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Notes on Solid Geometry.

CHAPTER L

1. We have seen how the position of a point in a plane with ref-

erence to a given origin O is determined by means of its distances

^"'M two axes Ox, Oy meeting in O. In space, as there are three

ensions, we must add a third axis Oz. So that each pair of axes

rmines a plane, Ox and Oy determining the plane xOy \ Ox
Oz the plane xOz ; Oy and Oz the plane yOz. And the posi-

ot the point P with reference to the origin O is determined by

its distance^ ^M, PN, PR from the zOy, zOx, xOy respectively, these

distances being measured on lines parallel to the axes Ox, Oy and

Oz respectively. This system of coordinates in space is called The

System of Triplahar Coordinates, and the transition to it from the

System of Rectilinear Plane Coordinates is very easy. We can best

conceive of these three coordinates of P by conceiving O as the

corner of a parallelopipedon of which OA, OB, OC are the edges,

and the point P is the opposite corner, so that OP is one diagonal of

the parallelopipedon.

2. If PM = OA =L a, PN = OB rr b, PR z= OC = c, the equations

of the point P are x :=i a, y :=z b, z ^=^ c, and the point given by these

equations maybe found by the following construction : Measure on/
OX the distance OA — a, and through A draw the plane P^AK/A'

parallel to the plane yOz. Measure on Oy the distance OB = b, /

and draw the plane pMbR parallel to xOz, and finally lay off 0(y
= c and draw the plane PMCN parallel to xOy. The intersection

of these three planes is the point P required.

3. The three axes Ox, Oy, Oz are called the axes of x, y and z

respectively ; the three planes xOy, xOz and yOz are called the



4 NOTES ON SOLID GEOMETRY,

planes xy, xz and yz respectively. The point whose equations are

X r= a, X = h, X r= ^ is called the point (a, b, c).

4. The coordinate planes produced indefinitely form eight solid

angles about the point O. As in plane coordinates the axes Ox
and O;^ divide the plane considered into four compartments, so in

space coordinates the planes xy, xz and yz divide the space con-

sidered into eight compartments—four above the plane xy, viz.

:

0-xyz, 0-xy'z, O-x'yz, 0-x[yz ; and four below it, viz. : 0'Xyz\

O'Xy^z^ O-xy'z', O-x^z', By an easy extension of the rule of

signs laid down in Plane Coordinate Geometry, we regard all jv's

on the right of the plane^-s as + and on the left of j's: as — ; all y's

in front of the plane .V0 as -f and those behind it as — ; all s above

the plane xy as + and those behind it as — . We can then write the

points whose distances from the coordinate planes are a, h and c in

the eiorht different an^Qries thus :

In the first Octant, 0-xyz P, is

In the second Octant, Pg is

In the third Octant, P3 is

In the fourth Octant, V\ is

In the fifth Octant, P5 is

In the sixth Octant, P^; is

In the seventh Octant, P7 is (-

In the eighth Octant, Pg is

The signs thus tell us in which compartment the point falls,

and the lengths of a, b and c give us its position in these compart-

ments.

1. Construct the points i, — 2, 3 ; o, — i, 2 ; o, o, i ;
— 4, o, 3

2. Construct the points i, — 3, — 4 ; 2, — 3, o
; 3, o, — i ; 2, o, o.

5. The points M, N and R are called the projections of P on the

three coordinate planes, and when the axes are rectangular they are

its orthogonal projections. We will treat mainly of orthogonal pro-

jections. For shortness' sake when we speak simply of projections,

we are to be understood to mean orthogonal projections, unless we

state the contrary.

We will give now some other properties of orthogonal projections

which will be of use to us.

{a, h. c)

{a, K c)

{-a, — b. c)

(- ^?, h. c)

(''> b. — c)

(«,
- K — c)

-a, --h, — c)

(-a. b. — c)
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6. Definitions.

The projection of a line on a plane is the line containing the

projections of its points on the plane.

When one line or several lines connected together enclose a plane

area, the area enclosed by the projection of the lines is called the

projection of the first area.

The idea of projection may be in the case of the straight line thus

extended: if from the extremities of any limited straight line we draw

perpendiculars to a second line, the portion of the latter intercepted

between the feet of the perpendiculars is called the projection of the

limited line on the second line.

From this we see that OA, OB and OC (coordinates rectangular)

are the projections of OP on the three axes, or the rectangular coordi-

nates of a point are the projections of its distancefrom the origin on the

coordinate axes.

7. Fundamental Theorems.

I. The length of the projection of a finite right line on any plane is

equal to the line multiplied by the cosine of the angle which it makes with

the plane. »

Let PQ be the given finite straight line, xOy the plane of pro-

jection ; draw PM, QN perpendicular to it ; then MN is the projec-

tion of PQ on the plane. Now the angle made by PQ with the plane

is the angle made by PQ with MN. Through Q draw QR parallel

to MN meeting QN in R, then QR = MN, and the angle PQR
= the angle made by PQ with MN. Now MN — QR — PQ cos

PQR.

II. The projection on any plane of any bounded plane area is equal to

that area multiplied by the cosine of the angle between the planes,

1°. We shall begin with a triangle of which one side BC is parallel

to the plane of projection. The area of ABC= — BC x AD, and the

area of the projection A'B'C = - B'C x A'l/ But B'C — BC and /i?

A'y = AD cos ADM. Moreover ADM = the angle between the

planes. Hence A'B'C = ABC x cos angle between the planes.

2°. Next take a triangle ABC of which no one of the sides is pa-

rallel to the plane of projection.
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Through the corner C of the triangle draw CD parallel to the

plane of projection meeting AB in D. Now if we call 6 the angle

between the planes, then from i"^ A'B D' = ABD cos 6 and B'C'D'

=iBCD cos e. .-. A'B'D - B'C'D'^: (ABD-BCD) cos d or A^'B'C

=:ABC cos e,

3°. Since every polygon may be divided up into a number of

triangles of each of which the proposition is true—it is true also of

the polygon, i, e., of the sum of the triangles.

Also by the theory of limits, curvilinear areas being the limits of

pol}^gonal areas, the proposition is also true of them.

8. The projection of a finiie right line upon another right line is

equal to the first line imiltiplied by the cosine of the afigle between the

' ^
• ^li7ies\

Let PQ be the given line and MN its projection on the line O.v, by

means of the perpendiculars PM and QN. Through Q draw QR
parallel to ININ meeting ?M in R. Then PQR is the angle made by

^ PQ with O.v, and MN =r QR = PQ cos PQR.

m€tt.^Af^, If there be three points P, P', P" joined by the right lines PP',

PP" and P'P", the projections of PP" on any line will be equal to

the sum of the projections of PP' and P'P" on that line. Let D, D',

D'' be the projections of the points P. P', P" on the line AB.

Then D' will either lie between D and D" or D" between D and

D'. In the one case DD" = DD'+ D'D" and in the other DD" —
DD' — D"D' = in both cases the algebraic sum of DD' and D'D''.

The projection is + or — according as the cosine of the angle above

is ^- or —

.

In general if there be any number of points P, P', P", etc., the pro-

jection of PP'" on any line is equal to the sum of the projections of

PP', P'P'', etc., or, the projection of any one side of a closed po-

lygonal line on a straight line is equal to the sum of the projections

of the other sides on that line.

lo. Useful Particular Case.

The projectioji of the radius vector OF of a point P on any line is

equal the sum of the projections on that line of the coordinates OM, MN,
PN of the point P. For OPMN is a closed broken line, and

the projection of the side OP on a straight line must be equal to

the sum of the projections of the sides OM, MN, and PN on that

line.
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11. Distance between Two Points.

Let P and Q, whose rectangular coordinates are {x, y, z) and (.v',

y\ 0'), be the two points.

We have from the right parallelopipedon PMNRQ of which PQ
is the diagonal, PQ' := PM' -f MN^ + QNl But PM ^ x'- x, MN
=_>/— J/ ;

QN = 0'— 0.

Hence PQ' = {x - xj ^ {y-yy+ (^ - ^J-
If one of the points P be at the origin then x ^=1 o, y =^ 6, z =^ o,

and PQ'== .%^'' 4-/^+0''.

12. To FIND THE Relations between the Cosines of the Angles

WHICH A Straight Line makes with three Rectangular

Axes. ^

Take the line OP through the origin. Let OP = r, the angle if- ^t<ft^

PO.r =: a, POy = /^, PO0 = y, and x\ y, z the coordinates of P.

Then by Art. 11, r-= .r''+ y''+ z\

But, Art. 8, X :=^ r cos a
;
y'= r cos ^ ; z ^=^ r cos y.

Hence r^~ r^ (cos' a -f cos' (5 + cos' y) or .«

cos' a^ cos' /? + cos' }/ = i. (i) A very im-
portant relation.

Cos a, cos /?, cos y determine the direction of the line in rectan-

gular coordinates, and are hence called the direction-cosines of the line.

We usually call these cosines /, m and n respectively. So the equa-

tion (i) is usually written /'+ ^'+ «'= i, (i), and when we wish to

speak of a line with reference to its direction cosines, we may call it

the line (/, m, n). Only two of the angles a, (3, y can be assumed at

pleasure, for the third y will be given by the equation

cos ;^ = ± Vi — cos' a — cos' //.

13. We can use these direction cosines also for determining the

position of any plane area with reference to three rectangular coordi-

nate planes. For since any two planes make with each other the

same angle which is made by two lines perpendicular to them respec-

tively, the angles made by a plane with the rectangular coordinate

planes are the angles made by a perpendicular to the plane with the

coordinate axes respectively. Thus if OP be the perpendicular to a

plane, the angle made by a plane with the plane xy is the angle y ;

with xz is the angle /i ; and with yz is the angle a. So cos a, cos

/^, cos y^ are called also the direction cosines of a plane. That is, the
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direction cosines of a plane with reference to rectangular coordinates are

the direction cosines of a line perpendicular to this plane,

14. The relation cos^ a-\- cos^ y3+ cos^ y = 1 enables us to prove

an important property of the orthogonal projections of plane areas.

For let A be any plane area, and A^, A,„ A. its projections on the

coordinate planes yz, zx and xy respectively. Then Art. 7, II., A^
— A cos a ; A,, = A cos /? ; A^ = A cos y.

Squaring and adding we have

A,2+ A/+ a;- = A- (cos'' a + cos' /S -\- cos' y)

or a;' + A/ + A/ = A^

That is, the square of any plane area is equal to the sum of the squares

of its projections on three planes at right angles to each other.

15. To FIND THE Cosine of the Angles between Two Lines in

Terms of their Direction Cosines (cos a, cos /J, cos ;/)

AND (cos a\ cos /?', cos }/').

Draw OP, OQ through the origin parallel respectively to the given

lines. They will have the same direction cosines as the given lines,

and the angle POQ will be the angle between the given lines.

Let POQ = 6^, OP — r, OQ = /', coordinates of P (a\ )', z), coor-

*»^^'j6A#/_ dinates of Q (.rV'-s').

Wed- or^i, ^^'^ by ^^^' ^ ^'

•^^^/i/> A,f,'^p PQ"^= {x - xj^ {y -yy + (0 - zj ^ x^ +./+ 0^+ x^^y'^

^A^^^*. /^jP' + z'^ ^ (2a;v'+ 2yy -V 2zz),

>-^ T^f » And from triangle POQ,

i^.^^S PQ2=: r'^-h r'-- 2/7'' COS 6',

V;^V^--/ hence r'H r'- 2rr' cos 6 =3 x' -\ r + z' + x'' -^ y" -{- z'- 2 {2xx'

+ 2y]>' + 2zz'),

But r'= x' + y''+ z^ and r''= .v"'+,v''-h z'\

Therefore rr' cos 6 = au''+ rr'+ zz,

^ X x' y r z z
or cos fy = —

. —
, H— .-^ + — .—

.

r r r r r r

Hence cos 6 — cos ex cos a + cos fi cos ji + cos ;/ cos ;/' (2)

which we write cos ^ = //'
-f- mm' + nn, (2)
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Cor. 1. If the lines are perpendicular to each other cos /9 = o or

//'-f- 7)17)1 -{ 7171 = o (3). (3) is called the condition of perpendicu-

larity of the two lines (/, w, ti), (/', 711 , 7t').

Cor. 2. From expression for cos 6 we can find a convenient one

for sin^ 6.

Thus sin- ^ = i — (//'+ /;/;;/'+ 7171)'= (/' + ^/^'^- ?/') (/''+ ?;/"'

+ 7l'^) — (//'-h 771771 -\- 7l7l'y

whence sin^ d — {I771 — l'my-\- (Iti — l'7if'\- (77171 — 771 Tif. (4)

16. To express the distance between two points in terms of their

oblique coordinates.

Let P {xyz) and Q [x'y'z) be the two points.

The parallelopipedon MPQN is oblique. Let the angle XOY
= A, XOZ = /i, YOZ = y, and the angles made by PQ with the

axes respectively a, /? and y. Project the broken line PMNQ on

PQ. This projection is equal to PQ itself. Hence we will have.

PQ - P:M cos a + MN cos f^ ^- NQ cos y. {a)

Now project the broken line PININQ on the axes xyz respectively.

We obtain thus the three equations

PQ cos a = PM + MN cos A + NQ cos // \

PQ cos /3 = PM cos A + MN + NQcos v I (d)

PQ cos y = PM cos jii + MN cos v + NQ \

Now multiply the first of equations (5) by PM, the second by MN
and the third by NQ and add them taking (a) into account and we
have

PQ2 = PM^+ MN^+ NQ^+ 2PM . MN cos A + 2PM . NQ cos

/A + 2MN . NQ cos V (c)

or PQ^ =. {x - x'Y + Cr - ^r')^ + (3 - z'y+ 2{x - .v') (y -y)
cos A +2{x—x')(z— 2')cos j.i-\-2{y—y'){z—z') cos 7^ (5)

Cor. If one of the points as Q be at the origin then

PO^ = .V- + r- f s- + 2,\r cos A + 2x2 cos // -f- 2zr cos v. (6)

17. Di7'Lctio)i Ratios. In oblique coordinates the position of a line

PM MN NO
PQ IS determined by the ratios pQ :

f3Q-:
pTy « and these we

call direction ratios. \Vc may name these /, w, // respectively,
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taking care to note that we are using oblique coordinates and call

the line PQ, the line (/, m, n). To find a relation among these

direction ratios, we divide equation (c) Art. i6, by PQ^ We thus

have

I = /^+ m^A- n^ -{- 2/m cos A -f 2/n cos /a + 2mn cos r, (7) the

desired relation.

18. The coordinates of the point (xyz) dividing in the ratio m : n

the distances between the two points {x'y'z) x"y"z" are

7?ix + nx
X = , y

?n -{- n

my -\-ny

m -{- 71
^
. = ^?^'. (8)

The proof of this is precisely the same as that for the correspond-

ing theorem in Plane Coordinate Geometr}\

19. Polar Coordinates.

The position of a point in space is also sometimes expressed by

the following polar coordinates :

The radius vector OP = r, the angle VOm= 6 which the radius

vector makes with a fixed axis OZ, and the angle COX which the

projection OC of the radius vector on a plane yOx perpendicular to

OZ makes with the fixed line OX in that plane.

We have OC — r sin ft Hence the formulae for transforming from

rectangular to these polar coordinates are

X = r sin cos cp \

y z=i r sin d sin qj v (9)

z = r cos 6 )

h

and these give r' = x^ + 1'' + z"-

tan o) z=.'—
X

\ (10).

Conceive a sphere described from the centre O, with a radius -— a

and let this represent the earth. Then, if the plane zOx be the

plane of the first meridian and the axis of z the axis of the earth,

6 = —^— latitude, qj = longitude of a point on the earth's sur-

face
/
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20. Distance between two points in space in polar coordinates.

Let Pbe (r', d\ cp) and Q (r, d, cp). Project PQ on the plane xy,

MN is this projection, draw OM ON the projections of OP and OQ
respectively on that plane. Through P draw PR parallel to MN,
then PR == MN.
And we have

PQ^ == PR^ + RQ' =: MN^ + (QN - RN)^

But in triangle MON
MN^ rr. OM^ + ON^ - 2OM . ON cos MON,

or MN^ — r'^ sin^ & + r^ sin^ 6 — 2rr' sin d sin d' cos {(p — cp')*

Moreover QN = r cos /9 and RN 1= PM = r' cos 6',

Hence PQ^= r"^ sin^ 6' + r^ sin^ d— irr sin d sin 6' cos (<^ — ^')

-f (r cos d — r cos ffy

or

PQ^= /''^+ r'^— 27'r (cos 6* cos ^' 4-sin d sin ^' cos (^ — <^'))- (^0

,.^_-



CHAPTER 11.

INTERPRETATION OF EQUATIONS.

TRIPLANAR COORDINATES.

2 1. Let us take F {x, y, z) — o, that is any single equation con-

taining three variables .v, y and z. This may be considered as a

relation which enables us to determine any one of the variables when

the other two are given. Let these be v and )'. So the equation

may be written

z^/{x„y),

in which we may allege arbitrary and independent values to .v and j'.

And to every pair of such values there is a determinate point in the

plane xv ; and if through each of these points we draw a line parallel

to the axis of 0, and take on it lengths equal to the values of ^ given

by the equation, it is clear that in this way we will get a series of

points the locus of which is a surface, and not a solid since we take

deterviinaie lengths on each of the lines drawn parallel to z. Hence

F {x, r, z) = o represents a surface in triplanar coordinates.

22. If the equation contains only two variables as F {x, y)= o then

it represents a cylindrical surface.

For F {x, y) = o is satisfied by certain values of x and y inde-

pendently of 0, and .r and y are no longer arbitrary but one is given

in terms of the other ; to each pair of values corresponds a point in

the plane xy, and the locus of these points is a curve in that plane.

If through each point in this curve we draw a coordinate parallel to

z, every point in that coordinate has the same coordinates .v and >• as

the point in which it meets the plane xy. Hence F {x,y) — o repre-

sents a surface which is the locus .of straight lines drawn through

points of the curve ^{x,y) = o in the plane xy and parallel to the
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axis of 0. This locus is either what is called a cylindrical surface

with axis parallel to sr or a plane parallel to the axis of z according

as the equation F {x^y) = o in the plane xy represents a curve or a

straight line.

For example, x'^ -{ y^ — r^= o in rectangular coordinates is a

right cylinder with circular base in plane xy (since x^-^y^— r^ is a

circle in plane xy) and its axis parallel, to the axis of z.

And dx •\- by — c ^=: o \^ 2i plane parallel to the axis of 0, intersect-

ing the plane xy in the line ax -\' by =^ c.

Similarly F {x, z) — o represents either a cylindrical surface with

axis parallel ioy or a plane parallel ioy, ^

F (y, 0) = o represents either a cylindrical surface with axis parallel

to the axis of :r or a plane parallel to this axis.

23. An equation containing a single variable represents a plane or

planes parallel to one of the coordinate planes.

Thus X =^ a represents a plane parallel to the plane j/0.

And 2i?>/{x) = o when solved will give a determinate number of

values of :r, as x ^= a, x =. b, x = c, etc., so it represents several

planes parallel to the coordinate planej^^.

Thus also F {y) = o represents a number of planes parallel to the

plane xz.

And F {z) = o, a number of planes parallel io xy,

24. Thus we see that in all cases when a single equation is inter-

preted it represents a surface of some kind or other.

The apparent exceptions to this are those single equations which

from their nature can only be satisfied when several equations which

must exist simultaneously are satisfied. As for example

(.r — ay + (jF — by -\- {z — cY — o. This equation can only be

satisfied when [x — a)^ = o, {y — by = o, {z — cY = c, or x = a,

y ~ b, z = c.

Now these represent three planes, but being simultaneous they

represent the point a, b, c.

So also {x — aY -\- {y — by '= o is only satisfied hy x z=z a, y =z b,

and hence though x = a Is a plane, and y = b is 3. plane, the two

together must represent a line common to both of these planes, that

is their line of intersection, which must be parallel to z,

25. In general two simultaneous equations as

/{x,y, z) = F {x,y, z) = o
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represent a curve or curves, the intersections of the two surfaces

represented by the two equations.

Thus ___.[ taken simultaneously we have seen represent a straight

line parallel to the axis of z, the intersection of these two planes.

F (x) = o )^ ^ _ > represent a number of straight lines parallel to the

axis of z, the intersections of the several planes parallel respectively to

the planes j'0 and xz.

r^\ ! _ [ represent a number of straight lines parallel to the axis

of j^, etc.

