
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2017-06

Achieving sink node anonymity in tactical

wireless sensor networks using a reactive

routing protocol

Haakensen, Thomas J.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/55612

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

ACHIEVING SINK NODE ANONYMITY IN TACTICAL

WIRELESS SENSOR NETWORKS USING A REACTIVE

ROUTING PROTOCOL

by

Thomas J. Haakensen

June 2017

Thesis Advisor: Preetha Thulasiraman

Second Reader: Murali Tummala

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB

No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing

instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection

of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215

Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork

Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY

(Leave blank)

2. REPORT DATE
June 2017

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE

ACHIEVING SINK NODE ANONYMITY IN TACTICAL WIRELESS

SENSOR NETWORKS USING A REACTIVE ROUTING PROTOCOL

5. FUNDING NUMBERS

W7B46

6. AUTHOR(S) Thomas J. Haakensen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING

ORGANIZATION REPORT

NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

Marine Corps Systems Command and Naval Research Program

10. SPONSORING /

MONITORING AGENCY

REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

A wireless sensor network (WSN) collects and routes information from the environment to an

aggregation point, known as a sink node. The sink node processes the information or acts as a gateway to

forward information to another network. Due to its essential role in the network, the sink node is a high

priority target for an attacker who wishes to disable a WSN. In this thesis, we focus on the mitigation of

sink-node vulnerability in a WSN. Specifically, in this thesis we study the issue of protecting the sink node

through anonymity techniques. In particular, we use a technique known as k-anonymity. To achieve k-

anonymity, we use a specific routing protocol designed to work within the constraints of WSN

communication protocols, specifically IEEE 802.15.4. We use and modify the Lightweight Ad hoc On-

Demand – Next Generation (LOADng) reactive-routing protocol to achieve anonymity. This modified

protocol prevents an attacker from identifying the sink node without adding significant complexity to the

regular sensor nodes. We simulate the modified LOADng protocol using a custom-designed simulator in

MATLAB. We demonstrate the effectiveness of our protocol and also show some of the performance

tradeoffs that come with this method.

14. SUBJECT TERMS
Sink node anonymity, base station anonymity, Wireless Sensor Networks (WSN), Mobile Ad

hoc Network (MANET), Lightweight Ad hoc On-Demand – Next Generation (LOADng)

15. NUMBER OF

PAGES
95

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION

OF ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release. Distribution is unlimited.

ACHIEVING SINK NODE ANONYMITY IN TACTICAL WIRELESS SENSOR

NETWORKS USING A REACTIVE ROUTING PROTOCOL

Thomas J. Haakensen

Major, United States Marine Corps

B.S., University of Minnesota Duluth, 2002

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

June 2017

Approved by: Preetha Thulasiraman, Ph.D.

Thesis Advisor

Murali Tummala, Ph.D.

Second Reader

R. Clark Robertson, Ph.D.

Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

A wireless sensor network (WSN) collects and routes information from the

environment to an aggregation point, known as a sink node. The sink node processes the

information or acts as a gateway to forward information to another network. Due to its

essential role in the network, the sink node is a high priority target for an attacker who

wishes to disable a WSN. In this thesis, we focus on the mitigation of sink-node

vulnerability in a WSN. Specifically, in this thesis we study the issue of protecting the

sink node through anonymity techniques. In particular, we use a technique known as k-

anonymity. To achieve k-anonymity, we use a specific routing protocol designed to work

within the constraints of WSN communication protocols, specifically IEEE 802.15.4. We

use and modify the Lightweight Ad hoc On-Demand – Next Generation (LOADng)

reactive-routing protocol to achieve anonymity. This modified protocol prevents an

attacker from identifying the sink node without adding significant complexity to the

regular sensor nodes. We simulate the modified LOADng protocol using a custom-

designed simulator in MATLAB. We demonstrate the effectiveness of our protocol and

also show some of the performance tradeoffs that come with this method.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1

A. WIRELESS SENSOR NETWORKS ...1

B. STANDARDS FOR LOW-POWER COMMUNICATIONS3

C. RESEARCH MOTIVATIONS AND OBJECTIVES4

D. THESIS CONTRIBUTIONS ..5

E. THESIS ORGANIZATION ..6

F. CHAPTER SUMMARY ..6

II. BACKGROUND AND RELATED WORK ..7

A. IEEE 802.15.4 STANDARD OVERVIEW ..7

B. 6LOWPAN..8

C. REACTIVE VERSUS PROACTIVE ROUTING PROTOCOLS8

D. LIGHTWEIGHT AD HOC ON-DEMAND—NEXT

GENERATION (LOADng) ROUTING PROTOCOL9

1. Overview of LOADng ..10

2. Operation of the LOADng Protocol ...10

3. LOADng Performance Comparisons ...12

E. APPROACHES TO PRIVACY IN WIRELESS SENSOR

NETWORKS ..13

1. False Packet Injection ..13

2. Deceptive Sink Nodes ...14

3. Location-Aided Routing ..14

4. Cluster Head Routing ..15

F. CHAPTER SUMMARY ..15

III. ACHIEVING SINK-NODE ANONYMITY IN REACTIVE ROUTING

PROTOCOLS ..17

A. K-ANONYMITY ..17

B. APPLICATION OF K-ANONYMITY IN WSNS18

1. Identification of the Sink Node through Passive

Observation ..19

2. Obscuring the Sink Node through k-Anonymity20

C. MODIFIED LOADNG FOR SINK-NODE ANONYMITY21

1. Protocol Overview ..21

2. Choosing a Neighbor Node ..22

3. Forwarding the Altered RREQ and Sending the RREP22

4. RREP_ACK and Data Packets ...24

viii

D. DESIGN CONSIDERATIONS ...24

E. CHAPTER SUMMARY ..25

IV. EXPERIMENTAL DESIGN ..27

A. EXPERIMENTAL PARAMETERS ..27

1. Selecting Sensor Parameters ...27

2. Determining Node Quantities ...27

3. Measuring Power Consumption ...29

B. SIMULATOR DESIGN...30

1. Building the Network ...31

2. Determining Transmission Order ..32

3. Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA) ..32

4. Collision Detection ...32

5. Packet Transmission ..33

6. Flooding RREQ Packets ..33

7. Sending Unicast Packets ..35

8. Broadcasting ...35

9. Measuring Metrics ...36

C. CHAPTER SUMMARY ..37

V. SIMULATION RESULTS AND ANALYSIS ...39

A. SINK-NODE ANONYMITY ..39

1. Number of Transmissions ...39

2. RREP to RREQ Ratio ...42

B. NON-ANONYMITY PERFORMANCE METRICS42

1. Power Usage ...42

2. Latency ..44

3. PDR ...44

C. FAILURE CASES ..45

D. CHAPTER SUMMARY ..46

VI. CONCLUSIONS AND FUTURE WORK ...47

A. SUMMARY AND CONCLUSIONS ..47

B. CONTRIBUTIONS OF THIS THESIS ...48

C. FUTURE WORK ...48

1. Intelligent Neighbor Selection ...48

2. Optimized Flooding ...49

APPENDIX. SIMULATOR CODE ..51

 ix

LIST OF REFERENCES ..73

INITIAL DISTRIBUTION LIST ...75

 x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

 Typical Sensor Node Architecture. Source: [3]. ..2 Figure 1.

 Structure of a Typical Wireless Sensor Network. Source: [3].3 Figure 2.

 RREQ Flooding and RREP Unicast for LOADng Routing Protocol12 Figure 3.

 Example of RREQ Flooding and RREP Unicast for the Modified Figure 4.

LOADng Routing Protocol ..23

 RREP Packet Header with FLAGS TLV Highlighted. Source: [9].24 Figure 5.

 Uniform Spacing of Sensor Nodes ..28 Figure 6.

 Isolated Pocket of Nodes in a Random Distribution within a Figure 7.

500×500 m
2
 Field Containing 205 Nodes ..29

 Uniform Spacing (Left) with 196 Nodes and Random Distribution Figure 8.

(Right) with 250 Nodes ..31

 Modified LOADng and Standard LOADng Total Transmissions Figure 9.

Average per Node ..41

 Transmission Collisions over Time for 2000 Transmission Figure 10.

Simulation ..43

 Random Distribution that Fails to Achieve Sink Node Anonymity Figure 11.

with Arrows Highlighting Sink Neighbor Nodes46

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF TABLES

Table 1. Example of k-Anonymity, where k = 2 and QI = {Race, Birth,

Gender, ZIP}. Source: [18]. ...18

Table 2. Size of LOADng Packets in Bytes and Transmission Time Based on

250-kbps Data Rate ..19

Table 3. Phases of Node Operations and Power Usage. Adapted from [19].30

Table 4. Power Consumption for AES Encryption and Decryption. Adapted

from [20]. ...30

Table 5. Number of Node Transmissions for 500 Total Transmissions40

Table 6. Number of Node Transmissions for 1000 Total Transmissions40

Table 7. Number of Node Transmissions for 2000 Total Transmissions40

Table 8. RREPs Sent to RREQs Forwarded Ratio...42

Table 9. Average Power Use per Node (mWh) ...43

Table 10. Latency of Unicast Packets between Source Node and Sink Node

(sec) ..44

Table 11. Average Path Length Measure in Hops between All Nodes44

Table 12. Packet Delivery Ratio ..45

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF ACRONYMS AND ABBREVIATIONS

6LoWPAN IPV6 over low-power wireless personal area network

ADC Analog-to-digital converter

AES Advanced Encryption Standard

ALERT Anonymous Location-Based Efficient Routing Protocol

AODV Ad hoc On-Demand Distance Vector

AOI Area of interest

BEB Binary Exponential Back-off

BLAST Base-station Location Anonymity and Security Technique

CH Cluster Head

COTS Commercial off the shelf

CSMA-CA Carrier-Sense Multiple Access with Collision Avoidance

DOD Department of Defense

GPS Global Positioning System

IETF Internet Engineering Task Force

IP Internet Protocol

IPv6 Internet Protocol version 6

ITU International Telecommunication Union

LLN Low-Power Lossy Network

LOAD 6LoWPAN Ad Hoc On-demand Distance Vector Routing

LOADng Lightweight Ad hoc On-Demand – Next Generation

LoWPAN low-power wireless personal area network

LR-WPAN Low-Rate Wireless Personal Area Network

MANET Mobile Ad hoc Networks

MCRP Marine Corps Reference Publication

MTU Maximum Transmit Unit

OSPF Open Shortest Path First

PDR packet delivery ratio

RF radio frequency

xvi

RFC Request for Comments

RIP Routing Information Protocol

RPL Routing Protocol for Low-Power and Lossy Networks

RREP Route Reply

RREP_ACK Route Reply Acknowledge

RREQ Route Request

RERR Route Error

RX-TX receive-transmit

SMMS Sensor Mobile Monitoring System

TLV Type-Length-Value

TRSS Tactical Remote Sensor System

USMC United States Marine Corps

WSN wireless sensor network

 xvii

ACKNOWLEDGMENTS

First, I would like to thank my wife, Miki, for her love, support and patience

throughout the long hours of studying, research, and writing over these past two years. I

would also like to thank my son, Ian, for being as patient and understanding as a 6-to 8-

year-old boy could be when his dad cannot always play with him.

I would like to thank my thesis advisor, Professor Preetha Thulasiraman, for

providing the guidance, knowledge, and direction needed to complete this process.

Finally, I would like to thank all of the electrical engineering professors at Naval

Postgraduate School who have given me the knowledge to be successful.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Advances in the miniaturization of integrated circuits, transmitters, and sensing

devices have facilitated the creation of small-yet-capable remote wireless sensors that can

be deployed over large areas inexpensively. This has a wide range of applications in both

military and civilian functions, including environmental monitoring, presence/intrusion

detection, ranging, imaging, and noise detection [1]. The versatility of remote sensors has

made them especially appealing for use in military applications.

The Marine Corps Reference Publication (MCRP) 2–10A.5 on remote sensor

operations [2] details the ways and means in which sensor operations are conducted in the

United States Marine Corps (USMC). It states that remote sensors provide an economical

means to expand the commander’s situational awareness on the battlefield by deploying a

persistent presence to monitor an area-of-interest (AOI) without having to employ troops

in dangerous and hostile areas. They act as a force multiplier by reducing the requirement

for personnel and the associated risks when conducting reconnaissance and surveillance

operations. It is because of these advantages that the use of sensors on the battlefield

continues to increase.

In [1], the authors performed a survey of 13 papers covering military applications

of wireless sensor networks and identified a variety of current and future uses including

soldier detection and tracking; perimeter protection; chemical, biological, and explosive

vapor detection; acoustic sensing; and gunshot detection and localization. This wide

range of applications makes wireless sensor networks a versatile tool that will grow in

importance on future battlefields.

A. WIRELESS SENSOR NETWORKS

A wireless sensor network (WSN) is a system of specialized devices, or nodes,

which communicate data from sensor inputs through a wireless medium to a base station,

which we refer to as the sink node. These devices are generally resource constrained,

meaning they have enough computational and transmit power to accomplish their task

 2

while using as little power as possible. This is especially important for sensors that rely

on a battery for power and are expected to function for long periods without replacement.

Sensor nodes are always equipped with a radio frequency (RF) transceiver, a

transducer for sensing, a microcontroller, and a power supply that is usually a battery [3].

A high-level diagram of a typical wireless sensor node architecture is shown in Figure 1.

 Typical Sensor Node Architecture. Source: [3]. Figure 1.

The transducer acts as the sensor, which collects input from the environment and

converts that input to analog electrical signals. Those signals are converted to digital

signals through an analog-to-digital converter (ADC) and are sent to the microcontroller

for processing. The microcontroller processes those inputs, makes decisions based on the

inputs, and acts on them accordingly. The RF transceiver sends and receives information

to and from other nodes in the network as instructed by the microcontroller. Sensor nodes

may also have other capabilities, such as Global Positioning Systems (GPS), based on the

information requirements.

A WSN contains multiple nodes, which are each connected to at least one other

node utilizing a wireless protocol. The sensor nodes transmit their information through

the network based on the specific protocols that are implemented. Nodes may be

designed to perform any combination of sensing, data relaying, or external network data

communication functions [3]. A node designed for sensing is only able to act as a sensor

and has to transmit its information to a relaying node to be forwarded through the

network. The relaying nodes act as routers and forward traffic through the network based

 3

on the routing protocol implemented. The sink node is the central node to which data is

sent by other sensor nodes for processing. It acts as the gateway node between the WSN

and an outside network. An example of a typical WSN depicting a sensor field and a sink

node acting as a gateway is shown in Figure 2.

 Structure of a Typical Wireless Sensor Network. Source: [3]. Figure 2.

The open nature of the WSN environment allows nodes to be easily

compromised, leading to several security problems. In particular, the sink node, which is

the aggregation point of all network data, is considered a single point of failure. An attack

that compromises the sink node results in the network becoming isolated and non-

functioning. This makes the sink node the priority node for an adversary to locate and

disable.

B. STANDARDS FOR LOW-POWER COMMUNICATIONS

The restricted energy and computational requirements of battery-powered remote

sensor nodes and the unreliable nature of Low-Power Lossy Networks (LLNs) prompted

the development of new communications protocols. Existing standards, such as Institute

of Electrical and Electronics Engineers (IEEE) 802.11, were not designed for the

requirements of such restricted devices. Additionally, existing routing protocols were too

 4

resource demanding for devices with such limited memory and computing power. LLNs

use the IEEE 802.15.4 standard, which is a data link and physical layer protocol that

provides communications between low-power devices [4]. Internet Protocol version 6

(IPv6) over IEEE 802.15.4 low-power wireless personal area networks (6LoWPAN) was

later developed to address interoperability between LLNs and IPv6-enabled networks.

6LoWPAN is an open networking standard that provides compatibility between existing

Internet-connected devices and low-power WSNs. It allows for IP packets to be carried

within IEEE 802.15.4 link layer frames by reducing the overhead associated with the

IPv6 protocol.

C. RESEARCH MOTIVATIONS AND OBJECTIVES

The objective of this research is to develop a method to provide anonymity to the

sink node in a WSN while incurring minimal computational overhead to the sensor nodes

in the network. This allows the use of inexpensive, resource-constrained, low-power

wireless sensor motes, which reduces the cost of procurement and deployment.

