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"There is no royal road to geometry," Euchd

told Ptolemy. But now Constance Reid tells us,

"Modem geometry is a royal road." And she

proves it with her fascinating introduction to the

wonderland of twentieth-century mathematics,

A Long Way from Euclid.

This book will delight anyone who has ever

felt the spell of the Queen of the Sciences. Based

in part on the author's previous success, Intro-

duction to Higher Mathematics, it concentrates

on the role played by the Elements of Euclid in

the last two thousand years. The reader needs

no mathematical background beyond his recol-

lection of elementary algebra and plane geom-

etry. The author's clear and simple explanations,

aided by more than 80 drawings integrated with

the text, will take him step by step from ideas

familiar since childhood to some of the most

exciting outposts of contemporary mathematics:

the arithmetic of the infinite, the paradoxes of

point sets, the "knotty" problems of topology,

the "truth tables" of symbolic logic.

Constance Reid begins with the ancient

Greeks' disturbing discovery that the real world

did not fit the system of numbers they had so

carefully laid out. There are, they found, quanti-

ties that cannot be specified in terms of whole

numbers. The Greeks' beautifully neat theory
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This book, which is based in part on the author s Intro-

duction to Higher Mathematics, has been written for

those whose first, and last, contact with real mathematics

was with plane geometry and the Elements of Euclid.

In a sense mathematics as we know it today began with

the Elements. In more than two thousand years it has, of

course, come a long way from Euclid. But it has never

left him behind.

It is the hope of the author that the reader of this

book will be able to glimpse through his own misty

memories of Euclid's geometry the outline of some of the

more imposing edifices of modern mathematics.
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-EUCLID TO PTOLEMY I

D

Modern geometry is a royal road.

A





1
The

Golden Knot

in the

Golden Thread

IN ANCIENT GREECE, WHERE MODERN
mathematics began, there was no ques-
tion among mathematicians but that

the gods themselves were mathemati-

cians too. But were the gods arithmeti-

cians, or were they geometers?
Number ruled the Universe, ac-

cording to Pythagoras in 500 B.C. Two
centuries after Pythagoras, at about

the same time that Euclid was com-

piling the Elements, Plato was asked,

"What does God do?" and had to reply,

"God eternally geometrizes." The
choice of God as geometrician rather

than arithmetician had quite literally

been forced upon Plato and the other

Greeks by two of the profoundest
achievements of pre-Euclidean mathe-

matics, both of them ironically due

to Pythagoras and his followers.

These two achievements deter-

mined the decisive choice of form

over number and set Western mathe-

matics on the path it would follow for

twenty centuries. The first was the

discovery and proof that the square
on the hypotenuse of a right triangle

is equal to the sum of the squares on

the other two sides. The second was

the discovery and proof that when
the sides of a right triangle are equal
there is no number which exactly

measures the length of the hypotenuse.



Specific instances of what we now call the Pythagorean
theorem were known long before the Greeks in such far

and separated parts of the world as India and China,

Babylon and Egypt. In early Egypt, as the pyramids were

being erected, basic right triangles were formed on the

knowledge of the most familiar instance of the theorem:

32 + 42 = 52

A rope was divided into twelve units by knots tied at

equal intervals, and pegs were placed in the third,

seventh, and final knots. When the rope was stretched and

pegged into place, it formed of necessity the desired right

triangle :

Although the Egyptians knew 3 2 + 4 2 = 5 2 and other

similar relationships obtained by multiplying or dividing
this one, we do not know if they were aware that the

equation gave no mere approximation but a theoretically
exact right triangle.*

Whether this general truth was 'actually known
* The Rhind Papyrus contains only such equivalents as

(X) + P = (ix) and 122 + 163 = 202
, which are obtained,

respectively, by dividing and multiplying the original by 4.
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earlier, history has left the discovery of the general
theorem to the Greeks, and traditionally to Pythagoras.

Pythagoras was in his youth a pupil of Thales, who had
measured the height of the great pyramid by comparing
the length of its shadow with that of a vertical stick. Later,
as a teacher himself, Pythagoras opened a school of his

own in his native town, where he attracted only one

pupil, also named Pythagoras, whom he had to pay to

keep in class. Justifiably discouraged by this lack of

appreciation at home, he set out, as Thales had once
advised him, for Egypt. He came at last, after years of

travel and study, to southern Italy. Here he opened a

school which, in contrast to his first, was one of the most

wildly successful schools in history. Crowds flocked to

hear Pythagoras. Besides the youths whom he instructed

during the day, the business and professional leaders of

the community attended his evening lectures and to hear

Pythagoras maiden and matron alike broke the law
which prohibited them from attending public meetings.*

The teachings of Pythagoras were something of a

mixture almost equal parts of morality, mysticism and
mathematics. He saw life as a precarious balance of ten

somewhat random but nevertheless fundamental pairs of

opposites: odd and even, limited and unlimited, one and

many, right and left, male and female, rest and motion,

straight and curved, light and darkness, good and evil,

square and oblong. It was a particularly happy circum-

stance for Pythagoras that the number of these funda-

mental opposites was 10, for from his point of view 10 was

the most perfect of numbers, being the sum of 1 (the

point), 2 (the line), 3 (the plane) and 4 (the solid).

Pythagoras and his followers were people who saw

Number in every relationship and very personal attributes

girl,

* One of these pupils, a young and beautiful (and intelligent)

,
married the sixty-year-old teacher.



in the individual numbers.* Their great discovery of the

dependence of the musical intervals on certain arithmetic

ratios of strings at the same tension provided scientific

support for what they had always intuitively considered

to be true:

Number rules the Universe.

To such a people even their everyday surroundings

spoke of Number. Quite probably, the first general recog-
nition of a particular instance of the famous theorem

about the square on the hypotenuse occurred when some-

one saw this truth as it was exhibited in the regular
checkered tiling of a floor. From inspection it would have

been clear that the square on the diagonal of any tile

contained as many half-tiles as the squares on both sides

put together:

It would also have been clear that this relationship be-

* The number 1 stood for reason; 2, for opinion. There is no
record that 3 represented disagreement; but 4, at any rate, was the
number of justice.



tween the diagonal (
or the hypotenuse of the right angle )

and the sides would remain true regardless of the size of

the individual squares.
A square cut by a diagonal represents only one partic-

ular kind of right triangle that in which the two sides

containing the right angle are equal. But no one who is at

all mathematically inclined, today or twenty-five hundred

years ago, could observe such a truth about isosceles right

triangles without wondering if it applied as well to all

right triangles. Thus the general theorem would be sug-

gested:

THEOREM: The square on the side of the hypotenuse of a

right triangle is equal to the sum of the squares on the

other two sides.

To make such a statement about right triangles, either

we must verify it by actually examining all right triangles

(which is impossible, since there are an infinite number
of them) or we must prove that it is a necessary conse-

quence of right triangle-ness and, therefore, has to be true

of all right triangles.

In the centuries since the discovery of this theorem,
there have been literally hundreds of proofs of the fact

that the square on the hypotenuse of any right triangle is

equal to the sum of the squares on the other two sides.*

At one time, a completely new proof was a requirement
for a master's degree in mathematics.

No one knows exactly how Pythagoras himself proved
the general theorem. The proof which appeared a few

hundred years later in the Elements is definitely not

* A Mason who saw in the Pythagorean society the beginnings
of Masonry made a classified collection of more than two hundred

proofs of the famous theorem (E. S. Loomis, The Pythagorean

Proposition) and gave the publication rights to the Masters and

Wardens Association of the 22nd Masonic District of the Most

Worshipful Grand Lodge of Free and Accepted Masons of Ohio.
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Pythagorean, being the only theorem in the book which

tradition universally ascribes to Euclid himself.

It would be pleasant to think that Pythagoras first

established this great truth with one of those ingenious

arrangements which bring the idea to eye and mind in the

instant of seeing. Such a proof would be given by the two

equal squares below with sides (a-\- b). These show with-

out a word that

since both sides of the equation, when subtracted from the

two original and equal squares, leave as remainders four

right triangles, all of the same size.

Although we do not know how the theorem was actu-

ally proved, tradition tells us that Pythagoras himself was

so delighted (and certainly any true mathematician

would have been! ) that he sacrificed to the gods a heca-

tomb (100) of oxen, causing the theorem to be known

during the Middle Ages as inventum hecatomb digrium.*
* There is no specific written evidence that Pythagoras himself

discovered or proved the theorem which bears his name. It was the

custom for all discoveries of the school to be attributed to the

master himself, regardless who made them. However, early writers

are quite definite about "one famous figure" discovered by Pythag-
oras and "a famous proposition on the strength of which he offered

6



Thus, five hundred years before the birth of Christ,
mathematics had in hand its famous theorem about the

square on the hypotenuse of the right triangle a theorem
which was destined, in the words of E. T. Bell, to run
"like a golden thread" through all of its history. This

theorem would serve in trigonometry, which is entirely
based on it as the tool for measurement lying beyond the

immediate use of tape measure and ruler. In analytic

geometry, it would serve as the basic distance formula for

space in any number of dimensions. In its arithmetical

generalization (a
n + bn = cn ), it would provide mathe-

matics with its most famous unsolved problem, known as

Fermat's Last Theorem.* In the most revolutionary
mathematical discovery of the nineteenth century, it

would be revealed as the equivalent of the distinguishing
axiom of Euclidean geometry; and in our own century it

would be further generalized so as to be appropriate to

and include geometries other than that of Euclid. Twenty-
five hundred years after its first general statement and

a splendid sacrifice of oxen." That the famous figure and the

famous proposition were one and the same, and that both referred

to the theorem about the square on the hypotenuse, is not certain.

Tradition, however, has always insisted upon ascribing the theorem

to the man Pythagoras.
* Toward the end of the sixteenth century, an "amateur" French

mathematician named Pierre Fermat noted in the margin of a

book of problems the theorem that an -j- bn = cn is solvable if, and

only if, n = 2 (i.e., as in the Pythagorean theorem) . He did not

prove his theorem but added regretfully to his note, "I have dis-

covered a truly marvelous proof of this, which, however, the margin
is not large enough to contain." Today it is generally thought that

the theorem is true, but that Fermat was mistaken when he said

he had discovered a proof. Efforts to prove Fermat's Last Theorem
have resulted in the development of many extremely valuable

mathematical methods; and it has been said that, if the margin of

Fermat's book had been wider, the whole history of mathematics

might have been different!



proof, the theorem of Pythagoras would be found, firmly

embedded, in Einstein's theory of relativity.

But we are getting ahead of our story. For the moment
we are concerned only with the fact that the discovery
and proof of the Pythagorean theorem was directly re-

sponsible for setting the general direction of Western

mathematics.

We have seen how the Pythagoreans lived and discov-

ered their great theorem under the unchallenged assump-
tion that Number rules the Universe. When they said

Number, they meant whole number: 1, 2, 3, .... Although

they were familiar with the sub-units which we call frac-

tions, they did not consider these numbers as such. They
managed to transform them into whole numbers by con-

sidering them, not as parts, but as ratios between two

whole numbers. (This mental gymnastic has led to the

name rational numbers for fractions and integers, which

are fractions with a denominator equal to one. ) Fractions

disposed of as ratios, all was right with the world and

Number (whole number) continued to rule the Universe.

The gods were mathematicians aritlimeticians. But, all

the time unsuspected, there was numerical anarchy afoot.

That it should reveal itself to the Pythagoreans through
their own most famous theorem is one of the great ironies

of mathematical history. The golden thread began in a

knot.

The Pythagoreans had proved by the laws of logic
that the square on the hypotenuse of the right triangle is

equal to the sum of the squares on the other two sides.

They had also discovered the general method by which

they could obtain solutions in whole numbers for all three

sides of such a triangle. Although these whole num-
ber triples (the smallest being the long-known 3, 4, 5)
still bear the name of "the Pythagorean numbers," the



Pythagoreans themselves knew that not all right triangles

had whole-number sides. They assumed, however, that the

sides and hypotenuse of any right triangle could always
be measured in units and sub-units which could then be,

expressed as the ratio of whole numbers. For, after all, did

not Number whole number rule the Universe?

Imagine then the Pythagoreans' dismay when one of

their society, observing the simplest of right triangles,

that which is formed by the diagonal of the unit square,

came to the conclusion and proved it by the inexorable

processes of reason, that there could be no whole number

or ratio of whole numbers for the length of the hypotenuse
of such a triangle:

When we look at any isosceles right triangle and re-

member that the size is unimportant, for the length of one

of the equal sides can always be considered the unit of

measure it is clear that the hypotenuse cannot be meas-

ured by a whole number. We know by the theorem of

Pythagoras that the hypotenuse must be equal to the

square root of the sum of the squares of the other two

sides. Since I 2 + I 2 =
2, the hypotenuse must be equal

9



to V2. Some number multiplied by itself must produce 2.

What is this number?

It cannot be a whole number, since 1X1 = 1 and

2X2 = 4. It must then be a number between 1 and 2.

The Pythagoreans had always assumed that it was a

rational "number." When we consider that the rational

numbers between 1 and 2 are so numerous that between

any two of them we can always find an infinite number

of other rational numbers, we cannot blame them for as-

suming unquestioningly that among such infinities upon
infinities there must be some rational number which when

multiplied by itself would produce 2. Some of them

actually pursued V2 deep into the rational numbers, con-

vinced that, somewhere among all those rational numbers,
there must be one number one ratio, whole number to

whole number which would satisfy the equation we
would write today as

The closest they came to such a number was 1
%2, which

when multiplied by itself produces
28
%44, or 2^44-

But one of the Pythagoreans, a man truly ahead of his

time, stopped computing and considered instead another

possibility. Perhaps there is no such number.

Merely considering such a possibility must be rated

as an achievement. In some respects it was even a greater
achievement than the discovery and proof of the famous
theorem that produced the dilemma!

Perhaps there is no such number. How does a mathe-

matician go about proving that there isn't a solution to

the problem he is called upon to solve? The answer is

classic. He simply assumes that what he believes to be

10



false is in actuality true. He then proceeds to show that

such an assumption leads to a contradiction, usually with

itself, and of necessity cannot be true. This method has

been vividly called proof per impossibile or, more com-

monly, reductio ad absurdum. "It is," wrote a much more
recent mathematician than the Pythagorean, "a far finer

gambit than a chess gambit: a chess player may offer the

sacrifice of a pawn or even a piece, but a mathematician

offers the game,"
*

The most recent proof f to shake the foundations of

mathematical thought was based on a reductio and so,

twenty-five hundred years ago, was the first. We shall

present this proof, which is a fittingly elegant one for so

important an idea, in the notation of modern algebra,

although this notation was not available to the man who
first formulated the proof.

Let us assume that, although we have never been

able to find it, there actually is a rational number a/b
which when multiplied by itself produces 2. In other

words, let us assume there exists an a/b such that

5**= '

We shall assume (and this is the key point in the proof)
that a and b have no common divisors. This is a perfectly

legitimate assumption, since if a and b had a common
divisor we could always reduce a/b to lowest terms. Now,

saying that

*
G. H. Hardy, A Mathematician's Apology (Cambridge,

England: Cambridge University Press, 1941).

fThis proof, by the twentieth-century mathematician Kurt

Godel, will be discussed in the last chapter.
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is the same as saying that

If we multiply both sides of this equation by b 2
(which

we can, since b does not equal and since we can do any-

thing to an equation without changing its value as long
as we do the same thing to both sides), we shall obtain:

or, by canceling out the common divisor b 2 on the left-

hand side:

a2 = 26 2

It is obvious, since a2
is divisible by 2, that a 2 must be an

even number. Since odd numbers have odd squares, a also

must be an even number. If a is even, there must be some
other whole number c which when multiplied by 2 will

produce a; for this is what we mean by a number being
"even/' In other words,

If we substitute 2c for a in the equation a2 = 2b 2
,
which

we obtained above, we find that

or

4c2 - 26 2

Dividing both sides of this equation by 2, we obtain

2c 2 = fo
2

Therefore, b 2
,
like a2 in our earlier equation, must also be

an even number"; and it follows that b, like a, must be
even.

12



BUT (and here is the impossibility, the absurdity
which clinches the proof) we began by assuming that afb
was reduced to lowest terms, If a and b are both even,

they must by the definition of evenness have the com-
mon factor 2. Our assumption that there can be a rational

number a/b which when multiplied by itself produces 2
must be false, for such an assumption leads us into a

contradiction: we begin by assuming a rational number
reduced to lowest terms and end by proving that the

numerator and the denominator are both divisible by 2!

We can only imagine with what consternation this

result was received by the other Pythagoreans. Mysticism
and mathematics were met on a battleground from which
there could be no retreat and no compromise.* If the

Universe was indeed ruled by Number, there must be a

rational number a/b equal to V2. But by impeccable
mathematical proof one of their members had shown that

there could be no such number!

The Pythagoreans had to recognize that the diagonal
of so simple a figure as the unit square was incommensura-

ble with the unit itself. It is no wonder that they called

V2 irrational! It was not a rational number, and it was

contrary to all they had believed rational, or reasonable.

The worst of the matter was that V2 was not by any
means the only irrational number. They went on to prove

individually that the square roots of 3, 5, 6, 7, 8, 10, 11,

12, 13, 14, 15 and 17 were also irrational. f Although they
worked out a very ingenious method of approximating

* "He is unworthy of the name of man who is ignorant of the

fact that the diagonal of the square is incommensurable with the

side." Plato, quoted by Sophie Germain, Memoite sur les surfaces

&lastiques.

f The general theorem states that the square root of any num-
ber which is not a perfect square is an irrational number. Accord-

ing to an even more general theorem, the mth root of any number
which is not a perfect mth power is irrational.

13



such irrational values by means of ratios (detailed on

pages 14-15), they had to face the fact that there was not

just one, there were many (in fact, infinitely many)

lengths for which they could find no accurate numerical

representation in a Universe that'was supposedly ruled by
Number.

Tradition tells us that they tried to solve their

dilemma by persuading the discoverer of the unpleasant
truth about V2 to drown himself. But the truth cannot be

drowned so easily; nor would any true mathematician,

unconfused by mysticism, wish to drown it. The Pythag-
oreans and the mathematicians who followed them, from

Euclid to Einstein, had to live and work with the irrational.

Here was the golden thread impossibly knotted at its

very beginning!
It was at this point that the Pythagoreans, rather than

struggling to unravel arithmetically what must have

seemed to them a veritable Gordian knot, took the way
out that a great soldier was to take in a similar situation.

They cut right through the knot. If they could not repre-
sent V2 exactly by a number, they could represent it

exactly by a line segment. For the diagonal of the unit

square is V2.

With a choice of two mathematical roads before them,
the Greeks, long before the time of Euclid, chose the

geometric one; and

"That has made all the difference."

FOR THE READER

Today we customarily approximate the value V2 by
extracting die square root of 2 to as many decimal places
as we feel necessary for accuracy. In this way, from one

side, we approach closer and closer to that single point,
which is represented by the non-terminating and non-

14



repeating decimal 1.41421. . . . Using rational representa-
tions rather than decimals, the Pythagoreans worked out

a method of approaching this same point from both sides

with successively closer approximations.

They began a ladder with a pair of 1's and by the ad-

ditions indicated below obtained the number pairs on

the right:

1 - + 1 1 1

2 - + 3

5 <- + 7

17 12 17

4r

294- + 41 29 41

^o -"^ t q ** "7& ^ v
The reader should try to determine the next rung of

the ladder. If he will then square the fractions obtained

by taking the numerator from the right and the denomi-

nator from the left, he will find that although he will

never reach 2 exactly he will approach it in a continuously

narrowing zigzag as the fractions he is squaring approach
V2.

OZ, s
!
*&



Nothing,

Intricately

Drawn
Nowhere

"A POINT IS THAT WHICH HAS NO PAHT."

Thus begins the most durable and
influential textbook in the history of

mathematics. Thus, in fact, begins
modern mathematics.

It has been more than two thou-

sand years since the Greek Eukleides,

whom we know better as Euclid,

gathered together the mathematical

work of his predecessors into thirteen

books which he entitled, simply, the

Elements. During this time the Ele-

ments of Euclid, in addition to serving
as a mathematical textbook for ado-

lescents, has also served as Western

man's final, and first, bulwark against

ignorance. Newton cast his Principia in

the already hallowed form of the

Elements. Kant called on the axioms

of the Elements as "the only immutable

truths." On the first few pages of this

seemingly spare and formal work,

bloodless battles have been waged. It

was here, at the middle of the nine-

teenth centuiy, that mathematics made
its greatest self-discovery; and it was

here, at the beginning of the twentieth,

that it made its great and final stand

to establishto prove, ,in fact its own
internal consistency. We have come, in

the last two thousand years, a long

way from Euclid; but we have also

taken his Elements with us, all the

way.

16



The man Euclid and the facts of his life and career*

were lost very early on the journey. We are told that he
"flourished" about 300 B.C., that he founded a school at

Alexandria in the time of Ptolemy I. There are about him

only two traditional anecdotes, both of which are also

recounted of other Greek mathematicians. In the years
after his death various writers confused him with another

Euclid, the philosopher of Megara; and the Arabs put
forth a claim that he had really been an Arab all along.
It can be said that in the history of mathematics there is

no Euclid; there is only the Elements. Probably within his

own time ( in the words that Auden used of Yeats
)
he had

become his admirers.

The Elements, from the beginning, was immediately

recognized for what it was a masterpiece. The form of

the book was not original. The logical ladder of defini-

tions, axioms, theorems and proofs was first erected by
some earlier Greek than Euclid, perhaps a priest. The

subject matter was not original. The masterly treatment

of proportion which enabled the later Greeks to handle

incommensurable as well as commensurable magnitudes,
is that of Eudoxus; and the other books are frankly based

on the known work of other men.
(
"The picture has been

handed down of a genial man of learning, modest and

scrupulously fair, always ready to acknowledge the

original work of others," H. W. Turnbull wrote in The

Great Mathematicians.) Only one proof that of the

Pythagorean theorem is traditionally ascribed to Euclid

himself, although it is apparent that to fit theorems into

his new arrangement he must have had to create other

new proofs. Even the title, the Elements, was not original.

This term did not refer, as we might think, merely to the

elementary aspects of the subject but rather according to

an early mathematical historian to certain leading
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theorems in the whole of mathematics which bear to those

which follow the relation of a principle, furnishing proofs
of many properties. Such theorems were called by the

name of elements; and their function was somewhat like

that of the letters of the alphabet in the language, letters

being called by the same name in Greek. There had been

many Elements before Euclid. That there was none after

him is an unequivocal tribute to the sheer genius of his

work.

As a mathematician, Euclid falls far behind Eudoxus,

who preceded him, and Archimedes and Apollonius, who
followed. The Encyclopaedia Britannica admits regret-

fully that he was not even a "first-rate" mathematician,

but adds that there is no question but that he was a first-

rate teacher. What he brought to the already great mathe-

matics of his time was a genius for system. And system
was exactly what was needed! There were many fine

single works on specialized subjects. Many editors had

gathered together what seemed to them important. There

were definitions, axioms, theorems and proofs galore; and

an almost equal number of organized and disorganized,

overly complete and incomplete arrangements, all called

the Elements. Euclid took these. He selected, substituted,

added, rearranged; and what came out in his Elements

was a distillation of all those that had come before a

model of systematic thought.
We have no copy of this original work. Oddly enough,

we have no copy made even within a century or two of

Euclid's time. Until recently the earliest known version of

the Elements was a revision with textual changes and

some additions by Theon of Alexandria in the fourth cen-

tury after Christ, a good six centuries after Euclid com-

piled it in Alexandria. Early in the nineteenth century, a

Greek manuscript in the Vatican was discovered by
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internal evidence to be a pre-Theonine text.* The tradi-

tional textbook version of the Elements, which was used

almost completely without change until very recently, was

based, of course, on the text of Theon. In a quite literal

sense, Euclid has become his admirers; for when we say,
"Euclid says," we are speaking of a compiler much closer

to us than the original compiler of the Elements. This is

unimportant at this time. We are not concerned with what
Euclid himself actually wrote in the Elements, but with

what has served mathematics for so many centuries as the

Elements of Euclid.

What, then, is this work which has played such an

influential role in the history of mathematics and of

thought itself? Most of us are probably not familiar with

a translation of Theon's traditional version of the master-

piece. Our high school geometry textbook, however, was

probably based directly upon it. After a few introductory
remarks and simple explanations in modern terms most

authors in the past fell back very quickly upon the orig-

inal. If we were to examine at this time a translation of

the Elements, such as Sir Thomas Heath's, available now
in paperback (Dover Press), we"would find it unexpect-

edly familiar.

The Elements we would find is composed of thir-

teen sections, or "books," arranged according to subject

matter: the first few to plane geometry, the last to solid,

and the books between to proportion and number. We

*
It is interesting to note that the Romans never translated the

Elements into Latin. "Among the Greeks," Cicero wrote con-

descendingly, "nothing was more glorious than mathematics. But

we have limited the usefulness of this art to measuring and calculat-

ing." The earliest extant Latin translation (c. 1120) is one by the

Englishman Athelhard, who obtained an Arabic copy of the Ele-

ments by going Jo Spain disguised as a Moslem student, and made
his translation from that copy.
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would meet again the famous pom asinormn, or Bridge of

Asses, as the fifth proposition in Book I:

THEOREM: In isosceles triangles the angles at the base are

equal to one another, and, if the equal straight lines he

produced further, the angles under the base will be equal
to one another.

This is the theorem which traditionally separates mathe-

matical boys from mathematical men, since the asses

supposedly cannot get through the proof, or across the

bridge. In the Middle Ages the mastering of this theorem

and its proof marked the culmination of the mathematical

training required for a degree.
At the end of Book I we would find our old friend,

the famous theorem about the square on the hypotenuse
of the right triangle, which laymen know as the theorem

of Pythagoras and which loving geometers have called for

over two thousand years merely "I, 47," because of its

position as the forty-seventh proposition in the first book

of Euclid's Elements. The proof of this theorem is the only
one in the Elements which is specifically credited to

Euclid himself. Although the philosopher Schopenhauer
dismissed it contemptuously as a "mouse-trap proof" and

"a proof walking on stilts, nay, a mean, underhand proof,"
Sir Thomas Heath, the English editor of the Elements,
calls it "a veritable tour de force which compels admira-

tion." It is Heath's contention that Euclid found the

theorem proved by the incomplete theory of proportion
of the Pythagoreans (incomplete because it was not ap-

plicable to the yet undiscovered incommensurable mag-
nitudes), and that this proof by proportion suggested to

him the method of I, 47. Although his plan for the

Elements did not call for the treatment of proportion
until Book V, according to the Heath theory, he managed
to transform the Pythagorean proof by proportion into
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one based on Book I only. "A proof extraordinarily in-

genious," insists Heath and a
fig to the philosopher who

expects an intuitive proof of the "look-see" type from the

compiler of the Elements!

In Book V, we would find what is without question
the finest mathematics in the Elements the theory of

proportion as expounded by Eudoxus. It was this theory,

applying as it did to incommensurable as well as to com-
mensurable magnitudes, which allowed Greek mathema-

ticians, after the shattering discovery of the irrational, to

move forward again. Because of its importance to our

story as a whole, we shall treat it separately in Chapter
4

After Book VI, which also deals with problems of

proportion, we would find the three books on the theory
of numbers. Although the "numbers" seems strangely
unfamiliar, since they are all represented by straight lines

"in continued proportion," we would find here many
familiar truths of our own school arithmetic. Proposition
1 of Book VII, for instance, gives us the standard method

still known as "Euclid's algorithm"
*

for finding the

greatest common divisor of two numbers, although in the

Elements, with its generally geometric approach, it is "the

greatest common measure." As Proposition 20 of Book X,

the third and final book on numbers, we would find that

most important and interesting truth: that the number of

primes is infinite; in Euclid's words, "Prime numbers are

more than any assigned multitude of numbers." (Proved
in the next chapter. )

At the end of the thirteenth and final book of the

Elements we would meet again the five regular solids,

those bodies with which the Platonists identified all crea-

tion. In their philosophy the cube represented the earth;

the octahedron, the air; the tetrahedron, fire; the icosahe-

* Detailed at the end of this chapter.
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dron, water; and the dodecahedron, the Universe itself.

Good Platonists always maintained that Euclid organized
the Elements solely for the purpose of presenting the

construction of the perfect figures, but this is obviously
not true. The Elements contains a great deal, including
the three books on arithmetic, which contributes nothing
to these final constructions.

As we continue our re-examination of the Elements,
we would note a certain pattern in the arrangement. Each
of the thirteen books begins with a list of definitions of

the terms which will be needed in it; the first book is pre-
ceded as well by a group of more or less obvious state-

ments, or axioms; and each of the thirteen books consists

of a related series of theorems which are proved by ap-

pealing to the authority of previously stated theorems,

axioms, and definitions, all of these derived logically by
the accepted rules of reason.

This is the ladder by which the Greeks believed that

man could ascend to truth and they believed it to be the

only ladder:

L Proofs L

Theorems

Axioms

Definitions

As Euclid is reputed to have told the first Ptolemy when
asked if there were no other, easier way than that of the

Elements: "There is no royal road to geometry." Today
we call Euclid's ladder the axiomatic method, and we still

find it the ladder by which man can ascend most surely
to truth. If our concept of the truth we reach is somewhat
different from that of the Greeks, that is a story for a later

chapter; for the moment we must concentrate on examin-
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ing the rungs ot the ladder with the eyes and minds of the

men who built it.

To the Greeks, the definitions given by Euclid at the

beginning of each book of the Elements were not state-

ments of existence but merely descriptions. Existence of

that which was defined had to be established by construc-

tions which met the specifications laid out in the defini-

tions. In the words of Aristotle: "Thus, what is meant by
triangle the geometer assumes, but that it exists he has to

prove." Accordingly, in Book I Euclid begins by produc-

ing the equilateral triangle which he has described in

Definition 20. In Proposition 11 he constructs a right angle

(Definition 10) and in Proposition 46, a square (Defini-

tion 22). Until these figures are actually constructed on
the authority of the axioms and previously proved
theorems, they are never used in the Elements.

There are, however, certain terms defined at the be-

ginning of Book I which Euclid never produces "from

scratch." These are terms the existence of which is spe-

cifically implied by the postulates: the point, the straight

line and the circle in short, his "subject matter." These

are the objects in terms of which all the others have been

defined. Among the other definitions, Euclid does describe

these objects, but just for the record:

A point is that which has no part.

A straight line is a line which lies evenly with the

points of itself.

A circle is a plane figure contained by one line such

that all the straight lines falling upon it from one point

among those lying within the figure are equal to one

another; and this point is called the center of the

circle.

He clearly recognizes that he will never be able to pro-
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duce a point, a straight line or a circle unless lie assumes

before he begins that he can produce them.

"Let the following be postulated," he announces at the

beginning of Book I;

To draw a straight line from any point to any point.

To produce a finite straight line continuously in a

straight line.

To describe a circle with any center and distance.

On the arbitrarily assumed ability to do these three

things, the ladder rests. We can join any two points, ex-

tend any straight line, describe about any center a circle

of any size because we have agreed that we can. To those

who may object that any point which we put on paper
will have by the nature of the instrument with which we
must make it some "part"; that for the same reason any
line which we draw cannot lie evenly on all its partless

points; that the points on the boundary of any circle can-

not be all the same distance from the center to all those

who object, we have in the postulates our unanswerable

answer: we can because we have begun by agreeing that

we can.

"It is ignorance alone that could lead anyone to try to

prove the axioms."
*

But we must never forget that the Choice of the as-

sumptions on which we are to rest our ladder to truth is

a purely arbitrary one. Just as in a game we could, by
agreement of all the players, make different rules under

which to play (making, of course, a different game of it),

so Euclid could have chosen other axioms, as we shall see

in a later chapter. It was his choice, more than anything
else, which was indicative of his genius.

What constitutes a well-chosen set of axioms? Since

Aristotle.
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long before Euclid chose his, men have discussed this

question, and they have always been pretty well agreed.
There is one absolute requirement: consistency. The
axioms that we have chosen must never lead us into a

contradiction. Beyond this essential requirement there are

others that are more of a practical or an esthetic nature.

A well-chosen set of axioms should exhibit such virtues as

simplicity, economy, sufficiency, and a certain indefinable

"importance."
We could discuss more precisely the characteristics of

these characteristics; but the reader can probably get a

much quicker and much more vivid picture of the require-
ments if he imagines himself in the following game situa-

tions and considers, not what constitutes a well-chosen set

of axioms, but rather what is wrong with the rules of the

game which he is playing:

He finds the rules hard to play by because they list

many exceptions. (Not simple.)

He finds that one of the rules is unnecessary since it

is already stated, although in quite different words, by
another rule. (Not economical.)

He finds that under the rules he cannot make a move
which seems necessary if the game is to be really in-

teresting. (Not sufficient.)

He finds that there is a rule which forbids a certain

move which is permitted by another rule. (Not con-

sistent. )

He finds that the game played according to the rules

is so uninteresting that, even when he wins, he feels

very little satisfaction. (Not important.)

If we substitute for "rules of the game," "set of axioms"

and for "moves," "theorems," we see that the requirements
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are very much the same; and the axioms Euclid chose so

well in Alexandria long before the birth of Christ have

provided Western man for more than twenty centuries

with a very good game indeed.

Before we leave the subject of the axioms, we should

point out that Euclid distinguished between two types of

assumptions, "common notions" and "postulates." The
common notions include such statements as "the whole is

greater than the part"; while one of the postulates states

that "all right angles are equal." ( All the common notions

and postulates are listed on page 27, since we shall be

referring to them again from time to time.) Probably no

one has been able to say exactly what distinction Euclid

himself made between the two; but if anyone is well quali-
fied to make an educated guess, it is Sir Thomas Heath, a

career civil servant in the British government, who will go
down in history as the ultimate and complete editor of

the Elements.

Heath writes on the two different types of axioms: "As

regards the postulates we may imagine him [Euclid] say-

ing, 'Besides the common notions there are a few other

things which I must assume without proof, but which

differ from the common notions in that they are not self-

evident. The learner may or may not be disposed to agree
with them; but he must accept them at the outset on the

superior authority of his teacher, and must be left to con-

vince himself of their truth in the course of the investiga-
tion which follows/

"

Having defined our terms and agreed upon them and
to our axioms (common notions and postulates alike), we
are now ready to climb, rung by rung, the ladder of math-

ematical truth., guided always by the accepted laws of

logic. Each rung of this ladder is a proposition (which

may be either a problem or a theorem) and its proof; and

by the rules of the game each rung may utilize in its con-
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struction only the rungs below. This means that the first

proposition must depend for its proof only upon the

axioms and definitions already given, but the second may
utilize as well the now proved first proposition, and so on.

By the time we arrive at the famous fifth, the pons
asinorum, we find that to prove it we need Propositions 3

and 4, which we have already proved, as well as Postu-

lates 1 and 2. This process continues. The proof of I, 47,

AXIOMS AND POSTULATES OF EUCLID *

AXIOMS

1. Things which are equal to the same thing are also

equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders

are equal.

4. Things which coincide with one another are equal
to one another.

5. The whole is greater than the part.

POSTULATES

Let the following be postulated:

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a

straight line.

3. To describe a circle with any center and distance.

4. That all right angles are equal to one another.

5. That if a straight line falling on two straight lines

makes the interior angles on the same side less than two

right angles, the straight lines, if produced indefinitely,

will meet on that side on which the angles are less than

two right angles.
* This version is given by Sir Thomas Heath in The Elements

of Euclid.
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relies upon five previously proved propositions as well as

on two of the common notions which we agreed to before

we started. From the moment, on the first page of the

Elements, when we placed our hand on the first rung ( "A

point is that which has no part" ) , we have been climbing.
His own time considered the Elements of Euclid as

near to perfect as work of man could be. The succeeding
centuries of the Christian era were, as we shall see in a

later chapter, troubled by one small flaw which they

struggled valiantly to eliminate, only to find in the end
that it supported the entire edifice (something Euclid

himself had apparently known when he laid the founda-

tions). At the beginning of the twentieth century, the

men who looked hard and long at the logical bases of

mathematics were to find the Elements riddled with fal-

lacies and unstated assumptions. Yet the Elements remain,

less perfect than they originally appeared to their com-

piler's contemporaries, frankly imperfect by the rigorous
standards of modern mathematics, but still on the throne.

For every domain of mathematics today is ruled by the

axiomatic method, the system of Euclid's Elements.

Twenty-three hundred years after the Greek Eukleides

lived and taught on the shores of the Mediterranean,
mathematicians and scientists from all over the world

gathered in Berkeley, California, under the shadow of the

cyclotron, for a week-long international symposium on
the axiomatic method and its relation to modern science.

The ladder to truth was set on a far different shore, but

the rungs were still the same: Definitions. Axioms.

Theorems. Proofs.

FOR THE READER
Eucli.d's algorithm is one of the oldest techniques in

arithmetic, probably even older than Euclid.

To find the greatest common divisor of two numbers

28



a and b by this method, we divide the smaller a into the

larger b. If we obtain a remainder c, we divide c into a
and so on, the remainder d being divided into c, e into d.

Eventually we shall come to one of two possible situa-

tions:

1. Our division comes out even, in which case our last

positive remainder is the greatest common divisor

of the two numbers; or

2. Our remainder is 1, in which case the two numbers
are relatively prime and their greatest common
divisor is 1.

Both of these situations are illustrated in the simple ex-

amples below, to find the g.c.d. of 26 and 94 and of 26

and 101.

_J5
3

26 794 26 )IOl
78 1 78 1

16 )26 23 J26
16 1 23 7

10)16 "3)23
10 1 21 1

"6)10 ~~2 )3
61 2

4 ye g.c.d.
= 1 I

4 2

2 ]4
4

g.c.d.
= 2

The reader may now enjoy using this same method to

find the greatest common divisor for some larger pairs:

116 and 280; 507 and 1862; 280 and 882; 2475 and 19404

ANSWERS
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FORM AND NUMBER.

Mathematics began with these two
basic concerns, and for centuries the

subject was defined simply as "the

science of form and number." Yet form

has never been completely distinct

3
from number. When, after the discov-

ery of the irrational, mathematics

found itself forced into the guise of

form, it did not leave number behind.

The beginnings of what we know to-

day as the theory of numbers lie in

The Books VII, VIII and IX of Euclid's

Inexhaustible Elements.

Storehouse The theory of numbers, or the

higher arithmetic as it is often called,

limits itself entirely to the whole num-

bers 0, 1, 2, 3, ... and the relationships
that exist among them. These numbers

are a very simple sequence, formed by

making each member one unit larger
than the one that precedes it and con-

tinuing without end. They have chal-

lenged the minds of men for centuries

because under their simple surface

characteristics lie layer after layer of

increasingly complex and utterly un-

expected relationships.

This challenge was felt by Euclid.

It has been felt, regardless of their in-

dividual specialties, by almost all the

mathematicians who have followed

him.

"The higher arithmetic," wrote
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Karl Friedrich Gauss (1777-1855), known today and in

liis own lifetime as the Prince of Mathematicians, "pre-

sents us with an inexhaustible storehouse of interesting
truths of truths, too, which are not isolated, but stand in

the closest relation to one another and between which,
with each successive advance of the science, we continu-

ally discover new and wholly unexpected points of con-

tact."

In this chapter we shall try to glimpse some of the

treasures of tin's inexhaustible storehouse by examining
a few of the mathematically interesting relationships

which exist between two kinds of numbers the primes
and the squares. Both the primes and the squares were

studied extensively in the Elements of Euclid; yet mathe-

maticians are still discovering in the words of Gauss

"new and wholly unexpected points of contact" between

them.

Although the classification into even and odd is the

most ancient, the most mathematically suggestive classi-

fication of the whole numbers greater than 1 is into those

which can be divided by some number besides themselves

and 1 (called composite numbers) and those which can

be divided only by themselves and 1
(
called prime num-

bers). The first few prime numbers are easily recogniz-

able, for they are those the units of which cannot be

arranged except in straight lines:

2 00 7 0000000

3 000 11 00000000000

5 00000 13 0000000000000

The units of all other, composite numbers can always be

arranged into rectangles as well as straight lines :
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4 00 9 000

00 000

000

6 000 10 00000

000 00000

8 0000 12 000000 0000

0000 000000 or 0000

0000

It is difficult to believe that no matter how high we go

among the numbers, we shall continue to find numbers

that can be arranged only in straight lines. Yet in Book IX

(Prop. 20) of the Elements, Euclid proved that these

essentially indivisible numbers the primes are infinite.

Euclid's proof is, of course, distinctly geometric in

flavor. His numbers are straight lines, "beginning from a

unit and in continued proportion," and his primes are

lines "measured by the unit alone." The truth that he

establishes, however, is the one above all others which

makes numbers so interesting.

Euclid's proof rests upon the fact that if we multiply

together any group of prime numbers, the number which

is 1 more than the number we get as our answer will be

either (1) another prime not in our original group or

(2) a composite number which has, as one of its factors,

a prime not in the group of primes we multiplied. This is

because all of the primes we have multiplied must leave a

remainder of 1 when divided into this next number;

2 X 3 X 5 = 30 (30 + 1) divided by 2, 3 or

5 leaves a remainder of 1

Euclid showed, therefore, that it would be impossible to
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have a finite set which contained all the primes because

by multiplying them and adding one to our answer we
could always produce a prime not in our set of "all."

The relationship which exists between the divisible

composite numbers and the indivisible primes is such a

key to unlocking the secrets of numbers that the theorem

which expresses it is universally acclaimed the Funda-

mental Theorem of Arithmetic.

Before stating this theorem, let us recall that by defi-

nition every composite number is divisible by some

number other than itself and 1. This number which di-

vides it must be prime or composite and, of course, smaller

than the original. If it is composite, it must be divisible in

turn by some number other than itself and 1, and so on.

This process ends only when we come to a number which

is not divisible by any other: a prime factor of the original

composite number. It follows, then, that every composite
number can be produced by the multiplication of primes

or, conversely, can be factored into primes.
The Fundamental Theorem of Arithmetic states

simply that this prime factorization for any composite
number is unique.