F ixy) =. o )

T^ / ; >• represent the curves of intersection of the two cylin-
F {xz) = o )

^ -^

ders F [x, y) = o and F {y, z) — o, etc., etc.

26. Three simultaneous equations

F {x, y, z) =0 \ F {x, y) = o\
as /{x, y^ z) =:ol or F (x, z) = o i etc.,

(p{x,y,z) = 0) F(j^, 0) --=0
)

represent points in space or the intersections of the lines of intersec-

tion of the surfaces.

The simplest case is,

X =^ a \

y ^^ ^ \ representing the point (^, b, c),.

z := c
)

So also

x^ + y^ = 2z^ \

•X -{- y =^ 2z V represent points which can be found by
xy = 4-

)

solving the three equations which themselves represent different sur-

faces.

Interpretation of Polar Equations.

27. 1°. r = a represents a sphere having the pole for its centre.

Hence the equation F (r) = o which gives values for r as r :=: a,

r ^= b, r =: c, etc., represents a series of concentric spheres about the

pole as centre.
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2°. 6 =^ a represents a cone of revolution about the axis of 2: with

its vertex at the origin of which the vertical angle is equal to 2a,

Hence the equation F (^) = o giving values 6 — a, 6 = ^, etc.,

represents a series of cones about the axis of 3:. having the origin for

a common vertex.

3°. (p =1 ^ represents a plane containing the axis of ^ whose line

of intersection with the plane xy makes an angle a with the axis of

X. Hence the equation F (^) = o which gives values cp=. ^, qj

= /?', etc., represents several planes containing the axis of inclined

to the plane zOx at angles /?, /5', etc.

4°. If the equation involve only r and ^ as F (r, 6) = o, since

F {r, 6) = o gives the same relation between r and 6 for any value

of q), it gives the same curve in any one of the planes determined by

assigning values to cp. Hence it represents a surface of revolution

traced by this curve revolving about the axis of z.

Example, r = a cos 6 is the equation of a circle in the plane

xz, or in any plane containing the axis of z. - Hence r z= a cos 6

represents a sphere described by revolving this circle about the axis

of -sr.

5°. If .the equation be F((^, 6) = o for every value of q) there

are one or more values of 6 corresponding to which lines through

the pole may be drawn, and as cp changes or the plane fixed by it

containing O0 revolves, these lines take new positions in each new

position of the plane, and thus generate conical surfaces about Oz.

(A conical surface being any surface generated by a straight line

moving in any manner about a fixed straight line which it inter-

sects.
)

6°. If the equation be F (r, q?) = o, for every value of q? there are

one or more values of r, thus giving several concentric circles about

the pole in the plane determined by the assigned value of q). As q?

changes, or the plane through Oz revolves these values of r change,

and the concentric circles vary in magnitude. The equation thus

represents a surface generated by circles having their centres at the

pole, which vary in magnitude as their planes revolve about the axis

of 2: which they all contain.

7°. If the equation be F (r, 6, qj) = o, it represents a surface in

general. For if we assign a value to q) 3.s qj = /3, then F (r, 6, /3)

=: o will represent' a curve in the plane q? =: j3. And as <p changes

or the plane revolves about Oz this curve changes, and the equation

will represent the surface containing all these curves.
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28. Two simultaneous equations in polar coordinates represent a

line, or lines—the intersections of two surfaces. And three simulta-

neous equations represent a point or points—the intersections of three

surfaces.

Thus
r zn a \

6 = a\ taken simultaneously represent points determined

by the intersection of a sphere, cone and plane.



CHAPTER III.

EQUATION OF A PLANE.

COORDINATES OBLIQUE OR RECTANGULAR.

29. To find equation of a plane in terms of the perpendicularfrom the

origin and its direction cosines.

Let OD = /) be the perpendicular from the origin on the plane,

and let it make with the axes Ox, Oy and Oz the angles a, /? and y
respectively. Let OP be the radius vector of any point P of the

plane ; OM, MN and NP the coordinates of P.

The projection of OM + NM + NP on OD is equal to the pro-

jection of OP on OD.
The projection of OP on OD is OD itself, and the projection of

OM + MN + NP on OD is x cos a -^-y cos p + z cos y.

Hence we have x cos a -i-y cos /3 -\- z cos y •= p. (12)

30. To find the equation of a plane in terms of its intercepts on the

coordinate axes (coordinates oblique or rectangular).

Let the intercepts be OA = a, OB — b, OC = c. The equation

(12) may be written

X y 2

p sec a p sec ^ ps^c y

But since ODA, ODB and ODC are right-angled triangles, we have

/> sec or = OA = a,^p sec /S = OB — h, p sec y = 0C — c.

Therefore the equation becomes

X y z , .

-+! + -=: (13)

the equation of the plane in terms of its intercepts.
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31. Any equation Ax + By + Cz = D (14) of the first degree in x,

y and z is the equation of a plane.

For we may write (14)

X y z _

A B "C"

And putting -^=: a, -^ = <^, — = ^, we have the form (13).

Hence (14) is the equation of a plane in oblique or rectangular

coordinates.

Hence to find the intercepts of a plane given by its equation on
the coordinate axes, we either put it in the form (13) or simply

make^ =r o and =: o to find intercept on x \ 2 = and jr = o to

find intercept ony
; x= o and j' =: o to find intercept on z.

Example. Find the intercepts of the plane 2.r + j)/ — 52 = 60.

32. It is useful often to reduce the equation Ax -\- By -{- Cz = D
to the form x cos a -{-y cos /3 -{- z cos y =p in rectangular coordi-

nates. We derive a rule for this.

Since both of these equations are to represent the same plane, we
have

cos a _ cos /? _ cos y __P __ Vcos* a + cos^ f6 + cos^ y
A ~ B " C ""D"^ A^ + B^ + O

I

Va' + b^+ o

1:T
a

^,
B

Hence cos a -=.—
, cos p :

C D

Va" + 6^ + 0" Vam-bm-o
Hence if we write (14)

A B
X +

, y +
VA'+B' + C^' -v/A' + B^ + C^ VA' + B^+a

D
VA''+ B^ + Q^

it is in the perpendicular form (12).

(15)
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Hence the Rule: If ive divide each term of the equation Ax + By

+ Cz=:D, hy the square root of the sum of the squares of the coefficients

of X, Y and z, the new coefficients will be the direction cosines of the per-

pendicular to the plane from the origin^ and the absolute term will be the

length of this perpendicular.

Example. Find the direction cosines of the plane 2x + ^y — 4z

= 6 and the length of the perpendicular from the origin.

Result.

2 23 —4
cos a =— =—-:=, cos p =—-=, cos y —

^4 + 9 + 16 V 29 V 29 V 29

V 29

33. To find the angle between two planes (coordinates rectangu-

lar).

If the planes are in the form

X cos a -^ y cos /S \- z cos y ^=^ p

X cos a^ -\- y cos /5' + cos y = p\

then since this angle is equal to the angle of two perpendiculars from

origin on the planes the cosine will be (Art. 15) cos V= cos a cos a'

+ cos ^ cos fS + cos y cos y'

,

If they are in the form

A^ + B^ + C0 = D

A'jr + B> + Cz ^ D\

A B
Then cos a —— , cos (5

^A^+ W A-O VA2+ B^ + C^

C
cos y-

VA^ + B^ + C^

cos a =— -
, cos p

cos y y- A 'i + B'^ + C'^

A A .r
AA' + BB' + CC , .,

And rns V = — (i6)
VA= + B' + CVA" + B"^ + C"'
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From this

. , ,, (A'+ B'+ C°) (A^^+ B"+ Cn -(AA'+ BB'+ CC')'
^^^

(A''+ B^ + a)(A'^+B'^+C'»)

. ,
(AB'- A'B)^+ (AC-- A-C)'+ (BC^- B'C)'

.
sin V _ (AH B^ + e)(A'='+ B'^+C'^) " ^''

Cor. I. If the planes are perpendicular to each other, then cos y=o.
.•. AA'+ BB'+ CC = o {\%^ is the condition of perpendicularity of the

planes.

Cor. 2. If the planes are parallel sin V = o. Hence

(AB' ^- A'B)5 = (AC - A'C)^ = (BC - B'C)= = o

or AB' - A'B = o AC - A'C = o BC - B'C = o
'

ABC.,
or the condition that the two planes shall be parallel, is that the coefficients

o/x, Y and z in the two equations shall be proportional.

Ex, I. Find the angle between the planes

B-S^^ ^ , ^^^^
ffJ^T^j"

7^""^^ ^+ ^I' + S^^ 5 and 3a;-4y-} 2= lo.

2. Show that the planes

^ ^^~ :t: + 3jV — 5^ = 20 and 2x -{• y •{• z ^=^ lo are perpen-

dicular to each other.

3. Write the equation representing planes parallel to the plane ^x

34. To find the expression/or the distancefrom a point P (x'y'z') to a

plane (coordinates rectangular).

1°. Let the equation of the plane be of the form

:v cos o' + j^^ cos /3 + ^ cos ;K = / when p = OD.

Pass a plane through P parallel to the given plane, and produce

OD to meet it in D'.

The equation of this plane will be

x' cos a -i-y cos ft -\- z' cos y — p' when OD' =/.

Now let PM be the perpendicular from P on the given plane.

Then PM = OD' - OD ==/ -/.
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Hence PM •=. x' cos a -{• y' cos ^ -\- z' cos y — p.

And X {x' cos a -{-/ cos /3 + z' cos y) —p (20) is the expression

for the perpendicular from the point x'y'z' on the plane x cos a^

y

cos y5 + cos y— p, the sign being -f or -— according as / is on the

side of the plane remote from the origin or next to it.

2°. Let the plane be in the form Kx -f By -f- C0 = D.

Then cos a —— = etc., etc. (15) Art. ^2.
^A^ + B^-hC^

Hence the expression

±{x' cos a i-y' cos ^ -^ z' cos y ^ p) becomes

Ex. Find the length of perpendicular from the point (3, 2, i) on

the plane

3.r -[- 4.y — 6z = 24.

T^i 9 + 8 — 6 — 24 —13
Result. p — ^ ^ — _j_.

V9+ 16+ 36 V 61

*35. The equation of the plane in the form .rcos a -\-y cos j3 -{- z

cos y = p may be used to demonstrate the following theorem in

projec'ions.

The volume of the tetrahedron which has the origin for its vertex and

the triangle ABC/^r its base is equal to the three pyramids which have any

point (x, y, z) in the plane ABC for their common vertex and for bases

the projections of the area ABC on the three rectangular coordinate planes

respectively.

For let A be the area of the triangle ABC and

X cos a \- y cos ^ -{• z cos y ^= p

the equation of its plane.

Multiply this equation by A.

Then A cos a . x -\- \. cos (3 .y + A cos y . z := Kp

or -^A cos a , X -\- \K cos (3 .y + ^A cos y , z =i ^A/.

But A cos a, A cos /?, A cos y, are the projections of A on the

planes j'2r, xz, and xy respectively, and Xy y and z are the altitudes of

the tetrahedrons which have these projections as bases and the point

{x, y, z) as common vertex, and -|-A/> is the volume V of the pyramid
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which has the origin for vertex and A for base. Hence the theorem

is true.

Calling these projections A^, A^, and A^, we may write the equa-

tion of the plane k^x + KyV + A^ = 3V. (22)

36. To find the polar equation of a plane.

Let OP = r, POS = 6, YQW = cpbe the polar coordinates of a

point P of the plane.

Let OD = a = perpendicular on plane ; angle DOS = a, D'OM'
= /3, and POD = go.

Then -^-p- = cos POD = cos Ce9, or —= cos go. Now in order to

^ express oo in polar coordinates conceive a sphere about O as centre

with OP = r as radius. Prolong OD to D^' on the sphere. Draw

-^^'^'^'^-^the arcs of great circles SPF, SD"D; MP'D' and D'T.
•c^c^M.^.,^s^^ The triangle SD'T has for its sides SD" =: o', SP = 6, D"P — go

Smt "^^l^nd angle D"SP = D'OF = ft
-^ cp. But

T£f% r^^^
^Og J^n^ ^ ^^g gj)„ ^^g gp ^ g.^ gj^,r

gjj^ gp ^^g j),,gp^

i«*J2.. Or
"^^

cos Gj? = cos a cos ^ + sin ar sin 6 cos {/S— cp).

Therefore — = cos a cos ^ + sin ^ sin 6 cos (/J — ^) (23) is the

polar equation of the plane.

37. The general equation of the plane Ax + B>' + C0 = D may
be reduced to the form

A'x + BV + Cz= I (24) by dividing by the absolute term D.

And also to the form

z m mx 4- ^+ ^ {25) by dividing by C — transposing and putting

— — z=z m, —— = n and -— = c. These two forms are very useful in

the solution of problems and in finding the equations of the plane

under given conditions.

Plane under Given Conditions,

38. 1°. The equation of a plane through the origin will be of the

general form Ax + By + C2: = o, for the equation must be satisfied

by :r = o, j^ = o and = 0.

2°. The equation of a plane which contains the axis of z is of the
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form Kx + By = o ; a plane containing the axis oiy is Kx + Cz

= o ; one containing the axis of x is By -}- Cz =^ o,

3°. The equation of a plane parallel to the axis of z is Ax + By

= D ; of one parallel to the axis of j^ is Ax -\- Cz = T) ; one parallel

to thQ axis of xisBy + Cz = J).

.4°. The equation of a plane parallel to the plane j^0 is Ax = D
;

parallel to ^2: is By = D
;

parallel to xy is Cz == D.

These equations we have had already in the forms x= ±a, y=z ±^,

z = ± c»

39. To find the equation of a plane containing a given point (a, b, c)

andparallel to a given plane Ax + By + Cz= D. ( i
)

First, since the required plane is to be parallel to (i) it may be writ-

ten Ax •\-By -\-Cz-=^V>' (2) when D' is undetermined. Secondly, the

coordinates (a, <5, r) must satisfy (2). Therefore A^-hB^ +Q =D\
Hence by subtraction we eliminate D' and obtain

A(^ — a) + B (jF — <^) + C (0 — ^) = o or

Ax + By -\-Cz— Aa-\-Bh ^-Cc (26)

the required equation.

Example. Find the equation of the plane passing through the

point (i, 2, 4) parallel to the plane 2x \- ^y — ^z ^=:. 6.

40. To find the equation of a plane passing through three given points

(x', y', z'), (x", y", z") and (x'", y'". z'").

Let the equation of the plane be of the form Ax -f By + C0 = i,

A, B and C to be determined by the given conditions.

Since the plane is to contain each of the points, we must have

A^ + By'+ C^^ =1

A^'"+By'^+a'"=i.
Hence

^- z

A =
x,y, z

It tt IIX ,y , z

B=

X, I, z'

x'\ I, z"

x'\ I, z"

X ,y, z
n It IIX ,y , z
III III I.

C=

x',y, I

x",y", I

x", v'", I

1 ' 1x,y, z

x\y\ z"

J<:'",/", z'"X ,y , z

Substituting these values in the equation Ax + 'Ry -\- Cz = i

,



24 NOTES ON SOLID GEOMETRY.

we have

X +

I, s

I, z'

I, J +

^,J^^, I

yX
ttt ,n fX ,y ,

z =

x,y, z

x"\ y"' z
. (27)

Mjk4. But from plane coordinate geometry the coefBcients oi x^y ahd z

(jt^^Z"*)^"^ these equations are the double areas of triangles in the planes j^^,

jrji^\/^^z and xy respectively. Moreover these triangles are the projections

j ^^ ^^ triangle of the three given points, on these planes. Hence
-2r£x—^ comparing this equation wi h the equation (22)

we see that

K,x + Ky 4- Kz = 3V

JiLy

II II = 6V, That is = 6 times the volume of the

pyramid which has the origin for vertex and the triangle of the three

given points for base. This equation fully written out is

x {y'z"'-y"z")+x"{y"z'-yz"') +x"'iyz"-y'z')=^6v. (28)

41. To fi7id the equation of the planes which contain the line of intersec-

tion of the two planes Ax + By + Cz = D and Ax' + By'+ Cz' = D'.

ThisequationisAjr + By-f C0—D + K( A'^ + B> + C'0— D')rr:o(29)

when K is arbitrary. For this represents a plane when K takes a

particular value and it is sa'isfied when A^ + Bj' + C^ — D = o and

A'x + ^y + C'z — D' =: o are satisfied simultaneously. Hence it

is a plane containing their line of intersection. Hence as K is arbi-

trary it (24) represents the planes containing the line of intersection

of the two given planes.

42. When the identity KU + KiUi + KgUg = o (30) exists between

the equations U= o, U2=o, Us^ o of three planes, then these planes

intersect each other in one and the same straight line. This is an

easy corollary of Article 41. Also when the equation of[ the first

degree in x, y and z contains a single arbitrary constant all the

planes which it expresses by assigning particular values to this con-

stant intersect each other in one and the same straight line. This

line of intersection may be at infinity and then the planes are all

parallel.

Example i. The planes represented by the equation ()x^My-\-2z

z= 3 (fS^ arbitrary) all contain the line of intersection of the two

planes 6a: + 22^— 3 — o 2indy= o. ,
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Example 2. The planes represented by 2x -\- ^y — 42 = n {n

arbitrary) are parallel.

Example. The planes 2>^ -\- \y \- 6z — 2 \

4X + 4y -{- 6z = 2 J

intersect in one and the same straight line because

{sx-^4y + 62—2)— {x+ 2y+s2 — i) -^ ^{4^ + 4y + 6z—2) = o

is an identity.

43. Wken between the equations of four planes in any form U= o, U]

= o, Ug — o, U3 = o the identity

KU + K1U1 + K2U2+ K3U3 = o (31) exists, then these four planes

intersect each other in one and the same point. For then any coor-

dinates which satisfy the first three U = o, Uj = o and U2 = o will

satisfy the fourth U3 = o.

44. Example i. 'Find the equation of the plane passing through

the origin and containing the line of intersection of the two planes

Aa^ + By + C0 = I and h!x + B> + Cz — i.

First we have Kx + By + C0 — i + K (A'jtr + B> -^ Cz —\)—o
for all the planes containing the line of intersection of the two given

planes. But as the required plane must contain the origin, the

equation must be satisfied by (o, o, o). Hence we have — i—K=o.
.-. K = - I.

The required equation is therefore

A.T + By + C^ - I - {Mx + B> + Cz - i) = o

or (A - A') :r -f- (B - B')^ + (C - C) := o.

Ex. 2. On the three axes of x, y and z take OA = a, OB =: b,

OC = c and construct on these a parallelopipedon having MP as the

edge opposite parallel to OC, and AR in the plane xz the edge

opposite and parallel to BN.

Find the equation to the plane containing the three points M, N
and R.

X V
Now NR is the line of intersection of the two planes — +—- = i and

a b

z
— = 1. Hence the plane containing this line must be of the form

-/
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'X' V / z \—h-T— i+K{ ij=:o. To determine K we impose the

condition that this plane shall pass through the point jNI {a, b^ o).

•* - / Hence we have — + -— i -f- K ( ^i ) == o. .-. K=: i.^ a \c J

Therefore the required plane is

XV z X y z
-- + V —H 1 — o or h^H—= 2.
a c a c

9C) |,|

Ex. 3. Find in like manner the equation of the plane containing

the points P, B, and C, in the same figure.

V Z X
Result, -y-+ :

o ^ ^^/y^/-/ oca
•• ^^ ^^^

45. If two given planes be in the normal form as

X cos a:4-j^cos/5 + cos ;/=/> and.r cos a! -\-y cos fi' •\-zzo^ y-=zp\

The plane containing their line of intersection is

X cos a-\-y cos fi-\-z cos y — p-\-Y^{x cos a \-y cos ^' + Z cos y'

-p') = o
And if K = ± i the equation becomes

. X cos a -\-y cos /? + cos y — P±l{x cos a + y cos /?' + cos y'

-/)=-• o

\which represents the two plane bisectors of the supplementary angles

imade by the given planes.

That is to find the equations to the plane bisectors of the supplementary

> angles made by two given planes, put their equations in the normalform
*

. and then add and subtract them.

Example. Find the two planes which bisect the supplementaiy

: angles made by the planes 2x-^'^y'\-z = 5 and ^x-{-4y—2z = 4.

Result,
2^ +3^+5-5

j^
3^+ 4>'-2.-4

^^,
VI4 V2I

Remark, If we place A = jv cos a-\-y cos ji -\- z cos y — p and

.A' = X cos a' -\-y cos ^' -{- z cos y' — /'.

