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Digested sludge, as the main by-product of the sewage sludge
anaerobic digestion process, still contains considerable organic
compounds. In this protocol, we report a facile method for
preparing digested sludge-derived self-doped porous carbon
material for high-performance supercapacitor electrodes via
a sustainable pyrolysis/activation process. The obtained
digested sludge-derived carbon material (HPDSC) exhibits
versatile O-, N-doped hierarchical porous framework, high
specific surface area (2103.6 m2 g−1) and partial graphitization
phase, which can facilitate ion transport, provide more storage
sites for electrolyte ions and enhance the conductivity of
active electrode materials. The HPDSC-based supercapacitor
electrodes show favourable energy storage performance, with
a specific capacitance of 245 F g−1 at 1.0 A g−1 in 0.5 M Na2SO4;
outstanding cycling stability, with 98.4% capacitance retention
after 2000 cycles; and good rate performance (211 F g−1 at
11 A g−1). This work provides a unique self-doped three-
dimensional hierarchical porous carbon material with a
favourable charge storage capacity and at the same time finds
a high value-added and environment-friendly strategy for
disposal and recycling of digested sludge.

1. Introduction
With the yearly increase in sewage sludge generation [1],
various sewage sludge treatment and disposal technologies have
been developed and implemented to protect the environment
and human health. Anaerobic digestion is recognized as one
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of the most widely used treatment methods because it can reduce the amount of sewage sludge for
disposal and generate renewable energy by converting biodegradable material into methane [2,3].
Nevertheless, only 20–30% of the organic materials in sewage sludge are mineralized through standard
anaerobic digestion technologies [4]. Digested sludge, as the main product of the anaerobic digestion
process, still contains considerable amounts of organic compounds [5]. Currently, the most common
methods for disposing of digested sludge are land application, combustion and landfilling. Land
application poses the risk of damaging the environment due to the existence of heavy metals and
hazardous substances in digested sludge [6]. Combustion is difficult because of the high ash and moisture
content of digested sludge [7], and landfilling can be very challenging given the dwindling availability
of land in developed cities [8]. Therefore, it is necessary and important to explore more cost-effective and
environmentally benign reuse of digested sludge.

Supercapacitors are recognized as among the most promising energy storage and supply devices
due to their long cycle life, ultrahigh power density and fast charge/discharge process (within
seconds) [9]. In general, supercapacitors can be divided into two types according to the energy storage
mechanism: pseudo-capacitors and electrochemical double-layer capacitors (EDLCs). Pseudo-capacitors
can provide a relatively higher specific capacitance, but their practical applications are limited because
of their poor rate capability and cycle stability [10]. EDLCs usually possess excellent charge/discharge
cycling stability, which may be ascribed to the electrostatic accumulation of ionic charges at the
electrode/electrolyte double-layer interfaces. Carbon-based porous materials have been found to be
promising candidates for EDLCs. However, their low energy density may limit practical applications
[11]. An effective approach to improving the energy density is to enhance the specific capacitance, which
is influenced by the electrochemically accessible surface areas of electrode materials during contact with
the electrolyte [12]. For this reason, heteroatom-doped carbon materials with large surface areas and
appropriate pore size distribution are desirable for the electrodes in EDLCs. And, introducing defects
into carbon materials can also improve the electrochemical performance [13,14]. Lin and co-workers
have improved the wettability and electroactive sites of carbon material by creating defects on the side
surfaces of few-layered graphene [15].

Recently, researchers have studied the preparation of carbon-based supercapacitor electrodes with
sewage sludge as the precursor. For example, Yuan & Dai synthesized carbon electrode material
via pyrolysis of sewage sludge and discovered that SiO2, an inherent constituent of sewage sludge,
acted as a built-in template during the pyrolysis process and facilitated a porous structure [16].
Feng et al. reported that the fly-silicon treatment for sewage sludge promoted removal of the ash
content and enhanced electrochemical performance [17]. However, from a strategic sustainability
perspective, the biodegradable organic matter in the sewage sludge could be first converted into biogas,
a renewable energy, before the synthesis process. Thus, compared with the reported sewage sludge-
derived supercapacitor electrode material, it would nevertheless be more economic and environmentally
sustainable to use digested sludge as a precursor for supercapacitor electrodes.

