


r 

Natural History Museum Library 











PHILOSOPHICAL 

TRANSACTIONS 

OF THE 

ROYAL SOCIETY OF LONDON. 

Series A. 

CONTAINING PAPERS OF A MATHEMATICAL OR PHYSICAL CHARACTER. 

VOL. 221. 

Printed and Published for the ROYAL SOCIETY by 

HARRISON AND SONS, LTD., 44-47, ST. MARTIN'S LANE, LONDON. W.C. 2. 

printers in <®rbtnarg to pis $ftajestg. 

March, 1921. 





[ iii ] 

CONTENTS. 

(A) 

VOL. 221. 

List of Illustrations..Page v 
Advertisement . - . .. vii 

I. Some Measurements of Atmospheric Turbulence. By Lewis F. Richardson. 

Communicated by Sir Napier Shaw, F.R.S..page 1 

II. On a Theory of the Second Order Longitudinal Spherical Aberration for a 

Symmetrical Optical System. By T. Y. Baker, B.A., Instructor Com¬ 

mander, R.N., and L. N. G. Filon, M.A., D.Sc., F.R.S., Goldsrnid Professor 

of Applied Mathematics and Mechanics in the University of London . . 29 

III. Investigations on Lightning Discharges and on the Electric Field of Thunder¬ 

storms. By C. T. R. Wilson, F.R.S.. Reader in Electrical Meteorology in 

the University of Cambridge and Observer in Meteorological Physics at the 

Solar Physics Observatory, Cambridge. (Communicated by the Director of 

the Solar Physics Observatory).73 

IV. Researches on the Elastic Properties and the Plastic Extension of Metals. By 

W. E. Dalby, F.R.S., Professor of Engineering at the City and Guilds {Engi¬ 

neering) College of the Imperial College of Science and Technology . . 117 

V. The Stress-strain Properties of Nitro-cell-ulose and the Law of its Optical 

Behaviour. By Prof. E. G. Coker, F.R.S., and K. C. Chakko, M.Sc., 

University College, London.139 

a 2 



[ iv ] 

VI. The Phenomena of Rupture and Flow in Solids. By A. A. Griffith, M. Eng. 

(of the Royal Aircraft Establishment). Communicated by G. I. Taylor, 

F.R.S..page 163 

VII. Reduction of Error by Linear Compounding. By W. F. Sheppard, Sc.JD., 

LL.M. Communicated by E. T. Whittaker. F.R.S.199 

VIII. Tidal Friction in Shallow Seas. By Harold Jeffreys, M.A., D.Sc., 

Fellow of St. Johns College, Cambridge. Communicated by Sir Napier 

Shaw. F.R.S. ..239 

IX. Plane Stress and Plane Strain in Bipolar Co-ordinates. By G. B. Jeffery, 

M.A., D.Sc., Fellow of University College, London. Communicated by 

Prof. L. N. G. Filon, F.R.S..265 

X. The Aerodynamics of a Spinning Shell. By R. H. Fowler, E. G. Gallop, 

C. N. H. Lock and H. W. Richmond, F.R.S.295 

XI. A Selective Hot-Wire Microphone. By W. S. Tucker, D.Sc., A.R.C.Sc., and 

E. T. Paris, AT.Sc. (Lond.). Communicated by Prof. H. L. Callendar, 

F. R.S.. 389 

Index to Volume. 431 



[ - 1 

LIST OF ILLUSTRATIONS. 

Plate 1.—Mr. Lewis F. Richardson on Some Measurements of Atmospheric 

Turbulence. 

Plates 2-5.—Mr. C. T. R. Wilson : Investigations on Lightning Discharges and on 

the Electric Field of Thunderstorms. 



f 



[ vii 1 

ADVERTISEMENT. 

The Committee appointed by the Royal Society to direct the publication of the 

Philosophical Transactions take this opportunity to acquaint the public that it fully 

appears, as well from the Council-books and Journals of the Society as from repeated 

declarations which have been made in several former Transactions, that the printing of 

them was always, from time to time, the single act of the respective Secretaries till 

the Forty-seventh volume ; the Society, as a Body, never interesting themselves any 

further in their publication than by occasionally recommending the revival of them to 

some of their Secretaries, when from the particular circumstances of their affairs, the 

Transactions had happened for any length of time to be intermitted. And this seems 

principally to have been done with a view to satisfy the public that their usual 

meetings were then continued, for the improvement of knowledge and benefit of 

mankind : the great ends of their first institution by the Royal Charters, and which 

they have ever since steadily pursued. 

But the Society being of late years greatly enlarged, and their communications more 

numerous, it was thought advisable that a Committee of their members should be 

appointed to reconsider the papers read before them, and select out of them such as 

they should judge most proper for publication in the future Transactions ; which was 

accordingly done upon the 26th of March, 1752. And the grounds of their choice are, 

and will continue to be, the importance and singularity of the subjects, or the 

advantageous manner of treating them : without pretending to answer for the 

certainty of the facts, or propriety of the reasonings contained in the several papers 

so published, which must still rest on the credit or judgment of their respective 

authors. 

It is likewise necessary on this occasion to remark, that it is an established rule of 

the Society, to which they will always adhere, never to give their opinion, as a Body, 
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upon any subject, either of Nature or Art, that comes before them. And therefore the 

thanks, which are frequently proposed from the Chair, to be given to the authors of 

such papers as are read at their accustomed meetings, or to the persons through whose 

hands they received them, are to be considered in no other light than as a matter of 

civility, in return for the respect shown to the Society by those communications. The 

like also is to be said with regard to the several projects, inventions, and curiosities of 

various kinds, which are often exhibited to the Society; the authors whereof, or those 

who exhibit them, frequently take the liberty to report, and even to certify in the 

public newspapers, that they have met with the highest applause and approbation. 

And therefore it is hoped that no regard will hereafter be paid to such’reports and 

public notices ; which in some instances have been too lightly credited, to the 

dishonour of the Society. 
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I. Notation. 

The following notation is used throughout. The co-ordinate axes are a right-handed 

rectangular system x, y, h, in which Oh is directed vertically upwards, and Ox lies in 

any azimuth which happens to be convenient. Elements of distance to east and to 

north are denoted by de, dn, so that they are special cases of dx, dy. The 

atmospheric density is p, the pressure is p, acceleration of gravity is g, latitude 0 is 

reckoned negative in the southern hemisphere, and w is the angular velocity of 

the earth. Velocities are denoted hyp with a suffix to indicate the direction towards 

which they blow. Momenta per unit volume are denoted by mx, %, mK. The 

eddy-diffusivity is denoted by a capital K as in G. I. Taylor’s recent papers. 

Another, and in the author’s opinion a better, measure of turbulence is f discussed 

in a previous paper.* The relation K to £ is given by 

cp 4 
= Sx 

a t 
Ko\ 

dh2 (!) 

where y is either potential temperature, or else mass of water or smoke per mass of 

atmosphere. If p and £ were independent of height, then from (1) we should have 

i = oV K.(2) 

* L. F. Richardson, ‘Roy. Soc. Proc.,’ A, vol. 96 (1919), pp. 9 to 13. 

yol. ccxxi.—a 582. B [Published June 9, 1920. 



2 ME. LEWIS' F. RICHARDSON ON 

It is suggested that f might be named “ the turbulivity.” Its dimensions are: 

(mass)2 x (length)-2 x (time)-6. 

The advantage of using f instead of K is that the former enables one to allow for 

variations of density and of turbulence in a simple and natural manner. The 

disadvantage of £ is that it has no name derivable from indoor physics. It is suited 

to the free atmosphere. We might compromise by using in place of K or f the 

“ eddy-conductivity,” c, defined by the equation 

5 (px) 
dt dh 

or. approximately, | =LL(oI). ... (3) 

In so doing we gain an acceptable name “ conductivity,” but we lose by the explicit 

appearance of density in the equation. Either c or f allows variations of turbulence 

with height to be treated correctly, while K does not do so, as has been pointed out 

elsewhere by the author.* The dimensions of c are (mass) x (length)-1 x (time)-1. 

This c is of the same dimensions as the measure of turbulence discussed by 

W. Schmidt, of Vienna, under the name of “ Austausch ” in two important papers. 

(‘Sitz. Akad. Wiss.,’ Wien, 1917 and 1918.) 

However much turbulence and density may vary with height 

.(4) g PG = & • • 

On the contrary if there are no variations with height, 

c = pK. . . . (5) 

The six components of stress are denoted by xx, yy, hh, xy, yh, hx, as in the writings 

of K. Pearson. 

The convention adopted for the signs of eddy-stresses conforms to that of Love’s 

“ Theory of Elasticity.” Tractions are reckoned positive. That is to say, a direct 

stress such as xx is positive if it be a tension, negative if a pressure; and a shearing 

stress such as xh is positive when the air on that side of a level surface for which h is 

greater (i.e., above), drags the air below in the sense of x increasing. 

The definition of eddy-viscosity adopted in this paper is 

eddy shearing stress 

rate of mean shearing strain 
(A) 

in agreement with the definition used by W. Schmidt (loc. cit., 1917, p. 5). 

The advantage of this definition is that it is simply based on the fundamental ideas 

of stress and strain, as well as being in harmony with the definition adopted in the 

theory of viscous liquids. (cf., Lamb, ‘Hydrodynamics,’ IV. edn., § 326). 

The question may arise as to whether the viscosity defined by (A) can ever become 

infinite by the vanishing of the denominator. The point is discussed by the author 

* Loc. cit, 
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in the paper already cited (p. 13), and the conclusion is reached that such an 

occurrence would be highly improbable. 

The relation of £ to the eddy-viscosity is most easily reached via terms 3mx/dt, 

dniy/dt in the dynamical equations. If pressure-gradient just balanced geostrophic 

wind we should have ^ 
3 (xh) __ 3 mx />\ 

3 h ~ ~ht.K ’ 

Now by the definition of viscosity given above 

xh = /j. . dvx/dh.(7) 

Substituting (7) in (6) and inserting mx = pvx there results 

l " If} = IV.(8) p c/i L oh J at 

It is seen that this equation becomes identical with (l) if 

X = vx and $ = g*py,.(9) 

of which the latter is the required relation. 

On comparing equations (8) and (3), it is seen that eddy-viscosity, p, and eddy- 

conductivity, c, are of the same dimensions, and appear in their respective differential 

equations in the same way. Indeed, Taylor has suggested that they are equal.* 

This likeness would be a good argument for recording observations in terms of these 

two quantities instead of in terms of diffusivity K or turbulivity £ 

II. Shearing Stress from Pilot Balloon Observations. 

(Condensed and revised January 22, 1920.) EkmanI' in a remarkable paper 

pointed out that the total momentum of water produced by a tangential stress on 

the surface of the sea, in the steady state, is directed at right angles to the tangential 

stress, and its amount is quite independent of the value of the viscosity or of the 

variation of viscosity with depth. The same applies to the atmosphere. We may 

use this principle to find the shearing stress on the ground, provided we have a 

measure of what the momentum would be if the surface stress were zero. 

I have taken the wind at a height of l4 km. to 2|- km. as the standard of 

reference, because, by so doing, the term depending on curvature of path, and other 

small terms in the dynamical equations, are automatically allowed for to a first 

approximation. The stress at 2 km. is undoubtedly much less than that on the 

ground, and is neglected. It is best to select observations in which the momentum 

becomes nearly independent of height above U5 km. A table of results follows. 

They were computed with the help of Mrs. L. F. Kichardson. Dr. H. Jefferys 

says the selection will select abnormal lapse-rates and so abnormal viscosities. 

* ‘Phil. Trans.,’ A, vol. 215, p. 22. 

t “ On the Influence of the Earth’s Rotation on Ocean Currents,” by V. W. EKMAN, ‘ Arkiv for Matem. 

Astr. och Fysik,’ Stockholm, Bd. II., No. 11 (1905). 

B 2 
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III. Eddy-viscosity from Pilot Balloon Observations. 

(Abridged, January 22, 1920.) The method of the last section will give the 

difference of the shearing stresses on two surfaces of any horizontal slab of air. If we 

choose one of the surfaces so that dv/dh = 0 and consequently also the stress 

vanishes, we obtain the stress on the other surface. This has been done for some 

very smooth means for Lindenberg (E. Gold, Met. Office, ‘ Geophys. Mem.,’ V., p. 143). 

The results are set out in the following table :— 

Table II.—Lindenberg. 

The x axis is directed with the surface wind. The stress is that exerted by the 

upper on the lower layer. 

Height above 
mean sea, 

kilometres. 

Eddy-shearing-stresses. Rates of mean shearing. Eddy viscosities. 

xh 
dynes cm.-2. 

yh 
dynes cm.-2. 

3 j'x 

dh 
sec.-1 103 x 

0'\, 

dh 
sec.-1 103 x 

Parallel 
to wind. 

xh 

Perpendicular 
to wind. 

yh 

3vx\dh 
dyne cm.-2 sec. 

dvy/dh 

dyne cm.-2 sec. 

1-0 + 0-05 -0-09 - 1*0 - 0-2 50 450 
0-8 + 0*01 -0-37 - 1*2 - 1*6 10 250 
0-7 zero 
0-6 + 0-02 -0*71 1 - 3*2 20 220 
0-4 + 0-09 -0*99 60 - 9-0 15 110 
0-3 + 0-39 - 1-06 12-5 - 12-2 31 87 
0-2 + 0-69 -0-90 
0*12 ground + 1-10 -0*64 21-5? -17-5? 51 37 

To obtain a quantity comparable with f we must multiply the eddy-viscosity by 

g2p which is approximately 1100 c.g.s. units. 

The mean of the viscosities in the two directions increases with height as we 

might expect from other observations (vide Part VIII., below, also ‘ Roy. Soc. Proc.,’ 

A, vol. 96 (1919), p. 18). But the most interesting thing about this table is the 

marked lack of isotropy in viscosity. The air appears to he more viscous, for large 

motions, across the wind than parallel to it, except just near the ground. 

IV. Eddy-diffusivity from Smoke or Floating Bodies. 

Some direct measurements have been made by observing the gradually increasing 

scatter of smoke or other visible material carried along by the air. The changes in 

height of a large number of small portions of air are observed during a fixed interval 

of time. These changes are found to be distributed about their mean value 
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approximately according to the ordinary “ law of error.” Their scatter in height is 

measured by the “ standard deviation,” computed by the familiar methods.* In 

order to find the diffusivity K the observations are compared with an appropriate 

integral of the approximate equation 

Such a one is 

3 <-\2 

°X _ iz o X 
dt a h2 

(i) 

A -(h-A*)* 
v _ -^-1 + 

\Zu+a2 
where Ax, A2, A3 are constants. 

This integral represents a horizontal lamina in which the density x is distributed 

about a mean height A3 according to the law of error. The square of the standard 

deviation of the mass in the lamina can be shown to be 

(4* + A,)5 (3) 

So if the scatter of the same set of particles be observed at tbe beginning and at the 

end of an interval T of time, it follows that 

K = 
2T 

(increase during T of square of standard deviation). . . (4) 

But the increase of the square of the standard deviation is equal to the square of the 

standard deviation of the change of height. Accordingly 

K = 
2T 

(square of standard deviation of change of height during T). . (5) 

In this last transformation we have assumed that K is sensibly independent of 

height. This is permissible because the range of scatter can usually be made small. 

For the same reason the density of the air may be taken as independent of the 

height, so that we may obtain from K, the constant £ which we require when 

pressure is taken as independent variable in place of height, in accordance with (l) 

above. This procedure is not perfectly satisfactory but it is very convenient. It 

gives £ = g2p2K and “ eddy-conductivity ” = pK. 

There is no need for the changes in height to be simultaneous for all the portions 

of air, and in practice it is much more convenient to let them be successive. 

Varieties of particles.—I have observed the scattering of smoke from a 

smouldering wick, from burning weeds, from factory chimneys and from ship’s 

funnels : also the scattering of portions of cloud near the horizon and of puffs of 

ammonium chloride from a special apparatus. Chimney smoke is not to be 

recommended, as it rises through the air. Clouds and steam may mislead one by 

* Vide ‘ Computer’s Handbook,’ M.O. 223, Section V. 
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evaporating. The cold NH4CL smoke proved more satisfactory in these ways. 

Lycopodium dust might be better still, as isolated grains would fall at a definite 

rate relative to the air. But I have not succeeded in making the lumps break up 

into grains. The downy parachute which carries the seed of the dandelion, Taraxacum 

officinale, has been found to be convenient. When the seed is broken off, the 

parachute falls at a rate of 10 to 15 cm. sec.-1 in still air. The standard deviation of 

this rate must be allowed for. The formulas for correction are given below. A brown 

parachute, twice as large each way as that of tarax.acum, grows near Benson. I am 

indebted to the Botanical Department of the British Museum for a search among 

their dried specimens for a large white parachute. A splendid one came from an 

African plant called strophanthus. The parachute is about 6 cm. in diameter and has 

a long stalk by which it can be held conveniently. When the seeds were broken off 

the parachutes fell, in still air, at an average rate of 20 cm. sec.-1. 

Other artificial clouds, which have been used with success, are paraffin-oil vapour 

from an extinguished blast lamp, and smoke of phosphorus pentoxide made by 

dropping calcium phosphide into dilute hydrochloric acid. In strong winds the smoke 

from a firework known as “ Vesuvius ”* is convenient. 

If one could mark and follow individual molecules equation (5) would give the 

molecular diffusivity in still air, 0'2 cm.2 sec.-1. Actually what we observe is the 

centre of a small puff of smoke, and this is not constantly the position of the same 

molecules, so that in still air we find K = 0. To be perfectly exact all observations 

of K by this method should be increased by 0'2 cm.2 sec.-1, an entirely negligible 

correction. In any theory the diffusivity depends on the motions which the theory 

does not follow in detail. In laboratory experiments, in which the molecular motion 

only is ignored, K is taken as 0'2 cm.2 sec.-1. In meteorological telegraphy variations 

of wind of less than 10 minutes’ duration are ordinarily ignored, and there is an 

appropriate, much larger, value of the diffusivity. In a certain scheme for numerical 

prediction it is proposed to average the wind over periods of 6 hours, and the 

further variations thus omitted must be taken into account by further increase in K. 

It follows that the puffs of smoke should be so small as to allow the smallest eddies 

to be observed, and, for the last-named purpose, that the observations should be 

spread over a period of 6 hours. In obtaining the data in the following table 

I believe the former condition has been fulfilled, but the latter has not. When only 

the order of K or f is required, it is enough to assume that the standard deviation 

is it of the distance between the extremes of height observed, when the number of 

observations is about 40. 

Observations very near the earth's surface have peculiarities. It is obvious that 

bxl^h = 0 at an impermeable horizontal surface. This condition can be satisfied in 

the integral by taking the portion of the distribution which would be cut off by the 

surface, reflecting it in the surface, and adding it to the rest of the distribution. 

* Made by Messrs. C. T. Brock & Co, 
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The standard deviation is not then sufficient to give K. It is necessary to make 

more elaborate computations with K. Pearson’s “ incomplete normal moment 

functions.” 

These difficulties are avoided in the symmetrical case when the source of smoke is 

exactly on the ground, and the smoke does not rise or fall by its temperature. 

The results of these measurements are set out in the last column of Table IV. It 

is seen there that K. increases from 5 near the surface of land up to 10,000 at the 

height of a factory chimney. 

But before considering the results further a fuller mathematical investigation will 

now be made. 

V. General Theory of Eddy-diffusivity Deduced from Scattering. 

The foregoing theory of the diffusion of a lamina assumes that the diffusivity is 

constant throughout the space, and that the density in the lamina does not vary 

except in the smooth regular manner indicated by the “ law of error.” But it is well 

known that the wind has an intricate structure. Thus if observations of the smoke 

puffs are to yield a measure of the diffusivity from the formula 

diffusivity = 
increase in square of standard deviation 

twice corresponding increase in time 

then either the interval of time in the denominator must be long compared with the 

fluctuations of the wind in time, or the initial standard deviation must be large 

compared with the fluctuations of the wind in space, or both conditions must hold. 

The former condition is an inconvenient one in practice, because puffs are apt to fade 

before a sufficient time has passed. Dandelion parachutes, with the seeds removed, 

may be better than smoke for this purpose. 

The following theory brings to light some of the assumptions involved in the 

measurement of diffusivity by smoke puffs. It was contrived specially in order 

to avoid “ the distance through which an eddy moves before mixing with its 

surroundings,” a quantity which occurs in Taylor’s theory, but which does not lend 

itself easily to measurement, except in the case of cumulus eddies. See Section IX. 

below. 

The potential^ temperature 0 does not change at a point moving with fluid, if 

radiation and precipitation can be neglected. Now let a portion of an eddy move from 

a height hx at time tx to a height h2 at t2. Then, regarding 0 as a function of h and t, 
we have 

0 {K, 0 = 0 (h2, t2).(1) 

* Potential temperature is the temperature which the air would acquire if compressed adiabatically 

to a standard pressure. If 0 is to be of service in dealing with cloudy air the standard pressure must be 

high enough to evaporate the cloud in all samples. 
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From each side of (l) subtract 0 t2) and divide through by t2—tv Then 

0 (hx, 0 — 0 {hu t2) _ 0 (h2, ta)-0(hu t2) 
t2 ty t2 ty (2) 

Now the left side of (2) is the finite difference ratio — at the height hy, which is 
ot 

what we want to find in terms of the spacial distribution of 0. Expand the right- 

hand side of (2) in powers of h2—hx by the well-known theorem in the calculus. It 

follows that, if subscripts indicate the time and height 

m 
*8t Ai.feJJi 

(h2 hy)“ 
2 ! 

-f higher terms. (3) 

The difference ratio on the left of this equation is centred at the same height hx as 

the differential coefficients on the right of the same, but at a time ^{t2—tx) previous. 

This slight misfit in centering will not matter, because t2—t1 will be of the order of 

one minute or less, whereas we are next going to take the average of each term in 

(3) over a much longer time, say 6 hours. The subscripts may now be omitted as 

unnecessary. Let a bar over a symbol, or group of symbols, denote the mean value 

over this longer period. Let a dash denote the instantaneous deviation from this 

mean, so that, for instance, we have for every fluctuating quantity a formula such as 

00 = /00\ /00 V 
dh \dh) \dh) 

Now the mean of any dashed quantity vanishes.(5) 

Again the mean of the product of any dashed quantity into any barred quantity 

also vanishes.(6) 

We shall further suppose that the mean of h2—hx vanishes,.(7) 

that is to say that there is no mean vertical displacement. 

Then, in the first term on the right of (3) 

00 00\ . /00V 
dh] Vdh 

{(K-hJ + fa-hy)'} 

00V 
dh 

(h2 hx).(8) 

because of (6) and (7). 

/'00V Now y—j(h2—hx)\ after being divided by t2—ty and by the “ standard deviations” 

/00V 
of j and of (h2—hx)', becomes equal to the correlation between dOfdh and 

VOL. CCXXI.-A. C 
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(h2 — hx)/(t2—tx). So the first order terra on the right of (3) vanishes, on taking the 

mean, if the variations of dQ/dh, in time at a fixed point, are not correlated with the 

variations in (Ji2—h^)l(t2—t^), at the same point and time. 

In cumulus cloud eddies, the variations of velocity are caused by variations of the 

potential temperature 0, so that a correlation is almost certain to exist. On the 

contrary, when the eddies are due to dynamical instability, the correlation may be 

expected to vanish. In the latter case, it is the second order term of the right of (3) 

which becomes effective, so that 

m = dje {h-Kf 
$t dh2'2(t2—tx) 

Now suppose further that either d2Q/dh2 has no variations at a fixed time and level, 

or else that its variations are not correlated with those of (h2—hx)2. Then (9) 

simplifies to 

^e_Fe UVAfl /10x 

°8t dh2' 2 (V-0.K ' 
Thus _ 

(h2—hx)2/2 (t2—tx) is the eddy-diffusivity Iv.(ll) 

It is seen to be identical with that derived in Part IV. above, by considering the 

diffusion of a lamina, in which the density was distributed according to the law of 

error. It is a quantity easily measured. 

Of course if t2 — tl were sufficiently small, say second, then it would be the first 

power of h2—hx, which would be proportional to t2—tx, instead of the square. This 

suggests that t2—tx must be long compared with the fluctuations of the wind. On 

the other hand t2—tx must be short compared with the period, of say 6 hours, over 

which the averages denoted by the bar are desired to be taken. 

A similar argument can be applied to any other quantity which, like 0, does not 

change following the motion of the fluid, provided it has space-rates independent of 

the time-variations of velocity. Thus the mass-of-water-per-unit-mass-of-atmosphere 

may replace 0 in (10) with similar restrictions. 

When we consider diffusion in three dimensions there may be six coefficients of 

diffusivity corresponding to the six components of stress. 

VI.—Osborne Reynolds’ Eddy-stresses. 

But we cannot, without further investigation, apply the preceding argument to 

the diffusion of horizontal velocity in a fixed azimuth. 

Something might perhaps be deduced from the well-known theorem that, when p is 

constant, 

j^(i/>'y2 + W, + p) — ........ (12) 

where ^ is the gravity potential. 
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The eddy-viscosity can however be measured rigorously by smoke-puff observations 

made in such a manner as to fit in with Osborne Reynolds’ theory of eddy-stresses.# 

This theory is remarkably free from assumptions which might limit its generality. 

It is to be found in Lamb’s ‘ Hydrodynamics,’ IV. edn., Art. 369. 

The equations of motion are three, such as 

0 (pVx) 0« , 0 / \ , 0 / \ , 0 / \ 

Ak =£+te (^)+ dy + SE (W’“> 

^-2,„sin <pvY-c I Vs' 
dx dx 

■ (13) 

where c is the “ molecular ” or “ ordinary ” viscosity. Note that there is no need to 

assume p to be independent of position. Reynolds assumed this, but for a reason that 

does not concern us. It will be necessary however to assume that p , the variation of 

density at a fixed point, is so much smaller in comparison with p than is v' in 

comparison with v, that we may put p = 0. This being so, we find on taking the 

mean that (13) becomes 

j 3{pvx)\ 
1 dt J 

The left side of (14) is the difference between pvx at the beginning and at the end of 

the period through which the average is taken, divided by the period ; and that is 

what we want. The right side of (14) is of exactly the same form in the mean 

quantities p, vx, vY, fiH as (13) was in the corresponding instantaneous quantities 

p, vx, vY, vK ; except that there is added a force per unit volume in the x direction 

equal to minus 

^{pv'xv'x)+ J1- {pv'xvfY) + | (pv'xv'H). ...... (15) 
ox on oh 

dp , d\h 0 • 0divv , ™- 

dx+pdx~^sm + v ^ 

+ ^ {pVx • fix + pv'x ■ v'x) + — (pvx . VY + pv'x . v'Y) 

+ - (pvx . vB + pv'xv'K) . (14) 

On working out the corresponding equations for the y and li components, it is seen 

that this additional force per unit volume is just that which would be given by the 

following systems of stresses 

XX — p v xp x ? 

xy — — pv xv'Y ; 

yy = -pv'W Y; hh = -Pv'nv 'H 

tyh = —pv'Yv'n ; fox* —— —pV £ 

(16) 

* Major G. I. Taylor tells me that he attempted to measure xh with a balloon on an elastic tether 

in 1914. 
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when any symbol such as xy is the force in the cc-direction per unit area of a plane 

normal to the y axis. Tractions are reckoned positive, as usual. The above is taken 

from Osborne Reynolds’ theory, adapted and slightly generalized to suit our needs 

for a rotating atmosphere, having density diminishing with height and a molecular 

viscosity which is not neglected. 

One may form a clear mental picture of these eddy-stresses by imagining the 

scattering of smoke puffs. Let a puff emerge from a pipe at the origin of the 

co-ordinates. After a short interval of time r, let the 

puff appear at the point P on the diagram, as seen by an 

observer at a distant point on the ?/-axis. Now let the 

observation be repeated for a large number of puffs in 

succession, the time r being kept the same for each. 

We thus obtain a diagram, with a large number of points 

on it, showing the scattering of the puffs after r. Then 

the eddy-stresses are simply related to the correlations 

and standard deviations of this scatter-diagram—under 

certain conditions. For let X, Y, H now mean the 

co-ordinates of any one of the dots on the diagram reckoned from the source of 

smoke. 

Then the velocities of the corresponding puff were 

X _ H 
5 — ~ (17) 

provided the time r was so short that, during it, the velocity may be regarded as 

uniform and in a straight line.(18) 

Again, the velocity of the puff will be equal to that of the air which it has replaced 

provided the puff is at the same temperature as the air, and provided that the pipe 

points parallel to the Y-axis so that the impulse with which the puff leaves the pipe 

does not show in the projection on the plane XQH. 

Let us suppose that a number of puffs, n in all, are observed. In order to 

correspond with the time-mean taken over 6 hours, which was used in deriving the 

eddy-stresses from the equations of motion, these n puffs should be spread uniformly 

over a similar interval. 

From the scatter diagram we can compute first the mean velocities. For the 

mean velocities are 

vx — — 
X 

T n 
NX ; vY = Y/r = 

2Y 

n 
■ (19) 

where 2 has the meaning :—take the sum of what follows it, for n puffs. 
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Then the normal eddy-stresses, xx and hh, are found thus 

XX pP xP x P {.Px Px){Px P-x) 

= -^2(X-X)(X-X).  (20) 

So 

•Xic = —p<tx2It\.(21) 

where <rx is the “standard deviation” of the dots in the .x-direction. If rrH is the 

corresponding quantity vertically 

hh = —p<Tn2T~2.(22) 

So the direct eddy-stress in the direction of the wind is intimately related to the 

gustiness shown by a tube-anemometer. 

The shearing eddy-stress 

xh = = -4 - 2 (X-X) (H-H).(23) 
t n 

So 

Xh — — pT  (24) 

where rXH is the correlation between the co-ordinates X and H of the dots. 

By projecting the puffs on the other two co-ordinate planes we should be able to 

measure similarly the remaining components of eddy-stress. 

To find the eddy-viscosity we must compare the sheering eddy-stress xh with 

(+ which is the rate of shearing strain in the mean motion. Usually dvH/dx 

is negligible, so that the rate of shearing is dvx/dli, a quantity which can easily 

be observed. At first sight one might think that dvx/dh was simply related to the 

slope of the regression line in the scatter diagram ; but on examination this proves 

not to be the case. The slope of the regression line is independent of r, because (18) 

is satisfied for all permissible intervals of time. 

It should be noted that no shearing stress such as —pp'xv'ii can exceed, in absolute 

value, the geometric mean of the corresponding pair of direct stresses —pp'xP'x, 

—pp'np'H f°r the same reason that a correlation coefficient cannot exceed unity. 

The probable errors of eddy-stresses, determined from the scattering of particles 

moving with the air, may be taken to be as follows 

Probable error of xx = 0'674 . xx / V I.(25) 

Probable error of xh = 0‘674 ., +.y:' ~.(26) 
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These are based on the assumption that the number of particles is not less than 

say 20, and that the scatter is “normal,’’ so that the logarithm of the density of 

particles would be a quadratic function of x, y,h\i a very large number of particles 

were observed. Reference may be made to the fundamental papers on probable 

errors: Filon and Pearson, ‘Phil. Trans.,’ A, vol. 191; W. F. Sheppard 

‘ Phil Trans.,’ A, vol. 192. Equation (26) follows from the probable error of the quantity 

called by K. Pearson the “ product moment coefficient taken about the mean.” 

Equation (25) follows from (26) on putting x = h, or may be deduced independently 

from the probable error of a standard deviation taken about the mean. 

Corrections for the Motion of the Parachute Relative to the Air. 

When observing eddy-stresses by the aid of the parachutes of -plant seeds it is 

desirable to allow for the velocity of the parachute in still air. For large specimens 

of the parachute of Taraxacum officinale, after cutting off the seed, the velocity in 

still air was found to have a mean of 12 cm. sec.-1 with a standard deviation of 

2 cm. sec.-1. It may be shown from the equation of motion that this limiting velocity 

is acquired in a negligibly short interval of time. Thus call the limiting velocity 

c downwards, the instantaneous velocity downwards u. Then if the friction is 

proportional to the velocity 
(7 (mass) = c x F,.(27) 

where F is a constant. But, when accelerating, 

(mass) 
du 

dt 
g (mass)—uF, (28) 

Eliminate the mass between these two equations and there results 

ldJ^ = -(“-<)•.<29> 

So that the discrepancy between the actual velocity u and the terminal velocity c 

sinks to e-1 of itself in a time equal to cjg, which for the taraxacum parachute having 

c = 12 cm. sec.-1 would be only a hundredth of a second. 

Less negligible is the variation of the velocity c from one parachute to another. 

What we actually observe is not pH the upward velocity of the air, but vH—c. Now 

write V for the mean velocity of the parachute in still air, and c for the deviation from 

the mean. Then in finding the direct stress hh we must perforce work out first the 

“raw” moment {(ph —c)2} = [{(rH-c) + (p'H — c')}2]. On expanding and remembering 

that a bar put over the product of a dashed and a barred symbol, causes the result to 

vanish, and also that p'H — c' — 0, it is found that 

{(ph-c)2} = fu-ef + vfvf + c'c' 
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it follows that the corrected stress is given by 

hh =-Pv'nv'u =-P {{vn-c)(vn-c)-{vH-c)2-c'c'} .... (30) 

which is the actual formula used in working up the observations. Here c'c' is the 

square of the standard deviation of the velocity of the parachutes in still air. 

Next we require the product moments in order to find the shearing stresses xh and 

yh. The raw moment vx (vs—c) is found on expanding to be equal to vx (vH — c) + v'xv'n. 

So that the corrected value for the stress is 

xh = pv hP x = P {vx{vh (% c)}>.(3l) 

and as c'c' does not appear, the scatter of the velocities of the parachutes in still air 

does not make a correction necessary for the shearing stresses. 

VII. Summary of Theory of Scattering of Particles of Air. 

The conclusion we have reached is the following. For any sort of eddy, whether 

due to “ dynamical instability,” or to the rising of heated air in cumuli, the eddy- 

stresses are best measured by equations (22), (24) and the like, because the theory 

from which they are derived is very general; and the eddy-viscosity is best measured 

as the ratio of the shearing eddy-stress to the rate of mean shearing strain. It is 

conceivable that xh found from (24) might turn out to be zero. In that case it would 

be necessary to investigate effects of higher order. This might possibly be done by 

developing, for the quantity {-kpv2 + p\Js+p) in equation (12) an analysis similar to 

that of (l) to (ll) for potential temperature. The diffusivity for potential 

temperature, on the other hand, should be measured differently according as the 

eddies are produced by variations of potential temperature or not. Thus for cumulus 

eddies we should take the mean of (3), retain the linear term on its right-hand side 

and neglect the quadratic one. Then t2—t1 must be small, so that 

$0 _ 30 (h^—hx) _ /00V / 
W - Hh ~\dh) ' 11 

(31a) 

The diffusivity is measured as the right side of. this equation divided by 020/0/?2. 

Thus 

K = 

00 
dh 

h 

020/0A2 
(32) 

But for eddies due to dynamical instability, neglect the linear term in (3) and measure 

the diffusivity as n 1 w K=fcM.(33) 
2fe—O 

where (t2—tx) must not be too small. It will be interesting to see whether eddy- 

diffusivity is found to be equal to eddy-viscosity divided by density. 
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Let us now see how these two modes of disposal of smoke fit together—the one. at 

short intervals of time, governed by the eddy-stresses, the other at long intervals 

governed by the diffusivity. Let us draw the trail of smoke as it would appear to a 

distant observer looking, say, horizontally. The scatter may be represented by 

drawing two lines through the points where the smoke-density has its standard 

deviation in height above or below its mean. Let T be the time since the smoke 

emerged from its source. Suppose that the stress hh, the difiusivit-y K and the mean 

velocity vx are all constant along the path of the smoke. The time T taken to travel 

a horizontal distance x measured down the trail from the source is x/vx. Near the 

origin T = r in equation (22), and so the standard deviation in height is 

representing a pair of straight lines intersecting at the source. Further down the 

trail T = t2—t1 in equation (11), and the standard deviation in height is 

± \/x • \ f ^.(35) 
v vx 

representing a parabola with horizontal axis and its apex at the source. Thus 

according to the theory, the smoke may be said to be contained within a paraboloid 

which has had its blunt end sharpened into a cone. The preceding theory gives us 

no clue as to the manner of transition from the cone to the paraboloid. 

When we can observe a sufficient length of the path traced out in space by a single 

small portion of air the eddy-stresses and the eddy-diffusivity may be deduced from 

the irregularities in the motion. With this object I have observed the motion of anti¬ 

aircraft shell bursts, and of portions of cloud, by means of an Abney level or a pocket 

sextant. With better instruments this method might yield a good deal of information 

about eddies at heights such as 2 to 5 km. One principal difficulty is that the shell- 

burst fades away after about 5 minutes, before a sufficient length of path has been 

observed to give the diffusivity. 

If the path is sufficiently high and long, the hills, trees and houses on the earth 

may be regarded as blending into a “ roughness.” Suppose this roughness to be 

uniform. Then if we had been causing smoke to issue in puffs from a fixed pipe, we 

should presumably have obtained the same scatter diagram for the puffs, within the 

limits of probable error, at whatever point of the path we had placed the pipe, or at 

whatever time we had begun to observe, within limits. If this is so, we may form 

the scatter diagram by taking its origin at every point in succession of the trajectory 

of the single particle. For instance, Captain Cave in his book on “The Structure of 

the Atrposphere,” gives several diagrams of the irregularities of height of a balloon 

observed by two theodolites, the uniform vertical motion of the balloon relative to the 

air having been eliminated. From his figure 30, of an ascent on February 19, 1909, 

the following has been deduced, by taking the origin of scattering at every available 
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minute mark, and working out the standard deviation, in height about the mean 

height, after a time a. 

Table III. 

a, secs. 1 x 60 3 x 60 5 x 60 7 x 60 9 x 60 

^ = 1(P x 
2 a 
cm.2 sec.-1 

| 0-93 0-82 0-55 0-55 0-33 

(T 2 

p-\ a.z 
dyne cm.-2 

e 

j> 0-345 o-ioo 0-041 0-029 0-014 

Number of points 14 12 10 8 6 

Now o-H2/2a would be the diffusivity if a were a “ long” time ; and the criterion of 

sufficiency in length is that <rH2/2a should not vary with a. The small number of 

points makes the probable errors large, so that the decrease of o-H2/2a between 

a = 7 mins, and a = 9 mins, is not significant. It looks as though the diffusivity K 

were here of the order of 0'5 x 104 cm.2 sec.-1. 

Again — pa-f/a2 would be the eddy-stress, hh, if a were so small that further decrease 

made no further change in the quantity. This stage is not reached at a. — 1 minute. 

All that we can say is that the eddy-stress is probably greater than 0'345 dynes cm.-2. 

The mean height of this observation is 1 km. above ground, and the mean velocity 

1270 cm. sec.-1. 

The photograph of a smoke trail in fig. 2 suggests that the eddying is partly 

random but also partly sinusoidal. Let us therefore see what would happen if the 

path of the particle were an exact sine curve without any random variations. Let 

the height h of the particle be given by h — B = A sin qt where A, B and q are 

constants. The increase in height in a time a would be 

A sin A . 2 cos qt. sin 

by trigonometry. So that the standard deviation <xH after a time a would be given by 

L, 
(cos qt)2dt 

4A2( sin— 
2 V 2 

0-H = “ 

L 

* = L 

( 
t = 0 

where L is a very long time. The integral is equal to fL plus a negligible oscillatory 

part. Consequently erf = 2A2(sin . It follows that the stress hh, which is the 

limit of —perfla2 when a is small, comes to —pq2A2/2 ; whereas the diffusivity K, 

which is the limit of <xH2/2a when a is long, comes to zero. 

VOL. CCXXI.—A. D 
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Comparison with Taylor’s expression for the Dijfusivity and with W. Schmidt’s 

“ AustauschC 

In Taylor’s remarkable investigation (‘ Phil. Trans.,’ A, vol. 215) from which the 

present research took its stimulus, the diffusivity K is given, in the present notation, 

as the mean value of Vn(h — h0) over a large horizontal plane; and it is stated that 

h — h0 is the height through which an eddy moves from the layer at which it was at 

the same temperature as its surroundings, to the layer with which it mixes. This 

definition of h — h0 is puzzling, for it seems impossible to reconcile the supposed 

starting and stopping of the air, with the ceaseless motion which we observe in nature, 

except in the case of cumulus eddies. Happily we are now in a position to clear away 

the mystery. For it has been shown independently in the present paper that the 

diffusivity is given by ______ 

K = (h2-hf2/2 (4-h) 

where (t2 — tx) is a time long compared to the fluctuations in the wind, and where the 

bar implies an average taken over a still much longer time. As (t2—tx) is the same 

for all the quantities which are averaged, we may remove it from under the * bar, 

writing 

K (ta-tj) = i(/i2-/q)2. 

Differentiate this equation with respect to t2, 

K = (h.-hf ~ {ha-h^) = (ha-hi) • vn at C 

thus K is expressed as the mean of the product of the rise in height during a long¬ 

time into the vertical velocity at the end of that time. It may also be taken at the 

beginning. Comparing with Taylor’s form quoted above we see a strong resemblance, 

and we are led to suppose that Taylor’s theory makes two unnecessary and 

unnatural restrictions : (1) that the portion of air should start at the same temperature 

as its surroundings ; (2) that the portion of air should finally mix with its surroundings. 

But that if these restrictions be removed, then another becomes necessary, namely 

that {t2—t^) should be sufficiently long (several minutes). Whether the average be 

taken over a large horizontal plane, or over a very long time (6 hours), appears to be 

a matter of indifference. 

The extent to which Taylor assumes viscosity to be independent of height in his 

general theory (‘Phil. Trans.,’ A, vol. 215, pp. 11 to 13) is this: he neglects the terms 

due to the initial eddying in his equation (6). That is a doubtful proceeding, unless 

the initial eddying is zero : but zero is independent of height. 

The “Austausch” of W. Schmidt is defined by him (in ‘ Sitz. Akad. Wiss.,’ Wien 

(1917), pp. 4 to 5) as 

2 (element of mass crossing horizontal plane) x (vertical displacement of element) 

(whole area) x (time of motion) 
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If we replace the summation by an integration over a large area S in the plane of xy, 

the element of mass crossing per unit time is dx dy pvR, so that the “ Austausch ’ 

becomes 
S 

pvn (h—h0) dx dy which is p times Taylor’s diffusivity as defined in ‘ Phil. 

Trans.,’ A, vol. 215, p. 3. Thus we must suppose that W. Schmidt’s definition of 

“ Austausch ” requires amplification concerning the interval of time and concerning the 

position in it of the velocity, just as Taylor’s definition of K does. 

VIII. Numerical Values Derived from the Scattering of Particles. 

Fig. 1 is a photograph* of the trail of paraffin vapour from an extinguished blast- 

lamp which projected the vapour in a direction at right angles to the wind. It 

shows a cone, with a blunt point due to the finite size of the source of smoke, passing 

smoothly into a form, which certainly diverges less rapidly than the initial cone, and 

which looks like a paraboloid. Opinion might differ slightly as to where to draw the 

lines corresponding to the standard deviation of smoke. In a “ normal ” distribution 

0'68 of the whole number of particles lie between the two standard deviations. If 

the lines are placed as in the accompanying black and white drawing, then it follows, 

as the mean velocity of the smoke was 17 metres/sec., and the density of the air 

was 1'21 x 10-3 grm. cm.-3, that 

stress hh = —073 dyne cm.-2 diffusivity = K = 240 cm.2 sec.-1 

turbulivity = ^ = 340 grm.2 cm.-2 sec.-5. 

This photograph was taken in the evening, when the day-wind was diminishing. 

The source was 190 cm. above ground. Obstructions to windward only subtended 

an angle of 2°'l at the source of smoke. The exposure lasted 60 seconds. 

Fig. 2 was taken five minutes later in the same place, with an exposure of 

85 seconds. 

The velocity of the smoke had decreased to 1'3 metres per sec. The measurements 

yield 

hh = — 1 '2 dynes cm.-2; K = 750 cm.2 sec.-1 ; £ = 1050 grm.2 cm.-2 sec.-5. 

In this case the photograph shows a distinct neck between the cone and the paraboloid, 

at a distance from the source roughly 1*3 times its height above ground. This neck 

can also be recognized in some other photographs. Its presence signifies that 

the motion of the air was compounded of (i.) a random eddying, plus (ii.) a wave 

motion in which the particle of air executed a wave having a length, relative 

to a point fixed to the earth, roughly 2‘6 times the height of the particle above 

ground. 

* Taken at Benson. 

D 2 
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Table IV.—Observed Values of 

The co-ordinate axes are taken to point: Ox horizontally with the mean wind at 

quantities are in C.G.S. units. Tractions are reckoned positive, so that xh and yh 

1 

Entropy gradient 
vertically upwards. 

Surface. Methods. Notes. 

1 

h 
cm. 

above 
surface. 

vx 
cm. 

sec. ‘ 

XX 
dynes per 

square 
centi¬ 
metre. 

Positive sunrise . Tall grass . Smoking wick . I. 30 
170 

300,000 

10 
60 

200 

— 

! Small 1. Oat field . NH4C1 puffs. . . . 
NH4CI puffs.... 
Dandelion down . . 

II. 40 
100 
50 

20 
40 — 

Small 1. Corn field . . . Smoke puffs .... III. 120 100 - o-i 

Small 1. Moor .... Smoking wick . . IV. 165 100 — 

1 Moor, trees . Thistle down . . . Y. 200 145 - 2-4 
± 0-5 

Positive 1 ... . Flat field . Paraffin vapour. 
f VI. 

Figs. 1 
and 2 

| 190 
/ 170 
\ 140 

1919, Mar. 4 

B
e
tw

e
e
n
 E

n
g
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n

d
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n
d
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h
e
 I

sl
e
 o

f 
W

ig
h
t.

 

r 
Sea. Steamer’s smoke . 4,000 1001 

1919, Apr. 7, 
18h. 

Sea. Steamer’s smoke . 10,000 200 1 

1919, July 4, 
llh. over¬ 
cast 

Sea. Steamer’s smoke . 2,000 130 — 

1919, July 5, 
12h. 

Sea. Steamer’s smoke . . 1,400 140 — 

Ditcham . . Capt. Cave’s balloon . p. 16 100,000 1270 

Flat fields . Phosphorus pentoxide 
r vi.- 
iFig. 3 

| 340 120 — 
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Eddy-stresses and of Eddy-diffusivity. 

the level of observation, 0y horizontally to the left and Oh vertically upwards. All 

are positive when the air above drags the air below in senses of x and y increasing. 

yy 
dynes per 

square 
centi¬ 
metre. 

hh 
dynes per 

square 
centi¬ 
metre. 

xy 
dynes per 

square 
centi¬ 
metre. 

yh 
dynes per 

square 
centi¬ 
metre. 

hx 
dynes per 

square 
centi¬ 
metre. 

dvx 

dh 
sec. 1. 

Conductivity 
= pK 

grm. cm. 1 sec. t 

Diffusivity. 
K 

cm.2 sec.-1. 

Turbulivity. 

£ = 92P2K 
grm.'2 cm. 2 

sec.-5. 

— — — — >0-5 

}°^ { 

0-006 5 7 

— 

-0-004 
-0-006 

-— 
— 

0-07 60 80 

— -0-2 — —- <0-1 <0-06 

— -0-04 — — — 0-03 24 34 

- 2-9 
± 0-6 

-0-6 
±0-12 

[ + 0-45] 
±0-39 

-0-48 
±0-20 

[-0-34] 
±0-18 

— -0-7 
-1-2 

— — 0-3 
0-9 

240 
750 

340 
1,050 

— — — — ■— — 12 10,000 14,000 

— — •— — — 

— 

0-25 200 300 

— — — — — 6-8 5,500 8,000 

— — — — — — 5-9 4,800 7,000 

— < -0-34 — — — — 6 5,000 6,000 

— — — — — — 0-16 130 200 
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Table IV.—Observed Values of 

Entropy gradient 
vertically upwards. 

Surface. 

1 

Methods. Notes. 

1 

h 
cm. 

above 
surface. 

Vx 
cm. 

sec. 

XX 
dynes per' 

square 
centi¬ 
metre. 

1919, Oct., 2 Id. 12h., 
Benson 

Obstructions up 
wind f radian 

Paraffin vapour. . . 160 250 - | 

1919, Oct., 29d. 15h., 
Benson ; raining 

Obstructions up 
wind 0•045 
radian 

Smoke. 190 330 

Small ?. Moor, trees . . Burning rubbish . VII. 900 300 
- 

Small 1. Fields, trees . . Factory chimney . VIII. 3,000 600 — 

Negative 1 ... . Moor, low hills . Cloud. IX. 150,000 
2,000 

1000 
200 

Small 1. Wooded hills . . Large fire .... X. 25,000 
37,000 1600 

— 

Shell-puffs .... XI. 300,000 500 — 

Positi ve 1 . Spurn head . . Dines anemometer XII. — 1200 -80 

Positive 1 ... . Open sea . Steamer’s smoke . . XIII. 1,500 — — 

Negative 1 . . . . Open sea . . . Steamer’s smoke . . 

J 

XIV. 5,000 200 — 

1 Open sea . . . Alto-stratus .... XV. 500,000 — . — 

Notes to Table of Eddy-Stresses and Diffusivities. 

I. 1917, June, 16d. 4h. 8m. L.A.T., hilltop near Ancemont, France. Standing hay composed of a 

species of Festuca (identified by my friend, Mr. Sam Pim). It grew fairly densely to 30 cm. from 

the ground and tall seed stems rose to 70 cm. 

II. 1917, July, 16d. 19|h. L.A.T., Maffrecourt, France. Green oats 70 cm. high. No trees near. 

About sunset. Overcast with stratus. Observers : David Long and L. F. Richardson. 

III. 1917, June, 29d. 19h. 30m. L.A.T., Yiel Dampierre, France. A field of corn 60 cm. high. 

Clouds (stratus) motionless. Observers : F. H. Weatherall, G. Hutchinson, L.F.R. 
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Eddy-stresses and of Eddy-dijfusivity (continued). 

^ . 1 _ 
yy M xy 

dynes peydynes per'dynes per 
square square square 
centi- centi- j centi¬ 
metre. j metre. metre. 

yh 
dynes per 

square 
centi¬ 
metre. 

lix 
dynes per 

square 
centi¬ 
metre. 

C‘0x 

dh 
sec.""1. 

Conductivity. 

= pK 
grm. cm. 1sec._1. 

Diffusivity. 
K 

cm.2 sec.-1. 

Turbulivity. 

$ = gVK 
grm.2 cm. 2 

sec.-5. 

— — — — — — 2-5 2,000 3,000 

— •— — — 9-3 7,500 11,000 

— — — — — — 6 5,000 7,000 

— — — -— — 12 10,000 14,000 

— -5 

— — — 120 105 1•4 x105 

— •— _ <0-9 x 103 <105 <0-8 x 10° 

- 110 

— _ ! _ j 
—- 0-12 100 140 

— •— — — 12 10,000 14,000 

_ -1 

IY. 1917, June, 25d. 20h. 5m. L.A.T., Joinville, France. Moor with herbage dense to 10 cm. and 

rising thinly to 50 cm. 

Y. 1917, October, 4d. 8jh. G.M.T., Massiges, France. Flat moor with grass to 10 cm. and stems rising 

to 30 cm. Trees up-wind subtending an angle of 10 degrees. Overcast with strato nimbus, of 

which velocity/height = 0-025 sec.-1. Temperature 0°-15 C. Observers: Olae Stapledon and 

L. F. Richardson. Eddies partly due to observer. 

VI. See photographs and description in this paper. 

VII. 1917, July, 18d. 7fh. L.A.T., Maffrecourt, France. Moor, with small trees, 5m. high and houses. 

Overcast, 
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VIII. 1917, August, 2d. 17h. L.A.T., South England. Overcast. 

IX. 1917, July, 17d. 19h. 50m. L.A.T., East Champagne, France. Nine observations of a cloud at 

intervals of 1 minute by an Abney level. Angular elevation about 9 degrees. 

X. 1917, August, 8d. 20h. L.A.T., Argonne, France. Large fire of petrol and wood. Smoke observed 

from distance of 10 km. with a sextant. If smoke were not hot, height of its upper edge above 

ground would have given K = 4-6 x 10s cm.2 sec.-1, an over estimate. Irregularities in upper 

edge gave K = 104, probably an under estimate. Mean K of order of 105. Overcast. 

XI 1918, April, 12d. 14h. 5m. L.A.T., France. Two anti-aircraft shell puffs at a mean elevation of 

21 degrees above the horizon and 4 degrees apart in a vertical plane, were brought into 

coincidence in the field of view of a sextant. In 120 seconds their separation of 4 degrees did 

not vary visibly, certainly not by 4 minutes of arc. Their apparent motion was horizontal at 

T'gVtr radian per sec. Height assumed 3200 metres—a likely value. 

XII. 1914, November, 16d. 3h. to 9h. G.M.T. Taken from the re-production of the Dines anemogram 

on p. 81 of the ‘Observer’s Handbook,’ Meteorological Office, London, 1917 edition. 

XIII. 1917, July, 26d. 21h. L.A.T., the English Channel. 

XIV. 1917, July, 26d. 16h. L.A.T., the English Channel, off Havre. 

XV. 1917, July, 26d. 15h. L.A.T., the English Channel, off Havre. Observations of cloud at intervals 

of 1 minute with pocket sextant. Angular elevation about 4 degrees. 

The photograph (2) also shows that the smoke spreads more rapidly upwards than 

downwards, indicating that the stress hh and the turbulivity £ both increase with 

height. 

Fig. 3 shows another case of low eddy-conductivity occurring at sunset. The 

smoke here is from burning hydrogen phosphides ; it is warm and rises slightly. To 

the eye the smoke appeared as a narrow wavy ribbon moving with a mean velocity of 

1'2 metres per second. The broader smooth band shown in the photograph is due to 

the exposure of 75 seconds, made long in order to get an average effect. The source 

of smoke is a bottle 3"4 metres above ground and just within the picture. The 

bamboos are 5 metres apart. The air density was 0'00126 c.g.s. The eddy- 

diffusivity works out to about 130 c.g.s. units, the eddy-conductivity to 0'16 c.g.s., 

the turbulivity to 200 c.g.s. The sky was cloudless. Obstructions to windward rose 

above the horizon to an angle of only 5V radian. The photograph was taken in 

latitude 51° 37' N., longitude 4m. 24s. west, at 1919, Sept., 29d. 17h. 58m. G.M.T. 

Above is a table of observations. It is noticeable that when two of the 

direct stresses xx, yy, hh have been measured at the same time and place, they 

have been found to be not very unequal. G. I. Taylor has published some 

observations which show the same thing. It is as though there were a kind of 

equipartition of energy between the three components of the eddying motion. A 

very marked increase in both direct stress and diffusivity takes place either with 

velocity or with height. A rapid increase of viscosity with height in the first 

200 metres has also been deduced by W. Schmidt from wind observations made by 

Hellmann over a piece of flat land. (‘ Sitz. Akad. Wiss.,’ Wien, 1917, Heft 6, 

p. 17). 
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The six observations of steamers’ smoke are put forward only as upper limits to the 

turbulence appropriate to the bare sea, for the steamer itself probably makes 

a considerable eddy. 

It would be desirable to classify the observed eddy-conductivity as a function of 

four independent variables; namely, the height, the vertical gradient of entropy, the 

vertical gradient of velocity and the character of the surface. Vertical gradient of 

velocity is suggested as an independent because it measures the only rate-of-mean 
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strain which attains a noticeable value in the free atmosphere, and because Osborne 

Reynolds* has shown that the energy of the eddy motion comes from the work 

done by the ecldy-stresses upon the corresponding rates of mean strain. The observa¬ 

tions here presented are much too scanty for such a classification, but to render the 

relation to height visible, the effect of velocity has been removed, in one sense, by 

dividing each value of the eddy-conductivity by the velocity at that level. The 

* Lamb, ‘ Hydrodynamics,’ IV. edition, § 369, equation (21). 
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justification for this procedure is that Taylor has given reasons* for supposing that 

the viscosity, and therefore also the conductivity, is proportional to the velocity. 

For comparison with the present observations, the diagram shows Taylor’s mean 

value of the diffusivity at the Eiffel Tower, t and also some general means} deduced 

from precipitation by the writer. 

In order to compare them it has been necessary to assume some corresponding 

velocities; for which purpose I have taken 540 cm. sec.-1 at the mean height of the 

Eiffel Tower, 700 cm. sec.-1 as a world-mean at 500 metres and 1000 cm. sec.-1 for 

the same at 8500 metres. These are based on information given in Hann’s 

‘ Meteorology.’ The conversion formulae between eddy-conductivity, diffusivity and £ 

have been given in Section I. In order to compress into a diagram the large ranges 

of height and conductivity, logarithms have been plotted. A smooth curve is drawn 

through the clustered observations over land. It shows a maximum between the 

heights of 100 and 1000 metres, and a marked falling off above and below. Not 

only c/v but also c the conductivity has a maximum here. Taylor’s first 

observations related to heights near this maximum and so he naturally came to the 

conclusion that there was no marked variation with height. 

IX. Cumulus Eddies in Calm Weather. 

The familiar sequence, which can be observed in many places, is here illustrated by 

the mean of some selected days in latitude 49° in France, on the bare grass moors to 

the west of the forest of Argonne, in the month of May. The sun rose at 4h. 20m. 

local apparent time, hut could not be seen for mist. By 6h. the disk of the sun 

became visible. At 7|-h. the mist was rising in large pieces, leaving a brilliant blue 

sky. At 9h. the first cumuli appeared over the forest. About half-an-hour later 

they appeared over the grass land also. By noon the cumuli covered of the sky. 

By 16h. the cumuli had begun to spread out horizontally, and by 19h. they had 

vanished, leaving the sky clear again. 

Now here we have a collection of eddies in which the rising parts, represented by 

the cumuli, visibly move to a level where they remain by mixing with their 

surroundings. So we should be able to calculate the diffusivity K by the direct 

application of the formula given by G. I. Taylor (‘ Phil. Trans.,’ A, vol. 215, p. 3) 

K = i JjA vH (h-h')dxdy,.(1) 

where h—h! is the height through which the air has moved before mixing, dh is its 

vertical velocity, and A is a large horizontal area. Only, as Taylor’s formula assumes 

* G. I. Taylor, ‘Roy. Soc. Proc.,’ A, vol. 92, pp. 196-199. 

t G. I. Taylor, ‘Roy. Soc. Proc.,’ A, vol. 94 (1917), p. 141. 

1 L. F. Richardson, ‘Roy. Soc. Proc.,’ A, vol. 96 (1919), p. 18. 
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that p and K are independent of height, it may be as well to remove these restrictions. 

It is then found that £ as defined by equation (l), of Part I., is given by 

^ = A JJa mH dxdy,.(2) 

where p' is the pressure at the initial level, mn the vertical momentum per volume. 

Now let us insert numerical values. The surface air was seen to begin to move at 

or a little before 7|-h. The cumuli appeared to cease rising before 16h. and the height 

of their tops is known to average about 2 km. (vide HAnn’s ‘ Meteorology,' Illrd edn., 

p. 280). Now if we suppose, as seems reasonable, that the top of the cumulus is formed 

from the damp air which was initially close to the ground, then the displacement, 

measured by pressure, is about 2 decibars, so that (p'—p) = 2 x 105 dyne cm.-2. The 

vertical velocity is 2 km. in 8*5 hours, that is 6'5 cm. sec.-1. So the momentum per 

volume = m = 7 x 10-3 grm. cm.-2 sec.-1 in the rising current. The rising current 

covered 0‘4 of the sky, so that averaging over the area A, as is done in (2), is 

equivalent to taking 0'4 of mH(p' —p) for the rising current. But the invisible 

descending currents contribute an equal amount to the integral. So 

^ = (/x0’8x2x105x7x 10-3 

= 11 x 105 grm.2 cm.-2 sec.-5. 

This figure is about ten times greater than measures of f at a height of a few 

hundred meters, deduced by various authors. If the air which forms the top of the 

cumulus had really started from a height of 1 km. instead of from the ground, as we 

have supposed, then the numerical value of £ would have to be divided by four. 

Reasons have already been given (Part VII.) for supposing that £ derived in this 

way from cumulus clouds is a measure of frictional effects, but not of the diffusion of 

entropy, because the linear term in (Part V., 3) does not vanish on taking the mean, 

owing to the fact that the eddies are produced by variations of entropy. To put it in 

another way : In G. I. Taylor’s deduction of formula (l) the vertical gradient of the 

diffusing quantity is treated as not correlated with the vertical velocity. When we 

are dealing with cumulus clouds that assumption is probably justified if the diffusing 

quantity is horizontal velocity, but not if it is potential temperature. 

To find ^ in the sense of diffusivity for potential temperature we should have to 

employ formula 32 of Part VII., namely 

K 

aev 
dh 

V H 

a2e/a h2 

For insertion in this we require lapse rates in cumulus clouds and in the clear air 

between them. Such have recently been obtained by airmen. 
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X. Summary. 

Part I. deals with notation. Measures of turbulence may advantageously be 

expressed in the form £ in 

** =*(*&) 
a t dpVdp/' 

where p is the pressure (here used as a measure of height), t the time, and x may 

be horizontal velocity in a fixed azimuth, or potential temperature, or water per 

mass of atmosphere. It is suggested that £ might he called the “ turbulivity.” Its 

dimensions are grm.2 cm.-2 sec.-5. Better still is the conductivity c = £p~lg~2. 

In Part II. the eddy-shearing stress on the ground is deduced from pilot balloon 

observations. Values on land in any self-consistent dynamical units are found to 

range from 0'0007 to 0'007 times the value of m2/p, where m is the mean momentum 

per volume up to a height of 2 km. and p is the density. Compare G. I. Taylor, 

‘ Roy. Soc. Proc.,’ A, vol. 92. 

In Part III. evidence is given to show that the eddy-viscosity across the wind at 

Liridenberg increases with height, and, except near the ground, is much greater than 

the eddy-viscosity along the wind. Here £ ranges from 104 to 5 x 105. 

In Part IV. the spreading of a lamina of smoke is considered. Values of £ ranging 

from 7 to 140,000 are found. £ increases both with height and with velocity. 

In Part V. the derivation of ^ from smoke observations is examined more 

thoroughly. 

Part VI. deals with Osborne Reynolds’ eddy-stresses. For one occasion an 

attempt was made to measure simultaneously all six components of stress by 

observing the motion of thistledown. The three direct stresses are easily measured. 

Not so the shearing stresses however, one was found to be 2'4 times its probable 

error. 

Part VII. summarizes the theory of scattering of particles. 

Part VIII. contains numerical values derived from scattering. 

In Part IX. the turbulivity £ is estimated from the rising of cumuli in calm 

weather and found to be 10'5, applicable only in the sense of friction. Thus the 

whole range of £ observed in the free atmosphere was from 7 to a million in 

contrast with 0’2 in perfectly still air in a laboratory. The eddy-stresses observed 

have ranged in absolute value from 0'004 to 110 dynes cm.-2. 
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II. On a Theory of the Second Order Lonyitudinal Spherical Aberration for 

a Symmetrical Optical System. 

By T. Y. Baker, B.A., Instructor Commander, R.N., and L. N. G. Filon, M.A., 

D.Sc., F.R.S., Goldsmid Professor of Applied Mathematics and Mechanics in 

the University of London. 

Received December 2, 1919,—Read February 12, 1920. 

§ 1. Statement of the Problem and Historical References. 

If we consider a pencil of rays issuing from a point on the axis of a symmetrical 

optical system (i.e., a system of refracting spherical surfaces, the centres of which lie 

on a straight line called the axis of the system), it is well known that, if the pencil 

be a thin one, of which the mean ray is along the axis, the first approximation to the 

emergent pencil is another punctual pencil, of which the rays pass through an image 

point, also situated on the axis. The general method of treatment of such image 

points, which are usually referred to as “geometrical” images, is due to Gauss, and is 

developed in any text book of Geometrical Optics. 

When, however, the pencil considered is one of finite aperture, the outlying rays 

do not, after emergence, pass through the Gaussian image point, nor do they have the 

inclination assigned to them by the Gaussian calculation. The emergent rays lying 

in any one axial plane touch an envelope or caustic, which has one cusp at the Gaussian 

image, with the axis as proper tangent. The intercepts of any given emergent ray 

upon the axis and the image plane, measured from the Gaussian image, are known as 

the longitudinal and transverse spherical aberrations of that ray. 

It is clear that if both these spherical aberrations, or either of them together with 

the inclination of the ray on emergence, be known for every possible position of object 

and image, and for every possible inclination of the incident ray, the whole complex 

of emergent rays lying in axial planes can he mapped out. The calculation of these 

aberrations is therefore of fundamental importance in practical optical design, where 

we do not deal with infinitely thin pencils. 

The method employed hitherto for dealing with aberrations from the mathematical 

standpoint has been to develop the sines occurring in the refraction equations at each 

spherical surface in ascending power of some argument, which may be either the 

circular measure, or the sine, or the tangent, of one of the angles concerned, and to 

calculate, by the usual methods of successive approximation, the required aberrations 

as a series of ascending powers of such argument. 

VOL. CCXXi. A 583. F [Published June 16, 1920. 
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When this is done it is found that the terms due to the first power of the argument 

lead to the Gaussian image point, so that the series begin with a term involving the 

second power of the argument in the case of the longitudinal aberration, and the 

third power in the case of the transverse aberration. These terms are the first order. 

The following terms next in sequence, which are of fourth and fifth power respectively, 

are spoken of as aberrations of the second order, and so on. 

A considerable amount of theoretical work has been done on aberrations of the 

first order by Seidel, Abbe and others, and the treatment of these is fairly well 

known. Unfortunately, it is found in practice that the first order aberrations do not 

give a sufficient approximation for the optician’s requirements. In fact for a certain 

range of object and image positions, they are so badly out that they cannot be 

said to constitute an approximation at all. This fact has long been recognised by 

optical designers, whose practice is invariably to calculate, using the exact trigono¬ 

metrical equations which involve no approximation at all, the correct paths of a 

number of selected rays, from which they draw conclusions as to the efficiency, or 

otherwise, of the proposed system from the practical point of view. 

The trigonometrical method, however, from the designer’s point of view, has the 

radical defect that, while it gives partial information about the performance of a given 

system, it gives no direct intimation of the direction in which the elimination of various 

defects is to be looked for, and it entails a long and laborious process of seeking for 

the optimum by trial and error. 

The object of the authors of the present paper has been to develop a method of 

expressing the aberrations, which, while carrying the algebraic development to a 

stage including the second order, should be free from certain grave troubles involved 

by failure of convergency, troubles which appear to have been hitherto neglected. 

In fact this method gives numerical results that, for a single lens, are considerably 

more accurate than the ordinary second order formulae. Further, these methods 

enable one to deal, in a comparatively easier form, with the problem of the second order 

aberrations of combinations of surfaces and systems, a problem which, so far as we 

know, has never been attacked from any general standpoint. Koenig and Yon Rohr 

(Yon Rohr, ‘ Theorie der Optischen Instrumente,’ Cap. Y.) give a development of a 

formula for the coefficients of first order and second order in the longitudinal spherical 

aberration, based on Abbe’s method of Invariants, but so far as can he seen, no definite 

results are obtained for the second order terms. 

Dennis Taylor (‘System of Applied Optics,’ p. 67) gives a formula for the 

spherical aberration, developed in powers of the intercept made by the ray on the 

first principal plane, which includes terms of second order. But his formula, a 

particular case of those dealt with in the present paper, is limited to the thin lens, 

and no attempt seems to be made at anything like a general treatment of such 

aberrations. 

Another important object of the method to be described is to express the 
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aberrations in such a form that, in a combination of surfaces and lenses, the effect of 

a given surface or lens on the final result can be readily traced. This is fundamental 

for the designer, who usually proceeds to sketch out his system by Gaussian methods 

only, being guided therein by considerations of magnification, illumination, and field 

of view; and then goes on to eliminate the resulting image defects, so far as lie can, 

by bending the lenses, i.e., by altering their mean curvature without changing the 

focal length. In doing this he usually corrects one defect at a time, with the frequent 

result that, when, having corrected one defect by means of one lens, he proceeds to 

correct a second defect, he thereby causes the reappearance of the first. 

If the effects of any given lens, however, are made apparent in the final formula, it 

becomes a more manageable problem to devise variations which will keep any one 

defect invariant whilst others are being dealt with. 

§ 2. Notation. 

There is no general agreement among mathematical writers as to the notation 

employed in dealing with optical problems, and it will be convenient to state here 

the symbols we have adopted. They are a modification of a system due to 

Steinheil. 

The successive media, proceeding in the direction of travel of the light (from left to 

right in our figures), are denoted by even suffixes 0, 2, 4, &c., and the same suffixes 

affect the rays in these media, their inclinations, a0, a2, a4, &c., to the axis, and their 

intersections I0, I2, I4, &c., with that axis. 

The successive geometrical images will be denoted by the letter J, thus J0, J2, J4. &c. 

The successive surfaces of separation will be denoted by the odd suffixes 1, 3, 5, &c., 

and the same suffixes will affect the centres of curvature, the intersections of rays 

with the surfaces, and the points where the axis crosses the surfaces. The latter 

will be denoted by the letter A and the centres of curvature by the letter C. 

Fig. 1 illustrates the use of this notation for two refracting surfaces. 

The radii of curvature are r4, r3, r5, &c., and are to be considered positive when 

A2n+4 C2n+i is measured from left to right. 

The perpendicular from a centre of curvature on a ray is denoted by p and is 

affected by a double suffix, the first belonging to the centre of the curvature and the 

second to the ray. Thus pv2 is the perpendicular from the centre of curvature (\ of 

the first reflecting surface upon the ray in the second medium. Where there is no 

ambiguity the first suffix will usually be omitted. 

The refractive index will be denoted by n and affected by the suffix of its 

medium. 

Transverse magnifications will be denoted by M. The magnification produced by 

surface 1 will be denoted, as convenient, by Mj or M02; by surfaces 1, 3 combined 

either by M13 or M04: by surfaces 1, 3, 5, combined either by M135, or M0„, and so on. 

