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The survival of most reef-building corals is dependent upon a
symbiosis between the coral and the community of
Symbiodiniaceae. Montipora capitata, one of the main reef-
building coral species in Hawai’i, is known to host a
diversity of symbionts, but it remains unclear how they
change spatially and whether environmental factors drive
those changes. Here, we surveyed the Symbiodiniaceae
community in 600 M. capitata colonies from 30 sites across
Kāne’ohe Bay and tested for host specificity and
environmental gradients driving spatial patterns of algal
symbiont distribution. We found that the Symbiodiniaceae
community differed markedly across sites, with M. capitata in
the most open-ocean (northern) site hosting few or none of
the genus Durusdinium, whereas individuals at other sites
had a mix of Durusdinium and Cladocopium. Our study shows
that the algal symbiont community composition responds to
fine-scale differences in environmental gradients; depth and
temperature variability were the most significant predictor of
Symbiodiniaceae community, although environmental factors
measured in the study explained only about 20% of observed
variation. Identifying and mapping Symbiodiniaceae
community distribution at multiple scales is an important
step in advancing our understanding of algal symbiont
diversity, distribution and evolution and the potential
responses of corals to future environmental change.
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1. Introduction

Coral reefs are among the most biologically diverse and productive ecosystems on Earth and provide
valuable ecosystem services as sources of tourism, coastal protection, natural products and nutrition
[1–3]. The symbiotic interaction with an exceptionally diverse dinoflagellate (family Symbiodiniaceae)
is inherently linked to the health and success of reef-building corals because they provide a large
proportion of the coral energy requirement [4–7]. There are 11 described genera [8] of
Symbiodiniaceae (and possibly many more yet to be described), each with different physiological
characteristics that impact the nutrient provisioning and thermal tolerance of the coral host [9–16].
Cladocopium (previously Symbiodinium clade C) and Durusdinium (previously clade D) are the two
genera most commonly hosted by corals in the Pacific [17]. Cladocopium is a generalist symbiont and
also the most speciose genus [18,19] while Durusdinium is usually found in shallow corals exposed to
elevated light, sea surface temperature or areas with high temperature variability [20] and is
associated with increased resilience to thermal stress [9,16,19–22].

Thermal stress is the main threat affecting corals worldwide [23–27]. Sea temperatures in many
tropical regions have increased by almost 1°C over the past 100 years and are currently increasing
at approximately 1–2°C per century [27–30]. Temperature stress disrupts coral-dinoflagellate
symbiosis, leading to algal symbiont loss and consequent paling, a phenomenon known as coral
bleaching [31,32]. Mass coral bleaching events are increasing in frequency and duration, resulting in
significant losses of live coral in many parts of the world [27,33–35]. Coral susceptibility to heat
stress and bleaching is dependent on a wide range of factors, including the algal symbiont
community they host [9,22,24,32,36]. Bleaching may also represent an opportunity for corals to
rapidly change their current algal symbiont community composition to more resilient types [37,38].
However, this Adaptive Bleaching Hypothesis remains controversial because many coral taxa are
algal symbiotic specialists (but see [39]), hosting a single algal symbiont taxon and although corals
can sometimes change their Symbiodiniaceae symbionts, many also recover to the same algal
symbiont community they had prior to bleaching [40–44], although a few studies have reported that
corals were able to maintain the symbionts even after 2 years [45]. Furthermore, hosting the stress-
tolerant Durusdinium often comes at an energetic cost, as it decreases the growth and metabolite
exchange rate of the host [46–52].

Symbiodiniaceae assemblage structure in corals tends to be shaped bymany factors, including the host
species [18,53], large-scale factors like geography [54,55], and local scale factors like depth [36,56], habitat
[21], and environmental factors such as light [57] and temperature [21,55]. Here, we investigated the local-
scale environmental drivers of Symbiodiniaceae assemblage structure in a common reef-building coral
Montipora capitata, which is one of the most abundant corals in Kāne‘ohe Bay and may harbour a
community of Cladocopium (C), Durusdinium (D) or both symbiont genera [58–60]. Previous studies of
the species in Hawai‘i have reported associations with C31 [58,61,62], C17, C21 [61,62] and Durusdinium
glynnii (formerly, Symbiodinium glynii [ITS2 Type D161,62] and D 4-6 [58]).