Deployment of large numbers of these devices over large areas greatly enhances the

situational awareness of units in the field without being cost-prohibitive. The devices can

easily be viewed as expendable and can be air-dropped into hostile or contaminated areas

without fear of losing them. This makes the need to hide the sink node even more critical,

as the network is more exposed to a hostile attacker in a situation where the network was

deployed far forward of friendly lines.

The USMC has employed remote sensors on the battlefield since 1967 during the

Vietnam War [2]. It currently employs the AN/GSQ-261 Tactical Remote Sensor System

(TRSS) for remote sensor operations within an AOI. The sensors in this system are

capable of detecting the presence and movement of vehicles and personnel and can

operate continuously for 30 days on internal batteries [2]. The data from the sensors is

relayed back to the AN/MSC-77 Sensor Mobile Monitoring System (SMMS) for

processing. The SMMS acts as the sink node for the WSN and is critical to the function

of the entire network.

 5

While the AN/GSQ-261 is a capable system that enhances the capabilities of the

USMC, it is large and requires sensor nodes to be manually placed, potentially putting

personnel at risk if placed forward of friendly lines. There is a potential for smaller and

more resource-constrained devices, which can easily be air dropped into an area or placed

in large numbers by units on patrol. These devices can provide a similar remote sensing

capability as the AN/GSQ-261’s sensor nodes while being much more cost effective and

expendable. There are a wide range of commercial-off-the-shelf (COTS) solutions that

can economically provide this capability with minor modifications [5]. These sensors

require the use of more power-friendly communications protocols while still maintaining

security and their ability to transmit data back to the monitoring station.

Power-friendly communication protocols such as 6LoWPAN and IEEE 802.15.4

are prime candidates for maintaining connectivity in WSNs. In this thesis research, we

focus on the mitigation of sink node vulnerability in a WSN used at the tactical edge by

the U.S. Marine Corps. Specifically, in this thesis research, we study the issue of

protecting the sink node through anonymity techniques. In particular, we use a technique

known as k-anonymity to obfuscate the actual sink node. To achieve k-anonymity, we use

a specific routing protocol designed to work within the constraints of IEEE 802.15.4 and

6LoWPAN. For this thesis research, we modify the Lightweight Ad hoc On-Demand –

Next Generation (LOADng) reactive, or on-demand, routing protocol.

D. THESIS CONTRIBUTIONS

To achieve the above stated objectives, we develop a modification to the

LOADng routing protocol that accomplishes sink-node anonymity while adding minimal

computational overhead to the resource constrained sensor nodes.

The contributions of this thesis are as follows:

 Development of a modified LOADng routing protocol that provides k-

anonymity to the sink node while limiting the computational overhead for

the sensor nodes.

 Simulation of the modified routing algorithm to measure and quantify

anonymity and performance versus the standard LOADng protocol.

 6

 Measurement of the performance of the modified routing algorithm

compared to the standard LOADng protocol for average route length,

latency, power consumption, and packet delivery ratio (PDR).

During our literature search, we found no other research that merges k-anonymity

for the sink node with reactive routing protocols.

E. THESIS ORGANIZATION

The remainder of this thesis is organized as follows. In Chapter II, we cover

relevant background information and discuss some of the previous research done on this

topic. The method used to determine anonymity as well as how sink node anonymity is

achieved are discussed in Chapter III. In Chapter IV, we cover how the experiment was

designed, implemented, and run to compute specific performance metrics. In Chapter V,

the results of the simulation are presented and discussed in relation to the metrics

measured. In Chapter VI, we conclude this thesis and discuss future work topics. All code

for the implemented simulation is included in the appendix.

F. CHAPTER SUMMARY

In this chapter, we introduced to the concept of WSNs and their application in the

Department of Defense (DOD). Research motivations and the objectives of this thesis

were discussed, followed by a brief outline of the contributions of this thesis.

 7

II. BACKGROUND AND RELATED WORK

In this chapter, we discuss some of the protocols that are developed for different

layers of the WSN protocol stack as well as some existing research into sink node

anonymity. This lays the informational foundation for the later discussions of our

implemented protocol and its application to sink node anonymity in WSNs.

A. IEEE 802.15.4 STANDARD OVERVIEW

The IEEE chartered the IEEE 802.15 Task Group 4 to address the need for a

wireless standard for low complexity devices that require low data rate and low power

consumption. This led to the publication of the IEEE 802.15.4-2003 standard in 2003,

which was superseded by the IEEE 802.15.4-2006 standard. The standard contains the

following features [4]:

 Data rates of 250 kbps, 40 kbps, and 20 kbps.

 Two addressing modes; 16-bit short and 64-bit IEEE addressing.

 Support for critical latency devices, such as joysticks.

 Carrier-Sense Multiple-Access with Collision Avoidance (CSMA/CA)

channel access.

 Automatic network establishment by the coordinator.

 Handshaking protocol for transfer reliability.

 Power management to ensure low power consumption.

 Sixteen channels in the 2.4-GHz ISM band, ten channels in the 915-MHz

band, and one channel in the 868-MHz band.

The IEEE 802.15.4 standard is designed to provide Low-Rate Wireless Personal

Area Network (LR-WPAN) capabilities for devices with constrained power and

computation resources that only require low data throughput [3]. The IEEE 802.15.4

standard outlines the specification for the physical and MAC layers of the WSN protocol

stack. Other protocols must be used to implement the higher layer functions of the WSN

protocol stack.

8

We are specifically interested in the security implementation at the MAC layer,

which is a critical component of protecting the sink node. The IEEE 820.15.4 standard

designates MAC layer encryption using Advanced Encryption Standard (AES)-128 with

128-bit symmetric keys as specified in FIPS Pub 197 [4]. When implemented in

accordance with FIPS 140–2, this encryption meets the DOD requirements for

communications transmission security [6].

B. 6LOWPAN

6LoWPAN was developed by the Internet Engineering Task Force (IETF) as a

means to enable IPv6 to be used on low-power IEEE 802.15.4 WSNs [3]. This enables

sensors to communicate directly on the Internet without having to utilize a gateway to

translate between protocols. The challenge for designers of this protocol was fitting the

IPv6 header, which is 40 bytes, within an IEEE 802.15.4 frame, which is limited to 127

bytes total. The 25-byte MAC frame header and optional 21-byte encryption header leave

just 81 bytes for upper layer headers and payload data [7].

6LoWPAN adds an adaptation layer between the MAC and network layers to

provide header compression in IEEE 802.15.4 networks and fragmentation and

reassembly when transitioning between networks which use the standard IPv6 1280-byte

maximum transmit unit (MTU) [8]. The adaptation layer compresses the IPv6 header to

two, 12, or 20 bytes depending on the node’s knowledge of its destination. Fragmentation

and mesh headers of four to five bytes and five to 17 bytes, respectively, are added as

needed to support fragmentation of larger IPv6 packets and multi-hop routing [8]. This

dramatically reduces the header size of IPv6, allowing its use in the restricted IEEE

802.15.4 frame.

C. REACTIVE VERSUS PROACTIVE ROUTING PROTOCOLS

Reactive, or on-demand, routing protocols differ from proactive routing protocols,

such as Open Shortest Path First (OSPF) and Routing Information Protocol (RIP), in that

nodes only determine a route to a destination when they need to send data. There are no

periodic control packets sent throughout the network for route maintenance, and the

nodes do not maintain large routing tables with a full picture of the network as is required

9

in a proactive protocol. Each node only maintains routes to nodes for which it needs to

send data. Due to these characteristics, they are well suited to run on devices that are

restricted in computational power and memory. According to Clausen et al. [9], we see

that reactive protocols are preferable to proactive protocols under the following

conditions:

 Few concurrent traffic flows in the network (i.e., traffic flows only

between few sources and destinations);

 Low data traffic overall, and, therefore, the traffic load from periodic

signaling (for proactive protocols) is greater than the traffic load from

flooding route requests (for reactive protocols);

 State requirements on the router are very stringent; i.e., it is beneficial to

store only few routes on a router.

Reactive routing protocols have an advantage over proactive protocols in low-

traffic Mobile Ad Hoc Networks (MANETs) because they tend to use less power in many

scenarios [10], [11]. This is important when using battery-powered sensors that need to

function for long periods on their own internal power. This is especially true in sensor

networks that may sit for long periods before a sensor is triggered and needs to send data.

In a proactive protocol, route updates are sent out periodically even if there is no event to

trigger a data transmission, using more power each time. A reactive protocol only

attempts to determine a route when it needs to send data to another node, conserving

power.

D. LIGHTWEIGHT AD HOC ON-DEMAND—NEXT GENERATION

(LOADng) ROUTING PROTOCOL

The LOADng routing protocol is a reactive routing protocol developed for use in

MANETs and is currently a draft at the IETF Network Working Group [9]. It was derived

from the Ad hoc On-Demand Distance Vector (AODV) routing protocol, which was

originally published in 2003 in Request for Comments (RFC) 3561 by the IETF.

6LoWPAN Ad Hoc On-demand Distance Vector Routing (LOAD) was the first

derivative of AODV developed by the 6LoWPAN working group, but development was

suspended while the group worked out adapting IPv6 for IEEE 802.15.4 [12]. LOAD was

 10

designed as a layer-2 mesh under protocol and was designated as the routing protocol for

utility metering networks by the International Telecommunication Union (ITU) in

recommendation ITU-T G.9903. Despite the suspension, development of AODV

derivatives continued, and LOADng was created as an improvement to LOAD that also

offered the ability to work as a layer-3 route over protocol [12]. The ITU superseded

LOAD with LOADng in the recommendation ITU-T G.9903 in May 2013.

1. Overview of LOADng

As the name implies, LOADng is a lightweight protocol designed for use in

devices that are resource constrained. It eliminates some of the functions of AODV while

maintaining the core ability to provide end-to-end routing efficiently. In AODV, each

node maintains a precursor list, which has the IP addresses of all other nodes that it thinks

will use it as a next hop to all destinations. LOADng does not have precursor lists and

only cares about its next hop to a destination, reducing the memory requirement in the

sensor nodes.

AODV allows an intermediate node to respond to a route request (RREQ) if it has

a route to the destination. LOADng only allows the destination to respond to RREQs,

which serves to lower the amount of network traffic and simplifies the protocol. This

tends to further highlight the sink node since all route replies (RREPs) come from the

sink node, assuming the traffic from the sensors is all destined for the sink node.

LOADng allows for protocol extensions through the use of Type-Length-Value

(TLV) elements, making it possible to provide additional functionality to the protocol

easily. The ability to modify LOADng is a key characteristic and one of the main reasons

it was chosen for the application discussed in this thesis.

2. Operation of the LOADng Protocol

As a reactive routing protocol, LOADng accomplishes route discovery through

the use of RREQ, RREP, and RREP acknowledge (RREP_ACK) packets. In the

following sections, we detail the operation of the route-discovery process.

 11

a. Route Requests

When a node has data it needs to send to another node, the source node first

determines whether it has a route-tuple to the destination node in its routing set. Each

tuple contains the next-hop node address and the routing metric used to obtain the route

towards the destination [9]. If there is a route, the source node simply unicasts a data

packet to the destination node. If there is no route in the routing set, the source node

generates a RREQ packet and floods the RREQ packet to its neighbors. The RREQ

packet is flooded through the entire network until all nodes have received the packet or

the packet hop limit is exceeded. When each node receives the RREQ, the node updates

its routing set by updating an existing route-tuple or adding a new tuple with a route to

the source address in the RREQ. This generates the reverse route, as each node receiving

the RREQ generates a route-tuple to the source node. The node then checks the

destination address to determine if it is the destination. If it is not the destination, the

node continues flooding the RREQ in accordance with the flooding scheme implemented.

LOADng supports optimized flooding, which reduces overhead when compared to

classical flooding.

b. Route Replies

If the node is the destination, it generates a RREP message and unicasts it back to

the source via the reverse route. As each node receives the RREP, it similarly updates or

creates a tuple in its routing set with a route to the RREP originator. This creates the

forward route toward the RREP source node. The node then determines if it is the

destination for the RREP. If it is not the destination, the node forwards the RREP packet

based on the reverse route generated in the RREQ flooding that was executed previously.

An example of the RREQ and RREP process for the LOADng protocol with the route

numbers showing the hop count from the source is shown in Figure 3.

12

RREQ Flooding and RREP Unicast for LOADng Routing Protocol Figure 3.

c. Route Reply Acknowledgement

If it is the destination of the RREP, the node generates a RREP_ACK packet and

unicasts it to the source of the RREP via the forward route. If the node has data to send, it

then sends the data to the destination node via the same forward route.

d. Route Errors

If any node in the route determines that the route is broken at any time, it

generates a Route Error (RERR) message and unicasts it back to the source node of the

packet it was attempting to forward. Upon receipt of the RERR, the source node sends a

new RREQ to establish a new forward route to the destination.

3. LOADng Performance Comparisons

LOADng was chosen for this research due to its low resource overhead for sensor

nodes and its good performance compared to other WSN routing protocols. When

compared to the Routing Protocol for Low-power and Lossy Networks (RPL), a

proactive routing-distance vector protocol for MANETS, it was found that LOADng

 13

showed significantly lower network overhead while maintaining a better PDR and

average path length [12]. It did show a longer end-to-end delay due to the route discovery

process required before it is able to send data. When compared to AODV, LOADng

showed better PDR and significantly less routing overhead in multi-point to point

scenarios, which is what we are interested in for this thesis research. It did show higher

average end-to-end delay as node density increased, which is likely due to intermediate

nodes not sending RREPs in LOADng [7].

E. APPROACHES TO PRIVACY IN WIRELESS SENSOR NETWORKS

There are many approaches to achieving sink node anonymity, each of which

makes certain assumptions about the capabilities of the sensor nodes. Sink node

anonymity is often a tradeoff between the level of anonymity and latency, power

consumption, node complexity, and PDR. Our design does not assume that the nodes

have prior knowledge of the network layout or the ability to determine their physical

location. The only assumption is that the nodes know the address of the sink node and

have been configured with the same symmetric key prior to deployment. Knowing this, it

is useful to examine some other methods for achieving sink node anonymity

1. False Packet Injection

One of the simplest anonymity schemes involves injecting false packets into the

network to deceive an adversary by making it difficult to recognize traffic patterns. Since

there is generally more traffic from nodes closer to the sink node, the sink node’s location

can quickly be determined by a global observer. This method seeks to make this more

difficult by increasing the traffic in areas that normally have lower traffic. This method can

range from a packet being sent to every node in the network to more advanced methods

that create false packets only in the areas that normally have lower traffic volume.

Deng et al. [13] proposed a method called fractal propagation to create false

packets in a WSN. When a node hears that one of its neighbors is sending a packet to the

sink node, that node generates a fake packet with a probability pc. This packet is sent to a

random neighbor node, which in turn forwards to another random neighbor node,

continuing until k nodes have forwarded the packet. Additionally, another neighbor of the

 14

original fake packet generating node creates a fake packet with a probability pc and hop

limit k – 1. This creates traffic away from the sink node and obscures the location of the

sink node. This method creates a lot of unneeded traffic and may still not provide

anonymity to the sink node because of the uncontrolled routing of the fake packets. The

authors add more routing control to the scheme to create pockets of increased traffic, but

this increases the complexity of the routing algorithm.

2. Deceptive Sink Nodes

One approach to hiding the location of the sink node is to route traffic to nodes

that act as decoy sink nodes. This hides the sink node from a global adversary because

the traffic never actually traverses the sink node. Base-station Location Anonymity and

Security Technique (BLAST) [14] utilizes a ring of nodes around the sink node that act

as endpoints for the traffic to the sink node. When a node sends traffic, it chooses one of

the blast nodes to act as the endpoint, which then transmits the packet with a range that

covers all of the other blast nodes and the sink node. This creates a ring of protective

nodes around the sink node, masking the identity of the sink node. Each time a node

transmits, it chooses a different blast node as the destination. This provides anonymity for

the sink node from a global attacker but adds computational burden to the nodes and does

not account for how the routes are learned. In addition, it assumes that all nodes know the

address of all of the blast nodes and assumes routes have already been established. By not

addressing the route discovery process, we see that this method leaves a potential

vulnerability that can highlight the sink node.