F 2 
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The advantage of the double even suffix notation in this case is that we have a symbol, 

M.(0, for the magnification when light passes backwards through the system, the order 

of the suffixes being material. Where odd suffixes are used, we have to use l/Mls 

l/M13, &c., for the reversed magnifications. 

Ray magnifications will be denoted by M. These are the limit of the sine-ratio for 

small inclinations, thus M4 = Mo2 - L sin a0/sin a2. M = M when the initial and final 
“o"A"0 

media are the same. 

With regard to inclinations, they will be treated as positive when the rays converge 

to the axis, as in fig. 1. The inclinations of the rays calculated by Gauss’ process 

will be denoted by /3. Thus /% = a0, tan /32 = tan a0 /M02, tan /3S = tan a4 /Mu4, &c. 

We may also use angles y, calculated from a constant sine ratio, viz., y0 = a0, 

sin y2 = sin a0/M02, sin y4 = sin a0/M04, &c. 

Throughout much of the work we shall use the same trigonometrical function 

(tangent or sine) of the angles a. If the tangent is used, we shall employ the following 

abbreviations :— 

q2n = tan a.in t2n = tan fi2n. 

If the sine is used, the meaning of q. t will be as follows:— 

?2n sm CL2n t2n — Sill y2n. 

It will be found that many formulae remain unaltered, whichever of the two inter¬ 

pretations for q and t is used. 
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All distances parallel to the axis will be denoted by x (the attribution of the 

symbol being indicated in each case) and will be measured positively from left to 

right. 

The longitudinal aberration will be denoted by Ax, with the suffix of the medium, 

and will be reckoned positive when the point of intersection of the ray with the axis 

is to the right of the geometrical image. Thus Ax2 = J2I2. This is opposite to the 

usual convention which is based on the fact that for positive or convergent lenses, I2 is 

generally to the left of J2,; but, in the first place, this is not universally true, and, in 

the second place, the convention adopted by us was found more convenient in handling 

the algebra. 

It is to be noted that, with the notation used, the well-known formula for a lens 

- + - = \ becomes - — - = \, the distances u and v being measured in the same 
u v j v u j 

direction. 

The distances between successive refracting surfaces we denote by c, with the suffix 

of the medium. 

In dealing with a system, especially where the initial and final media are not the 

same, it is very convenient to use an “ equivalent" Gaussian system, in which lengths 

parallel to the axis are measured in each medium in terms of a unit proportional to its 

absolute refractive index. 

If we denote the corresponding points in the equivalent Gaussian system by accents, 

we find that 

A' V — A' V — Ai-L* A' A' — o' — -ffi 
W 0 — ) 2 — 5 1^ 3 — o 2 — , 

nn n. n. 

A' T' — A3J2 
n. 

A'Jh = } &c. 
n. 

If then we denote the quantities ———, ----- U2, &c., by 4-, -7-...; n r3 ./; y, 
the focal lengths of the successive refracting surfaces. The equations connecting 

image and object in the equivalent Gaussian system are 

... may be called 

1 1 1 

A\J’2 A'J',7.’ 

which is of the same form as the equation connecting image and object for a thin lens 

at A'j. 

Now bearing in mind that A3J2 = A,J2 —Aj A;i and therefore A'3J'2 = A.\3'2—A!XA!Z, 

it is easy to show that the effects of the successive refracting surfaces in the actual 

system can be obtained by compounding a corresponding set of thin lenses in the 

equivalent Gaussian system. By dealing with the latter, we get rid of the 

asymmetry introduced by the difference of initial and final index. Of course this 

applies only to the calculation of the geometrical images. We note that in the 
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equivalent Gaussian system the ray and transverse magnifications are identical and 

agree with the transverse magnifications in the actual system. 

Finally the intercept of the incident ray on the leading principal plane of a system 

will usually be denoted by y. This is taken by some authors as the argument of the 

development in series, but differs only by a factor from tan a0 or tan /32n. 

In many cases it will be convenient, in order to avoid unnecessarily large 

suffixes, to condense a system of surfaces or lenses, affecting quantities referring to 

the system itself with suffix 1, and the initial and final media with suffixes 0 and 2, 

the paths in the intermediate media not being explicitly considered. 

§ 3. Singularities and Convergence. 

Consider any symmetrical optical system, of which PL and QM (fig. 2) are the 

initial and final refracting surfaces. Let F0 be the front focus of the system and 

UF0Y the caustic for backward-travelling rays which are parallel in the final medium. 

Fig. 2. 

This caustic, as is well known, wall usually be of the type shown in fig. 2, 

approximating to a semi-cubical parabola with a cusp at F0, and, to fix ideas, we shall 

suppose the point of the cusp to be turned to the left. In the opposite case, an 

obvious modification of the argument will be found to lead to similar conclusions. 

Any ray in the initial medium, which touches this caustic, must emerge parallel to 

the axis after passing through the system. 

Let I0 be an object point on the axis behind Fu and sufficiently near to it for a real 

tangent to be drawn from I0 to the caustic and yet go through the system. This 
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will involve for I0 a positive ray magnification M exceeding some definite finite limit. 

The Gaussian image point J2 will then lie a finite distance in front of F0. 

Consider first a nearly paraxial incident ray I0P. Such a ray will be refracted 

approximately according to the Gaussian law and will emerge at an inclination a2, 

where a2 is nearly equal to «„/M and both a0 and M being finite and positive, a2 is 

also finite and positive. The ray emerges as QR, passing through a point I2, finitely 

different from J3. 

As a0 increases, a2 at first increases with it, but as a0 reaches the value X, 

corresponding to the inclination of the ray I0L which touches the front focus caustic, 

a2 is again zero. Hence between those two values a2 has at least one maximum, and 

for a given value of a2 there are at least two values of a0. 

Thus, within the range of values which are of practical importance, a0 is a many¬ 

valued function of a2 having one or more branch-points, of which the one of least 

modulus corresponds to the first maximum of a3. 

Now, within the same range of values, all the aberrations must be given as single 

valued functions of a0, since clearly there can only be one physical emergent ray, 

corresponding to one given physical incident ray. This statement, as we shall see, 

needs to be qualified when we are dealing with purely geometrical rays, but this need 

not affect the present stage of the discussion. 

In consequence, if any aberration be expressed in terms of a2—or of any trigono¬ 

metrical function of a2—that aberration must, in general, be a many-valued function 

of a2, having for its branch-point of least modulus the first maximum value of a2 

mentioned above. It follows by a well-known result in theory of functions, that 

no Taylors series in a2, or in sin a2, or tan a2, can be valid for values of a2 

exceeding this modulus numerically. For such values the series will be definitely 

divergent. 

It is interesting to consider what happens when I0 is on the other side of F0, so 

that we are dealing with a large negative magnification. In this case no real 

tangent can be drawn from I0 to the front focus caustic and the value of a0, for 

which a2 = 0, is a pure imaginary. But here again, although we are now dealing 

with imaginary values, we get two values of a0 for a given (pure imaginary) value 

of cl2, and, although no such maximum of a0 occurs in the purely real values, the 

modulus of the imaginary branch-point limits the validity of Taylor’s series in a2 as 

before. 

Thus there exists always a certain range, extending a finite distance (depending 

on the nature of the optical system) on either side of the front focus, within which 

no development of any aberration in powers of a2 or of its trigonometrical functions 

(or, indeed, by similar reasoning, of any inclination of the ray, except in the 

original medium) is valid for the whole pencil of rays which actually traverse the 

system. 

Indeed, as the object point I0 approaches the front focus, it is clear that both X and 
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the maximum a2 tend to zero, so that only an infinitesimal portion of the rays can be 

dealt with by the method of successive aberrations, i. e., by the Taylor’s series. 

That the range of failure is by no means an unimportant one is shown by an 

example given by the authors in a paper read before the Optical Society in December, 

1918. In this example the system considered is a positive lens of unit focal length 

and thickness y'g, meniscus shaped, with curvatures 1 and 2'36, and its convex side 

towards the incoming light. For such a lens and magnification as low as 2, the 

critical value of ai is found to be about 4° 40', corresponding to a value of a0 of 13°, 

whilst the greatest practical value of a0 is 26°, so that in this case only about \ of the 

light going through the lens could be dealt with by series in terms of the emergent 

angle. From M = 2 to M = oo the conditions are still worse. 

As a matter of fact, it appears that in this case the range of magnifications, within 

which development in terms of the emergent inclinations is possible for all rays 

travelling through the lens, is restricted to a range lying somewhere between M = — 1 

and M = 1'5. This makes it clear that we cannot depend, in the calculation of the 

aberrations of an optical system, upon any series with the emergent inclination as 

argument. This is important, because from other considerations it would have been 

valuable to have been able to express the equation of the emergent ray in the 

form 

y + qx =/{q) 

where q is the inclination of the emergent ray, and to proceed to obtain successive 

approximations to the caustic by developing f (q) in powers. It now appears that 

this is not, in general, legitimate. 

We now come to the consideration of series proceeding by powers of a0, or of its 

trigonometrical functions. Here the question of many-valuedness will not occur, 

except as follows. 

If we consider a ray impinging upon a spherical refracting surface, this ray, if 

produced, will meet the surface at a second point. Treating the problem from the 

purely analytical standpoint, this second point is also one at which refraction takes 

place, and thus, for the same a0, there will, in general, be two values of a2, four of a4, 

and so on. a2n will therefore, in general, be a multiple-valued function of a0, and 

the aberrations will also be multiple-valued functions, and the branch-points of these 

multiple-valued functions will, as before, limit the convergency of the Taylor 

series. 

Now clearly two branches coincide whenever there occurs a grazing incidence ; 

and, therefore, if the system be so arranged (as it almost necessarily is) so that no 

grazing incidence is reached, there will be no real branch-points within the range of 

practical values. But this does not mean that the Taylor’s series will necessarily 

be valid, for there might be imaginary branch-points. A very simple example will 

show how such branch-points can occur. 
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If I0 be a source of light placed in front of a plate of thickness c2 and refractive 

index n, the perpendicular from I0 on the plate being the axis of the system, it is 

easily verified that the longitudinal spherical aberration 

n tan aj 
where sin a0 = n sin a2, so that 

JJ4 = (l 
sill2 a„ 

n Jl -JEhilL0 
v n 

The branch-points here correspond to = \ir or a2 = i.e., to grazing incidence at 

the first or second surface respectively. 

Clearly if n >1, then, since sin2a0 < 1, the second grazing incidence can never occur 

for real values of a0. 

But if we take as our argument t0 = tan a0, which removes the first branch-point 

to infinity, we find 

m 
and this has imaginary branch-points where t0 — ± 

v\n ~ 1) 

vergence of the Taylor’s series in t0 is therefore given by t0 
n 

The radius of con- 

a value which 
V(n2- iy 

does not correspond to any physical limitation of the rays. This applies to both the 

longitudinal and the transverse spherical aberrations in this case. 

The above example also brings out another important point ; for if in it sin a0 is 

taken as'the argument, the branch-points are ±1, + n; both of which correspond to 

definite physical limitations, viz., grazing incidence and total internal reflection, so 

that in this case the limitations of the Taylor’s series are also the limitations of the 

problem. 

We see then that the validity even of the expansion in a0 may be limited by the 

existence of branch-points, and that the choice of the particular trigonometrical 

function in which we expand may exercise a considerable influence on the result. 

The limitation of the a0 developments due to branch-points will not, however, as in 

the case of the a2 developments, lead to vanishing radii of convergence. There is 

always a finite region within which these developments may be used. In what 

follows, therefore, we have exclusively used as argument. 

In dealing with the longitudinal spherical aberration another limitation presents 

itself. We have seen that if a0 = X (fig. 2), a2 = 0. It follows that the intersection 

of the emergent ray with the. axis is then at infinity, or the longitudinal aberration is 

VOL. CCXX.I-A. G 
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infinite and afterwards changes sign. Thus the values au = ±A correspond to poles of 

the longitudinal aberration. These poles, being the singularities of least modulus, 

govern the convergence of the Taylor’s series in this neighbourhood, and this radius 

of convergence tends to zero as the object approaches the front focus. It was a con¬ 

sideration of this difficulty which primarily led us to put the longitudinal aberration 

in a new form. 

This difficulty does not arise with the transverse spherical aberration. The poles of 

the longitudinal spherical aberration are due to the zeros of au, and on multiplying 

by to get the transverse aberration, these poles disappear. 

4. Summary of Method and Results. 

The general principle of the method employed was suggested by an attempt to fit 

an empirical formula to the longitudinal aberration of a lens for a certain range of 

curvatures and object and image positions. This empirical formula was discussed by 

the authors in a paper recently read before the Optical Society* and was found to 

give, on the whole, a singularly good fit. Briefly stated, the formula is of the 

following type :— 

At'2 

+ B t2. 
Ax — (1) 

where t is the slope of the emergent “ Gaussian ” ray, so that t = tjM . A is the 

(known) theoretical constant of the first-order aberration, which is a quartic in the 

magnification, and B is a cubic in the magnification, the coefficients in which are 

determined empirically. This formula was found to give a good approximation, even 

when the magnification was high and we were working well outside the limits of con- 

vergency of the Taylor’s series for Ax. 

If we consider any given object point, the longitudinal spherical aberration will be 

a function of t0, that is, of t. Denoting it by fit), the reasoning of the preceding section 

shows that f{t) is always one-valued for a finite (and generally quite considerable) 

range of t, but it is not regular, having poles at t = ± r, where r = tan X/M and 

becomes rapidly small as the magnification increases numerically. 

If, however, we write (l —t'2/T2)f (t) = 0 (t), 0 (t) is now limited only by the original 

branch-points of f[t) and will, in general, have an adequate radius of convergence. 

We may therefore expand it in a Taylor’s series, and we get for f(t) the form 

Ar =f{t) = 
at? F Ijd -\- ct -\- 

1 -t2/r2 
(2) 

* Baker and Filon, “On an Empirical Formula for the Longitudinal Spherical Aberrations in a Thick 

Lens,” ‘Proceedings of the Optical Society,’ December, 1918. 
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If the series in the numerator converges rapidly, it will be sufficient, provided a is not 

near zero, to stop at the first term, and we get as an approximate formula 

Ax = 
at2 

l-t2/? 

which is of the same form as (l). 

We have necessarily a = A, and if the two formulae are to tally we should have in 

addition B = — 1/t2. 

The formula in the form (3), however, is not rigorously correct to the second order of 

aberrations inclusive, unless b happens to be small. If we wish to retain second order 

terms complete, we have to use 

Ax = 
at2 + bt4 

(4) 

and this can be written, to the same order of algebraic approximation, in the form 

Ax = at2/{l—(\/r2 + b/a) t2},.(5) 

provided again a is not zero. 

If this form (5) is adopted, then the B of the empirical formula should be l/r2 + b/a. 

But if this is done, the formula suffers from two defects : (i) it fails whenever a is 

near zero; (ii) it does not give exact compensation for the poles in the critical range 

for M large. 

The further cpiestion then arose : how far are formulae of type (4) or (5) suitable 

for dealing with combinations of surfaces or lenses ? An important guiding considera¬ 

tion, in all work of this kind, must be the relative simplicity of the formulae in 

passing from a single surface or lens to a combination, and whether these formulae are 

suitable for tracing the effect of individual surfaces or lenses upon the final result. 

We have ultimately been led to the conclusion that no single formula can satisfy 

completely the three ideal requirements, viz. : (i) exact agreement with development 

as far as the second order inclusive; (ii) simplicity in dealing with combinations ; 

(iii) exact compensation of the poles in the critical range of M. 

The method finally adopted satisfies conditions (i) and (ii). It only satisfies (iii) 

approximately. Numerical calculations show that numerically the approximation is 

adequate in the case of a lens or a simple surface. In the case of more complicated 

systems we have, as yet, no numerical data. 

The first part of the investigation deals with the single refraction. It is there shown 

that the longitudinal aberration can be put into the form (l), i.e., Ax — A£2/(l+B£2), 

where the formula is correct to the second order inclusive. 

We also find, for the inclination of the emergent ray, the formula 

q = t{l+Bt2)/(l+Ct2), 

G 2 

(6) 
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which is correct to the first order when q and t are tangents and to the second order 

when q and t are sines. 

In the above A, B, C are polynomials in M of degrees 4, 3, 2 respectively, so that 

the empirical formula is well justified for the simple refracting surface. In this case, 

too, it is possible to calculate r directly, and, in fact, a simple geometrical construction 

is given for it. When this is followed for varying image-positions, it is found that 

outside a certain range of M, the r so obtained becomes irrelevant, and that, in fact, 

if the correct factor 1—£2/t2 is retained in the denominator of Ax, although it 

improves the fit by removing singularities in the range round M = co5 it introduces 

entirely fictitious singularities in other and important parts of the range, and makes 

the formula worthless. 

A good deal of light is thrown upon the problem when it is found that, if we 

develop — in descending powers of M in the neighbourhood of M = oo 5 the two 

leading terms are discovered to be identical with the two leading terms of the 

cubic B, previously obtained. This makes our B approximate more and more closely 

to \ precisely as the effect of the denominator term becomes more important, and it 
T 

is this fact which is the key to the numerical value of the method. 

We then proceed to show how the constants for a combination of the two systems 

can be obtained from the corresponding constants of the individual systems. In 

doing this it appears that, so soon as we pass from the single refracting surface to 

the lens, a new constant is introduced into the formula, which now takes the form 

Ax 
A£2 + EC 

1 + B£2 
(7) 

where A and B are of the same form as before, but E is now a polynomial of 

degree 6 in M. In the case of a lens the term EC is found to be, in general, of 

small importance, which accounts for the good fit of the empirical formula. 

The formula (7) for a combination holds good to the second order inclusive, and B 

agrees with —, when M is large, as far as the leading term only. For numerical 
T 

purposes, however, a correction is discussed, which is very readily applied, and which 

makes the two leading terms in B agree with the two leading terms in as in the 
t“ 

case of the single refracting surfaces. 

The formulae for combining two systems take comparatively simple forms; the A, 

B and C for the combination are expressed as linear functions of the A’s, B’s and C’s 

of the components, and the E as a lineo-linear function of the A’s, B’s and C’s of the 

components, each term involving a product of which one factor belongs to one 
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component of the combination and the other factor to the second. In addition the E 

for the combination involves linear terms in the E’s of the components. 

These results are found to hold good in the more general case of the combination 

of three or more systems. It will follow that if the constants A, B, C, E are 

tabulated for lenses of various curvatures, the effect of the combination can be traced 

relatively easily and the aberrations corrected, so far as possible, by suitably bending 

the lenses, while keeping the general arrangement and the magnifications the same. 

Explicit values of the constants for the single refracting surface and a single thick 

or thin lens have been obtained and are tabulated for reference, so as to he available 

for eventual computation of the required tables. We have also given some numerical 

values for a single lens, and a numerical test of the accuracy in this case, which works 

out at about -g^jo of the total aberration for the range of cases taken. 

The corresponding formulae with sin y instead of tan /3 as argument are discussed, 

and it is shown that the equations of combination are of the same form as before. 

Certain invariant relations between the coefficients in A, B, C, E are developed, 

which enable various calculations to be simplified and in particular to determine these 

constants for a system reversed, when they are known for the direct system. This 

will generally halve the work of tabulation. 

§ 5. The Single Refracting Surface. 

Using the general notation described in § 2, consider refractions at a single refracting 

surface. 

Let \fro, f., denote the angles of incidence and refraction, so that fo = CjPJo, = 

C,P,L (fig. 1). 

Let CJ0 = X0 = x0, CjL = X2 = x2+ Ax2, CxJ2 = x2we then have the set of refraction 

equations 

sin f0 = pft\ = x0 sin a0/rx.(8) 

sin — pjr} = X2sin afrA.(9) 

n2p2 = n0p0..(10) 

.(11) 

Let A = A J 0, g2 = A'jJ'g in the “ equivalent ” Gaussian system (see § 2). Then 

nf0 = x0 + r1} nf2 = x3-+ru.(12) 

and we find, using the first approximation when a0, &c., are small 

1/6-1/6 = i//.- • (13) 
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If M, = Lau/a2, which we shall call the ray magnification, we have 

M, = nfi2lnfiQ = n2x2/nQx0. (14) 

The transverse magnification Mj is given by 

M, = i2/io = x2/x0 = nJNLjn*.(15) 

We can also express (13) in another well-known form, namely, 

n0/x2-n2/x o = l [f],. 

whence, using (14), we obtain 

^0 = n2 f\ (l 

x2 = w0/i (l Mx) ) 

Again, from (9), (8) and (10) 

X2 = 2?2/sin a2 = n0x0 sin a(Jn2 sin a2 = n()fl (l —M,) sin a./M, sin a2 

= x2 sin a,,/M, sin a2,. 

and the longitudinal aberration 

(16) 

(17) 

(18) 

Acc2 = X2 — 2f2 = a;2(sin a0/M, sin a2—l).(19) 

The corresponding longitudinal aberration in the equivalent Gaussian system is 

found from 
A$2 = Ax2/n2 - {n0fjn2) (l -M,) (sin an/M, sin a2-l).(20) 

Now from (ll) 

sin a2 = sin a0 cos Go cos i/r2 + sin \/ru cos au cos fi2—sin \Js2 cos a0 cos Go 

+ sin a0 sin Go sin \fs2, 

whence, using (8), (9) and (10), 

sin a2/sin a0 = {1 — {xjrfi sin2 a0}® {1 — (n^xjn^fi2 sin2 a0}* 

+ (*oM) {1 -sin2 aoP {l-{n0xfii2rfi sin2 a0p 

— {n0x0/n2rx) {1 -sin2 a0}4 {1 — (a0/n)2 sin2 a0}4 

+ (n0x02/n2r12)sm2 a0, 

and developing this in ascending powers of sin a0, we obtain, retaining only terms of 

fourth degree 

sin «2/sin a0 = 1 +x0 (n2—n0)/n2ri—^-P sin2 a0 

—iP sin4 a0 {{n2 + n0)2x2 + n2 (n-a:0) (n2r^+n0x0))ln2rx2, 

where 
P = (1 -n0/n2) (x0/ri) (l+xjn) (1 -n^xjn^i). 
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and is the quantity whose vanishing gives the aplanatic points and must therefore be 

a factor of every coefficient after the first in the development of sin a2 in powers of 

sin a0. 

If we write for shortness 

Q = (1 + njn^fx^l'ri + (1 -xjn) (l + ntfic0/n2r1), 

and remember that 
1 + x0(n2—n0)/n2r1 = l/M,, 

we find 
sin a2/sin a0 = l/M, — |P* sin2 a„/(l — iQ sin2 a0) 

= Mr1! 1 — d-PMj + IQ) sin2 a0}/(l —iQ sin2«o) 

= M,_1{ 1 +B sin2 at)/M,2}/{ 1+ C sin2 ajM2} . 

correct as far as the second order inclusive, where 

B = -iPMd-IQM,2, C = -iQM,2, 

from which, after some reductions 

(21) 

0= —i (n2—n0) 2{(n22+nun2+n02) — 3(n02 + n2)'M.1 + 3(n22—n0n2+n02)M12}, (22) 

and 

B = \ (w2—nu)“2 (l —Mx) (n2—n$Lx) (n0—WaM^ + C 

= i (n2—n0)~2 { — (n22—nQn2 + n2) + (n2—n(tf M, — (n2 + n2 — 5n0n2) M,2—2n0n2M,3}.(23) 

Keturning to equation (19) and using (21-) 

where 

A;r2 = x2 (C —B) M,-2 sin2 uj{ 1 + BM,-2 sin2 

= na/iAMj-2 sin2 a0/{l +BM1_2sin2 a0}, . (24) 

A = x2 (C-B)/n2f 

= —£ (n2-n0Y2 (njn2) (1 -M,)2 (n2-n0M,) (w0-n2M,) 

-n0n2 + (n2 + n0)2 M, — 2 (n2 + n0n2 + n2) M,; 

+ {n2 + w0)2 M,2— 
= ? {n2-n0)~2 (n0/n2) • (25) 

All the above formulae are correct to the second order of aberrations inclusive. We 

note that A, B and C are polynomials of degree 4, 3 and 2 in the magnification 

respectively. 

If we express the aberration in terms of tangents instead of sines we have at 

once 

Ax2 = nj\AMr2 tan2 *J{ 1 + (B + M,2) Mr2 tan2 a0} 

= n2j\A tan2 fi.J{1 + B tan2 fi2] (26) 
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where 

B = B + Mr 

= i(n2—n0)~2 {— (n22—n0n2+n02) + (n2—n0)2M1 + S(n22—n0n2+n02)'SIL12—2n0n.M13}. (27) 

When, however, we come to develop a formula for tangents, similar to (21) for 

sines, it is found that, in the series for tan a2/tan a0, we do not have all the coefficients 

after the first vanishing together ; for, even at the aplanatic points, the tangent ratio 

is not constant. 

We can, indeed, write 

tan a2/tan a„ = M,-1 (l+ BMt-2 tan2 a0)/(l+ CMu2 tan2 a0), . . . (28) 

and choose the coefficients B and C so that the developments shall agree as far as terms 

in tan4 a0 inclusive. This can, in general, be done in one way only. But we then find 

that B and C are no longer integral functions of the magnification. Their infinities 

have to be taken into account, and generally the method becomes complicated and 

unsatisfactory. 

From other considerations, however, it appears that since the zeroes of a2 must be the 

same as the poles of Ax2, the B in (28) must be the same as the B in (26), and this 

will fix C as follows :— 

tan2a2 = sinaa2/(l — sin2 a2) 

Mr2 sin2 au{ 1 + B sin2 a(1/M,2}2 

{1 + C sin2 ajM^-Mr2 sin2 a0{I + B sin2 a./M,2}2 

Mi 2 tan2 

(1 + tan2a0) {1 + (C + M?) M?2 

a,i{ 1 + (B + M12)Mr2tan2«0}2_ 

tan2 a0}2—Mu2 tan2 a0 {1 + (B + M/) Mj-2 tan2 a0}2, 

substituting from (21). 

Hence, taking the square root and developing the denominator in powers of tan /32, 

i.e., of Mj-1 tan a„, 

tan a2/tan &2 

where 

_(1 + B tan2 /32)_ 

1 + tan2& (C + |M12-^) + 1 tan4 ft {C (1 + M,2)+IM,4 + fM12-i-2B} 

(l + B tan2 /32)/(l + C tan2 /32 + D tan4 /32),.(29) 

C - C+fM^-i 

D = C(l+Mf') + fM14 + tM12-i-2B 

= C(l+M12) + i(l-M12)(l + 3M12)-2B J 

(30) 

(29) is now correct as far as the second order inclusive. 

If we only require the tangent ratio correct up to the first order of aberrations, 

we have the formula 

tan u2 = tan /32 (1 + B tan2 /32)/( 1 + C tan2 fi2) (31) 
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The value of C, when written out fully, is given by 

0 = f (n2—n0)~2 { — {n2—n0na + n02)-\-(n02 + na) 'Mll + (n02—3n{)n2 + na2) M,2}. . (32) 

§ 6. The Convergency Factor and the Singular Inclination for a Single 

Refracting Surface. 

Having now obtained expressions (24 and 26) for the longitudinal spherical 

aberration, which are correct to the second order of aberrations, when expansion 

in powers of sin a0 or tan a0 is legitimate and rapidly convergent, we have now to 

enquire how far the same expression remains valid as M increases, in which case we 

know that B or B increases without limit and the convergency fails, even for 

comparatively small values of a0. 

Here it will be convenient to introduce two definitions :— 

I. We shall call singular inclination the value A (see § 3) of a0 for which the 

emergent ray is parallel to the axis. 

II. The factor 1 — sin2 a0/sin2 A (or 1 — tan2 a„/tan2 A if we are dealing with tangents) 

we shall call the convergency factor. If we multiply Ax by the convergency factor 

we remove those singularities of Ax which are instrumental in causing critical failure 

of convergency. 

To find the singular inclination and convergency factor for a single refracting 

surface, we have to find when a2 = 0. 

Going back to the fundamental equations (8) to (ll) we have a2 = 0 when a0 = A, 

where 
A-fa l/'-y 

which leads to 

sin A = sin f2 cos —sin \fr0 cos f2 

= (n0x o sin \/n2rJ^/ {1 — (x0 sin X/rf} - (xQ sin A /n) a/ {1 - (n0x0 sin A /n^)2}. 

Hence, either sin A = 0, which obviously refers to the axial ray, a trivial and (for our 

purpose) irrelevant solution, or 

rfx0 = (n„/ri2)v/{l-(x0sin A/7-1)2}-x/{l-(n0a-0sin A/n2r,)2}.. . . (33) 

On rationalising (33) leads to 

4 n02 sin2 A /n2 = 4 rx2/x02 - (1 + r^/xj - n02/n22)2 

= -(1 +ri/x0-njn2) (l +r1/x0 + njn2) (l-rfv0+ njna) (l -rjx0-njn2). (34) 

This gives the singular inclination. 

If we write 

B — (1 T / j/Xy H(|//i2) (1 + >'Jxu + njn2) (l rtjn2) (I > \In^0/^2), • (45) 

VOL. CCXXI.—A, H 



46 MR. T. Y. BAKER AND PROF. L. N. G. FILON : LONGITUDINAL 

it follows that 
1 + 4n02 sin2 a0/n22B.. (36) 

is the required convergency factor. 

If the formulae of § 5 are to get accurately over the failure of convergency, this 

convergency factor should be identical with 

1 + B sin2 ao/Mj2, 

that is, we should have 
B = 4n02 M12/n22It,.(37) 

which, when written out, becomes 

B - 4w02n22M12(l—MiYf(n2—n0)2 (1 — 2M,) (n2+n0—2n0M) (n2 + n0 — 2n2M1). (38) 

This does not agree with the previously found value for B, being of fractional form 

in M,. It does lead to B becoming infinite of the order when M, tends to infinity, but 

it indicates an infinity of B (and therefore a critical failure of convergency) at three 

other places, namely when M] = \ (n0 + n2)/n0, ^ {n0 + n2)/n2, at none of which does a 

failure of convergency really occur, as can readily be verified. 

The reason for this is made clearer by geometrical reasoning as follows :— 

Let IP(fig- 3) be a ray which is parallel to the axis in medium 2. To make the 

figure easier and the quantities dealt with positive, the refraction has been taken 

from a denser to a rarer medium, so that n0/%> 1. 

Fig. 3. 

In the triangle IqCjPj of fig. 3 we have sin \fs.J sin \[s0 = I„P,/,^. 

But 
sin G2/ sin \fs0 = njn2; hence I(JPi = n0xjn2. 
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The point Px and singular inclination A can therefore be constructed geometrically as 

follows. 

With I0 as centre and radius n().GJ.0/n2 describe a circle meeting the refracting 

surface at P2; CJoPj is the angle A required. 

This angle A approaches zero, that is, we get a critical failure of convergency, when 

the two circles approach contact at Ax. The limiting case is, therefore, when 

A]I0 = n0. CJ.0/n2 or I0 divides AjCj externally in the ratio n0: n2. 

When this happens r1 + x0 = n0xjn2 leading to M, = go, a case of true critical 

failure. But clearly, by symmetry, we get a precisely similar result when P1Q1 is 

due to a ray entering the surface at Q1? and travelling backward through medium 2. 

In this case the limiting position of I0 divides BjCj externally in the ratio n0: n2 and 

is defined by rx—x0 — —n0xjn2 or Mi = 

This case would correspond, analytically, to a2 = ir, and the corresponding equa¬ 

tion (33) would become 

—rjxo = [n0/n2) v7 { 1 — (-A sin X/rj)2} - v/ {1 - (n0x0 sin A/w2r,)2}. 

Now if we examine (34) we find that in the process of clearing roots, rx/x0 appears 

squared in the final result, which accordingly includes both a2 — 0 and a2 = ?r. If we 

write rxfx02 = u, then we should really write equation (33) in the form 

a/u = {n0/n2) v/(l— sin2 \/u) — (1 — n02 sin2\jn2u), .... (39) 

and the two cases are discriminated by assigning to u one or the other sign. One 

of these cases is necessarily irrelevant since refraction at the posterior surface of the 

sphere is physically excluded. 

Further, if we consider the other two values which make B = 0, viz., 

they correspond to 

and 

Mx = (n0 + n2)/2n0 and Mi = (nQ + n2)/2n2, 

n + £c0 = —n0x0/n2 

rx—x0 = n0xjn2, 

i.e., to positions of I0 in which it divides AiCx and BxCx internally in the ratio n0: n2. 

But these belong geometrically to the limit of cases in which the incident and 

refracted rays lie on opposite sides of the normal, i.e., to a negative refractive index. 

And indeed they are obtained from the two previous points by reversing the sign of 

n,j7i2. 
Here again, examination of (34) shows that njn2 appears squared in it. Therefore 

(34) includes the cases in question. These, however, may be obtained analytically by 

changing \frQ, or \//2, into its supplement, i.e., by reversing the sign of cos \/x0 or cos A, 

or by changing the determination of the sign of one or other of the square roots on 

the right-hand side of (39). 

h 2 
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The cases are discriminated by the vanishing of these square roots, which occurs 

when cos \Js0 or cos \[s2 = 0. 

It appears, therefore, that the vanishing of the factors in the denominator of (38) is 

wholly irrelevant, and, if we adopted for B the value given on the right-hand side 

of that equation, we should thereby be introducing, in the neighbourhood of Mj = 

(w0 + 7i2)/2n0, (n0 + n2)/2n2 entirely irrelevant singularities, which would make the 

formula worthless. 

The question arises, what is the range of values of IVb for which the equation 

4n02 sin2 x/n22 = — R 
is valid and legitimate ? 

If we start from = oo, which corresponds to a real case, the signs of the square 

roots in (39) are well determined, and the correspondence between sin3 X and is 

unique and definite and can be continued until we reach a point where one case 

passes into another. These cases we have found to be the branch-points of the 

three square roots, namely :— 

u = 0, cos \{s0 = 0 and cos \fs2 = 0. 

u = 0 leads to x0 = cc or = 0.(A) 

cos = 0 leads to sin2 X = u, or, using the first form of (34) 

4 n2ujn2 = 4w—(I + u—n2/n2)2, 

i.e., (l —u—n2/n22)2 = 0, that is u = l—n2/n2, leading to 

x0 = ±rx (l-n02/n22)~* and ^ = {l±{n2-n0)/^/(n22-n02)}~1 . . . (B) 

cos \fs2 = 0 leads to sin2 X = n2u/n02, that is, to 

u = n2/n22-1, x0 = ±rx ()“*, M, = {l±{n2-n0)/^(n0a-n22)}~1 . . (C) 

If n0> n2, both values of Mj given by (B) are imaginary. The values given by (C) 

are both positive, Mt = (l +(n2—ni))/^s/(n02—7i2)}~'1 being the greater. 

The range over which we can travel without ambiguity is, therefore, from 

M, = + cc to I, = {l +(n2—n0)/x/(n2—n2)}-1 and from = — co to Mj = 0. 

If nti < n2> the values of HS.1 given by (C) are imaginary, those given by (B) are 

positive, and M, = (l—(w2—n0)/^/(n22—u,02)}-1 is the greater, so that the range of 

validity is from = + oo to Mj = {l —(n2—?ii))/x/(n2—n2)}~1 and from M, = — oo to 

= 0. 

Within this range (l +4w02 sin2 a0/n22R) is the correct convergency factor ; outside 

this range it is irrelevant. 

It is clear, then, that we cannot find a single formula for the convergency factor, 

which will hold for all values of the magnification. 
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Further, if the factor (1 + 4w02 sin2 aJn2H) is introduced into the denominator 

of Ax2, we no longer obtain expressions of the simple type (24) and (26), and 

endless complications are introduced when we come to consider a compound 

system. 

Can we make our expression B given by (23) give a tolerable approximation to 

(An^M^/n /R) for those regions where the denominator factor is really needed, namely 

for M, large, positively or negatively ? 

To get the answer to this question we develop (An0srM.12/n/R) in descending powers 

of M,. 

This is found to be (the most rapid method is to break up first into partial 

fractions) 

l{n2-n0)- — 2nQn2 M,3—(n02— 5n0n2 + n22) M:2 

-[(n2—n0)4 + n*nf\M,/2n0n2-[_(n2—n0)3(n23-n03) + n£nf\l^n*n? }>. (40) 

+ terms in l/Mj, &c. 

If we now compare (40) with (23) we find that the most important terms when M, 

is large, namely those in M,3 and Mj2 agree in the two expressions. 

We may, therefore, take it that the approximations (21) and (24) which we have 

seen hold good to the second order when expansion in series is convergent, will 

probably not be numerically very far out when M, has a large value, in which case 

the normal method of development cannot be used. 

It is important, at this stage, and to justify the above assertion, to consider a few 

numerical examples. 

Tables I. and II. give the values of Ax2 and sin a2 for a single refracting surface, 

calculated for a number of values of M, and two inclinations in each case. The 

inclinations are fixed from the perpendicidar distance vs of Aj from the incident ray. 

This, for moderate inclinations, is sensibly the same as the intercept made by the 

incident ray on the principal plane, vs has been given the two values 0'5 and 0‘25 

in every case, except for Mj = 2 where vs — 0'5 leads to a physically impossible value. 

In this case vs — 0‘25 and vs — 0'125 have been used to define the ray. 

In each case four values have been computed (l) the correct one, from trigono¬ 

metrical calculation ; (2) the values given by formulae (21) and (24)—-these are shown 

in the column headed “fractional formula” ;'(3) the values obtained by expansion in 

series, up to the optician’s first order of aberrations inclusive, that is including sin3 a0 

in the development of Ax2 and sina2—these are shown in the column headed “first 

order” ; (4) the same series carried to the second order of aberrations inclusive, i.e., 

to the terms involving sin5a0—these are shown in the column headed “second order.” 

It should be noted that these first and second order approximations are the most 

accurate that can be obtained, much more so than more usual ones, proceeding in 

powers of sin a2 or tan a2. 



50 MR. T. Y. BAKER AND PROF. L. N. G. FILON: LONGITUDINAL 

Table I.—Values of Acc2 for Single Refracting Surface. 

M. cTT. First order. Second order. Fractional 
formula. True. 

10 0‘5 -33-35293 - 107-6252 + 27-18563 + 26-66794 
10 0-25 - 8-33823 - 12-98025 - 18-81008 - 18-85273 

2 0-25 - 0-250000 - 0-378906 - 0-516129 - 0-527526 
2 0-125 - 0-062500 - 0-070557 - 0-071749 - 0-071781 
0-5 0-5 - 0-015625 - 0-016541 - 0-016598 - 0-016611 
0-5 0-25 - 0-003906 - 0-003963 - 0-003964 - 0-0039133 
0 0-5 - 0-166667 - 0-174769 - 0-175183 - 0-175809 
0 0-25 - 0-041667 - 0-042173 - 0-042179 - 0-042189 

- 1 0-5 - 1-000000 - 0-947500 - 0-950119 - 0-956680 
- 1 0-25 - 0-250000 - 0-246719 - 0-246761 - 0-246838 

Table II.—Values of Sin a2 for Single Refracting Surface. 

M. CT. First order. Second order. 
Fractional 
formula. 

True. 

10 0-5 + 0-0250865 + 0-0454644 + 0-0576348 + 0-0610770 
10 0-25 -0-0078936 -0-0072568 -0-0071911 -0-0071828 

2 0-25 -0-2187500 -0-2065430 -0-1987180 -0-1978219 
2 0-125 -0-1210938 -0-1207123 -0-1206710 -0-1206691 
0-5 0-5 0-2539063 0-2541962 0-2542195 0-2542230 
0-5 0-25 0-1254883 0-1254974 0-1254975 0-1254974 
0 0-5 0-1805556 0-1817130 0-1826667 0-1827294 
0 0-25 0-0850694 0-0851267 0-0851286 0-0851291 

- 1 0-5 0-1250000 0-1299375 0-1311526 0-1314354 
- 1 0-25 0-0531250 0-0532793 0-0532873 0-0532884 

It appears from the above that the fractional formulse are not merely equal, but 

appreciably superior to the second order formulse, and this not merely in cases such 

as those of the three first entries in Table I., in which the convergency of the series 

for Ax2 is either absent or slow, but in every case where the fractional or second order 

formulse differ sensibly from the true value. (Clearly a divergence of 1 in the last 

place cannot be claimed as significant, for the last figure in Tables I. and II. is probably 

not correct within +2, in some cases.) An estimate of the range of the formula can 

be obtained from the fact that in the cases, vy = 0‘5, = 10 and 2, the angles of 

incidence were 52° 34' and 48° 35' respectively, and, for the other values, angles of 

incidence of 20° and 30° are quite common. 

In view of this the accuracy of the results is surprising and, from the point of view 

of the further applications of the method, most encouraging. 
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§ 7. Combination of Two Systems. 

Call the systems 1 and 3, and the initial, intermediate and final media 0, 2, 4. 

f, f3 are the focal lengths of the systems, as defined in § 2. M1; M, are the trans¬ 

verse and ray magnifications in the first system, M3, M3 in the second system. 

M3+AM3, M3 + AM3 refer to the transverse and ray magnifications in the second 

system when I2, the true intersection of ray 2 with the axis, is taken as the object 

point for the second refraction (instead of J2, which refers to transverse and ray 

magnifications M3, M:!). 

Using the notation of §§ 2, 5, we assume 

Ax2 — n2f (Ai^22 + E^24)/(l+ B^22).(41) 

T — C (1 + B1C2)/(1 + QC2) (42) 

where q2 = {a2}> t2 = ^ j, and Bl5 C4 have suitable forms according as sines or 

tangents are considered. The constant E4 is zero if the systems reduce to single 

refracting surfaces. Its form in the more general case will be discussed later. 

If we denote by A,ic4 that part of Acc4 which is due to Ax2 and by A3;r4 that which 

is introduced by the aberrations proper to the system 3, 

Ai«4 — ni f3 AM3 

where AM3 is obtained from Ax2 by means of 

leading to 

Thus 

Again 

Ax2 = n2fz {l/(M3 + AM3) — l/M3}, 

AM3 = — M32 Axf{n,f, + M:i Ax2). 

A,x4 = njxM32 (A^ + EjC4)/!! +tf (B4 + MaAj/j/Za)}. • • (43) 

A3x4 = 
_ n^fs {(A3+AA3) q2 (M3+AM3) 2 + (E3+ AE3) q2 (M3 + AM3) 4| 

1 + (B3 + AB3) g22(M:! +AM:{)-2 

njz [{A3M3-2 + AM3 d (A3M3-2)/cM3}q22 + E^4M,-‘]/( 1 + B3*22M3-2), (44) 

retaining only terms of second order in t2. Writing now for q2 in the above its “ first 

order” equivalent £22 + 2 (Bj — C4) t2, we have 

Axjni = Alxi/ni + A^xjri^ 

:/iM32A1+/3A3/M32} t»+t* [/1 {B:(AjM/M.r2+E4M32—AjM32 d 

+ A1A3M3m3-2}+/3{B1A3M3-2+2A3(B1-C1)M3-2 + E3M3-4}l 

{1 + (B1 + A1M3/1M)}{1 + B3^/M32} 
(45) 
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Remembering that t2 — M3£4 and retaining only the first two terms of the denominator 

product 

Axjni — (fl3Ariti +f13E13tii)j(l f B13£42).(46) 

where 

JrS-^13 — ./sAy+yjAiMg2!!;/.. (47) 

B13 = B3 + B1M/+A1M3M32/1//3 .(48) 

yi.sE 13 — /3E3 +yiE1M32M34 

+ /4A1M32 {B3M32 + A3M3—M32M32 d (A,,M;r2)/dM3} 

+ /3A3M32 {3B1 —2Cj}.(49) 

Again 

__ g2(M3 +AM3)-1 (1 + (B3+AB3) g22 (M3+AM3)-2} 

qt l+(C3+AC3)g22(M3+AM>2 

and retaining only terms of order t2 

g4 = q2 (M3 + AM,)-1 (1 + B3trM;r2)/( 1 + C3U2M3-°) 

= tMr1 (l —AM.3/M3) (1 + B:U2) (1 + B;/yM:;-2)/{( 1 + C^22) (1 + CVyM.y2)} 

= tMr1 (1 + B1^+B3i22M3-2 + ^A1M3/://3)/(l + C^2 + C3*22M3-2) 

— £4 (l + B13£4-)/(l + Ci3£42), . ..(50) 

where B]3 has the value given by (48) and 

C13 = Ca + CiMa2..(51) 

The equations (47), (48), (49), (51), give the constants for the combined system in 

terms of those for the components. It may appear at first sight as if the choice of 

the constants B13 and E13 had been arbitrary, for clearly, if X be any quantity, 

1/'i,'Ai3£42 +fL3 (Ei3 + XA13) 144}/{1 + (B13 + X) £4“} 

will give a development equally valid to the second order. But, if we do this, and 

we wish to preserve the simple character of the relation (48) giving the B for the 

combination, X will have to be a linear function of Al5 A3, Bl5 B3. XA13 must then 

necessarily contain terms of one or other of the forms AjBj, Ax2, A3B3, A32. Thus 

the new E will contain such terms and will no longer be of type (49) which is linear 

in the aberration coefficients of each system taken separately. Thus the lineo-linear 

type of equation for E13 requires X = 0. 

We note also that the equations of combination are identical in form, whether we 

are dealing with the sine or the tangent of the inclination as argument. 
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§ 8. Nature of the Quantities A, B, C, E in the General Case of any System. 

In the case of the single refracting surface we found that A, B, C were polynomials 

of degrees 4, 3, 2 in M, and that E was identically zero. 

In addition, for such a surface, equations (23), (25) and (27) show that the 

coefficient of M,1 in A is nfn% times the coefficient of Mj3 in B or B. This may be 

otherwise stated in the form :— 

Aj—noMjBj/^2) he., Aj —MjBj.(I) 

is of the fourth degree only in appearance and reduces to an expression of the third 

degree in Mx or Ma. 

The same holds good for Ax — MjBj, so this result is independent of whether the 

sine or tangent is taken as argument. The same remark applies to all the results of 

the present section and to the other invariant relations shortly to he proved. We 

may therefore conveniently state it here once for all. 

If we now refer to the equations (47), (48), and remember that in any combination— 

Mls//!=M3//„-l//1.(52) 

and 
l//iMls= 1//,sM,-1//,.(53) 

with the corresponding equations 

nuMr,/fs = nM,/fI3 - njf.(54) 

nJf [ ®b.3 — >l"Jf13 nJfz.(55) 

and the obvious conditions 
M,:; = M,M3; M13 = MjMg, 

we note first that, if A3 is a quartic in M:! it is also a quartic in M13 or M13, and that 

if A2 is a quartic in Ml5 it becomes, on multiplication by M32M32, a quartic in M13 

or M13, since M3 = n.Mjn4, and therefore M1rM32M32 = ni~MlJM:fr/ni\ which makes 

every term in AjM^M.-2 a quartic in M13, because M3 is a linear function of M13 and 

4—r is here zero or positive. 

(47) then shows that A13 will be a quartic function of M13, if Ax and A3 are quartic 

functions of M, and M3 respectively. But we know this to be the case for a single 

refracting surface. Hence it holds good of any system compounded of such surfaces. 

Now consider (48). If B3 is a cubic in M3 it becomes a cubic in m13. 

Again, if Aj — MjBj = a cubic Uj in Mx 

M32 (B, + A,M,/,//,) = M,2 (B,{ 1 + MIS/,//,} + U.M, /,//,) 

= M -m ./: (B1//,3+U1//3), 
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using (52), and by reasoning similar to the one given for A13 the last expression is a 

cubic in m13. 

Hence B]3 is a cubic in M,3. 

Consider now A13—M13B13. This is found, after some reductions, and using (52), 

to be 

(A,-MaB,) + MsMja (A, -M,Bj). 

Of the above terms, A3—M3B3 is a cubic in M3 and therefore also a cubic in m13. b3 

is a cubic in M13. Ax —MjBi is a cubic in Mj and when multiplied by M3M32 becomes a 

cubic in m13. 

Hence if the condition (I) holds good for the components, it also holds good for the 

resultant system. But we have seen that it holds for a single refracting system; 

thus it holds for any combination. Also B will be a cubic in M for any system. 

As regards C, examination of (51), remembering that for a single surface C3 and Cj 

are quadratics in M3, Mt respectively, leads immediately to the conclusion that C is a 

quadratic in M for any system. 

We now come to the coefficient E. Here the single refracting surface gives no 

precedent for and E3. Let us examine the other terms in E13. These can be 

written in the form /jAjM./Mg2 (B3— cZA3/cZM3) + 3A3M32(/3B1+/1M3A1)—2/3A3M32Cl5 

and, using Ax — BjMj = Uj; A3—B3M3 = U3, where Ul5 U3 are then cubics in Mj, M3 

respectively, this is found to reduce to 

-/MW (M3 dBJdM3 + dUJdM*) + 3A3M32M3/ (U, +f,B1/fn)-2/MU (56) 

Now 
A1M32M33 = quartic in M13. 

M3 dB jdM;, + d\J3/dM3 = cubic in M3 = cubic in M13. 

M32M3 (U1+t/’3BI//’13) = cubic in M3 = cubic in M13. 

A3 = quartic in M13. 

M32C\ = quadratic in M13. 

Hence the three terms in (56) are of form 

(quartic) (cubic) + (quartic) (cubic) + (quartic) (quadratic), 

and this leads to a rational integral polynomial of degree 7 in M13. 

Further consideration, however, shows that it is of degree 7 only in appearance, for 

the terms which can lead to expressions of degree 7 in M13 are clearly 

-/lM3aM33A1dB^M3 + 3As/,M:aM,(U1+/3B1//13), 
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or, dropping the factor 

= {3B3Mj(U1+/3B,//,1) + 3U3(U,+/)B,//;j) 
-M32M,B, dBJdM,}. 

The term 
3U:!MjsMs(U1+/jB1//1,) 

is clearly of the form cubic x cubic and the terms leading to expressions of 7th degree 

reduce to 
M/M3 {MaUi (3B3—MgdBa/cZMg) + M3Bj (3B3/3//13-M13 dB3/dM3)}, 

and since dMvJdM-., — f JfiM this can be written 

M/M, {M,U, (3B,—M!<*B3/(M3)UM3B1/,/4) (3B3-M1s dBJdMJ}. 

But since B:i is a cubic, in either M3 or M13, 3B3—M3c?B3/c£M3 and 3B3—M13 dB.JdMn 

are both quadratics in M3 or MJ3. 

The above expression therefore reduces to M3xsum of two quantities each of form : 

cubic in M13 x quadratic in M13, that is, to a sextic in M13. 

We see, therefore, that those terms in E13 which do not involve Ej or E3 are a 

polynomial of sixth degree in M13 or M1:s. 

It follows that for a lens E is necessarily a sextic in the magnification. 

Suppose now that E! and E3 are both sextics in M1? M.; respectively. Then E3 is a 

sextic in M13 and E,M34M3“ will also be a sextic in M13, that is E13 will again he a sextic 

in M13. 

Hence, since any system is built up of combinations of lenses or single refracting 

surfaces, we find that E is a sextic polynomial in M for any system. 

Examination of particular cases shows that E is not, in general, divisible by A, so 

that the vanishing of the latter does not usually involve the disappearance of the 

second order terms. 

§9. Invariant Relations. 

Certain relations exist between the coefficients A, B, C, E which remain the same 

in form, whatever the number of refracting surfaces. One of these we have already 

dealt with, namely the fact that 
A-MB 

reduces to an expression of the third degree, i.e., the coefficients of highest degree in 

M in A and B are the same. 

This we shall refer to as the first invariant relation (I.). 

A second invariant relation takes the form 

B-C = f (1 — M2) + £ dA/dM, 

I 2 
(II) 
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when we use tan /32n as argument, and 

B-C = —i(l—M2)+icZA/dM3 . ..(IF) 

when we use sin y2n as argument. 

That these relations hold good for the single refracting surface is readily verified 

from equations (22), (23), (25), (27) and (32). Suppose now that, for systems 1 and 3 

separately, the relation 
B-C = <r(l-M2)+i-dA/(M 

holds, where <r = f or — g- according to the nature of the argument, then from (48) 

and (51) 
b13-c13 = B3-C3+M32(B1-C1)+A1M3M32/1//3 

= 0- (1 -M132)+i dA3/dM3+iM,2 (c?A1/dM1 + 4A1M3/]//3),. . (57) 

and from (47) 

flsdAJdM13 =f, d A3/dM13 +/i{M32M32 dAjdM^+A, d (M32M32)/dM13|. 

But 
= (fjfa) dM, = (/,//„) M/rfM,. 

Hence 
dA13/dM13 = dA.JdM3 + M,; dAJdM. + ifAJf) d (M32M32)/dM3, 

and since M3/M3 = const., the last differential coefficient is 4M3M32. 

Using this result (57) becomes 

B13—C13 - <r (1 - M132) + i dAjdMn, 

which is of the same form as the equation we started from. Hence, if the two 

components of the compound system satisfy the second invariant relation, the 

resultant system also satisfies it. But we have seen that the relation holds good for 

single refracting surfaces—hence it holds good universally. 

It should be noted that the second invariant relation is really a first order relation 

and connects the first order aberration of the inclination of a ray, with the first order 

longitudinal spherical aberration. 

§10. The Constants A, B, C, E for an Optical System Reversed and for Negative 

Lenses. 

Certain important general relations are found to hold between the constants 

A, B, C, E for rays going through an optical system and the corresponding constants 

A', B', C', E', for the same system reversed, and by making use of them we can obtain 

either set from the other. 

We arrive most simply at these relations as follows :—If after traversing the 

system we retrace our steps, the result is equivalent to compounding the system with 
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itself reversed, with the difference that, in the second set of refractions, the measure¬ 

ment of length parallel to the axis is reversed in direction. An examination of the 

equations (41) et seq., § 7, on which the formulae of combination are based, shows that 

this is analytically equivalent to changes in the sign of the focal length in the second 

set of refractions. 

We have therefore 

/, = /, fs = -/, M, = M, Ms = I/M, M, = M, M:, = l/M, M13 = M1;) = I, 

and we also find that f13 = oo. But f13A13, and fnE13 have definite limiting values, 

and as fz does not otherwise explicitly enter into the equations of combination, no 

difliculty arises on that account. 

Now, after retracing our steps in this way, we necessarily arrive at a perfect image, 

so that A;r4 = 0 and tan ai = tan /34, leading to 

and 

/A — 0’ 

= 0, 

B13-C13 EE 0. 

These lead to the following identical relations 

A (M)/M2M2-A' (M-1) EE 0,.(58) 

E (M)/M2M4—E' (M_1) +A (M) M~2 |B' (M-1) M_2+3A' (M_1) M-'+dA' (M-^/dM} 

-A/(M-1)M-2{3B(M)-2C(M)} = 0,.(59) 

B'(M-1)-C'(M-1) + M-2{B(M)-C(M)}-A(M)M-1M-2 = 0. . . (60) 

Equation (58) may be written in either of the two forms 

A (M) = M2M2A'(M-1) 

A (M)/n02 = WA' (M-1)/^2.(Ill) 

This we shall refer to as the third invariant relation. It shows that, if we divide 

A by the square of the initial refractive index, the coefficients of powers of M 

equidistant from the beginning and end of the development are interchanged by 

reversing the system. Equation (59) becomes on multiplying up by M2M4, using (58) 

and simplifying 
E —M2M4E' + A{M2B'—A/M—3B + 2C + dA/dM} = 0, . . . (61) 

omitting the arguments M, l/M of A, B, B', &c., since no confusion can occur. 

Use now the second invariant relation 

dA/dM = 4B-4C —Rr(l—M-), 
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(61) becomes 
E—M2M4E7 +A {B + M2B7—2C —A/M —4a-(l —M2)} = 0. . . . (62) 

Now substitute from (60) for B + M2B7 the value 

C + M2C'+A/M, 

and (61) leads to 
E —M2M4 E' +A{M2C7—C —4o-(l—M2)} = 0.(63) 

For a single refracting surface, where E, E7 are identically zero, this must lead to 

M2C7—C = 4o-(l—M2).(IV) 

a result which is easily verified from equation (32). 

Now consider a system compounded of two systems. For the system direct, we 

have 
C13 = Cg+M/Cj. 

Similarly, for the system reversed, change C3 into Cfi, G\ into C73, M:1 into I /Mj. 

c31 = C,1+If,C'3 

M132c31-C13 = M,2 M32C'j—M32Ci + M32C'3—C3 

= M:f2(M12C'1-C1) + M:i2C'3-C3 

and using (IV) which we know to be true for a single refracting surface 

M132C31-C13 = 4o- [M32 (1 — Mj2) +1 — M32] 

= 4o- (l —M132). 

In other words (IV) will hold for the resultant system if it holds for the components, 

and therefore as in previous similar cases, it holds for any system. 

We shall call (IV) the fourth invariant relation. 

Equation (63) then shows that there exists & fifth invariant relation 

E=M2M4E7.(V) 

or 
E (M)/n02 = M6E7 (M l)/nf 

so that E possesses a property similar to that of A, previously noticed, viz., if we 

divide it by the square of the initial refractive index, the coefficients of powers of M 
equidistant from the beginning and end of the development in M are interchanged. 

Equation (59) has therefore led us to two independent invariant relations. 

On the other hand it will be found that (60) leads to no new relation. For if we 

substitute into it for B7 — C7 and B —C in virtue of the second invariant relation, and 

then use the third relation, it becomes an identity. 
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It gives, however, on using (IV) to eliminate O', 

M“B' + B = A/M + 2C + 4<r (1 — ML).(64) 

which is a convenient form for calculating B'. 

If now A, B, C, E are known for any system, the corresponding quantities are 

immediately obtainable for the reversed system, A', B', C', E' being given by 

equations (III), (64), (IV) and (V) respectively. 

This will generally halve the labour of calculations, if it is found desirable to 

tabulate these constants for a complete set of lenses. It will then be sufficient to 

start from the equi-convex lens and vary the curvatures in one sense only. 

Incidentally we note also that the second invariant relation enables us to find C, 

so soon as A and B are known, so that only A, B and E require to be calculated. 

The aberration constants for a reversed system have a further important application 

in the case of lenses. Consider a positive lens (fig. 4), the initial ray converging to 

I0 and the final ray to I4. If now we interchange the full and dotted portions of the 

initial and final rays in fig. 4, we obtain, since here the initial and final media are the 

Fig. 4. 

same, the case of a ray going through a lens in which the front and back character of 

the two surfaces have been interchanged. In fact n and r3 have been interchanged 

and the sign of the thickness c2 has been reversed. This leads to a negative lens, of 

the same numerical power as the original positive lens, and with the same mean 

curvature, but a negative thickness. Such a lens, of course, is not physically 

realisable, although a part of it can be physically obtained by rotating the wedge 

beyond the intersection V of the two surfaces. 
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But, in the case of the ideally thin lenses, where the thickness is zero, the ideally 

thin positive and negative lenses, having the same mean curvature and numerical 

power, correspond in this way. 

Now I4 and I0 are also interchanged. If we consider I4 as the initial point, then we 

are really considering a set of rays starting from I4 in the last medium and travelling 

backwards through the original positive lens. In other words, the aberration constants 

for the corresponding negative lens are identical with those for the original positive 

lens reversed, and the equations (III), (64), (IV) and (V) are applicable to calculate 

them. 

This, again, will greatly diminish the work of calculation. In the case of ideally 

thin negative lenses, we see that A, B, C, E are directly obtained from the corre- 

sporftling thin positive lenses. In the case of thick negative lenses the corresponding- 

positive lens has a negative thickness. 

Now for various reasons it will probably be convenient, in calculating A, B, C, E 

for lenses, to express them in the form 

Ac = A0 + c (d A/dc)„, 

&c., where c, the thickness, is small, as it usually is in practice, and A0 refers to an 

ideally thin lens. 

When the formulae are put in this form, it is perfectly simple to calculate A_c, B_c, 

&c., and then to obtain the corresponding results for the negative lens with a positive 

thickness. 

§ 11. Explicit Values of A, B, C, E for a Thick Lens (Tangent Formula). 

For the purposes of numerical calculation and comparison with correct trigonometri¬ 

cally found values, we have worked out explicitly the form of the expressions A, B, 
C, E for a thick lens, when we use tan /34 as the argument; the formulas are 

expressed in terms of the focal lengths of each surface and of the combination and the 

thickness does not appear explicitly. The initial and final media being the same 

n0 =n± and we have written n — nfn0. 

The work of algebraic calculation has been straightforward but extremely heavy, 

and we therefore omit it here entirely, the object being to publish the results for 

reference, in case other workers desire to use them for tabulation purposes, but it is 

hardly to be expected that designing opticians should work direct from the algebraic 

expressions as they stand. 

For the purpose of this section we shall write 

A = A„ + AXM + A2M2 + A3M3 + A4M4. 

B = B0+Bj M+B2M2+B3M3. 

C = C0 + CiM + CbM2. 

E = E0 + EXM + E2M2 + E3M3 + E4M4 + E6M5 + E6M\ 
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The suffixes here have a different meaning to that which has been previously 

ascribed to them, but no confusion is likely to arise on this account. 

The values are as follows, f denoting the focal length of the lens, /, fA the focal 

lengths of the surfaces, so that 

0 27 (ft— l) 

1 

Au = 

Ai = 

A2 = 

fi = ri/{n-l), f\ = -rj(n-1) 

. fi±pr+(»±mr _2n{1+n+(„+1 _ <£ 
J i /i / J i J 

2na(n—i)3 L - +4 +1 >s ^ - 4,i (1 + +«“) / + '‘2 (,l +1 )s 

W-ir [' TzT"+6 ("+1 r b,+2n (1+"+”2)/(i +7, 

A3 = Ai with fi and f3 interchanged 

A4 - Ag ,, ,, ,, 

1 

4ft3 (n—l)2 
— ( 4 + ^) + 2(n2 —n+l) ^ + n(n— l)2 7— ft2 (n2—n +1) 

/1 A 73/ J1 /1 

Bi = 

B2 = 

• /I 1 

'/, +/)+6 (",+1)j&i+B("“ w A 7/J 

(»-!)’ t“ A (/. +/J+6 (n*+"+1 3m(k +1 )2 ii+ 3”2 (n’"“+1). 

B3 = a4 

Crt — B0—f—4A1 

Ci — Bi—^A2 

C2 = B2 + f—f A3 

K 
8(ft— l)4 

_ (vr —n+ l) (/ +///” . (ft + l)“ ri J ft (n2—n+ l),/3l 

• //■ »* 7 I/,* /,s J ft 

/• K+3»s+»+2(»‘+y+i)/.|+£ | ^+(»+1)>(»s-«+i) A 
n l /i3 /1* 

-/(ft2-ft+l)j| 

ft' 7b 

E1 = 
8 (ft-l)4 

_ 6(ft3-n+l) (fi±£)f5 (ft + I)“ ,m f 5ft 6 (ft3-ft+ l) nf3 ] 

/3/15 7 I/3/13 /T /15 J ft 

/3 (4(ft3 + 3ft2 + n) (n +1)4 + 8 {ni + n2+1) , y fA } 

”7 1J} + ft + Ui+1) ft J 

, f2 f 67,4(w+l)2(7+l) , 2(n-l)2{n2 + n+l)f3\ 

71/7 /2 /3 J 

/ [2ft (27 + n + 2) | 7+ I)4/1 +//3^+1)2 

n 
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/3 1 / 

K 
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E’ = 8l^ 
15 (n*-n+ l) /5(/i +/3) , (■n+1)2 f lOn 15(n2-n+l) jm 

///a2 n4 7 l/^2 + /!»/, /i4 

/3 f 6 (n3 + 3n2 + n) 12 (n4 + n2 +1) + 4 (n +1 )4 

1 y;/32 a2a 
, 4(n+l)4 + 2(n4 + n2+l) (n3+3n2 + n)f3 

f2 \6n2 6(n+1)2 (n2 + n+1) 8 (n+ l)2 (n2 + n+1) 

n2\f2 + 

A* 

fifz fi2 

+ 
[n + 1 )2 (n2 + 3n +1 )f3} 

ft5 J 

_ f [An {n+ l)2 + n3—n2 + n 2 (n+ l)4 + 2 [n2-\-n + l) (n2+3n+ l) 
" l /a A 

2 (w2 + n + 1) (n2 + 3n +1 )/3) 

"7? J 

+ 

+ n {(n+ l)2 +4 (n2 + n+ l)} + (n+ l)2 (n2 + 3n+ l)*4 
A 

-n‘ (n2 + 3n+1)^~ 
J\_ 

E3 = 
3 

8 (n— l)4 
’0 (na-n+ 1) f\A +A) , (n+ l)2 « f 10n / J_ J_' 

n4 fm + n4 7 i/a/A/2 y;r/ 

+ 
20 (n2—7i+ 1 

/i7 3 J 

+4W4 + & n yy /i 

' 1 1 \ 12(»H-1)2(»i3 + w+ 1)\ 

a2 a2) ,y3 /i/a J 

/ A„ (n+1)’(4 + A + [(«+!)< 
V v/33 y;: 

+ 4 (n2 + n+1) (w2 + 3n + l)] (~ +-^ 
vi y3/j 

+ 4w(?i2+w + l) (-y! +*4')+ 2 (n+1)2 (?i2+3n+ l) 
v3 yy 

— 2/d (n + l)2 {Al^A) _j_ 2n47A 

E4 = E2 with /j and y3 interchanged. 

E5 = Ej 35 33 33 33 

F — TC 
J-J6 J-i0 3 3 3 3 3 3 3 3 
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It should be noted carefully that all the above refer to expressions in terms of the 

tangent of the Gaussian inclination, this being the argument we have used in the 

numerical work. 

§ 12. Values of A., B, C, E for a Thin Lens. 

When the lens is thin, we have the relation 

J 1 = I 
fi- fz f ’ 

which enables the values of §11 to be considerably simplified. 

In this case it is useful to introduce a quantity K such that 

_ mean curvature of the lens _ f !\ 1 \ 

power of the lens 2 \r1 rj 

When this is done the constants A, B, C, E take the following forms :— 

A = -{(l-M)2/2ft| {{n + 2) [(1—M)K —(1+M) (n+ l)/(ft + 2)]2 

+ ft3 (l —M)2/4 (ft — l)2—ft2 (l +M)2/4 (n + 2)}. 

B = (l—M)2 K2 {ft—1 —(ft+2) M}/2n + (l-M) K (1 + M + 4M2) [n+l)/±n 

+ (l—M) {M (l+M)/4ft + (l-M) [3ft-2ft2-3 + M (6ft-4ft2-3)]/8 (ft-l)2}. 

C = — 3(1 —M)2 K2/2ft+ 3 (l — M2) K (n+ l)/4ft—f (l — M2)—fft (l — M)2/(ft — l)2. 

(l+M4) (— 4ft5 +8ft4—ft3—4ft2+3ft—l) 

+ M (l + M2) (8ft6 — 16ft5 + 4ft4 + 4ft3— 12ft2 + 12ft —4) 

+ M2 ( —16ft7 +32ft6 —8ft5—8ft4+ 10ft3—16ft2 + 18ft —6) 

+ 8 (ft-1) (l—M) (1+M) K {(1+M)2 

(— 2 n5 + 5 ft4 — 2 ft3— 3 n2 + 2>n — 1) 

+ M (2n6— 8ft4 + 4ft3 + 2ft2)} 

+ 8 (ft —l)2 (l — M)2 K2 {(1+M)2 

( — 2ft5 + 8ft4 — 7 ft3—6ft2 + 9n—3) 

— 2M n2 (n2 — 2n — 1)} 

+ 16 (ft — l)3 (l+M) (l—M)3K3 {2n4 — 4ft3 — 2ft2 + 6n — 2} 

+ 16 (ft—l)4 (l —M)4 K4 (—ft3 + 3ft —l) 

We notice that when M = 1 (which gives one of the zeros of A) B, C and E all 

vanish with it, and also E/A remains finite. Hence in this case, the term E^44 will 

not rise in importance, even when A = 0. But in this case A may have two other 

real zeros, and these are not zeros of E, so that E plays an important part in the 

neighbourhood of such zeros. 

3 (1 — M)2 

128 (ft-1)4 ft3 

k 2 
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§ 13. Numerical Test for a Single Lens. 

To test the formulae, a number of longitudinal aberrations were calculated trigono¬ 

metrically for five positive lenses of refractive index 1*52, unit focal length and 

thickness fg-. The first was a meniscus-shaped lens for which r, = 0'349418, r3 = 1. 

The second was a plano-convex lens, of which the convex side is towards the 

incoming light. The third was an equi-convex lens. The fourth and fifth were the 

second and first reversed. If Iv has the meaning defined in § 12, the values of K for 

these five lenses are 1‘93094, 0'96154, 0, — 0‘96154 and — 1'93094 respectively, so 

that they proceed by approximately equal steps of K. 

The constants A, B, E were calculated for these five lenses and the longitudinal 

aberrations computed from the formula. The rays selected met the first principal 

plane at a distance 0‘15 from the axis, corresponding to an aperture f/3'4, nearly. 

The results are shown in Table III. 

Table III.—Longitudinal Aberrations of Five Selected Lenses. 

Lens 1. Lens 2. Lens 3. 

M. 
Per- Per- Per- 

Formula. True. centage Formula. True. centage Formula. True. centage 
error. error. error. 

3 -7-98683 - 7-87422 1-41 - 1-12450 -1-12814 0-32 -0-32378 -0-32439 0-19 
2 - 1-55287 - 1-52334 1-94 -0-40167 -0-40283 0-29 -0-14240 -0-14282 0-29 
0-5 -0-003527 -0-003530 0-09 -0-011697 -0-011705 0-07 -0-033008 -0-033096 0-27 
0 -0-06028 -0-06043 0-24 -0-024728 -0-024749 0-08 -0-036194 -0-036213 0-05 

-0-5 -0-20902 1-0-20946 0-21 -0-083863 -0-083950 o-io -0-057067 -0-057101 0-06 
- 1 -0-42692 -0-42772 0-19 -0-18428 -0-18448 0-11 -0-094736 -0-094787 0-05 
-2 - 1-00383 -1-00531 0-15 -0-48874 - 0•48930 0-12 -0-21707 -0-21724 0-08 

Lens 4. Lens 5. 

M. 

Formula. True. 
Percentage 

error. 
Formula. True. 

Percentage 
error. 