Here, we used high-throughput sequencing of the internal transcribed spacer region (ITS2) to identify
the Symbiodiniaceae assemblage and the local-scale environmental drivers of symbiont community
composition for 600 colonies of the common reef-building coral Montipora capitata collected from
across 30 sites in Kāne‘ohe Bay. This fine-scale sampling of symbionts from corals across Kāne‘ohe
Bay included the more environmentally extreme northern and southern regions not sampled by
previous studies. Our comprehensive sampling provides a baseline for symbiont communities across
the full environmental gradient of the bay against which future consequences of coral bleaching can
be compared and allows us to investigate the role of the environmental gradient in shaping the
symbiont community of Montipora capitata.
2. Material and methods
2.1. Site selection and tagging
Details of the stratified random sampling design and environmental data are detailed by Caruso et al.
[63]. Briefly, the bay was divided into five hydrodynamically defined regions (blocks) from South to
North based on the water flow regimes and water residence time [64,65] and six sites were selected
within each block following a stratified random sampling design [63]. Within each of these six sites,
20 visually healthy M. capitata were tagged, for a total of 600 tagged colonies distributed across 30
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Figure 1. (A) Sites and blocks in Kāne‘ohe Bay. Each point is a randomly selected site within blocks represented by colours (Site IDs
in electronic supplementary material, table S1). Blocks go from the south bay (block 1) to north bay (block 5). (B) Montipora
capitata, the rice coral. The figures illustrate the morphological plasticity of this species, which can be branching (top) or
plating (lower picture). Site IDs consist of the digit corresponding to the block in which the site is contained, followed by the
site number (e.g. 1_10, with six sites per block, but not necessarily in consecutive order). Map done in the R package ggmap [67].
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sites spread equally across the five hydrodynamically defined blocks. In early 2018, about 1 cm2 was
sampled from each of 600 tagged Montipora capitata colonies. Sampled fragments were immediately
preserved in 70% ethanol and stored at −20°C until processed. DNA was extracted using the
Nucleospin Tissue Kits (Macherey-Nagel, Düren, Germany) following manufacturer instructions and
quantified by fluorimetry (Quant-it HS dsDNA kit, Thermo-Fisher). Only corals that appeared healthy
were sampled for this study.

Data loggers (Hobo Pendant or Water Temp Pro v. 2 loggers, Onset Computer Corp., Bourne, MA)
recorded temperature and sediment traps were collected regularly from each site [63] and used to
calculate variation in temperature and sedimentation rate (standard deviation, maximum, minimum
and range for each). Degree heating weeks (DHW) per site was calculated as the number of weeks
when temperature exceeded the bleaching threshold of 28.5°C (MMM +1°C; [59,66]) (figure 1).

2.2. Symbiodiniaceae ITS2 amplicon sequencing library preparation
Symbiodiniaceae amplicon library preparation and sequencing followed the protocol outlined in [68].
Briefly, the ITS2 region of Symbiodiniaceae ribosomal DNA was targeted for sequencing using
Symbiodiniaceae primers 454-ITSinfor2 (50-GAATTGCAGAACTCCGTG-30), ITSD (50-GTGAATTG
CAGAACTCCGTG-30) and 454-ITS2-reverse (50-GGGATCCATATGCTTAAGTTCAGCGGGT-30) and
its2rev2 (50-CCTCCGCTTACTTATATGCTT-30) modified from Arif et al. [69] to include Nextera indexes
to allow multiplexing (see electronic supplementary material). Library products were sequenced on
the Illumina MiSeq platform (v. 3 2 × 300 bp PE). Each library plate included a negative control (wells
to which no template DNA was added). In addition, to ensure repeatability and test for the effect of
sequencing run on the detection of symbionts, 192 samples (two 96 well plates) were sequenced more
than one time in different runs. We found no differences in either community composition or
symbiont identity that would alter our results or interpretation, and so the replicated control samples
were simply pooled and analysed as a single sample for that individual.

