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ABSTRACT

As linear programming techniques find applications in more

diverse fields, the problem of solution time becomes increasingly

important. A variation of the revised simplex algorithm, in which

the constraints are added in a step-by-step fashion, is investigated

as a potentially faster solution technique. A computational pro-

cedure, coded for the IBM 3&0 computer, is developed to compare this

algorithm with the standard two-phase revised simplex algorithm.

A limited number of problems, including several randomly generated

problems, is solved by each of the two methods. The resulting com-

parison of solution times indicates that a significant improvement

is obtained by the use of the procedure of step-by-step addition of

constraints.
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1 . Introduction

Increased utilization of linear programming techniques has led to

the formulation of problems of sufficient size to tax the storage

capabilities of many computers now in use. The problem of storage

capacity may be alleviated by auxiliary storage, with the accompanied

requirement of access delays which increase solution time. Even with

sufficient storage and a coded procedure large enough to accommodate

a problem, the computation time may be such that solution costs ap-

proach a budget limitation. For example, the CEIR LP/90 program for

the IBM 7090 computer, which can accommodate 512 constraints and an

unlimited number of variables, or the Philco Corporation LP 2000

System for the S-2000 computer, which can accommodate 2500 constraints

and an unlimited number of variables, might take several hours to

solve a large problem at a cost of several thousand dollars.

Improvement in the solution time might be accomplished by im-

provement of the hardware or by an improvement in the mathematical

procedure. The hardware improvements, which are becoming available

in the newer computers such as the IBM 3&0, are increased computa-

tion speeds and faster access to external storage.

Solution procedure improvement has been attempted by several

methods. Some attempts are being made to take advantage of special

structuring of the problem. These techniques are directed toward

partitioning or decomposing the problems into manageable sub-problems.

Another approach to improved solution time is the Primal-Dual

algorithm which was developed by Dantzig. [3]

This project has been directed towards another possible method

for improving solution procedures. An appraisal is made of the step-



by-step addition of constraints to the two-phase revised simplex pro-

cedure as a possible solution technique which would serve to improve

solution times. This method, called here the "step-by-step addition

of constraints (SSAC)," exploits the advantage of obtaining a rapid

solution to a small sub-problem and then moving from one optimal

solution to an optimal solution of a slightly larger sub-problem as

the remaining constraint equations are added one at a time. In the

earlier stages of the solution procedure, the size of the matrices

used in the iteration procedure would be relatively small, compared

to the complete problem. By exploiting the advantage of multiplying

smaller-dimensioned matrices, with the attendant shorter computa-

tional times, a shorter overall solution time might be achieved in

spite of the fact that a greater number of iterations would be

required.



2. Notation

The notation used throughout this paper was chosen to correspond

to the notation most frequently used in linear programming texts.

(1) Upper case letters represent matrices.

(2) Lower case letters represent column or row vectors.

(3) Subscripted lower case letters represent elements of row or

column vectors.

{k) Tableau notation, as illustrated below, is similar to that

used by Dantzig. h]

Z W Xr X^ X2 Xo x^ b

*-«-

-2 -k

.3 -k „6 -1 -2k

3 k © 1

I

2k * - 2k/e = k 'Rl

The columns corresponding to basis vectors are indicated by a dot.

The pivot column (or row in the case of the dual simplex algorithm)

is indicated by an arrow. The pivot element, as determined by the

appropriate minimum -0- cr iter ion, is indicated by circling the element,

and the basis variable which is then to be driven out is indicated by

circling the associated dot.

The tableau rows are referred to as the "z", "w" or Ri" row where

i is an integer corresponding to the sequence in which the constraints

appear. That is, MR1" refers to the first constraint, "R2" refers to

the second constraint and so on.

Specific notation which will receive repeated use in this paper

inc ludes:

m number of constraint equations



n number of variables

A m x n matrix of coefficients of the constraint equations,

having elements a-°
1 J

B m x m matrix of basis vectors

B inverse of the basis

P- the m-dimensiona 1 vectors which make up the B matrix

x an n-dimensional column vector having elements x^

c the n-element row vector of cost coefficients having elements c,-

b the m-element column vector of the right-hand side of the con-

straint equations (requirements vector), having elements b-



3. Formulation of the Problem

The general linear programming problem is stated as:

Maximize

ex

subject to:

Ax = b,

and,

x > 0.