Then A'— A = o is the plane bisector of one of the angles be-

itween the planes A and A' and A + A' = o is that of the supple-

imentary angle.

46. The three planes which bisect the diedral angles of a triedral have

a common line ,ofintersection. Let A= o, A'= o and A" = o be three
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planes in the normal form, and let the origin be within the triedral angle

formed by the three of which P their point of intersection is the vertex.

Then the plane bisectors of the angles made by these planes is

A — A' = o, A"— A =3 o, A'— A" = o. And as these when added

together vanish simultaneously, it follows that these three planes

have a common line of intersection.

We can give this theorem another form by conceiving a sphere to be

described about the vertex of the triangular pyramid as a vertex. The

three planes A= o, A':= o, A"= o cut the surface of the sphere in

arcs of great circles which form a spherical triangle and the three

planes A— A'=o, A''— A = o and A'— A'' = o cut the sphere in

three arcs of great circles which bisect the angles of this spherical

triangle and their common line of intersection pierces the sphere in

the common intersection of these arcs. Hence the above demon-

strates the following theorem, namely. The arcs of great circles which

bisect ihe angles of a spherical triangle cut each other in the same point

(the pole of the inscribed circle of the triangle).

^J. To find the point 0/ intersection of the planes Kx + By + C^r

^ D, Kx + B> + Cz = D', A'x' + B'> + C'2 = D".

We have by elimination

X =

D, B, C
D', B', C
D" B", C"

A, B, c
A', B', c
A" B", C"

y

A, D, C
A', D', C
A" D"

, C"

A, B, c
A', B', c
A" B", C"

A, B, D
A', B', D
A", B", D"

A, B, C
A', B', C
A", B", C"

(32)

Hence the condition that one of these shall be parallel to the line

of intersection of the other two, or that the planes shall not meet in

a point, is ac, ^ X -

A, B, C A.t.C^4''UA'.BUB".'f'*A

A', B', C
A", B", C" = 0, that is

'^^

A(B'C"-B"C') + A'(B"C - BC") + A'(BC'- B'C) = o.

47. The condition that four planes

A;«r + I

A'jt:+
A";«r+
A"';^^^

B^ + Cs + D
B>+ C's + E

B'> + C"2 +

-B"> + C"'2

=
>' =0
-D" =0
+ D"' = o shall meet in a point is'
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a; b, c, d
A', B', C\ D'

A", B", C\ D"
A"', B'", C", D'" = o. (33)

49, We have seen that the equations of two planes Kx-\-^y ^Cz
—

• D = o and h!x-{- Bj^ + QJz — D'z= o added together one or both

of them multiplied by any number give the equation of a plane

which contains the line of intersection of the two given planes. If

we combine these two equations so as to eliminate x we shall obtain

a plane parallel to the axis of x, containing this line of intersection.

If we eliminate _)^ we obtain a plane parallel to the axis of j contain-

ing the same line ; and finally if we eliminate z we obtain a plane

parallel to the axis of containing the" same line.



CHAPTER IV.

THE STRAIGHT LINE.

50. T/ie equations of any two planes taken simultaneously represent

their line 0/ intersection,

;;, ^, ^, t (34) represent a straight line the co-

ordinates of every point of which will satisfy the two equations.

If we eliminate alternately x and y between these equations we

obtain equations of the form

~
I (35) ^wo planes perpendicular respectively to the

planes xy and yz which represent the same straight line as equations

(35). These non-symmetrical forms (35) are very useful. The
planes x = mzi-a, y = nz + d are called the projecting planes of the

line on the planes of xz 2ind yz, and these equations are also the:

equations of the projections of the line on those planes respectively,.

y /J A^
t) n n

If we eliminate we get -—-=i ^or yz=z — x-]-q p the equa--
71 in

-^
VI 771

tion of the projection of the line on the coordinate plane xy.

The equations (35) of the straight line contain four arbitrary con-

stants, VI, n, p, q^ to which we can give proper significance by com--

paring these equations with the equation;^ = 77ix-\-h in plane coor-

dinate geometry.

The equations (35) maybe thrown in the form

^^=.2JZf=f (36)
7n n I ^^ ^

which gives us an easy choice of fixing the line by the equations;

of any two of its projecting planes.

51. To find the equations of a straight line in te7'vis of its directiom

cosines a7id the coordinates a, b, c of a point 07i the li7ie:

29
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Let a, (3, y be the angles made by the line with the coordinate axes

respectively. Let / be the portion of the line between any point

{x, y, z) on the line and the point (^, h^ c). Then / cos a = x—a

;

I cos /? ^=.y—b ; / cos y— z—c ; and eliminating / we have

x—a y—b z — c , .

COS ^ COS/i COS)/' ^^'^

This form (37) of the equation of a straight line is symmetrical

and is therefore very useful. It contains six constants but in reality

only four independent constants, since the relation cos^ ^H-cos^ y3

+ cos^ y :=• \ holds, and of the three a, b, c one of them may be

assumed at will, leaving only two independent.

We have seen that the equation (35) may be thrown into the form

KZl^' So also (37) may be thrown into the form (35) by finding

from them expressions iox y and x in terms oi z.

52. Tofind the direction cosines ofajiy straight lijie given by its eqicatiojis.

If the equations be in the form

X— a y — b z — c—^^— = —^— =—rr— . L, M and N are proportional to the
L J\I ]N

' ^ ^

direction cosines of the line.

So that we have

cos a _ cos /? _ cos y _ Vcos' a + cos^ p + cos^ y
L M N VL^ +MHN^ ~V^ + M^ + N2

Hence

L
cosfJ=

M
cosy

N

VL~-fxM^ + N=^ ^L^ + M^+^N^' ~VL•^4-M^-fN^

(38)

Hence to find the direction cosines of any straight line

Ax -\-By + Czz=zJ) )

K'x + B> + C^^ = D'
j

we throw the equations into theform

x— a y— b z—c

by eliminating y ajid x, and then write out the direction cosijtes as above

equal to each denominator divided by the square root of the sum of the

squares of all three.
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Thus to find the direction cosines of the hne
y — 7iz-^q

X— p V — q z
we^yrltelt ^"^ ==—

.

m n 1

Hence
m n . I ,

cos a — /-:j—- o
,

y cos 6 — / . ,
,

~ cos y— . „ , -

(39)

Ex. I. Find the direction cosines of the lines

3 ~ 4 ~ 2
^'^^'

y = 22 + s ) , . .
2x-i-sy-\-62 =z 24 , ^

y - 30—1 f
^^^ ' 3.r— 4_y+20 r= 10 ^

'^*

53. To find the cosine of ihe angle heiiveen hvo lines given by the equa-

tions

x—a y— h z— c x— a' y—b' z — c

We have shown (Art. 15)

cos V = cos a cos a' -{• cos /3 cos /?^+ cos y cos y',

XT .r LU + MM'4-NN' , ,Hence cos v — — —
. (40)

rr ^ ^' i •
i r X — VIZ ]-p ) X =: PI Z \-

p'

If the hnes be in the form ^ V
, ,

,y — nz^-q
\ y — n z-^q

rvu M mm' + nnj-i
Then cos V = =— =1. (41)

V I + ^^^^ + 71' \^ 1 +?n^ + ?i'-

Ex. I. Find the cosine of the angle between the lines

x=22 + 6]
^^^ and^^'==' I (2)y= 3^—1

)
>' =—2-^2

Ex^ 2. Find the cosine of the angle between the lines

x + 2y+ sz=5)^,) and
-^'--^+ ^"'=='1(2)

x—ji—z =4) x+j+ z —2)
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These equations may be put in the forms

X-
13 I

X-_3 1'

I

3 .

I

--^ 3"_ 2

4 -3 (0 and — 2

"5

2

3
~

2

rns V = -5 + 12 - 6

V26.V38 VI
I

26x38

=4> (3)

54. The condition of perpendicularity of two lines given by the

equations in last article is LL' + MM' + NN'^ o. (42)

The condition that they shall be parallel (see Art. 15)

is (LM'-L'M)2 + (LN^-L'N)H(xMN'-M'N7=.o

or -ir-p= iTFT =1^:77(43). These two conditions when the lines are in the

X = 7nz-\-p ) X = viz-\-p^
forms

,
V / , ^y z=z nz-\-q
\ y = n z-\-q

become mvi' ^-nn' -\-\ = o, (44) and vi = m\ 7t — 7t' (45) respec-

tively.

55. To find the condition of the intersection of two lines

X = mz -\-p ) . X =! VI 'z -\-p'

V ana
^ ^

y =: nz-\-q
) y ^^ n z-\-q

This is derived by eliminating x, y and z from the four equations.

Subtracting the third from the first we have o ={ni— m^)z-]-p—p'.

p p' q— q'

/. z = -^,—^— . Similarly from the second and fourth z ——, ,

7n —VI ^ n —n

and since the lines intersect these two values of are equal. There-

fore we have
,

= , . (46)m — VI n — n ^ '

Ex. Find / so that the lines
-^ = ^^ + 3 )

x^zz^i\
^^^j^ .^_

^ y — Z-^l \ y— 2z-\-q )

tersect.
•

If the two lines are in the form

V— l> _ z—c .

M ~ N ^^^' V "" M' ~ N'

x—a v— b z—c ,
'^"~'^'_ y^^' _ -^ "~ '^^

/ \
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the elimination of x, y and z can be effected more readily by writ-

ing (i)=Kand (2) =K'.

.*. x—a = LK
X—a — L

.

Similarly h~V = M'K'—MK

c-c' = N'K'-NK.

Therefore eliminating K and K' we have

L, — L, a— a'

M, -M', d-i>'

N, -N', c-c'

or

(a-a')(NM'-MN') + (5-<5')(LN'-L'N) + {c-c'){h'M -LM') = o.

(47)

T/ze Straight Liite under Given Conditions,

56. The equations of a straight line parallel to one of the coordi-

nate planes as xy are z ^=^ c, y r=- mx-\-p.

The equations of a straight line parallel to one of the coordinate

axes as z^ are
X = a")

y = b\
'

57. To find the equations ofa straight linepassing through a given point.

If (x
, y, z') is the point

-v^ jV" '1/ y 2, Z
we have seen the equation is —^—^

ivf
—~—N~ ^^^^

or if the equations are in

the form "" ^ \ then " ~ ) ,; y (40). Hence if the
y =inz-\-q

)
y—y' — n\z—z

) )

equations of a straight line contain only two arbitrary constants, all

the lines obtained by assigning values to these arbitraries pass through

a single point.

58. To find the equations of a straight line passing through tivo given

points {x,y', z') [x\ y\ z') using (48) we' have

x^'—x v'— v z'—z'—=: —-——

—

——^z—, or dividing? (48) by this to eliminate
L M N o \t / /
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L, M^ and N we have

x—x^ __ y—v _ z—z' .

If one of the points as {x\ y, z') be at the origin then the equa-

tions become

X y z
-^=y=7- (51)

59. 7^ find the equation of a straight litie passing through a given

point {x',y\ z) aiid parallel to a given straight line

X— a y—h z — c

From the first condition we must have ^
^, ~ Ar

~"
"n^

^ ^. . L M N
and n-om the second condition -j-^ z=—— r=—y.

Hence the required equation is

X—X y—v' z—z'
. (52)L U N

If the equation passing through the point x\ y', z' be of the form

x—x' — m'(z—z')
)

, , . ,. . -^ ~ mz-\-p
,; ,/ >- , and the given hue be

V—y =: 71 {z—z
) )

^ y— nz-\-q.

Then 71 = n and ;;/ = ;;/, and the line will be

^^^r^ = -(^-^')
)
(53)y—y = ?l(z— z).

60. To find the equations of a straight line passing through a given

point x\ y', z' and perpendicular to and intersecti7ig a given right li7ie

X— a y— h z — c

I ~ 7n '~
71 '

The required line by the first condition wdll be of the form

x—x' y—v' z—z'

where L, M, and N are to be determined by the conditions

1.1+lslm-V^n = o (Art. 54)
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and

(^-jr')(M;^--N;;2)+(3-y)(N/-L;z) + (^--0')(L;;z--M/)r:zo(Art.55).

6i. Ex. I. Find the equation of the line joining the points (b, c, a) f / i

and (C^^) ^^d show that it is perpendicular to the line joining the /hj^^ -^

origin and the point midway between these two points ; and that it

X V 2
is also perpendicular to the lines x =: v =. z and—=—-=-.

a b c

Ex. 2. The straight lines which join the middle points of the

opposite sides of a tetrahedron all pass through one point.

Take O one of the vertices as origin and OA, OB, OC as the

axes of ^, y, z.

Let M, M', M"be the middle points of BC, AC and OC respec-

tively, N, N', N" the middle points of the edges OA, OB and AB
opposite to those respectively. Then to find the equations of the

lines MN, M'N', M"N".

We apply the equation —, -==
,

"'

,, ——7 rr to the points^^ ^ ^ x—x' y —y z—z
(Mj, NO (]\r, N') (M", iN^') respectively.

Let OA = 2a ; OB = 2b ; OC =r 2c.

Then M is (0, b, c) and N is (^, 0, 0),

Hence the equation of MN is

'y ^ / x
x—a y z

-a ~ b~ c

Similarly the equation of M'N' is

X y-b z

a -b c

Anid the equation of M"N" is

X _y __z--c

b~ -c

(2)

(3)

(i) and (2) give x ——
, y =—, z —- and these values satisfy (3)

Consequently these lines pass through the point (-,-,-
\ 2 2 2
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Straight Line and Plane,

62. To find the conditio7is that a line shall be perpendicular to a plane

given by its equation.

If the plane be of the form x cos a-\-y cos /?+ cos y =z p (i)

we know that cos a, cos /?, cos y are the direction cosines of the

perpendicular from the origin on the plane.

And the equation of this perpendicular will be

X y z

cos a cos 16 cos y
'

If any plane Ax+ By+ C0 = D be parallel to the plane (
i
) we must

have

A _ B _ C
cos a ~ cosp ~~

cos y

and if the line —^—~ '

AT
~ N ' ^^ Parallel to the line

X j; z
^= ^= , we must have

cos a cos p cos y

L ]\I N
cos^ cos/y cosy

*

Hence the conditions that the line —^^—= ' =-<¥- shall be
L, 1\1 IN

perpendicular to the plane Ax + Bv+ Cz = D will be

ABC
L ~ M ~ N • (54)

Tr.u r "u • .-L r X = ??IZ-}-p ) . . X—p J'— O Z
If the hne be m the form ^ \ we write it-

—

- — -—^ = -
.

y :=i 7iz-\-q
)

VI p I

And the conditions are ^— =— ==— or -^ ^Y (sO
;;/ ;/ i B = ?iC )

^-^"^^

The equation of a line passing through the point .r',y, <&' and

perpendicular to the plane Ax+ By + Cz = D will then be

x—x'_ y—y' _ z—z'

"~A~'^'~B~~~"C~*



NOTES ON SOLID GEOMETRY. 37

or in the unsymmetrical form

Ex. Find the equation of a line passing through the point (i, 2,

3) and perpendicular to the plane ^x-{-2y— 40 = 5.

6^, To find the condiiion that a straight line shall he parallel to a

given plane. Let the plane be Aj; + Bv4-C0 = D and the line of

» ^ x—a y—b z—c
the form ^-=-3^^^^.
Now if this line is parallel to the plane it will be perpendicular to

the normal to the plane. Hence the required condition will be

AL + BM + CN = o. (56)

64. To find the conditions that a straight line shall coincide with a given

plane Ax + By + Cz = D.

x—a y—h z— c
1°. Let the line be of the form M ~ N

The line must fulfil the condition
( ) above of parallelism above,

AL + BM + CN =::o. And also any point on the line as {a^ 3, c)

must satisfy the equation of the plane. Hence we must have the

additional condition A.a-\-Bb-\-Cc—'D = o. (57)

2°. Let the equations of the line be of the form x=mz \-p
\

y=i7iz-{-q ) . Sub-

stituting these values of x and y in the equation of the plane, we

have

A(m+/)+B(;/0 + ^) + C0 = D,

whence 7.^=^— -^ And for coincidence this value of Z must
Km^^n-\-C

be indeterminate, and therefore A/ + B;7—D = o ) (rg)

Aw + B;^ + Cr=oj are the condi-
tions of coincidence.

Note. This last method is a general one of determining the con-

ditions coincidence of a straight line and any surface given by its

equation. That is substitute x andjj/ of the line in the equation of

the surface and since the z in the resulting equation must be inde-

4
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terminate if there be coincidence we treat this equation as an iden-

tity and make the coefficients of the different powers of z separately

equal to zero.

65. To find the expressionfor the length of the perpeiidictilar VT)from
any point P(x', y',z') on a straight line AB given by its equation,

o T 1- • 1 x— a v—h z— c
1 , 1 ,.

I . Let hne be =- -= where a, b, c are the coordi-
cos a cos p cos y

nates of any point A on the line. Now PD^ ~ PA^— ADl

But PA^ = [^x'-aY^\-{y -bY-V{z-cf and AD being the projec-

tion of PA on AB, we have

AD =: {x—a) cos a-\-i^y—b) cos ^^-{z—b) cos y.

Hence

YVi'^^x' -a)''-\-{y-bY y[z'-cY-{{x-a) cos a^{y-b) cos y5

+ (0-^) cos;/). '(59)

2°. If the given line be of the form ^

x—a y— b z— c

Then
A

cos a: =—===== ; etc., etc.

And therefore PD'^

3°. If the given line be x := mz-\-p

y ^=. jiz^q

Then PD^

66. To fijid the expressionfor the shortest distance between two straight

lines given by their equations.

This shortest distance is a straight line AB perpendicular to both

the given lines PB and SR.

Let the given equations

X— a v—b z— c , x—a y—b' z— c' . ^ ,

=:^ -=—— and 7—-—777= 7 and 6 = the
cos a cos p cos y cos a cos p cos y

angle between the lines.

And L, M, N the direction cosines of the perpendicular AB.
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Then we must have

L cos ^+M cos /? -f N cos y = o )

L cos a -h M cos /5' + N cos y' = o.
)

Whence

L M -

cos p cos ^'— COS j3^ cos y cos a cos y'— cos a cos y
~"

N
cos a cos //'—cos a! cos ^

'

VL'+ lAP+N'

.<

(cos /3 COS y'— cos /3^ COS y;2_j_(cos a COS y' —COS a' COS y)2-|-(c0S a COS ^'— COS a' COS ]8)2 ;

I

sin d
(Art. 15).

Now let P be the point [a, 5, c) on the line PB and Q be the point

{a\ b\ c) on the line SR. Then as the projection of PQ on AB is

AB itself, we have

AB =: (^-^')L + (^-^')M + {^-^')N =:

(62)
(a— aO(COS^COSv'—C0«7C0S^')+(^—^')(COSaCOSY'—C0Sa'C0S7)+(C—C')(COSaCOSj8'—COSa'COSjS)

""
sin 6,

If the given lines are expressed in other forms we can find cos a,

cos /?, etc. from the given equations and substitute them in {^^2),



CHAPTER V.

TRANSFORMATION OF COORDINATES.

67. To transform^ to parallel axes through a new origin the coordi-

nates of which referred to the old axes are a, b, c.

Let OA =: X, AN ^=i y, FN = s be the coordinates of/ referred to

the origin O and the axes Ox, Oy and Oz. Also let O' be the new

origin, and OA' 1= a, A'N' — b, N'O' == r be its coordinates and let

O'H 1= x\ HK z=zy' and PK = z be the coordinates of P referred to

O' as origin and axes parallel to the original axes.

Then x = OA = OA' + A'H.

Similarly x := a^x' \

and z ^ c-\-z'
j

Substituting these values in the equation of a surface we obtain the

equation referred to the new origin and axes.

68. To pass from a rectangular system to another system the oj'igin

remaining the sa?ne.