This means tbat when we reduce a number like 36

to its prime factors (2X2X3X3), we know that al-

though it has other factors (4X9, for instance, and

6X6), it can be reduced to no other combination of

prime factors. By the Fundamental Theorem we know

that the same thing will be true of a number like 18,674,392

or any other number, no matter how large. We can thus

work with any number n as a unique individual among
the numbers. Not only do we know that it has a unique

place hi the sequence of numbers (between n 1 and

n + 1 ) ,
but also we know that it is a unique combination
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of certain prime factors pi
k
*p2

k
-

- pr
kr

, where the p's

represent different primes, and the k's how many times

each prime appears as a factor.

The numbers which, next to the primes, have received

the most attention from mathematicians are the squares.

Their name comes to us from, the eye-minded Greeks who
noted that the units of a number when multiplied by itself

always form a perfect square. They also noted something
else of great interest about these squares when they were

built up by successive borders of units :

Between the primes and the squares there are many
interesting "points of contact," deep, intricate and com-

pletely unexpected. Yet the primes and the squares are

basically very different numbers.

On page 35 we have printed a table of the first fifty

numbers in each classification. Let us first examine only
the last digits of these numbers. Among the squares we
see immediately that not one of them ends in 2, 3, 7 or 8;

in fact, the last digits follow a pattern 0, 1, 4, 9, 6, 5, 6, 9,

4, 1 which repeats indefinitely. Since, when we multiply a

number by itself, the last digit of the product depends
only upon the last digit of the number being multiplied,

any number ending in 3 will have a square ending in 9,

and so on. Obviously, there are infinitely many squares

ending in each of the digits 0, 1, 4, 5, 6, 9 and none what-
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THE FIRST FIFTY SQUARE NUMBERS

soever ending in 2, 3, 7 or 8. But when we examine the

last digits of the primes, we find that aside from 2 and 5

all primes end in 1, 3, 7 or 9. Since all even numbers are

by definition divisible by 2 and all numbers ending in 5

divisible by 5, it is apparent that primes can end only in
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1, 3, 7 or 9. But the primes, unlike the squares, are very

unpredictable in their appearance among the numbers.

We know by Euclid's proof that the number of primes is

infinite, but are there as with the squares infinitely many
primes ending in each of the possible digits?

The answer is given affirmatively by a very deep
theorem proved over a hundred and fifty years ago by
P. G. Lejeune Dirichlet (1805-1859). He showed that

every arithmetic progression of numbers

a, a + d, a + 2,d, a + 3d, a -f- 4d, a + 5d, . . .

contains infinitely many primes when a and d have no com-

mon factor. If we take a = 1, 3, 7 or 9 (the only possible

endings for primes )
and d = 10, we know that in each of

the four resulting progressions there are infinitely many
primes: infinitely many primes ending in 1; infinitely many
ending in 3; infinitely many ending in 7, and infinitely

many ending in 9.

1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, . . .

3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103, . . .

7, 17, 27, 37, 47, 57, 67, 77, 87, 97, 107, . . .

9, 19, 29, 39, 49, 59, 69, 79, 89, 99, 109, . . .

If we look again at our table of primes and squares,
we can see that it is no problem to write down the next

entry in the column of squares : we simply multiply 50 by
50 and put down 2500.* But, to make the next entry in the

column of primes, the best we can do is to examine the

next odd number, 231. By inspection we see that it is di-

visible by 3, so we move on to the next odd number, 233.

We try to divide it, in turn, by 3, 5, 7, 11 and 13 (all the

primes which are less than its square root) and since none

divides it we can conclude that it is prime, and write it

* We can also add together the first fifty odd numbers.
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down as our next entry. This is the only general method
for finding out whether a given number is prime.*

The classifications of the numbers which we have men-
tioned so far even, odd; prime, composite; square and

non-square are so obvious that even if we do not usually
think of all of them by name we cannot remember when
we were not aware of them. Yet, among these groups of

numbers there exist, in the words of the great Gauss,

"wholly unexpected" points of contact. On the surface we
have a not-unexpected relationship between the prime
numbers and the odd. All the primes with one exception
are odd, since every even number is by definition divisible

by the only even prime, 2. When we separate the odd

prunes on the basis of their remainders when divided by
4, all are either of the form 4n + 1 or 4n -f 3. Certainly
we have no particular reason for expecting that these

prunes, falling into two mutually exclusive groups because

of their relation to the first non-trivial square number,
should present us with any significant and unvarying dif-

ference in their relation to the squares. Yet they do. This

difference becomes apparent when we attempt to repre-

sent each of the first few primes as the sum of two squares.
With 3, 7, 11, 19, 23, 31, and 43, we have no success at all;

but we find that

17 = p + 42

29 = 22 + 52

37 = I 2 + 62

and so on.

It is immediately suggested that every prime of the

* The largest known prime at the date of writing is 29941 1,

found prime by D. B. Gillies, on Illiac II at the University of

Illinois, April 21, 1963.
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form 4n + 1 can be represented as the sum of two squares,
while not one prime of the form 4n + 3 can be so repre-
sented. The theorem which expresses this relationship is

even more specific, for it further states that the 4n -f- 1

primes can be represented as the sum of two squares in

only one way. This is the classic Two Square Theorem of

Pierre Fermat. Although it involves no mathematical

concepts which are not familiar to a bright child, it ex-

presses a profound point of contact among the numbers,
and one of the most '"beautiful" relationships in all num-
ber theory.

Fermat wrote to a fellow mathematician that he had

proved the Two Square Theorem by what he called "the

method of infinite descent." He began with the assumption
that there existed a prime of the form 4n + 1 which could

not be represented as the sum of two squares; proved that

if there were such a prime, there would have to be a

smaller prime of the same form which could not be so rep-

resented; and continued in this way until he got to 5, the

smallest prime of the form 4n -f- 1. Since 5 can be repre-
sented as the sum of two squares, the original assumption
was false; the theorem, as stated, was true. The extreme

difficulty of this proof can be grasped from the fact that

although Fermat detailed it roughly to the extent we have

here, it was not until almost a hundred years after his

death that a mathematician was actually able to prove the

Two Square Theorem.

In addition to the Two Square Theorem, we have a

Three Square Theorem and a Four Square Theorem, both

of which reveal interesting relationships between the

square numbers and all the numbers. Both theorems deal

with the same relationship, the representation of numbers
as the sums of squares; but the Three Square Theorem

penetrates much more deeply into the relationship than

the Four Square Theorem.
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FOUR SQUARE THEOREM: Everij number can be represented
as the sum of four squares.

There is no better example in number theory of the

fact that it is easier to state a truth than to prove it. A little

computation is enough to suggest that four squares are

probably sufficient to represent any number. The fact was

probably known in the early years of the Christian era. It

was then restated as part of a more general theorem, and

proved by Fermat. Although Fermat remarked in a letter

to a friend that no proof had ever given him more pleas-

ure, he neglected to reveal the details to anyone, and the

proof died with him. Leonhard Euler (1707-1783), one of

the greatest, and certainly the most prolific mathematician

who ever lived, then tackled the part of Fermat's theorem

pertaining to the squares. In fact, off and on, he devoted

forty years of his long life to it without success. Eventu-

ally, though, with the help of much of the work which
Euler had done, the Four Square Theorem was proved by
Joseph Louis Lagrange (1736-1813). A few years later

Euler brought forth a more simple and elegant proof than

Lagrange's of the theorem which had caused him so much

difficulty, and it is now the proof generally followed.

For such representation of all numbers as the sum of

four squares, we rely extensively upon the use of the square
of 0, particularly in the case of those numbers which are

squares to begin with or those numbers, like the primes of

the form 4n -f- 1, which are the sum of two squares. It is

obvious from these that four squares are not by any means

necessary to represent every number as the sum of squares.

The question which then occurs is whether or not we can

determine, by any general rule, the particular group of

numbers for which four squares are necessary. This is ex-

actly the answer which the Three Square Theorem gave.

There is, according to the theorem, a particular group of
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numbers, the first of which is 7, that cannot be represented

by any fewer than four squares; for all other numbers,
three squares are sufficient.

THREE SQUABE THEOREM: Every number can be represented
as the sum of three squares except those numbers of the

a b + 7).*

Now the Four Square Theorem is by no means trivial.

Although the representation of the smaller numbers as the

sum of four squares is easy to perceive, there is no assur-

ance that as the numbers get larger more squares will not

be required. Yet, when compared to the Three Square
Theorem, which pinpoints the specific type of number

(and not an obvious, straightforward type, either) requir-

ing four squares for representation, the Four Square
Theorem is distinctly inferior "much less deep," in the

opinion of mathematicians,

To discover such deep relationships among the num-

bers, we must not look at them with jaded eyes. Youth,

freshness, and perhaps mentally standing on one's head

help. We also need a gift for seeing such relationships.
There is a relationship between the squares and the

odd primes which is even more mathematically exciting
than the one Fermat expressed in the Two Square Theo-

rem, fully as deep as if not deeper than the relationship

expressed in the Three Square Theorem. But it would not

even be observed by anyone who did not have the
gift.

Although this particular relationship had been observed

earlier, the young Gauss (he was eighteen at the time)
discovered it wholly on his own and was delighted with

it. To him it was always the Gem of Arithmetic. More

formally, it is known as the Law of Quadratic Reciprocity

(quadratic meaning simply "of or pertaining to the

squares").
*
It was proved by Gauss.
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The Law of Quadratic Reciprocity deals exclusively
with the same kinds of numbers as does the Two Square
Theorem of Fermat the squares and the primes classified

according to the remainders they leave when divided by
4. Let p and q be any pair of odd primes; there exists a

beautiful and delicately balanced relationship between
these two apparently unrelated problems:

1. To find an % such that x2 p is divisible by q.
2. To find a y such that y

2
q is divisible by p.

According to the Law of Quadratic Reciprocity, both

problems are solvable or both unsolvable unless both p and

q leave a remainder of 3 when divided by 4, in which case

one of the problems is solvable and the other is unsolvable.

"The mere discovery of such a law was a notable

achievement," writes E. T. Bell in Men of Mathematics.

"That it was first proved by a boy of nineteen will suggest
to anyone who tries to prove it that Gauss was more than

merely competent in mathematics."

It took Gauss a year to prove the Law of Quadratic

Reciprocity. "It tormented me and absorbed my greatest

efforts," he wrote later. His was the first proof of this beau-

tiful law and he published it proudly in the Disquisitiones
Arithmeticae under the title of Fundamental Theorem.

But he was not at all satisfied with his proof: ". . . it pro-
ceeds with laborious arguments and is overloaded with

extended operations." In the next seven years he proved
the Law of Quadratic Reciprocity in four more ways,

using completely different principles. The first three of

these four proofs, all of which he conceded were logically

satisfactory, he dismissed as "derived from sources much
too remote." The last he published with the frank state-

ment, "I do not hesitate to say that till now a natural proof

has not been produced. I leave it to the authorities to

judge whether [this] proof which I have recently been
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fortunate enough to discover deserves this description."

The "authorities" apparently decided that it did, for

this fifth proof (known as "the third" because it was the

third one he published) is the proof which is universally
used today. But Gauss himself could not have been satis-

fied: three more times in his life he proved the Law of

Quadratic Reciprocity, his Gem of Arithmetic.

Lest we feel at this point that Gauss himself may have

singlehandedly exhausted the inexhaustible storehouse of

interesting truths which he found the natural numbers to

be, we might mention that he went on to tackle the prob-
lem of biquadratic reciprocity where x and y are taken to

the fourth power. A by-product of his solution was the

creation of the theory of algebraic numbers, which we
shall touch on in Chapter 7. Perhaps it is too much to

mention that the general case of x and y taken to the nth

power still remains in the storehouse!

It is curious that we usually think of arithmetic as the

exact science, the science of right answers, the cut-and-

dried science. But that is because we are thinking of the

arithmetic of the elementary school, not the "Queen of

Mathematics." In elementary arithmetic we perform oper-
ations on the numbers, first with accuracy, and then with

speed. The ideal is most nearly achieved by the great elec-

tronic computers which, in spite of the awe they generate,
can do no more difficult arithmetic than a high school boy
or girl who is well trained; they can, bowever, do it faster

and more accurately. An electronic computer is a mere

drudge of the Queen of Mathematics. Although even

Gauss loved to compute, he never failed to perceive the

queen's real challenge.
"The questions of the higher arithmetic," be wrote,

"often present a remarkable characteristic which seldom

appears in more general analysis and increases the beauty
of the former subject. While analytic investigations lead to
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the discovery of new truths only after the fundamental

principles of the subject (which to a certain degree open
the way to these truths

) have been completely mastered,
on the contrary in arithmetic the most elegant theorems

frequently arise experimentally as the result of a more or

less unexpected stroke of good fortune,* while their proofs
lie so deeply imbedded in the darkness that they elude all

attempts and defeat the sharpest inquiries. Further, the

connection between arithmetical truths, which at first

glance seem of widely different nature, is so close that one

not infrequently has the good fortune to find a proof (in

an entirely unexpected way and by means of quite another

inquiry ) of a truth which one greatly desired and sought,
in vain, in spite of much effort. These truths are frequently
of such a nature that they may be arrived at by many dis-

tinct paths and that the first paths to be discovered are

not always the shortest. It is therefore a great pleasure,
after one has fruitlessly pondered over a truth and has later

been able to prove it in a roundabout way, to find at last

the simplest and most natural way to its proof." f

Today, twenty-five hundred years after the Pythag-
oreans first perceived that the squares and the primes are

very interesting numbers, there are still many questions
to be answered about their relationship to one another.

Is there, for instance, a prime between every pair of con-

secutive squares? Are there infinitely many primes that

are just one unit greater than a square (a:
2 + 1)?

The inexhaustible storehouse awaits.

*
It is interesting to note that Gauss first observed the Law of

Quadratic Reciprocity when he was computing the decimal rep-
resentation of all reciprocals through Mooo in an attempt to find a

general rule for determining the period of a repeating decimal.

f The quotations from Gauss are translated from the Latin by
D. H. Lehmer and appear in David Eugene Smith's A Source Book
in Mathematics.
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FOR THE READER

The squares are numbers it is fun to play with by eye,

as the Greeks played with them. If the reader will provide
himself with a set of counters or just a sheet of graph

paper, he will find it fun to try to determine why the

following system of multiplication which is achieved by
addition, subtraction and division of squares works;

To multiply 7 by 6-
we take the sum of 7 and 6, 7 + 6 = 13

square it, 132 = 169

subtract the square of 7, 169 49= 120

subtract the square of 6, 120 36 = 84

divide by 2, 84 -f- 2 =42

Why does it work?
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4
A Number

for Every Point

on the Line

FROM WHOLE NUMBERS TO RATIONAL

numbers to irrational numbers . . .

This step-by-step extension of the

idea of Number was forced upon math-

ematics by the contemplation of so

seemingly simple a thing as the straight
line. Faced with the fact that the

straight line which is the diagonal of

the unit square can be measured with

truly mathematical accuracy only by
the square root of 2, the Greeks con-

cluded that there was no such number.

The men who followed them, how-

ever, have insisted upon the fact that

for every point on the line, there must
he a number.

It would seem that even in two

thousand years such diametrically op-

posed points of view could never be

brought together. Yet if we begin at

both ends of the time in the third

century B.C. and the nineteenth cen-

tury A.D. we find that the Greek solu-

tion of this problem, which was a

revised theory of proportion, and the

modern solution, which is the concept
of the real number line or arithmetic

continuum, are in essence the same.

The revised theory of proportion
which allowed Greek mathematics to

move forward again, although in the

guise of Form now rather than of Num-

ber, is contained in the fifth and sixth

books of the Elements and is consid-
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ered without question the finest mathematics in Euclid.

It is, almost entirely, the work of Eudoxus.

Eudoxus was a poor young student who walked every

day to Athens to sit at the feet of Plato. His genius was

recognized and he became eventually a great and honored

teacher himself, with many personal achievements in

astronomy and geometry. His masterpiece was his theory
of proportion and, specifically, his redefinition of "in the

same ratio" so that it could be applied to the newly dis-

covered incommensurable magnitudes as well as to the

traditional commensurable magnitudes.
Under the universal rule of Number, before the dis-

covery of the irrationality of V2, ratio had been conceived

by the Pythagoreans as the expression of the relative mag-
nitude of two whole numbers, or lengths. We might think

that the need for such rational expressions arose prac-

tically in measurements where the distance to be meas-

ured fell between two units, or whole numbers. Actually,

it arose as a result of Pythagorean interest in the purely
theoretical relationship between magnitudes.

Given two magnitudes like A and B below, how can

we express the relationship between them in whole num-

bers?

A simple way is to multiply, or repeat, these lengths until

we reach a point where both totals coincide. In the exam-

ple above, if we take five of the length labeled A and nine

of the length labeled B, we will find that we have two
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equal lengths. Since 9B = 5A, the relative magnitude of

A to B is 9 to 5, or the "rational number" 9/5. (We must

use quotation marks here, for Greek mathematicians

from Pythagoras to Diophantus (A.D. 300) did not con-

sider these rational expressions to be numbers. As far as

they were concerned, the only real numbers were still the

whole numbers. )

Another way of determining relative magnitude ( also

known to the Pythagoreans) is the method we still use

today to find the greatest common divisor of two num-

bers Euclid's algorithm. If we measure off A by B and

then measure off JB by the remainder C, we obtain eventu-

ally a remainder (in our example: D) which exactly

measures the previous remainder.

It is easy to see that D measures both A and B exactly, A
9 times and B 5 times. Taking D as the common unit, the

relative magnitude of A and B is, as we also found by our

first method, 9 to 5 the "rational number" 9/5;

9

or, in the familiar language of proportion, A is to B as

9 is to 5 (A:B :: 9:5).

This definition of ratio is perfectly adequate if we wish

to express the relative magnitude of the base and the
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hypotenuse of the ancient 3-4-5 right triangle pictured
on the left below. But if we try to use the same methods

to find the ratio between the unit base of an isosceles right

triangle on the right and its hypotenuse, we are in trouble.

No matter how many times we take the hypotenuse and

how many times the side, we will never reach a point
where our totals coincide. If we try to use the method of

finding the greatest common measure, which worked so

well for A and B above, we will never obtain a remainder

which is exactly contained in the preceding remainder.*^ _
ry?

_

In geometry we say that these two lengths are incom-

mensurable. In arithmetic, if the only numbers we have

are the whole numbers, we cannot express the relation-

ship between them.

Yet our eye tells us that the base and the hypotenuse
of the triangle on the right have like any two lines a

relative magnitude, even if we cannot express it in the

only numbers we have. It is the "ratio" of 1 to V2; but

we cannot call this a ratio as long as ratio is defined in the

traditional sense of relative magnitude expressed by whole

numbers.

Eudoxus solved this difficulty like a true mathemati-

cian. He simply redefined ratio so that it could be ap-

plied to incommensurables as well as to commensurables.

*
If we appear to be successful, it is only because of an error

introduced by the thickness of our lines.
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It was this new definition which Euclid used in the

Elements.

Eudoxus limited his definition of ratio to finite magni-
tudes of the same land. He then proceeded to the crux of

the matter. What do we mean when we say that magni-
tudes are "in the same ratio"?

The simplest way to determine that a/b and c/d are

in the same ratio is to reduce them to lowest terms. We
say that % and %2 are the same since both when reduced

to lowest terms are the fraction %. A more complicated

way, but the one more appropriate to Eudoxus' defini-

tion of "in the same ratio," is the following:
We say that a/b and c/d are in the same ratio when

we can multiply the numerators a and c by some whole

number m and the denominators b and d by some whole

number n so that

ma= rib

and

To make this process clearer, let us determine by this

method whether % and % are in the same ratio. We mul-

tiply both numerators by the same number (3) and both

denominators by the same number (2) :

3X4- 12 3X6 18

2X6 = 12 2X9 18

If by such multiplication with whole numbers there is

some way we can make our new numerators equal, re-

spectively, to our new denominators, we say our two

original ratios are in the same ratio. This, we say, is what
we mean by "in the same ratio."
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The difficulty is that our method is applicable only to

ratios of whole numbers; in other words, commensurables.

When we are dealing with the ratios of commensurables,
we can always find an m/n such that

ma rib

and

we nd

but when we are dealing with incommensurables, ma and
me will always be greater than nb and nd, or less. They
will never, no matter what m/n we select, be exactly

equal. However and this is the fact that Eudoxus seized

upon for his masterly redefinition if

and if we multiply the numerators by the same whole

number m and the denominators by the same whole num-
ber n, regardless of whether we are dealing with com-

mensurables or incommensurables, we can never get the

result that ma is greater than nb while me is less than nd.

If our original ratios are actually in the same ratio, the

numerators of our new ratios will always both be greater
or both be less than our new denominators, or the new
numerators and the new denominators will be, respec-

tively, equal.

This then, said Eudoxus, is in essence what we mean

by "in the same ratio."

In modern notation we can state this definition as

follows:

Consider a/b and c/d. If we multiply a and c by the

same number m, and b and d by the same number n, and

if we obtain one of the following situations, and no other:
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ma > nb and me > nd

or

ma nb and me nd

or

ma<nb and me < nd

then a/b c/d.

Unfortunately, when in the fifth definition of Book V
of the Elements Euclid had to present this definition of

"in the same ratio," he, like Eudoxus, did not have the

benefit of algebraic notation; and he had to write: "Mag-
nitudes are said to be in the same ratio, the first to the

second and the third to the fourth, when, if any equi-

multiples whatever be taken of the first and third, and

any equimultiples whatever of the second and fourth, the

former equimultiples alike exceed, are alike equal to, or

alike fall short of the latter equimultiples, respectively,

taken in corresponding order."

It was this definition which Isaac Barrow (1630-

1677), who voluntarily gave up his professorship at Cam-

bridge to the young Newton, called "that Scare-crow at

which the over modest or slothful Dispositions of Men
are generally affrighted."

*

Today, more than two thousand years since Eudoxus

formulated this definition, it is echoed almost word for

word in the modern definition of equal numbers, which,
* He went on to add: "They are modest, who distrust their

own Ability, as soon as a Difficulty appeais, but they are slothful

that will not give some Attention for the learning of Sciences; as if

while we are involved in Obscurity we could clear ourselves with-

out Labour. Both of which Soits of Persons are to be admonished,
that the former be not discouraged, nor the lattei refuse a little

Care and Dilligence when a Thing requires some Study." (We rec-

ommend to the reader the words of Isaac Barrow. )
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in very much the same way that Eudoxus' definition of

"in the same ratio" enabled the Greek mathematicians to

deal with incommensurable lengths, enables modern
mathematicians to deal with irrational numbers. There is,

however, high irony in this. When the Greeks found that

there were points on the line for which their mathematics

had no exact numerical expression, they fled from Num-
ber into Form and took sanctuary in a geometric theory
of proportion which could handle incommensurables. Yet

in this same sanctuary, although they never found it, was
the saving concept of number which they sought a

unique number for every point on the line.

In the two thousand years that elapsed between the

Greek theory of proportion and the modern concept of

the arithmetic continuum, the irrational numbers led a

curious "here and not here" existence. They were mostly
"not here" until the late sixteenth century. At that time

the decimal notation began to come into common use,

and mathematicians to their delight saw rational and

irrational numbers fall into place like well-ordered regi-

ments! .

All decimal&jkjm be thought of as never-ending repre-

sentations of numbers.

Some, after a certain point, repeat O's indefinitely:

like l/2 ,
or .5000000000000000000000 . . .

Some repeat another single digit:

like y3 ,
or .3333333333333333333333 . . .

Some repeat after a certain point a series of digits:

like tf , or .1428571428571428571428 . . .

Some never end and never repeat:

like n, or 3.1415926535897932384626 . . .

It is very easy to show that all rational numbers in

their decimal representation will repeat; and, conversely,
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that all repeating decimals are representations of rational

numbers.

Consider the rational number %7. To obtain a deci-

mal representation, we simply divide 17 into 1. Sometime

within the first 16 steps of this division we must obtain

a remainder which we have obtained before, since there

are only 16 possible positive remainders. When we do,

our quotient must of necessity begin to repeat. In the case

of %?, the decimal representation actually does have a

16-place period:

.0588235294117647058823 . . .

We can say, then, in general terms that the decimal repre-
sentation of any rational number a/b will repeat within

(
b 1

)
decimal places.

Now let us consider the reverse situation where we are

given a repeating decimal and wish to obtain a rational

representation of it. We take, for example, the repeating
decimal .1212121212121212121. ... We multiply this deci-

mal by 100 so that we have a whole number 12 followed

by the repeating decimal .121212121212121212121. . . .

We then subtract our original repeating decimal, which

is the same as this same decimal tail:

12.121212121212121212121 . . .

.121212121212121212121 . . .

12.000000000000000000000 . . .

What we have done is to subtract our original decimal

from a number 100 times as great. The answer of 12 which

we obtain is thus equal to 99 (i.e., 100 1) times our

original decimal. The original decimal, therefore, must be

equal to 12 divided by 99, or %a, which is its representa-
tion as a rational number reduced to lowest terms. Again,
it is clear that we can always do exactly this: we can al-
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ways obtain for any repeating decimal an expression as a

rational number.

Since, as we have seen above, all rational numbers
can be represented as periodic decimals and since all

periodic decimals represent rational numbers, it follows

that all irrational numbers can be represented by non-

repeating decimals and that all non-repeating decimals

represent irrational numbers. Granted that this is not a

very precise definition of irrational number., it was so

much more numerical than anything mathematicians had
seen since the Pythagorean discovery of the irrationality

of V2 that they welcomed it without question. They pro-
ceeded to apply the operations of arithmetic to these new
numbers in the same manner they applied them to the

whole numbers and the fractions, and nobody worried

much about the niceties.

In the late nineteenth century, all of this was changed.
Certain mathematicians, including Richard Dedekind

(1831-1916) and Georg Cantor (1845-1918), saw the

necessity for a truly precise formulation of what mathe-

maticians call the real numbers, the numbers for the

points on a line. (The reason for this name will become
clear in Chapter 7.) Curiously enough, at that time,

twenty-three hundred years after Euclid compiled the

Elements., they expressed their ideas not in the terms of

some recent mathematical development but very much in

the terms of the Eudoxian theory of proportion as pre-
sented in the fifth book of the Elements,

Although there are today several ways in which irra-

tional numbers can be precisely defined, the most popu-
lar definition remains that of Dedekind and bears the

dramatic title of "a Dedekind cut." Dedekind formulated

this definition with full modem rigor, but we can grasp it

more easily if we discuss it in a rather rough fashion,
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relying heavily on our intuitive understanding of "num-
ber" and "line." We begin by thinking of all the rational

numbers as being paired off on a line with those points
which they represent all lengths being measured from
an arbitrary origin point labeled 0. For simplicity's sake,

we can concern ourselves now with only that part of the

line which is to the right (or positive side) of 0:

From an everyday point of view, although this line

looks as familiar as an ordinary ruler, there are several

rather unusual things about it. For example, it has no be-

ginning and no ending. If we select on it any two points
which have been paired with rational numbers, we can

always find between these as many more points or num-
bersas we please. Say that we select two points as

"close" as %ooo and %ooo. Between these two points lies

the point %ooo. Between %ooo and % () oo lies %ooo, and
so on. In general, if we take any two rational numbers a/b
and cjd, add their two numerators and add their two

denominators, we shall obtain a rational number:

which lies between them. There is no "nextness" among
these rational numbers.

Now let us make our first cut in this line. Let us say
that we will cut it at the point which is paired with the

rational number %. The complete line will have been cut

into two pieces which together include every point, or

rational number, on the entire line. If our cut line is to be
in just two pieces, the cut point & must be in one piece or
or the other; it cannot, of course, be in both:
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If % is included, as in the upper example, in the left-hand

segment of the line, it must be the largest number on that

side. Since there is no "nextness" among the rational num-
bers, the right-hand segment of the line can have no small-

est number. But if K is included, as in the lower example,
on the right-hand side of the cut, then it must be the

smallest number on that side and the left-hand side now
can have no largest number.

Thinking in this manner, we are defining rational

numbers as cuts which divide the line into two parts in

such a way that one and only one of the parts has either

a largest or a smallest number. This is a curious enough
definition; but like Alice, we find that things become
curiouser and curiouser.

What if we break the line at a place where there is no

point and, hence, no rational number? This is completely

possible, because although the rational numbers are dense

upon the line, they are not continuous. If they were, and
if there were a rational number for every point on die

line, the Pythagoreans would have found a rational num-
ber which exactly measured the square root of 2. .What

happens when we cut the line at the place where there

"should" be a number-point equal to V2? The line divides,

as before, into two parts but with an important difference:

There is now no largest rational number in the left-

hand part and no smallest rational number in the right-

hand part.

57



Such a cut according to DedekincTs definition is an

irrational number!

In a much more formal and precise statement, the

definition can be put in the following way:

An irrational number a is defined whenever the ra-

tional numbers are divided into two classes A and B
such that every rational number belongs to one, and

only one, class and (1) every number in A precedes

every number in B, and (2) there is no last number in

A and no first number in B; the definition of a being
that it is the only number which lies between all num-
bers in A and all numbers in B.

We shall not here expand in detail upon the similari-

ties between this definition and the Eudoxian definition

of "in the same ratio." The reader who is particularly in-

terested will find a complete statement in Sir Thomas
Heath's edition of the Elements. Suffice it to say that the

two definitions, separated by more than two thousand

years of mathematical thought, are in essence the same.

From Dedekind's definition of an irrational number
as a cut in the rationals, we can now proceed to the state-

ment of the axiom upon which all of arithmetic, and hence

all of mathematics, rests. If we replace every Dedekind
cut in the rational numbers with a point and a number

(a non-rational, or irrational, number) so that regardless
of where on the line we make a cut, we shall always cut

at a number-point pair, we can state what is known as the

Cantor-Dedekind axiom:

It is possible to assign to any point on a line a unique
real number, and, conversely, any real number can be rep-
resented in a unique manner by a point on the line.

We have come in some twenty-five hundred years
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from the despairing conclusion of the Pythagoreans that

for some lengths there were no numbers to the completely

satisfying conclusion of Dedekind and Cantor that for

every point on the line there is a numher!

From whole numbers to rational numbers to irra-

tional numbers! These, taken together, are the real num-

bers; and once again Number (now real number) rules

the Universe.

FOR THE READER

It is fun to test for oneself the fact that every rational

number can be represented as a repeating decimal, par-

ticularly when such rational numbers as those listed below

are taken for the experiment:

I JL JL
19' 23' 41

It is also fun to test for oneself the fact that, conversely,

every repeating decimal represents a rational number.

The reader is urged to apply the method given on page 54

to such decimals as:

.10101010101010101 . . .

.23523523523523523 . . .

.28545454545454545 . . .

.14285714285714285 . . .

Then just for fun he should "make up" some repeating

decimals for himself and discover what rational numbers

they represent!
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THE STRAIGHT LINE AND THE CIRCLE.

These two lines exercised such a

fascination over the ancient mind that

they limited the instruments of mathe-

matical construction, determined the

subject matter of most of the mathe-

5matics,

and provided mathematical

"problems" that were not to be finally

disposed of for more than two thou-

sand years.

Fascination with the straight and

the round apparently blinded Greek

JourneijThat eyes to the lines which they actually

Begins at O saw around them. Their geometry was

based on an axiom which stated in

essence that parallel lines never meet,

their intuitive and undefined idea of a

straight line being inextricably bound

up with this axiom; yet the architects

of the Parthenon built their pillars so

that they bulged in the middle, for

they knew that if they made the sides

straight and parallel they would ap-

pear to curve in toward each other.

They must have observed that the

parallel sides of a straight roadway ap-

pear to converge as they approach the

horizon. They must also have observed

that circles always appear elongated

except when the eye is on the axis of

the curve. Nevertheless, the Greek

mathematicians knew they knew that

the parallel lines which appeared to

meet could never by their very nature



meet and that circles, regardless of appearances, were in

their actuality round. They limited themselves in their

mathematics to the perfect essence of these figures, and
did not concern themselves with the imperfect figures
which their eyes saw all around them.

The only geometric constructions which the Greek
mathematicians considered permissible, or "pure," were
those made with a straightedge, an unmarked rule which
was the mechanical equivalent of the straight line, and a

compass, which was the mechanical equivalent of the

circle. They then conceived that the "solution" of any

geometric problem must be effected by these two instru-

ments, alone.

This made tilings a lot harder. Problems which would

yield gracefully to other instruments remained "unsolved"

for two thousand years!

Undoubtedly the most dramatic of these ancient

problems, which were to be with mathematics for so

many centuries, was the problem of duplicating the cube.

According to tradition, the people of Athens, suffering the

ravages of a great plague, consulted the oracle at Delos.

How could they placate the angry gods who had sent this

plague upon them? The oracle replied that they should

double the size of the cubical altar to Apollo. The obedient

Athenians promptly built a cube with each side twice as

long as that of the original and thereby produced an altar

which was by volume eight times the size of the original

altar. The gods, naturally enough, did not appear to be

placated and the plague continued.

A century later, although the plague had long since

run its normal course, the Greek mathematicians were

still straggling with the problem of doubling the volume

of a given cube. Since the unit cube has a volume of 1

(orlXlXl),a cube with volume twice as great must
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be represented in modern notation by the formula

x3 =2
Solving for x then is the equivalent of extracting the cube

root of 2.

The Greek mathematicians assumed that the problem,
since it was proposed by the gods, required an exact

answer and one which could be effected in its construction

by the gods' chosen instruments, straightedge and com-

pass alone. A rather familial picture of their difficulty is

presented by Eratosthenes, who lived a while after

Euclid and is famous for a surprisingly accurate measure-

ment of the earth and for a "sieve" which is still the basic

principle of all tables of prime numbers.

"While for a long time everyone was at a loss,"

Eratosthenes wrote, "Hippocrates of Chios was first to

observe that if between two straight lines of which the

greater is double the less it were discovered how to find

two mean proportionals in continued proportion, the cube

would be doubled; and thus he turned the difficulty of

the original problem into another difficulty, no less than

the former."
*

Eratosthenes went on to report that Menaechmus,
who was a pupil of Eudoxus, found two solutions to this

problem, both effected by the intersection of conic sec-

tions. This is the first mention in mathematical literature

of those beautiful and ubiquitous curves the hyperbola,
* In modern notation we would state this problem of Hip-

pocrates as:

To find - such that _ = - = JL with A and 2A being two
y x y 2A &

given straight lines.

From the equation = -, we have x2 = Ail. Squaring both^
x y

J ^. e,

sides of this equation, we obtain
t/

2 =
-j^,
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the parabola and the ellipse. To Menaechmus is given the

credit for their discovery, although their names were given
them much later by another mathematician.

Oddly enough, the names themselves go back as far

as Pythagoras who, like the Greeks that followed him,
never paid any attention at all to the generally elliptical

appearance of the circle, the parabolic paths of projec-

tiles, or the hyperbolic arches cast by shaded lanterns.

One of the problems that did, however, interest Pythagoras
was that of drawing upon a given segment a figure-

triangle, square or pentagon that was required to be the

size of some other given figure of a different shape. In the

course of the solution of this problem, one of three things

might happen. The given line segment would be too short

(ellipsis), exactly the right length (parabole) or too long

( hyperbole )
. These same words have come very generally

into English in the ellipsis, three dots which mark the

omission of words; the parable, which tells one story but

parallels another that although untold is the real story;

and the extravagant exaggeration of statement which we
call hyperbole. These names, suggesting as they do the

arithmetical relations of less than, equal to and more than,

were given to the conies by Apollonius of Perga, who fol-

lowed Archimedes.

The conic sections of Menaechmus seemed to possess

the Greek mind even though the interdiction against con-

From the equation
- = ^-, we obtain y

2 = 2Ax.
y "-"

Substituting this value for
t/

2 in the preceding equation, we

Hod ft- =8^ or
.
=

(!)
=2.

It follows, therefore, that the desired V2 is
^.

(The reader who finds his algebra rusty would do well to recall that

Hippocrates had none at all to help him formulate his problem!)
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struction by instrument other than straightedge and com-

pass cast them out of the pure geometry of the day. The

simplest way to produce the various sections is by cuts

and cross-cuts of a solid circular double cone. (The
reader may enjoy producing the various sections by cut-

ting a cone of light with a piece of cardboard placed at

varying angles. )
A cut exactly parallel to the angle of the

cone will give us a parabola. If the angle of our cut is

within the angle of the cone, we obtain the two branches

of the hyperbola; while if it is outside, we obtain an

ellipse.
A straight cut parallel to the base will give us the

circle, or limiting form of the ellipse.

We can also think of each conic curve-ellipse, parab-

ola, hyperbola as the path of a point which must move

according to certain rules which determine the curve it

makes. This is most intuitively clear when we think of a

circle as the path of a point which must always be a given

distance (the radius) from another point (the center of

the circle):

An ellipse is the path of a point which must always move
so that the sum of the distances from two given points
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(called the foci) is always the same:

A hyperbola is the path of a point which must move so

that the difference of the distances from two given points
is always the same:

A parabola is the path of a point which is always the

same distance from a given point that it is from a given

line:



Euclid himself wrote a treatise on the conies, since

lost. It was not Euclid, however, but Apollonius who de-

veloped the fundamental properties of the conies in

remarkable generality. Apollonius first showed that all

conies are sections of any circular cone, right-angled or

oblique, and in spite of the truly cumbersome expression

available to him gave for the first time the fundamental

property of all conies, which we shall present later in

modem notation.

This is the kind of achievement which any mathema-

tician respects. It is the sort of work the English mathe-

matician Littlewood was thinking of when he remarked

to his friend Hardy that the Greek mathematicians were

not just clever boys, scholarship candidates, but in the

language of his Cambridge "fellows at another college/'

Pappus, who has been called the worthiest com-

mentator on the work of Apollonius, then showed that the

ratio of distance of any point on any conic from a fixed

point (the focus) and a fixed line (the directrix) is con-

stant. This ratio, which we express as e, is called the

"eccentricity" of the curve. A conic is an ellipse, a parab-
ola or a hyperbola according as e is less than 1, equal to

1, or more than 1. In the circle e is 0.

Of such work by the ancient Greeks, a president of

the British Association for the Advancement of Science

wrote: "If we may use the great names of Kepler and

Newton to signify stages in the progress of human discov-

ery, it is not too much to say that without the treatises of

the Greek geometers on the conic sections there could

have been no Kepler, without Kepler no Newton, and

without Newton no science in the modern sense of the

term. . . ."

The earth follows a nearly elliptical orbit around the

sun," projectiles approximate parabolic paths, a shaded



light illuminates a hyperbolic arch. If it required the

Delian problem to reveal these common curves to eyes
blinded by circles, the problem would have done more
than its turn for mathematics. But, indirectly, there were
more great gifts to come.

It was some seventeen hundred years after Menaech-

mus, Apollonius and Pappus that an arrogant young
Frenchman published a short mathematical treatise as a

supplement to a larger philosophical work which he ex-

pected to ensure his immortality. This mathematical

treatise, entitled La Geometrie, began with one of the

most important sentences in the history of mathematics:

"Any problem in geometry," wrote Rene Descartes,

"can easily be reduced to such terms that a knowledge of

the lengths of certain lines is sufficient for its construction."

We have already seen how the discovery that the diag-
onal of the square is incommensurable with the side had

driven the Greeks into a geometry without number and a

theory of numbers expressed in the terms of geometry.
"This great step backwards/' it is regretfully called by
Morris Kline in his Mathematics and Western Culture,

Descartes, by applying the concept of the variable, which

he took from algebra (the great Eastern contribution to

mathematics),* to the ancient method of mapping by
coordinates, which was known to the Babylonians and the

Egyptians, reversed this step into a giant stride forward

a stride in fact into modern mathematics.
* The historical development of algebra has been characterized

in three stages: (1) rhetorical algebra, in which problems were

solved by a process of logical reasoning but were not expressed in

abbreviations or symbols; (2) syncopated algebra, in which ab-

breviations and symbols were used for certain quantities and

operations occurring most frequently; and (3) symbolic algebra,
in which completely arbitrary symbols are used for all forms and

operations a development of the period immediately before and
after Descartes.
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It does not matter that in doing so, lie was as much
under the spell of utterly impractical geometric construc-

tion problems as were the ancient Greeks. The application
of the method of coordinate mapping to geometry and

algebra, which is called in the history of mathematics the

invention of analytic geometry and credited to the young
Frenchman, was one of those innovations which, as soon

as they are finally made, seem as if they had always been

inevitable. It freed both subjects from bonds which until

then had appeared inherent in them. Geometrical figures

were transformed into algebraic equations and equations
into figures. Problems which had eluded the genius of the

Greeks dropped into the hands of schoolboys.
In this chapter we shall offer a glimpse of this new tool

by examining it in relation to the line and the circle of

Euclid and the conic sections of Apollonius in short, the

curves known and studied geometrically by the ancient

Greeks.

We begin with the selection on the plane of a point-
it may be any point we care to choose and we label this

point "O" for origin. It is at this point that we set out on a

very different mathematical road from that traveled by the

Greeks.

Through the point O we draw a line which extends

indefinitely to the right and to the left of O. On it, we mark
off units very much as years are marked off from an origin

point which is the birth of Christ. The units after the birth

of Christ, or to the right of O, are labeled with a plus; the

units before, or to the left of O, with a minus. We then

draw perpendicular to our first line another which passes

through O and extends indefinitely above and below it.

On this line we mark off units as degrees of temperature,
for instance, are marked off on the thermometer: the units

"above" O being labeled with a plus and the units "below"

with a minus. We call our original horizontal line the *-axis



and this new vertical line which is perpendicular to it, the

z/-axis.

On the plane which we have marked off we can now
locate uniquely any point by stating its position on the

plane in the terms of its coordinates on the x and y axes.