3. Location-Aided Routing

Location-aided routing anonymity schemes require that the nodes know their

physical location and that of the other nodes. This requires additional hardware, such as

GPS or a dedicated location server, so each node knows its physical location. The

Anonymous Location-Based Efficient Routing Protocol (ALERT) [15] protocol utilizes

location-aided routing to provide anonymity to a destination node. When a node wants to

transmit to a destination, the node partitions the physical space and chooses a random

forwarder node in the neighboring partition and forwards the packet to it. This random

 15

forwarder executes the same partitioning and forwarding. This continues until the

partition with a random forwarder and the destination node contains a number of nodes n

where n k . At this point, the random forwarder broadcasts the packet, so all of the

nodes, including the destination, can see the packet. This provides anonymity to the

destination node because a global observer cannot distinguish the destination node from

the other nodes in the partition. This scheme also has the advantage of being able to

obscure the identity of any chosen destination; however, ALERT requires the use of a

dedicated location server to tell the nodes where the other nodes are. This can be very

impractical in an ad hoc network, especially one that is deployed in a combat zone. There

is also additional cryptographic and message overhead for the dissemination of

information on the nodes’ location.

4. Cluster Head Routing

The authors of [16] and [17] segment their networks into clusters and utilize

cluster heads (CHs) to act as the gateway for traffic leaving each cluster. CH routing is a

common technique used in WSNs and can have the advantage of saving energy in a flat

topology [16]. If all nodes have the capability, CHs can be rotated to conserve power and

extend the life of the network. The traffic is routed to adjacent clusters through the CHs

until it reaches the sink node’s CH. The sink node’s CH then broadcasts the traffic to

allow the sink node to receive the data. This approach provides anonymity for the sink

node among the members of its cluster but assumes that the nodes have the ability to elect

their CHs and the CHs have the ability to build routes through adjacent CHs. This

requires additional computational capabilities for all nodes that may become CHs, which

increases cost and energy consumption.

F. CHAPTER SUMMARY

In this chapter, we discussed common WSN protocols, specifically IEEE 802.15.4

and 6LoWPAN. We also introduced the LOADng routing protocol that is used in this

thesis research to achieve sink node anonymity. The discussion of these protocols builds a

foundation of knowledge for the remainder of this thesis. Other related methods for sink

node anonymity were presented, detailing their strengths and drawbacks relating to WSNs.

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

III. ACHIEVING SINK-NODE ANONYMITY IN REACTIVE

ROUTING PROTOCOLS

Reactive routing protocols present a unique challenge to the problem of masking

the identity of the sink node. As discussed previously, the act of route discovery through

the flooding of RREQ packets and the RREP response quickly highlights the sink node;

however, reactive protocols offer distinct advantages in their lower computational

overhead and power consumption when compared to proactive protocols [10], [11]. In

order to obfuscate the identity of the sink node, the traffic to the sink node must be

indistinguishable from a set of other nodes in the network. In the following sections, we

discuss the scheme used to anonymize the sink node as well as the modification to the

LOADng routing protocol to achieve that anonymity.

A. K-ANONYMITY

K-anonymity was first proposed in 2002 [18]. The original premise of the theory

related to protecting the identity of patients in a database by ensuring that accessible data

does not link a specific record to an individual person. If multiple pieces of identifying

information are put together in a patient record, and any of those pieces of information

are unique, then a patient can be identified and linked to the medical condition associated

with that record. By taking steps to ensure none of the personal information uniquely

identifies an individual within the set of patients, a level of anonymity is provided to the

patients.

The authors of [18] demonstrate the k-anonymity principle using a table

1(,...,)nRT A A with RTQI as the quasi-identifying information associated with the table.

If there are at least k occurrences of each sequence of values that appear in []RTRT QI ,

the table is k-anonymous, where k is the smallest number of identical sequences. The

example table containing patient quasi-identifying information is shown in Table 1. In

this example, { , , , }QI Race Birth Gender ZIP since the data in the problem column of

Table 1 are not quasi-identifiers.

 18

Table 1. Example of k-Anonymity, where k = 2 and QI = {Race, Birth, Gender,

ZIP}. Source: [18].

 Race Birth Gender ZIP Problem

t1 Black 1965 m 0214* short breath

t2 Black 1965 m 0214* chest pain

t3 Black 1965 f 0213* hypertension

t4 Black 1965 f 0213* hypertension

t5 Black 1964 f 0213* obesity

t6 Black 1964 f 0213* chest pain

t7 White 1964 m 0213* chest pain

t8 White 1964 m 0213* obesity

t9 White 1964 m 0213* short breath

t10 White 1967 m 0213* chest pain

t11 White 1967 m 0213* chest pain

Sets (t1, t2) and (t10, t11) each contain identical quasi-identifying information

among the records in their set. The data in Table 1 has a k value of two because there are

at least two occurrences of each sequence of quasi-identifiers in the table. It is not

possible to identify the person associated to a problem with certainty because of the

anonymity provided by the information in the table. As long as k remains greater than

one, this is true. If record t11 were removed, record t10 would be unique since the birth

date of 1967 is different from records t7, t8, and t9 despite the rest of the information

being identical. In this case, k = 1, and there is not anonymity for record t10.

B. APPLICATION OF K-ANONYMITY IN WSNS

For k-anonymity in a WSN, we are making the assumption that the attacker

knows limited information about the network traffic because the communications are

encrypted at the MAC layer; however, the attacker could begin to build a basic

understanding of the types of traffic in the network from passively observing the traffic.

Passive observation enables one to determine the types of traffic based on the length of

the transmission time, number of bits in a packet, and the order of transmissions between

nodes.

 19

1. Identification of the Sink Node through Passive Observation

The transmission times for LOADng packets encapsulated in IEEE 802.15.4

frames using the maximum transmission speed of 250 kbps is shown in Table 2. We

assume that the frames are not padded and the network is encrypting the traffic at Layer 2

using AES-128, so there is no change to the frame size. A full frame for IEEE 802.15.4 is

limited to 127 bytes [4]. The frame header is 25 bytes and the encryption overhead is 21

bytes, leaving 81 bytes for the frame payload [4].

Table 2. Size of LOADng Packets in Bytes and Transmission Time Based on

250-kbps Data Rate

Packet Type Packet Size (bytes) Frame Size (bytes) Transmission Time (ms)

RREQ 30 76 2.432

RREP 34 80 2.56

RREP_ACK 18 64 2.048

Data 81 127 4.064

RERR 30 76 2.432

Transmission rates may vary within a wireless network due to link quality and

congestion, which can make determining frame types by time difficult but not impossible.

Unless there is padding of the packets, the attacker may be able to see the number of bits

in each transmission even if the traffic is encrypted. This makes the bit-rate irrelevant and

makes the system more vulnerable.

In a WSN, it is assumed that the majority of the traffic is destined for the sink

node; therefore, a majority of the RREQs that are sent have the sink node as the

destination. Once the RREQs are received, the sink node does not forward RREQs any

further. If this is the case, the majority of the RREP packets originate from the sink node,

and the majority of the RREP_ACK and data packets are destined for the sink node. By

observing the traffic and determining the ratio of the RREPs sent to the RREQs

forwarded, the attacker can determine where the majority of packets are destined and

conclude that this is the sink node. Additionally, once the network has converged and the

 20

majority of traffic is data to the sink node, it is easy for an attacker to determine the sink

node.

2. Obscuring the Sink Node through k-Anonymity

The k-anonymity principle in a WSN seeks to prevent sink node identification by

having at least one node act similarly to the sink node. By altering the traffic patterns, we

find it is possible to change the behavior of the sink node and its neighbor nodes so that

they are similar enough to be indistinguishable to an attacker. This is equivalent to patient

records having the same identifiable information among multiple patient records [18]. As

k increases, that identification becomes more difficult.

Let N be the set of all nodes and SNN be the set of nodes that include the sink

node and its one-hop neighbors where SNN N . If the sink node is indistinguishable

from the other nodes in SNN , then SNk N . We determine the distinguishability of the

sink node by looking at two parameters: the total number of transmissions and the ratio of

RREP to RREQ packets sent for each node in SNN . With these numbers, we can measure

the standard deviation among the nodes to determine how easy it is to identify the sink

node among its neighbors. Using
iSNT as the number of transmissions or the ratio of

RREP to RREQ packets for node
iSNN and SN as the mean, we can calculate the

standard deviation as

2

1

1

1

SNN

SN SNSNiiSN

T
N

 





 (1)

where

1

1 SNN

SN SN
i

iSN

T
N




  . (2)

If the number of sink node transmissions and the ratio of RREP to RREQ packets

are both within one standard deviation of the mean SN , then the sink node cannot be

distinguished from its neighbor nodes and is considered k-anonymous where SNk N .

With ST as the number of transmissions or the ratio of RREP to RREQ packets for the

sink node, the sink is k-anonymous if it satisfies the inequality

 21

 S SN SNT    . (3)

The advantage of this system is that even if the sink node’s behavior falls outside

of one standard deviation of the mean, it may still be anonymous within a smaller subset

of nodes. For example, assume that a sink node has seven neighbors (8SNN ) and its

number of transmissions is greater than
SN by more than one standard deviation. It is

possible that there is one node in the set that has a very low transmission number that is

causing the mean of the set of nodes to go down. Removing this node from the set raises

the mean and may bring the sink node within one standard deviation of this new set,

yielding 7k  .

C. MODIFIED LOADNG FOR SINK-NODE ANONYMITY

Our method obscures the identity of the sink node by employing the k-anonymity

metric previously described. The sink node’s identity is hidden to an adversary by using

additional nodes that act as the sink node, making it difficult for anyone observing from

the outside to determine which node is actually the sink node. This is a common

technique employed using different methods in numerous anonymity schemes in wireless

sensor networks. To the best of our knowledge, this approach to sink-node anonymity has

not been accomplished utilizing a reactive, or on-demand, routing protocol. Due to the

nature of reactive routing protocols, maintaining anonymity of the sink node can be

difficult to accomplish.

1. Protocol Overview

As noted previously, the sink node is particularly vulnerable to identification,

even if the traffic is encrypted because a majority of the traffic in the network is destined

for this node. By observing the frequency of the transmissions from the node, an

adversary can quickly determine the importance of the node and determine with a high

level of certainty that this is, at the very least, a high priority node.

Our scheme works by developing a zone of regular nodes around the sink node.

The nodes within this zone act as false endpoints for the traffic. The nodes that are one-

hop neighbors to the sink node are chosen to be part of the zone. This is because the one-

 22

hop neighbors are within transmission range of the sink node, thereby allowing the sink

node to have knowledge about the various routes each of its one-hop neighbors has in its

routing set. In other words, the sink node knows all of the other nodes to which its one-

hop neighbors have routes. This information is necessary in order for the modified

LOADng protocol to operate efficiently. The sink node does not know the routes that

non-neighbor nodes have, so they are not used as part of the zone.

2. Choosing a Neighbor Node

Since all nodes in the network build their knowledge of the network through the

use of RREQ packets, it is critical for efficient routing that some RREQ packets from the

source node(s) reach the sink node. The sink node must have an understanding of which

of its neighbor nodes have active routes to the node requesting a route (source node). In

order to ensure this, the sink node must not respond to the first RREQ it receives from

each node in the network. The sink node sees which of its neighbors have forwarded the

RREQ and knows that this neighbor node has a route to the source node. When the

timeout for the RREQ expires, the source node floods another RREQ packet through the

network.

When the sink node receives the second RREQ from this source node, it looks in

its routing set and finds all nodes, including itself, which have a route to the source. Of

these, it excludes those nodes that the sink node knows have already forwarded the new

RREQ. This is critical because if a node is seen forwarding a RREQ and then sending a

RREP, an adversary might assume that this node is not the sink node. From the nodes that

are left, including itself, the sink node chooses one node to act as the sink node.

3. Forwarding the Altered RREQ and Sending the RREP

If the sink node does not choose itself, it alters the RREQ packet by changing the

destination address to the chosen neighbor node and setting the sink flag in the packet.

This flag tells the chosen neighbor node that it is acting as the sink node and relays to the

source node that any future packets destined for the sink node need to go to this address.

The sink node then continues flooding the altered RREQ, acting as a normal node. When

the chosen neighbor node receives the RREQ, it creates a RREP packet with the sink flag

 23

set and unicasts it back to the source node. If the sink node chooses itself, it creates a

RREP packet with the sink flag set and unicasts it back to the source node. An example of

the RREQ and RREP packets is shown in Figure 4 with link numbers indicating the hop

count from the source node.

 Example of RREQ Flooding and RREP Unicast for the Modified Figure 4.

LOADng Routing Protocol

The addition of the sink flag to the RREP, RREP_ACK, and data packets is

accomplished through a protocol extension enabled by TLV elements. The extension

adds an additional TLV element of type FLAGS as defined in [9] to the RREP_ACK and

data headers since the RREP already contains the TLV. Bits 1–7 are reserved for future

use in this TLV, allowing us to use bit 1 for the sink flag. RREQ packets do not require

the addition of the sink flag since it is not used in the route discovery process. A RREP

header with the FLAGS TLV highlighted is shown in Figure 5. The Values field contains

the eight bits used in this TLV.

 24

 RREP Packet Header with FLAGS TLV Highlighted. Source: [9]. Figure 5.

4. RREP_ACK and Data Packets

Upon receiving the RREP, the source node first sends a RREP_ACK to the source

address in the RREP. It then sends its data packet(s) to the same address. Upon receipt of

a data packet, the destination node, whether the actual sink node or a chosen neighbor,

sends a broadcast of the data packet with the sink flag set. All neighbor nodes see the

broadcast, but only the actual sink node accepts the packet since the sink flag is set. It is

important that the actual sink node also broadcast if it is the destination to ensure that it is

behaving the same as the fake sink nodes.

D. DESIGN CONSIDERATIONS

Since the traffic is assumed to be encrypted at Layer 2, the adversary is not able to

see any of the Layer 3 header information. This is important because if the Layer 3

header was visible, the address of the sink node can easily be determined using a simple

packet sniffer, and finding the address of the node to which the majority of the traffic is

destined would be trivial. A potential issue is when the sink node changes the RREQ

destination address, the adversary can see a change in the encrypted packet and determine

that this node is the sink node. If there is no change to the underlying frame information

as it is routed through the network, there is no change to the cipher text visible to the

 25

observer. When the sink node alters the RREQ by changing the destination address and

sink flag, it causes a change in the cipher text. This signifies a change in the underlying

frame information and alerts the observer that this is the sink node. The RREQ header

contains a hop count field, which is incremented as each node forwards the packet. In

other words, the hop count field also changes as the frame moves through the network.

Under the principle of cryptographic diffusion, this one-bit change creates a large change

in the encrypted packet as it moves through the network; therefore, changing the

destination node and the sink flag are not distinguishable to the adversary.

This protocol puts the majority of the requirements on the sink node, which

generally has more resources than the sensor nodes [3]. The only change to the routing

protocol for the sensor nodes is the addition of the sink flag. The nodes must be aware of

the sink flag for the purpose of routing traffic to the sink node and to signal to the

destination node that it must broadcast.

Other than these modifications, there are no changes made to the LOADng

protocol. This was done to ensure as little computational overhead as possible for the

sensor nodes. The modified LOADng is designed to function on nodes with very basic

capabilities and assumes that the nodes only have the ability to wirelessly communicate

with neighbors in accordance with IEEE 802.15.4 and store route tuples as defined in the

LOADng protocol. The nodes do not need to have any pre-defined knowledge of their

physical location or network topology for this scheme to work as some other anonymity

schemes require.

E. CHAPTER SUMMARY

In Chapter III, we discussed the anonymity scheme used to hide the identity of the

sink node in a WSN. A background of the k-anonymity principle was outlined as well as

its use to quantify the anonymity of a node relative to a set of other nodes. As long as the

sink node’s number of transmissions and its RREP-to-RREQ forwarded ratio values fall

within one standard deviation of the mean of those values for a set SNN , which includes

the sink node and its neighbors, the sink node is said to the k-anonymous with SNk N .