Let Ox, Oy, Oz be the old axes at right angles to each other Ox',

Oy\ Oz the new axes inclined to each other at any angle

OM = X, MN =y, NP =
O^V :=x\ M'N' =y, NT = z\

Now the projection of the broken line OM'-f MN'+ N'P on the

axis Ox is equal to the projection OM of the radius vector OP on

Ox. Let cos a, cos (3, cos y be the cosines of the angles which the

new axes make with the axis Ox ; then

X = x' cos a-\-y' cos l3-\-z' cos y,

40
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If COS a\ cos /?', cos y' be the cosines of angles which the new

axes make with the axis Oy, and cos a' , cos /5", cos y'\ the cosines

of the angles which they make with Oz, we shall have similar values

for V and z. Hence the three equations of transformation are

X =: X' cos ^ +y cos /3 -{-Z COS y \

y — X cos a +y cos f5' ^-z' cos y' V (64)

z — x' co^ a" -{-y co^ 13" -{-z' co^y". )

We have of course

cos' a + cos' /? + COS^ y r=z l \

cos' a' +cos'/5' +cos' / = i > (B)

cos' <^''+C0S'/5" + C0S' ;^" r= I. )

For the angles A, fi, 1^ between the new axes ofy and z\ of 0' and

x\ of x' and y respectively we have

cos A = cos a' cos a"+ cos (3^ cos ^" +cos ;k' cos y" \

cos yu = COS a" co?> a + cos /5"cos y5 +cos ;k"cos / > (C)

cos r = cos a cos <x' + cos ^ cos /?' +cos y cos }/'. )

69. To passfrom one system of rectangular coordinates to another also

rectangular.

The formulae in this case are the same as those in the last with the

exception that since the new axes are also rectangular cos A=o, cos }x

= o, cos V =0 and formulae (C) give

cos a^ cos (^'' + cos ft' cos /5" + cos y cos 7''= o \

cos a" cos a + cos /^"cos /? +cos ;k' cos ^ = o V (D)

. cos a cos a:' + cos /? cos y^' +cos y cos ^' == o. )

Since between the nine quantities there are six equations of con-

ditions, (B) and (D) there are only three of the quantities, cos of,

cos f3,
etc., independent.

70. In changing from rectangular axes to rectangular, there is

another set of equations of condition among the quantities, cos a,

cos ^, etc., equivalent to the preceding which result from the fact

that the new axes are rectangular. For a, a', a!' being the angles

made by the old axis of x with the new rectangular axes, etc., we
must have

cos' a + cos' a! + cos' a" zn \ \

cos' /^+ cos'/5' + cos' (3" ^\\ (E)

cos' y + cos' y + cos' y" z=z i )
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COS a cos /?4-cos a cosy5'+cos a^ cos /5" = o
]

cos a cos ;k + cos a' cos ;k' + cos flf'' cos y'z=.o \ (F)

cos ji cos ;^ + cos yS' cos 7' + cos /5" cos /" =: o )

and the new coordinates expressed in terms of the old are

X = X cos a -\-y cos ft -\-z cos y )

y = a: cos a -\-_ycos /3' +s:cos y' > (F)

z' r= X COS a" +^ COS/5'' -f 2: COS /" )

71. In the Study of surfaces by sections made by planes it is often

necessary to transform the coordinates in space to coordinates in

the cutting plane. To do this we must fix the plane with reference

to the old coordinate planes. Let the equation of the plane be given

as z =Ax-hBy, Then the angle 6 which this makes with the plane

xy is determined by the equation cos 0—— = and the

angle cp which it traces on that plane makes with the axis of x

by the equation tan cp = — —, the trace being A.v + B;^ = o.

Let x'Oy be the given plane, cutting the plane xy in the line

Ox' which take for the axis of x' and let Oy' a line perpendicular

to it in the given plane be the axis of ji^' and OR = x\ RM =y
the coordinates of any point M in the plane referred to the axes O.v',

Oy ; also let OQ = x, OP =j;, PM = ^ be the coordinates of M
referred to the old axes O.v, O;', O-s:. Then the angle ]\IRP = d

and XOX' = cp.

Then PR =/ cos 6, V^l =zy sin 6,

OQ =: OR cos ^4-RP sin cp, QP= OR sin cp-RT cos cp.

/. z =y sin )

X = x' cos ^+y cos s'm cp y (65)

J' = x' sin cp—y cos 6 cos cp )

And if these values be substituted in the equation of any surface

Y{x, y, z) ~ o the result will be a relation bet^veen x andy, coor-

dinates of the curve cut from the surface by the plane.

72. If the cutting plane contain one of the coordinate axes, the

formulae are simplified and in many cases sufficiently general.

Let X'OY be the cutting plane containing the axis ofj-; O^' its trace

in the plane zx the axis of x', PM=a;', OM —y. the coordinates of
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any point P in the section, ON =3 x, NQ ^=.y, QP = z the coordi-

nates of P referred to the old axes. Then angle PMQ = d, and

MQ =. X cos d, PQ = X sin ft .
*. The formulae of transforma-

tion are

X = x' cos 6 )

y=y'
\

(66)

z ^=z x' sm 6 )

That is, we have only to make x := x' cos 6, z =: x^ sin d, y ^y in

the equation of any surface, in order to find the equation of the sec-

tion of this surface by a plane, containing the axis of^and making an

angle d with the plane xy.



CHAPTER VL

THE SPHERE.,

73. To fijid the equation of the sphere,

1°. In rectangular coordinates.

Let a, b^ c be coordinates of the Centre, and Radius = R.

The equation is then (Art. i i)(.r— ^)' + (jV— ^)' + (2—0'=R- (67)

or if the origin be at the centre

x'-\-f^z^^V^\ (68)

2°. In oblique coordinates.

Let A, //, V be the angles of the axes then the equation is (Art. 16)

2[x—a)(z—c) cos }x-\-2^y—h)(z—c) cos t^ z= R^ (69)

or if the origin be at the centre

^^ + j^ + 2:^ + 2a7cos \-\-2xz cos }x-\-2yz cos V = R^ (70)

3°. In polar coordinates

Let r', a, /3 be the polar coordinates of the centre then the equa-

tion is

r^ + r-— 2rr'(cos 6 cos ^4-sin 9 sin a cos {cp— /3)) = R\ (71)

If the pole be at the origin and the centre on the axis of 0, the

equation is

Y^= 2R cos e, (72)

Since that is the equation of the generating circle in any one of its

positions.

44
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74. The Sphere under conditions (coordinates rectangular).

The equation ((i^]) may be written

or x'-i-/+2'-{-'Dx-i-'Ey + F2 + G = o, {js)

Auxd since this equation contains /bur arbitrary constants, the

sphere may be made to fulfil /bur conditions (which are compati-

ble) and no more. Four given conditions give four equations for

determining the constants D, E, F, G, and with these determined

we know the radius and centre of the sphere, for we have only by

completing the squares to throw the equation
( ) into the form

to see that the centre is ( , , ) and the radius is

\ 2 2 2/

J32
£2 p2

- + — + G.
4 4 4

1°. The equation of a sphere passing through a given point A, e, f, is

x^^y''-^z'^'Y){x-d)-\-Y.{y-e)-\-Y{z-f)-d'-e'^f':=^o, (74)

If the given point be the origin the equation is

^'+y + 32 + Dj^ + E^+ F0r= o. (75)

2°. The equation of a sphere cutting the axis of z at distances c and d
from the origin is

x^-\-f^{z-c){z-c)^T)x^Yy^ o (76) for"^^^
^

must give two values for 0, c and c, and this equation fulfils that

condition.

3°. The equation of a sphere touching the axis of z at a distance cfrom
the origin is

x^-^y'^-\-{z—cY\-^x^Y.y — o (jj) for this gives two coinci-

dent values of = ^ when "
~
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4°. The equation of a sphere touching all three axes at distance 2ifrom

origin.

To meet these conditions the equation must be of such a form as

to give equal roots for z when _ > the same equal roots for y

when
'

\ and the same equal roots for x when -^ ""
v . Let

Z— O
\

^
z— o

\

the distance of points of contact from origin be a, then the equation

will be

x'±2ax^y'±2ay-\-z''±2az-^a^ =.Q (78)

as this fulfils the above conditions.

5°. The equation of a sphere passing through the origin and having its

centre on the axis ofx\s>

x'-\-f-\-z'^2Rx. (79)

6°. The equation of a sphere tangent to the plane xy at the point (a, b)

is

{x-aY^{y-hy--\-z--\-Yz^o (80)

for then 0=0 gives x^=^a, andj'=(^, a point {a, b) in the plane xy,

75. Interpretation of the expression

(^x-aY^{y-hY^(z-cy-^\ (i)

1°. Let (jc, ji', 2:) be the coordinates of a point P without the

sphere whose centre O is (a, h, <:) and radius == R and let P^I be

tangent to this sphere at the point M. Then P]\P =: OP^— OMl

Now QY^^^x-aY-^{y-hY-\-(z-cY

and hence PM^ = {^x-aY-^^y-Vf -V[z-'cY-'^\

Therefore the expression (i) is the square of the tangent from the

point P to the sphere.

2". Let Y{x,y,z) be a point within the sphere. Join OP and

erect a perpendicular PM to OP meeting the sphere in i\I, and join

OM.
Then P]\Pi=OM"^-OP = ^' -{{x-aY^iy-hY -Viz-c)')
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That is the expression (i) becomes negative and represents the

square of the half chord through P perpendicular to the radius

through P.

76. Radicalplane of two spheres,

Def. The radical plane of two spheres is the plane the tangents

drawn from any point of which to tlje two spheres are equal.

If the equations of the two spheres are

the equation of their radical plane is

{x-aY^{y^hY^{z-cy-^^'-{{x-ay^{y-^hJ-^{z-cJ^^')
— o

For this expresses (Art 75) that the squares of the tangents from

point {x, y, z) to the two spheres are equal^ and moreover it is an

equation of the first degree in x, y and z and therefore the equation

of a plane. If the spheres intersect their radical plane is their

plane of intersection. It may be easily proved that the radical

plane of two spheres is perpendicular to the line joining their cen-

tres. '
-

J J, The six radical planes offour spheres intersect in a common

point.

- Let S = o, S' zn o ; S'' = o ; S'"= o be the equations of the four

spheres. Then the equations of their radical planes are

S-S" ^o S' -S"'=:o

S-S"'z=o S"-S'" = o

These may be added, so as to vanish simultaneously and therefore

the planes intersect in a common point. This point of intersection

of the six radical planes is called the radical centre of the four

spheres.

78. Examples :

1°. Find the centres and radii respectively of the spheres

^^-f-y + 2^— 2^ + 3;'— 52: = 0.
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5jc^ + 5^4- 52:'-- 1 2:^+20); +240— 40 = o.

x^-\-y^ + z^ = 320.

2°. Find the equation of a sphere passing through the origin and

the points i, 2, 3, ~i, 4, 5> 3. o^ i-

CHAPTER VIL

CYLINDERS, CONES, AND SURFACES OF REVOLUTION.

79. Cylinders. Def. A cylinder is a surface generated by the motion

of a straight line which always intersects a given plane curve, and is

always parallel to a fixed straight line. The moving straight line is

called the generator; the plane curve which it always intersects is

called the directrix ox guiding curve, the fixed straight line the axis,
•*

80. To find the general equation of a cylinder.

Let m, n, i be the direction cosines of the axis.

And let 3^ ^ \ (0 ^^ ^^ equations of the generator in

which 7n and n are constant since the generator remains parallel to

the axis. For convenience take the guiding curve in the plane xy,

its equations will then be
^^^^~~

' (2) Now making = o in
2=0 )

^

the equations (i) we obtain x—py—q for the point in which the

generator pierces the guiding curve F(:v, y) in the plane xy.

Hence we have F(/, q) — o, (3) and eliminating the arbitraries/

and q between (i) and (3) we obtain

Y{x—mz,y—nz)^:^o (82)

the general equation of cylinders.

If the cylinder be a right cylinder with its guiding curve in the

plane xy and the axis of 2 for its axis, then in equation (82) m z= o,

and n=^Q, and the required equation of the cylinder is

Y{x,y) = o, (83)
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8i. Cylinders of second order. We shall confine ourselves to cylin-

ders whose equations are of the second degree.

1°, To find the equation of the oblique cylinder with circular base.

Here Y(x,y) = x^ +/— R^ — o. Hence Y(x—mz^ y—nz) — o

%\\^%(x—mzY-\-{y'-nzf—^^o (84) the required equation.

2°. To find the equation of the right cylinder with circular base. If

the axis be the axis of z, the equation is F(^)= o that is

3°. To find the oblique cylinder with elliptical base. Let the guiding

X^ 1/2

curve in plane ^y be - +^ = i.^ -^ a^ b'

b''

X V
Then ¥{x,y) = ^+^—1=0 and the equation is

(x — mzY (y—nzY

a'
"^

b'
^

4°. The equation of the right cylinder with elliptical base whose
.^2 ^,2X V

axis is the axis of z is F{Xy y) = o, that is, — + ^=: i.

5°. The equation of the right parabolic cylinder whose axis is the

axis of is y^^4dx = o or^ = 4dx.

82. Cones.

Def. A cone is a surface generated by a straight line which passes

through a fixed point and always intersects a given plane curve.

The fixed point is called the vertex, the moving line the generator,

and the given plane curve the directrix or guiding curve,

^'^, Tofind the general equation of a cone.

Let the coordinates of the vertex be {a, b, c) the equation of the

x—a y~b z—c , . , , 1 ,. . . ,

generator = = (i) and take the directrix in the

plane (jcy)— its equation being then _ j- (2). Now if

eliminate the arbitraries m and n between the equations (i) and (2)

the result will be the equation to the cone, the locus of the right

line (i).

^ 2ZI a mc )

Making = o in (i) the values of x andy, namely, _ , >•

which result will be the coordinates of the point in which the gene-

5

we
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rator meets the plane xy and these will consequently satisfy F(^, y)
= o the equation of the directrix. We have therefore '

Y{a—mc, b—nc) = o (3). But from (i) m =- , n =— ,

z c z— c

and therefore (3) becomes

or

\ Z— C Z— C

the general equation of cones. If vertex be on axis of z, then a = o

and d =zo and equation (85) becomes F( ——-, —j =z o. (86)

84. Cone with vertex at origin.

If the vertex of the cone is at the origin and the directrix in a

plane parallel to the plane xy, and at a distance c from it then the

X V z
equation of the generatrix will be — =z'—=z—

,
(i) the vertex (o, o, o)

m n I ^

and the directrix will be ^
-^^^ ~ I (2)
z = c

To find the point in which the generator meets the directrix we

X ^^ nic )

make0r^<:in (i). We thus get ]
^ ^ ° y :=zi nc

)

X V
Hence we have Y{niCj nc) =0, but /?/ = — , and « =— from (i).

Therefore

F(f,f)=o m
is the equation required.

The equation (87) is a homogeneous equation in x,y and z,

85. Cones 0/ second degree. 1°. The eqiiaiion of an oblique cone with

circular base.

The equation of the directrix is Y{x, y) = x^-\-y^— R^ = o.

Hence

\ Z— C Z— C I \ Z— C I \ Z— C J
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1

or {az'-cxY-\-(hz-cyY^^\z-c)\ (88)

2"^. To find the equation of a right cone with circular base, the axis of
z being the axis of the cone and vertex being (o, o, c). The equation

of the directrix IS ^ -^

'

-^

z=^ c.

^ ^[—cx ^cy\ . c^x^ cY ^,Hence F( ,
—~)==o is -, ^4- ,

' ,, -R'\z—c z—c)

or Ar^4-y=-j(0— r)^ (89). This is a cone of revolution about the

axis of <sr.

3°. The equation of a right cone with vertex at the origin and circular,

elliptical, or hypej'bolic bases.

The equations of the circular base (directrix) are

}•

F(jt:,j^')=;vH/-R'=o
2:— c

Hence

f ex cy\ c^x^ cY R^
Ff— , ^\=zo gives -^H

—

^— R^=:ooTx'^'{-y=~.z\ (90)

The equations of the elliptical and hyperbolic directrices are

^ +^. - I ^ o f and -,~- - 1 =. o f
respectively.

Z = 0) Z =: o)

Hence the elliptical and hyperbolic cones are

c'x' cY x' f z' .

,-^ +^-^.-i-oor-+--z=- (91)

c'x'' cY x" y r

86. Surfaces of Revolution.

To find the general equation of a surface generated by the rroolution of
a plane curve generator about the axis of z.

Let SP=:r be an ordinate of the point P to the axis of z of the
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plane curve and OM = x, MN =jk, NP = z the coordinates of P.

Then SP^ = ON^ = O^P + i\IN^ or r' - x'-^y'.

That is, the distance from any point of revolving curve (gen-

erator) from the axis of z is r=L^x^-\-y^ (i). But r being an ordi-

nate of the generating curve to the axis of z we must have by the

equation of the curve in any position r = F(0) (2). Therefore

eliminating the arbitrary r between (i) and (2) we have

V^^' = F(2) (93)

the required equation of surfaces of revolution about axis of^r.

If the curve revolved about the axis of ;v the equation is

Vy+? = F(.v). (94)

87. Surfaces of revolutmi of secojid 07'dei\

1°. Equation of Cylinder of revolution about the axis of z. The
equation of the revolving line is = a.

.*. V-^'+y^ = F(2^) gives x-+y =: a^,

2°. Equation of a Cone of revolution about the axis of z, vertex at

(o, o, c). The equation of the generating line is r ^ 7n[z—c),

Hence or^+y = ??i^{z—cy (95) the required equation where m is

the tangent of the angle made by side of cone with axis of 0.

3°. Equation of the Sphere. The equation of the generating curve

is r^ + 'S:^ ^=z a^ or r z=z^fa^—z^.

Hence V^t^M-y = "fa^— z^ or x'^ +y^-\-z^ — al

4^. Equation of the Surface generated by the revolution of an ellipse

about its conjugate axis,

r^ z^ a^
The generator is -. + 7^ = i or r^ = i^(3^— 2:^).

a

Hence the equation of the surface is

oc^ -l- v^ z^
or _^+_=i. (96)

This is one of the ellipsoids of revolution called the oblate spheroid.
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5°. Equation of the Ellipsoid generated by the revolution of an ellipse

about its transverse axis the {^Prolate spheroid).

Take the axis o{ x as the axis of revolution. Then the equation

x^ r^
of the generator is -^ + -5 = i

a 0'

32

or r^ = —aC'^'^— ^^). Hence V^'^+ 'S:^ — Y{x) gives

^ + ^=1 (97)

the required equation.

88. Hyperboloids of revolution. Definitions. When the Hyperbola

revolves about its conjugate axis it generates the Hyperboloid of revo-

lution of one sheet. When it revolves about the transverse axis it gen-

erates the hyperboloid of revolution of two sheets.

1°. Equation of the Hyperboloid of one sheet. Let the axis of z be

the conjugate axis then ——— = i or r^ =: — (2;^-f<5^). Hence

2°. The equation of the Hyper'boloid of revolution oftwo sheets. Take

the axis of x as the axis of revolution. Then the equation of the

x'^ r- <5-

generator is — —
-^
— i or r^ —— (:v^— a^).

Hence for the equation of the surface we have *

^--^=1. (99)

89. Equation of the Paraboloid of revolution about the axis ofx.

The equation of the generator is r^ = ^dx.

Hence the equation of the Surface isj'^+ 2:^ = Adx. (100)

5*



CHAPTER VIII.

ELLIPSOIDS, HYPERBOLOIDS, AND PARABOLOIDS.

89. To find the equation to the surface of an Ellipsoid.

Def. This surface is generated by a variable ellipse which always

moves parallel to a fixed plane and changes so that its vertices lie on

two fixed ellipses whose planes are perpendicular to each other and to

the plane of the moving ellipse, and which have one axis in common.

Let BC, CA be quadrants of the given fixed ellipses traced in the

r* planes j^^^, zx \ OB = c their common semi-axis along the axis of 0,

OA = a (on the axis of ^), and OB = b (on the axis oiy) the other

semi-axes
;
QPR a quadrant of the variable generating ellipse in any

position, having its centre in OC and two of its vertices in the ellipses

AC, BC, so that the ordinates QN, RN are its semi-axes ; also let

ON — z, NM = x^ MP —y be the coordinates of any point P in it:

Then -^ -I-^^ =z i. And since Q is on the ellipse AC we

.
QN^ z' ^ ., , RN^ 2'

h^ve -^=i__ Similarly -^= I--.

Hence eliminating RN^ and QN^ we have

x^ f

"(-7:) '(-;.)

X^ 1/2 2^

the equation to the surface.

90. To deternwie theform of the ellipsoidfrom its eqiiaiio7i. Since in

x^ y^ z^
the equation —^-l--^ +^ = i, x can only receive values between a

54
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and — a,y between h and — b, and z between c and — r, the surface

is limited in all directions.

If we put 0=0 we obtain -^ +^ — i, for the equation to the
a b^

trace on xy, which is therefore the ellipse AB.