2.3. Amplicon sequencing analysis with symportal
Raw sequences were first demultiplexed using Cutadapt [70]. Demultiplexed forward and reverse reads
were submitted to SymPortal [71], a platform for genetically identifying Symbiodiniaceae using high
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throughput ITS2 sequence data that differentiates intra- and intergenomic sources of ITS2 sequence

variance (electronic supplementary material, figure S1).
Many terms have been used to describe the Symbiodiniaceae unity of resolution. To avoid ambiguity,

we restrict our use to ‘Symbiodiniaceae type’ and ‘Symbiodiniaceae profile’. A type refers to
Symbiodiniaceae taxa that have a specific sequence as their most abundant sequence. A
Symbiodiniaceae profile is a set of ITS2 sequences that have been found in a sufficient number of
independent samples to be identified as a ‘defining intragenomic variant’ (DIV). For example, C17 is a
Symbiodiniaceae type and C17d/C31-C21-C17e-C21ac-C17f-C17 g is a Symbiodiniaceae profile with
C17d present in higher abundance than the other types.

2.4. Statistical analysis
All analyses were done in the R statistical environment [72]. Bray-Curtis dissimilarity of relative
abundance of the Symbiodiniaceae community composition was tested by permutational multivariate
analysis of variance (PERMANOVA) in the function adonis (for effect of block, with site nested within
block), and pairwise.adonis (for pairwise PERMANOVA) in the vegan package [73], each with 999
permutations. To better visualize the similarity among blocks, R2 from the PERMANOVA was plotted
in a dendrogram using the function pheatmap in the package gplots [74]. The function metaMDS was
used in the R package vegan [73] to generate non-metric multidimensional scaling visualizations using
Bray-Curtis dissimilarities of algal symbiont community per block.

To investigate the effect of the environmental data in driving the Symbiodiniaceae community, we
performed distance-based redundancy analysis (dbRDA) using the function capscale. After running an
ANOVA to check the significance of the constrains axis as well as the significance of the
environmental variables (electronic supplementary material, table S1), we visualized the significant
variables in the dbRDA. Samples were considered to have majority Cladocopium (C) or Durusdinium
(D) if the proportion of either algal symbiont exceeded 80% in the sample (modified from [60]). All
remaining samples with Cladocopium and Durusdinium were designated as CD, corresponding to
corals with neither algal symbiont genus achieving greater than 80% dominance. Correlation among
the environmental factors was calculated using the function cor.test in R. Data and R code to execute
and reproduce all the analyses and figures presented in the manuscript are archived at Zenodo [75].
3. Results
3.1. Symbiodiniaceae ITS2 sequences and ITS2 type profiles
550 Montipora capitata samples returned high-quality reads. Prior to quality filtering, these samples
included 3 285 481 sequences which were reduced to 1 632 505 following quality control and minimum
entropy decomposition with SymPortal, an average of 2968 sequences per sample. 11 386 sequences
had not been previously curated by SymPortal and were unique to this dataset. A total of 283
Symbiodiniacae types were identified, 85% belonging to the genus Cladocopium, and 15% belonging to
the genus Durusdinium. Twenty-six ITS2 type profiles were identified across all samples, 23 of which
were from the genus Cladocopium, with the remaining three belonging to the genus Durusdinium.
Overall, 43% of Montipora capitata hosted Cladocopium only, 11% hosted Durusdinium only, and 46%
hosted a combination of both genera. From those mixed colonies, 32.5% were dominated by
Cladocopium (C greater than 80%), while 37% of colonies were dominated by Durusdinium (D > 80%).
To confirm differences in read number do not change the results or interpretation, we excluded 20
samples whose number of reads were more than two standard deviations above or below the mean.

3.2. Biogeography of symbiodiniaceae in Kāne‘ohe Bay
Symbiodiniaceae composition varied significantly among corals within each of the environmentally
delineated blocks (PERMANOVA, F25 = 6.5632, p = 0.001; electronic supplementary material, table S2).
Pairwise comparisons revealed that blocks 1 and 5 were significantly different, whereas blocks 2–4
were rarely significantly different from one another (electronic supplementary material, table S2,
figure 2a,b).

Most sites had corals with both Cladocopium and Durusdinium present, except two sites in block 5
(sites 5_3 and 5_6) which did not have any samples in which Durusdinium was detected (figure 3a,b;
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Figure 2. Similarity of Symbiodiniaceae communities detected in 600 Montipora capitata colonies collected across five
hydrodynamically defined blocks in Kāne‘ohe Bay (block 1 is furthest south, while block 5 is furthest north in the bay). (A)
nMDS of Symbiodiniaceae per block. Each point represents the symbiont community in a colony. Ellipses are 95% confidence
intervals. (B) Dendrogram and heat map of R2 of the PERMANOVA of Symbiodiniaceae per block highlighting the similarity
among blocks in the center of the bay that have been sampled in previous studies relative to block 1 and 5.