3 -0-098969 -0-099086 0-12 -0-10401 -0-10444 0-41 
2 -0-046089 -0-046128 0-30 -0-013671 -0-013686 0-11 
0-5 -0-073959 -0-074535 0-77 -0-14762 -0-15068 2-03 
0 -0-099843 -0-100044 0-20 -0-22172 -0-22324 0-68 

-0-5 -0-13967 -0-13984 0-12 -0-32828 -0-32966 0-42 
- 1 -0-19084 -0-19101 0-09 -0-45753 -0-45887 0-29 
_ 2 -0-32454 -0-32476 0-07 -0-77417 -0-77511 0-12 

The mean percentage error of these results is 0‘34, so that the formula determines, 

on the average, the longitudinal aberration correct to 1 part in 300. The bulk of 
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this, however, is contributed by three cases, namely : M = 3 and 2 for lens I where 

the aberrations are very large and differ very widely from the usual first and second 

order approximations, so that, although the error of the formula approaches 2 per cent., 

it nevertheless represents a great improvement upon these approximations; and 

M = 0'5 for lens 5, which corresponds to extreme curvature and highest inclination, 

so that one of the angles of refraction is as great as 48|- degrees. Even here the 

table below shows that the formula is an appreciable improvement on the usual 

second-order approximation. If these three cases are omitted, the mean percentage 

error works out to be about 0'21, so that in general the formula determines the 

longitudinal aberration correct to about 1 part in 500. 

It is interesting to note what the usual first and second order approximations lead 

to in a few cases. 

First order 
approximation. 

Percentage 
error. 

Second order 
approximation. 

Percentage 
error. 

Lens 1, M = 3 . . . - 1-34012 83-0 -2-45432 68-8 
„ 1, M = 2 ... -0-48545 68-1 -0-82104 46-1 
„ 1, M = -2 . . . -1-348142 34-1 -0-88456 12-0 
„ 2, M = 3 ... -0-67356 40-3 -0-94436 16-3 
„ 5, M = 0-5. . . -0-12136 19-5 -0-14307 5-1 

This gives a measure of the numerical improvement effected by the fractional formula 

whenever the usual method of approximation is seriously out, even though in none of 

the cases above does the convergency of the series actually fail. 

In the above the series are in powers of tan /32. Had they been taken in powers of 

tan a2, as is frequently done, the first and second order approximations would have 

been far worse. 

One interesting outcome of these calculations relates to the relative importance of 

the terms in E£44 and Atf The ratio Et^/A is small in every case taken (of course 

these exclude the neighbourhood of points where A = 0, where naturally E becomes 

of great importance). But for the set of magnifications taken, the greatest ratio of 

the second term to the first is less than 0‘03 and the mean value of this ratio is only 

0'0082, so that, in fact, the E term—although so complicated algebraically—does not 

exercise any great influence numerically. 

This is important, as it shows that, at any rate for lenses, it does not require to be 

computed with anything like the same order of accuracy which is needed for A and B. 

§ 14. The Singular Inclination and Convergency Factor for any System. 

Referring again to fig. 2 we see that X = a2 and FoI0 = —Ax2 for rays proceeding 

through the system reversed and initially parallel. 

Thus using accents, as before, to denote the coefficients and inclinations for 
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the system reversed, and noting that the accented coefficients all refer to zero 

magnification, we have, using tangents 

tan A = tan ft', (1 + B'0 tan2 ft'ft) I { 1 + C'0 tan2 /3f2) 
and 

— F„I0 = fn0 (A'0 tan2 ft'2 + JL'0 tan4 /3'2)f( 1 +B'0 tan2 ft'.ft). 

Here the suffixes in the A, B, C, &c., A', B', C', &c., have the same meaning as 

in | 11. 

Thus ‘ 
— 1 /M = (A'0 tan2 ft', + E'0 tan4 /3'2)/( 1 + B'0 tan2 ft'ft), 

whence, developing cot2 /3'2 in descending powers of M and stopping at the second 

term 
cot 2ft'2 = -A'6M-B'0 + E'0/A'0. 

Substituting into 
cot2 A = cot2/3'2 + 2 (C'o-B'o) 

which is valid to the same order of approximation, we obtain 

cot2 A = -A'0M + 2 (C'0—B'0) — B'0 + E'o/A'o.(67) 

as the second approximation for the singular inclination when M is large, the first 

approximation being cot2 A = — A'0M. 

To the same order the convergency factor is . 

1+ ta,r«0(A'.M + {2(B',-C',) +B'„- (E'0/A'„)}), 

1* (%* ton*/%/«,»){A'.M»+ (8B'.-2C',-'EVA'.)M>}, . . . . (68) 

ft2 referring to a ra3^ passing through the system in the standard sense. 

Now, using the equations (HI), (64), (IV) and (V) of § 10 and equating suitable 

coefficients, we find that 

A'0 = {nftInft) A4, E'o = {nft/nft) Ee, 

C'0 = [nft/nft) C3-4<r, B'0 = (nft/nft) (A, + 2C3-B2) -4<r 

3Aa = 4B2-4C2+4 {nft/nft) a, A, = B,, 

whence, after substitution, (68) becomes 

1 + tan2 ft, (B3M3+ {B2-E6/A4} M2).(69) 

Now, if our B leads to a sound approximation to the convergency factor for M large, 

this should be 

I + B tan2 ft2, 
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or, to the same approximation which we have been using 

1 + tan2 f32 ( B3M3 + B,M2).(70) 

We see, therefore, that the development of the correct convergency factor in descending 

powers of M will give a result which always agrees with our B, so far as the highest 

term in M is concerned, but makes the term in M2 in general different. 

In the case of a lens E6/A4 is in general small, compared with B2, so that this 

discrepancy makes little difference, but it may well be that, when we come to deal 

with more complicated systems, this will not be the case. 

A little consideration, however, shows that, when this is so, our formula is very 

readily corrected so as to take this difficulty into account, without involving any 

lengthy numerical computation. 

If we consider the formula 

Ax2 = n2f{At22+ (E-AE6M2/A4) + (B-E6M2/A4) t22} 

it is clear that it leaves the development of Ax2 in powers of t2 unaltered as far as 

the second order inclusive. It alters the coefficient B2 of B so as to make the two 

leading terms agree with (69). It also alters E in such a way as to remove the term 

in M6 and reduce E to a quintic. In fact it gives for the new E the remainder obtained 

after the first step in the division of E by A, according to the usual process. ■ 

In practice, the terms in (E,;/A4) M2 are very readily added as follows :— 

a.,. = „ -■ At/ + EO/(l-E,My/A,) 
3 J 1+Be,7(l-E6M2«//‘A4) 

and this amounts to applying the same corrective factor l/(l — EBM%2/A4) or 

l/{l-En0%a/n 22A4) to the second terms in both numerator and denominator. This 

factor, expressed in terms of the inclination of the incident ray, is independent of the 

magnification, and a short table will enable it to be found in any given case without 

difficulty. 

A similar correction has then to be made in C; in order to keep the development 

of tan a2 the same we must have 

tan a2 = t2{ 1 + (B-EuM2/A4) ti) / {1 + (C-E6M2/A4) 122}, 

and writing this as 

Ul+Bf22/(1-E6MV/A4)} 
1 + C£22/(1— e6mv/a4) 

we see that the same corrective factor has to be applied to all the second terms in the 

formulae. 

In the above we have used tan /32 as our argument, but the formulae and the 

correction take precisely the same form if sin y2 is the argument. 
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If we apply this corrective factor to the first two entries of Table III., which'give 

a large percentage error—these correspond to cases approaching the failure of 

convergency and are therefore critical, we find, for lens (l) 

M. 
True 

aberration. 
Formula 

uncorrected. 
Percentage 

error. 
Formula 
corrected. 

Percentage 
error. 

3 
2 

-7-87422 
- 1-52334 

- 7•9S683 
- 1-55287 

1-41 
1-94 

-7-90811 
- 1-54089 

0-43 
1-16 

which shows a very sensible improvement. 

The significance of this alteration is brought out more clearly when we consider 

the limiting case M = co that is, rays actually issuing from the front focus (the 

case of an eye-piece). In this case, the geometrical image being at infinity, it is 

inconvenient to define the emergent ray by means of either longitudinal or transverse 

aberrations. 

Let us consider the intercept of the ray on the back focal plane. 

This = ( — n2/M + Ax2) tan a_, 

= n2f\_ (A tan2 /32 + e tan4 /L)/(l + b tan2 /32) — M] tan a2. 
Also 

tan cl2 = (tan ajM) (l + 6M-2 tan2 au)/(l +cM 2 tan2 a0), 
where 

b = B—E(jM2/A4, c = C-E6M3/A4, e - E—E6AMa/A4, 

and it is clear that, in the limit, where M (and IVl) = o°, tan a2 must he finite. 

This requires that b and c shall be of order M3 and M2 respectively, which is right, 

and leads to 
tan a2 = nb:i tan3 ajn (l +c2 tan2 a0), 

b3 and c2 being the coefficients of M3 and M2 in b and c respectively. 

On the other hand, it is equally obvious that the intercept on the back focal plane 

must also approach a definite limit. Hence the factor 

(A tan2 /32 + e tan4 /L)/( 1 + b tan2 /32) — M, 
i.e., 

— 1 + (A — M/>) tan2 /3.,/M + e tan4 fi.JM 

1 /M + b tail2 /T/M 
or 

-1 +(A-M&) tan2 a„/MM3 + e tan4 «„/MIT 

l/M + b tan2 a,/MM2 

must tend to a finite limit as M approaches oo. 

This necessarily involves that (l) A — M6 has M3 in its leading term—a result 

already established, and (2) that e involves M5 (and not M6) in its leading term. 
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Hence, whenever we deal with incident rays actually passing through the front 

focus—and this necessarily occurs as soon as the results of the present paper are 

applied to aberrations off the axis—the modified B, C and E have to be used. 

§ 15. Combination Formulae for More than Two Systems. 

The combination formulae (47), (48), (51) are capable of explicit generalisation for 

any number of systems. 

In the case of A and C successive applications of equations (47) and (51) lead at 

once to the results 

«/l35 ■■■ 2n+l"^ 135... 2n + l = ifl-^l) M235... 2n + 1M23s2n+ 1 

+ (/3A3)M25...2n+1M25...2n+1+ ... 

+ (/k—iA2n—i) M22n+1M22n+,+i/’27i+iA2n+1. . (71) 

Ci35...2n+1 — C1M335...2n + 14-C3M25__ 2n+1+... 

+ C2n_1M22n+1 + C2n+1.(72) 

in which we have reverted to the notation of §§ 2, 7. 

In the case of B, we have for three systems 

Bi% — B,<5 + BjM.j2 + AfiLMfifijf^ 

= B8 + B3M52 + B1M3s2+(/1A1) M35M352//35 + (/3A3) MsM52//5, 

and the general law of combination is at once obvious. 

We have 

B 135 ••• 2n+l BiM“35_on+1 +B3M“5 . 2n+1+ ... + B2n_!M22n+1 + B2n+1 

+ (/iAx) (MM2//)35...2B+1 + (/3A3)(MM2//),.,n+1+ ... +(/2n_1A2n_1) (MM2//)2n+1. (73) 

The case of E is more difficult and we have not been able to obtain a form in which 

it can be written down for the combination of n systems. 

But we can deal with it as follows, by determining the contribution of any one 

component to the whole :— 

Consider three systems 1, 3, 5. It will be convenient to look upon 3 as a single 

lens, forming part of a larger system. 1 will then be the system of lenses preceding 3, 

and 5 the system following. 

Applying equation (49), simplified by the use of the second invariant relation, we 

find 

/,35Ei35 = /5E5 +/13Ei3M52M54 

+/13A13M52M52 (3A5/M5 - 3B5+4C5 + 4«r {1 - M53}) 

+ 3B13/5A5M52—2C13/5A5M52. 
YOL. CCXXI.-A. L 
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Applying the equations of combination a second time, and picking out the terms 

involving A3, B3, C3, E3, we find these to be 

/3E3M52M/ + M52M5* [/iA,M3“M32 (3A3/M3—3B3+4C3) +/?A3M32 (36,-20,)] 

+/3A3M52M52 [3A5/M5- 3B5 + 4C5 + 4a- (1 - M-2)] 

+ 3B3/5A5M32-2C3/5A5M52. 

Hence the lens 3 contributes to the final E 

/3A3{3M5M52 [Ab + ( flf,) AAB,M352] + 4o-(1-M52) M52M52 

+ M52M5" [ — 3B5 + 4C5 + (3B, — 2C,) M“35]} 

+ B3M52 (3/5A5—3/lA1M352M352) 

+ C,M.,2 (-2/5 A5 + 4/ A,MHM?52) 

+/«%*, 

and the A’s, B’s and C’s in the curled brackets can be expressed in terms of the 

individual lenses of the system by means of equations (71), (72), (73). 

If we denote the coefficients of A3, B3, C3, E3, in the above by l3, m3, p3, q3, then the 

contribution of the individual lens to E 

— 4A3+m3B3 +_p3C3+g3E3. 

Hence, if we vary K3 for this lens, keeping focal length and magnifications 

unaltered 

AE = AK3 (4 0A?/3K3 + m3 dB3/dK3+p3 0C3/0K3 + g3 SE3/SK3). 

If all the lenses are simultaneously varied, then we have 

AE = 2 AK (l 3 A/3K + m dB/dK + p dC/dK + q 3E/3K). 

We have similar equations for A A, AB, AC, but they take a much simpler form. 

Using these, we can, if we have enough lenses, vary the K’s so that, between limits, 

we can make our four constants A, B, C, E take up any assigned values, or, if we 

wish to keep any one constant whilst slightly varying the others, we have a linear 

relation between the AK’s. 

§ 16. Conclusion. 

We have now established a formula of fractional type for the longitudinal aberration 

of a symmetrical system which, while algebraically correct as far as the second order, 

does in fact, give results beyond this order in those numerical cases which have been 

tried, and largely overcomes the difficulties of slow convergency in critical regions. 
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We have further obtained a method for calculating the coefficients of this formula 

for any symmetrical optical system in terms of the coefficients for the components, 

in such a way that the effect of any single component upon the whole combination is 

immediately obtained. 

In considering the convergency of the series usually employed, we have found that 

the value of the approximation depends upon the particular variable employed, and 

that if we wish to avoid trouble owing to lack of convergency we must use sin au or 

tan a0 (or a suitable multiple of these) as argument, where a0 is the inclination of the 

original incident ray. 

The numerical success of the new formula appears to suggest that progress in the 

algebraic treatment of symmetrical instruments is to be sought, not so much along 

the lines of developments in series, but in other mathematical directions such as 

continued products, or possibly continued fractions. 

The next step would be to develop the method so as to cover the second order 

approximations to the emergent inclination. This will enable us to deal with aberra¬ 

tions off the axis of the system. 

Some progress has already been made by the authors in this direction and the 

results will, it is hoped, form the subject of a later communication. 

PRESENTED 
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The observations discussed in this paper were made at the Solar Physics 

Observatory, Cambridge, mainly during the summer months of 1917. 

I. Methods of Measurement. 

The method and apparatus used in the measurements are substantially those 

described in a paper “ On Some Determinations of the Sign and Magnitude of Electric 

Discharges in Lightning Flashes.The induced charge on an exposed earthed 

conductor (test-plate or sphere) is used as a measure of the electric field. The test- 

plate virtually forms part of a flat portion of the earth’s surface, and the vertical 

electric force or potential gradient at ground level is equal (in electrostatic measure) 

to 4-rQ/A, where Q is the charge on its exposed surface and A is its area. The 

charge Q on the earth-connected sphere of radius It, when exposed at a height h> 

great compared with It, is a measure of the potential at that height; the zero 

potential of the sphere being the resultant of the undisturbed atmospheric potential V 

at the height k and of the potential Q/Pi, due to the charge on the sphere, so that 

Q/R = — V. The earthed conductors can be shielded from the earth’s field : the 

test-plate by means of an earth-connected cover, the sphere by lowering it into a 

conducting case resting on the ground. The quantity of electricity which flows to 

earth through the connecting wire on exposing or shielding the test-plate or sphere, is 

measured by a special type of capillary electrometer in which the readings indicate the 

total quantity of electricity which has traversed the instrument ; the sign and 

magnitude of the charge on the exposed conductor, and thus of the potential 

gradient, at the beginning and end of an exposure are thus determined. The sign 

and magnitude of sudden changes of potential gradient which occur while the 

conductor is exposed are indicated by the direction and magnitude of the resulting 

displacements of the electrometer meniscus. The total flow of electricity between 

the atmosphere and the test-plate or sphere during an exposure is also measured 

—being given by the difference between the electrometer readings before and 

after the exposure. The principal improvement introduced has been the provision 

of apparatus for giving a photographic trace of the electrometer readings ; rapid 

changes in the field occupying less than one-tenth of a second are in this way 

recorded. 

In the observations described in the previous paper the sphere was supported in a 

manner which did not admit of absolute measurements being made, as the charge 

measured included that on the upper part of the support as well as that on the 

sphere itself; in these earlier measurements therefore the sphere was standardised by 

comparison with the test-plate. The method of supporting the sphere is now such 

that the charge on the sphere alone is measured, while the disturbing effect of the 

* ‘Roy. Soc. Proc.,’ A, vol. 92, p. 555, 1916. 
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earthed supporting rod is small, and thus the potential at the level of the earth- 

connected sphere can be calculated from the charge upon it. The new method of 

mounting the sphere is shown in fig. 1. 

The sphere, 30 cm. in diameter, is supported on an 

earth-connected brass tube B, 2 cm. in diameter, from 

which it is insulated by sulphur-coated ebonite E ; 

insulators are indicated in the figure by the dotted 

areas. The tube is inserted within a wider one C which 

extends from the top to the bottom of the sphere and 

which is open below. The supporting tube B is rigidly 

fixed in a hole bored through the screw cap which 

closes the upper end of an iron pipe P, 5 cm. in 

external diameter and 427 cm. long, which can be 

turned about its lower end from the vertical to a nearly 

horizontal position as described in the former paper. 

The length of the brass tube from the top of the iron 

pipe to the bottom of the sphere is 38 cm. The Fi G I 
connection between the sphere and the electrometer is 

made by means of a tightly stretched wire W supported 

by quartz insulators. The wire is not attached directly 

to the sphere but to a brass disc D insulated from the 

supporting tube and fitting loosely within the wider tube 

C inside the sphere. The sphere is fixed to the disc by 

means of a screw which projects from its inner surface 

and can thus readily be removed to give access to the 

insulation. 

When the sphere is exposed by raising the iron pipe 

to its vertical position the height of its centre above 

the ground is 480 cm. 

The sphere when lowered is received in a metal-lined 

earthed box resting on the ground; a tightly fitting 

cover, also metal lined and earthed, protects the sphere 

from the atmospheric electrical field and from the 

weather. The charge on the earthed sphere in this position is taken as zero. 

The charge Q on an earthed sphere of radius R at a height h above level ground 

is assumed to be such that Q/R—Q/2h + Y = 0, where Y is the undisturbed air 

potential at the height h. The presence of the neighbouring hut exerts a disturbing 

influence which however is not large : the correction to be applied has been estimated 

by imagining the hut to be replaced by a conducting hemisphere large enough to 

enclose it. The vertical potential gradient over level ground being assumed uniform 

throughout a height exceeding that of the hemisphere, the lowering of potential at 

M 2 
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a given point by the induced charge on the hemisphere is readily seen to be equal 

to Ya3/r'3 where a is the radius of the hemisphere and r is the distance of its centre 

from the given point. In the actual case the correction amounts to 6 per cent. 

The charge on the exposed earthed test-plate (the surface of which is at ground 

level) is similarly diminished by the presence of the hut; the correction to be applied 

amounts in this case to about 1 per cent. A somewhat larger correction—-estimated 

at 1‘5 per cent.—has to he made for the effect of the induced charge of the earth- 

connected cover and its supporting arm. Apart from these small corrections the 

relation between the potential gradient F at ground level and the charge Q on the 

exposed earthed test-plate, of area A, is given by 47rQ/A = F, when the quantities 

are expressed in C.G.S. electrostatic measure. The effective area of the plate is 

2220 sq. cm. 

For the measurement of the quantities of electricity which passed between the 

exposed conductor and earth through the connecting wire, the capillary electrometer 

described in the previous paper was used. By means of a ^-inch microscope 

objective, placed with its axis vertical above the electrometer, an image of the 

meniscus was formed on a horizontal slit. The slit coincided in position with the 

image of the axis of the capillary tube and was almost in contact with the sensitive 

surface of a photographic plate kept in uniform motion at right angles to the slit. It 

was made by ruling a line with a razor blade on an exposed and developed “ process ” 

plate; it was protected by a strip of microscope cover-glass cemented with Canada 

balsam to the gelatine surface—the thin cover glass was next the moving photo¬ 

graphic plate and was only a small fraction of a millimetre distant from it. The 

breadth of the slit was about Yu mm. 

The carrier of the photographic plate was clamped to the middle portion of a wire 

stretched horizontally over two pulleys; a weight was attached to one end of the 

wire, while the other was attached to a piston, the motion of which in its cylinder 

caused oil to be driven through a fine hole in a brass disc. By turning the disc any 

one of a graduated series of holes could be brought into action according to the speed 

of travel desired. 

The light from the source of illumination—a paraffin lamp—could be cut off 

momentarily by means of a shutter which was worked by a cord from outside the 

hut. In this way it was possible to record on the photographic plate the times of 

the beginning and ending of thunder. In the records reproduced (Plates 2 to 5) 

these momentary interruptions of the illumination are represented by vertical black 

lines ; a single line indicates the beginning, a double line the end of a peal of thunder. 

The interval on the photographic record between the vertical portion of the trace, 

which represents the sudden change of field due to the passage of a lightning flash, 

and the dark line which marks the moment when the thunder resulting from the 

flash began to be heard, afford data for obtaining an estimate of the approximate 

distance of the discharge. 
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The varying position upon the slit of the image of the meniscus on which the 

microscope is focussed is represented by the curve separating the dark and light 

regions of the record. The fine horizontal lines are due to dust particles or to 

irregularities of the slit; they. are useful as reference lines from which the 

displacement of the meniscus may be measured. The vertical flutings which appear 

in some of the records are probably due to flickering of the lamp. 

Records of the electrical effects of thunderstorms at various distances from the 

place of observation were obtained on ten different days in 1917. The records were 

not by any means continuous throughout the whole duration of a storm : compara¬ 

tively quick runs of the recording apparatus were generally made—varying from 3 to 

50 minutes in duration—and some time had to be spent in changing the photo¬ 

graphic plates and readjusting the apparatus between the successive runs. Again, 

the difficulty of estimating the order of magnitude of the electric effects to be 

expected frequently led to the sphere being exposed when the test-plate would have 

been more suitable, or vice versa ; the readings—which are 40 times larger with the 

sphere than with the test-plate—being in consequence too large or too small to be 

recorded. Thus the records obtained served rather to sample a thunderstorm at 

different stages of its history than to give a complete account of the changes in its 

electric field. 
II. Some Typical Records. 

Enlargements of some of the records are reproduced in Plates 2 to 5. In the 

original negatives a change of one mm. in the ordinates represented a flow of 24 

electrostatic units, or 8'OxlO-9 coulomb through the electrometer: a change of 

potential gradient of 100 or 4000 volts per metre, according as the sphere or the test- 

plate was used, was required to cause the passage of this quantity of electricity 

between the exposed conductor and the earth. 

A fairly typical fine weather record (May 23, 1917, 14h. 17m. to 14h. 51m. 

G.M.T.) is shown in fig. 1, Plate 2 : the sphere was used as the exposed conductor. 

The record begins with a horizontal portion traced before the conductor was exposed 

to the electric field. The small peak near the beginning of the record shows the 

effect of raising the sphere to its maximum height (480 cm.), and immediately 

lowering it again into its protecting case ; it indicates the existence of a positive 

potential gradient of 100 volts per metre. The sphere was raised at 14h. 20m., the 

exposure to the electric field being continued till 14h. 50m. except for regular 

interruptions at 5-minute intervals when the sphere was momentarily lowered into its 

case. The depths of the notches in the curve are measures of the potential gradient 

at the times of lowering the sphere : the potential gradients recorded at intervals of 

5 minutes are, in volts per metre, 120 (at- 14h. 30m. when the sphere was raised), 

110, 120, 90, 75, 80, and finally 90 at 17h. 50m. (when the sphere was lowered). 

The difference in the ordinates of the final and initial horizontal portions of the 

trace (both recorded while the sphere was in its case) is a measure of the integrated 
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ionization current which has entered the sphere during the 30 minutes’ exposure to 

the atmospheric electrical field. The record shows that this amounted to 21'8 E.S.U., 

while the mean charge induced on the earth-connected sphere during the exposure 

amounted to 23 E.S.U.—the equivalent of 96 volts per metre. The mean “ dissipation 

2f8 100 
factor ” for the period of exposure was thus —— x 

30 23 
i.e., about 3 per cent, per 

minute. 

The readings obtained when the sphere is down form a series of points on a curve 

of which the vertical height above the initial horizontal part of the trace is a measure 

of the integrated ionization current which has entered the sphere from the atmosphere. 

This curve forms the zero line for potential gradient, i.e., the differences of the 

ordinates of this curve and of the actual trace obtained when the sphere is exposed 

give a measure of the potential gradient at any moment. 

In fig. 2 is reproduced the record of May 12, 1917, from 16h. 50m. to l7h. 35m. 

The sky was overcast and the weather conditions suggested thunder—a storm did in 

fact occur some hours later. The sphere was momentarily raised at 16h. 51m. ; raised 

again at 16h. 55m., and kept up till 17h. 23m., being however momentarily lowered 

into its case at 5-minute intervals during this time ; it was kept in its case after 

I7h. 23m. The potential gradient was 150 volts per metre at 16h. 51m. ; it gradually 

diminished till it reached negative values, and continued to be negative from 

I7h. 12m. 50s. till I7h. 18m. 10s., reaching a minimum of —80 volts per metre at 

I7h. 16m., becoming positive again and being equal to 260 volts per metre when the 

sphere was lowered at 17h. 23m. The negative potential gradient coincided in time 

with the passage overhead of a cloud discharging rain which did not reach the ground. 

The test-plate was uncovered from l7h. 25m. to 17h. 30m. : the displacement of the 

meniscus on uncovering and covering the plate is almost too small to be seen in 

the reproduction of the record but indicates the continuance of a positive potential 

gradient of about 300 volts per metre. The ionization current from the earth- 

connected sphere to the atmosphere during the period of negative potential gradient 

has been sufficient to neutralise approximately the flow from the atmosphere to the 

negatively charged earth-connected sphere during its exposure to the positive potential 

gradient. 

All the remaining records reproduced in the plates show the effects of lightning 

discharges (generally at a considerable distance) on the potential gradient. 

Fig. 3 (June 13, 1917, 14h. 11m. to 14h. 16m. 30s.). 

The sphere was exposed during the whole time represented by the record except at 

about 14h. 12m. 30s., when it was momentarily lowered ; the effect of lowering and 

raising the sphere is indicated by the prominence midway between 14h. 12m. and 

14h. 13m. The potential gradient at that moment was negative and equal to 

— 420 volts per metre. The summit of the prominence gives the zero line of potential 

gradient. The record begins with a negative potential gradient of about —430 volts 
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per metre. At 14h. 11m. 10s. distant electrical charges which were responsible for a 

portion (amounting to 150 volts per metre) of the negative potential gradient at the 

place of observation were neutralised by the passage of a lightning flash. The negative 

potential gradient at once began to be regenerated but was again suddenly diminished 

about 3 seconds later, losing 25 volts per metre by the passage of a lightning flash, 

probably at a still greater distance. This continuous production of a negative potential 

gradient and its sudden diminution at intervals by lightning discharges continues 

throughout the record. At about 14h. 13m. 40s. a sudden change of potential gradient 

of positive sign occurred, but was followed by one of negative sign and of nearly 

equal magnitude about 0‘4 second later, a small positive change again occurring after 

another almost equal interval; these changes of potential gradient amount to +240, 

—220 and +25 volts per metre respectively. Another negative change of potential 

gradient (about 60 volts per metre) is indicated 10 seconds later. A few seconds 

after 14h. 16m. the record shows two discharges to have occurred with an interval of 

2'4 seconds between them; each produced a change of potential gradient of positive 

sign, the first amounting to 840, the second to 870 volts per metre. 

The potential gradient at any moment may be regarded as being the resultant of 

several electric fields, including those due to charges concentrated in different thunder¬ 

clouds or different centres of activity in the same cloud. The passage of a lightning 

flash results in the sudden destruction of one of these constituent fields. This at 

once begins to be regenerated by processes going on in the thunder-cloud at a rate 

which is indicated by the slope of the curve. The curve of recovery of the electric 

field (approximately logarithmic) shown after the discharges of 14h. 14m. is quite 

typical; similar curves appear in most of the records, a specially striking example 

being that of fig. 11 (Plate 4). 

On account of the very short intervals between the successive peals of thunder, 

the times at which they began and ceased to be heard were not systematically 

recorded during the record reproduced in fig. 3. The first peal of thunder recorded 

is marked by the single and double dark lines as beginning at 14h. 13m. 8’9s. and 

ending at 14h. 13m. 15s., and a second one as beginning at 14h. 13m. 18'4s. and ending 

at 14h. 13m. 30s. The two peals are taken as being due to the discharges at 

14h. 12m. 47'7s. and 14h. 12m. 53'6s. respectively; this gives a distance of 7'1 km. 

for the first and of 8'3 km. for the second. The first of these discharges produced a 

total change of potential gradient of 350 volts per metre, but this took place in two 

stages of 220 and 130 volts per metre which were separated by an interval of about 

0'2 seconds; this interval is barely distinguishable in the reproduction. The discharge 

at 8'3 km. produced a change of about 95 volts per metre. The peal of thunder 

marked as beginning at 14h. 14m. 9s. probably belongs not to the flash at 14h. 14m., 

but to an earlier one, possibly the double one at 14h. 13m. 40s. 

Fig. 4 (August 9, 1917, 14h. 45m. to 15h. 2m. 30s.). 

Here the test-plate was exposed in place of the sphere. The potential gradient 
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indicated at 14h. 45m. 15s. when the plate was first uncovered is negative ( — 4570 volts 

per metre). The principal sudden changes of potential gradient (all in the neigh¬ 

bourhood of 3000 volts per metre) are negative, indicating the destruction of 

positive fields by the passage of lightning discharges. The times of the beginning 

and ending of the peals of thunder were in most cases marked as shown by the 

single and double black lines. The distances indicated by the intervals between 

the principal discharges and the beginning of thunder are all about 5 km. 

The characteristic curve of recovery after the passage of each discharge is well 

shown. 

Heavy black clouds were overhead at the beginning of the record and slight rain 

began about 14h. 48m. 30s. and became heavy at about the time when the record ceased. 

The effect of the rain is shown by the downward slope of the latter portion of the 

trace, which indicates a flow of positive electricity from the earth through the 

capillary electrometer to the test-plate. How much of this positive charge went to 

increase the induced positive charge on the test-plate (on account of increasing 

negative potential gradient) and how much to neutralise a negative charge carried 

down to the test-plate by rain drops, or by ions travelling under the influence of the 

negative potential gradient, remains undetermined owing to the fact that the cover 

was not replaced until after the record was completed. 

Fig. 5 (June 17, 1917, 20h. 23m. 23s. to 20h. 27m. 29s.). 

This is an enlargement of a portion of a record obtained while a severe storm was 

passing at a distance of 15 to 20 km. Between 20h. 20m. and 20h. 29m. the photo¬ 

graphic trace recorded 95 positive discharges (i.e., discharges causing a sudden 

positive change of potential gradient) and 40 negative discharges. The discharges 

were visible as vertical flashes passing between a cloud near the N.W. horizon and 

the earth, many of the flashes being multiple. The storm was seen to travel from 

W. to N. ; newspaper reports show that it passed over St. Ives, which lies from 10 to 

11 miles (about 17 km.) to the N.W., damage by lightning occurring there. The mean 

of the 95 sudden changes of potential gradient of positive sign amounted to 119 volts 

per metre, that of the 40 of negative sign to —80 volts per metre. 

The sphere was used in obtaining this record. 

Fig. 6 (June 16, 1917, 19h. 12m. to 19h. 23m.). 

The test-plate was used as the exposed conductor. 

The potential gradient was negative ( — 5400 volts per metre) at 19h. 12m. 45s. 

when the cover was removed, positive ( = 1000 volts per metre) at 19h. 22m. 15s. 

when the cover was replaced. Rain was falling throughout the duration of the 

record, and the charge carried down (by rain and ionization current) during the 

9|- minutes’ exposure was negative and amounted to 16 x 10-12 coulombs per sq. cm., 

the mean current being thus about 27 x 10-15 ampere per sq. cm. Two of the 

discharges recorded—at 19h. 17m. 4s. and at 19h. 20m. 55s.—were multiple, as is 

shown in the enlargements, figs. 18 and 19 of Plate 5. All the sudden changes of 
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potential were negative—excepting the positive components of the multiple flashes— 

the largest amounting to —9600 volts per metre. The distance of this discharge, as 

is shown by the interval elapsing before the thunder began to be heard, was about 

4‘3 km. The distances of the others ranged between 4‘3 and 57 km. The peals of 

thunder, as the intervals between the single and the double black lines show, were 

very long, some lasting for as many as 40 seconds. 

Fig. 7 (June 16, 1917, 19h.'31m. 10s. to 19h. 36m. 45s.). 

This is a portion of the record taken with the test-plate next after that shown in 

fig. 6. Rain continued to fall throughout the time of exposure. The cover was 

removed from the test-plate at 19h. 31m. 30s. ; the potential gradient at that 

moment was negative, —6500 volts per metre; a lightning discharge had probably 

occurred immediately before the exposure of the test-plate. The discharge at 

9h. 33m. 20s. was really multiple, the sudden changes of potential gradient being —2900, 

— 5100 and +1300 volts per metre. The discharge at 19h. 35m. 55s. was negative 

(change of potential gradient = —4100 volts per metre) and was at a distance of 

about 5'5 km. The characteristic form of the recovery curve following the discharges 

is modified by the superposition of a general downward slope which represents an 

electric current from the ground to the atmosphere ; this current was probably mainly 

carried by falling negatively charged raindrops. The potential gradient when the 

cover was replaced at 19h. 39m. (beyond the limits of the portion of the record 

reproduced) was positive and exceeded 2500 volts. The total quantity of electricity 

transferred per sq. cm. of the test-plate to the atmosphere, during the whole 

8^- minutes of exposure, but mainly after 19h. 36m. was the equivalent of 40,000 

volts per metre, i.e., 3‘5x 10~n coulomb. 

Fig. 8 (May 29, 1917, L9h. 4m. 10s. to 19h. 11m. 50s.). 

This is the final portion of a record which began at 18h. 44m. The sphere was 

used as the exposed conductor. The potential gradient had been +1200 volts 

per metre at 18h. 46m. when the sphere was raised; 980 at 18h. 51m. and —1400 at 

18h. 56m., at which times the sphere was momentarily lowered. The peak shown in the 

figure at 19h. 6m. represents the effect of again momentarily lowering the sphere and 

indicates that the gradient was still negative, being equal to —430 volts per metre. 

At 19h. 11m. when the sphere was finally lowered the potential gradient had again 

become positive, being now +20 volts per metre. 

These comparatively gradual changes of potential gradient accompanied the passage 

of towering cumulus clouds at no great distance. Superimposed upon them are 

sudden changes (amounting at most to 150 volts per metre) produced in the field by 

frequent discharges of more distant thunder-clouds. Some of these are positive, some 

negative ; the discharges of either sign are alike in being followed by the charac¬ 

teristic curve of recovery of the field. 

Fig. 9 (May 29, 1917, I7h. 58m. 45s. to 18h. 12m. 30s.). 

This is an enlargement of a portion of a record which extended from 17h. 56m. to 
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18h. 36m. ; the sphere was exposed. During the period covered by the portion of the 

record reproduced the sphere was momentarily lowered at 18h. and at 18h. 5m ; it was 

also lowered at 18h. 10m. and kept in its case till 18h. 11m. when it was again raised. 

The potential gradient at the times of lowering the sphere amounted to +90, +60 

and +40 volts per metre. It is plain from the record that the gradient remained 

positive throughout : the principal sudden changes of gradient were positive, and 

amounted to about 150 volts per metre ; two, however, at about 18h. lm. and 

18h. 9m. 30s. were negative and equal to about 60 volts per metre. Positive discharges 

evidently also occurred during both the short periods for which the sphere was lowered. 

The characteristic recovery of the field after both positive and negative discharges 

is well shown. The two peals of thunder recorded probably belong not to the 

discharges immediately preceding them but to the previous discharges. The 

discharges were probably at a distance of 20 km. or more. 

Fig. 10 (August 15, 14h. 18m. 20s. to 14h. 30m. 15s.). 

At 14h. 18m. 30s., when the cover was removed, the potential gradient was nega¬ 

tive ( = —3600 volts per metre). This negative potential gradient had increased to 

about —5000 at 14h. 19m. 6s. ; at this moment the negative field was nearly 

destroyed by the passage of a lightning flash at a distance of 4T km., the sudden 

change in potential gradient being +4800. The five subsequent flashes also produced 

positive changes in the potential gradient ; the beginning and ending of the thunder 

is marked on the record in each case. The magnitudes of the sudden changes of 

potential gradient vary from 3900 (the third shown in the fig.) to 14,600 volts per 

metre (the last); the distances of these two discharges were practically the same, 3 '7 

and 3’8 km. 

The striking feature of this record is the abnormal character of the curve of 

recovery of the field after the passage of every discharge except the last; instead of 

the rate of recovery of the field being most rapid immediately after the discharge, it 

is at first zero or very small and gradually increases to a maximum, falling off again 

with the increasing field as in the normal type. The last discharge shown in fig. 10 

as well as all the subsequent discharges of the record of which this is a part were 

followed by a recovery of the field of the normal type. The recovery curves following 

the discharges of the immediately preceding record of the same storm were also 

normal in character. 

Rain began about 14h. 20m., became heavy about 14h. 25m., and ceased about 

14h. 31m. 30s. 

The potential gradient was negative throughout the period covered by fig. 10 until 

reversed by the last discharge shown. At 14h. 28m., when the cover was 

momentarily replaced, the potential gradient was - 4800 volts per metre. The small 

hump in the curve at 14h. 24m. 45s. is due to the shielding effect of a horse and cart 

which passed within a few yards of the test-plate. 

In spite of the negative potential gradient, which would tend to produce an 
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ionization current from the ground to the atmosphere, the total charge received by 

the test-plate from the atmosphere between 14h. 18m. 30s. and 14h. 28m. has 

been positive and equal to the charge which a potential gradient of 17,000 volts per 

metre would have induced on the earth-connected plate. The charge carried by the 

rain must thus have been positive and must have exceeded to the above extent the 

negative charge carried by the ionization current. The greater part of this charged 

rain has evidently fallen between 14h. 26m. and 14h. 28m. 

Fig. 11 (June 12, 1917, 16h. 38m. 40s. to 16h. 50m.). 

This is a portion of the second record taken on a sultry afternoon with towering 

cumulus in all directions. The first record ran from I5h. 55m. to 16b. 19m. A cap 

was seen to form on the summit of a large cumulus cloud in the E.N.E. at 15h. 59m., 

and another on one of the lower heads of the same cloud now in the N.E., about 

16h. 16m. The potential gradient throughout this first record was positive and about 

50 volts per metre. No thunder was heard and no sudden changes of the field are 

shown on the record. 

The second record, of which fig. 11 is a portion enlarged, extended from 16h. 27m. 

to 17h. 4m. The large cumulus cloud was N. by E. with its edge at an elevation of 

about 60 degrees at 16h. 30m. and due N. about 16h. 50m. The potential gradient 

diminished from +44 volts per metre at 16h. 30m. to 15 at 16h. 35m. and then 

became negative, being —29 at 16h. 40m., —175 at 16h. 45m. (all the above being 

occasions of momentary lowering of the sphere), and —106 volts per metre at 

16h. 49m. when the sphere was finally lowered. The field was zero at 17h. 14m., 

and had become positive at 17h. 16m., when the observations ceased. 

All the sudden changes of field observed were positive; two of 18 and 14 volts per 

metre, both due to flashes at a distance of about 7 km., occurred before the field had 

become negative. The other two (equal to 120 and 320 volts per metre respectively) 

are shown in the figure ; they both show characteristic recovery curves ; in both cases 

the potential gradient was reversed, in the first by a discharge at a distance of 8'2, 

in the second by one at a distance of about 7 km. 

The discharge at 16h. 45m. 50s. is an interesting one. The negative potential 

gradient had reached a steady value—about 170 volts per metre—before the passage 

of the discharge. The discharge—at a distance of about 7 km.—caused the gradient 

to become positive ( = 150 volts per metre); the negative field was again re-established, 

practically exponentially, a steady value being finally reached equal to about 

105 volts per metre. The sphere was brought down at 16h. 49m. No thunder was 

heard after this time. 

In Plate 5 are enlargements of small portions of some of the traces, showing 

details in the changes of potential gradient associated with lightning discharges. 

In each case the time in seconds is shown, reckoned from the moment at which the 

discharge, as indicated by the record, began. 

n 2 
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The principal discharge of fig. 12 occurred on May 29, 1917, at about 

15h. 23m. 10s.; the peal of thunder which followed began 21'5s. later (indicating a 

distance of about 7 km.) arid was audible for about 20 seconds. The sudden change 

produced in the potential gradient was negative and exceeded 1250 volts per metre. 

The record shows the characteristic curve of recovery of the field, interrupted at 

lm. 50s. after the discharge by the lowering of the sphere. The positive field due 

to the charge which the flash neutralised was nearly counterbalanced at the place 

of observation by a negative field, so that the resultant potential gradient before 

the passage of the discharge was only about +360 volts per metre. 

When the sphere was first raised, at 15h. 19m. 30s., the potential gradient was 

positive—about 150 volts per metre—and it increased up to the moment of the 

principal discharge. There were, however, during this time, small sudden changes 

of potential, some positive, others negative, none exceeding 50 volts per metre ; 

they were obviously due to very distant discharges; no thunder was recorded. 

Throughout the afternoon there were towering cumulus clouds in all directions, rain 

falling from some of them. 

The discharge of fig. 13 occurred about 15h. 9m. 30s. on August 15, 1917. The 

sphere was lowered at 15h. 10m., the characteristic curve of recovery of the field 

being thereby interrupted. The peal of thunder began while the sphere was being 

lowered, i.e., about 40 seconds after the discharge ; the beginning is not marked 

on the record, but the double dark line indicates that the peal of thunder ended 

about 55 seconds after the discharge. The potential gradient immediately before 

the discharge had a negative value exceeding 1000 volts per metre ; immediately 

after the discharge the potential was positive and equal to about 300 volts per 

metre. 

The first discharge of fig. 14 occurred at 13h. 50m. on June 13, 1917, just at the 

moment when the sphere had been raised to its exposed position. The potential 

gradient before the discharge was negative (— — 690 volts per metre). The 

discharge was a double one, causing an increase in the negative potential gradient 

of more than 980 volts per metre, followed by a sudden change of the opposite 

sign, which brought the potential gradient to within 260 volts per metre of its 

original value, the total duration of the double discharge being about one-fifth of a 

second. 

Two other double discharges of about the same total duration were recorded about 

22 seconds and 87 seconds later, the first giving sudden potential changes of +70 and 

— 30, the second of +100 and —115 volts per metre. The other discharges shown 

in the figure are noteworthy as not being followed by the usual recovery curve. 

The next three figures are further examples of double discharge records of the same 

type—i.e., of records showing the occurrence within a very short interval of time 

of two sudden changes of potential of opposite sign. They differ among themselves 

mainly in the relative magnitudes of the two sudden changes : the first change of 
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gradient being the greater in fig. 15, the two being approximately equal in fig. 16, and 

the second being the greater in fig. 17 ; in the last case the initial change is negative, 

in the two others positive. The duration of the double discharge is about one-fifth 

of a second in fig. 15, two-fifths of a second in fig. 16, and two-fifths of a second in 

fig. 17. 

Double discharges consisting of two successive sudden changes of potential 

gradient of the same sign are also not uncommon. A striking example is that of 

the last discharge shown in fig. 3, where a sudden positive change of potential 

of 840 volts per metre is followed 2'4 seconds later by a second change of the same 

sign amounting to 870 volts per metre. The discharge at 14li. 12m. 50s. (in the same 

fig. 3) was also really a double one of this type, the interval between the two 

components of magnitudes, 220 and 130 volts per metre, being about one-fifth of a 

second. 

What have been called above double discharges, it should be noted, are not 

necessarily discharges along the same track or even from the same thunder-cloud ; it 

may often be observed that lightning flashes from two different centres occur almost 

simultaneously. 

In the last three figures of Plate 5 are reproduced enlargements of records of 

multiple discharges, i.e., of records showing a rapid succession of changes of potential 

gradient of opposite sign. These were all obtained during the same thunderstorm, 

that of the afternoon of June 16, 1917. The first shows sudden changes of potential 

gradient of —9600, +4350 and —1500 volts per metre, the intervals between the 

reversals being about one-third of a second. The second shows sudden changes of 

potential gradiant amounting to —7100, +1700, —1700, +300, —1900, +700, —600, 

+ 1000, the total time occupied by the eight reversals being 2‘1 seconds. In the third 

the changes of potential gradient are —1600, +900, —1600, +1200, +700, —700 volts 

per metre, the total duration being 1'9 seconds. 

III. On the Prevailing Sign of the Sudden Changes Produced in the Potential 

Gradient by Lightning Flashes. 

The sudden changes produced in the potential gradient at the place of observation 

by the passage of lightning discharges have been more often positive than negative, 

i.e., the greater number have consisted in a sudden increase of a previously existing 

positive potential gradient or a diminution or reversal of a previously existing 

negative gradient; in other words they might be explained as being due to the 

discharge of a negatively charged cloud. Discharges producing such a positive 

change of potential gradient are called in what follows positive discharges. 

The number of positive discharges recorded in 1917 was 432, of negative discharges 

279. If the observations of 1914 and 1915 are included, the numbers are 528 and 

336, the ratio being 1’56. Of the ten days of thunder on which records were 

obtained in 1917, there were nine on which more positive than negative discharges 
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were recorded ; on the remaining day, however (June 16) about twice as many 

negative as positive discharges were recorded (74 negative, 38 positive). It is 

perhaps natural to associate the excess of positive over negative discharges with the 

excess of positive electricity found by Simpson* and others to be carried down in 

rain, the greater part of the charge transferred from the atmosphere to the earth by 

the rain of the thunderstorm being perhaps returned in lightning discharges. (See 

however Sections XIX. and XX.) 

IV. Magnitude 'of the Changes Produced in the Electric Field by Lightning 

Discharges at Different Distances. 

The approximate distance of each lightning flash which caused a disturbance on 

the photographic trace was, when possible, determined by observing the time interval 

between the discharge and the thunder associated with it. The beginning of each 
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peal of thunder heard was marked on the trace by momentarily cutting off the light 

as described in Section I. It was by no means always possible to be certain which 

peal of thunder recorded was caused by the lightning discharge responsible for a 

given sudden disturbance of the field ; when the storm was a distant one with very 

frequent lightning flashes there might be several subsequent discharges between the 

passage of a flash and the arrival of the sound of its thunder. There appeared to be 

no ambiguity in the case of about 120 discharges recorded in 1917 ; the approximate 

distance L of each of these discharges and the sign and magnitude of the resulting 

sudden change of field F are shown in fig. 2, which includes also the eye observations 

of 1914 and 1915. When the records show two or more sudden changes of field 

within a fraction of a second it is the largest of these which is recorded in fig. 2 ; it 

was considered that if the component discharges of the multiple flash were not all at 

the same distance, the one which produced the largest effect was likely to be the 

nearest, and therefore that of which the distance was deduced from the interval 

elapsing between the discharge and the beginning of the thunder. 

V. Effects to be Expected from Different Kindis of Discharges at Different 

Distances. 

A lightning flash may consist in the passage of a charge Q from a certain region A 

of the atmosphere to earth, or from a region A] to another A2 both in the 

atmosphere ; Ax and A2 may be in the upper and lower parts of the same thunder¬ 

cloud with their centres near the same vertical line, or they may be at a considerable 

horizontal distance apart. 

Let a charge Q derived from a certain region A of the atmosphere pass to earth. 

The change in the electric field may be considered as due to the removal of the charge 

Q from A and of an equal and opposite charge — Q from A' the image of A. Just as 

for many purposes no sensible error is made by assuming the magnetism of a bar 

magnet to be concentrated at two definite points, the poles of the magnet, so in the 

present case the charges Q and — Q may be regarded as being concentrated at two 

points p and p'. These points are situated at a height H above and at an equal 

depth below the surface of the ground, such that 2QH = 2Hqli = M, the electric 

moment of the discharge q being the charge derived from a small element of 

volume at a height h. In calculating the change produced in the electric field at 

distant points by the passage of the discharge, no sensible error will be made by 

making this substitution, and even at points at no great distance from the axis pp'', the 

error will be small if there has been any approximation to a symmetrical distribution 

of the charge in a sphere surrounding p. 

* In the present paper 2qh, not qh as in the previous paper, is taken as the electric moment of the 

discharge of a quantity q from a height h to earth, the moment with which we are concerned being that 

of charge q at a height h together with that of its image -q at a height - h. 
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The vertical electric force at a point on the ground is given by 

F 
2QH _ 2Q 

L3 1 + 
H 

L2 

2X.3 

H2 1 + 
JJ_\i 

IF 

2QH 20 
becoming 3 and ~ when L is large and small respectively compared with H 

±j ri 

where L is the distance of the point from the axis pp'. The curve I in fig. 3 represents 
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the potential gradient at the earth’s surface at different distances due to a charge Q 

supposed concentrated at a point at a height of 2 km. : it represents the 

change produced in the potential gradient by the discharge of 20 coulombs from a 

height of 2 km. to earth. The curve II. represents similarly the potential gradients 

due to the same charge at a height of only 1 km. The difference between the 

ordinates of the two curves (curve III.), represents the change of potential gradient 

produced by a vertical discharge of the quantity Q from a height of 2 km. to a height 

of 1 km. The sign of the effect is reversed at a certain distance, the vertical electric 

force at the surface of the ground being, for a given charge Q at the lower level, 

greater than for the same charge at the higher level when the distance is small, but 

less when the distance is great. 

For a vertical discharge from a height H2 to a height Hj, F, when L is large, 

becomes equal to 2Q (H2 — EQ/L3, so that FL3 = 2Q (H2—Hj) which may be defined 

as the electric moment of such a discharge. Thus when L is large FL3 is equal to 

the electric moment of the discharge whether this reaches the earth or not. 

The effects at different distances of various kinds of double discharge are also 

readily obtained from inspection of the two intersecting curves of fig. 3. For example, 

a discharge from a height of 2 km. to a height of 1 km., followed by an equal 

discharge from the lower level to earth, would produce at the .surface of the ground 

two successive sudden changes of potential of the same or of opposite sign according 

as the distance exceeded or fell short of the above limit. Again if we consider a 

thunder-cloud of which the upper and lower parts are oppositely charged, and suppose 

that a discharge between the top of the cloud and the ground is followed by one 

between the ground and the bottom of the cloud, the two successive sudden changes 

of potential gradient would be of opposite sign, but their relative magnitude would 

depend on the distance of the place of observation from the discharges; at great 

distances the longer discharge, at small distances the shorter would produce the 

larger sudden change of potential gradient; while at some intermediate distance the 

two effects would be of equal magnitude. The various types of double discharge 

records shown in Plate 5 may perhaps be explained in this way; a given type of 

double discharge giving a considerable variety of effects on the trace according to its 

distance from the recording instrument. 

If the effects of individual discharges could simultaneously be recorded at several 

suitable distributed stations, we should be able to learn much about the quantities of 

electricity which pass and about the initial and final distribution of charges. It is 

especially useful to have measurements of the change of field (l) at points at a 

considerable distance from a discharge, since the electric moment 2QH or 

2Q (H2—Hj) may at once be deduced, and also (2) for points nearly below the centres of 

the regions discharged, where, in the case of discharges to earth, F approximates to its 

maximum value 2Q/H2. Knowing both 2Q/H2 and 2QH we obtain both Q and H. 

When a single station only is available we have to be content with attempting to 

VOL. COXXI. — A. o 
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learn something about the average lightning discharge by accumulating measurements 

of the effects produced by discharges at various distances. 

VI. Electric Moments of the Discharges. 

For each discharge recorded in fig. 2, FL3, the product of the vertical electric force 

and the cube of the distance of the discharge, has been calculated. This product, 

when the quantities are expressed in electrostatic C.G.S. units, may be taken as giving 

a lower limit for the electric moment 2Hqh = 2QH, or 2Q(H2 —Hx), becoming equal 

to it when L is large compared with H. 

The mean value of FL3 for the 78 positive flashes for which L could be determined 

in the 1917 records is 7‘3x 105 in volts per metre x kilometres3; for the 46 negative 

flashes the mean value obtained is identical with that found for the positive. We 

may take this value (the equivalent of 2'4 x 1016 E.S.U. x centimetres, or about 

80 coulomb-km.) as a minimum estimate of the average electric moment of the 

lightning discharges. 

The observations of 1917 give values of FL3 ranging between l/20 and 5 times the 

mean; but in more than half the discharges for which the necessary data are 

available FL3 lies between one half and twice this mean value. Some of the eye 

observations made previously to 1917 lead to higher values, reaching in one case ten 

times the above mean. 

In Table I. are given the mean values of FL3 for positive and for negative 

discharges at distances (l) below’ 5 km., (2) between 5 and 10 km., and (3) exceeding 

10 km. The number of observations used in getting the means is in each case 

inserted in brackets. FL3 is given in volts per metre x kilometres3 x 105. 

Table I. 

1917 only . . 
1911') 
1915 y . , . 
1917 J 

Below 5 km. 5-10 km. Above 10 km. 

Positive. 

' 

Negative. Positive. Negative. Positive. Negative. 

4-5(17) 

3-7 (37) 
. 

3-7 (8) 

3-7 (8) 

6- 0 (32) 

7- 4 (48) 

8-2 (29) 

7-8 (33) 

11-8 (29) 

14-6 (38) 

9-5 (8) 

15-5 (15) 

The mean values of FL3 are not appreciably different for positive and negative 

discharges. 

For discharges at distances between 10 and 15 km., the mean value of FL3 for the 

24 positive discharges of 1917 is 10*8 x 105; if the 5 discharges of previous years 
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are included the mean is 11'8 x 105 volts per metre x kilometres3. Data for negative 

discharges between 10 and 15 km. are almost lacking. 

These numbers leave little room for doubt as to the order of magnitude of the 

average electric moments of the discharges. Distances below 5 km. are too small in 

comparison with the probable lengths of the discharges for FL3 to serve as a measure 

of the electric moment. We may assume that the value of FL3 for a discharge at a 

distance of 10 km. or more approximates to its electric moment. The mean value of 

the electric moment for both positive and negative discharges may be taken as not 

differing much from 106 in volts per metre x kilometres3 = 3 x 1016 E.S.U. x centimetres 

or about 100 coulomb-km. 

Higher values for the mean electric moment are obtained, as is evident from Table I., 

if the data from discharges at greater distances than 15 km. are used. The records 

of discharges at great distances may possibly give disproportionately large values for 

the mean electric moment for two reasons: (l) because at these distances discharges 

of small electric moment are unrecorded on account of the small magnitude of the 

charges of potential gradient produced by them ; and (2) because it is only at great 

distances that discharges, which do not reach the earth and which may be of great 

vertical length and have large electric moments, produce effects proportional to their 

moments. The sign of the effect of such discharges is in fact reversed at small 

distances, and the magnitude of the sudden change of potential gradient produced 

becomes more nearly proportional to the height of the lower end of the discharge 

than to its vertical length (fig. 3). 

Some additions to the data of Table I. were furnished by the storm of June 17, 

1917, in which the distance and frequency of the flashes were too great to admit of 

the distances of the individual discharges being estimated. There was in this case 

(see p. 80) independent evidence as to the approximate distance of the storm when 

the trace containing records of 95 positive and 40 negative discharges within 10 

minutes was obtained. Assuming the distance of the discharges to have been 17 km. 

we obtain for the mean value of FL3, in volts per metre x kilometres3, 5*8 x 105 for the 

95 positive discharges and 3‘9xl05 for the 40 negative, corresponding to electric 

moments 2QH of l'9xl016 E.S.U. x centimetres = 63 coulomb-km. and l'3xl016 

E.S.U. x centimetres = 43 coulomb-km. respectively. The discharges were observed to 

be approximately vertical and to pass between the base of the cloud and the earth. 

VII. Quantity of Electricity Discharged in an Average Lightning Flash. 

When the electric moment of a discharge is known, the order of magnitude of the 

quantity of electricity which passes in the discharge may be roughly estimated. We 

may assume that the average vertical length of any ordinary discharge is likely to be 

between 1 and 5 km. Thus if the average electric moment 2QH is 100 coulomb-km., 

we may estimate the average quantity discharged in a flash as being between 10 

and 50 coulombs. 

o 2 
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We get some further information about the discharges by considering the way in 

which F varies with L (fig. 2). The charge which feeds a lightning flash is evidently 

not generally derived from a widely extended horizontal sheet, as is shown by the 

rapid falling oft1 in F at comparatively short distances from the discharge. 

The curve shown in fig. 2 represents the relation which would hold between F 

and L in the case of the discharge of 20 coulombs to earth from a point at a height of 

2 km. ; the charge may be considered to have been distributed symmetrically within 

a sphere around this point. The curve represents the mean of the observations fairly 

well, except in the case of discharges at great distances. 

The average magnitude of the sudden change of field produced by lightning 

discharges at any distance may be roughly calculated by assuming that the average 

lightning flash consists of a discharge of 20 coulombs to earth from a height of 2 km. 

The average change produced in the potential gradient by a discharge at a distance 

of 10 km. is, it will be noticed, of the order of 1000 volts per metre, and for 

moderate distances beyond this it probably falls off approximately according to the 

inverse cube law. (It should perhaps be pointed out that the change of field referred 

co here is merely the difference between the initial and final values, before and after 

the passage of a single discharge. At distant points the amplitude of the short 

period oscillations will greatly exceed the difference between the initial and final 

magnitudes of the field. Such oscillations—the ordinary “ atmospherics ” or 

“ strays ”—are of too short period to be recorded by the methods of this research). 

Discharges may be expected to occur (l) between the ground and the lower part of 

a thunder-cloud ; (2) between the upper and lower parts of the cloud; (3) between 

the upper part of the cloud and the ground ; and (4) upwards from the top of the 

cloud. Great differences in the vertical lengths and in the electric moments of 

discharges are therefore to be expected, and the manner in which F varies with L in- 

the different storms furnishes some evidence of such differences. When, as in the 

records of June 12, 1917, FL3 varies little with the distance and is besides relatively 

small, one is tempted to conclude that the vertical length of the discharges was small, 

that, for example, they passed between the ground and the base of the cloud. When 

on the other hand, as on August 15, 1915, or August 15, 1917, FL3 continues to 

increase with increasing distance and reaches very high values, great vertical lengths 

would appear to be indicated for the discharges. Possibly the discharges of greatest 

vertical length may be those between the top of a thunder-cloud and higher levels of 

the atmosphere. 

It is unfortunate that no records were obtained of the effects of discharges from 

clouds immediately overhead; such observations of the maximum values of F would 

have given useful evidence bearing on the height from which the discharges came. 

A. dischai-ge of 20 coulombs from a height of 2 km. would cause at the ground a 

maximum change of potential gradient of nearly 100,000 volts per metre. 

Comparatively few determinations appear to have been made of the dimensions of 
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lightning flashes. A few are quoted by Hann,# the length of vertical flashes to 

earth generally ranging from 1 to 3 km. It is only rarely, in the photography of 

lightning, that the distance of the flash has been recorded, so that its length may be 

deduced. Fig. 4 is a reproduction of a photograph taken with this object in view 

Fig. 4. 

and for which the necessary data are available ; it is, moreover, of interest in other 

ways. It was taken on May 22, 1918, at about 22h. 45m., the camera pointing 

north. The interval between the lightning flash and the moment when the thunder 

began to be heard was 35 seconds, corresponding to a distance of 117 km. Two 

flashes are shown in the photograph, both passing between the cloud and the earth ; 

they must have been nearly simultaneous, since the camera lens was covered as soon 

as a flash was observed. One discharge has initially passed upwards from the cloud 

and reached the ground by a curved path at a horizontal distance of nearly 4 km. 

from its starting point. The other has taken a nearly vertical course to the ground, 

its image is somewhat faint and ill-defined in the photograph : the discharge was 

probably within a heavy rain shower, a considerable thickness of which had to be 

traversed by the light on its way to the camera. The starting points of the two 

discharges in the cloud are comparatively close together, suggesting (as indeed does 

* Hann, ‘ Lehrbuch der Meteorologie,’ p. 632, 1901. 
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the picture as a whole) that a charge of electricity had been concentrated in a 

comparatively small volume in the head of the cloud, and that the discharges took 

place approximately along lines of force. 

The mean height of the upper ends of the two discharges—the height of the 

centre of the charged cloud-head according to this view—must have been just under 

2 km., if its horizontal distance from the camera is taken as 11'7 km. The distance 

and height may in fact have been somewhat greater, since the track of the long flash 

may at some point of its course have been nearer the camera than the vertical flash, 

and the distance deduced from the interval between the lightning and thunder is 

that of the nearest point of the discharge. 

VIII. Electric Field of a Thunder-cloud. 

It is much more difficult to obtain direct information about the electric field of a 

thunder-cloud than about the sudden changes produced in the field by lightning 

discharges. The observed field may be the resultant of the fields of several thunder¬ 

clouds superimposed upon the normal electric field ; while a single instantaneous 

change in the field will in general be due to the passage of one lightning flash, of 

which the approximate distance may frequently be determined. Nothing approach¬ 

ing a direct survey of the electric field of a thunder-cloud has yet been attempted : 

some general conclusions may be reached by a study of the photographic records of 

the potential gradient in thunderstorms. 

It might perhaps naturally have been thought that the actual field due to a 

distant thunder-cloud would greatly exceed in magnitude the sudden changes due to 

the lightning discharges from it, each flash removing from the cloud only a small 

part of its whole charge. This is disproved by the observations ; only when there 

has been, in addition to the more distant thunder-cloud, a heavy shower-cloud over¬ 

head or in the immediate neighbourhood of the place of observation, has the actual 

potential gradient greatly exceeded the instantaneous changes; the main part of the 

observed field has in all such cases obviously been due to the nearer cloud and not to 

the comparatively distant thunder-cloud which was in action at the time. The 

potential gradient due to a distant thunder-cloud has apparently never greatly exceeded 

in magnitude the sudden changes produced in the field by the lightning discharges 

from the cloud. Very frequently each discharge has approximately destroyed or 

even reversed the previously existing potential gradient, the field has then been 

rapidly regenerated, to be again nearly neutralised or reversed by the next discharge. 

The magnitude of the vertical electric force at the ground due to a thunder-cloud at 

a given distance is thus probably of the same order as has been found for the 

change produced by the average lightning discharge at the same distance. 

Potential gradients exceeding 30,000 volts per metre (i.e., °f the sparking 

value) have not been recorded: it is doubtful, however, if any of the records were 

obtained when the centre of a storm was nearly overhead. 
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There can be little doubt that it is by the agency of precipitation that the 

separation of positive and negative charges in a thunder-cloud and consequent 

production of an electric field is effected, the larger raindrops or hailstones carrying 

down a charge of one sign while the charge of opposite sign is attached to small 

drops or cloud particles carried up in the ascending air stream. It is not proposed to 

discuss here how the large and small particles may acquire charges of opposite sign : 

whether for example the thunder-cloud is essentially a frictional electrical machine 

(disruption of drops, which Simpson* regards as the important factor, being included 

under this head) or an influence machine as Elster and GEiTELf contend. 

It is obvious that any view that places the seat of electro-motive force of a thunder¬ 

storm within the thunder-cloud implies that the cloud is essentially bipolar, equal and 

opposite charges being in any given time transferred from within the cloud to its 

upper and lower portions. The actual charges residing at any moment in the positive 

and negative portions of the cloud will in general be quite unequal, since the 

conditions determining the rates of dissipation of the charges at the top and bottom 

of the cloud will be very different; an important part of the loss of charge from the 

lower part of the cloud is obviously the charge carried down to the ground in rain¬ 

drops. The lower charge may indeed to a large extent reside on rain-drops falling 

from the cloud, and may thus extend all the way to the ground. Rain may not 

however reach the ground, or may lose a large part or the whole of its charge before 

reaching it by processes to be considered later. 

Consider a cloud in which there is an upward stream of charged cloud particles or 

small drops and a downward stream of oppositely charged large drops ; the total vertical 

electric current is the sum of the currents carried by the upward and downward 

streams. If the density of electrification of the two streams were the same and 

uniform throughout the greater part of the vertical thickness of the cloud, then the 

whole of this portion of the cloud would be electrically neutral. Above a certain 

level however the small drops alone will remain, and again it is only the large drops 

which fall below the lower margin of the cloud ; equal and opposite charges will in 

this way be liberated in the upper and lower portions of the cloud. The assumption 

of uniform density of electrification in the two streams is of course an extreme and 

improbable one, and the concentration of the charges in the upper and lower parts 

of the cloud alone is not likely to be so complete as this supposition would imply ; 

it serves, however, to indicate the possibility of the positive and negative charges of 

a cloud being separated by a considerable vertical thickness of electrically neutral 

cloud. 

The factors which determine the rates of dissipation of the upper and lower 

charges and the magnitudes of the maximum charges are considered in a later 

* Simpson, loc. cit. 

t Elster and Geitel, ‘ Wied. Ann.,’ 25, p. 116, 1885; ‘ Physikal. Zeitschr.,’ 14, p. 1287, 1913; 

Geitel, ‘Physikal. Zeitsch.,’ 17, p. 455, 1916. 
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section. The electric field at the ground due to a cloud of this kind will be the 

resultant of the fields of the upper and lower charges. 

In the ordinary thunder-cloud or cumulo-nimbus cloud we are concerned with 

rapidly ascending air currents of comparatively small horizontal dimensions. The 

heads of such clouds generally reach to heights of several kilometres : according 

to Wegener* the top of a thunder-cloud may reach almost to the upper limit of 

the troposphere (about 10 km.). The average height of the bases is probably about 

1 km. 

If we suppose a cumulo-nimbus cloud to have charges Q2 and Qi of opposite sign 

in its upper and lower portions, we may, for the purpose of calculating its electric 

field at a distance, treat these charges as if they were concentrated at definite “ poles ” 

at heights H2 and H,. The effect of the charges induced on the surface of the 

ground is the same as if they were replaced by charges equal and opposite to 

Q2 and Qi and at depths H2 and Hi below the surface. The problem is then the same 

as that of finding the magnetic field due to two bar magnets of lengths 2Hi and 2H2 

and moments 2(^11!, 2Q2H2, placed so that their centres coincide, the axes being 

vertical and their polarities opposed. 

The vertical electric force due to the cloud at a point on the ground at a distance 

L from the axis is 

F = 
2Q2 2Q, 

Ho2( 1 
L2 \i 

H2 
Hd 1 

2 / 

L2 \*' 

Hf 

- Immediately below the cloud, where L = 0, the second term (representing the effect 

of the lower charge) will be the greater unless the ratio of Q2 to Qx exceeds H^/Eb2, 

and for distant points the first term (representing the vertical force due to the upper 

charge) will be the greater unless QJQj exceeds Eb/Hj. Thus the surface of the 

ground may generally be divided into two areas, an inner and outer, in which the 

electric field due to the cloud has opposite signs ; in the central area the effect of the 

lower pole of the cloud predominates and determines the sign of the potential gradient 

and of the charge on the ground, while in the outer area the effect of the upper pole 

of the cloud is the greater. 

The maximum intensity of the resultant field anywhere near the centre of the 

inner area will generally greatly exceed the maximum reached in the outer area. The 

curve III., fig. 3, represents the resultant potential gradient produced at the ground 

by equal and opposite charges of 20 coulombs at heights of 1 and 2 km. The inner 

area has a radius of approximately 2 km., the maximum potential gradient at the 

centre amounts to 270,000 volts per metre, while the maximum reached by the 

potential gradient of opposite sign in the outer area is less than 10,000 volts per 

metre. Greater differences in heights of the two poles are probable in actual 

* Wegener, 1 Thermodynamik der Atmosphare,’ p. 210. 
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thunderstorms, and the difference in the intensities of the electric fields in the 

inner and outer areas is likely to be even greater than in the example given. As 

represented in fig. 5 lines of force from the central area end on the lower charged 

portion of the cloud, those from the outer area on the upper charge, others again 

connect the upper and lower charges. 

Tims far no account has been taken of the conducting layer in the higher levels of 

the atmosphere, to the existence of which the phenomena of terrestrial magnetism 

seem to point. 

The normal potential gradient at the surface of the ground in clear weather is of 

the order of 100 volts per metre, falling off with increasing height and becoming 

negligible above 10 km. ; thus the potential in the conducting layer over regions of 

fine weather is not likely^ to exceed a value of the order of 1,000,000 volts. If we 

assume, in accordance with modern theories of terrestrial magnetism,* that the 

conductivity of the upper atmosphere is high enough to prevent any large potential 

differences within it, then even above a thunderstorm the potential in the conducting 

layer may not greatly exceed 1,000,000 volts. The potential in the head of a 

thunder-cloud probably reaches values 1000 times as great. 

