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ABSTRACT 

Assessment of coastal ocean conditions is valuable for both military and civilian 

operations. Remote sensing of those conditions can be even more valuable, particularly in 

the case of all-weather sensor types. The potential for better understanding of ocean 

conditions through the combination of remote sensing results was recognized here with 

the focus on SAR imagery and High Frequency (HF) radar-derived surface currents. 

The hypothesis that combining remote sensing products may improve results was 

tested using SAR imagery and available HF radar surface current maps along central 

California. Data were obtained from 2007–2010 when the network of HF radar stations 

was operating relatively continuously. Over the same time period, 780 archived SAR 

images were identified and, of those, 31 images were chosen for detailed assessment by 

identifying representative images under weak, moderate, and strong wind conditions. 

As expected, wind strength played a dominant role in determining the physical 

processes visible in the SAR imagery. Moderate wind speed of 2–4 m/s exhibited the 

most obvious ocean-related processes and the best correlation with features in the HF 

radar surface current maps. Surprising is the discovery that oceanographic features in the 

SAR imagery represent recent history of tracer advection over hours to days. As such, 

individual hourly, surface-current snapshots are not, perhaps, the best product for 

comparing with those features. Features in the daily-average currents, for example, 

appear more highly correlated with features in SAR imagery under moderate wind 

conditions. 
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I. INTRODUCTION 

A. MOTIVATION AND BACKGROUND 

Knowledge of the oceans is important for all strands of human life, impacting 

populations economically, socially, politically and strategically. Civilization does not 

know the world without water, and man’s own survival may depend on an understanding 

of the global ocean and its processes. Navigation, maritime transportation, energy and 

resource exploitation, naval military operations, search and rescue, oil spill response, 

recreational activities, and offshore engineering all depend on some degree of 

information about the ocean. Recent awareness of climate changes has focused media and 

popular attention on environmental concerns and triggered the hunt for answers. For the 

last 150 years, oceanographic data have been collected with a large contribution of in situ 

data, particularly after the 1950s and satellite ocean measurements starting in the 1970s 

(Talley et al., 2011, Chapter 1). 

Nowadays, more and more sophisticated sensors are available for monitoring and 

deciphering coastal and oceanic processes as near to real time as possible. Remote 

sensing methods are critical in these efforts. Ocean remote sensing is defined as the use 

of electromagnetic radiation to acquire information without physically contacting the 

target or event under investigation (Martin, 2004). Along with a wide range of sensors, 

high frequency (HF) radar and synthetic aperture radar (SAR) are of special interest in 

this present study.  

In North America and, in particular, along the central California coast, there exists 

a large data set of surface currents derived from HF radar observations that can be 

overlapped with coverage from modern SARs. The combination of both remote sensors 

has the potential to lead to a high-resolution map of surface features extending from 

coastline to approximately 100 km offshore. 

This study aims to analyze an ensemble of 31 SAR images distributed over a wide 

range of wind conditions over the period 2007–2010, overlap them with corresponding 

HF radar-derived surface current maps, characterize the wind speed conditions for each 
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image, and identify, where possible, the detected features and the differences and 

similarities in how these features are resolved (imaging mechanisms) in each distinct data 

set. The different imaging mechanisms include advection of surfactants, 

convergence/divergence zones, or cross correlation between SAR backscatter, winds, and 

surface currents on the scale of the HF radar observations (Clemente-Colon & Yan, 1999; 

Holt, 2004; Lyzenga, Marmorino & Johannessen, 2004). Other relevant questions are 

addressed, such as: What kind ocean features are detectable by SAR for different wind 

conditions? What are the thresholds for which SAR imagery has poor or no backscatter 

difference and, thus, does not allow the visualization of ocean features? What is the 

interval of optimal wind conditions to retrieve certain ocean features in SAR imagery? 

B. CONTRIBUTIONS 

This thesis presents a first step towards understanding coastal phenomena as 

perceived by a synergetic overlapped product of HF radar-derived surface currents and 

SAR imagery of the oceanic region between Point Reyes, north of San Francisco, and 

Point Sur, south of Monterey (Figure 1). 

 

Figure 1.   Oceanic region of interest included in the square (After Eoli-sa ESA) 
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C. THESIS ORGANIZATION 

Chapter II reviews sensor background and characteristics of both SAR and HF 

radar. Chapter III describes the data and methodology of retrieving HF surface currents 

and SAR imagery, including the work flow associated with the European Space Agency’s 

(ESA) processing software Next ESA SAR Toolbox (NEST). Description of in situ 

measurements from National Oceanic and Atmospheric Administration (NOAA) and 

Monterey Bay Aquarium Research Institute (MBARI) buoys is presented in this chapter, 

as well, and the process of overlapping HF, SAR and wind data is demonstrated. In 

chapter IV, results are assessed and a discussion of the limitations is presented. Chapter V 

summarizes the key results, concludes, and offers recommendations pointing toward 

areas of further research. The appendices contain all SAR imagery and HF products 

analyzed. Supplementary images are maintained online by Naval Postgraduate School 

(NPS) at http://calhoun.nps.edu/. 
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II. BACKGROUND 

This chapter presents the background of both SAR and HF radar, focusing on 

these remote sensors’ products used in the present study. The relevant characteristics and 

specifications are analyzed and the most important concepts are briefly defined.  

A. SAR 

1. SAR Background and Ocean Applications 

Spaceborne SAR took its first solid steps in 1978 with the launch of SEASAT, 

providing an exclusive and detailed view of the sea’s surface (Fu & Holt, 1982). Wind 

conditions, especially wind intensity, contribute greatly to the surface roughness from 

which backscatter differences permit the visualization of a variety of ocean features, such 

as internal waves, surface waves, eddies, shallow bottom topography, ocean currents, oil 

slicks, upwelling events, rainfall, ships and ship wakes (Martin, 2004). SAR is capable of 

imaging the earth’s surface with fine resolution, on the order of meters, and doing it 

independently of cloud cover and solar illumination. 

The Environmental Satellite (ENVISAT; Figure 2) is the improved follow-on 

from the European Remote Sensing Satellite (ERS) -1 and -2 missions. Launched in 

2002, ENVISAT has been globally and regionally sensing the earth and providing data to 

scientific and application users through a vast payload instruments, such as Advanced 

SAR (ASAR), Advanced Along Track Scanning Radiometer (AATSR), Medium 

Resolution Imaging Spectrometer (MERIS), and Doppler Orbitography and 

Radiopositioning Integrated by Satellite (DORIS), among others. ENVISAT does not 

have a scatterometer onboard as did the ERS missions. ASAR’s new capabilities include 

beam steering for acquiring images with different incidence angles, dual polarization, and 

wide swath coverage through ScanSAR (http://www.esa.int). 
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Figure 2.   ESA’s ENVISAT (From ESA). 

2. What is SAR?  

SAR is a high resolution, side-looking imaging sensor that illuminates the surface 

of the earth via active micro wave (MW) frequencies (Figure 3) and the retrieved 

backscatter measurements from the detected surface varies by surface roughness and 

dielectric constant. Since its active radar pulse illuminates the surface, sunlight is not 

required, thus providing 24-hour coverage. Through a full transmitting C-band with 

frequency of 5.3 GHz and corresponding wavelength of 5.6 cm (see Figure 3 and Table 

1), ENVISAT’s ASAR collects earth’s information in nearly all weather conditions. This 

constitutes a direct advantage over visible or infrared (IR) frequency radiometers that 

only provide good data with a cloud-free atmosphere (Martin, 2004; McCandless & 

Jackson, 2004). 

 

Figure 3.   The Electromagnetic Spectrum (After Paduan & Graber, 1997) 

C Band HF 



 7

3. How Does SAR Work?  

In a basic approach, SAR follows the same principles as real aperture radar 

(RAR) if synthetic aperture is not considered. It calculates the distance from the radar to 

an object by multiplying the speed of light ( 83 10c   m/s) and one half of the measured 

time between transmission and reception of the electromagnetic (EM) wave that 

illuminates the object. The returned energy received by the radar is called backscatter. 

Backscatter coefficient or normalized radar cross section (NRCS) is dimensionless, 

expressed by o  in decibels (dB), and depends mainly on wind and radar parameters (see 

Table 1). 

Synthetic aperture is the mechanism that enables SAR to achieve its fine 

resolution, on the order of 30m for ASAR image mode (IM) products. As illustrated in 

Figure 4, synthetic aperture consists of a virtual augmentation of the antenna size to the 

equivalent distance travelled by the satellite while illuminating the target and, then, 

integrating the time history of the precisely measured amplitude and phase (coherent 

radar). RAR azimuth resolution is set by the azimuth beam width, while SAR improves 

azimuth resolution to shorter than the antenna length through signal processing 

(Henderson & Lewis, 1998; Martin, 2004). McCandless and Jackson (2004) define SAR 

as a mix of radar and signal processing techniques, greatly boosting the spatial resolution. 
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Figure 4.   Concept of synthetic aperture (After Canada Centre for Remote Sensing, n.d.) 

4. Bragg-Resonant Backscatter and Surface Roughness 

For ASAR typical incidence angles of 15° to 45°, resonant (Bragg) scatter 

dominates over specular scatter, and the received backscatter is enhanced due to coherent 

combinations of signals reflected back from the small-scale surface wave field. Over the 

ocean, Bragg scatter requires reflecting features on the sea surface within the same order 

of wavelength as the radar waves being utilized. Highlighted in Figure 5a, the resonant 

wavelength is given by Equation 1: 

2sin
r

B





                               (1) 

where B  is the sea surface wavelength, r is the EM wavelength and   is the 

incidence, or viewing angle (off-nadir). The waves matching this criterion are on the 

order of centimeters or less, corresponding to the shorter surface waves called capillary 

waves whose restoring force is surface tension. 
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Figure 5.   Illustration containing a) Bragg scattering mechanism; b) Tilt modulation – 
long wave pattern modifies short-wave local incident angle, and c) 

hydrodynamic modulation – surface currents affect distribution of short waves 
along a long wave.   is the surface elevation and   is the wavenumber 
spectrum. (After Stewart, 1985, Figure 13.6; Canada Centre for Remote 

Sensing, n.d) 

Detectable variations of o  are sensed by SAR due to modification of Bragg 

waves by larger waves (swell), small-scale wind patterns, current shear, bottom-

current/wave interaction, oil slicks, ships, and ship wakes. 

Some of the oceanic mechanisms that enhance or suppress backscatter, hence 

modulating Bragg scattering, include tilt and hydrodynamic modulations (Stewart, 1985; 

Holt, 2004) as well as surfactant damping and velocity bunching. 

Tilt modulation, illustrated in Figure 5 b), occurs when a long wave pattern 

modifies the slope of short waves, tilting them differently over the crests and the troughs, 

and thus causing a change in local incidence angle, i , (or moving facets) along the 

longer propagating wave. 

  

Bragg Scattering 

 
 

b)  c) 

a) 

i
  

2

r


r


B

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Hydrodynamic modulation, shown in Figure 5 c), occurs when Bragg scale waves 

change due to wave orbital velocities. Here Bragg waves accumulate on crests and stretch 

out on troughs creating convergence and divergence zones, respectively.  

Surfactants damping lowers the surface tension, causing suppression of Bragg 

scale waves and, thus, enhancing surface smoothness. Surfactants are surface active 

agents that can be either biogenic or mineral oils that lower the surface tension. 

