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ADVERTISEMENT.

Tins volume forms the nineteenth of a series, composed of original memoirs on

different branches of knowledge, published at the expense, and under the direction,

of the Smithsonian Institution. The publication of this series forms part of a general

plan adopted for carrying into effect the benevolent intentions of JAMES SMITHSON,

Esq., of England. This gentleman left his property in trust to the United States

of America, to found, at Washington, an institution which should bear his own

name, and have for its objects the "increase and diffusion of knowledge among
mm." This trust was accepted by the Government of the United States, and an

Act of Congress was passed August 10, 1846, constituting the President and the

other principal executive officers of the general government, the Chief Justice of

the Supreme Court, the Mayor of Washington, and such other persons as they might

elect honorary members, an establishment under the name of the "SMITHSONIAN

INSTITUTION FOR THE INCREASE AND DIFFUSION OF KNOWLEDGE AMONG ME.V." The

members and honorary members of this establishment are to hold stated and special

meetings for the supervision of the affairs of the Institution, and for the advice

and instruction of a Board of Regents, to whom the financial and other affairs are

intrusted.

The Board of Regents consists of three members ex officio of the establishment,

namely, the Vice-President of the United States, the Chief Justice of the Supreme

Court, and the Mayor of Washington, together with twelve other members, three of

whom are appointed by the Senate from its own body, three by the House of

Representatives from its members, and six persons appointed by a joint resolution

of both houses. To this Board is given the power of electing a Secretary and other

officers, for conducting the active operations of the Institution.

To carry into effect the purposes of the testator, the plan of organization should

evidently embrace two objects : one, the increase of knowledge by the addition of

new truths to the existing stock; the other, the diffusion of knowledge, thus

increased, among men. No restriction is made in favor of any kind of knowledge;

and, hence, each branch id entitled to, and should receive, a share of attention.
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The Act of Congress, establishing the Institution, directs, as a part of the plan of

organization, the formation of a Library, a Museum, and a Gallery of Art, together

with provisions for physical research and popular lectures, while it leaves to the

Regents the power of adopting such other parts of an organization as they may
deem best suited to promote the objects of the bequest.

After much deliberation, the Regents resolved to divide the annual income into

two parts one part to be devoted to the increase and diffusion of knowledge by

means of original research and publications the other part of the income to be

applied in accordance with the requirements of the Act of Congress, to the gradual

formation of a Library, a Museum, and a Gallery of Art.

The following are the details of the parts of the general plan of organization

provisionally adopted at the meeting of the Regents, Dec. 8, 1847.

DETAILS OF THE FIRST PART OF THE PLAN.

I. To INCREASE KNOWLEDGE. It is proposed to stimulate research, by offering

rewards for original memoirs on all subjects of investigation.

1. The memoirs thus obtained, to be published in a series of volumes, in a quarto

form, and entitled " Smithsonian Contributions to Knowledge."

2. No memoir, on subjects of physical science, to be accepted for publication,

which does not furnish a positive addition to human knowledge, resting on original

research; and all unverified speculations to be rejected.

3. Each memoir presented to the Institution, to be submitted for examination to

a commission of persons of reputation for learning in the branch to which the

memoir pertains; and to be accepted for publication only in case the report of this

commission is favorable.

4. The commission to be chosen by the officers of the Institution, and the name
of the author, as far as practicable, concealed, unless a favorable decision be made.

5. The volumes of the memoirs to be exchanged for the Transactions of literary
and scientific societies, and copies to be given to all the colleges, and principal

libraries, in this country. One part of the remaining copies may be offered for

sale; and the other carefully preserved, to form complete sets of the work, to

supply the demand from new institutions.

6. An abstract, or popular account, of the contents of these memoirs to be given
to the public, through the annual report of the Regents to Congress.
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II. To INCKK.V.-'!-: K\i>wi.Ki>TiE. R is also proposed to appropriate a portion of tfte

/;/, nnitiiiilly, to special object* of research, ttiultr the direction of suitable

persona.

1. The objects, ;uid the amount appropriated, to be recommended by counsellors

of the Institution.

2. Appropriations in different years to different objects; so that, in course of time,

each branch of knowledge may receive a share.

3. The results obtained from these appropriations to 1ae published, with the

memoirs before mentioned, in the volumes of the Smithsonian Contributions to

Knowledge.

4. Examples of objects for which appropriations may be made:

(1.) System of extended meteorological observations for solving the problem of

American storms.

(2.) Explorations in descriptive natural history, and geological, mathematical,

and topographical surveys, to collect material for the formation of a Physical Atlas

of the United States.

(3.) Solution of experimental problems, such as a new determination of the

weight of the earth, of the velocity of electricity, and of light; chemical analyses

of soils and plants; collection and publication of articles of science, accumulated

in the offices of Government.

(4.) Institution of statistical inquiries with reference to physical, moral, and

political subjects.

(5.) Historical researches, and accurate surveys of places celebrated in American

history.

(G.) Ethnological researches, particularly with reference to the different races of

men in North America; also explorations, and accurate surveys, of the mounds

and other remains of the ancient people of our country.

I. To DIFFUSE KNOWLEDGE. It is proposed to pvlrfish a series of reports, giving an

account of Oie neio discoveries in science, and of tlie changes madefrom year to year

in all branches of knowledge not strictly professional.

1. Some of these reports may be published annually, others at longer intervals,

as the income of the Institution or the changes in the branches of knowledge may

indicate.

2. The reports are to be prepared by collaborators, eminent in the different

branches of knowledge.
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3. Each collaborator to be furnished with the journals and publications, domestic

and foreign, necessary to the compilation of his report; to be paid a certain sum for

his labors, and to be named on the title-page of the report.

4. The reports to be published in separate parts, so that persons interested in a

particular branch, can procure the parts relating to it, without purchasing the

whole.

5. These reports may be presented to Congress, for partial distribution, the

remaining copies to be given to literary and scientific institutions, and sold to indi-

viduals for a moderate price.

The following are some oftlie subjects which may be embraced in the reports:

I. PHYSICAL CLASS.

1. Physics, including astronomy, natural philosophy, chemistry, and meteorology.

2. Natural history, including botany, zoology, geology, &c

3. Agriculture.

4. Application of science to arts.

II. MOEAL AND POLITICAL CLASS.

5. Ethnology, including particular history, comparative philology, antiquities, &c.

6. Statistics and political economy.

7. Mental and moral philosophy.

8. A survey of the political events of the world; penal reform, &c.

III. LITERATURE AND THE FINE ARTS.

9. Modern literature.

10. The fine arts, and their application to the useful arts.

11. Bibliography.

12. Obituary notices of distinguished individuals.

II. To DIFFUSE KNOWLEDGE. It is proposed to publish occasionally separate treatises

on subjects of general interest.

1. These treatises may occasionally consist of valuable memoirs translated from

foreign languages, or of articles prepared under the direction of the Institution, or

procured by offering premiums for the best exposition of a given subject.

2. The treatises to be submitted to a commission cf competent judges, previous
to their publication.
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DETAILS OF THE SECOND PART OF THE PLAN OF ORGANIZATION.

This part contemplates the formation of a Library, a Museum, and a Gallery of

Art.

1. To carry out the plan before described, a library will be required, consisting,

1st, of a complete collection of the transactions and proceedings of all the learned

societies of the world
; 2d, of the more important current periodical publications,

and other works necessary in preparing the periodical reports.

2. The Institution should make special collections, particularly of objects to

verify its own publications. Also a collection of instruments of research in all

branches of experimental science.

3. With reference to the collection of books, other than those mentioned above,

catalogues of all the different libraries in the United States should be procured, in

order that the valuable books first purchased may be such as are not to be found

el where in the United States.

4. Also catalogues of memoirs, and of books in foreign libraries, and other

materials, should be collected, for rendering the Institution a centre of bibliogra-

phical knowledge, whence the student may be directed to any work which he may
require.

5. It is believed that the collections in natural history will increase by donation,

as rapidly as the income of the Institution can make provision for their reception ;

and, therefore, it will seldom be necessary to purchase any article of this kind.

C. Attempts should be made to procure for the gallery of art, casts of the most

celebrated articles of ancient and modern sculpture.

7. The arts may be encouraged by providing a room, free of expense, for the

exhibition of the objects of the ArtrUnion, and other similar societies.

8. A small appropriation should annually be made for models of antiquity, such

as those of the remains of ancient temples, &c.

9. The Secretary and his assistants, during the session of Congress, will be

required to illustrate new discoveries in science, and to exhibit new objects of art;

distinguished individuals should also be invited to give lectures on subjects of

general interest.

In accordance with the rules adopted in the programme of organization, each

memoir in this volume has been favorably reported on by a Commission appointed
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for its examination. It is however impossible, in most cases, to verify the state-

ments of an author; and, therefore, neither the Commission nor the Institution can

be responsible for more than the general character of a memoir.

The following rules have been adopted for the distribution of the quarto volumes

of the Smithsonian Contributions:

1. They are to be presented to all learned societies which publish Transactions,

and give copies of these, in exchange, to the Institution.

2. Also, to all foreign libraries of the first class, provided they give in exchange

their catalogues or other publications, or an equivalent from their duplicate volumes.

3. To all the colleges in actual operation in this country, provided they furnish,

in return, meteorological observations, catalogues of their libraries and of their

students, and all other publications issued by them relative to their organization

and history.

4. To all States and Territories, provided there be given, in return, copies of all

documents published under their authority.

5. To all incorporated public libraries in this country, not included in any of

the foregoing classes, now containing more than 10,000 volumes; and to smaller

libraries, where a whole State or large district would be otherwise unsupplied.
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ADVERTISEMENT.

IN the investigation of the Orbit of Uranus which forms the subject of the accompanying memoir,

as well as in that of the Orbit of Neptune previously published in the Smithsonian Contributions,

a large amount of arithmetical computation has been required, especially in the reduction and com-

parison of observations. The cost of this, in accordance with the spirit of the Institution in

advancing science, has been defrayed from the income of the Smithson fund.

As required by the rules of the Institution, the accompanying memoir was referred to competent

authority for examination, and the persons selected for this purpose were Professor J. H. C. Coffin,

of the Nautical Almanac Office, and Professor Asaph Hall, of the Naval Observatory.

JOSEPH HENRY,
Secretary S. I.

WASHINGTON, 1873.

PHILADELPHIA:

CO1.LIN3, PBIHTBB,
70S Jayne Street.
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TIIK present work was undertaken as far back as the year 1859. But the labor

deMited to it at first amounted to little more than tentative efforts to obtain

numerical data of sufficient accuracy, and to decide upon a satisfactory method of

computing the general perturbations of the planet.. The elements of Neptune

employed in the earlier computations were found to deviate too widely from the

truth to be used in computing the perturbations of Uranus with the first order of

accuracy, and it became necessary to correct them. This was done during the years

IN; I and IN>.">, and the investigation was printed by the Smithsonian Institution

in the latter year. It was then found that the adopted elements of Uranus also

differed too widely from the truth to serve as the basis of the work, and they were

provisionally corrected by a series of heliocentric longitudes derived from observa-

tions extending from 1781 to 1861. Finally it was found that the adopted method

of computing the perturbations, that of the "variation of elements," though not

deserving of the disfavor into which it has fallen of late years, was practically

inapplicable to the computation of the most difficult terms, namely, those of the

second order with respect to the disturbing forces. Indeed, it appeared to the

author that the only method of computing those terms which was at the same time

general, practicable, and fully developed, was that of Hansen. But, were this

method adopted, all that had previously been done would have been, useless, even

for the purpose of comparison and verification, owing to the expression of the co-

ordinates in terms of a disturbed mean anomaly. It appeared to the author that,

although this form of theory led to expressions having fewer terms- than the other,

it was not without its relative disadvantages. Other considerations being equal, he

conceived that astronomers generally would greatly prefer to see the perturbations

expressed directly in terms of the time, owing to the ease with which the results

of different investigators could then be compared, and with which corrections to

the theory may be introduced.

Under these circumstanc.es the method described in the first chapter of the

present paper was worked out. The question how much it contains that is essen-

tially new is one that the author has never closely examined: it is, however, certain

(iii)
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that the mode of considering the subject is well known, being that employed by
La Place, Herschel, De Pontecoulant, Encke, and perhaps others. The method

of forming the required derivations of the perturbative function from the analytical

development of that quantity, he has not seen elsewhere.

With these improved elements and methods the work was recommenced in 1868.

The earlier investigations being merely provisional, it has not been deemed neces-

sary to present them in the present work. Some of the results, corrected for

errors of the older elements, are, however, given for the purpose of comparison.

Although this investigation has absorbed the greater part of the author's leisure

for more than five years, it is only through the aid of the Smithsonian Institution

and Nautical Almanac that he has been enabled to bring it to a conclusion within

that time. At an early stage of the work Professor Henry responded favorably to

a request for aid by the employment of computers; it was, however, not found

practicable to use such aid until the perturbations had been completed, and the

provisional theory concluded. Then, the comparison of theory and observation,

and the construction of the tables, involved a large amount of mechanical compu-

tation, and on this part of the work a number of persons have been employed by
the Institution at various times, among whom may be mentioned Professor F. W.
Bardwell, of the University of Kansas, and Dr. C. L. F. Kampf, late of the Ob-

servatory of Leiden. Every part of the work has, however, been done under the

author's immediate direction, and, as nearly as possible, in the same way as if he

had done it himself, a result which, in one or two cases, has been attained only

by the expenditure of an amount of labor approximating that saved by the employ-
ment of the computer.

In presenting the steps of the investigation, the end has been kept constantly in

view to render as easy as possible the detection and correction of any error, or the

introduction of any alteration in the elements or other data. It is, of course,

impossible to present the steps of the computation with any approach to fulness

without far transcending the limits of the printed work : The results given are,

therefore, those which it was supposed would be most useful to the future investi-

gator of the same subject. There is reason to believe that the original computa-
tions will ultimately become the property of the National Academy of Sciences, so

that they may always be referred to for the clearing up of any difficulty in the

printed text.

The author's acknowledgments are due to Professor J. H. C. Coffin, Superin-
tendent of the Nautical Almanac, and Mr. E. J. Loomis, of the Nautical Almanac

Office, for reading the proof sheets of the last twelve tables during the absence of

the former abroad.

WASHINGTON, July 31, 1873.
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ERRATA.

Pages 100 to 105. In computing the latitude from the provisional theory the values of the

secular terms of iy and &k on page 97 have been interchanged. The provisional latitude, therefore,

requires the correction

0".53 Tsin v + 0".53 T cos v
where

v = g + 12 45' -f 2e sin g.

This correction is not applied in the subsequent investigation. Its effect would have been to

change the value of b deduced on p. 176 by probably 0".2 or 0".3. The effect on the other elements

of latitude would have been much smaller, and therefore unimportant.

Page 122, line 15. Add : the corrections in the sixth column being omitted.

Page 151. Add foot-note : In forming these comparisons the corrections to the heliocentric

longitude in the sixth column of the provisional ephemeris, pages 100 to 105, are not applied.

Page 159. Equation 7. In this equation the coefficients of J* and Jp have been multiplied by J,

instead of f ,
the factor of JZ. The effect of this error enters into all the subsequent results, but in

the comparisons of theory and observation it is corrected.

Page 184. The element here represented by * (kappa) is the same which, in the preceding

chapters, has by mistake been represented by k, and which is denned on p. 24. The k of Chapter
VII 1 is, therefore, not the same with that of preceding chapters.



ON Till] ORBIT OF URANUS.

INTRODUCTION.

THE connection of the planet Uranus with the most brilliant astronomical

achievement of the century lends a peculiar interest to its theory. The researches

of Adams and Le Verrier showed that the observed motions of that planet wore

represented, at least approximately, by the action of a theoretical planet having
the longitude of Neptune. 1'eirce showed that the action of Neptune itself

accounted for these motions within the limits of possible error of the observations

iiM-d by Le Verrier. It remains to be seen whether the agreement between theory
and observation still subsists when the comparatively few observations used by those

invotigutors an' reduced with the more refined data now at our disposal, and when
the great mass of additional observations made both before and since the date of

Le Verrier's researches are included.

The circumstances connected with the discovery of Neptune have been so

exhaustively recounted by a number of authors that it would be difficult to add

anything not already familiar to astronomers without transcending our present

limits. I shall therefore confine myself to such an account of previous researches

on the theory of Uranus as may give an idea of their nature and extent, and facili-

tate their comparison with the methods and results of the present investigation.

The perturbations used by Bouvard in his tables are those of the Mecanique
(Vlrste. Although not affected with any striking error, the numerical methods

adopted in their computation are necessarily too rough to allow of much interest

attaching to their comparison with the results of the more recent researches.

It is essential to a clear understanding of subsequent researches that we classify

the methods which have been or may be adopted in the computation of the

general perturbations of the planets. This computation comprises two distinct

operations: (1) the development of the disturbing forces, or some quantities of

which these forces are functions ; (2) the integration of the equations of motion

under the influence of these forces. In each of these operations three methods

have been employed.
In developing the perturbative function, we have first the purely analytic method

iKcil
liy the great geometers of the last century. In this method this function is

developed in powers of the eccentricities and mutual inclination of the orbits of

the two planets, and the numerical coefficients are found by substituting the values

of the elements in these expressions. It is only applicable when the eccentricities

1 March. 1873.
( 1 )
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and mutual inclination are small, and has for that reason fallen, of late, into a

certain disrepute. The extended tables published by Le Vcrrier1

have, however,

added so much to its facility for use that it is not wholly unworthy of attention.

At the other extreme stands the purely mechanical method, in which special

values of the disturbing force are computed for many combinations of the mean

anomalies of the two planets, and the values of the coefficients in the general

expression for the force thence deduced.

Between these two stands what I conceive we may designate as the Cauchy-

Hansen method, in which the development is made mechanically with respect to

the one planet, but the eccentric anomaly of the other is retained as an undeter-

mined quantity. The germ of this method is found in several papers, by Cauchy,

in the earlier volumes of the Comptes Rendus of the French Academy, which have

since been combined into a homogeneous memoir by Puiseux. 2 The object had in

view by these authors is only the computation of inequalities of long period. But

Hansen has taken up the essential principle of the method, first, in his prize memoir

on the perturbations of comets, crowned by the French Academy of Sciences, about

1848, and afterwards in his "
Ameinandersetzung einer zweckmassigen Methode zur

Berechnung der Storungen der kleinen Planeten"* and applied it to the general

development of perturbations.

Among the three methods of integration, the first in point of analytical elegance

and generality, but the last in order of convenience in use, is that of the variation

of elements, a method with which the name of La Grange is inseparably associated.

In the second the direct integration of the differential equations which express

the perturbations of longitude, latitude, and radius vector is effected by special

devices.

In the first of these methods the problem is presented in this form : The equations

of motion being completely integrated for the action of the principal forces only,

how must the arbitrary constants of integration vary in order that the same expres-

sions may represent the motion of the planet under the influence of the disturbing

forces'? In the second method, the same thing being, presupposed, the question is,

what expressions must be added to the integrals of undisturbed motion in order

that the sum may represent the integrals of the disturbed motion I

The third is Hansen's method, in which the co-ordinates are partly expressed in

terms of a certain function of the time known as the disturbed mean anomaly,

determined by the condition that the true longitude in the disturbed orbit shall be

the same function of the disturbed time that the longitude in the elliptic orbit is

of the simple time.

Although the last two methods have a great advantage over the first in the com-

putation of the periodic perturbations, I conceive the first to be best adapted to

the computation of the secular variations, and perhaps, of terms of very long period
in the mean longitude and the elements of the orbit.

1 Annales de VObservatoire Imperial de Paris. Tome I.

1 Annales de VObservatoire Imperial de Paris. Tome VII.

Abhandlungen der Koniglich Sachsischen Oesellschaft der Wissenschaften. Band V. VI, VII.
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In his researches on the motion of Uranus, tin- tir>t thing done by Le Verrier

was to re-compute the perturbations by Jupiter and Saturn. It will sufficiently

describe his method of doiu^ this to say that in the developments he used the

purely mechanical method fur the action of Saturn, and the algebraic development
of the perturbative function fur the action of Jupiter, while in the integration he

u>ed the. method of the variation of elements. After completing the perturbations
of the first order he made the earliest attempt at a complete determination of those

of the second order. Beginning with the terms of this order which arise from the

M-culur variations of tin- elements, he determines them by recomputing the terms

of the lir>t order for the epoch 'JoOO, and assuming that the general term will then

be given by interpolating between the two terms thus found, supposing them to

increase uniformly with the time. This proceeding has the sanction of such high

authority that it is worth while to call attention to its want of rigor. The dif-

fi Tcntiul coefficient of each element being given in the form

da ,= K COS It,

k 1 ing a function of the elements, the perturbation of the first order will be

a =
i

sin bt.
b

"When we take into account the variation of /r, and suppose it of the form k -J- k't,

the process is equivalent to supposing that in this case

fc+tt?a = - - sm bt,
o

whereas it really contains the additional term,

'

which appears to be neglected in the process in question. It will be seen that the

neglected coefficient is equal to the secular variation of the term during the time

that its argument requires to increase by an amount equal to the unit radius. It

is therefore the more important the longer the period of the inequality.

To obtain the periodic terms of the second order Le Verricr begins by determin-

ing the ten principal terms of the perturbations of the elements of Saturn produced

by Jupiter. Next he takes up the terms in the mean longitude of Uranus which

depend on the square of the mass of Saturn. The only sensible terms he finds are

1".17 sin (* 30 0".35 cos (' 3)
+ 0-.43 sin (" 4f+ 4^ OV21 cos (" t + 4),

. and *

being the mean anomalies of Uranus, Saturn, and Jupiter, respectively.

The terms depending on the product of the masses of Jupiter and Saturn are then

taken xip. Fifteen arguments arc found the coefficients of which vary from a

small fraction of a second to one or two seconds, while a single one of long period

amounts to 32".

When the method of variation of elements is used, it is necessary not only to

determine these variations to quantities of the second order, but, in the transforma-

cosfc,
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tion of the perturbations of the elements into perturbations of the co-ordinates, to

carry this transformation to terms of the second order also. This Le Verrier avoids

by showing that the terms of the lowest order with respect to the eccentricities

thus introduced are destroyed by certain terms in the perturbations of the elements,

so that it is only necessary to omit both classes of terms. These terms are of that

fictitious class which disappear of themselves by a simple change of elements.

When, instead of the eccentricity and longitude of the perihelion, we take h and k,

which represent the products of the eccentricity into the sine and cosine of this

longitude respectively, these terms disappear of themselves both from the perturba-

tions of the elements and of the co-ordinates. It is not likely that any of the

neglected terms of this class exceed 0".l.

As soon as the elements of Neptune were known, the nature of its general action

on Uranus became of interest. This subject was taken up by Prof. Peirce, whose

results are found in the Proceedings of the American Academy of Arts and Sciences,

Vol. I, pp. 334-337. This paper is accompanied with a comparison of his theory
of Uranus with observations, to which similar comparisons of the theories of Adams
and Le Verrier are added. This comparative exhibit is of sufficient interest to be

given here. The numbers given are probably excesses of computed over observed

longitudes.

RESIDUAL DIFFERENCES BETWEEN THE THEORETICAL AND OBSERVED LONGITUDES OF URANUS,
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but witliout any dt tails v/liatcvor of tin- investigation, or any statement of the

method* cni[>lM\t (!. 'Hit- miniitnie.vs of the residuals in the last column of the

preceding table slums that employing these perturbations by Neptune, and those

of Le Verrier by Jupiter and Saturn, we had a theory of Uranus from which quite

accurate tables might have been constructed. But this never seems to have been

done. The ephemeris of Uranus in the American Nautical Almanac was intended

to be founded on this theory, but the proper definitive elements do not seem to

have been adopted iii the computations, as the ephemeris does not correspond with

the theory.

Although twenty-ti\e \ears have elapsed since the epoch of these researches, I

am not aware of any published work of importance on the theory of Uranus during

the interval. Mr. T. II. Safford has, however, made a very extended investigation

of the subject, but has published nothing more than a brief general description of

his work, which may be found in the Monthly Notices of the Royal Astronomical

Sori. ty. Vol. -J-J. Like Professor Peircc, he took Le Verrier's perturbations by

Jupiter and Saturn, but, instead of using general perturbations by Neptune, he

computed the effect of the action of this planet by mechanical quadratures for the

whole period of the observations of Uranus, and thus corrected the elements and

the mass of Neptune from modern observations alone. The mass in question

deduced was

1-

30039

Mr. Safford does not give the representation of the modern observations, but pre-

sents the following comparison of the ancient ones, alongside which we place for

comparison the corresponding numbers of Peirce's theory and those of the present

investigation.

EXCESS or OBSERVATION OVER THEORY.

Pelrce. Newoomb.

0".8 11"

8.T 8

'}
+2.9

4.0

+ 6.0 1.4

Date.
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CHAPTER I.

METHOD OF DETERMINING THE PERTURBATIONS OF LONGITUDE, RADIUS
VECTOR, AND LATITUDE OF A PLANET BY DIRECT INTEGRATION.

LET us conceive a plane determined by the condition that it shall pass through
the sun and contain the tangent to the orbit of a planet at any moment. If the

planet were acted on by the sun alone, the position of this plane would be invariable,

but, under the influence of the disturbing forces of the other planets, it is subject,
at each instant, to a motion of rotation around the radius vector of the planet. We
may regard this as the instantaneous plane of the planet's orbit. The disturbing
and the disturbed planet will each have its own instantaneous plane.

Let us now put :

u, the longitude of a planet counted from a determinate point in the instantaneous

plane of its orbit.

v, its distance from the node of intersection of its own orbit with that of another

planet.

y, the mutual inclination of the two orbits.

a, sin | y.

r, the radius vector of the planet,

p,
its logarithm.

jU,
the attractive force of the sun upon unit of matter at unit distance.

a, the mean distance corresponding to the observed mean motion of the planet,
determined by the condition

_ (U(l+7)
n'

m and n being as usual the mass and mean motion.
aa , the value of a corrected for the constants introduced by the perturbations, so

that, as in the elliptic motion, we have

p
= log +/(/, e

, cr),

we shall have in the disturbed motion

p
= log a -\-f (?, e, d) -\- periodic terms only.

a15 the mean distance of an outer planet, whether it be a disturbing or disturbed

planet.

, the logarithm of a.

a, the ratio of two mean distances, taken less than unity.
H, the perturbative function.
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h, the coefficient of any term of "'- A', so that we havem
n * 1 h xrIt = 2 - cos N

i

m' Ix-ini; here the mass of the disturbing planet.

X, -the mean distance of the planet from the node, or the mean value of V.

u, the distance of the perihelion from the node.

/, the mean anomaly.

/, the mean longitude, or the mean value of v.

4, the aii^le of eccentricity so that e = sin >//.

r,, the radius of the planet in the undisturbed ellipse.

r,, the quotient of r divided hy the mean distance, which is a function of the

eccentricity and mean anomaly only.

T, the time alter the epoch Ib50, Jan. 0, Greenwich mean noon, counted in Julian

centuries.

v, the integrating factors of the periodic terms, or the ratio
, JVbeing the change

of the angle in unit of time.

/, the eccentric anomaly, and, in the tables, the argument of latitude.

\\ - have for the value of R

R= -- .-
(cosvcosv'-l-sinvsinv'cosy)

V r
1

I?/-/ (cos v cos v'-l-sin v sin v'cosy)-}-/*
f*

or. if we suppose r replaced by its value in
p, namely

r=c'
ire sliall have

R n,'f (v, V, p, p', y).

AVith tliis value of R it is well known that the differential equations for the longi-

tude and radius vector of a planet are

j " '
i r V T__i

(//" </<* r

. rfH? </r <7w_ 5/2

</<* dt dt 6v
'

If we multiply the first of these equations by 2 - ^ and the second by 2 ^ and
ctt ctt

add them together, putting, for brevity,

and then integrate, we shall have
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C being the arbitrary constant added to the integral. -Adding this equation to the

first of equations (1) we have

Let us now represent by r that elliptic value of r which satisfies the equation

<^(r
2
) p(l+Q~ ~

Subtracting this equation from the last we have

-

(9p

- \

>

in which no constant is to be added to the integral, and both sides of the equation

are of the order of the disturbing forces. As there is a decided advantage in taking

the logarithm of the radius vector as the variable instead of r itself, we substitute

for the latter its value

and put

Then
=

p p
.

=c = r c = etc
.)

1
(r

2 - r a
)
=

?yfy + 7-
2V -f etc.

1 1 Sp fy
2

.- = -- '- 4- etc.
r r r 2rQ

'

Substituting these values in the above equation, carrying the development only to

terms of the second order, and transposing those terms to the right hand side of the

equation, and putting p ^ (1 -j- TO), we find

an equation which gives the perturbations of radius vector.

The general mode of solving this equation by successive approximation is familiar.

The principles on which the successive approximations are made being the same,

we shall begin by assuming that we have obtained first approximations to the values

of 5v, 5V, $p, <5p', 5y, and that from these we wish to pass to a second approximation.

We must first carry this approximation into the functions of R in the second mem-

ber of (4). To effect this we must show how, from the development of R in terms

of the elements and the time, we may form its successive derivatives with respect

to the quantities which enter into it. H, while originally a function of v, V, p, p',

and y, is, in its developed form, a function of a, X', o, u', e, e\ , ,'
and y, the

development being effected by substituting for the first set of quantities their

values in terms of the second. The substitution is as follows :

(5)
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F(j being the equation of the centre, and
</>//

the part of
p depending on the eccen-

tric ity in the elliptic motion. It follows that if we express the developed expression

for R as a function of X, X', g, g
1

, , rf, which we may do by putting

<j = X g, G'= X' g
1

;

9 I
rf '.

we shall have by successive differentiation

//,' dR dv dR
<9Jt dv d*. dv

6V <3v' ^ ,'v
2

f-lt dR dp < R (6)

dr> dp dr>
~

/y

d /-"It
'

dp* dr>~ ('
,;-

etc. etc. etc.

and in general

d\m dp* dv"*'dp*

Thus, by expressing the developed R in the above form, we may find the derivative

of any order with respect to v, v
1

, p and
p, by taking the corresponding derivative

with respect to X, X', and '.

The developed R is usually expressed in the form

R= I cos(W+ tt +/'J +j")

a, being the mean distance of the outer planet, whether disturbing or disturbed,

and h a function of e, <!, a, and y. Substituting for w its value in g, this equation

will become

Putting for brevity

the formulae (6) give

a,

=-2 **(.'+ co. Jf (7)

and in general

5--"'A<

a, cos

March. 1873.
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The formation of the derivatives in the second member of this equation demands

attention. In the analytic development of the perturbative function each value of

h is composed of a series of terms each of the form

EX A,

E being a function of the eccentricities and mutual inclination, and A a function

of a of the form

r)t>W i /3W 2*+2n-l -OB7(0

(0)a'-^> + (l)a^
l^ + (2)a'+^^+etc.+a-^^, (8)

(0), (1), etc., being numerical coefficients connected with the coefficients F1 *' tabu-

lated by Le Verrier, in Tome I of his Annales de 1'Observatoire, by the relation

/ \ _ _"

O.37..M
5

and I'? being, as usual, the coefficient of cos
i<p

in the development of

in multiples of cos <>, and n 1 the sum of the exponents of the eccentricities in E.