X^ 02

If weputj^== owe have —^-{.—^ —i^ the ellipse AC.
a*

»,2

If we put :v = o we have '-—-^—-=.1. or the ellipse BC.
c

These three sections by the coordinate planes are called the princi-

pal sections, and their semi-axes a, h, c, are the semi-axes of the ellip-

soid ; and their vertices the vertices of the ellipsoid, of which it has six.

If we make z^=^h we have

d^'^ b^~~^ c"'

the equations of any section parallel to xy, which is an ellipse similar

to AB, since its axes are in the ratio oi a to b, whatever be the value

of ^, and which becomes imaginary when h ^ c. In the same man-
ner all sections parallel to xz^ and yz are ellipses respectively similar

to AC and BC. The whole surface consists of eight portions pre-

cisely similar and equal to that represented in the figure.

x'^ -\- y^ z^
Cor, If3=athe ellipsoid becomes ^ h-y- = i the ellip-

soid of revolution about the axis of z. Art. (87), all the sections of

which by planes parallel to_>';^, are circles. Hence the spheroids may
be generated by a variable circle moving as the variable ellipse, in

Def. Art. (89).

^ 91. To find the equation to the hyperboloid of one sheet.

Definition. This surface is generated by a variable ellipse, which

moves parallel to a fixed plane, and changes so that its vertices rest

on two fixed hyperbolas, whose planes are perpendicular to each

other, and to the plane of the moving ellipse, the two hyperbolas

having a common conjugate axis coincident with the intersection of

their planes.

Let AQ and BR be the given hyperbolas traced in the planes zx.yz
;

OC = c their common semi-conjugate axis coinciding with the axis

of z ; OA = a, OB = b the semi-transverse axes
;
QPR the generating

ellipse in any position having its plane parallel to xy^ its centre in
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OC, and its vertices in the hyperbolas AQ, BR, so that the ordinates

NQ, NR, are its semi-axes. Also, let MN = ^, MP =7, ON = z,

be the coordinates of any point P in the generating ellipse ; then the

ellipse PQR gives

NQ^ ' NR'

Also from hyperbola AQ —^
^ — ^«

c

NR^ 0-

And from hyperbola BR ~f^-""» — = i«

Hence^

•S^ \ r„/-S^

^'^ r

+-.-/-.=.

or ""?"+^ — ~-r ~ I (^02) the equation to the surface.

92. To determine the form of the hyperloloid of one sheet from its

equation.

Since the equation (102) admits values of x, y and z positive and

negative however large, the surface is extended indefinitely on all

sides of the origin. If we put = we obtain

x^ y^
—^+^ = I for the trace on ^r)^ w^hich is the ellipse AB. Similarly

x^ z^
the sections by the planes xz and ^'2: are respectively -^ ^~ ^ ^^^

y z
hyperbola AQ, and^—— = i the hyperbola BR. The ellipse AB

and the hyperbolas AQ and BR are the principal sections. The sections

parallel to xy are all ellipses similar to and greater than AB. The

sections parallel to xz and j^ are hyperbolas similar to the principal

sections.

The -semi-axes a and h are called the r^^/ semi-axes of the surface

and c the imaginary semi-axis, since a: = o and y ^=.0 give z =
±<:\/— I. The extremities of the real axes are called the

vertices of the surface. The surface is continuous and hence is

called the hyperboloid of one sheet. The hollow space in the inte-

rior of the volume of this hyperboloid of which the ellipse AB is the

smallest section has the shape of an elliptical dice-box.
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Cor. If 3 = ^ the equation becomes ~ ^= i that of the

hyperboloid of revolution of one sheet. Its sections parallel to xy

are all circles.

93. To fifid the equation to the hypei'holoid oftwo sheets.

Definition. This surface is generated by a variable ellipse which

moves parallel to itself, with its axes on two fixed planes at right an-

gles to each other and to the plane of the generating ellipse ^nd ver-

tices in two hyperbolas in those planes having a common transverse

axis.

Let AQ and AR be the given hyperbolas traced in the planes zx,

xy, OA = a their common semi-transverse axis along the axis of ^,

OB = h OC = c the semi-conjugate axes along the axes ofj' and z
;

QPR the generating ellipse in any position having its plane parallel

Xoyz, its centre in Ox, and its vertices AQ, AR so that the ordinates

'QN, RN are its semi-axes. Let ON — x, MN —y, MP = be the

coordinates of any point P in the ellipse.

v'^ z"
Then -4-- + ,4. - I

also from hyperbola AQ

RN^ ' QiV

QN- x^

RN^ jv^

and from hyperbola AR —

—

^
U" a

Hence jr~,
—

i r +
X' — I

r-2

-^.--TT-^r-^ (103)

the equation to the surface.

94. To determifie theform of the hyperboloid of two sheetsfrom its equa-

tion.

The equation shows that all values of .r between -\-a and —a give

imaginary results, therefore no part of the surface can be situated be-

tween two planes parallel \.oyz through A and A' the vertices of the

common transverse axis ; but the equation can be satisfied by values
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oi X, y, Zj indefinitely great, therefore there is no limit to the distance

to which the surface may extend on both sides of the centre.

If we make x^=^o we have -r^ + —^ = — i an imaginary curve

for the principal section by the plane j^'2:. For x ^=i ± h and h'^ a

v^ z^ h^ ,

we have ~ -i

—

— = —^ i which represents similar ellipses. The

principal sections by the planes xy and zx are AR and AQ, respec-

tively. For- the sections parallel to xy and putting 2: = ± / we

x" y ^
have —

^

-j^ = I + —j^ a hyperbola similar to AR with its vertices

in AQ and the opposite branch of that hyperbola and conjugate axis

parallel to Oy, In the same way the sections parallel to zx are hy-

perbolas similar to AQ with vertices in AR and its opposite branch

and conjugate axes parallel to Oj, za is the real axis of the surface

and its vertices the vertices of the surface. The axes 2a, 2b and 2c

are the imaginary axes of the surface as it cuts neither
J^^
nor z. The

whole surface consists of two indefinitely extended sheets perfectly

similar and equal, separated by an interval. Hence its name.

x^ y^ ^ Z'
Cor. If d =: c the equation becomes ~ —-— = i the equa-

a" r

tion to the hyperboloid of revolution about its transverse axis.

95. Asymptotic cones to the two hyperboloids,

1°. The hyperboloid 0/ one sheet has an interior asymptotic cone,

X^ V* z^
Putting its equation —y- + ^7^ Y" — ^ (^) in the form

x^ y^ z^ / c'^ \—j--\-^z=L~^{i-\ ^ j. (2) Now when z is very great

—J- is very small, and hence the limiting form of (2) for increased
z

without limit is

X^ y2 ^2

~~Y + '-jr ~ "T (3) t^^ equation of an elliptical cone having

its vertex at the origin and its elliptical section parallel to xy.

Moreover, this elliptical section is always within the corresponding
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section of the surface by the same plane. For putting z — ±,h\Yi

(i) and (2) respectively we have

^—K- + 4^ = I H

—

TT for the section of the surface

x^ y^ k^
—^ + 4^- = -^ for the section of the cone,
a^ b^ r

This cone is asymptotic to the hyperbola.

2°. Tht hyperholoid of two sheets has an exterior asymptotic cone.

x^ V^ z^
Putting the equation —^ ~-^ ^ =1 (i) under the form

x^ y^ ^

—Y = ^T + '~yI ^ + —~2
—^~—2" \ w^ ^^ve as a limiting form of

^ /
y + -^
b' r

this equation when^ and z increase without limit,

—^ rr 4— -I (2) an elliptical cone with vertex at the origin
a c

and with an elliptical section parallel to the plane yz. Moreover,

this elliptical section is greater than the corresponding section of.

the surface by the same plane. For putting x:=i ±h in (i) and (2)

1'^ z^ h^
respectively we have ^ H ^ = —^ — i

^ ¥ c^ a^

f z' _ h'

This cone is asymptotic to both branches of the hyperboloid.

96. To find the equation to the elliptic paraboloid.

Definition. This surface is generated by the motion of a parabola

whose vertex lies on a fixed parabola, the planes of the two parabolas

being perpendicular to each other, their axes parallel and their con-

cavities turned in the same direction.

Let OR be a parabola in the plane xy, its vertex at the origin, its

axis along the axis of at, and / its latus rectum; RP the generating

parabola in any position with its plane parallel to zx, vertex in OR,

and axis parallel to Ox, and let /' denote its latus rectum. Also let

ON = X, NM =^v, MP =: be the coordinates of any point P in it;

also draw RM' parallel to Oy.
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Then z' = l\ RM = l'. M'N and / = I'.OM'

;

butOM^ + M'Nzn.r.

.*. ~--\-—-^=ix (103) the equation to the surface.

97. 7^ determine theform of the elliptic paraboloidfrom its equation.

Since only positive values of x are admissible, no part of the sur-

face is situated to the left of the planej'^. But the surface extends

indefinitely in the positive direction of jv. If we makej^' = o, 2:*= I'x

is the equation to the principal section OQ, and all sections parallel

to zx are parabolas equal to OQ, with vertices in OR ; similarly, all

sections parallel to xy are parabolas equal to the other principal sec-

tion OR, with vertices in OQ. If we make x — h we have

f z' _
Ih'^l'h-^'

Therefore the sections parallel to ^are similar ellipses, and hence its

name.

Cor. If /=3 / the equation becomes x+z'^ = Zr, the paraboloid of

revolution.

98. To find the equation to the hyperbolic paraboloid.

Definition. This surface is generated by the motion of a parabola

whose vertex lies on a fixed parabola, the planes of the two parabolas

being perpendicular to each other, their axes parallel, and their con-

cavities turned in opposite directions.

Let OR be a parabola in the plane of xy, vertex at the origin, and

axis along with the axis of .r, and /its latus rectum, RP the generat-

ing parabola in any position, vertex in OR, axis parallel to O.r,

and let I denote its latus rectum, and ON = x, NM —y, MP = 0,

the coordinates of any point P in it ; draw R*M' parallel to Oy,

Then

2^=/'. MR and/^/.OM';

but OM'-MRz= ON = .r.

Hence :
— — x (104), the equation of the surface.

99. To determine theform of the hyperbolic paraboloidfrom its equation.

The surface cuts the coordinate axes only at the origin, and since

the equation admits positive and negative values of .v, >', z, as great
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as we please, the surface extends indefinitely both ways from the

origin.

If we makej^^ = o we have z^ = tx the principal section, the para-

bola OQ, with its concavity turned towards the left oiyz, and all sec-

tions parallel to zx are parabolas .^qual to OQ with their vertices in

OR. Making = we have^^ = Ix the parabola OR, and sections

parallel to xy are parabolas equal to OR with vertices in OQ.
If we make ^ = o we have the principal section in yz,

z^/ 1 z=i ±y \/r or two straight lines through the origin; and for sec-

tions parallel toyz making x = /i we have

~ -T-r = I a hyperbola with its vertices in OR, and con-
i/i In

jugate axis parallel to Oz, For h negative the section becomes

z^ v^
-777 — %- =1 a hyperbola with its vertices in OQ, and conjugate
In In

axis parallel to Ov.

The surface has but one vertex, and consists of one sheet and one

infinite axis.

1 00. A symptotic planes io Ihe hyperbolic paraboloid.

The equation — -7- = x may be written

j;2 ^2 / rx\
—r~~j^ V

^ "^—2"
)
which has for its limiting form

when y and z become infinitely great with regard to x, -— = —7-
,

V Z V z
or ^-= = ±

—

-, This represents two planes -^^ = H

—

t= and
V/ a// V/ 'S/I'

V z—— = -=. . through the origin and asymptotic to the surface.

V / V /

These planes contain the asymptotes to all the hyperbolic sections of

the surface parallel toyz,

loi . ITie elliptic and hyperbolic paraboloids are particular cases of the

ellipsoid and hyperboloid of one sheet respectively when the centres of these

surfaces are removed to infinite distance,

x^ v^ z^
Take the equation -^ + 4r + -^ =1, and transfer the origin to

a^ 0^ c^

6
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the left vertex of the axis la (— ^, o, o). (New coordinates being

parallel to the primitive.)

{x—af y \

^^ — .

-^^ y^
-L

"^^ — ^'^

or multiplying through by a -^^ h -tf ± -t- =2.r (i),

a a

in which — , and — are the semi-latera recta of the principal sec-
a a

tions in xy and zx. Now make a = 00, and put — and —

,

a

which remain finite, equal to / and / respectively.

/. (i) becomes

— ± -^ = 2jt:, the equations to the paraboloids.

102. The equatmts of the surfaces of the second order which we have

been studying are of the twoforms

A;tHBy + Cs^=D (i)

^f^Qz'^kx (2)

and we will show hereafter that all the surfaces of the second degree

may by transformation of coordinates be included in these two forms.

The first form (i) includes the sphere, ellipsoid, hyperboloids,

cones of second order, elliptical and hyperbolic cylinders—which

have centres. For if — .r, —y^ —z be written for {x, y, z) in (i)

the equation is not altered, therefore for ever}^ point P {x, j', z) on

the surface there is a point P' {—x, —y, —z) and PP' passes through

the origin O and is bisected in O.

Moreover, the coordinate planes bisect all the chords parallel to

the axes perpendicular to these planes respectively and 2lx^ principal

planes of the surface.

The second form (2) includes the elliptic and hyperbolic parabo-

loids and the parabolic cylinder which have a centre at an infinite

distance.

The planes j/0 and zx are principal planes of the two paraboloids,

the other principal plane being at an infinite distance.

Also both families may be represented by the equation
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the origin being at the vertex and A = o when the surfaces have

no centre.

Examples.

1. Construct the sphere whose polar equation is

r^asin^cos^. ^V^<f^^^^^ W^f ^^^^(f

2. Find the locus of the point the sum of the squares of the dis-^^
^^ ., /^

tances of which from n fixed points is constant/<^v<^/v /j=* 2^/^--'=^-'^'~^~- - '^ it

3. Find the locus of the point the ratio of the distances of which
^

from two fixed points is constant. -^^^'^ ,>:v^v^y-^^ ^^-/Jv^
'^'1$:^l^^o

4. Find the equation of the surface generated by the motion of a

variable circle whose diameter is one of a system of parallel chords

of a given circle to which the plane of the variable circle is perpen-

dicular.

5. The sphere can be represented by the simultaneous equations

X = a cos q) cos d \

y =z a cos ^ sin ^ V •

z = a s>ixi cp )

6. The ellipsoid may be represented by the equations

x=^ a cos cp co^ 6 \ £%^^V|1 */

y = b cos ^ sin ^ >• •

s = ^ sin (p )

7. The hyperboloid of one sheet may be represented by the equa-

tions

X -= a SQC o) cos 6 ) 4,y i,

y z=z SQC cp Sin u > '

z = c tan q) )

8. The hyperboloid of two sheets may be represented by the equa-

tions

X =^ a sec q) )

y = d sin d tan q) V •

z — c cos 6 tan q? )

9. A line moves so that three fixed points on it move on three

fixed planes mutually, at right angles. Find the locus of any other

point P on its line. .
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Solution :

Let the three fixed planes be the coordinate planes {x\yyZ) the coordinates

of P. A, B, C the points in which the line meets the coordinate planes oiyz^

xz, xy, respectively. ' Take VA=a, PB=^, PC=^, ON=;»r, NQ=jr, QP=2,
<ACA'=r<p, <CBx=zB (CA' being the projection of CA on the plane xy and B'

the projection of B on the axis of x).

Then x=:a cos cp cos Q^yz=zd cos q) sin 0, z=:c sin (p,—and therefore the sur-

face is an ellipsoid.

10. Find the locus of a point distance of which from the plane xy

is equal to its distance from the axis of (coordinates rectangular).

11. Find the locus of the centres of plane sections of a sphere

which all pass through a point on the surface.

12. Find the equation of the elliptical paraboloid as a surface

generated by the motion of a variable ellipse the extremities of whose

axes lie on two parabolas having a common vertex and common
axis and whose planes are at right angles to each other.

13. Find the equation of the hyperbolic paraboloid as generated

in a similar manner by the motion of a variable hyperbola.

14. Construct the surface r sin ^ = a,
'

15. Find the equation to the surface d = ^7t in rectangular coor-

dinates.



CHAPTER IX.

RIGHT LINE GENERATORS AND CIRCULAR SECTIONS.

103. Surfaces of the second degree admit of another division, viz.

into those which can he generated by the motion of a straight line

and into those which cannot. This property which we have seen to

belong to the cylinder and cone we shall now show to belong also to

the hyperboloid of one sheet and the hyperbolic paraboloid. The

ellipsoid being a closed finite surface does not possess this property
;

nor the hyperboloid of two sheets, since that consists of two surfaces

separated by an interval ; nor the elliptical paraboloid, since that is

limited in one direction.

104. Straight line generators of the hyperboloid of one sheet.

The equation of the hyperboloid of one sheet

^^ ^ b'

r= I may be written
X'' — I yL

b'

- (^r)e-r)-(-+i)(--i)=°- w
Now (A) is satisfied by the pair of equations

^x z

- + -
a c

and also by the pair

X z

\a c

X
a

6*

-i
w I +

=—

^

y

OT I + r

(B)

(C)
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And m being arbitrary equations (B) represent a system of straight

lines, and all of these lie on the hyperboloid as the two equations

together satisfy the equation to the hyperboloid.

Similarly equations (C) represent another and distinct system of

straight lines which also lie on the hyperboloid which is the locus of

both systems, and we shall see the lines of either system may be used

as generators of the surface.

105. No two generators 0/ the same system intersect one another.

For example take two of the system (B),

"I— i=i-'i

f + 7 ^---O-^)/

Combining the first equation of (i) with the first of (2) we obtain

{m' — w") f I —-y] =0 01y—b.

Combining the second equation of (i) with the second of (2) we

have

{rn' ^ m") (^i + ^\ = o or y = ^ L

These values for j^^ being incompatible the lines do not intersect.

106. Any generator of the system (B) will intersect any generator of
the system (C).

Take

m(:-r)=--i 1
^ \ (3) of system (B)
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(:--r)
=«'(-

1)

m
\a c I \ bj \

(4) of system (C).

Eliminating x, j\ and z we obtain the identity m'm^' = m^ni!\

therefore the lines intersect.

Hence, through any point of an hyperboloid of one sheet two

straight lines can be drawn lying wholly on the surface,

107. No straight line lies on an hyperboloid which does not belong to

one of the systems ofgenerating lines (B) d?r (C).

For, if possiJDle, suppose a straight line H to lie entirely on the

hyperboloid, it must meet an infinite number of generating lines of

both systems (B) and (C). Let two of these (one of B and one of

C) intersect H in two different points, we could then have a plane in-

tersecting the surface in three straight lines, which is impossible since

the equation is of the second degree. Hence no such line as H can

lie on the surface.

108. The hyperboloid of one sheet may be generated by the motion of a

straight line resting on three fixed straight lines which do not intersect, and

which are not parallel to the same plane.

In the first place it is necessary that the motion of a right line

which is to generate a surface should be regulated by three condi-

tions. For, since its equations contain four constants, four condi-

tions would fix its position absolutely ; with one condition less the

position of the line is so far limited that it will always be on a certain

locus whose equation can be found.

Take then three fixed generating lines of the system (B), these do

not intersect, nor are they parallel to the sam.e plane. Now, if a

straight line move in such a manner as always to intersect these three

straight lines, it will trace out the hyperboloid of which they are the

generating lines.

For the moving line meets the hyperboloid in three points (one

on each of the fixed straight lines), and hence must necessarily lie

wholly upon the surface. For the equation of intersection of a line

and this surface being a quadratic equation, if satisfied by more than

two roots, it is satisfied by an infinite number. The moving straight

line, therefore, in its different positions, will generate the hyper-

boloid.
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109. Lines through the origin parallel respectively to generators 0/ the

systems (B) and (C) lie on the cone

—Y + -TT — ~2" (i^y^ptotic to the hyperloloid.

For this equation of the cone may be put in the form

(f-7) (fn)=
J/ y^

b' b'

which gives two systems of lines through the origin lying on the

cone, one system evidently parallel to the lines (B) and the other to

the lines (C).

no. The projection of a generating line of either system upon the

principal planes^ is tangent to the traces of the surface on those planes.

The equation of the trace of the surface on the plane zx is

a" c'

"^*

The projection of the line of system (B) on xz

c, ( X z\ X z m^-\-i x i — m^ z , .

m^
[

I + -+ - =2m; or .
-

-\
• -=i (i).\acjac 2m a 2m c ^ '

X z
Now, the condition that a line in the form - -f - = i shall be

P ^

x^ z^ a^ CSL.
tangent to the hyperbola -^ r —^ is -r- r=i.