One number (x) tells its distance from the y-axis; another

(y), its distance from the x-axis. This x, y pair is the ad-

dress, as it were, of the point on the plane:

It is, of course, essential that the "addresses" of these

points be stated in the proper order. Just as 70 Twenty-
sixth Street is not the same address as 26 Seventieth Street,

the number pair 26, 70 does not locate on the plane the

same point that the number pair 70, 26 does. (
If the reader

will transpose the numbers in each pair located on the dia-

gram above, he will find that he has located three entirely

different points, one [ 3, 3] remaining the same point

even when the coordinates are transposed. )



The concept of points as such ordered number pairs is

the key to analytic geometry. For this reason the coor-

dinates of a point are always given in order: the x

coordinate first, then the y coordinate. Our new definition

of a point is a long way from Euclid's "A point is that which
has no part":

A point is an ordered pair (x, t/) of real numbers.

Not only can we think of these points ( every point on
tlie plane ) as number pairs, but we can also handle them

mathematically as number pairs. They are no longer

geometrical points; they are things of arithmetic. This new

approach works both ways, for we can also think of any

pair of numbers as a unique point on the plane. The brief-

est glance tells us in which quadrant it belongs, the

slightest effort places it exactly, no longer a number pair
but a point, again a thing of geometry.

A point, we say then, is an ordered pair of real num-
bers (x, y). When we know the values for x and y, we
know where the point lies on the plane.

But what happens to the values of x and y when our

point moves about the plane leaving in its path a trail

which we call a line?

If we take the point ( 3, 3), which we located on

the diagram above, and proceed to move it so that its path
is a straight line toward and through O, the origin, we find

that the values of x and y change continuously. But one

tiling about them does not change: the x coordinate re-

mains always the same as the y coordinate, just as 3 is

the same as 3. If we move the point so that its path is a

straight vertical line, the x coordinate remains the same

( 3), but the y coordinate changes constantly. Moving
the point on a horizontal line, we find that the reverse is

true: the x coordinate changes constantly while the y co-

ordinate remains the same ( 3). We have here three
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distinct lines, all passing through the point ( 3, 3).

When we further consider the number pair ( 3., 3
) ,
we

are immediately aware that the x and y coordinates add

up to 6. What happens when we mark on the plane near

it the other points the coordinates of which also add up to

6? We find that we are mapping yet another straight
line which also passes through the point ( 3, 3

)
:

Like points, all of the lines we have mapped can be

uniquely identified in the terms of their x and y coor-

dinates:

But we may object we call these "paths of points"

or "lines" in geometry, but aren't they just equations in

algebra? Quite right. In analytic geometry we find that just

as points on the plane can always be expressed as ordered
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pairs of real numbers (x, y), straight lines can always be

expressed as equations of the first degree in two unknowns:

ax + by + c = 0*

Although we have not done so above, we can express
all of the equations we have listed in this standard form.

The last line we graphed, for example, has the equation

Since we have geometrized algebra at the same time
we have algebrized geometry, such equations are now
known as linear equations.

We have seen how the point of Euclid's geometry has

become an ordered pair of real numbers and the line, the

graph of an equation in the first degree with two un-

knowns. Now we must see what has become of Euclid's

circle in this new number-based geometry.
On the Cartesian plane we draw a circle of unit radius

with its center at the origin:

*
It was Descartes who originated this form of expressing any

equation so that the right-hand side is 0. He also started the custom
of using the last letters of the alphabet for the unknowns and the
first for the constants
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What can we say about the points on the line, the circum-

ference of the circle, which will identify it algebraically
as we have already identified straight lines? We see that

the four points of the circumference which fall upon the

x and y axes can be easily identified as (0, 1), (1, 0),

( 0, 1
)
and ( 1, )

. What have these four pairs of num-

bers in common which might enable us to formulate a gen-
eral rule for finding any point on the circumference of the

circle we have drawn? Only that in each case the x and y
coordinates add up to 1. Is this the general rule we are

looking for? No, for when we locate the point ( H, % ) , the

coordinates of which also add up to 1, we find that this

point falls inside the circle and not on the circumference.

We are not so far off, though, as we appear to be.

The golden thread of the theorem of Pythagoras runs

through our new algebrized geometry. If we draw a right

triangle on the plane using the radius of our circle as the

hypotenuse of the triangle, we can see by the Pythagorean
theorem that r2

, or in this case I 2
,
must be equal to the

sum of the squares of the other two sides:



In the case of this particular triangle, the two sides are

equal to the % and y coordinates of the point where the

hypotenuse of the triangle cuts the circumference of the

circle. We can say, therefore, that

or, for this particular circle:

Every point on the circumference of the circle we have

drawn must be a number pair such that the sum of the

squares of the two coordinates is 1 :

1 V15\ il V8\ /I V3^
*

4 M3' 3]'l2' 2J""
The way in which we have obtained this formula is in

one sense a long way from the Greeks; yet in another

sense it is as old as geometry itself. Regardless of where

our circle lies on the Cartesian plane, we can by means of

the Pythagorean theorem, with only a simple variation on

the method above, express it as a similar equation of the

second degree in two unknowns. This "distance formula"

of analytic geometry, which is just as valid in three di-

mensions as in two, in seventeen as in three, runs con-

currently with the geometry of Descartes as it is extended

from two dimensions to three to four. . . .' But that is a

story for another chapter. In the meantime we can see

that just as the equation of the circle is derived by means
of the distance formula, so can the equation for any and
all of the conic sections. For they, like the circle, depend
essentially on a distance ratio. It can be proved that the

curve of any conic is the graph of an equation of the

second degree. It can also be proved that, conversely, any
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curve defined by an equation of the second degree

is one of the conies.

Although we have gained only the threshold of the

new world of curves and their equations which was

opened up by the invention of analytic geometry, let us

turn back now to the Delian problem, which started us on

our journey. The oracle had advised doubling the cubical

altar of Apollo to appease the gods. The Greeks had as-

sumed that the construction must be made only by the

instruments of pure geometry; but, failing to solve the

problem with straightedge and compass alone, they had

toyed with certain other solutions mainly effected by
devices for drawing one or more of the conic sections. We
recall that they could not even state the problem with the

vividness and suggestiveness which algebraic notation

gives us, nor could they express the relatively simple
characteristic properties of the sections with any degree
of economy. Paragraphs of cumbersome technical vocab-

ulary led to the enunciation of truths which can be ex-

pressed today with half a dozen letters, plus and minus,

and die equals sign. And yet Menaechmus solved the

problem of doubling the cube by the intersection of conic

sections!

Let us look at the solution of this same problem, using

the powerful new tool which Descartes put in the hands

of the mathematicians of the Renaissance when he in-

vented analytic geometry.
We first graph the equation

** = y

which is an equation for a parabola, and then

xy
= 2
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which is an equation for a hyperbola:

We have already said that the problem of doubling the

unit cube is in modern notation the problem of solving
for x the equation

Now if we consider the coordinates of the point at which

the two curves graphed above intersect, we shall see that

by the formula for the hyperbola the product of the x and

y coordinates at this point must be 2; but by the formula

for the parabola the y coordinate must also be equal to

the square of the x coordinate. If we substitute the x 2

value for y (in the first equation) for the y in the second

equation, we obtain

The point of intersection of these two curves is then the

solution of the Delian problem. If we take the length from

the origin to the x coordinate of the point of intersection,
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we shall have the necessary length for the side of our new

cube, which will be twice the volume of the unit cube!

The Delian oracle is long silent, the original altar is in

dust, the plague has been replaced by a thousand other

plagues. To solve a problem made difficult by purely

arbitrary restrictions, the conic sections have been dis-

covered, analytic geometry has been invented. We are

able to illustrate in this book the length of side of a cube

which will be twice the size of the unit cube. But still the

gods would not be satisfied, for the size of the new altar

must be determined by straight line and circle alone!

FOR THE READER

The reader may enjoy graphing the following equa-

tions, the first few points of which are already indicated:

x
t/
= 2(2,0), (3,1),...

4x + 3t/=18(0,6),(l, *%),...

t,
= **-2(0, -2), (!,-!),...

^ =4 (1,4), (-y2,-8),...

=4 (0, 2), (1, V3), - . .
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6
How Big?
How Steep?
How Fast?

HOW BIG? HOW STEEP? HOW FAST?

Among these three apparently un-

related questions there exists a deep
and unexpected point of contact which
can serve us as an introduction to the

calculus, one of the most powerful
tools of mathematics. It is by means
of the calculus that mathematics has

been able to make an effective attack

on those problems which in earlier

times admitted only of approximate
answers.

Invented in the seventeenth cen-

tury by Sir Isaac Newton (1642-1727)
and Gottfried Wilhelm von Leibniz

(1646-1716), who worked independ-

ently, the calculus had had its be-

ginnings long before in two purely

geometrical problems : how to compute
an area bounded by a curve and how
to draw a tangent to a curve at any

point. More than nineteen hundred

years before either of the inventors of

the calculus was born, these two prob-
lems were solved (for special types of

curves) by Archimedes (B.C. 287?-

212), who used what were essentially

the methods of the calculus of New-
ton and Leibniz.

How big?
The question How big? was one of

the first to which mathematics sought
an answer, and one of the first to which

it found one, although not for all cases.
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Given a rectangular area, it is a simple matter to compute
that area as a sum of unit squares or, as we more often

express it, the product of length and width. Given a tri-

angular area, it can be shown that the area of a triangle
is half that of a rectangle with the same base (width) and

height (length) or, again, as we more often express it,

one-half the product of base and height. Since any

straight-edged surface, no matter how irregular its bound-

ary, can be subdivided into triangles, the only remaining

problem is to find the area bounded in part or in whole

by a curve.

One method of doing so is to divide the area insofar

as possible into rectangles and add together the areas of

these. In the first figure following, it is clear that the sum
of the areas of the rectangles, which we can compute

exactly, gives us a fair approximation. In the second, it is
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clear that more rectangles give an even more accurate

approximation of the area which lies unoler the curve. We
can continue, indefinitely, dividing the area into more and
more rectangles and including as a result more and more
of the total area under the curve. When we say that we
can continue indefinitely, this is just what we mean : there

is no limit to the number of rectangles into which we can

divide the area the number can "approach infinity."

There is, however, a very real limit to the sum of the

areas, no matter how many rectangles we use: for the

sum can never exceed the area under the curve.

This limit provides us with a mathematically precise
definition of what we mean by the area under the curve.

It is the limiting value of the sum of the areas of the rec-

tangles as the number of rectangles becomes indefinitely

large.

Is this a satisfactorily accurate method of determining
area? It is indeed. How very accurate it is can best be

seen by applying it, not to a curved figure, the exact area

of which we do not already know, but to a straight-edged

figure like a triangle, the area of which we know is one-

half the product of base and height. By this formula the



area of the triangle opposite is exactly %. Since the y co-

ordinate of any point on the hypotenuse has the same
value as the x coordinate, we can easily determine the

dimensions of each rectangle. In Fig. A, where we have

divided the triangle into five intervals, the width of each

being % of the base, we get the following sum when we
add the areas together:

I 5,1 11 21 31 4_10
5' 5

+
5" 5

+
5' 5

+ 5'5 + 5"5~25

But in Fig. B, where we have divided the base into tenths,

we get a sum which is closer to %, the true area of the

triangle:

JL JLj_I. -!_. -1 A i .!_ 9 - 45

10
'

10
+

10
'

10
+

10
'

10
+ * ' ' +

10
'

10
~~

100

By increasing the number of intervals from 5 to 10, we
have brought our approximation from .40 to .45. The area

with 50 intervals would be .49; with 100 intervals, .495.

If we take n as the number of rectangular intervals into

which we divide the triangle, we obtain the following

general formula for the sum of the areas of n rectangles:

If the reader, using this formula, will compute the sum of

the areas of five hundred and one thousand rectangular

intervals, he will find that these and any other higher n he

chooses to compute will yield sums between .495 and .50.
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Under no circumstances will the sum of the rectangles
into which he divides the triangle be more than .50. That
this is true is intuitively clear when we look at the triangle

being subdivided and note the tiny triangles above the

tops of the rectangles which can never be included in the

sum of the areas. It is also clear when we further simplify
our general formula for the sum of the areas:

As n gets larger (i.e., we cut our triangle into more and

finer rectangles), 1/n gets smaller. As this happens, the

value of

will approach H, the actual area.*

This method of determining area was called by Ar-

chimedes the method of "exhaustion" and by Newton and

Leibniz, "integration." The latter two were fortunate in

having at their disposal a tool which was not available to

Archimedes. This was the analytic geometry of Descartes,

with which as has been frequently pointed out a mod-

erately intelligent boy of seventeen can solve problems
which baffled the greatest of the Greeks. This statement

is made, not to discredit Archimedes, whose place with

Newton and Gauss in the pantheon of mathematics is uni-

* We can achieve the same result by circumscribing our

rectangles so that they include more than the area of the triangle.
As the number of rectangles gets larger, the sum will approach,
from above, the limit which is the area of the triangle.
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versally acknowledged, but only to emphasize the power
of the method of analytic geometry.

When we can place our curves and figures on the

plane formed by the x and y axes, we have a great ad-

vantage over Archimedes. Curves, as we have already

seen, are no longer merely beautiful lines but definite

relationships among numbers which can be expressed in a

most general form for the whole extent of the curve by
algebraic formulas. The straight line, or "curve," which

forms the hypotenuse of the right triangle on the lower

part of page 80 is determined by the algebraic equation

y
= x. When we say this, we mean that the numerical

value of the y coordinate at any point on the curve is the

same as the numerical value of the x coordinate at that

point. If we are given x = 9 at a given point, we know
that y

=
9; if x 21, y

= 21; and so on. The curve on the

lower part of page 79 is determined by the equation

y
= x2

. On this curve the numerical value of the
ij
coordi-

nate is always the square of the value of the x coordinate:

if x = 3, y 9; if x = 9, y 81; and so on. The reader

will recognize the equation for the parabola we used to

solve the Delian problem in Chapter 5.

This method of analytic geometry is even more useful

in answering our second question than it was in answering
the first.

How steep?



The question How steep?, like the question How big?,
is simple enough to answer when only straight lines like

y
= x are involved. If we look at the line below, we see

that one measure of its steepness is the angle it makes

with the x-axis and another is the ratio between the two
coordinates x and

ij.
If we take y/x as a measure of steep-

ness, we see from the second figure that the greater y is in

proportion to x, the steeper the line.

_ __

x

jjjsj|
Neither method appears to be available to us when we
want to determine the steepness of the parabola, or the

curve represented by the equation y
= x'

2
. Yet if we could

draw a line which would have the same slope as the curve

at some particular point, the same two methods of meas-

uring steepness would serve.

Although the problem of determining such a line was

solved by Archimedes in the special case of the
spiral, it

was not solved generally for all curves until, in the cen-

tury before Newton and Leibniz, Fermat developed a

general method of drawing a line (called a tangent)
which touches a curve at only one point and hence has

the same slope as the curve at that point.

When our curve is the arc of a circle, a line erected

perpendicular to the radius at the point where it cuts the

circumference will be tangent to the circle at that point.
If we place the circle on the Cartesian plane with its cen-
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the particular problem which interested Fermat and for

which he created a general method for drawing tangents.

To draw a line tangent to the point P in the figure

below, according to Format's method, we mark on the

curve in the neighborhood of P another point Q and draw

a line from P to Q. As we slide the point on the line now
marked Q along the curve toward P, always keeping the

line PQ going through P, the closer Q gets to P, the more

nearly will the line PQ represent the slope of the curve at

P. In the language of the calculus, as Q is allowed to

approach P, the line PQ will approach a limiting position

which is the desired tangent to the curve at P.

These two geometrical problems, computing the area

bounded by a curve and finding the slope of a curve at a

given point, are at the very foundations of the calculus.

The first is the fundamental problem of the integral cal-

culus; the second, of the differential calculus. Both, as we
have seen, were recognized from antiquity, tackled and

partially solved long before the invention of the calculus

in the seventeenth century. Newton and Leibniz were the

first to recognize that these two problems were but facets

of one and the same problem, and that the integral and

the differential calculus were essentially one the calcu-

lus. The theorem which states this truly deep relationship

was discovered independently by both of them. It is the

Fundamental Theorem of the Calculus.

Although the theorem cannot be stated or understood

without some grasp of the technicalities of the calculus,

the glimpse it can give us of this mighty tool in action is

well worth the effort required to follow unfamiliar sym-



bols and concepts. Already we have gained some idea of

the two main concepts, those of limit and of function.

These are basic to much of mathematics .beyond the cal-

culus, and mathematicians can (and must) go on for

pages defining precisely what they mean by limit and

function. We, however, can make do with very little of

this. We have seen that the area under the curve is de-

fined as a limiting sum and the tangent to the curve as a

Limiting position. These give us an intuitive, if not too

precise, idea of a limit. We have dealt with the curves of

two functions so far, although we have never referred to

them as functions. For our purposes, the simplest and
most easily grasped definition of a function is a strictly
mathematical one. A function is a rule by which y is de-

termined as soon as x is given. If we apply this definition

to the straight line determined by the equation y
= x and

to the curve determined by y
= x2

, we have no trouble in

recognizing that both of these equations identify functions.

To express this concept of function there is a very

simple and useful notation, f(x)> which is read "/ of x"

or "function of x." In the first of the examples we have

given, /(x) = x; in the second, f(x) = x 2
. Since any curve

represents a value y determined by a value x at each point
of the curve, we can identify any curve in a general way
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as /(x), or as a function of x, even though we may not

know the particular f(x) that determines the curve.

Sometimes we are concerned not with the curve as a

whole but with a particular point on the curve. Knowing
that the x coordinate of the point is, say, 2, we can then

write of y that y
=

/(2). Whether y necessarily equals 2

depends solely upon the particular f(x) which determines

the curve as a whole. When the curve is determined by
f(x)

=
x,y

= /(2) = 2; but when the f(x) of the curve is

f(x)
= x2

,
then y

=
/(2)

= 4.

Unfortunately, without understanding this much of

the notion of function, we cannot possibly follow even the

simplest applications of the calculus. At the end of this

chapter, therefore, are a few problems which will enable

the interested reader to clarify and make firm his own

understanding.
With such a general notion of limit and function, we

now need an understanding of the concept of an incre-

ment if we are to follow the Fundamental Theorem of the

Calculus. The technique of the calculus depends essen-

tially upon this concept. An increment is an arbitrarily

small increase in xoff(x) which, since- y
=

f(x), results

in a corresponding (though not necessarily the same)

arbitrarily small increase in the value of y. We symbolize
the increment added to x by A% and the corresponding
increment in y by Ay, and write

where A is read "delta." To express what we have done in

this general way, we do not have to know what x is, what
die arbitrarily small increase in x is, what f(x) is, or what
the corresponding small increase in y is. We can even pro-

ceed, still not knowing the value of any of our terms, to



express At/, or the increase in y, solely in the terms of x.

Once we have expressed At/ in terms of a;, we can express
the ratio AyjA% in terms of x.

Ay f(x+ Ax) ~f(x)
Ax Ax

Perhaps we appear to be getting nowhere fast?

But it is one of the marvels of mathematics that such

apparently pointless manipulation of symbols should be

the source of the power of the calculus, one of the most

practical of the many tools with which mathematics has

outfitted modern science! Appearances to the contrary,

we are getting somewhere but fast. To see that we are,

let us return to the curve of the parabola, which is repre-
sented by the equation y

= x2
. We learned earlier how to

determine the slope of such a curve at any given point,

but now let us consider a less geometrical and more gen-
eral question. What is the rate of change represented by
this curve? How fast is y changing with respect to x?

Actually, although these two questions sound quite dif-

ferent, they are the same as the question How steep?
Since in the case of this curve, f(x)

= x2
,
we know

that the value of y is increasing as the square of the value

of*.-

x 1 2 3 4 5

y 1 4 9 16 25

Obviously y is increasing much faster than x. Between

and 1, both x and y increased by 1; but between 6 and 7,
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x still increased by only 1 but y increased by 13. Between
and 7, x has gained 7 points while y has gained 49. The

average gain of y in proportion to that of a is 7 to 1. But

how fast is y gaining on x?

Let us apply the method of the calculus to this prob-
lem: a method which appeared a few pages back as a

meaningless manipulation of symbols. We begin by add-

ing an arbitrarily small amount to x in f(x) so that we
have instead of /(x), f(x -f Ax). Since y

=
f(x), the new

value of y is y + At/
= f(x -f- Ax). Now let us substi-

tute for f(x) in its general form the specific function x 2

with which we are dealing. We begin with

After we add the increment to x 2
, we have

When we express At/ in terms of x, we get

At/ (x-f- Ax)
2 2 = x 2 H-2x-Ax+ (Ax)

2 x2

If we now express the ratio between Ay and Ax in the

terms of x and then cancel out identical terms in numer-

ator and denominator, we arrive at

Recalling that when we first added Ax to x in /(x), we
defined it as "an arbitrarily small increase," we realize that

as we choose smaller and smaller amounts for Ax, i.e., Ax

approaches 0, the limiting value of the ratio At//Ax will

be 2x. This is the rate of change of y with respect to x

when /(x)
= x2 .

We can see that 2x actually is the rate of change, or,
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to express it in a different way, the slope of the curve at

a given point. We plot the parabola and then at any point
draw a line the slope of which is equal to twice the value

of the x coordinate of the point. For instance, at x = 1 the

slope should be 2; so we line up our straightedge with a

point 1 unit over and 2 units up from our given point on

the curve. The slope of the line we draw will then be 2,

and we can see that this line does represent the slope (or
rate of change ) of the curve at this point.

How big? How steep? How -fast? We have said that

there is a fundamental point of contact among these three

questions. We have shown that the answers to the last

two are essentially the same. How steep?
= How fast?

Now we shall show the relation of the first to these two.

That these three questions are so related has been called

"one of the most astonishing things a mathematician ever

discovered.''

We begin by taking the area under a curve which we
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can identify in a general way as f(x). We have seen that

a curve is a function of x since each x coordinate deter-

mines a y coordinate and hence the curve itself. The area

under a curve is also a function of x but in a somewhat

different sense. It is clear from the diagram below that if

we take a as the x coordinate of the left-hand boundary
of the area we wish to compute, and b as the x coordinate

of the right-hand boundary, moving b to the right on the

x-axis will increase the area. In this sense the area under

a curve is a function of (i.e., is determined by) the value

of the x coordinate at its right-hand boundary.
' '

Since, although the area is also a function of x, it is not

the same function as that which determines the curve

above it, we represent the curve by f(x) and the area by
F(x). This can be easily seen in the curves below. On
the left we have a triangle under the curve f(x)

=
x, the

value of each y coordinate being the same as that of the x

coordinate of any point on the curve. If we compute
the area of this triangle at each x coordinate as one-half of

x2
(or half the base times the height), we find that the

curve representing the area as a function of x, or F(ac), is

x2
an entirely different curve, F(x) = :

2
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Now let us return to our main problem.
To determine the area under the curve between a and

b we proceed in the by now somewhat familiar method of

the calculus. We go a little farther to the right on the oc-axis

and add to x (represented on the diagram by b) an arbi-

trarily small distance which we call Ax. This results in an

appropriately small increase in the area under the curve,

which we call AA.

Instead of A = F(x) we now have

and by subtracting the original area from the enlarged
area we can determine the value of AA.
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If we look at our diagram we can see by inspection that

AA, as well as having the value given above in terms of x,

has also the approximate value of A times /(#), which

would be the area of the largest rectangle we could in-

scribe in. AA. The ratio AA/As is then approximately

*)

lim AA_ lim Aa>/(x) _ .

A*-*0 ~Kx~~~ Ax-*0 Ax
~~

* (X '

From the above we see that the area under the curve

f(x) is determined by a function F(x) which has the

property that its rate of change, or derivative as it is tech-

nically called, is /(#)!

Since F(x) answers the question How big? and f(x)
answers How steep? and How fast?, we find all three

inextricably bound together. This is the fundamental re-

lationship of the calculus "one of the most astonishing

things a mathematician ever discovered"!

With a brief explanation of two notations which we
have not already met, we are now ready to state and fol-

low the Fundamental Theorem of the Calculus. For the

derivative of F(x), we shall use the notation F'(ac); and
for the area under f(x) between x = a and x = b, the

notation below.

J f(x)dx

The Fundamental Theorem, discovered independently
by Newton and Leibniz, states:

If f(x) is continuous and F'(x) = f(x), then

J
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Let us apply this formula to the area under the line

y
= x between and 1, which we know is %, and the area

under the curve y
= x2 between and 1, which we do not

know. In the first case we must have a function of x, the

derivative (or rate of change) of which is x. Since we
earlier determined the rate of change of x 2 as 2x (on page
90), we can surmise that the derivative of &t2 is x. In

the second case, the reader may be interested in working
out (as on the same page) that the derivative of Ysx

3 is

In the case of the triangle we know that the area is indeed

%, which the Fundamental Theorem gives us as the limit.

In the case of the area under the parabola, we did not

know but now we know that the area under the curve,

defined as the limit, is %.
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Thus the Fundamental Theorem of the Calculus

brings together the answers to the three questions we
asked about curves and the areas which He under them.

How steep? has the same answer as How fast?, and the

answer to How big? is the inverse of the other two.

It was because they perceived this underlying unity
that Newton and Leibniz, who were by no means the first

to use the methods of the calculus, are given the full credit

for its invention.

FOR THE READER

The test below will enable the reader to make sure

that he has a clear, if simple, notion of a function.

1. Iff(x)=x,solvey = /(5)fory.
2. Iff(x)=x

2
,solvey=/(S)fory.

3. If f(x)
= x2

, what are the y coordinates for

a =1,2, 3?

4. Iff ( x )
= xf what are the y coordinates for

5. Hf(x)=
6. E/(x)=
7. If f ( x )

= 1 /x, what is the value for ywhen x= 7?

8. Iff(x )
= 1 x, what is the value for y when x = 1?

9. If/(*)= xs
, solve y=f(2) fort/.

10. If f(x)
= x + 3, what is the value of y for x = 7?

Ql = fi -oi $ = / '6 ?0 = /* '8
'LA = fi 'I -9 =

91 = fi
'9 -9 '9 'f = fi 'f

f6 > 'I = ^ 'e -SS = fi 'Z
fS =
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7
How Many
Numbers
Are Enough?

HOW MANY NUMBERS ABE ENOUGH?

1, 2, 3, ... are enough numbers to

count the objects before us; yet when
we encounter the ordinary operations
of arithmetic for the first time, we find

that they are not nearly enough. We
can subtract only when the number

being subtracted is smaller than the

number it is subtracted from; we can

divide only when the number being
divided is a multiple of the number

being divided into it; we can extract a

square root only when the number
from which we are extracting it is a

perfect square. For these simple opera-
tions to be always possible, we must

have more numbers than 1, 2, 3, ....

We have seen in an earlier chapter
how the necessity for a number for

every point on the line resulted in the

development of the concept of the

arithmetic continuum. Now we shall

see how the necessity for an "answer"

to every problem in arithmetic resulted

in a parallel development that went

one step beyond the concept of a

unique number for every point on the

line to a unique number for every

point on the plane!

The necessary extension was a mat-

ter of centuries. Although we shall

follow it in a more or less logical order,

it was neither orderly nor logical.

Numbers began as a way of count-
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ing. It seemed natural that a number should correspond
to each thing counted, so in later times when all sorts of

curious quantities were being used as if they were num-

bers, these original counting numbers came to be thought
of as the natural numbers. "God made the integers," thun-

dered a mathematician of the nineteenth century.* "All

else is the work of man."

Numbers other than the original natural numbers

turned up in the process o solving problems: first prob-

ably in making accurate measurements, later in finding
the roots to equations. Even mathematicians had curious

attitudes toward them. The Greek mathematicians used

rational quantities, or fractions, but refused to call them

numbers; and the beautiful theory of numbers which they
created deals, to this day, only with whole numbers. The

Indian mathematicians did not consider the negative
solutions to equations as solutions "because people do not

approve of negative roots." The mathematicians of the

Renaissance, who solved otherwise unsolvable equations

by acting as if 1 had a square root, uneasily dismissed

V 1 (after they had used it) as "imaginary."
But in spite of the fact that the mathematicians did

not really believe that anything other than 1, 2, 3, ... was

a number, they ended up by justifying their use of these

quantities as numbers by the fact that they used them in

the same way they used 1, 2, 3, . . .
, adding, subtracting,

multiplying and dividing them according to what they
considered the natural laws of arithmetic.

Although very few of us could state these Laws of

Arithmetic on a quiz program, we obey them almost un-

thinkingly. The Associative Laws, the Commutative Laws
and the Distributive Law, as they are called, are no more
than the formal statements of how the natural numbers

*
Leopold Kronecker (1823-1891).



behave under the operations of addition and multiplica-
tion and, by implication, subtraction and division.

The Associative Law of Addition, for instance, tell us

that when adding 1 and 2 and 3, we can perform the

operation in several different ways and still get the same

answer; and the Associative Law of Multiplication tells

us the same thing in regard to multiplying:

1+2+3=6 1X2X3 = 6

(1 + 2) +3, or 3 + 3 = 6
(
1 X 2) X 3, or2 X 3 = 6

1+ (2 + 3), or 1 + 5 = 6 IX (2 X3),orl X 6 = 6

It is important to note that the Associative Laws do not

tell us that we can change the order of 1, 2 and 3 when
we add or multiply them and still get the same sum or

product. That is reserved for the Commutative Laws.

We are all familiar with the fact that if we take two

of something like an apple and then three, we shall have

as many apples as the person who first took three and then

two. If we take two apples three different times, we shall

have as many apples as the person who reached for the

bowl only twice but took his apples three at a time. These

simple facts of social life are formalized in the Laws of

Arithmetic to the effect that addition and multiplication

of the natural numbers are commutative operations:

2 + 3 = 3 + 2 and 2X3 = 3X2

The Distributive Law merely brings addition and

multiplication together with the statement that 2 X ( 1 +
3) is the same as (2 X 1) + (2 X 3).

In the past, mathematicians firmly believed that these

laws were as "natural" and God-given as the numbers to

which they applied; yet all around them were "multiplica-

tions" and "additions" not associative or commutative.
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We have actually seen that addition and multiplica-

tion, when applied to apples, are commutative; but do we
know that they are always commutative in respect to

things other than apples? We, like the mathematicians of

the past, probably think that we do; but let us look for a

moment at baseball hits instead of apples. If our team gets

a three-bagger and a home run, the total number of bases

hit will be the same whether we add

3BH-4B
or

4B + 3B

but there will be a considerable difference in the score

depending on which hit was made first:

but

If we buy an insurance policy after we have had an

automobile accident, the result of the combination of

accident and policy is quite different from what it would
have been if the combination had been made in the re-

verse order:

Policy -f Accident = $1000

but

Accident + Policy
= $0

There are many other examples in everyday Me where
the order of combination changes the result of an opera-
tion. We offer these only to show that while it may be

impossible for us to think of 2 X 3 as not being equal to

3X2, we can think of ab, under certain conditions, as

not being equal to ba.

Subtraction and division are neither associative nor
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commutative. But do multiplication and addition have to

be associative and commutative? Does addition have to

be distributive with respect to multiplication whenever

we are dealing with quantities we choose to call "num-

bers"? Up until a little more than a hundred years ago, it

was thought by all mathematicians that they did; that, in

fact, they must. The Laws of Arithmetic were considered

a logical necessity of number.

We have heard a great mathematician say that God
made the integers and all else was the work of man. This

was the attitude of mathematicians from the time of

Pythagoras. To facilitate measurements and the solutions

of equations, mathematicians might have to extend the

concept of number to include quantities other than the

integers, but they could at least see that, like the integers

which God made, these followed the God-given Laws of

Arithmetic. In all the extensions of the number concept
which we shall describe in this chapter, this principle was

followed. It was called the Principle of Permanence of

Form; and it meant that the fundamental Laws of Arith-

metic, which we have already examined, remained in

force with the new numbers as well as with the old. This

made everybody feel much better about using the strange

new "numbers."

To understand the extensions which were made, we
shall begin with a picture of the natural numbers marked

off, unit by unit, upon a straight line extending indefinitely

to our right:

Immediately we note a curious thing about this pic-
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ture. While 1 marks the distance 1 unit from the begin-

ning of the line; 2, the distance 2 units from the beginning;

3, 3 units, and so on there is no number among the

original natural numbers which can mark the beginning
of the line. Yet if we take away, or subtract, 4 units from

the point marked 4, this beginning point is exactly where

we obtain our answer. What is the answer to the question

How many is 4 4? The answer is none at all or, nu-

merically speaking, 0. So let us call a number, since it

answers the question How many? just as the other count-

ing numbers do, and then let us mark the beginning of the

number line with 0.*

Zero makes possible the subtraction of a number from

itself.

But even with 0, subtraction is not always possible.

We still cannot subtract a larger number from a smaller

and get as our answer a number on the line above. When
we take 6 from 5, we find that we are 1 unit short. In

other words, we could perform the operation if we had

one more unit to the left of 0. So, arbitrarily, we add it

and an infinite number of such units. We extend the
* This is not at all the way that was invented. It was in-

vented, not as a number, but as a symbol to mark those columns
in the representation of a number which contained no digits. The
use of made possible the representation of all numbers with only
ten different symbols and was probably one of the most important
practical inventions in the history of the world. The idea of as a
number (rather than merely a symbol) is not very important to

anybody but a mathematician, to whom it is quite important. In
the modern theory of numbers, is usually treated as one of the
natural numbers.
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number line to the left of 0, and we mark it off in units just

as we did the line to the right. Since these units are less

than 0, we place a minus sign in front of them and call

them negative. To be consistent, we must then place plus

signs in front of what were once all the numbers, and call

them positive. Zero has neither plus nor minus in front

of it is neither positive nor negative. The extended num-

ber line now looks like this:

The negative numbers make subtraction always pos-
sible.

Now we come to division and face to face with the

unpleasant fact that most divisions do not come out even.

If we are to perform the operation of division whenever it

is indicated and get an answer among the numbers on our

line, we must have parts of numbers, divide our units into

sub-units, and allow these to be "answers" too. Unless we
do so, we can divide a number only into a multiple of

itself.

Although we shall indicate on our extended line just

those sub-units obtained by dividing the unit in half and

then in half again, we must understand that to make

division always possible we have to include among our

new numbers every quantity which can be represented by
the ratio of two whole numbers. We give these new quan-
tities the Greek name of the rational numbers. As a class,

the rationals include the whole numbers, for these can

always be expressed as the ratio of themselves over 1.

With the extension of the number concept to include

fractional parts of the unit, our line begins to look like
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this on the portion between 1 and +1:

The rational numbers make division, except division

by 0, always possible.

Things are getting a little crowded even with only the

few numbers we are indicating on the number line. It is

now, in fact, what mathematicians characterize as dense,

which means that between any two numbers there is al-

ways another number. As we have seen, the Greeks at the

time of Pythagoras, with far fewer numbers (for they had

not extended their concept of number to include either

or the negative integers), thought that they had quite

enough for all practical purposes, including the measure-

ment of the Universe. We have also seen how the most

shattering discovery in the history of mathematics was the

discovery that this beautiful array of whole numbers and

their ratios was not enough to furnish an exact measure-

ment of the diagonal of the unit square. The square root

of 2 was a non-rational number.

How many such non-rational, or irrational, numbers

are there? Merely an infinite number and this in spite of

the fact that, as we have seen, the rational numbers are

dense upon the line. By multiplying by itself a rational

number which is not a whole number, we can never get a

whole number as our result. All numbers, therefore, which

are not perfect squares, or generally perfect powers, of

some other whole number must have as their roots irra-

tional numbers.
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The irrational numbers make the extraction of roots of

positive numbers always possible.

Up to this point we have been writing of these suc-

cessive extensions o the concept of number as if they
were things that we would be unable to live without. Yet

the majority of people in even the most civilized countries

do not consider a number, but rather a symbol which is

indispensable for the representation of numbers in the

decimal system. It is most unusual to see the digits ar-

ranged in their natural order 0, 1, 2, 3, . . .
, usually

being placed instead after 9. Only of late, with the "count-

down," has been publicly recognized as a number, and

then it is counted back to, rather than up from. Although
we are all familiar with debts, losses, arrears and such

unpleasant figures, we never put a minus sign in front of

them in our accounts, but write them in red. We treat

both profit and loss as positive quantities and subtract the

smaller from the larger to find out whether we are ahead

or behind, and how much. We would find it difficult to

live without the rational numbers, since sub-units of the

unit are necessary for even fairly approximate measure-

ments; but considering the infinities of rational numbers-

infinity upon infinity which are at our disposal, we use

practically none of them. The ordinary foot ruler distin-

guishes only to YIQ of an inch. Since we can place any
irrational root to as many decimal points as we wish, and

have the time and energy to compute, it is obviously of

no great concern that we cannot pkce it exactly.

The truth of the matter is that the successive exten-

sions of the number system took place, not to make the

ordinary operations of arithmetic always possible in

everyday life, but tomake them always possible in algebra.

If we are to be generally effective in the solution of alge-
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braic equations, we must know before we start that there

exists a number which will satisfy each respective un-

known in an equation. This does not mean, even when we
come now to the final extension to the so-called imaginary

numbers, that the successive extensions of the number

system have no practical value. Algebra is one of the most

practical subjects in the world. Just ask any scientist!

But let us imagine for a moment that we are limited in

our algebra to solutions for x which are among the orig-

inal natural numbers. Then let us try to solve the follow-

ing simple equations by finding in each case a value for x:

We can see by inspection that to solve these equa-

tions, we must in each case extend the concept of number
from the natural numbers to zero, to the negative num-

bers, to the rational numbers, to the irrational numbers.*

Not one of these equations would have a solution if we
were limited in our algebra to the original natural num-
bers! If this restriction had been placed on our solutions,

we would have seen that we had to stop before we started.

But in more complicated equations we cannot see so easily

that there is no solution for x. If we are to proceed in our

manipulations of the symbols with any assurance that

these manipulations are not a waste of time, we must

know before we start that in every case there exists a

number for x.

* In actuality we have added many numbers which we do not
need for the solution of algebraic equations numbers, called

"transcendental," which cannot be roots of algebraic equations. We
shall hear more of these numbers later.
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Having extended the number system four times al-

ready, we can now find roots for any of the equations
above and for any similar but much more complicated

equations. Yet, we are not through. There are still com-

paratively simple equations for which we can find no
roots at all among the numbers we already have. Such an

equation is

x2 + I =

It is obvious that if we are to add 1 to x2 and obtain

0, x2 must have the value of 1. It is equally clear that

x then must have the value of V 1. BUT, under the rules

by which the negative numbers were allowed to be

brought into our number system, it was implicitly stated

that a negative number could not have a square root!

Recall the rules for multiplying positive and negative

numbers, which were necessary for maintaining the Prin-

ciple of Permanence of Form. A positive number multi-

plied by a positive number yields a positive number, as

does a negative number multiplied by a negative number:

Only when we multiply together a positive and a negative
number do we get a negative product:

(-2) X (+2)=-4
(+2)X(-2)=-4

We must remember that -j-2 and 2 are two different

numbers, located at two entirely different points on our

number line. But by definition a square is the product of

a number multiplied by itself. Under this definition a

negative number simply cannot be a square. Yet there is

our equation
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If we cannot find a solution for this equation, we shall

be severely handicapped in our algebra. We shall have

failed in our avowed purpose of extending the number

system so as to make the operations of arithmetic always

possible. We shall have to concede that any equation for

which x2 1 has no root.

Let us not give up too easily. In the first half of the

sixteenth century Girolamo Cardano ( 1501-1576 ) , saying

frankly that roots of negative numbers were "impossible"
there could be no such roots! nevertheless began to use

in solving otherwise unsolvable equations a symbol which

he called the square root of 1. Since he did not consider

this symbol a real number ( for he knew as well as anyone
that there could not be a number which when multiplied

by itself would produce 1) Cardano called his symbol
an imaginary number. The strange thing was that by

using such imaginary numbers when necessary, Cardano

found that he could obtain very real, practical results

with equations which otherwise he would not have been

able to solve!

But let us return for a moment to our own extension

of the concept of number. How can we, refusing to have

anything to do with Cardano's highhanded invention of a

"number" for the square root of 1, go about finding such

an impossible root for an equation like x2 + 1 = in a

logical and orderly extension of our concept of number?

There is no root among the integers, the rationals or the

irrationals. At this point we cannot change the rules under

which we brought these quantities in as numbers. We
cannot, for instance, say that a negative number multi-

plied by a negative number yields a negative number, for

that would involve us in impossible contradictions. It was
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to avoid the contradictions that we made the rules in the

first place. There is only one thing we can do. Just like

Cardano, we can make up another number. We can

simply define it as V 1 and call it i (for Cardano's

imaginary number).
We have no everyday justification for what we are

doing. We can compare the negative numbers to things
like debts and temperatures below zero and the years be-

fore the birth of Christ, but the number i we can compare
to nothing in everyday life. It was for this reason that

mathematicians, although they went right along using i

to solve equations, felt a little guilty about what they were

doing. God, they felt, had made the whole numbers. If

He had wanted man to have them, He would have made

negative numbers and given them square roots!

Yet the extension of the concept of number to the

imaginary numbers parallels in a logical and orderly way
the extension to the negative numbers. The negative num-
bers were invented to make subtraction always possible;

the imaginary numbers were invented to make extraction

of roots always possible. There was only one condition

upon the admission of negative numbers to the number

system: they must be used in accordance with the Laws
of Arithmetic, the Principle of Permanence of Form must

be maintained at all costs. This same condition was im-

posed upon the imaginary numbers. They were just as

much numbers, and every bit as "real," as the negative
numbers. Unfortunately, in the beginning they were

called "imaginary" by Cardano and the name has stayed

with them and undoubtedly always will.