It would have been much more convenient if in effecting this development the

derivatives of 6 ( *} had been taken with respect to instead of a. In fact the

derivative - when expressed in terms of the derivatives with respect to is of

the form
/57>(0 (9JW cW 1')

., _ ?_ I y> L_ nfp _I_ n' &1 * I
ltj1 * o CwV ^^ /C

1;

Therefore, when expressed in terms of the derivatives with respect to *>, A will

be of the form

/ <%(0 <9W \

a-*
( (0)' jco + (iy ^- + (2)'^f + etc.

),

dA d2A .

from which the derivatives- , -v-g->
etc., may be found with great facility.

As in the actual developments of R which we possess, the values of A are given
in the form (8), we must find the expression for the first two derivatives of its

several terms with respect to
, which we easily do by the application of the sym-

bolic formula?

D *= aD

Beginning with the case of s = i, we have

da
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***)
, + !

consequently we have for the derivatives of A from formulae (8)

!a*
,* -|- a

1

,' )-f-
etc.

(9)
'' '-1 / r'i'i" <9

!6 (.\ / (9i
(
, ^ftf ^i^X= (0) ( a v |- a* ,-

) -f- (1) ( a f- 3a* 1 1- a* - -
j-j- etc.

The derivatives of A being formed in this way, those of h are immediately
deduced from the equations

hen a is equal to |, A is of the form

a OTt + (!) ^L + (2)VfL + etc.}^a ^a*

'1'lie quantity within parentheses is of the same form with A, in the case of *= |.

If we represent it by A we shall have

PA dA'

^ ^
4' being the same form with A, the derivatives

:
- and ^-^-

will be of the form

(9), substituting | for the index J, and (0)', (1)', etc., for (0), (1), etc.

IP the case of = | the derivatives are obtained in the same way, which is too

simple to need elucidation.

We have now to pass from the derivatives of A to those of -, the coefficients

i

of the perturbative function. The form of these derivatives will depend not on

whether the planet is disturbing or disturbed, but on whether it is an outer or
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inner one. Let us then suppose for the present, that a and refer to the inner

planet, and put ,
for the logarithm of the mean distance of the outer one. We

then have for the derivatives relatively to

<5"A
cti 1 8n

Ti

and for the first derivative relatively to , using the symbolic notation,

The symbols in the second member being distributive, we have by successive

differentiation

The quantity A is a function of a, the ratio of the mean distances or of ' % G

being the neperian base. Hence

D^h = D,h,

which substituted in the last equation gives

(10)

This formula gives for the first two derivatives

,

IH<*+ "'

Substituting in the general formulae (7) these expressions for the derivatives

relatively to and ^ we have expressions for the derivatives of E relatively to

v, V, p, p',
it being understood, however, that all the quantities are expressed in

functions of the elements of elliptic motion.

In order to compute the perturbations of the second order we must carry R and

such of its derivatives as enter into the differential equations (1) to quantities of

the first order with respect to the perturbations. Let us then represent by v
,
v

',

p , p' , y ,
the elliptic values of v, V, p, p',

and y, which we have assumed in the

Jirst approximation to the perturbations, and by 5v, 5v', etc., the quantities to be
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milled to v
, v,;, etc., to make the true values of v, V, etc., whether perturbations or

corrections of the elements. We shall then h;i\r

v/> "o tv I ".,
I./ i f-o JU _1_ ^"o t '

I
<

OZt = ^ OV -f-
- - ()V -j- dp -r-

, dp H
, \- A\r J3_'<?v

ffl <?p,

\

'

'
a

&v -i- iv'4-
^ ^

5o 4- ^*-^<> X>'_1
C7"-n (^

r\
"

~5V *
<'^,/\ r'\/..

' "

,'\,V.
'

,'\/.. '/

. C?/iJ 5^ ... , d^
" 1

==

<?p

The value of U^R may be found either by equation (2), or by differentiating with

respect to the time as introduced by the co-ordinates of the disturbed planet.

When quantities of the first order only are considered the latter operation is very

simple, but it is different when terms of the second order come in, because the true

longitude of the planet is then expressed in terms not only of its own mean longi-

tude, luit also of the mean longitude of all the disturbing planets. The result can

still be obtained in the same way by separating all the mean longitudes introduced

by the co-ordinates of the disturbed planet from those introduced by the co-ordinates

of the other until after the differentiation relatively to (.

Let us now resume the equation (4), representing its second member by ^<J, so

that it becomes

where

I!y the operations already given Q has become a known function of the time.

It is well known that the integration of (12) may be effected by finding two

values of ra
s

5p which satisfy this equation when the second member is neglected,

or, in other words, by finding two variables x and y which satisfy the equations

r J

rfr

when the required integral is

Ml~
*fyQ

The above differential equations are satisfied by the rectangular co-ordinates of the

planet in its assumed elliptic orbit. The position of the axes of co-ordinates being

arbitrary we shall take the line of apsides for the axis of X, the perihelion being
on the positive side. If we put

^= sin ij,,

we have

I/(l -|-TM)COS1J/
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Let us, for convenience, replace x and y by two other variables and n connected

with them by the equations
x a^

y = an cos 4".

and v; are then functions of the eccentricity and mean anomaly only, and may be

developed according to the multiples of the latter. Substituting the last three

expressions in the preceding value of r 2

<5p
it becomes

If we put r* for the value of r when the mean distance of the planet is put equal

to unity, so that rl5 like and Y/ contains only the eccentricity and mean anomaly,

we shall have

}
(13)

We must now express and YI
in terms of the time, or of the mean anomaly.

Putting for the present u for the eccentric and v for the true anomaly, we have,

by the theory of the elliptic motion,

x = r cos v = a (cos u e),

y = r sin v = a cos ^ sin M,

from which follow

= cos u e,

vi
= sin u.

As and YI
are to be expressed in the form

= | Ip t
cos ig,

= 'Z sin

the finite integrals extending to all values of i from oc to -}-cc, we shall deduce

general expressions from p t
and qt arranged according to the power of the eccer-

tricity. Since

u = g -f- e sin u,

we have by Lagrange's theorem

cos u= cos g e sin
2

g

or

using the notation

We then have

r

n\ = 1.2.3 n= F(n + 1).

0! = 1! = 1.
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in the general term of the above scries for sin g its value in imaginary

exponential functions

2 sin = i/ IT (c~'
s/-ri c*^~-i)

we find by the binomial theorem, using the notation of combinations,

', n( I) (n + !) n!

1.2.3. ..

_
1)- tfc< U*^

_|_ (_
n+l

*=i \

j

Differentiating n 1 times with respect to g, and putting together the first and
la>t terms, the one after the first, and that before the last, and so on, we find

C(n I)"-
1

(c<
"' "=

-[- <r<"-1 )'^) + etc.
+i

Sul)stituting for the exponentials their values in circular functions, and dividing
1>\

%

J"+1 we have

9*-' sin"+1 fl 1 f >

(u + 1)-' cos (n + \)g-C(n - I)-
1 cos (n

- \)g
<

ij A \ +!

+ C(n 3)' cos (n 3) or etc. 1
*f )

the series terminating at the last positive coefficient of g. Substituting this last

value in the general term of the scries which gives cos , we have

COMu=T *
{(n+l)"-

1

cos(n+l)(7 -C'(M-l)-1 cos(-l) flr+etc. 1
n-o n I f, ( 4 1 J

Let us now substitute for n another variable i, putting in the first term of the

tactor t = n -(- 1, in the second i= n 1, in the third i= n 3, etc. The
limits of finite integration with respect to i will then be

in the first term, -f-1.
to -j-oc,

in the second term, 1 to -\-cc,

in the third term, 3 to -|-oc,

etc. etc.

But all the coefficients of g will then be t, and the formula supposes the factor of

cos ig to vanish whenever t is zero or negative; whence, those elements of the

finite integral in which t is negative must be omitted, and all the terms must be

taken between the limits -|- 1 and -f- oc. Making the proposed substitution we
have
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cos u = . cos

COS

*

We have, therefore, for all values of i different from zero

etc. 1 (14)

To obtain the value of p we remark that the only constant term in cos u arises

from the term esin2

^; its value is therefore \e. The constant term in

= cos u e is therefore | e, whence

jp
= 3e. (15)

The values of qt may be obtained in a similar way by developing sin u by
La Grange's theorem. But the development is rather more complex, and it is

easier to derive them from p {
. Let us take up the equations

= cos u e

Y!
= sin u

u e sin u = g

Considering u, like and vj,
as a function of the independent variables e and g, we

have by differentiation

du d (e sin w)

de de
=

du 6 (evj) sin

Comparing (a) and

'

de de 1 e cos u

du_ I

dg 1 e cos u

du _ du <9 8u _
'de dg~ du dg

~

(a)

Putting in this equation for and n their developed values this equation becomes

2 ip, sin ig =2 ^^ sin ig
de

vhich gives by equating the coefficients of sin ig

^it \JPide. (16)
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The following are special \alm s of
y/_ and qt , developed to tne sixth power of

the eccentricities, as derived from the preceding formula-:

3 :> 7
1*1

~~ * a e
I ici.)

C ooi<:^

1 11
l>2- 2

e -
3

-

\-
l(
.c

_3 I.'.

m*

-.
,

4375

-384
-"

.

46080
C

27

80

16807

(16)'
1 1

4
1~^ ~ "

1 1,1

_3 27 243
3
~ ~ C r e

4

I-'/

125
4 _3125*~ C
"9216

27 ,

*=8(/
_ 16807

27
=~

46080

Having the developed and >? in terms of time, let us resume the equation (13).

As only purely linear operations are performed on Q in this equation, it follows

that if we represent its several parts by Qt , Qt, etc., and by fy>,, ip^ etc., the values

<*p
obtained by putting Q = Qlt Q = Qt, etc., we shall have

fy
=

fy, + fy,+ etc.

^'' liave, therefore, only to find the separate values of r
*fy> corresponding to the

different terms of Q, and to take their sum. Let us then represent, as before, by

h cos (W+a +/u'+jb)
i

any one term of R.
3 April. 1873.
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We then have, considering only terms of the first order with respect to the dis-

turbing forces,

xv T> m'ihn xrV
t
R= -smJV, 17

,

! k r

r, m'lhv T.T

t
R= cosJv;

dR ,
a

t T= m - cos N;

where we put for brevity,

fri -f- in

Let us represent by $ the terms in Q which are of the first order with respect

to the disturbing forces, so that we have

The general term in R will then give rise in Q to the term

*V
~d^ J

cos N.

In the case of the action of an outer on an inner planet this expression becomes

m! /m ( n -
-L ,

on
( 2vA -\

----

a, \
r dv

xr
cos N;

while in the contrary case it is

both derivatives being taken with respect to the logarithm of the mean distance

of the inner planet.

In the integration it will be more convenient to substitute for % and /I the mean

longitudes counted from the perihelion of the disturbed planet. If we put

the angle N will become,

Since corresponding to each set of values of i' and i there are several values of/' and

y, it will be convenient in the numerical computation to combine these different

terms into a single one, because after forming the derivatives of R there is no need

that o, a' and the other elements should appear in an analytical form. If we put
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t for the coefficient of cos X in the preceding general term of <?, this term will
u

i

Decome

Q = - k cos [/'+ (?+ ,' +j) ] cos [,Y+ y]

m 'm
k sin (jV+ (i*+ +J) w] sin [iY+ ig\

i

If we put
fc X*flM[/
*, = 2 k sin [/'

tin- Mii 2 ln'intr extended so as to include all values of j and j' which correspond

to tin -,'ivcn values of i and t", we shall have for the general terms of Qa

*
\ k, cos (iY 4- <?) + k. sin (*Y+ iy) 1 ,

i (

nr, when w<> represent the angle HI' -\-\ij by JV,

Tliis we are to combine with the values of and

Z = l2pt cost*?,*

in the general integral formula (13). If we substitute them in this formula, and

n-pivs. 'lit by [i
the coefficient of t in the value of N we shall have to integrate

diU't -rciitlals of the form

in \\hieh the coefficient of the time t in the angle is
/* -j- *'** IjCt U8 represent by

). the integrating factor

Tlie formula (13) will become by these substitutions, which, though a little con>

|)lc\, offer no difficulty,

* +*

\v+J-v+l \

Tlie sign 2 of finite integration here includes the separate combination of every

value of with every value of /, except those combinations which make the

* The indices t and/ in these equation*, are not to be confounded with the coefficients of x and

In the general terms of B and Q. We need not use the latter at present.
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coefficient of the time under the sign sin or cos vanish, and so render the corre-

sponding value of v infinite. These cases have to be treated separately.

To find, from the expression, the coefficient of the sine or cosine of cosine N
L -{- ug

in r*$p, we put, in the four lines of this equation, as follows:

In the first, i-\-j=u .-.j= u i;

"
second, i j= u . . j= i u

;

"
third, i -\-j= u . . j= u -\- i ;

"
fourth, i j= u . -. j u i.

In the above expressions i and j being independent, and including all values

from oc to -f-oc, i and u will also be independent, and include the same range

of values. Substituting for j its value in u the coefficient of

1 m'a r7
"

becomes
16a L (l -f TO)

[k. cos (JV; -f ug} -f Tc, sin

Pi

+Pi ?<*-> ("i "<-<>)

this expression reduces immediately to

l^w >(" "< o)

Since =

or, substituting i u for i in the second line

22
Hence, writing N instead of

. __ _ c (19)
o Ctj( 1. I 771)

This expression fails for the particular case N= ug, where the value of v_u will

be infinite. If we take each term of Q of the form

m
a,

cos ug -\- A sin ug),

and substitute in the general expression (13) it will be found that the terms in rffy

which have the infinite values of v as a factor are to be omitted, and replaced by

, t i m'ant < 1M ^~ 1Mi ,-OAN
rl oo =. 5 p?*.P*i C*2" I \^v)

The two parts of r,
2

5p
thus found include all the terms of the first order with

respect to the disturbing forces. But when terms of the second order are taker

into account, we shall find terms in Q proceeding from secular variation in whicl

the time appears as a factor, outside the signs sin and cos. Let us represent sucl

pf these terms as depend on any angle JVby

= (kc cosN+ Tc, siu N)
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ami MM- the symbol > as before, to represent the ratio of the mean motion of the

planet to the coefficient of t in tin- angle N-\-ig, so that if
/u' represents the

coefficients of / in \ \\e Iia\e

V = n

\M find the expression

' '''"
"',,~,r {

(''* /'-.- l''*V<Oc

(i-,

1
*.+ vfcnt) sin (N-}- ig) + (vl* It. + r_,*.0 n (JV- t

r//,-c
-

,./-./) sin (JV -\-jg) (v^c. v^.nt) sin (N- m

v *
1
''. + 'A') C08(tf-fy^) -f (vljc.+ v_/.-cnO cos(N-j'g) 1 .

If we now put for brevity

r?l; -\- vjtjit = cit

v?k, rjf.nl = 8H

the ireneral value of r,
2

(Sp
becomes

. 1 n'arr* x

(c. -ct ) cos (.V+(;+/) */) + (/., -, )sin(^+(+y) i/)]

(c, O cos (N-(i -j)g) + (_,-> )sin(iV-(i y)7)

.< c_j) cos (iV (i -\-j)g)-\- (s-j _<) sin (N (i-\-j

If, as before, we transform this expression by putting

in the first line j= u i ;

in the second "
j= * ;

in the third "
/=*+;

in the fourth "
j= i '

the value of r,
l

fy reduces to

1 Wl'rt

X

- cos
g

or, putting t for i in the last lino,

_
i

=

- c') cos ' -') 8in
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to which expression is to be added, in lieu of the terms which will have infinite

values of v as a factor.

mar - ,
(tt)

* (22)

being the factors of nt cos ug and nt sin ug in the expression]c
(y and

for Q.

The formulas 19, 20, 21, and 22 give the complete expressions for the perturba-

tions of the logarithm of radius vector by successively substituting in it all the

terms of Q.

Perturbations of Longitude,

We now pass to the perturbations of longitude. In the Mecanique Celeste

(Premiere Partie, Liv. ii. Chap, vi.), Laplace gives an equation (Y) by which the

perturbations of longitude, which are of the first order, may be derived from those

of the radius vector without the formation of any other derivatives of R than those

which enter into Q. But the formula does not seem easily adapted to the case in

which the perturbations of the second order are taken into account, we shall

therefore derive all the perturbations of longitude from the second of equations (1).

By integration this equation gives

dv

C being the arbitrary constant of the integral. Representing, as before, by sub-

script zeros the values of the co-ordinates corresponding to the ellipse to which the

orbit is supposed to reduce itself when the disturbing forces vanish, we have

dv a?n cos 4 _ [i
C

~Jt ~,T2 ~72~'
'0

because the constant to which the integral must reduce itself in the elliptic motion
2 1

08
^. Subtracting the last equation from the preceding, and puttingis

v v = Sv, we find

d8v
-jTdt idv

1 1\ 2

r*-^)
a cos

Developing _ to terms of the second order with respect to the disturbing force

which, being substituted in the last equation by putting

1-fm
~r

gives
an' - n cos -

' dt ~l+m.v

which is rigorous to quantities of the second order.

(23)
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The most convenient mode of making the numerical computation of the second

tinhr terms by means of this equation will depend upon ei re n instances. If the

perturbations of longitude and radius vector of both planets are already known with
a sufficient degree of approximation for the computation of formula (11), it will be

more convenient to form at once the complete \ allies of all the quantities which

enter into the equations (lv>), (l:J), (19) to 22), and (23), so that no steps of the

process shall have to be repeated. If such perturbations are not known, they
must first be computed, and it will then be necessary to begin with the perturba-

tions of the lirst order, and afterward add those of the second. There is, how-

e\ t r, one class of terms of the second order which it will be most convenient to

take account of from the beginning, namely, those arising from the constant term

in
A()

and y. This is (dec ted by correcting the mean distances for an approximate
value of these constants at the beginning of the computation, and then proceed-

ing in the usual way. 'I'll is is in fact what we have supposed to be done in the

preceding investigation. The values of iv, iv
7

, ip, ip'
in formula (11) will then

contain only periodic terms.

In computing the terms of the first order we determine the value of ip from the

equations (19) and ('20), using the value of Q9 in (18). Then those of v are

obtained by integrating the equation

d&v awVf
1
CdRo,. . fy=

l + mJ 5F*"*1

"**?'
1 1 \ ing found the values of iw and ip

for both planets, they are to be substituted

J5 15 *!) ^?

in (11), to obtain &R, i - and i - -. But, rigorously, iv and iv
7

arc not the
<9v dp

same \\ ith Aw and it/, owing to the movement of the orbits of the planets, and the

corrections for iy are also to be added. Considering, for the present, only the

perturbations of the second order, which depend on it), it/, ip,
and

ip',
we may

n M- the following equation for i.R, and similar ones for its derivatives:

f)Tt

Havinir thus found i.R, and hence U^R by differentiation, and then i , we form
op

the quantity

which is the difference between the value of @ in (18) and that of Q in (12).

The terms in
Sp arising from i@ are then to be computed by the formulae (19),

(20), (21), and (22), when we shall have ip
accurate to quantities of the second

order. Let us represent these additional terms by d*p. Subtracting (24) multi-

plied by r,
1 from (23), recollecting that the ip

which appears in the second term

of the former is really ip i*p,
we find, neglecting quantities of the third order,

= '

{ f i
**

dt - Mp/'.
ff" dt

}
- 2n cos * (i'p

-
at 0v dv )
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from which the terms of &v of the second order are obtained by multiplying by

r,~
2 and integrating.

Motion of the Orbital Planes.

The general theory of the motion of the planes of reference, especially of the

motion of the instantaneous orbit, has been so often treated that I can scarcely

hope to add anything essentially new to it. I shall, however, endeavor to pre-

sent the differential equations of the motion in a simple and general form, and

one in which the geometrical conceptions of the problem shall be made as clear

as possible.

The orbital plane of each planet being at each moment osculatory to that part

of the orbit which the planet is actually describing, its only motion is one of rota-

tion around the radius vector of the planet as an instantaneous axis. This rota-

tion may be resolved into two others around any pair of rectangular axes fixed in

the moving plane. But the rotation produced by any one planet is most simply

expressed when referred to axes, one of which coincides with the common node of

the two orbits. The rotation produced by each separate planet must, therefore, be

first referred to its node on the moving orbit, and then the combined rotations

must be resolved into two around axes assumed at pleasure. To effect this, let us

suppose positive rotation around an axis to be such that an observer looking from

the origin along the positive direction of the axis sees the right hand side of the

plane move downwards, and the left hand side upwards. Let us also denote the

first axis in the order of longitude the principal axis, or that of X, and that 90

farther advanced the secondary axis, or that of Y. Let us now put

<7g,
the instantaneous rotation around the axis of X;

dp, the instantaneous rotation around the axis of Y. Let us also put, relatively

to any disturbing planet,

<Z>7, the instantaneous rotation around the ascending node of the disturbing planet

on the orbit of the disturbed one.

dk, that around the corresponding secondary axis.

Then, from the known equations for the perturbations of the inclination and

node of an orbit, we find, that, if any term of the perturbative function be repre-

sented, as before, by
m '

h
cos (fll'-l-

a.

the differential rotations y and /.; will be given by the equations

co cosec r sn

dk m'an dh Ar= -- cos N.
at

!
cos

As R is actually developed, the mutual inclination y docs not explicitly appear,

but is replaced by
a = sin \ v.
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;ikin^ this substitution, and putting also

these equations become

dy man \ ih .. .. , ) .
- '= - 4-( -4-i)a?i \ sm N
dt t/

t cos 4, cos $y I la t

(27)
<// I/I'IIH cos ly 6h xr

. = ^-
*' COS.Y.

</< 2^ cos 4> da

'!'( pa-s to tli. general rotations
</j>

and dq, let us represent by 0,, fc etc., the lon-

gitudes of the ascending nodes of the several orbits of the disturbing planets on
that of the disturbed planet. We shall then have

dk
(

r

(28)

Tliese equations completely define the instantaneous motion of the orbital plane.

Tln-y cannot, however, be rigorously integrated in their present form because p
and

</
as integrals have no completely defined signification. To do this it is ncces-

to express the differential rotations dp, dq, etc., in terms, of the differentials

of any rlnm-nts we may select to define the position of the orbital plane, and then

to integrate the equations thus formed. But, for the purpose of constructing tables

of the planets we may consider p, q, etc., to represent small rotations of the planes
of \vliirh the powers and products may be neglected, and the integration is then

quite simple.

/' -turbatioru o//7te second order depending on the motion o/ tlve orbital planes.

/i
1

being a function of the five quantities of r, r', v, v*, and y, the motion of the

orbital planes introduces terms of the second order by changing the values of v, V,

and y. These terms we have hitherto neglected. To investigate them let us refer

the rotations of both planes as given by (28) to the node of the disturbing on the

disturbed planet as the principal axis. If we represent by dri,dk, dy, and dM the

rotations corresponding to this axis, and designate by the subscript 1, the quantities

which refer to the disturbing planet whose action we are considering, and by 2, 3,

etc., the other planets, the equations (28) will be replaced by these

*- +S ft-W *' -S sin (*_ *.

the summation commencing with i = 2.

By formula: of the same kind we are to find the differential rotations dy' and

dk of the orbit of the disturbing planet, produced by the action of all the planets.
4 April. 1873.
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These rotations will be around the same principal axis with the rotations dv\ and

dk, but around a secondary axis in the plane of the disturbing orbit, and therefore

making an angle y with the secondary axis of the disturbed orbit. A geometrical

construction will now show quite simply that the infinitesimal rotations &?, &7c, &/,

and (W will produce the following changes in v, V, and y.

&v = cot y&k cosec y&k
1

v'= cosec y%k cot y&k' (29)

If we substitute these values in the general formulae (11) the terms of the second

order added to &R will be

. dR

(30)

==

. dR- cosec / H-
- cot

The first two terms of this expression may be put into the form

dR. i SR dR
co -

dR .

(cosec / + co

But,

QR

cosecy + cot y = cot | y =

,

(cosec

.- cot y)

N ) s ,~ cot y}
\

cosec y cot y = tan i y = _
cos Jy

and in the general term of R, by (7)

5^2 m'%
, . . ... ,,

-r = -----
(t+ ? ) sm Jv

<9v a,
v-

Making these substitutions, and putting, as before,

the above value of &R reduces to

SR =~
\
i cot | y (Sfc MO -f (i+y i' / ) tan

wj'cosly 8h

+ j#) |
sin

(31)
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/ > '

/ *

T)..- corresponding terms of ,\

' '

and ,v
';

'

, and may be obtained in the same way
' \

dp

li\ substituting -
'

ami
' '

lor /,' in
(:{()) and continuing the corresponding sub-

stitutions of tlie general terms of the derivatives of R as given on page 9.

The equation (:H), besides being of the second order with respect to the disturb-

ing forces, is also of the second order with respect to the mutual inclinations. For

M", tW, 5>;, and br' are of the first order witli respect to both quantities, and, when-
( is not /ero, A is a quantity of the second order, containing a1

as a factor. It

is, then fore, only in exceptional cases that the terms of the second order depend-
in:,' on the motion of the orbital planes can become sensible.

of tfie longitude in tfte orbit to lo gitude on the ediptlc.

The integration of (23) givei a value of 5, which, added to the longitude in

orbit corresponding to the pure elliptic motion gives the longitude in the disturbed

orbit, counted from a fixed point in the moving plane of that orbit. The position

of this fixed point is completely determined by the condition that the instanta-

neous rotation of the plane in question around the axis perpendicular to itself is

always zero, so that the motion of the point of reference is always perpendicular to

the direction of the plane. But, although this instantaneous rotation is zero, the

integrated rotation is not rigorously zero when we consider the terms of the second

order. It follows that the value of r, the longitude in orbit, and the position of

the plane of the orbit do not rigorously determine the position of the planet: we
must also know how the fixed point of reference has changed its position in con-

sequence of the motions which the plane has undergone. Let us consider the

relative positions of this plane at two epochs. If the fixed point were equally
distant from the common node of the two planes, the integrated rotation of the

plane around its own axis would be zero. But, these distances not being equal,

their difference is a correction to be applied to the longitude of the planet in its

orbit. Suppose, now, that at the end of any time the inclination of the actual

orbit to the primitive orbit is
<p,

and the distance of its ascending node from the

present position of the moving axis of x is 0. A rotation around the line of nodes

will not change the quantity sought. But, if we represent the infinitesimal rota-

tion around an axis perpendicular to it by dr we shall have

cos
ttj>

sin dq = dr,

/7 and ilk being the instantaneous rotations around the respective axes of x and y.

I'.y
this rotation it is easy to sec that the relative distance of any two fixed points,

one on each plane, from the node, will be altered by the quantity,

dr (cosec <p cot $) = dr tan

the relative longitude of the fixed point on the moving plane being increased by
this amount. The correction to the longitude in orbit from this cause is, therefore,

dl = dr tan | $ = tan | $ (cos dp sin & dq).
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Counting the integrated values of p and q in a direction perpendicular to the

moving plane we have
. tan
sm Q = -

tan qcos = -

tan<|>

which, being substituted in the expression for dl, gives

cos $> ,, 7 , ,

dl =-- (tan qap tan paqj.
1

-f- cos
<p

The approximate value of the integrated correction is therefore

(32)

For every pair of periodic terms in p and q, such as

q s sin

will contain the secular term \ s
z

, p = s cos ;z,

,
which will be confounded with the mean

motion, and, if it were not so confounded, would in few or none of the larger

planets amount to a second in a thousand years. If the secular terms in p and q be

q = st ;p = s't

H will vanish. We hence conclude that these terms are entirely unimportant in

the present state of astronomy, and that, if we consider the positions of the plane

of the orbit at two epochs, we may consider the points of departure in them to be

equally distant from their common node.

We have therefore only to consider the motion of the inclination and node due

to the change of the position of the orbit and of the ecliptic. If we put

$, the inclination of the orbit of the planet to the ecliptic,

0, the longitude of its node counted on the ecliptic,

T, the longitude of the same node counted from the same fixed point in the

moving plane of the orbit from which v is counted,

Then, the longitude of the planet on the ecliptic, or Z, will be given by the

equation

tan (L 0) = cos
<p tan (v r),

or, when developed in powers of <>,

i = r _l_0 T + Z>, (33)

where D is the reduction to the ecliptic, the value of which is

D = tan2

$ sin 2 (v T) -f- J tan4

\ <> sin 4 (v T) etc.

Let us refer the instantaneous rotations of the orbit and of the ecliptic to the

fixed points of reference in the two planes; q being the rotation around an axis

passing through the sun and the fixed point, and p that around an axis in 90

greater longitude, and the accented quantities referring to the ecliptic. We then

have
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dtj>

-cos ft'*' -sin///'ft dt

= cosec* (-sin r
'% + COST

|| ) (34)

dr / . dn do
d(

=cot 4>(-smr rfj
+COST ^

-f-cosec<p( sinfl
J?

-coaO ?

If we differentiate (33) and substitute these values of - and
, we shall have

dt dt

,11. </, dD . / dp do . A

dt
'-

dt
+ ^r -tan|<j>(cosT .-**.+.* -n- (35)

If we consider only quantities of the first order with respect to the disturbing

forces, we may, in integrating, suppose r and Q equal and constant, and
</>

constant.

Tin- integral will then be

L = v -f D + tan J <j> |cos0 (Zk -f WO sin 6 (^ + ^0| (36)

In the case of Uranus, tan
<}>

is so small that this equation will be sufficient for

a long time before and after our epoch.
In the application of the method to other planets the mode of operation must

depend on the circumstances of each particular case. The differential equations

(:54) between 6, T, and <p are rigorous, and their integrals may be approximated to

in various ways, out of which that best applicable to the particular case must be

selected.

Expressions for the latitude.

If the position of the orbital plane and of the ecliptic were each determined by
the preceding formulae, there would be no perturbations of the latitude, the lati-

tude itself being given rigorously by the equation

sin
ft
= sin $ sin ( T).

= sin <p cos T sin v sin < sin T cos v.

But the instantaneous values of $ and T, or of sin $ cos r and sin <p sin T, are

troublesome to tabulate
; it will therefore, in practice, be found more convenient to

use only their mean values, and to consider their changes from this mean as per-

turbations of the latitude. Representing by the sign 5 the deviations from the

mean values, which are of course arbitrary, we have

cos |3^# = cos $ sin (v T) &f> sin
<f>

cos (v T) ST.