Velocity bunching is an ingredient of the SAR system caused by a non-stationary 

ocean surface, yet it does not influence quantitatively the returned energy. The natural 

displacement of the waves while the sensor is orbiting will induce an additional Doppler 

offset, in the satellite’s line-of-sight component (radial), translated into a shift in 

positioning of azimuth-travelling waves, as in the train-off-the-track example in 

Rufenach, Shuchman and Lyzenga (1983). 

Backscatter depends greatly on the geometric and electrical characteristics of the 

target. Over the water, the backscatter is mainly a function of the surface roughness 

caused by capillary waves which in turn are induced by local wind stress. The electrical 

properties of the target also contribute to the returned energy; they are expressed by the 

dielectric constant c  (Table 1), which expresses the reflectivity and conductivity of a 

medium. The dielectric constant of the ocean water is relatively high and varies by 

temperature, salinity, and frequency (Holt, 2004). 

Wind variation is of extreme importance in generating surface roughness. Under 

normal meteorological conditions, high wind speeds (up to ~15 m/s) create greater 

backscatter and thus brighter imagery, whereas winds greater than 15 m/s cause ocean 

clutter to mask surface features in SAR imagery. For wind speeds below ~2-3 m/s the 

scattering surface will be low, thus providing little backscatter and dark imagery. 

Therefore, the optimal wind interval for better responsiveness to surface roughness is 2 to 

15 m/s (Johannessen et al., 1996; Clemente-Colon & Yan, 1999; Holt, 2004). Upwind or 

downwind satellite looks also reflect more energy than crosswind looks. Table 1 gives a 

general description on backscatter dependency applied to ASAR C-band. 
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Table 1.   Backscatter dependency of ASAR C-band (After Holt, 2004, Figures 2.5, 
2.6, 2.8; ASAR Users Guide, n.d.)  

 
o = NRCS or Backscatter 

coefficient  

After Holt, 2004, Figures 2.5, 2.6, 2.8 

Wind 
direction 

Upwind & downwind have 
higher o  than crosswind. 

Upwind has higher o  than 

downwind. 

Wind speed 

As wind increases, o  

increases. Cut off at 2 m/s and 
15m/s (see Table 2 for 
detailed information). 

 

Radar 
parameters 

Ocean radar return with 
Incidence angle (15° < θ < 
45°): Increasing θ 
decreases o . The data set in 

the present study uses images 
with incident angles 19.2° < θ 
< 26.7°. 
Polarization - VV returns 
more o  than other 

combinations. 
Frequency - Maximum  o  at 

~5.5GHz. 

Electric 
properties 

Dielectric constant c : The 

higher c , the higher is o . c  

varies by temperature, salinity, 
and frequency. 

 

*VV – Vertical transmit and vertical receive polarization (see Figure 6) 
**HH – Horizontal transmit and horizontal receive polarization 

5. ASAR Polarization  

For purposes of studying surface roughness caused by wind-driven capillary 

waves, VV polarization has a larger backscatter coefficient than other combinations 
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w

nw
in

d 

cr
o
ss
w
in
d
 up

w
in

d 



 12

(ASAR Users Guide, n.d.; Holt, 2004). All ASAR imagery contained in this study has 

VV (vertical transmit – vertical receive) polarization (Figure 6). For in-depth information 

on ASAR polarization, the reader is referred to ASAR Users Guide, (n.d.). 

 

Figure 6.   VV Polarization (From ASAR Users Guide, n.d., Figure 1.20) 

6. ASAR Measurement Modes 

ASAR can operate in 5 distinct measuring modes with varying incidence angles 

and swath widths: 

 Image Mode (IM, see Figure 7) 

 Alternating Polarization Mode (AP) 

 Wide Swath Mode (WS) 

 Global Monitoring Mode (GM) 

 Wave Mode (WV) 

 

As defined in ASAR Users Guide (n.d.), “IM products are high-resolution, narrow 

swath products based on data acquired at one of seven subswaths. Swath widths range 

between approximately 56 km (swath 7 – IS7) and 100 km (swath 1 – IS1) across-track. 

Spatial resolution of approximately 30 m (for Precision IM product).” SAR imagery in 

this study focuses on IS2 with incidence angles 19.2°- 26.7°. 
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Figure 7.   Image Mode (After ASAR users guide, n.d., Figure 1.10) 

The present research exploits Level 1b IM products, particularly Image Mode 

Single-Look Complex image (IMS) and Image Mode Precision image (IMP). 

Table 2.   Standard specifications for ASAR IMP and IMS products (After ASAR 
users guide, Table 2.1) 

 

Product 
ID 

Nominal 
Resolution(m) 

(range x azimuth) 

Nominal Pixel 
Spacing (m) 

(range x azimuth) 

Approx.Coverage 
(km) 

(range x azimuth) 

Equivalent 
No. of 
Looks 

IMP 30 x 30 12.5 x 12.5 56-100 x 100 > 3 

IMS 9 x 6 - - natural 56-100 x 100 1 
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B. HF RADAR 

1. HF Background and Ocean Applications 

High frequency (HF) radio bands have been providing evidence of their value 

throughout the last three decades. They work by exploiting Bragg scattering information 

related to ocean surface waves and currents as described in Barrick, Evans and Weber 

(1977) and later demystified by, among others, Paduan and Graber (1997) and validated 

in Chapman and Graber (1997) and Paduan and Rosenfeld (1996). 

Radars using HF can be divided into two major configurations: direction- finding 

and beam forming (a phased-array system). Coastal Ocean Dynamics Applications Radar 

(CODAR) utilizes direction-finding mode, while Ocean Surface Current Radar (OSCR) 

uses beam-forming. More versatile Wellen Radar (WERA) units can operate in either 

configuration (Paduan and Washburn, 2012; Teague, Vesecky & Fernandez, 1997). 

Ocean surface-current maps analyzed in this study are derived from CODAR-type 

HF radar using SeaSonde units. These employ a compact antenna with direction finding 

configuration and use the Multiple Signal Classification (MUSIC) algorithm to determine 

ocean surface-current bearings (Paduan & Graber, 1997). 

Several applications benefit directly from ocean surface currents mapped through 

long-time scales over large, spatial ocean coastal areas, such as data assimilation in ocean 

circulation models accounting for search and rescue operations, oil spill response, 

harmful algal bloom monitoring, larvae transport, natural resource exploitation, tsunami 

warning, surface-tidal current mapping, and wastewater discharge (Paduan & Washburn, 

2012). 

2. What is HF Radar? 

Earlier defined in Barrick et al. (1977), “this instrument [HF radar system] 

deduces current velocity from the echoes scattered continuously from the ocean waves; 

buoys and drifters are not required.” HF sensors are shore-based stations using EM radio 

waves with real aperture to provide real-time, 24-hour, all-weather reflectivity of ocean 

wave spectra. Several sensors are required to provide overlapping detection regions 
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necessary to determine direction. The main product derived from the spectra is a 2-D map 

of ocean surface currents with a horizontal resolution of ~3km, spanning up to 100km 

from near a coastline. Besides current maps, the energy density spectrum generated by 

this remote sensor (sampled in Figure 8), allows retrieving wind direction and sea state 

(significant wave height, mean direction and peak period; Graber & Heron, 1997).  

3. How Does HF Radar Work?  

HF systems operate at frequencies ranging from f  3 to 50 MHz (from 

http://www.codar.com/), which corresponds to radio wavelengths, r , between ~6-100m 

(Equation 2); they exploit Bragg scattering energy echoes from surface gravity waves 

(similar to SAR), where the wavelength of the Bragg waves, B ,  is one-half of r  

(Equation 3) i.e., 

r

c

f
 

                               (2) 

where speed of light 83 10c   m/s 

1

2B r 
                               (3) 

In a simple approach, the method to retrieve radial surface currents takes into 

account the relationship between the Doppler frequency shift of resonant backscatter, 

Braggf , and the speed of deep-water gravity waves, oc  (Equations 4 and 5) plus 

additional displacement, f , caused by the underlying current field. Equation 6 shows 

the Doppler principle, where rV  is the component of surface current along the radial 

direction (Barrick et al., 1997; Paduan and Washburn, 2012; Thompson, Graber & 

Carande, 1994).  

2 o
Bragg

r

c
f




                                 (4) 

o
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k


                                (5) 
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where g is the gravitational acceleration and 
2

B

k



 is the wavenumber 

2 r
f

V


 

                           (6) 

The expected Doppler shift due to Bragg waves, Braggf , is known so any additional 

Doppler, f , is attributed to the current (Paduan & Graber, 1997). Figure 8 illustrates a 

typical Doppler spectrum for OSCR-type HF radar.  Spectra from direction-finding radar 

(CODAR) have wider Bragg peaks (Paduan & Washburn, 2012). 

Gathering information from two or more HF radar stations, provided the surveyed 

area overlaps with good geometry, allows the estimation of current vectors and, thus, 

construction of surface maps of current speed and direction. 

 

Figure 8.   Typical Doppler spectrum collected by an OSCR system, showing prominent 
Bragg peaks due to waves advancing toward and receding from the receiver. 

Bragg frequencies,
Bragg

f , correspond to positions of no-currents shown by the 

vertical dashed lines. ∆f is the additional Doppler shift related to ocean 
currents (after Graber et al., 1996; Paduan & Graber, 1997).  
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Despite the fact that HF radio waves don’t literally penetrate the sea surface, they 

measure the backscatter of short gravity waves, moving with deep-water phase speed, 

that are influenced by long waves and currents beneath. A similar process at different 

spatial scales is SAR’s hydrodynamic modulation, depicted in Figure 5c. The interaction 

of the orbital motion of individual particles with long waves and currents drives the 

effective depth of Bragg wave influence, which is not more than two meters as shown in 

Table 3.  

Table 3.   The depth of the current observations depends on the depth of influence of 
the particle motions of the Bragg waves (After Stewart and Joy, 1974) 

Frequency 

(MHz) 

Depth of 

influence (m) 

4.8  ~ 1.5 

6.8 ~ 1.2 

13.4 ~ 0.8 

21.8 ~ 0.5 

4. Site Description 

The importance of installing HF radar systems close to the shoreline to allow 

maximum range and benefit from surrounding wet and sandy soils, which enhances 

signal strengths, is pointed out in Paduan and Graber (1997). Radio interference, high sea 

states and dry or rocky terrain around sensors constitute limitations to the received power. 

Locations of CODAR HF radar antennas used in the present study are illustrated 

in Figure 9. All 16 systems are managed and maintained by local academic institutions 

(http://www.cencoos.org/index.html). 
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Figure 9.   Site localization of HF antennas (after CeNCOOS 
http://www.cencoos.org/index.html) 

The stations PILR, PSLR and RAGG, seen in Figure 9, operate in the frequency 

range 4-5 MHz, while MLML works in 24-27 MHz frequency band. All the other HF 

stations operate in 11.5-14 MHz range. The horizontal range of the CODAR type HF 

radar in the region of interest (ROI) depends on each station frequency and spans from 

30km to 150km from the coastline. 