Today the words "real" and "imaginary" are used to

distinguish the two axes of a number plane which is as

real as the plane of analytic geometry, and identical with

it. Obviously i and its multiples 2t, 3i, . . .
,
cannot go on
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our number line, since all the points on the line are already
accounted for by numbers. They can, however, have a

line of their own the pure imaginary line which, like the

y-axis of the Cartesian plane, is perpendicular to the real

number line, or cc-ax s, at 0:~ ~ ~
TJT^

/t

'

I

'W ''<
With this geometric interpretation, we find that our

seemingly "imaginary" numbers begin to assume an every-

day reality. Like the reals they have a line of their own.
Combined with the reals, they serve to locate uniquely
each point on the plane. These new combinations which
do the same job as Descartes' pairs of real numbers (x,y)

represent, however, an important advance in our concept
of number. While Descartes' real-number coordinates are

"pairs" of numbers, these combinations of real and imag-
inary coordinates are individual numbers.

These new numbers of the form (x + yi) are called

complex numbers because they have more than one part.

They are represented abstractly as (x + yi) where x and

y are real numbers and i is defined as V 1. When x has

the value of 0, the "complex" number becomes a pure
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imaginary (0 -+- yi yi), while when y has a value of

it becomes a real number (x +0i = x). The pure imag-
inaries and the reals are, therefore, merely sub-classes of

the complex numbers:

COMPLEX NUMBERS (x + yi)

Real Numbers ( y
=

) Imaginary Numbers ( x )

Rationals Irrationals

Integers Fractions

The imaginaries make the extraction of the roots of

negative numbers always possible.

We have come a very long way in our extension of the

concept of number. We began with the natural numbers,
which could be paired in one-to-one correspondence with

objects which were to be counted. By retaining the rules

which we had made up for the behavior of these numbers,
we were able to extend without logical difficulty our

concept of number to the so-called "real" numbers, which

could be paired in one-to-one correspondence with every

point on a line. Still retaining the same rules, we further

extended our concept of number to the complex numbers,

half "real" and half "imaginary," which could be paired
in one-to-one correspondence with every point on a plane.

We have enlarged our number system, step by step, so

that now for every operation of arithmetic we can obtain

an answer within our number system. Just as with the

original natural numbers we could always add or multiply,

now with the complex numbers we can always add, sub-

tract, multiply, divide and extract roots.
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But we are still troubled.

We saw that the extensions to and the negative
numbers made subtraction always possible; the rationals

made division always possible; the irrationals made the

extraction of roots of positive numbers always possible;

the pure imaginaries and the number i that generates them
made the extraction of roots of negative numbers always

possible.* We now have a number for every point on the

real axis and every point on the pure imaginary axis and,

also, a number for every point on the plane. Surely these

should be enough numbers to make the operations of

arithmetic always possible and to provide every algebraic

equation with a root! But what about an equation like

this one?

Won't we need to extend our number system once

again, beyond i to V ?

The answer to this question is a very simple one, which

mathematics can offer with all the finality of mathematical

proof. The answer is no. We have gone as far as we need

to go. It can be shown and this is known as the Funda-

mental Theorem of Algebra that any algebraic equation
has a root within the system of complex numbers.

To mathematicians i, the square root of 1, is the

wonderful square root. In the satisfying language of

mathematics it is both necessary and sufficient.

That pesky equation? Don't we need a square root of

i to get a root for that x? Oh no,

Multiply it out, and see for yourself!

* V 2 = iV2, and so on.
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FOR THE READER

One of the quickest ways to get rid of the idea that

complex numbers are mere figments of our imagination is

to pin them down geometrically. This is exactly what was

done in the early nineteenth century when it was shown

by Gauss and others that the domain of the complex
numbers is mathematically equivalent to Cartesian plane

geometry.

Geometrically, a complex number (x + iy) is consid-

ered as a composition of the two vectors of its real and

imaginary (or x and y) coordinates. In non-mathematical

language we can think of it as the diagonal formed when

we complete a rectangle from these coordinates:

This same idea is extended to the geometrical defini-

tion of addition of two complex numbers (which are, of

course, in themselves additions of real and imaginary

parts). To add two complex numbers (x + iy) and

(u + iv), we simply add real and imaginary parts sep-

113



arately and obtain as our answer the complex number

(* + *)

Geometrically, we "complete the parallelogram" begun

by the vectors of the two numbers, as below:

The reader will find it interesting to add the complex
numbers below by botb methods:

(3+ 2i) + (4+ 50
(2+ 50 + (6+ 20
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Enchanted

Realm,

Where Thought
Is Double

THE ART OF GEOMETRY. THE GEOMETRY
of art.

From the annexation of these two
territories mathematics gained what
has been called "an enchanted realm,
where thought is double and flows in

parallel streams." But such is the un-

derlying unity of all mathematics that

just as we found the lines and circles

of Euclid and the conic sections of

Apollonius in the graphs of algebraic

equations on Descartes' numbered and

coordinated plane, so we meet them

again in this new domain.

The "enchanted realm" is projec-
tive geometry, the mathematics which

was born in the struggles of the early

Renaissance painters to transfer three

dimensions to two without losing the

appearance of reality.

The approach of projective geom-

etry to the familiar subject matter of

geometry is synthetic we proceed by

synthesis, or putting together, from

the figures to the principles. The ap-

proach of analytic geometry is, as its

name tells us, the direct opposite. We
proceed by analysis, or taking apart,

from principles to figures. Yet, curi-

ously, the small volumes which for-

mally introduced these two new geom-
etries to mathematics were published
within a few years of one another!

Although neither book was to have
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much influence on the immediate mathematics of its

time, the very look of geometry had been irrevocably

changed with their publication.
In the geometry of Euclid we drew circular circles

and square squares, equilateral triangles with three equal

sides, and parallel lines which never met. But these are

not what we see. To the human eye, circles are not gen-

erally circular, squares are not square, equilateral triangles
do not have equal sides or equal angles, and parallel lines

approach one another. The only time we come even close

to seeing these shapes in their pure Euclidean form is

when we look at them head-on so that our eyes are more

or less in line with the center of the figure. If we had just

one eye, which could then be directly in line with the

axis, we would be able to see them even more "accurately."

Given the problem of drawing a three-dimensional

cube (or a box or a house) on a two-dimensional piece
of canvas, we are immediately confronted by a paradox.
We know that each of the six sides of the cube is a

square a quadrilateral with equal sides and equal angles
and that all six squares are the same size. If we look at

the cube head-on, we see just one square; but if we draw

the cube as a square, it certainly will not look to the eye
like a cube. Our eyes tell us that the square is a cube

because, having two eyes, we have brought together two

slightly different views of the face of the cube and thus

obtained at least a sense of depth. The square on our

canvas is a Cyclops view. It has no depth unless the

square face of the cube is seen among other three-dimen-

sional objects which are not drawn head-on. To make the

cube by itself appear solid to the eye, we must draw it

from an angle which shows more than one face; and when
we try to do just this, we find that not one of the faces

which we draw is still a square!
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We see now as we look at the cube from different

angles that the faces change shape as we change our

point of view. We may see one, two or three faces of the

cube at once; but all will be different. We know, how-

ever, that they, as well as the faces which we cannot see,

are all the same. After all, what is a cube but a solid with

six square faces! Even though they may not look as if they

are, all lines and all angles must be equal.

There is one thing about the faces of the cube which

does not change. We may look at the cube from above,

from below, from the left, from the right, the fact remains

that every face we see is always a closed figure bounded

by four straight lines a quadrilateral of Euclid's geometry.
What rules determine these new quadrilaterals which

are no longer squares? It was this question and similar

ones about other geometrical shapes which led the paint-

ers of the early Renaissance to investigate and formulate

the principles of perspective.

The word perspective in its original form means "to

see through." It is an almost literal statement of what the



painter conceived himself to be doing. From every visible

point of the object which he saw before him, a ray of

light entered his eye. If a pane of glass were to be placed
between the objects and his eye, each of these rays would

pierce it at a definite point. The painter then could con-

ceive of his painting as an imaginary glass through which

he saw the scene. By drawing on his canvas the outline of

objects exactly as they would appear on the imaginary

glass transposed between his eye and the objects them-

selves, he could paint "what he saw." Some painters of

the day actually used such mechanical aids.

Since these men of the early Renaissance saw all ob-

jects as essentially the shapes of classical geometry (for

they believed with Plato that God eternally geometrizes ) ,

they recognized that the relationship between the shape
of an object as it was and the shape as it appeared to the

eye from varying angles of vision must be expressible in

terms of mathematics. They worked out various inde-

pendent and disconnected theorems of perspective and

gave to the geometry that grew out of their work its two

basic terms: projection and section, the latter referring
to the point of view, or eye of the painter, from which an

object or a group of objects is viewed; and the former, to

an imaginary plane which intercepts or cuts that view, and

is the picture itself.

Mathematically, we express these same relationships
in the following manner:

From a point O, lines are drawn to every point of a

geometric figure F; these lines issuing from O are cut

by a plane w. . . . The set of lines joining a point O to

the points of a figure F is called the projection of F
from O, If a set of lines issuing from a point O is cut

by a plane w, the set of points in which the plane w
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cuts the lines through O is called the section of the

lines through O by the plane w.

Let us observe now what this definition means in rela-

tion to the projection and section of the circle.

We begin by drawing a circle and selecting a point O
in space above the circle and directly above the center.

From every point on the circumference of the circle we
conceive a line joining that point and O and continuing
on past O. We now have in our mind a set of lines form-

ing an infinite double cone. This is the projection from O
of our original circle. If we conceive of a plane surface

cutting this projection in various ways, we shall have a

series of sections of the projection, A section which puts

one portion of the cone will give us a picture of our circle

as an ellipse. A section which is made parallel to any Line

of the cone will give us a parabola; and a section which

cuts both portions of the cone, a hyperbola (page 120),

Here is a beautiful example of the elegant generality
of this new geometrical way of thinking. Menaechmus
and Apollonius studied the conies under the almost un-

bearable weight of a cumbersome terminology. Descartes

dealt with them as varying forms of the general equation
of the second degree in two unknowns. Projective geom-

etry now enables us to define the conic sections with even

more stunning simplicity:

The conic sections are simply the projections of a

circle on a plane.

The artist's yet unorganized mathematics of perspec-
tive and the mathematician's yet undiscovered art of

projective geometry met in a man named Gerard De-

sargues (1593-1662), a self-educated architect and engi-

neer. Desargues' interest in the subject was purely

practical. "I freely confess," he wrote, "that I never had
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taste for study or research either in physics or geometry
except in so far as they could serve as a means of arriving
at some sort of knowledge of the proximate causes ... for

the good and convenience of life, in maintaining health, in

the practice of some art. . . ." He began by organizing
numerous useful theorems and disseminating these
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through lectures and handbills. Later he wrote a pamphlet
on perspective which attracted very little attention. His

chief contribution, the foundation of projective geometry,

appeared in 1639. With a few important exceptions, it

was entirely ignored by his contemporaries; and every

printed copy was lost. Only by the chance discovery of a

manuscript copy, two hundred years later, was Desargues*

original contribution to mathematics known at all.

The difference between Desargues' geometry and
Euclid's can be seen most vividly in the figures as they
are presented by each man. Euclid is concerned with

showing that two figures are congruent. This means that

if we could slide a given figure by what a geometer calls

"rigid motion" (which causes no change in the figure

during the moving) along the plane to a second figure, the

two would coincide. In the language that the new pro-

jective geometry was to bring to mathematics, we say
that Euclid was concerned with those characteristics of

the figure which are invariant (do not change) under the

transformation of rigid motion:

Euclid was also concerned with those characteristics of

the figure which are invariant under the transformations

of uniform expansion or condensation:



Euclid, of course, did not himself think of his concerns in

these terms. Given two triangles, he took as his object to

show that they were congruent. ( They were, for instance,

if all three sides of the second were equal to the corre-

sponding sides of the first.) If they were not congruent,
his object was to show that they were similar. ( They were
similar if all three corresponding angles were equal. )

The one theorem in projective geometry which bears

the name of Desargues shows immediately by its word-

ing and the accompanying figure that Desargues was con-

cerned with relationships between triangles quite different

from those that had Euclid's attention:

THEOREM: If in a plane two triangles ABC and A'B'C' are

situated so that the straight lines joining corresponding
vertices meet in a point O (in the language of art, are in

perspective from O), then the corresponding sides, if ex-

tended, will intersect in three collinear points QRP.

The triangles in Desargues' theorem are neither con-

gruent (sides not equal) nor similar (angles not equal);

yet there exists between them a relationship, as stated by
the theorem above, which does not change remains in-

variantunder the transforming powers of projection.
The reader can test this statement experimentally by
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drawing other figures to illustrate the theorem. With one

exception, which we shall take up later in this chapter, he
will find that the theorem always holds.

Desargues' excitingly new theorem and his really

revolutionary little book were taken seriously by few peo-

ple. A mapmaker named Philippe de la Hire, who had
been one of his pupils for a time, utilized the new ideas

of projection in his work and made a careful manuscript

copy of Desargues' work, which saved it for posterity.
Another fellow countryman, a youthful genius named
Blaise Pascal (1623-1662), using the method of projec-

tion, proved what has been called "one of the most beauti-

ful theorems in the whole range of geometry." (We shall

state this theorem later, on page 124. ) With these two ex-

ceptions, projective geometry, which was invented by
Desargues in 1639, might just as well have not been in-

vented until the beginning of the nineteenth century,
when it was invented all over again!

The story of the second invention of projective geom-

etry is one of the most dramatic in the history of mathe-

matics. During Napoleon's retreat from Moscow, a young
officer of engineers named Jean Victor Poncelet (1788-

1867 ) was left for dead on the battlefield. He was picked

up by enemy soldiers only because they thought that

being an officer he might be able to give useful informa-

tion. As a prisoner of war, he was forced to march for

nearly five months across frozen plains to his prison on

the banks of the Volga. At first he was too exhausted, cold

and hungry even to think; but when spring came ("the

splendid April sun"), he resolved to utilize his time by

recalling all he could of his mathematical education.

Later he was to apologize that "deprived of books and

comforts of all sorts, distressed above all by the misfor-

tunes of my country and my own lot, I was not able to
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bring these studies to a proper perfection." Nevertheless,

a year and a half later, he returned to his native France,

carrying with him the notebooks which were to serve as

a passport for all mathematicians to "the enchanted

realm." He was twenty-four years old at the time.

In his classic treatise on projective geometry, pub-
lished in 1822, Poncelet introduced a convention which

has been used in all textbooks on the subject since his

time. This was a simple typographical arrangement which

brings immediately to the eye "the enchanted realm,

where thought is double."

Point and line in plane projective geometry are called

dual elements. Drawing a line through a point and mark-

ing a point on a line are dual operations. Two figures are

said to be dual if they can be obtained each from the

other by replacing every element and operation by its

dual element and operation. Two theorems are called

duals if one becomes the other when all elements and

operations are replaced by their duals.

Poncelet emphasized this distinguishing duality of

thought in projective geometry by displaying all theorems

in pairs. Thus the beautiful theorem of Blaise Pascal

which we mentioned earlier in this chapter is displayed
beside its dual, a theorem proved much later by C.

J.

Brianchon (1785-1864):*

PASCAL'S THEOREM BRIANCHON'S THEOREM
If the vertices of a hexagon If the sides of a hexagon
lie alternately on two pass alternately through

straight lines, the points two points, the lines join-

where opposite sides meet ing opposite vertices are

are collinear. concurrent.

* The hexagons referred to in these theorems are figures formed
when any six points are joined serially. The reader may enjoy
joining six straws of varying lengths and discovering the varied

hexagons he will obtain that way. N
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The duality o the two theorems stated above becomes
even more vivid when we list parallel terms in parallel
columns :

PASCAL'S THEOREM BRIANCHON'S THEOREM
vertices sides

lie alternately on lines pass alternately through

points

points lines

where opposite sides meet joining opposite vertices

collinear concurrent

These theorems do not show an obvious resemblance;

yet they are as firmly linked as Siamese twins.

Pascal's theorem was proved in about 1639, before

his sixteenth birthday; Brianchon's was discovered-

through the principle of duality while he was a student

at the ficole Polytechnique, and was printed in the

school Journal in 1806 when Brianchon was twenty-one.

According to the Principle of Duality, the dual of any
true theorem of protective geometry is likewise a true

theorem of protective geometry.

Projective geometry is indeed an enchanted realm a

sort of Big Rock Candy Mountain of mathematics

where every theorem yields a twin and the proof of the

first provides, with the proper exchange of dual elements

and operations, the proof of its twin. 'Thought is double

and flows in parallel streams."

There is, however, a truly marvelous paradox in this

world of parallel thought. For the beautiful and com-

pletely general duality of projective geometry depends

upon the fact that in projective geometry there are no

parallel lines.

In the elimination of parallel lines, projective geom-

etry makes a complete break with its parent art, perspec-

tive. When we are drawing a scene, we draw those lines
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which are parallel to the frame
(
the pillars at either side,

the edge of the floor or the table top ) parallel. This is in

spite of the fact that we never actually see these lines as

truly parallel, for all parallel lines appear to the eye to be

approaching each other. In the small area framed by the

picture this optical illusion, however, is not usually

apparent.
The simple sketch below shows two different treat-

ments of the parallel lines in the scene. The pillars at the

sides are parallel to each other and to the sides of the

frame. The horizontal lines of the tile floor are parallel to

each other and to the upper and lower sides of the frame.

All other "parallel" lines in the picture appear to be ap-

proaching a single "vanishing point" on the horizon.

In Iris great work on projective geometry, however,
Poncelet proposed a convention which would do away
entirely with parallel lines in the mathematics that was
the child of perspective. What he proposed was very

simply to expel parallel lines from projective geometry
by fat. Although his principle as stated sounds as meta-

physical as anything in mathematics, his purpose was

merely the practical, down-to-earth one of eliminating
bothersome exceptions always having to be made in

theorems and proofs for the special case of parallel lines.

126



Let us recall as an example Desargues' theorem, which
we stated earlier on page 122. We illustrated this theorem

with a figure similar to the one below, and we observed

that it is indeed true that the extended corresponding
sides of the two triangles meet in pairs in three collinear

points. But now let us consider a slightly modified figure
where one side of one triangle is parallel to the correspond-

ing side of the other triangle.

y#'"
'

' w-^'

Although we can never hope to examine these lines in

their entirety, it is immediately clear to us that the lines

BC and B'C' will never meet. We cannot make this state-

ment on the evidence of our eyes, for if we extend the

lines far enough our eyes will tell us that they are indeed

approaching each other and must, therefore, eventually
meet. We make this statement because we know that

parallel lines will never meet, "because," we say, "that is

what parallel lines are lines that never meet."

But what shall we do about the statement of De-

sargues' theorem that the corresponding sides of the

triangles, if extended, will meet in three collinear points?
We shall have to add a qualifying clause to the theorem,

"unless the corresponding sides are parallel."

It would be one thing if Desargues* theorem were the
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only one to which we had to add such a clause to cover

the exceptional case of parallel lines; but it is not. Almost

every principle, theorem and proof in projective geometry
must be modified to cover the exceptional case of the

parallel. Such modifications are repugnant to mathema-

ticians. Economy is one of the prime requirements for

beautiful, general and effective mathematics. A theorem

which applies to one specific triangle only is no theorem

at all. A theorem that applies to almost all triangles is an

improvement. But a theorem that applies to all possible

triangles without exception now there is a theorem to

delight a mathematician!

Obviously, life in the enchanted realm of projective

geometry would be much better for mathematicians and

for mathematics if there were no parallel lines! This is

exactly what Poncelet proposed to accomplish.
It is an axiom of ordinary geometry that any two

straight lines ( except two parallel lines ) intersect at one,

and only one, point. If we now postulate that any two

parallel lines have one ideal point in common, then we
can state this important axiom with even greater gen-

erality:

Any two lines meet in one, and only one, point.

In the case of non-parallel lines the intersection is a real

point; in the case of parallel lines it is an ideal point. But

this distinction is trivial compared to the fact that the

axiom now applies to all lines without exception.

Unfortunately, as we have seen in the extension of

the concept of number, the use of such words as "real"

and "imaginary" and now "ideal" is often, even with

mathematicians, a great hindrance to the grasping of a

new idea. If, as is often done today, we simply postulated
in our mathematics the existence of two kinds of lines
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and two kinds of points, we might escape this language

trap. Any pair of lines, we might say, meets in one and

only one point. Whether this point is of Class A or Class B

depends upon the class to which the pair of lines belongs.
Removed from the crippling language of everyday life, we

might pursue our object with logic alone.

The language of everyday life, however, is not com-

pletely crippling even to mathematics. In fact, to switch

metaphors, it often provides us with a very useful crutch

in developing new ideas. Because parallel lines appear to

meet or to be approaching a meeting place at the horizon,

we say in our mathematics that parallel lines meet "at

infinity." Since all parallel lines with a common direction

are conceived as having an ideal point in common, we
also conceive of ah

1

these ideal points of all possible sets

of parallel lines as being on an ideal line, "the Line at in-

finity." The mathematician uses this language very much
as a poet uses a metaphor. Although he can make this

principle premise in an analytic basis, he finds the lan-

guage of everyday life both simple and suggestive in

handling these new ideas.

Most of us have forgotten that we are doing very much
the same thing when we talk about the "real" points of

ordinary geometry. A "real" mathematical point is the

idealization of a real everyday point made with a pencil

or a pen. This point, no matter how carefully we make it,

has of necessity dimension. In fact, it has three dimen-

sionslength, breadth and a certain theoretically measur-

able depth when it is made with a pencil or a pen. Our

so-called "real" point of geometry has no dimension at all.

Yet we easily conceive of a real line in our geometry, the

length of which is composed of an infinite number of

these dimensionless points!

In the familiar mathematics of everyday life we are
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working with ideas that are every bit as "far out" as the

concept of parallel lines meeting in ideal points that lie

on an ideal line at infinity. Although we are probably
not aware of the fact, we have been forced to accept these

ideas as logical necessities. Without the axiomatic state-

ment that a line is composed of an infinite number of

points and that there is a unique number for every point

on a line, neither analytic geometry nor the calculus, to

mention only two examples, would work as effectively as

they do in practical problems as well as in higher
mathematics.

It works. It is a logical extension of and logically con-

sistent with our basic principles. And it works. This is

justification enough for a mathematician to incorporate
into projective geometry a postulate which eliminates the

nagging exceptional case of the parallel. Just as we can

postulate that any two non-parallel lines meet in one, and

only one, point (in spite of the fact that the actual point
in which they intersect covers an infinite number of

mathematical points), in the same way we can postulate
that any pair of parallel lines have in common one ideal

point (in spite of the fact that they only appear to our

eye to meet).
We have already seen that when we accept this prin-

ciple, the statement of Desargues' theorem no longer

requires an exception for the special case where any pair
of sides of the two triangles is parallel. But the simplest

example of the way in which this principle allows mathe-

maticians to unify and generalize projective geometry lies

in the concept of projection itself. Originally it was neces-

sary to distinguish between different types of projection,
one in which the lines from the points of the figure meet
in a single point and one in which the lines are parallel
to one another:
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When we examine these projections in the figure ahove,

they appear to be completely different. But if we conceive

of O, the point of projection in the left-hand diagram, as

moving away from the figure toward infinity, it is clear

that as O approaches infinity the lines joining the points

of the figure to O will become more and more "parallel."

Utilizing our new concept of ideal points, we can say

that both projections are from a point O. In the left-hand

diagram above, O is a real point; and in the right-hand

diagram, it is an ideal point. We can now discuss both

projections without distinguishing between them as spe-

cial cases, because they are both projections from a single

point!

131



Such elegant economy is a prized virtue in mathe-

matics. It makes for practicality as well as for beauty.
A realm where thought is double and flows in parallel

streams where the statement of every theorem and its

proof automatically yields another true theorem and

another proof this is enchanting economy. A realm, how-

ever, where exceptions must be made in every theorem

and every proof is under an anti-mathematical spell.

Mathematicians have been exorcising such spells for two

thousand years, and will continue to do so!
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TO TRISECT A GIVEN ANGLE.

Mathematicians, amateur and pro-
fessional alike, have struggled with
this simple-sounding problem. Plato as

well as Archimedes tried to trisect the

angle. Another man, two thousand

9
years later, wrote in his autobiography:
"When I reached geometry, and be-

came acquainted with the proposition
the proof of which has been sought for

centuries, I felt irresistibly impelled to

try my powers at its discovery." Any
The mathematically inclined person will

Possibility recognize this response. We have all

of Impossibility tried to trisect the angle.

The trisection of the angle was one

of the four great construction problems
that the Greeks left to mathematics,
the other three being the doubling of

the cube, the squaring of the circle,

and the construction of a polygon
other than triangle and pentagon
with a prime number of equal sides.

From a practical point of view these

constructions are not too difficult. With

a protractor and a ruler we can draw

what will appear to be a quite perfect

regular heptagon. We can make a

square having essentially the same

area as a given circle and a cube

having essentially twice the volume of

a given cube. With protractor and

ruler we can also divide any given

angle into three "equal" parts parts
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which, for all practical purposes, will be quite equal.

The protractor and ruler we use for these construc-

tions have, however, one tiling in common which would

make them repugnant to Greek eyes. They are both meas-

uring devices. Tl\e protractor measures off the circular

angle in degrees, minutes and seconds; and the ruler

measures off lengths in units and parts of units. They are

both very useful instruments, but there is a certain mean

practicality about them. To the eye of man, constructions

made with such instruments might appear accurate, but

the gods would know different. The Greeks and the gods
were not interested in the practical construction of

squared circles, doubled cubes or trisected angles. They
were interested in constructions which would in theory
be absolutely exact even though in practice, because of

limitations inherent in man and his instruments, they
would be indistinguishable from the approximated con-

structions by ruler and protractor.

Although no mechanical device can possibly mark off

on a line the exact point which is the irrational distance

from the beginning represented by V2, we can in theory
mark off the exact distance by constructing a right triangle
of unit size and swinging across the number line an arc,

the radius of which is the length of the hypotenuse, or

V2. This arc actually marks \/2 no more exactly from a

practical point of view than an ordinarily good ruler

would; but in principle it is exact. If the number line

could be represented by an infinite number of points and
if the compass could trace the path of just one point at all

positions the same distance ( V2) from the point on the

line, this path would of necessity intersect with our right

triangle at the point which is the vertex and the number

line, or extended base of the right triangle, at the point
which is the distance V2 from the origin.
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The reader will note that for this "theoretical" con-

struction of V2, we have used no measuring device like

protractor or ruler. We have assumed, with Euclid, that

from a given point we can draw a
straight 1f-n.fi to an-

other point 1. (We do not have to measure this distance,

since any distance we choose can serve as our unit.) We
have also assumed, with Euclid again, that we can extend

a given straight line and that we can draw a circle with

given center and radius. The construction of the isosceles

right triangle on a given base is Proposition 10 of Book I

of the Elements.

For our construction then we have used only an

unmarked straightedge and a compass. These, being the

mechanical manifestations of the straight line and the

circle, were, as far as classical Greek mathematics was

concerned, the only instruments which could be used in

construction. The traditional problems thus were:

To construct by straightedge and compass alone:

A regular heptagon.
A square equal in area to a given circle.

A cube double the size of a given cube.

An angle one-third of a given angle.

It was the restriction to straightedge and compass alone

which made these problems "problems."
Even if we eliminate the crass idea of marked-off

measure but allow an instrument other than straightedge
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and compass, we can make all of these constructions. As

an example, we have already seen in Chapter 5 that the

problem of doubling the cube, or the solution of the

equation
x = ^2

can be determined by the intersection of conic sections

which require only simple mechanical instruments for

their construction. Without the restriction to straightedge
and compass, there would have been no classic construc-

tion problems.
It is impossible at this date even to estimate the

mathematical man-hours that have been devoted to the

classic construction problems. For more than two thou-

sand years every mathematician born in the Western

world has had his turn at one or all of them. New mechan-

ical devices have been invented, new curves have been

discovered, new branches of mathematics have been

developed, all in the course of efforts to solve these prob-
lems. Yet on the eve of the eighteenth century all four of

them still stood, absolutely undented. Their hour, how-

ever, had at last arrived.

In the long assault there had always been an unstated

and equally unquestioned assumption on the part of the

mathematicians who tackled the problems. Everybody
assumed that it was possible to construct a regular hepta-

gon, to square a circle, to double a cube, and to trisect an

angle with straightedge and compass alone. In 1796 a

young man, just nineteen, became the first person in the

history of mathematics to question this age-old assump-
tion. Karl Friedrich Gauss considered an entirely new
idea: perhaps it is impossible to construct these figures
under the classic restriction.

The possibility of impossibility!
It was a revolutionary idea. Up to the beginning of
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the nineteenth century, in the history of mathematics

there had been only one other comparable thought. That
was when the Pythagorean, pondering the diagonal of the

unit square, considered the possibility that there might be
no rational number which when multiplied by itself

would produce 2.

The young Gauss was particularly interested in just
one of the classic problems, the construction of the regu-
lar polygons. The Greeks, some two thousand years before

him, had constructed within the circle the equilateral

triangle, the square and the regular pentagon. From these

basic figures they had gone on to construct the regular

hexagon, octagon, decagon and 15-gon, the number of

sides of which in each case is a product of the basic 2, 3

and 5 of triangle, square and pentagon. It was clear that,

by continuing to bisect the sides of these polygons, they
could produce a 12-gon, 16-gon, 20-gon, 30-gon and so on.

But could they produce a regular heptagon (7 sides) with

straightedge and compass alone? This the Greeks left as

an exercise for the future; and the future up until the

time that the young Gauss entered it had produced
neither a regular heptagon nor a single regular polygon
the construction of which had not already been known to

the Greeks.

Gauss, however, began with great advantages over the

ancients. He had a language, algebra, and a tool, analytic

geometry, which allowed him to attack the problem in a

much more general way than had been possible for them.

Although all of the construction problems are presented

differently some even, like the Delian problem, with a

story to go with them they are, in the language of

algebra, essentially the same: certain lengths are consid-

ered to be given, and one or more lengths must be found.

To solve a given problem, we must find a relation between

the unknown quantities (x, y, z, . . . ) and the known

137



quantities (a, b, c, . . .
). We must state this relation as

an equation; and then and here is the crux of the matter

we must determine whether the solution to this equation
can be obtained by algebraic processes which are the

equivalent of straightedge and compass constructions.

At first we may be set back by the idea of algebraic

processes as geometric constructions with straightedge

and compass; but a moment's thought will assure us that

we have thought for a long time in this manner. It is clear

that, taking two segments of lengths a and b (in terms of

a given unit segment), the solutions to such simplified

equations as

a-\-b = x or a b = x

can be found with these traditional instruments:

a-{-b a b

It is not quite so immediately clear that we can also solve

such equations as

ab x or a-+-=

with similar constructions. Yet these too are possible:
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Utilizing the fact that in both of these examples we have
constructed similar

triangles with one side of the smaller

triangle as the unit, we can show that in the multiplica-
tion problem illustrated above:

_ .,
c
~

ab

the segment c being the desired segment ab. On the other

hand, in the division problem, which is illustrated in the

figure below, we can determine

the segment c being the desired segment a/b, or a -4- &:

From these simplified examples it is clear that the

rational operations of algebra addition, subtraction,

multiplication and division can all be performed by

geometrical constructions which require only straightedge
and compass. It follows that any equation which can be

solved by any finite combination of one or more of these

processes can also be constructed by straightedge and

compass alone. (It must be a finite combination because
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obviously if the number of operations required were in-

finite we would never be able to finish the construction.
)

Besides the four basic operations of addition, subtrac-

tion, multiplication and division, there is one other opera-
tion in algebra which is the equivalent of a construction

by straightedge and compass alone. That is the extraction

of square root. Given the equation

we can solve for x in the following manner.

p~^_^^^ ^^^^^^^^^^^^ ^ ^

/; j f //", . 4
f r ^4^

^-r .'Vi^n^x'
"

\

j^^^^v^i^. /;

'^/^^l^^^^S1^-^''^ V ,

.\.j^4th?7rSrr,.rig3sgzl:.Mijg/T7^ t.
^ L .'

After establishing the
similarity of the triangles in this

figure, we can conclude

a _x
x ~l

It can be shown that the solutions for x which can be
obtained by any finite number of additions, subtractions,

multiplications, divisions and extractions of square root
include all possible segments from a given set which can
be constructed by straightedge and compass alone. There
is nothing at all mysterious about this

relationship between
the solution of equations and the construction of geo-
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metric figures. We need recall only the fact that a straight
line and a circle are represented in analytic geometry by
equations of the first and second degree, respectively, and

that the determination of circles with straight lines, or

with other circles, leads analytically to the solution of

equations which involve no irrational operations other

than the extraction of square roots.

Herein lies a method for establishing that a given
construction problem is impossible if the tools of con-

struction are restricted in the classic manner. All we have

to do is to show that the problem requires the construc-

tion of a segment which cannot be obtained from the

measure of the given segments by straightedge and com-

pass; i.e., the solution of an equation which cannot be

obtained by the four basic operations and the extraction

of square root. This is, naturally, not so easy as it sounds.

Yet, one by one, the famous construction problems of

antiquity, which withstood so firmly the full arsenal of

two millenniums of mathematics, have fallen before this

new approach, called the algebra of number fields.

The first problem to be toppled by the young Gauss

himself was that of constructing a regular heptagon with

straightedge and compass alone. Such a construction,

Gauss showed, is impossible because, unlike the pentagon,
it results in a cubic equation the solution of which cannot

be obtained by the four rational processes and the extrac-

tion of square root. In the course of showing that the

required construction of a regular heptagon is impossible,

he established the fact that the only constructible regular

polygons with a prime number of sides are those with p
sides where p is a prime of the form 22n -f- 1. The first

such constructible regular polygon after the triangle and

the pentagon of the Greeks is the 17-gon (2
22

-f 1),

Gauss's general proof, which established the conditions
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for constructibility of the regular polygons and provided
a tool for attacking the other construction problems, was

a magnificent achievement. Even Gauss himself was im-

pressed by it. He had been torn between a career in

philology and one in mathematics, but now he definitely

decided in favor of mathematics. When the score is added

for the classic construction problems time spent against

the advantages accrued the recruitment of Gauss must

weigh heavily.

Last of the problems to topple was the famous ques-
tion of squaring the circle. Almost a century after Gauss's

solution of the problem of the regular polygons, Ferdinand

Lindemann (1852-1939) succeeded in proving that rr can-

not be the solution of an algebraic equation with rational

coefficients. Since all constructions by straightedge and

compass can be represented by equations with rational

coefficients, this indirectly established the impossibility

of squaring the circle, or solving the equation

In the century between Gauss and Lindemann, the

other two problems yielded almost automatically. Both

are impossible under the classic restriction. We have

already seen that the solution of the Delian equation,
x3

2, involves the extraction of a cube root; and we
shall now examine the proof that in general the trisection

of the angle is also impossible by means of straightedge
and compass alone and for the same reason.

We begin by inscribing on the complex plane a unit

circle with center at O and an arbitrary angle with vertex

at and one side lying along the real axis. The point
where the arbitrary side of the angle cuts the unit circle

is represented by the complex number :
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This complex number, as we recall from Chapter 7, is

of the general form x -j- iy, where x and y are real num-

bers and i = V 1. It is uniquely determined by its dis-

tance from the point of origin and by its angle with the

positive side of the real axis. These two characteristics

are called, respectively, the absolute value and the argu-
ment of the complex number :

Absolute Value of Argument of

In the geometric interpretation of complex numbers,

multiplication of two complex numbers is defined as the

product of the absolute values and the sum of the argu-

ments. Since the absolute value of is 1, any root of

will be a complex number on the circumference of the unit

circle, all of which also have an absolute value of 1.* Its

exact location on the circumference must be determined

* This is easily established by the theorem of Pythagoras.
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by the argument, or size of the angle it makes with the

real axis. The square root of , for example, will be that

point, or complex number, where the bisected angle x

cuts the circumference. This is an operation which we can

perform with straightedge and compass alone:-"
8flw%S^' ;

'-

The cube root of will also be a complex number on the

circumference, one that makes an angle with the real axis

equal to one-third of angle x, or a trisected angle x. We
cannot, however, locate this number as we located the

square root of because it is impossible to extract the

cube root of a complex number by algebraic operations
which correspond to construction by straightedge and

compass alone. It is, therefore, impossible to trisect a

given angle under the classic restriction which the Greeks

pkced upon die problem, just as it is impossible to con-

struct a regular heptagon, square a circle or double a

cube.

That should settle the question for all time, but there

is a psychological epilogue to the proofs that each of these

famous problems is impossible. Mathematicians, amateur

and professional alike, have shown a great reluctance to

part with their old friends. Even the great Irish mathe-

matician William Rowan Hamilton (1805-1865) wrote to

De Morgan as late as 1852: "Are you sure that it is ira-
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possible to trisect the angle by Euclid [i.e., under the

restriction}? I fancy that it is rather a tact, a feeling, than

a proof, which makes us think that the thing cannot be

done. But would Gauss's inscription of the regular poly-

gon of seventeen sides have seemed, a century ago, much
less an impossible thing, by line and circle?"

This is curiously emotional language from a mathe-

matician, especially when the essence of Gauss's proof is

not the possibility of constructing a regular 17-gon but

the impossibility of constructing a regular heptagon. Ap-
parently the impossible is hard for any of us to accept. It

seems almost a personal challenge, and this feeling is

perhaps responsible for the fact that in spite of the finality

of mathematical proof that the things cannot be done,

would-be constructors of regular heptagons, squared
circles, doubled cubes and trisected angles continue with

us well into the twentieth century. Any statement in print
that one of the problems is impossible invariably brings
to the author a beautifully drawn construction, usually

with protractor and ruler, with a modest request for

"comment."

Why have these famous problems captured the general

imagination so permanently? Perhaps because, stated as

they are in the language of construction, they have a

practical sound which is refreshingly removed from the

abstractions of most higher mathematics. This is ironic

for in these problems no one, including the Athenians who
consulted the oracle, was ever concerned with the actual

construction of anything. Even Gauss's famous proof that

it is possible to construct by straightedge and compass
alone a 17-sided regular polygon did not show how to

construct such a polygon.* The truth of the matter is that

* A simple method of constructing the regular 17-gon is given

by H. S. M. Coxeter in his Introduction to Geometry (New York:

John Wiley and Sons, Inc., 1961).
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the construction problems, in spite of their practical

sound, are as highly artificial as any mathematical prob-
lems can be.

It is indeed a curious thing that mathematics would

hobble itself with an impossible restriction and then spend
two thousand years trying to construct regular heptagons,

squared circles, doubled cubes and trisected angles which

could be constructed in a trice with a reasonably accurate

protractor and ruler. But it was fun and mathematically

speaking it was extremely profitable fun. Asked, "Was it

worth it?" mathematics as a whole, inrmeasurably en-

riched by the discovery of the conic sections, the inven-

tion of analytic geometry, the winning over of Karl

Friedrich Gauss to mathematics, the algebra of number

fields, would echo with Hamilton: "I have not to lament

a single hour thrown away on this attempt."

FOR THE READER

It was Augustus De Morgan, the great mathematical

writer of the last century, who mourned the Greek limita-

tion to straight line and circle:

"What distinguishes the straight line and circle more
than anything else, and properly separates them for the

purpose of elementary geometry? Their self-similarity.

Every inch of a straight line coincides with every other

inch, and of a circle with every other of the same circle.

Where, then, did Euclid fail? In not introducing the third

curve which has the same property the screw. The right

line, the circle, the screw the representation of transla-

tion, rotation, and the two combined ought to have been

the instruments of geometry. With a screw we should

never have heard of the impossibility of trisecting an

angle, squaring a circle, etc."
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Let us take a moment to examine how De Morgan's

proposed inclusion of the mathematical screw, or helix, as

an instrument of construction would allow us to trisect an

angle. Since the helix makes one complete turn in its

length, the angle of the screw thread is proportional to

the length of the shank; one-third of a complete turn of

the screw would require one-third of the length of shank

necessary for a full turn. The problem of trisecting any

given angle would then be merely one of obtaining a seg-
ment one-third of a given length of the shank. This we
could easily do; for while we cannot trisect an angle with

straightedge and compass alone, we can trisect a line.

To divide a given segment into three parts, we con-

struct an angle with the given segment as one side. We
mark off the unit three times in succession on the other

side. We join the point which marks the end of the third

unit with the end of the given segment and join the ends

of the other unit lengths to the given segment by parallel

lines. In this way we have constructed three similar tri-

angles, the corresponding sides of which are in the same

ratio. Since the segment AC is divided into unit thirds,

the given segment AB must also be divided into thirds.
,
___ _ . _.___ _

Using this same method, the reader should try dividing
an arbitrary segment into sevenths.
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THE SUBJECT OF GEOMETRY IS ALMOST

synonymous with the name of Euclid.

For this reason, when we first hear of

something called non-Euclidean geom-

etry, we feel that there is some misun-

derstanding. Why, Euclid is geometry!
A ^"""^ But our trouble is only in our tenses.

j|
m

1| Euclid was geometry for more than

1 m m two ^lousanc^ years - He isn't any more.
" ^^^^ The story of how Euclid was de-

posed, and at the same time elevated,

is one of the longest, in many ways the

Euclid most ironic, and without question one

Not Alone of the most important in the history of

mathematics.

As we recall from Chapter 2,

Euclid deduced aU of his theorems, or

propositions as they were sometimes

labeled, from a relatively small set of

definitions and basic assumptions,

called, more or less interchangeably,
axioms or postulates. For a very long
time it was believed that these assump-
tions of Euclid's, which we have printed
in full on page 27, were true, in the

ordinary way of what we mean by
"true"; and because they were true,

the theorems which were logically de-

duced from them were "true" in the

same ordinary way.
Yet geometry is a subject whose

"truth" is immediately controverted by
its very name. Geometry means earth-

measurement, and that was an accu-
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rate name for the art which the Greeks learned from the

Egyptians. On the small part of the earth which was
flooded each year by the Nile, the Egyptians found it

necessary to develop a system of measurement by which

they could reestablish boundary
7 lines after each inunda-

tion. But let us take a globe for the earth itself, as we
shall see, is for various reasons too large for our purposes
and let us take a few of the "truths" which the Egyp-

tians arrived at from experience and which the Greeks

deduced in logical fashion from their axioms and postu-
lates.