Let us substitute for &<p and &r their values given by the integration of (34) to
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quantities of the first order, in which case and r may be assumed equal. These

values are

8<p
= sin -T 8p 4~ cos r lq

sin <> 8r = cos
q> (cos t 8p sin T 8q)

the terms dependent on 8p' and 8q' being omitted because, being purely secular,

they may be included in the mean values of
fy
and r. Substituting in the expres-

sion for 83

cos 383 = cos <>
|
sin v 8q cos v Ip \

. (37)

In the case of all the larger planets both cos 3 and cos $ may here be put equal

to unity, when the expression for 83 will become

83 = sin v lq cos v p. (38)

To develop this expression in purely periodic terms we must substitute for v its

value in terms of the mean longitude or mean anomaly, namely,

v = I -\- 2e sin g -(-
e
2
sin %g -\- etc. ;

suppose the terms of 8p and 8q depending on any argument, N to be

8p a
s
sin jV a

t. cosN
8q = ',

sin N -\-
a'c cos N

and put 7i for the longitude of the perihelion, so that

then, to terms of the first order with respect to the eccentricities, we have

83 = e (ae cos 7t -\-

'

sin 7t) sin N e (ac cos it + '

c sin 71) cos N
_i_ 1 $

(aa _|_ a'^ cos n -\- (a's ae) sin
TI\

sin (^V-f- g)

~\~ I I (
tt a') cos ^ 4~ (

ft
'

4" a*^ s ^n n
\
cos (-^"4" S')

4-| \ (a, a'c.) cos 7t 4- (' 4- ao) sin
7t|

sin (.V
-

#)

_i_ i
j (a<! _^_ d^) Cos n 4~ (' )

sin 7i
I
cos (N- g)

4~ \ e
\ (a, 4- a'c) cos TI 4~ (' sin 7t

j
sin f

Ar ' ^^

-\- % e \(ac a') cos " 4~ (
a'c 4~ a ) s 'n ^

I
cos

4~ 2 ^ S (ct, ot',,)
cos 7t 4~ (^ 4~ "'c) sin t

j
sin

-|- 1 e{ (a, -j- a',) cos n 4- (a'c a,) sin n
\
cos

The point of the orbit from which n and v are counted is entirely arbitrary,

and, in considering the action of but a single planet, it will be most convenient to

count them from the common node, in which case n must be replaced by u, and

8p and 8q by 8k and 8vj. Thus, deducing the perturbations of the latitude imme-

diately from the formulae (27), we shall have

&3 = sin v 8rj cos v 8k.
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CHAPTER II.

APPLICATION OF TIIH I'KKiTMdM; MLTHOD TO THE COMPUTATION OF THE
PLKTTKIIA TIO.V-. <n- i HANTS i;v SATTK.V

Data of Computation.

THE elements of Uranus, adopted in this computation, were deduced from the

comparison of nine normal heliocentric longitudes at intervals of 3697 days extend-

in- from 1781, December 26, to 1862, December 18, with corresponding provisional

places derived from the elements given in the "Investigation of the Orbit of Nep-
tune," with perturbations produced by Jupiter, Saturn, and Neptune. As the

perturbations are to be entirely re-computed, and the elements to be re-corrected

from more extended series of observations, all the details of this first approxima-
tion will be omitted. The resulting elements of Uranus are given in the follow-

ing table, together with the adopted elements of Saturn, which are nearly the same

as those employed in the theory of Neptune, except that the inclination and lon-

gitude of the node have been corrected to agree with observations:

Elements II. of Uranus. Elements I. of Saturn.

n 168 16' 31" 90 4' QT

e 28 25 36.0 14 48 45.0

9 73 11 58 112 20

<p 46 20 2 29 39.2

e .0469276 .0560050

in seconds, 9679.5 11551.9

n 15426.10 43996.13

1 1m
21000 3501.6

In computing the perturbations of the radius vector, one of the largest terms

will be a constant. To avoid the necessity of computing separately the perturba-

tions of the second order, which depend on this constant, we shall include an

approximate value of it in the mean distance. This approximate value is, in the

action of an outer or an inner planet, <Hoga = m'MaW. #?'. In the action of

an inner or an outer planet, & log a'= + $ mM (J
(

J> + a. D. b). M being the

modulus of the system of logarithms.

Using the values of If and a Df b"[\ which are found in different works relating

to Celestial Mechanics, we find that the different planets produce the following

changes in 6 log a, the units being those of the seventh place of decimals:
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Action of Venus,

Earth,

Mars,

Jupiter,

Saturn,

Uranus,

Neptune,

t(

tt

It

tt

tt

Sum,

log a

On Saturn.
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Values of a.*D* 6'{\

t

1
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Derivatives with respect to (log a = .)
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on the sun. They are each of the form N X a~2
,
N being a numerical coefficient

given by Le Verrier under the coefficient for each term. The derivative of this

expression with respect to is 2N X a~2
, so that for the corresponding terms

in DJi and Dili, we have

ADJi = 2.1/t

The values of h and its derivatives, corresponding to any one argument $ and i,

are to be combined into two terms depending the one on the cosine, the other on

the sine of the argument. Let us represent by g the mean anomaly of Uranus,

and let us put I' for the mean longitude of Saturn counted from the perihelion of

Uranus, or, more exactly, for the arc X a. Put also

P"=j\

Then, for each value of N there will be several values of P corresponding to dif-

ferent powers and products of the eccentricities and inclinations in h. Distin-

guishing these values and the corresponding values of h by subscript numerals, we

shall have a series of terms of R of the following form

7i, cos

m
<*\

+ etc. etc.

and by putting

lie
=

7*! cos P\ -\- 7*2 cos P'2 -f-
7t3 cosP3 -(- etc.

'/,
= h t

sin P\ 7 2 sin P'.j 7^ sin P'3 etc.
(41)

The above terms may be condensed into

m m .H = hc cos N-\-- n. sin jv,
a

t !

which are of the form supposed in the preceding theory.
In order that the derivative of R, with respect to the true longitude of Uranus,

may be expressed in the form

8R m m
---- = v, sin N -\

--- V..COSN
<9v

j o,

we must, by (7), put

v, = (i -j-ji) A! cos P\ (i -}-fa) h-i cos P\ etc.

*>c
=

(i -\-J\~) A, sin P\ (i -f/2) 7*2 sin P'2 etc.
(42)

y,, ya, representing the several values of j in the different terms which correspond
to one and the same set of values of t and f.
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To obtain tin- derivative with ropect to y we notice that all the appreciable
term- in the different \alues of /<, which depend upon the mutual inclination, are

of the form

where <r = sin $ y.
These equations give

r/i

Consequently

-
dy

and the various terms depending on the same argument (', i) may be condensed

into two, exactly as in the case of R itself.

The different co-efficients h and DJi, computed in the way already described, are

gi\ en in cxtenso in the following table. At the top of each individual column is given
tin value of /*, or of ju-\-j'uf, corresponding to the values of h below, and imme-

diately under /' is given its modified value, or .P, to be used in condensing the

term-, putting for brevity

(u) = o u>.

/'and /''arc therefore regarded as constant angles the numerical values of the

sines and coMnes of which may be obtained from the values of o and o' already

given.

The condensed hc and h, are given in the two right hand columns.

All the numbers are given in units of the third place of decimals.

VALUES OF h.
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VALUES OF h.
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V.I I.I Ks OF I>Jl.
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the index of the disturbing planet has the same value, arranging the individual

terms of each series according to the index of the disturbed planet. Thus, the

index of the product of any term, as li cos N, by any multiple of the mean anomaly

of the disturbed planet, as j<j,
will be found in the same series with that of N itself,

and j lines above and below.

The next process will be the formations of the required functions of the mean

dv dp
anomaly of Uranus, -^71 -JTI

log r. Their values are as follows :

ndt ndt
r=l

+.0005507
.0468889 cos g
.0016494 cos 2*7

.0000732 cos 3j

.0000035 cos 4

1.001103

+.093933 cos g

+.005507 cos 2g

+.000336 cos Zg

+.000020 cos 4gr

Considering only those terms which are of the first order, the value of D'
t
R may

be found in two ways, the agreement of which will afford a check upon the entire

development of the perturbative function, and upon the computations of R and

+.0468889 sin g +.0938294 cos g

+.0032988 sin 2g +.0055012 cos 2g

+.0002196 sin Bg +.0003357 cos 3g

+.0000142 sin 4g +-000 206 cos 4^

These are (1) by direct differentiation, with respect to the time as con-
riff

-.

dv

tained in the mean anomaly of a single planet, whereby each term in R of the

form
mR = h cos N

will produce in D\R the term

jy ft
m ink s'mN-

and (2) by forming the expression

D'
t
R =

'dp
dt

As several " mechanical multiplications," like those indicated in this last

expression, are to bex performed, the following example of the form of com-

putation is presented. It exhibits the formation of the product of those terms

ft

a, d%
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The multipliers on the left are each one-half the coefficient cos jg in the ex.

l>n
-MOM for .

"

,
and each product is placed in the two columns corresponding

rr-[>ectivcly to A1'

-\- j<j and N
j<j.

All the derivations of l{a necessary in the computation of the perturbations of

the first order are given in the following tables. First we have the values of

obtained by direct differentiation, as indicated in the preceding formula;.
/ / i

\.\twe ha\i-
' '

and , obtained by the formulae (7) and (42). The products
< v

dp
'

l,\

'
"
and of

* l

by ''*', being formed in the simple way just pointed out,
, v 3

(It Of at

and with the values of the component factors just given, their sum is next shown.

This sum >hould agree accurately with D"
t
R. The discrepancies are shown in the

next tuo columns. The only apparently large discrepancy is found in the argu-

ment .">'/ .V. It probably arises from the incompleteness of the computation of R
*

/ *

and , so far as they depend on this argument. As the entire term does not

amount to O'.Ol, I have not sought to correct it.

The great value of this check arises from the fact that it gives a complete con-

trol of the correctness of the development of the perturbative function, ab inilio,

since the two valves of D
t
R are derived from different terms of that development.

f)R
It also controls all the computations except that of . This quantity being

. f

multiplied by quantities of the order of the eccentricities in the second value of

l> /,'. an error in its value will produce a discrepancy of only -fa its own amount in

l>l!, and may therefore be overlooked. The derivative in question must there-

fore be checked by a complete duplicate computation.

In the column next following are given the integrating factors v, for which the

expression is

n 1

fV-f-w . ,'.
t

)
t
n

For each value of i the values of v are therefore the reciprocals of a series of num-

bers in arithmetical progression, the common difference being unity.

April. 1B73.
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The values of -'
'

CD'
t
Ra<lt are formed from ,' Dt

R by simple multiplication by

v, and proper changes of sign. The values of ke and 7ca are then formed by adding

the terms of 2 --. f JD'
t
R dt to the corresponding terms of

;
-=-.

77i *^ '*' C/p

Perturbations of radius vector.

Let us now resume equation (19), and put for brevity

,, in'(iM= Y~r V ()

If we give to u the successive values 0, -4-1, 1, -|-2, 2, -j-3, 3, we have

i 2, iV7< (v t
v ^ ) 1

&a cos JV+ k, sin

tc COS|

k.cos(J\

\
kccos

f sin(JV ^) }

-j-
etc. etc. etc. etc.

the finite integral being taken with respect to all values of i from oc to -f- oc,

and the terms in which the angles Nug vanish being omitted. Proceeding far-,

ther to expand with respect to i, if we collect similar terms we shall find the indi-

vidual terms in r^p to be as follows:

>
{
kc cos N-\- ka sin N \

+ i
etc. etc.

-f (/>!?>+Mi) ("i

+ (M4-M) (
v

-f- etc. etc.

| k, cos (JV ff) + k, sin (^

+ ^ /> cos k, sin (N -J- 2g)

etc. etc.

{
M

^ + (Ms +B?0 fa
etc. etc

-(- etc.

(v2

etc.

|
kc cos (N 2<7) -f k, sin (JV 2gr) \

cos (N+ Zff] + k. sin (N+ 8*7) f
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-f- etc. etc.

| *. cos (N- 30) + Ar. sin (N- 30) |

A law of the factors of k\ cos (X-\- u<j) -\- k,sin (iV-f- </) which will be noticed

in the above expression, is this: BepCWentiBg this factor by A'B , we have

A"' A' ( ' + "'
j\. j\. _

the index / representing the coefficient of g in N, so that only half the values of

A' need be separately computed.
As the computation of

r,*fy
from these formulae can be arranged in such a way

as to be very simple, the computation of the terms in which the index f' is 1 is

here presented quite fully. The logarithms only are omitted, being used only in

the eases in which they are more convenient than a table of products. In prac-

tice I find it convenient to write them in red ink immediately under the numbers

which they represent.

First, to find J/, it will be noticed that in the expression , the a in the

numerator represents the mean distance of the (Iwlurberl planet, as deduced from the

observed mean motion by the equation a*n*=
[t (l-\-m) whiles, represents the mean

motion of the outer planet. When the outer planet is the disturbed one, the ratio

would be unity, but that, to avoid a large class of second order terms, a, has

been corrected for perturbations in the beginning (p. 32). In the case of Uranus

disturbed by Saturn, we have in consequence

log- =9.999803.

Whence
M= 285.44

in units of the sixth place of decimals.

Computing the values ofpt
and q{

from (16J we find, for Uranus,

| M pfli
= + 142.56

= -f 0.0784

= _ 10.044

= -f 3.3433

= 4- 0.0028

= 0.2358

= -f 0.118

= 0.008

=
-+- 0.005

- + 0.003

In the computation the first three lines arc copied from previous pages.

M
In units of the sixth

place of decimals.
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/ i
1 = 1
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In forming the next ten lines, it will ho noticed that the value of correspond-

ing to any vertical column is found columns to the right. It is therefore

necessary to extend the line r two columns at earh end. The extension on the

right is, however, omitted for want of space. In performing the subtractions it

will be convenient to copy the r's again on the lower edge of a horizontal strip of

paper, and, in forming the differences
.' to lay the strip above the line of v's,

and it' columns to the right.

On the left of each line of differences is written the factor by which that line is

to he multiplied.

The mode of formation of the A"*s is evident from the formula.

It will he seen that the same computation which gives Ku gives also /_, only
the latter belongs u columns to the right.

Kadi /,, and /.-.
is multiplied in succession by all the A"s which lie below it in

tin- same column, but the product by K* is to be written columns to the right,

and that by A1. columns to the left. The sum of the products in any one

S
column 'gives the coefficient of

(/**/ + tT) in the development of

This quantity being multiplied by ~jj-
= ~*ve have cos ^p, which only

needs to be multiplied by sec
\J/
= 1.001103 to give fy>.

The units of r^p and

invspond to the ninth place of decimals.

All the periodic terms are to be treated in this manner, all the series of values

of
/.-,.

and /., including the constant term, being subjected to the same process.

15ut, when f and i are both zero, v will be infinite. Here we simply omit the v,

treating it as if it were zero. We thus obtain the complete value of the terms

with constant coefficients in r,
2

fy and fy which are given in the following table.

The terms multiplied by the time are still to be computed. They arc derived from

(20), which may be put in the form

rtfp
=

J Jf
{ ^Jfc?- &qjt? \

Hi.

This expression is computed thus:

P. W <? V? pW -qjf?
<> -.140783 1244.31 +175.18
1 +.99917 + 32.78 +.99972 20.90 + 32.75 +20.89

+ .0234 + 4.06 + -234: 1.86 + -9 + 0.04

\\ I- have now

Zpjt? = + 208.02 ; MSpW = + 29689

-2gjfc<;>
= + 20.93; J If2 jjfc? = + 2988

r,*fy
= 210 nt

+ 2986 nt cos g + 29681 nt sin g

+ 70 < cos 20 + 697 < sin
2jjT

+ 2 nt cos 3# + 24 nt sin 30,

in units of the ninth place of decimals. The value of cos ^p is obtained from

them by multiplying by rp
8

, exactly as in the case of the constant terms.
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of Longitude.

The perturbation! of the longitude are now to be computed by formulae (24).

To do this in tin- most simple way we remark that the numbers given on page 42,
"3 /?

under tin- heading
'

,
are those represented in formula (42) by v, and vr If

we put
nt = (

equation ('21) may be put into the form

a

but we have from (42)

If now we represent the numerical values of cos
4-fy>, already found, by

I, (p,
sin N-\- pc cos N),

and if we substitute these expressions in the above value of
,
the latter will

at'

become

~ = r,-2 {(v,
-

2p.)
sinN+ (v.

-
2pc) cos N\, [

where we put for brevity

v, = Mvve,

The numerical expression for r~* is given on page 40, and by multiplying the

quantities within brackets by this expression, after the manner explained on pages

40 and 41, we form the terms of--,. Multiplying each of these terms by its
etc

corresponding value of r, changing cos to sin and sin to cos, we have the coefficients

in the expressions for v given on page 50.

As previously mentioned, before commencing the above computation, I had

computed all the perturbations of Uranus by the method of "
perturbations of the

dements," using the formula? developed in my Investigation of the Orbit of Nep-
tune. The two results are here placed side by side, for the purpose of comparison.
The discrepancies in the various coefficients, expressed in thousandths of a second,
are shown in the sixth and seventh columns.

It will be seen that the largest discrepancies, and indeed the only ones (with a

single exception) exceeding one-tenth of a second, occur in the coefficients of the

terms 2/ I aug 3g' I. Here the errors are almost certainly in the computation
from perturbations of the elements. Owing to the long period of the term 3</ I

they would not become sensible in the course of any one century.
7 April. 1878.
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PERTURBATIONS OF THE LONGITUDE OF URANUS PRODUCED BY THE ACTION OF SATURN, AND
DEPENDING ON THE FIRST POWER OF THE DISTURBING FORCES.
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J AA*

These are computed from the formula; (27) and (40), no reductions being made
from (U; and by tobp and &q, but tlie perturbations of the latitude being computed
directly from the former by (ID). We have only to represent the expressions for

(V.- and br, by

'V.- = 2a,. cos X Sa. sin N
fa = 2a'c cos JV-j- 2a', sin N

and substitute u for n in the equations (40) from which bfi is computed.

The principal steps of the computation are shown quite fully in the following
table. The values of

(ft 1 i <5A= cos i v
<Y

*' da

are tir>t formed from those terms of 7*, on pages 37 and 38, which contain a as a

cMctficient. Then, having for each original term of R

_

dy a, dy

all the terms which have the same coefficients of 2. and /I' in N are combined into

two depending on y and f as shown in the case of R on page 36. The coefficients

of these terms, in units of the third place of decimals, are given in the columns

headed .

d*
thThe value of
'

sin N being formed for each term of R, all the terms depending
2a

on the same multiples of X, and X' are combined into two, of which the coefficients

are given under the proper heading. The terms of (i +/) oh sin N being formed

in like manner, we have, by adding the last two expressions, all the quantities

which enter into the formulae (27). To integrate these equations thus forming
the numerical values of &k and b; we have only to multiply each term in the

second, third, eighth, and ninth columns of the table by the corresponding values

of
'

, for which we may use the value of
v
-- already given,

a, cos I sin 1"

The quantities given in the four columns under &k and &? show the values

of - -
a., a,., a',., a',, corresponding to each argument. From these the

terms of &$ are formed by equation (40) with the modification mentioned above.
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PERTURBATIONS OF THE LATITUDE PRODUCED BY SATURN.
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CHAPTER III.

ITUTl T.I5ATIONS PRODUCED BY NEPTUNE AND JUPITER.

TIIK perturbation* of Uranus by Neptune were originally computed with ele-

ments of both planets quite different from those finally adopted. But the last

computations, on which the concluded values of the perturbations depend, were

made with the concluded dements of Neptune found in my investigation of the

orbit of that planet.
1

They arc as follows:

o

rt, 43 17 30

0, 130 7 33

F, 335 5 39

$, 1 47 1.6

n, 7864.935

e, 0.0084962

log a, 1.478141

Mass,

Urn. ,> follow the following functions of the elements of Neptune and Uranus:

a = 0.638195

u = 12 44' 58"

o'= 247 45 20

Y = 1 30 29.6

<T= sinJy = 0.013161

M= 37.522 (in units of 6th place of decimals).

From these values of the elements are obtained the following values of the

various terms in the development of the perturbative function, and of v. As the

developments have been formed on the same principle as in the case of Saturn, it

is deemed unnecessary to give the details of the process. It is only necessary to

remark that the indices f and i are the coefficients of T and g respectively, the

mean longitude of Neptune, or T, being counted from the perihelion of Uranus.

Smithsonian Contributions to Knowledge, Vol. XV.
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ACTION OF NEPTUNE.
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The term of Long Period.

From the expressions for the perturbations of t'runus, subsequently given, it will

be seen that several of the terms ha\r \. n large coefficients, that of sin ('2F g)

being nearly an entire decree. The magnitude of most of the terms in which / is

i \. n ari>es from the near approach to conimensurability in the mean motions of

the two planets. Twice the mean annual motion of Neptune exceeds that of

I'ranus by only 303".8. The elements of the orbits of both planets will there-

tore, in consequence of their mutual action, be affected with a slow oscillation,

having a period of about 4 ',?(>(> \eais. The employment of these large terms and

the great inconveniences to which they will give rise, especially in the corrections

of the elements of Uranus, may be avoided by the device employed in the theory
of Neptune. The following arc the essential features of this method:

First, all the perturbations arising from that portion of the pcrturbative func-

tion in which the coefficient of the time is 2' n or its multiples are considered

and developed as perturbations of the elements.

Secondly, the arbitrary constants to be added to the integrals of these perturba-
tions are so taken that the perturbations shall vanish at the epoch 1850.0.

In other words, the perturbations in question will be treated as producing secular

variations of the elements of the orbit, only, instead of being developed in powers
of the time, these variations will be retained in their rigorous form.

The formula? for the computations of the perturbations in question, are as

follov, :

Let

h cos (f e+ il +/u +jw) = cosN

be any term of the perturbative function, h being a function "of a, e, and a.

sin
T|/
= e

g= cos 4* tan \ i|/

=-(?+ ,' +/+/)
n~'-

For each such term, compute

A = 2 ih

(9
T 6e

= COS lj/
-

de

T-

/=
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The corresponding perturbations of the elements may then be put into the form

^ log a = MvA cos N-\- 5 ,

= Mve TFsin N-\- e&Tt,,,

le = MvEco

fy = Mvl cos

tan y <5r= Jiff 3" sinN -f- tan

Here, 5 ^o etc., are arbitrary constants so taken that 5 log a, 5?, etc., shall

vanish at the fundamental epoch.

All the terms depending on the same values of i' and i are to be combined into

a single one. And it will save labor to make this combination at as early a

stage as possible in the computation; that is, to multiply the various values of h,
17 17 17^

-T > -z > -s an(* E by the sines and cosines of j'uf 4- /u, and afterward proceed
<5 00 <xr

with the sums of the products according to the proper modification of the formulae.

Thus are obtained the following long period perturbations of the elements of

Uranus :

// //

= 3474.32 sin (2? g) + 180.10 cos (2?'- g)

+ 146.72 sin (4? 2^)- 54. 10 cos (4f
8.97 sin (61' 3g) + 5.03 cos (6?'

.+ 0.64 sin (8? 4#) 0.53 cos (87 40)

+ constant = 3320". 18.

" //

e5?t= 484.96 sin (27 #) + 0.73 cos (2? 0)

+ 38.06 sin (4?' 2y) 7.06 cos (47 2g)
3.61 sin (67 3^) + 1.38 cos (67 30)

-f 0.33 sin (87 40)
- 0.15 cos (87 40)

-f constant = 465". 23.

// //

== 484.21 cos (2?' 0)- 0.29 sin (21' 0)

+ 38.21 cos (47 20) -4- 7.16 sin (47 20)
3.61 cos (61' 30)

- 1.40 sin (6730)
+ 0.33 cos (87 40) -f 0.15 sin (87 40)
- constant = 158".59.

&>= -}- 2277 cos (27- 0)+ 120 sin (27 0)
198 cos (47 20)

- 78 sin (47 20)

+ 1 8 cos (67 30) + 7 sin (67 30)

-j- constant = 630.

The variations of the elements which fix the position of the plane of the orbit

are here omitted, because their nature is such that it is indifferent in which form

they are developed.
These expressions are reduced to perturbations of the co-ordinates by the follow-
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ing formula 1
. Kxpress the usual <li \ ( lopmrnts of the longitude and logarithm of

radius vector in the form

v = I -f- 2 Vt
sin ij ;

f
=

-j- 2 RI cos
iij.

Put also

v.. ''".

Kxpress any set of corresponding terms of the preceding perturbations in the form

1 tin= F. sin JV-- F, cos N;
le = Ee cos N+E. sin N;
5 = A, cos W-f- ji, sin N.

\\ -hall then have

= 2 (
F'

( .F, + F, Ec) sin (N+ tV/) + 2(^1^,- V,Ee} sin (A^- 1^/)

+ 2 ( V, Fe
- V, .) cos (JV^+ 1 -f 2 ( F', Fe+ F, .) cos (N- ig)

- 7T, F.) cos (AT+ t^) + 2 (R't Ee+ 7T, F,

2 (7?, . + 7T, 7-'e) sin (N+ iy) + 2 (Rt E. - IT{ FJ nu(N- iy)

1.99835
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perturbations of the longitude deduced from all the remaining terms of the per-

turbations of the elements. The sum of the columns o^2 and &vs shows the entire

perturbations computed by the method of variation of elements. Thus, in 6^

and &v2 -j- 33 we have two complete sets of perturbations computed by methods

entirely independent. The differences of the results, expressed in thousandths of

a second, are given in the last two columns of the table.

This comparison gives rise to remarks similar to those suggested by the per-

turbations of Saturn computed by the same methods. The only terms in which

the difference of results amounts to as much as one-tenth of a second are those of

very long period, and those very nearly the period of Uranus, where a more accu-

rate value is not at present of great importance, because the error will be com-

pensated by the corrections of the element during several centuries.

PERTURBATIONS OP THE LONGITUDE OF URANUS PRODUCED BY NEPTUNE.
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I'MIH iiitvrmvs t.K THE LoMHTUDE Continued.
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PERTURBATIONS OF THE LOGARITHM OF THE RADIUS VECTOR OF URANUS PRODUCED
BY .NEPTUNE.
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PKimiUIATUiSS OF THE LATITUDE PRODUCED BY N I.ITI >K
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Perturbations produced by Jupiter.

The series in which these perturbations are expressed converge so rapidly that

I deem it unnecessary to present the details of the computation. They have been

computed by both methods, and the separate and independent results are given in
the following table, where <H represents the perturbations computed by the method

developed in Chapter I, and iv2 those computed by the method of variation of

elements.

The apparently large discrepancy between the coefficients multiplied by the time

arises from the circumstances that in the form of development the mean motion,
and hence the mean anomaly, appears affected by the perturbation 31".2tf. Accord-

ingly when we enter the table which gives the true longitude in terms of the mean

anomaly in the form

v = I 4- 2e sin (I n) -f- etc.,

we may consider this quantity 3l".2t as a secular variation of? n producing inv
the term

lv GVAet cos (7 n).

In dv
l
this term is left in its primitive form, while in fe2 the value of I is supposed

to include this term, and the secular terms are only those which arise from the

secular variation of the eccentricity and perihelion.

It is also to be remarked that the terms which are independent of the mean

longitude of Jupiter, or those in which i'= 0, are not comparable, as they corre-

spond to slightly different elliptic elements in the two theories.
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PERTURBATIONS OF URANUS BY JUPITER.
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CHAPTER IV.

TERMS OF THE SECOND ORDER PRODUCED BY THE ACTION OF SATURN.

Preliminary Investigation of the Orlit of Saturn.

FOR the accurate determination of the perturbations of a planet it is essential

that the functions of the time which are substituted for the co-ordinates of each

planet in the expression of the disturbing forces should approximately represent

the true places of the planet. The difference between the true place and that

implicitly assumed in the investigation should be so small and of such a character

that, when multiplied by the mass of the disturbing planet, and by the factors

introduced by the process of integration, the result shall be insensible. If one of

these factors is so large as to make a- perturbation of an order of magnitude approxi-

mating that of the inequality which gives rise to it, it will represent an inequality

of very long period in the elements, which, though apparently sensible, may be

neglected for a great length of time.

The perturbations hitherto found have been computed on the hypothesis that

the disturbing action of Saturn on Uranus is the same as if both planets moved in

the elliptic orbits corresponding to the adopted elements. We have given formulae

for the computation of the corrected perturbations when, to the co-ordinates of the

two planets corresponding to the adopted ellipse, we add corrections represented

by &v, &v', 5p,
etc. These corrections are now to be taken of such magnitude that

when thus added they shall very nearly represent the actual motions of the planets.

Generally, it is considered sufficient to take for these corrections the perturba-

tions of the first order. But this presupposes that the elliptic elements are nearly

correct, which does not hold true in the case of the old elements of the outer

planets. Bouvard's Tables of Saturn, the elements of which have been adopted,

are subject to recurring errors amounting to 30" or more. Moreover, when we

substitute the new and more accurate perturbations for the old and imperfect ones

adopted in the tables, the chances are that the errors will be increased. Desiring

that the theory shall be as far as possible free from doubt, we begin with a pre-

liminary investigation of the orbit of Saturn, the design of which will be to give

the co-ordinates of that body in terms of the time with sufficient certainty and

accuracy to serve for computing the perturbations both of Jupiter and Uranus.

As usual, the first step in this investigation will be the determinations of the per-

turbations of the planet.
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l\rt iii-litinn* of Saturn.

The perturbations produced by Jupiter will be taken from the exhaustive pri/.e

memoir of llaiix-u.
1 As the perturbations required are those of the co-ordinates,

it will be necessary to transform those of llansen into the usual form, llauseu

gives the true anomaly r in the form

v = g -\- nlz -j- r, sin
(<j -f nfz) -(- e, sin >

(</ -}- n&z) -J- etc.,

<>,,
r2 , etc., being the coefficients of the multiples of the mean anomaly in the usual

development of the elliptic true anomaly. Whence, neglecting the second power
of /'::,

lv= n'z (1 -j- e, cos <7 -j- 3e, cos 2# -\- etc.).

To make the development sufficiently rigorous it is only necessary to increase g by

^ ;/
v
. in this expression. In the same way, we have for the perturbations of log r,

fy
=

fya -j- nlz (e
w sin g -\-

**> sin 2 g+ etc.)

fy, being Ilansen's perturbation, and e(t} the negative coefficient of cos iy in the

development of the elliptic log r.

Hansen having adopted -jufj-.-s
as the mass of Jupiter, it will be necessary to

multiply his perturbations by 1.0'216 to reduce them to Bessel's mass. Thus the

perturbations by Jupiter hereafter given have been obtained.

The perturbations by Uranus and Neptune have been computed by the preceding

general method, and are given in the following table. In the table /' is the mean

longitude of the disturbing planet, Uranus or Neptune, counted from the perihelion

of Saturn.
fy>

is the perturbation of the Naperian logarithm, in units of the

nth place of decimals.

