangles

(see page 85), to determine c immediately without the' interven-

ing process of finding the angles A and B

:

and, in fact, many
Problems in Astronomy* require, from the data of two sides and

the included angle, solely the determination of the opposite side c.

Determination of the side c.

Second Method.

_. „ cos. c— cos. a . cos. b
Since cos. C = : :

—-
,
page 143

;

sin. a . sin. 6

cos. e = cos. a . cos. b 4- sin. a . sin. b . cos. C

;

but cos. C= 1 — ver. sin. C, (ver. sin. stands for versed sine);

• For instance, in finding the Moon’s distance from a Star ; in de-

ducing the altitude of a Star from the latitude, declination and hour-

angle (two Problems useful in determining the Longitude)
;
in deducing,

in the case of an occultation, the Moon’s distance from a Star
;

in deter-

mining the altitude of the nonagesimal (see Astronomy, p. 364.) : in de-

termining the latitude from two altitudes and the time between, (see

Astronomy, p. 422.), &c.
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cos. c = cos. a . cos. 6+ sin. a .sin. b — sin. a . sin. b.ver. sin. C

= cos. (a —b)— sin. a . sin. b . ver. sin. C

;

Q
.'. 1 —cos. c, or, 2 sin.

5 - = ver. sin. (a— 6)+sin. a . sin. b . ver. sin. C

= ver. sin. (a — b)
^

1 +
sin. a . sin. b . ver. sin. C

Assume* tan.' 6 =

ver. sin. (a— b)

sin. a . sin. b . ver. sin. C

)

ver. sin. (

a

— 6)

which in logarithms is 2 log. tan. 0 =

log. sin. a +log. sin. A+ log. ver. sin. C— log. ver. sin. (a — b) (p)

then 2 sin.® - = ver. sin. (a — b). sec.* 9, and
2

log. 2+ 2 log. sin.- =log. ver. sin. (a—b)+ 2 log. sec. 0— 10 (q ).

Former Example.

c computed independently of A and B by the 2d Method.

Determination of the subsidiary angle 6 by the form (p)

a = S4° 14' 29" sin. = 9-9978028

* = 44 13 45 sin. = 9.8435629

C = 36 45 28 ver.sin. = 9-2984762

29.1398419

a— * = 40 0 44 ver. sin. = 9-3693878

.-. 2 log. tan. 0 = 19.7704541 ,

and log. tan. 6 9-8852270

* This is the instance to which we alluded in speaking, page 106, of

the use of Trigonometrical formula: in computing log. («+*).
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Determination of c by the form (q ), page 176.

2 log. sec. 0 =20.20124.88

log. ver. sin. 40° 0' 44“ = 9-3693878

29.5706366

10 + log. 2 = 10.3010300

2 log. sin. ^ 19.2696066

and log. sin. j- = 9.6348033

.-. ~ = 25® 33' 5"A,

and c = 51 6 11.5, nearly.

This is, perhaps, the most commodious form for computing c;

for, when we use it, we need not consider whether the fraction

sin. a . sin. b

.

ver. sin. C . . . . .

:— — is > or < 1, since tan. 6 admits of all

ver. sin. (a — b)

degrees of magnitude. It is easy, however, to give another

formula of computation, thus

:

Third Method of computing c.

cos. c = cos. u . cos. b+ sin. a sin. b . cos. C

= cos. a . cos. b+ sin. a . sin. b . (2 cos.
1

!
- l)

Q= cos. (a+ b) + sin. a . sin. b . 2 cos.* -
;

2

. .c .... C
1 — 2 . sin. - = cos. (a+ b) + sin. a . sin. b . 2 cos. —

;

and .'. 2 sin.* - — 2 . sin.’ —

—

2 sin. a . sin. b . cos. -7
a-\-b

IT
€

Let sin. a . sin. b . cos.
c — = sin.

2 M ;

2 ’

/ c
and log. sin. M=T ^2 log. cos. — +log- sin. «4-log. sin. 6—20^

- i c . »a + b . .
then sin. - = sin. sm. M

2 2
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= sin
- (| + 5

+ ")«"• +

by the form (c), p. 32 ;
and in logarithms,

log- sin -
“ = (log. sin. + m) + log. sin.

(|+ 3
-M)}

This is the kind of form which Laplace has employed in

his Mecanique Celeste, Livre 2, page 227, (see also the use

made of this form, Astronomy, vol. I. p. 159.)

Former Example by the third Method.

r
- = 18° 22' 44".2 .cos.= 19.9545254

a= 84 14 29 ...,sin.= 9-9978028

5=44 13 45....sin.= 9.8435629

2i^=G4 14 7 39-7958911

A/=52 14 23 -. 9.8979455= log. sin. Af=log. sin. 52° 14' 23"

4. M= 1 16° 28' 3O''.. .sin.= 9-9518856'

^i"-.>/= 11 59 44.. ..sin.= 9.3177204

19.2696O6O

0.6348038= log. sin.
C
-

;

.-. 7, = 25® 33' 5"s

c = 51 6 11.33, nearly.

Fourth Method.

cos. c = cos. a . cos. 6-}- sin. a . sin. b . cos. C

1— ver. sin. c = cos. a .cos. 5+sin. a. sin. b— sin. a .sin. b. ver. sin. C;

.*. ver. sin. c = 1 — cos. (a — b)+ sin. a . sin. b . ver. sin. C
= ver. sin. (a — b) + sin. a . sin. b . ver. sin. C,

which formula, translated into words, becomes the precept given in

Sherwin’s Table, page 44, (edit. 1771) for finding the side opposite
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to the included angle. The author gives in his Work a Table

of natural versed 9ines, which are plainly necessary in his mode
of computation.

If we use one of the preceding formulae for computing c, we
may, if we please, determine A and B without the aid of Naper’s

Analogies, and by these expressions,

sin. C . sin. a , _ sin. C . sin. b
sin. A — : ; sin. B = : .

sin. c sm. c

Case IV. (AcBa).*

A, B, two angles, and c the adjacent side arc given, and the

side a is required.

The solution will be deduced from the former, by the aid of

the supplemental triangle; A', B! , G, a, b', c being its angles

and sides.

sA'+B\ /(I80"-a)-Kl80°-6)\ / . a+b\(—)
=

~i ) = “"•O0'-—

)

—-C-f*)

(
A'— B\ /b— a\ /a— b\

- j
- tan.

( 2
lan

* V 2 )

sm (rr~)
= s,n

(
18° ~ q~)

= s,n
( ~

)

[see Cor. 6, Prob. 3.]

/a - b'\ /B — A\ sA — B\
Sln

’ \ 2 )
~ S,n

‘ C 2 )
~ ~ Sln

' V 2 ) ’

* This combination is in the third row (see p. 16T,) and therefore

not essentially different from the first of that row, namely,
(aCbA)

which has been already considered. In fact, the two equations involving

the four quantities are precisely similar : but, from what was said in

p. 163, the same formula of solution cannot suit each case, since, in the

former, an angle is the quantity required which, in the latter, becomes

one of the quantities given.
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/a' + b‘\ /A±tf\
. generally, sin. ^——

)

= ± sin. -—

)

•

A +

Again,

a +b' / r> o
A + B

cos. — cos. (
180°

2 V 2

[see Cor. 6, Prob. 3.

3

<a' — b'\ /B — A

-(r¥)

/a'-l>\ /B-A\ /A- B>.

• (-5-) = cos V~^~) ;
or = cos

- {-£-) ;

lastly, cot. — = cot. ^90^ — = tan. - .

Having now transformed all the terms in (1), (2), (see p. l7S)»

into different expressions, if we substitute the transformed terms

in (1), (2), there results

tan.

( A~ B\
(
cos*
—~)

/ A +
\
C0S

‘ 2 /

c
. . . (3),

a 4- b
whence

whence may be derived.

These equations (3), (4), expanded into a proportion, are

called, [as the former similar ones (1), (2) have been, (see p. 175.)]

Napcr’s Analogies.
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Example,

c = 51° 6' 12'

A = V30 5 22

B = 32 26' 6

A — B—— = 48 49 38 cos. = 9.8184449 sin. = 9.8766379

e

2

A+B
2

25 33 6 tan. = 9.6795032 tan.= 9.6795032

19.4979481 19.5561411

81 15 44 cos. = 9. 181 5936 sin. = 9-9949301

tan. = 10.3163545
*2

and -~y— =64° 14’ 6"i
1

a+ h
a-

O

a—b
=20 0 22^

tan.— = 9.5612110

and = 20° 0'
22'r,

•. a =84° 14' 28"^

5=14 13 43—,
io»’

C determined.

sin. 130® 5' 22"

sin. 51 6 12

sin. 84 14 29

log. sin. C
.-. C = 36° 45' 28".

= 9-8836842

= 9-8011327

19-7748199

= 9-9978028
=~

97770171
"

n and b being determined, C may be determined from this

• r, 1
s’ 11, c .

expression, sin. C = sm. A x — , as it wa9 in the preceding

Example, or, without the intervening process of finding a and b, by

the following method.
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Determination of the angle C.

In the supplemental triangle, by the original form (c), p. 143.

cos. c — sin. a. sin. b'

.

cos. C+ cos. a . cos. b

or cos. (ISO0— C) = sin. (ISO0— A). sin. (180°— B) .cos. (ISO®— c)

+ cos. (180° -A) cos. (180° - B)

or - cos. C = — sin. A . sin. B . cos. c 4- cos. A . cos. B\

= — sin. A . sin. B (1 — ver. sin. c) + cos. A . cos. B;

and .*. 1 — cos. C, or, ver. sin. C =

1 + cos. A . cos. B - sin. A . sin. B + ver. sin. c . sin. A . sin. B

= 1 + cos. (A + B) + ver. sin. c . sin. A . sin. B\

. . a
C

ver. sin. C, or 2 sin. — —

ver. sin. c .

ver. sin. c

2 cos.
5

sin. A sin. B =

, sin. A . sin. /K

Assume tan.
2
0 —

ver. sin. c . sin. A . sin. B

2 cos.
(
A4-B)

or, in logarithms,

log. tan. 6 =

~ (log. ver. sin. c+ log. sin. A + logvsiu. B - 2 log. cos.

+ 10— log. 2).

. » C , /A + B\ o a
then, ver. sin. C, or, 2 sin. — = 2. cos. ^ J

sec- "i

• v
in logarithms, log. sin. — = log. cos.

A + B
+ log. sec. 0 — 10.
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C, in the former Example, found independently of a, b.

10- log. 0 = 9.6989690

c= 51° 6' 12"... ver. sin.= 9.5706390 *

v4=lS0 5 22 sin. = 9.8836842

B= 32 26 6 sin. = 9.7294422

38.8827344

81 15 44 2 cos.= 18.363 1872 cos.= 9-1815936
2

20.5195472

.*. log. tan. 0=10.2597736.. .sec. 6=10.3171290

(2
log. sin. - = 9.498722

6

Q
.-. - = 1 8° 22' 43"f,

and C = 36° 45' 27", nearly, as before.

If we express 1 + cos. (

A

+ B), the versed sine of the supple-

ment of A + B, by suver. sin. (4 + B) we may employ this

form for computing C

ver. sin. C = suver. sin. (A-{- B) + ver. sin. c . sin. A . sin. B
= suver. sin. (A + J3) . sec.' 9, putting

lan.
s 9 = sin. A . sin. B .

ver. sin. c

suver. sin. (A -f- B)

Case V. (uAbB).

Two sides a, b, and an angle A opposite to one given,

the angle B, and the remaining angle and side are required.

_ _ „ . _ sin. A . sin. b
By Cor. 2, page 146, sin. B = r —

,

siu. a

* Since ver. sin.c= 2 sin.* - , log. ver. sin. c— log. 2=2 log. sin. - — 10,

.-.log. tan.0=i ^ 2 log. sin. log. sin. yf+log. sin. B— 2 log. cos.

which form is rather more convenient than the one used in the compu-
tation.
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and in order to find C, take the first of Naper’s Analogies, p. 173,

then cot. — = tan. j (A + B) , ,
(°)

2
2

cos. j(a + o)

C
and log. cot. — =

log. tan. -1(A + B) + log. cos. |(a + h)— log. cos. -j(« — 6).

C being found, c may be had from the expression

sin C
sin. c= sin. a

.

or directly thus from the third of Naper’s
sin. A

Analogies, p. 180,

c
, . . ,. cos. j(A + B) ...

tan. - = tan.
2 ' cos. ^(A-£)

Example. B computed.

A = 33° 15’ 7" sin.= 2.7390354.

5= 70 10 30 sin.=9.9734663

19.7125017

a = 80 5 4 sin.=9.9934638

log. sin. B sin.=9.7190379

and B = 31° 34' 37"-71.

C computed.

° ±i =75° T 47" cos.=9.4093099
2

.4 1t-P. = 32 24 52 tan.= 9-8027553
2

19.2120652

-!^^= 4 57 17 ; cos.= 9-9983741

cot. £=9.2136911

.-.£.= 80°42'38'rl ,

and C = 161 25 17ri.
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c computed from C.

sin. l6l° 25' 17"

sin. 80 5 4

sin. 33 15 7

log. sin. c

.-. c = H5° 5' 2".

= 9-5032532

= 9-9934638

19.4967170

= 9.7390354

= 9.7576s l6
r

a + b

2

A+B
2

A—B
2

c computed independently

= 75° 7' 47"

= 32 24 52

= 0 50 15

of the value of C.

tan. s 10.5758962

cos. = 9.9264417

20.5023379

cos. = 9-9999536

tan. ~ = 10.5023843

•••5= 72° 32'
30'' n,

and c s= 145 5 lj.

Case VI. (AaBb).

Two angles A, 11 and a side (a) opposite to one of them, are
given, the1 other side b, and, besides, the remaining side c and
the angle C, are required.

b is determined from this expression, sin. b = sin. a -

r c
s‘n - A ’

rom the first of Naper’s Analogies (1), p. 173, and c from the
third (3), p. 173, as in the preceding case.

Aa
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b computed.

o = 89° 16' 53'.5 sin. = 9-9999658

B — 48 36 0 sin. = 9.8751256

19.8750914

A -10 39 0 sin. = 9-9747475

log. sin. b = 9.9003439

.-. b = 52° 39' 4".5.

The sin. b= sin. (180°— b), but b cannot = 127° 20' 56", for since

A> B .a must be > b.

c computed from the form (5).

— b
=5 70° 57' 59"' tan. = 10.4622011

~- = 59 37 30 cos. = 9-7038563

20.1660574

A R—
j
~- 11 1 30 C08, = 99919097

log. tan. ^ s 10.1741477

...
|
= 56° 1 T 29".33,

• and c a 1 12 22 58.6.

* This last Example is taken from the Trigonometry, of M. Legendre,

who has, however, found c and C by a process different from the above.

Subjoined are the data and results in French measure (F) and reduced

by the Rule, page 21, to English (E).
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C computed from the form (a).

= 70° 57' 59' cos. = 9.5133811
2

59 37 30 tan. = 10.2320208

19.7454019

±~—= is 18 54.5 cos. = 9.9774230
2

cot. £ = 9'7f>79781

£ = 59° 39* 30 ",

and C= 119 15 0.

o=99° 20' 17* (F)

9 92 017

89 28 135

6

B = 54° 0' (F)

4 4

48 6

6

16.8918

6

36

£=48° 36 (E)

12 48 69.93

112 38 29.37

6

22.97622

6

58.5732

5 85 014

52 65 126

6

39.0756

6

4.536

A= 78° 50° (F)

7 85

70 65

6

53.508

o= 89° 16'35".5 (E)

e= 124° 86' 99".3, 5= 58* 50' 14" (E),

39 0

^ = 70* 39 " (£)

C= 132° 50'

13 25

119 25

6

15.0

C=119° 15' (E)

c= 112»22' 58'.6 (£) •. i= 52°39'4".5 (E)

and these quantities (c, b, C,) agree with those determined in the text.

The above reductions may, more easily, be performed by the aid of

the Table inserted at the end of Chap. I, p. 24.
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In Case 5th, the angle C has been determined by means of B
previously determined, and by the aid of one of Naper’s Analogies;

and this method, on the grounds of facility and certainty, is,

perhaps, the most convenient: still, analytically considered, the

determination of C does not require the previous determination of
B; for, by the third equation, p. l6S.

cot. A . sin. C= cot. a . sin. b — cos. C . cos. b,

in which A, a, b, C are alone involved. But, this form is not

adapted to logarithmic computation; in order to adapt it, we
must introduce what has been called a subsidiary angle : thus,

if we take 9 such, that tan. 0 = cos. b .tan. A (c); then.

sin. C . cos. b

tan. 9
+ cos. b . cos. C = cot. a . sin. b ;

or, cos. b .(sin. C. cos. 9 + cos. C . sin. 9) = cot. a . sin. b .sin. 9;

or, sin.(C+ 0)
cot. a . sin. 9 . sin. b

cos. b
— tan. b. sin. 9. cot. a. ..(d)

Hence, by deducing the logarithm of C + 9, we shall know C,

since 9 is determined by this form,

log. tan. 0 = log. cos. b +log. tan. A •*- 10,

and by a similar method, that is, by the assumption of a sub-

sidiary angle, may c be detennined solely from A, a, b. It is

sufficient, however, to have noted these methods, for, the com-
putisl is not recommended to avail himself of them; the preced-

ing ones, those by which the Examples have been numerically

solved, being fully adequate to the purpose of solution.

In Case 6th, C and c may be also solved by the introduction of

a subsidiary angle; and its introduction, in these cases, corresponds

to the Geometrical resolution of the oblique-angled into two right-

angled triangles : thus, in the last case, conceive a perpendicular (p)

the arc of a great circle, to be drawn from the angle C on the base

r, and let the angle contained between this perpendicular and the
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side b be supposed equal to (90°

—

9); then, by Naper’s first

Rule,

1 x cos. b = cot. (90° — 6)

.

cot. A,

and tan. 9 = cos. b . tan. A, which agrees with the assumption (c),

p. 188.

Again, by Naper’s first Rule, .

siu. {90°— (90° — 0)} or, sin. 9 = tan. p . cot. b, and

.'. tan. p = sin. 9 . tan. b.

And finally, by Naper’s first Rule,

cos. { C — (90° — 0)} = tan. p . cot. a, or

.•
. sin. (C + 9) = sin. 9

.

tan. b . cot. a,

which agrees with the result (d

)

in the preceding page.

We have deduced in pp. 147, &c, expressions for the sine

and cosine of arcs, such as
A±B

2
and it is worth the while to

extend the deduction to the sine and cosine of half the sum of

the angles of a spherical triangle, since the resulting formulae

are, in certain geodetical operations, capable of an useful appli-

cation.

A, B, C, being the 3 angles of a spherical triangle, it is re-

A +B+C
quired to find cos.

2

A+B+C A+B C . J + B . C
cos. = cos. • cos. —— sin. -

. sin. —

,

2 2 2 2 2

see p. 147, =

. C C C . C
SHI.—.COS.-“ C0S, ^’* Sin’2

. cos4(tf+&) cos.--(a+6)
c

cos. —
c

cos. -
2
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sin. CC / . a . b\—
. ( sin. - . sin. - 1

c V 2 2/
cos. -

2

.{sin. S.sin. (S— a)sin. (S— 6)sin. (S— c)}
see p. 145, = -^ " ~

ba b c
2 . cos. - . cos. - . cos. -

2 2 2

which is a formula; demonstrated by Cagnoli, p. 329. of his

Trigonometry, and by Delambre, Astron. Vol. I, p. 232.

A + B+C
sm. .

. A+B+C A + B
sin.- = sm. . cos. 1- cos,

2 2

A + B . C—-— . sin. — ,

2 2

c
2

• fC
sm. —

z. £
(p. 147.) = cos. A (a— b) cos. £ (a +6)

c c

cos. — cos. -
2 2

= cos. A (a- 6)+ A COS. £(a+ £)}
1

c
cos. -

2

_ _ . cos. C
+ {icos. i(a — 6)

— i-cos. ^(a+i)}
e

cos. -
2

a b
'

cos. - . cos. -
2 2 cos. c — cos. a . cos. b

c
cos. —

2

a b c
4 . cos. - . cos. - . cos. -

2 2 2

a a ~b a f / „a \

j

4.cos. -.cos. - +2cos. 1 — ( 2cos. —
1 )( 2cos.

2 2 2 V 2 /V
a b c

4 . cos. - . cos. - . cos. -
2 2 2
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. a . b ,
c

cos. - + cos. - + cos. - — 1

2 2 2

a b c
2 . cos. - . cos. - . cos. -

2 2 2

• The values of cos. , sin.
,
are by the

above formula* expressed in terms of the sides, a, b, c of a spherical

triangle. We have the means, therefore, of computing the sum of the

3 angles (an useful operation, as we shall hereafter see) from the 3 sides.

But it may, in some cases, be convenient to deduce such sum from other

data, from, for instance, two sides a, b, and the included angle C: which

may be thus effected :

sm.* -

, cos. i (a— b) ri
cos. 4 (a-f-6)sin.

(A+B+C^_
e0S *

2

c
cos. -

C C
substitute instead of sin.* -

,
1 — cos.* - , and develope cos. £ (a + b),

then

sin.
A + B+C 1

c
cos. -

2

{
CDS'

2
cos

- 2
~ 8m

' 2
’ln

' 2\
1 “ 2 C0S>

2 )s

a b a . b „
cos. - cos. - -j- sm. - sin. - cos. C

c
C0S

‘ 2

but cos.
4+B-f-C sin. C

e
cos. -

/ . a b\
(«n.

5
.sm.

2);

,A+B+Cv
cos

-

1

cos
- 1 I

Sin
' I

• C08 ‘ C
•••‘an. (-±2

±_)=-“ a b
sin. C. sin.

2
sin. -

a o „
1 -J-tan. - . tan. - . cos. C

a b
tan. - tan. - . sin. t
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an expression of great simplicity,' and easy to be remembered,

but not capable of being adapted, (as far as the author of the

present treatise knows), to logarithmic computation.

As far, therefore, as we have gone, we ought, should it be

necessary to compute the sum of the 3 angles of a spherical

triangle from its 3 sides, to use the former formula, p. 190, in-

stead of the latter.

But it so happens, (if such an expression can be admitted,

in speaking of the modifications of analytical language), that we
may, from the latter, deduce a formula for the computation of

A +B+ C still more commodious than that for cos.
^ ^ —

.

Thus,

,
• A + J3+C

1 — sin.

. , _ a l> c
8
a

x
b - c1+2 cos. - . cos. - . cos. cos. - — cos. - — cos. -

2 2 2 2 2 2

a b
,

c
*

2 . cos. - . cos. - . cos. -
2 .2 2

the numerator

_. / « b CV a
6 *c „b .c— 1 — I cos. -—cos. - . cos. - 1 —cos. — cos. — + cos." - . cos. -

V 2 2 2/ 2 2 2 2

• *b . t c / a h c\*= sin. - . sin. - — ( cos. cos. - . cos. - I
2 2 V 2 2 2/

i.b.c a b C )

=
}
s,n

* S
' s,n

- 2
+ cos

- i
~ cos

- o
cos>

g
/

’

( . b
. c a b c)

x }sin. - sin. - — cos.—h cos. - cos. - ^
< 2 2 2 2 2)

f a & + c) f a b — cl=
(
C08

‘ 2
COS -^-) i

cos-2
“ COS

--i-l
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, . fl + 6+ c fc+ c— a . a + c— b . a + i— c= 2 . sin. . sm. . sin. sin.
4 4 4 4

— 2*. sin. A S . sin. \ (S— a) sin. ^ (S— b) sin. ^ (S — c).

Hence, since
,

A + B + C>. J+B+C
1 — sin.

(
. A + JJ+C\

90° J

We have

( A'O -4+-B+ C\
s,n

C
45

4 )

sin, S' . sin. — (S— a), sin. j-(S— 6). sin, j- (S— c )

a b c
cos. - . cos. - . cos. -

2 2 2

from which expression, suited to logarithmic computation,

45° _ A + B + C
* an{^ 0f course) A + B+ C may be directly

deduced. But it is plain that the computation of A+B + C
from this expression, is quite as long as from the preceding one

of p. 190, each requiring the taking out of seven logarithms.

If, however, we divide this last formula, (I. 8 .) by the preceding

one, we shall have,

since cos.
A + B+C / 0 -A + B 4- C\= S,n

- (90 8 )2

/ 0 4 + B + C\ / 0 A + C\= 2 sln
. (

45° ) cos. (4.5" -
,

B n
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siu. ^45° — A + B + C

2 . cos. 45°-^±^±^
or §tan. ^43° - A + B + C

)

but

2 . sin. . »in. j (5 - a) . sin. L(S — b) sin. j-(S — c)

V\ sin. S . sin. (S — a) . sin. (S — b) sin. (S — c)}
*

siu. ^ S sin. \ S _ / sin, S

V^sin. 5 V'i .sin. i S . cos. \ S ’ 2 cos. ^ S

= \/
tan.

^— ,
and so on.

and since tan. (43° - X) = - tan. (.Y-45*), we have

(
1±|±£ _ „*)tail.

= V'l tan. j S . tan. { (S - a) tan. j (S— b) tan. | (S'— c)}.

By taking out, therefore, four logarithmic tangents, we obtain at

44 jB + C 0 . .

once the tangent of 45-, and thence immediately
4

we obtain A + B+ C.

The above formula for computing A + B + C, or the sum of

the three angles of a spherical triangle, from the three sides, are

not formulae of mere curiosity, but applicable to practical pur-

poses. The last formula, for instance, enables us immediately

to compute the excess of the sum of the three angles of a sphe-

rical above two right angles. Let e be that excess, then

since e = A + B C — 1 80°, = ————— — 45°.;

4 4

€ €
.’. tan. -, or - if, as is generally the case, e be very small,

will equal the right hand side of the preceding equation, and this
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excess, as we shall hereafter see, it is necessary, or, more pro-

perly, convenient to compute. Again, in measuring the surfaces,

or spherical areas included within the intersecting lines of the

survey, we cannot compute more commodiously,

r
a

. sin. 1''. {i + J3+ C},

which (see 138.) is the area of a spherical triangle, than by

computing — 45°, from the formula of p. 194.*

and, as an instance, we will take that to which Delambre, in the

1st Vol. p. 235. of his Astronomy, has applied Cagnoli’s

Theorem, and his own Series

a = 76“ 35' 36"

b = 50 10 30

c = 40 0 10

C log. tangents.

- = 41 41 34 9.9497516
2

l*(S-a) = 3 23 46 8.7733683

i(S— 5) = 16 36 19 9.4745269

§ (S— c) = 21 41 29... 9.5996367

2) 37.7972838 (deducting 20)

8.898641 7= tan. 4° Si' 39".

Hence,
+ * - 45° = 4° Si' 39".

and J+ B+ C — 180 =» 18 6 36,

or the excess of the 3 angles of the spherical triangle over 2 right

angles is 18° 6' 36". This, therefore, is not an instance that

occurred in the geodetical operation.

The area of the above triangle = (see p. 139.)

* In the next Chapter we shall see why, in practice, it is convenient

to compute from this formula.
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»•* sin. l" (A + B+ C— 180
s
) = r*. kin. l" x 65196",

log. sin. l" 4.6855749

log. 65196 4.8142210

(.316079) 9.4997959

the area, therefore, equals to x .SI 6079, the whole surface of

the sphere being r* x 12.56636.

A great variety of instances to the preceding methods mightcasily

be collected from Plane Astronomy. It is not, however, necessary

to give any; since, amongst other purposes, the present Treatise

is meant to be merely preparatory and subservient to the study of

the latter science, and to be intelligible to the Student who may

happen to be unacquainted with its technical terms and language.

Astronomical Examples, stated and numerically resolved, would,

indeed, be useful to the Student. One part of their utility would

be, to coinmuuicate the art of translating Astronomical conditions

into bare Mathematical conditions
;

it is not, however, the special

business of a Trigonometrical Treatise to teach such art. Another

part of their utility would consist in teaching the method of trans-

forming general symbolical results and formulas into numerical

values; but, of this method sufficient specimens, it is hoped, have

beeu given in the preceding pages.

Still, however, it is desirable to apply and illustrate the pre-

ceding formula:
;
and, it happens fortunately, we can effect this

without introducing either the principles or the terms of a new
science. The accounts of those Trigonometrical Surveys, by

which the figure and dimensions of the Earth have been attempted

to be determined, will furnish us with very interesting instances

of exemplification.

In the next Chapter we will turn our attention to this point.

We shall there perceive how results may be obtained by the direct

application of the preceding methods of solution
;

and, besides,

for what reasons and by what means, those methods, in certain

circumstances, are either modified, or completely superseded

by methods of approximation.
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CHAP. XII.

Object of the Trigonometrical Surveys.—Conditions for de-

termining the Nature of the Line to be measured and com-

puted.—Apparent Depression of one Station seen from
another by reason of the Earth’s Convexity.—Elevation by

Refraction.—The mean Terrestrial Refraction an Aliquot

Part of the Arc contained between two Stations observed re-

ciprocally, the one from the other.—Determination of the

Heights of Stationsfrom their reciprocal Angles ofDepression

and Elevation.—Reduction of the Angle observed between two

Objects to an horizontal Angle.—The three Reduced Angles

of Observation the Angles of a Spherical Triangle.—Their

Sum ought to exceed 180°.—The excess in Practice always

very small; Theorem for computing it.—Its real Use.