Given that it contains various O-, N-rich organic compounds and has a porous texture, digested
sludge could be considered as a potential precursor for the electrode material of supercapacitors. In
this work, for the first time, we prepared a self-doped three-dimensional hierarchical porous carbon
material (HPDSC) by facile and sustainable pyrolysis/activation process using digested sludge as the
single precursor. The as-prepared HPDSC exhibits a versatile O-, N-doped porous framework with a
combination of micropores and meso-/macropores, huge specific surface area, partial graphitization
phase and good conductivity. Furthermore, the HPDSC-based electrode shows a desirable specific
capacitance, excellent rate performance and outstanding cycling stability, indicating good prospects for
HPDSC use in practical applications for high-performance supercapacitor electrodes.

2. Material and methods
2.1. Materials
As the raw material, the digested sludge was collected from the anaerobic digestion reactor of our
laboratory [18] and was stored at −80°C before use. Acetylene black was purchased from Cabot Co.,
USA. Polytetrafluoroethylene (PTFE) solution (60% suspension in water) was purchased from Aladdin
Chemistry Co., Ltd. Potassium hydroxide, hydrochloric acid, hydrofluoric acid and sodium sulfate
(Na2SO4) were of analytical grade and purchased from Sinopharm Chemical Reagent Co., Ltd. All
reagents used in this work were used as received without any further purification. Ultrapure water for



3

rsos.royalsocietypublishing.org
R.Soc.opensci.5:172456

................................................
solution preparation was supplied from a water purification system (Hitech Instrument Co., Shanghai,
China).

2.2. Synthesis of electrode materials
The obtained digested sludge was vacuum freeze-dried and then pyrolysed at 600 or 800°C under
150 ml min−1 of N2 flow for 2 h. After natural cooling to ambient temperature in the N2 flow, the product
was immersed in 20 wt% HF and 1 M HCl aqueous solution to remove impurities. The resultant carbon
materials were denoted as DSC-600 and DSC-800, respectively. Then, the DSC-600 was blended with
KOH at a mass ratio of 1 : 3 (WDSC-600/WKOH) and heated to 800°C for 2 h. After being cleaned and
dried, the resultant hierarchical porous digested sludge carbon was denoted as HPDSC.

2.3. Material characterization
Scanning electron microscopy (SEM; FEI Nova Nano SEM 450, The Netherlands) and transmission
electron microscopy (TEM; JEM 2011, Japan) were used to examine morphologies and microstructures
of the as-obtained digested sludge-derived carbon materials. Nitrogen adsorption–desorption isotherm
measurements (Quadrasorb evo, Quantachrome Co., USA) were carried out at 77 K to analyse the pore
structure. The Brunauer–Emmett–Teller (BET) method and Barrett–Joyner–Halenda model were used to
evaluate the specific surface area and pore diameter distribution of carbon materials, respectively. The
X-ray diffraction (XRD) patterns (D8 Advance, Bruker Co., Germany) were measured to analyse the
crystal structure of carbon materials. Fourier transform infrared spectra (FTIR; Nicolet5700, Thermo
Nicolet Co., USA) were used to determine the functional groups of the as-obtained hierarchical porous
carbon materials. Raman spectra (Horiba Jobin Yvon Co., France) were measured to analyse the defects
in the carbon materials. X-ray photoelectron spectroscopy (XPS) (PHI5000C and PHI5300, Perkin-Elmer
Co., USA) was used to investigate the electronic environment of the materials.