NPGS

MLML 

PSUR
PSLR 

GCYN

PPIN 

SCRZ 

BIGC 

PESC 

PREY 

PILR 

 COMM 

MONT

FORT

RAGG 

SLID



 19

C. SAR AND HF RADAR CHARACTERISTICS 

Although both SAR and HF respond to Bragg scattering, they work with distinct 

frequency bands, detecting different scales of resonant surface waves and, thus, not 

perceiving the ocean in the same manner. C-band ASAR at 5.3 GHz monitors wind-

driven surface roughness caused by capillary waves on the order of 5.6 cm wavelength, 

with a nominal spatial resolution of 30 m (ASAR Users Guide, n.d.), sensing the skin of 

the ocean, while HF radar, taking as example a frequency of 12 MHz reflects a short 

gravity wave field with 12 m wavelength to obtain information about radial currents over 

an area of 3 km and a penetration depth influence close to 1 m. The wave characteristics 

in Figure 10 demonstrate the differences between the two surface waves. SAR 

observations also have the potential to measure Doppler shifts in the radial direction, and 

preliminary comparisons between HF radar and SAR current measurements appear 

promising (Danilo et. al., 2007). Yet this approach is not explored in the present study.  

Having a reasonable assessment of the overlap between SAR and HF radar 

products requires understanding the differences between these instruments. For this 

matter, radiation frequency, antenna footprint, and scattering geometry (Danilo et. al., 

2007) assume particular interest, therefore any method to compare both remote sensor 

products must be cautiously formulated. 

Differences in frequency, and the corresponding Bragg waves’ sensitivity that 

these systems respond to, limit the features one can notice simultaneously on SAR 

images and HF surface-current maps to eddies, fronts, and convergence/divergence 

zones. Wind speed, the detection of multiple type of surface features, and frequency place 

boundaries on the quality and level of detail seen in SAR imagery. Table 4 summarizes 

the most relevant characteristics and specifications of both sensors. 
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Figure 10.   Dispersion diagram and wave characteristics. Capillary waves on an order of 
centimeters or less and surface gravity waves on the order of tens of meters 

(After Hasselmann, 1982, Figure 1; Chu, n.d., Figure 6.54). 

 
 
 
 

ASAR HF 
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Table 4.   Characteristics and specifications of ESA’s ENVISAT ASAR C-band and 
HF CODAR installed in Central California (After Canada Centre for 

Remote Sensing, n.d., Graber et al., 1996; McCandless & Jackson, 2004, 
ESA portal, http://www.esa.int) 

PARAMETER ENVISAT ASAR C-BAND CODAR HF RADAR 
Country European Space Agency USA 
Operation start date 2002–2012 2006 
Frequency 5.3 GHz 4- 27 MHz 
Bragg wavelength 5.6 cm 5.5 to 35 m 

Spatial Resolution (range 
and azimuth): 

IM, WV and AP: ~ 30m x 30m. 
WS: ~150m x 150m 
GM: ~ 1000m x 1000m 

Azimuthal: ~5° 
Range: ~3 km 

Radiometric resolution in 
range 

1.5-3.5 dB 
N.A. 

Radiometric accuracy 0.65 dB N.A. 
No. of looks IMS = 1 / IMP > 3 N.A. 

Swath width 
IM and AP: up to 100km 
WV: 5km 
WS and GM: 400km or more 

N.A. 

Range Variable with mode 30 - 150km 
Mean altitude 800 km Variable with terrain 
Orbit velocity 7.45 km/s N.A. 

Incident angle 
15° - 45° (For IS2: 19.2°- 
26.7°) 

90° 

Inclination 98.55°, sun-synchronous N.A. 

Polarization 
VV, HH, VV/HH, HV/HH, or 
VH/VV  

VV Ground-wave 

Measurement cycle N.A. 20 min 
Repeat cycle 35 day NA 
Measurement depth Order of millimeters < 1m 
Accuracy radial current ~1 cm/s ~10 cm/s 
Access data ESA – project proposal Contact: CeNCOOS.org 

*IM – Image mode, WM - Wave mode, AP - Alternating Polarization mode, WS - Wide Swath mode, GM 
- Global Monitoring mode, IS2 – Image Swath 2. 
 

It is the goal here to identify the imaging mechanisms at work in ASAR imagery 

that can have a significant expression on HF radar-derived surface-current maps. Given 

the scales, the different imaging mechanisms are expected to include advection of 

surfactants, convergence/divergence zones, or cross correlation between SAR 

backscatter, winds, and surface currents on the scale of the HF radar observations 

(Clemente-Colon & Yan, 1999; Holt, 2004; Lyzenga et al., 2004). Imaging mechanisms 

whose content is reproduced in Table 5, can be found in NOAA’s SAR marine user’s 

manual chapter 2 (Holt, 2004, Table 2.1). 
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Table 5.   Characteristics of Ocean Features on SAR imagery (From Holt, 2004, Table 
2.1) 
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III. DATA SET AND METHODOLOGY 

A. DATA SETS 

Ocean data have been collected along the central California coast, from Point 

Reyes to Point Sur, including the areas around San Francisco and Monterey Bay (Figure 

1). These data span the period 2007–2010, and they include HF-derived surface current 

maps, ENVISAT ASAR imagery and in situ wind speed and direction from eight ocean 

buoys - five from the National Data Buoy Center (NDBC), and three from the Monterey 

Bay Aquarium Research Institute (MBARI). The area is part of the California Current 

System (CCS) along the eastern boundary of the north Pacific subtropical gyre (Talley et. 

al, 2011) which, along with the geomorphology of the coast and bottom topography leads 

to a wide range of ocean phenomena. San Francisco Bay's narrow entrance accounts for a 

strong tidal flood and ebb, and Half Moon’s and Monterey Bay's geometries often create 

atmospheric rolls and vortical features. Previous studies conducted in the region 

demonstrate the large diversity of oceanographic features, such as upwelling events, 

currents evolving from major wind reversals, mesoscale eddies, current fluctuations 

dominated by semidiurnal tidal forcing and diurnal sea breeze forcing at shorter 

timescales (Paduan & Cook, 1997), frontal slicks and localized upwelling shadows (Ryan 

et al., 2010). 

Over the next sections, the method to obtain surface currents from CODAR-type 

HF radar is described. The process of attaining calibrated and geocoded SAR images is 

also demonstrated. Overlapping of near-concurrent SAR images and HF radar currents is 

discussed next and finally quantitative assessment and a validation test is described. 

B. HF RADAR SURFACE CURRENT PROCESSING STEPS 

Each of the 16 HF radar stations collects Bragg backscatter from surface gravity 

waves, for different depth influences, in accordance with each unit frequency. The 

MUSIC algorithm is applied to generate hourly radial currents. Overlapping radials from  
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two or more units are then attached to a pre-defined spatial grid and combined in Matlab 

or CODAR software to produce total surface current vectors. These vectors are stored in 

a data server. (M. Cook, personal communication, 2012). 

HF current data can be accessed through the Coastal Ocean Currents Monitoring 

Program (COCMP) webpage (http://www.cencalcurrents.org/data.shtml). 

C. SAR DATA SET AND IMAGE PROCESSING FLOW 

1. Data Access 

SAR archived images are attained through the open software Eoli-sa from ESA. 

Eoli-sa is ESA’s catalogue interface, which allows users to see browse images, select 

available data and order the preferred products, as described in the Eoli video tutorial 

(http://earth.esa.int/EOLi/EOLi.html). 

The ordering step requires users to submit a project data proposal at ESA’s 

scientific community by following the “Guidelines for the Submission of Project 

Proposal” (https://earth.esa.int/web/guest/pi-community/apply-for-data/full-proposal). 

In this study, the SAR imagery selection process considered the availability of 

data for the period and ROI, preferred ASAR modes (see Figures 11 and 12), temporal 

overlapping with HF products (example in Figure 13), and different wind regimes (see 

Figure 14). 
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Figure 11.   Histogram of images in Eoli-sa catalogue for the period and ROI. The vertical 
axis represents the quantity of images. In the legend, ASAR is from 

ENVISAT and AMI/SAR from ERS-2. 
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Figure 12.   ASAR image mode coverage from period 2007-2010 and ROI. Each vertical 
red segment represents one image. 

 

Figure 13.   Example of HF radar data available for 2007. Vertical axis shows different HF 
radar stations illustrated in Figure 9. 
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Figure 14.   Example of wind plots from in situ buoy measurements on the ROI for 2010. 
The vertical solid black segments indicate available ASAR image and solid 
red segments indicate surface wind direction and magnitude at the time of 

ASAR image formation. 

2. Processing Flow 

A freely available software package, NEST, was available from ESA for SAr 

imagery. NEST (Next ESA SAR Toolbox) is used for reading, post-processing, analyzing 

and visualizing the large archive of data (from level 1) of ESA missions including ERS-1 

& 2, ENVISAT, as well as third party SAR-data (NEST User Manuals,  n.d.). Level 1b 

SAR imagery presented in this study was processed with NEST, with a nominal 

resolution of 25 x 25 m for IMS and 16 x 9 m for IMP produts. 

Level 1B imagery are geolocated products, derived from Level 0, in which data 

has been converted to engineering units, auxiliary data has been separated from  
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measurements, and selected calibrations have been applied to the data. Level 1B products 

are the foundation from which higher level products are derived” (ASAR Users Guide, 

n.d.). 

The processing flows shown in Figures 15 and 16 are semi-automatic batch 

procedures built to process single look complex image product (IMS) and detected or 

precise image product (IMP), respectively. 

ESA’s ASAR User Guide defines IMS data as a high-resolution, narrow swath 

product based on data acquired from IS1 to IS7. It is intended for SAR image quality 

assessment, calibration and interferometric or wind/wave applications. Whereas, IMP 

product is a multi-look, ground range, digital image suitable for most applications. It is 

intended for multi-temporal analysis and for deriving backscatter coefficients. (ASAR 

Users Guide, n.d.). 

The batch processing assembles graphs from a list of available SAR and 

geometry-tool operators in NEST software, where the user specifies settings and several 

options, as well as the source image. The operator’s selection and processing chain order 

depend on the image type and preferred final product. Training tutorials and practical 

exercises are found in Mahapatra and Hanssen, (2011); Minchella, (2011); Minchella and 

Costantini, (2011); Veci, Minchela, and Engdahl, (2009); Marinkovic, (2009), as well as 

the NEST User Manual (n.d.), all available at ESA and NEST websites 

(http://nest.array.ca/web/nest).  

 

Figure 15.   Work flow for SAR IMS with ESA’s software NEST. 
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Figure 16.   Work flow for SAR IMP with ESA’s software NEST. 

a. Precise Orbit Files 

Precise orbit files constitute an ENVISAT product generated by the Centre 

de Traitement Doris Poseidon (CTDP) and the Delft University of Technology, which in 

accordance with ESA’s portal is made available days to weeks after the sensing. It’s used 

to refine orbital parameters and update abstracted metadata with more accurate position 

and velocity (Mahapatra & Hanssen, 2011).  

The Apply orbit file operator automatically downloads required 

information from the DORIS server, provided firewall permissions are granted. 

Alternatively, data can be requested from ESA and manually downloaded by FTP. For 

comparison purposes a sample image was processed with and without the DORIS 

precision file. When analyzing ocean surface, no significant changes were found in the 

SAR image intensity or backscatter. 
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Figure 17.   Apply orbit file operator 

b. Absolute Calibration 

The Calibration operator, under radiometric correction, builds a 

quantitative image where the pixel value directly represents radar backscatter of the scene 

(Mahapatra & Hanssen, 2011). For solely qualitative assessments, uncalibrated SAR 

imagery is sufficient (NEST User Manual, n.d.), but the calibration step also provides a 

visually balance image for viewing. 

For IMS, processing options are illustrated in Figure 18, where all bands 

(I,Q, intensity, phase) are computed by default, if none is selected. The ENVISAT 

auxiliary file is the latest file option, where the most recent parameters for incident angle, 

absolute calibration constant, range-spreading loss, and antenna pattern gain are applied. 