—

Legendre’s Theorem for adapting the Small Spherical Tri-

angles of Geodetical Operations to the Rules of Plane Tri-

gonometry.—Reduction of Spherical Triangles to Triangles

formed by the Chords.

It is proposed, in the present Chapter, to give sonic

account of a Trigonometrical Survey; to describe first its

object, and the general mode of conducting its operations, then

to shew the kind of aid it derives from Trigonometry : and

for what purposes it applies formulae long known and established

in that science, or requires the aid of new ones to be derived

from it. Beyond this connexion of the practical operation of

the survey, and the scientific theorems of Trigonometry, it is not

intended to proceed. The description of the instrumental means

of conducting it, ingenious and interesting as they are, will not

be attempted. The nature of the present Work does not de-

mand such a description, and an useful description, one suffi-

ciently full and exact, would add, preposterously, to its bulk.
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\

The object of the survey is to measure the distance DM

B A

between two stations D and M, situated in the same meridian,

or two stations that have the same longitude, (see Astronomy,

Chap, xliii.) This distance DM, if the Earth be considered

to be a spheroid of small eccentricity, is nearly a circular arc.

Suppose it to be determined, and to equal D, then the latitudes

(L, /), (see Astronomy, Chap, xlii.) of D and .If are to be

found ;
lastly, from this proportion,

L -‘ D -T~r
we obtain, in terms of D, (in feet, if D be expressed in feet,)

the value of one degree.

This general statement, like all other general statements,

includes many subjects of consideration.

In the French survey the line DM extends over the whole

of France, from Dunkirk to a station near Barcelona. The
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inequalities of ground, therefore, were there no other obstacle,

would prevent the determination of the length of DM by direct

measurement. DM, therefore, cannot be determined by mea-

suring its parts Da, ab, &c. But Da, ab, &c. are to be

computed. Da, for instance, can be computed from DC and

the angles DCW, CDa. The angles can be observed, but

DC must be measured, by direct means, or must be computed

from some other known or measured line. It may be com-

puted, for instance, from DA, a measured line, and the observed

angles of the triangle DAC. Some such line, sooner or later,

must be measured, and, then, for distinction's sake, it is called a

Base.

Suppose now DC to be known, or to be the unit upon

which the whole succeeding series of triangles is to depend, and

the observer to be at D. In that station, (Dunkirk, in the

French survey) he sees no fixed and distinct object in the direc-

tion of the meridian DM, but, to the right he sees the tower

of Watten ( IF), and, to the left, Cassel. He observes at D the

angle WDC, and, since he knows the direction of the meridian,

he observes also the angle WDm. Next, at the stations IV, C,

he observes, in the first instance, the angles DWC, DCW.
In the triangle DWC, then, one side DC is known, and the

three angles : consequently.

DW = DC.tA^ „,d 1VC = DC.-™'
WDC

sin. DWC sin. DIFC’

may be computed.

In proceeding towards the south, the observer at IF and C
observes the angles which F, (Fiefs) subtends, that is, the angles

FWC, FCW, and thence computes IFF, CF in terms of WC
already known in terms of DC.

After this manner, observing stations more and more to the

south, the operation is carried on to the extreme southern

station : suppose that station to be F (for the observations, cal-

culations are all of the same kind, whatever be the number of
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triangles intervening between the extreme stations), draw Fm
perpendicular to DM, and Dm is the length of the meri-

dional line that is to be valued.

Now Dm = Da +ab + bm.

Da is known from DW, and the angles DfVC, WDa. From

the same data, Wa, Ca, and the angle DaW are known.

a

b

is known from Ca, and the angles Cab, WCF. From

the same data, Cb and the angle Cba (=-Fbm) are known,

Fb= CF — Cb, and bm= Fb . cos. Cba.

The above is a general statement of the principle and mode

of proceeding : but, like the brief title of a very long chapter,

it affords us a very incomplete notion of what is to succeed.

The measuring of the distance DM between the points D
and M, must mean a measuring according to certain rules and

conventions. The distance cannot be merely made up of parts

as Da, ab, bm, &c. these parts being determined from DW,
WF, and the angles of the respective triangles WDa, FWa, 8tc.

and lying in the planes of those triangles : because, in such a

case, the distance DM would be formed of lines Da, ab, 8cc.

lying in different planes irregularly inclined to each other accord-

ing to the unevenness of the country in which the stations D,
TV, C, &c. shall be situated.

Let us refer to the first triangle WDC, in which D, W, C
represent Dunkirk, Watten and Cassel. The first place being

situated in Downs near to the sea is lower, that is, nearer to the

centre of the Earth, than YY'atten or Cassel. Is it possible from

observations to find, instead of W and C, two other points W',

C', the projections of IF and C ou the Earth’s surface,

situated at the same distance from the Earth’s centre as D
is r If we could do that for the triangle DWC, we could do

the like for the other triangles WCF, and from the original series

of triangles find another series of imaginary or computed tri-

angles, the angles of which should be situated on the surface of

a sphere of which the distance of D from the centre of the

Earth is the radius.

Digitized by Google



201

If we could effect this plan, the distance DM would be

systematically measured, and, for equal differences of latitude,

would be the same in England as in France, and the inequalities

of surface, although they might effect the difficulties of local

practice, would have no influence on the result.
\

We have supposed Dunkirk, or D, to be the original point

of levelling. But, (for in these matters the greatest nicety is

affected), this supposition is not sufficiently precise. We must

go a step farther, and determine the height of D above the level

surface of the sea, above (that the whole matter may rest upon

a uatural and determinable basis) the mean height of the sea, or

the height which is the mean, of the greatest and least tides.

This operation is to be effected by the usual means of levelling

practised in land surveying, that is, by determining a series of

successive elevations on the slope ground that separates the sea

and the first land station.

This last method, (more exact however than any other) would

be inconvenient if it were applied to determine the elevations of

W and C above D, the stations being separated from each other

by several miles. Another method is to be resorted to, which,

in the general statement, may be described as consisting in

determining the angular elevations of D and W, as observed

respectively from W and D.

If the Earth were a plane, and D and IV were equally

elevated above it, D and W, viewed from each other, would

appear equally distant from their respective zeniths, and, were

there no refraction, 90 degrees distant. If D and W be on

the surface of a sphere, and equally above it, the depression

of D seen from W, would equal the depression of W seen from

D\ the depressions, (the zenith distances being greater than

90°,) arising from the Earth’s convexity. These depressions,

we may now remark, are greater than what are actually observed

by reason of the elevations of observed objects from refraction.

If objects, then, were equally distant from the Earth’s surface,

they would, viewed respectively from each other, appear equally

depressed: but if W, the tower of Watten, should be higher

Cc
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than D, (or Dunkirk) D, observed from IV, would appear more

depressed than W observed from D. The difference, then,

of the actual heights of W and D will depend partly on the

difference of the observed or instrumental depressions of VT

and D, and partly on the actual distance of W and D: for it is

plain, if W, retaining still the same actual height above the

Earth’s surface, were removed farther from D, that the apparent

depression of D below the horizon of W would increase.

Let A, B be two objects or stations, C the centre of the

Earth, CB>CA, take CQ=Ci4; join AB, AE. If a per-

pendicular line to CZ at the point A, passes above B, then

since such perpendicular line is jI’s horizon, B viewed from A
would appear depressed. If the line passed beneath B, or

between C and B, then B viewed from A would appear ele-

vated, setting refraction aside.

Let VBA the zenith distance of A viewed from B= A\

ZAB the zenith distance of B viewed from A =A.

It the depressions be called 8, then

A' = fX>
u + S',

A = 1)0" + S.
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Now A + A' = (G’+ z BAQ+ (C+ i ,400(0= t BCA)

= C + ( ^ BytC’ + C + Z ABO

= C + 180°,

and consequently $ + 5* = C.

If B should be elevated so that the perpendicular to CZ
from A falls below B, (see p. 202. 1. 12.), then

A = 90° — S = 90° — e, (e denoting the elevation),

and <? — e = C.

In order to determine approximately the difference of heights,

supposing there were no refraction, we have

BQ = AQ .

S

?

n* = A Q sin. BAQ, nearly,
sin. ABO,

but BAQ = ZAQ-ZAB

= 1 80 — i { vlQC + QAC }
— A

= 1 80°+ ~ - 1 {
AQC + QAC+ C} - A

= 180°+^' — j {
1 80°

}
— (90 + S)

2

But the depression <S is not that depression which is actually

or instrumentally observed. For, by the effect of refraction, an

object B seen from yi is elevated to the point b, for instance.

The zenith distance observed is ZAB = ZAB

—

BAb. If,

therefore, we continue to represent the zenith distances that

are observed by A, A’, we must add to them, in the pre-

ceding equations, the refractions (p, p ,) due to those zenith

distances. Hence, (see I. 1, 8tc.)
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A+p + A' + p' = C 4-180°,

and $ + $' + p + p = C,

C
and the value of BAQ will equal — — d — p.

it

These refractions p, p\ which take place near the Earth s

surface, are, for distinction’s sake, called terrestrial refractions,

not to be derived from those formulae which are used in Astro-

nomy, but by peculiar methods.

In the above equation, suppose the objects A, B to be

equally elevated above the Earth’s surface :

then 8 — S', and p = p
<

;

2$4-2p =: C,

C-2S
and p = —-— .r 2

Hence, subtract from the angle C, (which is formed by lines

drawn from the two objects to the centre of the Earth), the sum

of the depressions, and half the difference is the refraction.

Suppose the objects to be at different distances from the

Earth’s surface, then

P+p —C — (8 + S'),

if we suppose (which in these cases is no improbable supposition)

p to equal p , then

C — (8 + S')

Hence, General Roy’s Rule, (see Phil. Trans. 1790.

pp. 242, &c. and Trigonometrical Survey, Vol. I. p. 175.)

Subtract the sum of the two depressions from the contained

arc, and half the remainder is the mean refraction.
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If one of the objects* instead of being depressed, is elevated,

then,

+/»')-(«— p) = C,

(p being supposed = p') ;

C+ e — S'

p = —r~
Subtract the depressionfrom the sum of the contained arc and

elevation, and half the remainder is the mean refraction

:

which

is General Roy’s second rule, (see Trigonometrical Survey,

Vol. I. p. 176.).

The depressions S' can be observed : the only part, then,

of the preceding rule that requires explanation, is that which re-

spects the determination of the contained arc.

By the process described at the beginning of this Chapter,

the distance AB between two stations A, B may be determined,

and thence, by an easy reduction, the chord AE. This, in

all instances that occur in a trigonometrical survey, is, from the

smallness of the angle C, very nearly equal to the arc that

subtends C i call it F, and the Earth’s radius r, w being

= 3.14159,

then F : nrr :: C : 180°;

„ F 180° F 180 x 3600"
C = - . = - .

r rr r ir

F
r . sin. l"

For instance, if we take General Roy’s instance, (Vol. I.

p. 176. Trigonometrical Survey), in which

Feet.

F, the distance between Tenterden steeple and Allington Knol= 61777

and r, the Earth's radius be assumed =20970255
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we have log 61777 ...4.7908268

log. 20970255. .7.3216037

log. sin. t" 4.6855759

2.0071786... 2.0071786

2.7836482 N°. = 607.64

;

therefore the angle 0=10* 7'‘.6'4.

We may now illustrate the formula for refraction, (see p. 204.)

Let the depression of Tenterden viewed from Allington be 4' l".4,

Allington from Tenterden 3 16.6,

C- (S+e ) 1 0' 7".6'4 -T 1
8"

then p = =

= T 24".8,

. p T 24".8 l
,

and, consequently, = [Q, 7
„

^
,
nearly,

or the mean refraction is about ~th of the contained arc.
7

This is one result, and it is plain that every reciprocal ob-

servation will give a similar one, that is, will give the mean

refraction some aliquot part of the contained arc. The results,

however, differ considerably from each other.

That which has been just obtained, makes the mean refraction

only a little less than one seventh of the contained arc, whereas

the mean result, (the mean of several hundred observations), is

more nearly one twelfth.

* The observed depression of D seen from IV, and of If seen from D,

(sec fig. of p. 202.) with the computed distance between D and IV,

enables us, as we have seen, to find the mean refraction. Every like

observation, during the survey, furnishes data for a like result. The

surveys, therefore, of England and France enable us to determine the

mean quantity of terrestrial refraction from several hundred observations.

But the knowledge of this mean quantity is, in particular instances, only

useful
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The mean quantity of refraction being found from many

experiments, may be applied to determine the relative heightsjof

objects in default of reciprocal observations. Thus, in the

survey carried on by General Roy, the height of St. Ann s Hill

was found, from that of Hampton Poor House, by taking j^th of

the contained arc for the effect of refraction. This height,

however, was afterwards found to be too great, and as a proof

of the great uncertainty in these matters arising from the va-

riableness of refraction, St. Ann’s Hill, which, viewed from

Hampton Poor House in 1787, was elevated 17* 39", was, in

1792, elevated only 8' 1
1".

In order to determine the difference of the altitudes of two

objects A, B, from their respective depressions and distances,

we must find JBQ from AB, or AQ and the angle BAQ\ and

since BQ, AQ are very small compared with the Earth’s radius,

it will, in most cases, be sufficiently accurate to find BQ, by

finding the subtense of the angle BAQ at the distance AQ.
This, (see pp. 176, &c. of the Trigonometrical Survey) is

General Roy’s method, but it is easy to attain greater accuracy,

by finding the values of the angles BAQ, ABQ. Thus

Both Depressions. One an Elevation.

VBA = A'
p = 90

°+ o' + p = 90° + S' + p,

ZAB = A + p = 90°+ 5 +p or =90°— e +p.

useful to a certain extent. If the mean quantity,
(
or 9 should be ^

,

and in a particular instance the value of
£,

should appear to be

ought to suspect some error to have occurred in the observation, or the ob-

servation to have been made under such peculiar physical circumstances, as

to require repetition. That, indeed, ought to be practised on every occa-

sion, in order to get rid of partial errors, or, more properly, of errors that

arise from some unknown cause. Col. Mudge gives us, in p. 352. Vol. I.

and p. 182. Vol. II. of the Trigonometrical Surveii, remarkable instances

of the variableness of refraction.
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X+ <

BAQ=ZAQ-ZAB,

BAQ= VBA— FQA ;

w
<5

BAQ^^VBA-ZAB) =— , «

ABQ = 180°-VBA,

ABQ-ZAB-C-,
. FBA-2AB C S'-S

/I BQ = 90° ^
g
*9° "— C

2
’

or = 90

Hence, BQ= AQ

C
2 2 ‘

sin. BAQ,

= AQ
sin. ^((S'- 3)

cos.
(c rc ,

y+n
U+—

f

or = AQ .

sin. ABQ
sin. A(2' + e)

There are very few cases in which we may not, without impair-

ing the exactness of the practical result, reject the denominator.

x+s>_. /C o +o\
Since cos. I - + —~— /\2 2

'

C X + S . C . X+S
= cos. —.cos. sin.— . sin. ,

2 2 2 2

we have, by dividing the numerator and denominator of BQ
by cos. ^ (X — $), the following value of BQ:

BQ = AQ.
tan. | {X 4- 5)

s. —
. 1 1 — tan. — . tan. ^ (X +

COS.
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Since BQ = AQ . tan. A (S' — S), very nearly,

we have tan. A (S' + 3 )
—

,

and A + $) =
BQ

AQ. sin. l‘

BQ

y, very nearly;

consequently, BAQ = -rr—:
7,.AQ . sm. 1

From the formula, then, in its original state, we derive BQ
from the subtended angle BAQ, and now the Bngle BAQ from

its subtense BQ. The operation of finding the angle that BQ,
or Bb, subtends at a distance AB, when, as is almost always

the case in practice, AB is nearly perpendicular toCF, is, indeed,

so simple, that we would not have introduced it here, except

for the purpose of noticing the circumstances that render it ne-

cessary to be performed every time the depression ofA below B,
or of B below A is to be computed. The matter is easily

explained.

In reciprocal observations B is supposed to be observed

from A, and A from B. Now it will happen that it is not

convenient to observe the very point B, which is to be the station

of the observer when A is observed, but some other point b
1

either above or below B. For instance, it is convenient to

observe b, the top of a steeple or tower which may be an incom-

modious station for the observer’s instrument wheu A is observed.

The same will hold good for A. The place where the axis or

the centre of the instrument is, may afford no distinct mark to

the observer at B, but he looks at some other point a, above or

below A. But the angles on which the preceding calculations

are founded, are ZAB, VBA. We must, therefore, reduce

the observed angles (ZAb, VBa), by adding to them, or sub-

tracting from them, the angles BAb, ABa : or the angles which

the small differences of height Bb, A a, subtend at the distance

AB.

General Roy’s instances will illustrate the preceding formula.

D n
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At Allington Knoll the top of the staff on Tenterden steeple was de-

pressed 3' 51" by observation; and the top of the staff was 3.1 feet

higher than the axis of the instrument when it was at that station. The

distance of the stations was 61777 feet.

Again, on Tenterden steeple the ground at Allington Knoll was de-

pressed 3' 35", but the axis of the instrument, when at Allington Knoll,

was 3 £ feet above the ground.

Suppose B to represent Allington, and A Tenterden,

then S' = 3'

5

1", Aa = 3.1,

8=5 35 Bb = 5.5;

.*. ABa = 3.1

61777. sin.
1"'

„ „ , _ 5.5

6 1777. sin. 1"’

log. 61777 = 4.7908268 log. 3.1= .4913617

log. sin. 1 " = 4.6855749 (D) 9.4764017

9.4764017 (£) (N“= 10.35) 1.0149600

.7403627

(D) 9.4764017

*(N°. = 18.36) 1.2639610

Hence S', corrected, c= 3' 51"-(-10".35 = 4' l".35

S ,
corrected, =3 35 —18 .36 = 3 l6 .64

.*. S'— S = 44.71

• The values of ABa, BAb, and of like angles, may be as simply

deduced thus :

By the note to p. 69, 1 foot subtends l" at 206265 feet

;

5.5 feet S'.b at 206265 feet;

therefore at the distance of 61777 feet, 5.3 feet subtends an angle

= 5".5 x

= 1 8".36.

206265

51777
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and BQ= 6l777xtan. 22".35 log. 6 1777 = 4.7908-268

log. tan. 22".25 6.0347542

(N».= 6.6£)238) 0.8255810

The place, therefore, of the axis at Allington Knoll, is higher than its

place when on Tenterden steeple by 6 feet, 8 'inches.

The mean terrestrial refraction (p), which is represented by

C-(3+S')
2 *

10' 7''.64— Y 17''.00
is, in this instance, ——

,
that is, 1' 25".8, since C, (see

p. 206.) is 10' 7".64.

Second Example.

At Allington Knoll the ground at High Nook was depressed

46' 43" (S').

At High Nook the ground at Allington Knoll was elevated

42' 34" (().

The height of the axis of the instrument above the ground at each of

the stations, was 5$ feet (—dH=5.5—dH'=5.5).

The distance AQ was 23186 feet.

5 5
Hence the correction of 3’ =

.

'
. ,

23186. sin. f ’

f S
3.5

°
° 231 86. sin. 1"’

log. 5.5 7403627
log. 23 186.. 4.3642258

log. sin. 1" 4.6855749

9.0498007 9-0498007

(N°= 49-04) 1.6905620

Hence, the corrected value of 3' = 46' 53"— 49"= 45' 54"

of e = 42 34 +49 =43 23

S'+ e =1° 29' 17''

mid RQ = AQ. tan. £ (3'+e) = 231 86 . tan. (44' 38".5).
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log. 23186 4.3652258

log. tan. 44' 38'.5 8.1134909

301.1 2.4787167

Hence, Allington Knoll is 301.1 feet above High Nook, which, added to

27-6 feet, the height of the axis at High Nook above low water gives

328.7 feet, the height of Allington Knoll above low water.

To find the contained arc and the refraction, we have

log. 23186 4.3652258

(see p. 205.) log. sin. l"+l°B* r 2.0071786

(N\= 228.5) 2.3580472

.-. C = 3' 4".5,

and p =
C+e-S' 3' 48".5 — 2' 31"

, p 3S".7 . 1
and =

, nearly - .

C 228.5 7 b

r 17'.

5

2

38".7,

This result is different from the preceding one, (p. 207-) and

the quantity of refraction is so variable even under circumstances

apparently the same*, that it is not safe to rely for its determi-

nation on a single observation. The reciprocal depressions of A
and B, if observed at different times, are worth scarcely any

thing, since, in the interval of the observations, the state of the

air, with regard to temperature, weight and other circumstances,

may have changed. One source of uncertainty, therefore, may
be got rid of, if two observers, at the same hours, should at A
and B observe the depressions of B and A, noting at the same
time the barometer and thermometer, wind, &c. as Col. Mudge
caused to be practised.

Rut there are cases in determining the refraction, when we

* See Trigonometrical Survey, Vol. II. pp. 181, &c. See also the

Tables of Terrestrial Refraction, deduced from observations made during

the Surveys of General Roy, Colonel Mudge, &c. Trigonometrical

Survey, pp. 179, 3*9, 383. Vol. II. pp. 176, &c.
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may dispense with the contemporaneous observation of the reci-

procal angles of depression and elevation. For instance, when
from one station we observe the depression of another, the dist-

ance of the stations and their respective heights above low water,

(or above the height of the mean tide) being previously known.

Thus, by levelling, (a much more certain mode than by calcu-

lation from observed angles of depression) the station on Dover

Castle was found to be 469 feet above low water (spring tides).

The top of the balustrade of Calais steeple, (the point observed)

140^- feet, and the distance of Calais from Dover 137455 feet.

If B and A, therefore, represent the above points of Dover and

Calais, we have

BQ = 469—140.5 = 328.5,

now, BAQ =
BQ

and C =

AQ.sin. 1

AQ

H, nearly,

AC . sin. 1

'

log. 328.5 2.5165354

(S) 9-8227355

(No.= 494.18).. 2.6937999

(Z)) 0.4515857

log. ®’s rad. . . . 7.3216037

(No.= 1 349) 3.1299820

we have, therefore, Z BAQ = 8' 14''. 18 8' 14''. 18

C

log. 137455 5.1371606

log. sin. 1" 4.6855749

sum (S) 9-8227355

diff. (Z>) 0.4515857

Z C 22 29 . .

.

11 14.5

Z BAQ + - 19 29.23

but z VBA= z BAQ+ z BQA

Q— 4 ILiQ+ 90
0 + — ,

«

the depression of A, therefore, which, were there no refraction,

would be equal to z VBA — 90°, would be
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r
i BAQ. + - = 19' 28".2S

2

but the depression observed was .......... 17 59

and the difference, or effect of refraction . . 1 29.23

and £ - g9"-23 L
C
~

22 29
-

15
’ nearly.

and any similar observation made at Dover will give the actual

refraction at the time of the observation.

Under circumstances like the preceding, and with a similar

result, is the case in which the horizon of the sea can be seen

from a station. Thus, in the station near Paddlesworth, the

depression of the horizon of the sea was observed to be 26' 27".

Now the height of the station (BQ) is 642 feet
;
and since

BA, a tangent to the sea at A is perpendicular to the radius

CA\

VBA (= 90° + depression) = C+ ^ J5j4C=C+ 90°;

therefore the depression = C, (were there no refraction)

;

Digitized by Google



215

. r _ACbut cos. L = — = 20970255

CB 20970255 + 642
=•9999693861'

• In the common Tables of logarithmic cosines, &c. the same seven

places of figures represent the logarithmic cosines of arcs from 27' 49" to

27' 35". By such Tables, therefore, and using the above formula for

cos. C, the determination of C would be uncertain to the amount of six

seconds. By transforming, however, the formula, we may get rid of this

uncertainty, and use the common Tables. Thus, (see p. 42.)

, C 1 — cos. C
tan. - _ j_^ coa _ q .

but cos.C=!§ = r̂ ,
(making A to represent BQ) ;

I — cos. C A

1+cos. C 2r-f A
2r 0+b)

tan ?
= V/i-^

1

Ty = V/^-{ 1 "rr+ &c }-

Now A= 642 log. = 2.8075350

r=: 20970255.

2

..log. = 7-3216037

log. 0.3010300

7.6226337

If we stop at the first term, we have

5.1849013

2 log. tan. - — 10 = 5.1849013

and log. tan. -
2

7.5924506

and
^
= 13' 27"

C = 26 54.

If we take account of the second term, or suppose

UU'l=\/rr{ l
-7-r}’
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the natural cosine of 26' 54" the dip, but the apparent dip was

26' 27"; .'. 27" is the quantity by which the horizon was elevated

by refraction.

I 11 the preceding instances, the elevations, compared with

the Earth’s radius, are so small, that little more is required to

be done than to find the value of a line which, at a given dist-

ance, subtends a small angle, or to find a small angle subtended

by a small line, (see p. 207.). General Roy, therefore, in his

computations used no exact formula; for finding the height of a

station from observed angles of depression, or for finding from

a station of known height how much below its horizon, other

stations appeared to be depressed. The exact formulae of com-

putation, then, with which the foreign Treatises abound, are, in

almost all cases that occur in a Trigonometrical Survey, formula;

of curiosity. They are tools finer than the work to be done

with them requires. Thus, in the Example of p. 211. the value

of BQ computed from AQ . tan. J (S'— $) was found 6.692 feet,

the exact formula is

but
C
n

S'-S

2

BQ-AQ.

... 5' 3''.82

sin. — S)

2 /

AQ 61777

log. sin 22",35

... 22.35

4.7908268

6.0347542

.8255810

Sum 5 26.17 cos. = 9.9999995

(No. 6.69239) 0.8255815

we shall have

log. tan. - = 7.5924489,

and
C
2

13' 26"
5368

5385’

so that it is, in practice, quite useless to go beyond the first term.
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which is a result, in a practical point of view, the same as the

former which was 6.6Q2S8. For it would be absurd to be

scrupulous about the
10Jjfo

th of a foot, especially in cases in

which, from the uncertainty of the angles of depression, the

probable error in the height will exceed 5 feet.

Remarks, similar to those that have been just made, may be

applied to the methods of computing the small corrections of

the angles of depressions. Thus, in p. 202, B being the point

observed from A, but b being the place, above B, where the

centre or axis of the instrument was placed, the correction of the

angle ZAB is BAb. That was found, (see p. 210.) by simply

finding the angle which a line Bb subtends at the distance AB.
This, however, is not strictly accurate, since Bb is not equally

inclined to AB and A b. Let us deduce a formula that shall

represent more accurately the angle BA b.

Let the angles BAb, AbB be represented by A, C, the

sides Bb, AB, A b by a, c, b, then

cos. C

cos. A

b
i +a'-ct

2a b ’

&
2 + e

8 -al

2 be
*

2 be

6
8+ 6

, -2a6.cos. C
Ibc

b — a cos. C

but sin. A = - sin. C ;

c

.*. tan. A = a sin. C
b — a . cos. C

E E
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a .— SID. L
b

1 — - cos. C
0

n . sin. C / _
1 — n cos. C V ~b/

Take the differential, or fluxion of this expression, and

dA _ n . cos. C— w*

<iC 1 — 2h. cos. C+ n*

In order to expand

-s = ( 1 — 2 »i cos. C+«V,
1 — 2n cos. C + n~

compare it with (/*— irr (see p. 118.)

then /= 1 ,
r= «, m=l,

and the first coefficient= 1 +»»*+n*+ &c. = -

—

1 — »

2 71

. = 2n (1 +«'+ t»
4+ 8tc.) = 1 ,

1 —n
2 n*

1
-«*’

the 2d....

the Sd

&c.

.
Hence,

d A n . cos. C — n*

dC 1 -n*

let

2 n” cos.»tC+2n’* +1 cos. (m+ l)C+ 2nm + *.cos. («i+2)C,

be three consecutive terms, then since, generally,

2 cos. C . cos. pC =cos. (p

—

1)C + cos. (p + l) C,

from the multiplication of n . cos. C — ri into the three above-

{ 1 + 2« . cos. C+ 2n*. cos. 2C -h&c. },
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mentioned terms, there will be produced three other terms, and

only three, involving cos. (w+ l) A, which will be

nm+

1

cos. (»»+ 1)C, -2nm+3.cos.(rn+l)C, nm+5.cos.(rn+l)C,

the sum of which =«,n+

1

cos. (to+ 1) C — nm+s . cos. (m + 1) C

= nm + ,
.(l — n*) . cos. (ot+ D C.

Hence, since the constant part ns— «
!
disappears,

dA
dC

= n . cos. C + n*. cos. 2 C + n3 . cos. SC+ 8tc.

and A = n
sin. C it* sin. 2 C n

5
sin. SC

-r—r, + - .
——

-

7T + — ——ttt + 8cc
sin. 1 2 sin. 1 3 sin. 1

To apply this to the instance of p. 210, which has been

already solved, we have

" ~ d ~ <>1777 ’
C~9°°+dePressK>n = 9°° 3' 51"i

5.5 cos. 3' 51" / 5.5 \* sin. f 42" ,A ~
61777 ’ sin. 1' \61777'

'

sin. 2^ + C '

Now log. 5.5 7403627

log. 61777 4.7908268

5.9495359 (a).. log. (g^)
1

1.8990718 (c)

log. cos. 3' 51 "... 9-9999997 ... log. sin. 7 ' 42".
. 7.3502165

log. sin. 1" 4.6855749 sin. 2"... 4.9866049

5.3144248 (
b
) 2.36361 16 (d)

(n)+(i) 1.2639607 (c)+(d)... 4.2626834

(10 borrowed);

.*. the first term = 18".364, the second = 00000183,

the second term, therefore, may be neglected, and the first gives the

same result as was obtained in p. 210.