For the algorithm to be investigated, we define

z = ex.

We can then rewrite the problem as:

Maximize

z,

subject to:

Ax = b,

z - ex = 0,

and,

x > 0.

To obtain an identity matrix to begin the two-phase revised

simplex procedure we add artificial variables x n+ ], x n+2> ...., xn+m

to the constraint equation with x n+
,- ^ for j = 1,...,m.

I f we def i ne

w - -x n+ ] -x-n+2 "•••~ x n+m

and then maximize w, we will drive the artificial variables out of

the basis and either obtain an initial basic feasible solution or an

indication that the problem is infeasible. The process associated with

maximizing w is usually referred to as Phase I.
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During the second phase (Phase II), the problem is stated in the

f ol lowi ng form:

Maximize

z

subject to:

a
11

x
1

+ a
12

x
2

+ + a 1nx n
+ x n+1

= b
1

a
21

x
1

+ a 22x 2
+ + a 2nx n

+ x
n+2

= b
2

am1 x
1

+ am2 x2 + + amn x n +x n+m
= bm

" c
1

x
1

" C 2
X2 c

n
x
n

+ z =
°

x n+1 +x n+2+ -- +xn+m+ w = °

and,

Xj > for j = 1, 2, ..., m.

Because of the w equation we do not have an identity matrix to

use as a starting basis. Therefore, we subtract from that equation

each of the other equations, as appropriate, to remove the x n+ j, ...,

x n+m vafiables. We obtain the following form for the w equation:

w + a m+2,1 x
1

+ am+2,2 x 2 + ••• + a m+2,nx n * bm+2

where,

m
a
m+

i = 1

and,

m
b*2 = - E b

i

l = 1

for those artificial variables, i, having non-zero prices. Our problem

is now in a form such that we have an identity matrix to use as our

starting basis.
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Maximize

subject to:

3 1 iX i "T* 8 i oXa *•"

3o i X i ">" 3^aX<j "t*

+ a lr x + x . ,

I n n n+

I

+ a~x_ + xzn n n+2

= b

= b.

am1 x
1

+ a
m2

x
2

+

-c
]

x
1

- c
2

x
2

-

+ a xmn n

" c
n

x
n

+ xn+m

+ z

am+2,1
x

l

+am+2,2 x2
+ '" + am+2,n

x
n

and,

+ w

= b

i=

= b

m

m+2,

x > for j = 1,2, ..., n+m.

If we let a^.i • == -c • , the problem resolves into the three

matrices used for computations in the revised simplex procedure:

A =

a
11

a
12

a
21

a
22

a
ml

a
m2

1n

'2n

mn

m+
1

,

1

m+
1 , n

am+2,1 am+2,n

1

1

• , an identity matrix, and



b =

m

b
m+2

For simplification in handling the matrices when coded in FORTRAN,

they will be re-arranged so that the objective function and the

modified w equation appear in the first two rows rather than the last

two:

m+1,1

W,1

11

'21

m+1 , n

m+2,n

In

'2n

'ml mn

3m+2

B" = I, and b =

L
m

In the revised simplex procedure, the original A matrix and b vector

of the full starting tableau ("original" tableau) are used at each

iteration with the inverse of the current basis matrix to determine

certain unknown elements of the current tableau.

)k



When a constraint is added, the original A matrix and b vector are

changed. The size of each is increased by one row, and the A matrix is

increased by one column. The basis matrix is therefore increased in

size by the addition of a row vector, Q , corresponding to the elements

of the new constraint which are in the current basis. It is, at the

same time, increased by a column vector corresponding to a new artifi-

cial variable.

The new (m+1) x (m+1) basis is:

B

By partitioning of the B matrix, the new inverse is readily

obtai ned:

B

1
B

1

-Kb 1

1

Upon adding a new constraint to a problem, one of three cases will

result:

(1) the new constraint is satisfied;

(2) the new constraint is not satisfied and the value of the

additional artificial variable is positive in the basic solution;

(3) the new constraint is not satisfied and the value of the

additional artificial variable is negative in the basic solution.