The Calibration operator is performed before the Multilook operator. 

For IMP, the Calibration operator is performed after the Multilook 

operator (Figure 16), and the product auxiliary file option is selected since the antenna 

gain-pattern compensations and range spreading-loss corrections have been applied 

during the formation of the image (NEST User Manual, n.d.). 
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Figure 18.   Calibration operator for IMS products. 

b. Slant Range to Ground Range Correction 

The Slant range to ground range (SRGR) operator re-projects the image to 

ground range spacing from the satellite’s nadir along the pre-defined ellipsoid (NEST 

User Manual, n.d.). It’s not the same as geocoding, but does allow the user to have a 

reasonable interpretation of the SAR image before taking further steps. This 

transformation is unnecessary if other geometric operators like Ellipsoid correction are 

applied, though it is included at this stage to better adjust results from multilooking tests 

(see Table 6). In the SRGR operator, the order of the warp polynomial is six and the 

interpolation method is nearest-neighbor, as shown in Figure 19. 
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Figure 19.   Slant range to ground range operator. 

c. Multilook 

Multilook is a SAR tool operator that allows reducing the inherent speckle 

appearance by averaging the pixels (NEST User Manual, n.d.). The number of range and 

azimuth looks confines ground resolution. More looks lead to pixel blending and less 

speckle, yet inferior ground resolution. It’s also the procedure for obtaining ground-

squared pixels in range and azimuth directions. For IMP products, the Multilook operator 

is applied before the Calibration operator. Multilooking tests performed on IMS images 

are presented in Table 6. 

Table 6.   Example of multilooking tests performed on IMS products. 

Number of looks in 
Resolution Speckle Image quality 

Range Azimuth 
1 6 < 25 m 

Decreasing speckle with 
increasing number of looks 

Less contrast and 
sharpness with increasing 

number of looks 
2 12 < 50 m 
3 18 < 75 m 
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Figure 20.   Multilook operator for IMS products. 

 

Figure 21.   Multilook operator for IMP products. 
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d. Speckle Noise Filter 

Simplistically, speckle is a SAR artifact that results from interference 

patterns of scattering elements. It’s often called the salt and pepper ingredients of an 

image, referring to constructive and destructive interferences. 

The Speckle filter operator is intended to reduce the grainy aspect of SAR 

imagery, thereby increasing the quality of radar coherent images. Techniques available 

on NEST are reviewed in Mansourpour, Rajabi and Blais (2006). 

Qualitative filtering tests shows that an adaptive filter Gamma-MAP with 

a 3x3 filter size decreases radar speckle with minimal effects on spatial characteristics for 

the actual ASAR data set. 

 

Figure 22.   Speckle filter operator 

e. Ellipsoid Correction 

Ellipsoid correction with the geolocation grid method, under geometric 

tools, corrects the SAR image of distortions caused by topographical variations of a scene 

and the tilt of the satellite sensor (NEST User Manual, n.d.). The final product is a 

geocoded image in the projection chosen by the user (WGS 84 in this case). The 

resampling method is the nearest neighbor. 
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Figure 23.   Ellipsoid correction – geolocation grid operator 

f. Mosaic 

Mosaic is a geometric operator that merges geocoded individual frames 

(images) into a single composite product. The source images have to be terrain- (or 

ellipsoid-) corrected and calibrated. The resampling method is nearest neighbor; the 

number of pixels adjusts automatically to the scene size and is kept the default; and the 

number of feather (pixels) is five (Figure 24). In the cases where the overlapping regions 

between frames shows blurring or defocusing results the feather number is increased up 

to a maximum of 100. 

The final product loses the ENVISAT “status” since the mosaic operator 

does not blend the metadata information from all source images. This might be 

inconvenient for purposes of performing other NEST operations, such as object detection, 

oil-spill detection, or wind-field estimation. 
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Figure 24.   Mosaic operator 

D. WIND DATA 

Surface wind data is attained from eight buoys and five shore stations, as shown 

in Table 7. The extraction of measured wind speeds and directions is near-concurrent to 

SAR imagery and the HF radar products’ period of observation. All wind vector 

components are averaged hourly. 

The purpose of retrieving wind measurements over the ROI is: 1) to evaluate the 

wind speed during the initial selection process of SAR images from ESA’s catalog, in 

order to have quantitative representation of different wind scales; 2) to assess and 

interpret ocean SAR features given their dependency on wind-induced surface roughness 

and to avoid ocean cluttered images (Holt, 2004). 

In situ measurements from oceanographic buoys are available at NDBC website 

http://www.ndbc.noaa.gov/ and at MBARI website http://www.mbari.org/. 

Meteorological data from shore stations is collected through the Naval Postgraduate  
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School (NPS) Meteorology Department (MR). Table 7 shows wind stations utilized in the 

study, where actual buoy positions correspond approximately to the ones in the 2007-

2010 period. 

Table 7.   Ocean and land stations for wind measurements (After NOAA, MBARI, 
NPS-MR) 

Station / NDBC number Sponsor Position 
Anemometer 
height (sea 

level) 
Buoys 

Bodega / 46013 NDBC 38.242 N - 123.301 W 5 m 
San Francisco / 46026 NDBC 37.759N - 122.833W 5 m 
Half Moon Bay / 46012 NDBC 37.363N - 122.881W 5 m 
Monterey / 46042 NDBC 36.785N - 122.469W 5 m 
Cape San Martin / 46028 NDBC 35.741 N - 121.884 W 5 m 
M2 / 46093 MBARI 36.69N - 122.41W 4 m 
M1 / 46092 MBARI 36.75N - 122.02W 4 m 
M0 / 46091 MBARI 36.835N - 121.899W 4 m 

Shore stations 

Long Marine Lab UC Santa Cruz 36.95N - 122.07W 28 m 
Range 7 (Fort Ord) NPS-MR 36.65N - 121.82W 52 m 
Monterey Aquarium Monterey Aqua. 36.62N - 121.90W 31 m 
Granite Canyon NPS-MR 36.44N - 121.92W 24 m 
Point Sur NPS-MR 36.30N - 121.89W 20 m 

 

E. OVERLAP HF RADAR PRODUCTS AND SAR-PROCESSED IMAGES 

SAR images are exported with the NEST writing tool to a GeoTIFF format and 

overlapped with HF-derived surface current vectors in Matlab. The Matlab algorithm 

preserves the SAR image resolution for analysis and interpretation. 

F. HORIZONTAL DIVERGENCE TEST 

Quantitative assessment of the imaging mechanism (Table 5) present in SAR 

imagery is challenging and often speculative without any ancillary in situ information. 

This owes to the likely presence of more than one mechanism in the formation of ocean 

surface features (Holt, 2004). A divergence test is computed in order to validate the 

qualitative analysis of SAR ocean features and HF radar surface currents. 
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The goal of the horizontal divergence test is to verify, on the scales of HF radar 

observations, the existence of positive divergence or negative divergence (convergence) 

compression zones in HF radar surface currents maps. 

It is expected that similar processes to hydrodynamic modulation and internal 

wave interaction with the surface, causing convergence and divergence zones, also occur 

at the larger spatial scales of HF radar. 

The horizontal divergence, introduced in Sanderson (1995), derives from the 

continuity equation: 

du dv dw

dx dy dz
  

                           (7) 

It is inferred, that horizontal divergence implies replacement of water through 

upwelling, whereas negative horizontal divergence relates to downwelling. 

This test computes the spatial derivative of the velocity fields averaged over one 

hour and linearly fits the results over an area of 10km radius. The result of the test is a 

scalar with frequency units and it is expected to be bounded by f  and - f , where 

410f   s-1 is the coriolis parameter. The weaker (closer to zero) horizontal divergence 

values represent small scale phenomena difficult to represent and are removed due to 

their proximity to the noise levels. 
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IV. RESULTS 

In this section, examples of overlapping SAR and HF are discussed. This chapter 

covers some examples of features that are sensed by SAR and provides possible 

explanations by looking at the ocean dynamics. The complete set of the SAR images with 

the near-concurrent HF radar and wind products is shown in Appendix A, and notes on 

the possible features are described in Appendix B. 

The different imaging processes for SAR ocean-feature detection, as described in 

Clemente-Colon and Yan (1999); Holt (2004); and Lyzenga et al. (2004) include: 

 Advection of surfactants where accumulation of oil slicks indicate current 
convergence and a darker SAR surface. 

 Convergence/divergence zones associated with the interaction between the 
direction of the long-wave field and the type of surface current, which can 
in turn lead to divergence, convergence, or shear. 

 Atmospheric instability effects where colder air over warmer water causes 
an increase in surface wind stress due to convective instabilities, thereby 
enhancing the backscatter in the presence of warmer ocean surface. When 
the temperature gradient is large enough, 2 C or more, the frontal 
signatures become more evident. 

For atmospheric features seen in SAR imagery, the main imaging mechanism is 

wind stress (Monaldo & Beal, 2004). Atmospheric features identified in the present data 

set are roll vortices and gravity waves (see Appendix). 

In order to better interpret the ROI’s coastal ocean dynamics in the imagery, 

Moderate Resolution Imaging Spectroradiometer (MODIS) derived products are 

assessed. Sea Surface Temperature (SST), True Color and Chlorophyll Concentration 

maps are, when available, compared with the data set. All MODIS data is attained from 

Bio-Optical/Physical Processes and Remote Sensing Section of Naval Research 

Laboratory (NRL) at http://www7240.nrlssc.navy.mil/. 

The following nine subsections present examples of different ocean features and 

imaging mechanisms found on the actual data set. Some atmospheric features depicted by 

C-band SAR are also mentioned. All SAR images contain overlapping information of the 

near-concurrent HF-derived surface currents represented by red vectors as well as in-situ 
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wind measurements represented by green vectors. At the San Francisco channel’s mouth, 

there’s a vector (red arrow) indicating the tidal cycle and strength as derived from the 

predicted tidal current from historical measured data, which is not related to CODAR HF 

antenna measurements, thus appearing with a typically greater size than the surface 

currents. All times are in coordinated universal time (UTC). 

A. EXAMPLE 1 - WIND INTENSITY VS. BACKSCATTER 

The SAR image in Figure 25, taken on 05 July 2008 at 1820 UTC, shows the 

ocean’s surface response to a high-wind condition. The surface and near-surface wind 

measurements (green vectors) indicate 7 to 11 m/s, which leads to an ocean clutter in 

which most of the features are masked. A True Color map from the same day at 2143 

UTC shows the distribution of the cloud cover pattern (Figure 26). The HF radar surface-

current vectors (red) and the wind-measurement vectors (green) overlap on the SAR 

image. 

Both images, in Figures 25 and 26, suggest a well-organized, linear oceanically 

and atmospherically similar pattern in which there’s a large fetch with strong winds, as 

well as information about the wind direction, which is parallel to the aligned dark and 

bright stripes. In the north part of Monterey Bay, one can see a wind-shadowing effect on 

the surface roughness illustrated by a darker region representing lower backscatter. In this 

image the satellite orbit is descending and, since ENVISAT’s ASAR always “looks” 

right, we can see a brighter reflection on the bottom right part of the swath, 

corresponding to the area closest to the satellite’s nadir. In the Point Sur area, there are 

frontal signatures with slightly less backscatter in the SAR image, which seems to be 

coincident with flow pattern as perceived by HF-radar surface currents. HF radar also 

depicts an anti-cyclonic eddy offshore of Point Sur which is masked in the SAR image by 

wind cluttering, mainly due to the high wind condition. 
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Figure 25.   SAR image with HF surface currents (red) and wind vectors (green) on 05 
July 2008 at 1820 UTC. The image shows well-organized oceanic pattern in 

which there’s a large fetch with strong winds, as well as wind-shadowing 
effect on the surface in the north part of Monterey Bay (SAR data provided by 

ESA). 