As far then as practical utility is concerned, it is quite un-

necessary to apply the preceding formula. It will suit, how-

ever, other purposes.

Digitized by Google



220

In what has preceded, we have shewn the use of what are

called the reciprocal angles of depression and elevation in de-

termining the absolute heights of stations, and, which is a matter

of more importance, the quantities of terrestrial refraction. We
shall now be enabled to investigate other points.

If the places on the Earth’s surface, w’hich are alternately

the observed objects, and the stations of observation, were on a

spherical surface, the apparent depression of one station, seen

from another, or the dip, setting aside the refraction, would be

half the arc contained between them. But this can scarcely

ever happen. The objects are almost always at different heights

above the level of the sea. The observed angle, therefore, be-

tween two objects, is different from that which they would sub-

tend, if they were in the horizon of the observer. But to this

latter angle it is necessary to reduce the observed angle, in order

that the angles and sides of the triangles to be computed may
be those of spherical triangles.

Let O be the station of the observer. A, B, the two objects.

then the angle subtended by them at O, is AOB, which AB
measures; but, if Za, Zb are each =90°, ab, and not AB,
measures the angle a Zb, which is the angle required. What to be

done, then, is, from the observed angle AOB, and the observed
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zenith distances ZA, ZB, to find the angle a Zb, or. which is the

same thing, to find the difference of the angles AOB, a Zb.

By p. 145,

. t
AZB

sm. . sin. ZA . sm. Zli
2

= sin. i (AB+ ZB- ZA) . sin. f (AB+ ZA-ZB).

Let AB = a, Aa — H, Bb = h, and angle AZB= A, then

yl
sin.

5— . cos. H

.

cos. h = sin. i (a+ II— h). sin. L(« + A — H),
Q 2

from which A may be computed.

Let us take M. Delambre’s instance given in the 1st Vol.

of the Base Metrique,

Observed Angle,

a = 51° 9' 29''.744

H = 1 32 45

h = 1 7 10

4(«+ff-A)

i (a+H-h)

Zenith Distances.

Aubassin 91° 32' 45", 11= 1° 32' 45''

Bastide 91 7 10, A=1 7 10

Log. Sines.

25° 47' 32".372 9-6385995

25 21 57.372 9-6318474

(20 added). . . 39-2704469 (a)

Log. Cosines.

H 1° 32' 45" 9-9998419

A i 7 10 • 9-9999171

19-9997590 (A)

(o)-(A) 19-2706879

(25° 55'
8"Jf) 9-6353439-5

A
2
= 35 35 8g,

and A = 51 10 17-16, the reduced angle.
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There are no Examples of this kind in the Volumes of the

English Trigonometrical Survey, because the instrument used by

Roy, Mudge, &c. (a Theodolite) gives, by means of its azimuth

circle, the horizontal angle between the objects observed. The

French observers used a repeating circle, which gave solely the

angle contained hetween the objects, which angle would almost

always lie in a plane inclined to the horizontal plane of the

observer. The reduction, therefore, of the angle to its hori-

zontal angle, was an operation to be performed at every obser-

vation. It became, therefore, desirable to abridge the operation,

which was effected by means of Tables, giving a small correc-

tion to the observed angle : the Tables themselves being con-

structed from the following approximate formula.

Let x be the correction, then

cos. (a + x) . cos. H . cos. A — cos. a — sin. H . sin. A,

when A is small,

. , . ,
A*

sin. A — A, cos. A=1 , nearly,

x"
sin. x—x, cos. x = 1 = 1,

2

if x be still more minute than A;

, v / H\ / A*\
(cos. a — x sin. a). ^1 —J - —y = cos. a— Hh,

and x = Hh ~x cos - «•(#* + A*)

sin. a

neglecting the terms that involve xlV, xhl

, Wh*
x may be thus differently expressed,

i (fl
l+ A*)=£ {(H+ hf + (H- A)

8

} ;

A (H + h)* — (H— hf _ ,4:{(tf + A)’-H/7-A)*}
cos. a

sin. a
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(H+hf 1 -cos, a (H-h)*
4 sin. a 4

I -j-cos. a

sin. a

if x be expressed in seconds.

If this approximate formula be applied to the foregoing

Example, we have

H= 1° 32' 45"

h = 1 7 xo

H+h
1 19 57.5 4797.5 2 log 7.3620300

= 25 34 44.87 log. tan 9-6800387

log. sin. 1"... 4.6855749

(1st term 53".4l2) 1.7276436

= 0° 12' 57"-5 767".5 2 log 5.7701568

|
= 25 34 44 .89 log. cot 10.3199613

log. sin. 1 ". . . 4.6855749

.(2d term 5"-966) 0.7756930

Hence the correction = 53".412 — 5".966 = 47".44,

and the reduced angle is 51° 9' 29".74 + 47.44,

that is, 51 10 17.1 8 ,

which differs only j,th of a second from the result obtained by the direct

process, (see p. 221.).

By this formula, then, or by the Tables constructed from it,

may the angles observed between two objects, at different

heights above the observer’s horizon, be reduced to horizontal

angles. The latter angles are immediately given, or rather in-

strumentally given by such a Theodolite as Ramsden constructed

for the ^English Survey, and which, for distinction’s sake, was

called the Great Theodolite. The French observers made use
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of a repeating circle of small dimensions, and easily portable,

and by the means of a great number of series of observations,

they hoped to get rid of the inaccuracies of individual observa-

tions made with it. Formula? of computation, like the pre-

ceding, are essentially necessary to the use of such an instru-

ment.

By what has preceded, then, it is plain that, either directly

by instruments, or by the intervention of computation, we can

obtain angles subtended by objects such as they would subtend

if projected on a sphere. And by such means, and by com-

puting the arcs belonging to the measured and computed chords,

the series of triangles DWC, WCF &c. would become a series

of spherical triangles
; and it is now to be considered whether

the operation is to be carried on by solving such triangles by the

rules of Spherical Trigonometry, or whether we should endeavour

to abridge the processes of solution by approximate methods.

It is to be observed, that the triangles of which we have

spoken, although strictly spherical, are very small spherical

triangles differing very little from rectilinear ones. Thus, in

p. 205, the distance between Allington and Tenterden, (which

we may consider as an arc between those places) was 61777 feet,

which is only 10' 7^.64, aud the distance between Dover and

Calais, a considerable one, (137455 feet), is represented by an

arc of 22' 29”; and, if we wanted a practical proof of the small

difference between the triangles of the Survey and rectilinear

triangles, we should find one in the observed angles, or rather

the reduced observed angles of those triangles. Thus, in some

of the first triangles mentioned by General Roy, (see Phil.

Trans. 1790, pp. 172, &c. also Trigonometrical Survey, Vol. I.

pp. 139, 8tc.)

Observed Angles.

Hanger Hill Tower . . .42° 1' 32'

Hampton Poor House . 67 55 39

King’s Arbour 70 1 48

179 59 59

Observed Angles.

Hundred Acres ... .53° 58' 35".75

Hanger Hill 68 24 44

.St. Ann’s Hill 57 36 39 .5

179 59 59 .25
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also in the French Survey, ( Base da System Metrique, pp. 513,

535.)

Observed Angles.

Dunkirk 42° 6' 9'.34

Watten 74 28 44.88

Cassel 63 25 5 .78

180 0 0

Observed Angles.

Violan 51° 10' 11".31

Aubassin 83 15 22 .17

Bastide 45 34 29 .57

180 0 3\05

In the two first instances the sum of the three angles is less

than 180°, in the third equal, and in the fourth it only exceeds

it by S". Theoretically, however, we know that the sum ought

always to exceed 180°. The above circumstances, therefore,

must arise, not solely from the errors of observations, which

were made with the greatest care, but from the spherical excess

being nearly of the same magnitude as those errors, or, in other

terms, from the angles of the spherical triangle, differing little

more than a second, or parts of a second, from rectilinear

angles.

That there ought to be a spherical excess, or that the sum of

the three angles of a spherical triangle exceeds 180°, is plain

from the expressions of p. 194. Thus

tan. £ ($-90°)

= l/{lan. A S . tan. -j(S — a) tan. (S— ft) tan. ^-(S— c)}.

but since S =
a + b + c

2
, the quantity under the radical sign is

a positive quantity; tan. j[(S— 90°) must be positive, or S
must be greater than 90°, or il + B+ C( = 2iS) greater than

180°.

The spherical excess, then, exists in theory, but, as far as the

preceding cases prove, is not discernible in practice. The
fourth case, indeed, shews an apparent excess of 3*’, but

the first case shews a defect, and each may be attributed to

errors of observation : for, with the instruments used in the Sur-

vey, an error of one or two or more seconds might easily occur.

Can the knowledge, then, of a theoretical truth be made, in

Ff
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cases like those we are treating of, subservient to practical

utility ? The use that General Roy made of it, (the only use

that has since been made of it,) was to correct his angles of

observation. Thus, in the first triangle, the defect from 180° of

the sum of the three angles was l": but there ought to have

been an excess above 180° of .23. The observations, then,

altogether were wrong, by l".23. If each observation were

supposed to have been made with equal care, then the obvious

mode of correcting each would be by adding to it one-third of

l".23 : and this was, in fact, done, but with no certainty of

procuring an exact result, as it is plain from the principle of

correcting the angles. As some check and means of correcting

the angles of observation was, however, thus obtained, it became

necessary to compute the spherical excess.

In order to compute it, we have two convenient expressions:

one requiring the knowledge of the three sides of the spherical

triangle, the other that of two sides, and an included angle.

Thus, by the first, (see p. 194.)

tan. {(5—90°)= V^{tan. -j S.tan.^S—a)tan.i(S— A)tan.-^(9— c)}.

Take the first triangle mentioned in p. 224, in degrees, (see

Rule, p. 205.)

Feet.

a 27404.7 26p".54

h 38461.12 378.3

c 37922.57 373

o+ i+c 1020.84

Log. Tangents.

9 n4-/<4-r rc— or

.

77 .. 255.21 7.0924566
2 4

£(9-fl) 120.43 6.7661978

i(9-i) 66.06 6.5055106
A (S-r) 68.71 6.5218219

2)26.8859869

13.4429934

therefore log. tan. 4 (9—90°) = 3.4429934,
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but the Tables do not contain the tangents of so small an arc

which is less than l". We must have recourse, then, to Mas-

kelyne’s Rule, (see Taylor’s Logarithms, Introd. p. 22, also

the Appendix to this Work): accordingly

3.4429934

5.3144251

8.7574185 No. = .0572;

- - 90°= 0".1 144.

and S— 180°, the spherical excess, =0".228.

This is a very small quantity, and obtained with considerable

trouble, because the tangents of such arcs as

4' 15".21, 2' 0".43 ( = 255".21, 120".43)

can only be found from the Tables by proportion. It would

be convenient, then, to modify the expression for tan. J- (S—90°),

and to render it more easy of application.

Now in cases like the above, the lines a, b, c compared with

the Earth’s radius, are very small : the lines or arcs, then, re-

aA-b+c « + 5+ c
presented by , a, &c. are also very small,

and their tangents are nearly equal to them. Hence,

tan. ^ S tan. i(S-a) = i.
r

&c.
;

and since tan. i (S— 90°), which is very small,=j(S— 90
n
) sin. l",

we have

i.(S-90°).rs
.sin. l"= V'U S . ± (S - b) \ ($-c)}

;

(^ +B+C- 180
0
).r’.sin. l"= {S.($-«).(S-6)(S-c)}.

Let, therefore, the excess be denominated e, and the quantity on
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the right hand side of the equation, and we hate, since.

log. r* 14.6432074

log. sin. l" 4.6833749

9.3287823

log. e= log. x - 9-S287823 •

This, it is plain, is a much shorter method of computing e, than

the former one of p. 226, and, although an approximate method,

quite exact enough for the occasion : to solve the former in-

stance by it, we have

a 27404.7

b 38461.12

c 37922.57

.*. S= a + b+c = 103788.39

S
2

51894.196

Logarithm.

. 4.71512

s
- a . . . 24489.495 4.38898

2
... 13433.075

S
. .. 13971.625 4.14525

2)17-37752

8.68876

9.32878

(No. .229)... 9-35998

c s 0''.229, as before.

* If we take log. r = 7.3205995

2 log. r 14.6411990

4.6855749

9.3267739

log. c=; log. x — 9.326774, which is General Roy’s Rule, see p, 138.

Trigonometrical Survey
,
Vol. I.
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The quantity \^{S .(S— a) (S — b) (S — c)} is, (see p. 28,)

the area of a rectilinear triangle, of which the sides are a, b, e.

The logarithm of the spherical excess, therefore, is to be had by

subtracting 9-32878 from the logarithm of the area of the tri-

angle considering it as a rectilinear triangle, of which the sides

are a, b, c.

What is gained in facility of computation by this last step is

this, that in many cases it may be more convenient to compute

the area from other data, than those of the three sides : from,

for instance, two sides and the included angle. Thus

the distance from Violan to Aubassin is 18283 toises,

to Bastide . . . 25423

and the observed distance from Violan, of Aubassin, and Bastide

51® 10* ll"; therefore since a toise = 6.396 feet, we have

, . ,
18283 X 25423 X (6.396)®

(x) the area = — x sin. 51° 10 ll
7
.

Logarithms.

18283 4.262047

25423 4.405226

(6.396)’ 1.6118 17

sin. 51° I O' 11" 9.891541

10.170631

2 301030

9.869601

9.32878

(3.47) 0.54082

.*. 6 = 3".47.

This spherical excess is above the average quantity; but there

is still a larger in the 23d triangle of the Trigonometrical Survey,

(see Phil. Trans. 1803. p. 428, and Trig. Survey, Vol. I.

p. 181.)
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Duunosc . . .

.

55° 43' 7
"

^ f Butser Hill. . 140580.4

Hill • • «7 13 a Dunnose Iron, ^^
Dean Hill ... 48 4 32.25J '

Lop.

183496 5.263626 10.027648

70290.2 4 846894 9.326774

sin. 55° 43' 7" 9-9>7128 (5.022) 700874

20.027648

Hence the spherical excess is very nearly 5".

By the above method and Rule, (for so it may be called).

General Roy computed the spherical excess : and its application

is not tedious. M. Delambre, however, thought it worth the

while to render the computation of the spherical excess still

more commodious, by the means of Tables, the principle of the

construction of which, may be understood from the formula of

page 191-

e being the spherical excess,

A + B + C- 180* = e,

±±#±^ = 90 + ^
2 2

,J+B+C\ 1

.*. tan. (
tan. -

2

consequently, (see p. 191.)

a b.
tan. - . tan. - . sm. L

e 2 2
tan. - = ; >

2 a b
1 +tan. - . tan. - . cos. L

2 2

compare this with the formula of p. 219, and we have

£ a b sin. C 2 a . b sin. 2 C _
- = tail. - . tan. - . 77 — tan. - . tan. - . —:——r *r etc.

2 2 2 sin. 1 2 2 sin. 2

which series must, from the smallness of tan. ~ . tan. -
,
quickly

converge.
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If we apply this formula to the instauce of p. 229, we have

In Feet.

lo8-
1

. . 4.76692 log. |
4.91010

log. r.sin. 1".... .. 2.00717 2.00717

(575.1) ..2.75974 (799-7).

log. tan.
|

. . .
. (9* 35". 1) 7-44524

log. tan. - ... (13' 19"-7) 7-58817

log. sin 51° 10 ' 11" 9-89154

log. sin. 1".

.

4.92495

4.68557

(No. 1.7354)

= 1.7354,

and e = 3.47.

The ’first term, then, gives S".47 for the sipherical excess,

* We may, in cases like the present, without any loss of practical

accuracy, avoid the trouble of taking out the log. tangents of arcs, such

as 9' 35".l, 13' by assuming, instead of tan.
j- ,

tan,
^ ^ | : in

such an assumption, we have

log. ~ 4.76692 log. ^ 4.91010

log. 0’s rad. 7-32 160 7-32160

7.44532 7-58850

7.58850

log. sin. 51° 10' 11"... 9-8.9154

4.92536

4.68557

(1-737) 23979

.-. e = 3".474.
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which is to be held as the same result as that obtained by the

exact formula of p. 231. And if we investigate the value of

the second term

— tan.
a a

2
. tan.

*
b sin. 2 C
2 sin. 9."

’

it will be found to be 0".000012,

a value altogether insignificant.

The smallness of this last value arises from that of

tan.* - . tan.
2 - : the product of tan.* - . tan.

5 -
, would give a

2 2
r

2 2
°

quantity still less : but the arc differs from its tangent by terms

that involve the cube and higher powers of the tangent. Con-

sequently, with less error than arises from rejecting the term

tan.
9 <1

2
. tan.

i b

2

sin. 2C
• *

sin. 2

we may compute - from

e a b sin. C
2 2r ’ 2r ’

siu. l"
’

or e =
ab

2r*

MU. C
’sin. \"’

r being the Earth’s radius, which agrees with the result of p. 228,

and with General Roy’s Rule, since —— . sin. C expresses the area

of a rectilinear triangle, of which a, b, are the tw o sides, and C
the included angle.

The approximate method, (and General Roy’s is no other)

has now been derived from those exact formulae which express,

in terms of the sides of a spherical triangle, or in terms of two

sides and the included angle, the excess of the sum of the three

angles above 180°, whatever be the magnitudes of the sides.
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Tlicrs is no case in a Trigonometrical Survey, that requires the

exact formula: the approximate formula are always sufficient.

It is rather curious to observe the kind of consequence that

arises from the application of these approximate formula to the

cases that occur in a Trigonometrical Survey. By theory it is

certain, that the sum of the three angles of a spherical triangle

is greater than two right angles. But this is rarely verified by

practice. It frequently happens, and (see p. 224.) one or two

instances have been given of the fact, that the sum is less than

two right angles. These errors arise from the imperfection of

that part of the practice which depends on the observation of

angles. But the other part of the practice, that which gives the

values of the measured sides of triangles, or the values of com-
puted sides from measured lines, supplies the corrections of such

errors. The tangent of one-fourth of the spherical excess is

equal to

V^tan. .tan. %(S— a) tan. ($— b)

.

tan. A (S — e)}.

which i9 always a positive quantity : so are

a b sin. C
tan. - . tan. - .

—
r,

,

2 2 sin. 1

a b

2r“
. sin. C,

the approximate values of -
,
and e, and from which expressions,

2

either the one or the other, the excess may be always computed

with an exactness more than is required.

One point, however, remains to be cleared up. The errors

in the observed angles A, B, C are such, that the spherical

excess can never be known from their sum. But A, B,C are

used in determining a, b, c, and must impart to them, in degree,

at least, some of their errors, and, of course, must impair the

exactness of e, the excess computed from a, b, c, or from a, b,

and the included angle. This must be admitted: the real point

G c
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of enquiry, however, is, what error will be produced in the

spherical excess, by the probably greatest error that will occur

in observing the angles. In the preceding Example, let the

error in observing the angle be l': or let C (instead of

51 ° 10' ll") be 51° 9' ll": ‘hen

log. tan. - 7.44524

log. tan. -•••••• 7.58817

log. sin. 51° 9' 11" 9.89144

compl*. log. sin. !"...••• 5.31443

.23928 . . . .(No. = 1.735),

• consequently, e = S".47,

in the former case e was = 3".4708,

* This may be solved as one of the cases of ‘Errores in mixta mathesi.’

Thus
a b cos. C.dC

rf (g)= to
i‘

tan
‘i‘ sin. 1"

a , b „ sin. 1'

= tan. - .tan. - . cos. C .

= tan. 2 .tan. ~ .cos. C.60,

log. tan. 2 7.44524

log. tan. ^
7-58817

log. sin. 51° 10* 17'' 9.79728

log 60 1.77815

(.000406) 6.60884

... i _ d(2) = 1,7354 - .0004 = 1.735

the result in the text.
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so that the difference of the two results is, practically, insensible,

whilst an error of l' in the observation is, probably, greater than

will occur, when we consider that what is called an observation,

is the mean of several.

We are thus enabled to know, we may say, with certainty,

the excess of the sum of the three angles of every spherical

triangle, (such as the process of triangulation presents) above

180P; and, consequently, to know the sum, or the result, of the

errors committed in observing the three angles. The next step

is to correct those errors
;
and, if it should be believed, that

each observation was made, under nearly the same circumstances,

and with equal care, the simple and obvious mode of distributing

the correction, would be to assign one-third of it, to each ob-

servation. Thus, in the Example of p. 225, for which the

spherical excess (e) has been computed, and found equal to

(see p. 229.) 3".47, the sum of three angles was 180° 0' 3'\05,

which is too small, since the sum ought to have been 180° 0' 3".47i

therefore the sum of the errors is equal to 3.47 — 3".05 = .42,

one-third of which is .14; the observed and corrected angles,

therefore, will be

Observed Angles.

Violan 51° 10' 11".31

Aubassin . . . . 83 15 22. 17

Bastide 45 34 29. 57

One-third of Error,

-j- .14

+ -14

+ .14

Corrected Angles.

51° 10' 11".45

83 15 22. 31

45 34 29. 71

180 0 3.05 180 0 3. 47

The angles of observation, being thus corrected by means of

the computed spherical excess, are fit for calculation: but the

calculation will be that of the sides and angles of a spherical

triangle, more tedious than that if the triangle were rectilinear.

If we diminish the above corrected spherical angles, each, by

one-third of the spherical excess, the resulting angles must, ns

it is plain, be those of a rectilinear triangle: thus the spherical

excess being 3\47, one-third is l’.15G6, &c.; therefore, wc
have
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Corrected Spherical Angle*.

51° 10' 11" 45

83 15 22.31

45 34 2.9.71

One-third of Excess.

— 1.566", &C.

— 1.566

- 1.566

Rectilinear Angle*.

51° 10' 10".29S3, &C.

83 15 21. 1533

45 34 28. 5533

180 0 0

The question, now, is, what use can be made of such a re-

duced triangle, since we are ignorant of the values of its sides.

It is worthy of notice, that the mathematicians who were em-

ployed in the early geodetical operations, having obtained, by the

process just described, reduced rectilinear triangles, considered

their sides to be the same as the sides of the original spherical

triangles. M. Delambre says they were led to this inference, a

just one as it has since been proved to be, by a kind of instinct.

Without calling in, however, the interference of such an expla-

nation, it is probable, that the mathematicians of whom we have

spoken, were persuaded from instances, or examples, of the

justness of their proceeding. The subject, indeed, had no diffi-

culty. It was only necessary to take an extreme case, (one in

which the sides of the triangle were large) to solve it by the

rules of spherical triangles, and to compare the result with that

obtained from the rectilinear triangle, the angles of which were

reduced, (see p. 235. 1. SO.) from those of the former, and the sides

of which were assumed equal to the sides of the spherical tri-

angle. The matter, however, did not rest here : for M. Le-

gendre, in 1787, shewed that the assumed process was a just

one, or that its errors, in practice, were of no account. The
following is the demonstration of what is called

Legendre’s Theorem :

Let A be the spherical angle to which the arc a is opposite

:

h
,
c are the two remaining arcs or sides. Let A' be the angle

of x a rectilinear triangle of which the sides, equal to the sides

of the spherical triangle, arc n,b,c. Let A=A’+x-. then,

r being the radius of the Earth,
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cos. (A'+x)( = cos. A) =

a be
cos. - — cos. - . cog. -

r r r

. b . c
'

sin. - sin.

—

r r

the numerator of this expression {F)

i.r* 2.3.4 r
^ — &c.

+ -A-,

-

&J
.

{,_-sL+ sect
1 2r* 2.3.4r* J l 2.r* 2.3.4r* j

6*+ c
«_ a* a

4-66V-64 -c4

_ + 2 3 4 jA

fe’+c’-a* (b'+c'f-a' 4&V
2r* 2.3 . 4

r

4 2.3.4r‘‘

i’+ c'-V (6*+ c*-a*).(&4 + c*+ a
4
) 4iV

2r 2 . 3 . 4 r
4

2 . 3 . 4 r

neglecting the terms that have in their denominators higher

powers of r than the fourth.

. . b , c
The denominator = sin. - . sm. —

r r

- {- - —~j + &c.j \- - -^-, + &c.)
Ir 2.3,r j (r 2.8.»-

3
J

be ( b* + cS= -?T
I

Hence, the expression, or fraction F, —

r-
f

b’+c"-) (6
5+c8-a4 (t^c^-a’lCft'+c’+a4

) 46V )

be V +
2.3.r*j *

l 2 r* 2.3.4r4
2.S.4r4ji

(rejecting, as above)
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6
4 +c®-a® 6* + c

4 - a’
+

26c 2.3.4 6c.

r

2

b'+ c'-a'
,

(6
2 + c*-n!

)*

. {26*+2c®— (6
4
+c*-t-a®)}

be

4 be

2.3.4 r*

26c 2. 3. 4. 6c. r* 2.3r*

6*+c® — a° 6c f/6
s+ c* —

a

26c
+

2

6c ( /6®+ c* — a \ )

7sT7‘{( 26c )
“

, ,
6®+ c*— a®

but ; = cos. A ;

26 c
’

therefore making cos. x= 1, and sin. x= x, we have

cos. A'— sin. A 1
. x= cos. A1

ssin.® A':
2. Sr*

x = - .

1 6c. sin. A'

3 2. r*

= - , c being the spherical excess.
3

The Theorem
, therefore, although not mathematically true, is

true, as far as regards all practical purposes, since the denomi-

nators of the rejected terms involve r* and higher powers of r,

and, if retained, would affect only the 5th or 6th decimal figure

of the result obtained without them.

The spherical excess, therefore, which before enabled us to

correct the errors of the observed angles, and to prepare the

triangle for solution as a spherical triangle, may now be em-
ployed to reduce the spherical, to a rectilinear triangle.

But these are matters of convenience, not of essential im-

portance. There are other methods, quite as simple and obvious,

as the two we have discoursed on, for mathematically conduct-

ing the process of triangulation. For instance, instead of solving

the spherical triangles by the rules of Spherical Trigonometry, or,

of reducing them to certain imaginary rectilinear triangles, wc
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may make the rectilinear triangles, the sides of which are the

chords of the spherical, the subjects of investigation. The only

point of difficulty in this mode, is the determination of the angles

of the chords
;

for the things given, or determined by observa-

tion, are the spherical angles. It is necessary, therefore, by

some formula, or correction, to deduce the former from the

latter angles. This technically is called

The reduction of the angles of a spherical triangle, to the

anglesformed by the chords.

In this, as in the preceding instances, it is supposed that the

sides, arcs or chords, of the triangle, are very small relatively to

the radius of the Earth.

Let C be the spherical angle, C—x the angle formed by the

chords, a, (3, y, then,

• J a
i • S ^ • 2

C

9 , i sin. - + sin.* - — sin.
5 -

^ x
® +p —7 . 2 2 2

cos. (L — x) = —3 = 4 . :
.

2a/3 . a . b
4.2. sin. - . sin. —

2 2

If we divide this fraction by 2, the numerator of the result-

ing fraction will be

2 sin.® - + 2 sin.
4 - — 2 sin.

9 -
2 2 2

2 . sin.* - + 2 sin.® - — 1 + (\ - 2 sin.
9
-'l

2 2 V 2*

, n t* . . o
2 sin. - + 2 sin. -

1 4- sin. a . sin. b . cos. C+ cos. a . cos. b

2 sin*
2 - +2 sin.

2 - — 1 + ^1 — 2 sin.
2 ^1—2 sin.*-^ +sin. a. sin. b. cos. C

. 2
U

• 2 u
. , • a a . u u

4 . sjn. - . sin. - + 4 . sin. - . cos. - . sin. - . cosi - . cos. C.O O o n n n 9
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divide this by the denominator 4 . sin. - sin. -
, and

2 2

,n .
a . b a b

cos. (L — x)= sin. - . sin.—h cos. - . cos. - . cos. C.
2 2 2 2

This, in a merely mathematical point of view, is a complete solu-

tion, but, practically, a most incommodious one. The reason

of which is, that in almost every case that occurs in practice,

the angle of the chords differs very little from the corresponding

spherical angle ;
rarely, by two seconds, most frequently, by

a fraction of a second. But our best Trigonometrical Tables,

(those of Taylor) do not go beyond seconds : consequently,

were we to use the above formula, it would be necessary in

every case, (for we cannot suppose, even in extreme cases, the

difference x to be an exact number of seconds) to interpolate

between the logarithmic numbers
; which is a troublesome ope-

ration. In order to remove this impediment, instead of finding

the value of cos. (C — x), it is expedient to find a formula for

the difference, or the correction x

:

for, this quantity being very

small, we may, instead of interpolating between logarithmic

sines and tangents of seven places of figures, neglect the three

or four last figures, without practical error.