The modified LOADng routing protocol achieves this by choosing a node from a subset

 26

of SNN to reply to a RREQ, which then continues to act as the endpoint for future

transmissions from that source node. The modified LOADng protocol was discussed. The

design considerations that were taken into account during the development of the

modified LOADng protocol to achieve k-anonymity were addressed.

 27

IV. EXPERIMENTAL DESIGN

All simulations were designed and run in a custom simulator built in MATLAB.

The simulator is designed to simulate any number of sensor nodes in either a uniform

spacing or a random distribution. This flexibility allows the testing of the effectiveness of

the modified LOADng protocol in the scenarios of deliberate or random placement of

nodes. In each simulation, five metrics were measured: sink-node anonymity, average

route length, latency, power use, and PDR.

A. EXPERIMENTAL PARAMETERS

The experimental parameters for the simulation are discussed in the following

sections. In particular, the transmission range of the nodes, the number of nodes, and the

spacing between them are discussed. We also describe how power consumption is

measured within the simulations.

1. Selecting Sensor Parameters

The type of sensor node and the transmission range requirements of the nodes is

not the focus of this thesis research and are not taken into account in the determination of

range. Many available COTS IEEE 802.15.4 transmitters that operate at 1-dBm transmit

power have a maximum unimpeded line-of-sight range up to 100.0 m. Accordingly, we

chose the transmission range of the nodes to be 50.0 m. We assume that the maximum

transmission range and any signal degradation due to range do not greatly impact the

outcomes of the experiments. We make this assumption because we are comparing the

performance between LOADng and our modified LOADng protocol on identically

distributed networks under identical circumstances; therefore, any change in data rate due

to transmission range is assumed be the same between the two networks and will not

change the outcome of the experiment.

2. Determining Node Quantities

The number of nodes for a uniform distribution was determined based on the size

of the field and the transmission range of the sensor motes. Using a transmission range of

 28

50.0 m, we modeled the transmission area as a circle with a radius of 50.0 m with the

sensor mote situated at the center. Using a right triangle with the hypotenuse as the

diameter of the circle (100.0 m), the length of the other two sides is 70.71 m each.

Spacing the sensor motes 35.35 m apart is the minimum requirement to provide

transmission coverage for the entire area and requires 205 sensor motes to cover a

500×500 m
2
 area if the sensors are deployed to the edges. The geometric representation

of the calculation of the uniform node spacing is shown in Figure 6.

 Uniform Spacing of Sensor Nodes Figure 6.

This calculation works for uniformly spaced sensors but often caused problems

when the sensor motes were placed using a random distribution. With the random

distribution, there were often pockets of nodes isolated from the sink node, meaning their

traffic always failed to reach the sink node. An example of a simulation in which there is

a pocket of isolated nodes in a random distribution is shown in Figure 7.

 29

 Isolated Pocket of Nodes in a Random Distribution within a Figure 7.

500×500 m
2
 Field Containing 205 Nodes

Through experimentation, we found that increasing the number of sensor nodes

by approximately 25% dramatically reduced the occurrences of isolation for a random

distribution; therefore, for the same field size of 500×500 m
2
, we chose to deploy 250

nodes for a random distribution. For the uniform spacing, 196 nodes were chosen because

it provides an even 14×14 sensor node field. This maintains the same node neighbors as

205 nodes because the small distance increase between sensors does not extend the

distances beyond the 50.0-m range. The size of the field was chosen to be 500×500 m
2
 to

ensure there was a large sample set of nodes outside the transmission range of the sink

node. This allows for numerous hops between nodes on the edge of the field and the sink

node. We assume that there is only one sink node in the network.

3. Measuring Power Consumption

When measuring power consumption, we assumed that nodes are in three general

states: idle, receiving, and transmitting. Receiving and transmitting encompass all

functions to go from the idle state, complete their task, and return to the idle state. In

Table 3, the power consumption values used to determine power usage during the

transmit and receive phases are shown.

 30

Table 3. Phases of Node Operations and Power Usage. Adapted from [19].

Transmit Receive Power Draw Duration Power Used

Wakeup &

Preprocessing

Wakeup &

Preprocessing

44 mW 1.5 ms 1.833×10
-5

 mWh

 Receive 66 mW 32 µs/Byte 5.867×10
-7

 mWh

CSMA/CA 72 mW 1 ms 2×10
-5

 mWh

RX-TX switch 54 mW 0.4 ms 6×10
-6

 mWh

Transmit 90 mW 32 µs/Byte 8×10
-7

 mWh

Post-processing Post-processing 24 mW 1.4 ms 9.33×10
-6

 mWh

The energy consumption for transmitting a full 127-byte IEEE 802.15.4 frame is

1.55×10
-4

 mWh, while the energy to receive the same frame is 1.02×10
-4

 mWh. The case

when the node enters the CSMA/CA state and finds that it cannot transmit must also be

taken into account. In this case, the node skips the RX-TX switch and transmit states and

goes straight to the post-processing state before going to idle.

In addition to the above power consumption, we need to account for the power

consumed during the cryptographic key setup, encryption, and decryption for AES-128.

This must be taken into account at each node since the encryption is executed at the MAC

layer. Every node needs to decrypt each packet it receives and encrypts each packet it

transmits. The power used by a node during the encryption and decryption phases is

shown in Table 4.

Table 4. Power Consumption for AES Encryption and Decryption.

Adapted from [20].

 Key size (bits) Duration Power Used

Encryption 128 1.53 ms 1.09×10
-5

 mWh

Decryption 128 3.52 ms 2.47×10
-5

 mWh

B. SIMULATOR DESIGN

All simulations were performed with a custom simulator designed in MATLAB.

The network for the modified LOADng protocol is simulated first followed by the

simulation for the standard LOADng protocol using identical node distributions, transmit

 31

order, and transmit times. The simulator works by placing nodes into different matrices

when they enter certain states and associates a timer with that node. For each iteration of

the simulator, all timers are decremented by 100 μs. When a timer reaches zero, the

simulator acts on that node based on the function it is currently performing. In the

following sections, we elaborate on the details of the simulator.

1. Building the Network

The user is initially prompted for the number of nodes, the size of the field, the

transmission range, the number of transmissions, and whether it is a uniform spacing or

random distribution. The simulator builds the physical distribution of the sensor field

based on these inputs and places the sink node at the center of the field. Examples from

the MATLAB simulator of the uniform and random distributions of sensor nodes are

shown in Figure 8. A matrix of neighbor nodes and physical distances, named neigh, is

created based on the transmission range and the physical locations of the nodes relative to

each other. This matrix is used to determine which nodes are within the transmission

range of other nodes in the network.

 Uniform Spacing (Left) with 196 Nodes and Random Distribution Figure 8.

(Right) with 250 Nodes

 32

2. Determining Transmission Order

Once the nodes are placed and the neighbors are calculated, the simulator

determines the transmission order and the number of times the nodes attempt to transmit.

The simulator builds a 2×N matrix called trans_order, where N is the number of

transmissions and randomly assigns node addresses to each cell in the first row. The node

in the first cell is given a transmit time of zero, and each following node is given a

transmit time randomly calculated between zero and 10.0 s following the previous node.

These values are stored in the second row. This creates the transmission queue for both

the modified LOADng and LOADng simulations. When the timer for a node reaches

zero, that node is put into a matrix named pending_txmit with all of the information that

is contained in the packet.

3. Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

A basic CSMA/CA algorithm was designed into the simulator and implemented

in the function CSMA_CA. When a node in pending_txmit has a back-off timer of zero, it

attempts to transmit. The node first listens to see if a neighbor node is transmitting. The

simulator determines this by comparing the nodes in the txmitting matrix (containing

nodes that are currently transmitting) with the neighbor nodes in neigh of the node

attempting to transmit. If there are no matching nodes, there are no neighbor nodes

transmitting, and the node is able to transmit. The node is put into the txmitting matrix

with a transmitting timer set based on the values in Table 2 and is now in a transmitting

state. If there is at least one neighbor node transmitting, the node goes into a back-off

equal to the longest remaining transmit time of the transmitting neighbor. When its back-

off timer reaches zero, it attempts to transmit again.

4. Collision Detection

The collision function determines if there is a collision due to the hidden node

problem. If two transmitting nodes that are not neighbors have a common neighbor, there

is a collision. The simulator determines if there are common neighbors by comparing all

of the nodes in txmitting and finding common neighbors in the neigh matrix. If two nodes

 33

have a common neighbor, both nodes are put back into pending_txmit and are given a

back-off time based on a Binary Exponential Back-off (BEB) mechanism.

The BEB value is determined based on the number of times the node has gone

into a back-off state. The back-off intervals are based on the transmission time for a full

127-byte frame, which is 4.1 ms. The node randomly chooses an integer value from zero

to the number of times it has gone into back-off and multiplies that by 4.1 ms. This is the

node’s back-off timer. After failing to finish a transmission five times, a node quits trying

to transmit and simply drops the packet. In this case, the simulator removes the node

from the txmitting matrix.

5. Packet Transmission

When the transmit timer for a node in the txmitting matrix reaches zero, the

tx_complete or tx_complete_mod functions are called for standard LOADng or modified

LOADng, respectively. These functions first determine the next hop for the packet based

on the destination and the transmitting node’s routing set. The function flood, flood_mod,

sink_flood, or unicast is then called based on the type of packet the node is transmitting.

If it is a unicast packet, the next hop is passed to the unicast function. The values used to

calculate the metrics for the simulation are initiated and updated in the tx_complete and

tx_complete_mod functions.

6. Flooding RREQ Packets

When a node needs to send a packet to the sink node, it first determines if it has a

route to the sink node in its routing set. If it does not have a route, it floods a RREQ

packet to its neighbor nodes. The flooding is accomplished using a classical flooding

routine. There are three functions that handle packet flooding in the simulator: flood,

flood_mod, and sink_flood.

a. Flood

The flood function handles flooding for the normal LOADng protocol. An

intermediate node that is not the destination node floods the RREQ to all of its neighbors

except the neighbor node from which the RREQ was received. This is accomplished by

 34

placing these neighbor nodes into the pending_txmit matrix with the same packet

information and a decremented hop limit. If a node receives a RREQ packet that it has

already forwarded, it ignores the packet. If a neighbor node is the destination for the

RREQ, it is placed into the pending_txmit matrix with a packet type of RREP and a

destination address equal to the source of the RREQ.

Jitter is introduced into the system by assigning a back-off time between zero and

three times the transmission time of a data packet. This is known as window jitter and is

shown by Cordero et al. [21] as a simple, effective way to reduce the number of collisions

during the flooding of RREQ packets during route discovery. The introduction of jitter in

the flood routines dramatically reduces the number of collisions due to hidden nodes,

which increases the success rate of the RREQ process.

After the neighbor nodes are placed into the pending_txmit matrix, the

update_route_table function is called. Each neighbor node updates its routing sets if the

route to the source and neighbor nodes have new routes or have a lower hop count than

an existing tuple. This creates the reverse route that the RREP takes back to the source.

b. Flood_mod

The flood_mod function performs the flooding functions for the modified

LOADng protocol. It works identically to the flood function discussed previously with a

few additions. This routine must take into account the sink flag when looking at the

destination because of the modified RREQ from the sink node. This is to distinguish the

modified RREQ from any normal RREQ packet that may be destined for a non-sink

node.

For the sink node, flood_mod is called the first time the sink node receives a

RREQ packet from a source node. This simulates the sink node ignoring the packet and

continuing to flood the packet as if it were not the destination. The flood_mod function is

not called to handle flooding of modified RREQ packets from the sink node.

 35

c. Sink_flood

The sink_flood function handles the flooding of RREQ packets that were

modified by the sink node during the route discovery process. It is called when the sink

node receives a second RREQ from a source node. The sink node first determines all of

its neighbors that have not forwarded the RREQ and adds itself to the set with a

probability of 0.5. It then randomly chooses a node from this set to act as the sink node. If

it chooses itself, the sink node is placed into the pending_txmit matrix for a RREP back to

the source. If it chooses another node from the set, it alters the RREQ packet with the

new node as the destination and sets the sink flag to 1. The sink node then floods the

altered RREQ packet to all of its neighbors that have not forwarded the original RREQ in

accordance to the rules of classical flooding. This process is critical to achieving k-

anonymity.

7. Sending Unicast Packets

When a node wants to transmit a RREP, RREP_ACK, or data packet, this traffic

is sent via a unicast transmission from the source node to the destination node. The

sending node sends this packet to one neighbor based on the next hop address in its

routing set for the destination node. This is handled by the unicast function. The unicast

function determines whether the receiving node is the destination. If it is not, the

receiving node is added to pending_txmit and continues to unicast toward the destination.

If it is the destination, the node reacts based on the type of packet received. If it is a

RREP packet, the node is first put into pending_txmit for a RREP_ACK packet with a

back-off time of zero. It is then put into pending_txmit for a data packet with a back-off

equal to the transmit time for a RREP_ACK to ensure that it sends this packet second. If

the packet received is a RREP_ACK or a data packet, the receiving node does nothing.

8. Broadcasting

During the simulation of the modified LOADng routing protocol, a data packet is

broadcast when the destination node receives the packet with the sink flag set. In the

unicast function, if the packet is a data packet with the sink flag set and the next hop node

is the destination, the next hop is put into pending_txmit with the destination address set

 36

to the broadcast address. The node is put into the txmitting matrix through the CSMA_CA

function. When the transmission timer reaches zero, the tx_complete_mod function calls

the broadcast function, which signals that the data packet was received by the sink node.

9. Measuring Metrics

Five metrics are measured in the simulation: sink-node anonymity, average route

length, latency, power use, and PDR.

a. Sink-node Anonymity

The simulator records the total number of transmissions completed by each node

as well as the number of RREP packets originated and RREP packets forwarded by each

node. It separates these between nodes that are neighbors to the sink node and those that

are not. From these numbers, the mean and standard deviation are calculated for the node

set including the sink node and its neighbors and then separately for the set of all other

nodes. This is performed for the standard and modified LOADng protocols separately.

b. Route Length

The average route length is calculated at the end of the simulation by finding the

average of the non-zero route metrics within the total routing set. This is the average

route length for all routes that were determined during the simulation.

c. Latency

Latency is measured from the time a unicast packet is sent to the time it is

received at its destination. The simulator tracks the total latency for each node in the

network and divides this by the total number of unicast packets originated by that node.

The average is then taken across all nodes in the network to obtain the average latency for

all nodes.

d. Power Use

During the simulation, the simulator maintains a running count of the number of

times each node attempts to transmit, completes a transmission, and the total time each

 37

node is transmitting. These values are used with the values in Table 3 and in accordance

with the description in Section A.3 to determine the total power used by each node in the

network.

e. PDR

Packet Delivery Ratio (PDR) is determined based on the number of unicast

packets originated and the number of unicast packets received. The simulator maintains a

total count of the number of unicast transmissions originated by nodes in the network as

well as the total number of unicast packets received by nodes in the network. Dividing

the total number received by the total number originated gives the PDR.

C. CHAPTER SUMMARY

In this chapter, we provided an overview of the simulation environment and the

design of the simulator in MATLAB. The simulator runs the scenario for the modified

LOADng protocol followed by the standard LOADng protocol for identical node

placements, transmit order, and transmit times. Classical flooding was used to transmit

RREQ packets through the network. CSMA/CA and collision detection were

implemented to simulate a realistic network environment. Information on network traffic

was gathered to calculate five metrics: sink-node anonymity, average route length,

latency, power use, and PDR.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

V. SIMULATION RESULTS AND ANALYSIS

The simulations were run for a uniform spacing of 196 nodes and a random

distribution of 250 nodes. Under each scenario, simulations were run using 500, 1000,

and 2000 transmissions from nodes to the sink node. The transmission order of the nodes

and the time spacing were randomly generated, as previously noted.

A. SINK-NODE ANONYMITY

Achieving sink-node anonymity utilizing a reactive routing protocol is the

primary goal of this research. We define the sink node as anonymous if the number of

transmissions sent and the ratio of RREPs sent to RREQs forwarded for the sink node are

within one standard deviation of the mean of the same metrics for its neighbors. In this

section, we present the results of the anonymity test for the modified LOADng protocol

and compare the results to the standard LOADng protocol. The results presented for each

number of transmissions in both sections represent the results from the same simulations.