POINT SUR 
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Figure 26.   True Color map taken on 05 July 2008 at 2143 UTC showing a well-
organized atmospheric pattern agreeable with the ocean surface structure in 

Figure 25 (after NLR, http://www7240.nrlssc.navy.mil/). 

B. EXAMPLE 2 - WIND FRONT 

In this example, the SAR image was created on 28 August 2008 at 1823 UTC 

(Figure 27), the True Color image was obtained later in the same day at 2107 UTC 

(Figure 28), and the SST map was constructed on 27 August 2008 at 2201 UTC (Figure 

29). 

A frontal feature is depicted offshore of Pigeon Point, between 36.5N-122.8W 

and 37.2N-123W by a sharp contrast in backscatter on the SAR image. A cloud cover 

image in the True Color map taken less than three hours later expresses a similar 



 43

structure in the atmosphere, and a previous day SST map shows warmer water close to 

the coast. This front might be associated with more intense wind stress on the shore side 

due to atmospheric instability effects caused by warmer water below colder air, thus 

creating a rougher surface. Note the overall low backscatter due to weak local wind, close 

to 2 m/s. 

The hourly-averaged HF radar surface currents show a general weak northward 

circulation pattern with meandering eddies and a convergence zone. The wind front 

detected in the SAR image is not visualized with the HF vectors. 
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Figure 27.   SAR image with HF currents (red) and wind vectors (green) on 28 August 
2008 at 1823 UTC. A frontal feature offshore of Pigeon Point (36.5N-122.8W 

to 37.2N-123W) is depicted by a sharp contrast in backscatter in an overall 
low-wind condition ~2 m/s (SAR data provided by ESA). 

PIGEON 
POINT 
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Figure 28.   True Color image on 28 August 2008 at 2107UTC (From NLR, 
http://www7240.nrlssc.navy.mil/). 

 

Figure 29.   SST map on 27 August 2008 at 2201 UTC showing patches of warmer water 
close to shore and temperature fronts with an approximately 2   C gradient 

(After NLR, http://www7240.nrlssc.navy.mil/). 
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C. EXAMPLE 3 – UPWELLING EVENTS 

Several studies (Johannessen et al., 1996; Clemente-Colon and Yan, 1999; 

Lyzenga, 2004) provide cases of SAR upwelling signatures associated with regions of 

low backscatter indicated by surfactants, temperature gradients, and atmospheric 

variability. Figures 30 a), b) and 31 demonstrate upwelling events near the coast on 6 

September 2008 at 2100 UTC for SST and Chlorophyll images and 7 September 2008 at 

0555 UTC for SAR. The SST shows colder water (greenish) extending from Half Moon 

Bay to Point Sur and over the Monterey Bay Canyon. The SAR image agrees with this 

assessment by exhibiting darker surface patches on the same locations. The upwelling of 

biogenic oils that dampen the SAR Bragg waves, thus decreasing backscatter, is depicted 

by the Chlorophyll Concentration image, where higher levels of chlorophyll are shown 

along the coast margins. The average seaward flow direction depicted by HF radar 

(Figure 31) is consistent with horizontal divergence at the surface. 

 

Figure 30.   Upwelling event illustrated on both a) SST and b) Chlorophyll Concentration 
MODIS products on 6 September 2008 at 2100 UTC. In a) the colder water 
(greenish) extends from Half Moon Bay to Monterey Bay Canyon. In b) the 
image shows higher levels of productivity near the coast, corroborating the 

upwelling occurrence (After NLR, http://www7240.nrlssc.navy.mil/). 

A B 
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Figure 31.   Upwelling event seen in SAR image on 7 September 08 at 0555 UTC. The 
darker patches show evidence of colder and biologically richer water from 

Half Moon Bay to Point Sur and over Monterey Bay Canyon. HF radar 
surface-current flow is seaward (SAR data provided by ESA). 

 

Some of the imaging mechanisms contributing to the SAR surface roughness are 

surface wind, which is moderate and ranges from 2.5 to 5 m/s, in this case, damping by 
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surfactants, and atmospheric instability effects. The changes in stability in the 

atmospheric boundary layer induce more or less wind stress at the surface depending 

whether the ocean is warmer or colder than the atmosphere. As a result, warmer water is 

viewed as brighter image, whereas colder water as darker image. 

Another example of upwelled-colder and nutrient-richer water in the San 

Francisco, Half Moon Bay and Pigeon Point areas is demonstrated in SAR and SST 

images. The SAR image in Figure 32 was formed on 7 October 2010 at 1823 UTC and 

the SST product 2.5 hours later (Figure 33). The lower SAR backscatter regions are 

consistent with the lower temperature areas in the SST image. The previous wind 

directions and intensities are plotted in Figure 34 for six days before the imaged event, 

showing favorable winds for north hemisphere eastern boundary upwelling.  

Since the wind speed is lower than 2.7 m/s at the time of image processing, the 

presence of surfactant slicks and vortical features are depicted by this imaging 

mechanism. Another mechanism present is surface-wind stress caused by an atmospheric 

instability effect on the marine boundary layer, where brighter areas seen in SAR 

correspond to warmer water and darker patches adjoining coast to colder water in SST 

data. 



 49

 

Figure 32.   Upwelling event seen in SAR image on 7 October 2010 at 1823 UTC. The 
darker patches show upwelled-colder and nutrient-richer water along the west 

coast from San Francisco to Pigeon Point. Note the presence of surfactants 
associated with natural oils. The horizontal white line indicates the SST map 
northern latitude in Figure 33. The white box indicates the daily-average HF-

radar surface currents seen in Figure 35 (SAR data provided by ESA). 
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Figure 33.   MODIS SST map from 7 October 2010 at 2054 UTC showing patches of 
colder water near the coast from Half Moon Bay to the Pigeon Point area. The 

black box indicates the SAR image seen in Figure 32, and the white box 
indicates the daily-average HF-radar surface currents seen in Figure 35. (After 

NLR, http://www7240.nrlssc.navy.mil/). 
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Figure 34.   Three buoy wind plots for the six days preceding the SAR-image formation 
show upwelling favorable winds. The red segment indicates wind condition at 

the SAR image time. 

The HF radar surface currents, overlapped on the SAR image in Figure 32, 

display an indication of the hourly average circulation pattern in the region. Though the 

information provided by HF radar is, in this case, inconclusive in terms of ocean feature 

visualization, one can complement the assessment of the ocean-surface dynamics by 

understanding the current circulation. Figure 35 shows a Central California Currents 

(CencalCurrents) HF radar derived product consisting of a daily-averaged (25 hour) 

surface currents where the tidal cycle is naturally removed and, therefore, biases caused 

by tides and the diurnal sea breeze are purged. This product is found in the 

Cencalcurrents portal or through the link 

http://cencalcurrents.org/PlotsRealTime/AverageTotals/. The surface currents seen in the 

daily-averaged HF product better expresses the circulation seen in the SAR image, 

namely a seaward filament depicted offshore of Pigeon Point as well as a general 

northward surface flow pattern. 
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Figure 35.   Daily-averaged HF-radar surface currents for the Half Moon Bay area 
corresponding to the white box on the SAR image (Figure 32). The tide is 

naturally removed. (From Cencalcurrents, http://cencalcurrents.org). 

D. EXAMPLE 4 – CHANNEL OUTWARD FLOW AND INTERNAL WAVES 

The features seen in the SAR image captured on 1 March 2009 at 0555 UTC are 

outward flow from the San Francisco channel and tidal packets of internal waves in the 

Half Moon Bay and Pigeon Point regions. The bathymetry contours are overlapped with 

the SAR image for analysis purposes. At the time, the tidal current is 2.5 hours into flood 

(Figure 36), and the wind is 6.5 m/s from SSE, shown as green vectors in the SAR image. 

Lyzenga et al. (2004) point out that "fresher water runs seaward on successive ebb 

tidal cycles" creating a SAR visible feature like the one shown in Figure 37. The width of 

the San Francisco channel widens from 1.8km near the Golden Gate Bridge to 4.5 km at 

the bay’s mouth. After exiting the bay’s mouth, the 10km-radius plume has a dispersion 

shape that resembles the shelf’s bottom topography. The outgoing flow edge has 

relatively higher backscatter than the surrounding pixels, which might be a consequence 

of sea surface temperature and salinity gradients, as well as constructive interference in 

the convergent front due to the “shock wave” between the outflowing tidal current and 

the new inward flood cycle. The converging front’s signature imaging mechanism is then 

partially related to tidal hydrodynamic modulation of Bragg waves, wind stress, an 
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apparent contribution of seafloor steepness, likely temperature and some impact from 

dielectric constants of fresher and saltier water masses. This feature is recurring in the 

actual data set when the appropriate conditions are met, of which the most relevant 

condition is the completion of the ebb cycle, provided there’s enough wind at the surface 

level. 

The second feature, also recurring in this area, is packets of internal waves 

travelling parallel to the sea floor topography and dispersing in a near-bathymetric form 

off the coast of Half Moon Bay and Pigeon Point. The internal waves’ structure induces 

turbulence at the surface, on the scale of Bragg waves, which is seen as consecutive 

bright and dark bands of backscatter with crests and troughs aligned parallel to the 

direction of propagation. The brighter bands are associated with convergence at the 

crests, and the darker with divergence at the troughs (Apel, 2004; Martin, 2004) 

Coincidently, in the lower part of the image, we can see atmospheric gravity 

waves aligned parallel to the coast with approximately 2.5km wavelength. For better 

visualization of this feature, the reader is referred to Figure 73 in Appendix A. 

 

Figure 36.   Observed tide in San Francisco on 1 March 2009. The vertical line 
corresponds to the SAR image time. (After NOAA, 

http://tidesandcurrents.noaa.gov/) 
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Figure 37.   The SAR image is from 1 March 2009 at 0555 UTC and exhibits two 
recurring local features. In the San Francisco area, there’s an outward flow 

which is imaged upon completion of the ebb tidal cycle and, farther 
south,internal waves are seen propagating shoreward. The bathymetry 

contours are overlapped. The blue box delimits the area of Figure 38 (SAR 
data provided by ESA). 

A 24h HF radar surface-current trajectory product is plotted in Figure 38 for the 

San Francisco area. The understanding of the surface current field during the hours 
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preceding the formation of the SAR image facilitates the interpretation of the local 

dynamics. An animated plot of the 24h particle trajectories can be found at the 

CencalCurrents website (http://cencalcurrents.org/PlotsRealTime/Trajectories/). 

 

Figure 38.   HF radar, 24h surface current trajectories for the San Francisco area, 
equivalent to the blue box in Figure 36. The blue x represents the starting time 

on 28-Feb-2009 at 0600 UTC, and the red dot the ending time on 01-Mar-
2009 at 0600 UTC (From Cencalcurrents, http://cencalcurrents.org). 

E. EXAMPLE 5 – HF-RADAR SURFACE CURRENTS AND SAR IMAGE 
ASSESSMENT 

The following image product is an example of SAR backscatter and HF-radar 

surface-current contribution to the interpretation of coastal ocean dynamics. An 

atmospheric feature is also depicted in Monterey Bay. The SAR image created on 14  
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August 2010 at 1820 UTC is shown in Figure 39 along with the overlapped HF-radar 

surface-current vectors and wind measurements. The wind speed is low (3 m/s), yet the 

presence of surfactants provides guidance in the SAR image assessment. 