Expand cos. (C— x), and it becomes

cos. C . cos. x+ sin. C . sin. x

= ( 1 — 2 sin.® . cos. C+ 2 . sin. - . cos. - . sin. C

;

V 2/ 2 2

x ( . x . i)
2 . sin. - . (sin. C . cos. cos. C . sin. ->

2 l 2 2)

. a . b ( a b 1
=ssm. - . sin.- + (cos, - . cos. - — ll.cos. L

2 2 12 2 )

.,a + 6 . , a— 6 f . , a + 6 .
a- b) „— «>" *

( sin. + sin. r cos. C14 4 i
sin. — sin,*

4 4
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. , a + b . . „= sin. . 1 — cos. C —sin.*
4

1 ’

a — b
Cl

But (e) =2 . sin.

If, therefore, x being very small, we seek for a first value* by

X
assuming sin. C sin. C, we have

2

. x
2 . sin. -

2

1 — cos. C
sin. C

1 + cos. C
sin. C

• In order to use a formula of approximation with confidence, we

ought to know the errors, or limits of errors, committed by rejecting

quantities. In the case before us, the true value of .r must be derived

from a quadratic equation : thus, make the right hand of the equation of

p. 240. 1. 22= 2 ft sin. C, and cot. C——a, then

a sin.* - + sin. - . cos. - = ft,

and a tau.a

^
tan. ? = /3 . sec.

1
jr=/3-j-/3 tan.

1 ~ ;

1

2 •(<*—0)

t/jl+4/Ma— /3)i

2 (a- ft)

Expand the right hand side of the equation, and

tan.
^ =ift—(a-ft)ft‘+2(a-ftyftt-5.(a-ftyfti+Scc.

= /3-a/3*+(2a1+l) /£ + &c.

the other terms involving /3
4
, /3

s
, &c.

Now /3 is very small, and, accordingly, all the terms to the right of ft
are much smaller, and so small as to be safely rejected.

To be assured of this latter part, take an extreme case, and the value

of the term involving ft
1 will convince you, that the rejecting of terras

involving higher powers of ft, can induce no practical error.

II H
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. . a+ b , C . , a — b ,C= sin. . tan. sin. . cot.* — ,

4 2 4 2

or, since x is very small, sin. - = - . sin. l''.

• .» . 3
a + b C . s a— b C

x . sin. 1 = sin. —tan. sin. —-— cot.—,
4 2 4 2

from this approximate value of x, (which, however, is, almost

always, sufficient), find x (=p), and for a nearer value compute

x
2 sin. -

2

. . a +6 C . .a — b C
sin.

4— . tan. - - sin. —- cot. -

Take the instance of p. 230.

Dean Hill (

A

)...

Observed Angles.

48° 4' 32".25

Distances or Values of Sides.

„ 140580.4

Butser Hill (B) . 76 12 22 b ... 183496.2

Dunnose (C) .... c ....... ... 156122.1

Correction of the angle C.

Log. 1 Log.

81019.15 4.90859
4

®’* radius 7.32060

* log. — in seconds .... 7.58799

C¥)'
5 - i 75s®

taD. 27° 51' 33”.5 9-72309

4.89907

log. sin. 1" 4.68557

(1.6349) .. 21350

correctiono 1.6349— .1026= 1.5323.

a — b

4
. . 4.03056

7.3206

6.70996

3.41992

. 10.27691

3.69683

4.68557

(.1026) 9.01126

cot.

* In this computation, from the smallness of a, b, in minutes, se-

conds, &c., the arcs have been assumed equal to the sines. If we com
pute exactly according to the form, the result will be 1 .534.
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Loir.

6+e~~
. . 84904.57 .... 4.92893

®’s rad 7.32060

7.60833

5.21666

tan. 24° V 1 6" 9.64935

4.86601
log. sin. 1" 4.68557

(1.5151) .. .18044

Log.

.. 3.83528

7.32060

6.51468

3.02936

. 10.35065

3.38001

4.68557

(.04948) 8.69444

Correction of the angle A.

b—c
... 6843.52

cot. 24° 2
'
16''

.-. correction =1.5151 - .0495= 1 .4656.

Correction 1

n+c
tog ’

-j- . . . 74175.62 . . . 4.87026

®’s rad 7.32060

7.54966

5.09932
tan. 38° 6' 1 1" 9.89442

4.99374
log. sin. 1" 4.68557

(2.0332) 0.30817

* .•. correction = 2.(

the angle B.

a—
L°g;

—
. 3885.42 i . . . 3.58944

7.32060

6.26884

2.53768
cot. 38° 6' 11" 10.10558

2 64326

4.68557

(.00907 18) 7.95769

32-.009 1=2.024.

* The second nearer values, (see p. 242. 1. 6.) of these corrections,
will be

1V5323 x

1.4656 x

0.024 x

Sin. 35° 43' 7"

sin. 55 43 6.24
’

sin. 48° 4' 32"

sin. 48 4 31.27’

sin, 76° 12' 22''

sin. 76 12 20
’

the results of which, as far as four places of figures arc concerned, are
the same as before.
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The spherical angles, their corrections, or differences, (as

General Roy calls them) and the angles of the chords, will stand

thus

Observed Angles.

Dean Hill 48° 4' 32".25

Butser Hill 76 12 22

Dunncse 55 43 7

Corrections.

- 1".466

- 2 .024

- 1 .532

Angles of Chords.

30".7S4

19-976

5.468

180 0 1.25 - 5 .022 56.228

The sum of the angles of the chords is

179° 59' 56".228,

but it ought to be 180° : consequently, the corrections being

supposed to be right, the spherical angles were erroneously

observed, and the amount of the errors must be the defect of

the sum of the angles from 180°. The amount of errors, there-

fore, must be 3'.772, which added to 1.25, the excess of the

sum of the observed angles above 180°, makes 5.022, the sum

of the corrections, as it ought to be.

This sum of the corrections, or of the differences of the

spherical angles and the angles of the chords, must always, as it

is plain, be equal to the excess of the sum of the spherical

angles above 180°*, and, therefore, the sum of the corrections

* It would be quite absurd to seek for a proof of this : but, as a matter

of curiosity, and merely as such, it may not be amiss, in the subordinate

station of a note, to shew that the sum of the analytical formula:, repre-

senting the reductions to the chords, is equal to the spherical excess.

/a+ 5\* C /a—b\% C
Reduction (/?) = (—)

• ta»-
jj
~ \t) •

cotl
,
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will always answer the same end as the spherical excess. The

= FiliTc- {2«*-(«*+&,
).cm. C},

similarly,

for I), reduction (ft) <^73- {2ac-(a*+c*). cos. B},

for A (R ") ==
g
"
8i^; A {

2 Ac— (6s+

c

1
) . cos. A\,

but, cos. C — a'+b'-c'

2ab ’

cos
a*+>— 6*

. _ bD=
2ac >

« = -«u. C,

. 6>+ c1—

a

3
a

cos. A —r
, sin. A = - sin.

2oc c

16aA .sin. C

.-. ft + ft'+ft^

r 4a*A*-(a1+A1

)
(a*+A2-c*)^

+4 «>

1 + 4 A
1

a*A*-(a2+A*) (a*+A*-e*) ,

o*c*—(a*+c*) (a'-f-c
1—

A

1

)
(.

A*c2-(A*+e2
) (A’+e-a

1
)]

1 1 2 a»A*-f2 a*c*+ 2 AV >
~ 8aA. sin. C •

} _(a4+A‘+ t4
) \

= 87Ai^^4aV-(a‘+4’- cJ)^

4 a* A’ / a1-f-A
J—

c

3\

n. C \ 4 fl*i* /8 a A . sin.

a A
= ^

—

1—r< • (l — cos. C)
2 . sin. C v '

a A= . sin. C,

which, see p. 2J2. is the value of the spherical excess.
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latter, in the above instance, (see p. 230.) was found equal to

5.022, which is the sum of the corrections. There is, therefore,

no essential use in the theorem for the spherical excess. It is,

however, applied for the obvious purpose of checking the com-

putation of the reduction to the chords.

If, now, we employ the defect of the sum of the angles

formed by the chords from 180°, in the same manner as the

spherical excess was used, (see p. 235.) in correcting the angles

of observations, that is, by adding to each one-third of S”.778,

they will stand thus,

Observed Angles. §d. of 3".n2
Corrected
Spherical
Angles.

Corrections
for

Chords.

Angles

Chords.

48° 4'32’’.25 f l'.257 33".507 - 1".466 32".04l

76 12 22 +1 .257 23 .257 -2 .024 21 .233

55 43 7 + 1 -257 8 .257 - 1 .532 6 .725

5 .021 59 .999

After these corrections, the excess of the sum of the observed

angles is 5*.021, and the sum of the angles of the chords is

179° 59“ 59'-999, Slc. or 180°.

Wc will now take the first triangle in General Roy’s Survey.

Feet
Hanger Hill Tower (A ) 42° 2' 32" (a) 27404.2

Hampton Poor House (B) .... 67 55 39 (5) 38460.4

King's Arbour . . . . . (C) .... 70 1 48 (0 37921.9

a 27404.2
6 38460.4

a4-6 65864.6

^.. .. 16466.1$ ... 4.21<J58 ...
~~ b

.

4

Logs.

...27-6405... 3.44154

®’s rad. ... ... 7.32060 7.32060

6 .8959s 6.12094

(?) tan. 35° 0' 54

3.79196 2.24188

... 9-84547 cot 10.15453

3.63743 2.39641
sin. 1"

. .

.

.. 4.68557 4.68557

(.0895) ... ... 8.95 186 (.0031) 7.71084
Corr.

.0895

.0051

.0844
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a 27404.2

c 37921-9

65^26.1

16331.5 ..

.

4

Logs.

. 4.21301

7.32060

<2— C - ^—«... 2629.4 .

4

Log*.

.. 3.41986

7-32060

6.89241 6.09926

(~)..tan. 33° 37' 49"

3.78482

..9.82839 cot. . . .

2.19852

. 10.17161

3.61321

4.68557
•*

2.37013

4.68557

(.0846) . 8.92764 .00484 .

Corr.

.0846

.0048

.. 7-68455

b 38460

a 37921.9

.0798

b+c .... 76381.9

.... 19145.4
4

Logs.

. . 4.28206

7.32060

b—c
—r- .. 134.5
4

Log*.

.. 2.12872

7.32060

6.96146 4.80812

— ... tan. 21 ° 1 ' 16"..
O

3.92292

. 9.58464 cot. . . .

9-61624

. 10.41545

3.50757

4.68557

0.03169

4.68557

(.06638) . 8.82200 (000022) ...

Corr.

.0664.

.. 5.34612
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Hence, the following Table :

Observed Angles. Corrections.

Corrected
Spherical
Andes.

Angles of Chords.

42° 2' 32" - .0844 32".41 42° 2'32".33

67 55 39 - .0798 39 -41 67 55 39 -33

70 1 48 — .0664 *—

«CO 70 1 48 .34

179 59 59 - .2306 0 .23
I

180 0 0*

sum of errors ... 1 .23

4 «•

* The above Example has been introduced for more than one pur-

pose. The sum of corrections, or the sum of the differences of the sphe-

rical angles, and the angles of the chords, is 0".23, which, as it ought to

be, is the spherical excess, found either by General Roy’s Rule, or by the

formulae of p. 250, but General Roy makes the spherical excess .29.

In the next place, the angles of the chords, deduced by subtracting

the computed corrections from the corrected spherical angles, are quite

different from General Roy’s angles corrected for calculation, (see

Trigonometrical Survey, p. 139.) They only agree in one point: in

each their sum is, as it ought to be, 180°. We may understand some-

thing of the principle which guided the author in correcting his angles,

(for he himself partly explains it) but we find little or no trace of the

detail. In p. 141, Trigonometrical Survey, it is said, ‘ As that part of

the Earth’s surface, to which the operation is confined, has been con-

sidered as a plane, it is evident, that the mode of correcting the angles for

computation must, in some degree, have been arbitrary; and, therefore,

it follows, that in reducing the observed angles to those of plane triangles,

each angle may be varied to certain limits ; and, consequently, the

opposite sides may be varied to certain limits also ; but it is evident, that

the means of the extreme results, obtained in this manner, must be very

near the truth, and perhaps will be considered more accurate than the

distances deduced from a single correction of the same angles. Accord-

ingly, if we vary the angles, (in reducing them to 1 80°), from Hounslow

Heath, to the XHIth triangle, so as to produce the greatest and least

lengths of the opposite sides, we shall have 141746 feet, nearly, for the

mean
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The above are instances from the Trigonometrical Survey of

England; we will now take one from the French Survey, ( Base

du Sj/steme Mctrique, Tom. I. p. 535.), in which the spherical

excess is considerable, although less than in the former instance.

Toises. Feet.

Violan ...(C) ... 51° 10' lT',31 c ... 19922 ... 127361.112

Aubassin . .(B) ... 83 15 22 .17 b ... 25423 ... 162605.508

Bastide .. (A) ... 45 34 29 -57 a ... 18264 ... 116816.541

Correction or reduction of the angle C.

Log. Log.

69855 4.81419 ... 11447 .. 4.05869

0’s rad 7.32060 7.32060

7.52359 6.73809

5.04718 3.47618

tan. 25355 9-68015 cot 10.31984

5.72733 3.79602

sin. 1" 4.68557 4.68557

(1.101) 04176 (.12896) 9-11045

Hence the reduction = 1.101 — .129= -97.

mean distance of Hollingbom Hill from Fairlight Down, which, however,

is only l£ feet more than the distance in the XHIth triangle.'

In the former editions of this work, the author having, in the above

example, wrongly transcribed, from the Philosophical Transactions, the

distances of the stations, and, accordingly, wrongly computed the sphe-

rical excess, attributed to General Roy’s calculation of that quantity, an

error which did not belong to it. The real error consists in the quantity

being put down equal to .29 , whereas, by two different methods, (see

pp. 227. 218.) it is found to be .23.

I I
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Reduction of the angle B.

Log.

61059 4.78575 c-a .. 2651 .

7.32060

7.46515

4.93030

tan. 41° 37' 41" . . . 9.94876 cot. . .

.

4.87906

4.68557

(1.561) ... 0.19349 (.003726)..

Hence the reduction= 1.561 —.0037= 1.557.

Reduction of the angle A.

72506 4.86037
4

7.32060

tan. 22° 47' 15"

7-53977

5.07954

9-62335

4.70289

4.68557

(1.0407) ... 0.01732

t'— C— ... 8796 ..
4

cot.

(.08678)

Hence the reductions 1.0107— .0868=.9539.

Sum of reductions.

.954

1.557

970

3.48

Log.

. 3.42341

7.32060

6.10281

2.20562

10.05124

2.2568

6

4.68557

. 7.57129

. 3.94428

7.32060

6.62368

3.24736

10.37665

3.62401

4.68557

78.93844

This result agrees with that which is specially denominated the

spherical excess, and which was deduced in p. 229.
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We may now arrange the results as M. Delambre lias done,

pp. 533. Tom. I. Systeme du Base Metrique.

Violan ....

Aubassin .

.

Bastide ....

Observed Angles.

51° 10' 1 1".3

1

83 15 22 .17

45 34 29 .57

Reductions.

- -97

- .56'

- -95

Spherical Angles.

51° 10' 1 1",45

83 15 22 .31

45 34 29 -72 *

Angles
01

Chords.

10".48

20 .75

28 .77

Mean
Angles.

10".29

21 .15

28 .56

180 0 3 .05 -3.48 180 0 3.48 0 .0 0 .0

Sum of errors — .43.

The first column contains the observed angles : the second

their reductions to the angles of the chords, or the differences

between the angles of the arcs and chords; the sum of the num-
bers in the second must be the excess of the sum of the angles of

the true spherical triangle above 180°: but the excess of the sum
of the observed angles is only 3.05 : therefore, the sum of the

errors of observations is 3.48—3.05, or .43. Add j of this sum of

errors, or .14 to the numbers in the first column, and you form

the third column which contains the corrected, and, probably,

true, spherical angles. Diminish each of these corrected sphe-

rical angles by its corresponding reduction contained in the second

column, and you form the fourth column, the sum of which

ought to be 180°. Lastly, if you diminish the corrected observed

angles by L of the spherical excess, or, which ought to be the

same, by — of the sum of the reductions, you have Legendre’s

reduced rectilinear angles, which Delambre calls angles moyern,

We may see distinctly, in the above Table, the three modes

of solving the triangles of a Survey. We may take from the

third column the corrected spherical angles, and solve the triangle

by the rules of spherical triangles : the resulting sides will be

arcs of great circles; or we may take the angles of the fourth

column, and solve the rectilinear triangle of the chords
;

the re-

• In order to avoid the unnecessary putting down of decimal figures,

the last decimal numbers in column 3, arc put down .72, instead of .71,

&c.
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suiting sides, as well as the given, will be the chords of arcs of

great circles : or, lastly, we may take the mean angles of the

fifth column, and solve the triangle as a rectilinear triangle : the

resulting sides, as well as the given, will be equal, in length, to

the arcs or sides of the corrected spherical triangle.

M. Delambre and his associates computed, by all three

methods, the series of triangles from Dunkirk to Barcelona.

The conductors of the Trigonometrical Survey of Great Britain,

computed by means of the triangles formed by the chords, but

to check the reductions, they computed the spherical excess by

General Roy's Rule.

We are very far, although much has been said, from having

exhausted the subjects of a Trigonometrical Survey. As yet,

little has been determined concerning the azimuths of stations,

their distances from the principal meridian, their bearings with

that meridian, and their latitudes and longitudes, as resulting

from the observed angles and computed sides of the triangles

of the Survey.

If DaM be the direction of the meridian, the azimuth of

W, (Wattcn) seen from D, is the angle WDa. Now the
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direction of the meridian, or the point directly south of D being

determined by previous observations, this azimuthal angle WDa
is easily found. If, for instance, the instrument used were a

theodolite, like that of the English Survey, furnished with a

graduated horizontal arc, the azimuth of W would be simply the

difference of two readings, the first, when the telescope is di-

rected to W, the second, to a mark south of D. But at other

stations not provided with their south or north marks, other

methods must be resorted to, and the most simple is that in

which the pole star is observed at its greatest elongation.

Let G be the observer’s station, P the pole, p,
p' the points

of the pole star’s greatest elongations, N an object to be

observed from G. The telescope is directed to N and top; then

the difference of the readings off on the graduated horizontal

arc, is the measure of the angle pGN: next the telescope is

directed to p', the greatest western elongation of the pole star

:

the difference of the arcs or readings off" on the azimuthal circle

of the instrument of the pole star thus observed and of N,

measures the arc p'GN

:

and

p'GN+pGN PGN+PGp + PGN-PGp _ pn w
’ 2 2

the azimuth of N with respect of G.
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In the figure of p. 252, the angle WDa determined by the

above or a similar method, is the azimuth of W with respect

to D, which being known together with DWC determined

from observation and DW, enables us to solve the triangle

DWa. The angle Cab, which equals DaW being then known,

Ca being determined from the solution of the triangle DCa

and WCF being known from observation, the triangle Cab can

be solved, and ab determined:* also Cb and the angle Cba =
Fbrn by the same process, and CF being known by the solution

of CWF, Fb = CF— Fb is known, and thence

bm= Fb . cos. Fbm :

so that Dm— Da+ ab +bm\

the arc intercepted between the latitudes of D and F, (F being

near to the meridional line DM) would thus become known.

This is an illustration of the use of azimuths. Picard,

and the mathematicians who made the first surveys, continually

employed them in projecting their computed oblique distances

on the meridian. Thus, through the point F conceive a parallel

to DM to be drawn from W, and also a perpendicular be drawn

to such parallel, then the projection of WF would be WF multi-

plied into the cosine of the angle made by WF and the parallel

:

and a series of projections of such lines extending from D to the

other extremity of the meridional arc would constitute the length

of the arc between the two extremities : and if the lines such as

WF were so selected as to be near to the meridian, and slightly

inclined to it or its parallel, the result w'ould be tolerably exact.

We will presently point out the cause of its want of exactness,

and the means of correcting it.

Ii was by drawing parallch, such as have been described,

that General Roy, and those that succeeded him in conducting

the Survey of England, determined the bearings, &c. of places

from the meridian of Greenwich.

* This is of the nature of a general statement : a few pages farther,

and we will speak more in detail.
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Thus let G be Greenwich, GM the meridian, PG perpen-

dicular to it : S, Severn-droog Castle, W, Wrotham Hill

:

draw SB parallel to the meridian, SA, WM parallel to PG, the

perpendicular.

By observation* the angle GSIV =
GSA=909— azimuth AGS,

( = 73° 49' 34"); GSB =
The angle BSIV, or the bearing of Wrotham Hill )

from the parallel SB south-eastward 5

By the solution of one of the principal triangles,

GS= 14610.3: and the azimuth AGS = 73° 49'

AG = 14610.3 x cos. 73° 49' 34"

and ylS= 14610.3 x sin. 73 49 34

log. 14610.3 4.1646391

cos. 73° 49' 34" 9-4449085 sin

(4069.56) . . 3.6095476 (4031.6). . 4.1471006

.-. AS = 14031.6, AG = 4069.56.

Again, by the solution of another triangle,

SW= 79960.6, and since BS IV= 46° J 8' 30"

152° 28' 56"

106 10 26

46 28 30

34",

4.1646391

9.9824615

• The angle GSIV was not determined by immediate observation,

but by combining other direct angles of observation.
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log. 79960.6 .... 4.9028760

cos. 46° 18' 30" . . 9.8393380

53234.9 • • . 4.7422140

J3W=578l6.8

but AS = 14031.6

4.9028760

sin. 9.8591789

578168 . ..4.7620549

US= 55234.9

AG= 4069.6

.-. MW= 71848.4 GM= 59304.5

The distances, therefore, of Wrotham Hill from Greenwich

meridian, and its perpendicular arc, in whole numbers are 71849

feet, and 59805 feet; and $0 for other stations.

In order to obtain the direct bearing of Wrotham aud its

distance from Greenwich, we have

MW
tan. MGW= r . ,

and r.GW=MG . sec. MG W,MG
log. r 10

log. MW. . 4.8564207

log. MG . . 4.7730913 4.7730913

10.0833294 = tan. 50° 27' 48" sec. 10.1961525

(93613) . . 4.9692438

The bearing, therefore, is 50° 27' 48", and the distance 93613

feet

By these methods, both the English and foreign mathema-
ticians determined by a series of successive additions the per-

pendicular distances of the stations from their assumed meridians

of Greenwich and Dunkirk. To express the distances alge-

braically, let $, S', &c. be the distances of Severn-droog from
Greenwich, of Wrotham from Severn-droog, &c., Z the azimuth

of Severn-droog on the horizon of Greenwich, Z' that of Wro-
tham on Severn-droog, &c.; then the respective perpendicular

distances from the meridian of Greenwich will be
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S sin. Z,

8 sin. Z+ & sin. Z',

8 sin. Z-\-8! sin. Z'+ 8*' sin. Z"

,

&c.

The sum of the distances on the parallels from the perpen-

dicular to the meridian at G will be

3 cos. 2+ 3* cos. Z' cos. Z!'+ &c.

and we will now consider what is the error.

There can be no mathematical error, if we attend merely

to the diagram that we have used : for SB must be equal to

AM : but the case is different, if, as the fact is, Sff is an arc,

and S is situated in a great circle representing its meridian.

Let BC represent the arc (S W), extending from one station

to another, MER the meridian of Greenwich, MBF that of B,

draw CR, BE perpendicular to MER, and BD perpendicular

to DR, then BD, in the process described in p. 255 , is assumed

equal to ER .

Produce RD, EB till they meet in A : then the difference

between ER, BD is, in principle, the same as the angular

difference between two objects above the horizon, and those

objects reduced to the horizon, see pp. 220, &c. In this case

H, h {BE, DR,) are equal, therefore the error, (what in pp.

220
, &c. was called the reduction) is equal, (see p. 223 .) to

Kk
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tail. II . tan. - sm. 1 ,
or

II- a— - tan. -
,

sin. 1 2

a being BD.

Let II =1°, a = 30'

then, log. tail.
2 H = 2 log. tan. 1° — 6.48384

tan. 15' = 7.63982

ar. comp. log. sin. l" = 5.31443

(0".2742) 9-43809

but an angle of l" at the Earth’s centre is subtended, nearly,

by 100 feet*, on the surface, consequently, the above error

would be about 27 feet.

There would be more than this error, if we projected an arc

at Dunkirk on the meridian of Greenwich, since it is distant

from that meridian by more than 1°: but such a case would not

occur in measuring an arc of a meridian, since the obvious policy

in measuring it by the projections of sides of triangles, or dist-

ances slightly inclined to the meridian, would be to select sides

as near as possible to it.

The error, as it is plain from its expression, varies chiefly

from the variation of II. If H should be 30', the error would

be one-fourth of the former result, and would be equal to

0".0685, or about 6 feet.

The diagram of p. 257, which has been used for computing

the error in assuming BD = Eli, will also serve to find the

true value of ER; ER is the measure of the angle (A)

BAC. In the triangle BAC we have, (see p. 163. 1. 5.)

* Log. 1'' = 4.6855749

log. 0’s rad. in feet . .
. 7-3216037

(101.6) ... 2.0071786
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cot. A . sin. ABC = cot. BC . sin. AB — cos. A 11C . cos. A 11,

AI3C= 90° - CBD = 90°- CBF- FBI) = 90° - (Z + x),

BC= 8, sin. AB= sin. (90° — BE) = sin. (90° — y)=-cos. y ,

cos. (Z + x)
tan. A = s :

—

r=~.—-—:

cot. o . cos. y— sm. (Z+ x) . sin. y

tan. 8 . see. y . cos. (Z + x)

1 — tan. 8 . tan. y . sin. (Z + x)

If we expand the denominator as far as the second term,

rejecting the following terms that involve tan.
2
8. tan .~y, &c.

tan. A = tan. S . sec.^ . cos. (Z + x)

+ tan.
2
8 . sec. y

.

tan. y . sin. (Z+ x) . cos. (Z + x).

If we reject this second term, and assume, instead of the

tangents of A and 8, the arcs A, 8, and make sec. y= 1, (for i/

or BE is always small), we have

A = 8

.

cos. (Z + x) = 8 . cos. CBD,

which, in fact, is the method formerly used, (see p. 255, &e.)

and involves several sources of inaccuracy, viz. the assuming arcs

equal to their tangents, y = 0, and the rejection of the second

term

tan.
2
8 . sec .y . tan. y . sin. (Z+ x) cos. (Z+ x).

M. Delambre, who, for many reasons, is a most excellent

authority in these matters, says, that if the exact formula,

(p. 259.) be used, that then the method of estimating the arc

of the meridian from the sum of such arcs as ER is by far the

most convenient method. He thus adapts the formulas to

logarithmic computation

log. tan. A — log. tan. S+log. sec.y + log. cos. (Z + x)

— log.
{

I — tan. 8 . tan .y. sin. (Z+ x)}

= log. tan. 5 + log. sec. y + log. cos. (Z + x)

— K . tan. 8 tan. jy . sin. (Z+ x).
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K being the modulus, and equal to .43429448.

Now A, S, y are very small, we have

tan.a. A = A + y ,
nearly, = A. (l + ^-)

V 2.3/

43 -
~ z

= * C-^)
= ' G~j)'

A
log. tan. A = log. A + 2 log. ,

similarly for tan. S.

Again, cos.y = 1
—

- (' - h)'

(* ~ ihS

- Ot
4)'*

log. sec. y = — log. cos.y = 3 log. .

sin.y

Hence, log. A = log. 5+ log. cos. (Z + x)

— KSy. sin. (Z + ar) . sin.
5

l", (K modulus)

A. 8 i/- 2 log. -r - + 2 log. ——j + 3 log. -r*

—

sin. A sin.o sin.y

Digitized by Google



261

For the application of this formula, M. Delanibre has con-

A A
structed tables which give the values of log. — , log. —

—

K
sin. A sin. d

&c*

• As it is necessary from computed chords and sines to deduce the

corresponding arcs, such expressions as those in the text, or equivalent

ones, or tables deduced from them, are required in every step of the

Survey. They effect no more than the rules which Maskelyne has given

in the Introduction (pp. 21, 22.) to Taylor’s Logarithms. These rules

are intended to deduce from the tangent, or sine, of a small arc, the arc

itself, and vice-versd. Thus

tan.^ =^+^= J.(i+£)= A.(l

.*. log. tan. A = log. A-{-\og. sin. 1" — - log. cos. A,

or log. A= log. tan. vtf— 4.6855749 + S '°g- c°*.A

=log.tan. .<4-4-5.3144251 — - , arith. comp. cos. A— 10,

which is Maskelyne's rule : and which gives] exactly the same result

as the expression

log. A= log. tan. A-\- 3. x 5.3144251— 2 (log. A— log. sia.A)— 10.

If we take Maskelyne’s Example, p. 22. of his Introduction to

Taylor’s Tables, the two processes will stand thus :

Maskelyne’s.

7.5228031

5.3144251

12.8372282

16

2.8372266

arc :

given h tan. .i4 = 7.5228031.

.•. A= 11' 27", nearly.

.
. j arith. comp. cos. A

.
.
(687".427)

11" 27'.427.

lldambre’s.