GENERAL PERTURBATIONS or TUX LONGITUDE IN ORBIT AND THE LOOARITUM or TIIK RADIUS
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I have submitted these perturbations to such duplicate computations and other

checks as lead me to believe that none of the terms can be in error by more than

a small fraction of a second, but, as they are not intended to form the basis of a

definitive theory of Saturn, I do not vouch for their absolute precision.

In this provisional correction of the orbit of Saturn only heliocentric longitudes
have been employed. These were derived for a series of dates from Airy's reduc-

tion of the Greenwich observations, the modern Greenwich observations, and the

Washington observations.

For these dates the value of n*z for Saturn was computed from the formula?

found on pages 189 and 190 of the work of Hanson, already quoted, omitting all

terms less than 1", and including only tenths of seconds in the results. The dates,

the resulting values of n*z, of the factor e
l
cos (g + \ nl.z) + 2e.2 cos 2

(</+ | ?tz),

and of the concluded lv are as follows. The formula? for tv is

lv= 1.0216 nz \\ + e
L cos (g + | Y> + 2e, cos 2 (g + \ nlz) \

.

Date T-,

rt j.r XT v&z Factor. lv
Gr. Mean Noon.

* n

1751 May 31 -1947.7 -.0900 1792.7

1757 Aug. 7 -2134.2 -.0652 -2038.2

1758 Aug. 27 -2212.5 -.0474 -2153.2
1761 Oct. 6 -2546.2 +.0244 -2664.5
1763 Nov. 1 -2880.3 +.0729 3157.1

1765 Nov. 23 -3095.1 +.1082 3504.0

1773 Feb. 26 -3342.0 +.0419 -3557.2
1780 May 24 2858.2 -.0956 2640.7

1794 Nov. 16 -3321.1 +.1017 3737.9

1802 Feb. 23 -3184.7 +.0529 -3425.5
1823 Nov. 13 -2716.3 +.0944 3036.8

1831 Feb. 18 -3378.5 +.0639 -3671.7

1838 May 19 -2976.7 -.0866 -2777.9
1845 Aug. 17 -2342.7 -.0721 -2220.9
1852 Nov. 15 -2847.0 +.0863 -3159.3
1860 Feb. 14 -3161.4 +.0740 -3468.3
1867 May 15 -2373.1 -.0812 -2227.6

The perturbations by Uranus and Neptune were computed from the values of

their terms just given. The principal terms, the sum of which make up the helio-

centric longitude resulting from the adopted elements, are shown in the first of the

following tables.

In the next table we have after the date the heliocentric longitude from Bouvard's

Tables, as deduced from the longitudes given in Airy's reductions of the Green-

wich Observations, from the AstronomiscJies JahrbucJi for 1831, and from the

Nautical Almanac. Then follow the corrections, roughly deduced from observa-

tions made near the opposition. Adding these columns, we have the longitude
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from observation. To tin- right of thrv arc tin- equations of condition for the

correction oi the <-li incuts.
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17.19& + 3Un 2.16e 3.15e&o = +1069.3
0.04 +587 + 6.83 - 0.69 + 239.3

2.14 +207 +21.58 + 2.19 + 208.1

2.11 60 + 3.61 +19.66 + 53.8

These equations give

$e = + 64.8 (Epoch, 1800.)

n = + 0.268

to = + 12.6

e&a = + 8.2

Substituting these values in the seventeen equations of condition we have the

following residuals, or excesses of theoretical over observed longitudes:

1 + 7.2 10 +10.7
2 4.3 11 6.4

3 -10.2 12 1.1

4 +21.7 13 0.459.0 . 14 0.0

6 7.1 15 + 3.7

7 -11.3 16 + 4.1

8 + 8.2 17 7.7

9 6.4

These residuals are much larger than they should be, and I scarcely know to

what cause to attribute their magnitude. The results are however amply reliable

for the purposes of the investigation, and lead to the following elements of Saturn :

O '/

?t, 90 6 26

f ,
14 50 3.2

0, 112 20

$, 2 29 39.2

, 43996.395

e, .0560660

log ( + &,), 0.979676

Epoch, 1850, Jan. 0, Greenwich mean noon.

It will be seen that the adopted position of the plane of Saturn's orbit is retained.

It was corrected from observations before the perturbations were finally computed.
Of the above corrections, those of the epoch and mean motion need not be taken

account of in the corrections of the co-ordinates, since the mean longitude remains

in the formulae as an arbitrary quantity to the end. The effect of the correction

of the mean distance is insensible. The corrections of eccentricity aud perihelion
are therefore alone to be retained. They are allowed for by adding to v and ^
the terms
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= 2.
v
e sin g e&j cos g

_f_ w.-> siny H>".4 cosgr;

= f,e cos
17 e&j sin </

of Saturn and Uranus.

The following expressions include, with these corrections, all the perturbations of

Saturn and t'rauus wliich can produce any appreciable perturbations of the second

order in their mutual action. In these expressions the initial letter of each planet

is put for its mean longitude counted from the perihelion of Uranus.

PERTURBATIONS or SATURN.
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Beginning with the last two terms of this expression, it may be shown at the

outset that they are quite insensible. The effect of the constant terms in hrj and

fy/
has already been included by correcting the logarithm of the mean distance by

their amount ; they are therefore omitted. The largest remaining term is 64", the

square of which is only 0".()2. In the product r^p
2 the largest terms are

+ 0.014

0.013 sin g

-0.011 sin (30

-0.011 cos (4^

which may be entirely neglected.

We shall therefore only consider in &Q the terms

+ ~-
dp

As already remarked, R is rigorously a function only of V, p,
and

p',
V being

the angle made by the radii vectores of the two planets. But, in the analytical

development of E, the quantity V is considered as a function of v, v', and y, so

that we have

In the previous computation of the perturbations of Uranus, we have supposed R
to be a function of

p , p' , etc. The corrections to R and its derivatives with respect
to v and

p
are now given by the equations (11), with the modifications shown on

pages 24 to 27. The derivatives of R which enter into these equations are formed

as follows: If, in the value of R produced by the action of Saturn on Uranus, we
consider any term of the form

m'h- COS iV

where
N=

the accented quantities always referring to Saturn, but
! being the corrected mean

distance of Uranus, then we shall have the following terms in the derivatives of R.

m'h ,

<9v a i

d*

d_R

dR

w~

Osin N

in N
m' , dh \

-(/* + --
) cosN

tti \ dr>/

m' dh
cos N

m'h
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'' /''
_

"' ''
/. i .-\ /.- i ."\

;/>'

71

COS

i i; d'R

'If m' oh ,.
. ... __

. i= -
(* 4- j)sm /V

<9v<9p en dr>
v

r'//

All the numerical data necessary for the computation of these derivatives have

IKTII -jivi-ii in C'hapter II. Combining the terms having the same argument, we

find the following values, omitting those given in Chapter II, and those which

d"'R
are di ri\cd from the others by mere addition. The terms of --r are a^8 omit-

tnl, because they are sensibly the same with those of

braic sign.

(9-72
, changing the alge-
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In the terms of 55 introduced by the perturbations of Saturn, namely,
JO 75 JO J2

5'+ -.- 5p'
the differentiation represented by D'

t
should be performed by con-

dV c?p

sidering 5v' and
5p'

as constant, although they are expressed as a function of the

mean longitude of Uranus, as well as of Saturn. The mean longitude of Uranus

thus introduced is therefore represented by U', which is regarded as constant in

taking DtR, and C/"only supposed to vary.

Again, in the terms
f)R

Jv -\ 5p,
since v and

5p represent perturbations of

Uranus, their complete derivatives, with respect to the time, are to be taken. But

their expressions contain the mean longitude of Saturn as well as Uranus. The

mean longitude of Saturn thus introduced is represented by $', and is to be con-

sidered variable in obtaining D'
t&R, while S is considered constant. The ratio of

the coefficient of t to n in the various terms of this part of &R is given to the

right of each corresponding term.

The value of D'
t&R being once obtained, there is no longer any distinction

necessary between U, IT, or between S and *S". The similar terms are therefore

combined by putting S' = S; IT= U.
^ y->

From the above values of 25Z>'(
R and 25 - we form the following value of

2",

m " m
<9p

and of the other quantities which enter the perturbations of the co-ordinates. We
shall begin with those terms which depend only on the mutual action of Saturn

and Uranus, because they are few and small, and the only terms which are sensible

are those in which the coefficient of the mean longitude of Saturn is 1. We
shall therefore confine ourselves to these. And, instead of employing the con-

densed formulae, we shall make the computation in full by (13).

1 * /"} n "| / < r\f DfJt i * O *
- O \J ^= & I Qj^f tJtdt 4- o
' m J <9p
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The computation of these terms liein^ extremely complex, a clieck upon their

accuracy is desirable. In tin- < -:IM- of the secular variations of the coefficients, the

coefficients of the time are easily obtained by substituting in the integrated per-

turbations the variations of the eccentricity uud perihelion of Saturn. Thus I

have found
// a

&v = +0.010:} t sin (>>g 0.0094 1 cos (2? f)

+0.0027 / sin (Xj O 0.01:38 1 cos (3</ f)

'1'be greatest discrepancy is found in the coefficient of sin (3# f),nmi it amounts

t,. n .0():>v, or about 0".4 in a century. But, owing to the great period of this

term, nearly l!0() years, this difference, during any one century, will be nearly

eliminated through the mean longitude and mean motion.

It may also be remarked that in this case the terms derived from the pertur-

bations of the elements are undoubtedly the correct ones, and will therefore be

employed.
The terms which the preceding integration fails to give, owing to the constant

terms introduced into &Q and >?6@, are found by (22).

\\ e thus have

HS/jJt? = + 0".36

n2 quk>?= -f .27

r*Sp
= Mnt 1

J0".36 sin g 0'.27 cos g\

a* = \ Mi? }
0*.36 cos g + 0".27 sin g \

t
l

|0*.0000038 cos*/ + 0".0000029 sin g\.

The greatest effect of these terms amounts to less than one-twentieth of a

second in a century. They may therefore be neglected in the present theory.

The other terms containing the square of the time are yet smaller.

Applying the terms of the second order thus found to the terms of the first order

depending on the corresponding arguments, the perturbations of Uranus by Saturn

become
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of Jupiter and Saturn, are given on page 74. The computation from these data

being conducted in the same way as in the case of the terms of the first order, it is

not necessary to give much more than the results. These are shown in the fol-

lowing table. The indices to the left represent the coefficients of the mean longi-

tudes of Uranus, Saturn, and Jupiter, all counted from the perihelion of Uranus.

Column v gives the ratio of the mean motion of Uranus to the coefficient of the

time in each argument. The perturbations of the common logarithm of the radius

vector are expressed in units of the seventh place of decimals.
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C HATTER V.

COLLECTION AND TRANSFORMATION OP TUE PRECEDING PERTURBATIONS
OF URANUS.

TIIK terms of the perturbations which neither contain the elements of the

tli>turl>in
ii,' planets, nor depend on the secular variations of the eccentricity and

perihelion, admit of being greatly simplified by a slight change in the arbitrary
elements. These terms arc as

(1) In the longitude of Uranus

11 of Jupiter, -f,31. 21 IT,/ -(-25.657 sin g
Artioii of Sutiirn, 4-10.9<>9(M +8.545sin<7

:i of NVptune, 0.42G2I -f O.C97 sin g

Total, 4-41.7544* +:54.S99nin<7

J) Iii the value of cos

-\- 1.397 sin Zg 1.859 cos 9 0.087 cos 2p

+0. 461 sin 2? 4. 735 cos? O.lfi9cos2<7

-(-0.04G sin 2y 0.088 COB 3 005 cog 2?

-{-1.904 sin 2? 6. 682 cos g --0.2Glcos2<r

\ Hi of Jupiter, 10089

>n of Saturn, 3543

Action of Neptune, + 138

Total, 13494

> units of 7th place of decimals.

2 sin g -f 1 sin 2g

losing

4- 1 sin </

16 sin g -\-l sin 2</

492 cos g 33cos2</

I.s4rosgr 15cos2<7

Icoag 1 cos 2g

G77cosjr 49cos2</

Let us first consider the first or constant term in the perturbation of each

ro-nrdinate. If we suppose a change of 6 in the mean motion of a planet, the

rorre-ponding change in
fy>

will be

dp= 5 .

3 n

If, then, we increase the mean motion of Uranus by 41".754, the corresponding

eh:mge in
fy>

will be 18045, and in cos
4-fy>,

18025. Subtracting these from

the above perturbations, the secular term in the mean motion will disappear, and

we shall have for the constant term of cos

+4531
This same change in the mean motion will produce a secular term in the equa-

tion of the centre of the same nature with that produced by the secular variation

of the perihelion. The differences of the values of the secular terms, found by
the two methods employed in Chapters II. and TIT., proceeds from the fact that in

the one rase the effect of the above term in the mean motion is included, and in

the other excluded.
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If we subduct the effect in question when necessary, the remainder will be the

effect of the secular variation of the longitude of the perihelion of Uranus, to

which we shall revert presently.

Let us next introduce such a change in the eccentricity of Uranus as shall pro-

duce the term 34".899 sing, and ascertain its effect on the other terms. For this

purpose we must determine le by the condition

(2- e
2)e=

which gives
e=17".464 = .0000847.

A chane of this amount in le will introduce the followin terms in &v and

cos

= 34".899 sin g + 2".048 sin 2g
= 20 844 cos g 59 cos 2g.

Subtracting these terms from the expressions previously found we have

to= 0".144 sin 2g G".6S2 cosg 0".261 cos 2g.

cos 4fy
=

-j-
451 1 -f 167 cos g+ 10 cos 2g 16 sin g -\-

1 sin 2g.

Again, let us put

efa = 3".342 == .0000162,

we shall have the elliptic terms

&; = 6".682 cos g 0".391 cos 2g
cos

4-fy)
= 1 62 sin g 11 sin 2g.

Subtracting these expressions the constant terms, independent of the mean longi-

tude of the disturbing planets, are reduced to

to= 0".144 sin 2j+ 0".130 cos 2g.

cos
4-fy>
= 4511 -f 167 cos g -\- 10 cos 2g -\- 146 sin

5- -f 12 sin 2^.

0.43429
fy>
= 1969 -j- 73 cos g -f 4 cos 2g+ 63 sin g + 5 sin 2g.

In the last equation we have introduced the constant -)-.0000008 produced in
$p

by the combined action of Venus, the Earth, and Mars. The effect of each planet

is computed by the approximate formula

Secular Variations.

The following inequalities result from the secular variations of the eccentricity

and longitude of perihelion produced by each of the disturbing planets, T being
the time expressed in centuries.

From the variation of the eccentricity

Action of Jupiter,

Action of Saturn,

Action of Neptune,

* 1.216 T sin g
9.1 82 T sin g
0.502 T sin g

0.072 T sin 2g>

0.5382' sin 2g

0.030 T sin 2g

0. 005 T sin 3g
0.032 T sin 3g
0.002 T sin 3g
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Action of Jupiter,

Action of Suturn,

Action of

-f ISTcos g

+98TC080
+ 67V

-fir cos 20

-f 7 J cos 20

The secular variation of the longitude of the perihelion is

Action of .Iiipitrr, + 122.17*

Action of Suturn, 4-118.47*

Action of Neptune, -f 51.17*

Total, * = +291.67*

The effort of this secular variation on the longitude and radius vector is

Action of Jupitrr,

Action of Saturn,

Action of Neptune,

Total,

11.461^080
11.11 7" cos

4.80 T cos g

27. 37 T cosy

0.671 TCOS 20
0.651 T cos 20
0.281 T cos 2y

1 603 T coa 20

0.0473" cos 30
0. 039 T cos 30
0.01 6 T cos 30
0. 102 r cos 9g

Action of Jupiter,

Action of Saturn,

Action of Neptune,

Ml, 120 T sin

inrsitl

50 T sin

8 T sin 20
STsiu 20
3 T sin 20

For the purpose of conveniently tabulating the perturbations, we shall express

them in a form similar to that adopted in the theory of Neptune. Let us select,

from the terms of the periodic perturbations produced by any planet, all those in

which the difference between the indices t and f is the same. For example, in

the perturbations of the longitude produced by Jupiter, let us consider the terms

8t> =-fl.2G9 sin (

3.495 sin (2^

-f 1.182 sin ( 20

+ 0.074 sin (3g 21)

0.005 sin (2g 37)

+ 0.0 11 sin (4j 30

These terms may be expressed in the form

+ 0.002 cos ( I)

0.092 cos (2/7

+ 0.515 cos ( g 20

0.005 cos (30 20

0.001 cos (4$r 30

= smg X

C09-7 X

+ 0.094 sin (g I)

+ 0.520 sin 2(7

-2.226 sin (g

+ 1.256 sin 2(^

+ 0.006 sin 3(jr

4.764 cos (7

- 1.108 cos 2(0

+ 0.016 cos 3(<7

-0.090 cos (<j

+ 0.510cos2(-7

11 M.y, 1873.
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In general, a series of terms of the form

2a ,
sin (iA -\- s<j~) -\- 2 b

t
cos (iA -f- sg)

-\- 2a', sin (iA sg) -{- 2 b'
t cos (iA sg),

may be put in the form

\
2 ( t ',) cos iA 2 (bt J',) sin iA

\
sin sg

+ i
2 (, -(- a'

t) sin i^l -|- 2 (&, + &'<) sin iA \
cos #.

All the periodic terms containing only g and 7 in the arguments may be put into

this form by taking

Ag l,

so that the coefficients of sin sy and cos sg may all be expressed as a function of

the single variable argument A.

The perturbations of the elements may be reduced to perturbations of the

co-ordinates expressed as the sum of several products of slowly varying functions

into the sines and cosines of the multiples of g. We have, in fact,

(2
e"

~6~
e
')
^ x sin 2^ + (2

e ~

etc- + etc.

2
~

F2
e3 ei7 X COS

It appears, therefore, that all the perturbations in which the arguments contain

the mean longitudes of only two planets may be put in the form

v = (w.e.O) -j- (tf.e.l) cos# -(- (w.c.2) cos 2g -J- etc.

-f- (?7.s.l) sin^r -{- (t?.s.2) sin 2^ -f etc.

=
(p.c.O) -)- (p.c.l) cos

gF + ( p.c.2)
cos 2r/ -f- etc.

4- (p.s.l) sin# -f- (p.s.2)
sin 2j -f etc.

We have next to reduce to the same form those terms which contain the mean

longitudes of both Jupiter and Saturn, and which are given on page 78. We have
here twenty-four terms, each greater than 0".04. As most of these terms depend
on three independent arguments, they cannot be included in a double entry table,

while, if we include them as perturbations of the longitude in tables of single

entry, we shall have to enter twenty-two tables with as many different arguments.
But, by taking, for the argument A, the middle one in each series of arguments
which depend on the same multiples of Jupiter and Saturn, and expressing the

terms above and below it in each series as coefficients of sin g, cos g, sin 2g, and
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cos 2</, we may r. -diu-c tin- iiunil)cr of arguments to ci^'lit, ami the number of table*

to seventeen. Consider, for instance, the terms of the second series,
it

- 0. 108 sin ( y+ 2S J) - 0.007 cos
( g + 2S J)

-0.014 sin ( 2SJ) -0.012 cos ( 2S J)

+ 0.164 sin ( g+ 2S J) 0.267 cos ( g + 2S J).

These terms may be allowed for by adding to (r.c.O), (.*.!), (v.c.l), the terms

// a

(r.c.O) = 0.014 sin (2S J) 0.012 cos (2S J)

(v.a.l) = + 0.260 sin (2S J) + 0.272 cos (2S J)

(v.c.l) = + O.OG6 sin (2^ J) 0.274 cos (2SJ).

From the |>crturbutions of longitude and radius vector already given, we readily
find the following values of (p.c.O), (.#.!), etc.

Action of Jupiter.

(rr.O)=-J-53.064sin A
t

0.004 cos ^,
- 0.2778^2^1, +0.036 cos 2Al

0.025 sin 3J,
/' //

(r.r.l)=_(- 2.226 sili A, 0.090cos A
t (..!)= 0.094 sin A, 4.764cos

1.256 sin 2A
t +0.510 cos 2A l

0.006 sin 3J,

-ir.4677

(v.c.2)=+ 0.121 sin 4, 0.038 cos A
l

-j- 0.0128^2^1, 0.01 4 cos 2J,

+ 0.029 sin 3^1, 0.034 cos 3J,

-(r.6771

(c.c.3)= 0.047

-0.520 sin 2A l 1.108 cos 2A,

-f-0.016 cos 3A
l

-r.22T

(r..2)= 0.056 sin A
l 0.175 cos J t

+0.0088^2^+0.0420082^1,
+0.034 sin 3^, +0.035 cos 3^,

Q'.QIT

(..3)= 0.005 T

(p.c.0)=+1127cos 4,

+ 4 cos 2Jj

(p.c.l)= 2 sin At +57 cos A
{

+ lO sin 2A
l

23 cos 2J,

+137
7

(p..l)=+108 sin A
l + 2 cos

+ 26 sin 2J, +12 cos

-120T

(p.c.2)=+ 7cos A
l +17* (p..2)=+ 7 sin J, 8T
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Action of Saturn.

(uc.8) =

(u.c.4) =

(p. e.0) =

(p. e.l)=

(p.c.2)
=

(p.c.3)
=

/+20.774\ injj +8.580 cos 4,
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Action f \i
i>tnii'-.

--

(r.c.0)= 39.66 sin As -0.08 cos 4,
;J5.:5(i sin '.M 0.03 cos 2. 1

+ 17.'.>l) sin :Uj +0.23 cos 34,

+ 3.91 sin 44., +0.06 cos 44,

+ 0.9i)sin54, -0.04 cos 54,

+ 0. 1
1

.' MII (>4 3 0.01 cos 64,

+ 0.19 sin' I

+ 0.09 sin 84,

+ 0.02 sin! 1. 1

+11

(iv.l)= . 6.77 sin 4, 0.53 cos 4, (r..l)=
1.10 sin 24, +0.07 cos 24,

5 sin 34, +4.04 cos 3.4,

6.05 sin 44, +1.06 cos 44,
- 3.26 sin 54, 0.66 cos 54,
- 0.80 sin 64, 0.17 cos 64,
- 0.24 sin 74, 0.05 cos 74,
- 0.1*2 sin 8.1j 0.02cos84,
- 0.06 sin 94, 0.01 cos 94,
- 0.04 sin 104,

+ 1.99945%

(r.r.2)= 0.43 sin 4, 0.03 cos As (..2)=
0.03 sin 24, +0.01 cos 24,

+0.75 sin 34, +0.08 cos 34,
-0.10 sin 44, 0.08 cos 44,
3.20 sin 54, 1.17 cos 54,

-0.83 sin 64, 0.32 cos 64,

+0.57 sin 74, +0.22 cos 74,

+0.1 4 sin 84, +0.06 cos 84,

+0.06 sin 94, +0.02 cos 94,

+0.03 sin 104, 0.01 cos 104,

(r.c.3)= 0.02 sin 4,

+0.04 sin 34 3 +0.01 cos 34,
0.15 sin 44, 0.05 cos 44,

-0.08 sin 54 3 0.02 cos 54,
-0.02 sin 6.4, 0.02 cos 64,

+0.46 sin 74, +0.25 cos 7A,

+0.11 sin 843 +0.07 cos 84,
0.08 sin 94, 0.05 cos 94,
0.03 sin 104, 0.02 cos'10.4,

+0.007 14e<0

0.49 sin 4 3 + 1.75 cos 4,

+0.1 2 sin 24,-- 2.48 cos 24,
,04 sin 34, 20.92 cos 34,
.07 sin 44,-- 5.42 cos 44,

0.68 sin 54,+ 3.47 cos 54,
-0.17 sin 64,+ 0.91 cos 64,
-0.04 sin 74,+ 0.30 cos 74,
-0.02 sin 84,+ 0.12 cos 84,

0.01 sin 94,+ 0.06 cos 94,

+ 0.04 cos 104,

+1.99835&
0.03 sin 4, +0.13 cos 4,

+0.02 sin 24, 0.16 cos 24,

+0.08 sin 34, 0.60 cos 34,
-0.08 sin 44, +0.15 cos 44,
-1.17 sin 54, +3.22 cos 54,
-0.32 sin 64, +0.86 cos 64,

+0.22 sin 74, 0.57 cos 74,

+0.06 sin 84, 0.14 cos 84,

+0.02 sin 94, 0.06 cos 94,
0.01 sin 104, 0.03 cos 104,

+0.117135e

+0.02 cos At

+0.01 sin 34 4 0.04 cos 34,
-0.05 sin 44, +0.1 5 cos 44,
-0.02 sin 54, +0.08 cos 54,
-0.02 sin 64, +0.02 cos 64,

+0.25 sin 74, 0.46 cos 74,

+0.07 sin 84, 0.11 cos 84,
0.05 sin 94, +0.08 cos 94,

-0.02 sin 104, +0.03 cos 104,

+0.00714&



86 THE ORBIT OF URANUS.

Action of Neptune. Continued.

ff
/'

(u.c.4)= 0.06 sin 94 0.05 cos 94,

0.09 sin 104, 0.08 cos

(p.c.0)= +227 cos A3

+232 cos 24,

+ 3 sin 34 -229 cos 3A3

59 cos 4A3

17 cos 5A3

7 cos 6^3
3 cos 7A3

+0.01018&

(p.c.l)=+ 3 sin 4
+ 2 sin 24
+23 sin 34
+ 8 sin 44

9 sin 5A 3

3 sin 64
1 sin 74,

9 cos 24
-141 cos 34

39 cos 44
+ 43 cos 54
+ 13 cos 64,

+ 5 cos 7A 3

0.43322!e

(p.c.2)=
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A<-tinn of
i> a

(i.c.0)= 0.08 sin A* 0.03 cos 4,
0.03 cos 24,
0.01 cos 3.4,

(&..!)=+ 1.34 sin A, +2.88 cos At (6.c.l)= 1.56 sin 4, +2.50 cos A*
-0.01 sin 2.1, -0.10 cos 2.1, +0.02 sin 2.1, -0.10 cos 24,
+0.03 sin 34, -0.06 cos 34, -0.04 sin 34, -0.06 cos 34,
+0.0-J sin 44, -0.03 cos 4A t -0.02 sin 44, 0.02 cos 44,

(J.s.2)= -0.09 sin 4, +0.10 cos 4, (i.c.2)= 0.09 sin 4, 0.05 cos 4,
-0.05 sin 24, -0.09 cos 24, +0.07 sin 24, +0.02 cos 24,

0.01 cos 34, +0.01 sin 34,

Action of Neptune.
n n

(6.c.0)=+0.01 sin 4, 0.04 cos 4,
-0.01 sin 24, +0.00 cos 24,
-0.01 sin 34, +-04 cc* 34,

+0.01 sin 44, +0.01 cos 44,

+0.01 sin 54,

+0.01 sin 64,
// //

(6..1)=+0.13 sin 4, +0.16 cos 4, (J.c.l)= 0.57 sin 4, +0.04 cos 4,

+0.09 sin 24, +0.26 cos 24, -0.39 sin 24, +-06 c 8 24,

+0.08 sin 34, +0.28 cos 34, -0.33 sin 34, +0.07 cos 34,

+0.01 sin 44, +0.03 cos 44, 0.07 sin 44, +0.01 cos 44,
-0.02 sin 54, -0.12 cos 54, +0.10 sin 54, -0.03 cos 54,
-0.01 sin 64, -0.03 cos 64, +-03 sin 6A

0.01 cos 74, +-01 sin 7^s

(6..2)=+0.01 sin 4, +0.05 cos 4, (6.c.2)= 0.07 sin 4,
-0.03 sin 34, -0.09 cos 34, +0.09 sin 34, -0.03 cos 34,

-0.05 cos 44, +0.05 sin 44,
-0.04 cos 54, +0.04 sin 54,

+0.01 cos 74, +0.01 sin 64,
-0.01 sin 74,

Action of Jupiter and Saturn.

(Terras multiplied by the product of their masses.)

JV1= 2S J
Nt
= f7+3S J

N3=2U+4S- J
N4
= 3CT+3S 2J

Nt
= 2tf+4S 27

Nt
= 5S2J

JV
T
= 3U+6S 2J"
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Action of Jupiter and Saturn Continued.

(Terms multiplied by the product of their masses.)

/' i'

(0.c.0)=+ 0.08 sin 2̂ +0.51 cos N.2

+ 0.04 sin N3 + 0.01 cos N3

0.01 sin Nt + 0.05 cos N4

0.35 sin N, 1.30 cos N,

( 0.55 sin N9
0.03 cos N6 )

I +40.65 sin N7
10.50 cos N

7 J

0.05 sin Ns + 0.03 cos
8̂

(v.c.l)=+ 0.06 sin JV,
- 0.27 cos JVX (w..l)=+0.26 sin ^ +0.27 cos JV,

+ 0.18 sin N2 +0.01 cos N2 -0.04 sin N, -0.17 cos N3

0.03 sin ^3 + 0.08 cos ^3 +0.08 sin N3 +0.03 cos N3

0.02 sin JV4 + 0.09 cos 4̂ 0.02 sin JV4 +0.08 cos .V4

0.44 sin Nf, 0.61 cos N& +0.30 sin ^V5 0.58 cos Nt

f 4.238^^ 3.87 cos JV6 ) f +2.64 sin N, +4.64 cos JV6 1

I +8.06 sin
7̂

8.38 cos JV
7 J 1+7.35 sin N

7 +4.41 cos N
7 )

0.10 sin ĝ + 0.03 cos Ns 0.04 sin 8̂ +0.00 cos Ns0| O O I O

(w.e.2)= f 0.24 sin N6 0.22 cos Nt ) (w.s,2) f +0.16 sin N6 +0.26 cos N6 1

} +0.47 sin ^V
7 0.54 cos N

7 J t +0.54 sin JV7 +0.47 cos N
7 j

(p.c.0)=+ll sin Nb 3 cos N&

Two of these arguments, namely, 5$ 2/, and 3^ + 6^ 2/, are of very

long period, that of the first being about 880, and that of the second about 1590

years. It will, therefore, be convenient to tabulate them both as functions of the

time for the time during which the theory is to be used. To make their effect as

small as possible during the period for which the provisional ephemeris is to be

computed, we shall suppose the longitude of epoch, mean motion, and longitude of

the perigee to be affected with the negative of the following corrections :

^= + 27.27,

fa= + 27.27,

n= - 0.1172.