''

^

a^ c^ p^ /

This condition is fulfilled by the projection (i), for

^m^ a^ ^m^ c'^ 4 y m^ J 4 \ ^i J 2^2
{m'-\-iy {i-m'Y

Hence this projection is tangent to the hyperbola.

III. The straight line generators of the hyperbolic paraboloid.

The equation of the hyperbolic paraboloid
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^
IT = *^ niay be written

= X.

And hence it is satisfied by the pair of equations

V~i V/'

= vix

m

or by the pair

V Z
^ H -z^ = mx

(D)

VI

s/ 1 V/

/ y_ !^' = 1

(E).

Hence the surface has two systems of straight line generators (D)

and (E).

The lines of both systems are parallel to the asymptotic planes

of the surface respectively. The equations of these planes being

ŷ +
V/ V/

= o and y
V/ ^/l'

== o.

112. We can show in the same manner as in the Articles (34)

and (35) that no two lines of the same system intersect ; and that a

line of either system intersects all the lines of the other system, 'and

that no other line than the lines of these two systems can lie on the

hyperbolic paraboloid. And hence that through every point of the

surface two lines may be drawn which lie wholly on the surface.

And as in (108) that this paraboloid may be generated by the motion

of a straight line which rests on two fixed straight lines and is con-

standy parallel to a fixed plane ; also by a straight line which rests

on three fixed straight lines which are all parallel to the same plane.

113. The projections of the generating lines on the principalplanes are

tafigent to the principal sections of the paraboloid.

The principal section in xy is^ = Ix (i).
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The projection of any line of the system (D) on xy is

2y , I m^-J ' y7-—= — mx-\ or v = x-\ . (2)

Now the tangent line to the parabola y=: Ix is of the form

•v = /;tr -i : and if / = then — =:
,-^

4/ 24/ 2m

Hence the projection (2) is tangent to the sectiony = Zr.

114. Distinctions of sia'faces of secoiid order generated by straight

lines.

All the generators of the cone intersect in one point. All the gen-

erators of the cylinder are parallel. Hence cones and cylinders are

called 7'uled surfaces or developable surfaces. In the case of the hy-

perboloid of one sheet and the hyperbolic paraboloid, the genera-

tors of neither system intersect or are parallel. These are styled

twisted or skew surfaces. The distinction between these last two sur-

faces is that the generators in the paraboloid are parallel to a fixed

plane.

115. Plane sections of surfaces of the second order.

If we intersect the surfaces represented by the general equation

AjcH By + Cs- + 2A'.r0 + 2B>4- 2Ca:y + 2A'';v+ 2B'>+ 2C''2 = D

by the plane = we will obtain

A^^ + B>'^ + 2C'jr)^-f2A"^ + 2B'> = D (i) a conic section.

If we intersect it by a plane z =^ a we have for the curve of inter-

section

Kx' + Bf + 2Cxy-^2G'x-V2liy-\-'fpi.= T>\

a conic similar to the conic (i).

Therefore sections of surfaces of the second order by parallel

planes are similar curves, and hence, in determining the form of these

sections we may confine ourselves to the discussion of sections through

the origin.
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116. To determine the nature of the curveformed by the intersection of

a surface of the second order by any plane.

Take the equation

A.r^ + By^+ Cs^ = 2A'x And in order to get the equation of the

curve of intersection in its own plane

Make
x^= X cos q) 4-y cos d sin cp

y z= x' sin q? —y' cos 6 cos cp

z =y sin 6, See Art. (71).

Arranging the result we have

x"^{K cos^<7?+ B sin^ cp) + 2xy{k — B) cos 6 sin cp cos cp

4-y^((A sin^ (p + B cos'^ cp) cos^ 6 -\-C sin^ 6) — 2AV cos cp

+ 2h!y cos 6 sin cp,

the equation to a conic section which will be an ellipse, parabola or

hyperbola, (including particular cases of these curves,) according

as the quantity

(A-B)^ cos' e cos' cp sin' (??-(A cos' 9? + B sin^ ^)(A cos' 6 sin' cp

+ Bcos' 6>cos' 9?+ Csin' 6*)

or —AB cos' cp—hC cos' <^ sin^ ^—BC sin^ cp sin' ^, (i)

is negative, zero or positive.

Hence every section of an ellipsoid is an ellipse because A, B and

C are all positive.

The sections of the hyperboloids may be ellipses, parabolas or

hyperbolas since one or two of the quantities A, B and C will then

be negative.

For paraboloids A =r o. Hence for the elliptic paraboloid in

which B and C have the same sizes the section is an ellipse ; except

when ^ = o or (^ = o in which cases it is a parabola.

For the hyperbolic paraboloid since B and C are of contrary signs

the section is a hyperbola except when ^=0 or ^=0 when it is a

parabola.

117. Circular sections. Since the section is referred to rectangular

axes it cannot be a circle unless the coefficient of x'y' vanishes
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or (A— B) cos 6 sin cp cos ^ = o

n 7t 7t
or C7 = — or 9:?=— , or ^ = o

which shows th2it/or a circular sectmt the cuttingplane must be perpen-

dicular to 0716 0/ the principal planes of the surface,

118. Let us now examine the surfaces -of the second order for cir-

cular sections.

Take first the surfaces having a centre and therefore represented

by the equation

A:v^+ B/4-C0^= I. (i)

Since every circular section must be perpendicular to a princi-

pal plane, let the cutting plane contain the axis of y^ and make
the angle 6 with the plane xy—

To transform (i) to this plane make

X = x' cos d

z — x' sin 6. Art {^2),

Hence we have

x'\\ cos^ (5+ C sin* 6) -f B/'^ = i (2)

which represents a circle if

A cos^ e+C sin^ (9 r= B

_ ^ B-A , .

or tan^ ^ = C^B' ^^^

We must now examine for each of the surfaces which axis it is

that coincides with the axis ofj^.

1°. For the ellipsoid A =— , B=-7^, C =—

r

Hence for a real 6 b must lie (in value) between a and c or the

axis of the surface to which the cutting plane of circular sections is

parallel is its mean axis.

2°. For the hyperboloid of one sheet since we cannot have B ne-
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gative we must put A = —^, B = ^ C = — ~

.-. tan l9 = ± -y -T-7-X2a r + 0'

/. <5 > <3: or the cutting plane is parallel to the greater of the real

axes.

3°. For the hyperboloid of two sheets since we cannot have A and

C negative, we must put

A-— B-— C~- —

,*. ^>r or the cutting plane is parallel to the greater of the im-

aginary axes.

Since tan has two equal values the cutting plane may be inclined

at an angle 6 or i8o°— 6 to the plane of x}\ Hence there are two

sets of parallel circular sections of the surfaces having a centre. If

the surface becomes one of revolution we have tan ^ = 00 or o, and

the two positions of the circular sections coincide with each other,

and are parallel to the two equal axes.

119. Secondly. For the surfaces not having a centre, we take

equation By^ + Cz^ = 2Mx (i).

1°. For the elliptic paraboloid, B and C have the same sign.

Transforming (i) we have By^-^-Cx'^ sin^^= 2K'x cos 6] and hence

for circular sections we must have the condition C sin^^ = B, or

sin ^ == ± y — . Therefore the cutting plane is perpendicular to the

principal section whose latus rectum is least.

2°. For the hyperbolic paraboloid, since B and C have different

signs, sin 6 is imaginary, and no plane can be drawn which shall in-

tersect it in a circle. This was evident, too, from the fact (Art.

116) that the hyperbolic paraboloid can have no elliptic sec-

tions.

120. Then, to sum up, all the surfeces discussed with the excep-

tion of the hyperbolic paraboloid admit of two sets of planes of cir-

7
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cular sections. Therefore they can be generated by the motion of a

variable circle whose centre is on a diameter of the surface.

121. The planes of circular section may be found directly from

the equations of the .surfaces, as follows:

The equations of the central surfaces

may be written B(:rH/+ :5') + (A--B)j^2-(B-C)0'=i;

or

B(^H/+ 2') + (VA-B ^+v'B^IC.2)(VX=B.;t:-y'B-C.0)= i

which shows that either of the planes

\/A-B;k:4- VB-C.0=:O (i) VA-B a:— VB--C.0 = o (2)

^ . cuts the surface on which it cuts the sphere

Hence the planes (i) and (2) and all planes parallel to them cut

the surface in circles.

The equation to the elliptic paraboloid may be treated in a similar

manner, thus showing its planes of circular section.

122. Sections 0/ Cones and Cylinders.

1°, The sections of the cones may be inferred from Art. 95. For

elliptic cones sections of the hyperboloids by any plane "i^ always ^'*^

similar to the section of the asymptotic cone to the surface made by

the same plane, as is evident from the equations respectively. Hence

the section of a cone of revolution by a plane will give an ellipse,

parabola, or hyperbola. But we will examine this case more par-

ticularly.

In the equation of the cone of revolution

r^
0(?'\-y^z=. — (z — cY, or x'^-\-y^ = tan^ v (^—0*

(when - = tafil!) put x=x' cos ^
'

..,,,-,..: ^^=y '

-"J )

J

z = x' sin d '
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And we have for the curve of intersection by the plane containing

the axis of^

y^(cos^ ^tan^ V — sin- 6) +y^ tan^ v-{-2cx' sin 6^c^ = o (i).

This equation (i) represents an ellipse, parabola, or hyperbola,

according as cos^ 6 tSjrl; — sin'* ^ is > = < o, that is according as

tan ^<z=> tan v.

2°. For the cylinder of revolution about the axis of ^, we make

x=x' cos 6,y =y in its equation x^+y i= r^; ,\ the curve of in-

tersection is x'^ cos^ 04-y^z=z r an ellipse.

Examples (Coordinates Rectangular).

1. Find the right line generators of the hyperboloid

x^ f z'— + = 1

9 4 1 ^^^
for the point (2, 3 ?) on the surface. -

/"^

2. Find the right line generators of the paraboloid 4>^^-—
2
52:^=1 oo»r

for the poinfc'(? 2, i) on the surface. j-

3. Find the planes of circular sections of the following surfaces :

6:^^ + 4rH9^'=36 (i) :^^S^'- o

^x:'^^f-l^z'^\^^ (2) ^xtfx^r

x'^zf^Az'=i2 (3) x^"^^:^':. J

6x'fsy=3^^' (4)

4. In the hyperboloid of revolution of one sheet —-~ 2" ~ ^

find the equations of the generating line whose projection on the

plane xz is tangent to hyperbolic section in that plane at its vertex.

5. Find the sections of the cone x^-\-y={z—2y by planes con-

taining the axis of j^, at angles to the plane xy of 30°, 45°, and 60''

respectively.

6. Find the curve of intersection of the surface

x'+y+—=i
4

by a plane inclined at an angle of 30° to the plane xy, and whose

trace on that plane makes an angle of 45° with the axis O^.



CHAPTER X.

TANGENT PLANES, DIAMETRAL PLANES, AND
CONJUGATE DIAMETERS,

123. Straight line meeiing surfaces 0/ second order.

We can transform the general equation

kx* + By' + C2''+2A>+2B'2a:+2C'.r>'+ 2A";tr + 2B'> +2C"0+
F=o (I)

to polar coordinates by writing x ^^ Ir, y ^=z mr, z = nr, (when /, m, n

are in rectangular coordinates, direction cosines, and in oblique co-

ordinates, direction ratios). The equation becomes

/^(A/'+ Bw^ + Cfi' + 2Ps.'mn + 2^'In + 2Ci??i)

+ 2r(A'7+B";;z + C^^;/) + F= o. (2)

Hence a straight line meets the surface in two points, and if these

two points be coincident the line is tangent to the surface,

124. Tangent Plane to surfaces of second order.

Let the origin be on the surface (and therefore F=: o) then one

of the values of r in (2) is r = o. Now, in order that the radius

vector shall touch the surface at the origin, the second root must be

o, and the condition for this is A'7+B'V;z + C;/ = o. Multiplying

this by r and replacing /r, mr^ nr by x,yj z, this becomes

A";, +B> + C''^ = o. (3)

Hence the radius vector touching the surface at the origin lies in the

fixed plane (3); and as /, m, n are arbitrary, A";t: + B"_;; + C"0 = o is

the locus of all the radii vectores which touch the surface at the

origin, and is therefore the tangent plane at the origin.

Hence, if the equation of the surface can be written in the form

«2 4-Wi= o (where u^ represents terms of second degree and u^^ terms

76
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of first degree in x, y, and z), then u^=z o is the equation of the tan-

gent plane at the origin.

Therefore, lo find the equation to the tangentplane to the surface at the

point x'y'z, transfer the origin to this point. The equation may then he

written Ug 4- Uj = o^ a7id Ui == o is the tangent plane referred to the

point of contact as origin ; then in Ui= o retran.fer the oj'igin to the

primitive one,

125. For the central surfaces (origin at centre) take the equation

and let {x\ y\ z') be the point of contact. Transferring the origin to

the point {x', y\ z') by the formulae

X = x + x \

y =y + y > we have

z=z z + z')

Ax' + B/+ Cz'+ 2kxx' + 2^yy + iCzz'= o.

Hence the tangent plane at the new origin is

kxx' -f ^yy + Qzz'=. o. (i

)

Now retransfer the origin for equation (i) to the centre by the

formulae

x ^=^ x— x^ \

y = y —y' )• and we obtain

z = z — z' )

Axx'-^-Byy + Czz- Ax"-- By''- Cz"= o,

or Axx' + Bjy + Czz=i (2) the required equation of the tangent

plane, at the point xy'z' referred to centre.

I
1°. For the sphere A r=B r= C

a

Hence (2) gives xx +yy + zz'= a^. (3)

2°. For the ellipsoid A = — ,Bi=:-7^C= —
a^ b^ c^

xx^ yy' zz' , ,

3"". For the hyperboloid of two sheets A =: — B:=: 0= -^

a^ 0^ r

XX yy zz , .

7*
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4^ For the hyperboloid of one sheet, A==—r-, B=-rx-. C= — -s.

126. For the surfaces which have no centre (origin at vertex) by

treating the equation By^ + C-s:^ = 2h!x in a similar manner we

obtain

Byy + Czz^ = A\x-\-x') (7) for the equation to the tangent plane

to the elliptical paraboloid and

B)y—-Czz=:A'{x-\-x') (8) for the' tangent plane to the hyper-

bolic paraboloid.

Remark. The same method may be applied to cones and cy-

linders.

127. Polar planes io surfaces of second order. The equations (3)

(4) (5) (6) (7) (8) are the equations to the polar planes to the sur-

faces respectively with respect to the point {x\ y\ z) and these polar

planes possess properties analogous to the polar lines to the conic

sections.

128. The length of the perpendicular from the centre on the tangent

plane io the ellipsoid is p = \/a^ cos^ a + <^'^ cos'^ /^ + c^ cos'^ y , when

cos ay cos ^, cos y are its direction cosines,

Ihe equation to the tangent plane is —r + '^+—^ = i. It may

also be written x cos a -\-y cos /3 -\- z cos y =p* Hence we must

have

/ __ cos a _ cos /3 __ cos y __ci cos a _b cos ft ^c cos y __

i~ x' ~~ y ""
z' ^ x'

~~ y ~
z'

"~"

— A
/^^cos^a + <^^cos^/^ -I- f^cos^;/ ___ ^—/i/ ^^^2 -7^ ^7^ ' — V^^cos^a 4- b^cos^fi 4- Aos'y

.

Hence calling the direction cosines /, m^ n^ the equation of the

tangent plane may be written

lx^my-\-nz=i^aH' -f- b'^m^ + c'n^ . (9 )
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129. To find the condition ihai the plane

h -4- H =1 (i) shall be tangent to
a /3 y ^ ^ ^

x^ / z^
the ellipsoid » -y- + "tt "^ r= ^*

^ . / V . , -'t'Jt:' j^' zz^
Comparing (i) with —f + "ir + ~F = ^

we must have

'^~"^' ^'^~¥' y"""^

°' ^-^="^' 7"="!' y=~' •'• «q"^""^^^d

a^ 3^ c^

adding ~T + ~^ "J 2" ~ ^ is the required condi-

tion.

130. The sum of the squares of the perpendiculars p, p', "^"^ from the

centre of the ellipsoid on three tangent planes mutually at right singles is

constant.

Let cos a cos yS cos y\ cos a! cos /J^ cos y\ etc., be the direction

cosines.

Then /^ _ ^2 ^^^gS ^ ^32 ^^gu
/J +^2 ^.^gS

^
/'^ = c^ cos^ a:' +<^^ cos^ /5' +^^ cos^ /'

/^2 = a^ cos' ^^'+ 3' cos' y3" + ^*^ cos' /',

and adding we have

131. Cor. Hence the locus of the point of intersection of three tangent

planes to the ellipsoid which intersect at right angles is a concentric sphere

of the radius ^d^+ 3' + c'.

For «' the square of its distance from the centre is equal to

/+/'+/'', and therefore to a^ + 3' + ^'.

Remark. In the case of hyperboloids one at least of the quantities

a', ^', c^ is negative, and hence their sum may be negative or nothing
;

in the former case there is no point in space through which three

rectangular planes touching the hyperboloid can be drawn, and in

the latter case the centre is the only point which has that property.
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132. Diametral Planes, Definition.' A diametral surface is the

locus of the middle points of a series of parallel chords of a given

surface. Diametral lines or diameters are the intersections of the

diametral surfaces.

133. To find the diametral surface corresponding to ce^given series of
parallel chords in a surface of the second order which has a centre.

Let the equation of the surface be

Ajt^ + B/ + a^==i, (i)

7,772, n the direction cosines of each the parallel chords, and x\ y\ z'

the coordinates of its middle point.

The equation of the chord will be

x—x __ y—y' _ z—z _
I m n

'

Then for the points in which it, meets the surface (i) we shall

have

K{x'^lry-^B{y'^mry-^C{z'-Vnry=i',

or {KP+ Bw' + Cn^y + 2{klx'+ Bmf ^- Cnz')r + Kx"" + By" + Cz"'^ i.

Imposing on this the condition of equal roots for r, we have

Klx' -{-Bmy' -\-Cnz' ^=^ o (2) the equation of the diametral surface, a

plane passing through the centre.

X V z
1^4. The diameter — = ^ = — is one of the series of parallel

I m ft

chords bisected by the plane (2), and is called the diameter conju-

gate to the plane, and conversely the plane Ix+ my -^^ 7iz == o is con-

^ ^. A.r Bv Cz
jugate to the diameter -r-= -^ =—

.

I m n

If a diametral plane be chosen as a new plane of xy and its con-

jugate diameter be taken as the new axis of 0, the centre O being still

the origin ; then, since every chord parallel to Oz is bisected by

the plane xy, the equation of surface will contain only the second

power of 0. Hence, if there be three planes through the centre the

intersection of any two of which is conjugate to the third, the equa-

tion of the surface referred to these planes will be of the form

AV+By + CV=i, (3)

that is of the same form as the equation referred to rectangular axes.
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135. To find the condiiions that of three planes through the centre 0/a

surface of the second order each may he diametral to the intersection ofthe

other two.

Let the planes be

lx-{-my-^nz^=^ o, Tx-\-my-\'n\ = o, I'^x+ m'y + n'z = o.

The equations of the diameters conjugate to the first plane are

Ax _ By _ Csr

I m n '

and if this be parallel to the other two planes, we shall have

,, I , m , n , ,// / ,f ^^ „ ^

these with the third equation l^ —r- + w' -5-+ ^'"tt- = o, found in

like manner, are the required conditions.

These three planes are called conjugateplanes, and their intersec-

tions conjugate diameters.

Since we have only three relations between the six quantities there

will be an infinite number of systems of conjugate planes in each

surface.

136. Equations referred to conjugate diameters. If in (3) Art. 134 we
make

A'—— "R^-- JL C'—

—

Then for the ellipsoid

x^ y^ z"
-7-2+773+—2= I will be the equation referred to conjugate di-

ameters, and a! , b\ c will be the semi-conjugate diameters.

For the hyperboloids we shall have

-^-^--^- I and ^^^^l-^ I

Remark. The tangent planes at the extremities {x\ y', z) of any

diameter to a central surface are parallel to the diametral plane

conjugate to the diameter so that the conjugate plane of the diameter

through the point {x\ y, z') on the ellipsoid is

xx' \y' zz'
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137. The sum 0/ the squares 0/ three conjugate semt'diameters oy the

ellipsoid is co?tstant.