One important effect of the conductivity of the upper atmosphere is to cause a 

portion of the lines of force from the head of the thunder-cloud to end in the 

conducting layer. The effect will be more marked than that which would be 

produced by a solid conducting sheet since ions of opposite sign to the charge on the 

head of the cloud will be dragged down out of the conducting layer to form an 

expansion of it extending downwards towards the thunder-cloud. The charge on 

these ions (which constitutes the induced charge on this protuberance from the 

conducting layer) will partially neutralise the electric field produced at the ground 

by the charge in the head of the cloud ; in other words lines of force from the head 

of the cloud which would otherwise have ended on the ground are now diverted 

upwards into the conducting layer.t 

The considerations brought forward in this section suggest that the electric field 

of a cumulo-nimbus cloud may be regarded as due to charges, generally unequal, in 

the upper and lower parts of the cloud (falling rain being included as part of the 

cloud) and to the charges induced by these on the ground and on the conducting 

layer of the upper atmosphere. Thus the lines of force of the cloud may be 

divided into four classes, connecting (a) the ground and the lower charge of the 

cloud, (b) the lower charge and the upper charge, (c) the upper charge and the 

* Schuster, ‘Phil. Trans.,’ A, vol. 208, p. 163, i907; S. Chapman, ‘Phil. Trans.,’A, vol. 218, p. 1, 

1919. 

t In the absence of a previously existing conducting layer a thunderstorm would itself produce 

ionization in the upper atmosphere; this is readily seen to follow from the values found for the electric 

moments of lightning flashes. 
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ground, (cl) the upper charge of the cloud and the conducting layer of the 

atmosphere. 

If uniform stratiform conditions over a wide area be assumed, the conditions are 

simpler than in the case of the cumulo-nimbus cloud. The field at the ground below 

such a cloud, if the effects of the conducting layer be ignored, would be the difference 

between the fields due to the upper and lower charges, and its sign would be that of 

the field due to the larger charge. The effect of the conducting layer, as in the case 

of the cumulo-nimbus cloud, is to reduce the potential gradient produced at the 

ground by the upper charge of the cloud : firstly by the action of the opposing field 

of the charge induced on the conducting layer above the cloud, and secondly by the 

actual diminution of the cloud charge by the ionization current from the conducting 

layer. 

IX. Conditions Determining Discharge. 

In order that a lightning discharge may begin, it is clear that the electric force 

must somewhere exceed the sparking limit, which amounts at the ordinary 

atmospheric pressure to about 100 electro-static units or 3,000,000 volts per metre; it 

is not necessary that the electric force along the whole length of the path of discharge 

should previously have approached the sparking limit. As Larmor has pointed out,* 

if we suppose that an initial discharge occurs along a narrow line of length 

equal to the distance (possibly very small) over which the sparking value of the 

electric force was originally exceeded, and that this approximately equalises the 

potential along its path, there will be concentration of charge and intense local fields 

at the ends of this line; the discharge will thus be lengthened. The conditions are 

in fact momentarily much the same as if a conducting wire were placed along the 

path of this initial discharge. The maximum value of the electric force at the ends 

of the conducting track of the initial discharge will thus greatly exceed the critical 

* Sir Joseph Larmor and J. S. B. Larmor, ‘ Roy. Soc. Proc.,’ A, vol. 90, p. 312, 1914. 
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value and will continue to do so as the track lengthens, so that the discharge may 

finally extend far beyond the boundary of the region in which the critical electric 

force was originally exceeded. Consider a stratiform cloud in which vertical separation 

of positive and negative electricity is taking place so that opposite charges are 

accumulating in the upper and lower portions of the cloud. Let us suppose that 

these charges remain approximately equal. There will be a vertical electric force 

within the cloud reaching a maximum in the central neutral zone of the cloud ; the 

vertical electric force at the ground will be small and the conditions for discharge 

will he first reached within the cloud. Discharge will occur when the maximum 

vertical electric force within the cloud reaches its critical value; this amounts 

to about 30,000 volts per centimetre (= 100 electrostatic units) at a pressure of one 

atmosphere and is proportional to the pressure. 

It is perhaps doubtful whether the vertical potential gradient within a cloud has 

necessarily to reach the above value of 3,000,000 volts per metre, in order that a 

discharge may begin, since an electric force amounting to one-third of this would be 

sufficient to bring the maximum electric force at the surface of a suspended drop, 

assumed spherical, to the above value. It must however be remembered that the 

critical value of the electric force at a curved surface of a conductor increases rapidly 

with the curvature and that only drops of the largest size will have any marked 

effect in assisting discharge. * 

The discharge may extend considerably beyond the limits of the zone in which the 

vertical electric force originally reached the critical value. It is possible that it might 

extend even beyond the upper and lower boundaries of the cloud, for the ends of a 

linear vertical discharge would, as it lengthened, be continually penetrating into 

regions of a greater potential difference until they reached the limits of the charged 

portions of the cloud, so that the density of electrification and maximum electric 

force at the ends of the conducting track, and the consequent tendency to further 

lengthening of the discharge, would be increasing up to this point. 

The end of an initial discharge which has penetrated into a region where there is 

little electric force to guide it will tend to branch or to expand into a brush. The 

potential may thus finally be approximately equalised throughout a considerable 

volume at each end of the discharge, the effective electric capacity of the expanded 

ends of the discharge and the original difference between the potentials of the regions 

thus connected will determine the quantity of electricity discharged by the complete 

flash. 

If the lower charge of the stratiform cloud reaches nearly or quite to the ground 

* The electric force at the surface of a conducting sphere 6 mm. in diameter has to reach about 

260 E.S.U. (a value equal to nearly three times the sparking limit for a uniform field) in order that a 

spark may pass. (Schuster, ‘Phil. Mag.,’ vol. 29, p. 182, 1890.) Drops of this size—which is little 

short of the maximum attained by rain drops—will only slightly assist discharge in an electric field in 

which they are suspended, and drops smaller than 3 5 mm. will not assist discharge at all. 

P 2 
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(as will generally be the case when rain is falling), or if its charge is considerably 

smaller than the upper charge, then the initial discharge is likely to extend downwards 

till it reaches the ground; it will form then a conducting path for the main 

discharge, which may be regarded as reducing approximately to zero the whole 

discharge track and its ramifications. 

If the potential gradient at the ground reaches a value amounting to any 

considerable fraction of that in the cloud, if for example, the upper and lower charges 

of a stratiform cloud are very unequal, then the critical value of the electric force is 

likely to be first reached, and the initial discharge to begin, at the surface of a 

projecting earth-connected conductor. 

Let us next assume—and this perhaps represents more nearly the conditions which 

hold in an ordinary thunder-cloud—that the vertical separation of the centres of the 

charges is as great as the horizontal dimensions of the charged portions of the cloud. 

Consider for example a charge to accumulate in the head of a cumulo-nimbus cloud 

until the conditions for the passage of a lightning discharge are reached. To get an 

idea of the order of magnitude of the quantities involved let us assume that the 

charge is distributed symmetrically about its centre within a sphere of radius R, the 

maximum electric force being at the boundary of the sphere. If the total charge of 

the sphere is Q, the radial electric force exerted at its surface by the charge is Q/R2 

and is there a maximum. A radial discharge will therefore begin at a point on the 

boundary of the sphere when F exceeds the critical value and will be continued inwards 

towards the centre and outwards approximately along a line of force. The charge of 

opposite sign in the lower part of the cloud will increase the electric force below and 

diminish it above the upper charge; the effect will however be small if the lower 

charge is small or if it is situated at a height small compared with that of the upper 

charge ; in the latter case the effect of the lower charge is largely neutralised by the 

force due to its image. On the other hand on account of the diminished pressure at 

the greater height a smaller electric force is required to start a discharge from the 

upper than from the under side of the upper charged portion of the cloud. 

Thus discharges may be expected to start not only downwards but also upwards 

and laterally from the charged head of a thunder-cloud. The path of discharge is 

likely to follow approximately a line of force which may belong to any of the classes 

of Section VIII. Discharges such as that of fig. 4, or even discharges upwards into a 

cloudless sky, such as have sometimes been observed, are not unlikely occurrences. 

If an initial discharge from the charged head of a cloud reaches the ground, thus 

opening up a conducting path to earth, an approach to complete discharge is probable, 

so that the quantity of electricity which passes in the lightning flash may be taken 

as a measure of the charge which had accumulated in the head of the cloud. 

A discharge originating in the region surrounding the lower pole of a cumulo¬ 

nimbus cloud is more likely to begin in the lower rather than the upper boundary of 

the charged region ; since the electric force below will be increased, and that above 
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diminished by the action of the induced charge, i.e., virtually by the image of the 

lower charge. An .extreme case is that in which the lower charge, carried largely by 

rain below the actual cloud, extends to the ground. Here the maximum value of the 

electric force would be at the surface of the ground ; and, if the charge be assumed to 

be distributed uniformly throughout a region of which the vertical and horizontal 

dimensions are approximately the same, the maximum vertical electric force would 

not differ much from 2Q/R2, where R is the height of the centre of the lower charge. 

In this case the field will be locally intensified at the surfaces of projecting parts of 

earth-connected conductors, and discharges (not necessarily developing into lightning 

strokes) will occur from such points long before the electric force over flat ground 

reaches the sparking limit. 

X. Dimensions of the Regions Discharged by Lightning Flashes. 

It has been shown that the quantity of electricity which passes in an average 

lightning discharge—if the thunderstorms investigated may be taken as typical—is 

of the order of 20 coulombs. In this and the following sections, X. to XYIL, are 

considered some of the consequences which follow if the quantity discharged by a 

lightning flash is taken as 20 coulombs. 

Consider a thunder-cloud of the bipolar type and assume that a discharge takes 

place when the electric force at the boundary of either the upper or the lower charge 

reaches the sparking limit F0. To get an idea of the order of magnitude of the 

effects, let us assume that the charge is contained within a sphere of radius ft, at a 

distance from the ground and from other charged masses, and that it is distributed 

symmetrically in such a way that the maximum radial electric force is at the boundary. 

A discharge will occur when Q/R2 = F0. Thus, if Q = 20 coulombs = 6 x 1010 E.S.U. 

and F0 = 30,000 volts per centimetre = 100 E.S.U. (its value at ground level) then 

R = 250 metres. If F„ = 50, its value at a pressure of half an atmosphere, 

R = 350 metres. If an equal and opposite charge (the other cloud-charge or the 

image of the first in the ground) were similarly distributed within a sphere of the 

same radius in contact with the first, we should have at the moment of discharge 

2Q/R2 = F0; and the values found for R would be y/ 2 times as great as in the case 

considered, i.e., 350 and 500 metres respectively. 

A similar result is obtained if, instead of assuming the charge to have been 

distributed in a sphere, we suppose the vertical thickness of the charged portion of 

the cloud to have been small compared with its horizontal dimensions. Consider for 

example the case in which there are frequent flashes between the earth and the base 

of the cloud. We may picture the charged rain escaping from the base of the cloud 

as forming a charged layer which increases in thickness at a rate equal to the down¬ 

ward velocity of the drops. The vertical electric force at the upper and lower 

boundaries of the charged layer, due to its charge, will amount to 2-7Tpd where p is the 
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charge per unit volume and d is the vertical thickness. On this will be superimposed 

the electric force due to the upper charge of the cloud and that due to the induced 

charge on the ground ; the first of these will increase the electric force at the upper 

surface and diminish that at the lower surface, while the second will increase the 

electric force at the lower and diminish that at the upper surface of the charged layer. 

If we assume the electric force below the lower charge to be greater than above it— 

as may easily be the case if the vertical thickness of the cloud (of cumulo-nimbus type) 

is great in comparison with the height of the lower charge—its magnitude will be 

between 2irpd and 4-rrpd. A flash will occur when the vertical electric force reaches 

the sparking limit, i.e., about 100 in electrostatic measure. If we assume the boundary 

of the lower charge to be a circle of radius r, and the quantity discharged to be 

20 coulombs = 6x I010 E.S.U., r is between 350 metres and 500 metres, these being 

the limits obtained by putting F0 = 2irpd and F0 = 47rpd respectively. 

It has thus far been assumed that the horizontal dimensions of the charged portions 

of the cloud are less than the distance apart of their centres, and that the greater 

part of the whole upper or lower charge of the cloud is neutralised by each 

discharge. Let us now suppose that there has been a uniform stratiform distribution 

of charges over a wide area. Take as an example the cases in which the upper 

and lower charges of the cloud are equal, the other extreme case in which one 

of the charges is very small compared with the other is not essentially different—the 

charge on the ground taking the place of the second cloud-charge. There will be a 

discharge when 4?nr = F0, cr being the total charge in a vertical column of unit area 

extending throughout the whole thickness of either charged portion of the cloud. If 

20 coulombs are discharged in a lightning flash, and the whole thickness of a limited 

area of the charged portion of the cloud is discharged by the flash, the area A, 

discharged is such that AF0/47r = 20 x 3 x 109; if the area discharged be assumed 

circular, and F0 be taken as 100, the radius of the area discharged must be approxi¬ 

mately 500 metres. 

XI. Maximum Potential Attained before the Passage of a Lightning Flash. 

The potential at the surface of the sphere, considered in Section X., will immediately 

before discharge be approximately Q/R = F0R ; other terms being relatively small 

may be neglected in estimating the order of magnitude of the potential. The 

potential at the centre of the sphere will exceed that at the boundary, the excess 

lying between zero and F0R—these being the values in the limiting cases (l) in 

which the radial electric force within the sphere is zero, the charge being confined to 

the boundary, and (2) in which the radial electric force within the sphere reaches 

everywhere the sparking limit. (The case of uniform distribution of the charge 

within the sphere is intermediate, the excess being ^Q/R). The potential at the 

centre thus lies between Q/R = F0R = \/QF0 and twice this value, 
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If Q = 20 coulombs = 6x 1010 E.S.U. and F0 = 50 E.S.U. the potential at the 

surface of the sphere before discharge must reach 1'7 x 106 E.S.U. = 5 x 108 volts. 

We may take 109 volts as giving the order of magnitude of the potential reached 

in a thunder-cloud before the passage of a discharge of 20 coulombs. 

The order of magnitude of the potential required to cause a discharge remains the 

same even if the spherical distribution of the charge is departed from : the horizontal 

dimensions might, for example, considerably exceed the vertical so long as they did 

not much exceed the height of the charge above the ground. 

Suppose next that there is a stratiform distribution of charges over a wide area, so 

that the lines of force are vertical. The conditions of discharge have already been 

discussed in Section IX. 

If we assume that the mean vertical electric force along the whole length of the 

line of discharge initially approached the value F0 ( = about 3x 106 volts per metre) 

and that this length is 2 km., the potential difference between the levels connected 

by the discharge must have been about 6xI09 volts. But, as was pointed out in 

Section IX., the discharge may extend much beyond the regions in which the vertical 

electric force had originally attained the sparking limit F0; the discharge might, for 

example, extend from the region of the upper charge of the cloud to the ground, 

although the electric field did not originally extend to the ground. The potential 

difference required to produce a vertical lightning flash 2 km. long from a cloud of 

this type may thus be considerably less than 6 x 109 volts, but it is not likely to be so 

small as 109 volts. 

XII. Mean Density of the Charge in a Thunder-cloud immediately before Discharge. 

If we assume that a charge of 20 coulombs is concentrated within a sphere 

500 metres in radius, the charge per cubic metre is about 120 E.S.U. 

In the case of a stratiform distribution of charges we have immediately before 

discharge 4tt<t = F0 (Section X.). If uniform density y be assumed for the charge 

throughout a layer of thickness d, then yd = F0/47r = about 8 E.S.U. If d be taken 

as equal to 1 km., y = 8x 10~5 E.S.U. per cubic centimetre (=80 E.S.U. per cubic 

metre). Concentration of the charge within a smaller thickness is probable, with a 

corresponding increase in the density of the charge. 

The mean density of the charges in thunder-clouds is thus likely to reach values of 

the order of 100 E.S.U. per cubic metre. 

XIII. Charge Associated with 1 c.c. of Water. 

If the amount of water in the charged portion of a thunder-cloud were no greater 

than in ordinary clouds (about 4 gm. per cubic metre), the average charge per gramme 

of water would be about 25 E.S.U. ; the force exerted on each gramme of water by 
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the electric field where it approached the sparking limit, 100 in E.S. measure, would 

amount to 2500 dynes, i.e., to more than twice its weight. As pointed out by 

Simpson,# 10 E.S.U. is the largest charge per cubic centimetre of water consistent 

with its falling in an opposing electric field of 100 E.S.U. (on one occasion rain actually 

was found by him to carry a charge exceeding 10 E.S.U. per cubic centimetre). 

In the same paper Simpson draws attention to the very considerable accumulation 

of water that must occur in thunder-clouds through lagging of the larger drops 

behind the uprushing air. Thus the charge per cubic centimetre of water does not 

necessarily reach the above high values : and indeed the electric force opposing the 

fall of the large drops associated with the lower pole of the cloud cannot, as a rule, 

exceed their weight, since it is by the fall of these drops that the field is maintained. 

But there will be less concentration of water on the smaller drops associated with 

the upper charge, and densities exceeding 10 E.S.U. per cubic centimetre in the 

upper part of the cloud are not unlikely. 

The drops in the head of a thunder-cloud may thus in virtue of their mutual 

repulsion have radial velocities which near the boundary may be comparable with the 

terminal velocity which the drops would acquire if falling freely through the air. 

Drops of 10-3 cm. in radius would have a maximum radial velocity of a few centi¬ 

metres per second: if the radius were as large as 5xl0~3, the charge per cubic 

centimetre of water remaining the same, the radial velocity would be of the order of 

1 metre per second. The characteristic bulging form of the heads of a, developing 

cumulo-nimbus cloikl may possibly lie partly due to mutual repulsion of the charged 

droplets. 

XIV. Disruption of Drops by the Electric Field. 

It was shown by Lord Rayleigh! that a charged spherical drop must become 

unstable if Q2 exceeds 167r«3T, where Q is the charge, a the radius of the drop and 

T the surface tension. If the charge per cubic centimetre of the water in the cloud 

is p and is equally distributed among the drops, so that Q = -f-7ra3p, then the spherical 

form will be stable so long as p2az does not exceed 9T/tr, i.e., about 225 in the case of 

water drops. The limit fixed in this way for the maximum charge per cubic centimetre 

of water, even for rain-drops as large as 3 cm. in radius (for which it amounts to 

more than 70 E.S.U.), is too high to be of importance in the thunder-cloud problem. 

Of much greater importance is the effect, upon the stability of the drops, of the 

electric field in which they are suspended, or in other words of the induced charges on 

the two halves of each drop. 

If it is as a result of the electric force within or at the boundary of a cloud that 

a lightning flash occurs, then it becomes an interesting question whether under 

certain conditions disruption of the drops may not occur before the conditions for 

* Simpson, loc. cit. 
t Rayleigh, ‘Phil. Mag.,’ vol. 14, p. 184, 1882. 
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discharge are reached. Zeleny,# who has made a very interesting series of 

investigations on the stability of electrified liquid surfaces, found that in air at 

atmospheric pressure the potential required to cause a discharge from the surface of 

a drop of water at the end of a capillary tube exceeds, though only by a few per 

cent., that required to produce instability and disruption of the drops. He points 

out that it would follow from his experiments that a discharge of minute electrified 

drops, constituting an upward shower, would take place from the edges of the wet 

leaves of a tree in a thunderstorm, before the electric force at the surface of the 

tree reached the sparking limits. 

It seems not unlikely that under certain circumstances a similar process may occur 

in a cloud, droplets suffering disruption where the field approaches the sparking limit. 

Consider a developing cumulus head in which a charge is accumulating, and suppose 

that the radial electric force near the edge of the cloud-head reaches the value 

required to cause disruption of the drops before it reaches the sparking limit. The 

induced charges on the two halves of the drop will then be separated and will tend 

to travel in opposite directions along a line of force. 

The magnitude of the induced charge on each half of a spherical drop of radius a 

in a field F is o-nO^VjAir = fFa2, and when F approaches the sparking value this 

will generally greatly exceed any resultant charge of the drop. The charge per cubic 

centimetre of water for each half of the drop = fEua2/§7ra3 = 9F„/87ra; if F„ = 100 

and a = 1 mm. the charge per cubic centimetre of water for each half of the drop is 

360 E.S.U. Thus if the original drop of 1 mm. in radius were divided into two 

oppositely charged halves, the force acting on each of the new drops would in a field 

of 100 E.S.U. amount to 36 times its weight. 

If the drop is drawn out by the action of the field into an ellipsoidal or cylindrical 

form before disruption, the induced charges will be considerably greater. Separation 

of the charges by division of the drop will thus give rise to oppositely charged 

portions each having a charge much greater than that of the original drop. The two 

portions will tend to travel in opposite directions along the line of force with velocities 

greatly exceeding the original radial velocity of the drop from which they were 

derived. 

The outward moving products of disruption of the drops in the head of a cumulo¬ 

nimbus cloud may possibly constitute “ false cirrus.” These particles are more likely 

to freeze than those constituting the original head of the cloud; (l) because the 

stretching of the water drop into a filament itself causes cooling ; (2) the conversion 

of a water filament into an ice crystal is not accompanied by a large increase of surface, 

and one of the main obstacles in the way of the freezing of small drops is thus 

removed; and (3) the charged particles are still further cooled through being driven 

by the action of the field into the colder and drier air outside the original cloud. 

Ice needles formed under the above conditions would not only be charged but also 

* Zeleny, ‘ Proc. Cambridge Phil. Soc.,’ vol. 18, p. 71, 1914. 
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electrically polarised (the induced charges of the original conducting filament 

remaining when the filament freezes), and will thus tend to remain with their long 

axes parallel to the direction of the electric force. A study of the optical phenomena 

of “ false cirrus ” would be of interest in this connexion, as would also an experimental 

investigation of the effects of an electric field on super-cooled drops. 

XV. Pressure Within a Charged Portion of a Cloud. 

The pressure within a charged cloud—like that within a charged soap bubble—must 

be less than the pressure outside. If the whole charge be supposed to lie near the 

surface of a sphere the analogy with the soap bubble is complete, and this case may 

be considered in finding the order of magnitude of the effect. The reduction of 

pressure within the cloud by the charge is 27rP = F2/8 7r where a- is the charge per 

unit area of the surface of the sphere and F is the radial electric force immediately 

outside. Just before the passage of a discharge F = F0 = about 100 in electrostatic 

measure, so that F2/8?r is about 400 dynes per square centimetre, i.e., about ^sVo °f an 

atmosphere. 

If we consider the charge to be distributed uniformly in a horizontal layer of 

thickness which is small compared with its horizontal dimensions, the diminution of 

pressure midway between the top and bottom of the charged layer, due to mutual 

repulsion of the charged drops, is again F02/87r dynes per square centimetre. 

XVI. Thunder Resulting f rom Sudden Contraction due to Loss of Charge. 

Thunder is generally regarded as entirely due to the sudden expansion of the air 

along the track of a lightning flash. It is evident however that the sudden 

contraction of a large volume of air (the contraction corresponding to an increase of 

pressure of some tenths of a millimetre of mercury) must furnish a by no means 

negligible contribution to the thunder which follows the discharge. 

XVII. Energy Dissipated in Lightning Discharges. 

If we take the estimates arrived at above (V = 109 volts, Q = 20 coulombs) for 

the order of magnitude of the potential in the charged portions of a thunder-cloud 

immediately before the passage of a flash, and of -the quantity discharged in the flash, 

we obtain for the order of magnitude of the energy dissipated in an average discharge, 

|QV = 1010 joules = 1017 ergs. 

We may also arrive at an upper limit for the energy if we assume that the 

distribution of the charges is stratiform and that the vertical electric force is 

uniform and equal to F0 throughout the height H through which the discharge 

extends. From the value found for the average electric moment, 2QH, since V must 
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now be equal to F0H, we have for the energy dissipated, ^QV = |-QF()H, about 

1011 joules. 

The rate at which electrical energy would be going to waste in a storm in which 

one such discharge occurred in every 10 seconds would amount to 1016 ergs per second 

or 1,000,000 kilowatts. It is of interest to compare this with the total power 

which would be available if it were possible to catch the rainfall of a thunder-shower 

before it fell and utilise the water power thus stored. The rate of rainfall in a severe 

thunderstorm may reach values approaching 10 cm. per hour. The water power 

available if it were possible to catch the rain at a height of 1 km. would amount to 

3 x 1015 ergs per sq. kilometre per second. Thus a rainfall of the above amount over 

an area of about 3 sq. km. if intercepted at a height of 1 km. would furnish sufficient 

power to produce the required electrical energy. The total power available for the 

production of lightning flashes may obviously greatly exceed the above estimate 

based on the rainfall. 

XVIII. Interpretation of “Recovery" Curves. 

In a typical record of the changes of the vertical electric force due to a distant 

thunderstorm each vertical portion of the trace—representing the sudden change 

produced by a discharge—-is followed by a characteristic “recovery” curve. This 

may be interpreted as follows :—The charge in the head or base of the thunder¬ 

cloud—-or in both—is suddenly destroyed by the passage of a lightning flash. The 

field at once begins to be re-established at a rate represented by the initial steepness 

of the curve immediately after the discharge. But as the charge increases, its field 

tends to diminish the rate of increase of the charge in two ways: (l) by hindering 

the separation of oppositely charged rain-drops and cloud particles; and (2) by 

producing an ionization current which tends to neutralise the charge and increases 

with the increasing intensity of the field. Unless the field previously reaches the 

sparking limit, a steady condition will finally Be approached when the two opposing 

processes, which tend respectively to increase and diminish the field, balance one 

another. 

The initial rate of increase of the field immediately after the passage of a distant 

discharge is thus an important quantity. It is proportional to the rate at which a 

charge destroyed by the flash is regenerated by the action of the thunder-cloud, i.e., 

it is proportional to the vertical electric current which is carried through the thunder¬ 

cloud by the convection of charged masses. If the distances and height of the charge 

destroyed are known, the vertical electric current may at once be deduced from the 

initial rate of increase of the field. If this information is not available the ratio of 

the current to the quantity which passed in the previous discharge can always be 

obtained from the record. 

Q 2 
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The value of T = F , where F is the instantaneous change recorded and clF/clt 

the initial rate of recovery immediately after the discharge, has been deduced from 

the recovery curves in the case of 34 discharges. We may regard T as the time 

which would have been required to re-charge the cloud to the sparking limit had 

there been no neutralising process due to the action of the electric field of the cloud. 

The values of T vary between 1‘5 seconds and 30 seconds, the mean of 64 measure¬ 

ments giving 6'9 seconds; in more than half the cases examined T lies between 4 and 

10 seconds. These times are generally only a small fraction of the actual intervals 

between the flashes: on June 17, however, in a record (Plate 3, fig. 5) showing more 

than 100 flashes in 10 minutes—-so that the average interval between the flashes was 

less than 6 seconds—the average value of T exceeded half this interval. 

Some of the recovery curves, as, for example, that of June 12, shown in Plate 4, 

fig. 11, approximate very closely to the exponential form, so that the charge which 

has been regenerated when a time t has elapsed after the discharge may be represented 

by Q = Q0(l— e~H). Such a curve suggests that the charge of the thunder-cloud is 

being regenerated at a constant rate, and that it is at the same time being dissipated 

at a rate which is at any moment proportional to the charge. It might also however 

be interpreted as representing the regeneration of the charge by a constant E.M.F. 

in the cloud, the current through the cloud being proportional to the difference 

between this E.M.F. and the opposing potential difference produced by the charges 

separated ; there would be no current when the charges reached a steady value. If 

dissipation of the accumulated charges is taken into account the recovery curve still 

remains of the same type ; if the dissipation is large, or, in other words, if the 

internal resistance of the thunder-cloud, regarded as a generator of constant E.M.F., 

is large compared with that of the external circuit, the current through the cloud is 

constant, and we have again the case first considered. 

The rate of regeneration of charge per second, in other words the vertical current 

through the cloud, immediately after a discharge varies between -§ and ^ of the 

charge removed by the flash, the mean being about If we assume a discharge to 

convey a quantity of the order of 20 coulombs, the mean current through the cloud, 

immediately after a discharge, is of the order of 3 amperes. 

It is not at all impossible that this is also the order of magnitude of the vertical 

current through a thunder-cloud at other times than immediately after a lightning 

discharge, and even when an approximately steady condition of the field has been 

reached. Consider, for example, the charge in the head of a thunder-cloud which 

reaches to a great height. The conductivity of the atmosphere has been found by 

Gerdien and by Wiegand# to increase rapidly with the height, the former having 

found at 6 km. a conductivity more than 20 times as great, and the latter at 

8865 metres a conductivity about 40 times as great as the normal conductivity near 

* Wiegand, ‘ Deutsch. Physik. Gesellschaft,’ February 29, 1914. 
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the ground. A charged body suspended in the atmosphere under the conditions 

found by Wiegand at 8865 metres 'would lose about XU of its charge per second. 

Thus a charge of 20 coulombs in the head of a thunder-cloud at this height should 

lose more than 1 coulomb per second: to keep the charge constant the vertical 

current through the cloud would have to exceed 1 ampere. The presence of such a 

large charge would, it is true, not leave the conductivity of the surrounding 

atmosphere unaltered : it would tend to increase it by dragging down ions from 

upper layers of still greater conductivity. 

XIX. Electrical Currents Maintained in the Atmosphere by Thunder-clouds and 

Shower-clouds. 

Consider a cumulo-nimbus cloud of the type imagined in Section VIII. containing 

upper and lower charges—the latter being partly or, it may be, mainly carried by the 

rain below the cloud. Such a cloud may be regarded as an electric generator— 

whether essentially of the frictional type or of the influence machine type need not 

at present be discussed—capable of maintaining a potential difference between its 

poles of the order of Iff1 volts. 

As pointed out in Section VIII. the potentials in the conducting layer of the upper 

atmosphere is likely to be insignificant in comparison with that in the head of a 

thunder-cloud, and the potential difference between them may thus be of the order 

of Iff' volts. 

There will be a flow of electricity along the lines of force belonging to the various 

groups enumerated in Section VIII. and indicated in fig. 5. The upper pole will 

continually be losing charge by currents flowing (l) to the lower pole; (2) to the 

earth’s surface (this portion of the current reaching the outer zone (Section VIII.) 

where the potential gradient is unlikely to reach high values); and (3) to the upper 

atmosphere. 

Unless the field in the shower-cloud approaches very near to the sparking limit, the 

conductivity within the cloud is likely to be small, since any ions liberated soon lose 

their mobility by becoming attached to cloud particles. The electrical resistance 

of the atmosphere between the upper pole of the cloud and the conducting layer of 

the upper atmosphere will be much less than that between the upper pole and the 

earth’s surface ; for the free ions will be dragged out of the conducting layer, and 

their mobility throughout the greater part of their course will greatly exceed that 

of the ions in the lower layers of the atmosphere. A large part of the current from 

the upper pole must thus go to the upper atmosphere. 

Consider now the lower oppositely charged pole of the cloud. Part of the charge 

is continually being neutralised by the direct return current between the poles, but 

this, as has already been pointed out, is likely to be small. The greater part of the 

charge lost by the lower pole will reach the ground. If no rain reaches the ground 

the loss of charge will be due to ions moving under the action of the electric field 
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of the cloud. If the normal rate of production of ions in the air below the cloud had 

alone to be taken into account, the current would be small; but we have to add 

the ions supplied by evaporation of charged drops falling from the cloud and those 

(of opposite sign) due to point discharges from earth-connected conductors, such 

as the leaves of trees or even the tips of blades of grass, under the action of the 

intense electric field of the central area below the cloud. If the rain reaches the 

ground the former of these sources of ionization is absent, but there is a further 

source of ionization in the splashing of the rain on the ground. In addition to the 

ionization current we have also the convection current carried to the ground by 

charged rain-drops. The total current between the lower pole of the cloud and the 

ground now consists of the convection current carried by the falling charged drops 

and the conduction current carried mainly by the upward stream of ions set free by 

point discharges and splashing at the surface of the ground. The ratio of the 

convection current to the conduction current will be less near the ground than 

higher up, since the falling drops will lose more and more of their charge as they 

penetrate farther into the stream of upward moving oppositely charged ions; these 

again as they are carried upwards by the electric field are continually diminished in 

number by union with the drops. The greater the supply of ions from the ground 

the smaller will be the charge retained by the drops ; if the current carried by the 

upward stream of ions is sufficient, the drops may lose the whole of their charge or 

even have it reversed before they reach the ground. The charge carried to the 

ground by rain-drops is thus by no means necessarily a true measure of the vertical 

current in a shower : nor does the sign of the charge carried by the drops when they 

reach the ground necessarily indicate the sign of the current between the ground and 

the base of the cloud. 

Thus a large part of the current from the upper pole of a cumulo-nimbus cloud 

is likely to reach the conducting layers of the upper atmosphere, while that from 

the oppositely charged lower pole goes mainly to earth. A current is thus 

maintained from the earth through the cloud to the upper atmosphere or in the 

reverse direction according to the sign of the polarity of the cloud. 

Discharges between the ground and the lower pole of the cloud and between the 

upper pole and higher portions of the atmosphere contribute to the total current 

between the ground and the upper atmosphere ; discharges between the two poles or 

between the upper pole and the ground diminish the electric field which maintains 

the vertical current without contributing anything to the current. 
I 

XX. Differences Between the Electrical Effects of Shower-clouds of Positive and 

Negative Polarity. 

We may define the polarity of a shower-cloud as being positive when the upper 

charge is positive, negative when the upper charge is negative, the current through 

it being upward in the former case, downward in the latter. 
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It was first proved by Simpson,# and has been confirmed by many observers, that 

rain on reaching the earth’s surface is much more often positively than negatively 

charged. This, as we have seen, does not necessarily imply that shower-clouds are 

always or even prevailingly of negative polarity. It is therefore of interest to 

consider some of the differences to be expected between the electrical effects of clouds 

of positive and of negative polarity. 

Recent experiments have shownt that the carrier of negative electricity in 

hydrogen, helium and nitrogen even at atmospheric pressure is the free electron, and 

that its mobility is some hundreds of times that of the carrier of positive electricity, 

the positive ion. In ordinary atmospheric air, as the pressure is reduced, the 

average mobility of the carriers of negative electricity increases relatively to that 

of the positive ions ; quite an appreciable proportion of the negative carriers, 

consisting, according to Wellisch,| of free electrons when the pressure is reduced to 

8 cm. of mercury, the proportion increasing rapidly as the pressure is further reduced. 

Thus, while the carriers of positive electricity dragged out of the conducting upper 

atmosphere by a cloud of negative polarity consist of ordinary ions, the negative 

carriers dragged down by a cloud of positive polarity are originally to a large extent 

free electrons, and a considerable proportion are likely to remain in this condition till 

quite moderate elevations are reached. The conductivity of the air between a shower- 

cloud and the upper atmosphere will thus be considerably greater if the cloud is 

of positive than if it is of negative polarity. 

Let us compare two shower-clouds which differ only in the sign of their polarity 

and consider the effect of the greater conductivity of the atmosphere above the cloud of 

positive polarity. Let us suppose that the two clouds act as generators capable of main¬ 

taining equal potential differences between their poles. Let V2, — Yjbe the potentials 

of the upper and lower poles of the cloud of positive polarity, and — V2\ +Vd the 

potentials of the upper and lower poles of the cloud of negative polarity, let V2—Vj = 

Vf—Vs1. Then the current from the ground to the upper atmosphere maintained 

by the cloud of positive polarity will be greater than that from the upper atmosphere 

to the ground maintained by the cloud of negative polarity, since the total resistance 

of the circuit is less in the former case. 

The ratio V2/Vi is less than Vf/Vd, the upper and lower potentials being proportional 

to the resistance of the portions of the circuit above the upper and below the lower 

pole respectively^ Thus V/ is greater than V3 and is greater than Vf ; in other 

words the potential (and charge) of both the upper and the lower pole is greater 

when negative than when positive. 

* Simpson, loc. cit. 
t FPvANCK and Pohl, ‘ Verhandl. Deutsch. Physik. Gesellschaft,’ 9, p. 69, 1907. 
I Wellisch, ‘ Pkil. Mag.,’ vol. 34, p. 33, 1917. 
§ The potential of the conducting layers of the upper atmosphere is assumed to remain small in 

comparison with the E.M.F. of the thunder-cloud. 



112 MR. C. T. R. WILSON : INVESTIGATIONS ON LIGHTNING DISCHARGES 

The potential gradient (negative) in the central area below the cloud of positive 

polarity will be greater than the positive potential gradient in the corresponding area 

below the cloud of negative polarity, the central positively charged area below the 

cloud of positive polarity being also larger than the negatively charged area below 

the cloud of negative polarity. Again, the positive potential gradient at the ground 

in the outer zone will be less (on account of the smaller charge on the upper pole) in 

the case of the cloud of positive polarity than the negative potential gradient in the 

corresponding region due to the cloud of negative polarity. Thus in each area 

negative potential gradients tend to be greater than positive. 

The electric field in the central area below the lower pole being stronger in the case 

of the cloud of positive polarity, the current carried by the stream of positive ions 

from the ground will be increased, and therefore also the tendency to neutralisation 

or reversal of the negative charge on the falling rain-drops.. 

If lightning discharges occur, they are more likely to pass between the ground and 

either the upper or the lower pole if this is negative than if it is positive, since the 

charge of the pole is greater when negative. Thus discharges carrying positive 

electricity from the earth to the atmosphere will be more frequent than negative 

discharges. Discharges will tend to occur especially between the ground and the 

upper, negative, poles of clouds of negative polarity and the lower, negative, poles of 

clouds of positive polarity. In the latter case the discharges are an additional source 

of loss or reversal of the negative charge on falling rain-drops. 

Essentially similar results are reached if, instead of assuming the same potential 

difference,to be maintained between the poles, whether the clouds are of positive or 

of negative polarity, we assume that the same vertical current is maintained in 

both cases. 

Thus, if we assume that shower-clouds may have polarity of either sign, the 

differences in the mobilities of the positive and negative carriers of electricity in the 

higher portions of the atmosphere will account for the preponderance in showers : 

(l) of negative potential gradients ; (2) of upward or positive lightning discharges ; 

and (3) of positively charged rain. It also affords (4) a possible explanation of the 

normal positive potential gradient of fine-weather regions. 

XXI. The Normal Potential Gradient and Air-eartli Current of Fine Weather. 

A thunder-cloud or shower-cloud is the seat of an electromotive force which must 

cause a current to flow through the cloud between the earth’s surface and the upper 

atmosphere. In the case of thunder-clouds the records of the changes produced in 

the electric field by the passage of lightning flashes give us means of forming some 

estimate of the magnitude of such currents, and it would appear from them that the 

current through a few square kilometres of the surface of the ground below a 

thunder-cloud may amount to some amperes. In shower-clouds in which the 
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potentials fall short of what are required to produce lightning discharges, there is no 

reason to suppose that the vertical currents are of an altogether different order of 

magnitude. If any considerable proportion of shower-clouds are of positive polarity 

the upper atmosphere will receive an excess of positive electricity which may possibly 

be sufficient to maintain the positive potential of the conducting layers and to supply 

the normal downward current of the fine-weather regions. The total current which 

must be supplied for this purpose is, as Simpson* has pointed out, of the order of 

1000 amperes for the whole earth. 

It is not necessary to suppose that only isolated clouds of the cumulo-nimbus type 

contribute to the current between the ground and the upper atmosphere. If we 

consider a cloud from which heavy rain is falling and assume that the conditions are 

uniform over a large area, the case is in fact somewhat simpler than that of the 

cumulo-nimbus cloud ; the general results are the same. 

We may suppose that a steady condition is reached in which the vertical electric 

field within the cloud (and thus the potential difference between its upper and lower 

surfaces) has a value, which depends on the rate of rainfall and other factors; it is 

assumed to be independent of the sign of the polarity. Even if this potential 

difference is only or of that reached in thunder-clouds the effects may be 

important: the E.M.F. which tends to drive a current between the ground and the 

upper atmosphere is still from 10 to 100 times the normal potential of the upper 

atmosphere above fine-weather regions. 

The difference between the mobilities of the positive and negative carriers dragged 

out of the conducting upper atmosphere will again cause clouds of positive polarity 

to differ from those of negative polarity in (1) the greater magnitude of the vertical 

current (positive for the cloud of positive polarity); (2) the smaller magnitude of the 

potential (positive) at the upper surface and greater magnitude of the potential 

(negative) at the lower surface of the cloud ; and thus (3) the greater intensity of the 

potential gradient (negative for the cloud of positive polarity) below the cloud, this 

again tending to cause a larger part of the vertical current below the cloud to be 

carried by ions liberated at the ground and thus to produce a more complete 

discharge of the (negatively-charged) rain. 

XXII. Influence of the Nature of the Earth's Surface below a Thunder-cloud 

or Shower-cloud. 

The dissipation of the lower charge of a thunder-cloud or other rain-cloud by the 

upward stream of ions liberated by point discharges or by splashing at the earth’s 

surface must depend largely on the nature of that surface, on whether for example it 

consists of desert, snowfield, grassland, forest, lake or sea ; and again the effect of the 

nature of the covering of the earth’s surface may depend on the sign of the electric 

field. 

* Simpson, ‘Nature,’ December 12, 1912. 

VOL. CCXXI.-A. R 
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Point discharges will occur most frequently and give rise to the largest currents 

over forests and lands covered with vegetation ; also on mountain summits and ridges, 

owing to the increased intensity of the electric field through proximity to the charged 

cloud. Ionization by splashing of rain on the ground and the relative number of 

positive and negative ions liberated thereby is likely to be very different over the 

various surfaces. Of special interest is the question of the amount and nature 

of the ionization at the surface of the ocean under heavjr rainfall. 

Over an area in which the surface ionization was large we should expect an 

increased vertical current, a diminution of the charge carried to the ground by rain, a 

diminution in the intensity of the electric field of the cloud, and in consequence a 

diminution in the tendency for lightning discharges to occur. 

The holding up of charged rain-drops by the electric field and the diminution of the 

field by the dissipation of cloud charges by forests and other sources of surface 

ionization are perhaps not negligible factors in the local distribution of rainfall. 

Mr. L. F. Richardson,^ describing some of the phenomena observed during the 

passage of a line squall in France, on September 6, 1917, remarks “the cloud was 

noticeably darker over the Forest of Argonne than over the grasslands of 

Champagne.” 

XXIII. Secondary Thunder-clouds. 

It has thus far been assumed that the source of E.M.F. is within the cloud in 

which the lightning discharges and other electrical effects are manifested. It is easy 

however to imagine conditions in which a cumulo-nimbus cloud, which acts as 

electric generator, may supply electrical energy to quiescent clouds and produce in 

them intense electrical fields and even lightning discharges. 

Consider for example a horizontal stratiform cloud which intersects lines of force 

connecting the poles of a cumulo-nimbus cloud; the stratiform cloud might be a 

lateral extension of the shower-cloud. The electrical conductivity within the 

stratiform cloud will, through capture of the ions by cloud particles, he very small 

compared with that of the free air above or below the cloud. The current from the 

poles of the primary thunder-cloud will cause an accumulation of charges of opposite 

sign at the upper and lower surfaces of the stratiform cloud. This accumulation of 

charge will continue—unless the field within the cloud previously reaches the sparking 

limit—until a steady condition is reached, when the vertical field within the cloud is 

sufficient to maintain a current equal to that which enters its upper and lower 

surfaces. The potential difference finally existing between the upper and lower 

surfaces of the stratiform cloud might amount to a considerable fraction of that 

between the top and bottom of the shower-cloud, the ratio being that of the resistance 

of that portion of a tube of flow which lies within the cloud to the resistance 

* Richardson, ‘Quart. Journ. Roy. Meteor. Soc.,’ 45, p. 112, 1919. 
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of the whole tube.* If the thickness of the stratiform cloud were small, intense 

fields might result within the cloud and discharges might even occur; each flash 

would discharge only a small area of the cloud, of dimensions comparable with the 

thickness of the cloud. 

The characteristic striated and mammatiform appearances frequently observed on 

the lower surfaces of stratiform clouds associated with thunderstorms may be due to 

intense electric fields produced as above suggested, the electrical attraction between 

the upper and lower charges giving rise to convection currents. 

If the ionization above and below a stratiform cloud in the field of a primary 

thunder-cloud is unequal, the cloud will acquire unequal upper and lower charges and 

thus carry a resultant charge. For example, a stratiform cloud above a cumulo¬ 

nimbus cloud will intercept the flow of ions from the upper atmosphere and become 

charged with electricity of opposite sign to that of the upper pole of the shower-cloud, 

a steady condition not being reached until a potential difference between the thunder¬ 

cloud and the upper atmosphere is concentrated almost entirely in the region below 

the stratiform cloud. Lightning discharges between the stratiform cloud and the 

head of the primary thunder-cloud below will be likely to occur. 

In the absence of any such cloud above the primary thunder-cloud, the great 

diminution of the mobility of ions or electrons dragged out of the conducting layers 

as they penetrate into the denser regions of the atmosphere will have a very similar 

effect; the concentration of charge will be greatest where the change of conductivity 

with the height is most rapid. We may in fact, as suggested in Section VIII., 

consider that the conditions are much the same as if a conducting protuberance were 

drawn out from the conducting layer towards the summit of the thunder-cloud. It 

does not seem unlikely that discharges may sometimes occur between this protuberance 

and the top of the thunder-cloud. In a previous paper some evidence was obtained 

suggesting the occurrence of discharges of very great vertical length ; possibly these 

may have been of the type we have been considering. 

* This action of a layer of cloud, in particular of a ground fog, in increasing the vertical electric field 

within it has long been recognised in the case of the potential gradient of fine weather. Eester and 

Geitel, ‘Meteor. Zeitschr.,’ 17, p. 230, 1900; Geitel, ‘ Physikal. Zeitschr.,’ 17, p. 455, 1916. 
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IV. Researches on the Elastic Properties and the Plastic Extension of Metals. 

By W. E. Dalby, F.R.S., Professor of Engineering at the City and Guilds 

(Engineering) College of the Imperial College of Science and Technology. 

Original Paper received January 28,—Revised form March 24, 1920. 

§ 1. Preliminary. 

On March 7, 1912, I described an instrument which gives photographically a 

load-extension diagram of a metal test piece during the process of stretching it to 

fracture. 

On February 13, 1913, I described further experiments with the instrument.* A 

diagram was shown which was taken from a test piece broken in ten seconds. It is 

safe to say that up to that time no apparatus existed which would give a complete 

record of the load-extension relation during such a quick break. 

I have since that time arranged the apparatus to record at even a quicker rate. 

Fig. 1 shows the record of a break done in 2 ‘15 seconds. The test piece measured 

Fig. 1 (mild steel). 

one inch between the shoulders. The line of the record is in dashes. These dashes fix 

the time scale of the diagram. Centre to centre of a pair of dashes corresponds to 

* Additional results are given in 1 Transactions of the Institute of Naval Architects,’ March 29, 1912, 

‘Institute of Metals,’ May Lecture, 1917, vol XVIII., No. 2. 

VOL, CCXXI. A 585, S [Published September 29, 1920. 
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jV of a second. This time calibration is obtained by placing an interrupter in the lamp 

circuit. Referring to the diagram it will be seen that the yield load was reached in 

about ^ seconds. 

In my 1913 paper I included a diagram taken with an instrument which multiplied 

the extension of the gauge length 150 times so that the elastic part of the curve 

appeared on a scale which enabled its shape to be studied and which enabled the limit 

of proportionality to be identified when such a limit existed. 

In my method of taking these diagrams the test piece is stretched without pause in 

the loading and the spot of light follows without break of continuity every phase of 

the relation between load and extension. Sudden slips of the crystals are duly 

recorded. 

In the usual method the load is applied in steps, pausing at each step to observe 

the extension, so that the piece gets a rest under steady load during the time 

occupied in making the observation of extension. The load-extension curve is thus 

defined by a definite number of points only and peculiarities of form between these 

points are missed. 

I have from time to time continued these elastic researches, and the following paper 

records some of the results obtained with what I call the Optical Recorder of Load 

and Elastic Extension. 
% 

§ 2. The Test Piece. 

In these researches the gauge length is defined by flanges turned on the test piece 

itself. The ends of the arms of the extensometer rest on these flanges. The 

dimensions of the standard form of test piece used in these researches are shown in 

fig. 2. A shorter gauge length was used for the more ductile metals, but all 

experiments on the iron and steels were done on a 5-inch gauge length. 

I was lead to adopt this form by the many difficulties encountered when pointed 

screws have to be driven into the test piece to define the gauge length. 

rI hese screws cannot be driven properly into hard material like the alloy steels 

which have to be tested nowadays, and in soft material like copper the primitive 
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centre dot in which the points rest, elongates as stretching proceeds and the points 

slip. 

The modulus of elasticity, E, found from flanged test pieces agrees with the values 

found from plain bars. The flanges therefore have negligible influence on the elastic 

extension of the gauge length. They restrict the plastic extension slightly. In mild 

steel the total extension is about 3 per cent, less when found from a flanged test piece 

than it would be if found from a plain bar. 

Dr. Coker has kindly examined the distribution of stress produced by a flange in a 

xylonite test piece made to the dimensions of fig. 2. When the xylonite test piece is 

stretched the colours show that there is no stress in the flange itself and there is a 

slight but symmetrical modification of the stress distribution at its root. This means 

that as stretching proceeds the flange is not distorted, and therefore the distance 

between the flanges is a true measure of the extension of the primitive gauge length 

which they define. 

§ 3. The Elasticity of Materials and, a Typical Load Elastic Extension Diagram 

of Mild Steel. 

The elasticity of a material means in a general sense its power of returning to its 

primitive form after loading has been applied and removed. 

The recovery may be partial or complete. 

The power of complete recovery is lost when the stress produced by the loading has 

once passed beyond a certain limiting value peculiar to the material. 

Below this limiting stress the extension of a steel test piece is proportional to the 

load. 

Above this limiting stress the extension increases at a greater rate than the load. 

The limit is therefore called the limit of proportionality. 

The power of recovery may thus be distinguished into the power of complete 

recovery possessed and retained only so long as the stress in the steel has never once 

exceeded the limit of proportionality: and the power of partial recovery peculiar to 

the state into which the metal passes directly it has once been loaded beyond the 

limit of proportionality. 

Provided that the material has never been loaded beyond its limit of proportionality 

the material may be said to be in a state of perfect elasticity, because it possesses the 

power of complete recovery of form after removal of load; alternative^ it may be 

said to be in a state of proportional elasticity because its extension is found to be 

proportional to the load. 

The one term includes the other. If it is found to extend proportionally to the 

load its recovery is perfect after removal of load. 

No metal is, however, quite perfect in its recovery, but the term perfect used in 

the sense defined above is convenient and substantially expresses the experimental 

results. 

s 2 
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A diagram recording the elastic extension of mild steel is seen in fig. 3. 

This steel contains 0'156 per cent, of carbon. The extension scale of the diagram is 

defined by the distance between the two vertical lines seen in the diagram. This 

distance represents an extension of O'Ol inch. 

Proportionality between load and extension ceases at about 4'5 tons corresponding 

to a stress of 14'67 tons per sq. inch. Yield occurs at 6'7 tons which corresponds to 

Fig. 3 (mild steel). 

21 85 tons per sq. inch. The load drops away from yield to about 5'5 tons giving a 

stress of 18 tons per sq. inch. These stress are reckoned on the original area of the 

cross-section of the test piece. 

I he slope of the line from the origin to the limit of proportionality defines E, the 

modulus of elasticity. From the diagram its value is 13,300 tons per sq. inch. 

§ 4. Restoration of Perfect Elasticity after Overstrain. 

1 he term “overstrain” means that a metal has been loaded beyond its limit of 

proportionality. 

If the load is removed after a test piece has been strained beyond the limit of 

proportionality and then the piece is immediately re-tested, the record shows a curved 
line. 

Tt has no range of proportionality and no modulus of elasticity which can he 

identified with E. 

I he material still possesses elasticity because it shrinks as the load is removed, but 

the elasticity is imperfect in the sense that change of length is no longer proportional 
to change of load. 

But, if the metal is iron or mild steel, proportional elasticity is slowly recovered 
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with time ; and this change from unproportional to proportional elasticity or from 

imperfect to perfect elasticity is accelerated by boiling. 

In fact overstrained iron or mild steel is restored to its perfect or proportional 

elastic state with remarkable rapidity by mere boiling. This point has been 

established by Sir Alfred Ewing. # 

I have found, however, that overstrained high carbon steels and the alloy steels do 

not recover proportional elasticity either by resting or by boiling. 

The elastic line of a 3 per cent, nickel steel is seen in fig. 4. It is lettered A. 

The limit of proportionality is reached at 8 tons, 26 tons per sq. inch, and the yield at 

9 "25 tons, 30 tons per sq. inch. 

The piece was stretched 2 per cent, and then the diagram, line B, was taken. 

Proportional Elasticity has disappeared. 

Curve C is the record after a 6 per cent, stretch. 

Curve D is a repetition test after turning the bar to a slightly reduced diameter. 

The interval of time between C and D is 24 hours. No restoration of elasticity has 

taken place. It has been established by other experiments that a lapse of many 

months has no effect in restoring the proportional elasticity. 

The piece was then boiled for 1 hour, and curve E shows that elasticity has not 

been restored. 

Finally, the piece was heated to 550° C. in a muffle furnace for about half an hour 

and was then allowed to cool down with the furnace. Line F, taken immediately 

after this treatment, shows perfect recovery of proportional elasticity and a slight 

raising of the limit and the yield point. 

I have confirmed these results by other experiments on nickel steel test pieces and 

on high carbon steel test pieces. 

* ‘Phil. Trans. Roy. Soc.,’ 1899. 
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§ 5. Looping after the Elastic Limit of Proportionality has been Passed. 

The recorder is fitted with a microscope so that the process of stretching can be 

watched as the experiment proceeds, and the loading, which is produced by hydraulic 

pressure, stopped at any moment. This arrangement enables interesting records to 

be taken, because after the test piece has been stretched an assigned amount, the load 

can be let off and then immediately re-applied, so that stretching continues through 

a second interval and so on. 

Such a record is seen in fig. 5. The material is nickel steel. It will be seen that 

25V Ouuy 1918. 

Fig.<£ (nickel steel). 

the removal and the re-application of the load compels the spot of light to trace a 

loop. The area of the loop represents the internal work done during the process. 

Following the path of the spot it starts from the origin O and describes the elastic 

line OA, passes the limit of proportionality at A, and then curves away to the yield 

point B, and on to C. At C the loading is stopped, the hydraulic pressure is relieved 

by opening the exhaust valve, and the spot travels down the curved path CD as the 

load falls to zero. The exhaust valve is then closed and the pressure valve is opened 

and the process is repeated through the path EF and so on. 

When the steel test piece has been stretched beyond its limit of proportionality, 

for example to C, fig. 5, the total extension is made up of two parts, namely :—- 

(1) the proportional elastic extension up to the limit of elasticity, for example up 

to A, fig. 5 ; 

(2) the plastic extension after the limit has been passed. 
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When the load is removed the steel shrinks unproportionally, for example from C 

to D, by an amount approximately equal to its previous proportional elastic extension 

and then stops at a dimension greater than its primitive dimension by an amount 

approximately equal to its plastic extension. 

The increase of size measured after the removal of the load is called the Permanent 

Set. OD is the permanent set produced by the first stretching of the test piece to C. 

From the diagram the permanent set measures 0'0052 inch and the unproportional 

elastic recovery measures O'Oll inch. 

When the load is re-applied the spot of light moves from D to E along a curved 

path. The extension is no longer proportional to the load. The metal is in a 

different elastic state. Stretching beyond the limit of proportionality has robbed 

the metal of its power of proportional extension and of perfect recovery after removal 

of load. It may be said to be in a state of imperfect elasticity, or alternatively it 

may be described as in a state of unproportional elasticity. 

The imperfect state is disclosed by the loop formed by the removal and re¬ 

application of the load. 

The diagram shows four loops. Each loop is slightly larger than the loop 

preceding it. 

The four loops shown were all recorded on a half plate inserted in the camera. 

A succession of plates was taken and the last plate is shown in fig. 6. 

Fig. 6 (overstrained nickel steel). 

This last plate shows that unproportional elastic shrinkage occurs right up to the 

load at which local contraction begins. The last loop is just seen on the plate. 

The last line seen curving up from the origin Q is the typical curve of overstrained 

material. The primitive gauge length of 5 inches had been stretched to 5’67 inches 

before the last plate, fig. 6, was taken. 
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The permanent set QZ measured from the new origin Q is (F0127 inch. The total 

permanent set is thus 0'67 + 0'0127 inch = 0'6827 inch. The unproportional elastic 

recovery is ZY = 0‘0244 inch. 

§ 6. Looping a General Property of Metals. 

Records of looped diagrams are shown in the following figures. The load scale is 

varied to bring out the shape of the loops. 

The extension scale is substantially, l|- inches measured horizontally on the diagram 

represents Ttjo inch extension of the gauge length. The diagrams are reproduced as 

taken, the object being to compare the elastic line and the loop formations. 

Staffordshire Iron.—Fig. 7. The limit of proportionality is reached at 3'5 tons; 

Fig. 7 (iron). 

11 4 tons per sq. inch. Ihe yield is reached at 5'1 tons; 16 tons per sq. inch. The 

load then drops to about 4'7 tons. The loop area is not large, but the area increases 
progressively. 

Steel. Carbon 0 8 per cent., fig. 8. The limit of proportionality is reached at 

about 8 tons; the yield at 8 *8 5 tons. There is a slight drop at the yield load. The 
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area of the first loop is many times larger than the area of the first loop of the 

previous record, and this area increases rapidly in the succession of loops. 

Fig. 8 (08 carbon steel). 

Steel.—Carbon 0'8 per cent., fig. 9. This diagram is introduced because it is taken 

from a test piece cut from a bar delivered from the works as steel of the same kind 

and quality as that from which the previous diagram was taken. 

Fig. 9 (08 carbon steel). 

X VOL. CCXXI.—A. 
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The limit of proportionality occurs now at about 3 tons and there is no definite 

yield point. The loop areas and their rates of increase are about equal in the two 

plates. 

The explanation of the difference in quality shown by comparing the two diagrams 

may be found in the fact that the test piece of fig. 8 was cut from a bar delivered 

before the war. The test piece of fig. 9 was cut from a bar delivered towards 

the end of the war. There has clearly been some change in the manufacturing 

process. 

Nickel Chrome Steel.—Fig. 10. The ultimate strength of this steel found from a 

Fig. 10 (nickel chrome steel). 

bar 1 inch diameter is 54 tons per sq. inch, with an extension of 14 per cent, on 

8 inches and 55 per cent, reduction of area. The limit of proportionality is at a load 

of 10 tons on the standard test piece 0'625 inch diameter, corresponding to 32'5 tons 

per sq. inch, \ield sets in at 11 tons, that is, 36 tons per sq. inch. 

The first loop of the diagram is small, but the area increases rapidly, as will be 

seen from the three loops visible in the record. 

Nickel Steel. Carbon 0'33 per cent., Ni 3'52 per cent.—Fig. 11. The ultimate 

strength of this material is about 48 tons per sq. inch, with an elongation of 20 per 

cent, on 5 inches and a reduction of area of 47 per cent. Limit of proportionality 

occurs at about 30 tons per sq. inch and yield at 32 tons per sq. inch. The limit of 

proportionality here approaches quite near to the yield point. 
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Fig. 11 (nickel steel). 

Zinc.—Fig. 12. Diameter of test piece 0'8 inch. Gauge length 5 inches. The 

test piece was turned from a zinc rod. There is no proportional elastic line. Curvature 
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begins at the origin, so that the extension is increasing at a greater rate than the load 

from the commencement of loading. There is no definite yield point. 

The most interesting result to notice is that the test piece goes on 

shrinking in length after the load has been removed. It is shrinking under the 

action of its own internal molecular forces because it is entirely free from external 

load. 

The shrinking at no load is indicated by the flat bottom of the loop. A dwell of 

1+ minutes was made in the experiment after the removal of the load and before the 

re-application of the load. All the perceptible shrinking at no load takes place 

within this time interval. 

At the third loop after the load was removed the light was shut off and flashed on 

at intervals of ^ seconds to get some idea of the rate of shrinking. 

Tin.—Fig. 13. Diameter of test piece 0'8 inch. Gauge length 5 inches. This 

Fig. 13 (tin). 

test piece was turned from a bar of tin. It exhibits properties similar to zinc 

on a smaller scale. There is shrinking continuing for about 1 minute after the 

load has been removed, and there is the same absence of a proportional elastic 

line. 

Copper.—Pure and free from arsenic. Fig. 14. Diameter of test piece 0‘8 inch. 

Gauge length 5 inches. There is no marked limit of proportionality and no yield 

point in this material. The noteworthy feature of the record is the small rate of 

increase of loop area. This small rate of increase of loop area is a common 
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characteristic of all the copper samples which I have tested. It may be that this 

rate of increase is identified with the quality of toughness. 

Fig. 14 (electrolytic copper). 

Copper.—Fig. 15. 99'4 per cent, copper. Arsenic present, and by difference 

estimated at 0’4 per cent. Diameter of test piece 0'8 inch. Gauge length 5 inches. 

Fig. 15 (arsenical copper). 
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The effect of the arsenic is remarkable. It gives to the copper an elastic line with a 

distinguishable limit of proportionality of 1‘4 tons; 2*8 tons per sq. inch. 

There is no definite yield point. The loops are small and the rate of increase of 

loop area is small. 

The elastic line from the origin to l'l tons is thicker than the continuation of the 

line. This thickening is brought about by a removal and a re-application of the load. 

The spot of light travelled three times up and down this piece of the diagram, 

indicating that the elastic line, within" the limits of this load, is permanent. 

Brass.—Fig. 16. Composition 60 per cent, copper, 40 per cent, zinc, with traces 

Fig. 16 (brass). 

of tin and other impurities. The ultimate strength of the material is 32’6 tons per 

sq. inch. There is a marked limit of proportionality at 2^ tons; 7'33 tons per 

sq. inch. Y ield follows gradually. There is no contraction after the load has been 

removed, although the material contains so much zinc. 

Phosphor Bronze.- Fig. 17. The curve in this diagram shows a limit of 

proportionality at about 2 tons; 6‘5.tons per sq. inch; but it is difficult to locate 

the exact spot at which the line begins to curve away from the primitive straight 
element. 

Aluminium Alloy. Fig. 18. Diameter of test piece 0'625 inch. Gauge length 

5 inches, t his diagram is remarkable in that the removal and the re-application of 

the load in the plastic state shows no looping and therefore no hysteresis loss which 

can be calculated from the loop area. It appears as though the metal continually 

anneals itself at ordinary temperatures as plastic stretching proceeds. The material 
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appears to be elastic up to a load of \\ tons. The thick line indicates the removal 

and the re-application of load before the metal begins to yield plastically. 

Fig. 17 (gun metal). 

Fig. 18 (aluminium alloy). 
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§ 7. Loop Area and Permanent Set. 

The loop area increases in size as the stretching proceeds and the rate of increase 

differs in different materials. 

The question now arises : does the increase in area follow a regular law ? The 

answer is given by the curves on Sheet 1 (folding diagram). 

The co-ordinates on Sheet 1 are loop area and permanent set. Curve 1 shows the 

results obtained from a test piece of 0‘8 inch carbon steel, § inch diameter, with a 

5 inch gauge length. The slope of this curve shows the rate of increase of loop area 

as stretching is continued. The curve ends when local contraction begins. Similar 

curves are given on Sheet 1 for nickel steel, mild steel, and for iron. 

The rate of increase depends upon the time interval between the drawing of the 

loops and upon the kind of material. In irons and mild steels the influence of time 

is profound. In the alloy steels tested and in high carbon steels the influence of 

time is small. 

When the stretching of iron or mild steel is resumed after a rest, the loop area, at 

first small, increases rapidly towards the area the loops would have had if stretching 

and looping had been continued without resting. Anticipating the detailed 

description of the curves on Sheet 1, this point may be illustrated by curve 3, same 

sheet. Plates Al5 B1} Cls Dx, El9 and Fx were taken consecutively, there being no 

more time interval between the plates than the few seconds required to change the 

plates. After the mild steel test piece had been stretched to 0'2 inch it was taken 

out of the machine and laid aside for 15 days. Plate G1} the first plate taken after 

the rest, and plates H1} Il5 J, furnish loops of rapidly increasing area until the 

area is reached on plate K1} corresponding to continuous stretching without rest 

intervals. 

§ 8. Loop Area and Permanent Set Curve. Curve 1 Sheet 1 (0'8 per cent. 

Carbon Steel). 

The detailed consideration of this curve will show how all the curves of the 

diagram on Sheet 1 have been derived. The capital letters along the top of the 

procession of loops seen in fig. 19 refer to the sequence of negatives recording the 

loops taken from a standard test piece of 0‘8 inch carbon steel. 

Plate A gives the record of the first application of the load to the test piece and 

its immediate removal and re-application four times. The plate therefore shows the 

elastic line and the first four loops. A scale is placed under the loops so that the 

permanent set of the primitive 5-inch gauge length can be read at any point in the 

procession of loops. For example, the permanent set at the end of the looping 

operations recorded on the sequence of plates A, B, C, D, is the distance 

Ok = 0'137 inch. 



PROPERTIES AND THE ELASTIC EXTENSION OF METALS. 133 

The procession is formed by setting the plates in due sequence and placing the 

origin of the record on each plate at the point on the extension scale corresponding 

to the permanent set measured from the test piece itself. For example, direct 

measurement of the gauge length after taking plate D shows that the permanent set 

is 0'137 inch. The origin of the record on plate E is then located at 0’137 inch on 

the scale. 

The procession of loops seen in fig. 19 is reproduced on a small scale in order to 

present to the eye the complete record on a reasonably sized sheet. 

Selected loops from the procession are shown full size in figs. 20 to 23. The elastic 

line and the first and second loops are seen in fig. 20. The area of the first loop 

represents an energy loss of 0'42 ft. lbs., and of the second loop 1T5 ft. lbs. The 

corresponding permanent sets are 0'002 inch and 0'007 inch. 

The areas through the sequence of plates A, B, C, D, E, F increase gradually. 

The last loop of this sequence is seen in fig. 21 and it represents an energy loss 

of 7’42 ft. lbs. The time occupied in taking these six plates was 23 minutes. 

After taking plate F the experiment was stopped. The test piece was removed 

from the machine and laid aside. After six days’ rest it was put back into the 

machine and looping continued. 

The first line after the rest and the first loop are seen in fig. 22. The first line 

shows no elastic recovery and the six days’ rest has had no perceptible influence on 

the loop area, which represents 7'78 ft. lbs. The area is what it would have been 

if thei’e had been no interruption of the experiment for a period of rest. The 

sequence of plates G to Y was taken in 1 hour 20 minutes. The record on the last 

plate is seen full size in fig. 23. Stretching was stopped because local contraction 

had set in. 

The areas of the loops in the sequence are plotted against permanent set in 

curve 1, Sheet 1. Each small circle denotes a loop, and the letter written against 

some of them identifies the first loop on the plate corresponding with the letter. 

It will be noticed on Sheet 1 that the curves joining the loop areas on any one plate 

do not merge into one another to form a continuous curve. The time interval 

required to change the plate and to resume loading seems to be occupied by the 

material in some inner process which tends to slightly reduce the area of the next 

loop taken. But whatever the inner process may be, it practically exhausts itself 

in a few moments and produces only slight effect on the next loop area. No further 

change takes place after a rest of six days, and the inner process, whatever it is, has 

no influence in restoring the material to a state of perfect elasticity after the overstrain. 

A curve sketched through the group of loops on each plate is continuous and 

clearly shows that the area of the loops tends to a maximum. The maximum value 

in this experiment represents an energy loss of 11'48 ft. lbs. per loop. This loss 

corresponds to 7 ‘ 51 ft. lbs. per loop per cubic inch of material in the primitive gauge 

length. 

VOL. ccxxi.—-A. u 
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Processions of loops were similarly taken from a nickel steel test piece, from a 

mild steel test piece, and from an iron test piece. 

§ 9. Looping under Constant Load. 

The diagram in fig. 24 shows the effect of looping under constant load. 

Time i. 43./7 Toms 

^/2.10 PM 

Loading, stopped 

AT EACH TON 

TP TAKE READING 

of Extension 

LOOP Areas ■ 
1 0-25 sq.in. 
2 0-18 • " 

3 0155 ' • 
4 O- ISS . - 
5 O' 17 . • 

PL.562 A 

PL. 56£ B 

— Looping under Constant Load Fic. 24 
— o-8 Carbon Steel — 

The test piece was placed in a Buckton testing machine and loaded gradually until 

yield began at 7'86 tons, and then loading was stopped. The extension was allowed 

to proceed under this load for 4 minutes. Then the load was removed and re-applied 

and the spot of light traced out loop 1. 

Extension continued slowly under the load, still maintained at 7'86 tons, and loops 

2, 3 and 4 were taken at intervals of 20, 30 and 60 minutes respectively. 

The next interval was 17 hours 20 minutes, during which time the gauge length 

extended 10V0 in(Jh approximately. Loop 5 was then taken. Comparing these 

loops it will be seen that there is no recovery of proportional elasticity although the 

piece was allowed to stretch under the yield load of 7'86 tons for about 20 hours. 

This shows that if the yield load is kept on until the test piece has stopped 

extending, a process which may take a long time, at the end of the experiment the 

test piece will not have gained proportional elasticity. It is still in a state of 

imperfect, or unproportional elasticity. 

§ 10. The Practical Utility of the Load Elastic Extension Looped Diagram. 

A diagram showing the elastic line and a few loops is of great practical utility in 

industrial applications. The data, immediately measurable from the diagram are 

(l) the load at the limit of proportionality ; 
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(2) the yield load ; 

(3) the value of E : this is given by the slope of the elastic line; 

(4) the work lost per loop ; 

(5) the rate of increase of the work lost per loop. 

The diagram from normal material satisfying known conditions of composition and 

manufacture may be used as a diagram of comparison. The form of the curve, the 

loop area and the rate of increase are sensitive to changes in the kind of material and 

to changes in the inner state of materials. 

The diagram is specially useful in showing the load at the limit of proportionality, 

for this load bears neither a constant relation to the yield point, when there is one, 

nor to the ultimate load. Consequently factors of safety reckoned against either the 

yield load or the ultimate load are ambiguous. 

This is specially important in gun design. The whole theory rests upon the elastic 

property of the material, and the theory ceases to apply after the limit of proportionality 

is passed. 

Considerable research in many directions is necessary before a full interpretation can 

be given to the looped diagrams, and for the present I will reserve further discussion. 

§11. Correlation of Diverse Tests by the Load Extension Diagram. 

Load extension diagrams of the kind shown in this and former papers are likely to 

be useful to the engineer and metallurgist in the correlation of the many different 

tests now made to ascertain the quality of metals. 