Reducing these corrections to corrections of the co-ordinates, and adding them to

the terms of long period in the true longitude and logarithm of radius vector, we

shall have for these terms,

// //

(w.c.O) = 0.546 sin N6 0.032 cos #6

+ 40.650 sinN 10.500 cos N, + 27.27 11.72 T
// // // //

(v.s.l) = 2.63 sin Ne + 4.64 cosN6 + 7.35 sinN
7 + 4.42 cos N7

(v.c.l)
= 4.22 sin Ne 3.87 cos N, + 8.06 sin N

7 8.39 cos #"7 1.10T
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(..2) = + 0.16 sin Nt + 0.26 cos AT, -f 0.54 sin N, + 0.47 cos N,
(r.r.'J)

= <>._> 1 sin A; 0.22 cos AT. -j- 0.47 sin W, 0.54 cos AT, 0".07 7*

(p.c.O)
= : -f 2 cos A7

, -j- 1 sin N, + 32 cos N, -f 22

(p.s.l)
= - 41 sin AT, 43 cos Nt -j- 82 sin AT, 85 cos ATT 1277

(p.c. 1)
= 29 sin A7

,
_ 45 CO8 jy;

_ 73 sin A7
,

44 cos N,

The values of these and of the other seeular terms and terms of long period for

tin- period during which Uraiius has been observed, are given in the following
table :

(w.c.O)



90 THE ORBIT OF URANUS.

VALUES OF (u.c.l)
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(i-..3)
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(P..s.l) const. = + 63.
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(p.c. 2) const. +4
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cos u = e cos o

-(-
cos a) cos <7

sin cj sin
<?

-|- e cos u cos 2g e sin co sin 1g.

Substituting these values of sin u and cos u in the expression for 5/3, and putting

sin $50 = 5'0, we have

5/2
= e cos 6>5'0 e sin co <<>

-|- ( cos 6)5$ -f- sin o>5'0) sin g -\- (
sin

G>5</>
cos o5'0) cos #

-J- (e cos 6>5<> -j-
e sin o5'0) sin 2</ -(- (e sin (j<5< e cos u5'0) cos

2jf.

To represent the numerical coefficients of sin g and cos g in 5/3 we must put

cos G)5$> + sin o5'0 = 0".386

sin 6)5$ cos o5'0 = .266.

Since o = 95 3', this gives
//

5<2>
= 0.231;

i'0 = 0.409;

S^ = 0.013
//

+ 0.386 sin
(7 + 0.266 cos #

-j- 0.018 sin 2^ + 0.013 cos 2g

Subtracting this expression from the corresponding terms of 8(3, we have left

8/3
= + 0".258 0".061 sin 2g 0".007 cos 2g.

The first term of this expression shows that the mean orbit of Uranus at the

present time is a small circle of the sphere one-quarter of a second north of its

parallel great circle.

If we put

v = longitude of Uranus in its orbit, referred to the equinox and ecliptic of

1850, we have

V
l
= v 127 37

F2 = v 126 45

V3 = v 155 32

Substituting these values in the first three terms of 5/3, and multiplying the last

term by the factor (!+/*) by which the adopted mass of Neptune, TT TT ,
must

be multiplied to obtain the true mass, we find

Sp = (4".69 + l".14a) 7'cos v - (5".24 -f 0".52
1 )7'sin v.

To these terms must be added those which arise from the motion of the ecliptic.

In the absence of any exhaustive investigation of the obliquity and motion of

the ecliptic, I adopt the elements of Hansen, employed in his " Tables du Soleil"

because they are a mean between the results of others, and are very accordant

with recent observations. The secular motion of the obliquity there employed is

46".78.
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Ilansen mentions 5".39 as the corresponding motion at the equinox of 1850,
found by Olutsen, but I cannot reproduce tliis result from the secular diminution

with any masses of Mercury, Venus, and Mars, which seem to me probable. The

expressions in terms of the masses given by Le Verrier are (Annules de VObaerva-

tuire Iiiijicritil
</e J'aria, tome ii, p. 101),

// a n

Secular change = 47.59 0.52p 28.90j/ 0.83i>"

Mot. at equinox = -f 5.89 -f 0.62* -4- 7.57i/ -f 0.13/*.

In this expression the masses of Mercury, Venus, and Mars are represented by

\-\-v 1 + v' 1-f-v"

a,0<)0,0i).r 401,847'
a" l

2,680,337' "V^^- e influence of admissible

changes in the nuisses of the other plants is insensible.

From the researches of Le Verrier on the motions of the four inner planets I

conclude that the following arc about the most probable distribution of the correc-

tions of the masses necessary to produce the motion of the obliquity given by
llansen, namely,

v = |
v' = .018

These values give for the motion at the equinox of 1850

+ 5".43

Introducing the secular variation of these motions we have, for the change in

the latitude of any celestial body near the ecliptic, arising from motion of the

ecliptic,

&(3
= (5'A3T+ O'.ig?77

) cos v+ (46".78T 0".06 7") sin v.

Combining this with the change arising from the motion of the orbit of Uranus,
we find

W = f (10M2 + lM4ji) T+ OM9 T*\ cosv

+ |(41".54 0".52//) T 0-.06 T
j
sin v.

We may represent these expressions in the usual way by secular variations of

the inclination and node of Uranus. But, owing to the small inclination, and

consequent rapid motion of the node, it will be necessary to include the coefficients

of the second power of the time. On the other hand, no distinction between r
and is necessary. Putting $ for the inclination of the orbit, for the longitude
of the node referred to the equinox of 1850, and

p = sin
<f>

sin 0,

q = sin
<p cos0;

we have

sin = p cos v + q sin t>

cos {3&{3
=

ftp cos v -j- 5 sin v.
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From the expressions for p and q we obtain

cos <p Dt$ = sin 6 Dtp + cos D
tq;

sin
<j>
D

tQ = cos 6 D$ sin 6 Dtq,

And, neglecting {Dt^f X sin <>, we have farther,

cos $Z>> = sin
<p (DtOy + sin QD\p + cos 6D\g;

sin <pD\6 = 2 cos $DtQD$ + cos OD\p sin 6Lz
tq.

Since
<j>

is only 46' we may put cos
<p

and cos
/3 both equal to unity in these

expressions, while we have, for 1850,

sin = .9573

cos 6 = .2890

D
t q = + 41 .54 .

L\p = .38

D\q = 0.12

logsin<^>= 8.129606.

The above formulae then give

D& = + 2". 3 1 -
l'.24/= 3167".5

2

,$>
= + 0".26

3

,fl
=

-j- 5".6

T+ 0".13 T72

= (3167".5
- 12".6

lM) T+ 2 .8 T72
,

or, adding Struve's precession, we have when is counted from the mean equinox
of date,

6 = + (1857". 7 + 12".6p) T+ 3".9 T72
.

Using the values of
<p and given by these expressions, the latitude, secular

variation included, will be given by the expression

sin
(3
= sin $ sin (v 0}.

If we take from a table, as the principal term of the latitude, the value of sin

$>
sin (v 0), the secular term to be added will be

|(2'.31
-

l'.24p) T+ 0".13 T2

\
sin (*

-
0).

If we represent, as before, by o the variable distance of the perihelion from the

node, this term will be allowed for by adding to (S.s.l), (i.c.l), etc., the terms
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(A.c.O) = e sin cAp,

(i.e. 1) = sin

(4.a.'2)
= e cos

(6.c.2) = e s

when

ty = (2'.:U
-

l".24-<) T+ <r.l37*

I'litting in the above e\]ire.v>ions

cosu= .0880 .0167 Tt

sin u = -4- .9961 .0015 7*,

\vc liml

(fc.c.O)
= (()".!! (T.OG <) 7*

(6.U) = (0 .20 .ll)r O'.OoT*

(6.&1) = (2 .30 1 .24)7
7+ .127"

(6.*.2)= -0.017

(i.c.2)= (0. 1 1 0.06;/) T.

\\'i' have, finally, to consider the terms rf long period in ^ and <k which have

IMMMI omitted from thn periodic perturbations produced by Neptune, in computing
the terms ot' \ j on page 61, and which are as follows:

^ = 1".43 cos (2f g) 0".39 sin (2f- /)

- 2 .12 cos (4^ 2y) + 1 .00 sin (4/' 2g)

+ .20 cos (6f 3</) .04 sin (6f

-}- constant = 0".00

Ue= 0*.80cos(2r g) 2". 28 sin (2f-
- 1 .06 cos (4f 2*7)

~ 1 .85 sin (4f

4- .04 cos (6f 3/) + .19 sin (Gf

-j- constant = 0*.364.

For the period during which Uranus has been observed, these values of ^ and Ik

may be replaced by the following:

& = + 0.277*

which are to be multiplied by the factor 1 -}- u. The corresponding perturbation

if the latitude will be

$fi
= sin v'; cos v[k.

Tutting for v its approximate value

v =
rj -}- o -j- 2 sin g

and developing to quantities of the first order with respect to the eccentricities,

we have

sin v = sin (g -j- u) + sin (2g -\-u) e sin u

cos v = cos (0 + ") + e cos &9 + ") e cos "*

13 Kr. 1873.
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Substituting for o> its value, 1245', arid for fy and bk their above values in the

expression for &j3, we find that the terras of &j in question will add the following

terms to (fi.c.O), (fe.s.l),
etc.

(j.c.O)
= .010 fy + .046 M = + 0".027

7

(1 -f p)

(&..!) = + .975 bv, -f .221 M = .727 (1 + p)

(A.c.l)
= + .221 ^ .975 tk = .447(1 + p)

(1.8.2)
= + .046 fy + .011 M = .047

7

(1 + p)

(6.c.2)
= -

(6.C.O)
- .027 (1 + p)

These values will be employed in the construction of the provisional ephemeris,

but not in the tables.

Collecting all three classes of terms discussed in this section, we have the

following constant and secular terms in (i.c.O), (&..!), etc.

(j.c.0)
= -f 0".26 -f (

0".09 -f 0.08:/)7

(b.s.l)
=

(
0".92 0".61//)7 O'.OST2

.(6.c.l)
=

(-[-
1 .86 -- 1 .68p)T+ .12772

(b.s.2)
= -0.06 0.05T

(6.c.2)
= - .01 + (0 .09 m-i] T

Positions of Uranus resulting from tJie preceding flieory.

The next step in order is the preparation of an ephemeris of the planet for

comparison with observations. As this provisional theory is, for future use, super-

seded by the tables appended to the present work, it seems unnecessary to enter

very fully into the details of the computation of the ephemeris. The perturba-

tions of the longitude, logarithm of radius vector, and latitude, were first com-

puted by the formulae already given.

lv= (v.c.O) -f- (v.c.l) cos g -f- (w.c.2) cos 2g -f- etc.,

-4- (v.s.l) sin g -4- (v.s.2) sin 2>j -f- etc.,

=
(p.c.O) 4- (p-

c-l) cos ff + (p-
c-2) cos 2g -4- etc.,

-f- (p.s.l)
sin g -\- (p.s.2)

sin 2g -\- etc.,

=
(ft.c.0) + (6-c.l) cos^r -f- (6.5.1) sin g.

Each coeiRcient (v.c.O), (v.c.l), etc., is composed at most of the following quan-
tities:

1. The five classes of secular, long period, or constant terms, the separate values

of which, with the sum of all, are given on pages 89 to 93.

2. Periodic terms due to the action of Jupiter, Saturn, and Neptune, given on

pages 83 to 87.

3. Terms depending on the product of the masses of Jupiter and Saturn, given
on page 88, omitting those depending on N6 and JV

7 ,
because they are given in

column 5 of the terms of the first class.

The sum of the perturbations thus computed is given in the third column of the

following ephemeris.
An approximate value of the perturbations produced by Neptune alone is inde-

pendently computed for every fourth date, and the result is given in the fourth
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minimi. The secular and long period terms arc here taken from columns (3) and

I 1 nf tlie tallies on pages *!) In !):{.

The elliptic coordinates \\i iv tlicn derived from the following elements, which

an- a little different from those employed in the computation of the perturbations.

III. of Uranus.

7t, 1G8 15' 12".0

f , 28 25 29 .5

0, 73 11 58.0

<f>,
46 20 .0

e, .0469436

e, (in sec.) 9682".81

n, 1">4 ',>(>. 196

log a, 1.2828989

Red. to Ecliptic,
- 9".37 sin 2 ( 0)

The longitudes thus found are corrected for lunar, but not for solar nutation,

and the results arc given in the fifth column.

The column "correction" arises in this way: after the comparison of the ephe-

ineris with observations was nearly completed, it was found that some errors had

crept into the former, the most important of which was the employment of a mean

anomaly, y, corrected for secular variation of the perihelion in the computation

of the perturbations from the preceding formulae. As a large portion of the com-

putations on the provisional cphemeris had been made by assistants furnished by
the Smithsonian Institution and Nautical Almanac, I deemed it prudent to make

a careful rccomputation of the perturbations for every sixth date during the entire

period of the modern observations. The longitudes actually printed in the fifth

column are the results of the original incorrect computation, while the numbers

in the next column show the several corrections to be applied to obtain the results

of my final revised computation.

During the period of the modern observations the ephemeris is computed for

intervals of 120 days, and the selected dates are all exact multiples of that interval

before or after the fundamental epoch, 1850, Jan. 0, Greenwich mean noon.

For convenience of reference the dates are numbered from an epoch earlier by 212

intervals, and the number is given in the second column.

Between 1796 and 1801 no observations worth using were made on Uranus, the

ephomeris has. therefore, not been extended over this interval.
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HELIOCENTRIC EPHEMEIUS OP URANUS FROM THE PRECEDING PROVISIONAL THEORY.
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HM.ICM KVMlir Kl HI \IIKI.S OF 1' HANI'S. Continued.
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HELIOCENTRIC KI-IIEMERIS OF URANUS. Continued.
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HKI.IO. KM un- KI-IIKMKKIS or URANUS. Continued.
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HELIOCENTRIC EPHEMERIS OF URANUS. Continued.
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HKI.HK-KNTKH- KI'III.MERIH or URANI'S. Concluded.
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CHAPTER VI.

REDUCTION OF THE OBSERVATIONS OF URANUS, AND THEIR COMPARISON
WITH THE PRECEDING THEORY.

THE observations of Uranus naturally divide themselves into two distinct

classes. (1) The purely accidental ones, made previous to the recognition of the

planet by Herschel in 1781, and therefore without any suspicion on the part of the

observers that the object was not a fixed star, and (2) the systematic observations

made since.

The first class are nearly all so uncertain in comparison with the second that I

have hesitated over the question of employing them at all. If nothing but a

determination of the elements of Uranus were called for, they would certainly not

be worth using, since these elements may be determined with entire certainty

from the observations which have been made during the entire revolution of the

planet since 1781. But the mass of Neptune is also to be determined, and it is

at least possible that these observations, uncertain though they are, may add

materially to the weight of this determination. I have, therefore, determined to

include them all, re-reducing them when there seemed to be good reason so to do.

The earliest observations are those of Flamstead, published in the Historic

Ccelestis. The observations themselves, as printed, together with the principal
elements for reduction, are given in the following tables.

The first column of the table gives the name of the star. The second gives
the clock time of transit over the wire of the quadrant as given by Flamstead.

The time, it will be seen, is only given to entire seconds. We must, therefore,

expect to find a probable error, of which the mathematical minimum is O s

.25,

and of which the minimum we can reasonably expect is much greater.
Next we have the apparent right ascensions of the stars as computed. For

these data I am indebted to Prof. Coffin, Superintendent of the American

Ephemeris. The mean places are mostly derived from the " Star Tables of the

American Ephemeris," and from the two Greenwich Seven Year Catalogues, while

the reduction to apparent place is made with the modern constants.

The fourth column gives the apparent clock correction for sidereal time, in which
is included the effect of deviation of the instrument from the meridian.

The clock keeping mean time, the errors are in the next column reduced to

those of sidereal time at the moment of the transit of Uranus.
The next two columns give the corrections for clock rate, and for deviation of

the instrument from the meridian, as inferred from the observations themselves,
both being referred to the time and position of the transit of Uranus.
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In the last column we have the seconds of concluded correction for clock and
instrument to be applied to the ob>< rv.il time of transit of Uranus.

1690, December '23. Right Ascension.

Star. Time of Tr. K. A. of star. Clock. C'. R. Der. C".
)'. m. H. h. DI. i. h. m. I. m. t. I. i. t.

a Arietis, 7 48 40 1 49 52.1 5 58 47.9 58 29.3 1.1 1.2 31.6

7i Arietis, 8 30 : I 2 32 8.4 5 58 45.6 58 33.9 0.7 +1.7 32.9

a Arietis, S ;J:J 17 2 34 31.0 5 58 46.0 58 34.7 0.7 +2.9 32.5

* Arietis, 8 40 21 2 41 38.0 5 58 43.0 ,58 33.0 0.6 0.2 33.8

f> Arietis, 8 ,r> 44 2 54 3.0 5 58 41.0 58 33.0 0.5 +0.5 33.0

r Tauri, 9 27 47 :5 29 13.6 5 58 33.4 58 31.1 0.1 1.3 32.5

Uranus, 9 41 49

A Tauri, 9 45 3 3 46 31.1 -5 58 31.9 58 32.4 0.0 0.8 33.2

a Virginis, 19 415 13 8 58.2 5 55 16.8 56 49.3

a Bootis, 19 58 31 ^ 14 1 34.0 6 56 57.5 58 39.0

Hourly rate of clock, 0'.6

Deviation of instrument for each degree of Z. D., 0.5

Transit of Uranus, 9 41 49.0

Correction for clock and instrument (mean), 5 58 32.8

Observed R. A. of the planet, 3 43 16.2

1690, December 23. Declination.

Z. D. observed. Refraction. Declination. Eq. point

a Arietis, 29 29' 10* +0' 33" 21 58' 53" 51 28' 36*

n Arietis, 35 18 55 + 41 16 9 4 51 28 40

<r Arietis, 37 41 +0 44 13 46 58 51 28 42

e Arietis, 31 23 15 +0 35 20 4 37 51 28 27

S Arietis, 32 55 55 +0 37 18 31 40 51 28 12

i Tauri, 28 20 55 +0 31 23 6 53 51 28 19

Uranus, 31 52 35 +0 36

A Tauri, 30 15 55 +0 34 21 12 3 51 28 32

Circle reading for Uranus, corrected for refraction, 31 53' 11"

Equatorial point on circle, 51 28 30

Declination of Uranus, from observation, + 19 35 19

1712, April 2. Right Ascension.

Uranus,
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1715, March 4. Eight Ascension.

T. R. A. C. C".
h. in. s. h. m. s. h. ffl. 8. s.

d Leonis, 11 50 19 10 45 52.5 1 4 26.5 20.5

Uranus, 12 27 1

b Virginis, 12 49 41 11 45 23.6 1 4 17.4 21.1
h. m. s.

Clock time of transit of Uranus, 12 27 1

Correction for clock and instrument, 1 4 20.8

Right ascension of Uranus from observation, 11 22 40.2

1715, March 4. Declination.

Z. D. R. Dec. Eq. point.

d Leonis, 46 19' 40" +1' 0" +5 8' 6" 51 28' 46*

Uranus, 46 33 10 +11
b Virginis, 46 13 20 -fl 5 14 17 51 28 37

Circle reading for Uranus, 46 34' 11"

Equatorial point, 51 28 42

Observed declination of Uranus, -{"4 54 31

1715, Mirch 5. Right Ascension.

i

d Leonis,

Uranus,
b Virginis,

h. m. s.

Transit of Uranus, 12 22 59

Correction for clock and instrument, 1 27.7

Observed right ascension of Uranus, 11 22 31.5

The large apparent clock rate, and the colons after the time of transit, both

throw doubt on this observation.

Declination.

The circle readings for the stars are the same as on the day preceding, while

that for Uranus is 50" less. The declination is therefore 50" greater, or

+4 55' 21".

1715, March 10. Eight Ascension.

T.
h. m. s.

11 46 24
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Declination.

V. 1). K.
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Mr. Brcen remarks :
" The right ascensions are very accurate. It has been

assumed that the N. P. D., on 1750, September 13, is identical with
(i Capricorni,

with which it was compared. The first observation was by the transit instrument,

and the second by the quadrant."

No ground is given for the above assumption respecting the N. P. D. for the

second observation ; it may, therefore, be omitted as valueless.

In the year 1750 we have also two observations by Le Monnier at Paris. For

these, and all the other observations by the same observer, 1 shall adopt the results

given by Bouvard in the Connaissance dts Temps, for 1821, p. 341, with the cor-

rections indicated by Le Verrier, in Connaissance des Temps, for 1849, pp. 125 and

126. The necessary uncertainty of the observations is such that, considering that

Bouvard reduced them with the star positions of the "
Fundamental scarcely

anything will be gained by a new reduction.

1753, December 3, we have another observation of right ascension by Bradley.
I adopt the result kindly communicated by my distinguished friend, Dr. Auwers.

1753, December 3,

h. m. h. m. s.

5 33. R. A. = 22 23 21.59

1756, September 25. Observation by Mayer, at Gottingen. I adopt the result

given by Bessel, in Fundamenta Astronomic, p. 284.

1756, September 25,

h. m. o i ii

10 12. E. A. = 348 54.5

Dec. =61 49.4

The following is a tabular summary of the preceding results, with their com-

parison with the provisional theory. In the computation of the geocentric place
the places of the sun were derived from Hansen's Tables. I am indebted to Pro-

fessor Coffin for a duplicate computation of the geocentric places from the pro-
visional ephemeris, which was executed by Mr. Joseph A. Rogers.
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1. Observations at Greenwich, 1781 to 1872.

2 Paris, 1802 to 1827, and 1837 to 1869.

3 Konigsberg, 1813 to 1835.

4 Vienna, 1822, and 1827 to 1839.

5 Speier, 1827-29.

6 Cambridge, 1828 to 1842.

7 Edinburgh, 1836 to 1844.

8 Berlin, 1838 to 1842.

9 Pulkowa, 1841 and 1842.

10 Washington, 1861 to 1872.

11 Leiden, 1863 to 1871.

12 Santiago, 1854 and 1855.

As to the general distribution of these observations in time, we may remark

that during the first three or four years the planet was zealously observed at

Greenwich. Observations then began gradually to fall off until 1798, in which

year we find but one. From this time until 1814 only one or two observations

were made at each opposition. They become a little more numerous, until 1829,

when there is a sudden increase. Few interruptions have occurred since. With

regard to the other observatories it may be said that from 1802 until 1830 there is

a gradual increase in the number of observations, and that since the latter year

the number of observations is entirely satisfactory.

A great number of the observations were reduced with the star places of the

Tdbulce Regiomontance, and the entire Paris series are reduced with the star

positions of Le Verrier, given in his "Annales de V Observatoire Imperial de Paris"

Tome II. As a preliminary to the discussion of the systematic corrections to the

principal published reductions, I have prepared the following table, showing the

corrections which must be applied to the places of the equatorial fundamental

stars in the above catalogues to reduce them to the adopted standard, namely, Dr.

Gould's coast survey list in right ascension, and Auwers' standard in declination.

In the table of right ascensions the first column after name of the star gives the

annual variation of that co-ordinate for the epoch 1860.0, as derived from Le

Verrier's tables of right ascensions just cited. Next we have the correction to this

annual variation, expressed in units of the fourth place of decimals, to reduce it to

that given in the " Star Tables of the American Ephemeris" the positions in which

are founded on Dr. Gould's Catalogue. The fourth column gives the correction to

the right ascensions of Le Verrier for 1860, in hundredths of a second of time.

Subtracting from this column sixth-tenths of the preceding, we have the corre-'

spending corrections for 1800. The last four columns give the corresponding num-

bers for the right ascensions of the Tabulce Regiomontance.
The table of declinations shows, for different epochs, the corrections necessary to

reduce the tabular positions to those given by Auwers in his paper on the declina-

tions of the fundamental stars



T11K OK HIT OF U II A X U S. 113

I. IllUlIT ABCEN810N8.



114 THE ORBIT OF URANUS.

II. DECLINATIONS.
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The correction to the reduction* to apparent place given in tin' Talmhr Regio-
montaiut on account of the correction to tin- constant of Nutation is ;

In right ascension:

0".4(5 sin Q 0".l8 sin Q sin a tan A OV24 sin Q cos a tan 3.

In declination:

it 1 s sin Q cos a + 0.24 cos Q sin a.

The terms which contain tan A as a factor may be entirely neglected, as they are

small, periodic, and contain tan A as a factor which is sometimes positive and

sometimes negative. I shall also neglect the corrections in declination, as their

MUM is sensibly

0".21 sin (a Q)

the effect of which will generally be confounded with the accidental errors of

observation.

The only correction we shall apply on account of nutation is, therefore,

la = (T.030 sin Q.

The values of this expression at the dates when it is zero, a maximum, or a

minimum, are as follows:

. 7- 7-

1778.5 .03 1820.3 .00

1783.1 .00 1825.0 +.03
1787.7 +.03 1829.6 .00

1792.4 .00 1834.3 .03

1797.0 -.03 1838.9 .00

1801.7 .00 1843.6 +.03
1806.3 +.03 1848.2 .00

1811.0 .00 1852.9 -.03

1815.6 -.03 1857.5 .00

1820.3 .00

Having adopted this system of standard positions, we may adopt two ways of

reducing the observations to it. One is to compare the positions of the stars

adopted in the published reductions with the standard, and apply the mean differ-

ence to the reduced place of the planet. Another is to make a similar com-

parison of the standard catalogue with the positions of the fundamental stars

which have been deduced from the observations by a system of reduction uniform

with that employed in reducing the observations of the planet, and to regard the

mean difference as a correction applicable to all the positions of the planet. If

the standard catalogue and the observations are both free from systematic error,

the results obtained in these two ways should be substantially identical. These

are. however, conditions which we cannot expect to find fulfilled. In the follow-

in;,' dix ussions I have sometimes used one, sometimes the other, and sometimes
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combined both, the choice being determined by circumstances. We shall con-

sider the different series of observations in succession.

Greenwich Observations from 1781 to 1830.

These observations are completely reduced by Airy and compared with Bou-

vard's Tables, in the work Reduction of the Observations of Planets made at the

Royal Observatory, Greenwich, from 1750 to 1830. London, 1845. The con-

cluded positions given in this work depend mainly on the star places of the

Tabula? Regiomontanse, both in right ascension and declination. If we consider

the first four oppositions 1781-1785 as forming a single group of which the

mean epoch is 1783, we find that the general correction to the Tabulae Ilegio-

montanse for this epoch is

In right ascension, 0\030 ;

In declination, -f 0".08.

If, on the other hand, we consider only the particular stars compared with Uranus,

the result will be a little different. The number of times each of the fundamental

stars has been compared with Uranus, and the correction in right ascension cor-

responding to each star, are nearly as follows:

s.

a Arietis, N= 2 Cor. = 0.09 ^Vx<?=- -.18

a Tauri, 2 -.01 - .02

yPegasi, 2 -.03 - .06

J3 Tauri, 19 +.13 +2.47
a Orionis, 33 +.02 +0.66
a Canis Minoris, 33 -.02 0.66

j8 Geminorum, 34 -.07 2.38

a Leonis, 7 .11 .77

^Leonis, 2 -.07 .14

The mean correction from these data comes out 0\008, differing by 0'.022 from

the general mean correction. Our choice between the two corrections depends
on whether we are to consider the relative positions of the Tabulae Regiomontanse,
or those of the standard catalogue, as nearest the truth at the epoch 1783, and

particularly upon whether we are to consider the large correction to the proper
motion of (3 Tauri as real. In the absence of exact data for settling this ques-

tion, the mean of the two results, or 0'.020, has been adopted.
A similar anomaly is exhibited by the declinations. It is probable that the

declinations of Uranus during this period mainly depend on stars in the first

twelve hours in right ascension, for which the mean correction is about 0".3()

instead of +0".08. I have adopted 0".16. Changing these corrections to lon-

gitude and latitude, we have, during the period 1781-1786 :

Correction to observed longitude, = 0".30 ;

Correction to observed latitude, .19.
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During tin- \. -ar- 1 >s_1798 the above systematic difference in right ascension

not appear. The most probable correction seems to be

Aa = O'.02:> ; AS = 0".00.

Whence A long. = 0". 34; A lat. = 0".10.

Between the years 1SOO and IS'23 the stars used for comparison are so widely
scattered that I consider it safe to apply only the general mean correction for the

epoch 1*13, which is

Aa = .()().'. ; A3 = +0".<;c>.

Whence A long. = O'.OO ; A lat. = -j-0 .66.

From 1825 to 1830 more than half the weight of the right ascension comes

upon the stars a, ^, and y Aquila?, the mean correction to which, during this

interval, is 0'.035. The general mean correction at this epoch is -|-0'.00'2. I

think the right ascensions of these three stars in the Tabulae llegiomontansc are

really too great at this epoch by the entire difference of these results. We may,
in fact, hereafter regard the positions of the standard catalogue as sufficiently

unite. The mean corrections to be applied will then be

Aa = O'.OIT; A$ = +0*.83.
Whence A long. = 0".<)5 ; A lat. = -j-0".86.

1'rom the year 1831 until the present time the Greenwich observations are regu-

larly reduced in the several annual volumes of observations. But a reduction of

the observations from 1831 to 1835, executed by Mr. Hugh Brecn, is given in an

appendix to the volume for the year 1864. The results here given differ from

those published by Pond in the several annual volumes for the same interval. The

right ascensions are altered only by applying the constant correction 0'.030,

which is found necessary to reduce Pond's right ascensions to those of the Tabula?

llegiomontanae. This correction I have verified. The mean correction to reduce

the right ascensions of the Tabulae Regiomontana? to our standard is at this time

-f O'.OOo. On the other hand, when we compare the concluded right ascensions

of stars within six hours of Uranus, as given by Pond in the Greenwich observa-

tions for 1834, with our standard, we find a mean correction of --'.034 to reduce

his positions to the standard, which implies a correction '.004 to Breen's reduc-

tion. The two results being +".005 and '.004, I have applied no correction

whatever.

In the paper in question the declinations are completely re-reduced, using im-

proved data of reduction, but, so far as I see, making no changes in Pond's

method. The results differ strikingly from those of Pond, and suggest the

desirableness of a complete re-examination of all Pond's determinations of decli-

nation. Having no catalogue of observed declinations of standard stars reduced

in this same way, we cannot directly determine the systematic correction to the

declinations. I therefore proceed as follows: A comparison of Pond's observed

declinations of standard stars with Auwcrs' normal catalogue show that the former

require the following corrections near the parallel of Uranus :
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In 1831 1".42;

1834 2.10.

Then comparing Airy's reduced declinations of Uranus with Pond's, we find the

following mean differences:

In 1831, Airy Pond = 3". 18

1834, 3 .50.

To reduce Airy to Auwcrs we must there apply to the declinations

In 1831 + 1".76

1834 + 1 .40.

I have regarded the correction -j- 1".60 as applicable throughout the period in

question.

1836-72.

During this interval the corrections in right ascension have been derived by the

following two sets of comparisons: (1) A comparison of the several collected six

and seven year catalogues with Gould's standard, from which it appears that they

require the following general corrections in right ascension :

Six year catalogue of 1840 -f O
s

.047

Six year catalogue of 1845 -j- .002

Seven year catalogue of 1860 -\- .003

Seven year catalogue of 1864 -f- .022

(2) A comparison of the corrections applied to the right ascensions of the indi-

vidual years to reduce them to the standard of the catalogue, as given in the

introduction to each catalogue; The sum of these two numbers gives the correc-

tions for each year.