1. Number of Transmissions

The number of individual transmissions completed for each node was tracked

separately during the modified LOADng and LOADng simulations. A completed

transmission means a single node completes the transmission of one packet to a neighbor

node. Transmissions that were incomplete due to a collision are not counted in the

numbers. The transmission number values for 500, 1000, and 2000 transmissions are

shown in Tables 5, 6, and 7, respectively. These tables contain the mean and standard

deviation of the number of transmissions for the sink node’s neighbor nodes and the

nodes that are not neighbors to the sink node. The numbers for both our modified

LOADng and the standard LOADng protocols are included for comparison.

 40

Table 5. Number of Node Transmissions for 500 Total Transmissions

 Uniform Spacing Random Distribution

 Neighbors Neighbors

 Sink Node Sink Non-sink Sink Node Sink Non-sink

Modified
LOADng

Mean 976 969 628.66 1079 1130.67 856.06

Std-dev 39.29 41.79 121.1409 111.46

LOADng

Mean 592 315.43 115.89 682 357.33 192.25

Std-dev 146.35 37.83 189.38 53.69

Table 6. Number of Node Transmissions for 1000 Total Transmissions

 Uniform Spacing Random Distribution

 Neighbors Neighbors

 Sink Node Sink Non-sink Sink Node Sink Non-sink

Modified
LOADng

Mean 1267 1261 678.18 1519 1694.60 1261.65

Std-dev 74.03 69.56 160.24 83.43

LOADng

Mean 1084 515 130.81 1230 518.30 234.88

Std-dev 292.78 76.19 371.71 70.72

Table 7. Number of Node Transmissions for 2000 Total Transmissions

 Uniform Spacing Random Distribution

 Neighbors Neighbors

 Sink Node Sink Non-sink Sink Node Sink Non-sink

Modified
LOADng

Mean 2100 1924 839.15 1861 2016.50 977.88

Std-dev 297.52 127.46 298.4598 661.39

LOADng

Mean 2186 938.00 185.45 2225 1103.11 279.40

Std-dev 584.55 136.47 179.33 162.12

For the modified LOADng protocol, the sink node was within one standard

deviation of the mean number of transmissions for its neighbor nodes for all cases tested.

The uniform node spacing consistently achieved anonymity for the number of

transmissions based on our criteria. The random node distribution met the criteria in most

cases but failed under certain circumstances. These circumstances are explained later in

 41

this chapter. The number of sink-node transmissions in the standard LOADng protocol

was never within one standard deviation of the mean number of transmissions for its

neighbor nodes.

There was a significant increase in traffic among all nodes in the modified

LOADng simulation compared to the standard LOADng protocol. This is partially due to

the extra RREQ packets sent during the initial route discovery process to give the sink

node awareness of its neighbor’s routes to the source. It was also found during simulation

that fewer RREQs were sent during the standard LOADng simulation than initially

expected. This is due to the forward route generation during the RREP process, which

generates routes to the sink node for the intermediate nodes. When these intermediate

nodes send data to the sink node for the first time, they already have a route and do not

need to send a RREQ. In the modified LOADng protocol, these routes to the sink node

are built only when the sink node has chosen itself, which is a much smaller number of

times. The comparison of the total transmissions between our modified LOADng

protocol and the standard LOADng protocol is shown in Figure 9.

 Modified LOADng and Standard LOADng Total Transmissions Figure 9.

Average per Node

0

500

1000

1500

2000

2500

Modified LOADng
Sink Neighbors

LOADng Sink
Neighbors

Modified LOADng
Non-Sink Neighbors

LOADng Non-Sink
Neighbors

Tr
an

sm
is

si
o

n
s

500 Transmissions 1000 Transmissions 2000 Transmissions

 42

2. RREP to RREQ Ratio

Sink-node anonymity was achieved for the ratio of RREPs sent to RREQs

forwarded as well. The results shown in Table 8 are from the same simulations as those

in Tables 5, 6, and 7 for the respective number of transmissions. This demonstrates that

the modified LOADng protocol meets our criteria for sink-node anonymity for both the

number of transmissions and the ratio of RREPs sent to RREQs forwarded

simultaneously. The standard LOADng protocol is not shown because only the sink node

sent RREPs in that scenario, meaning the ratio for all other nodes is zero.

Table 8. RREPs Sent to RREQs Forwarded Ratio

 Uniform Spacing Random Distribution

Transmissions Sink node Avg Std-dev Sink node Avg Std-dev

500 0.0647482 0.070986 0.010574 0.072289 0.059148 0.013748

1000 0.0831974 0.072779 0.013318 0.044426 0.05115 0.011477

2000 0.0861582 0.072693 0.016489 0.087585 0.076675 0.013895

B. NON-ANONYMITY PERFORMANCE METRICS

The results presented in this section represent the metrics not directly related to

sink-node anonymity. All measurements were performed during the same simulations as

presented in the previous section.

1. Power Usage

The higher network traffic directly correlates to higher power usage, as shown in

Table 9. The mean ratio of power usage between the two protocols is 4.48:1,

demonstrating a dramatic increase in power usage. The main cause of the increase in

power is the additional flooding of RREQ packets for route discovery. There is also a

significant increase in collisions as depicted in Figure 10 for a simulation with 2000

transmissions. These collisions cause nodes to retransmit their packets, resulting in an

increase in power usage.

 43

To determine the effect of collisions on total power use, additional simulations

were performed with collisions disabled. The result was a mean ratio of power usage of

3.36:1, down from 4.48:1. This shows that there is significant impact caused by the

increase in collisions. Nevertheless, even this lower ratio represents a large increase in

power usage over the standard LOADng protocol. From the Ratio row in Table 9, we see

that the ratio for power usage decreases as the simulations get longer (i.e., more

transmissions). In longer simulations, the RREQs are a lower proportion of the total

transmissions, resulting in fewer collisions proportional to time. As the simulation

progresses, there are fewer RREQs and, correspondingly, fewer collisions, thereby

decreasing average power usage. Both the modified LOADng and standard LOADng had

zero collisions during times without RREQs.

Table 9. Average Power Use per Node (mWh)

 Uniform Spacing Random Distribution

Transmissions 500 1000 2000 500 1000 2000

Mod. LOADng 0.5238041 0.602645 0.691146 0.523804 1.198195 1.038033

LOADng 0.1004773 0.140199 0.186704 0.100477 0.225695 0.267513

Ratio 5.21316 4.2985 3.70184 5.21316 5.308916 3.880316

 Transmission Collisions over Time for 2000 Transmission Figure 10.

Simulation

0

5000

10000

15000

20000

25000

C
o

lli
si

o
n

s

Simulation Time

Modified LOADng LOADng

 44

2. Latency

The average latency of unicast packets between the source node and the sink node

increased in the modified LOADng protocol by 5.0 ms, as is shown in Table 10. This is

mainly due to the broadcast of packets, which add an extra 4.1 ms to the total latency.

The number of hops to the chosen neighbor node also averages out to be slightly longer

than to the sink node itself. This is the likely cause for the additional 1.0 ms in latency.

The average path length of all established routes is 0.83 hops fewer for the

modified LOADng protocol, as shown in Table 11. This is due to the increased number

of RREQ packets allowing the nodes more opportunity to form shorter routes.

Table 10. Latency of Unicast Packets between Source Node

and Sink Node (sec)

 Uniform Spacing Random Distribution

Transmissions 500 1000 2000 500 1000 2000

Mod. LOADng 0.028694 0.024974 0.023346 0.028694 0.025767 0.022405

LOADng 0.0229192 0.020159 0.018787 0.022919 0.019655 0.018596

Delta 0.0057748 0.004815 0.004559 0.005775 0.006112 0.003809

Table 11. Average Path Length Measure in Hops between All Nodes

 Uniform Spacing Random Distribution

Transmissions 500 1000 2000 500 1000 2000

Mod. LOADng 10.344919 10.48034 10.36545 10.32775 9.137914 9.414233

LOADng 10.804386 11.41985 11.04272 11.73658 9.779416 10.30082

3. PDR

The PDR for modified LOADng is moderately lower than standard LOADng,

resulting in an average of ­0.0225 and ­0.0362 compared to standard LOADng in the

uniform spacing and random distributions, respectively. These results are shown in Table

12. This is caused by the increase in collisions as our tests without collisions showed a

 45

PDR of 1.0 for both, as expected. In addition, the increased node density of the random

distribution caused more collisions and a corresponding lower PDR for both protocols.

Table 12. Packet Delivery Ratio

Uniform Distribution Random Distribution

Transmissions 500 1000 2000 500 1000 2000

Mod. LOADng 0.94291 0.96189 0.967798 0.928807 0.880139 0.957223

LOADng 0.962 0.984715 0.993474 0.969099 0.935319 0.970252

Delta -0.01908 -0.02283 -0.02568 -0.04029 -0.05518 -0.01303

C. FAILURE CASES

There were cases in the random distribution in which the modified LOADng

protocol failed to achieve sink-node anonymity. An example of the node placement in a

normal failure scenario is shown in Figure 11. When a RREQ comes through the lone

bottom node (shown as the bottom red arrow in Figure 11) to the sink node (shown as a

star in Figure 11), that lone node is excluded from the candidate node set. This makes the

three nodes above the sink node (three red arrows above sink node in Figure 11) and the

sink node the only candidate nodes. Also, in this scenario, there are no routes between the

three neighbor nodes (above the sink node) to nodes below the sink node that are shorter

than the route that goes through the sink node. This forces all traffic to and from nodes

below the sink node to go through the sink node, causing the total transmissions at the

sink node to be higher than its neighbor nodes.

 46

 Random Distribution that Fails to Achieve Sink Node Anonymity Figure 11.

with Arrows Highlighting Sink Neighbor Nodes

D. CHAPTER SUMMARY

We achieved sink-node anonymity based on the total transmissions and the

RREPs sent to RREQs forwarded ratio using a modified LOADng protocol in both

uniform spacing and random node distribution. There are sacrifices to power usage,

latency, and PDR to achieve anonymity using this approach. The increase in total power

consumption is the most dramatic drawback to this approach to anonymity, with an

average power ratio of 4.48:1 between the two protocols. There were a small number of

cases in the random distribution in which sink-node anonymity was not achieved due to

the location of the sink node’s neighbors.

 47

VI. CONCLUSIONS AND FUTURE WORK

A. SUMMARY AND CONCLUSIONS

WSNs have been a vital asset for the military for many decades and continue to

increase in capabilities and applications. Current sensors employed by the USMC are

bulky and complicated to deploy. There are small and inexpensive COTS devices that can

fulfill the need for easily deployable wireless sensors. This thesis research was motivated

by a desire to enable sink-node anonymity on these computationally restricted devices

with minimal change to the standard communication protocol for the sensor nodes. The

existing research in sink-node anonymity, such as location-aided routing, extra layers of

encryption, or complex routing schemes, add increased computational complexity to the

network and require all nodes to have a broader understanding of the network.

LOADng is designed to be lightweight and requires low processing resources at

the nodes. Our modified LOADng method achieves sink-node anonymity while

preserving the lightweight nature of LOADng for the standard sensor nodes in the

network. The majority of the additional computational overhead is assigned to the sink

node, which is assumed to have more resources to accomplish the computations. The

only additional requirement of the normal sensor nodes is being aware of the sink flag for

the purpose of acting as the sink node.

 Our modified LOADng routing protocol was simulated in MATLAB and

compared to the standard LOADng routing protocol. From our simulations, we were able

to show that sink-node anonymity was achieved in most network topologies except for a

specific case in which the sink-node transmission number exceeded one standard

deviation above the mean of that of its neighbors. This only happened when there was a

single sink-node neighbor on one side of the sink node and multiple neighbors on the

other, forcing traffic through the sink node.

The main tradeoff with our method to achieve sink-node anonymity is the

increased power usage due to the extra transmissions per node and extra collisions. There

are always tradeoffs to achieve anonymity. We showed in our results that as the number

 48

of transmissions increased (i.e., longer simulations), the average power consumption

decreased. This is because the RREQs are a lower proportion of the total transmissions,

resulting in fewer collisions proportional to time.

Overall, despite the short-term tradeoffs in power, the modified LOADng routing

scheme achieved sink node anonymity for the majority of cases, adding a level of

cybersecurity that is not found in the standard LOADng protocol.

B. CONTRIBUTIONS OF THIS THESIS

Our goal was to develop a sink-node anonymity protocol using a reactive routing

protocol that would function on IEEE 802.15.4 wireless sensor nodes with highly

constrained computational resources. In this thesis research, we have contributed the

following to the study of sink-node anonymity:

 Development of a modified LOADng routing protocol, which provides k-

anonymity to the sink node while limiting the computational overhead for

the sensor nodes.

 Simulation of the modified routing algorithm to measure and quantify

anonymity and performance versus the standard LOADng protocol.

 Measurement of the performance of the modified routing algorithm

compared to the standard LOADng protocol for average route length,

latency, power consumption, and PDR.

C. FUTURE WORK

While we successfully achieved sink-node anonymity, there are potential

refinements to the protocol to improve the anonymity results and reduce the negative

impact on some of the performance metrics.

1. Intelligent Neighbor Selection

Despite distributing the sink node role among the sink node’s neighbors, there is

still sometimes a large standard deviation within the set of k nodes. This shows that the

distribution between the nodes in the set is not consistent due to their being chosen

randomly. If the sink node tracked the choice of nodes, it could more effectively

 49

distribute the choice evenly among the nodes. This would narrow the standard deviation

and make the set of k nodes more indistinguishable from one another.

2. Optimized Flooding

Collisions due to flooding are a major cause of increased energy usage and packet

drop in the modified LOADng protocol. We utilized classical flooding in our simulation,

which is not as efficient as many optimized flooding schemes. A more optimized

flooding routine can be developed to lower the overall traffic in the network, thereby

reducing the power consumption and collisions. This routine must be carefully designed

to ensure that it does not sacrifice anonymity for efficiency. Additionally, more research

can be done on the optimal jitter and BEB schemes to further reduce collisions during the

flooding of RREQs.