(A)

(B)

Figure 3. (A) Major Symbiodiniaceae types by site and block. (B) Symbiodiniaceae profiles by site. Block 1 is the southernmost in
Kāne‘ohe Bay, while block 5 is the most northern and similar to offshore conditions. Symbiodiniaceae ITS2 subtypes were
summarized to the major subtype to facilitate visualization in the bar charts (i.e. C31a and C31b were summarized as C31).
Due to the wide diversity of ITS2 available in the SymPortal database, not all sequences are given names. Only those
sequences that are used in the definition of ITS2 type profiles (i.e. DIVs) are named. Unnamed Cladocopium and Durusdinium
sequences were combined for visualization and represented as summed ‘C’ and ‘D’ types, respectively.
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electronic supplementary material, figure S1). It is noteworthy that sites 5_3 and 5_6 were also the least
diverse of all we sampled, and unlike other sites, some colonies hosted only a single type (C3) of algal
symbiont (electronic supplementary material, figure S1). Corals within block 5 hosted significantly less
Durusdinium symbionts than any other site, with all sites including corals hosting a majority of
Cladocopium. Site 2_2 had the highest relative proportion of Durusdinium and site 3_2 was the only site
to have three profiles of Durusdinium.



Figure 4. Distance based redundancy analysis (dbRDA) for environmental drivers of the Symbiodiniaceae communities in Montipora
capitata sampled throughout Kāne‘ohe Bay. Each point represents an individual colony sampled irrespective of site. Samples were
considered as majority Cladocopium (C) if they contain greater than 80%C, and majority Durusdinium (D) if greater than 80% D. Only
vectors for the environmental factors contributing significantly to the algal symbiont diversity are plotted. Each arrow signifies the
multiple partial correlation of the environmental driver in the RDA whose length and direction can be interpreted as indicative of its
contribution to the proportion of variation explained.
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3.3. Environmental drivers of symbiodiniaceae community composition
Environmental data from each site is provided in Supplemental materials (electronic supplementary
material, tables S1 & S3). dbRDA showed that M. capitata hosting majority Cladocopium are distinct
from M. capitata hosting majority Durusdinium or mixed C & D (figure 4). PERMANOVA of the
environmental factors in the dbRDA (electronic supplementary material, table S4) showed that depth,
DHW, maximum mean daily temperature recorded at the site and mean daily standard deviation
were all significant drivers of Symbiodiniaceae community composition. The environmental factors in
the study explained only 20% of the Symbiodiniaceae variation, with depth having the greatest
relative contribution (61%) followed by daily temperature standard deviation (19%), maximum
temperature (9.9%) and DHW (4.8%) (electronic supplementary material, table S4).
4. Discussion
Here, we contribute to a more nuanced understanding of coral algal symbiosis by examining the
associations of environmental drivers across a small spatial scale (approx. 10 km) on the community
composition of Symbiodiniaceae in one of the dominant reef-building corals in the region, Montipora
capitata. Previous surveys of the Symbiodiniaceae community structure of M. capitata across Kāne‘ohe
Bay [60,61] found algal symbiont structure differed at the level of site and colony, but did not find
significant differences in community composition of symbionts among regions of the bay. Here we
report significant differences in symbiont community composition across the environmental gradient
of Kāne‘ohe Bay that is not seen in these previous surveys. This difference may result from the
increased resolution possible with high-throughput methods in our study. Stat et al. [61] used cloning
and Sanger sequencing of ITS2 to identify algal symbionts, with fewer total colonies sampled (52),
each with far less resolution (5–7 clones per colony) and in a smaller portion of the bay (Blocks 1 and
2) than is possible with the amplicon approach using high-throughput sequencing employed here.
Innis et al. [60]) sampled a large number of colonies (707) using a qPCR assay targeting Cladocopium
and Durusdinium but did not have the resolution to identify the diversity of subtypes of Cladocopium
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and Durusdinium as in this study. However, it is not the additional resolution so much as the geographic

range of sampling that appears to underlie the difference, because Innis et al. [60] had no samples from
either the far north or far south of the bay (blocks 1 & 5 in our study). Innis et al. [60] concluded that
Symbiodiniaceae community variability may arise from either holobiont phenotypic plasticity or
differential survival of Symbiodiniaceae across light gradients and recommended additional study into
whether algal symbiont communities were stable or plastic within individuals across these gradients.
Our findings are concordant with both Stat et al. [61] and Innes et al. [76] in that there is little
differentiation among symbiont communities across the central portion of Kāne‘ohe Bay (blocks 2–4),
but without blocks 1 and 5, in which we found the greatest difference in symbiont composition, they
did not sample the ends of the environmental gradient over which the community composition is
observed to shift significantly in our study.