In the first place^ any point on the ellipsoid may be represented by

the equations x ^=^ a cos A, j^ = 3 cos ^, z ^=^ c cos v, when cos A,

cos yu, cos V are the direction cosines of some line, for the condition

cos^ A + cos^ yu + cos^ y = i cause these three equations to satisfy the

equation of the ellipsoid.

Therefore if cos A, cos /i, cos r, cos A', cos //', c6s r' are the direc-

tion cosines of two lines answering to the extremities of two conju-

gate diameters, these will be at right angles to each other.

ror the equation —~ +^^—r^ o will give

cos A cos A' + cos )jL cos /i' + cos y cos y' = o.

Now the square of the length of any semi-diameter .v'^4-y^+
2'''^

expressed in terms of A, //, y, is

a"^= a^ cos- \^V cos^ }x-\-c^ cos* y,

and of the conjugates in terms of A', }x\ y\ \'\ fx",
y'*

l"^—a^ cos^ A' + ^- cos^ }Ji^ \-c^ cos^ y'

c"=: a' cos^ \"-{-P cos' }x"-\-c' cos' y".

Adding we have

a"" ^h''' -\-c"^ = a'^ + P -\-c\ since the lines A, //, y, \\ //', i^^ and

A", ^'\ y" are mutually at right angles.

138. To find the locus of the intersection of three tangent planes at the

extremities of three conjugate diameters.

The equations of the three tangent planes are

X ^ V z
— cos A + v cos u-{- - cos r = I

a b c

— cos A + ^ cos y -f - cos y = i

a c

X V z
-COS A''+ ^cos y" H— cos y" = i.

a c

Squaring and adding, we get for the equation of the locus

x'— H
a^
—^ +^4-—7-= 3 an ellipsoid with the semi-axes a^/~i ^ !^V~Tf

^v-'
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139. The parallelopiped whose edges are three conjugate semi-diameters

ofan ellipsoid has a constant volume.

Let Ox, Oy, Oz be the semi-axes of the surface a, b, c\ Ox\ Oy

,

0-s' any system of semi-conjugate diameters a\ b\ c; let the plane

of x'y' intersect that of xy in the semi-diameter 0^i= A, and let

0^2= B be the semi-diameter of the curve Xi x' which is conjugate to

0^1. Hence parallelogram a'b'=i parallelogram AB.

.-. Vol {a\ b\ c')=Yo\ (A, B, /)

for these figures have the same altitudes and equal bases.

Let the plane z'Oy^ intersect xy in the semi-diameter Oy^ = C,

then this plane must contain Oz ; for, being conjugate to O^t'i in a

principal plane it must be perpendicular to that plane ; hence Ox^,

Oj'i, Oz form a system of semi-conjugate diameters, and any two of

them are semi-conjugate diameters of the plane section in which they

are situated. k QJ
.-. Vol (A, B, c') =Vol (A, C, ^ a*C

Vol (A, C, ^) =Vol {a, b, c) ^
.'. Vol {a\ b\ c') =:Vol {a, b, c).

140. To fi?td the diametral plane bisecting a given system ofparallel

chords in the case of the surfaces which have not a centre^

Taking the equation of the surface

B/4-a^=2A":v

A r^u I, J ^r— jc' V—y' z— z'
and one of the chords —-— = ^ =—

- = = r
I m n

the equation of the diametral plane will be

m By-i-n Cz = l^

Hence the diametral planes are parallel to the common axis of the

principal parabolic sections.

We cannot, therefore, in these surfaces have a system of three con-

jugate planes at a finite distance, but we can find an infinite number
such that for two of them each bisects the chords parallel to the other

and to a third plane, by proceeding as in Art. (135).

By taking the origin where the intersection of these two meets the

paraboloid, and referring to these three planes, the equation of the

surface will be of the form

By+ Cz'=2E''x.
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And the third plane is evidently the tangent plane to the surface at

the new origin.

141. The tangent planes io the hyperlohid of one sheet and the hyperbolic

paraboloid at a point x'y'z' intersect the surfaces each in two right line

generators through the point ofcontact.

The equation of the hyperboloid of one sheet referred to any con-

jugate diameters is

a"
"^

b" c"
~^'*

and the equation of the section made by any plane y ^=-
ft parallel

to the conjugate plane oi xz, is

a:' c"
""^

b"''

and it is evident that the value /?= y gives us the section of the

tangent plane at the extremity {x\ y, z^) of the diameter y-, or

x'^ z^—
7^ 7^ = o, two right line generators.

For the hyperbolic paraboloid

By_CV=2E'';t' (i)

the tangent plane through the origin is ^ = o, and its intersection

with (i) is

B^—CV= o, two right line generators.



CHAPTER XL

GENERAL EQUATION OF THE SECOND DEGREE IN
x,y, AND z,

142. In order to discover all the curves represented by the general

numerical equation

-^— Ax^ + 2AV+2A"^
W +2B'2x + 2B'y

Cz' +2Cxy-}-2C'z = D (E)

we will first transform the coordinates to a new origin by means of

the formulae

X =. a + x^ ]

y = ^+y
[

(I),

z ^ y-i- z' )

and endeavor to determine the coordinates (<t, /3, y) of the new
origin in such manner as to cause the terms of the first degree to dis-

appear. If this can be effected the equation will be reduced to the

form

kx"^W -\-Cz^+2k'zy -\- 2Wzx + 2Cxy =¥' (F)

in which there is no change when -x, —y, — are substituted for

+ .V, +j', -tZ, and which therefore represents a surface having a

centre, and the new origin of coordinates is at this centre.

Now, several different cases may arise according to the numerical
relations among the coefficients A, B, C, A', B', C, A", B", C".

1°. a, /?, y the coordinates of the centre may each have a finite

value found from the three equations determining the conditions of

the transformation.

2°. a, ft, y may have infinite values.

3°. a, ft, y may be indeterminate.

8 85
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The surfaces corresponding to these three cases will be

(A) Surfaces having a centre. >

(B) Surface's having no centre (centre at an infinite distance).

(C) Surfaces having an indefinite number of centres.

143. Making the actual transformation of (E) by the formulae (r)

we have

A^H2A;rs + 2(A^ 4_C^/5-fB';/+A")jc

By + 2B'0.v + 2(C'a' + B/S +A';k + B^^)v

Qz" +2avr+2(B'a' + A'/3+Cx+C'>

' ByS'^ + 2B'a';/+2B"/? - = D.

-^2Ca^ + 2C'y)[Cy

And in order that the terms of the first degree in .v, y, z shall dis-

appear, we must have

A« + C'/54-B>-f A"-= o \

C'a + B/? +Ay + B"=o ^ (C)

B'«f + A'/J + C;/ + C"=o ^

which are called the equations of the centre.

1°. If these three equations give finite values for a, fj, y, then

the surface represented by the given equation has a centre.

2°. If two of these equations are incompatible this shows infinite

values for a, /3, y, and the surface has no centre.

3°. If the three equations reduce to two, then the surface has a

line of centres. For each one of the equations is the equation of a

plane, and two taken simultaneously represent a line, and the surface

is an elliptical or hyperbolic cylinder. For, cut the surface by the

planes P and Q, P cutdng the line of centres (D) and Q containing

that line. The section by P is a curve of the second degree having

its centre on the line D, ard hence an ellipse or hyperbola. The

section Q will be two straight lines parallel to the line D, and as Q
may revolve about D in all its positions giving two straight line sec-

tions parallel to D, the surface is a cylinder.

4°. If the three equations reduce to a single one, then the surface

has a plane of centres (/. e., the given equation represents coincident

or parallel planes).

Note. The equations of the centre can be found in any given
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equation most readily by finding the derived equations with regard

to x^ y, and z respectively {t, e., by differentiating with regard to x, j', 2

respectively), the x, y, and z in the resulting equ'ations standing for

a, /J, y.

144. Example i. Determine the class of the surface represented

by the equation x'^ + 3^ + 4s^ + 2yz + ^zx + 6xy^26x—2^y—'^2z=26,

The equations of the centre are

2x-{-^z-^6y— 26 = o

6y -\'2z -\- 6x— 24 := o

8s + 2;F + 4jv— 32 — O

and the surface has a centre.

Example 2. Determine the class of the surface

x'^ -{-y^— 2z'^ + 2yz + 2XZ + 2xy^4x— 2y -f 20— o.

The equations of the centre are

2X-{-2Z-{-2y~-4. = o )

2y-\-2Z-\-2X—2 — O
^

— \Z-\-2y-\-2X-\-2 = O )

the first two of which x-\-yi-z = 2, x-\-y-\-z =: i are incompatible,

hence the coordinates of the centre are infinite, and the surface has

no centre.

Example 3. Determine the class of the surface

x'^ + 4y —z^— 2yz—%x -f \xy +20 = 0.

The equations of the centre are

20:— 2: +4>' = o \

Sy—2z-^4x = o V.

— 2 z— 2y—x-{- 2=0)

The first two of these are identical, hence the three equations re-

duce to two and the surface has a line of centres (/. e., is a cylinder).

Example 4. Determine the class of the surface

Sx^ + 1 8>'^ + 2z^ -hi2yz-{- Szx + 24;r>'~ 50.^—757—250 + 75=0.

The equations of the centre are

i6:v-h 80 + 24_y— 50 = o
)

36 y+ 120+ 24.V— 75 = o ,-

404- I2l'+ S.V— 25 =: O )
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which are all three the same, each being 8.v+ I2r-f 42^ = 25. Hence

the surface has a plane of centres, and consists of a pair of parallel

planes.

145. Recurring to the general equations of the centre

C«'+B/J +Ay + B"= o '> (C)

B'a' + A'^ + C;K + C"= o \

we may find an easy rule for a relation among the coefficients in any

given equation by which we can distinguish the central surfaces from

those having no centre and those having an infinity of centres.

The common denominator of the values of a,
f5,

and y in these

equations is the determinant

R =
A, C, B'

c, B', A'

B', A, C

: AA"^ + BB - + CC'"^-ABC - 2A'B'C

Now, if R be different from zero, the surface has a centre ; but if

R = o it may either have no centre or an infinity of centres.

The value of R mav be written out bv the followins: mnemonic

form

A, B, c;

A' B' c
A' B' c

the letters to be multiplied by columns for the first

three terms, and by rows /or the two last.

146. To find an easy rule for F, the nezv absolute term m the trans-

formed equatio?i of the central surfaces when the origin is moved to the

centre.

This complete transformed equation is

A.V' + By 4- CV -f 2^zy -f 2^'zx + 2Cxy — F when

I Art'^ + 2A'/^;K + 2A"«f \

F=D- ^^ B/5'^-i-2B^a;K + 2B"^ '^

.

Now, multiplying the first of the equations (C) of the centre by

a, the second by ft,
and the third by y, and adding them

we have \ B/5'+2B'ay + B"/3 - = o.

{ Cy' + 2C'a^ + C"y )
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Hence F=D-(A"a + B''/5-hCV). Therefore the rule for F is

substitute for x, y, z in the tei'vis of the first degree one-half thd co-

ordinates of the centre (i, e., ^a, |-/J, ^y respectively) and take result

from D.

Example i. Taking the Example i, Art. (i44),in which the coordi-

nates of ihe centre are found to be jc =1, j^ = 2, 0=3,

we have F=26 + 26 x ^-f-24 x i +32 xf =1 1 1;

and the transformed equation is

x^ + 3y^ + 4<s^+ 2yz 4- ^zx -f- 6xy == 1 1 1

.

Ex. 2. 2x'^ + ^y'^-\-^z^-{-^yz-\-6xz + ^xy—6x—'Sy—i^z— 20.

Here the coordinates of the centre are x = i,y — 2, z='—i.

,\ F=20 + 6 x^4-8 X I + 14 X — I=::I7;

and the transformed equation is

C" 2x^ + 3/ + 42^+ 8yz+ 6xz+ 4^y = 1 7.

147. Removal of the terms in xy, xz, yz. Reduction of the equation of
ihe second degree to two forms.

For a more complete discrimination of the surfaces represented by

the general equation, we will now remove the terms in xy, xz, yz by

a transformation of coordinates. So far we have made no supposition

as to the direction of the axes. Henceforth, for convenience, we will

consider the axes rectangular.

' Taking the equation (E) in rectangular axes we propose now to

transform it to a system also rectangular in such manner that the

terms in xy, xz, yz shall disappear. The disappearance of these

terms can only be effected by taking for coordinate planes either dia-

metral planes or planes parallel to them.

. We will therefore begin by finding a diametral plane conjugate to

a given diameter.

148. To find a diametral plane conjugate to a given diameter,

x—a y—b _ z—c
I m n

Putting x = a-\-lr, y = b-^mr, z =: c + nr in the general equation,

and arranging with reference to r, we have for the coefficient of the

first degree in r

2{Al+B'm + Cn)x+2{Cl-i-Bm-{-A'n)y-\-2{B'l+A'm + Cn)z

j-2{A''l+B''m + a'?i) =0;
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and this placed equal to zero is the equation of the diametral plane,

namely

(A/+B';;z + CV/).v + (CV+B;7z+A'4j'+(B7+A';;/ + 0/)2 + A'7

4-B";;z + C";/ = o.

149. To determine a diametral plane perpendicular to the chords which

it bisects, that is, to find a principalplane.

In order that the diametral plane shall be perpendicular to the line

.V a V h Z—C . . J. . r ^r^^ 1—-— — =
, we must have the conditions fulnlled

/ m n

A/+C';;/ + B';^ _ Cl-vV>m-\-Mn _ B7+AV;/+C;^

/ in 71

or putting each of these equal to s.

A/+B';/+C'/?/ = /r \

C7+B7;^ +A';/ = ms V (A)

B7-f AV;/ + C;/ = ns )

and also the condition P -\- 7?r -\-
n"^— i

,

To determine /, w, and ;/ in equations (A) we first find s. Writ-

ing these equations

(A--j^)/+C';;/ + B';/ = \

Cl-\-{B-s)m + A'n = o I

B7+ A';;/ + (C-^);/ =

they give the result

A~^, C, B'

C, B-.r, A'

B', A', C-s

or (A-S)(B-S')(C-S)-(A-S)A'^ + A'B'C -C'^(C-S)-hA^B'C
_B'^(B-S;=:o;

or

S'3_(A + B + C)/ + {AB + AC + BC-A'^-B'^-C'^)^4-AA'^+ BB"^

4_CC^'^-ABC-2A'B'C'=o (D).

This cubic has necessarily one real value for s, which substituted

in (A) gives one set of real values for /, m, n. Hence there is one

principal plane.

For convenience of discussion let us take this plane perpendicular
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to the axis oi z, then / r= o, m = o, and nz=L\, And hence equa-

tions (A) give ^'— o, A'=: o, and the general equation transformed

to this principal plane as plane o{ xy is of the form

Now we know from the like discussions in conic sections that one

transformation is always possible, and but one to a system of rectan-

gular axes in the plane xy which shall cause the term in xy to dis-

appear. Hence there are three principal planes, and three sets of

values for /, m^ n, and the cubic (D) has three real roots.

The general equation may then be always reduced in rectangular

coordinates to the form

L.r24-My + N22 + 2L^^ + 2M>+ N0=D. (E^

which represents then all the surfaces of the second order.

150. JVie reduction 0/ this equation Lx^ + My^ -f-Nz^ + 2L'x-f 2M y

-f 2N z r= D to two forms.

1°. If L, M, and N are different from o.

Then we may cause the terms of the first degree to disappear by

. . ^ . , u . . L' , M' N'
transiernng the ongm to the pomt x ^^— -=—

, J'
= ^^ ^ ^ =—irr-

The surface will then have (jc', y , z) for its centre, and the equation

will be of the form

Kv2_^Mj;2^N0^Z= F. (I.)

2^. If one of the three coefficients, L, M, N, for example L = o

and L^'^be diff"erent from o.

We cannot then cause the term 2L7^ to disappear, but by trans-

ferring the origin to the point

D
,

M' ,
N' . Ml 1 u rX — - —

, r = — ^rr, -2^
=

^i:^ the equation will take the form
2L - INI N ^

M/ + NV=2V.v. (II.)

The forms I. and II., we have seen, belong to the surfaces of the

second order, which we have already discussed. Hence the general

equation of the second degree (E) represents these surfaces and no

others.
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151. The form I. we have seen represents the ellipsoid, the two

hyperboloids and cones of second degree, and includes the elliptic

and hyperbolic cylinder, My^ + N^^ =F and parallel planes NV=F.
The form II. represents the elliptic and hyperbolic paraboloids,

and the parabolic cylinder.

152. The complete reduction 0/ the equation ofthe seco7id degree to the

simpleforms \, and II. Use of the discriminating cubic (D).

The resolution of the equations (A) furnishes each value of j* in

the cubic (D), one system of values of/, m, n. We have then three

systems, /, m, n\ /', in\ n\ /", ;;/', n\ which are the direction cosines

of the three rectangular axes {^principal axes) to which the surface

must be referred in order to cause the products jit, a-^, >'-2: to dis-

appear ; the formulae of transformation are then

X = Ix -Viy , -{-Tz'

y =1 VIx + m^y \-m"z

z = nx^ -\-ny -\-n'^z\

If we take only the terms in x'^ in this substitution we find

L = A/^ + B;;^HC«' + 2A'ww-f 2BW+2C7/;/.

But if we multiply the equations (A) respectively by /, m, n and add,

remembering that l^ -\- 7?i^ -[- n^ z=z i we have

A/HB;;z2-f CV + 2A'w« + 2BW+2C7w = s;

Hence L is a root of the cubic (D) and M and N are the other two

roots.

For the values of L', M', N' we will have

V =A"/ +B''m -\-C'n \

I\r= A'7' \-^"m'^C'n' \ (M).

N' = A^r + B'V/' + C'V )

The absolute term D does not change in this transformation since

the origin is not changed thereby.

For the surfaces having a single centre after solving the cubic, we

liave only to calculate F, for which we have given a rule.

For the surfaces having no centre the coefficient designated by V
is equal to — U, and is computed by first finding in equations (A)

the values of /, w, n^ which correspond to S = o. Both in the cases

of surfaces having no centre and a line of centres, one root of cubic

= o and we have only a quadratic to solve to determine L and M.
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153. For surfaces having a centre, if we wish only to discover the

particular class of the surface, without making the complete trans-

formation of the equation to its centre and axis, the sign of the roots

of the discriminating cubic will tell us whether the surface is an ellip-

soid, hyperboloid of one sheet, or hyperboloid of two sheets. These

signs we can ascertain from inspection by Descartes's rule * without

solving the equation.

Example. Find the nature of the surface "jx^ \-()}'^ \-^z^—\yz— \xy

1= 6. The cubic (D) gives

S'— (7 + 6 + 5)S'^+(43 + 35 + 30—4— 4)S-|-28-f-20— 210 = o; or

S^— 18S- + 99S— 162 =: o.

.'. The row of signs is H 1
, three changes of sign. Hence

all the roots are + and the surface is an ellipsoid.

So also for surfaces having a line of centres, the signs of the roots

of the quadratic into which the discriminating cubic degenerates,

serve to distinguish the elliptic from the hyperbolic cylinder.

And for surfaces having no centre, the signs of the roots distinguish

the elliptic paraboloid from the hyperbolic paraboloid.

154. Recapitulation of the viethod of reduction of iiumei'ical equations

of tJie second degree and of distinguishifig the surfaces represented by them.

We now^ propose to give the mode of distinguishing the nature of

the surface represented by any given numerical equation of the second

degree in x, y, and 0, and of finding its principal elements.

I. Form the equations of the centre, and also the discriminating-

cubic from the remembered form

S3_(A + B-hC)S^ + (AB + AC + BC-A'^-B'^-C'^)S + AA'^-fBB'^

4_CC'_ABC-2A'B'd=: o,

observing that the absolute term is equal to R, the denominator

of the values of the coordinates of the centre in the general equation,

ABC
and therefore can be formed by the mnemonic A'B'C (Art. 145).

A'B'C
Then

155. 1°. If R be different from o, the surface has a centre. Find

Note. ''All the roots being real the number of positive roots is equal to the number of

changes of sign in the row of signs of the terms, and the number of negative roots is equal to the

number of continuations of sign."
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the coordinates of the centre and transform to the centre by the rule

in Art. (146). Determine the signs of the roots of the cubic by Des-

cartes's rule. Then calling these roots L, M, and N, and calling F

the new absolute term on the second side of the equation.