In the first case, the new constraint has no effect and the

optimal solution to the entire original problem has been obtained if

no further constraints are to be added. The optimal value of z is not

affected by the new constraint.

In the second case, the two-phase revised simplex procedure is used

to first drive out the artificial variable and then to maximize z.

15



In the third case, if the new artificial variable is assigned a zero

cost in the z equation, the dual simplex procedure can then be applied to

the infeasible primal to obtain an optimal solution to the dual, and

hence an optimal solution to the primal. The artificial variable is con-

sidered to be a legitimate variable of the original problem in the dual

simplex approach. As a consequence, it never appears in the w equation.

For convenience, we will carry along the "w" row of the tableau, for use

when later constraints are added.

When a solution is obtained which satisfies the added constraint,

the optimal solution to the original problem has been found if there are

no new constraints to be added.

The addition of a new constraint to a linear programming will have

the effect of either decreasing the previously obtained maximum solution

or leaving it unchanged. That is, letting the subscript on z denote the

number of constraints,

max z m+] < max zm .

Solution of a linear programming problem by step-by-step addition

of constraints may result in one or more unbounded solutions to the sub-

problems if the initial constraints have fewer variables than are in-

cluded in the objective function. This causes no difficulty, however,

as the addition of one or more new constraints will serve to place

bounds on the problem, unless the original problem is unbounded.

The method of step-by-step addition of constraints has the advan-

tage that an infeasible solution at an early stage will determine that

the original problem has no feasible solution, and no new constraints

need be added. The solution procedure is then terminated.

16



k. Sample Problem

Consider, as an example, the problem:

maximize

z = 2x. + kx

subject to:

3x
1

+ kx~ + 6x
3

< 2k

ifx
1
+ 3x

2
+ 12x, < 2k

x, + x
2

+ 4x^ = 8

and,

x. > for j = 1, 2, 3.

Adding slack variables and rewriting the problem, we have

maximize

subject to:

z - 2x - kx =

3x
1

+ 4x
2

+ 6x0 + x. -2k

4x
]

+ 3X
2

+ 12Xo + Xr = 2k

Xj + x
2

+ kx-, = 8

and,

x • > for j =
1 , .. , 5

For our solution by the SSAC procedure, the modified w equation

for the first sub-problem will be:

w - 3xj - A-x
2

- 6x0 - x^ - -2k

because the original w equation is

w + Xs - 0,

where X£ is the artificial variable introduced into "Rl".

17



The initial tableau will bet

2 w x 6 x
1

x 2 x
3

xk x
5

^

lz .l
1

1

1

-2

-3

-k

-i+ -6 -1 -2k

2k'RT' 3 4 © 1

W /K

-e- = ik/G = 4

In Phase I we will maximize w. We choose the most negative value in

the modified w equation and pivot on the element which meets the mini-

mum -©• criterion according to the usual (primal) simplex procedure.

Note that in the first tableau the first pivot will always be such as

to drive out the first artificial variable.

We pivot using the product form of the inverse. 1 5 1 The ft vector

corresponding to the Xo column will be

1

k/6 2/3

6/6 =
1

j/e 1/6

and,

1 2/3

1 1

1/6

E =

_=1 -1
The new inverse is determined from B = EB as follows

_-l
B

1 2/3

1 1

1/6

1

1
=

1 2/3

1/6

18



The new tableau is now

Z W X£ X, X2 X~ X^ Xp b

1 2/3 8/3 2/3 16

1 1

1/6
—i

k1—
,

where x_ is now a basic variable; all values of z^-c.- > 0, and we have

achieved the "first" optimal solution.

To add a new constraint, the "original" tableau is augmented by

one row and the column vector for x-,, where Xj is the artificial variable

associated with "R2". Ignoring the "w" row for the time being, the

augmented "original" tableau will be

Z W X£ Xy X^ X£ Xo X^ Xr b

1 -2 -k

1 3 k 6 1 2k

1 k 3 12 1 2k

We compute the X vector by determining from the previous solutions

which vectors are in the basis.- Observe that the coefficient vectors

associated with z and w will always be in the basis since we are maxi-

mizing z and w. The first two elements of the Q vector will therefore

always be zeros. The third element in this case will be the coefficient

of x in the new constraint.