2.4. Electrochemical measurements
The electrochemical investigations were conducted with a CHI 760E electrochemical workstation
(Shanghai Chenhua Instruments Co.) in a three-electrode system, in which a platinum wire served as
a counter electrode, Ag/AgCl electrode was used as a reference electrode, and a 0.5 mol l−1 Na2SO4
aqueous solution served as electrolyte. The working electrodes were composed of 10 wt% acetylene
black conducting agent, 10 wt% PTFE binder and 80 wt% carbon material (e.g. HPDSC). To prepare the
working electrode, a suspension containing the above compounds was loaded on a 1 × 1 cm2 nickel foam
current collector with a loading capacity of 2–5 mg cm−2, and then vacuum dried at 60°C overnight.

Cyclic voltammetry (CV) curves were measured over the potential range of 0–0.8 V versus Ag/AgCl
at different scan rates from 5 to 200 mV s−1. Galvanostatic charge/discharge (GCD) was conducted
galvanostatically at 0.5–11 A g−1 with a potential window of 0–0.8 V. The electrochemical impedance
spectroscopy (EIS) of the as-obtained digested sludge-derived carbon material was carried out over
a frequency range of 0.01 to 100 000 Hz with an alternating current amplitude of 5 mV. The specific
capacitance was calculated using the following formula:

C = I�t
m�V

, (2.1)

where C (F g–1) is specific capacitance, I (A) represents discharge current, �t (s) is discharge time, m (g)
is the mass of the carbon materials in the electrode and �V (V) is the potential window.

3. Results and discussion
3.1. Structural characteristics
Figure 1 exhibits the SEM and TEM images of as-prepared digested sludge-derived carbon materials.
As shown in figure 1a, DSC-600 displays irregular porous structures. These porous structures stem
from the particular compositions of digested sludge and can be derived from the following three
factors: (i) the reserved abundant intrinsic pores in digested sludge after vacuum freezing drying;
(ii) SiO2 in digested sludge acting as a built-in template, which avoids agglomeration and promotes
the generation of the unique pore diameter distribution; and (iii) carbonization and graphitizing of



4

rsos.royalsocietypublishing.org
R.Soc.opensci.5:172456

................................................
(a) (b)

(c)

(e)

(d)

( f )

3 mm

3 mm

2 mm

100 nm

100 nm

100 nm

Figure 1. SEM images (a,c,e) and TEM images (b,d,f ) of DSC-600 (a,b), DSC-800 (c,d) and HPDSC (e,f ).

organics in the digested sludge during the pyrolysis calcination process, which results in a rough porous
texture. This framework is preserved in as-prepared DSC-800 (digested sludge pyrolysed at 800°C)
(figure 1c), but it is slightly collapsed, which could be attributed to higher carbonization temperature.
Among the three digested sludge-derived carbon materials, HPDSC (figure 1e) clearly reveals the
most developed three-dimensional network structure and the roughest surface, which indicates KOH
activation greatly promotes the formation of pores within the carbon materials. Moreover, TEM images
(figure 1f ) further confirm the interconnected three-dimensional hierarchical porous structure, which can
facilitate infinitely fast ion transport and increase the accessible interface area to electrolyte [19].

To further investigate the detailed textural characteristics of the materials, N2 adsorption–desorption
isotherms were obtained. All isotherm plots shown in figure 2a exhibit typical IV-type curves with an H4
hysteresis loop caused by the capillary condensation in mesopores of the carbon material, suggesting the
existence of a considerable number of mesopores in digested sludge-derived carbon materials [20]. The
curves exhibit a slight upward tendency when relative pressure is close to 1.0, which could be due to the
existence of internal macropores in materials [21]. At a low relative pressure (P/P0 < 0.5), the isotherm
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Figure 2. (a) Nitrogen adsorption/desorption isotherms and (b) corresponding pore size distribution curves of DSCs, (c) FTIR of DSCs,
(d) XPS survey spectra of DSCs, (e) XRD patterns of DSCs and (f ) Raman spectra of DSCs.

plot of HPDSC shows a clear upward trend, suggesting HPDSC is rich in micropores [22]. The result
indicates that KOH activation introduces micropores to the hierarchical porous carbon materials.