7.5228031

15.9432753

23.4660784

log. A = 2.8369567

sin. A 7.5225308

5.3144259
2

10.6288518

2.8372266

Delambrc's
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The above method of M. Delambre relates principally to

the measuring the arc of the meridian. That was the main,

or ostensible, object of the French Survey : but surveys have

Delambre’s formula, however, was intended for another purpose than the

mere computation of A.

In like manner, in order to derive the arc from the sine

sin. A=A+^=A.(x-^) = A(l-£)i= A. (cos. A)l ;

.•. log. A-\- log. sin. l''(4.6855749)=log. sin. A— ^ log. cos. A
,

or log. A— log. sin. A + 5.3144251+$ aritb. comp. cos. A,

which is Maskelyne's Rule.

In order to complete this subject, into the discussion of which we have

been drawn by the matter of the text, we will subjoin the rules for the

reverse operation, namely, that of finding the tangent and sine of a small

arc from the arc itself.

Rule for finding the sine of a small arc from the arc itself.

To the logarithm of the arc reduced to seconds with the decimal

annexed
,
add the constant 4.6855749 {log. sin. 1''), and from the sum

subtract one-third of the arithmetical complement of the logarithmic

cosine. The remainder will be the logarithmic sine of the given arc.

Rule for the tangent.

To the sum of the logarithmic arc and of 4.6855749 add two-thirds

of the arithmetical complement of the logarithmic cosine, the sum is the

logarithmic tangent of the given arc.

Proof of the 1st Rule.

sin. A=A— > (A being small) = A
. ^

1 — ~
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been undertaken for other objects : for instance, the special

object of that of 179'A was t0 Join the Observatories of Paris

and Greenwich, or to determine their differences in longitude

and latitude.

Part of the method used by General Roy • and others may

be explained from what has preceded, by adding together the

distances from the perpendicular to Greenwich, such as GA,
SB, &c. the distance GM was determined. By the same

process MW was determined.

GM is not the difference of latitude and longitude of

Greenwich and Dunkirk, (supposing W to represent the latter

place), although it serve to find out the difference.

Let P be the pole, D Dunkirk, DA a parallel of latitude,

then the difference of latitude is GR-\-RA, or GA is the length

between the latitude of G, and a place on the meridian, having

the same latitude as D.

= (expressing A in terms of the radius) sin. 1". A (cos. A)l

= sin. T'. A
(
cos.

'ToTr) '

log. sin. A = 4.6855749+ log. A

+ A (l°g- cos. ^4— 10)

= 4.6855749 + log. A

— ^ arith. comp. cos. A.

Proof of the 2d Rule.

tan./f=^+l3

= ^(l+^!) =

.•. on the same principles as before = A (cos. A)~~i;

.-. log. tan. A = 4.6855749-

* In speaking of General Roy, we have, perhaps, in some places,

attributed what did not belong to him. His name has been used to de-

nominate generally the conductors of the Trigonometrical Survey of

England.
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The difference of the longitudes of D and of G is measured

by the angle GPD, and, on the hypothesis of the Earth being a

A

sphere, these differences of latitude and longitude may be thus

computed.

The meridian is supposed to pass through G the principal

place of observation, PD is a meridian passing through D, GD
is the arc of a great circle passing through G and D: RGD is

the observed azimuth (Z).

D being a station so near to G as to be observed from it,

the distance DG compared with PG, the co-latitude of G must,

in all cases, be very small : for instance, if GD should be equal

to 60000 feet, or about 10j miles, PG (supposing it to be equal

to 38° 28' 40'’) would exceed GD in the proportion of about

230 to 1

.

Let L be the latitude of G: dL the difference of the

latitude of D and G: then

PD = g0°-(L+dL),

and what is now required to be done is, to find, by approximation,

dL from the solution of the spherical triangle PGD, in which,

PG(=90"-L), GD ( = 5), and the angle PGD= (180°-Z)
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are given. The formula expressing the relation between these

quantities and PD is

cos. PD = cos. i. PGDa'in. PG.sin. GD+coa. PG.cos.GD,

or sin.(L+dL) = — cos. Z . cos. L . sin. 8 + sin. L cos. 8 ;

but sin.(L+rfL) = sin. L cos. dL-\- cos. L . sin. dL

. T / . , dL\ _ . di. (t Li= stn. X, | 1—2 sin. — 1+2 cos. jL.siu.— .cos.
V 2

*
2 2

Transpose sin. L to the right hand side of the equation, and

then divide each term by cos. L, and

. dL dL

dL _/• r d 1j ._. d.L\
2 sin. sec. L ( cos. L . cos. sm. L . sin.— 1

2 V 2 2 /

= tan. L (cos. 8— 1) — cos. Z . sin. 8

£= — ^2 sin.
5 - tan. L+ cos. Z sin. = E.

dL . dL>

. dL c08
‘ (
L+

2 )
Hence 2 sin. .

2 s.L
= E,

since dL is, by hypothesis, small, find, as a first value, dL from

the equation

. dL _ E
2 . sin. = jE, or dL = —

yr — e.
2 sm. l"

then the second or nearer value of dL will be

cos. L
e . cos. , and so on.

(L + D
L L
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As an example to this formula, let us apply it to find the

difference of latitudes of Greenwich and Dunkirk, in which

instance, however, the azimuth Z is not determined, at once,

by observation (the places being too distant for such an opera-

tion), but by computation from the distances of stations, inter-

vening between Greenwich and Dunkirk, from the meridian and

the perpendicular to the meridian of the former place. (See

p. 256, &c.)

In this case, (see Trigonometrical Survey, Vol. I. p. 168.)

Feet.

RD = 547058

RG = 152556

;

GD = 567931 (5)

i jRGD= 74
b 25' 5".

The log. of the chord GD in seconds of the Earth’s cir-

cumference

= 3.7471170

log. of the arc GD (see p. 266, &c.) .... 3.7471302
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E computed.

log. 8 ... 3.7471302 3.7471302

log. 2 . . . .30103 4.6855749

log.
|

. . . 3.4461002 log. sin. 8 . . . 8.4327051

sin. 1"
. . . 4.6855749

sin. 5 ... 8.1316751 sin.
1
^ ... 6.2633502

tan .

L

... 10.0990491

(No. = .00023035) ... 6.3623993

again, cos. Z ... 9.4291323

sin. 8 ... 8 4327051

(.007275) ... 7.8618374

.-. E = .007275+2 x.00023035)= .0077357,

log. E = 7.8884996

ar. comp. sin. 1" ... 5.3144251

log. e . . . 3.2029247

.-. - e= 1595".6 = 26'35".6

-
8
= 13 17 -8

(lat. Greenwich) 51° 28' 40'' log. = 9.79436l2

L — |
... 51 182.2 log. =9.7964635

.0021023

log. e 3.2029247

(1587.89) . . . 3.2008224

.•. 2d value = 1 587".89 = 26' 27".89.

The difference, therefore, of the latitudes of Greenwich and
Dunkirk, thus estimated, is 26' 27”.8.

The difference of the latitudes of the above places is,

according to the Trigonometrical Survey, Vol. I. p. 1 63,

5 1° 28' 40" - 5 1° 2' 1 1".4= 26' 28".6,

according to Delambre, Arc, du Meridian, Tom. II, p. 295,

51a 28’ 40'— 51° 2' 9*.7= 26' 31*3,
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but neither with the one or the other can it be expected, that

the result just computed should agree; since it was obtained on

the hypothesis of the Earth being a sphere. The spheroidical

form of the Earth will alter the value of 8, which we have con-

verted into seconds, by dividing the arc subtended between G
and D by ®’s radius X sin. l", whereas it equals

-^.(1— £e*. sin.
2
L).

We will now, on principles like the preceding, deduce an

approximate formula for determining the longitude of a station.

Let P represent the angle GPD, which is the difference of

the longitudes of G and D

:

then

sin. P = sin. GD

.

sin. PGD
sin. PD

= sin.
sin

, ( 1
80° — Z)

(90° - L-dL)

sin. tS . sin. Z

cos. (L+ dL)

sm. 8 . sin. Z r j t\ i— (l + tan. L.dL), nearly,
cos. L

but, see p. 265.

dL= — 2 tan. L . sin.
s - — cos. Z . sin. 5, nearly;

therefore if we substitute this value of dL in the former ex-

pression for sin. P, and neglect the terms involving ci\

sin. P =

or P =

sin. $ sin. Z

cos. L

S . sin. Z

cos. L

sin.* 8 . sin. Z cos. Z tan. L
cos. L

«„ sin. . cos. /o . tan. L . „
<T .
—— . sin. 1 .

cos. L
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In order to exemplify this formula, Jet G denote Greenwich,

D, Dunkirk : then, see p. 266.

8 ... 3.7471302

sin. Z ... 9-9837378
arith. comp. cos. L .

.

10.2056388

(8639.8) 3.9365068

78.957

8560.843

8* ... 7.4942604

9-9837378

cos. Z ... 9-4291323

tan. L ... 10.0990491
arc. comp. cos. I . . 10.2056388

/.sin. 1" ... 4.6855749

Hence the longitude of Dunkirk is . .
. (78-957) ... 1 .8973933

8560".843 or 2° 22' 40".843.

In the triangle PGD, PD the co-latitude of D and the

angle P, the difference of the longitudes of G and D have been
approximately determined. We will now find the angles PGD,
PDG, and then shew the use that can be made of such a result.

By Naper’s analogies, (see p. 173.)

PGD+PDG
O cot - ™S $(PD-PG)

'

2 ‘
cos. | (PD+ PG)'

Let PGD= 180°- Z\

PDG= 180°- Z,

. , . /PGD+PDG\ / _ n Z+ Z\
then tan. ^ J = tan. ^180° —

J

= “"•
l
90"-(^ -*»')}

Again, let PD = 90° — L, or = 90° —L' + dL,

PG =90°- V, or = 90
n -L-dL-,
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PD-PG L'-L l
AL— — —~— or = +—

,

2 2 2

PD+PG L+L' _0 T dL
- =90 or=90 - L-t .

Hence,

tan f
z+s „..A P "°(£+t)

so) JJ—
cos.

In order to reduce this farther, we have, (see p. 268.)

sin. 5. sin. Z
sin. P =

but (see p. 42.)

P sin. P
tan. — =

T / I

cos. L

sin. P sin. P
2 1 + cos. P

2 . cos.* - 2 . ( 1 — sin*. ~

)

2 V 2 /

sin. P / . s jP
. o, \=— .(l+sm. -+&*•>

Now the first term in the expression (see p. 268.) for P in-

volves S, the second S
2
; if, therefore, we reject the terms in-

P
volving 3

3
, and higher powers of 8, we shall have tan. —

=s ^ sin. P, nearly : accordingly

tan.

£ sin. P. sin. ^

L

+

cos.
dL

Z+ Z1

and since P is very small, and consequently— 90°, we

have
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• /r dL\
5 . „ sin. I L + -— 1
o . sin. Z V 2 /

2. cos. L1 ' dL
cos.——

2

Z + Z’ - 90° =

sin. (L +
and r=J80°-2 +

8 . sin. £

cos. L' dL
cos.

In order to exemplify this formula, which is M. Delambre’s,

we will take his instance, (p. 14. Tom. III. Base Metrique.)

D represents Dunkirk,

W Watten,

G Gravelines,

WM is a parallel to the meridian Db, of Dunkirk.
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By observation, (see p. 253.)

the azimuth of Gravelines on the horizon of Watten,

or the angle GWM J
“

GWD, the angle subtended by D and G at W =45 33 44.65

MWD =25 12 29.65

If the diagram represented rectilinear angles on a plane surface,

MWD would be equal to WDa, which would then be the

azimuth of Watten on the horizon of Dunkirk. But the angles

GWD, GWM are spherical angles, and WDa is to be com-

puted as a spherical angle.

The numbers, therefore, that represent 5, Z, L, will be as

follow

:

Logarithms.

the arc DW, or $, in seconds, is 822".43 . . . 2.91510

Z= 180°-25° 12' 29".65; .-. sin. Z ... 9.62932

* L'= 51° 2' 10" aritb. comp 0.20147

dL
L + = 50 49 38+6' l6" sin 9-89008

~ = 6' 16" cos. ... 9-999999 1

2.63597

The number answering to this logarithm is 432".48=7’ 12".48;

.*. Z‘= 1 80°— ( 1 80°— 25° 12' 29"-65) + T 12".48

= 25° 19' 32".13,

which is the value of the spherical angle WDa, or that, of the

azimuth of Watten on the horizon of Dunkirk.

A similar process enables us to compute the azimuths at

other stations, and, as the azimuths may be observed, the com-

parisons of the computed and observed azimuths will serve as n

check to the operations and calculations.

* L' the latitude of Watten may be computed from the latitude of

Dunkirk (L), by the method of p. 266.

t This value might have been omitted.
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The computed azimuths, such as have been just deduced,

will also serve for the solution of what are the secondary tri-

angles. Thus, the triangles IVDa, Cab, &c. in which the

points a, b, &c. made by the intersections of the oblique sides

with the meridian, and technically called Nodes, are secondary

triangles, and serve, amongst other purposes, as verifications of

the results obtained bv the primary or principal triangles, such

as DWC, IVCF, &c.'

To examine the matter more nearly, we have, in the triangle

DIVa
,
DW determined from observation, and the measured

base, (see p. 272.) its logarithmic sine being

4.1 1647.23980.

The angle DIVa, or DWC determined by observation, and

= 74° 28' 45".28

The angle WDa computed, (see p.272.) =25 19 42 .13

From these data, two angles DWa, WDa, and the inter-

vening side DW, we have, by Naper’s Analogies, (p. 180.)

the angle DaW = 80° 11' 33".27,

so that the three angles of the spherical triangle DIVa are

DIVa 74° 28' 45'.28

Vila 25 Ip 42 .13

DaW SO 11 33 .27

ISO 0 0.68

accordingly the excess of their sum above 180°, or what tech-

nically is called the spherical excess *, is .68.

* This spherical excess, as we have seen in pp. 1

9

5, 236, 244,

is derivable from other sources than what was first thought to be its

natural one, the area of the spherical triangle. It has happened here,

as it has happened in many other cases.

In a progressive stnte of the sciences we are enabled, or obliged to

M M take
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In order to find Wa, Da, we have

„r . nrn sin. WDa
sin. » a= sin. WD

.

-

—

,» ,
sm. WaD

and log.sin. W a = log. sin. WD 4.11647.23980

-f- log. sin.*WDa .. 9 .63 1 24.63656

-}-ar. com. log. WaD ... 0.00639-36863

log. sin. Wa
, in toises*, 3.75411.24499

_ sin. DWa
Again, sm. Da = sm. WD. -—rnn >sm . DaW
.-. log. sin. Da = log. sin. WD 4.1 1647-23980

-f-log.sin.jDfFa 9-98386.68657

-f- ar. com. log. sin. DaW. . 0.00639.36863

log. sin. Da in toises 4.10673.29500

add $ ar. com. log. cos. (see p. 262.) 1 1086

log. arc Du 4.10673.40586

therefore the arc Da = 12785.98086.

take different views of the derivation (we mean the scientific and philo-

sophical derivation) of formula; and theorems. Their genealogy seems

continually changing. In the subject, for instance, on which we are

speaking, the theorem for computing the spherical excess seems natu-

rally to be derived from that by which the area of a spherical triangle

is computed, and such was its historical derivation. But view the con-

nexion of theorems as it is given in pp. 193, &c., and, we shall find,

the theorem for computing a spherical area, is no necessary link between

the formula for the sines and cosines of the angles of a spherical tri-

angle, and that by which the spherical excess is computed. This last

theorem is, (see p. 1 93.)

tan
- ( r~ ~ 43

)

=V/
{
tan

-
4S. tan.£ ($— a) tan. £(S-6) tan. £(S-c)},

A4- B
derived from cos. A, cos. B, &c. cos. —-— , &c. without the slightest

aid from Albert Girard’s Theorem. It so happens that the spherical

excess, and the area of a spherical Triangle may be computed by the aid

of the same formula : and such, under this point of view, is the sole

relationship which the two theorems bear to each other. They may be

consanguineous, but the one does not precede the other, as ancestor pre-

cedes descendant.

1 A toise =6.3946 feet.
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In order to solve the triangle C'a, we have

Ca=CW-Wa
Cab= DaW =80° 11* 33".27

uCb, (= DCF) = 79 48 35 .35

DCF being the angle between Dunkirk and Fiennes (F ), observed at

Cassel. This triangle being solved, like the former, gives the angle

Bba=l9° 59' 5l".85,

so that the sum of the three angles= 1 80° O' 0".47, and the spherical

excess is .47.

By the same solution

log. sin. nb ss 4.07464.17054

add j aritb. comp. log. cos. a b .... 09563

log. arc ab . . .

.

4.07464.26617

ab= 11875.2470

but Da = 12785.98086

Db = 24661.22786 toises.

This is the value of the arc Db of the meridian from the

addition of the two arcs Da, ab: but it is plain that Db may
be computed directly and independently of the former solution,

from the triangle DCb, in which DC is known from the solu-

tion of the principal triangle WDC: the angle DCb or DCF
from observation, and the angle CDb as being the difference of

the observed angle WDC, and the angle WDa, the azimuth of

Walton on the horizon of Dunkirk. These three angles will be

deduced from the two former

angles and DC }

DCb ... 143° 13' 41".52

CDb ... 16 46 27 -59

DbC ... 19 59 51 .85

The log. sin. Db, (deduced as before, 1. 16.) 4.39201.05977

diff. of sine and arc 41244

log. arc Db 4.39201.47221

.-. Db = 24661.2293 toises,

from former solution Db = 24661.2279

.0014
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The difference of the two results is .0014 toise, or, since a

toise = 6.3946 feet, the difference is one-tenth of an inch.

The coincidence of these two results verifies the accuracy of

the processes by which they were obtained.

By the method just described, Delambre doubly computed

the length of the arc between Dunkirk and Barcelona.

The angles DaW, Cba, &c. arc the azimuths of the

stations, D, C, &c. on the horizons of the points of intersection

of the oblique sides WC, CF, &c. with the meridian. But

it rarely happens in Surveys, (it did not once happen in the

French Survey conducted by Mechain and Delambre) that

the stations of observation are on the principal meridian. But,

as we have already explained, this circumstance is no obstacle

to the measuring of the whole arc : since, if F, for instance,

should be the last station, we have

Fm = b F . cos. Cba,

b F= CF— Cb, and Cba determined as above.

What has been described in p. 273, &c. is one of the methods

which Delambre used in computing the arc of the meridian.

The triangles Da IV, Cab, &c. arc solved as spherical triangles.

The results of the solutions give the sines of Da, ab, &c.

whence, by a small correction, (the sines of small arcs being

nearly equal to the arcs) the arcs Da, ab, &c. are obtained,

Legendre’s method, (see p. 236.) is somewhat different. It is

this

:

The spherical excess being obtained, one-third of it is sub-

tracted front each angle, and the- triaugle is solved as a rectilinear

one, and the deduced sides are from his theorem, (see p. 236.) the

spherical arcs of the triangle. But simple as this process is,

there is some inconvenience belonging to it. The spherical

angle DaW, in Delambre ’s method, is equal to the vertical

spherical angle Cab, and, as such, is subservient to the solution

of the triangle Cab: but this equality does not subsist in

I-regendre’s method, because in that, the angle DaW, prepared

for solution, is the observed or spherical angle DaW diminished

bv -y of the spherical excess, which is the area of DaW

:
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similarly, the angle Cab

,

prepared for solution, is the spherical

angle diminished by -|<1 of the area Cab, which latter area will,

probably in every instance, be unequal to the former area Da W.
For instance, the spherical excess in the triangle DaW

,
(see

p. 373.) is O
w
.68 : one-third is 0*.227 : the reduced angle

DaW, therefore, in Legendre’s method, is 80° ll' S3
W
.043.

The spherical excess in the triangle Cab is 0’'A7 : one-third is

0".157; therefore the reduced angle Cab, instead of being

80° ll' 33".043 is 80° ll' 33".11S. The principle, therefore,

of Legendre’s method, in this circumstance, impedes, and ren-

ders less simple, the process of computation.

The method of computing the arc of the meridian, by the

values of Da, a b, &c. (see p. 274, &c.) is called that of oblique-

angled triangles. It was employed, both on the common, and

on Legendre’s principle, by Mechain and Delambre; but the

latter mathematician, (whose authority, on this subject, for several

reasons, is great,) thinks the method much less expeditious than

what he calls the method of perpendiculars, and which has been
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explained in p. 259. To this method or process there must, as

it is plain, be joined another for computing the triangles formed

by the stations : and he prefers, for this purpose, the method of

chords

:

that is, having reduced the observed angles to horizontal

angles, (see p. 221.) he again reduces the angles to the angles

formed by the chords, (p. 239.) and solves the resulting recti-

linear triangle. The arcs corresponding to the deduced sides,

or chords, arc found by means of tables.

The very near agreement of the values of the arc of the

meridian obtained by different methods, (see p. 276.) establishes

the accuracy of the observations and computations, by which

such values were obtained : but it does not establish the value

to be a true one : for all three methods set out from the same

value of the base. This base is the unit on which all the

computed results depend. In the measurement of this base,

therefore, the greatest nicety is required. The measurement of

the base on Hounslow Heath took nearly five months : it was

conducted by many able men of science; with the assistance of

the greatest artist of his day : and what will serve as a kind of

practical proof of its difficulty, is the description of its occupy-

ing nearly 90 quarto pages in the Account of the Trigonometrical

Survey.

This part of the Survey, as every other, gave rise to many

ingenious contrivances, and valuable experiments, and enriched

both art and science.

It was a fortunate circumstance, that a plain, like that of

Hounslow Heath, could be found near to the metropolis. The
levelness of this plain is such, that the ascent from the south-east

to the north-west is only a little more than one foot in a thou-

sand, in the distance of five miles. The base measured in 1784

by glass rods reduced to the level of the sea, and at the temper-

ature of 62®, was found to be

Feel.

27404.0137,
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and the same base, measured in 1791 by means of an hundred

feet steel chain, was found to be

Feet.

27404.2449,

so that the difference was 0.2312 foot, or about 2-f inch.

But, in an enterprise in which it was attempted to measure

the length of a large kingdom, within two or three feet, it was

necessary to resort to every means of examining the accuracy of

the original measurements, and the subsequent observations. No
single measure could, for this end, be so well devised as that of

measuring, at a considerable distance from the original base,

a second base, arid of comparing it so measured with its value

deduced from the former, by the computation of intervening tri-

angles. This step would do more than the double measure-

ment of the original base : since, if the computed value of the

base of verification agreed with the measured, there would arise

a strong presumption, both that the original base had been

truly measured, and the subsequent processes, of observation

and calculation, rightly conducted. It would be much against

probability, that a compensation of errors should have caused

such an agreement.

The first base of verification in the English Survey was

measured on Romney Marsh; but little reliance was placed on

the result. Indeed it is plain from the Account of the Trigono-

metrical Survey, that far less pains were bestowed upon it,

than upon the Hounslow Heath base. The measured length

of the Romney Marsh base was

Feet. Inches.

285S5 8.128

by computation 28533 3.6

the computed base, therefore, was about 28 inches short of the

measured; a discordance not to be endured.

Instead of measuring again the base of Romney Marsh, the

conductors of the English Survey sought for a base of verification
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more remote from the original one, and in 1794, measured one

on Salisbury Plain : its length was found to be

Feet.

36574.4;

and, by direct computation from Houuslow to Salisbury, the com-

puted base was found to be

Feet.

36574.3,

or, probably, 36574.7, differing not more than 3j inches from

the measured value.

The French, also, had their base of verification : and

M. Delambre makes a comparison on this head between the

respective accuracies of the English and French measurements.

The balance, (we need not wonder at it,) is, according to

Delambre, all on the side of the French. But the French

mathematician, no doubt from carelessness, which really seems to

have been habitual to him, assumes that the English considered

the base of verification on Romney Marsh to have been accu-

rately measured : whereas it is plain, from the description of

that measurement, that the contrary was the fact. To conduct

and superintend it, like the base on Hounslow Heath, there was

no gathering together of London artists, of men of real science,

and of philosophical diletanti regaled at Spring Grove; only two

officers of artillery and their men were employed for .the mea-

surement. Jn p. 103, of the Trigonometrical Survey, it is

expressly said, that the apparatus teas defective, and the weather

tempestuous: and again, p. 143, “ we should have computed the

distances in the vicinity, and to the eastward of Romney Marsh,

from the base of verification only, but there are reasons to

suppose that it was not so accurately measured as the other on

Hounslow Heath."

It was useless after this to recompute, on principles more
exact than those of General Roy, the base of Romney Marsh

from the base of Hounslow Heath. If the former had been

inaccurately measured, no computation could make it right.

Yet M. Delambre remarks, and rightly, that General Hoy
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arbitrarily corrected, (see p. 248.) his angles of observation,

and computed bis triangles, as if they were situated on a plane,

recomputes the series of triangles from Hounslow to Romney
Marsh on correct principles, that is, by reducing the observed

angles to the angles formed by the chords, 8cc. and buds, in-

stead of 28 inches, only 6 inches difference between the mea-

sured base on Romney Marsh and the computed. But this

labour, it is clear, was all thrown away
;

as long as there existed

an uncertainty respecting the actual measurement, mere com-
putations were out of the question.

The fair way of judging of the respective accuracies of the

English and French measurements, would have beeu to have’

taken the base of verification on Salisbury Plain, which the

English themselves asserted to have been accurately measured.

It is plain from the account given of it, that great pains were

taken with it. Ramsden assisted and directed
; and although

the base, being on a sloping ground, required the measured hy-

potkenuses to be reduced, yet the error of the measurement did

not, on that account, probably, exceed 3 inches.

The hypothenuses were first reduced to the level of the

horizon, and, being at unequal heights, again to the horizon of

Beacon Hill, the highest point of the slope. But Beacon Hill

being 690 feet above the level of the sea, the measured base

after the above two reductions would be too great, in the pro-

portion of the Earth’s radius + 690 feet to the Earth’s radius,

if the base be reduced to the level of the sea : or in the propor-

tion of the Earth’s radius + 588 feet to the Earth’s radius, if

the base be reduced to the mean height of King’s Arbour,

(118 feet,) and of Hampton Poor House (186 feet). To com-

pute this reduction, let R, the Earth’s radius, be 3481794

fathom, dR 98 fathom, then the reduced base is equal to

W7M01

,
R l dR

Lut
RVni

-—ir
= 1 ~ir> ncarlv’

1 + ~R
N N

Digitized by Google



log. 36575.401 .... 4.56317

log. 68 1.99123

ar. coni. S48I794 .... 3.45807

(1.029) .... 0.01247

Therefore, deducting 1.03 foot from the former value, we have

the length of the base 36574.4 feet, nearly.

The reduction, in this instance, was intended to bring the

bases on Hounslow Heath, and on Salisbury Plain to the same

level, for the purposes of verifying the measurements and opera-

tions. By like reductions, the computed arcs were reduced to

the level of the sea.

It has been already said, that the subject of the Trigonome-

trical Survey has been selected, as affording ample matter for

the illustration of the theorems and formulie of Trigonometry
;
of

this sufficient instances have been given. But it is far from

being pretended to explain in the present Chapter the subject

completely. Much that is necessary for the full explanation

has been omitted, as being besides the plan and purpose of this

treatise : for instance, the description of the construction and

use of instruments, many of which were specially constructed for

the occasion, and of experiments on temperature, the expansion

of metals, &c. But this is not all. Even the mathematical

part is incomplete. The various computations have been made
on the hypothesis of the Earth being spherical, which it is not,

although nearly so. If the Earth’s form differed much from

that of a sphere, all that has been investigated concerning the

lengths of arcs, the azimuths, the latitudes and longitudes of

stations would be nugatory. In the spherical triangles formed

by the stations, the normals from the stations are supposed to

meet at the Earth’s stations. But if the Earth be an ellipsoid,

which it probably is, or, which it certainly is, some figure different

from a sphere, then not only will the three normals not meet

in the same point, but probably no two will intersect the axis

in the same point. The spheroidical horizontal angles on the sur-
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face, therefore, will be different from the spherical, of which we
have treated. Their excess above two right angles may not be the

area of the included triangle : in short till the errors (for errors

they must always be) are investigated, which the hypothesis of

the Earth's spherical figure introduces, the results from that

hypothesis cannot practically be adopted.

But even in searching for the limits of the magnitudes of the

above errors, we cannot proceed upon the surest grounds. The
Earth’s figure, certainly not spherical, is not certainly spheroid-

ical : yet on the hypothesis of its being spheroidical, we are

obliged, or rather inclined, to proceed to investigate how much
we have neglected on the simple spherical hypothesis. In order

to institute an investigation, we must take some regular figure,

and w'e ought to take that regular figure, if there be any such,

that most probably is the true one. Hence, it becomes neces-

sary to investigate the properties of an ellipsoid of small eccen-

tricity, (if an ellipsoid, certainly one under that condition) to

deduce the values of the normals at the several points of the

surface, the values, in degrees, of the arcs subtending points on

the surface, the differences of the angles of the spheroidal and

corresponding spherical triangle. This investigation is some-

what tedious and embarrassing, although its results with regard to

the magnitudes of the errors introduced by the spherical hypo-

thesis are not important, or important only, as shewing that the

many results obtained under that hypothesis are, very nearly, true,

and may be retained.