A slightly different method is to regard the above correction for each catalogue

as applicable to all right ascensions which depend fundamentally upon that cata-

logue. I have sometimes combined both methods so as to derive what seemed to

be the most probable resiilt, and sometimes used but one.

The corrections to the declinations during the interval in question have been

derived from Auwers' "
Tafeln zur Reduction der Declinationen verschiedener

Sternverzeiclmisse auf ein Fundamentnlsystem," Astronomische Nachrichten, No.

1536. These tables include the Greenwich seven year catalogue for 1860, when
the correction corresponding to the declination of Uranus is about -j- 0".45. The
corrections for the previous catalogues vary between 0".35 and 0".68. The cor-

rection corresponding to the interval 1861-67 has been derived by a direct com-

parison with Auwers' declinations, and the result is -4- 0".44, agreeing with the

two preceding catalogues. But, on making a similar comparison with the annual

catalogue for 1869, a considerable change was found, the correction being 0".17,

a change of more than half a second. I shall use this correction for and after the

beginning of 1868, as the change is probably due to the introduction of a new
constant of refraction in the reduction of the observations for 1868 and subse-

quent years.
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An extended series of planetary observation^ was commenced here by Professor

Airy, in 1827. The scries was continued by him and Professor Challis, his suc-

cessor, until 184'J. During the tir>t three or four years the combined right ascen-

sions depend on a few special stars, and mainly on a* Capricorni. Taking the

mean correction to the adopted right ascensions of the stars actually compared as

they are given in the introduction to each annual volume, giving to each star a

weight proportional to the number of comparisons, the following corrections are

deduced :

1828 -OMO
l^v?9-31 0.1G

1832-37 -0.19.

In the introduction to the volume for 1838 it is stated that the adopted right

aM-en-.il us are diminished by the average amount of 0".()83, which would still
w

leave a correction of 0".107. Actual comparisons in two subsequent years give

1840, Aa = 0-.087

1842, .069.

Although the positions deduced from each year's work were adopted for clock

correction the year following, without any change of equinox, it seems that there

was, effectively, a progressive change of about O'.Ol annually in the equinox as

adopted.

No declinations were observed until 1830. On comparing the declinations

did need from several years' work with Auwers, it was evident that the correction

increased with the polar distance of the star. The law of increase could be well

enough represented by supposing the correction proportional to N. P. D. Thus the

following corrections were deduced in three different years.

1*78
1834, 5 dec. =

_
V'.OO X N. P. D. in degrees

1842,

100

1".03 X N. P. D. in degrees
100

From which the correction for other years was deduced by interpolation. But,

on applying these corrections, the results were found systematically different from

those of other observatories, and on referring to Auwers' corrections to Airy's

Cambridge Catalogue, it appeared that the mural circle required a large correction

near the declination of Uranus during this period. The above results were there-

fore altered so as to conform as nearly as practicable to Auwers' law.

In reducing the observations of 1836 Henderson uses the right ascensions of

tin Tabula: Ilegiomontana?, to which the general correction is at this epoch -f.007.
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But, if we take only the stars near Uranus, with which the latter was necessarily

most frequently compared, the corrections will be negative. Comparing the con-

cluded positions of the stars from a Serpentis through O 1 '

to ft Orionis, we find the

following mean corrections :

In right ascension, O'.0l2; in declination, 0".09.

In subsequent years it is stated that the adopted positions of clock stars used

each year are derived from the right ascensions observed at Greenwich, Cam-

bridge, and Edinburgh, during the year or the two years preceding, without any

statement whether corrections were applied for difference of equinoxes. In some

subsequent years the following corrections are deduced, sometimes from the adopted

and sometimes from the concluded positions :

1837, Aa = O'.OOO ;

1840, Aa = +0.015; A Dec. = (T.OO;

1844, Aa = +0 .070 ; A Dec. = +0 .49.

Paris.

All the positions of planets given by Le Verrier, in his "Annales de I'Observa-

toire Imperial de Paris: Observations"depend both in right ascension and N. P. D.

on his adopted positions of fundamental stars, the corrections to which have

already been given. As the corrections to the individual star places used by
Le Verrier are not generally of a systematic character, the general mean correc-

tion is employed, which is :

In right ascension 0'.024 -f 0\0857;
In declination -f-0".12 +1'MT,

T being the fraction of a century after 1800.

In 1854 a new and larger catalogue was introduced, and for this and the follow-

ing years the correction in declination is derived from Auwers' tables.

A summary of the adopted corrections after 1830, as deduced from the pre-

ceding comparisons and discussions, is given in the following table:

TABLE OF ADOPTED SYSTEMATIC CORRECTIONS.
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TABLE or AIH>PTED SYSTEMATIC CORRECTIONS. Continued.
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between the provisional theory and observation. A condensed summary of the

results for each of the principal series of observations is here presented.

Greenwich, 1781-1830.

In Airy's reductions, already referred to, we have given for the moment of each

individual observation a heliocentric place computed from Bouvard's Tables, and

the geocentric longitudes and latitudes thence deduced. The observed right

ascensions and declinations are then changed to longitudes and latitudes, and the

apparent error of the tables thence deduced. The means of these errors are taken

for groups of observations, and expressed in terms of the errors of heliocentric

longitude, radius vector, and latitude. The mode in which these means have been

treated is fully shown in the following table. The first column gives the mean
date of each individual group of observations. The next three give the mean
excesses of the co-ordinates interpolated from the heliocentric ephemeris, p. 100,

and corrected for solar nutation, over those printed in the "
Computations of tabular

place, etc.," in the Greenwich reductions. In the fifth column these corrections

are changed to corrections of geocentric longitude. In the next two columns we
have the mean corrections to Bouvard's geocentric places given by observation. It

is the negative of the mean error of tabular place printed in the "
Reductions,"

corrected by the numbers already given to reduce the star places to a uniform

system. Then we have the difference between these two sets of corrections, or,

the mean correction to the geocentric place of the provisional theory as given by
observation. Lastly, we have the differential coefficients for expressing the errors

of geocentric in terms of the errors of heliocentric co-ordinates taken without

change from the Greenwich volume.
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Paris, 1801-1827.

A complete reduction of this series is found in Le Verrier's Annules de I'Obser-

vatoire Imperial de Paris, Observations, tome 1. No comparison with any ephemeris

is given here, nor is there any complete ephemeris to compare them with. A

complete geocentric ephemeris was therefore computed from the provisional theory

for the principal groups of the Paris observations. The individual observations

being compared with it, the resulting mean corrections are given in the following

table :

Mean date.

1813, May 20,

1814, May 27,

1815, May 24,

1816, June 1,

Mean date.

1801, March 24,

1802, April 1,

1805, April 22,

1806, April 17,

1807, April 28,

1808, April 28,

1809, May 5,

1810, April 30,

1811, Febr'y 18,

1811, May 17,

1812, Febr'y 16,

1812, May 10,

1813, Febr'y 25,

Aa
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rections were applied to his observed times of transit over the moan wire, and the

resulting time was employed as that of transit. Ivieh time, compared with the

computed right ascension of the star gave a \alue of the clock correction, which

was reduced to the time of transit of the planet by the known daily rate. If the

iii>truiiiental errors were always accurately determined, the mean of these clock

corrections would he used to obtain the right ascension of Uranus. But it was

frequently found that the clock error varied systematically with the declination of

tin- star, so that it was deemed advisable to add to the clock correction a term

varying as the simple declination, which was deduced from all the stars, and used

to reduce tin; correction to the parallel of Uranus.

It was intended to give the results of this reduction for each observation, but

on comparing the results with those of Fleming in the Antroiioiniche Nuchrichten,

Band :JO, it appeared that the results were not materially better than his. It

does not, therefore, seem necessary to give more than the mean results for each

opposition.

1 rom Bessel's declinations, with the old Gary circle, I was unable to obtain any

satisfactory results, owing, apparently, to a want of knowledge of some peculiarity

of the instrument. Fleming's reductions were therefore adopted. They are

designated by the letter Fin the following list.

Mean Corrections to the Provisional Ephcmeris given ly BesseVs Observations at

KfaiyAerg, 1814-1829.

Mean date.

1822, June 24,

1823, July 4,

1824, July 6,

1825, July 16,

1826, July 18,

1828, July 25,

1829, Aug. 1,

Aa
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way into groups of about a month each, and the mean date and mean correction

found for each group. The Paris and Konigsberg results are repeated for the

sake of clearness. The small figures show, as usual, the number of observations

employed in forming the mean.

Aa AS
Date. Observatory. Original. Corrected.

1827, July 22, Speier, OM6, O'.U

July 25, Paris, .03, .05 +0".53

September 15, Vienna, _Q .11,, .10 .Ou
October 14, Vienna, 0.18, 0.17 2.26

1828, July 25, Konigsberg, -0 .15
7 0.15 3 .5 7

July 29, Vienna, .24 2 .20 1 .42

August 14, Vienna, _() .13 10 .09 -fl .1 10

August 27, Speier, -0 .10 6 0.09

September 18, Vienna, -0 .039 -fO .01 +1 .0.

September 25, Cambridge, .()5 .16

October 17, Vienna, -0 .13 U .09 .014

October 17, Cambridge, 0.021U 0.12

1829, August 1, Konigsberg, .10. .10 1.0

August 6, Cambridge, -f0.1l g 0.08 1 .!

August 28, Speier, -0 .04, .04

September 23, Cambridge, +0 .21 IO +0 .05
'

November 6, Cambridge, -4-0 .25, -j-0 .09

Observations from 1830 (o 1872.

Since the year 1830 heliocentric and geocentric ephemerides of Uranus com-

puted from Bouvard's Tables are at our disposal. We make use of those in the

Berlin Astronomisches Jahrbuch for the years 1830 to 1833, and of those in the

Nautical Almanac from 1834 forward. The system of comparison is the same
as that already explained. That is to say, we deduce separately :

(1) Mean corrections to the geocentric longitude and latitude of Uranus in the

ephemeris as derived from observation.

(2) Mean corrections to the same, given by the provisional theory, as derived

from a comparison of the heliocentric positions of that theory with the heliocentric

positions in the ephemeris.
Then (1) (2) is the correction to the provisional theory given by observation.

The process of forming (1) and (2) is shown quite fully in the following pages.
Each individual printed observation was first compared with the printed ephemeris,
and a correction to the latter was thence deduced. When this correction was

given with the observations themsejves, it was of course not recomputed, unless in

some doubtful cases. The observations were then divided into groups, usually of
about a month each, and coinciding in time with the grouping of the Greenwich
results. The mean of the dates and the mean of the corrections were then taken

separately for each group and each observatory. The separate results are shown
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in the proper columns of the following table, under the head "Mean dates,"

Mean cor. in K. A., and Mean cor. in Dec. These means are those given by the

observations as printed, without the application of the systematic corrections on
- r.'O and l'2l. In the columns l> Corrected mean" these corrections arc applied ;

this column would therefore exhibit no systematic differences between the results

of the different observatories, unless tin- observations of Uranus were affected by
errors different from those which affect the positions of the fundamental stars. A
careful comparison of the differences in various parts of the table shows that this

is unfortunately the case. A weight is next assigned to each individual result

depending on the number of observations, the general sufficiency of the data of

reduction, the mean discordance of the individual observations, and the quality of

the instruments. The critical reader will notice a lack of homogeneity among the

\\eights assigned, of which I shall speak presently. The mean of the separate

group-results is then taken with regard to these weights, and also the mean of the

mean dates, using tor the latter the relative weights adopted for the several right

ascensions. Thus, we have a mean result derived from all the observations for

each month, or other group-period, which is written under the horizontal lines.

These corrections to right ascension and declination are next changed to correc-

tions of longitude and latitude, using for this purpose the following table, which

is (omputed from the formula? of Gauss:

cos E= sin e cos a sec 6 = sin e cos I sec 5

sin E cos 5
- Aa

cos E t
, Ad

cos bcos 6

Ab = cos E cos 5 Aa -}- sin

The differential coefficients in this table are expressed as a function of the right

ascension of Uranus only, which may be done because, owing to the small inclina-

tion and great distance of the planet, its geocentric position on the celestial sphere
ver more than about 2" from some point of the projection of its heliocentric

orbit. The coefficients of Aa are multiplied by 15, that the right ascension may
be expressed in time. .

To CONVERT ERRORS or RIGHT ASCENSION AND DECLINATION or URANUS INTO ERRORS or
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To CONVERT ERRORS OF RIGHT ASCENSION AND DECLINATION. Continued.
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"NVe thus havr, for the interval occupied by each group of observations, a mean
correction to the geocentric longitude und latitude of tlic planet given by obser-

vations, which are found in the ninth und tenth columns of the table, on the same

hori/.ontal line with the mean corrections in right ascension and declination from

which they are derived. The next step is to obtain the corresponding corrections

given by the provision*] ephcmeris.

This correction has been first obtained for every twentieth day of each of the

forty-two oppositions included in the table. The heliocentric longitude, latitude,

and radius vector were interpolated to the most convenient twenty-day intervals,

and compared with the corresponding co-ordinates in the heliocentric ephemcris.
This ephemeris was of course the one corresponding to that with which the

observations were compared, namely, the Berliner Jahrbuch for the years 1830-33,

and the Nautical Almanac for subsequent years. These comparisons are fully

given at the end of this chapter, and the resulting corrections to the printed

cphemeris are given in the proper columns of the table.

These corrections to the heliocentric co-ordinates were then changed to corrections

of geocentric longitude and latitude by the following formulae. Put

i
1
,
the projection of the planet's radius vector on the ecliptic;

p',
the projection of the planet's distance from the earth on the same plane ;

p,
this distance itself;

', the planet's heliocentric longitude and latitude;

L, the sun's geocentric longitude;

//, its radius vector;

M, the modulus of the common logarithms ;

V, rV>, the corrections to the geocentric longitude and latitude ;

p,
the correction to the common logarithm of the radius vector.

Then

~

Rr

I +
*

cos (L X)
J

r o--a
- 6111 (L X) Ttf-+-r?

p*
'JfKBl

-f T sin (L A) tan ptp

tanV cos(L
f

Vr tan 8 sin (L ?.)^
99

99

The last term in 5Z and the last two terms of bb have been omitted in the com-

putation, as they scarcely ever exceed a few hundrcdths of a second.

17 K*y. 1873.
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The values of 1 and &b are printed in the last two columns of the table. The

formula for 56 might have contained the additional term

= sn

&o being the correction to the obliquity of the ecliptic adopted in the ephemeris

to reduce it to that employed in the provisional theory. This correction is, how-

ever, deferred until we come to form the equations of condition.

From the values of Z and 56 thus obtained we are to find the mean values

during each group of observations. If these quantities varied uniformly, the

proper value would be that corresponding to the mean date of each group. But

the second differences are so large that this value would generally be in error by
one- or two-tenths of a second. Owing to the minuteness of this difference, it has

been considered that when the mean date was near the middle of a twenty-day

interval, the correction 5Z interpolated to that date without regard to second

differences would furnish a sufficient approximation to the required mean value of

1 during an interval of about 30 days. In other case the value of II was inter-

polated to 5-day intervals through the period of each group of observations, and the

mean value taken.

During the years 1850-1863 the sun's longitude employed in the ephemeris

required a gradually increasing correction, amounting at the latter date to about

3". A small correction of which the maximum value is about 0",15 was applied

to cl to reduce it to the value it would have had if Hansen's tables had been

employed.
The corrected mean values of il and e& thus obtained are given in the last two

, columns of the following table, being inclosed in brackets and printed immediately
above the values of Al and Ab derived from observation.

I deem it proper to mention that the mechanical labor of constructing these tables

of comparisons, in the manner just described, was in great part performed by Dr.

C. L. F. Kampf, who was employed by the Smithsonian Institution to assist me in

the work. Before using it I subjected the whole of the work to a careful revision,

altering especially the relative weights of the corrected means in many cases. As
the assigned weights now stand, each set of results which are combined into a

single mean has its own unit of weight, which does not necessarily coincide with

that of any other set. The use of a uniform scale of weights through this series

of observations, and the assignment to every final mean of a weight equal to the

sum of the weights of the quantities whose mean was taken, would have led to

weights in many cases quite fictitious, owing to the obvious presence of systematic
errors in the results. For this reason I have made no further use of the weights
found in this table, and their lack of homogeneousness therefore does no harm.
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MEAN COUK,TI.,.NS T TIIK KPHKMIKIS n- Fuun s ,N ,,, K I:.K. .NKK J A..KBUCU AND THJC
NAI 11, AI. Al.M VNAC,
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MEAN CORRECTIONS TO THE EPHEMERIS OF URANUS. Continued
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Ml \N < "HKKCTION8 To THE Kl'II KMKRIS OF U RAM'S. Continued.
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MEAN CORRECTIONS TO THE EI-HEMERIS OF URANUS. Continued.
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MEAN CORRECTION* TO TUE KI-IIKMKRIH or URANUS Continued.
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MEAN CORRECTIONS TO THE EPDEMERIS OF URANUS. Continued.
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MKA.N ',>uiu.i i i"\.s TO THE Ki-ut.Muti.> or UnANl'8. Contiitti"!.
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MEAN CORRECTIONS TO THE EPHEMERIS OP URANUS. Continued.
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MEAN ( . Ki;nii.\8 TO THE KFHEMEBIS or URANUS. Conti>
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MEAN CORRECTIONS TO TUB EPHEMEHIS OF URANUS. Continued.
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MI.AS t "liKK. -n.iv. i.. int. KPIIKMKIUS nk- I'KAM -. C<nitinu,:l.
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MEAN CORRECTIONS TO THE EPHEMERIS OF URANUS. Continued.
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Mr. xs i'.,KKr.rn.'\s TO TIIK KIMIKMKRIS or URANUS. CVn<i'n </.
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MEAN CORRECTIONS TO TIIE EPHEMERIS OP URANUS. Continued.



TIIK OH HIT OF URANUS. 14:,

M r. \N 1 '..I;I:K. Tiiixs TO THE Ki-iiKMKKis op UaA.NUS. Continued.
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MEAN CORRECTIONS TO THE EPHEMERIS OP URANUS. Continued.
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MEAN CORRECTIONS TO THE EPIIEMERJS OF URANUS. Continued.
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MEAN COUKKI TI..NS TO TIIK KPIIEMCKIS or UBANUB. Continued.
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MEAN CORRECTIONS TO THE EPHEMERIS OF URANUS. Continued.
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CORRECTIONS TO BE ATI-LIED TO THE POSITIONS or URANUS IN THE RERUN JAHKIII > 11 AND THE

NAUTICAL ALMANAC TO REDUCE THEM TO THE POSITIONS FBOM THE PROVISIONAL THEORY.
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CORRECTIONS TO BE APPLIED TO THE POSITIONS OF URANUS Continued.
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CORRECTIONS TO BE APPLIED TO THE POSITIONS OF URANUS Continued.
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CORRECTIONS TO BE AI-I-I.IF.D TO THE POSITIONS or URANUS Continued.
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CORRECTIONS TO BE APPLIED TO THE POSITIONS OF UKANUS Continued.
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CORRECTIONS TO UK Arpi.iKD TO TiiK POSITIONS OF URANUS Continued. .
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CHAPTER VII.

FORMATION AND SOLUTION OF THE EQUATIONS OF CONDITION RESULTING
FROM THE PRECEDING COMPARISONS.

IN the preceding chapter we have obtained from observations a series of cor-

rections to the geocentric positions of Uranus resulting from the provisional

theory. The further operations are as follows:

1. To reduce all the corrections in right ascension and declination to correc-

tions in geocentric longitude and latitude. Most of the corrections are already
so expressed, so that this reduction is necessary in only a few cases.

2. To find the mean value of the correction in geocentric longitude during each

opposition, and to express this mean value in terms of the correction to the helio-

centric co-ordinates.

3. To express these corrections to the heliocentric co-ordinates in terms of cor-

rections to the elements of Uranus and the mass of Neptune.
4. To solve the equations of condition thus formed.

The first of these processes is too simple to make it necessary to present any
details of it. With regard to the second I have sought, not the simple correction

to the geocentric longitude, but this correction multiplied by such a factor as it

was supposed would make the probable error of the correction 0".5. The equations
for expressing the error of geocentric longitude in terms of errors of heliocentric

longitude and radius vector have been given on page 129. The first observation

of Flanistead, p. 107, gives the equation

-f 22"=1.045A+ .0273p

fa being the correction to the heliocentric longitude, and fy that to the Neperian
logarithm of the radius vector. From the discordance of Flamstead's clock errors

it may be estimated that the probable error of the first member of this equation is

10". Therefore we divide the equation by 20, which gives

,V = l".l = .0525a + .00%
In the opposition of 1715 we have four observations. The best were those of

March 4 and 10, of which we may estimate the probable error at 10", and the
worst that of March 5, of which the probable error may be estimated at 20",
while that of April 29 is intermediate in certainty. The separate observations

give the equations

March 4, H= -f 28" = 1.065/1; Weight, 4
March 5, <$Z = -f44 = 1.06&l; Weight, 1

March 10, M = -j- 36 = 1.06,5/1; Weight, 4

April 29, M=-j- 2 = 1.04U -f .04fy; Weight, 2.

Mean &= -f 27.6 = 1.056& +.003fy ; probable error= 6".
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Applying the correction I'.l for equinox, and dividing by 12, the equation of

condition bccom< s

fill = + 2".2 = 0.0882%.

In tliis way the following equations wore obtained. It is deemed unnecessary
to give tlic details of the process, as it is one which everyone can go over for himself

from tin- data already given, and can reproduce all the results, except so far as

they depend on the rclatm- weights assigned to the different groups of observations

during one and the same opposition.

No.

1

2

3

4

5

6

7
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No.



T11K OH BIT OF UUANUS. 1G1

No.

77

78
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111 tin- equations of condition ten years has boon adopted for the unit of time,

in order to make the general value of tin- coefficients as nearly eciual as possible,

ami tin- time lias been counted from tin- epoch 1*30.0, in order to have the posi-

tive and negathe values of t in the equations more nearly halanced. To distin-

guish these values of be and <

v

they are marked with an accent. This unit of
>

time gives o.s;il I for the value of
'

in arc, whence
oil

-. t '^. - 0.891.
dri < I

The equations of condition are now formed by putting in the preceding equa-

tions for heliocentric longitude and radius vector

6,

>L

For the coefficients - have been taken one-hundredth the perturbations of
(it'

longitude j)roduced by Neptune, as given in the heliocentric ephemeris at the end

of Chapter V. The corrected mass of Neptune will then be

1

(H
17000*- 100

Finally, I remark that all the preceding comparisons are made with the helio-

centric ephemeris as printed, without the correction indicated in the column

ail joining it, but in the following equations this correction is for the first time

introduced.

Equations of condition r/lrcn by
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A simple glance at the residuals 5Z shows that they are much greater than the

purely accidental residuals resulting from the theory of least squares. We may
divide the possible causes of these systematic errors into three classes.

1. Systematic Errors of Observation. These may result from deviation of the

line of collimation of the instrument from a true great circle, or from any pecu-

liarity of the observer which leads to his registering the transit of Uranus earlier

or later than that of a fixed star. If we compare the corrections derived from the

work of different observatories as given in the last chapter, we shall find frequent

cases not only of systematic differences between the results of different observa-

tories, but between those of the same observatory in two successive years. An
instance which particularly attracted my attention on first preparing the com-

parisons of theory and observation is that of the Greenwich observations for 1831,

which, as compared with observations at the same observatory during the years

preceding and following, seem to be affected with some constant error in B,. A. of

about 2". I find that this discrepancy can be attributed only to the original

observations.

2. Errors in the Theory compared. These may arise from errors in the preceding
theoretical computations, from the omission of the terms of the second order pro-

duced by Neptune, from the adoption of an erroneous mass of Saturn, or from the

attraction of an unknown planet. With regard to the probability of these different

sources of error it may be remarked that errors of computation seem possible only
in the terms of the second order, that the mass of Saturn is taken from the

exhaustive discussion of the Saturnian system by Bessel, in which an error sufficient

to influence the theory of Uranus seems highly improbable, and that a trans-

Neptunian planet large enough to produce a sensible deviation of the orbit of

Uranus from an ellipse in the course of a century would be too large to have escaped
detection. The choice of the elliptic elements of Uranus and Neptune is such

that the terms of the second order, due to the action of Neptune, can scarcely
become sensible within a century of the epoch.

3. Errors in the various Reductions by which Theory and Observation are com-

pared. In the method adopted for comparing theory and observation a number of

small uncertainties incident to the imperfections of the older data of reduction

necessarily creep in. In the early observations the imperfections arise principally
from the uncertainty of the instrumental corrections, and the errors in the adopted

positions of the fundamental stars, and indeed in nearly all the data of reduction.

In the late years they arise principally from the great magnitude of the correction

to Bouvard's tables, and the consequent rapid change of the corrections to the

geocentric ephemerides, which make the determination of the corrections AZ and
cl from theory and observation somewhat uncertain. Errors from this source will

necessarily be in part of a systematic character, and, in view of their possibility,
I regret not having been able to completely re-reduce all the observations before

1840, and to compare all since directly with ephemerides computed from the

provisional theory. In order, however, to test the question whether they are

sensible, I have prepared an ephemeris from the provisional theory for the three

recent oppositions of 1861-2, 1862-3, and 1872, and compared it directly with
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tin- ill.M nations. Tin- mean corrections in geocentric longitude for groups of

obsenatioiis are gi\cn iii column* (>'), ciAumn (1) showing tin- correction given

by the work of tlie lust chapter.

Opposition isr,i-2 I-* -2 .; i-:

(1) (-') (1) (2) (1) (2)

+2".8 +2".4 : +2".6 +2-.6, 8'.6 -9'^
2.9 -J.4, 2 .8 2.3, -8.5 8.1,
3.0 3.1, 2.1 2.0, -7.3 -7.5,
2.4 2.4, 3.3 2.94 -7.3 7.7.

>.(> 2.7, 7 .8 7 .6,

M an +'2 .79 +2.6-2 +'>.(>:> ,2.50 7.65 7.82

A systematic difference of OM6 would seem to be indicated, and on account of it

a correction of OMO was applied to the comparisons of the lust few years in

forming the equations of condition.

In view of the possibility of systematic errors from this source it may be con-

sidered that too great relative weight lias been assigned to the results of the later

observations. If the residuals arise from errors of comparison and of theory, their

probable magnitude is nearly as great at one epoch as at another. It may there-

fore be interesting to inquire what result we should get if, instead of assigning
Midi different weights to the comparisons at different epochs, we sought only for

the best general agreement with observations during the period the planet has

been observed. The preceding system of mean residuals will enable us to discuss

this question quite easily. In the first solution we shall reject the results from

Flamstead's observations, owing to their assured uncertainty, and those from

I.e Monnier's of 1769, owing to the possible maladjustment of his quadrant. The

equations from the remaining residuals will be the following:

1.05V
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Giving these nineteen equations equal weights, we have the second of the

following solutions, and the second of the series of residuals the first corres-

ponding to the primitive solution. Solving them again and assigning the weights
attached to the respective equations, which I judge to be tnose to which they
are entitled when a liberal allowance is made for systematic errors of observa-

tion and of comparison of theory with observations, adding also the equations

given by the observations of Flamstead and Le Monnier, which are as follows :

1690 0.05V 0.75V 0.15"e +0.0e5
2
7t -f0.15V= "- 5 ; /> 2^' Wt >

l

1715 0.1 -1.1 0.0 -0.2 +0.1 = .5 ^ 1

1769 0.2 -1.2 -0.3 +0.2 +0.2 = +2 .2 1 1

we have the second solution, and the third series of residuals.

(I) (2) (3)

M-! -0".39 -0.21

5H -0.38 -0.19

&e -0.33 -0.15

<?5
2
7t +0.25 +0.19

ay o -1.02 0.49

RESIDUALS.

Year. AJ A,Z A3Z3'

n

1691.0
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It will be seen that the effect of th< - changes of weights is, that the older

oli-ervations ;in- a little better, and the later a little \\orse represented. I conct i\e

that our choice must lie between the first and third solutions the tiist being the

more probable it \ve conceive tlie outstanding re>iduals to he due to errors of

oliM nation only, and the third if we suppose them c<iuully due to errors of com-

putation. On the whole, I consider the mean of the two to be about the most

probable, and this will give the muss of Neptune very near the round number

1

I97(M)

which will be adopted as the definitive value. The definitive corrections to

Elements III (p. 9'J) will then be

fc' (1830) 3".56

fe (1850) -12.45

10Sn 4.44

oe - 4.12

eon - 0.25

op
- 0.137

Corrections to the Inclination and Nide.

These corrections have been derived entirely from the modern observations, the

ancient ones being too uncertain to add anything to the weight of the result. The

mode in which the correction to the latitude of the provisional ephemcris has been

concluded from the observations has been sufficiently explained : it is only necessary

to add that the immediate results from the data of the preceding chapter require

two corrections, namely:

(1) A correction to the theoretical latitude for the change in the adopted mass

of Neptune. The value of this correction, as derived from the data of Chapter V,

is with sufficient approximation

(2) A correction to the observed latitude on account of the difference between

the obliquity of the ecliptic adopted in the various ephemerides compared, and that

of llansen's Tables du Soleil, which having been adopted in the theory should be

used throughout.

Applying the correction (2) (1) to all the observed latitudes, we have the

following corrections to the latitude of the provisional ephemeris derived from all

the observations of each opposition since 1781. The third column gives the

number of observations in declination. These numbers may, however, in some

cases be inaccurate. The fourth and fifth columns give the sine and cosine of the

argument of latitude, to be used in forming the equations of condition.
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Year.



THE ORBIT OF URANUS. 175

Again, the error of the standard is not necessarily constant, l>ut may contain a
term proportional to the time, arising from erroneous proper motions of the

standard Mar*. Therefore, instead of supposing the residual constant, \ve slmll

suppo>e it of the form + bt. Each obsened correction to the theoretical latitude

will then give the equation,

sin t5$ cos u$50 + a + i 7*= /.

To facilitate the solution of these equations they have been divided into groups,
each group usually comprehending three oppositions, and combined into a single

equation multiplied by such a factor as would make its probable error half a second.

The factor by which the correction of the latitude is multiplied in the equation is

tin- same with the coefficient of /. The year 1840.0 is taken as the epoch for b.