Figure 2b depicts pore diameter distributions determined by N2 adsorption for the digested sludge-
derived carbon materials and further suggests the intrinsic hierarchical porous structure of these carbon
materials. The mesopore structure is predominant in all of the materials because the three curves
in figure 2b show a peak at 4 nm. Furthermore, the peak of the curve for HPDSC is the sharpest,
indicating KOH activation can promote the formation of mesopores in the materials. By combining this
observation with the analysis of the nitrogen adsorption isotherm, it can be seen that KOH activation
promotes a simultaneous increase in micropore content and the significant development of mesopores
in the materials, thereby forming a versatile porous framework with a combination of micropores and
meso-/macropores. The three-dimensional hierarchical porous carbon texture helps expose more active
functional groups in the carbon skeleton to material surfaces, enhances the specific surface areas of the
material and provides more storage sites for electrolyte ions [23].

The relevant mechanisms for KOH activation of carbon mainly occur in three phases: (i) the carbon
skeleton is etched via redox reactions between diverse potassium compounds (KOH, K2CO3 and K2O)
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and carbon, thus generating a large number of micropores; (ii) the gasification of carbon to CO further
develops the porosity; and (iii) the generated metallic K can efficiently intercalate into carbon lattices,
leading to volumetric expansion of the carbon framework [24]. The chemical reactions can be expressed
as follows [25]:

6KOH + 2C → 2K + 2K2CO3 + 3H2, (3.1)

K2CO3 + 2C → 2K + 3CO, (3.2)

K2CO3 → K2O + CO2, (3.3)

K2O + C → 2K + CO (3.4)

and CO2 + C → 2CO. (3.5)

In this activation process, the formed K2CO3 starts decomposing to K2O and CO2 at over 700°C and
completely disappears at about 800°C [26].

Remarkably, HPDSC has a specific surface area of 2103.6 m2 g−1, which is the highest among the
three materials (the specific surface areas of DSC-800 and DSC-600 are 302.9 m2 g−1 and 418.8 m2 g−1,
respectively). This high surface area could be due to the thorough KOH activation of carbon materials
and makes for a desirable specific capacitance [26].

3.2. Chemical composition
The FTIR characterization (figure 2c) was performed to analyse the functional groups of the as-prepared
carbon materials. All of the spectra show similar vibration absorptions. The characteristic peak located
at 3414 cm−1 originates from the stretching vibration of the −OH group [27]. Another peak, at 1698 cm−1

in the spectrum, can be ascribed to the stretching vibration of the C=O bond [23]. The broad peak at
1620 cm−1 can be attributed to the stretching vibration of the C=C bond, indicating the presence of an sp2

hybridized honeycomb lattice [28]. The remaining peak at 1112 cm−1 corresponds to the C−O−C bond
vibration [29]. The abundance of oxygen-containing groups on the carbon frameworks would provide
the essential hydrophilicity property for electrode materials, generate pseudocapacitance and make the
materials suitable for use in active electrodes [30].

To further investigate chemical components of the materials, XPS was conducted. As shown in
figure 2d, all XPS spectra exhibit three distinct peaks at approximately 285 eV, 400 eV and 532 eV, which
are caused by the C1s, N1s and O1s orbitals, respectively [24]. The organic matter abundant in O and
N in digested sludge is exhibited as O-, N-dopant precursor during this synthesis process. The weak
peak intensity of N1s suggests a small quantity of active nitrogen-containing functional groups in the
materials, whereas the pronounced peak of O1s shows the three materials contain a large number of
surface active, oxygen-containing functional groups. Compared with DSC-600, the contents of nitrogen
in DSC-800 decreased due to the vaporization of nitrogenous organic matter at the higher carbonization
temperature. The HPDSC has higher carbon content and lower heteroatom (O and N) content than DSC-
600, which reflects the removal of a small number of functional groups, including O and N, during the
KOH activation process.