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

APPENDIX. SIMULATOR CODE

%%%
% Main.m
% Sink node anonymity of a wireless sensor network using LOADng

reactive
% routing protocol.
%
% Major Haakensen, Thomas J.
% Student, M.S. Electrical and Computer Engineering
% Naval Postgraduate School
%%%

clear all;
clc;

%Declare global variables
global timer;
global time_inc;
global route_table_sink; %Sink node routing table
global route_table; %Non-sink nodes routing tables
global pending_txmit; %[node, source, dest, type, hop_limit, seq_no,

backoff, backoff_num, sink_flag]
global txmitting; %[node, source, dest, type, hop_limit, seq_no,

txmit_time, sink_flag]
global pending_response; %Stores nodes waiting for a response to a

packet
global txmit_times; %Stores transmit times for different packets
global neigh; %Stores neighbor nodes and distances
global time_out;
global RREQ_fwd; %Tracks nodes that sent/forwarded RREQ. Used in

flooding
global seq_nos;
global sink_RREQ; %Tracks the times the sink received RREQ from each

node
global success;
global trans_num; %Tracks the number of transmissions for each node
global trans_num_comp; %Tracks the number of completed transmissions

for each node
global run;
global node_latency; %Track latency of transmission for nodes
global latency; %Tracks total latency
global trans_tot; %Total non-RREQ transmissions
global retries;
global sim_time;
global collisions;
global out_RREP_ratio;
global trans_tries;

Data_rate = 250000; %250kbps. Max rate for IEEE 802.15.4
run = 0;
route_len = [0 0]; %Stores average route lengths
N = input(‘How many nodes?: ‘);

 52

field_size = input(‘What is the field size?: ‘);
Range = input(‘What is the transmission range?: ‘); % Transmission

range in m
Num_tx = input(‘How many transmissions?: ‘);
distro = input(‘Enter (1) for uniform, (2) for random distribution: ‘);

disp(‘Deploying nodes’);
if distro == 1
 x = floor(sqrt(N));
 spacing = field_size/x;
 for i = 1:x
 nodes(i*x - x+1:i*x, 1) = i * spacing - spacing;
 nodes(i*x - x+1:i*x, 2) = linspace(0, x*spacing, x);
 end
elseif distro == 2
 nodes = field_size*rand(N, 2); %Randomly generate node locations
end
nodes(1, 1:2) = field_size/2; %Puts sink node in center of field
scatter(nodes(2:N, 1), nodes(2:N, 2)); %Display node locations
hold;
scatter(nodes(1, 1), nodes(1, 2), ‘p’);
grid;

trans_order(1, :) = randi(N-1, 1, Num_tx);
trans_order(1, :) = trans_order(1, :) + 1; %Increments all by 1 to

exclude the sink node
trans_order(2, 1) = 0;
for i = 2:length(trans_order) %Generate times nodes will try to send
 trans_order(2, i) = trans_order(2, i-1) + rand*10; %10
end
sim_time = trans_order(2, Num_tx); %Time of last transmission
%trans_order(1, length(trans_order)) = 2;
trans_order_bak = trans_order; %Save original trans_order for second

run

%Times assume 6LowPAN header (25 B) + encryption overhead (21 B) +

LOADng header
%127 byte packet takes 4.064 msec at 250 kbps
t_RREQ = 608/Data_rate; %time to transmit RREQ (76 bytes)
t_RREP = 640/Data_rate; %time to transmit RREP (80 bytes)
t_Data = 1016/Data_rate; %Full 127 byte data packet
t_RREP_ACK = 512/Data_rate; %time to transmit RREP_ACK (64 bytes)
t_RERR = 608/Data_rate; %time to transmit RRER (76 bytes)
t_ACK = 512/Data_rate; %time to transmit ACK (64 bytes)

%Times to transmit packets. Index corresponds to type # in txmitting
txmit_times = [t_RREQ, t_RREP, t_Data, t_RREP_ACK, t_RERR, t_ACK];
seq_nos = randi(65536, 1, N); %Generate random 16-bit initial seq_nos

for nodes
seq_nos_bak = seq_nos; %Save original seq_nos for second run
tx_times = zeros(2, N); %Stores the time each node has been

transmitting
trans_num = zeros(2, N);%Stores total number of transmissions for each

node
trans_num_comp = zeros(2, N);

 53

trans_tries = zeros(2, N);
retries = zeros(1, N);
latency = [0 0; 0 0];
trans_tot = [0 0; 0 0];
collisions = zeros(2, 11);
out_RREP_ratio = zeros(4, N);

while run < 2 %Loop limits to two runs

route_table = zeros(3, N, N);
route_table_sink = zeros(N, N);
RREQ_fwd = zeros(N, N+2);
neigh = zeros(N,N);
sink_RREQ = zeros(1, N);
success = zeros(1, N);
node_latency = zeros(1, N);
time_inc = 0.0001; %Time increment (0.0001 = 100 usec)
timer = 0; %Initialize global timer
time_out = 2;
tx_fin = [];

build_neigh_assoc(N, Range, nodes); % Build layer-2 neighbor

associations

fprintf(‘Beginning simulation run %d;\n’, run);

while ~isempty(trans_order) || ~isempty(pending_txmit) ||

~isempty(txmitting) || ~isempty(pending_response)
 %Main simulation loop. Will run for modified then normal routing.
 %Add trans_order nodes with times <= 0 to pending_txmit
 while ~isempty(trans_order) && trans_order(2, 1) <= 0 %While the

first node has transmit time <= 0
 pending_txmit = [pending_txmit; [trans_order(1, 1),

trans_order(1, 1), 1, 3, 256, seq_nos(trans_order(1)), 0, 0, 0]];
 sink_flag = find(route_table(3, :,

pending_txmit(size(pending_txmit, 1), 1)));
 if run == 0 && ~isempty(sink_flag) %If first run and there is

route to sink
 pending_txmit(size(pending_txmit, 1), [3 9]) = [sink_flag

1]; %Dest is node with sink flag
 elseif run == 0
 pending_txmit(size(pending_txmit, 1), 4) = 1; %Type is RREQ
 %fprintf(‘%f: RREQ sent, node: %d;\n’, timer,

pending_txmit(size(pending_txmit, 1), 1));
 end
 if run == 1 && route_table(1, pending_txmit(size(pending_txmit,

1), 3), pending_txmit(size(pending_txmit, 1), 1)) == 0
 %If second run and no route to sink
 pending_txmit(size(pending_txmit, 1), 4) = 1; %Type is RREQ
 end
 seq_nos(trans_order(1)) = seq_nos(trans_order(1))+1;
 trans_order(:, 1) = []; %Clear first column of trans_order
 end

 54

 if ~isempty(txmitting)
 tx_fin = find(txmitting(:, 7) <= 0); %Get indices of nodes

finished transmitting
 end

 if ~isempty(tx_fin) %If there are nodes finished transmitting
 if run == 0 %If first run
 tx_complete_mod(tx_fin); %Modified routing
 elseif run == 1 %If second run
 tx_complete(tx_fin); %Normal LOADng routing
 end
 tx_fin = []; %Clear tx_fin
 end

 if (~isempty(find(pending_txmit(:, 7) <= 0)))
 CSMA_CA(); %Checks if the “pending_txmit” nodes can transmit
 end

 if size(txmitting, 1) >= 2 %If there are at least 2 transmitting

nodes
 collision(txmitting(:, 1), neigh); %Check to see if there is

a collision
 end

 %Locate expired timers in pending_response
 if ~isempty(pending_response) && ~isempty(find(pending_response(:,

4) <= 0))
 pend_resp_exp = find(pending_response(:, 4) <= 0);
 if ~isempty(pend_resp_exp)
 for i = 1:length(pend_resp_exp)
 pr = pending_response(pend_resp_exp(i), :);
 if pr(5) >= 4 %Tried more than 4 times
 fprintf(‘%f: Transmission failure, node: %d, type:

%d, dest: %d;\n’, timer, pr(1), pr(3), pr(2));
 else %Tried <= 5 times
 sf = route_table(3, pr(2), pr(1)); %Sink flag
 pending_txmit = [pending_txmit; [pr(1), pr(1),

pr(2), pr(3), 256, seq_nos(pr(1)), 0, pr(5)+1, sf]];
 fprintf(‘%f: Retransmission, node: %d, type: %d,

dest: %d, attempt: %d;\n’, timer, pr(1), pr(3), pr(2), pr(5)+1);
 end
 if pending_response(pend_resp_exp(i), 3) == 1
 RREQ_fwd(pending_response(pend_resp_exp(i), 1), :)

= 0;
 end
 end
 pending_response(pend_resp_exp, :) = [];
 end
 end

 %Adjust timers by time_inc
 timer = timer + time_inc;
 pending_txmit(:, 7) = pending_txmit(:, 7) - time_inc; %Backoff -

time_inc

 55

 txmitting(:, 7) = txmitting(:, 7) - time_inc; %t_tx - time_inc
 trans_order(2, :) = trans_order(2, :) - time_inc;
 node_latency(:) = node_latency(:) + time_inc;
 if ~isempty(pending_response) %If pending_response not empty
 pending_response(:, 4) = pending_response(:, 4) - time_inc;

%Decrement pending timeouts
 end
 RREQ_fwd(:, 2) = RREQ_fwd(:, 2) - time_inc;

 %Track the times that the nodes have been transmitting
 tx_ind = txmitting(:, 1);
 tx_times(run+1, tx_ind) = tx_times(run+1, tx_ind) + time_inc;
end

disp(‘**’

);
fprintf(‘Simulation run %d complete.\n’, run);
disp(‘**’

);

run = run + 1;
route_len(run) = mean(mean(nonzeros(route_table(2, :, :))));
trans_order = trans_order_bak; %Restore trans_order for second run
seq_nos = seq_nos_bak; %Restore seq_nos for second run

end

sink_nbrs = neigh(1, 1:2:size(neigh, 2));
sink_nbrs = sink_nbrs(sink_nbrs>0);
not_sink_nbrs = linspace(1, N, N);
temp = ~ismember(not_sink_nbrs, sink_nbrs);
not_sink_nbrs = not_sink_nbrs .* temp;
not_sink_nbrs = not_sink_nbrs(not_sink_nbrs>0);
out_sink_trans_num = trans_num_comp(:, sink_nbrs);
out_node_trans_num = trans_num_comp(:, not_sink_nbrs);

%Measure power usage (mWh)
out_power = tx_times * (0.0000008 / 0.0000032);
out_power = out_power + (0.000006 * trans_num);
out_power = out_power + (trans_tries * 0.00004766);

%% Get node distances from sink
node_dist = zeros(N,2);
trans_hist = zeros(2,N);
trans_hist_sink = zeros(2,N);
for i = 1:N
 node_dist(i, 1) = i;
 node_dist(i, 2) = sqrt((nodes(1,1)-nodes(i,1))^2 + (nodes(1,2)-

nodes(i,2))^2);
end
node_dist = sortrows(node_dist, 2);

trans_hist_sink(1, N/2) = trans_num_comp(1, 1);
trans_hist_sink(2, N/2) = trans_num_comp(2, 1);

 56

for i = 1:N/2-1
 trans_hist(1, N/2-i) = trans_num_comp(1, node_dist(2*i, 1));
 trans_hist(1, N/2+i) = trans_num_comp(1, node_dist(2*i+1, 1));
 trans_hist(2, N/2-i) = trans_num_comp(2, node_dist(2*i, 1));
 trans_hist(2, N/2+i) = trans_num_comp(2, node_dist(2*i+1, 1));
end
figure;
bar(trans_hist(1, :));
hold;
bar(trans_hist_sink(1, :), ‘r’);

figure;
bar(trans_hist(2, :));
hold;
bar(trans_hist_sink(2, :), ‘r’);
disp(‘Simulation complete’);

**
function build_neigh_assoc(N, Range, nodes)
%This function builds the neigh matrix, which is a 2D array which
%contains the neighbors and distance of all nodes within transmit range

of
%each node.

global neigh;

fprintf(‘Building node neighbor associations\n’);
for i = 1:N %i is address of node
 ind = 1;
 for j = 1:N %j is address of neighbor
 D = Range + 1; %Initial condition: D > Range
 if i~=j %Prevents node being compared to self
 %Compute distance from node i to node j
 D = sqrt((nodes(i,1)-nodes(j,1))^2 + (nodes(i,2)-

nodes(j,2))^2);
 end
 if D <= Range %Create neighbor array.
 neigh(i, ind) = j;
 neigh(i, ind+1) = D;
 ind = ind + 2;
 end
 end
end
fprintf(‘Neighbor associations created\n’);
end

**
function CSMA_CA()
%This function checks all of the nodes in the “pending_txmit” matrix.
%If the node has a backoff timer <= 0, and there are no other neighbor
%nodes transmitting, the node is moved to the “txmitting” matrix with
%tx_time equal to the transmit time for the type of packet.
%If one or more neighbor nodes are transmitting, the “pending_txmit”
%node’s backoff is set to the highest tx_time for the transmitting

 57

%neighbor(s), simulating waiting for the medium to become idle.

global pending_txmit;
global txmitting;
global txmit_times;
global neigh;
global trans_num;
global run;
global trans_tries;

ind = 1;
while (size(pending_txmit, 1) >= ind) %While ind <= to size of

pending_txmit

 if pending_txmit(ind, 7) > 0 %If node is in backoff
 ind = ind + 1;
 continue;
 end
 trans_tries(run+1, pending_txmit(ind, 1)) = trans_tries(run+1,

pending_txmit(ind, 1)) + 1;
 tx_temp = 0;
 idle = 1; %Medium idle flag initially set to 1
 neigh_temp = neigh(pending_txmit(ind, 1), 1:2:size(neigh, 2));

%Get neighbor addresses

 if ~isempty(txmitting) && ismember(pending_txmit(ind, 1),

txmitting(:, 1))
 %If the node is already transmitting
 x = find(txmitting(:, 1) == pending_txmit(ind, 1));
 %Set backoff = to the current transmit time
 pending_txmit(ind, 7) = txmitting(x, 7);
 ind = ind + 1;
 continue; %Go to next loop iteration
 end

 if ~isempty(txmitting) %If txmitting is not empty
 tx_temp = ismember(txmitting(:, 1), neigh_temp); %Find

transmitting nodes that are neighbors
 end

 if sum(tx_temp) > 0 %If there are transmitting nodes in range
 idle = 0; %Set idle flag to 0
 tx_times_temp = tx_temp .* txmitting(:, 7); %Array of transmit

times for neighbor nodes
 pending_txmit(ind, 7) = max(tx_times_temp); %Set backoff to

largest transmit time
 end

 if (idle && (pending_txmit(ind, 7) <= 0)) %Medium is idle &&

backoff <= 0
 trans_num(run+1, pending_txmit(ind, 1)) = trans_num(run+1,

pending_txmit(ind, 1))+1; %Track transmission
 txmitting(size(txmitting, 1)+1, [1:6, 8:9]) =

pending_txmit(ind, [1:6, 8:9]); %Move to txmitting queue

 58

 txmitting(end, 7) = txmit_times(pending_txmit(ind, 4)); %Set

transmit time based on type size(txmitting, 1)
 pending_txmit(ind, :) = []; %Erase from pending_xmit
 else %Medium not idle or backoff >= 0
 ind = ind + 1; %Increment “ind” here and not if idle
 end
end
end

**
function collision(txmt_nodes, nbrs)
%This function tests to see if there is a collision due to the hidden-

node
%problem. It checks if any of the transmitting nodes have common
%neighbors. If they do, the common neighbor signals a collision and all
%transmititng nodes in its range are moved back into pending_txmit.

global txmitting;
global pending_txmit;
global retries;
global sim_time;
global timer;
global collisions;
global run;

BEB = [0 0.0041 0.0082 0.0143 0.0184 0.0225];
nbr_coll = [];
nbrs = nbrs(:, 1:2:size(nbrs, 2)); %Clear ranges
coll_ind = ceil(timer/(sim_time/10));

for i = 1:length(txmt_nodes)
 for j = i+1:length(txmt_nodes)
 node1 = nbrs(txmt_nodes(i), :);
 node1 = node1(node1 ~= 0);
 node2 = nbrs(txmt_nodes(j), :);
 node2 = node2(node2 ~= 0);
 memb_test = ismember(node1, node2); %Check for common neighbors
 if sum(memb_test) %If there are shared neighbors
 coll_nodes = memb_test .* node1; %Get node(s) where

collision occurred
 coll_nodes = coll_nodes(coll_nodes ~= 0); %Clear zeros
 for k = 1:length(coll_nodes)
 fprintf(‘%f: Collision, node: %d;\n’, timer,

coll_nodes(k));
 %Get index(es)in txmt_nodes of transmitting neighbor

nodes
 nbr_tx_nodes = find(ismember(txmt_nodes,

nbrs(coll_nodes(k), :)));
 new_node = ~ismember(nbr_tx_nodes, nbr_coll); %Find

node index(es) not already in nbr_coll
 new_node = new_node .* nbr_tx_nodes;
 new_node = new_node(new_node ~= 0); %Clear zeros
 collisions(run+1, coll_ind) = collisions(run+1,

coll_ind) + 1;

 59

 if new_node
 %Add new_node nodes to nbr_coll
 nbr_coll = vertcat(nbr_coll, new_node); %Index of

txmitting nodes who had collisions
 end
 end
 end
 end
end
for m =1:length(nbr_coll) %For all transmitting neighbor nodes
 %Move transmitting neighbors to pending_txmit
 retries(txmitting(nbr_coll(m), 1)) = retries(txmitting(nbr_coll(m),

1)) + 1;
 backoff = BEB(randi(retries(txmitting(nbr_coll(m), 1)) + 1));
 %backoff = (0.0082*rand + 0.0041)*retries(txmitting(nbr_coll(m),

1));
 %Alternate backoff algorithm
 if retries(txmitting(nbr_coll(m), 1)) < 5
 pending_txmit = [pending_txmit; [txmitting(nbr_coll(m), 1:6),

backoff, txmitting(nbr_coll(m), 8:9)]];
 else
 retries(txmitting(nbr_coll(m), 1)) = 0;
 disp(‘collision failure’); %Track failure due to collisions
 end
end
txmitting(nbr_coll, :) = [];
end