It is sufficient for most of the objects of a Trigonometrical

Survey to know, that the corrections due to the spheroidical

form of the Earth are of little value : for instance, in forming

maps of counties, or what are called Ordnance Maps, it is

sufficient to suppose the Earth to be a sphere. A few inches

of difference in the distances of places 15 miles asunder, can be

of no consequence.

But there are other objects, in which it is requisite to know
the values of the corrections, in order that they may be used in

calculation. For instance, in determining, from the results of
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the Survey, the latitudes and longitudes of the stations. What

was done in pp. 265, &c., produced only near results; in order

to produce nearer, it is necessary to assume a spheroid of a

certain eccentricity, and on such assumption to compute the

corrections for the spheroidal arcs, &c.

The few preceding paragraphs, are intended to state what

mathematically remains to be done on the subject of the pre-

sent Chapter. That subject was chosen as affording the amplest

illustration of the theorems, or formulae, of Trigonometry. But

it is not intended to pursue the subject farther, since it would

lead us into investigations, in their kind and extent, not exactly

suited to the nature and design of the present treatise.
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CHAP. XIII.

On the Relations between the corresponding Variations of the

Angles and Sides and Triangles ; and
, on the Means of select-

ing, in the application of Trigonometrical Formula, the Con-

ditions that are most favourable to accuracy of result.

The preceding Chapter contains some illustration of the use

of Trigonometrical formulae. These formulae are applied to

certain data or conditions furnished by observation. Now, the

Mathematical process is sure and infallible ; but all instrumental

observation, in a greater or less degree, is liable to error. The
practical result then cannot be perfectly exact : but it will not,

necessarily, be inexact to the full extent of the error of the ob-

servation. That error, according to the conditions of the case,

will be variously modified by the Mathematical process. If it

changes it magnitude by changing the conditions, it will be least

when the conditions are of certain values. Hence, if it should

happen, that we are able to vary the conditions, it would un-

doubtedly be expedient to assign to them such a magnitude, that

the errors of observations should least vitiate the results: that, in

the words of a Mathematical statement, the error of the result

should be least with a given error of observation.

These remarks stand in need of some illustration. The
height of a tower may be determined by observing the angle

which its summit makes with the horizon, and by measuring the

horizontal difference between its base and the station of the

observer. Now, in observing the angle, a certain error may be

committed: but the error of the result (that which is Mathema-
tically obtained) will vary as the distance between the tower and

the observer is varied. If, therefore, we have it in our power, to

regulate that condition, that is, if we can observe the height of

the tower at what distance we please from its base, we plainly

ought to select that which renders least inaccurate the result.
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Again, in Astronomy, the time is determined from an observed

altitude of the Sun or of a Star, from the declination and the

latitude of the place. It is not then a question of mere curiosity

to determine in what position, or part of the heavens, the Sun

or Star ought to be observed, in order that the instrumental error,

supposed to be of a certain magnitude, may least vitiate the

determination of the time.

The determination of the least errors is only one branch of the

general Problem, which assigus, in its solution, the relations

between the corresponding errors in the data and results; that is,

between the given errors in one or more of the conditions of the

Problem, and the consequent errors in the results. Thus, the

right ascension and declination of the Sun are computed in the

Nautical Almanack from the longitude furnished by the Solar

Tables and from the obliquity of the ecliptic. Now, the

determination of this latter condition is subject to some error.

If we assign a value to that error, we may then investigate the

corresponding errors in the right ascension and declination, and, in

the result of such investigation, we should necessarily include the

cases, iu which the original error would least affect the values of

the right ascension and declination.

The errors, that hitherto have been spoken of, are, mathe-

matically viewed, small variations or increments in the angles and

sides of rectilinear and spherical triangles. Hence, an investi-

gation of their corresponding values will conipreheud a great

variety of Problems that occur in Astronomy. For instance, it

would assign the effects of parallax, refraction, aberration, pre-

cession, &c. in declination, right ascension, &c, since the effects

of these inequalities, always very small, may be represented by

very small portions of the arcs or circles along which those effects

originally take place.

It is not here intended to extend this enquiry beyond tri-

angles; but, there are a great variety of Problems belonging to

other figures and other subjects of investigation that might have

been included under the class of Errores in mixta Mathesi.

This was the title which Roger Cotes gave to his Tract* on

* /listimatio errorum in mixta Mathesi per V'ariationes partium

Trianguli plani et Spherici.
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this subject; mul Lacaille*, in treating of the same subject,

properly describes the object of Cotes’s Tract to be the deter-

mination of the limits of enevitable errors in the practice of Geo-

metry and Astronomy.

We purpose to treat this, as we have treated all the preceding

subjects, analytically. Suppose the relation between an angle A
and a side b, to be expressed by this equation,

sin. A = m . tan. b;

then, if A should be increased by Ail, whilst b was increased

by A b (A A, A b, representing the entire differences or in-

crements of A and b), the equation belonging to the changed tri-

angle would be

sin. {A + A A) = m '. tan. (A + A b),

and the corresponding errors of A and b, or A A, A b, would

be to be determined from this equation, which is the difference

of the two former, namely, from

sin. (zl + Ail)— sin. A = m .{tan. (A+ AA) — tan. b\.

If we expand! sin. (A+A A), the left-hand side of the

equation will become

d . sin. A
dA

.A A +
(V . sin. A
1 .‘L.dA'

. (A Af+ &c.

Now, in most of the cases that come under this enquiry. Ail,
whether it represents the quantity of precession, or of parallax,

or of aberration, &c. is always a very small quantity : so small,

that without vitiating the result, we may reject all terms involv-

ing (A Af; (A Af, &c.
;

in which case, the preceding quantity

would become

d . sin. il

dA
.Ail.

' * Le but de I’Auteur est de determiner les limites des erreurs in-

evitables dans la pratique de la Geometrie et de l’Astronomie.’ Acad,

des Sciences 1741, p- 240.

+ Sec Principles of Analytical Calculation, pp. 72, 73.
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In like manner, if the right-hand side of the equation be
evolved and the terms that involve (A 6)*, (A6)

3
, &c. be rejected,

it will be reduced to

d

.

tan. b

db
A b.

Hence Ail, A b, are to be determined by this equation.

d

.

sin. A
dA

d

.

tan. b
tlA=m —— . A b.

db

If Ail, A b, should not be very small, or if considerable accu-

racy were required, the terms involving (A A)
1

, (A b)
1 may be

retained, in which case the equation will be

d . sin . il

dA
. AA +

d ~
. sin. il

1 .2.dA‘
(A Af =

m
{

d . tan. b

db
• A b -I*

d2
. tan. b

7. 2 . db*

and for deducing AA in terms of A b, or A b in terms of Ail, the

solution of a quadratic would be requisite. --
8*n * ^ ^ tail ‘ ^

d A db
(see Principles of Anal. Calc. p. 74,) are the differential co-

efficients of sin.il, tan. b, and are respectively equal to cos.il, sec'6.

We have taken a particular form; but, if we assume a general

one, the method will be the same, and the formula of solution

similar. For instance, let X denote any function of il, and Y of
b, and let the equation be

A' = mY;

then the equation for determining Ail, A b, will be

dX
dA

.Ai +
(TX

1 .2 .dA*'
(A4)a+ &c. =

in

1

d'Y

.I .db
(A b)\
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and if Ail, A b, are very small,

dX dY—- . A A = m—r- . A b, nearly

;

d A do

dX X dY ..
,or. ——

- .AA = — x— .Ao, nearly.
dA

And, in like manner, if V should be a function of C, and U of a,

Slc. and the finite equation of relation should be

X+ n.V + &c.=mY+pU + &c.

n, m, &c. being constant quantities, the equation of relation be-

tween A A, A a, &c., these quantities being very small, would

be nearly

dX dV „ dY A ,
dU AAA+ «- — .AC= m.— A6+p.— . Aa.

aA dC db da

In order to facilitate the solutions of the following cases, we
will prefix the values of the differential coefficients of sin. x,

cos. x, &c.

d . sin. x d . cos. x
= cos. x,

d.sec.x tan. x d. co-sec. x

dx cos. x’ d.x

d

.

tan. x 2= — sin. x, = sec. x
dx

co-tan. x d.co-tan.x „—: , =— co-sec.*x.
sin. x dx

Example 1.

In a right-angled triangle, of which one side is A, the other a,

and the angle opposite A, 9, it is required to find the error or

variation in A, from a given error in 9, (See Cotes’s Est°. Errorum

in mixta Mathesi, p. 20.)

Here, A = a . tan. 0; AA = a.A0.—~

—

=
do

sec.
4 9

a. A0.sec.*0 =
s——Z. AA0
tan. o

A . A fl _ A.A0 2A. A0
tan. 9 . cos.

4 9 sin. 9 . cos. 9 sin. 2 9
’

_ d . sin. x

dx ’
in fluxionary notation is sin.

sin. x

X

Oo
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consequently, if AS be given, Ah will be least when sin. 20 is the

greatest, that is, when 0 = 45°, and consequently, when a—h.

Hence, if h represent the height of a tower, and A0 be the

error of observation, it will be most advantageous to observe the

angular height of the tower at a distance about equal to its

height*.

Example 2.

In a right-angled spherical triangle, where C is the right

angle, and A is invariable, it is required to find the corresponding

variations of the hypothenuse c and the side b.

By Naper’s first Rule, p. 152, making the complement of A

the middle part, and the radius equal 1,

1 x cos. A = tan. b . cot. c ;

(see p. 201, 1. 12,)

0 = A b . sec.* b

.

cot. c — Ac .tan. b . co-sec.' c;

A b tan. b co-sec.
a
c

Ac sec.
8
b cot. c

sin. b . cos. b

sin. c . cos. c

sin. 2 b

(see p. 9, 10.)

sin. 2c
(see p. 11.)

Example 3.

Let now c be invariable, and let it be required to fiud the

ratio between the variations of the sides a, and b.

Make the complement of c the middle part, then, by Naper’s

second Rule, p. 152,

1 x cos. c= co8. a . cos. 6;

• ‘ Commodissum erit ad earn distuntiam (AC) observationeni instituere

ut angnlus (ACB) sit graduum 45 quamproxime.’ Cotes ’s Esi’. Errorum ,

p. 20.
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(p. 201, I. 12,)

0= — A a

.

sin. a . cos. b — Ab . sin. b . cos. a;

An sin. b
^

cos. a

A b cos. b sin. a
tan. 6 x co-tan. a.

Example 4.

In an oblique-angled spherical triangle (SZP), if one side (PS),

vary, it is required to find the corresponding variation iu one of

the angles (SPZ). (See Lacaille, Mem. Acad. 1741, p. 242.)

Let the angles SPZ, SZP, ZSP be A, C, B respectively, and

a, c, b, the opposite sides; then, see p. 143. of this Work,

cos. A . sin. b . sin. c = cos. a — cos. b . cos. c;

by p. 201,

—AA sin. A . sin. b . sin. c+ Ac. cos. c . cos. A . sin. b =

Ac . cos. b . sin. c;

. Ac . .

Ail =——— : 1 ; (cos. A .COS. C . Sill. O— COS. 0.S1U. c)
sin. A .sin. o.sm. c

= Ac (co-tan. A . cot. c -co-tan. b . co-sec. A).

If Z be the zenith, P the pole, and S the Sun, then the above

solution will, in the method of finding the time by equal altitudes,

assign the correction of the time (A A) which is due, by reason

of the variation or error (Ac) in the co-declination. (See Astron.

vol. I.)

Example 5.

In the preceding triangle (SZP) if SZ ( = a) vary, it is re-

quired to find the corresponding variation in the angle SPZ
(
— A). See Est°. Errorum, &c. p. 21.)

By p. 143. of this Work,

cos. A
cos. a — cos. b . cos. c

sin. b , sin. c
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by p. 201,

A , . , . sin. a— A A . sin. A = — A a . ;
—

;
.

sin. b . sin. c

„ . . . „ sin. a
But, sin. A = sin. L x ;

sin. c

AA _ I

A a sin. b . sin. c

Hence, since b is supposed to be constant, and C to be variable,

A A is least, (A a being given,) when sin. C is the greatest, that

is, when C is a right angle.

If S, Z, &c. designate, what they were made to do, in the latter

part of the preceding Example, then this solution determines the

error in the time (A .4) consequent on a given error in the ob-

served altitude (90° — a), when from such altitude and the known

latitude of the place, it is proposed to find the time; and, the

solution also determines that the error in the time will be the

least when C ( = SZP) is 90°, that is, when the Star S is on the

prime vertical. (See Astron. vol. I.)

By similar processes we might find (as Lacaille has done, Mem.

Acad. 1741, p. 248.) the effects produced in the right ascensions

and declinations of stars, by the precession of the equinoxes.

But this and like Problems require no new or peculiar principle

for their solution, the first step of which (the essential one in

this class of Problems) is to be made, as in the foregoing cases,

by taking the differential or fluxion of each side of the equation

(see p. 201, 1. 12). The other steps necessary to produce

results of a certain form, must vary with the conditions of the

case, and consequently cannot be anticipated and prescribed by

any fixed rules.

Here it is intended to terminate what specially belongs to

Trigonometry. In the course of the Treatise, considerable aid

has been drawn from certain auxiliary branches of science : for

instance, in almost every example, the processes and formula of

logarithms have been introduced. Logarithms, it is true, have
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neither a more intimate nor a more natural connection with Trigo-

nometry, than with many other branches of science. There is no

eminent reason, then, why the properties of the former should be

discussed in a Treatise on the latter science. Still, since it is

usual to treat together of the one and the other, the custom is

here not departed from. And, accordingly, for the purpose of

investigating the properties of logarithms, and for the discussion

of some other subjects connected with the preceding matter, the

following Appendix is now added.
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APPENDIX.

If we look to those branches of Science that arc mathema-

tically treated of, such as Dynamics, Astronomy, &c. we meet

continually with instances, in which it is necessary to multiply

numbers together, to divide one number by another, and to extract

the roots of numbers. The common rules of arithmetic are

adequate to these operations : but the operations themselves,

especially if the numbers consist, as is generally the case, of

several places of figures, are very tedious. The conditions of the

problems that are really presented to us in Natural Philosophy

for solution, are rarely expressed by small integer numbers.

They are most frequently the results of methods of approximation;

and, as such, are necessarily expressed either by decimals solely,

or conjointly by integers and decimals. For example, according

to the method of determining the eccentricity (e) of a planet’s

orbit (see Astronomy, vol. I. pp. 473, &c.) the eccentricity can

never be exactly expressed : it is merely the result of a method of

approximation: it can only, therefore, be nearly expressed: very

nearly by five decimal places, more nearly by six, still more so by

seven, and so on. The case is the same with other quantities : so

that when we are obliged numerically to expand (which in practice

we are always obliged to do) our formulae, or the results of our

mathematical processes, we have to multiply, divide, or extract

the roots of such quantities as 1.016814, .983185, &c.(l +e, 1— e);

which operations, indeed, not difficult, are yet tedious; and, if

of frequent recurrence, very embarrassing to the computist.

There is, besides, this circumstance to be noted in these simple

operations of divisions, extractions, &c. namely, that the operations
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performed in any particular case cease, when the case is resolved,

to be of farther use. The extractions of the square roots of ari

hundred numbers do not aid us in determining, with any increase

of facility, the root of the hundredth and one number. Previous

operations become not subservient to the abridgment of similar

subsequent ones. The labours of preceding mathematicians are,

in these cases, of no use to those that come after them.

These inconveniences, (such as have been described) could not

but be felt by the early Analysts : and, as it is natural, having once

possessed themselves of sure methods of calculation, they began

to seek after expeditious ones. After many trials and immense

labour they discovered such, or rather invented such, by means of

Logarithms.

These have had various definitions assigned to them, and have

been computed by a great variety of methods. They have, with no

great propriety of language, been styled Artificial Numbers. They
have no more title to that denomination than the square or cube

roots of the numbers 2, 3, 5, &c. have. If 10* = 3, x is the loga-

rithm of 3, and is some number between 0 and 1, and must be

expressed, for the practical purposes of computation, by some

vulgar or decimal fraction. But fi/3, &c. are in the same

predicament. There is no number that exactly expounds y/2 : its

value (if we may so express ourselves) is between 1 and 2, but not

capable of being exactly assigned: it is greater than —
, but less

than greater than but less than j^, &c. &c.; and these

limits between which the value of % is always placed, may be

found either by the common rules for the extraction of roots, or by

a scries of tentative methods. The case is nearly the same with

the equation 10* = 3. A series of limits between which x is,

successively, still more and more narrowly placed, may be found

by trial and the simplest operations : the value of x is between ^
and A.

[ess than greater than less than i, greater than

jg : less than A, greater than A
;
or less than .5, but greater than

.4fi875 : and, in this way, we may make approaches to the loga-

rithm of 3, with as much certainty as towards the square or cube
root of 2, 3, or of any other number which is not a complete
power. The results are no more artificial in one case than in the

other.
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It is true that the direct process for approaching to the value

of i in an equation such as 10*=S, or 10*=2, &c. is not so simple

nor so easily practised as the ordinary processes or rules for the

extraction of roots. But if we examine the matter on those

grounds on which all analytical calculation rests, there is no es-

sential difference between the two processes. They are in the

same line of consecutive deductions : one nearer, indeed, to the

common source than the other.

We have chosen to consider logarithms as the values of x in

the equation 10‘=N, when N is represented by the several

numbers fromO to 1000 and upwards. This, however, is not the

form under which logarithms were originally exhibited, or need

necessarily to be exhibited. It is the form rather to which (after

many trials) as essentially embodying their properties, they have

been reduced by analytic art. By such reduction all numbers

are made equal to, or feigned to be equal to certain powers of

10, and the indices of those powers are the logarithms of the

numbers. But it is plain if we may assume such an equation as

10"= N
or \0'°* N=N.

We may also suppose 2* = N, or 3* = N, &c.; that is, there

may be several systems of logarithms : alike in their genera! pro-

perties, but differing from each other by reason of their bases,

which are the technical denominations of the numbers 2, 3, &c.

in the equations 2* = N, 3*= N, &c.

The general formula for the value of x in the equation N= a*

cannot be obtained by any ordinary or simple processes. But

there are particular cases in which, without any trouble, we may
assign the values of x: for instance, if 2 should be the base, then

since

2
s =4, 2

s = 8. 2* = 16, 2
5 = 32, 8tc.

2, 3, 4, 5, &c. would be the logarithms of 4, 8, 16, 32, &c. If

3 should be the base
,
then since

3* = 9, 3
5 = 27, 3* = 81, &c.
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2, 8, 4, Sec. in such a system would be the logarithms of9,27,81, &c.

In like manner, in the common or Briggs’s System of Logarithms,

in which 10 is the base,

2, 3, 4, 5, &c. are the logarithms of 100, 1000, 10000,

100000, &c.

There is no need of calculation, not even of the slightest, in

these simple instances : and, if we selected others, we might still,

by very simple, although tedious, processes, deduce or approximate

to (and almost all the values are approximate ones) the values of the

logarithms of numbers. For instance, if the base should be 2,

then the logarithm of a number intermediate to 4 (=2*) and

8(=25
) must be some number (using that term in its general

meaning) between 2 and 3. Suppose the number to be (5 = 2*:

then x is intermediate to 2 and 3 : if the arithmetical mean of

2 and 3, namely be used to represent it, then, since 2* = y/ 32

which is less than \^36 ( = 6) |, or Sj, or 2.5 is too small an

index. If we assume x= 2-j, or j, then since 2j = V256

which is greater than y/216 ( = 6), the index 2 1 , or 2.26666, is

too large. The logarithm of 6, therefore, is now confined within

2jand2|. If we try— f = — C- + we shall find it too
12 ( 2 >2 S*'

*

small : the next trial, therefore, must be with some number be-

3 1 32
tween the limits — and — : and as these limits successively

12 12

approach to each other in value, we shall, by repetition of trial,

continually approach more and more nearly to the value of the

logarithm of 6.

The above, however, is a very rude method of obtaining, and

by trials not speedily made, the index of 2. It will, together with

all similar imperfect and irregular methods, be superseded by any

formula, or regular process, which, from the equation,

N= a*

,

exhibits .r in terms of N and a.

From such a formula the arithmetical values of the logarithms

might be deduced whatever were the system : whether it were

Pp
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Briggs’s, or the common system in which the base a is 10, or

Naper’s, or the hyperbolic, in which the base is 2.7182818, 8tc.

The use of such a formula, as that we have just spoken of, is to

deduce the logarithms of numbers, principally prime numbers.

The use of logarithms is, as it has been stated, to render arith-

metical operations more compendious*, than they are by the

ordinary processes of multiplication, division, involution and evo-

lution. That object (compendium of calculation) is attained partly

by the registering of the arithmetical values of logarithms, when

onceobtaiued, and partly by the properitesoflogarithms. The arith-

metical values of logarithms are obtained for us by the labours of

others : and we should have indeed, on that score, the same kind of

benefit, if the square, cube, &c. roots of numbers, the products of

numbers, &c. obtained by previous computation, should be registered

in Tables. But, as it is plain, the labour of computation would not

only be excessive, but the size and number of the Tables would be

so incommodious as to be almost entirely useless. The logarithms

of numbers may be comprised within Tables of a convenient size:

and may be applied, by means of the properties of logarithms, to all

arithmetical operations whether of multiplication, division, evo-

lution or involution. Their properties then (of which we shall

now proceed to speak) render it worth the while (whatever the

expense of time and labour) to procure the computation of several

millions of results and to insert them in Tables.

Properties of Logarithms.

Let N = a, N'= a'
J

, N" — a"", N"' = a*", &c. then

NN' = a* x a =az *
;

but by the definition, x + x' is the loga-

* The introduction to the English Translation of Briggs states,

very plainly and distinctly, the uses of logarithms, “ By them all

troublesome multiplications and divisions in arithmetic are avoided, and
performed only by addition instead of multiplication, and by subtrac-

tion instead of division. The curious and laborious extractions of roots

are also performed with great ease, as the square root of any number is

found by bipartition or division by 2, &c.” Logarithmetical Arithmetic,

1631.
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rithm of the number represented by NN', and x and x', by the

same definition, are the logarithms of N and N'\ hence we
have, in other symbols,

log. (NN') = log. N+ log. N'.

If therefore we possess already computed the logarithms of

numbers, instead of multiplying, when there is occasion, one

number by another, it is sufficient simply to add their logarithms;

and, the sum will bo a logarithm corresponding to which is the

number that is the product required. For instance,

the logarithm of 2.13 = 0.3233796

of 47.2 = 1.6739420

2.0023216

and, the number corresponding to 2.0023216 is 100.536, which

is the product of 2.13, and 47.2; as, on trial, it will be found

to be.

Again, NN’N"= a
z X a* X a*"= but by the

definition, x+ x'+x" is the logarithm of NN' N", or,

log. N+ log. N'+log. N"= log. (NN' N").

N a*
Again, = <f~

x
\ but by the definitiop, x — x' is the

N
logarithm of the number corresponding to a

z~ z
\ or — ; or,

log. N - log. N'= log. ~
;

hence, instead of dividing, for instance, 841.S2 by 5.316, subtract

the logarithm of 5.316 from that of 841.32, and the remainder

is a logarithm, corresponding to which is a number that would

be the quotient on dividing 841.32 by 5.316;

Again, Nm = (a‘)
m = a

mx
,

but, by the definition, mx is the

logarithm of a
mX

, or N OT
;

in other symbols,

m log. N= Iog. !V"
;

hence, instead, for instance, of multiplying 53.127, five times
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by itself, in order to obtain (53.127)°, multiply the logarithm of

53.127 by 6, aud the product is a logarithm, the number corre-

sponding to which is the 6th power of 53.127*

i I i x .

Again, N" = (a*)" = a" : but by the definition, - is the

logarithm of a number represented by a",

symbols.

1

tt

!_

. log. N=log. N".

or N” : or in other

Hence, instead, for instance, of extracting the square root of

137.51 twice, in order to obtain ^ ( 137 -51 ), divide the logarithm

of 137.51 by 4 , and the result is a logarithm: and the number

corresponding to it is the fourth or Biquadratic Root of 137 -51 .

Even these few illustrations shew the utility of logarithms.

By means of a few simple rules and the same Tables, or registered

results, the complex operations of arithmetic (as they may be

called) or the involution and evolution of numbers, arc super-

seded by the most simple, which are those of addition and sub-

traction. The enquiry, therefore, may be now directed towards

what, indeed, are, in this subject, the sole remaining objects of

curiosity, the certain methods of computing logarithms from

numbers, and numbers from logarithms. These objects will, it

is evident, be attained by the solutions of two problems, by one

of which, the equation being

N=a%
x should be expressed in terms of N and a : and by the other N
should be expressed in terms of a and x; the expressions in each

case admitting (which is essential) of an easy application in

specific instances.

Expansion of a*.

= 1 + x . («— l)+x .
-

. (« - If
&
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+ x.-
x — 1 x—i

.(a — l)
3+ &c. by the Binomial Theorem •

:

and arranging the series by the powers of x; a* 1 + x
{(a - 1) — ^(a — 1)’+ i (a — \? — Sac . } + yx2 + rx3 + &.c.

q, r, &c. standing for certain combinations of (a — l)
2

,
(a — l)

3
,

with the numbers, 2, 3, &c.: for, it is plain, from the manner

by which they must be formed, that they cannot involve the

index x, or any function of it

:

hence, if we make p= (a— 1)—j(a— 1)*+ j(a — l)
3 — &c.

a
r = 1 +px + qx* + rx® + &c.

and a*= 1 +pz + 9 z
, +rz3 +&c.

a* x a°, or ax + * = 1 +p(x + z)+p*xz-\-q (x
9 + z

2
)+

pq (x*z + z
2
x)+ Sic. But, from the original form for ax

,
sub-

stituting x + z instead of x, we have

aI+z= 1 + p (x + z) + q (x + if + r (x + z)
3 + &c.

= 1 + p(x + z)-f y . 2xz + q (x* + z
2
) + r (3x*z + Sxzs)+ &c.

hence, comparing the terms that involve like powers and com-

binations of x and z

;

P-P.
s

2q= p
2
,

and q = —
,

3 r = pq, and r = Pl- P
3

3 2.3’

and, if s represent the coefficient of the term succeeding rx3

,

rP P
4s = rp, and ~ = OT*

5

..a, ortf=l+/«+7^-x
S+-j— • x

3+
1 . 2 . 3.

4

x*+ &c. (n)

This series then determines the number N in terms of the

* See Woodhouse’s Principles of Analytical Calculation, p. 35, &c.
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base a, and the index or logarithm x
; but, the reverse Problem,

or that which determines x in the terms of N and a, is of the

most consequence.

x expressed in terms of N and a.

* 8

Since a* = 1 +»x H r* -j — x
5 + &c.r 1.2 1 . 2.3

P* P3

N* =s 1+ Pz + z
1

-1 z
3 + &c.

1.2 1 . 2.3

if P = (N-l)-i.(2V-l),+i(N-l)s -&c.

but, since N = a
1

, N* = ar*=l+pxz + . z" + &c.

Hence, comparing the terms that are affected with like powers

(px)
8

P*
1

of z, px = P, ——— = -— the same equation in fact as

„ L p (tf-i)-f(N-ijr++(tf-tf-*c. /npr- f;b. ,=- = <n

and hence, if instead of N = a?, the equation is 1 + N= a*,

±N-j N* ±\ N 1 - Ac.
we shall have x =

(a-l)-i(a-l)s + i(a- l)
3 -&c.

(L).

This is a simple algebraical mode of expressing x: but, it

does not follow that it is, in all instances, commodious for the

arithmetical computation of x ;
since, if N be represented by any

number, 7 for instance, and a be 10, the base of the common
logarithms, neither the series 6 — ^ (36)4- j (216) — &c. repre-

senting the numerator, nor the series 9— J- (81)+ ^ (729)— &c.

representing the denominator, converge. In fact, the terms of the

series are larger, the more remote they are from the beginning,

and consequently no number of them summed can exhibit, either

exactly or nearly, the true sum. Retaining then the law of the

expressions, we must now adapt them to numerical computation :

and first we will shew a method of computing

p=(a— 1) — i(a — l)’+&c.
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P a P i
In the series a* = 1 +p.r + x + ——i + &c.

1.2 1.2.3

let ,r=l, and p= 1, then a will have a peculiar value, and

be = 1 + 1 + — 1 + &c. =.2.7182818284, &c.
1.21.2.3

call this e, then (e— 1)— j(e — ])’+ j(e— l)
3 — &c. (which

is the value of p ill this case)= 1.

In the expression for a* put x = -
, then

P
- 1 1

o' = 1 + H + &c. = e, and - = e p
\

1.2 a

but if e p = -
, then, by the form (0, page 302,

P (e-l)-i(e-Ds +i(e- l/-&c.

or, since the denominator = 1,

a -

l

. /a— l\ s
. , /a - l\ s

. „*<-=0 +*(•-?) +

Now, since a — 1 < a, this series always converges. Hence, in

the common system, or Briggs’s, in which a= 10,

(.o)
9 (.o)

5

p = .9 + +— + &c. = 2.3025850929, &c.
2 3

Let us now endeavour to obtain the numerator by means of a

converging series.