Using a high-throughput metabarcoding approach, our study shows that the Symbiodiniaceae
community composition varied at all spatial scales examined, both among the sites within each region
and among hydrodynamically defined blocks across the bay. Interestingly, the relative proportion of
algal symbiont types is relatively consistent among the colonies (i.e. when Cladocopium is present, C31
is typically most abundant followed by C17 and C21, whereas for Durusdinium, D1 is the most
abundant, followed by D4 and D6), no matter the location (figure 3; electronic supplementary
material, figure S1). In total, seven types of Cladocopium (C1, C3, C15, C17, C21, C31) are detected
among colonies across Kāne‘ohe Bay, with C31, C17 and C1 being the most common. Similarly, we
detected six types of Durusdinium (D, D1, D2, D3, D4, D6) with D1, D4, and D6 being the most
prevalent. These results are consistent with multiple studies reporting strong Symbiodiniaceae
specificity with type C31 being the most common symbiont associated with Montipora capitata in
Hawai‘i [58,61,62], but the distinctly structured communities found in the northern and southern
extremes of the bay were undetected by previous studies.

Despite considerable variation in the composition of the communities of Symbiodiniaceae hosted by
Montipora capitata sampled across Kāne‘ohe Bay, we find that the coral–algal symbiont association was
strongly influenced by environmental gradients. M. capitata located at the environmental extremes (block
1 in the south and block 5 in the north) hosted Symbiodiniaceae communities that were significantly
different from blocks in the centre of the bay. We find four factors (depth, DHW, maximum and
variability in temperature) that are significant drivers of Symbiodiniaceae community composition
(electronic supplementary material, table S4), although these four significant factors combined explained
less than 20% of the variation in symbiont community composition. Although 80% of the variation
remains unexplained, meta-analyses show that environment generally explains about 20% of the
variation in community structure across terrestrial, freshwater and marine ecosystems [77]. Other factors
such as light [57], nutrients [78,79] and pH [80] were unmeasured here, but have also been found to
influence the symbiont community in other systems. It is important to note that in our study, we cannot
determine if these correlated environmental factors are the direct drivers of algal symbiont diversity.
Until future studies determine the underlying mechanisms driving variation in algal symbiont
community composition, we remain cautious in our interpretation of these environmental drivers.

4.1. Depth
Consistent with previous studies [18,57,60,81,82], depth appears to be the strongest environmental driver
of symbiont community composition measured in this study. The deepest block (5) hosted the lowest
proportion of Durusdinium, with most colonies hosting only Cladocopium (figure 3; electronic
supplementary material, figure S1). A similar pattern is found when looking at individual sites
surveyed across all blocks, with the deepest sites (1_3, 1_4, 1_9, 1_10, 2_4 and 2_8) being mostly
dominated by Cladocopium. While Innis et al. [60] also found depth to be the primary driver of algal
symbiont clades in Kāne‘ohe Bay they concluded the mechanism was most likely light attenuation in
deeper reefs as opposed to depth per se. It is well known that light attenuates with depth in water,
but the relationship is complicated in coral reef environments where a variety of other factors can
alter penetration of light to deeper corals [83–85]. Likewise, an entire suite of environmental
parameters other than light also covary with depth, such that it is often difficult to know exactly
which environmental or biological factors drive changes in community structure with depth [86–89].
Depth is simple to measure and is well-correlated with changes in coral reef community structure in
many studies (reviewed by [86,90,91]) but is much harder to isolate as an environmental factor to
determine the quantitative relative contribution in studies such as this (electronic supplementary
material, table S5).
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4.2. Sedimentation

Suspended sediments can both impact corals directly and alter their light penetration and irradiance.
Sedimentation can also impact corals negatively through increased nutrient input, damaging the coral
surface and by making it harder for corals to feed and photosynthesize [92–94]. Sediment particles in
the water increase turbidity, which attenuates light similarly as does depth. In our study, however,
none of the sediment parameters were significant predictors of symbiont community composition
(electronic supplementary material, table S4). The lack of significance may result from the complex
interaction of turbidity and depth on light because deeper low sediment reefs (like most sites in
block 5) may experience higher irradiance than shallower sites with higher turbidity.