Thus we have the following:

EQUATIONS
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The solution of these equations gives

j$ = -j- 0".28 + 0".75 a = + 0".54

$30 = + 1 .57 + .686a + .2056 = -j- 1".75

a = + .35

b = 0.28

These values of a and b indicate that at the epoch 1840 Auwers' equatorial

declinations are too great, or his north polar distances are too small by 0".35, and

that this error is diminishing at the rate of 0".28 per century. If the older measures

in declination had been comparable in precision with those made at the present

time, and if the possible periodic error in the reduced right ascensions had been

carefully eliminated, I should regard this determination as entitled to considerable

weight. In view of the great uncertainty of the declinations previous to 1820, it

can be regarded as little more than a rough attempt at a determination. For this

reason the first two normal equations have been solved, leaving a and b indeter-

minate, so as to show the valves of 5$ and $<50 in terms of these quantities. It

will be seen that had we neglected a and b entirely, the value of 5$ would have

been smaller by 0". 26, and that of $0 smaller by 0".18 than those actually con-

cluded. As the observations with the Washington Transit Circle, and those with

the Pulkowa Vertical Circle, both indicate an increase of Auwers' polar distances,

I shall take for the definitive corrections to the inclination and node those which

follow from the above values of a and
Z>, or,

fy = + 0".54

$30 = + 1 .75.

The following table shows the residuals of the equations, and the mean out-

standing corrections to the latitude, (1) when the concluded values of 3$ and q>&0

a and b are all used, and (2) when a and b are supposed zero, and the values of

<5$ and $60, corresponding to this supposition, are used:

Tear. Residuals. 5/3

0) (2 ) (1) (2)" // ii n
1783 -0.8 -0.3 0.8 0.3

1789 +1.2 +1.8 +1.2 +1.8
1793 +0.7 +1.1 +1.4 +2.2
1796 +0.3 +0-6 +0.6 +1.2
1801 0.5 +0.3 0.5 +0.3
1806 1.2 0.5 1.2 0.5

1809 +0.5 +1.2 +0.5 +1.2
1812 +0.9 +1.6 +0.9 +1.6
1815 0.3 +0.6 0.2 +0.4
1818 +1.6 +2.5 +1.1 +1.7
1821 -0.7 -0.1 -0.5 -0.1
1824 -1.3 -0.7 -1.3 -0.7
1827 0.6 0.3 0.6 -0.3
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Yrar. Kt'sidoals. &fi

U> (2) (1) .,,
" " a i,

- <.-.> +0.2 0.1

+().:} +0.9 +0.10 +0.30
1836 o.o -fO.3 0.00 +0.10
183!) -0.1 +0.1 O.o:} +0.03
1^2 -0.fi ".t -0.17 0.13

184:> +0.1 0.0 +0.0:} 0.00

1S48 +- (] +-7 +0/20 +0.23
1851 +0.9 +0.9 +0.30 +0.30
1854 +0.3 +0.:} +0.10 +0.10
1858 +0.1 +-3 +0.03 +0.10
1861 -1.4 -1.0 -0.47 0.33

1864 -1.5 -1.0 0.50 0.33

1867 +1.1 +1.7 +0.37 +0.57
1869 +0.5 +1.0 +0.17 +-33
1871 0.0 +0.7 0.00 +0.23

The sum of the squares of the residuals is in the first case 17".94, and in the

second 25".41, so that the introduction of a and b makes a decided improvement in

the representation of the observations.

I have not attempted a rigorous investigation of the probable error of any of

these results for the reason that the values of the probable error deducible by the

method of least squares would, in a case like the present, be entirely untrustworthy.
It is, however, very desirable that we should be able to form some judgment of the

uncertainty of the mass of Neptune. From the last system of equations of condi-

tion the value of
ft
comes out with the weight 3.13, or nearly that assigned to the

mean result of each five years of modern observations. Regarding these results as

independent, their mean error would be about U".5, so that the probable error of p
would he 0.5, and that of

//
would be .005, or about 2 J ff

the entire mass of

Neptune. A probable error derived from the original equations would have

been much smaller, and when, in the last equations, we allow for the systematic

character of the residuals, it will be larger. If we suppose the theory to be perfect,

I conceive we may fairly estimate the probable error of the mass of Neptune to be

T ^ 5 of its entire amount, and its possible error two or three times greater. If there

is any error or imperfection in the theory, the error may be much larger.

23 Ky. 1873
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CHAPTER VIII.

COMPLETION AND ARRANGEMENT OF THE THEORY TO FIT IT FOR
PERMANENT USE.

IN the preceding discussions the terms of the second order due to the action of

Neptune have been neglected, the elements of Uranus and Neptune being so chosen

that these terms can scarcely become sensible within a century of the epoch. But

this very choice will make them larger in the course of centuries than if mean

elements had been chosen. They will be most sensible in the case of the great

inequality of 4300 years between Uranus and Neptune, an inequality which will

make centuries of observation necessary to an accurate determination of the mean

elements of the two orbits. The uncertainty arising from the great inequality is

probably of the same order of magnitude with the omitted terms of the second

order, and, such being the case, the theory would really be made but little more

accurate by the addition of those terms. I conceive, however, that the theory will

be made much more satisfactory by the computation of at least the largest of the

terms in question, if only to arrive at a certain determination of their order of

magnitude, and of their effect on the planet during the period in which it has been

observed.

The term in question, being of very long period, may be most advantageously
treated by the method of variation of elements, more especially as it has in the

theory been already treated as such a perturbation. The largest of the pertur-
bations in question are those of the mean longitude which are multiplied by the

square of the integrating factor v, which is nearly 51, but which also contain the

eccentricities as factors, and those of the eccentricity and perihelion which arc

independent of the eccentricities, but are multiplied by only the first power of v.

These terms will probably comprise nearly or quite nine-tenths of those arising
from the term of long period.

Let us begin with the perturbations of mean longitude. These are given by the

integration of the equation

-*= 3m'an2

\ekL
sin (11 I n) -j- e'k2 sin (21 I n'}}

&! and 7c2 being functions of the ratio of the mean distances, or a. If we integrate
this equation, supposing all the quantities in the second member except T and I to

be constant, and these two to be of the form nt -\- e, n and e being constants, we
shall reproduce the principal term of long period already found. But in the

second approximation we must suppose all the elements variable. It is not, how-

ever, necessary to take into account the variations of a, n, and 7c, because these are
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of a lower order of magnitude. 'I In- perturbations to be added will be those of*

/, f, ','', 7i, and -d.

The point from which the longitudes are counted being aibitrary, we shall take

the position of tin- perihelion of I 'nnms for 1850.0 as the origin, and put, as before,

</
for the mean longitude of Uranus counted from this point, and let F represent

the mean longitude "of Neptune counted from the same point The terms of

.,, within the brackets will thus become

e&i sin (Wgtm) -f- e'kt sin (2f y (rf *))

or, if we put

W-g = N
J Bin (71 n) = h'

<f cos (d 7i)
= V

and notice, that to terms of the first order we have, sin tin = tat, cos in = 1, we
*liall have

- 3m'un2

\(eki + &'/.-,)
sin N (ek^ + h'kj cos N\

differentiating the quantities, of which the perturbations are to be considered with

rei-pcct to the sign 5, we find for the terms of the second order.

sn

kJ IN ek^n k^h^cos N\.

We have now to substitute in this expression the numerical values of the quanti-

ties within parentheses. Those of the perturbations of Uranus have already been

given in Chapter III, but it is necessary to diminish them by the factor 0.145* for

the altered mass of Neptune. Those of Neptune are taken from my investigation

of the orbit of that planet (p. 38). The mass of Uranus there adopted is TT^V ,

while the investigation of Dr. Von Asten,t from the observations of Struve and

others, shows it to be ^iinr' Tllc perturbations are therefore diminished by ^j.

In accordance with the system adopted throughout both investigations, constants

are added to all the perturbations to make them vanish at the epoch 1850.0. A

term is also added to make
c

also vanish at the epoch ;
this corresponds to the

at

constant which ought to be added to a. The numerical values thus obtained, are :

* This factor was adopted before the mass of Neptune to be employed had been finally decided

upon. Hence the difference between it and that in the preceding chapter.

f Me'moires de TAcade'inie de St. Pe'terebourg, tome xviii, vii s^rie.
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= + 7260" sin N 6658" + 4".26*

= - 414 sinJV+ 380

& = 414 cosN- 165

M' = -4- 120 sinN- 110

M = 4- 12 cosJV-f 48

7* = - - 1.234

h = + 0.452

7/ = + 0.00695

7;' = 0.00486

(PI

Substituting these values in the expression for 5-^ and integrating twice, we

find, putting I for the coefficient of the time in N, of which the value, taking the

century as the unit, is -[-0.1472, and putting T for the time in centuries,

- 109".3 sin 2N 5". 5 cos

c and c being the arbitrary constants of integration, which are to be chosen so that

both <5Z and its first differential coefficient shall vanish at the epoch. Reducing to

numbers, we find

37= (140".70 -4- 0".327
7

) sinN
+ (232.60 6.37 T) cosN

13 .60 sin 2iV

0.70 cos 2N
.03 T72

+ 34 .27 T
46 .76,

the last two terms being arbitrary.

When we carry the perturbations of the eccentricity and perihelion to quantities

of the second order, we are troubled by the introduction of large terms depending
on the square of the disturbing force, which disappear from the rigorous expres-

sions for the co-ordinates. These may be avoided by substituting for the eccen-

tricity and perihelion the quantities 7t and k determined by the condition

h = e sin 7t

lc = e cos ?t

If, as before, we count the longitudes from the perihelion of Uranus at the epoch

1850, we should substitute &TI for n in these expressions. The values of 7t and Jc

will then be given by the integration of the equations

dh

dk
,

.

-rr = m an*, sm
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Differentiating with resect to ^, we find for tin- terms of the second order

,'//' , ,

6 ;//a/i/.-, sin

. . cos

Substituting for i-ATits numerical value just given and integrating, we find

.Vi = mark, \
2.S9.V sin A' (<>t>58*

- I .-j(i/) cos N+ 1815" sin 2N\
-

3630"//i'uAv(< + constant ;

,V. = w'arA-i {
2895* cos tf-f (6658" 4".260siu.y+ 1815" cos 2N\

-4- constant;

the- constants being so chosen that fih and }k sliall vanish at the epoch.

lli-ilucing the values of M and Ik to numbers, they become

rVi 5'.83 >iu ^+ (13".40 (r.867
7

) cos JV 3".65 sin 2JV+ I'.OST
1

r.67,

,V.- = 5 .82 cos N (13 .40 .86 T) sin N 3 .65 cos 2.V + 12 .12,

the last two terms being arbitrary constants.

Computing the values of these terms of M, < 7j, and /r, for intervals of 50 years,

from !()()() to 2000, we find them to be as follows:

Y.-ar H }h Ik

1600 -1".34 +0".10 -0*.02

1650 -0.71 +0.05 0.02

1700 -0.31 -1-0.02 -0.01

1750 -0.10 0.00 0.01

1800 -0.01 0.00 0.00

1850 .00 .00 .00

1900 0.00 0.00 0.00

1950 -fO.04 0.00 -0.01

2000 -f-- 18 -0.01 -0.02

We see that although the ultimate effect of these terms is very considerable,

their effect, during the period that Uranus has been observed, is insignificant.

Concluded Elements and Perturbations of Uranus.

The corrections found in the last chapter being applied to the final provisional

elements (p. 99) give the following elements for 1850, affected by the great

inequality produced by Neptune:

Elements IV of Uranus.

Epoch, 1850, Jan. 0, Greenwich mean noon.

TT, 168 15' 6'.7

f,
28 25 17.05

6, 73 14 8.0

$, 46 20.54

,, .04(59230
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e (in sec.), 9678".69

n, 15425.752

log ,
1.2829072

log au 1.2831044

Log ! includes, as before, the constant term in the perturbations of the logarithm

of the radius vector which, with the corrected mass of Neptune, is -J-.0001972.

To find the corresponding elements at any other epoch, the following secular

and long-period perturbations are to be applied. Those produced by Neptune are

derived from the expressions in Chapter III by correcting them for the new mass

of Neptune, and for the change in the value of the small divisor 2' n produced

by the correction of the elements of Uranns. The logarithms of the factors for

correction are,

Correction of mass of Neptune 9.93598

Correction of divisor 0.00051

Log. factor for B 9.93496

Log. factor for &, &r, 5 9.93547

Including the perturbations of the second order just found, we have, by putting

N=W-y,
= 113 30' 46".0 4 8 26' 51".9r,

Z = ( 2850".41 4- 0".32r) sinN+ (387".67 6".377
7

) cos ft

4- 112 .72 sin 2iY 47.28 cos 2^
7 .72 sin 3N + 4.33 cos 3N

4- .55 sin 4JV 0.46 cos 4JV

.03772 _83".7877+ 2811".41.

M = -- 412".18 sin JV-f- (14".03 Q".86T~) cos N
4- 29 .20 sin 2N- 6 .09 cos

3 .11 sin 3^+ 1 .19 cos

4- 0.28 sin 4iV- .13 cos 4JV

4- 14.7677

+398.33
Ms = 411".53 cos y (13".65 W.86T) sin N

4- 29 .33 cos 2^4- 6.17sin2JV
3. 12 cos 3^- 1.21 sin 3N

+ 0.29 cos 4^4- 0.13 sin 4^
5.453T7

-124.7^

5x> (in units of the 7th place of decimals).

= 1963 cos N+ 103 sin N

+ 15cos3JV+ 6s

4-511.0.
The perturbations of ebn and h are here replaced by those of h and Ic, defined

by the equations

h = e sin (n 7t )

4 = e cos (n 7t )
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Tto representing the perihelion of 1850 = 168 15' 6*.7. We then have for the

eccentricity and longitude of perihelion at any epoch

- -in (n 7r ) = Ih

e cos (n Ttg)
= e -f- W*.

In the ahove terms multiplied by the time we have included the secular varia-

tions produced Ity Jupiter and Saturn. If the perturbations of the elements due

to each particular planet are required, we have

Action of Jupiter,

M = + 5-.737
1

; Ik = (T.GOSr.

Action of Saturn,
'

lh = + y.5GT; Ik = 4.58971

Subtracting these from the above expressions all the remaining terms will be due

to the action of Neptune. The values of H and 6 are due entirely to the action

dt Neptune.
l-'or the sake of rigor, we may suppose the perturbations produced by each

planet to be multiplied by a factor representing the number by which the adopted

ina-s of the planet must be multiplied to obtain the true mass.

It will add to the homogencousness of the theory to express the perturbations

of long period, which are multiplied by the product of the masses of Jupiter and

Saturn, as perturbations of the elements. These terms, as found on page 88, are

(r.c.0)
= 0".55 sin N< - 0".03 cos Jv%

-f 40 .65 sin #, 10 .50 cos N,

(..!) = + 2.64 sin Nt + 4.64 cos JV,

+ 7 .35 sin N, + 4.41cosJVT

(r.c.l) = - 4 .23 sin Ns
- 3.87cosJv%

+ 8.06sinJVT 8.38cosJVT

These terms, together with the arbitrary corrections of the elements which have

been applied to make them very small at the epoch, may be replaced by the follow-

ing corrections to the elements:

II= 0*.55 sin JV6 0".03 cos Nt

+ 40 .65 sin JVT 10 .50 cos JVT

+ 27".27--ll".727'.

& =+ 2 .09 sin Nt + 1 .94 cos N<
2. 13 sin #,+ 3.71cosJv*T

+ 1".28.

& = + 1 .32 sin Ns + 2 .32 cos Nt

-f 3 .68 sin N, -j- 2 .21 cos N,

&o= 27 sin JV7 -f-
104 cos JV7 + 76 (in units of the 7th decimal).

The amount of the perturbations of the elements for every half century, from

the year 1000 to 2200, is given in the following table. Column (1) gives the per-

turbations by Neptune, Saturn, and Jupiter, computed from the expressions
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on page 182; column (2) those just given depending on the product of the masses

of Jupiter and Saturn.

Year.
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Supposing the mass of Neptune to be uncertain by one-fiftieth of its entire

amount, which is quite possible, it will be seen the longitude of the mean peri-

helion is from this cause uncertain by more than two minutes, the mean longitude

of I "ranus itself by nearly a minute, and the mean motion by nearly two seconds

in a century.

It will be seen that the logarithm of the mean distance just given does not

accurately correspond to that of elements 1 V plus the constant term of hv X " 1 ; * l ;K

as it should. This difference arises from the rejection of the terms of the second

order in ?>*>, which can not atfect the geocentric longitude of the planet by a tenth

of a second for a number of centuries.

It is to be remarked that these mean elements are those to be used in the

general theory of the secular variation of the planetary orbits.

Concluil (/ Tln'nry of Uranus.

The elliptic longitude and radius vector of Uranus, affected by the secular and

long period perturbations of the elements, will be given by the following equations.

Put

la = n at -f em
I =1 +11,

9 = 1 Tto,

h = M,

the /eros indicating elements IV, and </*, M-, and H being the perturbations of

these three elements just given. Then

Elliptic longitude in orbit = I

_ _ sn - e cos

~
64

*'

.' _ 6A-

J

-7t + h ') sin 4j (Wh Wi") cos 4j
j

(&
_ ipfcVi' -|- 5M 1

) sin 5<7 (5k'h 10*W + V cos 5

Nepcrian logarithm of r= TO+ fa* -\- ^c
1

|l !' J |/.-

24 May, 1873.
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cos sn

A 1

) cos% -f- (*/,-% 4M3

)
sin

In computing these expressions it will be sufficient for several centuries before

or after 1850 to develop h, (5/.
1

,
and tl to their first dimensions: it will, however, be

more convenient to correct the mean anomaly g for the perturbation hi before obtain-

ing the equation of the centre. Developing the perturbations of Ti and Jc to terms

of the first order, we have for the effects of the perturbations of those elements:

(..!)= ?-

(v.s.2)
=

(2
e - e

3

JO
(v.s.3)= -e*

10

(
r.c.3) = -jV

103
(v.c.4)

= -

(p.c.O)
=

(p.c.l)
= -l--

g

(p.c.2)
= ne

These coefficients for
p must, of course, be multiplied by the modulus 0.434294

to reduce the perturbations to those of the common logarithm of the radius vector.
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Among tin- elliptic terms may IK- included the effect of the following minute

constants introduced by tlie perturbations.

(..2)= (T.144

(v.c.2) = -f .130

0.4343
(p.c.O)

= -f 1912 in units of the 7th place
0.4:5 :j

(p.s.l)
= -f 63 of decimals.

0.4343(p.c.l)
= -f13

0.4343 (p..2)
= -f 5

0.4343
(p.c.2)

= + 4

This term
(p.c.O)

is that added as a correction to the logarithm of the mean

distance.

To the coefficients (?..!), (v.c.l), etc., are still to be added the following periodic

terms :

1. The periodic terms due to the action of Jupiter, given in Chapter V, omitting

the terms multiplied by T
7

, which are included in the perturbations of the

elements.

2. The periodic terms produced by Satuni, including those terms multiplied

both by T and by sin A t or cos A^ but omitting those multiplied by T only for

the same reason as in the case of Jupiter.

3. The periodic terms produced by Neptune, multiplied by the factor 0.86294

on account of the correction to the mass of that planet, and omitting the terms

multiplied by 6Z, be, and eg.
4. The periodic terms multiplied by the product of the masses of Jupiter and

Saturn, given on page 88, omitting the terms multiplied by the sine and cosine of

Ns and JV-, because they are replaced by the terms of M, M, and 6A-, given on page

1^5, and tabulated in the columns headed (2) on page 184. The result will be

the same whether we employ the terms of (r.c.O), (r.s.l), etc., given at the bottom

of page 88 and the top of page 89, omitting the numbers in the columns 2 on

paije 184 from the expressions on page 186, or whether we include the latter and

omit the former.

The true anomaly of Uranus will then be :

</ -\- M + (equation of centre from elements IV, using for mean anomaly ga -\- H)

-f- S (v.s.i) sin ig -\- 2 (v.c.i) cos vj.

The logarithm of the radius vector will be:

log r in elliptic orbit from elements IV.

-|- S (p..t)
sin ig -\- 2 (p.c.t)

cos ig

care being taken to multiply the coefficients by the modulus where that has not

already been done. All the terms in Chapter V are so multiplied.

To pass from the true anomaly to the true longitude we must investigate the

secular motion of the planes of the orbit and of the ecliptic. The effect of this

motion on
<j>, 0, and r will be found by successive approximations from the formulae
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(34), correcting the data for the new mass of Neptune. We shall also use the

same motion of the ecliptic adopted on p. 95. We have thus :

4P= __ 4".53
dt

~dt
~

dt'

///7
v \ f* Q I f\

dt
=

As a first approximation we have

/i
7*3 1 -t' S"

<p
= 46 20.54+ 2 AST

Substituting these values in (34) and integrating we find

$ = $ + 2".47T+ 0". 13 T2

= 3168 A2T+ 3 .00 T72

r = TO
_ 3168 .76 T

7

-}- 3 .00772

For tabulating we shall use, instead of and T, the distance of the perihelion
from the ascending node, or n r, and the value of 6 corrected for Struve's pre-
cession. Since the mean motion has been derived without making any distinction

between T and 0, it will be necessary to correct the motion of mean anomaly by
the difference of those quantities. We thus obtain for the values of the three

principal arguments:

g = 220 10' 10".35 + 15425 74".867'+ H
o= 95 58.70+ 3168 . 76 T 3.00T 3

0= 73 14 8.00+ 1856.8277

+4.127
72

If we represent all the inequalities of the true longitude by A7, so that we shall

have for the true anomaly

the argument of latitude will be

W=/+G).
The reduction to the ecliptic will then be

/ J /O'' OT I f\ ff f\ "1 f* ^77\ " C\A = (9 .61 + .016T) sin 2u,

the true longitude on the ecliptic referred to the mean equinox of date,

a = u + + 72,

and the sine of the elliptic latitude,

sin
j3
= sin (> sin .

The perturbations of the latitude will be

(Z>.c.O) + (&.c.l) cos g + (b.s.l) sin g+ etc.
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The periodic terms of (A.r.O), (/<>. 1), (A.c.l), etc., are given in Chapter V, on

pages si; and 87, and are to be taken without au\ farther modification than the

multiplication of those due to the action >f Nrptuuc by the factor 0.803. The

constant, secular, and long period terms are

b.c.O = -fO".2G 0'. 127* 0.01 Ik, + 0.0465*

(b.s.l) = .22 T .05 7" + 0.9753*? + 0.22U*

(A.c.l) = +2 .47 T+ .127" + 0.2215>7 0.975Ax

(/,.*.2) = .()(> - .01 T + 0.046&7 + 0.01 Ux

(6.c.2) = .01 + .127
7

4- 0.0115,7 0.046Sx
'

The values of &? and fix to be used in these expressions arc those the expressions

fur which are given on page 97, and which arc tabulated in the last two columns

of the table on page 184.

The following tables are based on the elements and theory laid down in this

chapter.
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CHAPTER IX.

GENERAL TABLES OF URANUS.

Enumeration of the Quantities contained in tlie several Tables.

THE first six tables are designed to give the values of the three arguments of

the elliptic motion, g, o, and 0, and of the nine arguments of the tables of pertur-

bations. The argument w is, however, diminished by 3', the sums of the constants

added to the perturbations of (r.c.O) to make these quantities positive, and 6 by

10", the constant added to the reduction to ecliptic. The expressions for the argu-

ments of perturbations are as follows, the mean longitude of each planet, counted

from the perihelion of Uranus, being represented by the initial letter of the planet.

All these arguments are expressed in units, of which 600 make an entire circum-

ference, so that each unit is 36'. The time t is counted in Julian years from the

fundamental epoch,

1850, January 0, Greenwich mean noon.

Arg. 1 = J U =219.190 + 43.44028*

2= S- U =577.349 -f 13.22717*

3= U- N = 88.884-j- 3.50035*

4 = J2S =497.6 + 9.8445*

5 = 3- U J= 79.8 + 3.3825*

6 = 4 2Z7- J= 57.1 -f 16 -610 *

7 = 2J 3# 3U= 238.7 -f 18.633*

8 = 2,7 --4S 2T= 261.3 + 5.4058*

2J -3*7=136.9 19.992*

Table I gives the corrections which must be applied to the values of the argu-

ments at any time during the nineteenth century to reduce them to the corresponding
time in any preceding or following century between the Christian era and the year

2300. Since G> and each contains a term proportional to the square of the time,

the correction for these quantities is not constant during each century, but is of

the form

o-fo'Z
1

o and o' being constant during each century, and T being the fraction of the

century counted from its beginning.
Table II gives the value of g, M 3', 6 10", and the above nine arguments for

Greenwich mean noon of Jan. of each leap year from 1752 to 1948, and for

January 1 of the years 1800 and 1900, corresponding to December 30 of the years

1799 and 1899. The corrections for the perturbations of long period are not
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applied in tliis table. Tin- numbers at the bottom of this table, in the line A|JJ,

shoxv the variation of the corresponding ( |uantity in 1'JO days, lor the epoch 1850.0.

In the line "Factor 7'" is given the change of this variation in a century, while

A (

,ii is the second difference tor intervals of 120 days. By means of these num-

bers, when the argument* are computed for any date, their values for other dates

at intervals of l.'O days may lie found by successive addition.

Table 111 gives the motion of the several arguments between the epochs of the

preceding table and the zero day of earli month in the course of a four-year cycle.

The variable motions, u and 0, correspond to the epoch 1850, and rigorously they
each require a correction for any other four-year cycle than that between 1848 and

1
S -VJ. But, owing to the small inclination of the orbit of Uranus it is not neces-

sary that either u or should be exact, if only their sum is exact. The column

ff of this table, therefore, Drives the correction which must be applied to the motion

of at the end of a century (1950) in order that, being applied to alone, o -f-

may be exact. This correction is, in fact, that for the secular variation of the

precession.

Tables IV and V give the motion of the arguments for days and hours. The

motion for hours is, however, not necessary in the case of any argument but
jr,

as

all the others can be readily enough interpolated to fractions of a day.

Table VI gives the corrections to the arguments on account of the terms of long

period from 1000 to 2200. The terms in question are, in the case of Jupiter, the

great inequality produced by the action of Saturn, in the case of Neptune the

great inequality produced by Uranus, and, in the case of Uranus, the inequalities

in the mean longitude tabulated in the preceding chapter. The numerical expres-

sions are

iJ 0.535 sin (110 21' + 40 45' 20' T)

The corrections to the several arguments are

lg = II

3arg. 1= W U
3 arg. 2 = II

Sarg. 3= II IN=1.755?

No correction to the mean longitude of Saturn is applied, all its inequalities being
taken account of in the terms of the second order.

The corrections, expressed in seconds, have been reduced to units of the argu-

ment by dividing them by 2160".

Outside the limits of the table these corrections must be computed from their

formula?.

Table VII gives the equation of the centre, and the elliptic part of the logarithm

of the radius vector. No constant is applied to the former, but the latter is dimi-

nished by .0003400, the sum of the constants added to
(p.c.O)

in Tables VIII, IX,

X and XVII.
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The formulae for the Tables are

Equation of centre = 19352".()6 sin

+ 567 .24 sin

-f-
23 .05 sin 3j

4- 1 .07 sin 4g

-(-
.05 sin bg

Elliptic log. ? = 1.2833435

.0003400

.02036 18 cos g

.0007 165 cos 2g

.00003 18 cos 2>g

.0000016 cos 4#.

Table VIII gives the coefficients (v.c.O), (v.c.l), etc., for the perturbations of the

longitude and logarithm of radius vector produced by the action of Jupiter. They
are computed from the periodic terms of the formulae on page 83, with the addi-

tion of the following constants to make all the numbers of the table positive :

Constant of (v.c.Q)
= 55".

(v.s.l) = 6 .

(v.c.l) = 4 .

(v.8 2) = .20

(v.c.2) = .20

(p.c.O)
= 1500

(p.s.l)
= 150

(p.c.l)
= 100

(p..2)
= 10

(p.c.2)
= 10

Table IX gives the periodic part of the coefficients due to the action of Saturn,

taken without change from the expressions on page 84, together with the secular

variations, the latter including only the terms of (v.s.l), (v.c.l), (v.s.2), and (v.c.2),

which are multiplied by T and by sin A 2 or cos A* The coefficients of T are given
in the columns Sec. Var. and each number is increased by the constant 1".50 to

make it positive. The term 0".06T sin A2 in (v.c.Q) is omitted entirely, as it will

not amount to a tenth of a second until after the year 2000. The constant terms

added to the quantities. of these tables to make all the numbers positive, are:
// //

Constant of (v.c.O)
= 30.

(v.s.l) = 150. -f 1.50r

(v.c.i) = 150. 4- i.sor

(v.s.2) 130. -}- l.oOr

(v.c.2) = 130. -f 1-50T
(v.s.3) = 8.

(v.c.3) = 6.

(v.sA) = 1.

(v.cA) = 1.
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Constant of
(p.c.O)

= 800

(p..l)
= 1.000

(p.c.l)
= 1500

(p..2)
= 400

(p.c.2)
= 400

(p..3) = 100

(p.c.3)= 100

Table X jjiu-s the coefficients produced by the action of Neptune, computed
from the periodic terms on pages 85 and 86 without any other change than the

multiplication of all the numbers by the factor 0.863 to reduce them to the new

ma..s of Neptune. The constants added to the several quantities, are

Constant of (c.c.O) = 92.85

(..!)= 20.00
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(v.c.l)
= + 0".06 sin A, 0".27 cos A t ; Table XI; const = 0".40

-f 0. 18 sin .4 + 0.01 cos 4 ; XII; 0.20

-0.03 sin^4 6 + 0.08 cos A; XIII; 0.10

.02 sin ^7 + -09 cos A; XIV; 0.10

.44 sin As .61 cos A 8 ;
XV ;

.75

0.10 sin A + 0.03 cos J 9 ; XVI; 0.10

Sum of constants added to (v.s.l) and (v.c.l) in these tables 1 .65

The term of
(p.c.O)

1 1 sin As 3 cos As

is omitted from the tables entirely.

Tables XVII a and XVII b give the constant, secular, and long-period terms of

(v.s.l) (v.c.l), computed from the formulae p. 186, with the following additions:

1. The constant terms introduced by the perturbations, given on p. 187.

2. The negatives of the constants added to the tables VII to XVI inclusive to

make the numbers of those tables positive. The values of these terms are

Pert. Const. Tables VIII to XVI. (i)_(2)

(v.s.l) 177".65 + 1".507
T

177".65 F.5077

(v.c.l) 186 .65 + 1.507* -186.65 1 .50 T
(v.a.1) -0".14 135.20 + 1 .507

7 - 135 .34 1 .507*

(v.c.2) +0.13 135.20 + 1 .507
7

135 .07 1 .507
7

(v.s.3) 9 .00 9 .00

(v.c.3) 7.00 7.00

(p.c.O) [+1972] -1000 +1000
(p..l) + 63 1850 1787

(p.c.l) + 73 1800 -1727

(p..2) + 5 450 445

(p.c.2) + 4 450 446

The perturbation constant of
(p.c.O), being added to log a in forming the elliptic

radius vector, is not included in this table.

Table XVIII gives the reduction to the ecliptic

- 9".37 sin 2.