A straight line is the shortest distance between two

points.

The sum of the angles of a triangle is 180".

The circumference of a circle is 2nr.

These ideas of straight lines, triangles and circles are

almost as familiar as our own faces. We all know, for in-

stance, what a straight line is. It is the shortest distance

between two points, and it is, well, straight. But when we

try to draw a straight line on the surface of the globe, it is

immediately apparent that we can't draw any sort of line

which even begins to meet our intuitive idea of what a

straight line should be. Obviously (it is not at all obvious,

but we think it is!
) ,
we can stretch a thread across the sur-

face of the globe between any two points ( say, San Fran-

cisco and London), and find the shortest distance between

them. Since "the shortest distance between two points"

satisfies part of our definition, we can call the line marked

by the thread a straight line if we will just forget what we

usually mean by straight. If we extend the line which

marks the shortest distance between San Francisco and

London all the way around the globe, we find that it di-

vides the surface into two equal parts. In other words, it
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is a great circle. The great circle with which we are most
familiar is the one we call the equator. Although arcs of

these great circles are the straight line segments of our

surface being the shortest distance between two points
our idea of straightness is violated by calling them such,
and so we caU them the geodesies of the surface. The

geodesies of the Euclidean plane, or a perfectly flat sur-

face like a floor, are what we call "straight" lines.

Since we cannot draw "straight" lines on our globe,
we cannot have straight-sided triangles. Our triangles will

bulge on the sides and in the center. If we take one such

triangle, flatten it with as little distortion as possible onto

this page, and then join its vertices with straight lines, we
see at a glance that if the sum of the angles of the interior

triangle is 180, as we know by Euclidean geometry that

it is, the sum of the angles of the spherical triangle must
be more than 180.

r

>'V4& i ^^J7mvj^rrfrr^^f
'' y V&L. <Vf / /%j

- fe^>/l!l3^:/^l!^.frt/j
We have seen that the shortest distance between two

points on the globe is not a straight line, that the sum of
the angles of a triangle on the globe is not 180. Now let
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us draw a circle on our globe. It meets exactly the Euclid-

ean definition of a circle as "the locus of points equi-
distant from a center," and we may jump to the conclusion

that all we know about a Euclidean circle will also be true

of such a circle. But the interior of this circle does not

look like the interior of the circle we know about. It is

two-dimensional, but it is not flat. It may look, depending
on how large it is and how large is the globe upon which
it is drawn, like a ball cut in half or a hub cap or merely
a saucer. If we place it on this page and trace around its

edge, we shall have a flat circle. Of this circle we know
that the circumference is twice the product of TT and the

radius. But obviously the curved circle drawn on the sur-

face of the globe, which must have had the same circum-

ference, cannot have had the same radius. Its radius must

have been greater because of the curvature of the surface

on which it was drawn. Its circumference, therefore, can-

not be equal to 2m* .

Although geometry means earth-measurement, it is

apparent that the measurement of the earth has very little

to do with the geometry of the Euclidean plane. This was

not because the Greeks of Euclid's time (300 years before

Christ) did not know that the earth was round. They had

calculated that it was, from the fact that the North Star

was higher in Greece than it was in Egypt. But the geo-
metrical figures on which they based their geometry were

drawn on only a small part of the surface of the earth,

and that part, for all practical purposes, was flat. It would

be more exact to say that they based their geometry on

idealized figures on an ideal plane, and these were only

represented by those which they drew on the earth.

Euclid's geometry was indeed, as Edna St. Vincent Millay

has written, "nothing, intricately drawn nowhere."

Yet for two thousand years, in spite of the fact that
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the geometry of Euclid did not truly apply to the only

large surface which man knew and had not constructed

himself, it was felt that this geometry then the only

geometry represented "truth," in so far as man could

know it. One philosopher (Kant) called the ideas from

which Euclid deduced his theorems "the immutable

truths"; another (Mill) considered them "experimental
facts." Mapmakers and sailors might struggle with the

geometry of the boundless, finite surface that is our planet;
but Euclid's geometry, extended to three dimensions and
a space which was thought both boundless and infinite,

was the geometry of God's mind.

That the geometry of Euclid was not the only one

possible, either physically or mathematically; that it was
deduced not from self-evident truths but from arbitrarily

chosen and unprovable assumptions; that another choice

of assumptions could yield a geometry just as consistent,

just as useful and just as true, never occurred to anyone
for more than two thousand years unless, in a sense, it

had occurred to Euclid himself when he set out the as-

sumptions on which he based his geometry. For today it

is clear that Euclid recognized what no other man be-

tween his time and that of Gauss recognized: that his

axioms and postulates were assumptions which could not

be proved.
The idea of those who followed Euclid and extolled

him was that the axioms and postulates of his geometry
did not have to be proved because they were self-evident.

There was only one impediment to the full and complete

acceptance of this point of view and that was the fifth

postulate, which makes a statement very roughly equiva-
lent to our common statement that parallel lines never

meet. From the beginning, compared to the other axioms

and postulates, this one did not seem quite self-evident

enough,.even to the most devoted admirers of the master.
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The famous fifth postulate stated as follows:

If a straight line -falling on two straight lines makes
the interior angles on the same side less than two right

angles, the two straight lines, if produced indefinitely, will

meet on iliat side on which the angles are less than two

right angles.

As
J.

L. Coolidge has remarked in his History of Geo-
metrical Methods, ". . . . whatever else this postulate may
be, self-evident it is not."

The fifth postulate makes a statement about the entire

length of a straight line, a statement which can never by
its nature be verified by experiment. To remove this flaw

from the work of the master, generation after generation
of mathematicians attempted to prove the statement about

parallel lines from the other postulates. Time after time

they failed: they were never able to prove the fifth postu-
late without substituting for it still another postulate,
which simply varied the problem rather than solving it.

Among the last of die attempts to "free Euclid from

every flaw" was one made by a Jesuit priest, Geronimo

Saccheri ( 1667-1733). It was Saccheri's idea that although
the parallel postulate did not, on the surface, seem as self-

evident as the others, he could show that it was the only

possible assumption because any other 'led to absurdity."

This, as we have seen, is an ancient and honorable method

of mathematical proof. We assume the falsity of that

which we wish to prove true, or the truth of that which

we wish to prove false, and then show that such an as-

sumption is unfeasible because it leads us to a contradic-

tion; hence follows the truth of whatever we were trying

to prove in the first place. Saccheri's method was mathe-

matically sound; the only thing which was not sound was

his attitude. When he found that assumptions about par-

allel lines quite different from the famous "fifth" did not
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lead Mm into the expected contradictions but into a

strange and fantastic geometry which was nevertheless as

consistent as Euclid's, he fell back upon his feelings instead

of his brains and peppered the last pages of his work with

such epithets of the logically defeated as "destroys itself,*'

"absolutely false/' "repugnant." Great discoverers have

made great mistakes. Columbus found the new world and
at first thought that it was the old. Saccheri found a new
world and refused to disembark because he thought he

knew that there could be only one world.

It was a century after Saccheri that three mathema-
ticians in three different countries,* independently and

apparently without knowledge of Saccheri's curious con-

tact with non-Euclidean space, came to the conclusion

that Euclid had known exactly what he was doing when
he made his statement about parallels a postulate instead

of a theorem. He had recognized what no else had recog-
nized: that it was completely independent of the other

postulates and therefore could not possibly be deduced

from them.

To prove this suspected independence of the "fifth,"

it was necessary only to substitute for Euclid's assump-
tion about parallels a contrary assumption and then to

show that the geometry deduced from it, in conjunction
with the other postulates and axioms of Euclid, was as

consistent as Euclidean geometry itself.

The first of the non-Euclidean geometries was, in the

relation its axioms bore to those of Euclid, the simplest

possible. All the axioms were exactly the same except one,

the famous "flaw," the long-worked-over statement about

parallels. We have noted that this parallel postulate may
be stated in various ways, all equivalent in the sense that

the same set of theorems can be deduced from any of the

*
Nikolai Ivanovich Lobachevski, Russia; Janos Bolyai, Hun-

gary; and Karl Friedrich Gauss, Germany.
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various versions. The statement which appears in the set

of axioms on page 27 is the earliest known; but since even

the oldest manuscripts we have of the Elements date from
a time nearly a thousand years after the death of Euclid,
the master himself may have stated the parallel postulate
in a somewhat different form. It is clear from the theorems,

however, that some statement of like nature must have

existed among the original set of axioms. The most easily

grasped statement is a later one, known as the Postulate

of the Unique Parallel:

Through any point not on a given line, one and only
one line can be drawn winch will never meet the given
line.

Now let us make a contrary assumption and let us

change the postulate to read:

Through any point not on a given line, infinitely many
lines can be drawn which will never meet the given line.

Before our intuition objects to the postulate in this

new form, let us recall that on the globe, where the

equivalent of a straight line is a great circle, it is impossi-
ble to draw through a given point even one line which

will never meet a given line, since every great circle in-

tersects every other great circle. A word of caution,

though. We mention the contrary example that on a sphere

every straight line or geodesic of the surface intersects

every other straight line, only to put intuition in its proper

place. Mathematically, it has nothing whatsoever to do

with whether the alternate above is a proper postulate.

When a set of axioms more or less agrees with our

idea of reality, we will deduce from that set of axioms a

geometry which also agrees pretty well with the same

idea of reality. This does not mean that our idea of reality

is right, but only that our axioms agree well enough with
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whatever reality there is so that the geometry deduced

from them works.

We have seen that die earth is not the infinite plane of

Euclidean geometry; yet small parts of it are, for all prac-
tical purposes, very much like small parts of the plane;
and so for building pyramids and supermarkets it works

very well indeed. But we shall also see that the non-

Euclidean geometries, which attempted to show only from

an intellectual point of view that it was possible to deduce

geometries as consistent as Euclid's from a different set

of assumptions, turned out to have quite a bit to do with

reality, too.

The first non-Euclidean geometry, based on the same
set of assumptions as the old (except for the new Postu-

late of Infinitely Many Parallels for the old Postulate of

the Unique Parallel), applies to a surface which is the

direct opposite of the surface of any part of the sphere.
The surface of the sphere is what we intuitively think of

as "evenly curved"; in mathematics this is more precisely
defined as "constant positive curvature." The surface to

which our first invented non-Euclidean geometry applies
is one of "constant negative curvature.'* It is not (prob-

ably fortunately) a very common one in the physical

world; but we can find examples of such a surface : a sad-

dle, for instance, or a mountain pass or the surface

around the hole of a doughnut. In these, however, the

negative curvature is only local. For a surface of constant

negative curvature, we can look ahead to the illustration

on page 158.

If we place a plane tangent to a single point on a sur-

face of constant negative curvature, like a portion of a

saddle, we find that it cuts the rest of the surface in two

hyperbolas. For this reason the earliest non-Euclidean

geometry, which applies to such a surface of negative
curvature, is called hyperbolic geometry. If we place a
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plane tangent to a single point on a surface of constant

positive curvature, like a portion of the sphere, and then

shift the plane ever so slightly so that it is parallel to its

original tangent position, we find that it cuts the surface

in the shape of an ellipse. (In the special case of the

sphere, it will cut a circle, which is the limiting form of

an ellipse.) For this reason a later non-Euclidean geom-
etry, which applies to such a surface of positive curvature,

is called elliptic geometry. It substitutes for the Postulate

of die Unique Parallel the following statement:

Through any point not on a given line, no line can be

drawn which will not intersect ihe given line.

From our earlier experiments with our globe, we rec-

ognize that on the surface of a sphere, where a straight
line is a great circle, the above postulate holds. For our

purposes in this chapter, a sphere can serve as an exam-

ple of a surface of elliptic geometry. Actually it is what is

called "locally elliptic." To make the entire surface ellip-

tic, a curious change must be made. As we recall, the

purpose of non-Euclidean geometries is to establish the

fact that geometries as consistent as Euclid's can be de-

duced with a different parallel postulate, the others re-

maining the same. It is an axiom of Euclidean geometry
that two straight lines can intersect at only one point, but

on the sphere two great circles always intersect at two

points. To get around this difficulty, in elliptic geometry
we identify the two points of intersection as one point.

Although in this respect the geometry of the surface of

the sphere as a whole is not technically elliptic and non-

Euclidean, it is locally; and we can take a sphere as our

sample elliptic surface.

The true surface of hyperbolic geometry not just a

portion but an entire surfaceis what is called the pseudo-

sphere, a world of two unending trumpets.
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Let us now compare in a few simple respects the

"truth" of certain geometrical statements in relation to the

plane, the sphere and this pseudosphere. Straight lines,

which are "straight" on the plane, follow the surface and

therefore curve out on the sphere, curve in on the pseudo-

sphere. Triangles on the sphere curve out; on the pseudo-

sphere, in; and circles appear, depending on the surface,

like saucers or limp watches. What happens to geometric
"truths"? They are no longer true-false statements, but

multiple-choice. The sum of the angles of a triangle is

(equal to, more than, less than) 180. The circumference

of a circle is ( equal to, more than, less than
)
2nr. Through

a point not on a given line (one, none, infinitely many)
lines can be drawn which will never meet the given line.

Which is "true"?

When we compare the geometries of these three very
different surfaces, we see that the geometry of one surface

cannot be applied to another. We see also that of these

three, the surface of the sphere is the one which we can

say with greatest accuracy "exists" for us. Yet portions, if

not too large, of the imperfect sphere on which we live

are more like portions of the Euclidean plane. On the

Pacific Ocean we might choose the geometry of the sphere,
but in our own backyard we'll take Euclid. So far no one
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in everyday life has found the geometry of the pseudo-
sphere indispensable; nevertheless, logically it is one with
the others.

It is interesting to note at this point that if we did not

know the nature of the surface of our "earth" we could

discover whether the curvature was positive or negative-
always provided that it was not too large in several dif-

ferent ways. Perhaps the simplest would be by adding up
the angles of a

fairly large triangle. If they added up to

definitely more than 180 we would know that we were

living on a surface of positive curvative; if to definitely
less than 180, that we had our existence on a surface of

negative curvature. But it would be practically impossible
to determine with finality that our "earth" was a bound-

less, endless Euclidean plane. We could never go far

enough out so that we could state that the plane was in-

finite, and we could not even say definitely that it was a

plane, or a surface of curvature 0. Whether the total de-

grees of the three angles of a triangle was exactly 180,

slightly more or slightly less, the range of experimental
error would prevent our knowing for sure that it was flat.

If, however, our surface is sufficiently large, whether the

curvature as a whole is positive, negative or exactly zero,

we will find Euclidean geometry most practical because

any portion of the surface with which we are concerned

will seem, for all practical purposes, fiat.

Non-Euclidean geometries were invented not to pro-
vide geometries for unusual surfaces but to show that

from assumptions other than Euclid's (specifically, a dif-

ferent postulate about parallels ) equally consistent geom-
etries could be deduced. One of the ways of establishing

this consistency is by identifying the objects and relations

of Euclidean geometry with certain other objects and

relations which result in a non-Euclidean geometry. All

of the facts of Euclidean geometry then apply to the model
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of the non-Euclidean geometry with the exception of the

Postulate of the Unique Parallel which, in the case of

hyperbolic non-Euclidean geometry, is replaced by the

Postulate of Infinitely Many Parallels. It follows, there-

fore, from the model that the non-Euclidean is as con-

sistent at least as Euclidean geometry.
One of the best-known models of hyperbolic non-

Euclidean geometry is that of Felix Klein (1849-1925).
In this model the plane of Euclidean geometry is defined

as the points of the interior of a circle. Each of these

points is defined as a non-Euclidean point, and the chords

of the circle are defined as non-Euclidean straight lines.

Other definitions are made, but these three will be suf-

ficient to explain the model below where, as we can see,

through a given point P not on a straight line AB, in-

finitely many straight lines can be drawn which will never

intersect the given line.



The invention of non-Euclidean geometry freed math-

ematics from the tyranny of the "obvious," the "self-

evident" and the "true," and in so doing served to reveal

the nature of mathematics as well as the nature of geom-

etry. With the invention of non-Euclidean geometry, it

was recognized for the first time that the theorems of a

geometry are logically deduced from a set of arbitrarily

chosen assumptions. The truth of the geometry is deter-

mined within this framework and has nothing to do with

the "truth" (
as judged by external facts

)
of the assump-

tions from which it is deduced.

We are inclined to think of a geometry as being

tailored, as it were, to fit a particular surface; but actually

geometries are rather like ready-made suits. They can be

used if they fit. Euclidean geometry fits portions of the

earth very well, although the idealized type of surface

which is implicit in the geometry apparently does not

exist at all "nothing, intricately drawn nowhere." The

surface of elliptic non-Euclidean geometry on which we

go halfway around and come back to our starting point

and the surface of hyperbolic non-Euclidean geometry on

which the "ends" of the world become smaller and smaller

as they approach infinity are as non-existent as the Euclid-

ean plane. The fact has nothing to do with their mathe-

matical importance. They were not invented to be useful.

It is important that we clearly understand this point,

for something happened sometime after their invention

which gave to these non-Euclidean geometries the same

kind of physical importance that was for so many cen-

turies the unique possession of Euclidean geometry: the

geometry for relativity was discovered in a non-Euclidean

geometry of boundless, finite, "curved" space. In such a

space the geodesies are paths of light waves, which are

deflected in varying degrees from their "straight" course

by the various masses in space.
It is easy to glimpse from
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just the brief examination we have made of the geodesies
of plane, sphere and pseudosphere the implications such

deflection would have for any geometry of space.

Mathematically, the usefulness of non-Euclidean

geometry was a bonus over and above its mathematical

usefulness, which was, as we have seen, the freeing of

mathematics from its ancient bonds.

The new freedom, which included freedom from the

axioms of Euclid, did not, however, include dispensing
with Euclid's axiomatic method. This had been the ideal

of all mathematicians since his time. Yet actually it had
been hobbled by the definition of an axiom as a self-

evident truth. When this definition was dispensed with

and an axiom recognized as simply an arbitrary assump-
tion, the axiomatic method became infinitely more valu-

able to mathematics.

So it is that while Euclid is no longer all geometry,
he is the axiomatic method the logical ideal and aim of

mathematics and of all science and the "flaw" which so

many generations of mathematicians labored to remove
from the work of the master is seen as no flaw at all, but

the hallmark of his genius.
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THE COMMON METHOD OF MAPPING BY

coordinates, which enables us to find

our way about an unfamiliar part of

our city, enables mathematicians to

move mentally in a world of n dimen-

sions with as much freedom as they

Umove
physically in a world of three.

The idea of dimensionality has

been with mathematics since the time

of the Greeks. The lengthless breadth-

less point traced out a line, which had
one dimension. The line traced out a

Worlds plane, which then had two dimen-

We Make sions; the plane traced out a space,
which then had three dimensions. No
one with a human desire for consist-

ency could follow this process and fail

to ask the next question. Why not a

figure, a sort of hypersolid, traced out

by a solid moving in a 4-dimensional

space?
But a 4-dimensional space! What

could it possibly be like?

Although we cannot visualize a 4-

dimensional space, we can visualize

the effect that "going into the fourth

dimension," as science fiction writers

say, would have on an object from

space of three dimensions. This we can

come to by a logical extension of what

we can actually see of the relation be-

tween space and the plane. Let us take

a piece of paper, trace out die soles of

our shoes, and cut them out. We have
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a right sole and a left sole, mirror images of each other.

If we limit ourselves to sliding them around in the plane,

on a table top, for instance, we can never make them
both left soles. But if we lift the right sole off the table

(
out of the plane and into space ) , we can turn it over so

that it is a left sole when we return it to its mate. Now
let us take the shoes, one right and one left, from which

we traced the soles. These are 3-dimensional objects in

3-dimensional space. We know from experience that we
can never turn the right shoe into a left shoe. But if we
were able to lift it out of our space and into a 4-dimen-

sional space, turn it over and return it, what would have

happened to it?

There is yet another way by which we can get a visual

idea of 4-dimensional space. This too is by a logical exten-

sion from the three dimensions with which we are familiar.

Let us take the simplest figures in each dimension:

A line segment is bounded by two points.

A triangle is bounded by three line segments.
A tetrahedron is bounded by four triangles.

Should there not be, in a 4-dimensional space, a figure

bounded by five tetrahedra? This logical extension of the

first three figures we call a pentahedroid. When the five

tetrahedra are regular, the pentahedroid (it can be

proved) is one of the six regular bodies possible in a 4-

dimensional space.

What does the pentahedroid look like? Well, it is a

figure bounded by five tetrahedra. Although we are some-

what like the Lady of Shalott in that we cannot turn and
see it and live, we can look at it in several of the ways in

which we usually look at 3-dimensional figures.

We can "see" a hypersolid in a manner similar to the
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one in which we are accustomed to seeing 3-dimensional

solids in two dimensions. We are all familiar with the real

appearance of these objects in photographs and paintings.
Of course, it is our actual experience with the objects in

three dimensions which gives for us a reality to their rep-
resentation in two, and this actual experience is not possi-
ble with 4-dimensional objects. Nevertheless, we can

construct a perspective model in three dimensions of a

never-seen and never-to-be-seen but logically thought
out figure in four dimensions. We can give an example
which is so simple as to be trivial and yet illustrates

exactly the relationship. If we are drawing a tetrahedron

and are looking at one of its triangular sides from a posi-
tion directly in front of it and level and parallel with it,

we see only and draw only the triangular face of the

side of the tetrahedron which is toward us. In this par-
ticular case, a triangle is a 2-dimensional representation
of the 3-dimensional tetrahedron. In the equivalent 3-

dimensional representation of a 4-dimensional pentahe-
droid we have before us because our projection of the

pentahedroid into our space is "head-on" a tetrahedron,

which is one of the faces of the pentahedroid. In the com-

parable projection of the tetrahedron, the other three

faces have been projected into the three straight lines

bounding the triangular face we saw. When we look at

the tetrahedron which is the head-on projection of the

pentahedroid, each face of the tetrahedron which we see

is a projection of a bounding tetrahedron, comparable to

the projection of planes into lines in the projection of a

tetrahedron into a triangle.

We can also make 3-dimensional patterns of 4-

dimensional hypersolids almost as easily as we can make

2-dimensional patterns of 3-dimensional solids. To make
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a plane pattern of the solid tetrahedron which we have

represented below

we simply open it up and flatten it out on the page:

An equivalent, but of course 3-dimensional, pattern for a

pentahedroid would involve spreading out the hypersolid



in space. The resulting pattern would be a tetrahedron

with a tetrahedron upon each face.

Just as one of our 3-dimensional children would have

no trouble folding the 2-dimensional pattern back into a

3-dimensional tetrahedron, a 4-dimensional child would

make quick work of folding the 3-dimensional pattern

back into a 4-dimensional pentahedroid!
We can also dismantle a pentahedroid, as if it were a

Tibetan monastery being prepared for shipment to the

home of an American millionaire, the pieces carefully

labeled so that they can be put together again in another

land. Then we should actually have seen a 4-dimensional

body in pieces!
It is, of course, impossible to construct an actual

model of a 4-dimensional figure, but mentally we are not
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so limited. If we do not insist upon an answer to our very

human question, "But what does it actually look like?" we
can think freely of objects in space of any number of

dimensions or, as the mathematicians say, n-dimensional

space where n is any number greater than 3.

After our excursion through what might be called the

sideshows of dimension theory, let us go back to the sys-

tem of coordinate axes by which we find our way about

an unfamiliar part of our city.
These can be the same axes

by which we map the points, lines, figures and surfaces of

2-dimensional space in analytic geometry. We saw that

any point on the plane could be uniquely located by a

number pair (ac, !/);
now we see that any point in three

dimensions could be uniquely located if only we had a

third axis. This, the 2-axis, we erect at the origin perpen-

dicular to the plane formed by the ac and y-ax.es. Now
instead of two coordinates, x and y, to locate a point, we

need a third, z.

To see how this extension of the system of coordinate

mapping works, let us consider the points in the illustra-

tion on page 69. On the plane they are uniquely identified
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by their jc and y coordinates as (2, 1), ( 4, 2), ( 3, 3),

(4, 2). If we raise the first two points one unit above
the plane and lower the last two points one unit below the

plane, we get (2, 1, 1
) and (4, 2, 1) above the plane and

(3, 3, 1) and (4, 2, 1) below the plane. If we
raise each of the four original points a different amount,
the first one unit, the second two units, and so on, we get
the points (2, 1, 1), (4, 2, 2), (3, 3, 3) and (4,

2, 4
) , each one a unique point and each one uniquely

identified.

Following the general method we have already out-

lined, we can locate points, lines, plane figures and solids

in 3-dimensional space. The only difference is that instead

of expressing these by equations of two variables we shall

need equations of three variables. The equation ax -f- by
+ cz + d = represents a plane in 3-dimensional space

just as the equation ax + by -f- c = represents a line in

2-dimensional space.

It is only natural at this point that we ask what is rep-
resented by an equation in four variables? We do not

have to be mathematicians to guess the answer to this one.

If an equation of the first degree in two variables repre-
sents a line in 2-dimensional space, an equation in three

variables represents a plane in 3-dimensional space, then

an equation in four variables represents a space ( or hyper-

plane) in 4-dimensional space, and so on.

The reason that we are able to move so freely in n-

dimensional space is that, thanks to analytic geometry, we
no longer have any need to visualize what we are talking

about. We are just talking about algebraic equations. But

do not make the mistake of triirildng that the geometry of

ft dimensions is all algebra after n = 3. There is a division

of labor. Algebra does the work, and geometry suggests the

ideas. If, for instance, in 2-dimensional space we have a
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number pair (x, y) and another pair (x
f

, if), geometry

suggests that we can use in our algebra the concept of

"the distance" between (or, y) and (x', if), since any given
number pair can always be represented as a unique point
in the plane. The way in which we do this is as old as

geometry itself. If we draw a line from (x, y) paraUel to

the y-axis and a line from (*',#') parallel to the x-axis,

the two lines will intersect. When we join (x, y) and

(x',1/) we have a familiar fig

By the Pythagorean theorem we know that the hypotenuse
of the right triangle, which is also the distance between
our two points, is the square root of the sum of the squares
of the two sides. We say, then, that our distance formula

for two ordered pairs of numbers (x, y) and (yf,i/) is the

one below.*

In the specific case of the two points above (3, 4) and

(7, 1), the formula gives us (7 3)
2 + (4 I)

2 = 25.

* Note that the result of squaring (x a') is the same as the
result of squaring (x' x).
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The square root of 25 being 5, this is the desired distance

between the two points.

When we put our points in a 3-dimensional space as

number triples (x, y,z) and (x
1

, \f,tf), we have the same

formula for the distance between the two points except
that we have a third variable, z and ^.

We can apply this formula in the following concrete prob-
lem. We wish to determine the distance from the back

right-hand corner of the top of our desk to the bottom of

the front left-hand leg. To do this, we determine first the

length of the diagonal of the top of the desk. Then, with

this as one side of our right triangle and the front left-hand

leg as the other, we determine the length of the hypot-

enuse, which is the desired distance. Try it some time

with a desk.

It is not just the abstract concepts of geometry like

that of distancewhich suggest ideas to algebra. Even the

geometric figures of space of four dimensions, which we
found impossible to visualize a few pages back, become

mere formulas and lead us to extensions of themselves in

higher and higher dimensions. We are all familiar with

the circle and its extension into three dimensions, the

sphere. If we map a circle on the plane with its center at

trie origin, the formula for its radius is

x2+ y*
=R2

and this means simply that the square of the radius is the

sum of the squares of the x and y coordinates of any point

on the circumference.

Just as we extended the distance formula into dimen-

sions higher than 2, we can extend the formula for the ra-
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dius of a circle to the radius of a sphere, a hypersphere,
and so on.

x2 + y
2 = R2

= R2

= R2

We must not think that the mathematics of n dimen-

sions is nothing more than adding another letter for each

dimension that we add. Things that are mathematically in-

teresting begin almost as soon as we add that next letter,

and they are not at all predictable. If they were, the mathe-

matics of n dimensions might be very useful which it is

but it would not be very interesting and it is.

Although the extension of the formula for the radius

of the circle into three and four dimensions was made in

routine fashion, the extension of the formula for the area of

the circle into higher dimensions is not nearly so routine:

For the area of a circle, A irr
2

4
For the volume of a sphere, V H- nr 3

o

For the hypervolume of a hypersphere, H ^ n2r4

Here we have a very interesting and unexpected relation-

ship. Two generalizations are involved and they alternate,

depending upon whether the dimensionality of the figure
is even or odd. If the number of dimensions is even, n =
2fc, we have

but if the number of dimensions is odd, n = 2k ~f 1, the

general expression is quite different.
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As we go further into the geometry of n dimensions,

we find that we never know at just what n our extension

may become suddenly more difficult. Consider the problem
of packing spheres into space so that in some regular pat-

tern we can fit in the greatest number of spheres. For n = 2

we get the most circles on the plane by alternating stag-

gered rows.

__
For n = 3 we arrange each layer of spheres in the same

way that we arranged the circles but stagger the alternate

layers. We can continue in similar ways, although it is not

at all easy to prove, through n 8. At n 93 the problem

inexplicably takes a more difficult turn. At the present time

there is no one who can tell us how to pack 9-dimensional

spheres in 9-dimensional space!

The geometry of n dimensions might just as well be

called the algebra of n variables, but either way the intel-

lectual journey which begins at O on the Cartesian plane

takes us through fascinating if purely mental country, and

never ends!
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12
Where Is In

and

Where Is Out?

WHEN, AS VERY YOUNG CHILDREN, WE
are told to copy a drawing of a triangle,

we produce a blob. If we are then given
a neat little square to copy, we produce
a brotherly blob. A long thin rectangle

is transformed into a blob, and so is a

circle.

As far as we are concerned, the blob

is a reasonable reproduction of any
number of simple geometric figures. It

is generally admitted that we do not

draw very well; yet we have perceived
the essential likeness of all the figures

we have been given to copy, a likeness

which will escape us in later Me when
a rectangle, for instance, will seem like

something entirely different from a

circle.

The fundamental similarity of tri-

angle, square, rectangle and circle is

that they all divide the plane (or the

piece of paper on which they are

drawn) into two distinct and mutually
exclusive parts: that part A, which is

inside the boundary, and that part B,

which is outside. A point C which is in

A cannot simultaneously be in B. For C
to move from A to B, it must cross the

boundary of the figure we have drawn,
whether it be triangle, square, rectangle
or circle. If we think of each of these

figures as drawn on a thin sheet of rub-

ber, we can see that no matter how we

pull the sheet about, so long as we do
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not cut or tear it, we shall never be able to affect in any
way this basic and common characteristic.

If, however, we take certain figures like those below
which divide the plane, or the paper on which they are

drawn, into more than two parts, we shall find that no
amount of stretching will turn them into the figures we
were first concerned with,

''

Yet, although we cannot reduce any of these figures to our

first simple blobs, we can reduce each of them to a blob

with a blob cut out of it; and this is the way, as children,

we would have drawn any one of them.

Recalling the straightedge and compass of Euclid's

geometry, the protractor in its envelope at the back of the

text, the painstaking care with which we drew each figure
and lettered the appropriate points, we find it hard to be-

lieve that tins casual approach to figures can be geometry
too. Yet it is. Topology, as this geometry is called, is one
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of the newest, the most all-inclusive and the most abstruse

branches of mathematics. It concerns itself with the truly

fundamental properties of geometrical figures, surfaces

and spaces. Most of its problems are so removed from our

everyday experience that it is impossible for us even to

glimpse them, let alone grasp them; yet, as in the higher

arithmetic, some of its most difficult problems can be

stated in the language of a child.

This is not as surprising as it might at first seem. In

an article entitled "How Children Form Mathematical

Concepts" (Scientific American), Jean Piaget has written:

A child's order of development in geometry seems

to reverse the order of historical discovery. Scientific

geometry began with the Euclidean system (con-

cerned with figures, angles and so on), developed in

the 17th century the so-called projective geometry

(dealing with problems of perspective), and finally

came in the 19th century to topology (describing

spatial relationships in a general qualitative way for

instance, the distinction between open and closed

structures, interiority and exteriority, proximity and

separation). A child begins with the last: his first

geometrical discoveries are topological. At the age of

three he readily distinguishes between open and closed

figures: if you ask him to copy a square or a triangle,
he draws a closed circle; he draws a cross with, two

separate lines. If you show him a drawing of a large
circle with a small circle inside, he is quite capable of

reproducing this relationship, and he can also draw a

small circle outside or attached to the edge of the

large one. All this he can do before he can draw a

rectangle . . . Not until a considerable time after he
has mastered topological relationships does he begin
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to develop his notions of Euclidean and projective

geometry. Then lie builds those simultaneously.

Yet the only formal geometries with which most adults

are familiar are these last two!

In that with which we are most familiar the Euclidean

geometry we were taught in high school we studied and

proved statements which established the likenesses among
different types of figures triangles, for instance. We were

especially fond of the right triangle. Following in the foot-

steps of Pythagoras, we found that the square constructed

on the hypotenuse of the right triangle was equal to the

sum of the squares on the other two sides and that all right

triangles, regardless of their sizes and shapes, were alike

in this respect. (We have seen how this ancient theorem

runs through all mathematics: arithmetic, algebra and

analysis as well as geometry we even meet it, in a modi-

fied form, in the mathematics of relativity; but one place
we never meet it is in topology! )

The other geometry with which we may also have be-

come familiar in high school, in the art course, since it is

not taught as mathematics at that level, is projective geom-

etry. ( It was Cayley who exclaimed, "Projective geometry
is all geometry!" but it is not topology.) Here, when we

attempted to draw the comer of a room, we discovered a

curious thing. The corner was formed by the meeting of

three right angles and we knew by Euclidean geometry
that a right angle is 90 and that the sum of three right

angles must be 270; but when we drew the corner on

paper, so that it looked to the eye exactly like the corner

we saw, the sum of the three right angles was always
360! *

*
This, of course, is because the comer when projected to the

plane on which we are drawing it must fill an entire circle, or 360.
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Invariants under rigid motion length, angle, area-

are the subject of Euclidean geometry. Invariants under

projection point, line, incidence, cross-ratioare the sub-

ject of projective geometry. ( Rigid motions are
technically

a class of projections.) No matter how we slide a
right

triangle about on the plane, we never affect its "triangle-

ness" nor its "lightness"; but when we draw it from differ-

ing points of view, although we retain its "triangleness,"

we lose its "rightness." The transformations of topology,
which include rigid motions and projections as special

classes, are in general much more drastic. Under the par-

ticular group known as the deformations, a right triangle

can be transformed into any other type of triangle, a poly-

gon of any number of sides more than three, an
ellipse, a

circle and so on. Yet, through all these changes the char-

acteristic which we perceived when we drew our first

triangle as a blob will remain invariant: it will divide the

plane into two distinct and mutually exclusive parts, an

inside and an outside. This characteristic is invariant

under deformation for any figure like the triangle which

topologists classify as a simple closed curve.

Although intuitively we have an idea of what we mean

by a simple closed curve, let us arm ourselves with a more

precise definition. When we tliink of a curve we probably
think of something the opposite of sharp, angular, straight;

but in mathematics the sharp, the angular and the straight

may all be curves. The ancient definition of a curve is that

it is the path traced by a moving point. In the spirit of this

definition, a closed curve is one whose end point is the

same as its beginning point; and a simple curve is one

which does not pass through the same point more than

once. It is obvious from this definition that circles, tri-

angles, rectangles and higher polygons, as well as blobs,
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are all simple closed curves. It is not quite so obvious that

the figure below is a simple closed curve.

What we perceived so early in Me about simple closed

curves that they divide the piece of paper on which they

are drawn into an inside and an outside is one of the

fundamental theorems of topology.

THEOREM: A simple closed curve in the plane divides the

plane into exactly two domains.

There are many mathematical theorems which, in the

course of this book, we will receive with puzzled frowns

or raised eyebrows; but the Jordan Curve Theorem, as the

above is known, is not one of them. This theorem was first

stated by Camille Jordan (1838-1922). Besides being a

mathematician of the first order, Jordan was a great

teacher and the author of a textbook, Cours d'analyse,

which is an acknowledged masterpiece. In A Mathema-

tician's Apology Hardy has stated his own debt to Jordan

and to Ms book as follows: "I shall never forget the

astonishment with which I read that remarkable work, the

first inspiration for so many mathematicians of my genera-

tion, and learnt for the first tune as I read it what mathe-

matics really meant. From that time onwards I was in my

way a real mathematician, with sound mathematical am-

bitions and a genuine passion for mathematics."
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We have included this testimonial from Hardy to make
clear that Jordan was a mathematician of stature and in-

fluence. If Jordan was interested in the fact that a simple
closed curve divides the plane into two domains, it must

be more interesting and less obvious than the observation

of a three-year-old would lead us to believe. (Actually
modern mathematicians have a considerable respect for

the obvious. They have found that quite often what ap-

pears obvious is not at all; in fact, quite often it is not

even true. They have also found that even when it is true,

it is often almost impossible to prove that it is true.)

Jordan experienced considerable difficulty in trying to

prove the obvious theorem which bears his name, so much

difficulty that his proof did not meet the rigorous stand-

ards which he himself had set up in his Cours d'analyse.

Time and effort on the part of other mathematicians finally

filled the logical gaps in his reasoning. When at last it was

completely acceptable from the rigorous point of view, the

proof of this "obvious" theorem was nothing for children.

It was so extremely technical that even mathematicians

found difficulty in following it.

Why should it be so difficult to prove what we have

shown is readily apparent even to a three-year-old?

The answer to this question lies in the complete gen-

erality of Jordan's theorem. It is simple (relatively) to

prove it for any special case of curve. For instance, we
can give a simple method for determining whether a given

point is inside or outside the labyrinthine "simple closed

curve" that we drew on page 179. Incidentally, the reader

can first determine that this is, indeed, a simple closed

curve by tracing it. He will find that without lifting his

pencil and without crossing a line he can go around the

entire curve and return to his starting point. It is a little
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harder to determine whether a given point is inside or

outside. To do so, we take a direction which is not parallel

to any side of the
figure. Although sometimes difficult,

this is not impossible, since any straight-edged closed

curve has only a finite number of sides and hence of direc-

tions. To determine whether a given point is inside or out-

side the curve, we direct a "ray" in the chosen direction

from the point and past the curve. If the ray crosses the

boundary an even number of times, the point is outside;

if an odd number of times, inside. Below we have applied

this method to a fairly simple figure, but the reader should

also apply it to the figure on page 179.

The general problem in other words, the proof in re-

spect to all simple closed curves presents difficulties

which do not occur in the special case of straight-edged

closed curves. All simple closed curves include, in addi-

tion to the various examples we have already mentioned>

such curiosities as curves which have area, curves to which

no tangent can be drawn, curves which cross and recross

a straight line infinitely many times within an arbitrarily

small distance. Although these are contrary to all we think

we know about curves, they too may be simple closed

curves; and when we make a statement about simple

closed curves, as we do in the Jordan Curve Theorem, we
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are making a statement which must be shown to apply
also to such curious curves!

The greatest difficulty of all in proving this theorem is

one which seems at first preposterous. Where is in and

where is out? It is very easy to show that there exists at

least one point which is outside the curve. Knowing that

the plane is infinite in extent, we select a point sufficiently

far away from the boundary so that it is unquestionably
outside. But how do we go about showing that there is

at least one point which is inside the curve? In the case

of the ordinary everyday simple closed curve, the land

which makes the Jordan Curve Theorem seem so obvious,

we find our inside point by selecting one which is on the

other side of, and an arbitrarily small distance from, the

boundary. Even mathematicians agree that such a point is

inside. But this method will not be of any use to us when,
in going even an arbitrarily small distance across the

boundary we shall have already crossed and recrossed the

curve an infinite number of times. Such problems, not

obvious at all, made the general Jordan Curve Theorem
so difficult to prove. Today, proved at last with full rigor

and generality for all possible simple closed curves in the

plane, the theorem has been extended for their equiv-
alents in space. These are the simple closed ksurfaces like

the sphere and the polyhedra which divide space into two
distinct and mutually exclusive parts, that which is inside

them and that which is outside.

We again imagine these figures to be made of rubber,

thin enough to be stretched at will into any topologically

equivalent shape we choose yet strong enough to hold a

shape. As we pull them about, what other characteristics

about them remain invariant? No matter how we stretch

these surfaces, we cannot change the fact that each has

two sides, an inner side and an outer side. We also cannot
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change the fact that they have no edge. These, like the

characteristic of dividing space into two parts, are in-

variant.

If we puncture our general balloon-like surface and

carefully stretch it out flat, we get a surface which we can
call a disk. This disk, which we can say is the topological

equivalent of a sphere with one hole in it, does not of

course divide space into two parts because it encloses no

space. It is not unbounded, as the sphere is, and therefore

it has an edge where the sphere has none. It has, however,
one characteristic of the sphere. It has two sides. Unless

we are somewhat informed on the subject of topological
curiosities, we may think that all surfaces have two sides,

and if this is ah
1

the sphere and the disk have in common,
it isn't much. However, although it is impossible to have a

three-sided surface, it is perfectly possible to have a sur-

face with only one side.

We can take our disk, with its two sides and its one

edge, and stretch it out into a long thin strip like the one

below.

Let us paint one side of this strip red, and one side green.
Then let us pick it up and join the two ends so that red

meets red and green, green. We have a band which is red

on one side and green on the other. Like the strip ( from

the disk) with which it was formed, it has two sides; but

unlike the strip, it has not one edge but two. The original

strip was the topological equivalent of a sphere with one

hole in it; the band is the topological equivalent of a

sphere with two holes in it.

Now let us take another similar but unpainted strip
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and give it a half twist before we join the ends together.

We do not have a band, but something quite different

topologically. Where the band has two sides and two

edges, the Mobius strip,
as it is called, after A. F. Mobius

(1790-1868), has only one side and one edge. If we at-

tempt to paint one side red, we shah
1

never find a place to

stop until we get back to where we started, and by then

the entire strip will have been painted red!