)T = [° ° 12
]

19



The augmented inverse of the basis is determined by partitioning:

_-1
B

-tfV
1

1

The product - Q B~ , in this case, is

1 2/3

To - 1 2 1 1 1

1/6

[o o -2] ,

and the new inverse becomes

1 2/3

_-1
B

1 1

1/6

-2 1

Our next step is to determine if the value of the new artificial variable

is positive or negative in the basic solution. We find

x
7

= 2k - 12x3 = -2k.

Because it is negative, our procedure tells us to assign Ci = to the

new artificial variable, Xy, and use the dual simplex algorithm to drive

out the artificial variable.

z w xg x-j x. x» x, x. Xj. b

1 2/3

1 1

8/3 2/3

1/6 1/2

-2 1

-* #-1
©-5 -2 1

—4 , 1

-2k

20



We pivot on the row having the most negative b- element in the dual

simplex method. As a consequence, the new artificial variable will be

dropped as a basic variable.

Our pivot element is determined for a^ • < 0.

e- == Min ["-a^/a^j] = Min lo, 8/15, 2/6 1 = 0,

The new inverse is determined by the product form of the inverse.

1 »A

-1/2

E =

10
10

11/4

0-1/2

The current tableau becomes:

z w x
6

x
7

x
]

x
2

x
3

x4 x c b

1 2/3

1 1

8/3 2/3

-1/3 \/k -7/12 1(^/3) ]/k -2

1-1/2
''

1 ^ 1U $
12

-9-= Min [32/7, 2] = 2

Since the up-dated requirements vector, b, still has a negative com-

ponent, the dual simplex algorithm must again be applied. Pivoting on

the x^ column gives;

x
6

x
7

x
l

x
2

x
"3

x
k

x
5

kw

1 1/2

110
1 -3A

1/4

^ %

3/2 2 1/2 12

6

6

21



Since all elements of b are now non-negative, our solution is optimal

Notice that the "w !l row is retained but not operated on in the use of

the dual simplex approach.

Adding the third constraint, the augmented "original" tableau

becomes

Z W X£ Xy Xg X^ X2 Xo X^ Xr b

1 -2 _z+

1 3 k 6 1 2k

1 k 3 12 1 2k
•

1 1 1 k 8

Again, the "w" row is ignored until after we determine if the new

artificial variable, Xn, is positive or negative in the basic solution.

After bringing in the new constraint,

# = [o 1

]

and,

-^B" 1 = [o -i/y .

The value of the new artificial variable, xg, for constraint "R3", is

x
8 = 8 - x, = 2 .

Since the value of xo is positive in the basic solution, we can use

Phase I of the revised simplex procedure to move to the optimal solution

for the complete "original" problem. The augmented "w" equation in the

"original" tableau will be

z w x 6 x-j xg x
1

x
2 x^ x^ x^ b

22



and the current tableau becomes

Z W X/- X-, Xn X, X- X, X^ X ,-

1 1/2 2

1 1

i -3A o

-1 -1 -if

6-3

\/k 3 6

-*-—*

—

0-1/4 1

&-
©—# 1

2

«-= Min T6/3, 2/1 1 = 2

Pivoting on the appropriate element of the column having the most nega-

tive value in the "w" row, we bring x, into the basis. The resulting

tableau is then

w :

6
x
7

x
8

x
1

x
2

x
3

x
k

x
5

1 1 -2

1 1 -1 k

1 -3/2 3

-1 -1

1 -3 Q
'—•-—•

—

-\fk 1

#~-#»

Since all of the coefficients of the "w" row are not non-negative,

we again pivot on the column having the most negative element, or in

the case of ties, the left-handed one of the tied columns. Pivoting

on the Xi column, we bring Xi into the basis.