For example, fig. 25 was taken from a test piece of material giving a low impact 

number. Its shape differs markedly from the shape of a normal diagram. It 

corresponds in fact with the shape of the curve found from overstrained material. 

Fig. 25 (overstrained mild steel). 
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The inference is that the material is in the overstrained condition. That this inference 
is correct is shown by fig. 26. A test bar of the same material was annealed by heating 

Fig. 26 (normal mild steel). 

to 550° C., and then cooling slowly within the furnace, and then it was found that it 
gave the diagram of fig. 26, which is the normal shape for the class of steel tested. 

I have tested many bars of steel rejected on shock test and giving low impact 

numbers, and I have always found that the shape of the load extension diagram 

discloses the abnormal state of the metal. Much work of a comparative kind must be 

done before the result can be widely generalized. The War Committee of the Royal 

Society did a considerable amount of work in this direction. 

The limiting fatigue stress may probably be found by inspection from a load elastic 

extension diagram. 

It is probable that the limiting range of stress in fatigue has for its positive value 
the stress equal to the limit of proportionality. 

Referring to the diagram for iron, fig. 7, it will be seen that the limit of 
proportionality is at about 3|- tons, corresponding to 11'45 tons per sq. inch. 

I prepared six test pieces of the material, and Dr. Stanton kindly applied his 
fatigue test to them at the National Physical Laboratory. He found, after applying 
alternating loads in the aggregate 24,000,000 times to the eight test pieces, that the 
approximate limiting range of stress in fatigue was between ± 10|- and ±13 tons per 
sq. inch. The average is ±11*75 tons per sq. inch. 
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The agreement between the limit of proportionality shown on the diagram, namely, 

11‘45 tons per sq. inch, and the fatigue limit found by quite a different test, is 

remarkably close. 

Again, if this result could be generalized, it could be asserted that every load 

elastic extension diagram shows the positive value of the fatigue limit. The long 

and tedious experiments with alternating loads would be unnecessary. Such a 

conclusion requires comparison to be made over a wide range of material. This, 

therefore, is a promising field of research. 

These brief notes of results and inferences show what a wide range of information 

lies before the engineer and metallurgist if he has before him a pair of diagrams, the 

one showing the complete load extension curve from zero to fracture, the other a load 

elastic extension looped diagram on a large extension scale. 

The matter incorporated in this paper has been selected from experiments extending 

over several years. I desire to express my acknowledgments and thanks to 

Prof. Witchell for his help, and in particular for the assistance he gave me in 

reducing the looped diagram to the curves of Sheet 1. 

I also desire to acknowledge the assistance of Mr. Orr for the skill and care with 

which he has drawn the curves on Sheet 1 and figures 19-23 from the photographic 

plates. 

PRESENTED 
40CJ. !j20 
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Vr. The Stress-strain Properties of Nitro-cellulose and the Law of its 

Optical Behaviour. 

By Prof. E. G. Coker, F.R.S., and K. C. Chakko, M.Sc., University College, 
London. 

Received September 22, 1919,—Read January 22, 1920. 

The physical characteristics of transparent bodies capable of resisting stress have 

been the subject of much investigation, and in particular the properties of various 

glasses^ have been studied with much thoroughness since these latter have an 

extensive use both for commercial and scientific purposes. 

In recent years many new forms of optical materials have found an industrial use, 

and especially nitro-cellulose compounds, which are valuable in cases where glass is 

not suitable. 

The mechanical and optical properties of such bodies have not, so far, been examined 

in very great detail, and the present paper describes some experimental evidence 

which has been obtained and which it is hoped to extend as opportunity occurs, since 

this has an important bearing on the study of stress problems arising in engineering 

practice. 

The principal matters which are examined in the present communication are the 

mechanical properties of nitro-cellulose under pure tensile and bending stresses and 

the laws of its optical behaviour under these kinds of stress. In the course of the 

experimental study a considerable number of specimens have been examined, all of 

which are the manufacture of the British Xylonite Company. 

The salient features of the material are its great flexibility and toughness, and the 

ease with which it can be drilled, turned or machined. By suitable adjustment of 

the condition of nitration of the body the hardness of the material can be varied 

through a considerable range, but owing to the difficulties created by the stress of 

war it has not been possible to make this investigation cover materials possessing a 

great range of hardness, and in fact all the specimens taken were originally selected 

* L. N. G. FlLON, “ On the Variation with the Wave-length of the Double Refraction in Strained 

Glass,” ‘Camb. Phil. Soc. Proc.,’ vol. XI., Part VI.; vol. XII., Part I.; and vol. XII., Part V.; see also 

‘ Phil. Trans.,’ A, vol. 207, and ‘ Roy. Soc. Proc.,’ A, vols. 79 and 89. F. Pockels, “ Uber die Aenderung 

des Optischen Verhaltens verschiedener Glaser durch elastische Deformation,” ‘Anna! d. Physik,’ 1902, 

and F. D. Adams and E. G. Coker, “The Cubical Compressibility of Rocks,” ‘Trans. Carnegie Institute.’ 

VOL, CCXXI,-A 586. X [Published October IS, 1920. 
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on account of their transparency and freedom from initial stress. The sheets from 

which the specimens are made differ greatly in age, one has been in stock for at least 

eight years, most of the others have been stored one or more years. 

In order to examine the stress-strain properties of this material it is unnecessary 

to use a very delicate extensometer as the value of the modulus for direct stress is 

comparatively small, and for the purposes of these experiments a very simple form is 

employed consisting of a pair of clips attached respectively to a scale and a pointer, 

which latter slides over the scale and is kept in contact with it by suitable attachments. 

In order to examine the optical properties of the material while under stress, both 

scale and pointer are perforated to give a window opening, and thereby permit a beam 

of polarised light to be transmitted through the specimen under examination. With 

this instrument and special magnifying devices it is possible to estimate extensions 

of O'OO02 inch. 

A preliminary examination of the problem set out above may be described with 

reference to some experiments on a specimen which was originally used in 1911 for 

determining the stresses in a notched tension member.* 

Two bars, each 1 inch wide, were cut, at that time, from a clear plate of xylonite 

inch thick, and each was fashioned with notches of different sizes along the edges. 

One of these specimens has been used for the present test. A length of 6 inches was 

used lor observations of the longitudinal strains, while the lateral strains required for 

determining Poisson's ratio — = a have been measured by aid of a strain-measuring 

apparatus having a unit reading of — inches. Unless otherwise stated these 

latter measurements are in the direction of the thickness of the material. As the 

details of the measuring apparatus and the cylindrical recorder used with it have 

already been describedt they are not referred to further here. 

Longitudinal Extension.—The specimen was examined in the polariscope under a 

moderate load and it was found that the stress was very uniformly distributed over 

a length of 6|- inches, but the remaining part of the parallel portion showed signs of 

unequal stress distribution owing to the enlarged ends. It was therefore marked off 

approximately into half-inch lengths over a total length of 6 inches, the exact 

distance being read to xoVo inches. 

Young’s Modulus.—As it is convenient to start with a load of 20 lbs. on 

the specimen, a preliminary observation is made to determine the corresponding 

extension, and this value is allowed for in subsequent readings for convenience in 

plotting from a zero strain value. 

* E. G. Coker, “The Effects of Holes and Semi-circular Notches on the Distribution of Stress in 

Tension Members,” ‘ Proc. Phys. Soc.,’ 1911. 

t “Photo Elasticity for Engineers,” Gy Prof. E. G. Coker, D.Sc., F.R.S., ‘The Institute of Automobile 

Engineers,’ November, 1917. 
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Six sets of observations are shown in fig. 1, the loads being applied in 20-lb. 

increments. 

The maximum loads vary from 160 lbs. to 200 lbs., and after the strains reach their 

final value the load is again taken to its initial value and the scale read, to note the 

“semi-permanent set.” The time interval between successive loads varies from one to 

two minutes. It is found that the stress-strain readings so obtained are approximately 

linear, except at the highest values, but in order to obtain as correct a value of 

Young’s Modulus, E, as possible only measurements between 40 and 140 lbs. load are 

used, as the readings between these points are considered to be the most reliable. 

The strain corresponding to this difference of stress of 1256 lbs. per sq. inch is 

0'00354 inch giving a value of E = 355,000. 

x 2 
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It will be observed that there is no very pronounced elastic limit, and that the 

curve is nearly straight up to 150 lbs. load (1900 lb./in.2), which latter value may be 

taken as the elastic limit of the material. There is a “ semi-permanent” set of 

0 001 inches for each repetition of load, and a pronounced recovery between successive 

loadings especially with a short period of rest. 

Measurements at Higher Stresses.—The spring balance used to measure the 

moderate loads in the above observations had a maximum capacity of 200 lbs., but for 

the higher stresses required, a balance recording up to 500 lbs. was necessary, 

the observations being made in a similar manner with readings on the magnified 

scale up to 400 lbs. load, and after this coarser readings were taken with the 

telescope. A maximum load of 476 lbs. (6000 lb./in.2) was reached, but as the 

extension then increased very rapidly it was not possible to keep the load at this 

maximum value, moreover, as the stressing frame was of rather limited capacity for 

large strains, the test could not be carried to fracture, although a total extension of 

1*211 inches was obtained. The observations also showed that the permanent 

extension was very uniform from section to section. 

The condition of the material has in fact some resemblance to that of a mild steel 

which has been overstrained and allowed to rest. This is shown by a subsequent 

experiment in which the loading was repeated and the stress-strain properties examined 

anew. It was then found that the elastic limit of the material was still approximately 

at 150 lbs. load, corresponding to a stress of 1900 lbs. per sq. inch, but the modulus E 

had now risen to 502,000, measured in pound and inch units, as a result of the 

overstrain. The relations of load to extension for both conditions are shown in the 

accompanying fig. 2, but as the scales of load and extension are the same for both 

experiments the curve for overstrained material lies below that for unstrained material. 

It may be observed that the material possesses, in a marked degree, the property of 

contraction when the load is removed even when very much overstrained, and in this 

case when the full load of 300 lbs. was removed the semi-permanent extension was only 

0*006 inch, and half of this disappeared with a few minutes rest. 

Observations of lateral strain were also made with a suitable extensometer at several 

sections of the test bar, and their mean value for 100 lbs. load showed a strain of 

0*00144, corresponding to a value of m = * = 2*45 where u is Poisson’s ratio. 
(7 

The value of E is high as later experiments show, and this may possibly be due to an 

ageing effect, as in process of time the material appears to undergo some change, 

especially if the cut surfaces are not highly polished. This may probably be ascribed to 

the escape of a small portion of the volatile constituent of the material. It is also 

worthy of remark that the usual method of polishing appears to produce a thin outer 

layer which is harder than the interior, and this also has the effect of raising the value 

of E in thin specimens. 

The effect of removing this thin layer of hard material has been under observation 
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for some time, but in the experiments described here the flat sides are untouched, and 

the cut edges are unpolished although quite smooth. 

Optical Properties.—There is considerable colour when an over-strained specimen 

is examined under no load in the polariscope. In the parallel part the colour is very- 

uniform, and by comparing this with a previously unstrained specimen under load it 

appears that the permanent colour indicates a complex state of stress, since it could 

not be completely neutralised by a comparison tension piece, nor by bending the 

strained bar itself. 
Ib. 

It may also be noted that nitro-cellulose with good optical properties is not 

apparently procurable, above \ inch thick, and it is difficult therefore to conform to 

the laws of similarity for the test specimens used in this investigation. 

In later experiments the stress-strain properties of the material are examined both 

below and above the elastic limit, and the values of Young’s modulus and Poisson’s 

ratio are measured for a number of specimens of different thickness and varying age. 

Especial attention is also directed to test the validit}’ of the stress-optical law of this 

material since this is a matter of fundamental importance and little attention has so 

far been given to it. 
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The result of breaking the first three specimens showed that the extensometer 

arrangement was defective. The tiny indentations at the sides, where the extenso¬ 

meter was attached, so weakened the specimens that they all broke at one or other of 

these sections. The thinnest one naturally was affected most, so much so that it 

fractured with very little extension. This defect was partly corrected by cementing 

small fillets on to the specimen from which the extensometer clips were supported, but 

in spite of this some of the specimens fractured outside the gauge limits, showing that 

even in a ductile material the effects of enlarged ends prevents equalisation of stress 

near the change of section under any condition of load. 

Stress Optical Determination.—-It was originally intended to study the stress- 

optical properties of nitro-cellulose by analysing the light which traversed the 

material by means of a spectroscope ; but the necessary apparatus was rather 

difficult to procure, and it was convenient therefore to commence with a standard 

nitro-cellulose beam and use this for comparison with the optical phenomena observed 

in tension. The methods adopted here proved to be exceedingly well adapted for 

measurement of stress distribution beyond the elastic limit and are likely to be of 

great use hereafter. The comparison beam used is of rectangular section and is 

subjected to pure bending moment of known amount, and the stress at any point can 

therefore be calculated from the formula f = without appreciable error. 

It is generally assumed that the relative retardation of the polarised rays in a piece 

of optical material under moderate stress is proportional to the difference of principal 

stresses at the point, but this may not be correct and cannot be assumed to hold without 

experimental proof. Hence the stresses in the comparison beam are restricted to small 

values, so that the limit of proportionality of stress to strain is not passed in order to 

give an opportunity of examining the possibility of the law following a linear strain 

function or possibly some more complex variable. In order to make the retardation 

in such a beam sufficiently great to balance the retardation in the highly stressed 

specimens, the thickness of the beam should be large. This is most conveniently 

obtained by placing the several beams side by side, with their ends clamped and pinned 

together, as shown in fig. 3 in which several beams are so fastened together by plates 

A, to which extension levers B are also attached for supporting loads C depending 

from hangers D. This compound beam is supported on knife edges two inches apart, 

and when loaded has its central section sufficiently removed from the supports to give 

pure bending moment at the central section. The material of the beams is almost 

perfectly elastic up to and probably beyond 1600 lb./in.2, but they are actually not 

stressed to more than 1300 lb./in.2. In some cases as many as eight beams ^ inch 

thick are used in this way, and a strong beam of light is then necessary to enable a 

comparison to be made with the tension member under observation. A carbon arc is 

then used as the source of light, but when only two or three thicknesses are 

employed the light from a Nernst lamp is sufficient, but in all cases the images are 
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observed directly by eye instead of projecting on to a screen. The general arrange¬ 

ment of the apparatus is shown in the accompanying fig. 4, in which a plane polarised 

beam of white light from a Nicol’s prism A is transmitted through the tension 

specimen B, to which an extensometer C is secured, and is then focussed by a lens D 

on a horizontal slit in order that the light passing through the comparison beams 

B.mt.due to weight of lever, 
pendant, etc.= z-5 2 lh.“inches 

shall be at the same level throughout. This thin pencil of light is again brought 

to parallelism before passing through the compound beam F and analyser G, and is 

finally focussed on a ruled glass slide H provided with an eye-piece J. The weight 

of the extension beams and hangers causes a bending moment in the beams which 

has been allowed for in all calculations of stress. In order to compare the different 

specimens one with another, an “ equivalent stress ” in each specimen is calculated, 

that is, such a stress as would produce the same relative retardation in a piece of 

nitro-cellulose of the same material as the standard beam, but of the thickness of the 

specimen under observation. Thus if the thickness of specimen is t and the stress in 
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the beam at the points where the colour in the specimen is neutralised is f0 and the 

corresponding thickness is t0, we have the equivalent stress in the specimen . 
t 

Now if M is the bending moment in the beam, d is its depth, and y is the distance 

from the neutral axis, then 

fo = 

so that the equivalent stress 

Mo/ _ My _ 12My 

I fh tyP t0ds 

r __ /A 12M y 
J t td* ‘ 

Although as stated above the law of optical retardation is generally assumed to 

follow a linear law of stress difference, yet there is no apparent reason why it should 

not follow some other law, as for example a linear strain law or possibly contain terms 

involving squares of stress or strain. Some attempt has been made to find if the 

latter assumptions have any foundation, but if so the effects are within the limit of 

experimental error, and too small to be of any significance with the effect produced 

by a linear relation. 

As regards the question whether this relation should be expressed in terms of stress 

or strain, it may be pointed out that an attempt is made here to test this with 

materials under direct stress, and that the validity of the law for combined stresses 

and strains still remains for consideration (apart from lateral strains, which are 

presumed to have no effect beyond altering the length of the path in which retardation 

takes place), but as in this case, if the standard, not stressed beyond the elastic limit 

is compared with another in which this condition is passed the experiments do in fact 

provide a means of discrimination, since in the standard, stress and strain are 

proportional, but are not so in general for the tension member. Hence if the form 

of the law of optical effect is assumed in terms of stress it does not exclude the 

possibility of finding from the experimental evidence whether it should not be 

expressed in terms of strain. We may, therefore, without loss of generality, take as 

an assumption the usual relation that relative retardation R = C (P —Q) Us a con¬ 

venient expression where (P — Q) is the difference of principal stress = f, t is the 

thickness of the material and C is the stress-optical coefficient. 

Let C0 be the stress-optical coefficient of the standard beam. Then R0 = C0<//0 

for this beam. 

When this latter is used to neutralise the retardation R in the specimen, since 

R = R0, we have 

Qft = C 0fot0 

But t = t0, here and therefore 

cf= c0/;. 
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Now in general there is an initial retardation which is independent of any load. 

Let this correspond to stresses F, F0. Then the condition Of = Of becomes 

C(/+F) = C0 (/0 + F0) 

0 . df = C0. df, 

= reciprocal of slope of the stress/equivalent stress, 

M 
which affords a convenient relation for examining the experimental data. 

Turning now to the further experimental data upon the stress-strain properties of 

nitro-cellulose in tension a number of experiments have been made upon material of 

varying age and thickness, and these are plotted in tire accompanying fig. 5, to show 

their characteristic properties under loads which sometimes exceed very considerably 

the elastic limits of the material. 

With the thinnest specimens y1*- inch thick it was not found possible to obtain a 

reliable value of Poisson’s ratio, but Young’s modulus, E, has been found, and the 

measurements plotted in fig. 5 show a characteristic feature that, although the first 

test is carried well beyond the elastic range, as soon as the load is removed a total 

extension of 0*0608 inch is reduced to 0'0070 inch or only 0*001 inch more than 

obtained at the commencement of this test. Moreover the value of the modulus 

changes less than 2 per cent, under these circumstances due to the earlier loading. 

It is also large as the skin effect is pronounced. These general characteristics are 

also observable in the measurements recorded in this figure for much thicker 

material if due allowance is made for the diminished effect of the surface layers. The 

capacity of returning to its original shape after high loads is still more marked in the 

next series of experiments on material ^ inch thick, fig. 6, in which a stress of nearly 

5000 lbs. per sq. inch is reached in the first experiment (curve l) with nearly complete 

recovery, and when further loads with maxima varying from 4000 to 5000 lbs. per 

sq. inch are applied (curves 2 to 8) these give almost identical values of Young’s 

modulus on the straight part of the curve until the ninth loading, where there is a 

sudden fall to E = 261,000 with an extension of 0*1045 inch corresponding to the 

initial load of 20 lbs. After this, with the considerable initial extension of 0*4290 

inch, there is a great rise in the modulus. The value of Poisson’s ratio is very 

constant and is here found to reach the highest value of m = - = 2*7. 
<J 

Succeeding experiments on still thicker material confirm these results, and with 

the exception of the f-inch plate, the load extension curves agree in their linear 

character up to about 2000 lbs. per sq. inch, although the specimens differ in age and 

possibly also in composition. They have, however, the common feature of possessing 

VOL. CCXXI.-A. 

or differentiating, 

therefore 

C 
a 

df; = 
df 

Y 
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excellent optical properties and freedom from initial stress. The thickest plate, 

however, is exceptional, as its optical properties are poor. 

Further experimental work on these materials is almost entirely devoted to the 

examination of the optical law of retardation under load, and for convenience all the 

data which follows is expressed as a stress or a strain, the units being pounds and 

inches, in which e is the strain under direct stress f, and the equivalent stress f, is 

obtained from the comparator beam. A typical example of these values is given in 

Table I., for material ^ inch thick, as these measurements are referred to later for 

comparison with values of stress and strain obtained from spectrum observations. 

Table I. 

I-inch. f-inch. 

e. /• A- e. /• u 

0 0 73 0-0123 3345 3440 
0-0003 160 220 0-0135 3505 3560 
0-0007 319 322 0-0142 3665 3900 
0-0013 478 440 0-0153 3825 4140 
0-0020 637 660 0-0172 3980 4500 
0-0027 797 880 •0-0187 4140 4770 
0-0033 956 1025 0-0208 4300 5100 
0-0037 1115 1173 0-0212 4460 
0-0043 1274 1320 0-0237 4620 
0-0050 1433 1495 0-0287 4780 
0-0055 1594 1642 0-0320 4940 
0-0058 1752 1760 0-0370 5100 
0-0063 1912 1910 0-0553 5260 
0-0070 2070 2050 0-120 5420 , 
0-0077 2230 2200 0-157 5580 
0-0082 2390 2350 0-183 5740 
0-0087 2550 2540 0-247 5900 
0-0095 2710 2310 0-280 6055 
0-0102 2865 2860 0-340 6215 
0-0108 3025 3080 0-357 6375 
0-0117 3185 3230 

In the earlier experiment on the material xg- inch thick, a fracture was obtained 

near the change of section and before the full extension developed, but still very 

nearly at the full load. It is included here (fig. 7) as, although the later parts o± the 

stress-strain curves are not entirely satisfactory, this does not aifect the problem in 

hand, since the .stress-strain curve is not required very much beyond a pronounced 

yield in the material. 

As a purely mechanical problem, however, there is a considerable amount of interest 

attaching to the accurate measurement of stress and strain over the whole of the 

y 2 
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plastic region, and it may be worth while at some future time to examine this with 

some care, especially if optical methods are applied to study the distribution of stress 

in purely plastic materials. 

The stress-strain curves obtained for this thin material show a divergence from a 

linear law above 2000 lbs. per sq. inch whether plotted from the direct load or the 

optical stress measurements, but if the direct stress is plotted against its optical 

equivalent there is a definite linear law extending up to at least 4500 lbs. per sq. 

inch, and with only a small divergence at 5000 lbs. per sq. inch. The results in fact 

go to show that the law of retardation is linear as regards stress not only up to the 

elastic limit but actually to at least twice this range, where it is quite impossible for 

the stiain to be linear. This result is shown in all the experiments on good optical 

material, thus in plates •§■ inch thick where the elastic limit appears to be about 

.^50 lbs. pei sq. inch, fig. 8, the corresponding value for fff(i shows no divergence from 

lineality until nearly double this amount, although the curve of fje ceases to he 

linear at about 2500 pounds per sq. inch. 
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Somewhat similar results are obtained on plates x36 inch thick, but in both 

experiments, fig. 9, the curves of ffe have a rather higher linear limit than the 

corresponding ffe curve, but here again the ratio f/f is still linear to about the 

same range as in previous cases. 

The case of plates \ inch thick, fig. 10, is more especially interesting from the fact 

that the stress-strain curve there shown is, at a later stage, obtained entirely from 

the optical effects observed from an analysis of the spectrum of a beam under 

uniform bending moment. It is sufficient to remark here that the f/f curve shows 

a somewhat lower limit of linearity, although both the other curves have 

corresponding limits of 2000 lbs. per sq. inch. 

When these curves are corrected for the change of cross-section which occurs 

as the test proceeds it is found, as fig. 10 shows, that the stress-strain curve f/e is 

perceptibly raised beyond the elastic limit and therefore tends more towards linearity, 

and the equivalent stress/strain curve is lowered and diverges still, more from the 

linear relation. The stress/equivalent-stress curve has therefore a somewhat higher 

linear limit when this correction is made. Owing to the defective optical properties 

of still thicker material it was not found possible to examine these relations in 

a f-inch plate in a satisfactory manner. 

Fracture.—The behaviour of nitro-cellulose at fracture is somewhat unusual for 

so ductile a material. As the load increases the section diminishes very'uniformly 

at all parts removed from the enlarged ends, but there is little or no local contraction at 

any stage, and even at the fractured section, the cross-section differs but little from 

that at any other part of the bar, but after fracture there is a remarkable contraction 

in the total length accompanied by uniform expansion of the cross-section. This is 

shown in Table II., which gives a summary of the observations made and, except 

for one of the thin specimens and for the reasons given earlier, there is a recovery 

in length of from 6 to 9 per cent, after fracture. Various other measurements 

already described above are recorded here for convenient reference and also some 

ratios of the optical constants. 

Spectrum Analysis of the Stress in a Beam.—The results of the optical 

examination appear to show the truth of the optical stress law for simple stress well 

beyond the elastic limit of the material, but the importance of this fundamental law 

makes it desirable to examine the matter in an independent way and possibly 

by a more rigid test than a comparison beam affords. An investigation of the 

optical phenomena presented by a beam under pure bending moment was made 

therefore on a rectangular strip 22?r inches long, 1'005 inch deep and 0'2542 inch 

thick. Its specific gravity was approximately 1*361, this latter being deter¬ 

mined at a temperature of 64° Fahr. by measurement of its volume and weighing 

in air. 

The beam is supported as before on knife edges 2 inches apart, and the loading is 

applied at each end by dead weights having an overhang of 9f inches. 
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The optical arrangements are modified for the new conditions as shown in the 

accompanying fig. 11. Light from the filament A of a Nernst lamp is focussed on to 

a vertical slit S by aid of a lens B, after passing through a Nicoi/s prism M and 

this narrow band is in turn focussed on the central section of the beam at D, and 

analysed by a second Nicol’s prism N. A lens E placed at a convenient distance 

from the beam transmits this light as a parallel beam to a reflecting prism F, from 

which it passes through prisms G, H. The spectrum so obtained is focussed on a 

glass screen L ruled with lines inch apart, and provided with a micrometer 

eye-piece for measuring the ordinates of the bands observed. 

The field of view consists therefore of the spectrum of a Nernst lamp filament to 

which is added the effect produced by a narrow section of a beam of rectangular cross- 

section under pure bending moment. The relative retardation, owing to this latter 

stress effect, produces black bands in the field having a variable distance apart 

depending on the optical law of the retardation of the wave-length. 

The general disposition of the field of view is shown in the accompanying fig. 12 in 

which bands of the first and second order appear on each side of the neutral 

axis C of the beam, and their co-ordinates are measured by reference to the 

graduations on the glass scale with the aid of a pair of parallel wires D, the positions 

of which can be adjusted vertically by a micrometer head E reading to eoVo inch, 

while complete turns of the screw are obtained from a scale F on the left, which also 

appears in the field of view. In order to calibrate the horizontal scale the Nernst 

lamp and nitro-cellulose beam are removed, the Nicols rotated to parallelism, and a 

beam of solar light focussed on to the slit. The position of lines of known wave- 

VOL. CCXXT.—A. Z 
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length are noted with reference to the horizontal scale, and from these observations the 
c5 . 

constants in the equation 
a B , C 

X\ — -A- + T2+ w 

are found for calibrating the positions of the black bands. 

In the observations it is found that the depth of the beam does not appear quite 

constant throughout the field, an error due to the combined imperfections of the 

lenses and prisms employed. The maximum change of depth is about 2 per cent., and 

a correction is therefore necessary to reduce all vertical distances to a constant depth 

of beam. 

mam 
1 6 o i o *7- 
JlLLL _LL ..1 1 UiJ li i i J-LL1 

Micrometer 
Read 

F bE 1) C 

Fig. 12. View of spectrum. 

The observations made are too numerous to give in detail but typical examples of 

some measurements are shown in the accompanying fig. 13, in which the black bands, 

due to extinction of light, are drawn for a bending moment of 178'3 in pound and inch 

units. This, however, is not the exact appearance of the bands in the field of view 

owing to variation in the wave-length which alters the horizontal scale, but is here 

made uniform for plotting. 

For some calculations, however, it is more convenient to show the form of the bands 

corresponding to a definite wave-length with a varying bending moment. Owing to 

the presence of a small amount of initial retardation in plates of nitro-cellulose, due 

to the method of manufacture, which leaves traces of initial stress, there is generally 

some slight difference between the bands on each side of the neutral axis, and a more 

accurate value is probable if the mean value for the two sides is taken. 

If relative retardation is a linear function of the stress difference, these new 

abscissas will represent the mean stress, but if the strain varies linearly they will also 

represent strains to another scale. 
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Fig. 13. Stress bands in spectrum load - IS lb. B.mt. 178*3 Ib.-inches. 

If then the mean distances of the bands are plotted as ordinates against the order 

of the band as abscissae, fig. 14, a convenient form of diagram OOF is obtained in 

rectangular co-ordinates X, Y, in which Y is the distance from the neutral axis to a 

scale a and f is the stress to a scale (3, or 

y = Y. a ; / = X . j3, say. 

z 2 
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Now the bending moment 
r+id 

M = fb.y.dy 
J -id 

for a breadth = b and a depth = d, or 

M = b . a2. 0 f+* X.Y.dY 
J -u 

= 2 . a2(3 . b x first moment of the area of the diagram about the neutral axis. 

If now any point C on the curve is projected on to the edge line at D and the 

line OD is drawn to the origin of co-ordinates intersecting the horizontal through C 

at E, then 

BE : Y :: AD : AO = X : - , 
2 

or 

XY = BEx - • 
2 

rid 

Hence X . Y . dY represents the area OEFAO x d. 
J-id 

A typical example of one of these diagrams is shown in the accompanying fig. 15, 

of which about forty were actually prepared. The first moment areas M7, as deter¬ 

mined by planimeter measurements, are shown in Table III., and when these are 

divided by the bending moment a value of a2/3b is obtained. If, however, the relative 
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Table III.—First Moments of Stress-strain Curves = M'. 

xh A. 

W = 20 lb. 18 lb. 16 lb. 14 lb. 12 lb. 10 lb. 9 lb. 

M = 198 
lb./in. 

178-3 
lb./in. 

158-7 
lb./in. 

139-2 
lb./in. 

119-6 
lb./in. 

100-0 
lb./in. 

90-2 
lb./in. 

20 4725 46-20 40-30 33-50 29-65 25-60 
25 4925 43-15 38-40 32-15 28 • 65 24-35 — — 

30 5135 41 • 25 36-50 31-80 27-00 23-35 19-95 17-90 
35 5380 39-85 36-40 31-10 25 • 75 21-20 18-25 — 

40 5660 38-00 34-65 28-65 24-00 20-55 17-50 — 

45 6015 36 • 65 31-90 27-85 23-00 19-25 17-00 — 

50 6430 33-50 29-55 25-00 21-15 18-60 15-35 — 

retardation is assumed to be independent of the wave-length, the mean value of 

affords values of /3 corresponding to different wave-lengths. The values of /3 

determined in this way are shown in the accompanying Table IV. 

Table IV. 

*i. A. P. 

20 4725 920 
25 4925 960 
30 5135 1000 
35 5380 1050 
40 5660 1104 
45 6015 1172 
50 6430 1255 

In order to determine the scale of strains the value of Young’s modulus 

E = 309,000, as taken from the measurements in tension within the elastic limit, 

is assumed to hold near the neutral axis of the beam for all loads, and since in this 

region we have the strain e = Y. s, where s is the scale for strains, then 

^ df ($ dX 

E = * . 5?’ 
or 

/3 dX 
S ~E'dY' 

dX 
The slopes ^ near the neutral axis are measured from the diagrams similar 

to those of fig. 15, and their values are shown in the accompanying Table V. 
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multiplied by the values of /3 appropriate to the wave-length. Their mean values 

afford measures of the strains as the table shows. 

Table Y.—Values of 

Xx = 20 
= 25 
= 30 
= 35 
= 40 

= 45 
= 50 

1165 
1167 
1180 
1180 
1196 
1201 
1205 

1012 
1000 
1000 
998 

1032 
996 
997 

805 
810 
810 
840 
848 
838 
831 

681 
672 
670 
657 
657 
656 
677 

589 
581 
572 
559 
563 
563 
564 

473 
466 
468 
479 
467 

435 

Total . . . 8294 7035 5782 4670 3991 2353 435 

Mean . 1185 1005 826 667 570 471 435 I 

Scale of strains 

■ 1 R 8X 
E '' ' SY ‘ 

3-84 x 10~3 3-25 x10-3 2-67 x10“a 2-16 x10-3 1-85 x10-3 1 -52 x10-3 1-39 x10“s 

- x 10~3 
s 

0-260" 0-308" 0-375" 0-463" 0-541" 0-658" 0-720" 

The data afforded by this method is therefore sufficient to construct a stress-strain 

curve entirely from these measurements of the bands due to retardation in the 

spectrum, and if the assumptions are correct, it ought to agree with a similar 

diagram constructed from data obtained independently. The stress-strain diagram 

Table VI.—Stress-strain Values. 

Xi. A.. 

Strains. 

0-002. 0-004. 0-006. 0-008. o-oio. 0-012. 0-014. 

9 

0*016. 0-018. 0-0192. 

20 4725 596 1210 1815 2350 2834 3290 3700 4090 4420 4570 
25 4925 612 1205 1827 2362 2830 3290 3672 4015 4340 4530 

0 30 5135 620 1230 1840 2360 2810 3250 3620 3950 4220 4340 <M 35 5380 629 1258 1855 2390 2850 3280 3644 3980 4270 4400 
11 40 5660 631 1262 1880 2424 2900 3330 3730 4020 4265 4360 

£ 45 6015 647 1271 1860 2420 2910 3255 3765 4130 4450 4610 
50 6430 654 1295 1910 2440 2880 3295 3695 4000 4260 4370 

Mean . 627 1247 1855 2394 2859 3284 3689 4026 4311 4454 
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obtained from spectrum observations gives the following values, of which Table VI. 

is a typical example, from which the mean values are obtained as follows :— 

Strains. 0-001 0-002 0-003 0-004 0-005 0 006 0-007 0-008 

Stresses in lbs. per sq. 
inch. 310 620 920 1240 1540 1845 2135 2400 

Strains. 0 • 009 o-oio 0-011 0-012 0-013 0-014 0-018 0-0192 

Stresses in lbs. per sq. 
inch. 2G65 2890 3055 3285 3460 3680 4310 4455 

Table of mean values 

Fig. 16. Comparison of stress-strain curves. 
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This information lias already been obtained however by observations on precisely 

similar material under direct tension stress, Table II. and fig. 13, and on comparing 

plots of the two sets of data obtained, fig. 16, the agreement is seen to be a remark¬ 

ably close one up to about 3500 lbs. per sq. inch. This agreement is improved if the 

changes in thickness are allowed for, since the corrected curves then lie closer 

together, and strengthen the evidence in favour of the law of optical retardation 

being'1 an effect of stress and not of strain, and also that it is still a linear function 

much beyond the elastic limit of the material. 

The whole of the evidence, in fact, appears to show that the transparent nitro¬ 

cellulose examined obeys a linear stress optical law which holds up to approximately 

twice the range of the elastic limit of stress ; and that within this range optical 

determinations of stress distribution may be relied upon. 

In conclusion we desire to express our grateful thanks for the help afforded in this 

work by the Department of Scientific and Industrial Research, also for valuable 

suggestions from Prof. Filon, F.R.S., and Prof. Porter, F.R.S., during its progress, 

and for the skilful assistance of Mr. F. H. Withycombe in preparing all the 

experimental apparatus required. 
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1. Introduction. 

In the course of an investigation of the effect of surface scratches on {he mechanical 

strength of solids, some general conclusions were reached which appear to have a direct 

bearing on the problem of rupture, from an engineering standpoint, and also on the 

larger question of the nature of intermolecular cohesion. 

The original object of the work, which was carried out at the Royal Aircraft Estab¬ 

lishment, was the discovery of the effect of surface treatment—such as, for instance, 

filing, grinding or polishing—on the strength of metallic machine parts subjected to 

alternating or repeated loads. In the case of steel, and some other metals in common 

use, the results of fatigue tests indicated that the range of alternating stress which 

could be permanently sustained by the material was smaller than the range within 

which it was sensibly elastic, after being subjected to a great number of reversals. 

Hence it was inferred that the safe range of loading of a part, having a scratched or 
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grooved surface of a given type, should be capable of estimation with the help of one 

of the two hypotheses of rupture commonly used for solids which are elastic to fracture. 

According to these hypotheses rupture may be expected if (a) the maximum tensile 

stress, (b) the maximum extension, exceeds a certain critical value. Moreover, as the 

behaviour of the materials under consideration, within the safe range of alternating 

stress, shows very little departure from Hooke’s law, it was thought that the necessary 

stress and strain calculations could be performed by means of the mathematical theory 

of elasticity. 

The stresses and strains due to typical scratches were calculated with the help of 

the mathematical work of Prof. C. E. Inglis,* and the soap-film method of stress 

estimation developed by Mr. G. I. Taylor in collaboration with the present author, f 

The general conclusions were that the scratches ordinarily met with could increase 

the maximum stresses and strains from two to six times, according to their shape and 

the nature of the stresses, and that these maximum stresses and strains were to all 

intents and purposes independent of the absolute size of the scratches. Thus, on the 

maximum tension hypothesis, the weakening of, say, a shaft 1 inch in diameter, due 

to a scratch one ten-thousandth of an inch deep, should be almost exactly the same as 

that due to a groove of the same shape one-hundredth of an inch deep. 

These conclusions are, of course, in direct conflict with the results of alternating 

stress tests. So far as the author is aware, the greatest weakening due to surface 

treatment, recorded in published work, is that given by J. B. Kommers,J who found 

that polished specimens showed an increased resistance over turned specimens of 

45 to 50 per cent. The great majority of published results indicate a diminution in 

strength of less than 20 per cent. Moreover, it is certain that reducing the size of the 

scratches increases the strength. 

To explain these discrepancies, but one alternative seemed open. Either the 

ordinary hypotheses of rupture could be at fault to the extent of 200 or 300 per cent., 

or the methods used to compute the stresses in the scratches were defective in a like 

degree. 

The latter possibility was tested by direct experiment. A specimen of soft iron 

wire, about 0-028-inch diameter and 100 inches long, which had a remarkably definite 

elastic limit, was selected. This was scratched spirally (i.e., the scratches made an 

angle of about 45 degrees with the axis) with carborundum cloth and oil. It was 

then normalised to remove initial stresses and subjected to a tensile load. Under 

these conditions the effect of the spiral scratches was to impart a twist to the wire, 

the twisting couple arising entirely from the stress-system due to the scratches. It 

was found that if the load exceeded a certain critical value, a part of the twist, amounting 

* “ Stresses in a Plate due to the Presence of Cracks and Sharp Corners,” ‘ Proc. Inst. Naval Architects,’ 
March M, 1913. 

f 1 Proc. Inst. Mech. Eng.’ December 14, 1917, pp. 755-809. 

X ‘ Intern. Assoc, for Testing Materials,’ 1912, vol. 4a and vol. 4b. 
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in some cases to 15 per cent., remained after the removal of the load. It was inferred 

that at this critical load the maximum stresses in the scratches reached the elastic 

limit of the material. This load was about one-quarter to one-third of that which 

caused the wire to yield as a whole, so that the scratches increased the maximum 

stress three or four times. The readings were quite definite even in the case of scratches 

produced by No. 0 cloth, which were found by micrographic examination to be but 

10_4-inch deep. Control experiments with longitudinal and circumferential scratches 

gave twists only 2 or 3 per cent, of those found with spiral scratches, and there was no 

permanent twist. 

This substantial confirmation of the estimated values of the stresses, even in very 

fine scratches, shows that the ordinary hypotheses of rupture, as usually interpreted, 

are inapplicable to the present phenomena. Apart altogether from the numerical 

discrepancy, the observed'difference in fatigue strength as between small and large 

scratches presents a fundamental difficulty. 

2. A Theoretical Criterion of Rupture. 

In view of the inadequacy of the ordinary hypotheses, the problem of the rupture 

of elastic solids has been attacked from a new standpoint. According to the well-known 

“ theorem of minimum energy,” the equilibrium state of an elastic solid body, deformed 

by specified surface forces, is such that the potential energy of the whole system* is 

a minimum. The new criterion of rupture is obtained by adding to this theorem the 

statement that the equilibrium position, if equilibrium is possible, must be one in which 

rupture of the solid has occurred, if the system can pass from the unbroken to the 

broken condition by a process involving a continuous decrease in potential energy. 

In order, however, to apply this extended theorem to the problem of finding the 

breaking loads of real solids, it is necessary to take account of the increase in potential 

energy which occurs in the formation of new surfaces in the interior of such solids. 

It is known that, in the formation of a crack in a body composed of molecules which 

attract one another, work must be done against the cohesive forces of the molecules 

on either side of the crack.f This work appears as potential surface energy, and if 

the width of the crack is greater than the very small distance called the ‘‘ radius of 

molecular action,” the energy per unit area is a constant of the material, namely, its 

surface tension. 

In general, the surfaces of a small newly formed crack cannot be at a distance 

apart greater than the radius of molecular action. It follows that the extended 

theorem of minimum energy cannot be applied unless the law connecting surface 

energy with distance of separation is known. 

* Poynting and Thomson, £ Properties of Matter,’ ch. xv. 

f The potential energy of the applied surface forces is, of course, included in the “ potential energy, 

of the system.” 

2 A 2 
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There is, however, an important exception to this statement. If the body is such 

that a crack forms part of its surface in the unstrained state, it is not to be expected 

that the spreading of the crack, under a load sufficient to cause rupture, will result in 

any large change in the shape of its extremities. If, further, the crack is of such a 

size that its width is greater than the radius of molecular action at all points except 

very near its ends, it may be inferred that the increase of surface energy, due to the 

spreading of the crack, will be given with sufficient accuracy by the product of the 

increment of surface into the surface tension of the material. 

The molecular attractions across such a crack must be small except very near its 

ends ; it may therefore be said that the application of the mathematical theory of 

elasticity on the basis that the crack is assumed to be a traction-free surface, must 

give the stresses correctly at all points of the body, with the exception of those near 

the ends of the crack. In a sufficiently large crack the error in the strain energy so 

calculated must be negligible. Subject to the validity of the other assumptions involved, 

the strength of smaller cracks calculated on this basis must evidently be too low. 

The calculation of the potential energy is facilitated by the use of a general theorem 

which may be stated thus : In an elastic solid body deformed by specified forces applied 

at its surface, the sum of the potential energy of the applied forces and the strain energy 

of the body is diminished or unaltered by the introduction of a crack whose surfaces are 

traction-free. 

This theorem may be proved* as follows : It may be supposed, for the present purpose, 

that the crack is formed by the sudden annihilation of the tractions acting on its surface. 

At the instant following this operation, the strains, and therefore the potential energy 

under consideration, have their original values ; but, in general, the new state is not 

one of equilibrium. If it is not a state of equilibrium, then, by the theorem of minimum 

energy, the potential energy is reduced by the attainment of equilibrium ; if it is a state 

of equilibrium the energy does not change. Hence the theorem is proved. 

Up to this point the theory is quite general, no assumption having been introduced 

regarding the isotropy or homogeneity of the substance, or the linearity of its stress- 

strain relations. It is necessary, of course, for the strains to be elastic. Further 

progress in detail, however, can only be made by introducing Hooke’s law. 

If a body having linear stress-strain relations be deformed from the unstrained state 

to equilibrium by given (constant) surface forces, the potential energy of the latter is 

diminished by an amount equal to twice the strain energy.f It follows that the net 

reduction in potential energy is equal to the strain energy, and hence the total decrease 

in potential energy due to the formation of a crack is equal to the increase in strain 

energy less the increase in surface energy. The theorem proved above shows that the 

former quantity must be positive. 

* The proof is due to Mr. C. Wigley, late of the Royal Aircraft Establishment. 

I A. E. H. Love, ‘Mathematical Theory of Elasticity,’ 2nd ed., p. 170. 
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3. Application of the Theory to a Cracked Plate. 

The necessary analysis may be performed in the case of a flat homogeneous isotropic 

plate of uniform thickness, containing a straight crack which passes normally through 

it, the plate being subjected to stresses applied in its plane at its outer edge. 

If the plate is thin, its state is one of “ plane stress,” and in this case it may, without 

additional complexity, be subjected to any uniform stress normal to its surface, in 

addition to the edge tractions. If it is not thin, it may still be dealt with provided it is 

subjected to normal surface stresses so adjusted as to make the normal displacement 

zero. Here the plate is in a state of “plane strain.” The equations to the two states 

are of the same form,* differing only in the value of the constants ; they will therefore 

be taken together. 

The strain energy may be found, with sufficient accuracy, in the general case where 

the edge-tractions are arbitrary ; it is necessary in the present application, however, 

for the resulting stress-system to be symmetrical about the crack, as otherwise it is 

not obvious that the latter will remain straight as it spreads. The only stress 

distribution which will be considered, therefore, is that in which the principal stresses 

in the plane of the plate, at points far from the crack, are respectively parallel and 

perpendicular to the crack, and are the same at all such points. This is equivalent 

to saying that, in the absence of the crack, the plate would have been subjected to 

uniform principal stresses in and perpendicular to its plane. It is also necessary, on 

physical grounds, for the stress perpendicular to the crack and in the plane of the plate 

to be a tension, otherwise the surfaces of the crack are forced together instead of being 

separated, and they cannot remain free from traction. 

In calculating the strain energy of the plate use will be made of the solution obtained 

by Prof. Inglis for the stresses in a cracked plate, to which reference has already been 

made. The notation of Prof. Inglis’s paper will be employed. In that notation 

a, (3, are elliptic co-ordinates defined by the family of confocal ellipses ; a — const, 

and the orthogonal family of hyperbolae /3 = const. The crack is represented by the 

limiting ellipse or focal line a — 0. The axis of x coincides with the major axes, and 

the axis of y with the minor axes of the ellipses. The cartesian co-ordinates x, y, are 

connected with the elliptic co-ordinates a, /3, by the relation 

x -f iy — c cosh (a + i/3). 

Raa, ua, are the tensile stress and displacement respectively along the normal to 

a — const. 

R^, are the corresponding quantities in the case of the normal to (3 — const. 

Sa3 is the shear stress in the directions of these normals, 

c is the half-length of the focal line. 

* A. E. H. Love, ‘ Mathematical Theory of Elasticity,’ 2nd ed., p. 205. 
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h is the modulus of transformation V c2 (cosh 2a — cos 2(3) 

fx\ is the modulus of rigidity of the material. 

E is Young’s modulus. 

a- is Poisson’s ratio. 

p = 3 — 4 <j in the case of plane strain, and 

3 — or 

i + 
- in the case of plane stress. 
<T 

The state of uniform stress existing at points far from the crack (i.e. where a is 

large) will be specified by the three principal tensions P, Q and R. P is normal to the 

plate, and in the case of plane stress it is the same everywhere. Q and It are parallel 

respectively to the axes of x and y, and It is positive. 

The strain energy of the plate is a quadratic function of P, Q and It, and hence, in 

accordance with the theorem proved above, the increase of strain energy due to the 

crack must be a positive quadratic function of P, Q and It. The general form of this 

function may be found by evaluating a sufficient number of particular cases. 

The following particular cases are sufficient:— 

I.—Q = It (and P = 0 in the case of plane stress). 

Boundary of crack given by a = a0. 

The stresses are 

R„„ = 

R w 

p sinh 2a (cosh 2a — cosh 2a0) 

(cosh 2a — cos 2(3f 

p sinh 2a (cosh 2a + cosh 2a,-, — 2 cos 2/3) 

(cosh 2a — cos 2(3f 

(1) 

a _ -n sin 2(3 (cosh 2a — cosh 2a0) 

(cosh 2a — cos 2/3)2 

. . (2) 

(3) 

while the displacements are given by 

u* 

h 

cTl 

8/x {(P 1) cosh 2a — (p + 1) cos 2/3 + 2 cosh 2a0} 

Up 

h 
= 0 

• (4) 

The strain energy of the material within the ellijise a, per unit thickness of plate is 
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On substituting and integrating, it is found that, as « becomes large, the strain 

energy tends towards the value 

{2 (P — x) e2“ -f (3 — p) cosh 2,4.(6) 
o/u 

Hence W, the increase of strain energy due to the cavity a0, is given by 

-nvH?2 
W = —— (3 — p) cosh 2a0.(7) 

8 yU 

or, on proceeding to the limit, a0 = 0, 

\y — (3 — p) ttc2R2.^ 
8 jU. 

for a very narrow crack of length 2c. 

II. —R = 0 (= P in the case of plane stress) a0 — 0. 

Here the stresses are entirely unaltered by the crack, at every point of the plate 

except the two points x = dz c, ij = 0, where R«« — — Q. It follows that W = 0. 

III. —Q = R = 0, = 0. 

Here, again, the stresses are unaltered, and W = 0. 

The only positive quadratic function of P, Q and R which is compatible with these 

three particular cases is that given by equation (8) ; this is therefore the general form 

of W, and rupture is determined entirely by the stress R, perpendicular to the crack. 

A point of some interest, with regard to equation (8), may be noticed in passing. 

Since W cannot be negative it follows that, in real substances,' where is positive, 

3 — p must be positive. Hence «t cannot be negative in real isotropic solids. 

The potential energy of the surface of the crack, per unit thickness of the plate is 

U = 4cT.(9) 

where T is the surface tension of the material. 

Hence the total diminution of the potential energy of the system, due to the presence 

of the crack, is 

W - U = (3 ~ & 7rC"B'2 - 4cT.(10) 
8// 

The condition that the crack may extend is 

1 (W - U) = 0. 
dC 

or 

(3 — p) xcR2 = 16/xT,.. . (11) 
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so that the breaking stress is 

in the case of plane strain, and 

(12) 

(13) 

in the case of plane stress. 

Formula (13) has been verified experimentally. In connection with the experiments, 

interest attaches not only to the magnitude of R, but also to the value of the maximum 

tension in the material, which occurs at the extremities of the crack. This stress may 

be estimated if the radius of curvature of the boundary of the crack, at the points in 

question, can be found. 

Expression (2) gives the maximum tension as 

-•i: \J-.(u) 
P 

in case I. above, p being the radius of curvature at the corners of the elliptic crack. 

Prof. Inglis shows that this expression may also be used, with little error, for cracks 

which are elliptic only near their ends. The foregoing expressions for the stresses 

are obtained, however, on the assumption that the displacements are everywhere so 

small that their squares may be neglected. At the corner of a very sharp crack, it 

cannot be assumed, without proof, that the change in p leaves formula (14) substantially 

unaffected. 

In the case under consideration the displacements at the surface of the crack, due to 

a small tension (?R at distant points, are given by 

Wa 

h 

c2dR 

E 
(cosh 2a0 — cos 2/3) 

u 0 _ 

h 
= 0 

(15) 

J 

Whence, by resolution, the displacements parallel respectively to the major and minor 

axes are 

2dR 

which may be written 

Ux E 
c sinh a0 cos (3 

2dR 
(16) 

uy = c cosh a0 sin /3 
iii 

2dR . , 
ux = —pr x tanh a0 

2dU 
u„ E IJ coth a0 j 

(17) 
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Equations (17) show that the effect of the small stress dR on the elliptic cavity is to 

deform it into another ellipse. If a and b are the major and minor semi-axes of the 

ellipse, when the plate is subjected to a stress R, then, by (17), 

da _2b i 

dR ~ E I 

db_ _ 2a \ 

dR ~ Ej 

on making use of the relation b = a tanh a„. 

The solution of these simultaneous differential equations is 

, 2R . , . , 2R 1 
a = a0 cosh — + o0 smh^=- i 

Jli ili 

& = % sinh —-- + b0 cosh— 

(18) 

(19) 

where a0 and b0 are the values of a and b in the unstrained state. 

With the help of equations (19) it is possible to find the maximum stress, F, due to 

an applied stress, R, taking account of the change in the shape of the cavity. From (2) 

whence 

dF _2 a 
dR~^b 

F = 2 
,K a0 cosh sinh ^jpdR 

2R 
io a, sinh ^ -j- 6n cosh ~ 

E E 

(20) 

= E log (cosh 
2R 
E 

■^2 sinh 
2R\ 
E /’ 

(21) 

and in the case of a narrow crack which is elliptic only near its ends, ~ may, as in (14), 
On 

be replaced by ,\Jfi. 

In the general case, where Q is not equal to R, the quantity R — Q must be added 

to the value of F given by (21). 

Formulae (19) and (21) are not, of course, exactly true. The application of integration 

to equations (18) and (20) involves the assumption that the strains are so small that 

they can be superposed. If the strains are finite, this involves an error in the stresses 

depending on the square of the strains. In the case of ordinary solids, it is improbable 

that this assumption can alter the calculated stress by as much as 1 per cent. 

vol. ccxxi.—a. 2 B 
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4. Experimental Verification of the Theory. 

In order to test formula (13), it was necessary to select an isotropic material which 

obeyed Hooke’s law somewhat closely at all stresses, and whose surface tension at 

ordinary temperatures could be estimated. For these reasons glass was preferred to 

the metals in common use. A comparatively hard English glass,* having the following 

properties, was employed :•—- 

Composition—-Si02, 69-2 per cent. ; K20, 12-0 per cent. ; Na20, 0-9 per cent. ; 

A1203, 11-8 per cent. ; CaO, 4-5 per cent. ; MnO, 0-9 per cent. 

Specific gravity—2-40. 

Young’s modulus—9-01 X 106 lbs. per sq. inch. 

Poisson’s ratio—0-251. 

Tensile strength—24,900 lbs. per sq. inch. 

The three last-named quantities were determined by the usual tension and torsion 

tests on round rods or fibres about 0-04-inch diameter and 3 inches long between the 

gauge points. The fibres had enlarged spherical ends which were fixed into holders 

with sealing wax. A slight load was applied while the wax was still soft, to ensure 

freedom from bending. The possible error of the extension measurements was about 

dz 0-3 per cent., and Hooke’s law was obeyed to this order of accuracy. No “ elastic 

after-working ” was observed with this glass, though more accurate measurements 

would doubtless have indicated its existence. 

The problem of estimating the surface tension of glass, in the solid state, evidently 

requires special consideration. Direct determinations appeared to be impracticable, 

and ultimately an indirect method was decided on, in which the surface tension was 

found at a number of high temperatures and the value at ordinary temperatures deduced 

by extrapolation. 

On the accepted theory of matter, intermolecular forces in solids and liquids consist 

mainly of two parts, namely, an attraction which increases rapidly as the distance 

between the molecules diminishes, balanced by a repulsion (the intrinsic pressure), 

which is due to the thermal vibrations of the molecules. It is reasonable to assume 

that the attraction, at constant volume, is sensibly independent of the temperature ; 

this amounts merely to supposing that the attraction exerted by a molecule does not 

depend on its state of motion. On this view, the temperature variation, at constant 

volume, of the intermolecular forces is determined entirely by the change in thermal 

energy. Hence, it may be inferred, on the accepted theory of surface tension,f that 

the surface tension of a material, at constant volume, is equal to a constant diminished 

by a quantity proportional to the thermal energy of the substance. In the case of 

solids, nearly the same result should hold at constant pressure, as the temperature- 

volume change is small. 

* Supplied in the form of test-tubes by Messrs. J. J. Griffin, Kingsway, London, 

f Poynting and Thomson, 1 Properties of Matter,’ ch. xv. 
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The specific heat of glass is greater at high than at low temperatures, but the 

temperature coefficient is not large. Hence its surface tension may be expected to be 

nearly a linear function of the temperature, and extrapolation should be fairly reliable. 

This was found to be the case with the glass selected for the present experiments. 

In the neighbourhood of 1100° C. the surface tension was found by Quincke’s drop 

method. At lower temperatures this method was not satisfactory, on account of the 

large viscosity of the liquid glass; but between 730° C. and 900° C. the method described 

below was found to be practicable. Fibres of glass,‘about 2 inches long and from 

0-002-inch to 0-01-inch diameter, with enlarged spherical ends, were prepared. These 

were supported horizontally in stout wire hooks and suitable weights were lnmg on 

their mid-points. The enlarged ends prevented any sagging except that due to 

extension of the fibres. The whole was placed in an electric resistance furnace main¬ 

tained at the desired temperature. Under these conditions viscous stretching of the 

fibre occurred until the suspended weight was just balanced by the vertical components 

of the tension in the fibre. The latter was entirely due, in the steady state, to the surface 

tension of the glass, whose value could therefore be calculated from the observed sag 

of the fibre. In the experiments the angle of sag was observed through a window in 

the furnace by means of a telescope with a rotating cross wire. If w is the suspended 

weight, d the diameter of the fibre, T the surface tension, and 6 the angle at the point 

of suspension between the two halves of the fibre, then, evidently, 

x . d . T . sin = w. 

For this method of determining the surface tension to be valid, it is evidently necessary 

that the angle of sag shall reach a steady value before the development of local 

contractions, arising from the instability of liquid cylinders, becomes appreciable. 

That this requirement is satisfied is shown by the following experimental results. After 

heating for two hours at about 750° C. the angle of sag of a particular fibre was 18°-25. 

Two hours later it had increased by less than 0°-l. The temperature was then raised 

momentarily to 940° C., and quickly reduced again to 750° C. The angle was then 

found to be 20°-2. After two hours further heating at 750° C. the angle had decreased 

to 18°-4, agreeing within permissible limits of error with the former value. That 

is to say, substantially the same limiting angle of sag was reached whether the initial 

angle was above or below that limit. 

Above 900° C. it was found that the viscosity was insufficient to enable an observation 

to be made before the fibre commenced to break up into globules. Below 730° C., on 

the other hand, observations made on fibres of different diameters were inconsistent, 

the apparent surface tension being higher for the larger fibres. The obvious meaning 

of this result is that below 730° C. the glass used was not a perfect viscous liquid and 

hence the method was inapplicable. The transition from the viscous liquid state was 

quite gradual. The maximum tension (apart from surface tension) which could be 

permanently sustained, was zero at 730° C., 1-3 lbs. per sq. inch at 657° C., and 24 lbs. 

2 b 2 
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per sq. inch at 540° C. At lower temperatures the rates of increase, both of this “ solid 

stress ” and the viscosity, were enormously greater. At 540° C. a fibre took about 

70 hours to reach the steady state. 

Table I. below gives the values of the surface tension obtained from these experiments. 

That for the temperature 1110° C. is the mean of five determinations by the drop 

method. The remaining figures were obtained from the sag of fibres. 

Tabl# I.—Surface Tension of Glass. 

Temperature. Surface Tension. 

0 C. lb. per inch. 
1110 0-00230 
905 0-00239 
896 0-00250 
852 0-00249 
833 0-00254 
820 0-00249 
801 0-00257 
760 0-00255 
745 0-00251 

15 0-0031* 

So far as they go, these figures confirm the deduction that the surface tension of glass 

is approximately a linear function of temperature. Moreover, as the actual variation 

is not great, the error involved in assuming such a law and extrapolating to 15° C. is 

doubtless fairly small. The value so obtained, 0-0031 lb. per inch, will be used in 

the present application. 

Rigorously, expressions (13) and (21) above are true only for small cracks in large 

flat plates. In view, however, of the difficulties attendant on annealing and loading 

large flat glass plates, it was decided to perform the breaking tests on thin round tubes 

and spherical bulbs. These were cracked and then annealed and broken by internal 

pressure. The calculation cannot be exact for such bodies, but the error may obviously 

be reduced by increasing the ratio of the diameter of the bulb or tube to the length of 

the crack. It will be seen from the results of the tests that the variation of this ratio 

from two to ten caused little, if any, change in the bursting strength, and hence it may 

be inferred that the error in question is negligible for the present purpose. 

The cracks were formed either with a glass-cutter’s diamond, or by scratching with 

a hard steel edge and tapping gently. The subsequent annealing was performed by 

heating to 450° C. in a resistance furnace, maintaining that temperature for about 

one hour, and then allowing the whole to cool slowly. The question of the best annealing 

temperature required careful consideration, as it was evidently necessary to relieve the 

* By extrapolation. 
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initial stresses due to cracking as much as possible, while at the same time keeping the 

temperature so low that appreciable deformation of the crack did not occur. It was 

found that the bursting strength increased with the annealing temperature up to about 

400° C., while between 400° C. and 500° C. very little further change was perceptible. 

From this it was inferred that relief of the initial stresses was sufficient for the purpose 

in view at a temperature of 450° C. 

The principal stresses at rupture, Q and R, were calculated from the observed 

bursting pressure by means of the usual expressions for the stresses in thin hollow 

spheres and circular cylinders, the thickness of the glass near the crack being measured 

after bursting. In the case of the tubes the cracks were parallel to the generators, 

and provision was made for varying Q by the application of end loads. 

In dealing with the longer cracks, leakage was prevented by covering the crack on 

the inside with celluloid jelly, the tube being burst before the jelly hardened. In the 

case of the smaller cracks leakage was imperceptible and this precaution was unnecessary. 

The time of loading to rupture varied from 30 seconds to five minutes. No evidence 

was observed of any variation of bursting pressure with time of loading. 

The results of the bursting tests are set down in Tables II. and III. below. 2c is 

the length of the crack, Q and R are the calculated principal stresses respectively 

Table II.—Bursting Strength of Cracked Spherical Bulbs. 

2c D Q R R Jc. 

inch. inch. lbs. per sq. inch. lbs. per sq. inch. 
0-15 1*49 864 864 237 
0-27 1-53 623 623 • 228 
0-54 1-60 482 482 251 
0-89 2-00 366 366 244 

Table III.—Bursting Strength of Cracked Circular Tubes. 

2c D Q R R Jr.. 

inch. inch. lbs. per sq. inch. lbs. per sq. inch. 
0-25 0-59 -621 678 240 
0-32 0-71 -176 590 232 
0-38 0-74 - 31 526 229 
0-28 0-61 55 655 245 
0-26 0-62 202 674 243 
0-30 0-61 308 616 238 

parallel and perpendicular to the crack, and D is the diameter of the bulb or tube. 

The thickness of the bulbs was about 0-01 inch and the tubes 0-02 inch. 
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The average value of R y/c is 239, and the maximum 251. 

According to the theory, fracture should not depend on Q, and R \/c should have, 

at fracture, the constant value 

In the case of the glass used for these experiments, E = 9-01 X 10c lbs. per sq. inch, 

T = 0-0031 lbs. per inch, and o- = 0-251, so that the above quantity is equal to 266. 

These conclusions are sufficiently well borne out by the experimental results, save 

that the maximum recorded value of R y/c is 6 percent., and the average 10 percent., 

below the theoretical value. It must be regarded as improbable that the error in the 

estimated surface tension is large enough to account for this difference, as this view 

would render necessary a somewhat unlikely deviation from the linear law. 

A more probable explanation is to be obtained from an estimate of the maximum 

stress in the cracks. An upper limit to the magnitude of the radius of curvature at 

the ends of the cracks was obtained by inspection of the interference colours shown 

there. Near the ends a faint brownish tint was observed, and this gradually died out, 

as the end was approached, until finally nothing at all was visible. It was inferred 

that the width of the cracks at the ends was not greater than one-quarter of the shortest 

wave length of visible light, or about 4 X 10-6 inch. Hence p could not be greater 

than 2 X 10-B inch. 

Taking as an example the last bulb in Table II. and substituting in formula (21), it 

is found that 

2R 

E 
= 8-13 X 10~'\ 

whence the maximum stress F > 344,000 lbs. per sq. inch. The value given by the 

first order expression 

F = 2R a /c 
V P 

is 350,000 lbs. per sq. inch. 

A possible explanation of the discrepancy between theory and experiment is now 

evident. In the tension tests, the verification of Hooke’s law could only be carried 

to the breaking stress, 24,900 lbs. per sq. inch. There is no evidence whatever that 

the law is still applicable at stresses more than ten times as great. It is much more 

probable that there is a marked reduction in modulus at such stresses. But a decrease 

in modulus at any point of a body deformed by given surface tractions involves an 

increase in strain energy, and therefore in the foregoing experiments a decrease in 

strength. This is in agreement with the observations. 
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5. Deductions from the Foregoing Results. 

The estimate of maximum stress obtained above appears to lead to a peremptory 

disproof of the hypothesis that the maximum tension in this glass, at rupture, is always 

equal to the breaking stress in ordinary tensile tests. If Hooke’s law was obeyed to 

rupture, and the squares of the strains were negligible, the maximum tension in the 

above cracked tube could not have been less than 344,000 lbs. per sq. inch ; but, in 

the tensile tests, Hooke’s law was obeyed up to the breaking stress, the squares of 

the strains were negligible, and the maximum stress was only 24,900 lbs. per sq. inch. 

Hence the stresses could not have been the same in the two cases. Moreover, 

the order of the results obtained suggests (though this is not rigorously proved, 

as the assumptions have not been checked at stresses above 24,900 lbs. per sq. 

inch) that the actual strength may be more than ten times that given by the 

hypothesis. 

Similar conclusions may be drawn regarding the “ maximum extension,” “ maximum 

stress-difference ” and “ maximum shear strain ” hypotheses which have been proposed 

from time to time for estimating the strength of brittle solids. 

These conclusions suggest inquiries of the greatest interest. If the strength of this 

glass, as ordinarily interpreted, is not constant, on what does it depend ? What is 

the greatest possible strength, and can this strength be made available for technical 

purposes by appropriate treatment of the material ? Further, is the strength of other 

materials governed by similar considerations ? 

Some indication of the probable maximum strength of this glass may be obtained 

from the bursting tests already described. There is no reason for supposing that, in those 

tests, the radii of curvature at the corners of the cracks were as great as 2X10-6 inch. 

It is much more likely that they were of the same order as the molecular dimensions. 

Considering, as before, the last bulb in Table II., and putting p = 2xl0~8inch 

in formula (21), it is found that the maximum stress, F, is about 3X106 lbs. per 

sq. inch. Elastic theory cannot, of course, be expected to apply with much accuracy 

to cases where the dimensions are molecular, on account of the replacement of 

summation by integration, and the probable diminution of modulus at very high 

stresses must involve a further error. Taking these circumstances into consideration, 

however, it may still be said that the probable maximum strength of the glass used 

in the foregoing experiments is of the order 106 lbs. per sq. inch. 

It is of interest to enquire at this stage whether there is any reason for ascribing 

similar maximum strengths to other materials. On the molecular theory of matter 

the tensile strength of an isotropic solid or liquid is of the same order as, though less 

than, its “ intrinsic pressure,” and may therefore be estimated either from a knowledge 

of the total heat required to vaporise the substance or by means of Van der Waal’s 

equation.* It may be noted that these methods of estimating the stress indicate that 

* Poynting and Thomson, ‘ Properties of Matter,’ ch. xv. 
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it should be, approximately at least, a constant of the material. Traube* gives the 

following as the intrinsic pressures of a number of metals, at ordinary temperatures :■— 

Table IV.—Intrinsic Pressures of Metals (Traube). 

Metal. Intrinsic Pressure. 

Nickel. 
lbs. per sq. inch. 

4-71 x 106 
Iron. 4-70 X 106 
Copper . 3-42 x 106 
Silver . 2-34 X 106 
Antimony. 1-74 x 106 
Zinc. 1*58 X 106 
Tin. 1-06 X 106 
Lead. 0-75 X 10fl 

These are of the same order as the direct estimate obtained above for glass, but they 

are from 20 to 100 times the strengths found in ordinary tensile and other mechanical 

tests. 

In the case of liquids, the discrepancy between intrinsic pressure and observed tensile 

strength is much greater. According to Van der Waal’s equation, water has an 

intrinsic pressure of about 160,000 lbs. per sq. inch, whereas its tensile strength is found 

to be about 70 lbs. per sq. inch. It has been suggested that this divergence may be 

due to impurities, such as dissolved air, but Dixon and Jolv|* have shown that dissolved 

air has no measurable effect on the tensile strength of water. 

Thus the matters under discussion appear to be of general incidence, in that the 

strengths usually observed are but a small fraction of the strengths indicated by the 

molecular theory. 

Some further discrepancies between theory and experiment may now be noticed. 

In the theory it is assumed that rupture occurs in a tensile test at the stress corresponding 

with the maximum resultant pull which can be exerted between the molecules of the 

material. On this basis the applied stress must have a maximum value at rupture, 

and hence, if intermolecular force is a continuous function of molecular spacing, the 

stress-strain diagram must have zero slope at that point. This, of course, is never 

observed in tensile tests of brittle materials ; in no case has any evidence been obtained 

of the existence of such a maximum anywhere near the breaking stress. 

Again, the observed differences in strength as between static and alternating stress 

tests are at first sight inexplicable from the standpoint of the molecular theory, if the 

* * Zeitschr. fur Anorganische Chemie,’ 1903, vol. xxxiv., p. 413. 

f ‘ Phil. Trans.,’ B, 1895, p. 568. 
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breaking load is regarded as the sum of the intermolecular attractions. According to 

the theory, large changes in the latter can only occur as a result of large changes in 

the thermal energy of the substance, such as would be immediately evident in alternating 

stress tests, if they took place. 

Lastly, as indicated above, the strain energy at rupture of an elastic solid or liquid 

should on the molecular theory be of the same order as its heat of vaporisation. Hence 

rupture should be accompanied by phenomena, such as a large rise of temperature, 

indicative of the dissipation of an amount of energy of this order. It is well known 

that tensile tests of brittle materials show no such phenomena. 

If, as is usually supposed, the materials concerned are substantially isotropic, there 

is but one hypothesis which is capable of reconciling all these apparently contradictory 

results. The theoretical deduction—that rupture of an isotropic elastic material always 

occurs at a certain maximum tension—is doubtless correct; but in ordinary tensile 

and other tests designed to secure uniform stress, the stress is actually far from uniform 

so that the average stress at rupture is much below the true strength of the material. 

Now it may be shown, 'with the help of elastic theory, that the stress must be 

substantially uniform, in such tests, unless the material of the test-pieces is heterogeneous 

or discontinuous. It is known that all substances are in fact discontinuous, in that 

they are composed of molecules of finite size, and it may be asked whether this type 

of discontinuity is sufficient to account for the observed phenomena. 

With the help of formula (13) above, this question may be answered in the negative. 

Formula (13) shows that a thin plate of glass, having in it the weakest possible crack of 

length 2c inch, will break at a tension, normal to the crack, of not less than 266J\/clbs. 

per sq. inch. This result, however, is subject to certain errors, and experiment 

shows that the true breaking stress is about 240/\/c lbs. per sq. inch. But such a 

crack is the most extreme type, either of discontinuity or heterogeneity, which can 

exist in the material. Hence it is impossible to account for the observed strength, 

24,900 lbs. per sq. inch, of the simple tension test specimens, unless they contain 

discontinuities at least 2 X 
/ 240 \8 
\24,900/ 

inch, or say, 2 X 10-4 inch wide. This is of 

the order 10-4 times the molecular spacing. 