By the form, page 302, it appears, that

if 1 4- n = a*, i = -(« — i«
!
+ jn3 - &c.)

and, if 1 — w = av
, y = -(—« — £ n* — -i-

ri — 8ic.)
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Hence,

1 +« 2

x
_ n

~ a
* y

>
and, x ~y> —

^
(«+-g-n

3 +fni + &c.)

r, leg. ( = -(» + £»* + 3 »
S + &c.)

N— i

l +
Now, N =

N+ l

1 -
N— l

N+ 1

, substitute therefore, in the preceding

form,
N— 1

N+ l

instead of n, and we shall have

log - N=
l (ftt

+ 3 (irr) +

1

(frr) + &c
-l

(X)

N- 1

beingand this series is plainly a converging series, for
j

a proper fraction, the terms, reckoning from the beginning of the

series, are less and less.

For other methods, see the Principles of Analytical Calculation,

pp. 137, &c.
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Example.

Let it be required to compute the logarithms of 2 and 3.

A’=2, and
N- 1

N+l
1

= .33333333

= .01234567

3

1

373s

1
== .00082304

= .00006532

= .00000564

5 .

3

s

1

7. 3*

1

9 .
3*

1
= .0000005111.3“

1 = .00000004
13.3“

'

log. 2 =
.34657355

2
x .3465735

2.30258509 &c.

XT n , N—12 1
J> =3. and -57-— = - = -

’ A'+l 4 2

=.3010300 to 7 places.

3 . 2*
"

1

5 . 2s
"

1

772*
“

1

972* "

1

11 .

2

11

1

13 . 2 lS

1

1

17.

2

17

1

19 . 2 ’8

1

21 .
2"

1

23 . 2**

. =.5

. =.0416666666

. = .00625

. = .0011160714

. = .0002170138

. = .0000443892

. = .0000093900

. = .0000020345

. = .0000004487

. = .0000001003

. = .0000000227

. = .0000000050

.5493061422

.-. log. 3=

2.30258509’
&c - X.5493061

= .4771212.

Qq
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The logarithms of 2 and 3 thus computed, are the logarithms

in Briggs’s, or the common, system, in which a = 10 and

(a — 1) — •£ (a — l)*+ £ . (a— if — Ac. = 2.30258509, Ac.

If we take the base = e = 2.71828182, &c., in which

(e — 1) — j . (e — 1)*+ § (e — l)3 — Ac. = 1, the logarithms will

belong to a system called, from certain analogies. Hyperbolic , or

from its inventor, Naper’s; and accordingly, we shall have the

hyperbolic logarithms of numbers from the preceding series, by

omitting the denominator p which is equal to 1,

since it = (e— 1) — j(e - 1)*+ j(e— l)
5 — Ac.

hence, hyp. log. 2 = .693 14718, and hyp. log. 3 = 1 .0986 1 2, Ac.

A constant multiplier connects one system of logarithms with

another: if h be the hyperbolic logarithm of a number N, then,

h x , or h x .43429448, Ac. is the common
2.30258509, Ac.

*

logarithm. Generally, if the base of a system of logarithms be

b then, in that system, the logarithm of a number N = A.,
b

if B = (b-\)-i .(b- 1 )’ + •*• (6 - l)
3 — Ac.

or, if x be the logarithm of a number N in a system of which the

base is a, then log. N (base b) *=

p _ (a — l)~4'(a—1 )
S + 3'(a ~ 1 )

5— *c ‘

X B
~ XX

(6-i)-X(5-i)s + i(5-i)»- Ac.'

By means of the logarithmic series, page 305, the logarithms

of2 and 3 have been computed; and, by the aid of the same series,

by the properties of logarithms, and by certain simple decom-

positions of numbers, the logarithms of all other numbers may be

found: for instance.

The logarithms of 5 *, 7, 11 may be computed from the

series.

• Since 5 = —
,
log. 5 = log. —= log. 10 — log. 2<= 1 — log. 2 =

1 — .3010300=.6989700 ;
.-. it is unnecessary to compute the log. 5

by the seiics.

Digitized by Google



307

' The logarithms of 4, 6, 8, 9, 10, 12, 14, 15, 16, 64, &c.
may be deduced from the properties of logarithms, for

log. 4= log. 2* =2 log. 2.

log. 6= log. (2x3) = log. 2 -flog. 3.

log. 8= log. 2s =3 log. 2.

log. 9= log. 3* = 2 log. 3
log. 10= log. (2x5) = log. 2 -flog. 5.

log. 12=* log. 3 -flog. 4 .. = log. 3+ 2 log. 2.

log. 14= = log. 2 -flog. 7
log. 15= = log. 3 -flog. 5
log. 16= log. 24 = 4 log. 2
log. 64= log. 2® =6 log. 2.

The logarithms of 13, 17, 19, 23, 29, &c. cannot be easily

N— l

computed from the series (X), since
^

,
the larger N is,

approaches to 1 : with the preceding numbers 13, 17, 8tc. the

, . 1JL . . 12 6 16 8 11 14 0
fraction would be respectively, — , or -

,
—

, or - ,
—, — , ole.v 1

14 7 18 9 12 15
’

and the numbers also being prime cannot be resolved into factors;

but if they algebraically be expressed after this manner, viz.

Ns=(N— 1) (l + ,
then

log. N = log. (jV — 1) + log. (l -f ^ =

log.W-D+i (sfztt
“ kc )

by (L), page 302; and thus, the logarithms may be computed by

series that converge with sufficient rapidity.

For instance,

if ,V= 13; log.lS-log.lS+i^-^+j-ij-fcc.)

if N= n: log. 17 = log. w+ ’-(± -j-^4-^-*c.)

if N = 23; log. 23 = log. 22 + - (—

—

v V22

2 . 16
'

1

3.16s

1

«)

if N= 29; log. 29 = log. 28 + —
V V28 2.28- 3.28

s /

p \22 2.22* 3.22'*
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In these expressions, the logarithms of 12, 16, 22, 28, are

known from the logarithms of their factors, see p. S07 : and when

N is a prime number, N— 1 can be always resolved into factors.

There are, however, besides the preceding, various other artifices

and methods for computing logarithms.*

But, as it has been in substance remarked before, the art of

computing logarithms, and dexterity in that art, would, by them-

selves, be of no use in expediting calculation : if, for instance, we
had to multiply 31.523 by 17*81, and to divide the product by

5.4312, it would be a most long method of performing the ope-

ration, to investigate the logarithms of these numbers. It is the

circumstance of registering computed logarithms in Tables, and,

by the art of printing, of multiplying such Tables, that enables us

to compute quickly. The calculation of logarithms is exceedingly

operose; but one man calculates for thousands, and the results of

tedious operations are made subservient to the abridgment of

similar ones.

By the methods already described, the logarithms of all numbers

from 1 to 100000, are computed and registered in Tables. Those

in common use contain the logarithms of numbers, according to

Briggs’s System, in which the base (a) is 10. Naper’s, or the

Hyperbolic logarithms are so seldom required in numerical cal-

culation, that it is more convenient to deduce them from Briggs’s,

by multiplying the latter into the number 2.30258509299, &c.

than to search for them in separate Tables t-

But Naper’s System, in which, (e — 1) — j (e — l)
2

-}- j(e — l)
3

— &c. = 1 (e = base) is, apparently, so very simple, that there

must exist some substantial reason for the adoption of Briggs’s.

Now, in this latter system, the logarithm of 10 is 1, the loga-

rithms of 100, or 10*, of 1000, or 10
s
,
&c. are 2, 3, &c. re-

spectively; consequently, the logarithm (L) of a number N being

* See Principles of Anal. Calc, pages 142 to 183 : Phil. Trans. 1806,

p. 327 : Bertrand, p. 421 to 676 .

t Thomas Simpson, has given a short Table of Hyperbolic Loga-

rithms at the end of his Fluxions : in Collet’s and Hutton’s Logarithms

there is a Table, of a single page, for converting common into Hyper-

bolic Logarithms.
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known, the logarithms of all numbers corresponding to N X 10m,

N
or can be expressed by an alteration in L of the simplest kind.

Thus, if the logarithm of 2.7341 be .4368144, the logarithms of
the numbers 27.34

1 , 273.4 1 , 2734. 1 ,2734 1 , 2734 1 0, are 1 .4368 1 44,
2.4368144, 3.4368144, 4.4368144, 5.4368144; that is, these

latter logarithms are formed from the first by merely prefixing to

the decimal, 1, 2, 3, 4, 5, which are called characteristics

,

and
which characteristics are always numbers one less than the number
of the figures of the integers in the numbers whose logarithms are

required : the reason is this,

27.341=10x2.7341 ; .*. log. 27-341= log. 10+log. 2.7341 = 1.4368144
2734.1 = 1000 x 2.7341 ; .-.log. 2734.1 =log. 1000+log. 2.7341=3.4368144

and generally, log. 10m x N = log. 10m + log. N = m + L
and, similarly, it is plain, that the logarithms of

2.7341 2.7341 2.7341 2.7341

10 ' 100 ’ 1000 ' 10.000

.27341, .027341, .0027341,

that is, of

.00027341,

must be the logarithm of 2.7341, or .4368144, subtracting, re-

spectively, the numbers 1, 2, 3, 4, which subtraction, it is usual

thus to indicate:

1.4368144, 2.4368144, 3.4368144, 4.4368144.

The logarithm of a number (N), then, being inserted in the

Tables, it is needless to insert the logarithms of those numbers

that can be formed by multiplying or dividing N by 10 and

powers of 10.

Hence, we are enabled to contract the size of logarithmic

Tables : and this advantage is peculiarly connected with the

decimal system of notation. If there had been, in common use,

scales of notation, the roots* of which were 9, or 7, or 3: then

the most convenient systems of logarithms would have been those.

• The root or radix of a scale is that number according to the

powers of which any digit, as it is moved more and more towards the

left, increases in value : in our scale the root is 10 : thus 723= 7 X 10*

+2x10+3.
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the bases of which, are 9, 7, 3, respectively. For, in such cases,

after having computed the logarithm of any number N, we could

immediately, by means of the characteristics, assign the logarithm

N
of any number represented by 9

m x or (root= 9,) which

numbers would, analogously to the present method, be denoted

by merely altering the place of the point or comma that

separates integers from fractions. The root, then, in the scale

of notation ought to determine the choice of the base in a

system of logarithms. We may construct logarithms with a

base = 3, and then, having computed the logarithm L of a

number N, the logarithms of all numbers corresponding to

N
3m x N, and— would be m + L, and — m + L, and, there-

fore, could be assigned by merely prefixing the proper charac-

teristics
;

but then, in order to know the numbers corresponding

N
to S'" x N and — , we must multiply and divide N by 3, and

the powers of 3. We cannot multiply and divide by simply

altering the place of the point or comma that separates integers

from decimals : so that, in fact, not knowing, by inspection, such

numbers as ,3 N, 9 N, 27 N, and Sm x N, we should be obliged

to insert the logarithms of all numbers in the Tables.

A single instance will elucidate this statement : with a base

= 3, the logarithm of 2.7341 equals .915519, then the logarithms

of the numbers

8.2023, 24.6069, 73.8207, 221.4621

are 1.915529, 2-915519, 3.915519, 4.915519;

for, the numbers 8.2023, 24.6069, &c. are produced by multi-

plying 2.7341 by 3, 3\ 3
s

, S
1

, respectively; they are known,
however, only by actual multiplication, and consequently it would

not be sufficient to insert in Tables of logarithms constructed to a

base = 3, the logarithm of 2.7341 only; but, those of 8.2023,

24.6069, 73.8207, 221.4621, &c. must be also inserted: and it

is plaid, that the logarithms of 27.341, 273.41, 2734.1, 27341,
.027341 must be also inserted. If these latter logarithms are not

inserted, the computist would be obliged to undergo the labour

Digitized by Google



311

of forming them, by adding to the logarithm of 2.734 1, re-

spectively, the logarithms of 10, 100, 1000, &c. computed to a

base = 3.

This is not the sole principal inconvenience that would arise

from using a system of logarithms with a base not equal to 10.

We might indeed, as it has been explaiued, by slight Arithmetical

operations, directly find the logarithms of numbers from Tables

of no greater extent than those which are in use; but, the reverse

operation of finding the number from the logarithm, could not

at all conveniently or briefly be performed : for, the logarithm

proposed might be nearly equal to a logarithm which the Tables

did not contain. These considerations will, perhaps, be suf-

ficient to shew the very great improvement that necessarily

ensued on Briggs’s alteration of the logarithmic base. The real

value of that alteration does not seem to have been duly appre-

ciated by writers on this subject.

For the description aud use of Tables, in which the computed

logarithms of numbers are recorded, the Reader is referred to the

volumes of the Tables themselves: and, as nothing seems wanting

to the plainness and precision of the rules therein delivered, it

would be a needless accumulation of matter to insert them here.

The principle however of the construction of certain small Tables

for proportional parts, that are nearest the margin of every page,

requires explanation. The use of these Tables is to find the

logarithms of numbers, consisting of more than five places. See

Sherwin, p. 6, Hutton, p. 128, first edition.

Let the number composed of the first five figures or digits

of the number N be n; therefore, the number next to n, or which

differs from n by 1, is n + 1 ;
let x be the digit, which placed after

the digits composing »i, shall make it N, then N= lOn-fx, and

log. N=log. (10M+ x) = log. lOn ^1

= log. 10« + log. (l + y~)

= log. lOn — v— 4 -r -|“ &c. iB 1

p llO« s (10n)* j
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= log. 10n4 , if the terms6
p X 10m

count of their minuteness, neglected.

2. (10m)*’
&c. are, on ac-

... « + 1
. / ,

1 \ 11 ,,.
Again, log. —-— = log. ^1 + ~ p'n (

ueSlectlnS

—^—
- , &c.) consequently, — = log. (n + 1) — log. n, and

2p.n pn

- = — {log. (m+ 1 — log. m)},

p X 10m 10
1 B V 6

and from this formula the small Tables of the proportional parts

may be computed : for instance.

Let N = 678323, then n = 67832, and m + 1 = 67833,

and log. 67833— log. 67832 = 8314410-8314346= 64,

x 3
and since x= 3, — {log. (m + 1) — log. «} = — X 64= 192,

(or taking the nearest whole number) = 19: and by putting for*,

1, 2, 3, &c. we may form the small Table which is in the page

containing the number 6783, &c. thus

:

Proportional Part.

6.4

12.8

19.2

25.6

32

38.4

44.8

51.2

57.6

Proportional part
the nearest integers.

6
13

19

26

S2

38

45

51

58

See Sherwin’s Tables, page 6, and at number 6783, and also

Hutton's, page 128.

The above proof establishes the truth of the precept for

finding the logarithms of numbers consisting of more than 5 places
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of figures: the other precept* which directs us to find the number

corresponding to a logarithm not found exactly in Tables, may

be thus proved.

Let L be the proposed logarithm, N the number: l the tabular

logarithm next less; l' the tabular logarithm next greater; n,

n

,

their corresponding numbers.

Let x be the difference of N and n, or let N = n+x; then

log.AT=Iog.(»+ x)= log.n (l + j-)=log.n+ log. (1+;,)

or, L— l + — , nearly; x— np^L-t).
np

Again,

log. »' = log. (n+ 1 ) = log. » ( 1 + ^)
= log- n + log- ( 1 + ;()

or f = l +— ;
— /=— ,

consequently x = j, j, and N=
tip up 1 — 1

n -J- x = /i -f Y~J >
from which expression, the precept (Sher-

win, p. 8. Hutton, p. 130.) and the small Tables are derived: for

instance, let L-.4414728, then (see the Tables),

/=.44 14595, n = 27G35

4414752, n'= 27636

133 1 1330
L-l=iSS, V = 157, “nd I^ = ^ x li7-
1 1256+74 _ 6 + ^i_ =R+ _L x 2122 = .8 +
10 157 1570 100 1570

x
6280 + 112~ - .8 + .04 + &C. = .84 + &c. 8 and 4

100 1570

being the two figures given according to the Rule and Table, 8

corresponding to 125.6, or 126 the nearest integer, and 4 to 62.8,

or <63 the nearest iuteger.

• Hutton, p. 130, first edition : Sberwin, p. 3, fifth edition.
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It may now be worth the while to illustrate, by a few more

instances, the uses of logarithms; and this will be done chiefly

with a view of relieving the Student from any embarrassment

which the negative index or characteristic (see p. 309.) as it is

called, may occasion.

In the common system of logarithms in which the base is 10,

1 is the logarithm of 10, and 0 the logarithm of 1 : consequently,

every number that can be assigned between 10 and 1 must have

for its logarithm a proper fraction, or (since a fraction may always

be decimally expressed) a decimal fraction. The logarithms,

therefore, of 2, 3, 4.56, 6.9345, &c. must be such decimals as

.3010300, .47712125, .6589048, .8410152, &c.

which, as it has been already argued (see pp. 295, &c.) are

not to be called artificial numbers, but are computed numbers

such as make good the equations,

jq.3010300 _ 2
jq.477I2125_

3
JQ.65W48_4.56, jq-MIOIS* = 6QS45.

The Logarithmic Tables contain, in fact, the logarithms only

of those numbers which are contained between 1 and 10; and,

from these registered logarithms, those of other numbers, less

than 1, and greater than 10, are to be derived by means of the

properties of logarithms. Thus, in the following extract from

Sherwin’s Tables

:

Numbers. Logarithms.

1255 093 6437

56 9896

57 099 3353

58 6806

59 100 0257

the logarithms, with a decimal point prefixed to their first figure,

are respectively the true or real logarithms of
.

1.255, 1.256, 1.257, 1.258, 1.259,

and since

log. 12.55 = log. (1.255 X 10) = log. 1.255+log. 10 = log. 1.255+1,



and since, similarly,

log. 125.5 =log. 1.255 = log. 1.255+ 2, <Skc.

we find, by these properties of logarithms, that the logarithms of

12.55, 125.5, 1255, &c. ought to be expressed by

1.0986437, 2.0986437, 3.0986437:

and similarly, we may, from the logarithms of 1.256, 1.257, &c.

immediately assign, by prefixing the proper indices or charac-

teristics, the logarithms of 12.56, 125.6, 12560, 8tc. 12.57, &c.

1257000, &c.

But if .0986437 be, as it is, the real logarithm of 1.255, the

, 1.255\
real logarithm of .1255 ^siuce .1255 = j

must equal

.0986437- 1, or -.90 13562,

and the real logarithm of .01255 ^since .01255 =

equal

1 .255\— 1 must
100 /

.0986437 - 2, or — 1.9013562.

These negative quantities, then, are the real logarithms of the

above decimal numbers, that is, the equations,

.1255 = 10
•goiu«z

» or = 1

j
Q-iCliX*

.01255 = lO-
1 '901**4

,

.001255 = lO-*'
9011562

,

&c. = &c.

or =
1

jQigoisjss

1

jq2901»M»

are, within certain limits of exactness, true equations.

Now, although, by means of the registered logarithms, the

logarithms of decimal numbers may always be assigned by the

preceding method, yet they are not immediately assigned : there

intervenes, as an operation, the subtraction of the logarithm taken

out of the Tables, either from 1, or 2, or 3, &c. In order to get rid
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of this subtraction, the Authors of the Rules or Precepts for the

use of Logarithmic Tables have devised a notation for negative

logarithms (which the logarithms of all proper fractions arc) by

which the number or the series of figures assigned by the Tables for

the logarithm of any number may be retained. They have chosen

to represent the logarithms of

.1255, .01255, .001255, &c.

neither by .0986437 — 1, .0986437 - 2, &c.

nor by the results — .9013562, — 1.9013562,

but by

H0986437, 270986437, &c.

and they apply a similar conventional notation to designate the

logarithms of all other decimal numbers. The advantage of this

notation is obvious: the same set of figures or of cyphers, which

the Tables assign to a number, are to be forthwith used, what-

ever that number be, whether an integer or a decimal fraction : thus,

if, in the logarithmic Tables, 8785218, under the column marked

log., stands opposite to the number 756, then, by the properties

of logarithms (see pp. 298, &.c.) and the peculiar notation,

Numbers. Logarithms.

75600 4.8785218

7560 3.8785218

756 2.8785218

7.56 1.8785218

.756 0.8785218

.0756 T.8785218

.00756 *2.8785218

.00756 *3.8785218

The first 5 logarithms are real numbers in which the figures

and cyphers have, according to their order or arrangement, that

signiticancy which they have in all ordinary arithmetical opera-

tions : the 3 last logarithms might be called Artificial Numbers,

since their signiticancy cannot be inferred from analogy, but is

altogether arbitrary or conventional.

X,
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Now, this being the case, we cannot, relatively to these latter

logarithms, establish any rules for operating on them, that is, any

rules for adding to them, or for multiplying and dividing them,

except by reference to what they are made to stand for. In so

doing we make a recurrence to a kind ofJirst principles. In order

theu to add the logarithms,

T.4329693 and 2.6901961,

(which it is necessary to do in finding, by means of the Logarithmic

Tables, the product of .27 1 and .049 of which the above quan-

tities are respectively the logarithms) we must substitute the

quantities they stand for : thus

() 7.4329693 = .4329693 — 1

() 7.6901961 = .690 1961 - 2

1.1231654 - 3.

Now 1.1231654 means 1 + .1231654;

1.1231654 — 3 equals .1231654 — 2,

which, according to the peculiar notation, may be thus written

2.1231654: which is the result that would be obtained by adding

(a) and (6), and causing the unit carried over by the addition of 4

and 6 to destroy 1. Generally,

7.431 = .431 — n

7.752 = .752 - m

n+m+ 1.183 = 1.183 — n—m
= .1S3 -(n- 1)— »»;

but .183 — (n— 1) —m may be written n— 1 +wt.l83^

in7+7+ 1.183 the 1 is to be incorporated with the n or m,

and written thus,

n — 1 + m . 183, or m — 1 + « • 183.

Suppose it necessary to subtract the preceding logarithms

(which it would be were it required to divide, by means of loga-

rithmic Tables .271 by .049.)
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then since (c) 1.4329693 stands for .4329693 — 1,

and (rf) 2.6901961 .6901961 - 2;

by subtraction, the right result is — 1 + .7227732 + 1,

or .7227732

which is the same result as will follow by subtracting (d) from (c)

in the common way and by considering — 1 and 1 as the same.

In order to procure instances for the multiplication and division

of such indices or characteristics, as 2, 3, &c., suppose it were

required to find, by the aid of the Logarithmic Tables, the value

of (.0736)*.

Now, by the properties of logarithms (see pp. 298, &c.)

log. (.0756)’= 3 log. 0756 = 3 . x ^.87852 18

Now 2.8785218 stands for .8785218 - 2

(multiply by 3) 3

2.6355654 — 6

but 2.6355654—6, is the same as 2+ .6355654— 6, which equals

.6355654—4, which, according to the peculiar notation oflogarithms

(see p. 228,) may be thus noted 4.6355654: the same result as

will be obtained by multiplying 2.8785218 by 3, considering

6 (
= 3 X 2) + 2 to be the same as 4.

Since .6355654 is the logarithm of +3208, +6355654 [which

is the logarithm of (.0756)*), is the logarithm of .0004S208: con-

sequently,

(.0756)’ = .00043208.

When the index or characteristic is to be divided (which

happens in finding the root of numbers by the method of loga-

rithms) the operation is less direct : suppose it were required to

find the value of (.0756)*.

Now log. (.0756)* = - log. 0756 = \ (2^8785218).
*> 3 .

v
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But, 2.8785218 = .8785218 - 2

= 1 + .8785218 - 2 - 1

= 1 + .8785218 - 3

or = 1.8785218 - 3

.*.
\ (218785218) = ^ (1.8785218 — 3)

= .62G1739 - 1

or 1.6261739.

But it is evident we may at once obtain this result by changing

2, into 3, then by dividing by 3, and, in the division immediately

succeeding to that of the index, carrying 1, as a quantity borrowed,

to the next figure.

If the value of (.0756)* had been required, then, since it

would be necessary to divide 2.8785218 by 5, we must make 2, 5,

and carry, as quantity borrowed, 3 to the next figure: for

2.8785218 = .8785218 - 2

= 3.8785218 — 5

.*. - (2.8785218) = - (5 + 3.87875218)
5 5

=T.7757043.

A few more instances, involving such characteristics as

2, 3, &c. are subjoined.

Required the sum of 3.6989700, 7.3467875, 1.4771213,

5.4313638,

by separate additions,

713467875 3.6989700

7.4313638 1.4771213

12.7781513 5.1760913

72.7781513

7.9542426
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or by one operatiou,

7.3467875

5.4313638

S.6989700

1.4771213

79542426

Instances of Subtraction.

1st, ^7.9788 107 ( = log. 00000095238)

subtrahend 3.1549020 ( = log. 0014285)

4.8239087 ( = log. 00066666).

2d, 2.2218487 ( = log. 016666)
subtrahend 4.6989700 (= log. .50000)

7.5228787 ( = log. .00000033333)

In the first of these instances the quotient (.00066666) arising

from dividing .00000095238 by .0014285, is found by the method

of logarithms: and in the second the quotient (.00000033333)

arising from dividing .016666 by 50000.

Instances of Multiplication and Division.

Find the values of (.05)* of (.0000625)*, and of (075218)1

1st multiplicand 2.6989700 (the log. of .05)

multiplier 5

7.4948500 (the log. of .0000003125)

/. (.05)
4 = .0000003125

2d, 4
|
5.7958828, the dividend (= log. 0000625)

79489707 = log. .0889 1 4

;

.•^(.0000625)1 = 08S914.

3rd, 1.8763253 (= log. .075218)

2

5
|
7.7526506 (see pp. 230, 231.)

79505301 (= log. .89234);
•

.-. (.075218)’ = .89234.
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The logarithms of decimal fractions (see pp. 315, 8cc.) are truly

and properly expressed by negative quantities : but since (see

pp. 31 6.) they are not commodiously so expressed, a peculiar

notation with negative indices or characteristics has been invented.

Their meaning is to be derived not front analogy, but from the

terms of that prescription that assigns them their meaning. We
must refer, as we have seen (see pp. 229, 8tc.), to the same source

for establishing the truth of rules for operating on such indices.

But there is another contrivance for designating the logarithms of

fractions, in which no negative indices are employed. This

consists in borrowing 10, or 100, or 1000, 8tc. and by prefixing,

to the decimal part of the logarithm, the difference between 10,

or 100, or &c., and 1, 2, &c. Thus,

instead of 1.8763253, 7.4948500, &c.

the numbers 9-8763253, 3.4948500, &c.

or 99-8763253, 93.4948500, &c.

are written : but then, in these cases, to prevent ambiguities, or to

derive rules for operating on these artificial logarithms, it must be

noted or understood that 10, 100, &c. is borrowed. For, .4948500,

1 .4948500, really representing the logarithms of 3.125, 31.25, the

logarithm 3.4948500 would naturally and analogously be that

of 3125; but it is made, according to the notation we are now de-

scribing, to represent the logarithm of .0000003125. There will

exist, therefore, in this, and in similar cases, an occasion of ambiguity

which cannot occur in the notation with negative characteristics.

In order to establish any rules relatively to the last-mentioned

method of noting the logarithms of fractions, we must, as in the

case of negative characteristics, refer to the real quantities they

are made to represent. For instance, 3.4945800 (which, without

any convention expressed or implied, would designate the loga-

rithm of 3125) is made to represent the logarithm .0000003125,

it stands for 3.4945800 — 10 (= —6.5054199): and this mul-

tiplied by 4 equals

4 x 3.4945800 - 40

= 13.9783200 - 40,

S s
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which may be thus expressed,

13.9783200 40 being borrowed,

or 3.9783200 30 being borrowed;

whence we derive a rule for multiplication
;
which is, to multiply

the logarithm (expressed by borrowing 10) by the multiplier (m

for instance) and to reject the 10’s from the characteristic: the

number then borrowed is m x 10 — the 10’s rejected.

Thus, if 5.9635786 stands for .9635786 - 5

6 or .9635786 -(10 -5)

35.7814716 represents 6 times the logarithm of

.00009195. Again, if 5.9635786 stands for .9635786—(10— 5),

six times the logarithm equals 35-7814716, in which 60 is

borrowed, or rejecting 30, 5.7814716 may represent it,

30 ( = 60— 30) being borrowed.

In order to divide 9-7526506 by 5 (to take such an instance)

9-7526506 stands for .7526506 — 1,

or 9-7526506- 10;

.'. 49.7526506 is equivalent to 49-7526506 — 50;

- (49.7526506) equivalent to - (49.7526506) — 10,
5 5

or 9.9505301 to 9-9505301 - 10;

but the left-hand set of figures is made to stand for the right

:

therefore we may divide a logarithm (expressed by the borrowing of

10) by changing the characteristic (c) into m— 1 x 10 + c, if m be

the divisor, and then by dividing by m : the quotient is the real

quotient, 10 being supposed to be borrowed, or is the real

quotient — 10; thus if 3.4948500 standing for 3.4948500—10,

be to be divided by 5, add 40 ( = 5 — 1 X 10) to the characteristic

making it 43 : then

- (43.4948500) = 8.6989700.
5

There is then no difficulty in finding rules for operating with
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logarithms thus noted. But since (as we have already explained the

matter in pp. 323, &c.) the logarithms, expressed by 10, or 100,

Sic. being supposed to be borrowed, have a meaning different from

their usual or natural import, there exists a cause of ambiguity and

some danger of confusion. The logarithms expressed by means

of negative characteristics are free from these objections : they

have indeed, like the others, a conventional meaning, but they

have only one meaning. The rules for operating with them are

distinct: and the only objection against them is, their typo-

graphical uncouthness.