The N1s core-level spectrum of HPDSC (figure 3a) shows four nitrogen peaks, including N-O
(oxidized N) at 402.5 eV, N-Q (quaternary N) at 400.8 eV, N-5 (pyrrolic/pyridinic N) at 399.7 eV and N-6
(pyridinic N) at 398.5 eV [31,32]. Among these configurations, N-6 and N-5 with their planar structures
were found to be the main sources of pseudocapacitance, whereas N-Q could increase the conductivity
of carbon matrixes [33]. The peak fitting analysis shows that the amount of N-5 is significantly high in
HPDSC, whereas the most prevalent component in DSC-600 and DSC-800 is N-Q and N-O, respectively.
Meanwhile, the N1s spectra (figure 3c,e) of DSC-600 and DSC-800 are short of N-6. These results illustrate
that the KOH activation is more likely to promote the generation of N-6 and N-5 in the carbon framework
of HPDSC, and thus greatly improves its specific capacitance. A detailed study of the C1s peak (figure 3b)
of HPDSC by deconvolution analysis reveals the coexistence of C=C (284.8 eV), C−C (285.4 eV), C−OH
(286.2 eV), C−O (286.8 eV) and O−C=O (288.4 eV) [26]. These results are consistent with the FTIR results.

Figure 2e shows the XRD patterns of the digested sludge-derived carbon materials. It can be observed
clearly that all of these materials show two peaks at 2θ = 24° and 43°, which can be attributed to
the (002) and (101) facets of amorphous carbon, respectively, and indicates the materials are partially
crystalline [34]. The intensities of the two peaks for HPDSC are slightly reduced, suggesting KOH
activation at 800°C partially destroys the crystal structure. This is further confirmed by the Raman
spectra. Remarkably, the intensity increases sharply at the low-angle scattering peak, indicating the
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Figure 3. High-resolution N1s XPS spectra of HPDSC (a), DSC-800 (c) and DSC-600 (e). High-resolution C1s XPS spectra of HPDSC (b),
DSC-800 (d) and DSC-600 (f ).

presence of a good deal of micropores [35]. These indications are in accordance with the results from
the BET analyses.

The Raman spectra for the digested sludge-derived carbon materials are illustrated in figure 2f. All
the curves exhibit two prominent peaks at 1340 and 1590 cm−1, which are caused by the characteristic
D and G bands of the materials, respectively [36]. The D band reflects the degree of defects in carbon,
whereas the G band corresponds to the degree to which the materials are graphitized [37,38]. The strong
intensity of G bands for the materials indicates their good graphite-like structure. The ID/IG values (the
intensity ratio of D band to G band) of DSC-600, DSC-800 and HPDSC are 0.86, 0.91 and 0.98, respectively.
These results suggest that higher carbonization temperature and the KOH activation process promote the
production of defects from the ideal graphitic lattice, which is in accordance with the XRD results.

3.3. Electrochemical properties
Given the existence of interconnected, hierarchically porous structure with suitable pore size, O-, N-
doped framework, reinforced hydrophilicity and high surface area, the digested sludge-derived carbon
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materials are expected to be promising candidates for use in supercapacitor electrodes. To explore the
electrochemical properties of these materials, CV measurement was performed in a three-electrode
system in 0.5 M Na2SO4 aqueous solutions at room temperature (figure 4). Apparently, at the same
potential scan rates, all CV plots exhibit quasi-rectangular-like mirror image characteristics from 0 to
0.8 V, which can be attributed to the similar chemical composition of these materials and indicates that
the capacitance originated mainly from the electronic double-layer capacitor.