 

Figure 39.   SAR image of Monterey Bay sensed on 14 August 2010 at 1820 UTC. Both 
SAR and HF-radar products contribute to the interpretation of coastal ocean 

dynamics. Several slick patterns are seen in the SAR image, and its 
interpretation is facilitated by the surface current (SAR data provided by 

ESA). 

North of Point Pinos, there’s an anti-cyclonic feature seen in SAR through 

surfactants, where the hourly-average surface current complements the interpretation of 

the circulation pattern. The mentioned feature leads to a curving set of slick stripes seen 

in SAR that appear to be flowing to the west and generally coincide with the HF pattern. 

Expanded in Fig. 41 

Expanded in Fig. 40 
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The plume is assessed in HF radar vectors, as well. In the lower part of the image, there’s 

an inward flow that is clearly depicted from HF radar surface currents when overlaid on 

the SAR image (Figure 40). Through this example we recognize that the HF-radar surface 

current field helps to identify flow structures in the SAR image. 

 

Figure 40.   SAR meandering slick stripes assessed in HF-radar vectors, as well. The red 
arrows show current vectors, and the green arrows represent wind 

measurements (SAR data provided by ESA). 

Above Elkhorn Slough in Monterey Bay, SAR depicts a feature resembling a rain 

or pressure cell as described in Alpers and Melsheimer (2004). The rain core is shown as 

a dark circular feature with ~ 1.2km diameter, in which the Bragg waves are dampening 

by the downdraft (Figure 41). Alpers and Melsheimer (2004) review how the downdraft 

spreading over the surface, around the core, creates roughness at the surface which in turn 

intensifies the backscatter. Around this feature there’s no HF radar information which 

may or may not be related with the rain cell. MODIS Terra True Color product for 14 

August 2010 at 1815 UTC shows evidence of cloud cover in Monterey Bay (http://lance-

modis.eosdis.nasa.gov/imagery/subsets/?subset=AERONET_Monterey; not shown here). 

POINT 
PINOS 
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Figure 41.   Detailed image of a rain or pressure cell depicted in Monterey Bay sensed on 
14 August 2010 at 1820 UTC. (SAR data provided by ESA). 

The correspondent 24h HF-radar surface-currents trajectory plot for the Monterey 

Bay area is shown in Figure 42. The perception of surface current motion ahead of the 

SAR imaging assists evaluation of local dynamics. An animated plot of the 24h particle 

trajectories can be found at the CencalCurrents website 

(http://cencalcurrents.org/PlotsRealTime/Trajectories/). 
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Figure 42.   HF-radar, 24h surface current trajectories for the Monterey Bay area. The blue 
x represents the starting time on 13-Aug-2010 at 1800 UTC, and the red dot 

the ending time on 14-Augr-2010 at 1800 UTC (From Cencalcurrents, 
http://cencalcurrents.org). 

Given the relatively slow ocean response to tides and surface winds, the SAR 

image reveals a moment that contains both contemporaneous atmospheric patterns as 

well as past-occurring patterns. Hourly HF-radar surface currents might not be sufficient 

to fully comprehend surface current expression in SAR imagery, and vice-versa. Figure 

43 illustrates an HF-radar product consisting of daily-averaged (25 hour) surface currents 

where the tidal cycle is naturally removed and, therefore, biases caused by tides and the 

diurnal sea breeze are purged. This product is found in the Cencalcurrents portal or 

through the link http://cencalcurrents.org/PlotsRealTime/AverageTotals/. This example 
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demonstrates that the comparison of the SAR image with the different HF products 

reveals a closer match between the daily-averaged HF pattern with the SAR pattern.  

 

Figure 43.   Daily-averaged HF-radar surface currents for the Monterey Bay area, ending 
time on 14-Aug-2010 at 1800. The tide is naturally removed. (From 

Cencalcurrents, http://cencalcurrents.org). 

F. EXAMPLE 6 – DIVERGENCE TEST 

The divergence test is performed in the entire data set, where positive or negative 

horizontal divergence is computed and plotted along with the HF current vectors. Despite 

the fact that several results don’t clearly indicate a correlation between SAR features and 

HF surface currents, one example where there’s a correlation is shown in Figures 44 and 

45. The SAR image taken on 02 September 2010 at 1823 UTC (Figure 44) and the 

correspondent divergence test for HF surface currents exhibit a convergence front 

centered at 37N 122.5W, mapped by blue dots in the divergence image (Figure 45). The 
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current flow has a north-south alignment, which agrees with the orientation of the 

surfactant accumulation close to the frontal structure depicted in the SAR image. The 

divergence results that are close to zero are not plotted for visualization enhancement 

purposes.  

 

Figure 44.   SAR image sensed on 02 September 2010 at 1823 UTC in which a frontal 
signature aligned north-south is depicted close to Pigeon Point. The white box 

corresponds to an enlarged area in Figure 46 (SAR data provided by ESA). 

PIGEON 
POINT 

Expanded in Fig. 46 
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Figure 45.   Divergence test shows a convergence (bluish dots) front centered at 37N 
122.5W, where the flow has a north-south alignment. This agrees with the 

orientation of the surfactants close to the frontal structure depicted in the SAR 
image in Figure 44 and in the enlarged area in Figure 46. 

 

PIGEON 
POINT 
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Figure 46.   Detail image of a convergence zone depicted by SAR and by the horizontal 
divergence test in Figure 45. The flow has a north-south alignment (SAR data 

provided by ESA). 

As pointed out earlier, there’s often more than one imaging mechanism present in 

the formation of a SAR ocean image (Holt, 2004). Surface winds on the order of 2-10 m/s 

and surface currents on the order of 20-50 cm/s transfer energy to the wave field and 

interact with SAR Bragg waves at different scales. Induced roughness by surface currents 

tends to be 10 to 20 times less prominent than roughness caused by surface wind. 

PIGEON 
POINT 
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In this example, a wind speed below 3 m/s contributes little to the surface 

roughness, allowing the detection of features by other mechanisms. In the SAR image, 

the boundary between the bright and the dark regions that can be associated with warm 

and cold water masses is identified as a convergence (negative divergence) zone in the 

HF-radar surface current map (Figure 46). In Figure 47, the visible part of an SST map 

for 02 September 2010 at 2200h, 4 hours after the SAR image, illustrates the type of 

coastal temperature gradients surrounding the convergence zone but, unfortunately, cloud 

cover masks the exact location being discussed. The example described shows that in 

cases with relatively low wind condition, it might be possible to visualize the HF-scale 

surface current contribution to the features seen by SAR. 

 

 

Figure 47.   SST map with 1km resolution for 02 September 2010 at 2200 UTC, 4 hours 
after the SAR image, illustrating the type of coastal temperature gradients 
surrounding the convergence zone. The area being discussed is masked by 

cloud cover (After NLR, http://www7240.nrlssc.navy.mil/). 

. 
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G. EXAMPLE 7 – SAR FEATURES SEEN IN HF-RADAR SURFACE 
CURRENT 

The SAR image in Figure 48 provides examples of oceanic surface features 

within the HF-radar large scales. The image was sensed on 25 May 2008 at 0555 UTC. 

The local wind is weak (~ 3m/s) and from the southeast. 

 

Figure 48.   SAR image sensed on 25 May 2008 at 0555 UTC where both SAR- and HF-
radar products detect a frontal signature offshore of Point Sur (details in 

Figure 49) and an anti-cyclonic eddy offshore of Monterey (details in Figure 
50). The average wind is ~ 3m/s (SAR data provided by ESA). 

Expanded in Fig. 51 

Expanded in Fig. 49 
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Offshore of Point Sur, Figure 49 shows a frontal signature seen in SAR with a 

brighter edge where one of the mechanisms at work is convergence. The visible flow 

field sensed by the HF-radar indicates the presence of a strong southeastward surface 

current that turns south and then east, in total agreement with the plume edge. The water 

mass closer to shore evidences the presence of biogenic slicks which might indicate 

recent upwelled water.  

 

Figure 49.   Detail of the SAR image sensed on 25 May 2008 at 0555 UTC where a frontal 
signature offshore of Point Sur is depicted by both SAR- and HF-radar 

products (SAR data provided by ESA). 

POINT SUR 
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Given that, we propose that HF radar and SAR are capable of measuring the same 

ocean phenomenon under low wind conditions and strong surface currents, providing the 

features are large enough. The divergence map in Figure 50 illustrates converging HF-

radar currents (inside the circle) in the Point Sur area, which is coincident with the 

brighter frontal signature seen in the SAR image in Figure 49. 

 

Figure 50.   Divergence test shows a convergence (bluish dots inside the black circle) 
feature centered at 36.4N 122.25W, where the corresponding SAR image 

demonstrates a brighter frontal structure (Figure 49). 

Figure 51 shows a detail of an anti-cyclonic eddy offshore of Monterey Bay. The 

HF-radar surface currents clearly demonstrate a vortical feature, and the SAR image  

 

 

POINT SUR 
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illustrates a darker core with brighter boundaries and the presence of slicks. With 

relatively low wind speed, the surface current enhancement role is captured on the SAR 

image. 

 

Figure 51.   Detail of the SAR image sensed on 25 May 2008 at 0555 UTC with an anti-
cyclonic eddy offshore of Monterey Bay, depicted by both SAR- and hourly-

averaged HF-radar products (SAR data provided by ESA). 

H. EXAMPLE 8 – SLICK OFF POINT SUR 

North of Point Sur there's a narrow band feature oriented NE-SW that is seen on 

the Chlorophyll Concentration (Figure 52-A) and True Color (Figure 52-B) images from 
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10 February 2008 at 2155 UTC. Other bands are also detected in Monterey Bay. Figure 

53 shows the corresponding SAR image at 0555 UTC, where a slick and frontal features 

are depicted close to Point Sur. This slick is related to productivity at the surface that 

dampens the SAR Bragg waves. The available HF-radar surface currents help assessing 

the flow patterns. 

Other features seen in the SAR image are the edge of a fresh water plume in the 

San Francisco area imaged through a strong convergent front, as well as packets of 

internal waves in the Half Moon Bay and Pigeon Point areas. 

 

Figure 52.   MODIS Chlorophyll Concentration and True Color products from 10 
February 2008 at 2155 UTC showing a slick oriented NE-SW (After NLR, 

http://www7240.nrlssc.navy.mil/). 

A B 
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Figure 53.   Image captured on 10 February 2008 at 0555 UTC. Close to Point Sur there’s 
evidence of frontal features and a slick oriented NE-SW, which is illustrated 

in Figures 52 a) and b), as well (SAR data provided by ESA). 

POINT SUR 
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I. EXAMPLE 9 – ATMOSPHERIC FEATURES AND A CURIOUS 
RECTANGULAR FEATURE 

The SAR image in Figure 54 was taken on 27 September 2009 at 0555 UTC and 

displays interesting atmospheric features south of 36N where the wind is predominantly 

from land (southeast). Atmospheric gravity waves with an approximately 2.5km 

wavelength and roll vortices originated by land features are seen in more detail in Figure 

55. As described in Monaldo and Beal (2004) and Holt (2004), the SAR imaging 

mechanism present in these features is mainly wind stress. 