**
function tx_complete(tx_fin)
%This function is called when nodes have completed transmitting in

normal
%LOADng, i.e., when their transmit timers reached 0. It processes the

packet
%according to the node that is receiveing. ‘tx_fin’ holds the

index(es) of
%the node(s) in ‘txmitting’ that have finished transmitting.

global txmitting;
global route_table;
global route_table_sink;
global pending_response;
global time_out;
global RREQ_fwd;
global node_latency;
global trans_num_comp;
global out_RREP_ratio;

for i = 1:length(tx_fin)
 if txmitting(tx_fin(i), 4) == 1 %If type == RREQ
 %Count RREQs forwarded
 out_RREP_ratio(4, (txmitting(tx_fin(i), 1))) =

out_RREP_ratio(4, (txmitting(tx_fin(i), 1))) + 1;
 end

 60

 trans_num_comp(2, txmitting(tx_fin(i), 1)) = trans_num_comp(2,

txmitting(tx_fin(i), 1)) + 1;
 if txmitting(tx_fin(i), 1) == txmitting(tx_fin(i), 2) &&

txmitting(tx_fin(i), 4) > 1
 %If txmitting node is source and the type ~= RREQ
 %Start measuring latency
 node_latency(txmitting(tx_fin(i), 1)) = 0; %Reset the latency

time for node
 if txmitting(tx_fin(i), 4) == 2 %If type == RREP
 %Count RREPs initiated
 out_RREP_ratio(3, (txmitting(tx_fin(i), 1))) =

out_RREP_ratio(3, (txmitting(tx_fin(i), 1))) + 1;
 end
 end
 txmitting(tx_fin(i), 5) = txmitting(tx_fin(i), 5) - 1; %Dec hop

limit
 if txmitting(tx_fin(i), 1) == txmitting(tx_fin(i), 2) &&

txmitting(tx_fin(i), 4) <= 3
 %If txmitting node is source and the type == RREQ, RREP, or Data
 %Put into pending response array
 if ~isempty(pending_response)
 pr_ind = find(pending_response(:, 1) ==

txmitting(tx_fin(i), 1));
 if isempty(pr_ind) || ~ismember(txmitting(tx_fin(i), 3),

pending_response(pr_ind, 2))
 %If node not already in pending_response for this

transmission
 pending_response = [pending_response;

[txmitting(tx_fin(i), [1, 3, 4]), time_out, txmitting(tx_fin(i), 8)]];
 end
 else
 pending_response = [txmitting(tx_fin(i), [1, 3, 4]),

time_out, txmitting(tx_fin(i),8)];
 end
 end

 %Get next hop
 if (txmitting(tx_fin(i), 1) == 1) && (txmitting(tx_fin(i), 3) ~= 1)
 %If sink node, choose lowest metric
 route_list = route_table_sink(:, txmitting(tx_fin(i), 3));
 next_hop = find(route_list); %Get non-zero element indexes
 if ~isempty(next_hop)
 next_hop = find(route_list == min(route_list(next_hop)));

%Get lowest non-zero metric index
 if length(next_hop) > 1
 next_hop = next_hop(randi(length(next_hop))); %In case

of multiple with same metric, randomly choose one
 end
 end
 else %Not the sink node
 next_hop = route_table(1, txmitting(tx_fin(i), 3),

txmitting(tx_fin(i), 1));
 end

 if txmitting(tx_fin(i), 4) == 1 %Type is RREQ

 61

 flood(txmitting(tx_fin(i), :), tx_fin(i));
 else %Type is RREP, data, RREP_ACK, RERR, or ACK
 unicast(next_hop, txmitting(tx_fin(i), :), tx_fin(i));
 if txmitting(tx_fin(i), 1) == 1 && txmitting(tx_fin(i), 4) == 2
 %If this is sink node and RREP
 ind = find(RREQ_fwd(txmitting(tx_fin(i), 3), :) == 0, 1);

%Index of first zero in row
 RREQ_fwd(txmitting(tx_fin(i), 3), ind) =

txmitting(tx_fin(i), 1);
 end
 end
end
txmitting(tx_fin, :) = []; %Remove tx_fin nodes from txmitting
end

**
function tx_complete_mod(tx_fin)
%This function is called when nodes have completed transmitting in

modified
%LOADng, i.e., when their transmit timers reached 0. It processes the

packet
%according to the node that is receiveing. ‘tx_fin’ holds the

index(es) of
%the node(s) in ‘txmitting’ that have finished transmitting.

global txmitting;
global route_table;
global route_table_sink;
global pending_response;
global time_out;
global sink_RREQ; %Tracks the times the sink received RREQ from each

node
global node_latency;
global trans_num_comp;
global out_RREP_ratio;

for i = 1:length(tx_fin)
 if txmitting(tx_fin(i), 4) == 1 %If type == RREQ
 %Count RREQs forwarded
 out_RREP_ratio(2, (txmitting(tx_fin(i), 1))) =

out_RREP_ratio(2, (txmitting(tx_fin(i), 1))) + 1;
 end
 trans_num_comp(1, txmitting(tx_fin(i), 1)) = trans_num_comp(1,

txmitting(tx_fin(i), 1)) + 1;
 if txmitting(tx_fin(i), 1) == txmitting(tx_fin(i), 2) &&

txmitting(tx_fin(i), 4) > 1
 %If txmitting node is source and the type ~= RREQ
 %Start measuring latency
 node_latency(txmitting(tx_fin(i), 1)) = 0; %Reset the latency

time for node
 if txmitting(tx_fin(i), 4) == 2 %If type == RREP
 %Count RREPs initiated
 out_RREP_ratio(1, (txmitting(tx_fin(i), 1))) =

out_RREP_ratio(1, (txmitting(tx_fin(i), 1))) + 1;
 end

 62

 end
 txmitting(tx_fin(i), 5) = txmitting(tx_fin(i), 5) - 1; %Dec hop

limit
 if txmitting(tx_fin(i), 1) == txmitting(tx_fin(i), 2) && ...
 txmitting(tx_fin(i), 4) <= 3 && txmitting(tx_fin(i), 3) ~=

65535
 %If txmitting node is source && type == RREQ, RREP, or Data && not
 %broadcast
 %Put into pending response array
 if ~isempty(pending_response)
 pr_ind = find(pending_response(:, 1) ==

txmitting(tx_fin(i), 1));
 if isempty(pr_ind) || ~ismember(txmitting(tx_fin(i), 3),

pending_response(pr_ind, 2))
 %If node not already in pending_response for this

transmission
 pending_response = [pending_response;

[txmitting(tx_fin(i), [1, 3, 4]), time_out, txmitting(tx_fin(i), 8)]];
 end
 else
 pending_response = [txmitting(tx_fin(i), [1, 3, 4]),

time_out, txmitting(tx_fin(i),8)];
 end
 end

 if txmitting(tx_fin(i), 3) == 65535 %If dest is broadcast address
 broadcast(txmitting(tx_fin(i), :));
 continue; %Go to next loop iteration
 end

 %Get next hop
 if (txmitting(tx_fin(i), 1) == 1) && (txmitting(tx_fin(i), 3) ~= 1)
 %If sink node, choose lowest metric
 route_list = route_table_sink(:, txmitting(tx_fin(i), 3));
 next_hop = find(route_list); %Get non-zero element indexes
 if ~isempty(next_hop)
 next_hop = find(route_list == min(route_list(next_hop)));

%Get lowest non-zero metric index
 if length(next_hop) > 1
 next_hop = next_hop(randi(length(next_hop))); %In case

of multiple with same metric, randomly choose one
 end
 end
 else %Not the sink node
 next_hop = route_table(1, txmitting(tx_fin(i), 3),

txmitting(tx_fin(i), 1));
 end

 if txmitting(tx_fin(i), 4) == 1 %Type is RREQ
 if txmitting(tx_fin(i), 1) == 1 %If txmitting node is sink node
 %Dec hop limit to make return route metric through sink

higher.
 txmitting(tx_fin(i), 5) = txmitting(tx_fin(i), 5) - 2;
 if sink_RREQ(txmitting(tx_fin(i), 2)) == 1

 63

 %If this is not the first RREQ received from this

source node
 sink_flood(txmitting(tx_fin(i), :), tx_fin(i));
 sink_RREQ(txmitting(tx_fin(i), 2)) = 2; %Prevent

another RREP to this node
 else
 %Flood packet pretending not to be the sink
 flood_mod(txmitting(tx_fin(i), :), tx_fin(i));
 sink_RREQ(txmitting(tx_fin(i), 2)) = 1;
 end
 else %Txmitting node not the sink node
 flood_mod(txmitting(tx_fin(i), :), tx_fin(i));
 end
 else %Type is RREP, data, RREP_ACK, RERR, or ACK
 unicast(next_hop, txmitting(tx_fin(i), :), tx_fin(i));
 end
end
txmitting(tx_fin, :) = []; %Remove tx_fin nodes from txmitting
end

**
function flood(RREQ_pkt, fin_add)
%This function is called upon a node’s completion of transmitting a

RREQ
%packet. It finds its neighbor nodes that have not forwarded it this
%particular RREQ packet and adds them to pending_txmit (type = RREQ).
%It is passed the row from ‘txmitting’ of the node which has completed
%transmitting and the row index. Standard LOADng.

global pending_txmit;
global neigh;
global RREQ_fwd;
global time_out;
global seq_nos;
global txmit_times;
global txmitting;

if RREQ_pkt(1) == RREQ_pkt(2) %If node is the source
 RREQ_fwd(RREQ_pkt(2), 1:3) = [RREQ_pkt(6) time_out RREQ_pkt(1)];

%Add this RREQ to ‘RREQ_fwd’
end

if RREQ_fwd(RREQ_pkt(2), 2) <=0 %If timeout exceeded
 RREQ_fwd(RREQ_pkt(2), :) = 0; %Clear RREQ_fwd for this RREQ
 %Find all pending_txmit nodes for this RREQ (same seq num)
 RREQ_exp = find(pending_txmit(:, 6) == RREQ_pkt(6));
 %Clear all pending_txmit nodes for this RREQ
 pending_txmit(RREQ_exp, :) = [];
 txmitting(RREQ_exp, :) = [];
 return; %Exit the function
end

%Add tx_complete node to RREQ_fwd

 64

ind = find(RREQ_fwd(RREQ_pkt(2), :) == 0, 1); %Index of first zero in

row
RREQ_fwd(RREQ_pkt(2), ind) = RREQ_pkt(1);

%Find all neighbors not in RREQ_fwd
neigh_temp = neigh(RREQ_pkt(1), 1:2:size(neigh, 2)); %Get neighbor

addresses
%Find neighbor nodes that haven’t forwarded RREQ
RREQ_neigh = ~ismember(neigh_temp, RREQ_fwd(RREQ_pkt(2),

3:size(RREQ_fwd, 2)));
RREQ_neigh = RREQ_neigh .* neigh_temp; %Only choose neighbors that

haven’t forwarded RREQ
RREQ_neigh = RREQ_neigh(RREQ_neigh ~= 0); %Clear zero elements

if ~isempty(RREQ_neigh)
 delay = 0;
 for i = 1:length(RREQ_neigh) %Neighbor nodes to pending_trans

(type = RREQ)
 if ~ismember(RREQ_neigh(i), pending_txmit(:, 1))
 %If the neighbor node is not already in pending_txmit for this

RREQ
 if RREQ_neigh(i) == RREQ_pkt(3) %If neighbor node is

destination
 pending_txmit = [pending_txmit; [RREQ_neigh(i),

RREQ_neigh(i), RREQ_pkt(2), 2, 256, seq_nos(RREQ_neigh(i)), 0, 0,

RREQ_pkt(9)]];
 seq_nos(RREQ_neigh(i)) = seq_nos(RREQ_neigh(i))+1;
 else
 pending_txmit = [pending_txmit; [RREQ_neigh(i),

RREQ_pkt(2:6), delay, 0, RREQ_pkt(9)]];
 end
 %update_route_table(RREQ_neigh(i), fin_add); %Update the

route table of receiving node
 delay = randi(size(RREQ_neigh)) * txmit_times(3);
 %delay = delay + txmit_times(1);
 end
 update_route_table(RREQ_neigh(i), fin_add); %Update the

route table of receiving node
 end
end

end

**
function flood_mod(RREQ_pkt, fin_add)
%This function is called upon a node’s completion of transmitting a

RREQ
%packet. It finds its neighbor nodes that have not forwarded it this
%particular RREQ packet and adds them to pending_txmit (type = RREQ).
%It is passed the row from ‘txmitting’ of the node which has completed
%transmitting and the row index. Modified LOADng.

global pending_txmit;
global neigh;

 65

global RREQ_fwd;
global time_out;
global seq_nos;
global txmit_times;
global txmitting;

if RREQ_pkt(1) == RREQ_pkt(2) %If node is the source
 RREQ_fwd(RREQ_pkt(2), 1:3) = [RREQ_pkt(6) time_out RREQ_pkt(1)];

%Add this RREQ to ‘RREQ_fwd’
end

if RREQ_fwd(RREQ_pkt(2), 2) <=0 %If timeout exceeded
 RREQ_fwd(RREQ_pkt(2), :) = 0; %Clear RREQ_fwd for this RREQ
 %Find all pending_txmit nodes for this RREQ (same seq num)
 RREQ_exp = find(pending_txmit(:, 6) == RREQ_pkt(6));
 %Clear all pending_txmit and txmitting nodes for this RREQ
 pending_txmit(RREQ_exp, :) = [];
 RREQ_exp = find(txmitting(:, 6) == RREQ_pkt(6));
 txmitting(RREQ_exp, :) = [];
 return; %Exit the function
end

%Add tx_complete node to RREQ_fwd
ind = find(RREQ_fwd(RREQ_pkt(2), :) == 0, 1); %Index of first zero in

row
RREQ_fwd(RREQ_pkt(2), ind) = RREQ_pkt(1);

%Find all neighbors not in RREQ_fwd
neigh_temp = neigh(RREQ_pkt(1), 1:2:size(neigh, 2)); %Get neighbor

addresses
%Find neighbor nodes that haven’t forwarded RREQ
RREQ_neigh = ~ismember(neigh_temp, RREQ_fwd(RREQ_pkt(2),

3:size(RREQ_fwd, 2)));
RREQ_neigh = RREQ_neigh .* neigh_temp; %Only choose neighbors that

haven’t forwarded RREQ
RREQ_neigh = RREQ_neigh(RREQ_neigh ~= 0); %Clear zero elements
if ismember(1, neigh_temp) && ~ismember(1, RREQ_neigh)
%If the sink node is a neighbor and has previously forwarded the RREQ
 update_route_table(1, fin_add);
end

if ~isempty(RREQ_neigh)
 delay = 0;
 for i = 1:length(RREQ_neigh) %Neighbor nodes to pending_trans

(type = RREQ)
 if ~ismember(RREQ_neigh(i), pending_txmit(:, 1))
 %If the neighbor node is not already in pending_txmit for this

RREQ
 if RREQ_neigh(i) == RREQ_pkt(3) && RREQ_neigh(i) ~= 1 &&

RREQ_pkt(9) ~= 1 %Difference from flood routine
 %If neighbor node is destination && not the sink node &&

not
 %sink flood

 66

 pending_txmit = [pending_txmit; [RREQ_neigh(i),

RREQ_neigh(i), RREQ_pkt(2), 2, 256, seq_nos(RREQ_neigh(i)), 0, 0,

RREQ_pkt(9)]];
 seq_nos(RREQ_neigh(i)) = seq_nos(RREQ_neigh(i))+1;
 else
 pending_txmit = [pending_txmit; [RREQ_neigh(i),

RREQ_pkt(2:6), delay, 0, RREQ_pkt(9)]];
 end
 %update_route_table(RREQ_neigh(i), fin_add); %Update the

route table of receiving node
 delay = randi(size(RREQ_neigh)) * txmit_times(3);
 %delay = delay + txmit_times(3); %Add jitter
 end
 update_route_table(RREQ_neigh(i), fin_add); %Update the

route table of receiving node
 end
end

end

**
function sink_flood(RREQ_pkt, fin_add)
%This function is called upon the sink node’s completion of

transmitting a
%RREQ packet. It first finds all of its neighbor nodes that have not
%forwarded it this particular RREQ packet. It then adds itself to the
%list, randomly chooses a node from the list, alters the RREQ to

reflect
%this new source, and continues flooding the RREQ. It then adds the
%neighbor nodes to pending_txmit (type = RREQ). It is passed the row

from
%’txmitting’ of the node which has completed transmitting and the row

index.