The general conclusion may be drawn that the weakness of isotropic solids, as 

ordinarily met with, is due to the presence of discontinuities, or flaws, as they may be 

more correctly called, whose ruling dimensions are large compared with molecular 

distances. The effective strength of technical materials might be increased 10 or 20 

times at least if these flaws could be eliminated. 

It is easy to see why the presence of such small flaws can leave the strength of cracked 

plates, such as those of the foregoing experiments, practically unaffected. The most 

extreme case of weakening is that where there is a flaw very near the end of the crack 

and collinear with it. Here the result is merely to increase the effective length of the 

crack by less than 10-3 inch. This involves a weakening of less than 0-l per cent. 

2 c VOL. CCXXI.-A. 
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6. The Strength of Thin Fibres. 

Consideration of the consequences of the foregoing general deduction indicated that 

very small solids of given form, e.g., wires or fibres, might be expected to be stronger 

than large ones, as there must in such cases be some additional restriction on the size 

of the flaws. In the limit, in fact, a fibre consisting of a single line of molecules must 

possess the theoretical molecular tensile strength. In this connection it is, of course, 

well known that fine wires are stronger than thick ones, but the present view suggests 

that in sufficiently fine wires the effect should be enormously greater than is observed 

in ordinary cases. 

This conclusion has been verified experimentally for the glass used in the previous 

tests, strengths of the same order as the theoretical tenacity having been observed. 

Incidentally, information of interest has been obtained, somewhat unexpectedly, 

concerning the genesis of the flaws, and it has been found to be possible to prepare 

quite thick fibres in an unstable condition in which they have the theoretical strength. 

Fibres of glass, about 2 inches long and of various diameters, were prepared. One 

end of a fibre was attached to a stout wire hanging on one arm of a balance, and the 

other end to a fixed point, the medium of attachment being sealing wax. A slight 

tension was applied while the wax was still soft, in order to eliminate bending of the 

fibre afc the points of attachment. The other arm of the balance carried a beaker into 

which water was introduced from a pipette or burette. The weight of water necessary 

to break the fibre was observed, and the diameter of the latter at the fracture was 

found by means of a high-power measuring microscope. Hence the tensile strength 

was obtained. 

At first the results were extremely irregular, though the general tendency of the 

strength to increase with diminishing diameter was clear. It was found that the 

irregularities were due to the dependence of the strength on the following factors — 

(1) The maximum temperature of the glass.—To secure the best results it was found 

necessary to heat the glass bead to about 1400° C. to 1500° C. before drawing the fibre. 

(2) The temperature during drawing.—-If the glass became too cool before drawing 

was complete, a weak fibre was obtained. This temperature could not be very closely 

defined, but it is perhaps the same as the limiting temperature of the viscous liquid 

phase, namely, 730° C. This effect made the drawing of very fine fibres a matter of 

some difficulty, as the cooling was so rapid. 

(3) The presence of impurities and foreign bodies. 

(4) The age of the fibre.—For a few seconds after preparation, the strength of a 

properly treated fibre, whatever its diameter, was found to be extremely high. Tensile 

strengths ranging from 220,000 to 900,000 lbs. per sq. inch were observed in fibres up 

to about 0-02 inch diameter. These strengths were estimated by measuring the radii 

to which it was necessary to bend the fibres in order to break them. They are therefore 

probably somewhat higher than the actual tenacities. The glass appeared to be 
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almost perfectly elastic up to these high stresses. The strength diminished, however, 

as time went on, until after the lapse of a few hours it reached a steady value whose 

magnitude depended on the diameter of the fibre. 

Similar phenomena have been observed with other kinds of glass, and also with fused 

silica. 

The relation between diameter and strength in the steady state was investigated in the 

following manner. Fibres of diameters ranging from 0 • 13 X 10-3 inch to 4 • 2 X 10-3 inch, 

and 6 inches long, were prepared by heating the glass to about 1400° C. to 1500° C. in 

an oxygen and coal-gas flame and drawing the fibre by hand as quickly as possible. 

The fibres were then put aside for about 40 hours, so that they might reach the 

steady state. The test specimens were prepared by breaking these fibres in tension 

several times until pieces about 0 • 5-inch long remained ; these were then tested by 

the balance method already described. The object of this procedure was the 

elimination of weak places due to minute foreign bodies, local impurities and other 

causes. 

Table V. below gives the results of these tests. Diameters are in thousandths of 

an inch, and breaking stresses in lbs. per sq. inch. 

Table V.—Strength of Glass Fibres. 

Diameter. Breaking Stress. Diameter. Breaking Stress. 

! 0-001 inch. lbs. per sq. inch. 0-001 inch. lbs. per sq. inch. 
40-00 24,900* 0-95 117,000 
4-20 42,300 0-75 134,000 
2-78 50,800 0-70 164,000 
2-25 64,100 0-60 185,000 
2-00 79,600 0-56 154,000 
1-85 88,500 0-50 195,000 
1-75 82,600 0-38 232,000 
1 • 40 85,200 0-26 332,000 
1-32 99,500 0-165 498,000 
1-15 88,700 0-130 491,000 

It will be seen that the results are still somewhat irregular. No doubt more precise 

treatment of the fibres would lead to some improvement in this respect, but such 

refinement is scarcely necessary at the present stage. 

The limiting tensile strength of a fibre of the smallest possible (molecular) diameter 

may be obtained approximately from the figures in Table Y. by plotting reciprocals 

of the tensile strength and extrapolating to zero diameter. This maximum strength 

is found to be about 1*6 X 106 lbs. per sq. inch, which agrees sufficiently well with 

the rough estimate previously obtained from the cracked plate experiments. 

* From the tensile tests previously described. 

2 c 2 
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In 1858, Karmarsch* found that the tensile strength of metal wires could be repre¬ 

sented within a few per cent, by an expression of the type 

p=A+! (22) 

where d is the diameter and A and B are constants. In this connection it is of interest 

to notice that the figures in Table V. are given within the limits of experimental error 

by the formula 

F = 22,400 
4.4 -f- d 

0.06 + d 
(23) 

where F is in lbs. per sq. inch and d is in thousandths of an inch. Within the range 

of diameters available to Karmarsch, this expression differs little from 

F = 22,400 + 
98,600 

d 
5 

(24) 

which is of the form given by Karmarsch. Moreover, the values of B found by him 

for the weaker metals, e.g., silver and gold, in the annealed state, are of the same order 

as that given by formula (24) for glass. 

To a certain extent this correspondence suggests that the mechanism of rupture, as 

distinct from plastic flow, in metals, is essentially similar to that in brittle amorphous 

solids such as glass. 

The remarkable properties of the unstable strong state referred to on p. 180 above 

are exhibited most readily in the case of clear fused silica. If a portion of a rod about 

5 mm. diameter be made as hot as possible in an oxyhydrogen flame, and then drawn 

down to, say, 1 mm. or less and allowed to cool, the drawn-down portion may be bent 

to a radius of 4 or 5 mm. without breaking, and if then released will spring back almost 

exactly to its initial form. If instead of being released it is held in the bent form it 

will break spontaneously after a time which usually varies from a few seconds to a 

few minutes, according to the degree of flexure. To secure the best results the drawing 

should be performed somewhat slowly. 

When fracture occurs it is accompanied by phenomena altogether different from those 

associated with the fracture of the normal substance. The report is much louder and 

deeper than the sharp crack which accompanies the rupture of an ordinary silica or 

glass rod, and the specimen is invariably shattered into a number of pieces, parts being 

frequently reduced to powder. This shattering is not confined to the highly stressed 

drawn-out fibre ; it usually occurs also in the unchanged parts of the original thick 

rod and sometimes in the free ends, which are not subjected to the bending moment. 

The experiment is most striking, for it appears at first sight that the 5 mm. rod has 

been broken by a couple applied through the fibre, which may be only 0-5 mm. in 

* 1 Mittlieilungen des gew. Yer. fur Hannover,’ 1858, pp. 138-155. 
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diameter. As a matter of fact, however, the shattering is probably merely one of the 

means of dissipating the strain energy of the strong fibre, which at fracture is perhaps 

10,000 times that of silica in the ordinary weak state. An elastic wave is doubtless 

propagated from the original fracture, and the stresses due to this wave shatter the 

rod. 

Confirmation of this view is obtainable if the fibre is broken by twisting instead of 

by bending. The thick part of the rod is in this case found to contain a number of 

spiral cracks, at an angle of about 45° to the axis, showing that the material has broken 

in tension, but the cracks run in both right- and left-handed spirals, so that the surface 

of the rod is divided up into little squares. This shows that the cracking must be due 

to an alternating stress, such as would result from the propagation of a torsional wave 

along the rod. 

Another phenomenon which has been observed in these fibres is that fracture at any 

point appears to cause a sudden large reduction in the strength of the remaining pieces. 

Thus, in one case a glass fibre was found to break in bending at an estimated stress 

of 220,000 lbs. per sq. inch. One of the pieces, on being tested immediately afterwards, 

broke at about 67,000 lbs. per sq. inch. 

7. Molecular Theory of Strength Phenomena. 

From the engineering standpoint the chief interest of the foregoing work centres 

round the suggestion that enormous improvement is possible in the properties of 

structural materials. Of secondary, but still considerable, importance is the demon¬ 

stration that the methods of strength estimation in common use may lead in some cases 

to serious error. 

Questions relating to methods of securing the indicated increase in tenacity, or of 

eliminating the uncertainty in strength calculations, can scarcely be answered without 

some more or less definite knowledge of the way in which the properties of molecules 

enter into the phenomena under consideration. In this connection it is of interest to 

enquire whether any indication can be obtained of the nature of the properties which 

are requisite for an explanation of the observed facts. 

For this purpose it is convenient to start with molecules of the classical type, whose 

properties may be defined as {a) a central attraction between each pair of molecules 

which decreases rapidly as their central distance increases, and which depends only on 

that distance and the nature of the molecules ; (6) translational and possibly rotational 

vibrations whose energy is the thermal energy of the substance. In the unstrained 

state, the kinetic reactions due to (b) balance the central attractions (a). 

In a‘body composed of such molecules, the flaws which have been shown to exist 

in real substances might consist of actual cracks. But experiment shows that under 

certain conditions the strength of glass diminishes with lapse of time. On the 

present hypothesis this would require the potential energy of the system to increase 



184 MR. A. A. GRIFFITH ON 

spontaneously by the amount of the surface energy of the cracks. This view must 

therefore be regarded as untenable. 

Again, the observed weakening might conceivably occur if at any instant the vibrations 

of a large number (at least 108) of near molecules synchronised and were in phase, 

provided the energy of these molecules was approximately that corresponding with 

the temperature of ebullition of the substance. Except in the case of a material very 

near its boiling point, the probability of such an occurrence must be so small as to be 

quite negligible. Hence this hypothesis also must be discarded. 

The foregoing discussion seems to suggest that the assumed type of molecule is too 

simple to permit of the construction of an adequate theory. An increase in generality 

may be obtained by supposing that the attraction between a pair of molecules depends 

not only on their distance apart, but also on their relative orientation. The properties 

of crystals seem definitely to require the molecules of anisotropic materials to be of 

this type, but those of isotropic substances have usually been assumed to be of the 

simpler kind. In view of the author, however, molecular attraction must be a function 

of orientation even in substances, such as glass, metals and water, which are usually 

referred to as “ isotropic.” 

Consider a solid made up of a number of such molecules, initially oriented at random. 

Doubtless the mechanical properties of the substance, wdiile it is in this amorphous 

condition, will differ little from those of a substance composed of molecules of the 

simpler type, having an attraction of appropriate strength. If this is so, the tensile 

strength of the material must be that corresponding with its average intrinsic pressure. 

In general, however, this initial condition cannot be one of minimum potential 

energy. 

It is clear that under suitable conditions the tendency to attain stable equilibrium 

can cause the molecules to rotate and set themselves in chains or sheets, with their 

maxima of attraction in line. The formation of sheets will commence at a great number 

of places throughout the solid, i.e., wherever the initial random arrangement is sufficiently 

favourable. Evidently it is possible for the number of such “ sufficiently favourable ” 

arrangements to be enormously less than the total number of molecules, so that the 

ultimate result will be the formation of a number of units or groups, each containing 

a large number of molecules oriented according to some definite law. The relative 

arrangement of the units will, of course, be haphazard. 

Now, in each unit there will, in general, be a direction which is, approximately at 

least, that of the minimum attractions of the majority of the molecules in the unit. 

Hence if rhe ratio of the maximum to the minimum attractions is sufficiently great, 

each unit can constitute a “ flaw,” and there aj)pears to be no reason why the units 

should not be as large as the flaws have been shown to be in the case of glass. Thus, 

in order to explain the spontaneous weakening of glass, it is only necessary to suppose 

that the thermal agitation at about 1400° C. is sufficient to bring about the initial 

random formation. 
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It will be remembered that in the case of the freshly drawn fibres the reduction in 

tenacity required several hours for completion, so that the time taken was large 

compared with the time of cooling. Expressed in terms of molecular motion, this 

means that the molecules resist rotation very much more than they resist translation. 

This is in keeping with the conclusions of Debye,* who found that, on the basis of the 

quantum theory, the phenomena associated with the specific heat of solids could be 

explained only if the thermal vibrations of the molecules were regarded as practically 

irrotational. The same thing is shown more roughly, without introducing the quantum 

theory, by the law of Dtjlong and Petit, which requires that each molecule shall 

have only three degrees of freedom. 

The theory here put forward makes the spontaneous weakening a consequence of 

the attainment of a molecular configuration of stable equilibrium ; it therefore suggests 

that the weakening should be accompanied, in general, by a change in the dimensions 

of the solid. This has been verified by direct observation with a high-power microscope ; 

in the course of half an hour a spontaneously weakening glass fibre increased in length 

by about 0*1 per cent., while the length of a silica fibre decreased by about 0-03 per 

cent. 

On account of the random arrangement of the molecular groups, this spontaneous 

change in unstrained volume must set up internal stresses, which may be sufficiently 

large to start cracks along the directions of least strength. In this connection it may 

be mentioned that irregularly shaped pieces of glass, of which some parts had been 

put into the strong unstable state by heating, have sometimes been observed to break 

spontaneously about an hour after cooling was practically complete. 

It was remarked on p. 184 that cracks could not form spontaneously in a substance 

composed of molecules having spherical fields of force, as the process would involve 

an increase in potential energy. This is no longer true when the attraction is a function 

of orientation, as the surface energy of the cracks may be more than counterbalanced 

by the decrease in potential energy accompanying the molecular rearrangement. 

For this reason, it is impossible to deduce the ratio of the maximum to the minimum 

molecular attractions from the ratio of the maximum and minimum strengths of the 

material, as it is possible that the spontaneous weakening is always accompanied by 

the formation of minute cracks, of the same size as the molecular groups. 

It is probable that, in many cases, the most stable orientation of the molecules at 

a free surface is that in which their maxima of attraction lie along the surface. Such 

an orientation would in turn lead to a similar tendency on the part of the next layer 

of molecules, and so on, the tendency diminishing with increasing distance from the 

surface. There would therefore be a surface layer having the special property that in it 

the “ flaws ” ran parallel to the surface. 

Hence this layer would be of exceptional strength in the direction of the surface. 

This suggests a reason for the experimental fact that the breaking load of wires and 

* ‘ Ann. der Physik,’ 39 (1912), p. 789. 
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fibres consists mainly of two parts, one proportional to the area, and the other to the 

perimeter of the cross-section. The process of drawing, too, might predispose the 

molecules to take up positions with their maxima of attraction parallel to the surface. 

If a perfectly clean glass plate be covered with gelatine and set aside, the gelatine 

gradually contracts, and as it does so it tears from the glass surface thin flakes up to 

about 0-06-inch diameter and shaped like oyster shells.* This tendency to flake at 

the surface is also observed when glass is broken by bending. This was particularly 

well shown in the specially prepared fibres used for the experiments described in the 

present paper. In almost all cases of flexural fracture the crack curled round on 

approaching the compression side, till it was nearly parallel to the surface. On two 

occasions the fracture divided before changing direction, the two branches going 

opposite ways along the fibre and a flake of length several times the diameter of the 

fibre was detached. 

Surface flaking is also observed when some kinds of steel are subjected to repeated 

stress. Here the flakes are usually very small. 

All these facts are evidently in complete agreement with the “ surface layer ” theory 

and, indeed, it is difficult to account for them on any other basis. 

8. Extended Application of the Molecular Orientation Theory. 

On the basis of the present theory, the physical properties of materials must be 

intimately related to the geometrical properties of the molecular sheet-formation. In 

order that a substance may exhibit the characteristic properties of crystals, it is clearly 

necessary for the sheets of molecules to be plane. In this case the crystals are, of 

course, the molecule groups or “ units ” referred to above. In “ amorphous ” materials, 

on the other hand, the sheets are probably curved.f 

In materials of the former type, there must exist planes on which, if they are subjected 

to a sufficiently large shearing stress, the portions on either side of the planes can undergo 

a mutual sliding through a distance equal to any integral multiple of the molecular 

spacing, without fundamentally affecting the structure of the crystal. It is well known 

that the phenomenon of yield in crystals, and especially in metals, is of this nature. 

The planes in question are, of course, the well-known “ gliding planes,” and it is further 

possible that they may be identified also with the •surfaces of least attraction. The 

stress at which gliding occurs in a single crystal must be determined in the following 

manner. The molecules of a crystal are normally in a configuration of stable equilibrium, 

and if two parts of the crystal slide on a gliding plane through one molecular space the 

resulting configuration is also stable. Between these two positions there must, in 

general, be one of higher potential energy, in which the equilibrium is unstable, and the 

shearing stress is determined by the condition that the rate at which work is done, in 

* Lord Rayleigh, ‘ Engineering,’ 1917, vol. 103, p. Ill, and H. E. Head, ‘ Engineering,’ 1917, vol. 103, 
p. 138. 

f See Quincke, ‘ Ann. der Physik,’ (4), 46, 1915, p. 1025. 
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sliding from the stable to the unstable state, must be equal to the greatest rate of 

increase in potential energy which occurs during the passage between the two states. 

This rate will depend on the shape of the molecular fields of force, and may in particular 

cases be zero. Liquid crystals are doubtless of this type. The average shear stress, 

during yield, of a random aggregation of a large number of crystals, is doubtless greater 

than that of a single crystal, as the angle between the gliding planes and the maximum 

shear stress must vary from crystal to crystal and can be zero in only a few of them. 

As the mutually gliding portions of a crystal pass from the stable to the unstable 

state, the molecular cohesion between them (normal to the gliding plane) must, in 

general, become less. In particular instances it may diminish to zero before the 

position of unstable equilibrium is reached. In these cases, shearing fracture along 

the gliding planes will occur, unless the material is subjected to a sufficiently high 

“ hydrostatic ” pressure, in addition to the shearing stress. Thus, a crystalline 

substance may be either ductile or brittle, according to nature of the applied stress, 

or it may be ductile at some temperatures and brittle at others, under the same kind 

of stress as has been actually observed by Bengough and Hanson in the case of tensile 

tests of copper. This rupture in shear explains the characteristic fracture of short 

columns of brittle crystalline material under axial compression. The theory indicates 

that such fracture can always be prevented and yield set up by applying sufficient 

lateral pressure in addition to the longitudinal load ; this is in agreement with experi¬ 

ments on rocks such as marble and sandstone.* Conversely, a ductile substance might 

be made brittle if it were possible to apply to it a sufficiently large hydrostatic tension. 

In the case of an alloy of, say, two metals A and B, suppose, as an example, that the 

sequence of molecules on either side of a gliding plane is 

.A.B.B.A.B.B 

B.B.A.B.B.A. 

Let sliding occur (through one molecular space) to an adjoining position of stable 

equilibrium, or, say, to the configuration 

.A.B.B.A.B.B. 

. B . B . A . B . B . A — 

Evidently, the structure in the neighbourhood of the gliding plane is in this case no 

longer the same as in the original crystal formation. It is therefore likely that the 

new state is one of higher potential energy, whence it is reasonable to suppose that 

the maximum rate of increase in potential, in sliding, is greater than it would have 

been had the potential of the two states been the same. Thus an alloy may be expected 

to have a higher yield-point than its most ductile constituent. This is in accordance 

with experience. For example, it is known that quenching from a high temperature 

* T. V. Karman, ' Zeitschr. Ver. Deutsch. lug.,’ 55, 1911. 
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hardens tool steel by preventing the separation of “ ferrite,” or iron containing no 

carbon. 

In a single crystal the molecules are presumably in an equilibrium configuration of 

maximum stability. In this event, the equilibrium of molecules at or near inter- 

crystalline boundaries, in a body composed of a large number of crystals, must, in 

general, be less stable than that of the molecules in the interior of the crystals. In 

fact, where the orientation of the component crystals is haphazard, the stability of 

the boundary molecules may be expected to range from the maximum of normal 

crystallisation down to zero, i.e., neutral equilibrium. If such a body be subjected 

to a shear stress, some of the molecules in or near neutral equilibrium must, in general, 

become unstable, and these will tend to rotate to new positions of equilibrium. This 

rotation, however, will be strongly resisted, as has been seen, by forces doubtless of 

a viscous nature, and its amount will accordingly depend on the time during which 

the stress is applied. If, therefore, the strain is observed it will be found to increase 

slowly as time goes on, but at a constantly decreasing rate, as the molecules concerned 

approach equilibrium. If now the load is removed, these molecules must rotate in 

order to regain their original positions of equilibrium, and this process in turn will be 

retarded by viscous forces. Hence a small part of the observed strain will remain 

after the removal of the load, and this mil gradually disappear as time goes on. These 

properties, known as “ elastic after-working,” are, of course, well known to belong 

to crystalline materials. Moreover, the theory shows that they should not be possessed 

by single crystals, and this has been demonstrated experimentally.* 

There is a special type of gliding or yield which may occur at stresses below the 

normal yield point. Consider a pair of adjacent crystals, separated by a plane boundary. 

If these crystals are thought of as sliding relatively to each other, it will be seen that 

only in a finite number of the positions so taken up can the two be in stable equilibrium. 

Between each pair of such positions there must in general be one of unstable equilibrium. 

Suppose that, while near such an unstable position, the two crystals are embedded in 

a number of others. Under these conditions the boundary molecules of the two crystals 

will be pulled over in the direction of one or other of the two adjoining stable positions, 

and they will strain the solid in the process. If now the body is subjected to a shearing 

stress tending to cause relative displacement of the two crystals towards the other 

stable position, then at a certain value of this stress the molecules on either side of the 

boundary mil be wrenched away, will pass through the position of instability, and will 

then take up a new position bearing the same relation to the second stable position 

as their original state did to the first. This new condition will, of course, persist after 

the removal of the load, as the original state cannot be regained without passing through 

unstable equilibrium, i.e., a condition of maximum potential energy. To cause the 

crystals to pass through this condition it would be necessary to apply a load of opposite 

sign, and in this way the process might be repeated indefinitely. In a body composed 

* H- v. Wartenberg, £ Deutsch. Phys. Gesell., Verb.,’ 20, pp. 113-122, August 30, 1918. 
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of a large number of crystals there must be many arrangements of this type, in which 

adjacent crystals can execute inelastic oscillations about positions of unstable equilibrium, 

under alternating shear stresses below the ordinary yield stress. The consequent 

observed phenomena would correspond exactly with those known to be manifested 

in metals, under the name “ elastic hysteresis.”* 

Experimentally, elastic hysteresis is distinguished from elastic after-working by the 

circumstance that it is completed very much more quickly. This is just what would 

be expected theoretically, on the view that molecular translation occurs much more 

readily than rotation. 

It has been remarked that when a single crystal of a pure substance is caused to 

yield, its structure is fundamentally unaltered. This cannot hold, however, in the 

case of an aggregate of a large number of crystals arranged at random, or a crystal 

embedded in amorphous material. True, the material in the interior of each crystal 

can retain its original properties, but near the crystalline boundaries the structure 

must be violently distorted. As a result, it may be expected that the number of the 

molecules of inferior stability will be largely increased. Elastic after-working in metals 

should therefore be increased by overstraining or “ cold-working.” This, again, agrees 

with experience. 

The foregoing considerations lend support to the view that each crystal of a severely 

cold-worked piece of metal is surrounded by an amorphous layer of appreciable 

thickness. If such a piece of metal undergoes a shear strain greater than that which 

can initiate yield in the normal crystalline substance, the average stress which is set 

up must be above the normal yield stress, for the part due to the amorphous layers 

must be the elastic stress corresponding with the strain, and this, by hypothesis, is 

greater than the yield stress. This part, moreover, will increase with the strain. It 

follows that yield in cold-worked metal should be less sharply defined, and should occur 

at a higher shear stress than in the normal crystalline variety. That this is actually 

the case is, of course, well known. 

In the case of very large strains an important part of the shear stress must be taken 

by the amorphous boundary layers, and as a result the maximum tensile stress may 

reach a value sufficient to cause rupture of some favourably disposed crystals across 

their planes of least strength. This is, perhaps, the actual mode of rupture in ductile 

materials. On this view, the “ ductility ” of a metal depends simply on the relation 

between the tensile strength of the “ flaws ” and the normal yield stress. A substance 

whose ductility is small may still be “ malleable,” as hammering need not give rise 

to large tensile stresses. 

The formation of non-crystalline material at the intercrystalline boundaries, when a 

piece of metal is over-strained, appears to provide an explanation of the sudden drop 

in stress which occurs immediately after the initiation of yieldf in ductile metals. 

* Guest and Lea, “ Torsional Hysteresis of Mild Steel,” ‘ Roy. Soc. Proc., A, June, 1917. 

f Robertson and Cook, * Roy. Soc. Proc.,’ A, vol. 88, 1913, pp. 462^71. 

2d2 
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Remembering that the surface tension of a substance is the work done in forming unit 

area of new surface, it will be seen that the tension of any surface of a crystal must 

depend on the angle it makes with the crystal axis. Thus the surface tension parallel 

to the planes of least strength must be less than that in any other direction. 

Consequently, in a body composed of a number of crystals there must exist a mutual 

surface tension at each intercrystalline boundary. Now, the theory of surface tension 

shows that the magnitude of such a mutual tension is greatly diminished by making the 

transition between the two bodies more gradual. Hence the formation of the amorphous 

boundary layer involves a reduction in the surface energy of the crystals, and this is 

shown in the experiments by a drop in the stress. If this account of the phenomenon is 

complete, the drop in stress must be determined by the condition that the loss of strain 

energy equals the reduction in surface energy. The mechanism of the process appears 

to be that the breaking up of the boundary, which must accompany yield, is resisted 

by the surface tension, and yielding therefore requires a higher stress for its initiation 

than for its maintenance. 

According to this view, the loss of strain energy should be inversely proportional to 

the linear dimensions of the crystals. Hence the results of different experiments should 

show considerable variation in the magnitude of the drop in stress. This is actually the 

case ; a single series of experiments on mild steel, by Robertson and Cook, gave drops 

varying from 17 per cent, to 36 per cent., while in other experiments as little as 7 per 

cent, has been observed. 

In the above series of experiments the average loss of strain energy was about 

12 inch-lbs. per cubic inch. Assuming, for simplicity, that the crystals were cubes, 

of, say, 0-001-inch side (which is a fair value for well-treated mild steel), the area of the 

intercrystal surface was 3000 sq. inches per cubic inch. These figures give the average 

intercrystal surface tension as 0-004 lbs. per inch. This is certainly of the right order 

of magnitude. 

Many of the phenomena discussed above will be more complicated, in practice, if 

the coefficient of expansion of the crystals is not the same in all directions. In such 

an event, internal stresses will be set up in cooling, on account of the random arrangement 

of the crystals, and these stresses must be taken into consideration in applying the theory. 

There remains for consideration the problem of the fracture of metals under alternating 

stress. It is known that fatigue failure occurs as the result of cracking after repeated 

slipping on gliding planes, and the theory has been advanced* that this cracking is due 

to repeated to and fro sliding and consequent attrition and removal of material from 

the gliding planes. This theory presents some difficulties, in that it does not explain 

how the attrition can occur, or the method of disposing of the debris. 

A theory which is free from these objections may be constructed if it is supposed 

that a change in volume occurs on the passage of the metal from the crystalline to the 

amorphous state. This assumption is, of course, known to be valid for many substances. 

* Ewing and Humfrey, ‘ Phil. Trans.,’ A, 1902, p. 200. 
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at their melting points, but at lower temperatures there seems to be no definite 

information available. 

This assumption being granted, suppose that a piece of material which contracts on 

decrystallising is being subjected to a stress cycle just sufficient to cause repeated 

slipping in the most favourably disposed crystals. As a result, the material at the 

boundaries of these crystals will become amorphous, and the quantity of amorphous 

material will increase continuously as long as the repeated slipping goes on. But, by 

hypothesis, the unstrained volume of the amorphous phase is less than the space it 

filled when in the crystalline state. Hence all the material in the immediate neigh¬ 

bourhood will be subjected to a tensile stress, and as soon as this exceeds a certain 

critical value a crack will form. It has been observed above that the application of 

a sufficiently large hydrostatic tension may be expected to make a ductile substance 

brittle. Hence the crack may occur either in tension or in shear, according to the 

properties of the material and the nature of the applied stress. Further alternations 

of stress will cause this crack to spread until complete rupture occurs. This theory 

makes the limiting safe range of stress equal to that which just fails to maintain 

repeated sliding in the most favourably disposed crystals. 

It may be asked why such cracking does not take place in a static test where the 

quantity of amorphous material, once yield has fairly started, is presumably much 

greater. The answer to this is two-fold. In the first place, if the material becomes 

amorphous round all, or nearly all, the crystals of a piece of metal, it is evident that it 

will contract as a whole and no great tensile stress will be set up. In the case where 

only a few crystals yield, the tension arises from the rigidity of the unchanged surrounding 

metal. 

In the second place, even if some crystals do crack, the cracks will not, in general, 

tend to spread through the ductile cores of the neighbouring crystals, unless the applied 

load is alternating, on account of the equalisation of stress due to yield. 

The safe limit of alternating stress will usually be less than the apparent stress 

necessary to initiate yield in a static test, on account of initial stresses, including those 

due to unequal contraction of the crystals. 

The theory indicates that the cracking of the first crystal marks a critical point in 

the history of the piece. At any earlier stage the effects of the previous loading may 

be removed by heat treatment, or possibly by a rest interval, but once a crack has 

formed this cannot be done. True, the tension may be relieved and the ruptured 

crystal may even be compressed somewhat, but this cannot, in general, close the crack, 

as cracking is not a “ reversible ” operation. An exception may occur if the top 

temperature of the heat-treatment is sufficient to bring the molecules on either side 

of the crack within mutual range by thermal agitation, but it is unlikely that this 

can happen save in the case of very small cracks. 

If this theory is correct, it appears at first sight that the phenomenon of fatigue 

failure must be confined to substances which contract on decrystallising. This, however 
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is not necessarily so. If. for instance, a small thickness of material at the interface 

between two crystals were to increase in volume, it could not be said without proof 

that tensile stresses would not be set up thereby, in addition to compressions. In 

some cases, in fact, it is obvious that there must be tensions. Thus, if the outer layer 

of a sphere increases in volume, the matter inside must be subjected to a tensile stress. 

The effect of overstrain on the density of metals is at present under investigation 

at the Royal Aircraft Establishment. The work is not yet sufficiently complete for 

detailed publication, but it may be mentioned here that the expected change in density 

has been found, and that the results already obtained are such as to leave little room 

for doubt that this change is in fact the cause of fatigue failure in metals. Thus, in 

overstraining mild steel by means of a pure shearing stress, a decrease in average 

density of as much as 0-25 per cent, has been observed. 

Some progress has also been made in the direction of estimating the internal stresses 

set up as a result of the change in density, and it has been found that an average change 

of the magnitude mentioned above could give rise to a hydrostatic tensile stress in the 

cores of the crystals, of the order of 30,000 lbs. per sq. inch. 

Dealing now with materials whose molecular sheet-formations are curved, it is at 

once evident that all yield, or slide, phenomena must be absent, as possible gliding 

planes do not exist. Thus, this case, though geometrically more complicated, is 

practically much simpler than that in which the sheets are plane. The theoretical 

properties of materials having the curved type of formation appear to correspond 

exactly with those known to belong to brittle “ amorphous ” substances. Exactly 

as in the case of crystalline materials, elastic after-wmrking is explained by the inferor 

stability of molecules near the boundaries of the units of molecular configuration, but 

elastic hysteresis should not occur. If adequate precautions are taken to avoid secondary 

tensile stresses, fracture of short columns in compression should occur at stresses of an 

altogether higher order than in the case of crystals. In this connection it may be 

remarked that the compressive strength of fused silica is about 25 times as great as 

its ordinary tensile strength. 

It appears from the foregoing discussion that the molecular orientation theory is 

capable of giving a satisfactory general account of many phenomena relating to the 

mechanical properties of solids, though closer investigation udll perhaps show- that 

•the agreement is in some cases superficial only. Such questions as the effects of unequal 

cooling, foreign inclusions and local impurities, and the behaviour of mixtures of 

different crystals, have not been dealt with ; it is thought that these are matters of 

detail wfhose discussion cannot usefully precede the establishment of the general 

principles on which they depend. 

9. Practical Limitations of the Elastic Theory. 

It is now possible to indicate the directions in which the ordinary mathematical 

theory of elasticity may be expected to fail when applied to real solids. 
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It is a fundamental assumption of the mathematical theory that it is legitimate to 

replace summation of the molecular forces by integration. In general this can only 

be true if the smallest material dimension, involved in the calculations, is large compared 

with the unit of structure of the substance. In crystalline metals the crystals appear, 

from the foregoing investigation, to be anisotropic and they must therefore be regarded 

as the units of structure. Hence the theory of isotropic homogeneous solids may 

break down if applied to metals in cases where the smallest linear dimension involved 

is not many times the length of a crystal. 

Similar considerations apply to solids such as glass, save that here the units of 

structure are probably curved. 

The most important practical case of failure is that of a re-entrant angle or groove. 

Here the theory may break down if the radius of curvature of the re-entering corner 

is but a small number of crystals long. An extreme instance is that of a surface 

scratch, where the radius of curvature may be but a fraction of the length of the 

crystals. 

In the case of brittle materials the general nature of the effect of scratches on strength 

may be inferred from the theoretical criterion of rupture enunciated in section 2 above. 

Whether the material be isotropic or anisotropic, homogeneous or heterogeneous, it is 

necessary on dimensional grounds that the strain energy shall depend on a higher power 

of the depth of the scratch than the surface energy. It follows that small scratches 

must reduce the strength less than large ones of the same shape. Hence, where the 

tenacity of the material, under “ uniform ” stress, is determined by the presence of 

“ flaws,” it must always be possible to find a certain depth of scratch whose breaking 

stress is equal to that of the flaws. Evidently such a scratch can have no influence 

on the strength of the piece. Deeper scratches must have some weakening effect, 

which must increase with the depth, until in the limit the strength of very large grooves 

may be found by means of the elastic theory and the appropriate empirical hypothesis 

of rupture. 

In the case of ductile metals, the effect of scratches is important only under alternating 

or repeated stresses. On the theory advanced in the preceding section, fatigue failure 

under such stresses is determined by phenomena which occur at the intercrystalline 

boundaries. Hence the strength of a scratched piece is fixed, not by the maximum 

stress range in the corner of the scratch, but by the stress range at a certain distance 

below the surface. This distance cannot be less than the width of one crystal, and it 

may be greater. Elastic theory suggests that the stress due to a scratch falls off very 

rapidly with increasing distance from the re-entrant corner, so that the relatively small 

effect of scratches in fatigue tests is readily explained. 

Possibly many published results bearing on this matter depend more on initial skin 

stresses than on sharp corner effects. 
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10. Methods of Increasing the Strength of Materials. 

The most obvious means of making the theoretical molecular tenacity available for 

technical purposes is to break up the molecular sheet-formation and so eliminate the 

“ flaws.” In the case of crystalline material this has the further advantage of eliminating 

yield and probably also fatigue failure. 

In materials which normally have curved sheets, the molecular fields of force are 

presumably asymmetrical, and the process indicated above would lead of necessity 

to a random arrangement, which might be unstable. It has been seen that in glass 

and fused silica it is actually unstable, except in the case of the finest fibres. 

As regards crystalline materials, however, in which the fields of force must have 

some sort of symmetry, there seems to be no reason why there should not be possible 

a very fine grained stable configuration, which could be derived from the ordinary 

crystalline form by appropriate rotations of certain molecules to new positions of stable 

equilibrium, in such a way as to break up the gliding planes. The grain of such a 

structure need be but a few molecules long, and its strength would approximate 

to the theoretical value corresponding with the heat of vaporisation. 

There is some evidence that mild steel which has been put into the amorphous 

condition by over-strain tends, under certain conditions, to take up a stable fine-grained 

formation of this kind, in preference to resuming its original coarse crystalline configura¬ 

tion, in that a temperature of 0° C. appears to prevent recovery from tensile over¬ 

strain.* 

These considerations suggest that if a piece of metal were rendered completely 

amorphous by cold-working, and then suitably heat-treated, its molecules might take 

up the stable strong configuration already described. The theory indicates, however, 

that over-straining tends to set up tensile stresses in the unchanged parts of the crystals 

which may start cracks long before decrystallisation is complete. Such cracking could 

be prevented if the over-straining were carried out under a sufficiently great hydrostatic 

pressure, and this line of research seems to be well worth following up. It might, of 

course, be found that the requisite pressure was so enormous as to render the method 

unworkable, but if the theory is sound there seems to be no other reason why definite 

results should not be obtained. 

The problem may be attacked in another way. As has been seen, the theory suggests 

that the drop in stress at the initiation of yield is due to the surface energy of the inter¬ 

crystal boundaries. Thus the yield point may be raised by “ refining ” the metal, 

i.e., so heat-treating it as to reduce the size of the crystals. The limit of refinement is, 

doubtless, reached when each “ crystal ” contains but a single molecule and the material 

is then in the strong stable state already described. 

Refining is also of great value in connection with resistance to fatigue failure. Suppose, 

in accordance with the foregoing theory of fatigue, that one crystal has been fractured, 

* Coker, ‘ Phys. Rev.,’ 15, August, 1902. 
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then the general criterion of rupture shows that the crack cannot spread unless the 

material is subjected to a certain minimum stress, which is greater the smaller the crack. 

Thus, reducing the size of the crystals increases the stress necessary to cause the initial 

crack to extend. There is therefore a critical size of crystal for which the stress-range 

necessary to spread the crack is equal to that necessary to start it. Until the refining 

has reached that stage it can have no effect on the magnitude of the safe stress range, 

but from that point on the range must increase progressively with refinement until the 

limit is reached, as before, when each “ crystal ” contains but one molecule. 

It therefore appears that refining is one avenue of approach towards the ideal state 

of maximum strength. Strangely enough, another line of argument suggests that the 

reverse of refinement might be effective in securing the desired result, in certain special 

cases. If a wire is required to withstand a simple tension, it seems that the best 

arrangement is that in which the strongest directions of all the molecules are parallel to 

the axis of the wire. This is equivalent to making the wire out of a single crystal. 

The theoretical tenacity would not be obtained, however, if the gliding planes made 

with the axis angles other than 0° C. and 90° C., as yield would occur. 

If, in passing from the normal crystalline to the strong fine-grained state, the necessary 

orientation of the molecules were performed in accordance with some regular plan, 

the resulting configuration would possess some kind of symmetry, and the material 

might therefore exhibit crystalline properties. In cases where a substance exists in 

nature in several different crystalline forms, of which one is much stronger than the 

others, it may be that the strong modification is of the fine-grained type here considered. 

Thus, diamond may be a fine-grained modification of carbon. If this view is correct, 

it suggests that the transformation of carbon into diamond requires, firstly, the existence 

of conditions of temperature and pressure under which diamond has less potential 

energy than carbon ; and, secondly, the provision of means for causing relative rotation 

of the molecules. In the attempts which have so far been made in this direction, 

attention seems to have been concentrated on satisfying the former requirement, the 

possible existence of the latter one having been overlooked. The most obvious way 

of satisfying it, if the mechanical difficulties could be overcome, would appear to be 

the application of suitable shearing stresses in addition to the hydrostatic pressure. 

11. Application of the Theory to Liquids. 

A detailed discussion of the properties of liquids, in the light of the present theory, 

would scarcely fall within the scope of this paper. One prediction which has been 

made, however, and which has been verified experimentally, affords such a remarkable 

confirmation of the general theory that it is felt that no apology is necessary for 

introducing it here. Consider a solid composed of molecules whose attraction is a 

function of orientation, the molecules being arranged in groups, in accordance with 

the theory outlined in the preceding pages. If the temperature of this body be supposed 

to be increasing, it will be seen that at some temperature the kinetic reactions due to 

VOL. CCXXI.-A. 2 E 
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the thermal vibrations must overcome the minimum attractions of the molecules in each 

group. It is clear, therefore, that at this temperature the substance will be unable to 

withstand, shearing stresses. At the same time it cannot vaporise, as the molecules 

must still be held together in chains by their maximum attractions. In other words, 

the transformation which has been discussed is simply the liquefaction of the solid. 

This view of the phenomenon of melting indicates that the molecules of liquids are 

in general arranged in groups or chains, of a length comparable writh that of the 

structure ascribed to solids in the preceding work, or, say, 104 molecules. 

If, therefore, a liquid be contained in a solid boundary which it wets, the ends of 

these chains may be expected to attach themselves to the solid; and if at any point 

the distance between the bounding walls is less than the length of the chains, some of 

the latter will attach themselves to both walls and hinder the free flow of the liquid 

and the relative movement, if any, of the boundaries. At such a point the liquid will 

act as a solid under any stress which is insufficient to break the chains. 

This has been verified experimentally. The apparatus consisted of a polished steel ball 

1 inch in diameter, and a block of hard tool steel containing a circular hole about 4 inches 

long. The hole was carefully ground, after hardening, to a diameter about 0*0001 inch 

greater, at its smallest part, than the diameter of the ball. When both were dry the ball 

passed freely through the hole. If, however, they were wTetted with a liquid, consider¬ 

able pressure was necessary to force the ball through. This resistance possessed the 

characteristic “ stickiness ” of solid friction, and was exactly the kind of resistance 

which would have been expected in forcing the dry ball through a hole which was too 

small for it. 

To show that the resistance was a true “ solid stress ” and not due merely to viscosity, 

the apparatus was on one occasion left for a week, with the weight of the ball supported 

by the stress in the liquid (paraffin oil). The hole was vertical, so that there was no 

normal pressure between its surface and the surface of the ball. During this period 

no motion whatever could be detected. 

It is essential to the success of these experiments that the ball and hole should be 

thoroughly wetted by the liquid. For this reason the liquids used have been chiefly 

paraffin oil and lubricating oils, but on one occasion the effect was obtained with water. 

The present theory suggests a reason for the very low tensile strength of liquids. 

If a liquid is composed of a random aggregation of chains of molecules, it may reasonably 

be expected to contain regions of dimensions comparable with, but smaller than, the 

length of the chains, across which no chains run. Rupture of the liquid will evidently 

occur by the enlargement of these cavities. Now the tension, R, necessary to enlarge 

a spherical cavity of diameter, D, in a liquid of surface tension, T, is given by 

R = 4T/D. 

In the case of water, the tensile strength, R, is about 70 lbs. per sq. inch at ordinary 

temperatures, while T is about 0-00042 lbs. per inch. Hence the cavities, if spherical, 

must be at least 0-000024 inch in diameter. This is of the order indicated by the theory. 
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The foregoing conclusions are of especial interest in their relation to the theory of 

Rosenhain,* on which many of the properties of metals, and particularly “ season 

cracking ” under prolonged stress, are explained by supposing that the crystals are 

cemented together by very thin layers of amorphous material having the properties 

of an extremely viscous undercooled liquid. The experiments described above show 

that fluidity is not a property which can be ascribed a 'priori to such films. Hence 

if the view of Rosenhain and Archbutt were to be definitely established, it would 

be necessary to regard it, not as a theory of season cracking in terms of the known 

properties of materials, but as a deduction of the properties of the intercrystalline 

layers from the phenomena of season cracking. Looked at in this way, it would be 

of extreme interest, for it would show that the molecular arrangement of the inter¬ 

crystalline layers could not be of the coarse-grained type characteristic of the normal 

states of solids and liquids. 

It is clear that the foregoing theory of liquids is not free from objection, and that in 

some respects it appears to be less satisfactory than existing theories. The most 

obvious objection is that it seems to be incompatible with accepted determination of 

the molecular weight of liquids. Since, however, these experiments are based ultimately 

on kinetic considerations, the author believes that this difficulty will not in fact arise 

unless the requisite bonds between the molecules of each group are found to be sufficiently 

strong to cause appreciable modification of the average molecular kinetic energy. 

12. Summary of Conclusions. 

(1) The ordinary hypothesis of rupture cannot be employed to predict the safe range 

of alternating stress which can be applied to metal having a scratched surface. The 

safe range of an unscratched test piece appears to be slightly less than the yield range, 

but if the surface is scratched the safe range may be several times the range which 

causes yield in the corners of the scratches. 

(2) The “ theorem of minimum potential energy ” may be extended so as to be capable 

of predicting the breaking loads of elastic solids, if account is taken of the increase of 

surface energy which occurs during the formation of cracks. 

(3) The breaking load of a thin plate of glass having in it a sufficiently long straight 

crack normal to the applied stress, is inversely proportional to the square root of the 

length of the crack. The maximum tensile stress in the corners of the crack is more 

than ten times as great as the tensile strength of the material, as measured in an ordinary 

test. 

(4) The foregoing observation is in agreement with the known fact that the observed 

strength of materials is less than one-tenth of the strength deduced indirectly from 

physical data, on the assumption that the materials are isotropic. The observed 

* W. Rosenhain and D. Ewen, “ Intercrystalline Cohesion in Metals,” ‘ J. Inst. Metals,’ vol. 8 (1912) ; 

and W. Rosenhain and S. L. Archbutt, “ On the Intercrystalline Fracture of Metals under Prolonged 

Application of Stress (Preliminary Paper),” ‘ Roy. Soc. Proc.,’ A, vol. 96 (1919). 
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strength is, in fact, no greater than it would be, according to the theory, if the test- 

pieces contained cracks several thousand molecules long. 

(5) It has been found possible to prepare rods and fibres of glass and fused quartz 

which have a tenacity of about one million pounds per square inch (approximately 

the theoretical strength) when tested in the ordinary way. The strength so observed 

diminishes spontaneously, however, to a lower steady value, which it reaches a few 

hours after the fibre has been prepared. This steady value depends on the diameter 

of the fibre. In the case of large rods it is the same as the ordinary tenacity, whereas 

in the finest fibres the strength diminishes but little from its initial high value. The 

relation between diameter and strength is of practically the same form for glass fibres 

as for metal wires. 

(6) If it is assumed that intermolecular attraction is a function of the relative 

orientation of the attracting molecules, it is possible to construct a theory of all the 

phenomena mentioned in (3), (4) and (5) above. In the case of crystalline substances 

the theory also appears to explain yield and shearing fracture ; elastic hysteresis ; 

elastic afterworking ; the fracture in tension of ductile materials and the flow of brittle 

materials under combined shearing stress and hydrostatic pressure ; the drop in stress 

which occurs on the initiation of yield in ductile substances ; fatigue failure under 

alternating stress ; and the relatively slight effect of surface scratches on fatigue 

strength. In the case of non-crystalline materials the theory explains elastic after¬ 

working and the great strength of short columns in compression. 

(7) The theory shows that the application of the mathematical theory of homegeneous 

elastic solids to real substances may lead to error, unless the smallest material dimension 

involved, e.g., the radius of curvature at the corner in the case of a scratch, is not many 

times the length of a crystal. 

(8) It should be possible to raise the yield point of a crystalline substance by 

“ refining” it, until at the ultimate limit of refinement the yield stress should be of 

the same order as the theoretical strength. It should also be possible similarly to 

increase the tenacity. Up to a certain stage the fatigue range should be unaffected by 

refining, but thereafter it should increase in the same degree as resistance to static stress. 

(9) The theory requires that a thin film of liquid enclosed between solid boundaries 

which it wets should act as a solid. Experimental confirmation of this has been obtained. 

In conclusion, the author desires to place on record his indebtedness to many past 

and present members of the staff of the Royal Aircraft Establishment for their valuable 

criticism and assistance, and also to Prof. C. F. Jenkin, at whose request the work 

on scratches was commenced. 

[Note.—It has been found that the method of calculating the strain energy of a cracked plate, 

which is used in Section 3 of this paper, requires correction. The correction affects the numerical values 

of all quantities calculated from equations (6), (7), (8), (10), (11), (12) and (13), but not their order of 

magnitude. The main argument of the paper is therefore not impaired, since it deals only with the order 

of magnitude of the results involved, but some reconsideration of the experimental verification of the 

theory is necessary.] 
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I. Introductory.—This paper is a development of two earlier papers,* which for 

brevity I call “ Reduction ” and “Fitting” respectively. The paper f immediately 

preceding “ Fitting ” is referred to as “ Factorial Moments.” 

These earlier papers deal with two problems, which are closely connected and have 

the same solution. For both of them, the data are a set of quantities u0, uu u2, ... of 

the same kind, which we regard as representing certain true values U0, U1} U2, ..., 
with errors e0, eu e2, ..., so that ur = Ur + er. These errors may be independent or 

may be correlated in any way. The first problem is based on the assumption (which 

defines the class of cases we are dealing with) that the sequence of U’s is fairly 

regular, so that differences after those of a certain order, which we will call./, are 

negligible. This being so, we may alter any u, or any linear compound of the us, 

such as an interpolation-formula, by adding to it any linear compound of the neg¬ 

ligible differences. (I use tha term “linear compound” in preference to “linear 

function,” since there is no consideration of functionality.) The problem is to find 

the value of the resulting sum when, by suitable choice of the coefficients in the 

added portion, the mean square of error of the sum is a minimum. This is the 

problem of “reduction of error.” For the second problem it is assumed that Ur is a 

polynomial in r of degree j, and the problem is to find the coefficients in this poly¬ 

nomial by the method of least squares. This is the problem of “ fitting.” 

The practical solution of these problems for the general case, in which the errors 

are correlated, is not easy. The particular case which is simple is that in which 

the errors all have the same mean square, which by a suitable choice of unit is taken 

to be 1, and the mean products of error are all 0. (In the previous papers I have 

called this system of errors the standard system ; in the present paper the set of us 

which possesses this property is called a self-conjugate set.) In “ Reduction ” I gave 

the solution for this particular case in terms of central differences, and in “ Fitting ” 

I gave the solution in terms of advancing differences and of advancing and central 

sums, formed in a particular way. I also gave expressions in terms of the us, but 

these were rather complicated. It remained to obtain expressions for the mean 

squares of error of the new values, in order to compare them with those of the old 

* “Reduction of Errors by means of Negligible Differences,” ‘Fifth International Congress of 

Mathematicians,’ Cambridge, 1912, ii., 348-384; “Fitting of Polynomial by Method of Least Squares,” 

‘ Proceedings of the London Mathematical Society,’ 2nd series, xiii., 97-108. 

t “ Factorial Moments in terms of Sums or Differences,” 1 Proceedings of the London Mathematical 

Society,’ 2nd series, xiii., 81-96, 
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values. In doing this I found that the whole of the work could be very much 

simplified by using certain general theorems, which applied not only to the special 

case of the standard system but also to the general case, and even to a still more 

general problem in which, in the one aspect, the reduction of error is effected by 

means of quantities which are not necessarily a set of differences, or in which, in the 

other aspect, Ur is not necessarily a polynomial in r of degree^’ but is a linear com¬ 

pound, with coefficients to be determined, of any^’+l functions of r ; and the present 

paper is mainly concerned with these general theorems, so that to a certain extent it 

supersedes the previous papers. 

The abbreviations l.c., m.s.e., m.p.e., are used for linear compound, mean square of 

error, mean product of errors. The mean square of error of A is denoted by (A ; A), 
and the mean product of errors of A and B by (A ; B) or (B ; A). Other special 

notations used in the paper are the same as in the three papers mentioned at the 

beginning of this section, or are explained in §§ 3, 5 (iii.), 7, 17, and 20. 

Conjugate Sets. 

2. Conjugate Set.—(i.) Let A, B, C, D, ... be a set of quantities, not necessarily all 

of the same kind, containing coexistent errors which are either independent or 

correlated in any way. For the purpose of the following investigations it is 

convenient to consider, in connexion with these quantities, another set of quantities, 

G, H, J, K, ... , equal to them in number and connected with them by the conditions 

that (l) each quantity of the second set is a l.c. of those of the first set, and (2) the 

m.p.e. of corresponding members of the two sets is 1 and that of members which do 

not correspond is 0. If we replace the quantities of the two sets by A0, A1} A2, ... , 

and 6r0, Gi, G2, ... , we can express this latter condition by saying that m.p.e. of Gr 
and As = 0 (s r) or 1 (s = r). The second set of quantities is said to be conjugate 

to the first. 

(ii.) Let the member of the second set which corresponds to C of the fust set 

be J. To determine J, let us write 

J — aA + bB + cC+ dD +_ 

Then, denoting the m.p.e. of A and B by (A ; B), condition (2) gives 

(A ; A) a + (A ; B) b + (A ; C) c + (A ; D) d+... = 0, 

(B ; A) a + (B ; B) b + (B ; C) c + (B ; D) d+ ... =0, 

(C ; A)a + (C ; B)b + {C; C)c + {C; D) d+... = 1, 

(D ; A) a + (D ; B)b + {D ; C)c + (D ; D)d+.. = 0, 

&c. 

2 f 2 



202 DR. W. F. SHEPPARD .ON 

There are as many equations as there are coefficients a, b, c, d, ... ; and the values 

of these are thus uniquely determined. 

(iii.) The values of a, b, c, ... as found from the above equations have as their 

denominator the determinant 

0 = (A ; A) (A ; B) (A ; C) (A ; D) . . . 

(B ;A)(B;B)(B;C)(B;D)... 

(C ; A) (C ; B) (O ; C) (O ; D) . . . 

(D ; A) (D ; B) (D ; C) (D ; D) . . . 

There is therefore no conjugate set if this determinant is zero. The nature of the 

relations which in this case hold between the errors is considered in Appendix I., § 3. 

(iv.) Since the members of the conjugate set are l.cc. of those of the original set, 

the converse also holds. Regrouping the equations which determine the coefficients, 

it will be seen that the original set is conjugate to the conjugate set; i.e., that the 

two sets are conjugate to each other. The formulae for the members of the original 

set in terms of those of the conjugate set are 

A = (A ; A)G + (A ; B)H+(A ; C)J+..., " 

B = (B ; A) G + (B ; B) H+(B ; C)J+..., 
>.(1) 

C = {C; A)G + {C ;B)H+{C; C)J+..., 

&c. 
A 

These follow from the solution of the equations in (ii.), by the ordinary properties 

of determinants; or they may be obtained more simply by determining the 

coefficients of G, H, J, ... in each case from the second of the conditions stated 

in (i.). 

(v). By means of these relations we can not only express any l.c. of the quantities of 

either set in terms of those of the other set, but we can also express any such l.c. in terms 

of particular quantities of one set and those of the conjugate set which correspond 

to the remaining quantities. We can, for instance, express any l.c. of G, H, J, K, ... 
in terms of A, B, J, K, ... by using the first two equations in (l) to determine 

G and H in terms of A, B, J, K, .... The results involve a certain determinant in 

the denominator; it is shown in Appendix I., § 4, that this is not zero if 0 is not zero, 

(vi.) Two special cases may be mentioned :— 

(a) If the errors of A, B, C, D, ... form a standard system, i.e., if the m.s.e. of 

each of the quantities is 1 and the m.p.e. of each pair of quantities is 0, the conjugate 

set is identical with the original set; and conversely. A set which is identical with 

the conjugate set will be called a self-conjugate set. 
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(b) If the m.p.e. of each pair of quantities of the original set is 0, but the m.ss.e. 

are not all 1, this is also the case for the conjugate set. The original set being 

A, B, C, ..., the quantities of the conjugate set are A/(A ; A), B/(B ; B), C/(C ; C), ; 

and their m.ss.e. are l/(^4 ; A), 1 /(B ; B), l/(C; C),_ 

3. Relations between Original Set and Conjugate Set.—For expressing a member 

of either set in terms of the members of the other set, it is convenient to give them 

a linear order. We therefore denote the members of the original set by <50, ... 

and those of the conjugate set by <r0, <r2, ... Also we write 

fr,t = m.p.e. of Sr and St = f<>r,.(2) 

>/T,t = m.p.e. of <rr and <rt = r,Ur.(3) 

(i.) The condition of conjugacy is that (r = 0, 1,2,.../; t — 0, 1, 2, ... /) 

m.p.e. of Sr and <rf = 0 (r ^ t) or 1 (r = t).(4) 

(ii.) The expression for Sr in terms of the <x’s is (cf. § 2 (iv.)) 

K = fr, O^O + fr. 1*D + fr, 2^2 + • • • + fr, laf (5) 

[For, if we write 

then (2) and (4) give 

Sr = a0cr0 + a^cr \ + agr^ +... + atcr 

£r t = m.p.e. of St and a0<r0 + a^x + • • • + al<rl 

= «*•] 

(iii.) Similarly the expression for <rf in terms of the Ys is 

A + Vl, A 1 + %, A + • ■ • + *ll. A- (6) 

(iv.) The relations between the f’s and the »/s are easily deduced from (5) and (6). 

If we write 

.(7) z = fo.o fo, 1 fo. 2 • • • fo.z 

fl,0 fi.i fl, 2 • • • fl, l 

fz.O ^2,2 • • • £>2,1 

fro fz.i fz, 2 • • . fz.z 

ZPtQ = cofactor of £p>g in Z = ZQtP, (8) 
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then 

V0,0 Vo, 1 Vo, 2 • • • Vo, l 

Vi,o Vi.i Vi, 2 • ■ • Vi,Z 

V2,0 V2,l V2,2 • • • V2, Z 

Vz.o Vz.i Vi, 2 • • • Vz, Z 

Hp ? = cofactor of ilpq in H = H?iP,.(10) 

r,p,g=ZpJZ,.(11) 

£p,q = Hp.9/H,.(12) 

HZ = 1.(13) 

(v.) The assumption that there is a conjugate set implies (cf. § 2 (iii.)) that 

Z is not = 0. It follows from (13) that H is not = 0. It also follows (see 

Appendix I., § 4 (b)) that none of the principal minors of Z or of H are = 0. 

4. Two Related Pairs of Conjugate Sets.—(i.) Suppose that there is another set 

of Z+l quantities u0, ?q, u2, ... uu connected with the d’s by the linear relations 

(»•= 0, 1, 2, ... i) 
K = (n) S,+ (rt) S, + (r2) S.2+... + (rt) S,.(14) 

Then, by the condition of conjugacy of the d’s and the <r’s, 

(rt) = m.p.e. of uT and at. . (15) 

Let the set conjugate to u0, uu u2, ... ut be y0, y1} y2, ... yb Then there are linear 

relations between the y s and the us and between the cr’s and the <f s, and therefore also, 

by (14), between the y s and the <r’s. To find the <r s in terms of the y s, we write (15) 

in the form 
(rt) = m.p.e. of at and ur; 

and we see that (t = 0, 1, 2, ... /) 

— (0«) y0+ (l«) yi+ (21) y2+... + (lt) yt.(16) 

(ii.) Similarly, if the expression for the S’s in terms of the us is (s = 0, 1, 2, ... I) 

Ss = {s0} u0+ {sj} u, + {s2} u2+...+ {^} ub.(17) 

where, by (14), 

(n) {0«} +(r0 {lt} +... + (rt) = 0(r ^ t) or 1 (r = t),. . . (18) 

M (0t) + {sj} (lt) +...+ {sz} (lt) = 0 (r 5* t) or 1 (r = t),. . . (19) 

{$«} = m.p.e. of S, and yt,.(20) 

Vt = {0«} o-0+ {L} 0-1 + {2£} cr2+ ... + {/(} al.(21) 

then 
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(iii.) The above relations can be expressed diagrammatically, thus :— 

• ■ • - • • 

<53 X X X X . , , b 

<52 X X X X . • . b 

*1 X X X X . . . b 

<50 X X X X . • • 
O 
b 

u0 ux u2 u3 . • • 

s* S* . 

The crosses represent the ( ) coefficients if they are the coefficients of the <fs in 

the us and of the y s in the <r’s, and the { } coefficients in the converse case. 

(iv.) Similarly, if we write (r = 0, 1, 2, I ; t — 0, 1, 2, ... 1) 

[rj — m.p.e. of yr and <ru.(22) 
then 

Vr — M <50 + [^l] <5i + [^2] 4 + • • • + [rJ .(23) 

o'* = [ffi] ^0+ [l<] ui + [2e] u2 + ... + [/t] ut.(24) 

5. Sums as Conjugates of Differences.—The cases of importance are those in 

which the S’s are successive differences of the us. It will be found that in these 

cases the o-’s are l.cc. of successive sums of the ys. 

(i.) Let the <fs be the advancing differences of the us, i.e. 

S0 — U0, rlj = Aw0, ... Sr = A Uq, .... 

Then the diagram for the ( ) coefficients is 

• ■ ■ - 

<5.2 0 0 0 1 . . . CO 

b 

0 0 I 3 . . . 
C^ 

b 

<5! 0 1 2 3 . . . b 

<5o 1 I 1 1 . . . b 

u0 ux u2 u3 . . . 
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so that 

<R> = Vo + Vi + Vi+Vz + • • • + Vi > 

= 2/i + 2y2 + 32/3+4y4+...+^, 

°"2 — 2/2 + 3^/3 + 6?/4 + 102/5+... +^Z (£— l) Vi, 
and, generally, 

V/ = Vf+(f+L l) 2//+i + («/+2, 2) 2//+3+ ... + (£, l—f) Vi 

= 2 {q,f)yq\.(25) 
9=/ 

or, in the notation of “|Fitting,” § 4, and “ Factorial Moments,” 

oy=S"/+1y/... (26) 

The cr’s can be obtained by successive summations of the y s in reverse order, I.e. 

from 2/^ to 2/0, as shown in the following diagram, in which the crosses represent 

entries in a sum- or difference-table :—- 

0 

0 

0 

0 Vi u0 = d0 

0 X 

0 x Vi-i 

0 x x 

0 x x Vl_2 

X X 

°5 x x y 2 

<X4 X X 

<*3 X ?/l 

*1 

X do 

W2 X d4 

Ui_ 2 x 

7-1 

^1 2/o 

§ l-l 

X 

O'o 

(ii.) Let the d’s be the central differences of the us. Then it will be found in the 

same way that 

(a) If the u s are u0, ulf u2, ... u2n, so that 

^0 =Un> $1 = y$Un> Sa = S2Un, §2 = ..., 
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then 

A = 

r = ?i 

2 
r = — ?i 

Id > 2/<) yn+r, (27) 

°"2A-1 2 (r, 2/i— l] ?/„+ 

(6) If the w’s are ti,„ rq. w2, ... w2„_1} so that 

(28) 

Sn = 
then 

n-& ^1 — S2 = uS2un_h S3 = <fun_h ... , 

r = n 

°2A-1 — 2 [r~h 2h-l) yn+r_1. • • (29) 
r = - ra+1 

r =n 

cr2h-2 = 2 (r-h 2/^—2] yn+r_i. . . (30) 
r= —n+1 

(iii.) The values given by (25)-(30) may be expressed in terms of successive sums 

by the formulae given in “ Factorial Moments.” The notation, however, can be 

simplified. Suppose that we have a set of quantities ... F0, F1} F2, ... corresponding 

to values ... 0, 1, 2, ... of some variable, and that we form the table of successive 

differences (and also, if we like, of successive sums) of the F’s. Then the Lagrangian 

formula for Fe in terms of Fp, Fp+1, ... Fp+t, which can be expressed in a good many 

different ways, may be regarded as the formula for it in terms of the whole 

(unlimited) set of differences (and sums) which form a triangle with its apex 

at AtFp\ and we can denote it by L{F0;AtFp}. With this notation, the above 

results may be written 

(25) ■v=u{(-)/2't,»/i2».}];:f1. ■ • • .... (31) 

(27) C2h = [L {p.Fh+vyn; I • • • ■ .... (32) 

(28) rak-i = [L {—vhyn; <ryn+t}JtZn-rLv • • • • .... (33) 

(29) 
r t r 2h . \y = ra+$ 

°2A- 1 — L-L\—yc yn-i '■> cyn + t-lj\= -n+*» .... (31) 

(30) °'2A-2 = [L {o-2A_V»-i; ^yn+t-i}JtZn-n+r ■ ■ ■ .... (35) 

The L is distributive as regards the first member inside the { } ; e.g., in the case 

of' (31). 

A<ra + Br, = [L ; Si/,}] 
t = 1-1-1 
t = 0 ‘ 

(iv.) More generally, suppose that the <fs are the successive differences of the u’s 
according to any system of differences ; by which we mean that Ss is either a definite 

difference of the its of order s (the us themselves being differences of order 0) or a 

l.c. of such differences. Then (rt) of (14) is a polynomial in r of degree t, and <rt is 

VOL. CCXXI.-A. 2 G 
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q = l 

of the form 2 <pt (q) yq, where <f>t (g) is some polynomial in g of degree t. It follows 
9 = 0 

that any l.c. of <x0, o-]5 <r2, ... crt is also of this form. 

(v.) If we denote the fth moment of the y s by then Mf is of the form 
q = m 

2 <j>f (q) yq. Hence crt is a l.c. of M0, Mx, M2, ... Mt; and Mt is a l.c. of <r0, <r]} cr2, ... <rt. 
9 = 0 

More generally, any l.c. of <r0, o-l5 a-2, ... «xt is a l.c. of Tf0, Hi), df2, ... dft; and 

conversely. 

Reduction of Error (General). 

6. General Theorems.—-Let A, B, C, ... P, Q, R, ... be a set of quantities as in § 2, 

but all of the same kind. If 

w = aA + hB + cC+... (with or without terms in P, Q, R, ...), 

x = w+pP + qQ + rR+ ... , 

where a, b, c, ... are fixed and p, q, r, ... are arbitrary, and if we choose p, q, r, ... 

so as to make the m.s.e. of a? a minimum, the resulting value of x is called the 

improved value of w, using P, Q, R, ... as auxiliaries. The following are general 

theorems; some are quite elementary, but it is convenient to state them here. The 

specially important theorems are (III.) and (XIII.). The assumption mentioned 

under (VI.) should be noted. If strict proofs of (I.) and (II.) are required, the 

method should be that of Appendix I., § 2. 

(I.) The m.p.e. of A and any l.c. of A, B, C, ... is the same l.c. of the m.pp.e. of 

A and A, B, C, ... [i.e., m.p.e, of A and aA +bB + cC+... is a (A ; A)+b(A ; B) + 

c(A;C) +...]. 

(II.) The m.s.e. of any l.c. of A, B, C, ..., or the m.p.e. of any two such l.cc., is 

found by squaring the former or multiplying the latter and replacing squares and 

products by the corresponding m.ss.e. and m.pp.e. [i.e., m.s.e. of aA -\-bB + cC+... 

= a2 (A ; A)+2ab(A ; B) + b2 (R ; B)+2ac(A ; C)+2bc(B ; C)+c2(C; 0) + ..., and 

similarly for m.p.e. of a A + bB + cC+ ... and a' A + b'B + c'C+ ...]. 

(III.) If the improved value of A, using certain auxiliaries, is A + a, then the 

m.p.e. of A + a and each of the auxiliaries or a or any other l.c. of the auxiliaries is 

zero. [Let the auxiliaries be P, Q, R, ..., and let A+a = A+pP+qQ+rR+.... 

Then the m.s.e. of A + (p + 0) P + qQ + rR+ ... (= A+a + 6P) is (A+a;A+ a) + 

26 (A + a ; P)+02(P ; P). In order that this may be a minimum for 0 = 0, 

(A+a ; P) must be zero. Similarly for (A + a ; Q), (A + a ; R), .... This proves the 

first part of the theorem ; the second then follows from (I.).] Hence 

(IV.) If the improved values of A and of B, using in each case the same set of 

auxiliaries, are A + a and B + /3, the m.pp.e. of A + a and, B + /3, of A + a and B, and 

of A and B + /3, are all equal; and 
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(V.) If the improved value of A, using certain auxiliaries, is A + a, and that of B, 

using some only of these, is B + 6, the m.p.e. of A + a and B+/3 is equal to that of 

A + a and B. 

(VI.) If the improved value of A, using P, Q, R, ... as auxiliaries, is 

A + pP + qQ + rR+... , the values of p, q, r, ... are given by a set of linear relations 

between p, q, r, ... and the m.pp.e. of A and P, Q, R, ... . [The equations are given 

by (III.), viz., since (A +pP + qQ+rR +... ; P) = 0, &c., 

(A;P)+p{P; P) +g (Q ; P) +r (R ; P) + ... = 0, 

(A ; Q) +p (P ; Q) + q (Q ; Q) +r (R ; Q) + ... — 0, 

(A ; R)+p{P ; R)+q(Q ; R)+r(R ; R) + ... = 0, 

&c. 

It is assumed that the determinant 

(P ;P) (<? ; P) (R;P). . . 

(P ; Q) (Q ; Q) (R ; Q) ■ ■ ■ 

(P ; R) (Q ; R) (R ; R) . . . 

is not zero ; i.e. (see § 2 (iii.)) that there is a set conjugate to P, Q, R, ... .] 

(VII.) For any particular set of auxiliaries there is one and only one improved 

value of A. [This follows from the fact that the equations in (VI.), on the 

assumption there stated, have one and only one solution.] Hence we get the 

converse of (III.):—- 

(VIII.) If x is the sum of w and a l.c. of P, Q, R, ..., and, if the m.p.e. of x and 

each of P, Q, R, ... is zero, then x is the improved value of w, using P, Q, R, ... as 

auxiliaries. As a particular case :—- 

(IX.) If the m.p.e. of w and each of P, Q, R, ... is zero, the improved value of w, 

using P, Q, R, ...as auxiliaries, is the same as the original value. 