After this iteration, we find that all elements of the "w" row are

zero and at the same time, all z- - c- > so we have completed both

Phase I and Phase II. The final tableau is:

23



z w x 6 x
7

x8 x
1

x
2

x
3

xk x
5

b

1 1 -2 1 1 8

1 1

1 -3/2

1

3 121

1 -3 1

o -iA 1 1 2

We have now arrived at the optimal solution of the "original" problem:

z - 8

x, =

Xo = 2

x
k

= 12

and all other x- = 0.

2k



5. Programming Technique

As a means of testing the feasibility of solving general linear

programming problems by the SSAC method, the solution technique was

coded in FORTRAN IVg for use on the IBM 360/67 computer.

One subroutine was designed which would carry out the solution

procedure by either the two-phase revised simplex method or the dual

simplex method as appropriate. This same subroutine was used to solve

the problems by both the standard revised simplex procedure and by the

SSAC procedure. By using the same subroutine for both methods, it was

hoped that any bias which might result from programming technique

could be avoided. A driving routine was designed which would first

solve a problem by the revised simplex method and then re-solve the

same problem using the SSAC method. The two sections of the program

were then timed. Sections of the program not germane to the method

being investigated, such as the reading in and printing out of data,

were not included in the timing. The number of iterations required

for solution by each method was tabulated.

'The timing routine was developed by Lt E. A. Singer, a student

at the Naval Postgraduate School.
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6. Efficiency of the Algorithm

Several small problems, for which hand solutions could easily be

obtained, were used for preliminary testing and debugging of the program,

A number of larger problems were then solved to obtain a limited ex-

perimental verification of the new procedure. The problems were chosen

from three categories of problem types; mixing problems, transportation

problems, (including a network problem and a transshipment problem), and

caterer problems. Results based on this preliminary comparison, as

shown in Table I, were inconclusive.

In order to obtain the solutions to a large number of problems, and

as a means of avoiding the considerable time and effort required to

input data by hand, a routine was designed which would generate random

problems. This routine utilized a random-number generator to generate

elements for the A and b matrices. To insure the existence of a

bounded optimal feasible solution, the problems were formulated as;

Maximize

subject to:

z = ex

Ax > b

and,

Cj <0

x . > for j =
1 , . . ., n

a
i
>°

b. > for i =
1 , . . ., m

The problems were generated to have 70 variables, including slack

variables, and 20 constraints. The distribution of the coefficients

was uniform over the following intervals;

26



a . . , uniform (0.1);

b. , uniform (0,5);

c- , uniform (-1,0).

A total of forty-six problems were solved using this method of problem

generation. A tabulation of solution times for these random problems

is given in Appendix I.

A comparison of the solution times of these forty-six problems

shows that the method of step-by-step addition of constraints was faster

in thirty-four cases. The mean solution time for the SSAC procedure

was 3.9^ seconds faster than the mean solution time by the revised

simplex procedure. By applying an appropriate statistical test to the

solution results, it was determined that, with 95% confidence, the mean

difference in solution times for the two methods is not less than 2.27

2
seconds. Therefore, it can be concluded that the method of SSAC is

significantly faster than the revised simplex method.

Detailed computations for the t-test and computation of lower

confidence limits on the mean solution time difference are given in

Appendix I.

27



TABLE I

SOLUTION TIME RESULTS OF PROBLEMS USED IN PRELIMINARY INVESTIGATION

Problem Revised Simplex
(RS)

Add. of Constr.
(SSAC)

T i me Ratio

Iteratio ns Time
(sec)

i

Iterati

o

ns Time
(sec.

)

SSAC/ R.S.

fixing Problems

9 .106 15 .188 1.17laugh's Diet

Gasol i ne BlencT 10 .766 29 l.i+46 1.88

Transportation P r obi ems

118.829 89 51.352 .43
3 by 33 tableau 85

7 by 7 tableau 41 6.398 38 4.071 .64

3 by 5 tableau 18 .852 22 .700 .82

3 by 4 tableau 13 .446 21 .479 1.07

Transshi pmentr 18 4.223 20 3.117 .74

Network F low 17 3.318 24 2.507 .75

Caterer Problems

[1]

Wardroom Napkin 35 10.768 39 6.177 .57

[5]
Hadley Napkin 10 .745 25 .918 1.23
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7. Concluding Remarks

It is important to emphasize that the solution time is a function

of the way the computer program is written. In the code employed, a

full set of artificial variables was generated for each problem. An

algorithm which takes advantage of existing slack variables for an

initial feasible solution might well prove to be faster than the

present program.