The constant 10" is added to make the numbers always positive, which constant
has been already subtracted from 0.

Table XIX gives the principal term of the latitude

46' 20".54 x sin .

Table XX gives the coefficients (b.s.l) and (b.c.l} for the perturbations of the
latitude produced by Jupiter. They are given by the formula?

(b.s.l) = 0".65 cos (/ U-\- 40)
(b.c.l) = .65 sin (/ U+ 40)

The constant 0".70 is added to make all the numbers of the table positive.
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Table XXI iji\i-s tin* corresponding methYieuts for the action of Saturn, com-

puted from the e.\pieions on p. M \\ith the addition of the following constants.

Const, of (ft.c.0)
= 0".l<)

(/,.*.!)
= 3.W

(/,..-.!)
= 3. 10

(/,.. 2) = .'.'I)

(i.c.2)
= .20

Table XXII ,'i\es the coefficients for the action of Neptune from the formulae

cm
|>. ^"i, ;ill die numbers being multiplied by the factor 0.863 to reduce them to

the adopted mass of Neptune. The following constants are added:

To (i.c.O) .... 0".06

(b.s.l) I .00

(b.c.l) 1 .20

(b.s.2) .20

(6.c.2) .20

Table XXIII gives the secular and long-period terms for various epochs com-

puted from the formulae of p. 189. The sums of the several constants added in

the three preceding tables are here subtracted again so that these expressions

become

A.c.O 2c = 0".10 0".12r- .011^7 -{- .0465*

(/>..!) 2c = 5 .00 .227
1

0".057" + .9755>j + .22U*

(/'.c.l) 2c = 5 .00 -(- 2 A1T+ .127" + .221&7 .9755*

(A..2) 2c = .46 .01 T+ .046&? + .01 Ux

(ft.c.2) 2c = .41 + .\2T+ -01U>7 .046&e

Precepts for the use of (he Tables.

Express the date for which the position of Uranus is required in years, months,

days and hours of Greenwich mean time, according to the Julian Calendar if the

date is earlier than 1500, according to the Gregorian Calendar if it is later than

1600, and according to either calendar between these epochs.
Enter Table I with the beginning of the century, and take out the values of

</,

o, u', 0, 0*, and arguments 1 to 9. Multiply o' and 0' by the fraction of a century

corresponding to the date, and write the products with their proper algebraic signs

under o and 6. If the calendar is the Julian, the century marked J must be taken,

and if the Gregorian, that marked O. Between the dates 1752 and 1951 it is not

necessary to enter Table I at all.

If Table I was not entered, enter Table II with the year, or the first preceding

year found therein. If Table I was entered, enter Table II between the year
1800 and 1896 as if the number of the century were changed to 18. Take out

the values of g, , 0, and the arguments, and write them under the corresponding

quantities from Table I.

Enter Table III with the excess of the actual year over that with which Table II

was entered, and with the month. Write the corresponding values of
</, w, 0,

and the arguments under the previous values. Multiply & by the fraction of a
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cen wry after 1850, corresponding to the date with which Table II was entered,

and write the product under 0, or add it to it in writing 0. If Table II was

entered with a date before 1850, this product is negative.

Enter Table IV with the day of the month and write down the corresponding

values of g, co, etc., under the former values.

If the date does not correspond to Greenwich mean noon, the motion of g for

the hours must be computed from Table V, and the other quantities must be

interpolated to the fraction of a day in entering Table IV.

Enter Table VI with the year, find by interpolation the values of g, and argu-

ments 1, 2, and 3, corresponding to the date, and write them under the former

values.

Add up all the partial values of g, o, 0, and the arguments, attending to the

algebraic signs of the products. Subtract from the arguments as many times 600

as possible, and the results will be the final values of those quantities.

Enter Table VII with g as the argument, the seconds being first reduced to frac-

tions of a minute, and interpolate the quantities E and log r. When g exceeds 180

the former quantity is to receive the negative sign; the latter is always positive.

Enter Tables VIII to XVI inclusive with their respective arguments, and take

out the values of the quantities (v.c.O), (w.s.l), (w.c.l), etc., (p.c.O), (p.s.l), etc., so

far as they are found in the tables, writing the quantities having the same desig-

nation under each other. In Table IX the quantities Sec. Var. must be multiplied

by the centuries and fraction of a century of the actual date after 1850, and the

product must be included with the corresponding quantities, (v.s.l), (f.c.l), etc.

Before 1850 this product will always be negative; afterward always positive. All

the quantities taken from these tables are positive except (v.sA) and (.c.4) in

Table IX, which are negative.

Add up all the partial values of (v.c.O), (v.s.l), etc., thus obtained from Tables

VIII to XVI, and from their sum take the corresponding quantities obtained from

Table XVII by intci-polating to the date. The required quantities are all given
in Table XVII fe

; Table XVIIa being only an expansion of a part of XVII & for

the present century. The final values of (v.s.l), (v.c.l), (w.s.2), etc., (p.s.l), (p.c.l),

etc., thus obtained are to be multiplied by the sines and cosines of the correspond-

ing multiples of
</, in doing which four place logarithms are sufficient if the com-

putation is carefully made. The products are then all added together, and to g, w, E,
and (v.c.O); in the case of v, and to log. r, (p.c.O)

in the case of
p.

That is, we
are to form the expressions:

u= g -f-o -\-E-\- (v.c.Q) -\- (v.s.l] sin g -f- (v.c.l) cos g

-f (v.s.2) sin 2j -f (v.c.2) cos 20

-f- etc. -|- etc.

log r= log r (from Table VII) -f- (p.c.O)

+ (p.s.l)
sin g) + (p.c.l)

cos g
-J- (p.s.2)

sin 2y) -j- (p.c.2)
cos 2g

+ (p.s.3)
sin 3<7) + (p-

c-3) cos %9-
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it will then IK- tin- true argument of latitude, ;unl l.i^ / tin- logarithm of the radius

vector with s,-\eii places nf decimal-;.

I'ndi-r n write d\ enter Table \\II1 with the argument u and take out the

reduction to the ecliptic. Add it to u and 0, and the sum of the three quantities

will be the heliocentric longitude of Iranus referred to the mean equinox and

ecliptic of the date. Applying nutation the longitude will be reduced to the

true equinox.

Enter Table XIX with u as the argument, or, when u exceeds 180, with

180, and take out the principal term of the latitude, which will be positive

when it is less than 180, and negative when it is greater.

Knter Tables XX, XXI, XX11, and XXIII with their respective arguments,
the argument for the last being the date, and add up the various quantities having
the same designation, noticing that in the first three tables all the quantities arc

positive, while in the last they are all negative except (i.c.O). Then form the

expression,

C'.'-.O) + (A..l) sin g -f (b.c.l) cos g + (i.s.2) sin 2jr + (i.c.2) cos 2#,

and add it to the principal term of the latitude, with regard to the algebraic signs.

The sum will be the heliocentric latitude of Uranus above the ecliptic of the date.

When an ephemeris of Uranus is to be computed for a series of years, some

modifications may be introduced, which will save the computer labor. In the first

place an equidistant scries of dates being selected for computation, it will be suffi

cient to compute /, o, 0, and the arguments for every sixth, eighth, or tenth date,

and to fill in the arguments for the intermediate dates by adding the nearly con-

stant differences corresponding to the adopted intervals. The agreement of the

numbers thus obtained for the last date with those found by the original computa-
tion will prove the whole process. This interval may be as great as 120 days
without detracting from the accuracy with which the places for the immediate

dates can be interpolated, and the differences for this interval may be deduced

from the numbers at the bottom of Table II. If these numbers arc used without

change the values of w and for the last date may not always come out right.

But these errors, if less than a second, will be of no importance if the one quan-

tity comes out as much too great as the other is too small, and they may be avoided

entirely by making a small change in the constant difference to be added.

Tables XI to XVI, inclusive, need be entered only for every third or fourth date,

and the sums of the quantities can be then interpolated to every date, and added

up with the corresponding quantities from the other tables.

Again, it will be found convenient to compute the sum of the small terms

(t?.s.3) sin 30r + (.c.3) cos 3^+ (o..4) sin 4? -|- (r.c.4) cos 4g, as well as the corre-

sponding terms of the radius vector, and all the terms of the latitude, not for the

dates adopted, but for every fourth entire degree of g. Having a scries of values

computed in this way, the sum can be interpolated to the value of g corresponding

to the date. To facilitate the formation of the smaller products for entire degrees

of g, a table of products of numbers by the sine and cosine of every degree is

appended to these tables, by which the products in question can be formed at sight



198 THE ORBIT OF U RAX US.

whenever the coefficient to be multiplied is less than 32". The values of these

coefficients, (v.s.3), (v.c.3), etc., corresponding to the entire degrees of y, may be

either formed by interpolation at sight from those corresponding to the dates of

computation, or the values of the arguments 2 and 3 corresponding to the

required degrees of g may be computed, and the values of (.s.3), etc., correspond-

ing to these values of the arguments may be taken from Tables IX and X, while

Table XVII must be entered with the corresponding dates.

If the heliocentric ephemeris is computed for ten years at a time, the last of

these modifications in the mode of computation will greatly facilitate the computa-

tion of the smaller terms. We first find the date, and the values of arguments 1,

2, and 3, to one place of decimals, for some entire degree of g preceding that which

corresponds to the first date, and then find the dates and the values of the arguments

corresponding to successive values of g, differing by 2 or 4, until we pass the last

date of computation. We then take out the values of (v.s.3\ (.c.3), (v.s.4), (v.cA),

(p.s.3), (p.c.3), (i.c.O), (i.s.l),
(6.C.1J, (6.s.2), and (i.c.2), with these values of the

dates and arguments, form their products by the sines and cosines of the corre-

sponding multiples of
rj by means of the supplementary tables, and add the proper

products together so as to form three small tables with g as the argument. These

terms are then interpolated to the values of g corresponding to the original dates

of computation.
As a first example of the use of the Tables we will compute the heliocentric

co-ordinates of Uranus for Greenwich mean noon of the date 1753, Dec. 3. In

computing the arguments we shall make use of Table I, though it is not necessary
to do so. The computation of the arguments is as follows :
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(IT.O) (r.c.l) (o.c.3)

VIII

IX

x
XI
XII

XIII

XIV
XV
XVI

Table XVII

'Fa Mi- VIII

IX
X

XVII

B8.M
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TABLE I. CORRECTIONS OF ARGUMENTS FOR PAST AND FUTURE CENTURIES.
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TABLE II. Continued.
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TABLE III. REDUCTION OF THE EPOCHS AND ARGUMENTS TO THE BEGINNING OF EACH MONTH
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TABLE IV. MOTION OF ARGUMENTS FOR DAYS.
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TABLE IX, ARG. 2. ACTION OF SATURN.
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TABLE IX, ARO. 2. Continued.
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TABLE IX, ARO. 2. Concluded.
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TABLE X, AUG. 3. ACTION OF NEPTUNE.
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Arg. (v.c.O) Diff. (..!) Diff. (w.e.l) (o..2)DiflT. (. .,.!>) Diff. (u..3) (u.c.3) (w.c.4)

N

M
63
64

65

67

69

70
71

-2

7:1

74

|fi

77

N

sj

-I

85

86

n
83
89

90
II

94

95
96

97
98
99

100
101

102
103
104

105
106

107
108

109

110
111
112
113
114

115
116

117
118
119

120

59.80

5C..05

55.24
. i 14'

49.70
i- ".;

48.17

4 VIM;

15.84

44.51

it.a
4:1.14-

48.46
41.80
41.15

40.52

88.80'
39.30

88.71

38.14

37.58

87.64
::;.:. -2

36.02

35.53

35.07

84.68"

33.04

32.70"
32.38

32.03

31.54
31.31'

31.11

30.92

o.Si

O-.Sl

o.Si

-0.8o

0.8o
O.So

0.79

0.79

0.72

0.70

-0.68

0.68

0.63

-0.62

o-59

0.56

0.50
0.49
0.46

-0-45

/
3
,

4

o 20

09

30.62

30.51
' 11

30.42
' s

30.35 '

30.30 S

0.02

i&n
30.29+- 01

30.32

30.37
3 - 46 ":

9

30.56

:; -".i

8S.81 o
3:!. 6 4 .

34.30+1?
'

0.63

o-S7

-55

39.56
40.05+ - 49

40.52
' 47

. 0.4.1

41.38
' 4a

0.40

48.51

48.88
43.12

' 29

43..-IS

4*.*1

44.00

44.16

44.28

ts*?;
.. .S+- 4

0.26

o. 1 6

0.12

44.46

4440

42.fil_

41.89
41.49
41.08

40.64

40.17'
39.68
39.16

38.61

88 N

36.86
36.24
35.60

34.95

tS0.08

0.44

-0-47

0.49

0-55

0.56

-0-58

0.65

I- "7

17 -I

46.71
4G.31

42.9:1

39.51

M 77"

ISS.Ml

:;7.L':{

36.44

35.63
34.81

-

33.98
33.13

31.42
30.55"

29.68
23.80

27.91

27.01

25.23

24.33
23.43

22.54

21.65'

20.77
19.90

17.31"

16.46

15.62

13.99

10.92

10.19

9.49'
8.80

8.14

7.50.

6.88
6.28"

5.71

5.17
4.65

4.16

0.42

0.50,

.-0.06

0.08

s
0.11

-55

8.16

B.M
j U

-(-O. 12

0.14

0.63

-0-74

0.78

0.79
0.81

-o.Si

0.86

-0.87

0.90

0.90

0.89

.0.89
0.88

0.87

-0-85

0.85

0.78

o-57

0.49

:; Tfi

3.96

i i<;

1.61

' 20

O.22

O. 21

t -II

'5.02+
022

5.24
' 2J

5.47
:, .;:

0.22

O. 22

,; :;:,

6.57

7.00

7^41

7.60

7.79

8.30
o 4=

o. ;

o. .

0.19
o. 18

-'S

9.15

9.23

9.30

0.08

+0.07
0.05

o.oi

9.43

9.44"

9^40"

9.36

9.31

9.17

9.08
8.99

8.88

O.O2

0.05

6.71

0.17

0.17

7.69

8.49

857 +0.08

8.64
' 7

8," (i O.O>.GJ J

8.73
' 4

0.03
8.76
8 --+O.QI

8:78+
' 01

8 77
''

8^5
- 02

0.03
8.72
8.68

- ' 04

8.61

8.55

8 ' 47
0.09

8.38

8.81

S .

0.08

o. ii

0.12

O. II

-

724
705

6.23
01

4.64

4.40'

4.17

3.94

3.71

3.43

3.26
3.04

2.82
2.61

2.41

6

0.20

0.23

-0.24

0.23

0-23

0.23

0.22

0.21

0.20

0.77

0.73

0.59
0.55

0.50

0.47

0.45

0.43

0.41

0.39

0.38

0.37

0.36

0.36

0.36

0.36

0.37

0.38

0.40

0.41

0.43

0.46

0.49

0.52

0.55

0.59

0.62

0.66

0.71

0.76

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.21

1.26

1.31

1.35

1.40

1.44

1.48

1.53

1.56

1.59

1.62

1.65

1.67

1.70

1.72

1.73

1.74

1.74

1.74

0.49

0.50
" _'

0.54

0.56

o M

0.65

0.68

0.71

0.75

0.78

O.g]

O.S7

0.91

0.96

1.00

1.05

1.10

1.14

1.18

1.23

1.23

1.32

1.36

1.41

1.45

1.49

1.52

1.56

1.59

1.61

1.64

1.66

1.68

1.70

1.71

1.72

1.72

1.73

1.72

1.72

1.70

1.69

1.67

1.65

1.63

1.60

1.56

1.53

1.49

1.45

1.41

1.37

1.32

1.27

1.22

1.17

1.12

1.07

1.02

.83

0.84

0.85

0.87

0.88

0.89

0.91

0.93

0.95

0.97

0.99
1.00

1.02

1.04

1.06

-1.08

1.10

1.11

1.12

1.13

-1.14

1.15

1.16

1.17

1.17

-1.18

1.18

1.18

1.17

1 16

-1.16

1.15

1.14

1.13

1.12

-1.11

1.10

1.08

1.06

1.04

-1.03

1.02

1.00

0.98

0.96

-0.95

0.94

0.92

0.90

0.89

N
.10

.11

.13

.14

.15

.16

.16

.17

.18

.19

.19

.18

.18

.18

.18

.17

.16

.15

.13

.12

.10

.08

.06

.04

.02

.01

0.99

0.97

0.95

0.94
0.92

0.91

0.90

0.89

0.88

0.87

0.86

0.85

0.84

0.83

0.83
0.83

0.83

0.83

0.83

0.84

0.85
0.86

0.87

88
0.87

0.86

0.86

0.85

0.84

0.84

0.84

0.84
0.84

0.84

.88

0.89
0.91

0.93

0.95

-0.96

0.97
0.99

1.01

1.02

1.04
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Arg. (.-.,-.0) Diff. (v.s.\) Diff.
( -..-. 1) 1' Diff. (w^.2) DiL o.c. (B.C.4)

MO
301

MS

:;u4

806
806

Ml
308

MB
310

814

3 If.

BIB
317

818
:;iy

Btt

BSB
8S6

881

BSB

881

88i

BM
337

33!)

340
341
342
:.l :

344

346
347
348
349

350

861
352

354

355
356
357

359

300

ii n

7 _o6
9L60 '?

U0.2J

Bt.ta
87.10

88.48

86.89"

86.89

84.09

88.51

s
1 .

> 1

M.27

SO. 73
SO. -JO'

79.68

19.11

18.68

78.19

77.72'

n.86

75.97

7.'.. is

71. si

7t.4:,

74.11

7.:, is

0.64

-0.63
0.62

-0.60

0.60

0.60

0.58

0.54
0.54

0.49

0.49

-0.47

0.46
0.44

0.43
0.42

o-39

0.34

71.52
71.39

71.29
71.21

4

0.16

-0.14
0.17

0.08
0.06

71.15
71.10-

'05

71.08-
' 03

!!:54=

-

71.07

n

1- ::i

87.21

27.10

2H.H3

B6.84

20.79

26.72"

0.04

0.06

0.07

0.07

-0.07

0.07

26.40
.,,...[ -0.09
Oi' > O- OO

2';. 12
' IC

I
' lc

o. ii

-O.II

25.68
' 12

25 56
' 12

2. ..II
' 12

0.13
25.31

2.V02
' 1 S

24.87
' 15

24.72

24.56

21. 2!

23^84

2.,. 65

23.45'

2:;. 02

82.51

21.84
21.58

21.31

21.04'
20.75
20.46
20.16

19.85
I'.l.M-

]
M ->-l

1S.90

18.56

18.22

17>s
17.53
17.17

16.43

o.i 6

-0.17

0.19

0.19

-0.20
O. 21

0.22

O.26

0.27

-0.27

0.31

-0-3I

0-34

0-34

29.40
2-.Ui;

'

28.37

2s. 11

27.35
27.10

20.34

20.09

25.84

25.59

88 ::r
25. 10
ji 85
24. CO

24.35
24.11'

23.87
23.63
23.39

23.10

22.92'
22.69

Biisa

22.00

21.78"
21.57
21.35

21.14

20.94

20.73'
20.53

90.84

19.96

19!62

10.15

19.00'

18.87

18.74
18.62

18.52

18.48'
]s.:;t

18.26

18.19

18.14

-0.24

0.26

0.26

*S

0.2$

-O.26

0.25

0.25

-O.25

0.24

0.25

-O.24
0.24
0.24

0.24

0.23

-0.24

0.23
0.23

0.23

-0.22

O.2I

0.22

0.21

O.2O

-O.2I

0.12

O. IO

-O.O9

0.05

'02

:: -:

:J77 4-0.0.

.: 80

3.88

3 - 85
1:11

3.87 ,

o 01 4-.4
ill
3.97

- 3

4.14

4.18
J.22

4.27
432+0.05
4.37

4.43

4.48

0.06

4.54

4.60"

4^72

4.78

4.85

0.06

.07

L99
5.06

5.20

Mi *'& - 4s
o.os

"s
+ 3
0.08

6 25
6.31"

6.37

6.43

6.48

o.c

0.05
6.53

6.58+'5

i 18.05'

18.06

6.66

6.79
6.81

6.84

3

'02

5.47
5 5,4-0-04

0.05

3
0.04

0.04

0.03

., Ml

5.84

| no

6.03

- 02

6.10

6 .! 4 4-0.04

6.17

6.19

6.22 -2
0.03

6.25

(1 27 4--oz

6.29
,

' 02

6.30
' 01

6.32
-02

O.O2
6.34

6.35+'01

6.35

6.35

6.35

6.35

6.35

6.34"

6.33

6.32

6.30

6.28'

6.22

' oc

0.00

0.02

0.03

0.07

6.02

5.91

5.86'

5.80

5.73

5.66

5.59

5.51'

5.43
5.35

5.27

5.18
5.09'

5.00

4.91

4.71

'S

l:ll

0.06

0.07

.09

.09

1

'

.

1 ,t

1.31

1.30

1.28

1.27

1.-::

1.21

1.10

1.08

1.05

1.03

1.01

0.98

0.96

0.94

0.91

89

0.87

0.85

0.83
0.81

0.79

0.77

0.75

0.73
0.72

0.70

0.69

0.68

0.07

0.60

0.65

0.64

0.64

0.03

0.63

0.03
0.63

0.63

0.04
0.04

0.65

0.66

0.67

0.08

0.69

0.71

0.72

0.74

0.76

0.78
0.80
( , -_>

0.84

II v,l

0.78
0.76

0.74

0.72
0.71
,, ,

...

0*.66

0.65

0.64

0.63
o , 2

0.62

0.01

0.61

0.01

O.dl

0.61

0.01

0.61

0.112

0.02

O.C3

0.04

0.05

o.in;

O.(17

O.G9

0.70

0.72

0.74

0.70

0.78

0.80

O.S2

0.84
0.80

0.88

0.91

0.93
0.95

0.98

1.00

1.02

1.05

1.07

1.09

1.12

1.14

1.16

1.18

1.20

1.22

1.23

1.25

1.26

1.27

1.28

1.29

0.97

0.97

0.98
0.98
i. |B

-0.99

1.00

1.00

1.01

1.01

.02

.02

.03

.03

.04

.04

.04

.04

.04

.('4

.04

.04

.03

.03

.03

.03

.03

1.02

1.02

1.01

1.01

1.00

1.00

o.yj

O.'J'J

.0.99
O.'JS

0.97

0.96

0.95

0.95

0.95

0.94

0.94

0.93

_0.93
0.93

0.94

0.94

0.94

_0.94
0.94

0.95

0.95

0.95

_0.95
0.96

0.97

0.98

0.99

0.99

1.03

1.03

1.03

1.04

1.04

1.04

1.04

1.04

1.04

1.04

1.04

1.04

1.03

1.03

1.03

1.03

1.02

1.02

1.01

1.00

1.00

0.99

o.yj

0.98

0.98

0.97

0.97

O.'.Ml

0.95

0.95

0.95

0.95

B.96

0.95

0.95

0.95

0.95
0.95

0.95

.0.95

0.96

0.96

0.9G

0.97

-0.97

0.98
0.99
1.00

1.01

-1.02

1.02

1.03

1.04

1.05

1.06

1.06

1.06

1.07

1.07

1.07
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TVIll.F. \. AII.J. 3. Continued.

Arg. (t.c.O) Diff. (<.*.!) Diff.

540 1-26.

.Ml

512
543
544

54.')

546
547

549

21.:.

J:: 7

.>..
]

-

JT.:!7-

80.58

119.03

550
;,--,!

652 in;. 7 1

:,:,:! ll.Vr.i

504

555
556

559

560
561

563
564

567
-

569

570
571
572
573
574

575
576
577
578
579

580
531

588
534

685
581
587
538
689

590
591
692
593
594

695
596
597
698
699

600

114.60

118.77'
113.05

112.88
111.65

110.96
110.29"

lO'.i.r,:!

-

108.33

107.70

0.80

0.79

-0.80

0.77

0.77

o-75

0.74

-o-73

0.72

0.70

0.70

0.69

0.66

105.30

104.74
104.19

S

108.18

3.58

3.56

-0-55
0.54

0.52

100-25

98.18

97.80
97.43'

97.07

96.72
96.38

96.04

22.48

80.16
19.40

17 "ii

17.17

-0-37

0.36
o-3S

0-34

0.34

95.40

95.08
' 32

94 - 77
: 3 .

92.96
"52

0.77

0-77

0.76

0-75

0-73

15.03

13^66

18.98

11.71

10.48

9.32

8.76

8.23-

7.71

7.21

6.73

1.81
:. ,-j-

5.39

4.98

4.60

4.23

3.54

3.22

SS

0.64

o-S9

0-53
O. ? 3

o. ?c

0.4!

0.47

-o-44

0-43
0.41

-3'

o-3

0-33

0.29
0.28

53

19

06
0.93

0.89

0.73'
0.65

0.58

0.53

0.50

'

6- '

"

-
*̂

0.03

1 ) Diff. (t>..2) Diff.

0.46~-

0.47+''

1:11
0.52

.

' C3

- 70

0.87

oo

10.98

10.88
In ...

10.78

10.73

In 71

10.7T
10.83
lo 99

11.02

11.91

12.16

"

+0.01

0.06

0.25

l N
j 1>

8.M
2.65

2.93

; 88

o. 10

O. II

0.12

12.71
' 2S

13.02
' 31

13.35
' 33

0.34
13.69

14J2 ' 38

14.81
' 39

15.22
' 41

0.42
Lft.84

16.07 +' 43

16.52 0<45

lfi...S
' 4

17.93
0.48

0.16

3.70
3.86 +-
4.02

-

4.19
'

4.35
-

o.

4.51
,

4.07+0.16
4.84

*"
5.00

'

5.16
'

o.

5.62
-

5 ' 77 o
5.91 /

4
o. i^

18.0-2

19.42

19.93

21.49
2-2 03

88 'S 6

0-55
25 88

86.44+-5
27 00 -5

0.56
ao 12 -56

0.56
os 6S

2t) 24+-5
29.79 'S5

30.35 -56

30.91 -56

o-SS

w.c.2j Diff.

i.54

6.69

; 98

7.20

7.59

7.67

7.79

0.14

- 8

0.06

n.32
o. ij

C..II "

7.87

7.90

7.92
o.oi

7.93
,

7 94+0.01
7.93'

7.92

7.90

7.87

7.83'

7.78

7.73

7.C7

7.60

7.52'

7.44

7.35

O.O2

0.01

0.0

-o.o{

o.oi

1

7.55

7.58
' 3

7.61 3

7.62

7.63

34.22

7.C2

+0.01
o.oo
o.oo

O.OI

0.02

SSI

7 46

7.42

-S
0.04

6.95
6.84

6.73

6.61

6.48"

6.35

0.23

6.10

5.97

5.83'

&.|
5.56

5.42

5. 23

4.87

4.60

3.95

'

0.14
o 13

i M
1.28
I ..n

1.33

1.35

1.37

1.38

1.40

1.41

1.41

1.42

1.42

1.42

1.41

1.41

1.41

1 40

1.39

1.38

1.36

1.34

1.32

1.30

1.28

1.26

1.24

1.22

1.20

1.17

1.15

1.12

1.09

1.07

1.04

1.02

1.00
(i M
0.95

0.93
0.91

0.89
0.87

0.85
0.83

0.82

0.81

8.88
0.79
0.78

0.77

0.76
0.76

0.76

0.76

0.76

0.76

77

0.78

0.78
0.79

0.80

v.c.S) (v..4)

.43

.41

II
.36

.33

.30

.26

.23

1.20

1.17

1.14

1.11

1.08

1.04

1.01

0.98

0.95
i. .,_>

0.90

0.87

0.85
O.H3

0.81

0.79

0.77

0.76

0.74
0.73
0.72

0.72

0.71

0.71

0.71

0.71

0.71

0.71

0.72

0.72

0.73
0.74

0.76

0.77

0.78
0.80
0.82

0.84

0.86

0.87

0.90

0.92

0.94

9.91
0.98

.00

.02

.04

.06

.08

.10

.13

(u.c.4)

0.91

0.93

0.95
i. >

0.97

N
1.02

1.04

1.06

l.OS

1.10

1.12

1.13

1.14

1.15

1.15

II'.

1.17

1.18

1.19

1.19

1.19

1.19

1.19

1.19

1.17

1.16

1.15

1.14

1.13

1.11

1.09

1.07

1.05

-1.15

1.15

16

II

.17

.18

.18

.18

1.18

1.18

1.17

1.18

1.15

1.14

-1.13

1.11

1.09

1.07

1.05

-1.03

1.01
n '.''.i

0.97

0.95

-0.93
0.91

0.89

0.87

0.86

-0.86
0.85

0.84

0.83

9.89

1.04

1.02

1.00

0.98

0.96

0.94
n .<_'

0.90

0.88

0.87

0.86

0.86

0.85

0.84

0.83

0.82

0.82

0.82

0.81

0.81

0.81

0.82

9.88

0.84

0.85

1.15 0.85

-0.81

0.81

0.81

0.80

0.80

-0.80

0.81

0.82

0.83

0.84

-0.85

0.81

0.89

0.91

0.93

-0.94

0.96

0.98

1.00

1.02

-1.04

1.06

1.08

1.10

1.19

1.18
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TABLE X, ARG. 3. Continued.
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TABLE X, AUG. 3. Concluded.
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TABLE XVII a.
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TABLE XVIII. REDUCTION TO THE ECLIPTIC. ARGUMENT w.
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TABLE FOR FORMING THE PRODUCTS OF GIVEN NUMBERS BY THE
SINE OR COSINE OF A GIVEN ANGLE.

THIS table is formed for the especial purpose of facilitating the formation of the

products (r.x.3) sin !ty, (<:<:'l) cos 3y, etc., (().*. 1) sin//, (p.c.l)
cos g, for entire degrees

< f
ij.

It is so arranged that the required products can be taken out at sight.

Supposing the number to be given in seconds and decimal fractions of a second,

we first seek tin- given angle at the top or bottom of the pnge, and then enter one

of the first nine lines of the table with the fraction part of the second, interpolating

lor the hundrcdths. We then add the result mentally to the number corresponding

to the entire seconds. The algebraic signs at the sides of the angles are those of

the sines or cosines corresponding to the angle and to the column above or below.

If the number does not exceed 3" we can enter the table as if it were ten times

greater, and remove the decimal point one place to the left in the result.

For example, to find the value of

2l".67 sin 280 -f 2*.25 cos 280

we find the angle 280 at the bottom of a pair of columns, the right hand one being

the sine column. Entering this column with 0.67 as the argument, we find O.tiG.

Kntering with 2.1, we find 20.68, to which adding 0.66, we have 21".34 as the

sine product. Entering the other column with 22.5, and moving the decimal point,

we find 0*.39 for the cosine product. Noticing the algebraic signs on each side

of 280, we find the result to be 21".34 + 0".39 = 20".95.

( 279 )
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