The loop area of DSC-800 is slightly smaller than that of DSC-600, suggesting the higher
carbonization temperature is not required for high capacitance. Compared with DSC-600, HPDSC
exhibits much larger loop areas with bigger plateau currents, which indicates KOH activation can
promote dramatically increased capacitance. By KOH activation, the specific surface area of the
carbon electrode material increases from 418.8 m2 g−1 for DSC-600 to 2103.6 m2 g−1 for HPDSC, which
means there is a larger accessible surface area for electrolyte ion accumulation. Moreover, KOH
activation promotes a simultaneous increase in micropore and mesopore content, forming an advanced
three-dimensional hierarchical porous texture with abundant mesopores, moderate micropores and
macropores. Micropores can vastly increase the specific surface area of carbon materials and thus
provide more storage sites for electrolyte ions [39]. Mesopores are extremely important for providing an
expedited and efficient ion transfer pathway, thus improving the infinitely fast ion transport and further
heightening electrolyte accessibility to the micropores area [40]. Macropores act as an ion reservoir and
reduce the ion diffusion distance [41]. To sum up, KOH activation could significantly enlarge the specific
capacitance of porous carbon materials by greatly expanding the specific surface area and forming
a desirable porous structure, and HPDSC has the best potential as an electrode material among the
materials studied.

Figure 5a demonstrates the CV plots of the HPDSC at different potential scan rates. It is clear that loop
area increases as the scanning rate increases. The CV plots still retain the roughly rectangular shape with
little deformation at scan rates up to100 mV s−1, suggesting low internal resistance, rapid electrolyte ion
diffusion kinetics and good rate capability. The gradual tilt of CV plots at higher scan rates of 150 and
200 mV s−1 is likely due to the unavoidable resistance of electrode and electrolyte.

To further evaluate the capacitance performance and calculate the specific capacitance of the materials,
GCD experiments were conducted at different current densities. Figure 5b shows the GCD curves of the
three carbon nanomaterials at a current density of 1.0 A g−1. All the GCD curves in figure 5b exhibit
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linear and symmetrical triangular shapes, indicating the electrodes made with carbon nanomaterials
have excellent double-layer capacitor behaviours and electrochemical reversibility during the charge
and discharge process. Additionally, there is a small voltage drop where the discharge curves start,
which originates from the unavoidable internal resistance of the carbon electrode materials. At a
current density of 1.0 A g−1, the calculated specific capacitances of DSC-600, DSC-800 and DSHPC are
123 F g−1, 100 F g−1 and 245 F g−1, respectively. These results suggest that the capacitance properties
could be further reinforced by KOH activation and that electrodes made with HPDSC possess superior
capacitance behaviour. This accords well with the conclusion of CV measurement.

GCD curves for HPDSC at different current densities from 0.5 to 11 A g−1 are shown in figure 5c. It is
notable that a symmetric triangular shape with small IR drops is still retained at the high current density
of 11 A g−1. This result shows that the HPDSC electrode has good rate capability, which promotes the
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fast charge/discharge of supercapacitors. As shown in figure 5d, the calculated specific capacitance for
the HPDSC is 257 F g−1, 245 F g−1, 229 F g−1, 218 F g−1, 213 F g−1 and 211 F g−1 at the current densities
of 0.5 A g−1, 1 A g−1, 3 A g−1, 5 A g−1, 8 A g−1 and 11 A g−1, respectively, with the specific capacitance
retention as high as 82.1%. The decrease of specific capacitance is due mainly to the insufficient electrolyte
ion diffusion kinetics of HPDSC in Na2SO4 electrolyte; that is, electrolyte ions fail to efficiently access the
porous electrode interface with the increase of current density.