Round-off error and exponent underflow can greatly affect the

solution technique. The use of the product form of the inverse in the

pivoting operation relieves this situation somewhat. In the experi-

mental algorithm a routine was employed which set any element having

an absolute value less than .0001 equal to zero. A better method might

be to use double precision mode for computations and then allow values

smaller than .0001 to be carried along in the solution.

By using a single subroutine for the simplex iteration procedure

in both methods of problem solution, it was hoped that any inconsistency

due to programming technique could be kept to a minimum. That is,

necessary computations for the iteration procedure were carried out in

the same sequence for both methods of problem solution.

It is recognized that the problems selected are not necessarily

a representative sampling of linear programming problems. The manual

input problems were selected primarily because they were large enough

to allow the step-by-step addition of constraints to be demonstrated,

yet small enough to handle conveniently as data inputs. The randomly

generated problems were considered to be of a size which was large

enough to effectively test the procedure, subject to available com-

puter time.
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The results of this limited number of tests indicate that the SSAC

method is worthy of further investigation. This further effort could be

directed in one of several areas. The present method should be applied

to a large number of more diverse problems in order to obtain a better

data base for verification of the results already obtained, and to deter-

mine more accurately the advantage of this method over the revised

simplex procedure. At the same time, it would be possible to determine

some bounds of effectiveness of this procedure as to the size and struc-

ture of problems.

Modification of the step-by-step procedure might be attempted to

take advantage of an existing basis in the original problem so as to

require generation of fewer artificial variables. An attempt might

also be made to modify the step-by-step addition of constraints pro-

cedure for application to the primal-dual algorithm.
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APPENDIX I.

Statistical Testing of Random Problem Solutions

If it can be assumed that the solution times obtained by each

method form two normal distributions, we can test to determine if the

mean solution time by the addition of constraints method, /kSAC
1# s

less than the mean solution time by the revised simplex method, /-"rc

Letting X. be the solution time obtained by the revised simplex

procedure, and Y- the solution time obtained by the addition of con-

straints procedure for problem i, a pairwise comparison of the results

of the two methods can be made.

Consider the hypothesis that the mean solution time difference,

/"* ~ /''RS " /"SSAC* 1S non-positiv6 * That is,

H : yu < 0,

with the alternative hypothesis,

Hj: yu > .

To show that the method of addition of constraints is faster, we must

be able to reject Hq.

If we form a t statistic for n = k6 samples,

t = D y n

S

where,

D =_L X (X. - Y.)
n i=1

and,

S
2 = 1 Z (D. - D)

2
,

n-1 i=1 '

and then compare it against tabulated values of the cumulative t dis-

tribution, we would reject the hypothesis if

4 £ V"-i •
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In this case we choose a 100(1 -0( ) = 95% confidence level. The com-

putation of the t statistic for n = 46, S = 6.74 gives,

t - 3.94 7 46 =. 3.97 .

6775

The tabulated value for %,„ __, ,._ s 1.68. Since t V t , .we
(0.05), 45 ' (^,n-l

reject the hypothesis that the revised simplex method is faster.

A lower confidence limit on the mean difference in solution times

can be determined from the expression

Preob | (D - /j l
) Yn~ ^ t^l = 1 - 0< .

confidence

(d - >i
L
)yr < tfl(

Since with 95% confidence

we can solve for the lower limit on jj,

For the given data,

3.94 - (1.68)(6.74) </ yi
L

(6.785)

or,

2.27 <yj L
.

So we can say with 95% confidence that the mean difference in solution

times is no less than 2.27 seconds. That is, the mean solution time

obtained by the step-by-step addition of constraints is at least 2.27

seconds less than the solution time obtained by the revised simplex

procedure.
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TABLE II

SOLUTION TIME RESULTS OF RANDOMLY GENERATED PROBLEMS

Prob. RS SSAC
No. Time (X^

(sec.