The Mobius strip and the band were both made from

a strip which was a stretched-out disk; yet no amount of

stretching will enable us to make a Mobius strip into a

band or a band into a Mobius strip. What happens,

though, when we perform a similar operation upon all

three? We cut them down the length. The original strip

falls into two strips; the band falls into two bands; but the

Mobius strip remains in a single piece! (Try cutting it

again.)

Topologists, it is clear, look at things and see them dif-

ferently from the way most of us do. Where we see a

circle or a triangle or a square, a topologist sees a simple
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closed curve; where we see a knot just a knota topolo-

gist
sees many different kinds of knots, and lie is fas-

cinated by them.

By a knot, a topologist means nothing so simple as

even the most complicated knot that Boy Scout, first-aid

instructor, cowboy or sailor can tie. A knot which is tied

can be untied. It is, therefore, topologically equivalent to

the piece of string or rope out of which it was tied, a hue

segment or a simple open curve. A topologist is interested

in knots which are not tied and therefore cannot be un-

tied. Such knots are essentially loops or circles, simple
closed curves in space, but with a difference.

The most famous of these is probably the trefoil, or

clover leaf, knot pictured below in two different forms.

No amount of stretching or pulling or clever weaving
can transform one of these knots into the other. Yet both

(in fact, any knot) can be mapped upon a simple closed

curve a rubber band, for instance. We put the band and

the string out of which the knot is made together at one

point and then keep them together at each point as we
move around the rubber band. Eventually we come back

to where we started, never having had to separate string

and rubber band at any point. In this respect a knot is
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equivalent to a simple closed curve; yet no amount of

stretching, nothing short of cutting the knot and rejoining

the ends, can make a knot into a simple closed curve, for it

is embedded in three-dimensional space in a different way.
We may think of knots only as pleasant puzzles, yet

they present topology with one of its greatest unsolved

problems: that of classifying different kinds of knots ac-

cording to their invariants. One method which works very

well for the great majority of knots is that of associating

each one with a certain surface, the edges of which can

be arranged so that they trace out that particular knot. A
Mobius strip with three half-twists instead of the usual

one, for instance, will trace out in the path of its edge a

trefoil knot. But a general method of classification which

would cover all cases has not yet been discovered.

Here, as in the proving of the Jordan Curve Theorem,
the difficulty lies in the complete generality of the prob-

lem; yet if a general method of classifying knots can be

found, much in related topological fields will fall auto-

matically into place, like minor candidates riding into

office on the leading candidate's coattails.

Perhaps the solution to this problem lies within the
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future grasp of some chubby hand drawing circles and

triangles as indistinguishable blobs.

"One thing seems certain," wrote E. T. Bell, in The

Development of Mathematics: "to think topologically, the

thinker must begin young. The cradle with its enchained

teething rings may be a little too early; but the education

of a prospective topologist should not in any case be de-

ferred beyond the third year. Chinese and Japanese puz-
zles of the most exasperating kind, also the most devilish

meshes of intertwisted wires to be taken apart without a

single false move, should be the only toys allowed after

the young topologist has learned to walk."

Topology is one of the youngest branches of an ancient

subject, and much of its strength has come from the

youthfulness with which it has looked at age-old figures.

It has seen what was always there but never seen before

by grownups.
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IF EUCLID WERE TO RETURN TODAY,

seeking news of what lie loved best, he

might be surprised to find in the

schools only his own geometry his own
theorems. He might well wonder if

nothing at all had happened to mathe-

^j .^""""""'^^
matics in some twenty centuries. But,

I ^r *n *^e urn
*

versities
>
ne would find out

1 ^ """^fc what had happened. He would be

m ^^^.^^ confronted by not one but many, many
different geometries, of which his own
was only the most elementary. "A

What a geometry," he would be told in

Geometry IS strangely unfamiliar terms, "is the

study of those properties of figures
which remain invariant under a given

group of transformations."

Invariant.

Group.

Transformation .

Even in Greek, these words would
have no mathematical meaning for

Euclid. Yet with the help of the con-

cepts which they represent, mathe-
matics has been able to bring together
into one unified whole all the very dif-

ferent geometries which have been

developed in the twenty-three hundred

years since Euclid composed his Ele-

ments.

The key word of the three is

"group," a concept which has been
called the unifying principle of mod-
ern science. For simplicity's sake, how-
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ever, we shall begin our examination of "what a geometry
is" with the two less complicated concepts of "invariance"

and "transformation," which we have "already met in sev-

eral earlier chapters.

These two ideas are in a sense diametrically opposed.
The concept of transformation represents change: invari-

ance represents changelessness. When we combine the

two, we are concerned with that which is changeless
under change.

Let us take a very simple geometrical example, re-

membering as we do so that these concepts can be applied
to much more than geometry, to much more in fact than

mathematics. We pick up a right triangle (A) and move
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i
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it by what geometers call "rigid motion" from one place

to another (B). We find that certain of its geometric

properties change but others do not. Its position changes,

for instance, but its size and shape do not. If, however, we

proceed to expand it in a uniform manner (C), its shape
does not change but its size does. We now move it in

space so that it is "in perspective" (D) with the position

it originally held. It remains a triangle, but it is no longer
a right triangle. Now we drape it over a globe (), allow-

ing the sides to fall along the shortest distances between

the vertices. We find that we still have a three-sided
fig-

ure, but the sides are not straight lines and the angles,

unlike the angles of A, B, C and D, add up to more than

180. We take up our triangle and s-t-r-e-t-c-h it out be-

tween our fingers (F). It remains, like our original tri-

angle, a simple closed curve, dividing the surface on

which it lies into two distinct parts, that which is outside

the curve and that which is inside but everything else

about the original triangle has changed. It is no longer
even a triangle!

We have subjected a given right triangle to four dif-

ferent changes, or transformations, and in each case at

least one of the properties of our original figure has re-

mained invariant under that particular kind of transforma-

tion. We recognize that each of the transformations has

given us a figure characteristic of one of the geometries
which we have already examined in this book: Euclidean

geometry, projective geometry, elliptic non-Euclidean

geometry and topology, or "rubber-sheet" geometry. Yet

we have touched on only a few of the more obvious

transformations to which we can subject a right triangle.
We are reminded among other things of reflections,

translations, dilations, inversions and rotations. With each
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of these transformations we can find ourselves with a dif-

ferent geometry! t

Even a hundred years ago, the garden of mathematics

seemed rankly overgrown with geometries. Projective

geometry threatened to take over the place. "Projective

geometry is all geometry!" one enchanted mathematician

was heard to exclaim. Yet among the neatly tended rows

of Euclidean geometry all sorts of non-Euclidean geome-
tries were springing up. Topology showed a tentative

blade of green as analysis situs. It was obvious that a

period of wild growth now needed to be followed by some

attention to pruning.
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It was at tills time that young Felix Klein, whose

model of non-Euclidean geometry we have akeady met in

Chapter 10, made a speech at Erlangen University which

offered the very tool needed for the pruning. Because of

the location where the speech was made, Klein's proposal

has come to be known in the history of mathematics as the

Erlangen Program.
Klein suggested that under an entirely new definition

of geometry, all of the many apparently disconnected

geometries could be brought together, classified and uni-

fied. Once more, geometry would be one great subject of

study instead of many smaller subjects. The new defini-

tion which he proposed is the one we have akeady met:

"A geometry/' Felix Klein suggested, "is the study of

those properties of figures which remain invariant under

a given group of transformations."

The concept of a group, upon which Klein's Erlangen

Program depended, had been used earlier in connection

with the solvability of algebraic equations. We shall see

now how it was used to unify and define the many
branches of geometry.

Group is one of those everyday words which a mod-
ern mathematician uses in a very precise sense. By it he

means nothing so vague as the "assemblage" of Webster.

A mathematical group must satisfy four specific require-

ments, which are labeled in the way of mathematics Gi,

Go, Gs, d and are listed on the next page. Without any
further explanation, these very abstract requirements
would probably seem to the reader entirely removed
from the world he knows; yet the group concept is one
with which we live and work every day as we use the

ordinary operations of arithmetic. The rational numbers,
for instance, constitute a group (G) with respect to the

operation (o) of addition; and the non-zero rational
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REQUIREMENTS FOR GROUP

Gi If A and B are in G, then AoB is in G.

G2 If A, B, C are elements of G, the result of

operating upon the elements A and BoC, in

the order named, is the same as the result of

operating upon AoB and C, in the order

named, or Ao(BoC) = (AoB)oC.

G3 There exists in G an element I such that

Aol = A for every A.

G4 There exists in G, corresponding to an ele-

ment A, another A', such that AoA' = I for

every A.

numbers, a group with respect to the operation of multi-

plication. The positive integers, on the other hand, do not

constitute a group under either operation.

Let us, therefore, approach the group concept through
the positive integers.

We can begin with something as simple as 2 + 2 = 4.

This we know. All our lives we feel that it is some-

thing we can depend upon. It is our symbol for what is

changeless in a changing world and, curiously enough, we
are not so wrong about that. For the fact in which we

have such confidence is a specific example of a most gen-

eral property: a property which has provided mathe-

matics and, through mathematics, the physical sciences

with a scalpel for laying bare the very bones of structure.

How is it possible that something as simple as adding

together two numbers and obtaining a third of the same

kind can lead us to such a unifying concept? To answer

this question, we must begin by abstracting from the
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statement that 2 + 2 = 4 the general property of which

it is a specific example. Let us call our 2's A and B and

say nothing more about them other than that they are

members of the same class. (As A and B, they may be

either the same or different members of the class.) Let

us then call the addition represented by + an operation,

or rule of combination, and designate it o. Instead of

2 -f- 2 = 4, we now say that when A and B are members

of a class, AoB (the result of combining A and B by the

operation o) is also a member of the class. In the same

way 2 and 3 are positive integers, and 5 the result of

combining them by the operation of addition is also a

positive integer. The property exhibited by A and B in

respect to o, and 2 and 3 in respect to -f, we call the

group property. We have already met it as Gi, the first

of our requirements for a group.

Gi If A and B are in G, then AoB is in G.

This group property is the first in a succession of ab-

stractions which has made the branch of mathematics

called "the theory of groups" something especially abstract

even in a subject as abstract as higher mathematics.

To be sure that we thoroughly understand this first

abstraction upon which all the others will rest, let us

translate it back into the concrete. If instead of A and B,

2 and 3 are members of the class of positive integers; and
if we consider in order the common operations of addi-

tion, multiplication, subtraction and division, we find that

the results of certain operations (2+3), or 5, and

(2 X 3), or 6, are also positive integers; but the results of

other operations, (2 3), or 1, and (2
~

3), or %,
are not. We say, then, that the positive integers exhibit

the group property or the first requirement of a group-
under the operations of addition and multiplication, but
not under subtraction and division.

So far we have been using the words class and opera-
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tion on the assumption that we know well enough what
we mean by them; but before we continue we should do

well to pause and define our terms in a more mathe-

matically approved manner. We say that a class of objects
is defined whenever a rule or condition is given whereby
we can tell whether an object belongs or does not belong
to the class. If we say "all positive integers," we have de-

fined a class which does not include 0; but when we say
"all non-negative integers," we have included in the

class which we have defined. We say that an operation

upon the elements A and B of a class is defined if, cor-

responding to those elements, there exists a third thing
called C, the result. In this general definition of an opera-
tion nothing is said about C's being an element of the

same class as A and B. When it is an element, as in addi-

tion and multiplication of the positive integers and only
then we can say that the class has the group property
under that particular operation.

We have seen that Gi of the four requirements for a

group is merely the statement that a class which consti-

tutes a group must possess the group property. We also

recognize Gz now as the abstraction of the familiar fact

that 1 -h (2 + 3) = (1 + 2) + 3 and that 1 X (2 X 3)
= (1 X 2) X 3, what the textbooks call the Associative

Laws of Arithmetic.

Gi If A, B, C are elements of G, the result of

operating upon the elements A and BoC, in

the order named, is the same as the result of

operating upon AoB and C, in the order

named, or Ao(BoC) = (AoB)oC.
We already know that among the positive integers the

operations of addition and multiplication are associative

( although of course subtraction and division are not ) ,
so

we can move to the third and fourth requirements.

G3 and G4 require that in a group there must be two
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elements which have very specific functions. The first,

called the Identity, is an element which when combined

with A always gives the result A. The second, called the

Inverse, is an element which when combined with A al-

ways gives the Identity as the result of combination.

Gs There exists in G an element I such that

Aol = A for every A.

G-i There exists in G, corresponding to an ele-

ment A, another A', such that AoA' = I for

every A.

Let us consider now whether the positive integers

1, 2, 3, . . .
,
which exhibit the group property ( Gi ) and

observe the associative requirement (G2) with respect to

addition and multiplication, also meet the third require-
ment for a group by possessing among their elements

both an Identity and an Inverse. Gs requires for the op-
eration of addition among the positive integers an I such

that A + I = A. Since is the only number which can be

added to an integer without changing its value (A +
= A) and since is not included in the class of positive

integers, we have to conclude that the positive integers
do not constitute a group with respect to addition. In

respect to multiplication, however, there is a number, the

number 1, by which any integer can be multiplied with-

out changing its value (A X I = A). So, with respect to

multiplication, the positive integers do meet the first

three requirements for a group.
If they then meet the requirement of G^, they consti-

tute a group. But G^ postulates the existence of an ele-

ment for every member which when multiplied by that

member will yield the Identity in this case, the number
1. There are no such numbers among the positive integers.
To meet the requirements of G^ we must enlarge our
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class to include the reciprocals of all the positive integers:

%, %, }4, . . . Then A X I/A = 1, the Identity.

If, however, we conclude that the positive integers
and their reciprocals form a group with respect to multi-

plication, we shall have fallen into error. Our enlarged
class no longer exhibits the group property, although our

original class of the positive integers did. When we mul-

tiply integers and reciprocals., we get results which are

neither integers nor reciprocals, and therefore not mem-
bers of our class:

Doggedly, we enlarge our class once again to include

all the positive rational numbers. And now, at last, we
have a group!

But we have seen that the technical requirements for

a group, although they are only four in number, can be

slippery things indeed. To discover whether he has them

firmly in mind, particularly the requirements for the

Identity and the Inverse, the reader should take the simple
test at the end of this chapter.

In spite of the fact that there exist infinitely many
groups, our chances that a particular class will meet the

requirements for a group are relatively slim just as our

chances that a particular number will be a prime are slim,

although the number of primes is infinite. For this reason

we say that, in spite of the fact that the number of groups
is infinite, almost all classes with respect to a particular

operation are not groups.

Up to this point we have been thinking exclusively of

groups in which members of a class (like numbers) are

combined by a certain operation (like addition or multi-
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plication). We can also think, however, of a group as

a class of operations which can be performed one after

another (
the rule of combination, in this case ) to yield a

result which could have been achieved by a single opera-

tion. This is the same as getting "an answer" which is in

the class when we combine two members of a class. For

example, in the class of whole numbers, the two opera-

tions (add 2) and (add +5) when performed in suc-

cession yield a result which could have been achieved by
the single operation (add -j-3).

This concept of a group as a class of operations can be

better understood when we examine a class of actual

physical operations. Consider, for instance, the rotations in

the plane which will turn a square, placed with center at

the origin, into itself. The members of this class are four

in number, the rotations of 0, 90, 180 and 270:

When we subject this class of four rotations to the re-

quirements for a group, where our "operation*' is perform-

ing one rotation after another, we find that it meets all

four requirements, as listed below.

GI Any two rotations when performed in suc-

cession are the equivalent of performing just

one rotation:

The rotation of 90, for example, fol-

lowed by the rotation of 180 is the

equivalent of the single rotation of 270.
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G2 The order of combination of the rotations

does not affect the result.

Gs There is an Identity element the rotation of

which does not change the effect of any
rotation with which it is combined.

G-i There is for each rotation another, an Inverse

element, which when combined with it re-

turns the square to the starting point and
is the equivalent of a rotation of 0, the

Identity:
A rotation of 270 followed by a rotation

of 90 is the equivalent of a rotation of

0, since it returns the square to its start-

ing point.

The group of four rotations which will turn a square

upon itself is not only a finite group, but a very small

finite group. Yet from it we can get a glimpse of the great

power of the group concept.

By working out the various possible combinations of

our four rotations, we can construct a "multiplication

table" for our group, where I, A, B, C are rotations

through 0, 90, 180 and 270, respectively:

_

I A B C

IC = C BC = A B 2 = I A
I A B C
A B C 1

B C I A
C I A B

This same multiplication table will work for other groups

which do not, at first glance, appear to have any con-

nection whatsoever with the four rotations in the plane
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which turn a square at the origin upon itself. If, for in-

stance, we take the numbers 1, i, 1 and i and label

them in order I, A, JB, C, we shall find that their multipli-
cation table is the same as that of the four rotations:

IA = A, or 1 X i = i AB = C, or i X 1 =

1C C,orl X 1 = i BC = A,orl X~~i=i

I 2 = I, or I 2 = 1

A2 = B,ori
2 = 1

B 2 =l,or( l)
2 = l

C 2 = B,or(i) 2 =~l
This should not surprise us when we recall our interpreta-
tion in Chapter 7 of the complex number plane as

formed by two axes, of the real and imaginary numbers,

placed perpendicular to one another. If we concentrate

upon that portion of the real axis which is to the right of

the origin ( the positive reals
) ,
we can see that successive

rotations of the number plane through 0, 90, 180 and
270 are the equivalent of multiplying the positive reals

by 1, i, 1 and i, respectively:
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The multiplication table for a group reveals to us what

is called its abstract group. We have seen that the four

rotations in the plane which turn a square into itself and

the four roots of unity have the same multiplication table.

We know, therefore, that they have the same abstract

group, and we can now concentrate upon one group in-

stead of two. What we learn about the abstract group we
can apply to the group of four rotations and to the group
of four roots of unity as well as to any group of four ele-

ments generated by the powers of one element. This

means, among other things, that when in the investigation

of some phenomenon we come upon the hitherto-unsus-

pected pattern of our abstract group, the mathematics

is already there and waiting for us.

The recognition that several apparently disparate

theories have the same abstract group may also result in

the discovery of significant and previously undetected

relationships among them. Consider the case of a group
of rotations somewhat similar to our group of four. This

is the group of all those rotations in space which turn a

20-sided regular solid, or icosahedron, upon itself so that

after each rotation it occupies the same volume it did

before the rotation. The abstract group of these rotations

is also the abstract group of certain permutations which

we come up against when we attempt to solve the general

equation of the fifth degree; the same group occurs in the

theory of elliptic functions. The relationship? It turns out

that the general equation of the fifth degree, which can-

not be solved algebraically,
can be solved by means of

elliptic functions. Such is the power of the group concept

to uncover similarities among apparent dissimilarities!

With the concepts of invariance and transformation

added to the basic concepts of group and abstract group,

mathematics has an unbelievably powerful tool for strip-
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ping away the externals and revealing the essentials of

structure in the physical world as well as in the mathe-

matical. This tool is not limited in any way. It is a method

o looking at any class of any thing under any operation
which combines any two members of the class. It is not

limited to infinite classes or even to very large classes. It

is not limited to classes whose individual members have

gaps between them but may be exhibited by classes in

which the individual members are, practically speaking,

indistinguishable from one another. It is not limited to

classes in which all of the elements are essentially the

same or in which the same operation is performed upon

every pair of elements. We have seen that in mathematics

the group concept is not limited to numbers. The idea of

groups was first used in connection with the solvability

of algebraic equations. Yet it was basic to a program
which unified and defined the many branches of geometry.

By utilizing the concepts of invariance, group and

transformation, Felix Klein was able in his Erlangen

Program to propose a criterion for determining whether

a given discipline, perhaps as far removed from the

geometry of Euclid as topology, is "a geometry." Under
this great unifying principle we are able to classify some
of the varied geometries we have already met in the fol-

lowing manner:

Euclidean geometry is concerned with those proper-
ties of geometric figures which are invariant under the

group of similarity transformations, while topology is

concerned with those properties of geometric figures
which are invariant under the group of continuous trans-

formations.

But the group concept, applying equally to algebra
and geometry, is not limited even to mathematics. It ex-

hibits itself in the structure of the atom and the structure
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of the universe. Wherever we can apply the theory of

groups, we are able to ignore the bewildering variety, to

see among similarities differences and among differences

similarities.

The changeless in a changing world!

FOR THE READER

Keeping in mind the four requirements for a group,
which are listed on page 193, try to determine which, if

any, of the four requirements are met by each of the fol-

lowing classes. Which are groups?

dnoi y -[ S) "9 dnoi y *

dnoiS y '01 s's't^ -9 dnoj y
dnojS y -Q

S<T
) *g **8iQ -[
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THE INFINITE PROBLEM . . . PARADOX

. . . and paradise has been with, math-

ematics since its beginnings. It lies,

unstated, in the assumption upon which

Euclid's geometry rests. It is implicit

in the first numbers with which weM begin to count.

0, 1, 2, 3, ...
*

The three dots after these first few

numbers indicate to us that they are

enough for counting: that we shall

never run out of numbers to count

Counting with, for there is no last number. The

the Infinite counting numbers are infinite. They
are also enough to count the infinite,

provided it is not too large. They are

not, however, enough to count the

points on any line, no matter how
short!

Before we can understand these

paradoxical statements about counting
the infinite, we shall have to revise

our ideas about several things: about

"counting," for one, and about "the

infinite," for another.

It is quite possible to count with-

out 0, 1, 2, 3, .... A bird that can tell

when one of four eggs has been re-

moved from her nest probably has a

* The reader may find it difficult to ac-

cept as one of the counting numbers, but
with what other number will he "count" the
unicorns in his living room?

204



mental picture of the eggs in the nest with which she can

"count" the eggs upon her return. Man's first numbers

apparently consisted of such grouping pictures man him-

self, bird wings, clover leaves, legs of a beast, fingers on

his hand with which other groups could be compared
and "counted." If there were as many birds as fingers on

his hand, and as many arrows as fingers, then he knew
there were "as many'* birds as arrows, and an arrow for

every bird.

Formally we call what he was doing "counting by
one-to-one correspondence" and we probably think of it

as a rather inferior trick compared to counting with num-
bers. Yet what we are doing with our numbers is essen-

tially the same tiling. Say that we have a bowl of apples
and a party of children. We count the apples and find

that we have 7; then we count the children and find that

we have 7. We have the same number of apples and chil-

dren, so we have an apple for every child. We could also

have handed an apple to each child and when we came
out even we would have known, without knowing the

number of children and apples, that we had "as many"
apples as children. When we diagram what we have done,

we see that in both cases we were counting by one-to-one

correspondence very much like man with arrows and

birds.

apple < > child apple < > 1 < > child

apple < > child apple < > 2 < > child

apple < > child apple < 3 < child
*

Counting by one-to-one correspondence is the most

* We have followed here the conventional method of begin-

ning to count with 1; but is logically one of the counting numbers
and we can count just as well by beginning with 0. When we do,

the answer to the question "How many?" is the successor of the

last number which we paired with the last member of the collection.
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primitive and also, as we shall see, the most sophisticated
method of counting.

The ancient method of directly comparing two col-

lections to determine the number of members is the logical

basis for a definition of what we mean by "number"

which can be extended to infinite as well as finite collec-

tions. Let us firmly banish 0, 1, 2, 3, ... from our minds

for a moment and think instead of all the finite collections

we might possibly want to "count" being grouped in such

a way that all those which can be placed in one-to-one

correspondence with each other all the collections of a

dozen members, for example are in the same group.
These groups do not need to be arranged in order of the

size of their respective collections. For the moment it is

sufficient for our purposes that they have been grouped.
We have all those collections whose members can be

placed in one-to-one correspondence with a dozen eggs,
all those whose single member can be placed in one-to-one

correspondence with the sun, and so on.

COLLECTIONS WHICH CAN
BE PLACED IN ONE-TO-ONE

CORRESPONDENCE WITH
MODEL COLLECTION MODEL COLLECTION

Day, Night eyes, antlers, wings, man
and woman, good and

evil, . . .

Breakfast, Lunch, Dinner ears and mouth, clover

leaves, man-woman-child,
stars in Orion's belt, . . .

Sun head, self, earth, moon,

god, . . .

Now, instead of having to keep in mind the specific
collections we are using for our models, we can substitute
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an X for each member so that we have XX, XXX, and X.

We can then easily arrange these new model collections

in the order of their increasing size and, if we want, can

give them names. We are now ready to define A, or what-
ever name we have given the model collection X, as the

cardinal number of any class whose members can be

placed in one-to-one correspondence with X, or the Sun.

If someone objects and says that all we have done is to

define the number 1, why we shall be generous and call

A "1." Then we shall call our next krgest model collection

"2" and define it as the cardinal number of any class

whose members can be placed in one-to-one correspond-
ence with XX, or Day and Night; and so on, to infinity.

The number of cardinal numbers we can define in this

way is infinite, but the members of each collection in the

classes so defined will be finite. The number of members
in each collection may be very large: all those collections

whose members can be placed in one-to-one correspond-
ence with all the stars in the Milky Way, all those whose
members can be placed in one-to-one correspondence
with all the grains of sand on the earth, all those whose
members can be placed in one-to-one correspondence
with all the electrons in the universe. It may be personally

impossible for us to count all the members of a particular
model collection, but they are "countable" in the sense in

which we commonly use the word. The cardinal numbers
which we have defined are finite cardinal numbers.

But is there any reason why in this same way we can-

not define transfinite cardinal numbers for classes which
contain an infinite number of members?

It is at this point that we must change our idea of

"the infinite." For instance, instead of thinking of the

counting numbers 0, 1, 2, 3, ... as an ever-growing pile

filling room, world, universe, . . .
, we must think of them

stuffed, as it were, into the metaphorical suitcase of their

207



class. In short, we must think of them not primarily as

infinite in number but as an infinite class, something
which we can handle as a unit, just as we handle finite

classes, but something which is still different from a finite

class because of the fact that it is infinite. This was not

an easy idea, even for mathematicians, to accept. Yet once

we accept it, we have something "capable not only of

mathematical formulation, but of definition by number."

These are the words of the man who, almost singlehanded,
corralled the infinite for mathematics.

Georg Cantor, whom we met before as one of the

authors of the Cantor-Dedekind axiom, was one of those

rare people who are able to look at the familiar as if they
have never seen it before and thus become the first to see

it. How revolutionary was his idea of the infinite, as

something consummated, is shown by his own words in

presenting it to his mathematical colleagues: "This con-

ception of the infinite is opposed to traditions which have

grown dear to me, and it is much against my own will

that I have been forced to accept this view. But many
years of scientific speculation and trial point to these con-

clusions as a logical necessity."
Once we have recognized counting as matching one

class to another in one-to-one correspondence and an in-

finite number as something consummated an infinite

class we are ready to take the next step, which is count-

ing the infinite by placing one infinite class in one-to-one

correspondence with another! Doing this, and even the

specific way of doing it, was not original with Georg
Cantor, living and creating in nineteenth-century Ger-

many and fighting an abstractly bloody battle not only
with his colleagues but also with a mathematical tradi-

tion of the infinite which went back to the Greeks.

Three hundred years before Cantor, in the Italy of the

Inquisition, Galileo had pointed out that the infinite class

208



of squares can be placed in one-to-one correspondence
with the infinite class of natural numbers: that there are

fully "as many" squares as there are natural numbers,
since every number when multiplied by itself produces a

square.

Unfortunately, Galileo, with Cantor's theory of the in-

finite in his palm three hundred years before Georg
Cantor was even born, dismissed it: "So far as I see, we
can only infer that the number of squares is infinite and
the number of their roots is infinite; neither is the num-
ber of squares less than the totality of all numbers, nor
the latter greater than the former; and finally the attri-

butes equal, greater, and less are not applicable to in-

finite, but only to finite quantities."
*

What Georg Cantor did three hundred years after

Galileo was to take the attributes of equal, greater and
less and apply them to infinite quantities.

When we take the first few numbers and set them off

according to some of the various classifications which have
been made, we come out with something like this:

ALL ODD ODD 4n -f- 1 SQUARE
NUMBERS NUMBERS PRIMES PRIMES NUMBERS01350135 1257 437 9

4 9

5

6

7

8

9

*
Galileo spoke here through the character of Salviatus in his

Mathematical Discourses and Demonstrations.
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If we total these various classifications, we find that

among the first ten numbers we have five odd numbers,
four squares, three odd primes, and only one prime of the

form 4n + 1. We have no trouble in determining that the

class of numbers from through 9 is greater than any of

these sub-classes, that the odd numbers and the even

numbers are equal, and that the class of primes of the

form 4n + 1 is less than any of the other classes. If we

attempt to place any of these sub-classes in one-to-one

correspondence with the numbers from through 9, we
shall have at least five numbers left over. But what hap-

pens if, in following the same system, we take, instead of

the first ten, all of the natural numbers and all of the

members of the same sub-classes?

It is already apparent. The three dots at the end of

each column indicate that each class of numbers is in-

finite; in spite of the fact that we appear to be exhausting
some of the classes, like the 4n + I primes, more quickly
than the others, we only appear to be doing so. We can

never exhaust an infinite class. When we consider a finite

class of whatever size we please, the natural numbers in

the chosen ckss will far outnumber any one of the sub-

classes; but when we take all of them, they are equal to

any one of the equal sub-classes.
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Galileo said that they were neither more nor less, and
that the attribute of equal was not applicable to infinite

quantities. Cantor said that infinite quantities are equal
when they can be placed in one-to-one correspondence
with each other; they have the same cardinal number!

Just as we said that all classes which could be placed
in one-to-one correspondence with the class of the Sun, or

X, had the same cardinal number, which we call 1, Cantor
said that all classes which can be placed in one-to-one

correspondence with the natural numbers have the same
cardinal number, which he called aleph-zero or KO- It is

different from the finite cardinals only in that it is trans-

finite.

We have already seen how sub-classes of the class of

natural numbers can be placed in one-to-one correspond-
ence with the whole of which they are a part; but so curi-

ous are the workings of infinite classes, as opposed to

finite classes, that we can also do our pairing the other

way around. We can set off in one-to-one correspondence
with the natural numbers a class of numbers of which they
themselves are a sub-class. The class of all integers has one

peculiarity which its sub-class, the natural numbers, does

not have: it has neither a last nor a first member. How,
then, can we pair it off with the natural numbers? This is

not so difficult as it might seem. It is merely a matter of

ordering the integers in such a way that they can, as it

were, stand up and be counted. With no beginning, we

begin right in the middle at and then count each pair of

integers, positive and negative, in turn.

1 2 3 4 5 6 7 8...

I 1 I 1 I I 1 I I

+1 1 +2 2 +3 3 +4 4 ...

There is no particular trick to pairing the natural

numbers with the integers, which include them as a sub-
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class; but such a pairing does serve to show an important

technique in counting the infinite. A class of numbers

which may not appear to be countable (
in the case of the

integers, because there is no first number) can often be

rearranged in such a way that it can be counted. Consider

the class of all positive rational numbers. These are num-

bers of the form a/b where a and b are both integers.

When a is smaller than b, we have what we called in

grammar school a "proper" fraction; when b is smaller,

an "improper" one. The class of all positive rational num-
bers is no straightforward sort of infinity like the class of

integer squares where we have just one member of the

class for each integer. Just one small sub-class, a/b where

a is 1, is infinite in number. Since a may take any integer
value and for every a, b may take any integer value, we

appear to have among these numbers infinity upon in-

finity, an infinite number of infinities.

If we take the positive rationals in what might be

called their natural order, omitting those with common
factors since they are already represented, we find that

placing them in one-to-one correspondence with the nat-

ural numbers is impossible. Not only is there no "smallest"

fraction, but also there is no "next largest" fraction. Be-

tween any two a/b and c/d an infinity of fractions larger
than ajb and smaller than cjd spring up to vex us. Ob-

viously it is impossible for us to pair off with the natural

numbers a class of numbers which behave in this fantastic

fashion. We have sown dragon teeth on the number line.

But remember, we have said nothing about the

rational numbers having to be paired off in their natural

order only that they must be paired in such a way that

we can see that we are going to be able to count them
with the natural numbers. So let us rearrange the rational

numbers. Let us organize them into battalions: the first

battalion consisting of all those rational numbers whose
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numerator is 1, the second battalion consisting of all those

whose numerator is 2; and so on.

This arrangement is reminiscent of one of those parades

during which we wait
restlessly for the band while an

apparently endless procession of foot soldiers goes by.
The only difference between our parade and the actual

parade is that it is not just seemingly endless; it is end-

less. The band, or even the second battalion, can never

pass by. Obviously, again it is impossible to count off by
placing in one-to-one correspondence with the natural

numbers a set of numbers which behave in this fashion;

for although in counting the primes, for instance, we
would never finish, we would always be able to count as

far as any prime we might care to choose. With this ar-

rangement of the rational numbers, not only could we
never get to the end, but we could never get to %! Have
we then come at last upon an infinity which is impossible
to pair with the natural numbers, an infinity whose car-

dinal number is different from and perhaps larger than

So?

No, we have not.

The simple method by which Georg Cantor ordered

the positive rational numbers so that they can be placed
in one-to-one correspondence with the natural numbers
has the quality of genius. All he did was to take the group-

ings which we have called battalions and arrange them
in rows instead of in one long straight line.

M % y* y* y> VG ...

% % % % % MI ...

At this point we might stop for a moment and see, with
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this much of a hint, whether we can now order the

rationals in such a way that every one will be paired with

a unique natural number and whether we will be able to

count with the natural numbers to any rational we choose,

such as "%. . . .

Cantor's way was to order them diagonally, begin-

ning in the upper left-hand corner with M .

Thus we have all the rationals placed in one-to-one cor-

respondence
* with the natural numbers and we quite

promptly get to %.

012 3456789...
4'4'4' * v 41

4' J' * NT

M % y2 % % % # % % % ...

This is mere child's play compared to the task of

arranging the algebraic numbers so that they too can be

placed in one-to-one correspondence with the natural

numbers. The algebraic numbers are all those numbers
which are roots of algebraic equations of the form

aoxn + axn-i + . . . -f- dn-ix + On = Q

in which the coefficients do, a-i, .
,
a are all integers.

This is nothing more than the general expression for the

algebraic equations with which we are familiar where n
has a value of 1 or 2. When n = 1, we have a simple equa-
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tion like 2x 1 = 0, where we can see at a glance that

the root, or value of x, must be %. When n = 2, we have

a familiar quadratic equation like 3x 2 + 4x + 1 = 0,

where the roots, or values of x, are 1 and %. The essen-

tial thing for us to remember is that when such an alge-
braic equation has whole-number coefficients, as in our

examples, it always has a root among the complex num-
bers. (This is the Fundamental Theorem of Algebra,

proved by Gauss.
) Those complex numbers which can be

roots of such algebraic equations are called the algebraic
numbers. They are not, as we shall see, all of the complex
numbers by any means.

Cantor's proof that these algebraic numbers can be

placed in one-to-one correspondence with the natural

numbers has been called "a triumph of ingenuity"; yet it

is essentially as simple as the alphabetization of the tele-

phone book. The crux of the method is what Cantor called

the height of an algebraic equation. This is the sum of the

absolute values of the coefficients plus the degree of the

equation less 1. (The absolute values are the numerical

values of the coefficients with no attention paid to whether

they are positive or negative; the degree is the highest

power of the unknown x, or the value for n in the general

expression as given above.) Thus the equation of the

third degree

5 =
has a height of 19, since 3 + 4 + 5 + 5+ (3 1)= 19.

Having assigned for every algebraic equation a

method of determining its height as an integer, Cantor

proved that for any integer there is only a finite number
of equations which have that particular integer for their

height. From this point on, the method of the phone book

comes in handy. When we have ordered all algebraic
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equations according to their height, we find that in most

cases we have more than one equation of a particular

height. Undaunted, we arrange the equations of the same

height according to the value of their first coefficient and,

where the first coefficient is the same, according to the

second, and so on. Since there is only a finite number of

equations with the same height, and since no two equa-
tions can have exactly the same coefficients, we have

assigned every algebraic equation to a unique position in

an order arrangement.
Our purpose, however, is not to order the equations

but to order the numbers which can be their roots the

algebraic numbers so that they can be placed in one-to-

one correspondence with the natural numbers. So we
continue by taking the roots of the ordered equations,
which may be more than one but are never more than the

degree of the equation, and arranging them according to

their increasing value, first according to the value of the

real part and then, where several numbers have the same
real

part., according to the value of the imaginary part.

By agreement, as in the case of the rational numbers, we
throw out those which are repetitions. We now have a

method by which every number which can be the root of

an algebraic equation can be paired with one of the nat-

ural numbers this in spite of the fact that we have not

actually written down the roots of a single equation!
Cantor's "triumph of ingenuity" can be best appreci-

ated when we recall our diagram of the complex number

plane as formed by axes of the pure imaginary and of the

real numbers and recall that, although the algebraic num-
bers are not all the numbers upon the plane, they are

everywhere dense upon it, while the natural numbers
mark only the units on one-half of the real-number axis!
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Yet these two seemingly unequal classes have the same

cardinal number, Ho-

ls KO the only transfinite cardinal?

We are beginning to suspect that perhaps it is. We
have examined many infinite classes of numbers which

represent certain specific points upon the complex number

plane. All of them are, of course, sub-classes of the com-

plex numbers. Some are sub-classes of the natural num-

bers as well, and some include the natural numbers as one

of their sub-classes. Yet always we have found (with
Cantor )

that the classes we have examined can be ordered

in sucb a way that they can be pkced in one-to-one cor-

respondence with the natural numbers and, therefore,

have the same transfinite cardinal, KO-

[

4n + 1 primes |

|

odd primes |

[

odd numbers
|

|

natural numbers
[

|
integers [

I rational numbers I

I algebraic numbers I

Although we can define infinite classes as being equal,

it seems that we cannot define them as being greater or

less. Perhaps we were right to begin with: an infinite

number is just an infinite number. Fortunately, we were

wrong. If we were right, the infinite would be an Infinitely

less interesting subject than it is. There is a transfinite

cardinal greater than KO there is, in fact, an infinite

number of greater transfinite cardinals! But at the mo-
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ment we shall be satisfied with only one. We can find an

infinity which is greater than the infinity of natural num-
bers on a very small part of the real-number line: the

segment between and 1.

To show that these real numbers, which are the equiv-
alent of all the points on the segment, cannot be placed
in one-to-one correspondence with the natural numbers,
Cantor began by assuming that they could be. This is a

method of mathematical proof as old as Euclid, who used

it to show that the number of primes is infinite. It was
also used by Fermat to show that all primes of the form

4n + 1 can be expressed as the sum of two squares. In this

case, to prove that the placing of the real numbers in one-

to-one correspondence with the natural numbers is im-

possible, Cantor risked assuming that such a pairing was
indeed possible.

As we saw in Chapter 4, all numbers on the real-

number line between and 1 can be represented as never-

ending decimal fractions, and this is the way in which
Cantor chose to represent them. If, however, we start to

write down the actual decimals, we immediately become
involved in all sorts of difficulties. The first would be
0.000000000 . . . with the O's continuing to infinity; but

what would be the second decimal? No matter how many
O's we place between our decimal point and our first posi-
tive place value, we can always construct a smaller deci-

mal by inserting one more and moving our first positive

place value over one more place to the right.

O.OOOOOOOOOOOOOOOOOOOOO^ . . .

but

O.OOOOOOOOOOOOOW . . .

Have we proved, then, that it is Impossible to arrange the

real numbers from to 1 in such a way that they can be
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placed in one-to-one correspondence with the natural

numbers? No. We have proved nothing of the kind. Only
that we have not been able to find a way of doing what
we want to do. The question then becomes, not whether
we can find a way, but whether there is a way.

To prove that there isn't a way, we begin by assuming
that there is. We solve the problem of determining the

second decimal and all succeeding decimals by assuming
that they have been determined. We then think of them

abstractly as expressions like ^.a^a^a^a^a^a^a-: . . with

each On denoting the particular value (0, 1, 2, 3, 4, 5, 6, 7,

8 or 9) of each place in the decimal; and we place them
in one-to-one correspondence with the natural numbers,
in accordance with our assumption that they can be so

placed.

Cantor showed that such an assumption was false

because, even assuming that all decimals could be and had
been placed in one-to-one correspondence with the nat-

ural numbers, he could construct a decimal which had

not been included in the class of "all" decimals so ordered.

This decimal he indicated by

mi being any digit (except 9)* other than the digit rep-
* Since terminating decimals like .25 can be represented as

non-terminating decimals in two ways: either as .250000 ... or as

.249999 . . . , we exclude 9 to avoid having our new decimal a

different representation of a number which has already, in a dif-

ferent form, been included in the class of "all" decimals.

219



resented by ai in the first decimal; m2 being any digit

(except 9) other than the digit represented by b2 in the

second decimal; and so on. This new decimal would be

one not included in the original class of "all" decimals

because it would differ from every included decimal in at

least one place: from the first in at least its first place,

from the second in at least its second place, and so on.

We can see a little more vividly what Cantor did if

we take a concrete set of decimals and then by following
his method construct a decimal not in our set.

0.02468 ... To get a decimal not in the

\ set, we make the first place of

0.13579 . . . our new decimal different from

\ 0; the second, from 3; the third,

0.23571 . . . from 5; and so on. It will differ

\
in at least one place from any

0.35712 . . . decimal in the set: 0.14623 . . .

\ is not included, and there are

0.49012 . . . many other possibilities.

It is almost impossible to overestimate the importance
of this achievement. Already Cantor had shown that the

attribute equal was applicable to infinities; now he showed
that the attributes greater and less were also applicable.
The new cardinal number, which is easily shown to be

larger than xo, the cardinal number of a "countable" in-

finity, is C (pronounced like "c"), the number of what
Cantor called the continuum an "uncountable" infinity!

What other infinities have this same t as their car-

dinal number?