To further understand the capacitive behaviours of these materials, the EIS test was performed
with an AC modulation of 5 mV in a frequency range of 10−2–105 Hz. Figure 5e shows the Nyquist
plots for the HPDSC, DSC-800 and DSC-600 electrodes in the 0.5 M Na2SO4 electrolyte. All three EIS
spectra have a similar shape, with a semicircle at high-frequency region and a straight line in the
intermediate region. It is known that the semicircle can be attributed to the charge-transfer resistance
(CTR) from the interface of the electrode to electrolyte, which is caused by Faradic reactions and EDLC
[42]. Generally, the bigger the semicircle diameter, the larger the impedance will be. As shown in
figure 5e, the HPDSC electrode’s Nyquist plot has the smallest semicircle diameter, meaning it has the
lowest CTR at the active material/electrolyte interface. This indicates that fast charge transportation
could be achieved with the electrode made with HPDSC. The 45° straight line in the intermediate
frequency region corresponds to the Warburg region, which represents ion diffusion into hierarchical
porous carbon electrode materials [43]. The EIS spectrum of the HPDSC electrode exhibits the shortest
Warburg region, indicating that the fastest ion diffusion occurs in the HPDSC electrode. All the EIS
spectra possess a near-vertical line over the low frequency range, suggesting good capacitor behaviours
of digested sludge-derived carbon materials, especially for HPDSC [44]. Furthermore, the x-intercept
in the high frequencies indicates the equivalent series resistance (ESR), which derives mainly from
the inner resistance of active materials, electrolyte ionic resistance and contact resistance between the
current collector and the electrode [45]. The ESR values of HPDSC, DSC-800 and DSC-600 are 1.80 Ω,
2.55 Ω and 2.71 Ω, respectively, suggesting HPDSC possesses the optimal conductivity as a result
of the inherent N-Q, partial graphitization phase and the interconnected three-dimensional porous
structure.

Cyclic stability is another significant factor determining the practical use of carbon electrode materials.
Figure 5f shows the small fluctuation in specific capacitance with cycle number for the HPDSC electrode,
which was researched by GCD at a current density of 1 A g−1 in Na2SO4 electrolyte. After 2000 cycles,
the specific capacitance of the HPDSC electrode amounts to 241 F g−1 with 98.4% retention of initial
capacitance (245 F g−1), which is superior to the electrochemical performance of three-dimensional
graphene material with a specific capacitance of 200 F g−1 in aqueous electrolyte and 86.2% retention
after 5000 cycles [46]. These results indicate high cycle stability of the HPDSC electrode and a promising
future for its use in supercapacitors. HPDSC’s high cycling stability can also be confirmed by the GCD
curves (inset of figure 5f ) before and after 2000 charging/discharging processes, which overlap almost
perfectly. This further highlights the application potential of HPDSC electrodes in excellent-performance
supercapacitors.

Thus, the excellent capacitance performance of the HPDSC can be attributed to the following
properties: (i) the obtained interconnected three-dimensional hierarchical porous structure with
moderate pore size distribution, which facilitates rapid electrolyte ion diffusion during the process of
charges/discharges; (ii) the large accessible surface area, which provides more storage sites for electrolyte
ions; (iii) the high hydrophilicity caused by abundant O-doped surface functional groups; and (iv) the
excellent electrical conductivity improved by the presence of doped N atoms in the carbon framework
and the partial graphitization phase of HPDSC.

4. Conclusion
Self-doped three-dimensional hierarchical porous carbon material for high-performance supercapacitor
electrodes was synthesized successfully from digested sludge via facile and sustainable pyrolysis/
activation process for the first time. An interconnected O-, N-doped three-dimensional porous
framework with appropriate pore diameter distribution and huge specific surface area enable the
material to exhibit excellent electrochemical performance, such as desirable specific capacitance,
remarkable rate performance and outstanding cycle stability. The unique qualities of the HPDSC and its
excellent electrochemical performance mainly originated from the particular compositions of digested
sludge. This protocol offers a facile method for high value-added and environment-friendly reuse
of digested sludge, while discovering a new pathway for economic and sustainable preparation of
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high-performance supercapacitor electrode materials from pollutants. Furthermore, the advanced carbon
materials prepared in this work could be used in other practical applications, such as adsorbents and
catalyst carriers.
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