4.3. Temperature
The role of temperature in mediating the symbiosis between the coral host and their algal endosymbionts
has been widely studied [31,32,95,96], so it is not surprising that several aspects of temperature come out
as significant drivers of community composition. Degree heating weeks (DHW) and maximum
temperature are widely established to be major predictors of the breakdown of symbiosis between the
partners and result in coral bleaching [27,97]. Unsurprisingly, both were significant in our analysis of
environmental drivers, although neither explained much of the variation in algal symbiont
community structure among sites. By contrast, variability in temperature, in this case, mean daily
temperature standard deviation, had the second largest contribution to the observed variation in algal
symbiont community structure. A number of studies highlight the importance of daily temperature
fluctuations for coral acclimatization to higher temperatures [98,99], suggesting that temperature
fluctuations encourage greater thermal tolerance by exposing the corals to short periods of thermal
stress without causing mortality. Blocks in the centre of the bay had higher temperature variation
(higher mean average temperature standard deviation and higher mean daily range) and our data
shows that the existing community structure of algal symbionts responds to such variability (figure 3).
Blocks in the centre of the bay (blocks 2–4) had higher proportions of Durusdinium, while block 1 and
block 5 (extreme north and south, respectively) had the lowest proportion, suggesting that blocks at
the extreme ends of the bay may be more vulnerable to bleaching events. This prediction is consistent
with coral surveys during the 2015 bleaching event in Kāne‘ohe Bay which found the highest levels of
bleaching and paling in the north (70%) and south (60%) of the bay [100].

Here we advance previous work by showing that algal symbiont communities within a single species
of coral in a single embayment are finely tuned to their environmental conditions. Whether community
response results from selection for Symbiodiniaceae types living under different environments, adaptive
shuffling of Symbiodiniaceae communities in response to environmental conditions, or both, remains to
be determined. Comparing microscale environmental variability [101,102] to algal symbiont community
structure might explain much of the variability we see, because algal symbionts in colonies may be
adaptively responding to fine-scale variability at the same site within the broad regional differences
we compared here. A more detailed understanding of the relationship between adaptive tuning of
algal symbiont communities to local environmental conditions will require fine-scale environmental
measurements coupled with long-term monitoring of corals in the field to determine whether and
how algal symbiont communities within individual colonies respond through time.
5. Conclusion
Fine-scale sampling of 600 M. capitata colonies across a relatively small spatial gradient (approx. 10 km)
within Kāne‘ohe Bay showed that algal symbiont community structure is associated with depth and
temperature. This fine-scale variation in algal symbiont community composition across local
environmental gradients suggests that algal symbiont communities can adaptively match the
environmental conditions surrounding the holobiont. Previous studies of Symbiodiniaceae in the Bay
focused on the three central regions that exhibit the least environmental variability among sites across
the environmental gradient from north to south. Here we extend the sampling to include the full
gradient across the bay and overturned previous conclusions that algal symbiont structure did not
differ significantly among regions of the bay. Our results support that conclusion for symbiont
communities in the central portion of the bay, but show that both environmental extremes of the far
northern and southern regions of Kāne‘ohe Bay sampled here for the first time differ significantly
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from those in the central region. These results imply that the community composition responds to the

conditions under which the holobiont is living, setting the stage for understanding the role of
environmental conditions in how Symbiodiniaceae communities are distributed in space and time.

Our study highlights the complex interactions among environmental factors and algal symbiont
diversity in the reef-building coral Montipora capitata. While depth was the main factor driving algal
symbiont community composition in our study, several aspects of temperature (DHW, max temp &
mean standard deviation) likewise appear to be drivers of algal symbiont community composition.
We also note that many factors correlate with depth, such as light, temperature, sedimentation rate
and water flow, such that fine-scale measurements of the full range of environmental factors
surrounding individual colonies through time will be needed to pinpoint the most important
environmental drivers of algal symbiont community structure. Regardless of the ultimate suite of
parameters that drive algal symbiont community structure in corals, our study shows that
Symbiodiniaceae communities are attuned to fine-scale environmental gradients and that
understanding these complex interactions across the heterogeneous mosaic of coral reef environments
is needed to better predict spatial patterns in biological responses such as bleaching susceptibility.
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