The answer to this question is completely contrary to

intuition. We have noted that the real numbers from to

1 are equivalent to the points on the segment of the real

number line from to 1, just as all the real numbers are
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the equivalent of all the points on the line. Our intuition

tells us that the infinity of real numbers must be greater
than the infinity of real numbers between and 1, just as

the infinity of points on the line must be greater than the

infinity of points on the line segment between and 1.

Yet it is very easy to prove that for every point on the

long line there is a point on the short line and that, there-

fore, there are as many real numbers between and 1 as

there are in all the length of the real-number line!

To prove this statement, we shall take two lines (one
short, which we shall call AB, and one somewhat longer,
which we shall call CD) and place them parallel to one
another. We shall then construct one line which passes

through A and C and another line which passes through___ ^

B and D. The intersection of these two lines we shall call

O. It is clear that we can draw a line from O to any point

Q which we choose on line CD, and that this line OQ
will of necessity intersect line AB at some point P.

, *?',

imj^W^''t4:5. iawaii-sL USE i. ^^Ji.z,
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For every Q on the longer line there will be a unique

point P on the shorter line which can be placed in one-to-

one correspondence with it.

It is also possible to prove, although not so easily, that all

the points on the plane can be placed in one-to-one corre-

spondence with the points on a line segment of any finite

length. All of these infinities of points have the same car-

dinal number, c. Since the real numbers represent all the

points on the line, and the complex numbers all the points
on the plane, they also have c as their cardinal number.

Now that we have distinguished between two types
of infinities, those which, like the natural numbers, are

"countable** and those which, like the real numbers, are

"uncountable," we might think that we were finished with
the subject of the infinite. But the infinite is not so easily

disposed of.

There are an infinite number of transfinite cardinals

which are greater than c, which is greater than K o-

This important fact in the arithmetic of the infinite is

stated by a very simple theorem to the effect that

2n is always greater than n
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and supported by a very simple proof. If we consider this

theorem when n is a finite cardinal number, we can see

that it is true. We take n blocks n in this case being

equal to 3 and paint each block either blue or red. The
number of possible color schemes will equal 2n, or 2 3 = 8

in this case.

B B B
B B R
B R B
B R R
R B B
R B R
R R B
R R R

As here, when n is a finite cardinal, we can actually count

the color schemes and can actually see that we have ex-

hausted the possibilities: no one can turn up with another

color scheme for three blocks painted either red or blue

which is not already among the color schemes we have.

But now let us take n = xo- Let us take as many
blocks as we have positive integers. Again, let us paint
each block either blue or red. How many possible color

schemes can we have? Certainly an infinite number. For

instance, we could in each case paint the nth block blue

and all the others red.

1 . First block blue and all others red.

2. Second block blue and all others red.

3. Third block blue and all others red.

Obviously this is too easy. After we have paired a
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unique color scheme with every one of the positive inte-

gers, we can think up one or an infinity more of schemes

which we have not included. For instance, we could paint
the nth and the (n + l)th block blue and all the others

red, and this would give us a completely different set of

color schemes which could also be placed in one-to-one

correspondence with the positive integers. But remember
that even another infinity of color schemes does not prove
that both sets of color schemes could not be placed in

one-to-one correspondence with the positive integers, or

even all possible color schemes!

So let us assume that by some method we have de-

termined all possible color schemes and to each block we
have attached one of the color schemes. Now can we
come up with a color scheme which is not among those

attached to the blocks? We can and we do using the

same method by which we constructed a decimal which
was not in our original set of "all" decimals. We pick up
the first block and note from the color scheme attached

to it what color it is to be painted in that particular
scheme. Then we paint it a different color, red if it was
blue on the list, blue if it was red. The color scheme which
results from our newly painted blocks cannot possibly be
one of those already attachedor paired in one-to-one

correspondence to the blocks. It will differ, for at least

one block, from each of the color schemes we already
have. The cardinal number, then, of all possible color

schemes is greater than the cardinal number of the blocks

because the color schemes cannot be placed in one-to-one

correspondence with the blocks. Our theorem 2n is

greater than n is true whether n is finite or transfinite.

It follows, therefore, that for any transfinite number
there is always another and greater transfinite number.
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There is no last transfinite number. The number of trans-

finite cardinals is infinite!

Of this infinitude of transfinite numbers NO, as its sub-

script indicates, is the first. What is K i ? The cardinal num-
ber of the continuum, c, is larger than K O . There is no

known transfinite number that is smaller than t and larger
than So- But is C the second transfinite number? Is it Si?

*

In modern mathematics this problem holds the place
that the problem of the trisection of the angle held in an-

cient mathematics. We have indeed counted the infinite,

but we are not done with it!

* That c is x
x

is the famous "continuum hypothesis."
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15
A Most

Ingenious
Paradox

SEGMENTS OF LINES HAVE LENGTH. SUR-

faces have area. Solids have volume.

The measure assigned to a figure-

length, area or volume, as the case may
be is unaffected by rigid motion of the

figure. The whole is greater than any

part, and is the sum of all the parts

together.
These statements are as ancient as

Euclid and at the same time so com-

monplace that we cannot conceive of

their being controverted. Yet in the

theory of point sets, a branch of mathe-

matics in which the paradoxes are al-

most as numerous as the points (and
the points are very numerous indeed),
we are forced to the conclusion that

under certain conditions, involving the

most familiar figures of geometry, some
of the statements we have made are

"untrue."

To understand the necessity for

this conclusion, we must go back to

that unfortunate Pythagorean who dis-

covered that there can be no rational

number for the point on the measuring
stick which coincides with the diagonal
of the unit square, and perished at sea

for his pains. From this point, quite

literally, we are logically committed to

the theory of point sets, although the

theory itself was not founded until

some twenty-five hundred years later.

When, toward the end of this chapter,
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we find ourselves balking at some of the conclusions at

which we arrive, we must remember that here at the be-

ginning we easily accept in fact, insist upon the assump-
tion from which the conclusions will necessarily follow.

Who among us would now renounce the idea that for

every length there is such a unique measure as V2 for the

diagonal of the unit square?
The logical consequences of this concept of a number

for every point on the line, or the theory of point sets, will

be the subject of this chapter. In the course of it we shall

find ourselves juggling infinities and distinguishing pre-

cisely between those which are non-denumerable and
those which are denumerable; transforming by rigid mo-
tion whole infinities of points; selecting single points from

infinities. Unfortunately, this is not material that can be

skimmed. We can only remind the reader that there is no

royal road to even the faintest understanding of the con-

cept of point sets, and assure him that if he follows the

rocky road of reasoning he may be more than repaid by
the satisfaction he gets from a personal contact with pure
mathematics.

We must begin by considering what we mean by "a

point." When we take a pencil and make with it on paper
what we call a point, we have what for all practical pur-

poses is a point. But a point (mathematicians agreed
about the time of the Pythagorean) is that which has

position but no magnitude. Since any representation of

a point must have magnitude, it cannot be a point. More

recently, since the time of Descartes, mathematicians

have based their definition of a point on its representa-
tion by numerical coordinates. A point on the line is a real

number. A point in the plane they define as an ordered

pair of real numbers; a point in space, as an ordered triple

of real numbers; and so on. It is from this definition of a
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point as a number, and a number as a point, that the great

paradoxes of point-set theory develop.
When we start to think of points as numbers, we gain

an advantage in handling them. Each one becomes an

individual, easily distinguishable from ah1

the others. We
can divide an infinity of points into mutually exclusive

sets and have no trouble at all in determining whether

a given point belongs in a set. All the points on the line,

for instance, can be divided into those which represent
a real number less than and those which represent a real

number greater than 0; while a third set, the single point

0, serves as the boundary between the other two sets.

We can make a similar division of the points on the plane

by including in one set all those the x-coordinate of which
is less than and in the other, greater than 0. Here the

boundary set will contain not just one point but all those

points with x 0, or the f/-axis itself.



If we inscribe a figure on the plane let us say a circle

of radius 1 about the origin we can distinguish the points
which are on its circumference from all the other points in

the plane. Physically, this is impossible; for our drawing,
no matter how finely done, must add magnitude to the

position of the points. Mentally, though, such a selection

is perfectly possible.
The equation for the given circle is

since, by the Pythagorean theorem, the sum of the squares
of the x and y coordinates at any point on the circum-

ference will give us the square of the hypotenuse, which
is also the square of the radius of the circle, in this case 1.

There are various sets of points which we can represent

by means of this knowledge. The equation itself is the

equivalent of the statement "all the points x, y for which

the equation holds." If we take at random two points, say,

(4, 3) and (%, %), we find that

er+o'
where the symbols >, < are read as "is greater than" and

"is less than," respectively. It is clear that (4, 3) and

(%, % ) are not among the points on the circumference of

our circle. If, in fact, we locate them on the plane pictured
on page 69, we can actually see that (4, 3) would fall out-

side of a circle of radius 1 about the origin while (%, %)
would fall inside. Thus, with the equation for the circle

already given and various related equalities, we are able

to divide the points on the plane into various sets:

A. x2 + y
2 = 1 the set of points on the cir-

cumference
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B. x 2
-f y

2 < 1 the set of points interior to

the circle

C. x2 + y
2 > 1 the set of points exterior to

the circle

D. x2
-f- y

2 ^ 1 the set of points on the cir-

cumference and the inte-

rior of the circle

E. x2
-f- y

2 ^ 1 the set of points on the cir-

cumference and the exte-

rior of the circle

F. x2 + y
2

= 1 the set of all points not on the

circumference

Certain pairs of these sets, when combined, will include

all of the points in the plane and yet will have no points
in common: (A) and (F), (B) and (E), (C) and (D).
These are called complementary sets.

When we divide the entire plane into such parts, even

though we cannot physically represent some of them, like

the points on the circumference or the interior of the circle

without the circumference, we are still dealing with the

concept of the whole and its parts in the traditional man-
ner. The plane is the sum of its sub-sets (A), (B) and

(C); each occupies a "different" portion of the plane. Yet

with point sets it is possible to divide the plane into var-

ious pairs of complementary sets in such a way that each
set of the pair by itself is everywhere dense upon the

plane. Such a pair would be the set of all points in the

plane which have rational coordinates; and its comple-
ment, the set of all points which have at least one irra-

tional coordinate. Together, they include all the points in

the plane, which are everywhere dense. Yet, when we
remove either set of points, the points remaining are still

everywhere dense in the plane. This curious situation

arises from the fact that the rational numbers are every-

230



where dense (i.e., between any two rational numbers
there is always another rational number) and that the

same characteristic is exhibited by the irrational numbers.

There is yet another unconventional way in which we
can divide the whole point set into parts, or sub-sets of

points, a way which is not available to us when we are

dealing with geometrical figures in the traditional manner.

As we have seen, we can divide a point set into a finite

number of complementary sets, or parts; but we can also

divide it into an infinity of such parts. The number of

points on a line, in a plane or in a space is always the

same: a non-denumerable infinity. If we divide any one

of these point sets into sub-sets, each of which contains

but a single point, we have divided the whole into a non-

denumerable infinity of parts.

Such a non-denumerable infinity is infinitely more
numerous than a denumerable infinity; yet we can also

divide a point set which contains a non-denumerable in-

finity of points into a denumerable infinity of sub-sets.

Later we shall see that this is sometimes a rather com-

plicated procedure, but now we shall merely divide the

real-number line into a denumerable infinity of parts. This

is child's play in the theory of point sets. By defining each

sub-set as all the real numbers equal to and greater than

a given integer n but less than the next largest integer,

or n + 1, we have solved the problem. The integers,

a denumerable infinity themselves, divide the non-

denumerable infinity of real numbers, which represent
all the points on the line, into a denumerable infinity of

sub-sets, each of which of course contains in turn a non-

denumerable infinity of points.*
* The reader is reminded of the proof on page 218 and the

following pages that the real numbers between and 1 are a non-

denumerable infinity, and of the proof on page 221 that the num-
ber of points on any portion of the line is equal to the number of

points on the entire length of the line.

231



The distinction between non-denumerable and denu-

merable infinities, as confusing as it may be to us at first,

is essential to our gaining even a glimpse of the reasoning
which leads to the paradoxes of point-set theory and their

implications for the theory of measure. We must, there-

fore, make sure that we have it clearly in mind before we

go any further in this chapter. We recall from Chapter
14 that a denumerable or countable infinity (the "small-

est" of all infinities ) is one whose members can be placed
in one-to-one correspondence with the integers, and thus

in the sense that there is an ordered pairing between its

members and the integers can be counted. Such count-

able infinities include the integers themselves; such sub-

sets as the natural numbers, the even numbers, the primes,
and so on; and, what is particularly important to us in

point-set theory, the rational numbers. A non-denumerable

infinity, as we saw in the same chapter, is more numerous
than the integers, cannot be arranged in any way so that

its members can be paired with them, and hence cannot
be "counted" in the same sense that a denumerable in-

finity can be counted. Such uncountable or non-denu-
merable infinities include the real numbers which singly,
in pairs, or in triples can be placed in one-to-one corre-

spondence with the points of line, plane and space, re-

spectively. They also include a non-denumerable sub-set

of the reals which is particularly important for point-set

theory the irrational numbers. It is essential that we keep
in mind the fact that while the rationals and the irrationals

are complementary sub-sets of the real numbers, the ra-

tionals are denumerable and the irrationals are non-denu-
merable.

In brief summary:
1. Each of the geometrical figures, plane and solid,

with which we shall deal in the next few pages contains a
non-denumerable infinity of points.
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2. Each and every one of such a non-denumerable in-

finity of points can be handled as an individual because

it can be uniquely defined by ordered real-number coordi-

nates.

3. The real numbers, which are the rational numbers

plus the irrational numbers, are a non-denumerable in-

finity.

4. The rational real numbers are a denumerable in-

finity.

5. The irrational real numbers are a non-denumerable

infinity.

We are now prepared to follow the reasoning which

will lead us to a fundamental paradox of point-set theory:

The whole is not necessarily greater than one of its

proper parts, but on the contrary can be congruent to that

part.

The word congruent here means "equal" in that special

sense in which we use it in the geometry with which we
are all familiar. In point sets we always use it in this sense.

As a specific example, we say that the triangles A and B
below are congruent if, without lifting the left-hand tri-

angle out of the plane, we can, by rigid motion alone

(sliding along the page in this case), superpose it upon
the right-hand triangle so that the two occupy exactly the

same position and there is a one-to-one correspondence
between their points. The triangle C, as can be seen, is a

proper part of A; but since A can never, by rigid motion

alone, be superposed on C, they are not congruent.
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In point-set theory the meaning of the word congruent
is exactly the same as it is in traditional geometry super-

position and one-to-one correspondence achieved by rigid
motion alone. But here th6 resemblance stops. For in tra-

ditional geometry we never find, as we do in point sets,

that the whole can be congruent to its proper part. We can

never superpose A in the figure above upon C, its proper

part; but we can superpose the whole right-hand half of

the plane, or the set of all points such that x > 0, upon a

proper part, the set of all points with x > 1:

It is "obvious" to us that the entire right-hand half

of the plane (x > 0) is "larger" than that "part" of it

(x > 1) which lies to the right of 1, "larger" in the same

way that triangle A is larger than triangle C. Yet, recalling
Cantor's theory of the infinite, we know that it is perfectly

possible for an infinite set (such as the integers) to be

equal (because placed in one-to-one correspondence with
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it) to a proper part (such as the even numbers) . It is only
a step to the recognition that the half-plane of points can

be superposed on its proper part because the points of

each can be placed in one-to-one correspondence merely

by sliding the whole onto its part. Since such superposi-
tion achieved by rigid motion is the accepted definition of

congruence, we can say in this situation that the whole is

congruent to its proper part.

In point-set theory this same notion of congruence is

found in sets much more complicated than the points of

the half-plane. For an example of such a set, we begin by
marking off on a circle an angle which is an irrational

multiple of one complete rotation of the circle, or 360.
If we were to make our angle a rational multiple (for

instance, 90 or one-fourth of a complete rotation), we
would find that after we had marked off four angles our

next would coincide exactly with one which we had pre-

viously marked off. When, however, our angle is irrational,

like

V2

no matter how many times we go around the circle we
shall never mark off an angle which coincides exactly
with one which we have previously marked off.



We thus divide the circle into an. infinite number of line

segments in this case a denumerable infinity, since each

segment can be paired in order with an integer, the first

with 1, the second with 2, and so on. The point set which

we extract in this way from all the points of the circle con-

sists of a denumerable infinity of line segments, each of

which contains a non-denumerable infinity of points. Now
this point set can be shown to be congruent to a proper

part. By rigid motion in this case a rotation of the whole

point set through the distance of our chosen angle we

bring each segment into the position originally occupied

by the next segment in the construction. Since, however,
no segment can have been brought into the position orig-

inally occupied by the first segment, we have shown that

the whale is congruent to its proper part.
The same result could have been achieved by con-

sidering as our point set the end points of the segments
which lie on the circumference of the circle. Then by
rotating the circumference we would place the first point
on the second, the second on the third, and so on. A nu-

merical equivalent would be the placing of the positive

integers in one-to-one correspondence with the positive

integers greater than 1:

1 2 3 4 5 6 7 ...

4- J/ 4- ! \l- Np ^

2 3 4 5 6 7 8 ...

For our next example, instead of extracting a denu-

merable infinity of points from the circumference, we shall

divide the entire circumference into a denumerable in-

finity of congruent pieces. This is not, by any manner of

means, child's play. The difficulty lies in the phrase "a

denumerable infinity.** It is no problem at all to divide
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tlie circumference of any circle into a finite number of

congruent pieces. We can, for instance, use the length

of the radius to mark off six arcs on the circumference,

any one of which can be superposed by the rigid motion

of rotation on any one of the others.* Nor is it a problem,
as we have already seen in connection with the real-num-

ber line, to divide the circumference into a non-denumer-

able infinity of congruent pieces, since when each piece

consists of just one of the non-denumerable infinity of

points on the circumference, all of them together are a

non-denumerable infinity of congruent pieces. Here, how-

ever, the method we used to divide the real-number line

into a denumerable infinity of pieces, which were integer

intervals, will not work, since the real-number line is in-

finite in length while the circumference of the circle is

finite. To solve our problem we must resort to a much

deeper type of reasoning.
We begin with a circle the circumference of which is

one unit in length. The circumference can then be thought

of as the portion of the real-number line between and 1.

Except for the fact that and 1 are the same point, all the

other points on the circumference are uniquely identifiable

as the real numbers from to 1.

To divide this non-denumerable infinity of points on

the circumference into a denumerable infinity of sub-sets,

we first gather together a set ( or what we shall call a fam-

ily, to distinguish it from the other types of sets) which

consists of all those points that differ from some point on

the circumference by a rational number, or distance. The

first family consists of all those points which are a rational

* Even in such a simple problem as this, in point sets we have

to decide how to distribute the end points of the arcs, since each

shares its end points with the adjacent arcs. (We usually go around

the circle counterclockwise and assign to each arc its first end

point.)
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distance from the point 0. This family, we can see, will in-

clude all the rational points on the circumference since

-h % gives us the rational point %; + H gives us the

rational point %, and so on. We do not need to bother with

selecting points a rational distance from any rational point
other than 0, for the points so selected would necessarily
be duplicates of those already included in the first family
(the sum of rational numbers being always a rational num-
ber). We turn our attention to selecting families of points
which are a rational distance from each irrational point
in turn. One of these families, for instance, will be all

those points a rational distance from the irrational point
1/V2. Since we are choosing a different family of points
for each irrational point and since there is a non-denumer-
able infinity of such irrational points between and 1, we
shall divide the non-denumerable mfinity of points on the

circumference into a non-denumerable infinity of families,
or point sets. How many points in each of these families?

Only a denumerable infinity, for there is just one point for

each rational distance and the rationals themselves are a
denumerable infinity.

From the families, we now gather together a new kind
of point set which we can call, to distinguish it from a

family, a set of representatives from each family. The first

set of such representatives is obtained by choosing from
each of the non-denumerable infinity of families a

single
point, and will thus contain a non-denumerable infinity of

points.* The next set of such representatives is obtained
*
After all that we have accepted so far, we probably have no

difficulty in accepting the idea that we can choose from each of
a non-denumerable infinity a single point. Yet this statement-
known as the Axiom of Choice-has been one of the most con-
troversial in modern mathematics. It is easy to see that if we have
a finite number of sets, no two of which have a common member,we can in a finite number of operations choose a member from
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by rotating the entire circle a given rational distance and

taking from each family a second point which is that

rational distance from the first. To obtain yet another set

of representatives we again rotate the circle a different

rational distance; we continue in this manner until we
have a set of representatives for each of the denumerable

infinity of rational distances on the circumference.

It is logically clear (although it may take a moment
for one unused to juggling infinities to see that it is ) that

we will end up with a denumerable infinity of sets of rep-

resentatives, for there will be one for each rational dis-

tancea denumerable infinity. Each set of representatives,

however, will contain a non-denumerable infinity of

points, one from each of the non-denumerable infinities

of families we first selected.

None of the sets of representatives can have a point in

common with any other set because each rotation gave us

a choice which, by its nature, could not include any of the

points selected by previous rotations. Since the points

each set so that we have a new set which has just one member in

common with each of the original sets. If, however, we have an
infinite number of sets to choose from, we cannot choose the new
set in a finite number of operations unless we have some way of

automatically distinguishing the member to be chosen. This dif-

ficulty is illustrated in Bertrand Russell's story of the infinitely rich

man with infinitely many pairs of shoes and socks. He can easily
form a set which has one member in common with each pair of

shoes. The rule for membership in this set can be that each mem-
ber must be a left shoe. With the statement of this rule, the set is

automatically chosen. In the case of the socks, however, no such

rule is possible. A sock must actually be chosen from each pair
since socks, unlike shoes, are not automatically distinguishable as

'left" or "right." Since even our infinitely rich man could never

complete this infinite task, the set containing one sock from each

pair could never be chosen. Mathematicians usually overcome this

difficulty with the Axiom of Choice by means of which they simply
assume, as an axiom, that it is always possible to choose one mem-
ber from each of an infinite number of sets.
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which we are choosing constitute a denumerable infinity,

as does each of the families from which they are being
chosen, every point on the circumference will be included

in some set of representatives. We have, therefore, by

dividing the circumference into mutually exclusive sets

including every point, divided the circumference into a

denumerable infinity of pieces. These pieces are con-

gruent in the sense of elementary geometry, for all were

obtained by the rigid motion of rotation. We have solved

the given problem : to divide the circumference of a circle

into a denumerable infinity of congruent pieces.

The significance of what we have done may not be im-

mediately apparent to the reader whose head is still rock-

ing with non-denumerable and denumerable infinities; but

let us consider for a moment the problem of assigning a

measure, or a length, to these pieces of the circumference.

Among them are included all the points on the circum-

ference. By everyday standards they are the parts of the

circumference and the circumference is the whole, so the

sum of their lengths should be the length of the circum-

ference. But by everyday standards they are also con-

gruent, or equal. If, in an everyday sense, any measure is

assigned to the pieces, the same measure must be assigned
to each one of them. There are two possibilities: either a

measure of for each piece or a positive measure. The
circumference of the circle is one unit, and the pieces into

which we have divided it must, if they are to have any
length, add up to 1. Yet the sums of the only measures
we can possibly assign to them are zero or infinity. We
are forced to the necessary conclusion that these pieces
the congruent point sets into which we have divided the

entire circumference Jo no* have a length.
The problem which we have just detailed rather com-
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pletely is an example of the type of reasoning, although
much less deep, which led to the most famous paradox of

point-set theory and an implication in regard to everyday
ideas of measure much more startling than the one above.

The Banach-Tarski paradox was propounded in 1924 by
Stefan Banach (1892-1945) and Alfred Tarski (1901- ).

These two mathematicians proved that it is possible to

disassemble a solid unit sphere into a finite number of

pieces in such a way that the pieces could be reassembled

into two spheres the same size as the original sphere!

Mathematically, the most unusual thing about the

Banach-Tarski work was that its paradox of measure

rested, not upon an infinity of pieces, as in the case of the

problem we have just finished examining, but on a down-

to-earth finite number of pieces. How many pieces? They
did not say. A very large number of pieces? They did not

say. Merely a finite number of pieces. That in itself was

sufficiently startling.

The exact number of pieces necessary was given, some

twenty years later, by R. M. Robinson (1911- ), and

it was very small. Working with only five pieces, Robinson

showed it is possible to disassemble a solid unit sphere

(point by point, of course) and reassemble it into two

spheres the same size as the original. The reasoning which

led Robinson to this conclusion was very complex, but

basically similar to that which we followed in dividing the

circumference of a circle into a denumerable infinity of

congruent pieces to which no length could be assigned.

In determining the smallest finite number of pieces

into which the solid sphere can be divided for the Banach-

Tarski paradox, Robinson began with the simpler problem
of determining the number of pieces into which the sur-

face of such a sphere or a hollow sphere must be divided
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so that it could be reassembled into two spheres the same

size as the original. He showed how it was possible to

divide the point set of the surface into four sub-sets

A, B, C and D which exhibit a truly remarkable property.
The sub-sets A and B are congruent to each other; and

each of them is also congruent to the sum of A and B. In

the same way C and D are congruent to each other and
each of them, to the sum of C and D. Thus by rotating
A into A -f B and C into C + D, we are able to form Si,

a sphere which is exactly like our original sphere. We then

rotate B into A + B and D into C + D to form S2 ,
a

second sphere exactly like Si and hence exactly like our

original sphere. Thus four pieces were shown to be suf-

ficient for reassembling a hollow sphere into two spheres
the same size as the original.

The solution of the problem for the solid sphere was
then shown by Robinson to be essentially the same as that

for the hollow sphere. Yet there was a difficulty. We can

of course extend the four pieces of the surface A, B, C and
D into the center of the sphere, but which piece will then

include the point which is the center? If we are willing to

simply assign the point to one of the four pieces so that

it has one more point than the others, then we can re-

assemble A, B, C and D into two solid spheres exactly like

the original except for the fact that one of the new spheres
will not have a point at its center. Most of us would be
satisfied with tin's solution, but a mathematician will go
to considerable trouble to get a center for that other

sphere. Having found a point by a method too devious
to record here, Robinson' brought it to the center of the

sphere by translation* (all the other rigid motions in-

*
Translation is distinguished from rotation in that, under the

rigid motion of translation, all the points are moving in the same
direction at the same time,
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volved in the solution being rotations about the origin
which of course could not produce the needed copy of the

origin). Five, then, was determined as the necessary and
sufficient number of pieces for the Banach-Tarski paradox.

The significance of this paradox for the theory of

measure is immediately apparent. When we consider geo-
metric figures as point sets in 3-dimensional space and we
do nothing more to them than what we do to the usual

run of geometric figures with which we are familiar, we
are forced to the conclusion that we cannot assign to them
a measure of either area or volume. If the four pieces into

which the surface of our sphere was divided had an area,

their sum would be both the area of the original sphere
and twice the area. If the five pieces of the solid sphere
each had a volume, their sum would be both the volume

of the sphere and twice the volume. In these particular
situations the sum of the parts is not the whole, but twice

the whole!

A conclusion like this completely contrary to every-

thing our intuition tells us, to what we have always known
with confidence that we knew, and to what we feel is

true separates the mathematical minds from the inher-

ently non-mathematical. For there are always those who
want to go back to the beginning, change the rules, forbid

such exceptions, refuse such conclusions. The man who
was the founder of point-set theory was not one of these.

Georg Cantor came to the theory of point sets because

he was forced this was his own word for it by logic. He
did not invent his theory, arbitrarily, to confound intuition

and experience. It is indeed one of the neatest ironies of

mathematics that this theory, which seems as completely
removed from the practical world as do the dreamy specu-
lations of Laputan philosophers, grew out of the work of

Jean Baptiste Joseph Fourier ( 1768-1830) ,
a physicist who
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expressed Ms opinion frequently and positively that math-

ematics justified itself only by the help it gave to the

solution of physical problems. (Fourier's own consider-

able contributions to mathematics were in the theory of

functions, and resulted from his researches in the conduc-

tion of heat.) Although the line from Fourier to Cantor

is a direct one, it is not the whole line. The theory of

point sets is more truly a modern step on a logical path
to which mathematics committed itself when it accepted
the idea that there is a measure for every length a real

number, rational or irrational, for every point on the

number line.

Georg Cantor followed this path where it logically led

and drew the necessary conclusions although they were

contrary to his own intuition, training and desire, and

made him the object of an attack which had been un-

equaled, in mathematics, since the Pythagorean who dis-

covered the irrationality of V2 perished, mysteriously,

at sea.
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FOR OVER TWO THOUSAND YEARS THE
Elements of Euclid commanded the

almost unqualified admiration of man-
kind. It could be said and was:

". . . from its completeness, uni-

formity and faultlessness, from its ar-

rangement and progressive character,
anc^ fr m th6 universal adoption of the

completest and best line of argument,
Euclid's Elements stands preeminently
at the head of all human productions."

It could be added and was:

The "For upward of two thousand years
New Euclid it has commanded the admiration of

mankind, and that period has sug-

gested little toward its improvement."
At the beginning of the twentieth

century, however, the suggestion box

was open.
This was the period known in the

history of mathematics as "the crisis in

foundations." A quarter of a century
had elapsed since Georg Cantor had

presented his theory of the infinite;

and mathematics, somewhat like a man
with a new living-room chair, had at

last settled back comfortably with the

once revolutionary idea of the infinite

as something consummated. This was

the moment that the Italian mathema-

tician C. Burali-Forti (1861-1931)
chose to produce by using exactly the

type of reasoning that Cantor had used

to establish his theory of infinite sets
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a flagrant contradiction which, at least for the moment,

virtually invalidated Cantor's entire theory. The new chair

collapsed; and, of course, like any normal man, mathe-

matics in general now refused to use any chair but that

chair.

The effort to set logically aright the foundations of

mathematics and yet retain Cantor's new theory of the

infinite ("No one shall expel us from this paradise which
Cantor has created for us!") was led by a great German
mathematician who now occupied Gauss's old place at

Gottingen. David Hilbert (1862-1943) was actually the

greatest mathematician in the world during the time that

the newspapers and the man on the street thought un-

questioningly it was Einstein (who was not a mathema-
tician but a physicist). Besides the notable work which
Hilbert accomplished in several fields, he offered mathe-

matics leadership at a time when it was desperately
needed.

Faced with the crisis hi foundations, Hilbert led his

followers back to the Greeks, back to Euclid, to begin in

an almost literal sense at the foundations themselves and
re-erect the edifice of mathematics, block by block, with

modern rigor.

While the Elements of Euclid had served as the model
of logical thought since antiquity, it had been observed

by various mathematicians during that time that there

were, nevertheless, certain logical lapses in the logical
model. In the very first proposition of the very first book
one such flaw is immediately apparent to the rigorous eye.
Euclid lays the first block of the edifice of elementary

geometry by attempting to show that (relying only on the

previously stated definitions and axioms) it is possible
"on a given finite straight line to construct an equilateral

triangle." In his proof, invoking Postulate 3, he inscribes

a circle with center A and radius AB on the given segment
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AB and another circle of the same radius with center B.

He then proceeds with his proof from the point C "in

which the circles cut one another."

"It is a commonplace," says Sir Thomas Heath, rather

tiredly, in his English edition of the Elements, "that

Euclid has no right to assume, without premising some

postulate, that the two circles will meet in the point C"
Like Euclid, we think that we know for haven't we

drawn this same figure many times to find the center of a

given line? that the circumferences will intersect at a

point equidistant from A and B. We cannot know this

from experience, for we cannot have drawn all possible

circles; we can only assume from what experience we
have had that such pairs of circles will always meet and

that they will always meet in just one point above the line.

This, then, is an assumption upon which our geometry is

based and, as such, it should be stated with the other

assumptions. Because such assumptions of intersection

are not explicitly stated in the Elements, it is possible by

using only Euclid's stated definitions and axioms to

"prove" such paradoxical propositions as "Every triangle
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is an isosceles triangle." (The "proof" is given in
J. W.

Young's excellent little book Fundamental Concepts of

Algebra and Geometry, Macmillan, 1930.)

Unstated assumptions of intersection pervade the Ele-

ments; for Euclid uses whenever possible the method of

actual construction for proving the existence of figures

having certain properties. Constructions are made on the

basis of Postulates 1-3, with straight line and circle alone.

What enables Euclid to build with these straight lines

and circles is the fact that they determine by their inter-

section other points in addition to those originally given
in the problem, and that these points can then be used

to determine new lines, and so on. The method of the

Elements logically demands that the existence of such

points of intersection be either proved or postulated in

the same way that the existence of the lines which pro-
duce them is postulated by 1-3.* The ladder to truth rests

on the idea that after the original assumptions are granted,
no other assumptions will ever be required.

Hilbert's problem in subjecting the Elements to true

modern rigor was, not only that Euclid often assumed

assumptions which he had not made, but that he relied

upon definitions which did not actually define. We are all

familiar with this problem of definition. We define an

orange with Webster as "the nearly globose fruit, botan-

ically a berry, of an evergreen rutaceous tree (genus
Citrus)"; and immediately find ourselves involved in a

multiplying set of definitions: What is a fruit? What is a

globose fruit? What is a nearly globose fruit? It is obvious

that unless we can begin with the assumption that there

are certain terms which everybody intuitively "knows,"
we shall have to give up our project of a dictionary.

* The only statement of intersection in the axioms is the

negative one of the Parallel Postulate, where it is stated that under
certain conditions two lines will never meet.
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Euclid faced the same problem as the dictionary
maker when he went to compile the Elements. He began
in traditional style with first things first: twenty-three
definitions at the beginning of Book I, ranging from "A

point is that which has no part" to a breakdown of such

quadrilateral figures as the square, the oblong, the

rhombus and the rhomboid. "And let quadrilaterals other

than these be called trapezia/' he concluded. Although
Euclid grouped these definitions together, he made in

the Elements a distinction, never stated but clearly im-

plied. The existence of points, lines and circles had to be

assumed by the reader; existence could not be proved for

any of these. But after the existence of these geometrical

objects was assumed, such a figure as met the require-
ments of a rhomboid, for instance, could be constructed

and displayed to the reader, its "existence" established

by proof.

Although a rhomboid is perhaps a vague figure to the

ordinary person,* points, straight lines and circles are not.

Everybody who has seen a point on paper, for instance,

knows intuitively what Euclid meant by his geometric

point "that has no part/'

The ancients argued quite extensively about the

proper definition of a point:

A point is an extremity of a line.

A point is that which is indivisible.

A point is that with position only.

A point is an extremity which has no dimension.

A point is the indivisible beginning of all magnitudes.

Yet all of their definitions were attempts to express what

they thought they already "knew" a point was.

* What is it? A rhomboid, according to Euclid, is "that which
has its opposite sides and angles equal to one another but is neither

equilateral nor right-angled."
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Actually the definitions were not really necessary at

all. Anyone who had never seen a point on paper would,

by the time he had completed the propositions of the

Elements, have a thoroughly accurate idea of the geo-
metric point as a result of the various statements which
are made about it in the propositions.

From what we have said about the problem of defini-

tion, three main ideas emerge as pertinent for modern
mathematicians as for Euclid:

1. Unless we are to continue defining indefinitely,

some terms in our geometry will have to be ac-

cepted as undefined, or primitive, terms.

2. Their existence will have to be assumed just as

the statements made in the axioms have to be as-

sumed because they cannot be proved without

bringing in other axioms which cannot be proved
without bringing in other axioms, and so on.

3. What these undefined or primitive terms stand for

will, however, become increasingly clear as using

only these terms, the axioms, and the rules of

reasoning we make and prove more and more
statements about them.

Now let us return to Hilbert and his effort to place
at least one domain of mathematics the geometry of

Euclid on a thoroughly sound logical basis. (This effort,

massive though it was, was presented in a tiny book
which is available in English as The Foundations of

Geometry [Open Court, La Salle, Illinois, 1938].)
As the epigraph of his work, Hilbert took a quotation

from the great German philosopher Immanuel Kant (1724-

1804). It was Kant whose often quoted attitude toward the
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axioms of the original Euclid was that they were "a priori

synthetic judgments imposed upon the mind, without

which no consistent or accurate reasoning would be

possible/' Since the time when Kant made this statement,

it had become increasingly clear in mathematics, if not in

philosophy that Euclid's assumptions were somewhat

arbitrary and that other assumptions and other geometries
were just as possible and just as "true." The quotation
from Kant which Hilbert chose for his epigraph was not,

therefore, this most famous one. He chose instead a state-

ment to,emphasize the relation between the intuitive roots

of mathematics and its abstract flowering:

"All human knowledge begins with intuitions, thence

passes to concepts and ends with ideas."

The intuitions with which geometry begins, in both a

literal and a figurative sense, are those of points and lines

and the surfaces on which points and lines exist. These,

then, are the ideas with which both Euclid and David

Hilbert begin. But every one of the twenty-three hun-

dred years which lie between the Greek and the German
lie between their opening treatments of these ideas. To

emphasize the contrast, we shall present their two be-

ginnings in parallel columns:

EUCLID HILBERT

Definitions The Elements of Geometry
Let us consider three dis-

tinct systems of things.

A point is that which has no The things composing the

part.
first system, we will call

points and designate them

by the letters A, B, C, . . . ;
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EUCLID (cont.) HILBERT (cont.)

A line is breadthless length, those of the second, we will

The extremities of a line are call straight lines and des-

points. A straight line lies ignate them by the letters

evenly with the points on a, b, c, . . . ;

itself.

A surface is that which has and those of the third sys-

length and breadth only, tern, we will call planes and
The extremities of a surface designate them by the

are lines. A plane surface is Greek letters <*, /?,-/,....
a surface which lies evenly
with all the straight lines on
itself.

The points are called the

elements of linear geom-
etry; the points and straight

lines, the elements of plane

geometry; and the points,
lines and planes, the ele-

ments of geometry of space
or the elements of space.

Euclid continues to a total of twenty-three defini-

tions at the beginning of Book I. Hilbert is through with
the definition of terms.

But where the new Euclid is more concise in his

definitions than the old, he finds a need for many more

assumptions than the five Common Notions and five

Postulates of the original Elements. In Hilbert's Euclid
there are twice as many axioms, and the relationship be-
tween the axioms and the three undefined "systems'* listed

above is explicitly stated:
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We think of these points, straight lines and planes
as having certain mutual relations, which we indicate

by means of such words as "are situated," "between,"

"parallel," "congruent," "continuous," etc. The com-

plete and exact description of these relations follows

as a consequence of the axioms of geometry. Each of

these groups expresses, by itself, certain related funda-

mental facts of our intuition. We will name these

groups as follows:

I. 1-7. Axioms of connection.

II. 1-5. Axioms of order.

III. Axiom of parallels,

IV. 1-6. Axioms of congruence.
V. Axiom of continuity.

The relationship between the three "elements" of his

geometry and the twenty "axioms" is precisely stated by
Hilbert within the paragraph quoted above: "The com-

plete and exact description of these relations [between
the elements] follows as a consequence [my italics] of the

axioms of geometry''
For example, in the first group of axioms which have

to do with the intuitive idea of "connection/* he begins
with the assumption that "two distinct points A and B

always completely determine a straight line a." He then

points out that instead of the word "determine/* we may
also employ other forms of expression: "For example, we

may say A lies upon' a, A 'is a point of 0, a 'goes through*
A 'and through* B, a pins* A 'and* or 'with* JB, etc."

Within the body of the work, Hilbert places various

necessary "definitions** as the need for them occurs. These

are made in terms of the previously stated but undefined

elements, point, straight line and plane, and the descrip-

tion of their relations which follow as a consequence of
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the axioms. Such a definition is that of segment:

DEFINITION. We will call the system of two points A
and B, lying upon a straight line, a segment and de-

note it by AB or BA.

In the preceding paragraphs we have given a few

quotations directly from Hilbert's work on the founda-

tions of geometry so that the reader can feel at first hand

at least the faint breath of the new spirit of rigor which
entered mathematics at the beginning of the twentieth

century. It was by such rigor no attempt made to define

the undefinable, but every attempt made to state explicitly

every necessary assumption that Hilbert attempted to

resolve "the crisis" by setting the most ancient branch of

mathematics upon a logically sound foundation.

The crisis had been precipitated by the discovery
that the type of reasoning and the assumptions Georg
Cantor had used in developing the theory of sets could

lead to contradiction. To resolve the crisis, Hilbert had
returned to Euclid and attempted to place elementary

geometry on a completely rigorous foundation which
would eliminate such contradictions as the paradoxical

proposition that all triangles are isosceles. He then at-

tempted to do something which would never have oc-

curred to Euclid. He set out to prove that reasoning with

his assumptions could not possibly lead to such contradic-

tionsthat the axioms of elementary geometry as he had

restated them were now absolutely consistent!

How is it possible to prove that a set of assumptions
is consistent? How can we know before we start that we
will never find ourselves in the position of having proved
that A is equal to B and, also, that A is not equal to B?

At the present time the only way of doing this is to
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match our abstract theory primitive terms and assump-
tionswith some concrete representation of it, which is

already granted to be consistent. For instance, we can

take as our model of consistency the arithmetic of real

numbers, since reasoning according to the rules has never

yet brought us to the contradictory position of having

proved that 2 -f 2 = 5 as well as 4!

This is what Hilbert did, although taking an even

smaller domain of arithmetic than that of the real num-

bers. This was the domain X "consisting of all those alge-

braic numbers which may be obtained by beginning with

the number one and applying to it a finite number of

times the four arithmetic operations (addition, subtrac-

tion, multiplication and division) and the operation

y 1 _j_ ttf
2

,
where w represents a number arising from the

five operations already given." The reader will recognize

this domain as that of the constructible numbers, which

we met in Chapter 9.

In the terms of the arithmetic of this domain, Hilbert

defined his primitive terms, point, straight line and plane.