(X.) The improved value of P, using P, Q, R, ... as auxiliaries, is P —P - 0. 

[This follows either from (VIII.) or from taking A — P in the equations in (VI.).] 

Hence 

(XI.) If w is a l.c. of A, B, C, ... P, Q, R, ... , the improved value of w, using 

P, Q, R, ... as auxiliaries, is the same as that of the quantity obtained by adding to 

w any l.c. of P, Q, R, ... ; and, conversely :—- 

(XII.) If the improved values of w and of w', using in each case the same set of 

auxiliaries, are identical, then w and W either are identical or differ by a l.c. of the 

auxiliaries. 

(XIII.) If the improved values of A, B, C, ... , using in each case the same set of 

2 g 2 
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auxiliaries, are A + a, B + ft, C + y, ... , the improved value of any l.c. of A, B, C, ... , 

using these auxiliaries, the same l.c. of A + a, B + /3, C + y, ... . [Let the l.c. of 

A, B, C, ... be + bB + cC+... . We want to prove that x = a(A + a) + 

b (B + ft) +c (C+y) +... is its improved value. We can do this in either of two 

ways : 

(i.) By (III.), the m.p.e. of x and each of the auxiliaries P, Q, B, ... is zero ; and x 

differs from w by a l.c. of P, Q, R, .... Hence, by (VIII.), x is the improved value 

of w, using P, Q, R, ... as auxiliaries. 

(ii.) A more direct proof follows from the linearity of the equations mentioned in 

(VI.). It is not necessary to set out the proof here.] 

(XIV.) If A, B,... C, D, ... P, Q, ... B, S, ...fall into two classes A, B, ... P, Q, ... 

and C, D, ... , It, S, ... , such that the m.p.e. of each member of the one class and 

each member of the other class is zero, then the improved value of a l.c. of any of the 

members, using P, Q, ... It, S, ... as auxiliaries, is to be found by talcing the two 

classes separately, i.e., by using P, Q, ... as auxiliaries for the terms in A, B, ... P, Q, ..., 

and R, S, ... as auxiliaries for the terms in C, D, ... R, S, ... . [For the m.s.e. of 

aA + bB + ... + cC + dD + ... + pP + qQ + ... + rR + sS + ... is the sum of those of 

aA + bB+ ... +pP + qQ+... and cC+dD +... + rR + sS+... , since the m.p.e. of these 

latter is zero ; we cannot reduce the m.s.e. of the first of them by adding terms in 

R, S, ... , or that of the second of them by adding terms in P, Q, ... ; and the result 

is therefore the same as if we considered them separately.] 

(XV.) If the improved value of w, using P, Q, R, ... as auxiliaries, is 

x = w + pP + terms in Q, R, ..., this is also the improved value of w + pP, using 

Q, R, ... as auxiliaries. [For x differs from w+pP by terms in Q, R, ..., and the 

m.p.e. of x and each of Q, R, ... is zero.] This can he stated more generally as 

follows:— 

(XVI.) If the improved value of A, using a set of auxiliaries S, is A + a, and if 

we divide S into two sets, Sj and S2, and the corresponding parts of a are a1 and a3, 

then A + a is the improved value of A + a,, using S2 as auxiliaries. [We may take 

... P, Q to be Su and R, ... to be S2. The theorem states that, if the improved value 

of A, using ... P, Q, R, ..., is A + ... +pP + qQ + rR+ ..., this is also the improved 

value of A + ... +pP + qQ, using R,_] 

(XVII.) The following corollaries of (III.) may he noticed, though we shall not 

require them. If the improved values of A and of B, using in each case the same 

set of auxiliaries, are A + a and B + /3, then 

(l ) (A + a ; A + a) = (A ; A) — (a ; a) 
and 

(2) (A+a; B + ft) = (A ; B) — (a; ft). 

7. Notation : and Particular Values.—(i.) It will now be convenient to adopt a 

linear arrangement of the quantities we are dealing with, and we therefore replace 
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A, B, C, ... P, Q, JR, ... by S0, Su S2, ... <5)+1, Sj+2, ... <1,. The order is quite arbitrary, so 

far as any general theorems are concerned ; but it will usually be convenient to place 

the auxiliaries last. If, for instance, we are using all but j +1 as auxiliaries, we 

denote those not so used by S0, Su S2, ... Sj} and the auxiliaries by Sj+1, Sj+2, ... St; the 

improved values are then denoted by ( 

(ii.) We use the following notation :— 

(ef)j = improved value of cy, using S’s after Sj ; 

E; = (ef = improved value of <5), using all subsequent <fs ; 

(\.g)j = m.p.e. of (ef)j and (eg)j; 

A. = = m.s.e. of E;-. 

Where there is no doubt as to the <fs used as auxiliaries, (ej)j and {h./,g)j can be 

replaced by ef and \f<g. 

(iii.) By (X.) of§6— 
(e/)j = 0if/>i;.(36) 

(vjj = 0 if/>y or g >j . 

(iv.) By (IY.)- 

(\,g)j = m.p.e. of (ef)j and Sg 

= m.p.e. of Sj> and (e^ 

A. = m.p.e. of E; and Sj.(39) 

8. Improved Values in terms of Conjugates.—In “Fitting” I have given some 

formulse for improved values in terms of sums. These may be regarded as derivable 

from a general theorem relating to the expression of improved values in terms of 

members of the conjugate set. The theorem is given by (XIX.) and (XX.) below; 

(XVIII.) is a particular case. 

(i.) Take any one of the <fs as S0. By (6)—- 

00 — *70,0^0 + >71.0^1+ ••• +>7z,o<^- 

Hence cr0/%,0 differs from S0 by a l.c. of the other cTs. Also the m.p.e. of <x0/%,0 and 

each of these other S's is zero. It follows from (VIII.) of §6 that cr0/%i0 is the 

improved value of <50, using the other S’s as auxiliaries. The m.s.e. of this improved 

value is %,o/(%,o)2 = lAo.o- Hence— 

(XVIII.) The improved value of any member of the original set, taking all the 

other members as auxiliaries, is the product of the corresponding member of the 

conjugate set by a constant; this constant being = the m.s.e. of the improved value. 

(ii.) The first part of the more general theorem is :—• 

(XIX.) The improved value of any l.c. of a set of quantities, using those after the 

first j +1 as auxiliaries, is a l.c. of the first j + 1 of the conjugate set. 

(37) 

(38) 
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For, if' w is a l.c. of S0, Su S2, ... we can (see §2 (v.)) express it as a l.c. of 

(70, o-j, <r2, . • • <Tj, $J+1, Sj+2, ... 4 Let the result be (2) + (A), where (2) is a l.c. 

of o-0, o-2, ... o-j, and (A) is a l.c. of SJ+1, §j+2, ...§, Then (2) differs from w by a 

l.c. of these latter <fs, and the m.p.e. of (2) and each of these <fs is 0 ; hence, by 

lYTII ), (2) is the improved value of w, using these d’s as auxiliaries. 

(iii.) Further— 

(XX.) The coefficients of the <r's in the improved value of the l.c. are the m.pp.e. of 

this improved value and the corresponding 8 s. 

For, if the improved value of w is x, and we write 

x = bl)o-IJ + b1o-1 + b2o-2 + ... + bjo-j, 

then, by the condition of conjugacy of the o-’s and the <fs, 

m.p.e. of x and f = bf. 

(iv.) This would give us a solution of the problem of finding the improved value, 

if we could find the m.pp.e. Ordinarily, w is or can be expressed in terms of the cfs, 

and we do not find its improved value independently, but deduce it from those of the 

s up to Sj. The improved value of SA is, by (iii), 

(€h)j = (\,h)j<ro + {hi,h)j<ri+ .(4°) 

and the m.pp.e. that we really require are therefore the values of (f./f- With 

regard to this, see §9. 

(v.) As the converse of (XIX.) it may be noted that— 

(XXI.) A quantity of the conjugate set, or a l.c. of such quantities, cannot be 

improved by means of the non-corresponding quantities of the original set; e.g., 

a l.c. of <r3 and <r4 cannot be improved by using the d’s, other than S3 and c>4, as 

auxiliaries. This follows from (IX.) of §6, since the m.p.e. of <^r and o-s is 0 

unless r = s. 

(vi.) If, as in § 5, there are related conjugate sets of «’s and y s, and the cTs are the 

differences of the us, it follows from § 5 (v.) that (2) in (ii.) above is a l.c. of the 

moments of the y s up to the jth. (XIX.) is therefore a generalisation of the 

theorem, for a self-conjugate set, that the improved values are l.cc. of the moments ; 

and, in fact, it explains the appearance of the moments in this connexion. 

9. Mean Products of Error of Improved Values.-—(i.) We have found, in § 8 (iv.), 

that 

(eh)j “ (\h)j + (X,/,)j Ti + • • ■ + fj.h)j aj- 

To obtain the A’s, we introduce the condition that this shall differ from by a l.c. 

of <fs after <5). 
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(ii.) Substituting for <r0, <r,, <t2, ... from (6), this condition gives 

(\h)j ('lo. 0^0 + >1l, 0^1 + ... + H]U 0St) 

+ ( A, h)j (%, 1A + >71. A + ... + rjI' iSf) 

+ (\k\ j (%. 2 A + *11, 2(\ + • • • + Vl, 2&i) 

+ . . . 

+ (\k)j (%Jo + mJi + ••• +>n.j$i) 

= $h+ terms in Sj+1, Sj+2, ... St. 

Equating the coefficients of S0, Slt S2, ... Sp we find that (/ = 0, 1, 2, ...j) 

if,o(\h)j + *if.i (\h)j+ ••• + rif,j (\h)j — 0 (/ ^ h) or 1 (/= h). . . . (41) 

Let us write 

Hj = »/0,o %,1 %,2 • • • >h,j [ ..(42) 

*71,0 *7i,i J7i. 2 • • • *h,j j 

%, 0 *12,1 *h,2 • ■ • *l2,j 

. 

J7;,U *lj, 1 *lj,2 ■ ■ • fyj 

H?,M- = cofactor of ^ in H, = H/it?;, 

Then 

%oH0,htj + r,ft jHi,htj h,j = 0 (/ ^ h) or H; (/ = h); 

and therefore, by (41), 

(V*)j = Hj.j.j/H,. 

(43) 

(44) 

(45) 

Substituting in (40), we obtain (eh)j in terms of the o-’s. 

For the particular case of g = h — j, (\,h)j becomes Ajt and Hg htj becomes H7_j ; 

so that 
A, = rr^/FI,.(46) 

(iii.) As an example, suppose that we have several independent observations, of 

unequal accuracy, of a single quantity U, and that we wish to obtain a suitably 

weighted mean, which may be regarded as the improved value of any one of the 

observations. Let the observed values be u0, uu u2, ... , and their m.ss.e. 

a2, &i2, «22, ••• ; the m.pp.e. being 0, since the observations are independent. We 

take S0 to be one of the us, and <$1} S2, ... to be its successive differences. Then j = 0, 

since the true values of the first and later differences are all 0. Hence, by § 8 (i.), 

the improved value is <x0/(m.s.e. of <r0). But, by § 5 (i.), <ru = 2y; and, by § 2 (vi.) (6), 

yr = ur/a2, so that m.s.e. of <t0 = 21 /a2. Hence the improved value is 

2 (u/a2)/2 (l/a2). 
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(iv.) When j is relatively large, the solution given in (ii.) above can only be 

regarded as a formal one, since it involves calculation of determinants. I have not 

been able to provide a general solution which shall avoid determinants; but it will 

be seen in §§17-19 that, if we can find the values of certain quantities occurring in 

the formulae, we can deduce the X’s and thence the coefficients of the <x’s. These 

latter are important as giving us formulae which contain only a few terms and are 

therefore suited for numerical calculation. 

10. Expressions in terms of a Related Set.—Suppose that there is another set of 

l +1 quantities u0, ulf u2, ... uh connected with the cTs by linear relations; and let the 

set conjugate to the u s be y(), yu y2, ... yt. We shall take the relations between the 

us and the S’s and between the y s and the S’s to be, as in § 4, (r = 0, 1, 2, ... 1) 

Ur = (ro) <b+ (ri) <h+ (r2) <b+ ■•• + Of Sh.(47) 

Hr — M <b + [^i] + [r3] 4 + • • • + [rJ S,.(48) 

(i.) Let the improved value of ur, using <7s after be vr. 

(XIII.), remembering that, by (36), 

ief)j = o if / > y, 
we have 

Vr = (n) (4 + (ri) Mj + • • ■ + (■rl) (el)j 

= (n) (eo);- + (n) (*i)j + ••• + irj) iej)j- 

Then, from (47), by 

• (49) 

. (49a) 

Thus the vs are related to the e’s in the same way that the us are related to 

the S’s. 

(ii.) Similarly, if the improved value of yr, using <fs after Sj, is zr, we have 

^ = [n] («o )j + [n] Mj +... + M (ef.(50) 

= [ro] {e0)j + [n] Mj + • • • + [vj Mj;.(50a) 

and the z s are related to the e’s in the same way that the y s are related to the d’s. 

(iii. ) Let w be any l.c. of the S’s or of the u’s or y s, and let x be its improved 

value, using els after <5). Suppose that x is expressed in terms of the y s, the 

coeificients being p0, pu p2, ... ph so that 

and let 

so that 

x = PoV0 +piVi +p2y2 + • •. + PiVi; 

\g = m.p.e. of x and (eg)j, 

\ = 0 if g > j. 

Then, by the condition of conjugacy of the w’s and the y s, 

(51) 

m.p.e. of x and ur — pr. (52) 
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Hence, by (IV.) and (49) or (49a), 

pr — m.p.e. of a; and vr 

= (ro) V.+ (ri) V + (r2 ) X2+ ... +(rz) X;.(53) 

— (ro) V + (?’i) V+ (^2) V + • • • + (rj) .(53a) 

Thus the jo’s are related to the A’s in the same way that the Vs are related to the e’s, 

or the Vs to the d’s. 

(iv.) Similarly, if 
x = q0u0 + q1u1+q2u2+ ... +qtuh 

the g’s are related to the X’s in the same way that the z s are related to the e’s, or the 

ys to the d’s. 

11. Special Case of Differences.—The important practical case is that in which the 

d’s are successive differences of the Vs, in the general sense explained in §5 (iv.). If 

the differences of order exceeding j are negligible, we can use them as auxiliaries for 

improving the Vs or the d’s or any l.c. of the Vs or the d’s. 

(i.) Since the Vs are successive differences of the Vs, (rt) is (§5 (iv.)) a polynomial 

in r of degree t. 

(ii.) By § 10 (i.) the e’s are the differences of the Vs according to the same system ; 

and vr is a polynomial of degree j in r, the differences of the Vs of order exceeding j 

being zero. 

(iii.) With the notation of §10 (iii.), the X’s are the differences of the p s according 

to the same system; and pr is a polynomial of degree j in r, the differences of the 

p’s of order exceeding j being zero. 

(iv.) If we form the differences of the Vs in the usual way, there will be l differences 

of order 1, l—l of order 2, and so on. The l —j + 1 of order j, namely A%0, Ajuu ... AjUi_jy 

will differ from one another by l.cc. of the differences of higher order ; and therefore, 

by (XI.), they will have the same improved value. If we denote this by E, then, 

if iv = pA]u0 + qAju1 + rAju2 + ..., the improved value of w is (p + q + r + ...)E. 

Relation of “Reduction of Error” to “Fitting” (of a Polynomial). 

12. Standard System.—In the case of a standard system, the process of reduction 

of error and the process of fitting a polynomial (by least squares or by moments) give 

the same result. The following is a proof of this, not involving the properties of 

conjugate sets. The observed values are taken to be u0, U\, u2,... ut; and 2 denotes 
t 

summation for t — 0, 1, 2, ... I. 

(i.) If the polynomial which we are fitting to the Vs is 

vq = a0 + a1q + a.2q2+ ... +aff, 

2 H 

(54) 

VOL. CCXXI.—A. 
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the values of the n’s when we fit by least squares are given (“ Fitting,” §§1, 2) by the 

equations (f = 0, 1, 2, ... j) 

Xgfi a0 + Zg/+1. a^ + ... + 'Eqf+j. cq = 'Zqfuq = My.(55) 
7 7 9.7 

These are the same equations that are given by the method of moments. 

(ii.) The above equation (55) is a statement that the fth moment of the vs is equal 

to that of the us. In order to prove that the process of reduction of error, using 

differences of order exceeding j as auxiliaries, gives the same result, it is sufficient to 

show (a) that the improved value of uq as given by this process is of the form of vq 

in (54), and (0) that the fth moment of the improved values of the us is equal to 

that of the original values for f = 0, 1, 2, ...j. 

(iii.) We have shown, in §11 (ii.), that the improved value of uq is a polynomial of 

degree^’ in q. This establishes (a). 

(iv.) By (XIII.), the(/’th moment of the improved values of the us is equal to the 

improved value of their fth moment. In order to show that this is equal to the 

original value of the fth moment, it is sufficient, by (IX.), to show that the m.p.e. of 

the original fth moment and every difference of order exceeding j is zero. 

(v.) Let the kth difference of u,._k be 

4 = K Ur-k1ur_1+ ... + {-)%ur_k. 

Then the fth moment is 

... +r-fur+(r—iyur_1 + (r—2yur_2 + 

and the m.p.e. of this and 4 is 

k0r/—kl (r—l)f+k2(r—2)f— .... 

But this is the kth difference of (r—k)f, and is = 0 if & > f 

This proves the proposition. 

13. Fitting by Least Squares.—Next suppose that the set is not self-conjugate. 

If the Si’s were the differences of a set of us, we should fit a polynomial of degree 

(say) j to the u s. This suggests that, in the more general case, the u’s being 

connected with the <fs, as in § 10, by the relation (r — 0, 1, 2, ... 1) 

ur = (ro) 4 + (ri) 4 + (r2) 4+... +(rz) 4>.(56) 

we should try to fit an expression of the form 

vr = (r0)e0 + (r1)e1 + (r2)e2+...+(rj)ej.(57) 

to the us by an appropriate method of least squares ; the (r)’s being the same as in 

(56), and the e’s being the quantities to be determined. 
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(i.) If the y s are conjugate to the us, and if 

Vrr>J=m.p.e. of yr and ys = \Jss<r,.(58) 

then (see Appendix II.) the direct (or a priori) probability of the occurrence of the 

given set of us, if the As as given by (57) were the true U’s, is proportional to 

exp {-%2E\lrr't(ur-vr) (us-vs)}, 
r s 

where 2 denotes summation for t = 0, 1, 2, ... 1. The principle of the method of least 
t 

squares therefore leads us* to choose the e’s so as to make 
» 

22V'y,,(wr-'yr) (us-vs) 
r s 

a minimum. Differentiating with regard to each of the e’s, this gives (f — 0, 1,2, ... j) 

2 1(0/) Vro,» + (l/) + ivs~~us) = 0.(59) 
S 

But, by (58) and (16), 

(Of) V'o,* + (1/)Vus+---+© i'l.s = m.p.e. of ys and (of) y0 + (lf) yx+ ...+(2/) yt 

= m.p.e. of ys and ay,.(60) 

Denoting this, as in § 4 (iv.), by [ay], the equations (59) become (f= 0, 1, 2, ...j) 

2 [*/](«.-**.) = 0.(61) 
S 

(ii.) Instead of fitting an expression of the form given by (57) to the u’s we might 

fit a corresponding expression to the ys. Since 

Vs — [so] ^o + [si] di + [^2] 4+ ••• + [SJ .(62) 

the expression to be fitted would be of the form 

zt = [so] eo + [5i] ei + [$2] e2 + • • • + [sj] ej.. (63) 

* Strictly, we ought to choose the e’s so as to make B. O'exp - \P a maximum: where 

P = K - v>) (us ~ vs) > 

B is the direct probability of occurrence of the particular e’s denoted by e0, els e2, ... ej, and is therefore 

some function of these latter; and C exp - \P is the direct probability of occurrence of the particular 

values of u — v on the assumption that these values of the e’s are the correct ones, C being some function 

of these e’s. But I have assumed, as is commonly done, that the range of practically possible values of the 

e’s is so small that B and C may be treated as constants, so that we have only to consider the maximum 

value of exp - 4P. 

2 h 2 
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We should have to choose the e’s so as to make 

227rr,s (yr-zr) (yt-zt) 
r s 

a minimum, where 
TTr<<i = rn.p.e. of ur and us.(64) 

This would give 

2 (r/) {Zr-Vr) = 0.(65) 
r 

(iii.) The e’s given hy (65) are the same as are given by (61). For we have seen in 

§ 4 that 
(rf) = rn.p.e. of ur and ay,.(66) 

[sy] = rn.p.e. of ys and ay.(67) 

If we express the u s in terms of the <5’s, and write 

2 [sf] us = ZAtSt, 
S t 

then, by the condition of conjugacy of the o-’s and the 8’&, and by (66), 

A, = rn.p.e. of <rt and 2 [sy] us 
S 

= 2 [«,] («,)• 

This is symmetrical, and we should get the same expression for the coefficient of St 

in 2 (?y) yr, so that 

2 0/] us = 2 (rf) yr.(68) 
S O' 

Similarly, if we substitute the values of vs from (57) and of zr from (63) in 2[sy] y. 

and in 2 (ry) zr, the coefficients of et in the resulting expressions are equal. Hence 
r 

(61) and (65) are identical equations in the e’s. 

(iv.) The values of the e’s as given by these equations are in fact independent of 

the us or the ys. For the value of At as found in (iii.) above is 

2 [»/] (s«) = m.p.e. of 2 [>y] us and 2 (s4) y, 
s .s s 

— rn.p.e. of ay and <rt, '.(69) 

hy (24) and (16). Hence, denoting the rn.p.e. of ay and crt, as in §3, hy the e’s 

given hy (6l) or (65) are the same as would be given by (f— 0, 1, 2, ...j) 

t=j t=i 
2 >]f, t et. = 2 >1/, t 

t = 0 t = 0 
(70) 



REDUCTION OF ERROR BY LINEAR COMPOUNDING. 219 

(v.) The ordinary method of least squares would consist of making 2 (vs—us)2 a 
ft 

minimum, and would lead to equations 

2(s/) (vs-us) = 0, 
S 

which would not give the most probable values of the e’s. 

14. Fitting by Moments.—(i.) The ordinary method of moments, adapted to the 

case in which the S’s are not necessarily the successive differences of the u s, would 

consist in equating the values of 2 (sf vs and 2 (sf) us. This, as will be seen from 
8 S 

§13 (v.), would not give the most probable values of the e’s. 

(ii. ) In order to obtain the most probable values of the e’s by equating moments of 

the v’s and of the us, we must write (say) 

Mf — 2 [s^] us,.(71) 
S 

and define the fth moment of the us as being Mf or a definite l.c. of Mf, Mf_x, 

Mf_2, ...M0. But the coefficient of us in Mf would then not be given definitely by 

the relations between the us and the <fs, but would depend also on the law of 

correlation of errors of the its. We see, however, from § 13 (iii.), that we have also 

Mf=X{r,)yr.(72) 
r 

and that we get the same result by equating moments, defined in this way, of the y s 

and the z’s. In the ordinary case in which the S’s are successive differences of the 

us, the coefficients of the y s in (72) are binomial coefficients, and the ordinary 

moments fall within the definition given above. It follows that in fitting a 

polynomial to a set of quantities (not being a self-conjugate set) by the method of 

moments, the moments which ought to be equated are not those of the quantities 

themselves and their assumed values, but those of the conjugate set of the former and 

the corresponding l.cc. of the latter. 

15. Reduction of Error.—If we improve the S’s or the ffis by means of the S’s 

after <f the improved values of these latter are zero, and those of the S’s up to j are 

obtainable from (XXI.) of § 8, which states that the improved values of the a-’s from 

<x0 to o-j are equal to the original values. Using (6), this gives (,/ = 0, 1, 2, ... j) 

x rjft(et)j = 2 rjf t(\.(f^) 
t=0 i=0 

Comparing this with (70), we see that the e’s given by this process are the same as 

those given by the process of fitting the expression in (57). 

16. Difference of the Two Processes.—Although the two processes lead to the 
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same result, they are essentially different. This is explained in § 22 of “ Reduction.” 

The main difference may be expressed as follows :— 

(i.) In “fitting” we deal directly with the particular case. We assume that the 

true values follow a specified law, involving unknown constants, and we deduce 

values for these constants from the data by the principle of inverse probability. 

(ii.) In “reduction of error” we do not use inverse probability, and we only deal 

incidentally with the particular case. We regard the aggregate of the data as one of 

an indefinitely great number of possible aggregates from the same true values, and 

we use a method which will reduce as much as possible the m.s.e. of these possible 

aggregates. 

Some Steps in the Genekal Solution. 

17. Preliminary.—(i.) Our object is to find the improved value of any l.c. of the 

<fs or the u s, and the m.s.e. of this improved value or the m.p.e. of two improved 

values. Ordinarily, as already stated in § 8 (iv.), the quantity to be improved would 

be expressible in terms of the d’s, so that we need consider only the improved values 

of the S’s, i.e., the e’s. There are then four problems before us, viz. : (l) expression 

of the e’s in terms of the <fs; (2) expression in terms of the o-’s ; (3) expression in 

terms of the y s; (4) determination of the X’s. For practical purposes (2) is more 

important than (l) or (3), since there will be fewer coefficients involved. 

(ii.) Although it does not seem possible to obtain a general solution, otherwise 

than by determinants, there are some general propositions that indicate stages in the 

solution. If, without necessarily finding the complete expressions of the e’s in terms 

of the cfs, we can find for each e the coefficient of the first of the auxiliaries, then it 

will be seen from § 18 that we can find all the e’s if we know the E’s, and from 

§ 19 (i.) that we can find all the X’s if we know the A’s. It follows from (40) that in 

this latter case we can at once obtain the e’s in terms of the As. 

(iii.) We use the notation of § 7, and we also write 

— Ofj EE coefficient of <5) (as auxiliary) in (ey);-_1} 
so that 

Sf.j = o if/>i.(74) 

6j,i = 1.(75) 

It should be observed that 64 is not equal to 64 The 0’s may be known directly, 

or, as is shown in (83), we may be able to obtain them from certain of the X’s. 

18. Formula of Progression.—The quantities which we want to find are the 

improved values 
of 4 using 4 4 S3, , 

of S} and 4 using 4, 4 S4, ... , 

of 4 4 and 4 using 4 4 4 ■ • • «. 
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and so on. There is a formula connecting these, which makes it unnecessary to deal 

with more than the first quantity in each row ; or, if we deal with them all, the 

formula can be used for checking the results. (An example is given at the end of 

§ 15 of “Reduction.”) 

We have 
1 = terms in Sj+1, §j+2, .... 

By (XV.), this is the improved value of Sf— Of using os after <5j; and therefore, 

by (XIII.), 

1 = (ef)j — Qf,j(ej)i — (e/)j —.(76) 

Re-arranging, and replacing j by j— 1, j— 2, ...,/+ 1, and remembering that, by (75), 

Of f = 1, we have 

i€f)j ~icf)j-i= °f.j 

(e/)/+i — (€f)f — fy,/+iE/+i> 

(ef)f — fy,f E/- 

Hence, by addition, 

(€f)j = 0MEf+d/,/+iE/+1 + 0/i/+2E/+2 +... + OfjEj.(77) 

19. Mean Products of Error (Alternative Formula).—{i.) By (77) and (38), 

ff,g)j = m.p.e. of Sg and (ey);- 

= m.p.e. of Sg and ef.fE‘f+0ff+ iE/+i+ ••• + 

= 6/,/(\,/)/+ 0/./+1 (\,/+l)/+l + ••• + 

. = t t)t- 

The summation has to be made from t =f to t = j. But, if (/>/, we see from (37) 

that it is sufficient to make the summation from t = g. Hence, using “ t =f, g” to 

denote summation from t — f or from t — g, according as f or g is the greater, 

we have 

iff,g)j = X Qf,t{\,t)t.(78) 
t=f, <7 

But, by putting g — j in (78) (or taking the m.p.e. of Sj and each member of (76)) 

and then replacing f and j by g and t, 

Hence, substituting in (78), 

ifg, t)t @g,t Aj 

iff,g)j — X 0f,t0g,t Aj 
■ t=f<9 

(79) 

(80) 
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If we can obtain the 0’s and the A’s in a simple form, we thus have a workable 

formula for calculating the A’s, and thence, by (40), for determining the e’s in terms 

of the cr’s. 

(ii.) From (80), using (II.) of §6, we get the m.ss.e. and m.pp.e. of the improved 

values of any l.cc. of the S’s. Let 

w — b^S(j-\-bxSi + ... + btSi, w' — c0S0 + Cjflj + + 

and let the improved values of w and w', using S’s after Sj} be x and x'. Then 

t =j 

m.p.e. of x and x' = 2 (Mo.* + Mi.t + • ••) (co0o,« + c101,t+ ...)\ 
( = 0 

—■' (^o^o,«"t&i0i,j+ ...+6j0i t) (co0Oif + c10lit + ... + ct6t t) At, (8l) 
t = o 

m.s.e. of a: = 2 (6o0o,t + Mi,t+ ••• +bt0tJ)2At.(82) 
t = 0 

(iii.) We have assumed that the 0’s are known. If they are not known directly, 

but the values of (Ayit)t are known, then, by (79), 

fy.t — .(83) 

Substituting in (80), 

(V.?)i = ^ {\,t)t/\‘.(84) 
t =/. <7 

Also (77) is replaced by 

(<A = 2J(X/.,),E,/Al.. (85) 
t=.f 

Application to Self-Conjugate Set. 

20. Preliminary.—(i.) We have now to apply the preceding results to the case in 

which the us are a self-conjugate set, so that (ur; us) = 0 (r^s), (ur; ur) = 1, yr = ur. 

We take the d’s to be successive differences of the us, commencing with a difference 

of order 0. The <fs to be used as auxiliaries will be those following Sj; the ( )7 

will usually be omitted. We shall take the number of w’s or of d’s to be m, so that 

m — l + 1. 

(ii.) There wdl be three cases to be considered; advancing differences, and central 

differences for rn odd and for m even. For advancing differences the us will be 

taken to be uQ, u1,... um-1. For central differences we shall write m = 2w + l or 

m = 2n ; and the us will be u_n, u_n+1, ... u„ and u_n+1, u_n+2, ...un respectively. We 
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shall require the following m.pp.e., which can be obtained from ordinary difference 

formulae. 

m.p.e. of Afu0 and A9u0 = (-Y'9 (f+g,f),. (86) 

„ S2fu0 ? ? <f%0 = i-Y'9 (2/+2gr,/+gr),. (87) 

„ S2fu0 ? ? iuS29~lu0 - o,.. (88) 

,, fx82f~lu{i 5? = (-Y'’(2f+2g-2,f+g-l)l(2f+2g), . (89) 

„ W-Hn ?? 82^u, = (-V',(2f+2g-2,f+g-l), . . . . (90) 

1 ? ^~2uh = 0,. (91) 

„ ^82f~2uh ? J = (-Y'’(2f+2g-4.,f+g-2)l{2f+2g-2). (92) 

(iii.) For advancing differences we shall have 

= A/u0, €f EE Afv0. 

The formulae will be marked (A). 

(iv.) For central differences the two cases of m odd and m even must be considered 

separately; but it will be found that, when the formulae relating to v0, S2v0, ... 

(m odd) and to Svi, S3v4, ... (m even) are properly expressed, they are practically 

identical in form, as also are those relating to /u8v0, /j.S3v0 ... (m odd) and to 

/jlVi, /uS2Vi, ... (m even) ; and the latter correspond to the former with certain inter¬ 

changes of ( ] and [ ). We therefore, for /x8v0, /ul83v0, ... and [xvh_, /uS2ih, ... , replace 

0, E, A, X, by <p, I, M, /x, with the appropriate suffixes. 

(v.) For m = 2n+\ it will be seen from (88), taken with (XIV.) of §6, that the 

differences of even and of odd order can be treated independently. The <fs will be 

u0, S2u0, ... 82nu0 in the one case and /u.Su0, iuS3u0, ... iuS2n~lu0 in the other. We shall 

denote these by <^0, S2, ... S2n and §1} 4? ••• 4»-i respectively, and shall take j to be 

2k or 2^+1 for the former and 2k—1 or 2k for the latter. The subscripts of the 6’s 

and the (p’s will be modified accordingly ; i.e.. 02ft2k will mean the coefficient of — S2k in 

ie2f)2k-2, and similarly for i- The formulae for the two cases will be marked 

(B) and (C) respectively. 

(vi.) Similarly for m = 2n we see from (91) that differences of odd and of even 

order can be treated separately. The 8’s are ... S2n_l in the one case, and 

$0, 82, ... S2n_2 in the other, where S2f_i = 82f~luh 82f_2 EE ix82f~2uh; and j is taken to be 

2k—\ or 2k for the former and 2k—2 or 2k— 1 for the latter. Also 02/-i,2*_i means 

the coefficient of — §2k_i in (e2/-i)2*-s 5 and similarly for <p2f-2,2k-2• The formulae will be 

marked (D) and (E). 

2 i VOL. CCXXI.-A. 
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(vii.) Writing 

Elf.. O . 1-1, et.p... , a(a + l) . (3 ((3+l) ... , 

F{<x> 8>+•■■■> = 1 + 7^-.+rGli).i,(i,+ l)..+ 

where a is a negative integer, it should be noted that 

and that, if 

then* 

F{-n, 0 ; 1, *} = . . 

cl — —n, + —?r + /3 + y+1, 

(93) 

FI O ,,. , ,L vi _ D-ff. ra][x-g. »] _ [V-'-r. «][x-y, »1 
1 ,fty’ ’^’xf [>,»] [x.»] “ [*. *][*»] 

(94) 

(viii.) For the central-difference formulae it will be convenient to write, if r and s 

are both even or both odd and s ^> r, 

{», r} = (ty(,+r- «)(»’*<+*r). r + J 

{r. = (|)r 
(r+1) (%r + %8> r) 

so that, if k ;> f, 

Sob, i of, | \ — [/+t> (&>./) _ [«/+!> &+t] (&+1,/+l) {2&+1, 4/+1} 2/+2 2/+1 

{2£, 2/} L/ + A> A] (lc,f) _ [/+f, A— l] (A— I,/ — l) 

2/+1 2/ 
and, if k s, 

{2A+1, 2s+ 1} = 
[s 4- A] _ [s + •g-, k + 1 ] 

(2k+2)(s,k) (2s +1) (s, k) ’ 

{2&, 2s} = [s + 2, ^] 
(2k+l) (s, k) 

(95) 

(96) 

(97) 

(98) 

(99) 

(100) 

(ix.) The successive steps are as follows. The formulae for the e’s (the improved 

values of the differences) in terms of the differences have already been found in 

“ Reduction ” and “ Fitting ” ; they depend on certain theorems as to the coefficients 

when l.cc. of moments or sums are expressed in terms of differences. From these 

formulae we get the 6’s, and also the E’s ; and thence we get, in each case, the 

progression formula supplied by (77). This formula is not really necessary, but it is 

useful for checking. The A’s, i.e. the m.ss.e. of the E’s, are found from (86)-(92), 

using (IV.) of § 6 ; this results in certain hypergeometric series, to which we apply 

(93) and (94). We then get expressions for the A’s, by (80). From these, by (40), we 

* ‘Proceedings of the London Mathematical Society,’ 2nd series, x., 474, 
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have the values of the e’s in terms of the <x’s ; and also, by § 10 (iii.), the values in 

terms of the As (which are identical with the y s). This completes the investigation 

of the improved values; but we also want to see the extent of the improvement. A 

further section therefore gives the ratio of the m.s.e. of the improved value to the 

m.s.e. of the original value, in a form con venient for calculation. 

(x.) The m.p.e. of Ahir and Afur+t is ( —)‘ (2f,f+t). Hence, in finding the general 

solution of our problem for the case of a self-conjugate set, we are also finding it for 

the case of a set in which the m.p.e. of ur and us is of the form ( —)sr (2f,f+s—r), f 

being some positive integer ; for we can treat these As as the fth differences of 

members of a self-conjugate set. 

21. Improved Values.—-(i.) Adapting § 11 (iii.) to the case in which the y s are 

identical with the u’s, we see that, if w is any l.c. of the As, its improved value, 

using differences of order exceeding j, is of the form lLprur, where pr is a polynomial 

of degree j in r. The improved values of the As and their differences are obtained 

from this by means of certain formulae, given in §§ 6 and 7 (iv.) of “ Factorial 

Moments,” for the expression of lLprur in terms of differences. The results are given 

in (12), (18), (19), (26), and (25) of “ Fitting.” From the first of these, replacing 

m+1 by m, we have (f = 0, 1, 2, ...j) 

(A) A\ =7f A/) U-sJ-f) (Yftl'j'SfeA1) A’M»; (101) 

and from the other four, altering k to k—1 in the last, we have [f— 0, 1, 2, ... k in 

(102) and 1, 2, ... k in (103)-(105)) 

(B) = T(t+., t+f)(k-s, k-f)j; gg^f;ffiij• (w») 

= • (102i) 

(O) m<S + S 1 >k+J S’L ”0(2£+2s-l, 2i-l)(« + i2/]M ° 

... (103) 

s-h 2/'+l {2h, 2/) pm, 2s] t 
s = fe+l S — f2k+l |{2k, 2s} (£ra, 2/] 

m^/-iMo+(_)^-/ 2 pA 'J. • • (103a) 

(D) (k + s—i k + f_1) (k_s k f ) ^ ^ 1) 
A1 ' J U ’ J>(2k+2s-l, 2k-l)[n,2f) * 

. . . (104) 

- W-IUL+(-Y-t *~k 2f+1 2-^ 2s> S--'u. (104O 
_<i “i+( ’ ,?1us-f2k+l {2k,2s}[hm,2f)d ' ’ ',I04A) 

2 i 2 
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(E) ^ (lc+s-2, 
s = 1 

k+f-2)(k-s, k-f) 
(2k + 2/— 3, 2fc-2) (n, 25-1] «*. 

(2k + 2s-3, 2k-2)(n, 2/-l]M 4 

(105) 

s-k2f {2k-\, 2/-1} (4m, 2s-l] *2s _2 

s-f2k {2k-\, 2s-1} (4m, 2/-1] 

(ii.) From (i.) we obtain 

(A) fl/.j (./+/> .7-1) (m,/+i) 

(2//-1) (m,/+l)’ 

. (105a) 

. (106) 

(B) 

(D) 

(E) 

a . / u_; {2fc, 2/} [4m, 2fc + l) 

2/’2*“^ ' {2£, 2&}[4m, 2/+1)’ • ' 

. _ / _ u-/ {2/c-l, 2/-1} (4m, 2fe] 

02/-1>2A-1 1 ' {2jfe-l, 2ife-l} (4m, 2/]’ • 

, yc_f{2k-l,2f-l}^m,2k) 
2/~1’2*-1 ~ 1 ; {2/v-l, 2/1-1} [|m, 2/) ’ ' 

, — (_y-f {%k — 2, 2/— 2} (4m, 2/>—l] 

02/-2’2ft-2 ~ 1 ; (2& —2, 2A —2} (4m, 2/-1] * 

(107) 

(108) 

(109) 

(110) 

(iii.) Also, by putting/* — j in (101) and f — k in (102)-(105), 

(A) 

<1 II 

S~A h (2/+1,/) (m, s+l)AS 
= A (s, i)-7~-}—X-—(A X> 

s=i J 0+s+l,.?) (wi-,^ + 1) 
• • (HI) 

(B) o 
£ II CM

 

w
 

S = ’l{2& + 1, 2&+l} Tim, 2s+l) «3s„. 

g = fc (2A+1, 2s+l} [4m, 2& + 1) 
• • (112) 

(C) 1-24—1 = MO2* \ 
_ s = n {2&, 2&} (|-m, 2s] 

s = 4 {2&, 2s} (4m, 2&] ^ 
. . (113) 

(D) E2*_! = 
{2A 2&} [4m, 2s) Ms-u, 

“.rfc{2i,2*}[4m,2A) *’ * * * • 
- - (H4) 

(E) 1-24—2 = 
!v {2^—1, 2&—1} (4m, 2s—l] a2s_2 

'..*{24-1, 2s —1} 0,24-1/ *' ' 
• ■ (H5) 

(iv.) It has been pointed out in § 11 (iv.) that the differences of order j all have 

the same improved value. It follows that (112)—(115) are particular cases of 

(ill), expressed in terms of central differences; the proper values being taken for 

m and for/, and u0 being altered to u_n for (112) and (113) and to u_n+i for (114) and 

(115). We can verify this by expressing the E’s in terms of the differences of 

order/. For (A) we have 

+ ... AX = {(l + A)-l}s jAju0 = Ajus_j-(s-j, l) AX-j-i 
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Substituting in (ill), and rearranging the terms, it will be found that the coefficient 

of Ajur is 

U+r, j) 1) F { -m+i+r+1, j+r+ 1 ; i,2j+r+2} 

= (/ + ?’,/) 2j +1] ; 
so that 

(A) E, = 

Similarly from (112)—(115) 

(m—r— 1, /) r = m—j—1 

2 (/ + r, j) /VY AH/- 
r = o [m,2j + \\ 

(116) 

(B) e2, = r=r (*»+*+*;, 24) (»+4-r^4j rUr 
v 7 2k (m, 4&+1] r = —n + k 

r = n—k 

(117) 

. (C) IM_, = 2 (ra + ^ + r, 2k 1) (n + 4 r 1. 24 1) ^_v_r_>+. (118) 
r = 0 

/to Tf> _r-nk ^n + jc + r_it 2k—l) (n + k-r-1, 2&-1) 
V-L') -*--'24—1 " / , / ,7 ® ^r+i> 

r = -»+* (m, 4&—1J 

r = n—k 

(E) II(_i = 2 
r = 0 

{ft Tc v—1, 2Jc— 2) {fi-\- Jc—v — 2, 2Jc— 2) ^24_2 

(m, 4& —3] 

. . . (119) 

{$2k-2u_r + S2k-2ur+1). . (120) 

The identity of (117)-(120) with (116), the us being altered as explained above, is 

easily verified. 

(v.) The formula of progression (77) takes simple forms if we attach the factors 

involving m to the <fs ; for m then disappears from the formula. 

(A) Writing 

At = (m,t+ 1)E( = (m, t + l) (A*v0)t, 

so that, in effect, we take <5y to be (m,f+l) A/u0, (77) gives 

(A) (m,/+l) = s' YY-'lY1.(121> 

For / = 3, for instance, we should have 

(m, 1)% = A0 

(m, 2) Av0 = 

(m, 3) A\ = 

(m, 4) A3v0 = 

~A1 Ar\A2—\A3 

Ax—•§ A2+§ A3 

A2—2A9 

A 

where A0 is the value of (m, l) v0 for j — 0, A1 is the value of (m, 2) Av0 for j = 1, 

and so on. This may be verified by 5 5 (i.)-(iii.) of “ Fitting.” 

(B) (C) Writing 

P2t = \An> 2t + 1) E2J, Q2t_] EE (|ni, 21\ I2t_!, 
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we have 

(B) ft™, 2/+ 1) P»'.<122> 

(o (fr»,2Kli[ fe-..<123) 

The first of these has been given, for /= 0, in “Reduction,” § 15 (v.), p. 362 ; the 

notation of P2t differing, however, in a factor \m. 

(D) (E) Writing 

P 2t-1 — [im> 2^) E2t_i, Q‘2t-2 = 2£ l] — 

we have 

(10 ' Lfrn, 2/) f«-.(124) 

(E) (fa>. 2/-l]^-V, = .(125) 

(vi.) The A’s are obtained from the E’s by means of (IV.) of § 6 ; e.g., for advancing 

differences, m.s.e. of E^ = m.p.e. of E; and Aju0. We can use either the values of 

the E’s given by (ill)—(115) or those given by (116)-(120); for the former we 

require the m.pp.e. given in (86), (87), (89), (90), (92), and for the latter the value 

of the m.p.e. of two differences of order f as given in § 20 (x.). Using the former 

method, we get the following results :—- 

(A) a, =8T1 (-y-i (s, j) U +1 o') (,, +jtj) 
’ -j ’ K 'J> (s+} + \,3)(m,3 + \y 

= (2'j, j) P { -m+j+1, 2j+1 ; 1, 2j+2} 

= j) (m-j-l)\(2j+l) \/{m+j)! 

= (2i,y)/(w, 2/+1];.(126) 

(B) A - / y-ft |2^'+ 1> 2/1+1} [fm, 2s +1) / J , a 
2k ~ sik{ } {2k+l,2s+l}[±m,2k+l)[2S + 2/C’S + k) 

= (4k, 2k) F { —n + k, n + k + 1, 2k + ^ ; 1, 2k + 1, 2l' + f} 

= (4&, 2k)/(m, 4&+1];.(127) 

u*\ M _ %" / {2k, 2k} (^m, 2s] (2s + 2k — 2, s + k— l) 

V' “-1 S = U j {2k, 2s} {^m, 2k] 2s + 2k 

= (4& —2, 2& —1)/(4&) . F{ — n + k, n + k + 1, 2k—; 1, 2k +1, 2k + };} 

= {U-2, 2k-l)/(m, 4^—1] ;.(128) 

(1) Am_, = Y (-)-* ft™. 2«) (2s + 2&—2, a + *-l) 
s = t {2A:, 2s| 2/:) 

= (4& —2, 2k—1) F {—n + k, n + k, 2k—\ ; 1, 2&, 2& + |-} 

= (4&—2, 2&—l)/(m, 4&—l] ;. (129) 
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(v\ M .. ( \s-n {2&— 1, 2k— 1} (£m, 2.<?—1~1 (2s + 2k-i, s + k-2) 
1 ' liM-2_sr/ ' {2k-l, 2s-l}(±m,2k-l] 2s + 2k-2 

= (4& —4, 2k—2)f(^k—2). F {—n + k, n + k, 2k—§ ; 1, 2/:, 2k — 

= (4&—4, 2k —2)/{m, 4& —3]. (130) 

It would, of course, in view of the identity of the E’s as stated in (iv.) above, have 

been sufficient to obtain (126) and deduce (127)-(130) from it. 

(vii.) The A’s having been found, the A’s, i.e., the m.pp.e. of the.improved values of 

A%0 and A%0, etc., are obtained by (80). The 6’s and <//s being as in (ii.) above, 

(A) 'V'? 2 0/,*0** (2«, 0/(m> 2£+l],. 
<=/, g 

• (131) 

(B) 'W, 2? = 2 ffi/,2* 2t (^h 2t)/(m, 4t+ l],. 
<=/, <7 

■ (132) 

(C) M2/-l,2?-l = 

t = k 
2 02/-l,2«-l 02j-],2«-l (d^ 2, 2t l)/(m, 4t l], 

t =/, <7 
. (133) 

(D) ^2/-l,2</-l ~ 2 ffi/_i,2t-i ffi?-i,2s-i (4t — 2, 2t l)/(?n, 4t l], . 
t =/. <7 

■ (134) 

(E) fx2f-2,2g-2 = 

t = k 
2 <p2f-2,2t-2 (f)2g-2,2t-2 4, 21 2 )/(w+ 4£ 3]. . (135) 

To find the m.s.e. of the improved value of any l.c. of the differences, or the m.p.e. of 

two such l.cc., we apply (II.) of § 6, as in § 19 (ii-)- Thus, for m = 2n + 1, 

m.p.e. of b0v0 + b1fiSv0 + b2^v0+ ... + b2kS2kvD and c0v0 + + c2<f u:) + ... + c2k82kva 

[g = t 
— 2 | ^2 ^2/^2/,2«jj 2 C2ff@2ff,2tj' (4i, 24£ + 1 ] 

t = k (J =t "I (g = t 

+ 2,2 &2/-102/-l,2i-l n ^ (:2fl-102,7 —1,2*-1 
t = 1 L/= 1 J l.'7 = 1 

•2, 2£-l)/(m, U-l]. 

(viii.) The As having been found, the e’s are then given in terms of the <r’s by (40). 

Using the expressions for the o-’s given in (26) and (31)—(35), we get the following :— 

(A) A%> - "2 A, „2"°+lun 
<7 = 0 

V’9‘ 

9 = 3 
2 

g = 0 
L 2 {-y\ 

(B) 

(C) 

= 

f!7 = fc 

L\ 2 X2/,^/eo-J-9+ffi0; <m, 
_ ' (7 — 0 

f/ = k 2 

A *1 2 fJ-2f-l,2g-lcr ?7A) > 
S' = 1 

t = m 

t=0 

£ = 

. 1 £ = —5m 

t — 2 111 

t = — fm 

.... (136) 

;.(136a) 

. (137) 

; . . . . (138) 
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P) 

(E) 

lVi = 

= 

g = k 

X ■) 2 V/-1,2i/-1/u't 5 CUt+h 
<7 = 1 

g = k 

I] 2 U-2f-2,2g-2rT ^ j + 4 
L 1<7 = 1 

£ = 

£ = — hm 

t = 

£ — —%TYl 

■ . (139) 

. . (140) 

The expression in (136) differs slightly from that given for AA;0 in “ Fitting,” (15) and 

§ 5 ; see Appendix III. 

(ix. ) Finally, we want to express the e’s in terms of the us. This is done by means of 

the general theorem in § 10 (iii.), that the coefficients of the y s in any e are related 

to the m.pp.e. of this e and the e’s in the same way that the vs are related to the e’s. 

Thus we find that—- 

(A) If 
r = m 

Afv0 = 2 prur, 

r — 0 

then Pr = 2 (r, g)\f,g\. 
<7 = 0 • (141) 

(B) If 
r = n 

= 2 prur, 

r = — n 

then 
g = k 

Pr= 2 [r, 2g)\2f,2j \ ... . 

g = o 
• (142) 

(C) If 
r = n 

/jl2f~lv0 = 2 prur, 

r = — 7i 

then 
g = k 

Pr ~ ^ (A 2>g i] +2/-l,2y-l 5 • 
<7 = 1 

. (143) 

P) If <>2/~p = 2 pruT, 

r = — 7i+l 
then 

g = k 

Pr = 2 [? 2g—l)\2f-l,2g-l> 

<7 = 1 
■ (144) 

(E) If 
r = n 

/Ji§2f-2vi — 2 prur, 
r = —n+1 

then 
g = k 

Pr = ^ 2^ — 2] V2f-2,2g-2- • 
<7 = 1 

• (145) 

For a comparison of these formulae with those given in “ Fitting,” see 

Appendix IV. 

22. Extent of Improvement (Central Differences).—A question of practical 

importance is the extent to which the use of these formulae actually reduces the 

m.s.e. of some selected quantity, such as, for the cases marked (B), u0 or S2fu0. The 

m.ss.e. of the various improved values are found from (131)—(135), by putting g =f 

Comparing these with the m.ss.e. of the original values, for the central-difference 

formulae (which are the important ones for practical use), we obtain the following :— 

/m m.s.e. of _ 1 %k f{21, 2/} \fm, 2£+ l){2 (41, 21) 

m.s.e. of tffuQ (4f 2f) t=j\{2t, 21) [^m, 2/+l)J (m, 4/5+1] 

= 1 ‘P^ + l f{21, 2f}\2 
(m, 4/+ 1] t =/ 4/+1 \{2f 2/} J 

{m8-(2/+ l)2} {m2—(2/+3)2} ... {m2- (2t-1)2} . 

{m2— (2/+2)2} {m2— (2/+ 4)2} ... {m2— (2£)2} 
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/q\ m.s.e. of /u.82f by _ _if_\{2t — 1,2f— 1} (j-m, 2tf2 (it — 2, 2t — l) 

m.s.e. of u^f-lu0 (4/—2, 2/— l) i =/ l{2£— 1, 2t — \) (^m, 2f]\ (m, 4i — l] 

= 4/ 4£ — 1 f{2*-l, 2/— 1} 12 

(m, 4/-1] * = / 4/-1 1 { 2/-1, 2/-1} I 

{m2— (2f+ l)2} {m2-(2/+3)2} ... |m2-(2£-l)2} . /u7^ 

{m2—(2y)2} {w2— (2jf+ 2)2} ... {m2— (2£ — 2)3} 

/j-^\ m.s.e. of _ _1 * = f {2£ —1, 2/— 1} [^m, 2£)|2 (it —2, 2t — l) 

m. s. e. of 82f- (4/- 2, 2/-1) t = / 1 { 2t — 1, 2t-l \ [|m, 2f)\ (m, it -1 ] 

!_ 1 %* it — 1 [[2t-l, 2/-1}!3 

" (™, 4/— l] «=/ 4/— 1 t{2/—1,2/— 1}J 

|m2-(2/)2} {m2— (2/+2)2} ... {m3-(2*-2)2| . , , 

|w2_(2/+i)3} |m2-(2/+3)2} _ {m3— (2it — l)3} ’ V ' 

(-p\ m.s.e. of /uS2f-2Vi _ if— 2 J {2t — 2, 2/—2} (%m, 2t—1]\2 (it — i, 2t — 2) 

m.s.e. of fi.82f-2uh (if—i, 2f—2)t=f l{2£ —2, 2£ —2} (^m, 2f— l]j (m, 4£ —3] 

= 4/-2 %* it-S \{2t-2, 2f-2}\2 

(m, if— 3] < =/ if— 3 1 {2f— 2, 2/—2}j 

{m2-(2/)2} {m2-(2/+2)2} ... {ma-(2£-2)8} / 14g\ 

{m2-(2/-l)2} {m2— (2f+1)2} ... (m2-(2^3)2} 1 ' 

23. Smoothing.—When we have a table containing a very large number of us, a 

common method of procedure is to use a formula involving a limited number of terms 

and to apply it to successive sets of the us for the purpose of obtaining a table to be 

substituted for the original table. Thus we might use a formula involving 2n +1 

terms, and apply it to u0, uu u2, ... u2n for finding a new value wn, then to u1}u2,u3, ... 

u2n+i l'or finding a new value wn+1, and so on. These values having been obtained, a 

differenced table would be formed ; but, as by hypothesis the true differences of order 

exceeding j are negligible, the table would only go up to differences of order j. There 

are two cases to be considered. 

(i.) If our object is to obtain as accurate values as possible for the w s, consistently 

with our using only the specified number of us for each, the most accurate values 

would be the vs given by the formulae considered in this and the preceding papers. 

It should, however, be observed that the differences of the w s are not the same as the 

A-Ty, S2fv0, etc., occurring in those formulae. Suppose, for instance, that we replace u0 

by its improved value vi} obtained by means of the (B) formula involving u_n, u_n+l, 

•.. un, and replace ux by the improved value vx obtained in a similar way. The 

resulting value of vx — will involve the 2n + 2 us from u_n to Mn+1; but it will not be 

the same thing as the improved value Vi obtained by the (D) formula involving these 

us, and its m.s.e. will therefore be greater than that of the latter. 

(ii.) If our object is to obtain a smooth table of the w's as a whole, we could do this 

by obtaining as accurate values as possible for the differences of the tv's of order j. 

VOL. CCXXI.-A. 2 K 
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The formula which would have to be applied to the us in order to obtain this result 

can be constructed without difficulty. The important thing to notice is that, if we 

alter the differences of the us and then obtain the tv’s from the altered differences by 

summation, the resulting values must be such as can be legitimately substituted for 

the us. Suppose, for instance, that j = 2&+1, and that we use 2n+l us for each w. 
The formula for w will have to be of the form 

^0 > w{) — VA) + C-2k+2^ + M(i "P C2£+4o + U(,-\- ... + C2n(i' u0 

and this will give 

^k+iwh - r+s+cM+2^+3^+c3A+4(^+8^+...+c2n^+2t+i^. 

The problem of determining the c’s so that the m.s.e. of S2k+1w* shall be a minimum 

is the same as that of determining the coefficients in the improved value of for 

j = 4&+1 or 4& + 2, m being 2ti + 2ic-\-2 ; and the solution of this problem is given in 

§ 21. Thus, in terms of sums, (139) gives 

g — 2k +1 t — ti *T k +1 
S2k+1wi ^•2k + l,2g-lU,7'2gui ) 

t = - (n+4+1) 

The X’s having been found, we shall then have, by summation, 

t = n+A+l 

t = — (n+*+l) 

' <7 = 24 + 1 
II d
f 

<>> - 2 X2,+,2ff_iM^+2t+ffi0 ; Ak+2ut 

The ratio of the m.s.e. of S2k+1wi to that of $2k+1ui is given by (148). 

Appendix I.—The Correlation-Determinant. 

1. The m.p.e. of A and B being denoted by (A ; B), let 

(A - A) (A; B) (A ; C) . . . 

(B ; A) [B ; B) (B ; C) . . . 

(C;A) (C;B) (C ; C) . . . 

We call this the correlation-determinant of A, B, C, .... 
'2. The elements of this determinant may be regarded as obtained as follows. We 

first take a representative collection of NA values of the error of A ; NA being usually 

indefinitely great. Then, for each of these values, we take a representative collection 

of Nb values of the error of B; the resulting NA collections will all be alike if the 

errors of A and of B are independent, but not if they are correlated. This gives 

NaNb combinations of an error of A and an error of B. For each of these we take 
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a representative collection of Nc values of the error of C; and so on. Thus finally 

we shall have JV = NANBNC .■.. combinations of an error of A, an error of B, &c. 

Numbering these 1, 2, ... JV, and denoting the errors of A, of B, of C, ... by 

a, b, c, ... , the combinations will be au by, cu ... , a2, b2, c2, ..., ... aN, bN, cN, ... ; and 

we shall have 

{A ; A) = (a12+a22+a32+...+aN2)/N, 

(A ; B) = (alb1 + a2b2 + a3b3+ ... +alXbN)/N, 

&c. 

3. Substituting these values in 0, we find that, if there are m of the quantities 

A,B, C,..., 

iVm0 = Oj2 + Cl 2 + Cl3 + . . . 

(i\b\ + ci2b2 a3b3 + ... 

a1cl + a2c2 + a3c3 + ... 

ii\ b\ + ci2b2 + a3b3 + ... 

b2+b22 + b3+... 

byC] + b2c2 + b3c3 + ... 

ciyCy + a2c2 + a3c3 + ... &c. 

byCy + b2c2 + b3c3 + ... &c. 

c2 + c2 + c2 + ... &c. 

= («i&2 c3-.-)3 + («i &2c4-..)2 + {ctyb-fi...)2 + (a263c4...)2 + ... 

where (ciyb2c3...) denotes axa2a3... 

by b2 b3... 

0 c2 c3... 

Hence 0 is not = 0 unless each of the 

determinants (abc...) is = 0. This would be the case, for instance, if A were a 

constant, so that every a would be 0, or if there were a linear relation connecting 

the errors of A, B, C, .... 

4. Let be the correlation-determinant of A, B, ... P, Q, ... , and 'P that of 

A, B, ... P. 

(a) Suppose that Sf = 0. Then, by § 3 of this Appendix, each of the determinants 

(ab ... p), where a, b, ... p are the errors of A, B, ... P, is 0. But these are the 

minors of the c/s in the determinants (ab ... pq) ; and therefore these latter 

determinants are 0. Proceeding in this way, we see that the determinants 

(cib...pq...) are all 0 ; and therefore A> — 0. 

(b) Hence, if <f> is not = 0, "P is not = 0. 

Appendix II—Frequency of Correlated Errors. 

I. Let u0, Uy, u2) ... Uy and y0, yx, y2, ... yx be two conjugate sets. Denote the errors 

of the us by 60 , 6X, 02, ...Op, and let the resulting errors of the y s be <pu, <f>y, <p2, ... <px. 

2 k 2 
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Then, on the assumption of normal correlation of errors, the frequency of joint 

occurrence of these 0’s is proportional to 

exp —|-P, 

where P is a homogeneous quadratic function of the 0’s. We want to prove that 

(i.) the (j> s are the partial differential coefficients of \P with regard to the 0’s, 

and conversely ; 

(ii.) P = 0000 + $101 + $202 + • • • + Q/(f>l > 

(iii.) P = '0-o>o$o2 + 2iAo,10o01 + 1A'i,i$i2+ ••• +Vo,z$z2> where \fsfg is the m.p.e. of yf and 

yg ; and similarly 

(iv.) P = tt0,o0o2 + 27Ty,10o01 + x1,1012+ ... +7Tu,<pi\ where tt/3 is the m.p.e of uf and ug. 

2. Suppose that 

P = Oo, 0$lf + 2«0,10O$1 + «l, l$l“ ?0p ; 

and let us, without making any assumption of conjugacy, write (f — 0, 1, 2, ...l) 

yf = Uf^ 0U0 + Uf pq + 2'M2 +... + Uft 

<pf = error of yf 

— Uf' Q0o + Uf' j0j + Uf' 202 + • • • + Uf' 

= HP/dOf. 

Then, writing the subscripts in the order f, 0, 1, 2, ... I, 

P = af,fQf + %af, o$/$o + a0, o<V +•••+<*;, /0/“ 

= <P/luf'f+Q, 

where $ does not contain 0y. 

3. The mean value of 0^0? is NjD, where 

Ng = [ j [ • • • 10/0ff exp—\P. d0o c?0j ... ddh 

D = j jj... |exp — \P . dQfdOodOi ... d6h 

the integration being in each case from — co to oo. If we write 

= 0// \/af,f> 
then 

Ng = |Jj ... j*0-0?exp—-g-i/r2. exp—. d\p-d0i)d01 ... d0,. 

(a) First, suppose that g is not = f. Then, integrating with regard to \}s, 

Ng = 0. 
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(b) Next, suppose that g — f. Then 

= 1 /«/,/. j jj ... j — — exp — bP . d9fd9{) d01 

= 1/«/,/. ||j ••• \<f>/ exg — ^P. d0fd6t)d01...ddi, 

by ( a). Hence 

Nt= 1 /y/'aftf. |jj ... | \fs2 exp — . exp—\Q . dp/ d00 d9x ... dOt 

. * doi 

= v7 (2Tr/aftf). ... exp—1-(). dOt)dOl ... dO 

Also 

B= l/\/«/,/ • j [J... jexp—Tf\f/ . exp—^-(1 . ... 

= v7 (2Tr/ctf'f). J exp—. d6l)d01 ... c?0z. 

Hence 
Ah/Z) = 1. 

.» y 

4. Hence the y s are related to the u’s in such a way that 

m.p.e. of yf and ug = 0 {g^f) or 1 (g = /); 

and therefore the r’s and the y s are conjugate sets ; which proves (i.). It follows 

that 
afig — m.p.e. of yf and yg. 

This proves (iii.); and (iv.) is the similar result which we should have obtained by 

expressing P in terms of the (p's. Also 

P — ao,o^o2 + 2aQtl0pi + alA0^+cvtA0i 

— #0 (a0,0$0 + ^0,l$l+Cl!'0,2$2 + ... +«o,fil) 

+ 01 («lt O0Q + ai, l$l + ^1,2^2 + ••• +<*1. A) 

4" • • • 

+ (^, (A + A + d[, 202 + • . . + «7, A) 

= O0(p0 + 61cp1 + 02(p2 + ... + 9t(pi; 

which proves (ii.). 

Appendix III.—-Improved Advancing Differences in terms of Sums. 

The expression for Afv0 given by (136) differs from that given in (15) and §5 of 

Fitting,” in that it involves A"u0, 'Z"2u1, 2//3r2, ... , instead of A"u0, 'A"2u0, 2//3w0> ••• • 
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The new expressions are more convenient for calculation and for tabulation, since the 

coefficients are rather smaller and are symmetrically placed about a diagonal. For 

j = 2, m =13, for instance, the formulae given by “ Fitting,” § 5 (ii.), are 

lOOlt'o = + 693£1-198S2+22a%, 

1001 Av0 = -2SlS1 + 8SS2-llS3, 

1001 A2n0 = + 35*%-15£2 + 2.%, 

where S1 = ^"u0, S2 = 2//2r0, S3 = 2//3r0- If we write 2, = 2"r0> = 2"2w1, 

Sa = 2"3m2, these become (by (136), or by writing .% = 21? S2 = 2j + 22, 

S3 = 21 + 222 + 2s) 

lOOliy = +51721-15422 + 2223, 

1001A i’o = — 1542j + 6622—112,3, 

1001 A2n0 = +2221-1123 + 223. 
r 

The symmetry of the coefficients is due to the fact that 

co. 2"9+1ug in Afv0 = XfitJ = \gtf = co. 2"/+1uf in Agv0. 

For any particular value of m there will be only (j +1) (j> + 2) coefficients to be 

tabulated, instead of (j +1 )2. 

Appendix IV.—Formulae in terms of u s. 

(i.) Formulae for Afv0, &c., in terms of the u s have already been given in (15a), 

(21), (22), (29), and (28) of “ Fitting ” ; and the results in (141)—(145) of the present 

paper can he checked by comparing the different expressions for the coefficients of the 

u’s. We should require to use the following identities :— 

(r + h, h) = (r, 0) (h, 0) + {r, l) (A, l) + (r, 2) (h, 2)+ .... , 

(r, 27?] = (0, 2A] + [r, 2) (0, 2A-2] + [r,4) (0, 2A-4J + ... , 

[r, 27? — 1) - (r, 1] [±i 2h-2) + {r, 3] [±i 2A-4) + (r, 5] [±|, 2A-6) + ... , 

{r-h 2/i-l] = [r-i, 1) (0, 2A-2] + [r-£, 3) (0, 2/?-4] + [r-|, 5) (0, 2/? — 6] + ... , 

27? 2) = [±|-, 2h — 2) + (r—7£, 2] [ + £, 2h—4) + (r—j, 4] [±|-, 27? — G) + .... 

(ii.) Taking, for instance, the formula for S2/v0 when m = 2??. +1, (21) of “ Fitting ” 

gives (replacing t by f) 

trp\ — (_ )fLnl ! 2k + 1, 2J+1) h '' / u(./+ 1) (7< + 1) {2k + 1, 2h + 1} (?‘, 
KPr)* { )2 Ob2/+l) ]~f+h+t ' (Jm,2A+l] 

2A] 
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Hence we find that 

I2m, 2/ + 1) h = 0 (2^1, 2h + 1J 

/ \ / Ui {2C 2f} h = l , u {2t, 2h} (r. 2/i] 
\Prhk = (-ypn Z (2t + i) rT~-^y~r] 2 (-)h 1 /iT~ 91P . iT ’ 

[_2m,i 2j+l)h = o \2mi 2A+1J t = f 

and therefore 

(**po)» = s' (2«+l) ri{2-^} - 
t = f Lfm, 2/+ 1) (£m, 2(/ + lJ 

0. 

where 

0 = F{—t+g, g+t+%,%-, 1, -%m+g +1, ^m+gr+l} 

(|m; 2gr + l] [|m, 2£+l) 

(^n, 2«+l] [^m, 2gr + l)’ 

This expression for (^p0)2/t will be found to be equal to X3/,2? as given by (132) of the 

present paper, so that the formula in “ Fitting ” agrees with (142). 
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The astronomical importance of the dissipation of energy that goes on in shallow seas 

has been shown by G. I. Taylor’s recent estimate^ of the amount in the Irish Sea, 

which is enough to account for about one-fiftieth of the secular acceleration of the 

moon. It also produces a considerable effect on the tides themselves, and there are 

probably many places where it must be taken into account before any satisfactory 

theory of the local tides, or even their empirical prediction, can be achieved. It is 

indeed very well known that there are bays and straits where the height of the 

tides, or the speed of the currents, or both, are greater than in the Irish Sea, and a 

careful examination of such places, with a view to finding the dissipation in them, is 

needed. There are other places where the dissipation for an equal area is less than in 

the Irish Sea, but which may actually contribute much more altogether on account of 

their greater size. The object of this paper is to discuss what regions are capable of 

producing notable parts of the secular acceleration ; to estimate as accurately as 

possible from the data available the dissipation in these ; and to compare this with 

that calculated from the secular acceleration, so as to find out whether it is necessary 

to assume the existence of any other important cause to account for the latter. 

The horizontal force of the skin friction of water over the sea bottom is 0'002/3V" 

dynes per square centimetre, where p is measured in grammes per cubic centimetre 

and V in centimetres per second. The difficulty of the problem is in the estimation 

of Y. The available observations of the velocities of tidal currents are given in the 

Admiralty Sailing Directions; hut they are never uniformly distributed, and are 

usually confined to the neighbourhood of the coasts, and they must be supplemented 

by theory before the velocities remote from the coast can be found. A few 

theoretical considerations that have been found useful in this process will now be 

mentioned. 

Take first the case of a bay or strait long in comparison with its width, and 

consider a wave entering it whose period is much longer than the time needed for a 

* ‘Phil. Trans.,’ A, vol. 220, pp. 1-33, 1919. 
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wave of tidal type to cross. This time is known to be independent of the period of 

the disturbance, depending only on the width and depth. Such a waye is reflected 

from one side to the other again and again before it reaches the other end. It is also 

known that the transverse velocity at the sides is zero, since water cannot cross a 

rigid boundary. Thus if we compare two points on opposite sides of the channel, we 

know that the times of arrival of the wave at them differ by a small fraction of a 

period; and since the transverse velocity at both is zero, it cannot be great at any 

intermediate point, for that would contradict the hypothesis that the wave-length is 

much greater than the width of the channel. The transverse velocity may accord¬ 

ingly be neglected in problems of this class. 

If the period of the entering wave is of the same order of magnitude as the time 

needed to cross the channel, we can no longer infer that the transverse velocity is 

much less than the longitudinal one. This case seldom or never arises. The velocity 

of a tidal wave is (i/D)* where g is the intensity of gravity and D is the depth ; and if 

the water was only 20 fathoms deep a tidal wave would in 12 hours travel 700 km., 

which is far greater than the width of almost any channel whose length is much 

greater than its width. Where the width is greater, the depth also is always greater, 

so that the above argument always holds in long channels of whatever size. 