A rectangular feature with dimensions 2.3 x 1.8km, located 32km offshore of 

Point Sur and with an apparently associated wake signature is shown in detail in Figure 

56. This feature is also seen in MODIS True Color product illustrated in Figure 57. 

The general circulation pattern of the hourly-average, HF-radar surface currents is 

seaward, where the near-concurrent SAR image illustrates lower backscatter (darker) 

regions close to shore, likely indicating upwelling of colder water and nutrients. Previous 

wind conditions demonstrate strong winds from northern quadrants, and a MODIS SST 

product imaged eight hours before the SAR passage agrees with the upwelling theory 

(Not shown here. Available at NRL webpage 

http://www7240.nrlssc.navy.mil/browse/lvl3/hmodis/Monterey250). 
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Figure 54.   SAR image sensed on 27 September 2009 at 0555 UTC exemplifying 
atmospheric gravity waves and roll vortices originated by land features (see 
detail in Figure 55). The wind is weak and from the southeast. Offshore of 

Point Sur, there’s a large rectangular feature (see detail in Figure 56). (SAR 
data provided by ESA). 

POINT SUR 
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Figure 55.   Detail of atmospheric gravity waves (1) and roll vortices (2) at the bottom of 
image captured on 27 September 2009 at 0555 UTC. The wind is weak and 
from the southeast. Offshore of Point Sur, there’s a large rectangular feature 

(see detail in Figure 56). (SAR data provided by ESA). 

 

Figure 56.   SAR image sensed on 27 September 2009 at 0555 UTC, showing a 
rectangular feature (2.3km x 1.8km) 32km offshore of Point Sur and a wake 

signature (SAR data provided by ESA). 

POINT SUR 
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Figure 57.   MODIS Terra True Color product from 27 September 2009 at 1910 UTC 
showing atmospheric patterns in the Monterey Bay area. Note the rectangular 

feature SW of Point (After LANCE-MODIS, http://lance-
modis.eosdis.nasa.gov/imagery/subsets/?project=aeronet&subset=Monterey). 
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V. CONCLUSIONS 

A. DISCUSSION 

The actual data set, where HF-radar surface currents and wind measurements 

overlap the SAR imagery, does not provide a clear assessment of comparable larger-scale 

ocean features retrieved by both remote sensors. 

The imaging mechanisms found in the SAR imagery, identified in Table 5, are 

advection of surfactants, convergence/divergence, and atmospheric instability effects. 

The main constituent driving the surface roughness and allowing the visualization of 

backscatter gradients’ is wind stress at the surface level. This study focused on the 

examination of ocean current contributions to surface variations. 

A principal hypothesis of the present investigation is to assess the existence of 

ocean features in the SAR imagery that are correlated to the surface currents as perceived 

by HF radar. Some results show ocean features retrieved by HF radar and imaged by 

SAR provided the local wind has low intensity, the current field is strong, and the 

features are large enough. However, a consistent pattern has not been established. The 

divergence validation test performed in the selected cases (Chapter IV Examples 6 and 7) 

is positive and encouraging, yet a general conclusion could not be made. 

There are several possible reasons contributing to a scarcely direct correlation 

between HF radar-derived surface currents and SAR ocean features, including: 

 Surface currents changes to the surface roughness maybe overwhelmed by 
wind stress contributions. Surface wind is 10 to 20 times more intense 
than current flow.  

 Indirect contribution of the surface current sensed by HF radar via short 
gravity waves ( ~ 12m ) compared with the direct effect of wind on the 
capillary waves sensed by SAR ( 5.6cm  for C-band). 

 Poor alignment of the time scales. Although SAR captures the surface 
image in a 15-second snapshot, it mirrors the resulting distortions 
preceding atmospheric and oceanic processes of hours-to-days. HF radar 
maps, on the other hand, represent an hourly-average product of the 
surface currents, which becomes more instantaneous than the SAR image. 
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One possibility to bridge the temporal differences between instantaneous HF-

radar currents and SAR images is the approach followed in Examples 3 and 5 of Chapter 

IV that suggests the use of an HF-radar, daily-average, surface-current map in which tidal 

and sea breeze effects are naturally removed, instead of the hourly-average product. 

For the ROI (Figure 1) and the actual data set, the research revealed some 

recurring events such as: an outward plume detected in San Francisco and its dispersion 

in a bathymetry-wise shape; the manifestation of internal waves in the Half Moon Bay 

and Point Pigeon areas; upwelling events along the coast; the occurrence of eddies in and 

offshore of Monterey Bay; wind shadowing effects in the north part of Monterey Bay; 

current field structures and the presence of biogenic material at the surface, both in the 

Point Sur area; and the appearance of atmospheric gap flows and gravity waves. 

The present research demonstrates that the SAR imagery is sensitive to wind 

speed and each SAR image has different levels of wind intensity in different parts of the 

image. Thus, it becomes problematic to quantitatively establish optimal wind intervals for 

specific ocean features and imaging mechanisms in certain regions. The wind thresholds 

found in this study agree with Table 5 and the discussion in Holt (2004, Table 2.1). Wind 

speeds below 2-3 m/s cause SAR ocean features to fade and merge with noise levels, 

though the appropriate enhancement of surface roughness by other imaging processes can 

lead to the improved sensing of oceanic features. This study revealed that surface winds 

of 2-4 m/s constitute the suitable level of wind speed required to make assessments of 

oceanic surface currents influence on SAR images. Hence, future studies in this area 

should consider assessing SAR data in seasons and time of day when wind speeds are 

moderate. Strong wind speeds of 10-12 m/s may cause wind clutter to mask most of the 

ocean surface features and, in cases of large fetch, it may lead to a well-organized 

atmospheric imprints on the surface layer as demonstrated in Chapter IV, Example 1. 

Some examples in Chapter IV made evident the importance of the HF-radar 

surface current field in interpreting and identifying flow configurations in SAR images 

(Examples 5 and 7). Other examples demonstrated the complementary role of SST, ocean 

color, and chlorophyll concentration products when combined with corresponding SAR 

images (Examples 3 and 8). For instance, under conditions of partial cloud cover, SAR 
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can be used to fill in the gaps and connect SST fronts masked by clouds. Hence, a 

combination of the available remote sensors yields synergetic gains to the understanding 

of the ocean and its processes.  

B. FUTURE RESEARCH 

Future studies in the field should consider the wind conditions that distort the 

surface prior to SAR sensing and select SAR data where wind speed is weak. Knowledge 

of the surface current field, tides, and upwelling and downwelling events also assumes a 

relevant role, in which the 24-hour, HF-radar, surface-current trajectories and  the daily-

averaged, HF-radar, surface currents are preferred. 

Another approach to the assessment of surface currents by HF and SAR is to 

derive the line-of-sight Doppler shift induced by the motion of the ocean surface (Danilo 

et al., 2005; Chapron et al., 2005). ENVISAT’s ASAR provided a decade of data in 

which estimations of the Doppler centroid have served to retrieve ocean surface 

velocities, generally over very energetic regions of the ocean such as the Agulhas and 

Gulf Stream (Hansen et al., 2011; Johannessen et al., 2008; Rouault et al., 2010). The 

Sentinel-1 satellite, the ENVISAT follow-on estimated to be launched in 2013, will have 

improved capabilities in providing a more accurate Doppler centroid and, thus, stepping 

forward to superior research (Hansen et al., 2011). 
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APPENDIX A 

 

Figure 58.   SAR image from 21 July 2007 at 1820 UTC and HF radar currents (red) and 
surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 59.   SAR image from 25 August 2007 at 1820 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 60.   SAR image from 23 September 2007 at 0555UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 61.   SAR image from 3 November 2007 at 1820 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 62.   SAR image from 3 November 2007 at 1820 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 63.   SAR image from 10 February 2008 at 0555 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 64.   SAR image from 16 February 2008 at 1820 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 65.   SAR image from 15 May 2008 at 1823 UTC and HF radar currents (red) and 
surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 66.   SAR image from 25 May 2008 at 0555 UTC and HF radar currents (red) and 
surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 67.   SAR image from 13 June 2008 at 0558 UTC and HF radar currents (red) and 
surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 68.   SAR image from 05 July 2008 at 1820 UTC and HF radar currents (red) and 
surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 69.   SAR image from 28 August 2008 at 1823 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 70.   SAR image from 7 September 2008 at 0555 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 71.   SAR image from 13 September 2008 at 1820UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 72.   SAR image from 18 October 2008 at 1820 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 73.   SAR image from 1 March 2009 at 0555 UTC and HF radar currents (red) and 
surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 74.   SAR image from 7 March 2009 at 1820 UTC and HF radar currents (red) and 
surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 75.   SAR image from 26 March 2009 at 1823 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 76.   SAR image from 26 March 2009 at 1823 UTC (SAR data provided by ESA). 
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Figure 77.   SAR image from 5 April 2009 at 0555 UTC and HF radar currents (red) and 
surface winds (green) from the closest hour (SAR data provided by ESA). 



 99

 

Figure 78.   SAR image from 11 April 2009 at 1820 UTC and HF radar currents (red) and 
surface winds (green) from the closest hour (SAR data provided by ESA). 



 100

 

Figure 79.   SAR image from 14 June 2009 at 0555 UTC and HF radar currents (red) and 
surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 80.   SAR image from 3 July 2009 at 0558 UTC and HF radar currents (red) and 
surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 81.   SAR image from 23 August 2009 at 0555 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 82.   SAR image from 27 September 2009 at 0555UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 83.   SAR image from 1 November 2009 at 0555 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 84.   SAR image from 12 December 2009 at 1820 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 85.   SAR image from 21 March 2010 at 0555 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 86.   SAR image from 14 August 2010 at 1820 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 87.   SAR image from 2 September 2010 at 1823 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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Figure 88.   SAR image from 12 September 2010 at 0555 UTC and HF radar currents 
(red) and surface winds (green) from the closest hour (SAR data provided by 

ESA). 
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Figure 89.   SAR image from 18 September 2010 at 1820 UTC and HF radar currents 
(red) and surface winds (green) from the closest hour (SAR data provided by 

ESA). 
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Figure 90.   SAR image from 7 October 2010 at 1823 UTC and HF radar currents (red) 
and surface winds (green) from the closest hour (SAR data provided by ESA). 
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APPENDIX B 

Appendix B contains notes on possible features in the individual SAR images 

presented in Appendix A. 

Supplementary images are maintained online by NPS. The link to access these 

documents is: http://calhoun.nps.edu/  

Figure 58 21-Jul-07 18:20:00 

1-Strong winds mask the oceanic features. A NNE-SSW-aligned dark band in Monterey 
Bay is located near a current convergence zone perceived by HF radar. 
2-Atmospheric gravity waves are seen offshore with an N-S orientation, aligned 50   with 
wind. 

Figure 59 25-Aug-07 18:20:00 

1- A small cyclonic feature south of Pigeon Point can be seen in HF radar currents and 
imaged by SAR through surfactants. 
2-In Monterey Bay, a convergence zone appears in HF radar currents, but there's not 
enough wind to generate capillary waves to image a feature on SAR. 
3- Offshore of Carmel, a dark filament stretches from coast to offshore, captured in the 
SAR image as a lower backscatter region due to accumulation of surfactants. 
4-In the lower part of the SAR image is an interesting frontal pattern that might be 
associated with surface flow. Note the slicks orientation and their curvature. 