We will pass on to other investigations more nearly allied to

the subject of the Treatise, than what has just preceded.

In page 48, we gave, after several instances, the general

form for cos. >;jyl in terms of the powers of cos. A, but with-

out demonstration. This deficiency will be now supplied.

If 2 cos. A = x + - = p, then 2 cos. mA =*" + — .

Assume

•+>(*:•)+«•('+;)' +*(’+;)
‘
+‘.(* + i)

+».(*+;) + N0 n) +n 0 +D •

Expand the terms on the right-hand side of the equation, then

that there may be an identical equation, or, that x™ + — may

be equal to x
m + — ,

the following equations must take place.

(1) (m + S)p"" i= 0,

|>« .
—

^ + (m — 2) . S + p
m~* = 0,

{

wi—1 m— 2 (/7t—2) (m— 4) _ . „m.-r-.—^-+
K

S + (t7I-4)B + CU’"- 4 = 0,

-f- &c.
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and similarly the coefficient of p'n
~ iH

will be

(2)

+

m . (m— 1) (m — 2) . . . . (to — n + 1)

1 2 3 .... w

(m— 2) . (in — 3) (m - n) c

1.2 Ti— 1

(rn — 4) . (m — 5) . to— n — 1

1 . . . n — 2

+ &c.

+ (in— 2n+ 2). N

+ N',

which must also be equal to nothing; from the equation (1),

we have

S = — rn

B = m . (m— 3)

1 .2

_ m . (m — 4) .
(m— 5)

“ 1.2.3
’

therefore, if N followed this law, we should have

m . (m — n) ,(m — n — l) . . . . (w — 2n+ 3)
^ =

1.2.3 (n - 1)

Hence, the equation (2), written over again, after substituting

the above values of A, B, C, &c., and making each term to have

the common denominator 1 . 2 . 3 . . .

.

(n — l)

.

n, becomes

0 =

m ,{m — 1) {m — 2) (w- « + l)

1.2.3 n

m . (m — 2) (m — 3) .... (in — n)

1.2.3 n
X ii ... . (3)
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,

to. (to — 4)(m — 5) . . . . (m— n — 1) m . (w— 1)
"T"
—

" _ X
1 .2.3 1 .

2

- &c.

(w — «) (m—n— 1) . . . (m — 2n + 3) (to — 2h + 2)
+ m . :

—-— X n,
1.2.3 .......

+ N\.

Now the sum of all the coefficients preceding N'

_ m . (m— n— 1) (to— n— 2) (to — 2n + 1)

1.2.3.

For,

2
— H.(n— _ n.(n— l) («—2) m_,

1 .2 1.2.3
+ &c.

+ » 2” ' + = z
"- 1 (l

,

in which the upper or lower sign is to be used accordingly as

n js’even or odd.

Take the differential of this equation, divide by dz, and

(m— 1) z
m~ i — (m—

2

)"mz’*"*+ &.C.— (to — n)
—-.s’*

-"" 1 &c.

— (m— 1) z’"
-1

.
(l -^) +n. Z

’"- s.(l -^) .

Repeat this process till the differential of the original equation

be taken n— 1 times, then the index of 1 — - in the last term
z

will be n—(n— l)= 1, and all preceding terms produced by the

process of differentiation will involve powers of 1 higher

than the first, therefore
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{(to — 1 ) . (m — 2) (to — n + 1)} z
m "

- {(to — 2) (m — S) (to — n) . m} z
m~n ~ !

+ |(to — 3) (to - 4) ...... (m — n— l) .

J
z
”*~ " ' *

- &c.

- {(to — n).(m — «— 1) . . . . (to — 2m + 2) . «} 2
m-,n + l

+ {(to — «— 1) (to — n — 2) . . . . (to— 2/i +1)} z”
1- '"

&c. involving powers of z. Let z=l, then the

right-hand side of the equation = 0, and if the coefficients of

the left-hand side be multiplied each by

TO

1 .2 .3 .... »’

the resulting terms will, excepting the last which is

(m — « — 1) (to — u — 2) .... (w — 2n + 1)
, x m

1.2 n

be precisely the same as the terms of the equation (S), except-

ing the last N'; the two last terms, therefore, of the respective

equations are equal, that is,

>T , ,

to. (to m — 1)(to n — 2) (m - 211 + 1)

1.2.3

This formula, therefore, expresses the law of the series for

x
m

H—— ,
since it has been deduced on the supposition that

N, the coefficient of the »i
th

term, and the coefficients of the

preceding terms, are formed according to that law : which they

evidently are, since by making' u — 3, 4, Sic. we have
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B = m.
m— 3

2 '

c _ _ m . (m — 4)

.

(m - 3)

1.2.3

2) = w> • (w ~ 5) («— 6) . (>» - 7)

1 . 2 . 3.

4

&c.

and the above kind of inference is generally expressed by saying
that it the law be true for the n

Ul
term, it can be proved to be

true for the (n + l)
th

.

The relation between the n01
and («+ l)

th
term is this

:

N = ]\T2-
(m — n) n

(m — 2 n + 2) (m - 2n + 1)’

Let m = 2 n, then

^ _ ”'•(»- 0(w — 2) . .. . 2. 1 _“ w *1.2.3 .......iii n

« m
.’. N = 2 — =—

,

2 2*

N = *
.

' 2*

(f + 0 (5 ") to
5

. (m* — 2’)

3.4 3.4.24 •

similarly,

N _ m\ (m*— 8*) (to* - 4*)

3 . 4 . 5 . 6 . 2

&c.

Hence, if we revert the order of the series, aud begin from
.\ p

m -*
or N p° or N', we have
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xm d—- = 2 cos. m A = +
xm ~

^

m°~p~ m 2
(to

5 — 2*) p*
1

iTs5 ^ 2.3. 4 2
1

to
2

, (to
5 -2s

). (to
2 -4s

) p
6

, „ ,

8.3.4.5.G
+ **'>

the upper sign taking place, if to be

4, 8, 12, &c. or of the form 4 S,

the lower sign taking place, if to be

2, 6, 10, 8tc. or of the form 4S+ 2.

Again, if m be odd, or to = 2« + 1

,

N' = TO,

TO . (TO* — 1

)

N =

N,=

&c.;

2 . 3 . 2
*

to (to
* — 1 ) (to

5 — 9)

2 . 3 . 4 . 5 . 24
'

.'. cos. toA =

P TO . (TO* — 1) »3

TO .
. —x

2 2.3 2

to .(to
s -

1 ).(to
5 -

_
3
5

)^ ,

2. 3. 4. 5 2s

where the upper sign takes place, if to be 1,5, 9, 8tc., or be of

the form 4S + 1 : the lower, if to be 3, 7, 11, &c., or be of the

form 4S+ 3.

The two last formula- for cos. toA are derived from the

original one of 1.1, which, as we will now shew, is the source

of other formulae.

For the sake of introducing symbols in some degree sig-

nificant of what they are intended to represent, let c and s be

the cosine and sine of an arc A: then c = cos. A=p, and the

three preceding series will be
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m . (/«— 3)
(2c)”- '‘-Sic.) (a)cos.mA = j^(2c)m— m(2c)m_a +

or, (m odd)

/ m.(m’— 1) 3 m (ms— l)(m4 —9) « \ /tv= ± (
WC --T^^- C + 1X 3 4.5

C ~ &C -) Wc° +
1 .2. 3. 4.

5

("—») - ± 0 - ri c’

+

t£t:tc'~ 8lc ) • • • • <«>•

Since the expression (6) is true whatever be the arc, let the

arc, instead of A, be - — A, then cos. — A
^
= sin. A = s, and

cos. m — .4^ = cos. m.4^ = + sin. mil, ( + if m

be of the form 4» + 1, — if of the form 4s + 3:) hence, in all

cases, (

m

odd)

, m(ms— 1) , m.(m5 - 1) (m* — 9) . „ , _
sin. mA=ms s

5
H - — — s* - &c. ((l)1.2.3 1 .2. 3. 4.

5

V

Take the differential or fluxion of (a), and

d (cos. mA)= — sin. mA.m. dA , and 2”. d (c
m

) —
2" x mcm~ l

.dc — —2”‘. mcm~ l
s .dA, &c.

dividing by mdA, we have, since s enters each term, sin. m A =

s ((2c)m - , -(m-2)(2c)”- 3+ fo-
~

.

S)im~^ (2 C)"-
5- &c.) (e).

If we perform the same operations on (b) and (c), we shall

have (

m

being odd) sin. viA —^ +ss^=a,,_te)

and (m being even) sin.m^4 =

/ til {in — 4) , m(w’ — 4)(m'— lCi) \
V 2.3 2. 3. 4. 5 / 6

Tt
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If we perforin u like operation on the equation (d ), then.,

since d (sin.m A) — m cos. mA.dA (p. 1 10.), we shall have

cos. mA / m‘-
=c 0 --5

rri
z -

1 (w*— l)(w
s— 9) „

s -| r—r— s
2.3.4

— &c . (A).

If in the equation (c) we substitute, instead of A, - — A,

then

= A = ,,

and cos. m — COs. — mA^ = + cos. mA

( + , if «i is of the form 4s, — , if tn is of the form 4s + 2).

Hence, in both cases.

A , S I
cos. mA — 1 s +

g

m2
(m*— 4)

2.3.4
s
4 — &c. .(«•).

Take the differential or fluxion of this equation (i), and divide

by mdA, then we have (m being even) sin. mA

(ms
m (m

2 — 4) „ (»T — 4)(w'
2

s + m -
16)

2.3 2 . 3 . 4 . 5
-&c.) (k).

These formula! for the sine and cosine of the multiple arc, (ten

in number,) require not, as it has appeared, separate demon-

strations, since the nine latter are derived from the first (a).

If in the formula; (a), (d),(e), (k), we substitute for m, 2, 3, 4, 5,

there will result, as particular instances, the forms designated by

(c"), (c
m

), (c
IV

), (c
y

), (/"), (t
lr

), &c. in pages 47, 48, 49

;

and if in (f), (/i), (i), we expound m by different numbers, we
shall have

m- 3 sin. 3A= -s(l -4c!

) )

m — 5 sin. 5 vl = s (1 - 12c*+ l6c
4
)j

r°m '

Sec.
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m = 3 cos. 3A = — c(l — 4 s’)
)

m = 5 cos. si = c(l — 12s®+ 16s*))
fr°m ^

8ic.

m = 4 cos. 4A= 1 — 8 s
2 + 8*4

m = 6 cos. 6A= 1 - 18s*+ 48j4

&lc.

5s
“

1— 32sfi

J
from (i),

which particular forms were not deduced in the above-mentioned
pages.

Seriesfor the Sitie and Cosine.

By the form (rf), p. 329,

tn

.

(ni — J ) j w, (/«'— ] ) (m
2— 9)

sin. mA = ms - s* -\ - — — s
* — &c .

1.2.3 2. 3. 4.

5

Let A be very small, and m very large, and such, that mA= x,

x X
then s = sin.4 =sin. — = —

, nearly; and w»°— 1,
— S.C.m m

= rn‘, m, &c. nearly; .*. sin. mA, or.

sm. x
x m.m4 /-r\ s /x\ 8

~ m
'm 2.3

' +
2 . 3 . 4 . 5 ‘ \m)

~ C ’

— &c. (v).
2.3 2.3. 4.5

We shall have the same result if we take the scries (A) in

. . x
which »i is even

;
for c = cos. A = cos.—= 1 nearly, and m~ — 4 ,m

m? — 16, &c. =m®, wi
2
, &c.

If in the series (A), or (i), we make the same substitutions as

we have already made, we shall have

cos. mA, or cos. x= 1
—

1.2 1 .2.3.4
*— 8cc. .... (ii).

ST
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Instead of computing sin. l' by the methods given in pp. 70

and 72, calculators, in the construction of Trigonometrical Tables,

have employed the preceding series (r) for the sin. x, and under

this form,

m 7T III IT vi’ 7T
5

sin. ? . —t——- + &c.
n 2 n 2 n 2

5
. 2 .

3

substituting — . — instead of x: they have also, availing themselves

of previous computations*, taken tr = 3.14159 26535 89793,

and accordingly have been able to represent the above series, and

the series (m) for the cosine, with numerical coefficients, after

the following manner:

* Dr. Horsley, in his Elementary Treatise on Mechanics, p. J53,

says, that this is “taking things in a preposterous order;” and, un-

doubtedly, it would be so in a Treatise intended specially to explain

the principles of the construction of the Trigonometrical Canon, but

not in a Treatise giving rules for practically constructing it with as

much ease and conciseness as possible.
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* sin. -
.
90° =

71

1.57079 63267 948966 ...[l]

m)
-0.64596 40975 062463 -,...[2]

+....7969 26262 46l670^...[3]
7lr

- 468 17541 353187 ^’...[41
n7 L J

+ ....;. .16 04411 847874—’
ri9

m}t

-

35988 432352 —
n“

awl)

+ 569 217292 —
n IJ

mlS

-

6 688035 —
n,s

+ 60669%n 11

cos. - 90° =
n

1.00000 00000 000000

fW*

-1.23370 05501 361698 —
n7

nA
+0.25366 95079 010480—

n*

- . . .2086 34807 633530 —r
nr

Ml®

+ 91 92602 748394 -„ '

-

2 52020 423731 —
n‘*

+ 4710 874779 ~
n"

-

63 866031 —
«**

+ 656596 2
n̂ 1*

m‘»
.438 —

n ,,J
.5294

. 34—
n”

From this series not only the sin. l', but the sine of any arc

1 . ,
«» 1

may be computed; for instance, let — = —
, then, computing

exactly as far as seven places.

• Euler, InlioJ. ad Anal. Inf. p. 99. Callet’s Log. 27, 28.
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m
since - = .1,

»n5

since —=.00001,
n*

m1

since —- =
nJ

.001

sin

[1]

=. 157079632

[3]=.000000796|

.157080428

[
2
]
=.000645964

|

.9° = .156434464

The fourth term [4] and the re-

maining terms produce no

significant figures in the 9th

8th, &c. places.

or, in nearest numbers, as far as 7 places, sin. 9° = .1564345.

See p. 79, I. 6.

From the series for sin. — 90°, we may, by assigning different

values to — ,
deduce as many formula: of verification as we please;

for instance, suppose we wish to know whether sin. 20®, computed

according to the methods of pages 73, 74, be rightly computed;

m n m 2 , . , , . , ,

make —90 — 20; .•.- = -, which value is accordingly to be
n n 9

m .

substituted for — in the several terms of the preceding series
n

for sin. — x 90°.
«

The sines of arcs, deduced by the preceding series and the

formulae of pages 73, 74, will be expressed in parts of the radius,

and be, what are jailed, natural sines; but, computation is usually

conducted by means of logarithmic sines, which latter may, by

the aid of the common logarithmic Tables, (if the log. sines are

required to seven places only,) be computed by taking the loga-

rithms of the numbers that express the natural sines; and, in

order to avoid the inconvenience of negative logarithms, (for if

the radius = 1, the sines are all fractions and the logarithms

consequently negative) the Trigonometrical Tables are con-

structed to a radius = 10
10

,
the logarithm of which = 10

:

so that, instead of 1.6006997, the logarithm of .3987491,

which is the natural sine of 23°S0
,

to a radius 1, 10+ (1.6006997)

or 9.6006997 is made to denote the logarithm.
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But it is not absolutely necessary to compute the logarithmic

from the natural sines; and, indeed, if the latter consist of more
than 8 places, their logarithms cannot, from the Tables in common
use, be obtained: on this account it becomes necessary to shew,

by what means independent of Logarithmic Tables, or re-

quiring the aid only of the Tables that are in ordinary use,

logarithmic sines may be computed to any degree of exactness.

_S 5
X J

By the form (v), sin. x = x 1 — &c.2.32.3.4.5

= x (' +
X l

2 . 3 . 4 .

5

Now, for the purpose of finding the composition of

x*
1 — -—- + &c. put sin. x = 0, then (Table, p. 16 . making

.4=0) x may be 0, or n, or 27r, or S7r, 8tc. and x may
also be either — 7r, or — Qtt, or — 3fr, &c. Hence, viewing

the above series as an equation, 0, tv, 2ir, Sir, &c. are its

roots, or if we put - for x, and then reduce the equation, so

y
that the term of the highest dimensions (y

n
for instance) stands

first, - , ,
—

, &c. — - ,
,
— — , &c. are roots of

7T 27T 3 7T 7T 2 7T 3 7T

y*' y
2

2.3
+ &c. and consequently, for reasons like those stated in

p. 59, y — -
, y —

, &c.y + -
, y +

—— , &c. are divisors of
7r 2 7T 7r 27

r

the equation: hence,

3'
,

'~t^ +Sc- =
O'
-
;) (,,+ ;) &-£) 0+£) Sc -

or (dividing by y
n
),

Sec.

1 - + &c. = (l -—)
(l +—)

&C.
2.3;/ V Try/ V try'
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and 1 — ——- + &c. = C 1 ) ( 1 + &c.
2.3 V 7T' V W'

o }

Hence, sin.* = *(l - (l - j^)
&c.

(
. m 7T\

putting r = - . -

)

. m 7T TtlTT/ m*\ / VI \ #
S,n-«-5 = «-2 V

1

C
1 "Tc^/

and consequently, log. sin. — .—

=iog . it

+

log.— +iog. (i - £$) +iog. (i + &c -

By a like decomposition we shall have

-(>-$(-wK-ro)*-*
andlo|!.co..2.| = log.

,

(l -=r) + log. (, -

• If in the expression for sin. — . - ,
we put n — m instead of m,

(

n — m ir\ !•” mir\ m it

= sin. -—J
= cos.-

,
we have

cos 5? Z-lZZ.I (t±JZ\ (*Z-ZL)
f
3”+^(^Uc. If we

n'2
—

n 2 \ 2» / \ 2n ) \ 4 n A 4n J

equate this expression for cos. — . Z with the former one, and divide each

by the common factors, there results

2.2.4.4.G.6, &c.

1 _w 1

3.3. 5.5.7-7. &c.“2 * 2.2.4.4.6.b,&c.

whence - _
t 3 3 5>5 7 7> &c

which is Wallis’s expression ; and many

other curious results, which are not, however, the proper objects of this

Treatise, might be obtained.
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The preceding series may be differently expressed : since *

= log.(2n+ m) (2 n — m) — 2 log. 2n

= log. (2 m •+ m) + log. (2 n — m) — 2 log. 2 — 2 log. n
;

.. . *n „
. . log. sin. — . 90 = log. ir + log. m — 3 log. n — 3 log. 2

+ log. (2m + »i) + log. (2n — m)

+ 'og-('-^) + lo«(' +

and by steps exactly similar we may obtain

.
m n

log. cos. — . 90°= log. (n — m) + log. (n -f- m) - 2 log. n

+ ,og
* 0 “ wj) + los- 0 -

-h) + &c -

and since, (p. 302),

* Log- (l ~ -j-i) .
or log. ^1 - is not expanded, as the

similar expressions log. - -~ij, &c. are, and for this reason; if

,
i

I

expanded, it would increase the coefficient of —— bv now — =j 2“° 22,)

To) S

~

>70 =-000000°9. &c. or the significant figures would come in the

eighth place, whereas — :=
1

4*1 = TQ993H627776
= •00000000000009. &c.

and the significant figures do not come in till the fourteenth place : if,

therefore, log. ^1 — had been expanded, or the powers of -i.

retained in the computation, we must have computed a greater number
of terms, (see succeeding series, p. 333,) in order to have had the series

exact to fifteen places of decimals.

U u
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log. (l
"‘*>1

l = _Il
’ rn

4- -

tn
_i_

m*
4- &c.\

4
a«V P 1

+

1

2.4

V

1
,

3 . 4®n6

1

e .m \ 1
1

m'
+

6m
4- &c.\

log-
(^1 6‘ n ' ~ P l6V *r

Q . 64 /i
4 3

.

66n6
1

tv4'* 1

log. (l
m~ \

~8*»v 18 »*
+

rn

2.8V +
rn

3.8V + &C.|

If we sum the coefficient* of—j-, —j-, &c. taking the columns
n n

vertically, that is, if we find the arithmetical value of

2

.4342944, &c.
{^ ^ + &c

}
(coefficient of

£.4342944, &c. + gi + gi + &c
'|

(coefficient of

j.4342Q44, &c.
{^

+ + £5 + &c.} (coefficient of

and add 10 the log. tabular radius, we shall have two Tables

resembling those given in page 333.
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log. sin. — . 90 =
ti

log. m + log. (2 ti— rn)

-flog. (271+ 771)— 3 log. n

W + 9.59405 98857 02190

m%

[1] - 0.07002 28266 05901 —?

Til*

[2]

- 111 72664 41661

[3]

- 3 92291 46453
-a-

- 17292 70798^-

.843 62986 allcl

0

771?*

. .43 00

71**

..2 31931
w,14

nl*

.... .12659
77)*®

7^
771*°

' • * • . ..702
„18

....39
771

s®

71™

log. COS. — 90°=

log. (71— 777)-|-log. (7I+ 77l)— 2 log. *1

+ 10

-...0.10149 48593 41892

m4

-

318 72940 65451 —r
n%

nfi

-

20 94858 00017

Tlfl

-

1 68483 48597 -3-
n8

m10

-

14801 93986—
Ti4U

ml*

-

1365 02272—r.
«**

m1*

-

129 81715-^
n*’

m16

-

12 61471 -rr-
71*®

-

1 24567\
m?o

-

12456—
7«S*

-

1258
71
s*

OT*<

-

128—
»i**

77.“~ 13 ^
From these series, may logarithmic sines and cosines, inde-

pendently of the values of the natural sines, be computed to 15

places ;
and, this inconvenience is avoided; if the natural sines had

been taken, consisting of more than 7 places, no Tables in common
use would give their logarithms. The logarithms indeed of the

numbers m, In — m, 2/i+ tti, &c. are supposed to be taken to 15
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places, and these can be had, since the numbers will not consist

7/1

of more than 0 figures : for — cannot exceed i*; therefore, since

n = 90.60.60 = 824000, n + m, 2n + m, &c. cannot exceed

1000000.

As an instance to the preceding formula, suppose the loga-

rithmic sine of 9° to be required : here to = 1 , w= 10.

log. m or log. 1=0

log. (2n— m) or log. 19

log. (2n-f-wi) or log. 21

M
Ci]....

ro
3 log. 10

= 1.27875 36009

= 1.32221 92947

= 9.59405 98857

12.19503 27813 [<f]

.00070 02282

1117

= 3.

3.00070 03399 [<Q

log. sin. 9°, that is, Qe] =9-19433 24414

This is the log. sin. 9
0
to 10 places : and the decimal part is the

logarithm of 15643446 the natural sine of 9°, found, p. 76, &c.

We will now add some other instances, and find the loga-

rithmic sines of l", 45°, 2* 3", and of l' 3".

* If — > i
,
the series for the cosine would be used for computing

the sine, since sin. (45°+ A)= cos. (45°— A): it is obvious, that the

logarithms of nt, n + m, & c. may be dispensed with entirely, by ex-

panding log. A — but then, to attain the same exactness, we

must make the series consist of more terms. It is also plain, that instead

of fifteen places in the numerical coefficients of the series, any number

may be used. See Callet’s Logarithms, p. 48.
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Logarithmic sine of l".

-90°x6Qx60=l; m= l.n=324000.
71

1

m —
Numbers.

. . . 1

Logarithms.

O

2 n—m . .

.

2 n -\-m . . .

,

M
.... 647999

.... 648001 5.81157

43357

56761

98857

In , . . . 972000

21.21720 98975
50306

5.68557 4866.9

The other terms £l], ^2], See. by reason of the large divisors ns
,
ip±

8lc. produce no effect on the result obtained ; therefore, as far as ten

places of decimal figures

log. sin.l"=: 5.6855748669

Logarithmic Sine of 45°.

m
-. 90° = 45°; .-. n»= 1, n = lL

m
Numbers. Logarithms.

. 0,

2 n—m . 0.4.7719 19 54.7

2n-Um fioso7 nnn.it

M . 9.59405 98857

w ••• 10.77015 11447

QJ= - .(.07002 28266 )

m 72644.4) ....

f3III 2 92291.5) 6129.5

1729-3)

^ =
1024

‘ ^ 843.6) .... 8

.01757 6l554.fi

3 log. n

.92066 61425.7M 10.77015 11447

value of log. sin. 45° to 10 places 9.84948 50021 •
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This instance has been selected, not that the method of

solving it is the most simple, (for the instance is a particular one),

but as one which shews the great convenience of the series.

Logarithmic Sine of %' 3".

— x 324000= 2’ 3"= 123 :

m 123 41

ft n 324000 108000

Numbers. Logarithms.

m 41 .. . 38567

2n—m . 5.33437 33078

5.33453 41787

959405 98857

0/] ••• 21.87575 12289

To find the term marked £1],

we have log. m . 1.61278 38567
log. n . 5.03342 37555

6.57936 01012

1
loe- rs 3.15872 02024

log. . . . 0.07002 282 . . . 8.84523 95006

2.00395 97030 ... No. 0000000101

d: 00000 00101

3 log. n 15.10027 12665

. 15.10027 12766

but[?] 21.87575 12289

6.77547 99523 . . . the log. sine of 2' 3".

Logarithmic Sine of l’ 3".

m _ r 3" 63 7 m= 7, n = 36000.
n
-

324000 ~~
324000

-
36000

’

Numbers. Logarithms.

m 7 . . . 0.84509 80400

2n—m ..

.

71993 ... 4.85729 02713

2n-J-m ..

.

... 4.85737 47175

f"3 . .
. 9-59*05 98857

M - .. 20.15382 29145
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.84309 8040O

4.55630 25008

Again, log. m
log. n

log

No. =
3 log. n .

6.28879 55392

2.57759 >0784

07002282, be. ... 8.84523 95969

1.42283 06833

00000 00026

13.66890 75024

13.66890 75050

•• C'/]~[p] = 6.48491 540985

The above instances shew, with what facility the logaiithmic

sines of arcs may be computed to 10 and 15 places of decimals.

In Taylor’s Tables, the places of decimals are only 7, which,

for all common purposes, are sufficient. It is convenient, how-

ever, especially in finding the logarithmic sines of very small arcs,

to have a larger number of figures than seven : and these sines we
may compute by the above formula, if we possess tables that

will give us the logarithms of numbers, for expressing the loga-

rithms of 2m + m, 3m to a number of places beyond 7- The
Books* for such purpose are, however, rare.

The Trigonometrical Tables called Taylor’s, give the loga-

rithmic sines, cosines, &c. of arcs to every second of a quadrant,

and express them by seven places of figures. Sherwin’s and

Hutton’s express by the same number of figures, the logarithmic

sines, &c. to every minute of the quadrant. The two latter

and like works are sufficient for almost all calculations, and their

size, (which is no immaterial point), renders them manageable
;

and, under certain rules, they may be used, but not very safely,

to find the sines, cosines, &c. of arcs containing seconds. For

instance, to find the sines of 44° 30' SO", 44° 30' 10", we
have

* Lugarit/uniinll Arithmetike, 1631. Trigunotnetria Artitidalis ,

1631

.

• j ,

. . \.
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Arcs.

41° 31
'

44 30

Log. Sines.

9 -84579031

9-8456618}

Dill', of Logarithm.

.0001285

This difference is for 60", •§ of which is . .

.

i

Hence log. sin. 44° 30' 30" is 9-8456618 7

642.5}
log. siu. 44 30 10 ... 9.84566187

214}

.00006425

.0000214

9.84572605

9.8456832

and both these sines are right, by adding what are called proportional

parts. But the logarithmic sine of 1° O' 30", cannot be so found : for

log. sin. 1° 0' 8.2418553

log. sin. 1 1 8.2490332

16.4908885

half of which is 8.24544425,

which is not the logarithmic sine of 1° O' 30", the real value being

8.2454590.737. or, to the nearest seven figures, 8.2454591.

The reason of this is obvious : the sines of small arcs varying

rapidly, and those of large ones slowly
;

still the caution that has

been given must be attended to, of watching those cases, in

which we have to find the logarithmic sines of arcs, intermediate

to those inserted in the Tables, by the above method of pro-

portional parts, or that method which supposes the whole dif-

ference between the logarithmic sines of arcs differing from each

other by to be 60 times the difference between any contiguous

two of the 60 logarithmic sines of the intermediate arcs, differ-

ing by l".

The like is true with Taylor’s Tables, which give the loga-

rithmic sines, &c. of arcs to every second. The logarithmic

sine of l”.75 cannot by proportion be found from them, and,

therefore, Dr. Maskelyne has given, in his Introduction to the

Tables, a rule for finding such sines
;
which rule, with other

similar rules, is inserted at page 26 1. of this Work.

607 52.
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