global pending_txmit;
global neigh;
global RREQ_fwd;
global time_out;
global route_table_sink;
global seq_nos;
global txmit_times;
global txmitting;

if RREQ_pkt(1) == RREQ_pkt(2) %If node is the source
 RREQ_fwd(RREQ_pkt(2), 1:3) = [RREQ_pkt(6) time_out RREQ_pkt(1)];

%Add this RREQ to ‘RREQ_fwd’
end

if RREQ_fwd(RREQ_pkt(2), 2) <=0 %If timeout exceeded
 RREQ_fwd(RREQ_pkt(2), :) = 0; %Clear RREQ_fwd for this RREQ
 RREQ_exp = find(pending_txmit(:, 6) == RREQ_pkt(6));
 %Clear all pending_txmit nodes for this RREQ
 pending_txmit(RREQ_exp, :) = [];
 txmitting(RREQ_exp, :) = [];

 67

 return; %Exit the function
end

%Add tx_complete node to RREQ_fwd
ind = find(RREQ_fwd(RREQ_pkt(2), :) == 0, 1); %Index of first zero in

row
RREQ_fwd(RREQ_pkt(2), ind) = RREQ_pkt(1);

%Find all neighbors not in RREQ_trans
neigh_temp = neigh(RREQ_pkt(1), 1:2:size(neigh, 2)); %Get neighbor

addresses
%Find neighbor nodes that haven’t forwarded RREQ
RREQ_neigh = ~ismember(neigh_temp, RREQ_fwd(RREQ_pkt(2),

3:size(RREQ_fwd, 2)));
RREQ_neigh = RREQ_neigh .* neigh_temp; %Only choose neighbors that

haven’t forwarded RREQ
RREQ_neigh = RREQ_neigh(RREQ_neigh ~= 0); %Clear zero elements
RREQ_neigh = RREQ_neigh(route_table_sink(RREQ_neigh, RREQ_pkt(2)) > 0);

%Make sure nodes had route to source
if isempty(RREQ_neigh) || randi(2) == 1 %Choose to add sink 33% of

the time
 RREQ_neigh= horzcat(RREQ_neigh, 1); %Add sink node to the array
end
%Choose random neighbor
rand_neigh = RREQ_neigh(randi(size(RREQ_neigh, 2)));
%Alter RREQ packet (new dest and sink bit == 1)
RREQ_pkt([3 9]) = [rand_neigh 1];
%Remove sink node to prevent loading sink RREQ back into pending_txmit
RREQ_neigh = RREQ_neigh(RREQ_neigh>1);

if ismember(rand_neigh, pending_txmit(:, 1)) %If the chosen node is

in pending_txmit
 %Remove the node from pending_txmit
 pending_txmit(find(pending_txmit(:, 1) == rand_neigh), :) = [];
end

%Put into pending_txmit
if rand_neigh == 1 %If sink chose self
 pending_txmit = [pending_txmit; [1, 1, RREQ_pkt(2), 2, 256,

seq_nos(1), 0, 0, RREQ_pkt(9)]];
 return; %Leave routine. Don’t want to flood anymore
end

%Decrement hop-limit to lower chance of sink node being used in return

route
RREQ_pkt(5) = RREQ_pkt(5) - 1;

if ~isempty(RREQ_neigh)
 delay = 0;
 for i = 1:length(RREQ_neigh) %Neighbor nodes to pending_trans

(type = RREQ)
 if RREQ_neigh(i) == RREQ_pkt(3) %If neighbor node is

destination

 68

 pending_txmit = [pending_txmit; [RREQ_neigh(i),

RREQ_neigh(i), RREQ_pkt(2), 2, 256, seq_nos(RREQ_pkt(3)), delay, 0,

RREQ_pkt(9)]];
 seq_nos(RREQ_pkt(3)) = seq_nos(RREQ_pkt(3))+1;
 elseif ~ismember(RREQ_neigh(i), pending_txmit(:, 1))
 %If not the destination and the node is not in

pending_txmit
 pending_txmit = [pending_txmit; [RREQ_neigh(i),

RREQ_pkt(2:6), delay, 0, RREQ_pkt(9)]];
 delay = delay + txmit_times(3);
 end
 update_route_table(RREQ_neigh(i), fin_add); %Update the

route table of receiving node
 end
end

end

**
function unicast(next_hop, txmit_pkt, fin_add)
%This function is called when the packet is a type that is sent via a
%unicast. “next_hop” is the next hop. “txmit_pkt” is the line from
%”txmitting” for the node in question.

global pending_txmit;
global seq_nos;
global pending_response;
global timer;
global txmit_times;
global success;
global node_latency;
global latency;
global trans_tot;
global txmitting;
global run;

delay = 0;
if txmit_pkt(1) == txmit_pkt(2)
 trans_tot(2, run+1) = trans_tot(2, run+1) + 1;
end
if next_hop == txmit_pkt(3) %If next hop is dest
 latency(run+1) = latency(run+1) + node_latency(txmit_pkt(2)); %Add

packet latency to total
 trans_tot(1, run+1) = trans_tot(1, run+1) + 1; %Increment

trans_tot
 if ~isempty(pending_response)
 resp = find(pending_response(:, 1) == next_hop); %Check if

dest is pending a response
 if ~isempty(resp) %If node pending response
 pending_response(resp, :) = []; %Remove from

pending_response
 end
 end
 sink_flag = txmit_pkt(9);

 69

 switch txmit_pkt(4)
 case 2 %RREP, respond with RREP_ACK then data
 pending_txmit = [pending_txmit; [next_hop, next_hop,

txmit_pkt(2), 4, 256, seq_nos(next_hop), 0, 0, txmit_pkt(9)]];
 seq_nos(next_hop) = seq_nos(next_hop) + 1;
 fprintf(‘%f: Packet received, node: %d, from: %d, type:

RREP;\n’, timer, next_hop, txmit_pkt(2));
 pending_txmit = [pending_txmit; [next_hop, next_hop,

txmit_pkt(2), 3, 256, seq_nos(next_hop), txmit_times(4), 0,

txmit_pkt(9)]];
 seq_nos(next_hop) = seq_nos(next_hop) + 1;
 case 3 %Data, respond with ACK
 if sink_flag
 pending_txmit = [pending_txmit; [next_hop,

txmit_pkt(2), 65535, txmit_pkt(4:9)]];
 pending_txmit(end, 3) = 65535;
 delay = txmit_times(3);
 end
 pending_txmit = [pending_txmit; [next_hop, next_hop,

txmit_pkt(2), 6, 256, seq_nos(next_hop), delay, 0, txmit_pkt(9)]];
 seq_nos(next_hop) = seq_nos(next_hop) + 1;
 fprintf(‘%f: Packet received, node: %d, from: %d, type:

Data;\n’, timer, next_hop, txmit_pkt(2));
 case 4 %RREP_ACK
 fprintf(‘%f: Packet received, node: %d, from: %d, type:

RREP_ACK;\n’, timer, next_hop, txmit_pkt(2));
 case 5 %RERR
 fprintf(‘%f: Packet received, node: %d, from: %d, type:

RERR;\n’, timer, next_hop, txmit_pkt(2));
 case 6 %ACK
 fprintf(‘%f: Packet received, node: %d, from: %d, type:

ACK;\n’, timer, next_hop, txmit_pkt(2));
 success(next_hop) = success(next_hop) + 1;
 end
else %Next hop not dest
 if isempty(pending_txmit) %If pending_txmit = []
 pending_txmit = [next_hop, txmit_pkt(2:6), 0, 0, txmit_pkt(9)];
 else
 pending_txmit = [pending_txmit; [next_hop, txmit_pkt(2:6), 0,

0, txmit_pkt(9)]];
 end
end
if run == 0 && txmit_pkt(1) == 1 && txmit_pkt(2) ~= 1
 txmitting(fin_add, 5) = txmitting(fin_add, 5) - 1;
end
update_route_table(next_hop, fin_add); %Update the route table of

receiving node
end

**
function broadcast(txmit_pkt)
%This function broadcasts the data packet.

global timer;
global neigh;

 70

global latency;
global run;
global txmit_times;

neigh_temp = neigh(txmit_pkt(1), 1:2:size(neigh, 2)); %Get node

neighbor addresses
fprintf(‘%f: Broadcast, node: %d, source: %d, type: %d;\n’, timer,

txmit_pkt(1), txmit_pkt(2), txmit_pkt(4));

if txmit_pkt(1) == 1 || ismember(1, neigh_temp)
 fprintf(‘%f: Packet received, dest: %d;\n’, timer, txmit_pkt(3));
 latency(run+1) = latency(run+1) + txmit_times(txmit_pkt(4)); %Add

time to latency
else
 fprintf(‘%f: Packet NOT received, dest: %d, out of range;\n’,

timer, txmit_pkt(3));
end
end

**
function update_route_table(node, ind)
%This function updates that routing tables based on the transmitted

packet.
%’node’ is the node address that is being updated. ‘ind’ is used to
%reference the ‘txmitting’ array to get info to update the route

tables.

global txmitting;
global route_table;
global route_table_sink;

if node ~= 1 %If not the sink node
 %Update neighbor route
 route_table(1, txmitting(ind, 1), node) = txmitting(ind, 1);
 route_table(2, txmitting(ind, 1), node) = 1;
 if node == txmitting(ind, 3) && txmitting(ind, 4) == 2 &&

txmitting(ind, 1) == txmitting(ind, 2)
 %If rvc node is dest AND type == RREP AND neighbor == source
 route_table(3, txmitting(ind, 1), node) = txmitting(ind, 9);
 end
 if (route_table(1, txmitting(ind, 2), node)==0) || ((256-

txmitting(ind, 5)) < route_table(2, txmitting(ind, 2), node))
 %If no existing route to source OR route is less hops than the

current route
 %Update source route
 route_table(1, txmitting(ind, 2), node) = txmitting(ind, 1);
 route_table(2, txmitting(ind, 2), node) = 256-txmitting(ind,

5);
 end
 if node == txmitting(ind, 3) && txmitting(ind, 4) == 2 &&

txmitting(ind, 9) == 1
 %If rcv node is dest AND type == RREP AND packet sink flag is set
 route_table(3, txmitting(ind, 2), node) = txmitting(ind, 9);
 end

 71

else %Sink node
 %Update neighbor route
 route_table_sink(txmitting(ind, 1), txmitting(ind, 1)) = 1;
 if (route_table_sink(txmitting(ind, 1), txmitting(ind, 2))==0) ||

(route_table_sink(txmitting(ind, 1), txmitting(ind, 2)) > 256-

txmitting(ind, 5));
 %If no existing route to source OR route is less hops than the

current route
 route_table_sink(txmitting(ind, 1), txmitting(ind, 2)) = 256-

txmitting(ind, 5);
 end
end
end

 72

THIS PAGE INTENTIONALLY LEFT BLANK

 73

LIST OF REFERENCES

[1] M. P. Đurišić, Z. Tafa, G. Dimić and V. Milutinović, “A survey of military

applications of wireless sensor networks,” in Proc. of Mediterranean Conference

on Embedded Computing, Bar, Montenegro, 2012, pp. 196–199.

[2] Marine Corps Reference Publication 2–10A.5, Remote Sensor Operations, United

States Marine Corps, Washington, DC, 2016.

[3] S. H. Yang, Wireless Sensor Networks, Signals and Communication Technology,

London, UK: Springer-Verlag, 2014.

[4] IEEE Standard for Local and Metropolitan Area Networks—Part 15.4: Low-Rate

Wireless Personal Area Networks, IEEE Standard 802.15.4-2015 (Revision of

IEEE Std 802.15.4-2011), 2015.

[5] M. Pradhan, F. Gökgöz, N. Bau and D. Ota, “Approach towards application of

commercial off-the-shelf Internet of Things devices in the military domain,”

in Proc. of IEEE 3rd World Forum on Internet of Things, Reston, VA, 2016,

pp. 245–250.

[6] Federal Information Processing Standards Publication 140–2, Security

Requirements for Cryptographic Modules, National Institute of Standards and

Technology. Gaithersburg, MD, 2002.

[7] T. Clausen, J. Yi and A. C. de Verdiere, “LOADng: Towards AODV Version

2,” in Proc. of IEEE Vehicular Technology Conference, Quebec City, QC, 2012,

pp. 1–5.

[8] J. Olsson. (2014). 6LoWPAN demystified. [Online]. Available:

http://www.ti.com/lit/wp/swry013/swry013.pdf

[9] T. Clausen, A. C. de Verdiere, J. Yi, A. Niktash, Y. Igarashi, H. Satoh, and U.

Herberg, “The LLN on-demand ad hoc distance-vector routing protocol–next

generation,” The Internet Engineering Task Force, July 2016, Internet Draft, work

in progress, draft-clausen-lln-loadng-15.

[10] M. Er-Rouidi, H. Moudni, H. Mouncif and A. Merbouha, “An energy

consumption evaluation of reactive and proactive routing protocols in mobile ad-

hoc network,” in Proc. of 13th International Conference on Computer Graphics,

Imaging and Visualization, Beni Mellal, Morocco, 2016, pp. 437–441.

[11] V. P. Patil, “Reactive and proactive routing protocol energy efficiency

performance analysis in wireless ad hoc networks,” International Journal of

Electronics and Computer Science Engineering, pp. 2333–2341, 2012.

 74

[12] J. Yi, T. Clausen and Y. Igarashi, “Evaluation of routing protocol for low power

and Lossy Networks: LOADng and RPL,” in Proc. of IEEE Conference on

Wireless Sensor, Kuching, Malaysia, 2013, pp. 19–24.

[13] J. Deng, R. Han, and S. Mishra, “Decorrelating wireless sensor network traffic to

inhibit traffic analysis attacks,” in Elsevier Pervasive and Mobile Computing

Journal, vol. 2, no 2, pp. 159–186, 2006.

[14] V. P. V. Gottumukkala, V. Pandit, H. Li and D. P. Agrawal, “Base-station

Location Anonymity and Security Technique (BLAST) for wireless sensor

networks,” in Proc. of IEEE International Conference on Communications,

Ottawa, ON, 2012, pp. 6705–6709.

[15] H. Shen and L. Zhao, “ALERT: An Anonymous Location-based Efficient

Routing Protocol in MANETs,” in IEEE Transactions on Mobile Computing,

June 2013, vol. 12, no. 6, pp. 1079–1093.

[16] A. Callanan and P. Thulasiraman, “Achieving sink node anonymity under energy

constraints in tactical wireless sensor networks,” in Proc. of IEEE International

Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and

Decision Support, Orlando, FL, 2015, pp.186–192.

[17] S. Alsemairi and M. Younis, “Forming a cluster-mesh topology to boost base-

station anonymity in wireless sensor networks,” in Proc. of IEEE Wireless

Communications and Networking Conference, Doha, Qatar, 2016, pp. 1–6.

[18] L. Sweeney, “k-anonymity: A model for protecting privacy,” in International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, no. 5,

pp. 557–570, 2002.

[19] M. Siekkinen, M. Hiienkari, J. K. Nurminen, and J. Nieminen, “How low energy

is Bluetooth low energy? Comparative measures with ZigBee/802.15.4,” in Proc.

of IEEE WCNC Workshop on Internet of Things Enabling Technologies,

Embracing Machine-To-Machine Communications and Beyond, 2012,

pp. 232–237.

[20] J. Lee, K. Kapitanova, and S. H. Son, “The price of security in wireless sensor

networks,” in Computer Networks, vol. 54, no. 17, pp. 2967–2978, Dec. 2010.

[21] J. A. Cordero, J. Yi and T. Clausen, “Optimization of jitter configuration for

reactive route discovery in wireless mesh networks,” in Proc. of 11th

International Symposium and Workshops on Modeling and Optimization in

Mobile, Ad Hoc and Wireless Networks, Tsukuba Science City, 2013,

pp. 452–459.

 75

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