Figure 60 23-Sep-07 5:55:00 

1- The HF radar currents indicate the presence of a vortical feature in Monterey bay, 
which is not depicted by SAR. In the north part of the Bay, closer to Santa Cruz, the HF 
vectors converge seaward and perpendicular to the most significant slicks pattern. 
2-In the Half Moon Bay region, a packet of internal waves progresses shoreward, 
bending in agreement with the bathymetry (see Example 4 in Chapter IV). The HF radar, 
higher-intensive current vectors are located near the center of the concave internal wave 
structure. 

Figure 61 3-Nov-07 18:20:00 

1-A gap flow wind reversal pattern leaves Monterey Bay, from ENE, where the brighter 
strikes seen in the Bay indicate higher wind stress. 
2- Close to Point Sur is evidence of a cyclonic eddy imaged by surfactants with a very 
low wind condition. This feature, shown in Figure 62, appears more obvious in regions 
where the surface roughness is higher, consequent of stronger winds. 
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Figure 63 10-Feb-08 5:55:00 

See Example 8 in Chapter IV. 

Figure 64 16-Feb-08 18:20:00 

1- The corresponding MODIS True Color image taken at 2118 UTC (see NRL website 
(http://www7240.nrlssc.navy.mil/browse/lvl3/hmodis/Monterey250/2008/feb/aqua.20080
47.0216.211500.D.L3.hmodis.MNT.v08.250m.true_color.png) shows oceanic optical 
features. 
2- A wind gap flow pattern in Monterey Bay is detected by MBARI M0 and M1 buoys 
and seen in the SAR image as brighter surface. 

Figure 65 15-May-08 18:23:00 

1 – Southwest of Pigeon Point is an anti-cyclonic meander. In the bottom part of this 
feature, the orientation of the slicks tends to agree with the HF radar current field. A 
closer look at nearby ship wakes adds to the understanding of the surface flow. 
2- The Farallon Islands produce a wake in the wind direction (WNW), which is visible on 
the SAR image. 
3- In the San Francisco area is a gap flow, in which the shore station FTPC1 
(http://www.ndbc.noaa.gov/station_page.php?station=FTPC1) measures the wind from 
ENE, whereas the buoy station 46026 
(http://www.ndbc.noaa.gov/station_page.php?station=46026) measures the wind from the 
western quadrant. The opposing winds might indicate the presence of a shoreward front 
associated with roughness on the sea surface level. We propose that the edge of the 
frontal system is captured in the SAR image as a brighter strip with north-south 
alignment just east of the buoy station (green vector). 

Figure 66 25-May-08 5:55:00 

See Example 7 in Chapter IV. 

Figure 67 13-Jun-08 5:58:00 

1- A large wind front occupies almost the entire image. On the left side of the boundary is 
some backscatter at -15 to -20 db, whereas on the right side of the front is more 
backscatter around -5db to -10db. 
2- HF radar surface currents detect an anti-cyclonic eddy offshore of Pigeon Point but 
this feature is masked in the SAR image. 
3- Offshore of Half Moon Bay is a brighter signature with no apparent connection to the 
HF currents. 
4- West of Point Reyes is brighter band where HF surface currents indicate an outward 
converging flow.  
5- Atmospheric gravity waves with ~1.5km wavelength are depicted north of Point 
Reyes.  
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Figure 68 5-Jul-08 18:20:00 

See Example 1 in Chapter IV, which contains lower-density, HF-radar surface currents 
overlapped.  
 

Figure 69 28-Aug-08 18:23:00 

See Example 2 in Chapter IV. 

Figure 70 7-Sep-08 5:55:00 

See Example 3 in Chapter IV. 

Figure 71 13-Sep-08 18:20:00 

1- A low wind condition, less than 1.5m/s in most of the image, does not create sufficient 
roughness to be sensed by SAR. 
2- In Monterey Bay, HF-radar surface currents detect a cyclonic eddy which is slightly 
depicted by surfactants in the SAR image. 

Figure 72 18-Oct-08 18:20:00 

The SAR image describes a complicated surface pattern with little correlation to the 
hourly-averaged HF currents. The flow exhibits meandering circulation. The white circle 
indicates a possible cyclonic eddy around a brighter core. 

Figure 73 1-Mar-09 5:55:00 

1- See Example 4 in Chapter IV. 
2- Besides the features previously discussed in Chapter IV, the SAR image detects a wind 
front in Monterey Bay. In situ measurements reveal a wind gradient in total agreement 
with the SAR image. 

Figure 74 7-Mar-09 18:20:00 

1- The SAR image shows a front parallel to the coast from Pigeon Point to south of Point 
Sur. HF-vectors don’t provide enough information to assess the surface currents’ 
influence on this feature. 
2- On the Monterey Bay shoreline, the SAR image depicts a wind-shadow effect due to 
land sheltering by onshore winds. The differences in backscatter in this region are 15db. 

Figure 75 26-Mar-09 18:23:00 

1- The previous 10 days evidence very strong winds blowing from the NW quadrant, 
creating conditions for the occurrence of upwelling. An SST map from 27 March 2009 at 
2140UTC 
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(http://www7240.nrlssc.navy.mil/browse/lvl3/modis/NorthEastPacific/2009/mar/aqua.20
09086.0327.D.L3_Mosaic.modis.NEP.v07.1000m.sst.png) demonstrates this assumption. 
2- The flow pattern is intense and in the same direction as the local wind. In Monterey 
Bay, buoys and shore stations measure moderate winds, and HF currents are less intense. 
3- South of Pigeon Point is a strong seaward jet. In the same region, the SAR image 
detects a slightly darker band (See Figure 76). 
4- Other indications of wind strength close to the San Francisco area features such as 
wakes from both Point Reyes Cape and the Farallones and surface gravity waves with 
~1.5km wavelength (See Figure 76). 

Figure 77 5-Apr-09 5:55:00 

1- In Monterey Bay, A cyclonic feature is visible in SAR and HF surface currents. Two 
seaward filaments can be seen in both the north and south part of the Bay by way of 
convergence in HF currents and brighter bands in the SAR image. 
2- Offshore of Año Nuevo Bay is an anti-cyclonic, vortical feature depicted by SAR and 
HF currents.  
3 – West of Point Su is an interesting ship wake in a dark region in the SAR image. The 
ship’s movement breaks the smooth surface where the wind is weak. 

Figure 78 11-Apr-09 18:20:00 

1- A cyclonic eddy is seen in HF currents in Monterey Bay. The SAR image exhibits a 
more intense backscatter in this area. 
2- In the north part of Monterey Bay, the SAR image reveals a wind-shadowing effect.  
3- West of Santa Cruz, SAR depicts atmospheric gravity waves of ~ 4 km wavelength. 

Figure 79 14-Jun-09 5:55:00 

1- A bathymetric dispersion of a seaward plume is displayed in San Francisco. The image 
was captured a few minutes after ebb tide. A similar feature is also seen in Figure A15. 
2- Offshore of the Half Moon Bay and Pigeon Point areas, SAR detects bottom-induced 
features, including packets of internal waves, mostly dispersing parallel to the 
bathymetry. 
3- Regions with relatively low winds speed allows the visualization of long ship wakes of 
around 50km. 

Figure 80 3-Jul-09 5:58:00 

1- In the Point Reyes area, visible vortical features visible are imaged by surfactants in 
SAR and captured by HF radar. The slicks are parallel to the surface currents 
2- The rest of the SAR image exhibits very weak winds, thus creating little surface 
roughness. 
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Figure 81 23-Aug-09 5:55:00 

1- In San Francisco is a bathymetric dispersion of a seaward plume. The tide is 3 hours 
after the ebb cycle. A similar feature is also seen in Figure A15. 
2- Offshore of the Half Moon Bay and Pigeon Point areas, SAR detects bottom-induced 
features, including packets of internal waves, mostly dispersing parallel to the 
bathymetry. 
3- Offshore of Monterey Bay, a convergence zone is seen in HF surface currents 
corresponding to a brighter band in the SAR image. 

Figure 82 27-Sep-09 5:55:00 

See Example 9 in Chapter IV. 

Figure 83 1-Nov-09 5:55:00 

1- In the San Francisco area, a brighter band presumably corresponds to a temperature 
gradient. The flood cycle is almost complete. According to the 8hr-prior SST 
http://www7240.nrlssc.navy.mil/browse/lvl3/modis/NorthEastPacific/2009/oct/aqua.2009
304.1031.D.L3_Mosaic.modis.NEP.v08.1000m.sst.png and 15hr-subsequent SST 
http://www7240.nrlssc.navy.mil/browse/lvl3/modis/NorthEastPacific/2009/nov/aqua.200
9305.1101.212000.D.L3.modis.NEP.v08.1000m.sst.png maps, offshore colder water and 
inshore warmer water masses are approximately in the same location. 
2- Offshore of the Half Moon Bay and Pigeon Point areas, SAR detects bottom-induced 
features, including packets of internal waves, mostly dispersing parallel to the 
bathymetry. 

Figure 84 12-Dec-09 18:20:00 

1- The SAR image demonstrates strong winds and currents from the SE quadrant. Wind 
clutter masks ocean features and creates a homogeneous surface. The SST map, 
http://www7240.nrlssc.navy.mil/browse/lvl3/hmodis/Monterey250/2009/dec/aqua.20093
46.1212.D.L3_Mosaic.hmodis.MNT.v08.250m.sst.png taken at 2115 UTC, shows a well-
mixed surface temperature in the cloud-free ocean part offshore of Monterey. 
2- The ship wakes are small, yet Point Pinos’ wake extends for more than 40km along the 
bay in the direction of the wind. 
3- Note the wind shadow in the south part of Monterey Bay as oppose to the usual 
shadowing at the north part of the Bay. 
4- At the lower part of the image, one views atmospheric gravity waves with ~2km 
wavelength. 

Figure 85 21-Mar-10 5:55:00 

1- In San Francisco is a bathymetric dispersion of a seaward plume. The image was 
captured 2 hours after ebb tide. A similar feature is also seen in Figure A15. 
2- Offshore of Half Moon Bay, SAR detects bottom-induced features, including packets 
of internal waves, mostly dispersing parallel to the bathymetry. 
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3- In Monterey Bay, HF currents evidence a cyclonic vortical structure. The SAR 
provides limited coverage of this feature. 

Figure 86 14-Aug-10 18:20:00 

See Example 5 in Chapter IV. 
 

Figure 87 2-Sep-10 18:23:00 

See Example 6 in Chapter IV. 

Figure 88 12-Sep-10 5:55:00 

1- Offshore of Half Moon Bay, a cyclonic eddy is retrieved by HF-radar currents. 
Limited SAR coverage of the area and low wind speed make difficult the visualization of 
the eddy. 
2- In the San Francisco area, one can see atmospheric surface gravity waves of ~2km 
wavelength. 
3- The rest of the SAR image exhibits very weak winds, thus creating little surface 
roughness. 

Figure 89 18-Sep-10 18:20:00 

MODIS SST and True Color images taken on 18 September 2010 at 2200 UTC 
http://www7240.nrlssc.navy.mil/browse/lvl3/hmodis/Monterey250/2010/sep/aqua.20102
61.0918.220000.D.L3.hmodis.MNT.v08.250m.sst.png and 
http://www7240.nrlssc.navy.mil/browse/lvl3/hmodis/Monterey250/2010/sep/aqua.20102
61.0918.220000.D.L3.hmodis.MNT.v08.250m.true_color.png show that temperature 
fronts and cloud pattern may be associated with SAR features. 

Figure 90 7-Oct-10 18:23:00 

See Example 3 in Chapter IV. 
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