Then

a. If L, M, N all have the same sign as F, the surface is an ellip-

soid.

h. If L, M, N all have a different sign from F, the surface is im-

aginary.

f. If two only of the roots L, M, N have the same sign as F, the

surface is the hyperboloid of one sheet.

d. If only one of the roots L, INI, N has the same sign as F, the

surface is the hyperboloid of two sheets.

e. If F = o and L, ]\I, N all have the same sign, the locus is a

point.

f. If F = o and one of the roots L, M, N has a different sign

from the other two, the surface is an el|ip^ cone (Art. ^^),

156. 2°. If R = o the cubic has one of its roots S = o and is

degraded to a quadratic, the coefficient of S, namely AB + AC + BC
—A'^— B'^— C"^, becomes the absolute term.

And if the equations of the centre are incompatible the surface has

no centre.

Then

a. If the roots M and N of the quadratic (degenerate cubic) have

the same sign (/. e,) if AB + AC + BC- A'''-B''-C''> o the surface

is the elliptical paraboloid.

b. If M and N have different signs (/. e.) if AB + AC + BC-A'"^

— B'^— C'"<o the surface is the hyperbolic paraboloid.

c. If one of the roots M or N be zero {i. e.) if AB + AC-f BC-A''
— B'^— C"^= o the surface is the parabolic cylinder.

^157. 3°. If R rr o and the equations of the centre can be reduced

to two equations, the surface has a line of centres. The cubic as in

(2°) has one of its roots S = o and degenerates into the quadratic

S--(A + B-f-C)S + AB + AC-hBC-A'--B'«-C"'=:o.

Then

a. If the roots M and N of this quadratic have the same sign {i. ^.)
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if AB +AC + BC— A"-— B'-— C'"^ > o the surface is an elliptic cy-

linder.

b. If the roots M and N have different signs {i. e.) if AB + AC
4-BC— A'^— B'*— C'^< o the surface -.is the hyperbolic cylinder.

c. If in the reduced equation of the cylinder M2:^ + N)^^ := H, H be

equal to o, and M and N both of same sign, the locus is a straight

z —o\-
hne \ .

<^. If H = o-and ^\ and N be of different signs the surface con-

sists of intersecting planes.

158. 4°. If R == o and the equations of the centre become a

single equation, the surface has a plane of centres, and consists of

two parallel or coincident planes, which are readily found by solving

the equation with reference to any one of the variables.

159. 5°. In the case of surfaces of revolution the cubic has equal

roots. To examine the cubic for equal roots in the case of central

surfaces of revolution, we simply look for 9, common root between it

and its first derived equation (differential).

160. General Remark. In any of the above cases we may com-

plete the reduction by solving the cubic to get the new axes and

thus obtain their direction by finding /, m, n from equations (A),

And in the case of the surfaces without a centre we may find V,

from equations (M).

161. Remark I. In the cases of surfaces having a line of centres

and of those not having a centre, we can distinguish readily the sur-

face represented b) a given numerical equation through sections by

the coordinate planes.

1°. If the equations of the centre show a line of centres, sections

by tne coordinate planes will tell whether the surface is an elliptic or

a hyperbolic cylinder.

2°. When the equations of the centre show no centre, then

a. If there are ellipses among these sections by the coordinate

planes, the surface is an elliptical paraboloid.

I. If there are hyperbolas among these sections, the surface is a

hyperbolic paraboloid.

c. If all these sections are parabolas, or one of them parallel

straight lines, the surface is a parabolic cylinder.
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162. Remark II. Again, if the terms of the second degree in the

given equation break up into unequal real factors, the surface must

be either the hyperbolic paraboloid or hyperbolic cylinder, and these

two surfaces are otherwise readily distinguished. We may note also

that if the terms of the second degree in the given equation form a

perfect square, the surface is either a parabolic cylinder or two

parallel planes.

163. We will now illustrate by a few examples :

Ex. I. 7.r^— I3>^' + 62-+24A3'H- 1210— I22.r rr: ±84.

As this is a central surface with the origin at the centre, we only

need the discriminating cubic,, which is

/— 343^^ + 2058 = o ; or /±or— 343^^^+ 2058 — o.

The signs + ± h show one coniimiatmi and two changes, and

hence the surface is a hyperboloid of one sheet, or two sheets, accord-

ing to the sign of 84.

By trial we find that 7 is a root of the cubic, and then by depress-

ing the equation we find the other two roots are 14 and —21. There-

fore the equation of the surface referred to its centre and axes is

y.v^-!- i4v^— 2 10'=: ±84; or .r^-f 2^^—30-=: ± 12,

Ex. 2. 2^X'^+2 2y-{-l6z'^-\-l6)'Z—4ZX—20X)'—2 6x— 40V— 443

= —44.

The equations of the centre are

25.V— iqi'— 20 =: 13

— io.r + 22^+ 80=20

— 2A'+ 8j'+ 160 = 2 2
;

whence we find the coordinates of the centre x = i,y =1, 0=1.

Moreover

F=- 44 + 26 . J + 40.i + 44-i= 9-

The discriminating cubic is

j^— 65/+ 1134^— 5832 = o.

Its signs give three changes. Hence all the roots are positive.

The surface then is an ellipsoid.
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By trial we find that 9 is one of the roots of the cubic. Hence the

other two are 18 and 36. The reduced equation is then

()x^+ 1 8y -f 362^ = 9 ; or .r^ + 2y^ + 42^ == i

.

And the principal semi-axes are i -— , _ .

V2 2

Ex. 3. 5.r^+ ioy+ I'jz^ -\- 26yz+iizx + i^xy -\- 6x -\-iy -\- loz =64.

The equations of the centre are

^x+ T^H- 90 =—3
7.r+ioy+ 13s =—4
9.v+i3_>'+i70 =-5.

Multiplying the first of these equations by — i and the second

by 2, and adding, we obtain the third. Hence the equations are

only two independent ones. The surface is therefore a cylinder. In-

tersecting it by the coordinate plane xy, i, e., making 0=0, we obtain

z^x^j^iAxy+ioy''-\-6x-\-^y= 64,

which is an ellipse. The surface is therefore an elliptic cylinder.

To complete the reduction we transfer the origin to the point

r
/Y> _1_ rj \f

j

QCr — 'J
'\

where the line of centres
u y o

{ pierces the plane
9:r+i3j^/-f 170= — 5 )

"^

X, y, that is, to the point = 0, ^ = 1, x =:—2^

and find F=:64+6— 4= 66.

Also the discriminating cubic is

j^^— 32/4-6^- = o, which gives /— 32^^ + 6 = o,

the roots of which are 16 + 5V 10 and 16— 5 V' 10.

And the reduced equation of the cylinder is

Ex. 4 . 5^^ + 5/ + 82^ + 40>' + ^zx— ^xy + 6x+ 6y—7,z — o.

The equations of the centre are

5.V-47H-20 =—3 \

x-i- y-{-4z = I )
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Adding the two last of these equations we have

Sx—4y-\-2z =— 2^. An equation w^hich is incompatible with the

first. Hence the surface has no centre.

The cubic /- i8/ + 8ij'= o; or s''—i8s-}-8i = o,

which gives two roots equal to 9. The surface is therefore a para-

boloid of revolution

gy^ + gz^ = 2 Yx.

To find V, we first determine /, m and n. For these we have the

equations

4/—^m—2n = o

/+w + 4« = o

22 I

which give / = — , w = — , n =z .

3 3 3

Therefore (Eq. M) A'"= 3 .
-

-f 3 .-+ - .
~ =

-

33232
and 2V =— 2A'" =—9.

The reduced equation of the surface is therefore

Ex. 5. 2Ayz-i-2B'zx + 2Cxy + 2K"x-\-2B"y+2C"z — D.

The cubic is

S3-(A'2 4.B'-^ + C'^)S-2A'B'C = o.

The surface is a hyperboloid if A', B' and C are all different from

o. If A'B'C is of the same sign as F in the reduced equation the

cubic will have two roots of the same sign as F and the surface will

be a hyperboloid of one sheet. In the opposite case it would be a hyper-

holoid of two sheets.

If A' = o the cubic becomes

S^— (B''^ + C'^) =0, whose roots are of different signs. Hence

the surface 2B'zx \- 2Cxy ^- ih!'x -^ 2B"y ^ 2Cz = o is a hyperbolic

paraboloid.

Ex. 6. x^ +y 4- 92^ + 6>'2— ()xz— 2xy+ 2x—az = o.

The equations of the centre are incompatible and the terms of the
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second degree form a perfect square, hence the surface is a parabolic

cylinder.

Examples.

164. I. Find the nature of the surfaces represented by the follow-

ing equations.

(i). I ix^ -\- sy -^ ^^'— 20yz -{- 4ZX+ i6xy+ 22X {- i6y i- 4z -{- 11=0.

(2). X' ^y^ + z^ + 2JZ + 2XZ -h 2xy— lox— loy— loz -h 2 ^ = o.

^(3)- 3x'^—sy'^—i2yz-\-i2zx-\'8xy—6x—6y-{-^z = c. ^o./z-^a *-

(4). 4x^ + qy^-^gjz'^—-i6zx-{'^^zy='36, ^ '-/^^v z":^* 3 r% £t^^Z.

(5). 3JC-+ 2^—2X0 f 4^2— 4^^— 80— 8 =: O.

2. The equation 7;t'^4-8y + 4-s^— Z>'<2r— ii^jv— 7^j/ = ^^ represents

a hyperboloid of one sheet.

3. The equation A:^+y^+3-s:V 3j'-24-2:j;+^— 7^—147—250= 13—^
represents an ellipsoid, a point, or an imaginary surface according

as ^is < = > 67.

4. The equation x'^+y^-^-z^ +yz+zx+ xy = a^ represents an oblate

spheroid.

5. Find the nature of the surface {y'-zy+{z—xy + \:f—jA- =si^-.

6. Find the nature of the surface >'0 + zx-i-xy = d^.

7. ax^-\-\y^-^^z^^i2yz^()zx-V\xy-{-\\x-\-i6y^2\z-{-\'] r= o re- ^

presents an elliptic paraboloid, a parabolic cylinder or a hyperbolic

paraboloid according as a > = < i,



CHAPTER XIL

PROBLEMS OF LOCI.

165. Prob. I. To find the surface of revolution generated by a right

line turning around a fixed axis which it does not intersect.

Let the fixed line be the axis of z and let the shortest distance a

from the revolving line to the axis of ^ lie along the axis of x in the

original position of this line so that its equation is .r — a, j/ = mz.

Then the equation of the surface is

X -{-y = a' -^7?rz'

or — 2 ¥~= I-
a^ a^

The hyperboloid of revolution of one sheet.

Prob. 2. To find the locus of a poi?il whose shortest distances from two

given non-intersecting, non-parallel straight lines are equal

Take the axis of z along the shortest distance between the two

lines, the plane xy perpendicular to z at the middle point of this

distance 2c, and the axes oi x and y bisecting the angles between the

projections of the line on their plane. Then the equation of the lines

will be

z ^^ c \ z — —c
y = mx )

' y z^ — mx

and we have (z—cY^^^ ~^— (z-^cY^-— t—
^ ' i^ni^ .

^
I + VI

or

cz{\ ^nf) ^mxy ^:^ o, a hyperbolic paraboloid since it has no

centre and its term of second degree breaks up into two real factors.

Prob. 3. Two planes mutually perpendicular , contain each a fixed

straight line. To find the surface generated by their line of intersection.

Take the axes as in Prob. 2. Then the equations of the planes are

100
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1

Y^{z—c)'^-y—mx — o\ (i) Y^{z-\-c)-^y-^mx — o. (2)

The condition of perpendicularity of these planes is

KK'-j-i—w^ = o, and eliminating K-f-K' between this equation

and equations (i) and (2) we have

y~wV + ( I '-ni^)z^ = ( I - rn^Y

which represents a hyperboloid of one sheet.

Prob. 4, To find the surface generated by a right line which always

meets threefixed right lines no two ofwhich are in the same plane.

For greatest simplicity take the origin at the centre of a parallelo-

piped, and let its faces be at the distances a, b, c respectively from

the coordinate planes ^0, xz, and xy. Then take three edges of this

parallelopipedon as the three fixed lines fulfilling the conditions.

yz=b ] z = c \ X = a ] .
^

Assume for the equations of the movable line

X —x' _ y —y^ _z — z^ .

cos a cos ^ cos y' ^

The conditions that the line (4) shall meet the lines (1) (2) and

(3) are respectively

y^ — b z'-\-c z — c x' -\- a x — a y' -h b

cos fi cos y ' cos y cos a ' cos a cos fi
'

Eliminate the arbitraries a, /?, y by multiplying the equations to-

gether, and we have for the surface

(^x—a){y^b){z-c)z={x-¥a){y + b){z^-c)',

or reducing

ayz+ bzx + cxy + abc == o,

.

which the discriminating cubic shows to be a hyperboloid of one

•sheet. The same surface will be generated by a straight line resting

, , , , jr = a ) v=: — b ) X =^ — a )

on the other three edges >
, } . , } ,

z = — c ) z = c ) y ^^ \

Prob. 5. To find the surface generated by a right line which always
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meets three fixed right lines ^ no two of which are in the same plane, but all

of which are parallel to the same plane.

Take one of the fixed lines as the axis of x, and then the other two

parallel to the plane oi xy. Then their equations are

Now, the equations of a moving line meeting lines (i) and (2) are

* _ , / z\ r (4) (^ ^^d ^ arbitrary), and the condition that this

line shall also meet (3) is Ic = mk (c—d),

and eliminating the /and k by means of equation (4), we have

cy mx{c—b)

~V'^ z-b '

or cyz \-m(b— c)xz— cby = o,

a hyperbolic paraboloid, as its equation shows no centre, and the

terms of the second degree break up into two real factors.

Prob. 6. To find the sujface generated by a right line which meets

V^'O fixed right lines, and is always parallel to a fixed plane.

Since the two fixed lines must meet the fixed plane, we can take

c (0, "~
: (2), as in 2, as the fixed lines, and the

2:3=^ \
^ ' z^=. — c )

plane V2 as the fixed plane.

Then the equation of the moving line parallel \.oyz

is Z / ( (3)> ^' A ^^d k arbitrary.

The conditions that this line shall meet the lines (i) and (2)

mk =z Ic+p
are — ?;//(' —: — lc-\-p

]

or mk = Ic 2indp =^ o
;

or eliminating /, k, and /,

ymx z= c ~ ;

z

or mxz = cy, a hyperbolic paraboloid.
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Prob. 7. 2wo finite non - intersecting non -parallel right lines are

divided each into the same number 0/ equal parts ; to find the surface

which is the locus of the lines joining corresponding points of divi-

sion.

Let the line which joins two corresponding extremities of the given

lines be the axis of 2: ; let the axes oi x and^ be taken parallel to the

given lines and the plane oi xy be halfway between them. Let the

lengths of the given lines be a and b.

Then the coordinates of two corresponding points are

2: zz: r, X ^ ma, y z= O] s = —c, x ^=^ o, y ^= mb
]

and the equations of the lines joining these points are

x y ")

ma mo

r
'

J

2X Z ^
ma c

whence eliminating m the equation of the locus is

2cx^a{z^c) (f+^)
a hyperbolic paraboloid.

Prob. 8. To find the locus of the middle points of chords of a surface

of the second order that has a centre, which allpass through a given fixed

poiftt.

Take the given point for the origin and two conjugate diametral

planes which pass through it for the planes of zx and xy, and a plane

parallel to the third conjugate plane for that o^yz; then the equation

to the surface will be of the form

ax''+ by^ 4- cz'^ + 2a 'x+/= o.

Let X ^1 VIZ, y = nz he the equations of any chord. Combining

these with the equation of the surface, we have

(am^ + bn^ -\-c)z^+ 2a''viz + ^ = o,

in which the values of ^ belonsr to the extremities of the chord.
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Therefore the z of its middle point is

,_ a"rn

^-' am'-^bn'+ c ^^^'

and the other two coordinates of the middle point are

x'=z mz\ (2) y^nz\ (3)

Hence eliminating m and n the required equation of the locus

a surface of the second order similar to the first, and passing through

its centre and through the origin.



CHAPTER XIII.

SOME CURVES OF DOUBLE CURVATURE.

1 66. To find the equations to the equable spherical spiral.

Definition, If a meridian of a sphere revolve uniformly about its

diameter PP' while a point M moves uniformly along the meridian

from P to P', so as to describe an arc equal to the angle through

which the meridian has revolved, the locus of M is the equable

spherical spiral.

Taking PP' as the axis of 0, PAP' the initial position of tke plane

of the meridian as the plane oi xz^ the equation of the sphere is

x'-Vf^z'=.a\

Let POM — 6, AON = q), then, by definition 6 =q),

and from polar coordinates

X = a cos 6 cos q), y ^=: a cos ^ sin q)]

,\ X = a cos^ 6, y = a cos 6 sin 6.

Therefore ^'^+y = a'^ cos^ 6 (cos'^ ^4-sin'^ 6) =: ax.

Hence the equations of the spiral are

x'+f + z' =a' {i) x'-Vf = ax
; (2)

or the spiral is the curve of intersection of the sphere and a right

circular cylinder whose diameter is the radius of the sphere.

If we subtract (2) from (i) we obtain

z^ = a^ —ax (3) a parabolic cylinder.

And the equations (2) and (3) also represent the curve, which is

therefore also the intersection of a right circular and right parabolic

cylinder at right angles to each other.

167. To find the equations to a spherical ellipse.

Definition. The spherical ellipse is a curve traced on the surface

105

/
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of a sphere such that the sum of the distances of any point on it

from two fixed points on the sphere is constant.

Let SH be the two fixed points on the surface of the sphere

whose radius is r, C the middle point of the arc of the great circle

which joins them. If P be any point of the spherical ellipse SP and

HP arcs of great circles, then

SP + HP = 2a = a constant.

Through P draw PM, an arc of a great circle perpendicular to

SH, and let SH = 2;/, CM = cp, PM = B.

Then, in the right-angled spherical triangle SPM we have

cos SP = cos {y— (p) cos d.

And in the triangle HPM
cos HP = cos (y—cp) cos 6.

C-D. XTT. /SP+HP\ /SP-HP\
Now, cos SP -f cos HP = 2 cos f j cos f

j

/SP-HF= 2 cos a cos
\ 2

A A uTD QP •
/SP + HP\

. /SP-HP\
And cos HP— cos SP = 2 sin ( ) sin (

j

SP-HPN
2 sin a sin '

Therefore,

/SP— HP\ __ cos y cos cp cos

^SP-H_P).

COS
\ 2 Sin a

^SP— HPN^ _^ sin y sin q) coe

\ 2 / sin a:

Squaring and adding

COS'' y ^ sin^ V . o « /i—r-^ cos' m cos' u -\—r—,— sin^ m cos^ c^ =1;
cos' a ^

sin' a

or if we transform from polar to rectangular coordinates

cos^ y „ sin^ J^ . / x / /
cos' a sin' ^^ \]

This equation and the equation of the sphere'N

^'+y-f^' = r2 (2)

determine the spherical ellipse, as the intersection of a right elliptic

cylinder and the sphere.
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168. To find the equations to the helix.

Definition. Whilst the rectangle ABCM revolves uniformly about

its side AB, so that the parallel side CM generates the surface of a

right circular cylinder, the point P moves uniformly along CM, and

generates a curve called a helix.

Let AB be the axis of 0, and when the rectangle is in the plane

xz let P and M both be at D on the axis of x, and let the velocity of

P = « times the velocity of M.

.-. PM = «.arc DM.

Also let AN = X, NM ^y^ PM = be the coordinates of P, and

AM = a the radius of the circular base of the cylinder in the plane xy,

X
. •. z =. na cos~^ — , and j/^ + o;^ = a^ (

i

)

are the required equations of the helix.

Or we may represent the curve by the two equations

X V
z ^:z na cos~^ — , z =^ na sin~^ — (2);

or the same in the forms

z z
X ^^ a cos — . y =1 a sin —

, (3) and
na '

-^
na ^^^

z / z \ z / z
since cos — = cos [2m7T-\ ] and sin — = sin [2m7t-\

na \ na J na \ na

the same values of x and y correspond to an infinite number of

values of z. The equations (i) (2) and (3) show that the projec-

tions of the helix on the planes xz^ and^^ give the curve of sines,

and the projection on xy is the circle.
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