A pair of numbers (x, t/), for instance, became a point and

the ratio of three such numbers (:i?:u?) where u and f

are not both equal to 0, became a straight line. The exist-

ence of the equation

ux 4- vy + ? =

was defined to express the condition that the point (x,y)

lies on the straight line (u:v,w). He then showed how

the various groups of axioms could be interpreted in the

terms of the arithmetic of domain X. In this way he was

able to establish that the arithmetic of domain X could

be considered a concrete representation of his abstract

geometry of three "systems" and twenty "axioms.
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"From these considerations," he concluded, "it follows

that every contradiction from our system of axioms must

also appear in the arithmetic related to the domain X."

We may still ask, "But how did Hilbert know that the

arithmetic of real numbers is consistent?" The answer is

that he did not know. No one knows. The arithmetic of

real numbers is considered to be consistent only because

of the absence of any known contradiction. That it is in

actuality consistent was an assumption that Hilbert made.

He was aware that it was an assumption. Since the con-

sistency of his geometry depended upon the consistency
of the arithmetic of real numbers, only an absolute proof
that the arithmetic is consistent would establish the abso-

lute consistency of his geometry. Although there had not

yet been such an absolute proof when Hilbert published
his work, one was generally assumed to be possible.

This was as far as David Hilbert could go in his effort

to resolve the crisis in foundations by establishing the

logical consistency of elementary geometry. At the time

he wrote the words above, he was almost forty, the twen-

tieth century was in its first year, and not yet born was
the young man who would reveal the hopelessness of

Hilbert's dream by demonstrating with finality that estab-

lishing the absolute consistency of any such set of axioms

is impossible.

In 1931, at the age of twenty-five, Kurt Godel pub-
lished a paper entitled "On Formally Undecidable Prop-
ositions of Principia Mathematica and Other Related

Systems." When, many years later, Harvard University
awarded him an honorary degree for this work, the cita-

tion referred to him as "discoverer of the most significant
truth of this century, incomprehensible to laymen, revo-

lutionary for philosophers and logicians."
For the moment we shall not be concerned with these
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even wider implications of Godel's 1931 paper, but only
with its primary subject. This was the demolishing of the

hope that the absolute consistency of any mathematical

system (including ordinary arithmetic) could be estab-

lished.

Although Godel's is as complex a piece of reasoning as

mathematics is ever likely to see, it depends upon a varia-

tion of an ancient brain teaser with which we are all

familiar. This is the statement of Epimenides, who was a

Cretan, that all Cretans are liars. Was Epimenides a liar?

In his epochal proof Godel showed that in any suffi-

ciently strong mathematical system it is possible to con-

struct a statement which asserts its own unprovability in

that system. The consistency of the system cannot then

be established within the system itself but must be re-

ferred to a stronger system, where of course the same

thing can be shown to be true, so that the consistency of

that system must be referred to a still stronger system,
and so on.

With the kind of finality which is possible only in

mathematics, Godel demolished Hilbert's project. There

can be no proof of the absolute consistency of the founda-

tions of mathematics. We must live and work on assump-
tions of consistency.

David Hilbert died in 1943 at the age of eighty-one.

The problem which he had put for himself was one that

would never have occurred to Euclid. The answer which

young Kurt Godel established in his epochal paper of

1931 was one that had never occurred to Hilbert.
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THE LADDER TO TRUTH WHICH EUCLID

erected in the Elements consisted of

the rungs of definitions, axioms, theo-

rems and proofs suspended between

strong side supports of logic. These

supports were formulated in Euclid's

^ ijj^^^j day as the laws of reason and they
F

Jr
were formulated in words, for theyJ were not part of mathematics but of

. , m logic. Today these laws are still the

strong and indispensable supports of

the ladder to truth, but today they are

Of expressed in mathematical symbols;
Truth Tables and any proof which utilizes a combi-

and Truths nation of these laws can be tested for

error by a mathematical methodthe
method of the truth tables.

The truth tables are a develop-
ment of the sentential, or propositional,
calculus. The sentential calculus, in

spite of its formidable name, has a

vocabulary which consists in its en-

tirety of the small words, and, or, not,

if, then, only, and the one relatively

big word, sentence. It is a fragment
and we must admit the most element-

ary fragment of a great and modern
mathematical study symbolic logic
which subjects logic to the symbols
and procedures of mathematics.

The basic logical concepts of the

sentential calculus are things which

every mathematically minded person
knows and uses intuitively. They
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sound, therefore, too obvious to bother with. But as

mathematical sentences (or propositions) become longer
and more complicated, intuition is not sufficient to deter-

mine with finality their logical truth or falsity. Then a
method is needed which is completely formal, and this

method is furnished to mathematics by the sentential

calculus under the slightly sinister title of truth tables.

We shall, in the course of our exploration of the sen-

tential calculus, use the method of truth tables to test the

logical truth of certain statements; but before we can do

so we must examine in some detail the meaning of its

vocabulary and familiarize ourselves with the five symbols
with which it conducts its business. The reader is strongly

urged to do the simple problems as they occur, covering
the answers with his hand and testing his memory of what
has been explained, translating language into logical

symbolism and logical symbolism back into language, and

taking pencil in hand and determining for himself the

truth of given sentences. It is guaranteed that he will be

pleasantly surprised at the enjoyment he will get out of

actually using truth tables.

The vocabulary of the sentential calculus is, as we
have said, limited to very simple and common words.

These words are used, however, in a precise way which,

in every case, seems different either to a large or small

degree from the way in which we ordinarily use them.

Because we use the words of the sentential calculus all

the time, we have a tendency to feel that, like Humpty
Dumpty, we have as much right as anybody to say what

they mean. We are inclined to object to the meanings
which the logicians assign to them. (Even logicians have

this same feeling about the words and argue quite a bit

among themselves. )
But if we are to understand, we must

make a definite effort to erase from our minds our own
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personal meanings of the words which compose the vocab-

ulary. We must consider these words as technical terms

to which the logician, like any scientist, assigns the un-

ambiguous definitions which are necessary for the func-

tioning of his science.

The most straightforward way of getting rid of the

ordinary meanings of the words is to eliminate the words
themselves from our preliminary discussion. So let us be-

gin by giving our attention to the five symbols of the

sentential calculus, each of which represents a logical

concept.

'

(Negation). This symbol, when placed before a

sentence, or a letter which we take to represent a sen-

tence, denies whatever follows it. If we represent a

sentence by a variable p, then -p stands for "not p." If

the sentence p is "Snow is black," then <~-p is "Snow is not

black." We can call this logical concept "not."

A (Conjunction). This second symbol indicates the

joining together of the expressions on either side of it. If

these expressions are variables p and q, then p A q indi-

cates "p and q" If p is used as above and q in place of an-

other sentence, such as "All men are mortal," then p A q
is the sentence what we call grammatically a compound,
sentence "Snow is black, and all men are mortal." We can
call this logical concept "and."

V (Disjunction), The third symbol represents a join-

ing which nevertheless leaves the joined, expressions some-
what separated. This is sometimes called an alternation.

If V is used to join our two variables p and q, the resulting

expression p V 9 is the equivalent of "p or q" In the case

of the meanings we have been assigning to the variables,

the expression can be translated as "Snow is black, or all

men are mortal." This is called the logical concept "or."
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->
(Implication). With this fourth symbol we have

what is grammatically called a conditional sentence. The

expression p
-

q is read "If p, then q," or, "If snow is

black, then all men are mortal." This logical concept is

called "if, then."

< >
( Equivalence ) . The relationship represented by

our fifth and last symbol is biconditional. The expression

p < > q is read "p if, and only if, q" "Snow is black if,

and only if, all men are mortal." Here we have what is

known in mathematics as "a necessary and sufficient con-

dition" and we can call the logical concept "if, and only
if/'

As we read over these definitions and the examples
given for the relation between p and q as expressed by
each of the symbols, we are naturally troubled by the

fact that they do not seem, according to our understand-

ing of the word, very logical. Snow is not black and what
does all men being mortal have to do with snow, anyway?
Surely the sentential calculus does not concern itself with
such inanities!

Let us consider these objections in order.

First: the appropriateness of the examples. In the sen-

tential calculus, p and q, or whatever other variables we
use, stand for mathematical propositions. These proposi-
tions may be true (All men are mortal), or they may he
false (Snow is black). We are not concerned with their

truth or falsity except as it affects the soundness (or

logical truth) of the reasoning which follows from them.

This important fact is emphasized when the propositions
are selected outside the subject matter of mathematics.

Let us take, as an example, one of the simplest and

most obvious of the laws of the sentential calculus the

Law of Identity.

p > p or If p, then p.
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If we substitute for the variable p, the "false" statement
"Snow is black," we then get the logically true statement:

"If snow is black, then snow is black." This is just as sound

reasoning as that represented by "If all men are mortal,
then all men are mortal." A logically false, or unsound,
statement is equally false whether p and q are themselves

true or false. If, instead of p
-

p, we take

pM _ p

we find that it is as logically false when p stands for "Snow
is black," which is false, as it is when p stands for "All

men are mortal," which is true. "Snow is black if, and only
if, snow is not black." "All men are mortal if, and only if,

all men are not mortal." Both are unsound reasonings.
The first hurdle we must overcome is this: We must

understand that the truth or falsity of p and q does not

directly determine the truth or falsity of the reasoning
which is based upon them. The second hurdle is much
more difficult.

We were originally bothered by the statement that

snow is black, but we were much more bothered about
the fact that a statement about snow and one about mor-

tality were combined. Snow and mortality, we objected,
have nothing to do with each other; it isn't logical to com-
bine them in one statement! We shall not at this point

bring up the common poetic symbolism of winter and

death, but shall content ourselves with the comment that
it is quite difficult to determine with finality whether two
ideas have or do not have something to do with each
other.

A simple example will serve. A says, "B attended the

University of X and he is a Communist." Obviously, A
considers these two ideas related. In the newspaper he
has noted that a couple of people recently revealed as

Communists attended the University of X. Some of those
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crackpot professors, he thinks, must be turning the kids

into Commies! He connects the two facts that B is a Com-
munist and attended the University of X connects them
both in his mind and in his sentence. C, who is an alum-
nus of the University of X, objects. There is no connection
between the two facts. They do not belong in the same
sentence. It is not logical to put them together! Who is

right?
If such are the difficulties of detennining "relationship'*

in everyday Me, how can we hope to make such a concept
precise? The logician answers this question and solves this

problem by announcing in a firm voice that, for his pur-

poses, it doesn't matter whether two sentences joined by a

symbol of the sentential calculus are, or are not, related.

A conjunction p A q will be true if p and q are both true,

"Snow is white and all men are mortal" is a completely

acceptable sentence from the point of view of the logician.
Before we object (we who use "and** too and feel that we
have as much right as he to express our opinion), let us

remember that the logician does not even suggest that we
be governed by the same rule when we use "and." He only

says that, for the purpose of developing a calculus with

which he can test the logical soundness of mathematical

propositions, he must have an unambiguous rule for join-

ing two sentences with "and." As an alumnus of the Uni-

versity of X he would probably argue heatedly with the

rest of us about the "logic** of the compound sentence

which joins "B attended the University of JT* and "B is a

Communist.** As a logician, examining the proposition, he

will say that A*s statement is logically sound if it is true

that B attended the University of X and if it is also true

that B is a Communist.
In the sentential calculus we are concerned with the

truth of certain combinations of sentences effectedby "not,"

"and," "or,** "if, then,** and "if, and only if.**We ignore com-
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pletely any questions of subjective relationship, like Should
these two ideas be put together in the same sentence?

Instead, we concentrate upon the objective relationship.
When we put

' ' in front of p, the resulting sentence ^p
can be true only if p is false. When we put A between p
and q, the resulting sentence p A q can be true only when

p and q are both true. Once we accept the idea that p and

q do not have to "belong" in the same sentence, we have no

objection to these rules.

There are similar arbitrary rules for determining the

truth of combinations made with the other symbols. These
five symbols, and the logical concepts which they express,
are no longer common expressions of everyday discourse,
but the technical terms of the sentential calculus:

Not. The sentence ^p is true only when p is false.

And. The sentence p A q is true only when p and q
are both true.

Or. The sentence p V q is true if either p or q is true.

If, then. The sentence p
-

q is always true except
when q is false and p is true.

If, and only if. The sentence p < > q is true only
when p and q are both true or both false.

These definitions of the conditions under which 'p,
p h

q, pVq, p -^ q and p < > q are true certainly ignore
our everyday insistence upon a relationship between two
sentences which are joined as one. To determine the log-
ical truth of a combination, we do not even have to know
what sentences the variables p and q represent. Given
that p is true and q is false, we know that

p is false while ~>q is true;

p A q is false, but p V q is true;

p
-

q and p < > q are both false.
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To test his understanding of these rules, the reader

might like to mark the sentences below "true" or "false"

from the point of view of a logician.

p
= Snow is white.

q All men are mortal.

1. Snow is not white. T F

^p
2. Snow is white and all men are mortal. T F

pAq
3. Snow is white or all men are mortal. T F

4. If snow is white, then all men are T F
mortal.

p-*q
5. Snow is white if, and only if, all men T F

are mortal.

p= 2 + 2=5
q= 2X3 = 4

6. 2 + 2 ^ 5. T F

7. 2 + 2 = 5and2X3 = 4. T F

8. 2 + 2 = 5 or 2X3 = 4. TF
9. If2 + 2 = 5,then2X3 = 4. T F

10. 2 + 2 = 5 if, and only if, 2X3 = 4. T F

True Sentences: 2, 3, 4, 5, 6, 9, 10.

Note that in Sentences 1-5, p and q were both

true while in 6-10 they were both false.

For every p and q, we have four possible situations:

the sentences which p and q represent can be both true,
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both false, p can be true and q false, or q can be true and

p false. As we saw from our examples above, each of these

situations may result in a change in the truth or falsity of

the combination of p and q effected by a logical symbol.
These various possibilities can be stated most simply in

the form of a table. In the first column we list by T and F
the different possible situations in regard to the truth or

falsity of the sentences represented by p and q. The re-

maining columns are allotted to the different logical rela-

tionships; for each we indicate the truth or falsity of

that particular combination under the situation regarding

p and q as indicated in the first column.

Since the table for the combination effected by ---', or

"not," is much simpler than that for the others, we shall

give it separately and first.

T F
F T

In the following table for the four other combinations,

the jTs and F's in the first and fourth rows across give us

the correct answers to sentences 2-5 and 7-10 in our test

on p. 265.

p q pt\q pVq p-^q p^-^q

It is important for us to note that in each of the col-

umns representing a combination of p and q by one of our

symbols, we have at least one F. This means that for at

least one of the possible situations regarding the truth or
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falsity of p and q their combination into one statement

cannot be regarded as a "true" or logically sound state-

ment. When, however, we construct the same type of

table for what in the sentential calculus is called the Law
of Identity, or p-* p, which we mentioned earlier, we find

that regardless of the truth or falsity of p the combina-
tion p p is always true.

T T
F T

Since p
-

p is always true, we say that it is a true sen-

tence. All such true sentences are laws of the sentential

calculus and, as we have seen, this is the Law of Identity.
We cannot be blamed if we are not too impressed with

the Law of Identity. If p, then p. So p implies p. We are

reminded of the word tautology. Our Law of Identity is

certainly tautological. Webster says, "With needless repe-

tition, as visible to the eye, audible to the ear." Logicians

say, "A tautology is a true sentence, or law, of the senten-

tial calculus."

The most profound mathematical truths are as tauto-

logical as p ->
p, but because of their complexity we do

not so immediately or intuitively recognize the quality in

them. This is where the sentential calculus is indispensa-
ble. By means of its so-called truth tables there is a general
method for determining whether any statement (no mat-

ter how extensive or complicated) is a tautologyin other

words, a logically true statement.

The table which we constructed for p -> p is the sim-

plest possible example of a truth table. As our sentences

to be tested increase in the number of their relationships

and the number of variables involved, so do their truth
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tables increase in complexity. Let us take a statement a

little more complicated than the Law of Identity and by

constructing its truth table determine whether it, too, is

a law of the sentential calculus:

(r~~p
-

p )
-

p, or "If not p implies p, then p."

The method which we follow to test this statement is the

same one which we will follow for more complicated
statements. We take the sentence, beginning most simply,
combination by combination.

1. Against the possible truth or falsity of p, we test

p in column 2.

2. Against the respective possibilities for p and r y 3

we test the combination -
^?
-

p in column 3.

3. Against the respective possibilities for ~p -
p in

column 3 and p in column 1, we test the entire sentence

( p > p} -^ p in. column 4.

p ^p ^p^p (,~p_p)-p__ _ __ _

FTP T

Since, whether p is true or is false, the statement

( p p)
~

p is always true (as we see in column 4),

we know that it is a law of the sentential calculus, or a

tautology.
Since any sentence of the calculus can be tested for

truth or falsity by means of truth tables, the sentential cal-

culus is one of the few branches of mathematics which
has a general method for solving all Us problems. This

almost unique quality of the sentential calculus is ex-

tremely significant when we realize that almost all scien-

tific reasoning is based either directly or indirectly upon
its laws. We are then, in the words of Tarski, able to dis-



sect even the most complicated mental processes by "such

simple activities as attentive observation of statements

previously accepted as true, the perception of structural,

purely external connections among J;hese statements, and
the execution of mechanical transformations as prescribed

by the rules of inference. It is obvious that, in view of

such a procedure, the possibility of committing mistakes

in a proof is reduced to a minimum."
This achievement of the sentential calculus is all the

more impressive when we consider the simplicity of the

tools with which it works half a dozen concepts ex-

pressed by some of the simplest words in the language. It

is an achievement that Euclid would have appreciated.

FOR THE READER

Following the method of the truth tables which we
have detailed in this chapter, the reader can now deter-

mine for each of the following two sentences whether it

is a true sentence in the sentential calculus. (One is and
one isn't.)

p q p-*q q-*p (p-* q) < (q-*p)
T T T T
T F F T
FT T F
F F T T

p q p-*q (p-qf)-*p [(p-* <?)
~

p]
-

p
T T T T
T F
F T
F F
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The reader can now by the same method construct a

truth table for a fairly complicated statement:

If p implies q and q implies r, then p implies r

When we transcribe this sentence into the symbolism of

the sentential calculus, we get the statement below.

[(p-><?) A (9->r)]-> (p->r)

To construct a truth table for this sentence, we must first

list the possibilities in regard to the truth or falsity of the

three variables, p, q and r. We then check off against
these possibilities the truth or falsity of the logical com-
binations of the variables in the following somewhat
nested order:

We leave it to the reader to determine whether this is a

law of the sentential calculus.

snrnoreo
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18
Mathematics,
the

Inexhaustible

AT THE MID-POINT OF THE TWENTIETH

century, more than two thousand years
after Euclid compiled his Elements,
the axiomatic method the method
which is synonymous with the Ele-

ments of Euclid was the subject of an

international symposium of mathe-

maticians and scientists, the primary

purpose of which was to determine

the extent to which this classic method
of mathematics could and should be
further utilized by the physical sci-

ences. The discussions, the concepts,
and the vocabulary were a long long

way from Euclid and they were per-

haps farthest in the discussions of

elementary geometry!
"What is elementary geometry?"

asked Alfred Tarski, the famed logi-

cian, and answered as follows :

*

"We regard as elementary that part
of Euclidean geometry which can be

formulated and established without

the help of any set-theoretical devices."

Tarski then continued with a more

precise statement of his view of ele-

mentary plane geometry (or 2 ) as

formulated in the terms of first-order

predicate calculus, which is printed in

full on page 272.

* The following quotation and the axi-

oms of elementary geometry appear in The
Axiomatic Method, Leon Henlcin, Patrick

Suppes and Alfred Tarski, editors, North-

Holland Publishing Company, Amsterdam,
The Netherlands, 1959.
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TARSKI*S ELEMENTARY PLANE GEOMETRY, OR Ea

All the variables x,y,z f
... occurring in this theory

are assumed to range over elements of a fixed set; the

elements are referred to as points, and the set as the

space. The logical constants of the theory are (i)

the sentential connectives the negation symbol
-

', the

implication symbol -, the disjunction symbol V, and

the conjunction symbol A; (ii) the quantifiers the

universal quantifier A and the existential quantifier

V;
* and (iii) two special binary predicates the

identity symbol = and the diversity symbol 9^. As

non-logical constants (primitive symbols of the

theory) we could choose any predicates denoting
certain relations among points in terms of which all

geometrical notions are known to be definable. Actu-

ally we pick two predicates for this purpose: the

ternary predicate ft used to denote the betweenness

relation and the quaternary predicate B used to

denote the equidistance relation; the formula P(xyz)
is read y lies between x and z, (the case when y
coincides with x and z not being excluded), while

(xyzu) is read x is distant from y as z is from u. f

Strange though the language of Tarskfs twentieth-

century geometry might seem to Euclid, it would not be
so far removed from the Greek as the simple statement

of Tarskfs Theorem 3:

THEOREM 3: The theory E2 is decidable.

* The universal quantifier A stands for "for every" and the
existential quantifier v, for "there exists."

f Using the vocabulary which is given here, the reader may
enjoy translating into words Tarskfs axioms for elementary geom-
etry.
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This five-word theorem embodies that aspect of mod-
ern mathematics which is undoubtedly farthest from
Euclid what has been called "the most significant truth"

of the twentieth century!
In this chapter we shall try to give the reader a glimpse

of this truth by clarifying the meaning of that deceptively

simple word, decidable, in the statement of the theorem
above. In general terms, the statement that the theory 2

is decidable means that for elementary plane geometry, as

formulated by Tarski in the paragraphs above, there ex-

ists a method for solving all possible problems.
What do we mean by a method of solving an infinite

class of problems, such as all the problems of elementary

plane geometry? This is a question to which Euclid's

successors of the twentieth century have devoted con-

siderable thought, and the answer they have at length
come to is among the most significant in the history of

mathematics.

Curiously, their interest in what they meant by a

method developed from the consideration, suggested for

the first time by Godel, that for some classes of mathe-

matical problems there might be no method. This is un-

derstandable. If someone comes to us and says, "I have a

method of doing so and so," we do not stop him with, "See

here. Just what do you mean by a method?" Instead we

say, "What is it?" It is only when he comes and says,

"There is no method of doing so and so," that we stop him

with, "Just what do you mean when you say there is no

method?"
This is essentially the situation that occurred in mathe-

matics in 1931. In that year Godel, as we have told in

Chapter 16, published a paper "On Formally Undecid-

able Propositions of Printipia Mathematica and Other

Related Systems." This was one of the great turning points
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in mathematical thought. Although the paper was con-

cerned primarily with demolishing the idea that the

absolute consistency of a mathematical system could be
established within that system, implicit in it was the idea

that for certain classes of problems (such as those encoun-
tered in number theory), there can be no general method
of solving all of the problems in the class.

This truly monumental result started other mathema-
ticians thinking for the first time upon the subject of

methods in general. What did they mean by a method?

Working more or less independently here and abroad,
several of them formulated definitions of a method. Most
definitions were extremely technical (one of the most

important depending upon the idea of recursive func-
tions

) j but there was one among them the mere name of

which evokes a refreshingly non-mathematical image.
This particular definition of a method was put forth by
A. M. Turing ( 1912-1954) and is called a Turing machine.

Since the mechanical way of thinking was almost as

natural to Turing as the mathematical, it is not surprising
that when he set out to define a method, he thought of it

as something which could be performed by a machine.
Said Turing: If a machine could be conceived of as solv-

ing an arbitrarily chosen problem of an infinite class, then
indeed we have a general method for that class of prob-
lems. When we say there is no method of solving an
infinite class of problems, we mean that it is impossible
to conceive of such a machine.

With a method, according to this definition, a machine
could be given a set of specific instructions which it

would follow for a finite length of time, depending upon
the particular problem of the class that it was given; and

eventually perhaps eons from now it would turn out an

answer, the right answer, to that problem. Instructions
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for the machine would have to be absolutely determined

in advance: do some specific thing until some other spe-

cific thing happens and then do some specific other thing.

The machine could ask no questions, exercise no judg-

ments, make no innovations. Each problem would have to

go in, and come out, with every step toward its solution

automatically decided by the method alone. Otherwise,

no method.

Such a machine as Turing conceived is not even

meant to be constructible. Conceptually, it is very like one

of the great electronic computing machines which are in

existence at the present time. In many ways it is conceived

of as being less efficient than they, for its aim is not

efficiency but simplicity. In other ways it is (quite lit-

erally) infinitely more efficient. It is in the nature of the

infinite classes of problems with which we are dealing

that, while a computer may be in a sense "close" to a

Turing machine, it can never in spite of all possible

improvements in its efficiency be any "closer." This be-

comes clear when we consider a specific and infinite class

of problems for which a general method has been known
since before the time of Euclid. Is a given number n a

prime? Theoretically, we can solve this problem for any
n by attempting to divide it by every prime which is

smaller than (or equal to) Vw-; if none of these divides

it, then n is a prime. Practically, though, we find very

soon that n is too large for us to test by this method.

Although mathematicians have devoted years to testing

the primality of certain interesting numbers, life is literally

too short to accomplish this, and they must yield to the

electronic computing machines. But very soon n is too

large for the machines. The largest number which has

been tested and found prime is 2 9941 1. By everyday

standards 29941 1 is quite a large number, being some
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3000 digits in length; yet among the primes it is a rela-

tively small one. Since there are only a finite number of

primes which are smaller than 20941 1 but an infinite

number of primes which are larger, "almost all" primes
are larger than the largest known prime. Obviously, an

actual machine, because of the limits of time and storage,
can never solve all or even certain specific problems of an

infinite class. A Turing machine, being purely conceptual,
has no such limits because it is conceived of as having an

arbitrarily large amount of time and an arbitrarily large

memory or storage as large as it needs for any given

problem in a class. Only for this reason is it uncon-

structible.

The mathematical point to the Turing machine is not

whether there could or could not be such a machine. A
Turing machine is simply a set of specifications, not for a

machine, but for a method of solving an infinite class of

mathematical problems. The limits imposed by the con-

cept of the machine upon a method are as follows :

The machine is allowed an arbitrarily large amount
of time in which to solve a problem and an arbitrarily

large amount of paper on which to do the work. A roll of

tape keeps moving through it. This tape consists of a

series of positions of rest which can be visualized simply
as squares. At any particular instant only one of these

squares is being scanned by the machine. How the ma-
chine reacts is determined by (1) the contents of the

square and (2) the internal state of the machine. The

square contains one of a finite number of symbols and the

machine is in one of a finite number of internal states. On
the basis of these two factors, in the time interval allowed,

the machine can change the contents of the square,

change its position by no more than one square and/or

change its internal state. It can have no choice, in the
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usual sense; what it does is absolutely determined by the

method. Also included is a way of feeding problems to

the machine and of recognizing when the machine has

finished a problem.
Such is the conceptual blueprint for a Turing machine.

If what we call a method for solving an infinite class of

problems (like determining whether or not n is prime)
can be used within these limitations to solve any arbitrary

problem of the class, then we have a method. When we
say that there is no method for solving such an infinite

class of problems, we mean that the class includes prob-
lems which cannot by their nature be solved by such a

machine.

By a method we mean a machine.

Perhaps this does not sound like what w.e usually con-

sider a precise definition; yet when we begin to apply it,

we find that it does define what we mean by a method,
and very precisely. The method for determining whether

or not a given n is prime is a method in this sense; for, as

we have seen, determining primality by machine is com-

mon practice and limited only by physical considerations

of time and storage.
In the preceding chapter we described the method of

truth tables by which it is possible to determine whether

any sentence of the sentential calculus is a true sentence

and, therefore, a law of the calculus. It is easily seen that

this, too, is a general method according to our definition of

a method as a machine. We can conceive of a Turing ma-

chine which, using the method of truth tables, could solve

any of the problems of the sentential calculus no matter

how long and complicated the sentences involved might
be. Since all of its problems are solvable by such a general

method, we call the sentential calculus a decidable theory.

Tarskfs Theorem 3, which we gave at the beginning of
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this chapter, tells us merely that elementary geometry is

also a decidable theory. The more limited a class of prob-
lems (

even though the class is infinite
) , the more likely it

is that there exists a general method of solving all the

problems in the class. The sentential calculus is the most

fundamental and elementary theory of logic and is, as we
have seen, a decidable theory. First-order predicate cal-

culus, a step above it in complexity and importance, is an

undecidable theory. The theory of numbers defined as all

those problems which can be expressed in terms of the

integers, the basic concepts of logic, and multiplication
and addition is an undecidable theory, as Kurt Godel

showed in 1931. When we take a more limited class of

number problems, like those of elementary arithmetic, we
find that we have a decidable theory.

Sometimes, however, when we enlarge our definition,

we get a decidable theory. When, as in the case of the

problems of elementary algebra, we define our class in

the same terms by which we define the problems of num-
ber theory except for the fact that we substitute the real

numbers for the integers, we find that we have a decid-

able theory. Interestingly, Tarskfs proof that elementary

geometry is a decidable theory follows from the proof

( also his ) that elementary algebra is a decidable theory,

elementary geometry and elementary algebra being both

concrete representations of the same abstract theory.
In the last quarter of a century, as a result of the pre-

cise defining of method by Turing and others, modern
mathematicians have been able to till a field which was

undreamed of by their predecessors: the determination of

undecidable theories, those classes of mathematical prob-
lems for which there can be no general method. Just how
undreamed-of this field is can best be illustrated by a

famous problem proposed at the turn of the century by
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David Hilbert. As the leading mathematician of the day,
he gave to his colleagues a list of problems which he felt

needed to be solved. One of these was to determine a

general method of solution for aU indeterminate, or

Diophantine, equations. These, a sub-class of the prob-
lems of number theory, take their name from Diophantus
of Alexandria, who had a fondness for them. These are

problems in two or more unknowns for which integer
solutions are required. A simple example is x2 y

B = 17,

which is one of an infinite class of problems represented

by the equation x 2
y
s = n, in turn a sub-class of the

class of all Diophantine problems.
When Hilbert, in 1900, proposed to his colleagues that

they attempt to determine a general method for solving all

Diophantine problems, he and his colleagues, as well as-

sumed that such a general method existed. Today so great
have been the recent developments in meta-mathematics *

it is generally considered probable (although such has

not yet been proved )
that there can be no general method

for solving aU Diophantine problems: that it is an unde-

cidable theory. Even its relatively small sub-class, men-

tioned above, presents difficulties. It is not known whether

there is a general method for solving the class of problems
x 2

t/
3 n. Such problems have only a finite number of

solutions. This has been proved. For instance, the specific

problem x2
y
3 = 17, already mentioned, has the follow-

ing solutions when x is positive:

x 3, 4, 5, 9, 23, 282, 375, 378,661

y 2, 1, 2, 4, 8, 43, 52, 5,234

These solutions were obtained by a "method" which works

in a great many cases in fact, has never failed to work in

any case; yet it has never been shown in the sense of a

* The study of the structure of mathematics.
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method such as that which can be performed by a machine

that it will work in all cases.

To show that the class of problems x2
y
3 = n is de-

cidable, someone must prove that this or some other

method is a truly general method which could be used by
a machine to solve any arbitrary problem of the class. To
show that the class is undecidable, someone must estab-

lish that in it there exist problems, x2
y
3 = n, which by

their nature cannot be solved by any general method. It

is quite likely that this particular class of problems is

decidable and that the known method is truly general. If,

however, someone were to prove tomorrow that the class

is undecidable, the result would have great significance:

for, by establishing the undecidability of a sub-class of

Diophantine problems, it would at the same time estab-

lish the undecidability of the class of all Diophantine

problems.
In such a way the determination of undecidable

theories sub-classes in themselves of all mathematics-

establishes, as well, a fact of overwhelming significance:

that mathematics itself is undecidable. The answer to the

question

Can there be a general method for solving all mathe-

matical problems?

is no!

Perhaps, in a world of unsolved and apparently un-

solvable problems, we would have thought that the desir-

able answer to this question, from any point of view,
would be yes. But from the point of view of mathema-
ticians a yes would have been far less satisfying than a

no is. Now it is established with all the certainty of

logical proof that machines can never, even in theory,

replace mathematicians.
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The language of twentieth-century elementary geom-
etry, a curious combination of logic and letters, is a long

way from Euclid. Decision theory was undreamed of in

his mathematics; yet the conclusion to which mathematics

has come as a result of GodeFs paper would be as satisfy-

ing to Euclid as to any mathematician of the twentieth

century:

Not only are the problems of mathematics infinite

and hence inexhaustible., but mathematics itself is inex-

haustible.

FOR THE READER

We have come a long way from Euclid, and perhaps
how very far we have traveled is shown most vividly by
a comparison of Euclid's axioms, which appear on page 27,

and those of Tarskfs 2, which are printed in full below:

Al [Identity Axiom for Betweenness] .

A xy[fi(xyx)->(x
=

y)]
A2 [Transitivity Axiom for Betweenness] .

A xyzu[/3(xyu) KP(yzu) -* p(xyz)]
A3 [Connectivity Axiom for Betweenness ] .

A xyzu[p(xyz)

A4 [Reflexivity Axiom for Equidistance].

A xy[Z(xyyx)]
A5 [Identity Axiom for Equidistance] .

A xyz[l(xyzz)-* (x = y)]

A6 [Transitivity Axiom for Equidistance] .

A xyzuvw[$(xyzu) A $(xyvw)
-

%(zuvw)]

A7 [Pasch's Axiom],

A txyzuVv[p(xtu) hft(yu&)-*fi(xoy) A
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A8 [Euclid's Axiom].

A txyzuVvw[/3(xut)
P(xzv)

A9 [Five Segment Axiom].

A xx'ijifzz
!

uu'[%(xyx'ij} A o(yzy'z') A
A o

( I/MI/V ) A ft ( xijz ) A ( -tyz' )

A10 [Axiom of Segment Construction] .

A xyiwV z[/3(xyz) A ^(z/sw;)]

All [Lower Dimension Axiom] .

V xyz[^j3(xyz) /\--~<j3(yzx) l\

A12 [Upper Dimension Axiom ] .

A xyzuv[o(xuxu) A (yuyv) A o(%w%u) A
V P(yzx) V

A13 [Elementary Continuity Axioms ] .

All sentences of the form

where * stands for any formula in which the

variables x,v,w,..., but neither y nor % nor u,

occur free, and similarly for *, with x and y

interchanged.

If the reader will take in hand pencil and paper and
the vocabulary for E2 from page 272, he will be sur-

prised to find how easily he can translate some of these

axioms into statements which will be meaningful for him.

( The first few particularly! )

But it's a long way!
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absolute value, 143, 215
addition (see also arithmetic,

operations of) , 99-101,

138-140, 193-196, 278

aleph-one, 225

aleph-zero (see dso infinite, the-

ory of), 211, 217, 225

Alexandria, 17, 18, 26, 279

algebra, 67-68, 83, 106, 137,

169, 171, 177

elementary, 270

Fundamental Theorem of,

112, 215

of n variables (see also geom-

Index
etr^' "-dimensional), 173

algebraic numbers (see also

complex numbers; tran-

scendental numbers), 42,

214-217

algebraic processes as geometri-
cal constructions (see also

construction problems) ,

138-148

analysis, 43-44, 115, 177

analysis situs (see also topol-

ogy), 191

analytic geometry, 7, 67-77, 82-

83, 115-116, 130, 137, 141,

168-169

"and" (see also calculus, senten-

tial ) , 258, 260, 262-264, 266

angle, 149-150, 158, 178, 190

right, 23, 26, 177

trisection of (see oho con-

struction problems) .,
133-

134, 135, 142-145, 146-

147,225

Apollo, 61, 75

Apollonius, 18, 63, 66, 67, 68,

115, 119
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Arabs, 17

Archimedes, 18, 63, 82, 83, 84,

133

area (see also calculus), 78-82,

178, 226, 243

argument, 143

Aristotle, 23, 24

arithmetic (see also numbers,

theory of), 49, 70, 177,

255-257

elementary, 278

Fundamental Theorem of, 33-

34

Laws of, 98-99, 101, 109

operations of, 55, 97, 105,

108, 112, 193, 255

Associative Laws (see also

Arithmetic, Laws of), 98-

99, 195

assumptions, see axioms

Athelhard, 19

Athenians, 61, 145

"at infinity," 129, 130

Auden, W. H., 17

axiomatic method, 22-23, 162,

271

Axiomatic Method, The, 271

Axiom of Choice, 238-241

axioms (see also geometry, non-

Euclidean), 17, 22-26, 28,

128, 148-152, 155-156,

246, 250, 252-253, 255,

256, 258

of Euclid, statement of, 27

of Hilbert, 253

of TarsH, statement of, 281-

282

Banach, Stefan, 241

Banach-Tarski Paradox, 241-243

284

band, 183-184

Barrow, Isaac, 52

Bell, E. T., 7, 41, 187

Berkeley, California, 28

biquadratic reciprocity, 42

Bolyai, Janos, 154

Brianchon, C. J., 124, 125

Brianchon's Theorem, 125-126

British Association for Advance-

ment of Science, 66

Burali-Forti, C., 245

calculus, 78-96, 130

differential, 86

first order predicate, 271-272

Fundamental Theorem of, 86,

94-96

integral, 86

sentential, 258-270, 277, 278

Cambridge University, 52, 66

Cantor, Georg, 55, 59, 208-209,

211, 213-214, 215-216,

218-220, 234, 243-244,

245-246, 254

Cantor-Dedekind Axiom, 58, 208

Cardano, Girolamo, 108-109

cardinal numbers:

finite, 207

transfinite, 207, 211, 217-218,

222, 224-225

change, rate of, 89-91

Cicero, Marcus Tullius, 19

circle, 23, 24, 60-61, 72-74, 116,

119, 133, 137, 149-151,

158, 160, 171-173, 174,

177, 178, 229-230, 235-

240, 247-248

squaring of (see also construc-

tion problems), 133-135,

142



class, 195, 198-200

Common Notions, see axioms

Commutative Laws (see also

Arithmetic, Laws of)^ 98-

99

complex numbers, 110-112, 113-

114, 142-144, 200, 215,
217

composite numbers, 31, 33-34

computers, electronic, 37, 42

cone, 64-65, 119

congruence, 121-122, 233-236,
253

conic sections, 60-67, 74-75,

115, 119, 146

conjunction, see "and"

consistency, 16, 25, 254-257,

274

construction problems, 133-147

continuum, 46-59, 97, 220

number of the, 220, 222, 225

continuum hypothesis, 225

counting, 97-98, 205-206

Cours d'analyse, 179-180

Coxeter, H. S. ML, 145

cube, 21, 116-117

doubling of (see also con-

struction problems), 61-63,

67, 75-77, 83, 133-136, 142

cube root, 62, 144

curvature, 156, 159

curve (see also calculus), 178

simple closed (see dso Jordan
Curve Theorem), 178-182,

190

decimals, 43, 53-55, 59, 218-220

decision theory, 272-281

Dedekind, Richard, 55, 56, 58,

59

Dedekind cut, 55-58

definitions (see also primitive

terms), 22, 23, 248-250,

251-254, 258, 264

deformation, 178

de la Hire, Philippe, 123

Delian problem, see cube,

doubling of

De Morgan, Augustus, 144,

146-147

dense, 104, 230-231

Desargues, Gerard, 119-120,

122, 123, 127, 130

Desargues' Theorem, 122-123,
127-128

Descartes, Rene, 67, 72, 75, 110,

115, 119, 227

Development of Mathematics,

The, 187

dimensionality (see also geom-

etry, Ti-dimensional), 129,

163

diophantine equations, 279-280

Diophantus, 48, 279

Dirichlet, P. G. Lejeune, 36

Dirichlet's Theorem, 36

disjunction., see "or"

disk, 183, 184

Disquisitiones Arithmeticae, 41

distance formula, 74, 170-171

Distributive Law (see also

Arithmetic, Laws of), 99

division (see also arithmetic, op-
erations of), 29, 97, 99,

100, 103-104, 138-140, 194

dodecahedron, 22

Duality, Principle of, 124-125

eccentricity, 66

edge, 182-184, 186



Egyptians, 2, 67, 149

Einstein, Albert, 8, 14, 246

Elements of Euclid, 16-28, 30,

31, 32, 46, 50, 52, 55, 58,

135, 155, 245-254, 258,

271

elements of Hubert's geometry,
251-252

ellipse (see also conic sections),

64,66

ellipsis, 63

Encyclopaedia Britannica, 18

Epimenides, 257

"equal," 209-211, 217, 220

equation of fifth degree, 201

equations:

linear, 71-72

solutions of, 97, 101, 105-112

equivalence, see "if, and only if"

Eratosthenes, 62, 64

Erlangen Program, 192, 202

Euclid, 14, 16-29, 47, 50, 52,

55, 62, 66, 68, 70, 72, 115,

121, 135, 148-162, 175,

204, 218, 226, 245-254,

257, 258, 269, 271, 272,

273, 275, 281

Euclid of Megara, 17

Euclid's algorithm, 21, 28-29,

48

Eudoxus, 17, 18, 20, 21, 46-53,

55, 58, 62

Eukleides, see Euclid

Euler, Leonhard, 39

even numbers, 31, 232, 234

exhaustion, see integration

extrema, 85-86

Fermat, Pierre, 7, 38, 39, 40, 41,

85, 86, 218

286

Fermat's Last Theorem, 7

form and number, 1, 30, 53

For the Reader, 14-15, 28-29,
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(Continued from front flap)
had failed them. They faced a problem they
could not solve. They were so shocked, the story

goes, that they "persuaded" the discoverer of

this unhappy fact to drown himself.

The author shows how this unsolvable prob-
lem, and others that followed in later times,

forced the invention of new concepts. The idea

of number was successively broadened to in-

clude zero, irrational numbers, negative num-

bers, imaginary numbers, and infinite numbers.

Geometry multiplied from one to many: projec-
tive geometry, non-Euclidean geometries, the

geometry of n-dimensions, topology or "rubber

sheet" geometry until finally -what is meant by
"a geometry" had to be defined in an entirely
new way.

In lively, understandable style, Constance

Reid leads the reader to a new understanding
of the abstract foundations of modern mathe-

matics, the search for truly consistent assump-
tions, the recognition that absolute consistency
is unattainable, and the realization that same

problems can never be solved. Mathematics

itself is inexhaustible.
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