)

Iter. Time (Y-)

(sec. )

Iter

.

X- - Y. (Xi - Yi)
2

1 23.90 68 5.11 25 18.79 220.5
2 18.19 51 7.08 56 11.11 51.4
3 14.97 42 IO.39 71 4.58 0.4
4 28.25 82 18.34 101 9.91 35.6
5 20.21 58 16.66 92 3.55 0.2
6 23.31 64 9.88 64 13.43 90.1
7 27.24 79 25.23 179 2.01 3.7
8 12.10 33 5.14 24 6.96 9.1
9 13.47 37 17.63 93 -4.16 65.6

10 13.47 37 5.56 38 7.91 15.8
11 13.13 36 18.50 113 -5.02 80.3
12 14.50 40 5.69 38 8.81 23.7
13 9.72 26 14.68 80 -4.96 79.2
14 13.48 37 7.68 59 5,80 3.5
15 13.14 36 10.10 91 3.04 0.8
16 10.76 29 18.43 93 -7.67 134.8
17 15.53 43 15.41 90 0.12 14.6
18 19.62 56 7.29 48 12.33 70.4
19 24.38 69 12.05 65 12.33 70.4
20 19.16 54 10.30 51 8.86 24.2
21 22.23 63 8.68 56 13.55 92.4
22 21.93 62 10.83 60 11.10 51.3
23 26.35 75 19.69 87 6.66 7.4
24 23.65 67 7.69 45 15.96 144.5

1
2 5 14.40 43 5.22 38 9.18 27.5
26 9.72 28 12.20 90 -2.48 41.2
27 14.73 44 7.02 52 7.71 14.2
28 10.34 30 10.93 70 -0.59 20.5
29 11.58 34 14.32 97 -2.74 44.6
30 11.62 34 9.06 58 2.56 1.9
31 12.51 35 11.81 81 0.70 10.5
32 12.17 34 5.43 32 6.74 7.8

33 13.16 37 5.44 38 7.72 14.3
34 11.83 33 5.55 40 6.28 5.5
35 12.18 34 17.25 93 -5.07 81.2
36 12.51 35 16.03 73 -3.52 55.7
37 11.18 31 14.30 101 -3.12 49.8

I 38 15.18 43 15.07 90 0.11 14.7

139 9.24 27 7.90 54 1.34 6.8
Uo 11.98 36 12.72 81 -0.74 21.9
41 11.06 33 9.99 74 1.07 8.2
42 11.41 34 7.86 62 3.55 0.2
k3 13.52 41 6.88 57 6.64 7.3
kk 11.36 34 8.63 51 2.73 1.5

45 11.68 35 24.94 142 -13.26 295.8
k6 9.53 28 8.16 58 1.37 6.6
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APPENDIX II.

Flow Diagrams of the Computer Progra m

No

C MAIN
J

X
.Read in

Data

Store Input in
Temporary Arrays
for Computations

Compute "w" Row

Call SIMPLX

PRINT Results from
Revised Simplex Method

-t
Reset Problem for

Solution by
Addition of Constraints

I
Add New Constraint

Compute

Compute New Inverse

&
Call SIMPLX

-t
Have All Constraints

Been Added?

Yes

PRINT Results from
Addition of Constraints

Method

( END )
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2. Simplex and Dual Simplex Iteration Subprograr

C
Sub routine "N

SIMPLX J

\ _
Compute Elements

of "w" row

Is New Art if icia 1

Negative in Basis?

No

Is Phase I Complete?

No

Find Min Negative
Element of "w" Row

Find Minimum -$

I
Compute h Vector

Compute New Inverse

Is Phase I Complete?

Yes
X

Is Phase II Complete?

Yes

Yes

-&-I 1000

Yes
c/" RETURN J

No

Find Min Negative
Element of "z" Row

36



(Dual Simplex Section)

Find Most Negative
Element of b Vector

m nd M i n i mum •$

Compute ^1 Vector

Z3
Compute New Inverse

£
Is Phase II Complete?

ii

"

c

Yes
!

RETURN D

No
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