If now x be the distance of a point from the entrance to the channel, y the distance 

from the side, u the longitudinal velocity of a particle there, and the height of 

the free surface above its undisturbed position, the equations of motion of the particle 

are 
SjU (7 3 W j J t n • i • 
— = —7—— a term due to motion 
at ox 

2 usii = —g 
31] 

Zy 

where w is the component of the earth’s angular velocity of rotation about the vertical 

at the point. The equation of continuity is 

_3 

dx 
(D «)=-N. v ’ 31 

From this and the second equation of motion we deduce at once 

dt] 

dx 

3>/° . 2u) j l/3>; 

dx g JD \3£ 

where ?/0 is the value of >/ at the side. In this we see from the conditions that the 

channel is narrow and the depth slowly varying along it that the first term is much 

greater than the others. Accordingly ~ is the same for all particles in the same 
OX 

cross-section of the channel, and the first equation of motion then shows that the 
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same is true of u if the friction is small. Thus in such cases the velocity is the same 

at all points in the same cross-section, so that observations made at the side will be 

correct for points in the middle. If friction is great this result must be modified, 

since for the same velocity the frictional force is independent of the depth of the 

water, whereas the mass affected is proportional to the depth. Thus friction has 

more influence in reducing the velocities in shallow water than in deep water. Hence 

when the channel is shallow at the sides and deep in the middle the velocity will be 

least at the sides. The ratio of the frictional term to the first term is 0'002 u/2D'Q, 

where D' is the depth at the shallow part. When this is 10 fathoms and the 

velocity 1 knot the fraction is 0'25, so that this effect is then appreciable ; and when 

the depths are less and the velocities greater, the influence of friction may increase to 

such an extent as to dominate the whole character of the motion. When this occurs, 

the velocity will always be in the direction of decreasing pressure, and inertia may 

be neglected. 

The last result may appear to contradict the general principle that “ still waters 

run deep.” There is no real contradiction, however, for the problems referred to are 

different. The above argument deals with the differences between the velocities at 

places in the same cross-section of the channel, whereas the proverb concerns rivers 

whose depth varies along them, and in such cases the motion is naturally slowest 

where the depth is greatest, since the amount of water crossing any section in a given 

time must be the same. It also has an important and well-known application in bays 

of varying depth and width, such as the Bay of Fundy. If, for instance, the bay is 

very long, and these quantities change only by small fractions of themselves per wave¬ 

length, it can be shown* that the height of the wave at any point is proportional 

to D-*, and the velocity of the water to where b is the width at the 

surface. The rate of dissipation of energy across any section is proportional 

to bu3 or to It therefore increases slowly as the channel becomes narrower 

and much more quickly as it becomes shallower. When the depth and width vary 

much within a wave-length these results cease to be useful approximations, but the 

tendency for the height of the tide and the velocity of the tidal current to increase as 

the channel becomes narrower and shallower remains. Thus in such places we often 

find very high tides and strong tidal currents. Apparently, however, their limited 

area prevents the dissipation in them from being as great as that in larger places with 

less violent currents (at least, if the Bay of Fundy may be regarded as typical 

of them). 

The widths of most actual bays are, however, comparable with their lengths, and 

m these it is generally a matter of some difficulty to settle whether we can treat the 

recorded currents as a fair sample of the whole. The amplitude of the tide in mid¬ 

ocean is only about a foot, but in the shallow water around the coasts it is magnified 

to several feet, and the tidal currents are increased correspondingly. Where the 

* Lamb, ‘ Hydrodynamics,’ p. 258. 

2 L 2 



242 DR. HAROLD JEFFREYS ON TIDAL FRICTION IN SHALLOW SEAS. 

shore is fairly open and regular in outline, like most of the coast of Africa, it is not 

possible to find the dissipation along it, for there are no data to shoAv how far out 

the currents extend. In partly enclosed regions, however, it is frequently possible to 

interpolate between the records made on opposite sides. A serious difficulty may 

arise if the depth of the sea is very different at different points within it, for this 

may destroy the possibility of interpolation, and therefore we must always examine 

the soundings for any great variation. Ordinarily we should not expect much 

variation in the velocities, for such places are intermediate in character between 

narrow channels and the open shore, and therefore the currents in them may be 

expected to show some increase in shallow water, but not so much as would be caused 

by a proportional decrease in depth along a narrow bay or in approaching the open 

shore. In shallow water also friction may, and often does, neutralize the magnifica¬ 

tion that would occur in its absence. 

One other fact may be noted. In shallow bays the difficulties of navigation 

may be great, and navigators avoid them if possible by choosing a harbour 

near the entrance. Thus observations of currents are most numerous about the 

entrances, and often at the very places where the currents, and consequently the 

dissipation, are greatest there are insufficient observations to give a satisfactory 

estimate. 

Great care must be taken in dealing with observations among islands, straits, and 

shoals. When the passage of a tidal current is obstructed by a shallow of small 

horizontal extent, part of it goes round the shoal and part over the top. The 

influence of this on the main current is of course small, but on the top of the shoal and 

in its immediate neighbourhood the velocities may be much increased, for much the 

same reason as accounts for the greater speed of a river where it is shallow. On the 

other hand the increase in the influence of friction may greatly reduce the currents, 

and shoals often afford in this way an important shelter from tidal currents to the 

deeper water behind them. This is particularly noticeable at some points on the Korean 

side of the Yellow Sea. Thus observations of currents taken at lightships and buoys 

over shoals whose dimensions are all much smaller than those of the main bay or channel 

must be regarded as giving no reliable estimate of the main current. Small islands 

also require examination before the records obtained are accepted. If one is surrounded 

by a shoal they are of course untrustworthy ; but if deep soundings are found 

within a few miles of it, they will probably give a very good idea of the main current, 

which will, especially in a wide channel, be fully as useful in our investigation as the 

results of observations at the sides. Straits are in a different position. When the 

tides in two seas or even oceans are in widely different phases, a large head may be 

produced between the two ends of a strait connecting them, so that a swift tidal 

current will flow along the strait. In no circumstances, however, can this give any 

indication of the currents in the seas, for it is produced by the tide heights, and not 

directly by the currents. Such currents may attain very great velocities, as in the 
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Magellan Strait and Smith Sound, and when the area of the strait is not insignificant 

the dissipation may be an important part of that in the seas as a whole. 

European Seas. 

1. The Irish Sea. 

This sea has been discussed in detail by Taylor. The rate of dissipation is found 

to be 1040 ergs per square centimetre per second, or 4T x 1017 ergs per second in 

all, on an average at spring tides. This result is based on the law that the rate is 

proportional to the cube of the velocity. The Irish Sea is remarkable in that the 

maximum current occurs nearly at high water, whereas in ordinary places the water 

is nearly slack then ; though other examples will be given later in this paper. This 

affords the most favourable conditions for an accurate estimate of the rate at which 

energy enters the sea; to this Taylor added the rate at which the moon's attraction 

does work on the sea, and from the fact that all this energy must be dissipated in 

the course of a period (for if it were not, there would be a continual increase of energy 

in the Irish Sea) he found that the mean rate of dissipation at spring tides was 

6‘Ox 1017 ergs per second. This estimate is probably more accurate than the other, 

as the data involved are obtained from observations in St. George’s Channel, supple¬ 

mented by an accurate theory ; but the former is based on an average of the velocities 

in the Irish Sea itself, which are more difficult to determine. 

2. The English Channel. 

On an average the tidal currents in the English Channel at springs reach about 

2'5 knots. The speed is greatest towards the Straits of Dover and least at the 

entrance to the Channel, and enough data are available in the Admiralty publication, 

‘ The Tides and Tidal Streams of the British Isles ’ to give a very accurate estimate 

of the total dissipation if this were required in the present problem ; but as the errors 

introduced by using only a rough approximation in this case are far less than those 

involved in the best data referring to regions with far larger dissipations, accuracy is 

not here required. 

The rate of dissipation is 0'002pV3 ergs per square centimetre per second. Here p 

is practically 1 ; and one knot is 51'5 cm. per second. Thus the dissipation per square 

centimetre for a velocity of one knot is 274 ergs per second, and that per square 

kilometre is 274 x 1012 ergs per second. The area of the English Channel is about 

60,000 sq. km., so that the dissipation when the currents are flowing fastest is 

274 x 1012x 6 x 104x 2‘53, or 2‘5 x 1018 ergs per second. This is of course a maximum, 

while the value obtained for the Irish Sea is the mean over a period ; the average 

rates of dissipation in the two places are perhaps not very different. 
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3. The North Sea. 

A satisfactory estimate of the dissipation in the North Sea is practically impossible. 

Velocities up to over 3 knots are recorded here and there, but all the observations are 

in the coastal region, which is very much complicated by shoals. The maximum in 

the outermost part of the Moray Firth is about l'l knot, and this is probably fairly 

typical of the whole of the North Sea. Taking the area to be 5x 105 sq. km. and 

adopting the above value of the velocity, we see that the maximum dissipation is of 

the order of l'8x I018 ergs per second. 

4. Other European Waters. 

In the Mediterranean there is probably little or no dissipation of tidal energy, for 

the Atlantic tidal wave can only enter through the very narrow Straits of Gibraltar, 

and partly for this reason and partly on account of the great length and considerable 

depth of the sea there is very little tidal movement in it. The same argument applies 

to the Baltic, for the entrance through the Kattegat is largely blocked up by the 

Danish islands, so that little water can enter to produce a tide. The Bay of Biscay 

is mostly too deep to have any important current, while the White Sea is too small 

and landlocked to give as much dissipation as the Irish Sea. 

The average dissipation in a period is 4/37r of the maximum. If we find the 

maximum for the Irish Sea on this basis, we obtain for the total dissipation in 

European waters when the spring tide currents are flowing strongest about 6'Ox 1018 

ergs per second ; the average at spring tides is 2'4 x 1018 ergs per second. 

Asiatic Seas. 

It has already been pointed out that the tidal currents in mid-ocean are insufficient 

to give any important dissipation.* Accordingly we need consider only those places 

where the currents are very much magnified by great decreases in depth. On 

referring to a physical map of Asia it is at once seen that the places around the coast 

where the depth is less than 100 fathoms are the Straits of Malacca, the South China 

Sea (with the Java Sea), the Gulfs of Siam and Tongking, the Yellow Sea, the 

Persian Gulf, and parts of the Seas of Japan and Okhotsk and the Bering Sea. 

These regions will be dealt with separately. The Persian Gulf may be omitted at 

once, as its narrow entrance prevents the tide from being great. 

1. The South China Sea. 

This sea is in the form of a letter T. The middle stroke points north-east and lies 

between Annam and Southern China on the one side, and Borneo and the Philippines 

* ‘ Philosophical Magazine,’ May, 1920, vol. 39, pp. 578-586. 



DR. HAROLD JEFFREYS ON TIDAL FRICTION IN SHALLOW SEAS. 245 

on the other. The two side-pieces are the Gulf of Siam and the Java Sea. The data 

for it are obtained from the ‘ China Sea Pilot,’ volumes 3 and 4, except the depths, 

which are taken from the Admiralty Charts. The tides are affected by a large diurnal 

inequality due to the inclination of the Equator to the ecliptic. When the moon is 

north of the Equator it tends to raise two tidal protuberances in the ocean, one 

exactly below it and the other exactly opposite to it. Owing to the earth’s rotation 

each of these moves round the earth once a day, keeping the same distance north or 

south of the Equator. Thus if a place is not on the Equator, they pass at different 

distances from it, so that the two tides in the lunar day are unequal in height. 

The variation in the level of the water thus caused can be described as a semi-diurnal 

change, on which a diurnal change is superposed. 

Now the rate of travel of a tidal wave is practically independent of its period, but 

if the depth and the form of the coast are such that the waves starting from the north 

and south sides of the Equator take different times to reach the place of observation, 

their combined effect may be remarkable. In particular, if the wave from the south 

arrives a quarter of a lunar day after or before the other, the semi-diurnal part of the 

one wave will correspond to high water while that of the other corresponds to low 

water, and if the amplitudes are equal the two will neutralize each other. In other 

words, there will be a node of the semi-diurnal tide. The diurnal parts, however, will 

not neutralize each other, their phases being only a quarter of a period apart. Thus 

at such a place there will be a diurnal tide and no semi-diurnal tide. Several places 

are known where there is only one high water in each lunar day; among them are 

parts of the South China Sea, the Gulf of Carpentaria, and Bering Sea. The tides in 

these require special discussion before they can be considered in the present problem, 

because the diurnal tide depends essentially on the inclination of the Equator to the 

plane of the moon’s orbit and would not exist if this were zero. The dissipation of 

energy in it must therefore arise from the motion of the moon in declination and not 

in right ascension, and will affect mainly the inclinations of the Equator and the 

moon’s orbit to the ecliptic, while producing little effect on the earth’s rotation and 

the motion of the moon in longitude. In discussing the secular acceleration of 

the moon it can therefore be ignored. If observations of the diurnal tide in the 

places where there are two high waters in the day were more numerous it might be 

possible to determine the dissipation in it, and from it the secular changes in the 

inclinations, but at present this is impossible. 

In the Java Sea, between Borneo and Java, the tide is mainly diurnal; in fact 

according to the ‘ Eastern Archipelago Pilot,’ part 3, the semi-diurnal tide is not 

appreciable on the north coast of Java till east of Surabaya, which is itself almost at 

the eastern end. On the south coast of Borneo the observations are not so numerous, 

but it seems clear that there also the tide is mainly or entirely diurnal. The tidal 

currents are described as weak. We can accordingly neglect the dissipation in the 

Java Sea. At its western end this sea is connected to the South China Sea by two 
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rather wide straits, Carimata Strait and Caspar Strait. In both of these the tide is 

mainly diurnal; in the latter, in fact, it is entirely so. At Pontianak, near the north¬ 

westerly point of Borneo, the tide is still diurnal; thus the part of the China 

Sea south of Pontianak and Singapore probably contributes little to the secular 

acceleration of the moon. 

Apparently the main tidal stream from the China Sea strikes the Malay Peninsula 

somewhere near Cape Patani and spreads out from there ; for on the coast north of 

this point the flood stream sets to the north, while south of it it sets to the south. 

The tide in this region is definitely semi-diurnal, though the heights of the two daily 

high waters may be unequal. The depths in the western part of the sea and in the 

Gulf of Siam are mostly about 30 fathoms, but there are many shoals around the 

coast where the depth is onty a few fathoms, and it is therefore necessary to be verj^ 

critical of the sites of observations of currents. The best results seem to be given at 

small islands with rapidly shelving sides, for the currents there are modified little by 

the form of the bottom and can be regarded as fairly typical of the general currents 

in the neighbourhood. 

At the Anamba Islands (see map, fig. l) the semi-diurnal tide appears to be 

usually much less than the diurnal one. The £ China Sea Pilot,’ vol. 3, states that for 

a few days in each month, when the moon is near the Equator, there are two high 

tides in the day. It is easily seen that for two tides to occur in the day the 

amplitude of the semi-diurnal term must be at least a quarter of that of the diurnal 

term. It would not, however, vary much with the moon’s declination, whereas that 

of the diurnal term vanishes when the moon is on the Equator ; and the above fact 

shows that the semi-diurnal tide only attains this fraction of the diurnal tide when 

the latter is at its least. The true semi-diurnal tide at the Anamba Islands must 

therefore be insignificant. The same is evidently true of the currents, for the tidal 

streams take a day to run backwards and forwards. 

In the Gulf of Siam also the tides are mainly diurnal. The oscillation in this is a 

forced one due to that in the South China Sea, and as the latter is diurnal so is that 

in the Gulf of Siam. Actually the only place where the semi-diurnal tide is 

considerable is Bangkok Harbour, at the head of the gulf. This tide seems to 

increase in relative importance towards Bangkok, for at Kamput on the eastern side 

and places in about the same latitude on the western side the tides are said to be 

very irregular, indicating the presence of some complicating influence. On the whole, 

therefore, it seems that the dissipation in the Gulf of Siam will not be underestimated 

if we assume that the semi-diurnal current reaches a maximum of one knot, this being 

one-third of the diurnal tidal current observed off Cape Patani, at all places north of 

the parallel of 11° N. The area of this region is about 70,000 sq. km., giving a 

maximum dissipation of 2x 1017 ergs per second. 

An estimate may be made of the dissipation of the energy of the diurnal tide in 

the same regions. At Pontianak there is a diurnal current of two knots when 
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running strongest; and a similar velocity is recorded at the Burong Islands some 

distance to the north. As the depth of the passage between Borneo and Sumatra is 

fairly uniform, from 10 to 20 fathoms, these measures are probably typical of the 

whole. Quantitative estimates of the currents in the Gulf of Siam are few, and a 

reasonable guess at them would be difficult. The depth is mostly about 30 fathoms, 

but there are a deeper area in the middle and many shoals about the margins. As the 

current at the mouth of the gulf is across it, the tide in the gulf can arise only from 

the reflection of this by the Malay coast, so that the general set of the current is 

across the gulf, and considerable magnification in the gulf is unlikely. Our estimate 

of the dissipation will probably be of the correct order of magnitude, if we suppose 

that everywhere west of a line joining Cape Datu to Cambodia Point the maximum 

current is two knots. The area of this region is 8x10° sq. km. ; thus the maximum 

dissipation is 1*7 x 1019 ergs per second. The velocity is proportional to the sine of 

the hour angle of the moon increased by a constant ; and as the dissipation is 

proportional to the cube of the velocity, the average dissipation is obtained by 

VOL. CCXXI,-A. 2 M 
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multiplying the maximum by the average arithmetical value of sin3 0 taken over a 

period, which is 4/3-7T. It is not clear what declination of the moon the recorded 

currents refer to : if they refer to the maximum, the average for the month will be 

found by multiplying again by 4/377. Thus the average dissipation of energy in the 

diurnal tide in the western part of the China Sea is of the order of 3 x 1018 ergs per 

second. 

We next proceed to examine the dissipation in the main part of the South China 

Sea, between the north-west coast of Borneo and the mainland. The currents are now 

semi-diurnal. Near Cape Sirik the flood runs for four hours and the ebb for eight 

hours, so that a considerable diurnal component exists, but not sufficient to prepon¬ 

derate over the semi-diurnal motion. The velocities here are from two to three knots. 

At Bruni the observations are very much interfered with by shoals and narrows, but 

in the offing the currents seem to be about two to three knots. About Tega, however, 

among shoals the velocities recorded are only T3 and 0'8 knots. The contours of the 

sea floor run roughly parallel to the coast, so that these currents may persist for some 

distance out to sea. Off the north end of Borneo the sea rapidly deepens, and in 

accordance with this there is scarcely any tidal current at Ulugan Bay, in Palawan. 

On the Asiatic side the tide is diurnal at Camran and Tourane, but the currents are 

weak. 

A few shoals and islands in the middle of the sea have been made the localities of 

observations. At Bifleman Bank and Spratly Island there is only one tide in the day, 

and at the neighbouring island of Amboyna it is said that near neaps the stream 

reaches 1'4 knots. It is therefore clear that the semi-diurnal current of the Borneo 

coast does not extend half way across the sea, and its true extent is very doubtful. 

In the Gulf of Tongking also the currents appear to be diurnal. Thus in the whole 

of the South China Sea and its extensions there seems to be little semi-diurnal tide 

and little contribution to the secular acceleration of the moon, though there is a 

dissipation of the energy of the diurnal tide that may have a notable secular effect on 

the obliquity of the ecliptic. 

2. The Yellow Sea. 

This is a gulf about the size of Ireland, lying between Korea and the coast of 

China, and extending about as far south as the mouth of the Yang-tse-Kiang. It 

becomes very narrow where the Shan-tung peninsula projects into it, and north of 

this it forms the Gulfs of Pe-Chili and Liau-tung. Most of it is shallow, the depths 

in the main part of it being mostly about 30 fathoms, and those in the northern part 

about 15 fathoms. Around the shore the water is shallower, and in many places 

there are crowds of shoals. The data are obtained from the ‘ China Sea Pilot/ vol. 5. 

The tidal phenomena are extremely complex. At the south end of the peninsula 

of Korea high water (full and change) is at about 11 h., Greenwich time. As we 

advance up the Korean coast it occurs later and later, being practically 12 hours 
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later at Port Arthur. On the opposite side of the Strait of Pe-Chili it is slightly earlier 

than at Port Arthur ; then on the way round the Shan-tung peninsula and out of 

the sea again the tide again becomes steadily later. It therefore looks as if the tide 

enters up the coast of Korea, gradually passes up the sea, losing energy all the way, 

and a reflected wave from the Pe-Chili strait emerges down the Chinese coast. The 

tides and the currents on the Korean side are noticeably stronger than those on the 

Chinese side, and it does not seem likely that this is due wholly, or even largely, to 

the shoals on the former coast, for at islands in deep water, such as the Mackau, 

Myangoru, and Bate groups, velocities of 3 to 5 knots are recorded, while in 

shallower water the velocities are not usually greater than these, though local strong 

streams exist. Apparently the effects of friction are great enough to counterbalance 

those of the diminution in depth. They are also seen in another respect. Among 

the islands of the Korean archipelago the tidal stream sets west from four hours 

before till two hours after high water, whereas in most places elsewhere there is little 

or no current at high water. Thus work is continually being done on the sea, and 

the energy entering is dissipated in it. An effect of the approximate agreement in 

phase between the tide and the velocity may be utilized to give an estimate of the 

currents and tide height in the entrance to the sea, far from the nearest land, and 

hence of the amount of energy entering. In any motion in a channel where, on 

2 M 2 
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account of its narrowness or for some other reason, there is little transverse motion, 

the velocity along the channel is related to the pressure gradient across it according 

to the equation 
2 oopu = — dp/dy, 

where p is the density of the water, 

w is the component of the earth’s angular velocity of rotation about the 

vertical at the point considered, 

p is the pressure, and 

y is the distance measured across the channel. 

In the Yellow Sea the entrance is not narrow, but there seems reason to believe 

that the velocity across it is small, which is all that is required for the truth of the 

above equation. If now g denote the intensity of gravity, and >/ the elevation of the 

surface of the water above its mean position, then at any fixed point, at whatever 

depth, the variation of p is equal to that of gp>/. Again, if Q be the earth’s angular 

velocity, and X the latitude of the place, 

w = Q sin X, 

and we have on putting X = 35°; Q = 7'3xl0_5/l sec.; g = 981 cm./sec.2; 

u = -lT7x 107 ~ 

oy 

where C.G.S. units must now be used. 

On the coast of Korea the tide has an amplitude of about 10 feet, or 300 cm. 

The velocity of the inward current is about 4 knots, or 200 cm./sec. Now suppose if 

possible that the current remained constant right into the middle of the entrance; 

then the above formula shows that at a distance of 176 km. from the side there 

would be little vertical movement of the surface, and further away still a huge tide 

with an amplitude of some 30 feet would exist. It is not reasonable that the tide in 

the middle should be greater than that at the side, though it may easily be smaller. 

The alternative hypothesis is therefore that the current decreases as we approach 

the middle, and is very small over most of the sea. This will be adopted in the 

forthcoming discussion. We shall suppose that the current at distance y from the 

coast is in the same phase as that at the coast, and is a linear function of y. Then put 

u = (200 — ky) cosyt. 

At the shore ^ is equal to 300 cos (yt — a), where a is the difference in phase 

between the tide height and the current strength. For the semi-durnal tide it is 

twice the angle moved through by the moon relatively to the earth in one hour, 

or 29 degrees. In general 

t] — 300 cos [yt — a) — 8'6 x 10-8 cos yt (200y — ^ky3). 
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The amplitude of >/ reaches a minimum where the coefficient of cosyi vanishes. We 

shall have the least possible tide in the middle, thus satisfying our earlier assumptions, 

if we assume that this minimum is reached at the point where the velocity vanishes. 

In this way we shall underestimate the dissipation, but not by any great amount. 

The value of h that makes this coincidence possible is 6'6 x 10_6/1 cm., so that the 

current becomes zero 300 km. from the shore, practically in the middle of the 

entrance. 

Taylor shows (loc. cit., equation 15) that the average amount of energy 

crossing any line is the average over a period of gp\Dt)U dy in my notation, where D is 

the depth of the water, in this case about 30 fathoms over most of the region in 

which the velocity is greatest, with a range in all of from 20 to 45 fathoms. We 

find easily 
>7 = 147 sin yt — 4‘3 x 10~8 Jc (y — 200/k)2 cos yt, 

and the average flux of energy across a parallel of latitude is found to be 

1’06 x 1018 ergs/sec. 

The northward flux on the Chinese side is more difficult to determine, as the 

direction of the currents is variable. Two phenomena are intermingled here. The 

issuing tide from the Yellow Sea comes down this coast, but there is also a definite 

tidal wave that travels into and out of the large bend in the coast whose extremities 

are Shan-tung promontory and Shanghai. This is shown by the fact that along the 

northern part of this bend, on which Tsing-tao stands, the current flows northwards 

while the tide is ebbing both along this coast and in the northern part of the 

Yellow Sea. Thus in this bay the main tide is the local tide of the bay itself and 

not the general tide of the Yellow Sea. The currents produced by these tides are 

rotary, probably an effect of the earth’s rotation ; and it seems that the northward 

component of the velocity is small. Further, it is probably nearly in a phase at 

right angles to the tide, as great divergences from this relation can be produced only 

by great dissipations and accordingly by great velocities in the vicinity. Hence for 

both reasons we infer that the northward flux of energy along the Chinese coast is 

small in comparison with that on the Korean side. 

We also need to know the work done on the water by the moon. If >/ is the 

height of the equilibrium tide, the work done by the moon in a period is 

n d 
gyj ~ dt dS, where dS is the element of horizontal surface and the integrals are to 

(a/L 

be taken, in the one case over a period, and in the other over the area considered. 

If the phase of rj is /3 in advance of that of >/', and the amplitudes be h and h', the 

average rate of doing work is — ^g\h-h' y sin ft dS. In the present case h' naturally 

varies little ; h decreases fairly steadily as we travel from the entrance to Port Arthur, 

where it has about half of its value at the entrance. On the other hand (3 varies a 

great deal. The longitude being about 120° E., the moon crosses the meridian at 

full and change at 3h, 43m. It is high water in Shoan harbour, at the southern 
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end of Korea, at lOh. 33m., so that /3 is here —199°, or more conveniently +161°. 

The tide lags more and more on the way up the sea, and at Port Arthur it has lost 

practically a whole period, the high water at full and change occurring there 

at llh. 7m., making /3 = —216°. Positive elements will be added to the integral 

by the places where /3 is from 161° to 0°, negative elements where /3 is from 0° to —180°, 

and positive again where it is from —180° to —216°. These values are however 

weighted according to the values of h and according to the extent of the areas for 

which they are correct. Now (3 is zero near the Conference Islands, only about O'4 of 

the way to the narrowest part, so that on this account the area for which it is 

positive would appear to be less than that for which it is negative. The sea becomes 

much narrower farther north, however, which must reduce the ratio of the weights 

somewhat, and the tides are only about two-thirds of the height. Thus it seems that 

the weights to be attached to ,the positive and negative values of sin /3 are nearly 

equal, and its average over the sea is unlikely to be more than 0'2. The area of the 

sea as far as Port Arthur is about 300,000 sq. km. ; taking the average of h as 240 cm., 

and that of li' as 20 cm., we find the energy imparted by the moon to be not greater 

in absolute magnitude than 2 x 1017 ergs per second on an average. That entering up 

the Korean coast is far greater. 

In the discussion of the work done by the moon the Gulfs of Pe-Chili and Liau-tung 

have been ignored. There are two reasons for this : their united area is about a 

third of that of the main part of the sea, and the tides recorded at the sides are also 

about a third of those on the Korean coast. It seems to me, however, that these two 

gulfs afford an example of a special type of tidal problem different from any previously 

discussed. For, let us suppose if possible that the recorded amplitudes, of the order 

of 90 cm., were typical of the whole area. The average depth is about 2000 cm., and 

a tidal wave in water of such a depth would give rise to a current of maximum 

velocity about h (g/D)4, which in this case is 65 cm./sec. The corresponding 

dissipation would be 550 ergs per square centimetre per second. On the other hand 

the average energy present is about \gph2, or 4 x 106 ergs per square centimetre. Thus 

if the above assumption were correct the whole energy of the tide would be dissipated 

in about 7000 seconds, or two hours. This is absurd, and we must suppose, in order 

to avoid the result that energy is dissipated faster than it enters the region, that 

the tides in the greater part of the gulfs are much less than the recorded ones. 

Their height may be only a few inches ; while the recorded heights are the result of 

great magnification in the very shallow water around the edge. Accordingly the 

work done by the moon on this region may be neglected. The whole work done on 

the Yellow Sea by the moon is therefore small in comparison with the energy entering 

with the tide, and even its sign is uncertain. Thus the average dissipation in the 

whole of the sea is not very different from l'l x 1018 ergs per second. 

An alternative estimate may be deduced directly from the formula for the 

dissipation, with a suitable hypothesis on the distribution of velocity. At the 
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entrance, when the current is flowing strongest, the dissipation in a strip a centimetre 

wide across it is 0'002p\Jdy, and if the above distribution of velocity is correct this 

is l'2xlOu ergs per second. Farther north the velocity is not so great; in fact, 

around the Shan-tung promontory it does not exceed one knot, and at the islands in 

Korea Bay opposite it is usually about two knots. Further, the width is here less 

than 300 km., so that on this account also the dissipation for a given velocity must be 

less ; the amount in a strip a centimetre wide running east and west is therefore 

probably not more than oue-sixteenth of that in a similar strip near the entrance. 

Even south of the narrow part off Shan-tung the currents appear to be slower than 

near the entrance ; for about half the distance the velocity is about two knots, rising 

again to 3f knots at the Sir James Hall group, in the narrow region. If a proportional 

reduction takes place at all other distances from land, we must suppose that the above 

estimate of the dissipation per unit length is correct for the first 200 km., that the 

amount for the next 230 km. is an eighth of this, and that for the remaining 220 km., 

corresponding to Korea Bay, is a sixteenth. The Gulfs of Pe-Chili and Liau-tung may 

be ignored. The total dissipation, if the maximum velocity at every place occurred 

at the same time, would therefore be (2 x 107 + -g- x 2'3 x 107 + yg- x 2‘2 x 107) l'2xlOu 

ergs per second, or 2'8xl018 ergs per second. The average for each place is 

4/3 7r of the maximum there, so that the average tor the whole sea is 4/37T of this 

maximum, or l'2xl018 ergs per second, which agrees with the previous estimate 

much more closely than the data would have led us to expect. 

3. The Sea of Japan. 

The Sea of Japan is an oval basin bounded on the eastern side by Japan and 

Sakhalin. It seems clear that the dissipation is small, for both the tide height and 

the current are small. Even in the comparatively narrow and shallow Korea Strait, 

through which the tide enters at the south end, the current only attains a speed of 

1 or 2 knots ; and when this opens into the sea the width suddenly increases to 

900 km. and the depth to 400 fathoms. The currents in most of the sea must there¬ 

fore be insignificant. They are appreciable at the gaps between the Japanese islands 

and in part of the narrow Gulf of Tartary, but the area affected is small and the 

currents only moderate (l to 3 knots at most) so that the dissipation is small. 

4. The Sea of Okhotsk. 

In its essential features this resembles the Sea of Japan. The only shallow parts 

of it are narrow strips around the coast, while the tide enters through the shallow 

water of the straits between the Kurile Islands. As the tide in the sea depends on 

the supply of water to maintain it, the restriction on it imposed by the shallowness of 

the entrances causes the currents to be small. In the Gulfs of Ghijinskand Penjinsk, 

in the north-east corner, the depth diminishes considerably, and the currents increase 
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to 1^ to 2 knots. Data are very scanty, but the area affected appears to be about 

70,000 sq. km., leading to a dissipation when the currents are strongest of from 

6 x 1017 to 1'4 x 1018 ergs per second. If we adopt the mean of these as giving roughly 

the actual dissipation, and apply the factor 4/37r, we find the average dissipation in 

these gulfs to be about 4xl017 ergs per second. There is probably no important 

dissipation elsewhere in the Sea of Okhotsk. 

5. The Bering Sea. 

In the extreme north of the Pacific, between Siberia and Alaska, a chain of small 

islands, the Aleutian Islands, extends all the way across. The region north of these 

has the shape of a quadrant and forms the Bering Sea. Between the islands the 

depth is great, and the tide of the Pacific seems to enter almost unhindered. Since 

the depth of more than half of the sea, mostly on the Alaskan side, is less than 

40 fathoms, large currents are produced, especially in the three chief bays—the Gulf 

of Anadir, Norton Sound, and Bristol Bay. The dissipation must therefore be very 
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great, but a reasonably accurate estimate of it is difficult to make on account of the- 

form of the shallow portion, which has no narrow place that can be called an entrance. 

It is best to treat the main part of the sea and the bays separately. 

In the south of the sea it is stated that the maximum rate of the water, when clear 

of the passes between the Aleutian Islands, is usually about 2\ knots when the depth 

is less than 100 fathoms. In the region satisfying these conditions the depth is in 

most places about 80 fathoms, so that the current farther north, where the depth is 

often only 20 or 30 fathoms, may exceed this. On the other hand there seems to be 

little semi-diurnal tide in the extreme north. In Norton Sound the tide is diurnal, 

presumably because the waves from the south and from Bering Strait neutralize each 

other. At St. Lawrence Islands, near the entrance to the strait, the tide is only 

about a foot in height, confirming this suggestion. Farther south, however, the 

tidal wave from the Arctic must spread out and become inappreciable. At Pribilof 

Islands, 500 km. from the nearest land and surrounded by water 50 fathoms deep, 

the current reaches 2^ knots. At St. Matthew Island, about midway between these 

and St. Lawrence Islands, in water 30 to 40 fathoms deep, and nearly as far from 

land, the current still reaches 2\ knots. There are no other data given for islands 

far from shore, and it seems that we shall not be overestimating the dissipation if we 

take the maximum current to be 2\ knots all over the shallow region bounded on the 

south by the Fox Islands and extending north till half-way between St. Matthew and 

St. Lawrence Islands. The size of this is 1,000 by 700 km., or 7 x 105 sq. km. The 

maximum dissipation is therefore 2'74 x 1012 x 7 x 105x (2'5)3, or 3xl019 ergs per 

second, and the mean dissipation l‘2x 1019 ergs per second. 

In Bristol Bay the average velocity seems to be about 3 knots, though the observa¬ 

tions are few. The corresponding dissipation is about l'5x 1018 ergs per second. In 

Norton Sound the dissipation is probably small, for it is mostly north of St. Lawrence 

Island, and the tide is diurnal. The Gulf of Anadir probably contributes about as 

much as Bristol Bay; for though its area is twice as great, its more northerly 

situation must reduce the current somewhat. In all, then, the average rate of 

dissipation in Bering Sea is about l‘5xl019 ergs per second. This estimate is of 

course subject to considerable error, for it depends wholly on a few observations, 

which may not give quite a fair sample of the whole of the sea. The depths around 

the localities considered are fairly typical of the sea as a whole, so that great error on 

this ground is not to be anticipated ; but errors in observing the velocities may be 

greater, and both kinds of error are magnified in importance by the fact that the 

velocity must be cubed when the dissipation is calculated, so that if the true mean 

velocity were only 2 knots instead of 2\ knots the dissipation would be almost halved. 

It does not appear that the velocity increases much towards the coast; in fact the 

velocities near the Alaskan coast seem to be rather smaller than those near the 

islands. Thus an underestimate on this ground is not probable. 

2 N YOL. CCXXI.-A. 
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6. Malacca Strait. 

This is a narrow triangular area, about 800 km. in length, separating Sumatra from 

the Malay Peninsula. The tide of the Bay of Bengal enters at the north-west end, 

and gradually increases in height as it advances along the strait towards Singapore. 

At the south end, however, the part of the tide that has not been reflected or 

dissipated on the way through the strait is overwhelmed by the diurnal tide of the 

South China Sea. Ample observations of the tides and tidal currents on both sides 

are available. The currents as far south as Cape Medang (nearly due west of 

Malacca) seem to reach maxima of \\ to 3 knots, the average amplitude at springs 

being practically 2 knots. The area of this region is 100,000 sq. km., and the 

dissipation is accordingly found to be about 9 x 1017 ergs per second on an average. 

An alternative determination can be made by finding the rate of inflow of energy. 

At Kumpei, on the Sumatran side and near the north end of the strait, it is high 

water, full and change, at noon, and the amplitude at springs is 120 cm. The flood 

tide outside the bar, in water about 20 fathoms deep, sets south-east from three hours 

before high water till three hours after it, so that it reaches its maximum speed of 

l|- knots at high water. At Penang, near the opposite shore, it is high water at 

Oh. 21m. and the current reaches its maximum velocity of 2\ knots an hour before 

high water. As the strait is everywhere narrow in comparison to its length, and as 

these observations do not seem to have been taken on shoals, they are probably 

representative of that part of the strait. The amplitude of the tide at Penang is 

100 cm. We can therefore take the average height of the tide along the section from 

Kumpei to Penang to be 110 cm., and the average current when flowing strongest to 

be 2 knots, reaching its maximum half an hour before high water. The average 

depth is about 30 fathoms. A modification must be made in the previous procedure 

to allow for the fact that the current flows along the strait, which is not quite at 

right angles to the line of the section ; therefore, in finding the energy crossing the 

section, we must take for the length of the section, not the distance from Kumpei to 

Penang, but the projection of this on a line perpendicular to the strait, which is 

230 km. The flux of energy is hence found to be, on an average, 7 x 1017 ergs per 

second. We also require the amount of this energy that emerges through the narrow 

part of the strait. Off Cape Medang, which marks the narrowest point of the strait 

away from the immediate neighbourhood of Singapore, the amplitude of the tide is 

120 cm., high water occurring at 6h. 30m. The tidal current flows at an average 

speed of about 2|- knots. There is no record of the tidal phenomena just opposite, 

but in Malacca Road it is high water at 7h. 30m., with an amplitude of 165 cm. ; the 

current there reaches its maximum of 2 knots an hour before high water. At the 

eastern end of South Sands, which lies near the Malay side, north-west of Cape 

Medang, it is high water about 6h. 0m., and the tidal stream has a maximum speed 

of l|- knots an hour before high water. The width of the channel at Cape Medang is 



t>R, HAEOLD JEFFREYS ON TIDAL FRICTION IN SHALLOW SEAS. 257 

36 km., and the depth 20 fathoms. The average flux of energy eastward past it is 

found to be 1‘OxlO17 ergs per second. Thus the average excess of the inflowing 

energy over the issuing energy is 6 x 1017 ergs per second. The work done by the 

moon is insignificant, for it crosses the meridian at full and change at 2h. 30m., which 

is nearly the average time of high water. Thus all the excess of energy just found is 

dissipated in the strait. 

The area of the strait between the Kumpei-Penang section and the Medang section 

is 56,000 sq. km. If the average current in this had an amplitude of 2 knots the 

dissipation would be 5xl017 ergs per second on an average, in striking agreement 

with the estimate from the flux of energy, though the latter is more reliable. If in 

the final estimate the region north of the Kumpei-Penang section is to be included, 

we must add a fraction to the total to allow for it, making probably between 8 x 1017 

and 12 x 1017 ergs per second in all. 

In the part of the strait east of Medang there are few records of the currents, but 

the dissipation is probably small. In any case it could not exceed the 10u ergs per 

second that pass Medang, and is probably less than this. The total dissipation in the 

Strait of Malacca is therefore IT x 1018 ergs per second, subject to an uncertainty of a 

fifth of its amount. 

Australian Waters. 

Australia is surrounded by a belt of water less than 100 fathoms in depth ; the 

width of this ranges from 10 to 200 miles, except at the Gulf of Carpentaria, where it 

extends right across to New Guinea. The tide in this neighbourhood is diurnal, like 

that in the South China Sea to the north of it. The contribution to the secular 

acceleration of the moon is accordingly very small. The tidal streams do not exceed 

1 knot, and as the area is much less than that of the South China Sea the dissipation 

in the diurnal tide cannot be comparable with that already found for the larger sea. 

African Waters. 

The Mozambique Channel. 

The channel between Madagascar and the mainland is mostly about 500 fathoms 

deep or more. There are few records of tidal currents in it; in fact the only record 

given in the ‘ African Pilot,’ part 3, appears to be based on the statement of a single 

observer, that the tidal streams in the channel are comparable with the permanent 

current driven by the trade winds, which flows at about 2 knots. This cannot 

however be uniform all over the channel, for the following reason. The height of the 

tide along the African coast is about 12 feet, which is as usual measured relative to 

low water at ordinary springs, so that the vertical amplitude of the tide is 180 cm. 

Now the ordinary theory of tides in channels shows that the maximum velocity is of 

2 N 2 
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order h (g/D)*; in a simple wave in a uniform channel it is exactly this. Taking the 

depth to be 90,000 cm., this makes the maximum velocity 19 cm./sec., or rather more 

than a third of a knot. Accordingly the currents with velocities of a knot or more 

must be confined to narrow coastal strips, and the dissipation is therefore small. 

The only other partially enclosed regions around Africa are the Gulf of Aden and 

the Red Sea. The former is deep in the middle with narrow strips of shallow water 

on the margins, like the Mozambique Channel, and therefore the dissipation is small. 

The Red Sea is shallower, but can have no important currents, since the inlet at Aden 

is so narrow. The Mediterranean has already been dealt with. Thus the dissipation 

around the coasts of Africa is negligible. 

North American Waters. 

There are many partially enclosed bodies of water around North America, the chief 

of which are the Gulfs of Mexico and California, the Bay of Fundy, the Gulf of 

St. Lawrence, and the numerous straits and bays of the North-west Passage. Of 

these the Gulf of Mexico may be ruled out at once, for it is very deep and a large 

fraction of its entrance is blocked by Cuba. The Gulf of California is still deeper ; and 

therefore the currents in these cannot be notable except in restricted localities. 

1. The Bay of Fundy. 

This bay requires to be considered separately in spite of its small size, for it is 

famous for possessing the largest tides in the world. It is fairly shallow, and the 

tides are much magnified in height by the diminution in both depth and width 

towards the head of the Bay. The currents are apparently not so great as would be 

expected from the height of the tides. The entrance is through the Grand Manan 

Channel, named after an island in it. The average current in the channel reaches 

about 1'8 knots, and that near St. John, half-way up the bay, reaches 17 knots. The 

area of the bay is 12,000 sq. km., so that the average dissipation for a maximum 

velocity of 1'8 knots all over would be 77 x 1016 ergs per second. It is likely that the 

currents farther up the bay are stronger, so that this must be regarded as a lower 

limit. 

An alternative estimate may be obtained from the inflow of energy. The rise of 

the tide in Grand Manan Channel is at most places about 20 or 22 feet at springs) 

above low water ordinary springs. The amplitude is therefore about 320 cm. The 

current has an amplitude of 1‘8 knots, and the depth of the channel is about 9000 cm. 

The average time of the turn of the current at three places near the south side 

of the channel (those numbered 14, 16 and 17, in the ‘ Nova Scotia and Bay of Fundy 

Pilot,’ page 22) is 35 minutes after high water at St. John. This high water at full 

and change occurs at 11 h. 21m., while at l’Etang, on the north side of the channel, 
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it is at llh. 18m., and the mean of the times at Westport, Petit Passage, and Digby 

Gut, which are nearly opposite, is lOh. 48m. Thus the mean time of high water in 

the channel must be about llh. 3m., so that the current turns 53 minutes after the 

tide. The phase difference is therefore 25 degrees. The width of the channel is 

83 km. Applying equation 15 of Taylor’s paper, we find that the average rate at 

which energy enters is 47 x 1017 ergs per second. 

The average rate at which the moon does work on the bay is —\g j hh'y sin /3c£S, 

as was found for the Yellow Sea. In this case the latitude is 45° north, so that h! is 

18 cm. In the lower half of the bay the amplitude of the tide is not greater than 

12 feet, but in the upper half it rapidly increases, till in Minas Basin it reaches 25 feet 

and in Chignecto Bay 23 feet. The time of high water in the bay ranges from 

llh. 3m. to llh. 50m. The later value corresponds to the upper part, where the 

amplitude is greatest; but as this part is also the narrowest, the two times must 

receive about equal weights in finding the average. We therefore take the average 

time of high water to be llh. 30m. The average amplitude of the tide is about 

18 feet, or 540 cm. The longitude of the bay is 66° west, so that the moon crosses 

the meridian at full and change at 4h. 33m. The time of high water is more than 

6h. 12m. later than this, so that the tide is falling when the moon is exerting its 

greatest upward pull, and the work done by the moon is therefore negative. The 

interval between transit and low water is 45 minutes, so that /3 = 22°. The area of 

the bay is l'2x 1014 sq. cm. The work done by the moon is therefore — 3 x 1018 ergs 

per second. The total dissipation in the bay is 4'4 x 4017 ergs per second. 

This estimate is six times as great as the earlier one based on the currents alone. 

It is much the more reliable, for the first depended on the assumption that the 

currents were equally great all the way up the bay, whereas actually they increase 

very much towards the head. Velocities up to 9 knots are recorded in Minas Basin, 

though the area in which these occur must be very restricted. The most serious 

source of error in the second estimate is the phase difference, for this is only an hour 

and would be affected to a considerable extent by an error in the determination of 

the time when the current turns. The observed time of turn does not vary much 

from place to place, however, and it does not seem likely that the estimate is wrong 

by more than a quarter of its amount. The second estimate will therefore be 

adopted. It will be noticed that it is rather less than the dissipation in the Irish 

Sea. 

The Gulf of St. Lawrence gives very little dissipation. The narrow entrance 

through Cabot Strait prevents the tides from being considerable except in the 

estuary of the river itself and in Belle Island Strait, which separates Newfoundland 

from Labrador. 
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2. The North-west Passage. 

The channel from the Atlantic to the Arctic between Canada and Greenland is 

blocked by a large number of islands of varying sizes, between which are narrow and 

shallow straits. The dissipation in several of these can be estimated from data in the 

‘ Arctic Pilot,’ vol. 3. 

The chief of these channels is Davis Strait, with Baffin Bay to the north of it, 

which lies between Baffin Land and Greenland. It is about 1600 km. in length. 

The only tidal velocities recorded in it, except in fjords, are near Holstenborg, in 

Greenland, where the currents in the offing are said to reach a speed of two knots. 

This cannot, however, be general, for there is a shallow region off Holstenborg, some 

150 km. long and 60 km. wide, with a depth of about 23 fathoms. Most of the 

strait is about 100 fathoms deep. This region is therefore a place where the main 

current of the strait is magnified by the form of the bottom, and there is no reason to 

believe that the current in the deep water is greater than half a knot, which is the 

observed velocity off the coast of Labrador. The dissipation in Davis Strait is 

therefore not great. 

At the northern extremity of the strait there are several narrow passages into the 

Arctic. The dissipation in these must be important. In Smith Sound and Kennedy 

Channel, for instance, which separate the north-west coast of Greenland from 

Ellesmere Land, the current is said to be “nearer two figures than one.” These 

straits are small in area, but if such currents exist over much of their extent we must 

take them into account. The data available at present are unfortunately too meagre. 

The south end of Davis Strait is connected to Hudson Bay by Hudson Strait. 

The currents in this are described as “ great enough to be dangerous,” especially at 

the east end; but the recorded currents, even in the middle of the strait, are only 

about three-quarters of a knot. This makes the average dissipation about 

5 x 1016 ergs per second. The danger arises mostly from drifting ice. 

In the entrance to Hudson Bay the velocity increases to one and a half knots. 

The area over which this is true is about 3‘8 x 1014 sq. cm., making the average 

dissipation 1‘5 x 1017 ergs per second. 

In Hudson Bay itself the currents are probably very small. Considerable 

velocities are recorded at Port Churchill, but there are no records in the middle of 

the bay. The depth in the middle is about 50 fathoms, which is about the same as 

at the entrance. The entering current must therefore spread out in the bay and 

undergo great diminution in strength. Near Port Churchill the depth is only 19 

fathoms or less, so that the current there must be a local current magnified. The 

dissipation in Hudson Bay must therefore be small. 

In Fox Strait, which runs northwards from the entrance to Hudson Bay, the 

depth is less, about 20 fathoms, and the current reaches one and a half knots. The 

area of this channel is 2xl015sq. cm., and the appropriate average dissipation is 
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about 1 '4 x 1018 ergs per second. The remaining straits of the North-west Passage 

probably do not contribute nearly so much to the dissipation, for the energy of the 

entering wave must be mostly dissipated in the channels already dealt with, and 

partly through this and partly on account of the obstructive effect of the islands 

it is not likely that the straits farther north-west are very important, though this 

cannot be regarded as certain. The dissipation in the whole of the North-west 

Passage is thus about 1‘6 x 1018 ergs per second on an average. Adding this to the 

amount found for the Bay of Fundy, we have for the whole of North America a 

total of 2 x 1018 ergs per second on an average. 

Summary. 

The mean rates of dissipation in the lunar semi-diurnal tide found in the foregoing 

investigation are as follows :— 

Ergs per Second. 

European waters.2'4xl018 

Asiatic waters: 

South China Sea. Small. 

Yellow Sea. 1‘lxlO18 

Sea of Okhotsk.0'4 x 1018 

Bering Sea.15'QxlO18 

Malacca Strait .    1’lxlO18 

North American Waters: 

Bay of Fundy. 0‘4xl018 

North-west Passage. I'6xl018 

The total thus accounted for is 2'2 x I019 ergs per second. I have shown in a previous 

paper that the dissipation required to account for the secular acceleration of the moon 

{which amounts to 9" per century per century) is about l'4x 1019 ergs per second, so 

that it seems as if there is more dissipation than is required. If this was so it would 

be necessary to seek for a cause that could produce an appreciable secular retardation 

of the moon, and none such is known. A scrutiny of the results so far obtained is 

therefore desirable, with a view to finding out whether any of them have been over¬ 

estimated. One cause of such an over-estimate is easily seen. The data used for the 

Irish Sea, the English Channel, Malacca Strait and the Bay of Fundy refer definitely 

to spring tides alone when the currents are at a maximum. The height of the tide 

adopted in the calculation for the Yellow Sea was also that of the spring tide. In 

the other cases it is not stated whether the currents have average or spring values, 

but if they were determined at springs the requisite reduction is at once obtained. 

The theoretical ratio of the heights of the lunar and solar tides is 2'3 when inertial 

and frictional effects are neglected. This ratio is probably nearly correct in mid-ocean, 
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for the periods of the two tides are not very different, so that inertia will affect their 

amplitudes in the same ratio. In shallow areas, however, the frictional force is not 

proportional to the velocity but to its square, and accordingly friction has more 

relative effect in reducing the tides when they are great than when they are smaller. 

The ratio of the solar to the lunar tide, as found from observations, is accordingly less 

than the theoretical value, since the ratio of the ranges at springs and neaps is 

reduced. This ratio is stated in the ‘Admiralty Tide Tables for 1920 ’ to be 1 : 273 on 

an average. If now 0 be the phase of the lunar tide, let (l— r) 0 be the phase of the 

solar tide, so that r is l/29. Let A be the amplitude of the lunar tidal current and 

Av that of the solar tidal current. The total current is 

Afcos 6 + v cos (l— r)d} = A (l + 2v cos r 0 + v2Y cos ( 6—tan-1 —^— 
\ l + i/ cos r 6 

which is now expressed as a simple harmonic motion with a slowly varying amplitude 

and period. The amplitude at springs isA(l + j/). The dissipation is proportional to 

the cube of the current, and therefore to the cube of the amplitude. The ratio of 

the mean dissipation to the dissipation at springs is therefore the average of 

(1 + 2j/ cos r6 + j/2)V(l + r)3, If v6 be neglected, the numerator of this is l+f 

Assuming that the ratio of the velocities is the same as that of the vertical ranges, 

we find that this fraction is equal to 0'51. Applying this correction to the spring 

tide dissipation, we find that the average dissipation is l'l x 1019 ergs per second, 80 

per cent, of what is required. It would give a secular acceleration of the moon 

of 7" per century per century. 

The agreement between the dissipation in shallow seas and that necessary to 

account for the lunar secular acceleration is much closer than the data would entitle 

us to expect. Two-thirds of that found takes place in the Bering Sea, the estimate 

for which may be incorrect by half its amount. What we are entitled to assert, how¬ 

ever, is that this dissipation is certainly enough to account for a large fraction of the 

secular acceleration, and that there is nothing to prove that it is incapable of 

accounting for the whole of it. 

It is uncertain whether the dissipation in any other coastal regions is notable in 

comparison with those already considered. The only partly enclosed areas not treated 

here that are of considerable size are some of those in the North-west Passage. There 

is an extensive shallow region off the coast of Patagonia, but it is in no way enclosed, 

being perfectly open to the Atlantic. Thus it is difficult to make any reliable inference 

about the currents in it. Many records of tidal currents along the coast are given, 

some reaching several knots, but all of them seem to refer to currents up rivers or near 

their mouths, where the general currents must be magnified, or to currents over bars 

and shoals; there seem to be no data about the currents more than a few miles out to 

sea. 

The dissipation over local shallows like shoals and bars and in narrow bays and 
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straits has been systematically ignored in this paper, except where it has been auto¬ 

matically taken into account in the determination of the excess of the entering over 

the issuing energy. The chief reason for this is the utter impossibility of finding 

it. The fjords on the west coasts of Norway, Greenland, and North and South 

America are innumerable, and in many of them, perhaps in all, there is a strong tidal 

current, so that the dissipation per unit area in these places must very much exceed 

that in any of the areas here treated. On the other hand, the total area must be less, 

and it is uncertain whether the increase in velocity is enough to counterbalance the 

decrease in area and make the total dissipation in these places comparable with that 

here found for the larger shallow seas. The same is true of shoals ; though the 

agreement between the results given by the two methods of finding the dissipation 

in shoaly waters, as in the Yellow Sea and the Strait of Malacca, indicates that the 

shoals at any rate do not contribute to the dissipation an amount overwhelmingly 

greater than the normal places, for one method necessarily includes the effect of the 

shoals and the other systematically omits it. Along the open shore again there 

must be some dissipation ; the currents there do not usually extend many miles out to 

sea, but they exist along a very long stretch of coast, and the aggregate dissipation 

in them may be appreciable. 

The hypothesis that the secular acceleration of the moon is due to dissipation of 

energy in the tides in shallow coastal regions therefore seems capable of satisfying all 

the quantitative demands on it, and it is also free from objections that have been 

urged against other attempted explanations.* It therefore occupies a strong position. 

Appendix. 

The Secular Change in the Obliquity of the Ecliptic. 

In consequence of the dissipation of energy in the diurnal tides there must be-a 

couple always acting on the earth so as to tend to resist its angular motion about an 

axis in the plane of the orbit of the moon or the sun, as the case may be. If 8 be the 

declination of the moon, the angular velocity of the earth about the diameter that 

points to the moon is O sin 8, and the angular momentum about it is CD sin 8, where C 

is the earth’s moment of inertia. Let L be the couple about this diameter. Then the 

rate of dissipation of energy in the diurnal tide is LD sin 8. Also the rate of change 

in the inclination is given by 

Now L must contain fl sin 8 as a factor, since it depends for its existence on the 

existence of the diurnal tide, whose coefficient is proportional to sin 8, and whose speed 

* Cf. ‘ Monthly Notices of R.A.S.,’ vol. lxxx., 1920, pp. 309-317. 

VOL. CCXXI.—A. 2 O 
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is equal to fit —n, which is sufficiently near to H for our present purpose. Hence the 

friction of the tide will have a damping effect on this component of the earth’s 

rotation, which is not altered by the other couples acting, since none of these have a 

notable effect in diminishing the amplitude of the motion. If the average value of 

the dissipation is taken to be 5 x 1018 ergs per second, this being rather more than was 

found in the South China Sea, and we remember that the average of sin2 $ is sin2 i, 

where i is the obliquity of the ecliptic, we find that the amplitude of fl sin § would he 

reduced to l/e of its value in 2 x 10M years. This is of the same order as the probable 

age of the earth. If H remained constant this would show that the inclination ot 

the Equator to the ecliptic would be reduced by in about 2 x 104 years. Actually 

D is decreasing, so that if the rate were maintained it would be reduced to l/e of its 

value in about 1010 years, a longer time than was found, on the assumption stated, to 

be enough for a similar reduction in the obliquity. Thus we can infer that the 

obliquity is at present diminishing, though there is no reason to believe that there 

has been any observable change in it in historic times. Even if there were as much 

dissipation in the diurnal tides as in the semi-diurnal ones this would hardly be 

possible. 

[Note added September 16.—Mr. Taylor asks me to point out certain errata in 

his paper “ Tidal Friction in the Irish Sea.” On p. 2, 1-is twice written for 
V r 

1 the correct form is used in equations (4) and (5). On p. 9, line 9, is 
v r 

Greenwich mean time of high water at full and change of the moon at the place 

considered, whereas the “ establishment ” is the local mean time of this event. In 

equation (16), £ + Tx should be t — T1( and in equation (18), £ + T0 should be t — T0. On 

pp. 19 and 20, sin2 </>0 is consistently written for sin 20o; equation (33) is correct. 

In this paper, as in Taylor’s, integrals over a period are always determined as if 

the current velocity and the tide height varied harmonically. This could be strictly 

correct only if the frictional force was proportional to the velocity, which is not the 

case. It appears, however, that the departure from the harmonic variation is not 

enough to produce any great alteration in these integrals. 

I wish to express my thanks to Mr. H. W. Braby for drawing the maps in this 

paper.] 
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§ 1. Introduction. 

The problem of the equilibrium of an elastic solid under given applied forces is one 

of great difficulty and one which has attracted the attention of most of the great 

applied Mathematicians since the time of Euler. Unlike the kindred problems of 

hydrodynamics and electrostatics, it seems to be a branch of mathematical physics in 

which knowledge comes by the patient accumulation of special solutions rather than 

by tl le establishment of great general propositions. Nevertheless, the many and 

varied applications of this subject to practical affairs make it very desirable that these 

special solutions should be investigated, not only because of their intrinsic importance 

but also for the light which they often throw on the general problem. One of the 

most powerful methods of the mathematical physicist in the face of recalcitrant 

differential equations is to simplify his problem by reducing it to two dimensions. 

This simplification can only imperfectly be reproduced in the Nature of our three- 

dimensional world, but, in default of more general methods, it provides an invaluable 

weapon. 

It was shown by Airy* that in the two-dimensional case the stresses may be 

derived by partial differentiations from a single stress function, and it was shown 

laterf that, in the absence of body forces, this stress function satisfies the linear 

partial differential equation of the fourth order V4^ = 0, where V4 = V2. V2, and V2 

is the two-dimensional Laplacian c2/dx2 + d2/dy2. 

It might have been expected that these results would have opened the way for 

a theory of two-dimensional elasticity of the same generality as the two-dimensional 

potential theory. This has not, however, been the case. This is due in part to the 

greater analytical difficulties which attend the discussion of the two-dimensional 

* ‘ Brit. Assoc. Rep.,’ 1862, p. 82. 

t W. J. Ibbetson, ‘ Proc. Lond. Math. Soc.,’ vol. xvii., 1886, p. 296. For a history of this part of the 

subject see Love’s ‘ Elasticity,’ 2nd edition, p. 17. 

vol. ccxxi.—a 590. 2 p [Published November 8, 1920. 
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solutions of V4\ = 0 as compared with V2y = 0. The analogues of many of the 

important properties of the simpler equation have yet to be discovered if they exist at 

all. Some progress has been made, and in this connection we may mention the work 

of J. H. Mighell* who established a general theory of inversion which, with some 

important differences, follows the potential theory fairly closely. 

No doubt the analytical difficulties have been the chief obstacle to progress, but 

perhaps the theory has not in recent years received attention which it would have 

received but for a certain physical difficulty. A truly two-dimensional elastic system 

is not so easy of realisation as might seem to be the case at first sight. If the stresses 

are everywhere parallel to the xy plane and independent of 2 there will in general be 

a varying displacement parallel to 2. If the displacements are everywhere parallel to 

the xy plane and independent of 2 this can only be secured by the application of 

a stress 22 which varies from point to point and is perpendicular to the xy plane. This 

difficulty was in a large measure removed by a theorem established by Filon, which 

has been called the theorem of generalised plane stress, t It states that if the average 

value of the stress 22 be taken throughout the thickness of a plate parallel to the xy 

plane, then the ordinary two-dimensional theory will give accurately the average stresses 

through the thickness of the plate if the elastic constants of the material are modified. 

If A, m denote the true elastic constants, A must be replaced by W = 2\/u/(\ + 2fx) while 

[x remains the same as before. This theorem attains an even greater importance when 

considered in the light of Michell’s theorem,^ that if a plate bounded by any 

number of bounding curves is in equilibrium under forces in its plane applied over the 

boundaries, then, provided the forces applied over each boundary taken separately 

are in equilibrium, the stresses are everywhere independent of the elastic constants. 

The hypothesis that the average value of 22 vanishes throughout the plate, 

while certainly not accurately true in the majority of cases, will probably give 

a very close approximation in the case of a thin plate where parallel faces are 

unstressed. 

In the light of this generalisation it is of considerable importance that the two- 

dimensional problem should be worked out more thoroughly. The two-dimensional 

solutions of V4^ = 0 have been investigated in several systems of curvilinear co¬ 

ordinates. Owing to the special importance of the problem of the rectangular beam 

the solutions in Cartesian co-ordinates have naturally received a considerable amount 

of attention. Michele gave the general form of the stress-function in polar co¬ 

ordinates, thus opening the way for the solution of the problem of a plate bounded by 

* “The Inversion of Plane Stress,” ‘ Proc. Lend. Math. Soc.,’ 1901, vol. xxxiv., p. 134. Many of the 

results of the present paper can be obtained by an application of Michell’s methods, but it has proved 

more convenient to proceed on different lines. 

t ‘ Roy. Soc. Phil. Trans.,’ A, 1903, vol. 201, pp. 63-155. 

| ‘ Proc. Lond. Math. Soc.,’ vol. xxi., 1900, p. 100. 
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two concentric circles, or an infinite plate containing a circular hole under any 

given tractions applied over its boundaries. In his lectures at University 

College, London, in 1912, Prof. Filon gave the complete solution of this problem 

determining the stresses and displacements when the stresses on the boundaries 

are expanded in Fourier series, and I am not aware that this solution has ever 

been published. An outline of the solution in elliptic co-ordinates is given in Love’s 

‘ Elasticity.’* 

In this paper the complete solution is given for bipolar co-ordinates, for which the 

co-ordinate curves are co-axial circles. This solution enables us to treat the problems 

of an infinite plate containing two circular holes, a semi-infinite plate bounded by a 

straight edge and containing one circular hole, and a circular disc with an eccentric 

circular hole. 

In the second Section the equations are expressed in bipolar co-ordinates and 

formulae are established for the displacements in terms of the stress-function. 

In the third Section the stress-function is obtained in a convenient form and the 

terms giving rise to many valued displacements are separated out. 

The fourth Section is devoted to the determination of the coefficients in the stress- 

function when the tractions over the boundaries are given in Fourier series, and to an 

examination of the convergence of the resulting series. From the results established 

in this section it appears that the solution is complete, for the stress-function can 

always be uniquely determined when the tractions are given, provided that the 

applied forces taken as a whole are in equilibrium. 

The remaining sections are occupied with the examination of some of the simpler 

applications of the theory. Section 5 gives the solution for a circular disc with an 

eccentric hole (or a cylinder with eccentric bore) when the two boundaries are under 

different hydrostatic pressures. It is found that the solution of this problem can be 

expressed in finite terms. An important particular case of this problem is discussed 

in Section 6, namely, a semi-infinite plate with a straight, unstressed boundary and a 

circular hole under a uniform normal pressure. This will give the stresses near 

a rivet hole while the hot plastic rivet is being forced home under pressure. 

This solution is interesting from another point- of view, for if the ratio of the 

radius of the hole to its distance from the edge is suitably adjusted, the point of 

greatest tension will be on the straight edge while the point of greatest stress 

difference is on the circular boundary. It thus suggests a crucial test for the 

rival theories of rupture,—the greatest tension theory and the greatest stress- 

difference theory. 

Section 7 deals with a semi-infinite plate with an unstressed circular hole 

under tension parallel to its straight edge. The solutions are in the form of infinite 

series, but the more important aspects of the problem are illustrated by numerical 

tables. 

* 2nd edition, p. 259. 

2 p 2 



268 DR. G. B. JEFFERY ON PLANE STRESS AND 

§ 2. The Co-ordinates. 

Let us take curvilinear co-ordinates defined by the conjugate functions 

, -a i x + %(y + a) 
a \-tft = log-Tj -C 

x-H (?/—a) 
(1) 

where x, y are Cartesian co-ordinates and a is a positive real length. Solving for 

x, y, we have 
a sin ft a sinh a 

x- ;--—y- —,-—77.(2) 
cosh a — cos ft ' ' cosh a — cos ft 

Elements of arc measured along the normals to the curves a, ft = constant are 

respectively Sa/h, Sft/h, where 

2 1 

/r \ca 

oy2 

\C a 

from which we have 

h = (cosh a — cos ft)/a. (3) 

The general scheme of co-ordinates is shown 

in fig. 1. If 01( 02 are the points 0, —a and 

0, a respectively and P any point in the plane, 

and if the radii from Ch, (X to P are of lengths 

r2 and are inclined at angles 6lt 02 to the 

axis of x, then a = logrjr2 and ft = — 

The curves a = constant are a set of co-axial 

circles having Ol5 02 for limiting points. The 

circles corresponding to positive values of a lie 

above the rr-axis and those corresponding to negative values below, while the avaxis 

itself, which is the common radical axis, is given by a = 0. The curves ft — constant 

are circles, or rather arcs of circles passing through O,, 02 and cutting the first set of 

circles orthogonally. On the right-hand side of the y-axis ft is positive and on the 

left-hand side negative, while on the //-axis 6=0, except on the segment OjO^, 

where ft = ±tt. At infinity a = 0. ft = 0, and at O,. 02 we have a = — 00 and + 00 

respectively. 

We have thus a set of co-ordinates adapted for the consideration of two-dimensional 

problems in which the region considered is— 

(1) A finite region bounded internally by a circle and externally by a larger and 

non-concentric circle. 

(2) A semi-infinite region bounded externally by a straight line and containing a 

circular hole. 

(3) An infinite region containing two circular holes of any radii and centre 

distance. 
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If the displacements in the directions normal to the curves a and /3 constant are 

u, v respectively, the strains are given by* 

; BU dll 
ea* = /o-v 

0 
r a 

, or o// 
^ = A —~u —■ 

op da 

0 
«-/» = — (AV) + 3-5 (A-W), 

na op 

and the corresponding components of stress by 

nrx — \ (eaa+e^) +2/xeaa, 

— A (caa + c^g) + 2fj.epp, 

a/3 = /X^a/3- 

(4) 

These stresses may be derived from a stress-function, so that in rectangular 

co-ordinates 
_ ^2 .—- 02 

~) „ 
Ox 

XX 
d\ ^ S2X ^ 02x 

xy = - ' W = T2 oy ox oy 

Transforming these equations to curvilinear co-ordinates we obtain 

= *4(*m)-a!t!M p \ 0/3/ 0a 0a 

0A 0Y 

aa 

w = h±(}M-hfJ* j. 
oa oa/ dp dp 

^2 

(5) 

o2 (Ax) . , 02A 

oa op oa op 

We will usually find it convenient to deal with Ax instead of x itself, and in our 

particular co-ordinates these equations become 

02 

acta. = \ (cosh a— cos /3) —5 — sinh a —— sin /3 ~ + cosh al (Ax). 
{ op da op ) 

02 O 
a/3/3 = -j (cosh a — cos /3) d—— sinh ad-sin /3 d— -|- cosh /3 r (Ax). 

op J ra" ca 

aa/3 = — (cosh a — cos /3) 
Oa op 

We may note that 

a (aa-/3/3) = (cosh a - cos /3) ( — - — + 1) (Ax), 
Of3 COL / 

0 2 02 c c 

(6) 

(7) 

* Love, ‘ Theory of Elasticity,’ p. 54. 
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so that if hx and its second differential coefficients are finite at infinity (a = 0. ,8 = 0) 

we have there aaa = aft ft = hx and a,8 = 0. 

In the absence of body forces the stress-function satisfies V4x = 0. In curvilinear 

co-ordinates we have 

V2 = Jr 
^2 ^2 \ 

S + c 
0a2 ' 7/92 

and, taking hx as the dependent variable, we have in our co-ordinates 

aV\ = \ (cosh a - cos ft) {— + ?^2 
^2 ^2 O . C 

■2 sinh a ——2 sin ft ~+ cosh a 4- cos ft \ {hx). 
col c/9 

Repeating the operator, a little reduction leads us to the following transformation 

for V4v = 0 : 
(a4 „ a4 a4 a2 „ a 
\aa4+2aa2a/93 + a/94 2aa3+2a/92 + 1)^ 0.^ 

Thus by considering hx instead of x we have a linear equation with constant 

coefficients. 

Before proceeding to the discussion of its solutions, we must investigate the method 

of determining the displacements corresponding to a given stress-function, in order 

that we may ascertain whether and under what conditions these are single-valued. 

This is particularly necessary in our case, as one of the co-ordinates, ft, is itself many- 

valued. 

Adding and subtracting the first two equations (4), and leaving the third as it 

stands, substituting for the stresses in terms of the stress-function, and for the strains 

in terms of the displacements, we obtain the following three equations:— 

+ 
A/ox 
9/910/9 

•2 (\ + /x)- = 0, (9) 

k{h°¥«+2»h)-b{h%+2*hv\ = 0'.(10) 

.<“> 

From the last two of these it appears that we may define a new function P such that 

0P 

0a 
h3^ + 

0/9 
hv, 

0P 

dft 
= h2^ + 2 fi.hu, 

COL 

(12) 

(13) 

V»P = 0, 
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and we have still to satisfy (9). Substituting for u, v in terms of P we have 

dot \]f d/3 

which may be re-arranged thus— 

+ h2 8 (X ^ + 2/ulv2 

0/3 W da) X + fji. 

X + 2fj. 0y _ 1 oP| _£_ (\ + 2/u dX 1 rP 
0a[X + /u da If d/3 j d/3lX + n d/3 If da 

It follows that a function Q exists such that 

SQ _ 0P _ X + 2/U. jy2 ex 
ca 0a X + /x d/3 

0Q _ _ 0P X + 2/U J 2 £X 

0/3 0/3 X + /U ca 

= 0. 

(14) 

(15) 

Eliminating P by differentiating with regard to j3 and a respectively, and adding, 

we have 

(/;Q) _ q c2h _ X + 2m J1 _0_ i ,2 dx , _ 1 _£_ /, 2 0x \ 1 
0a 0/3 2(X + yu) // 0a 0a h d/3 0/3/ j 0a 0/d 

which becomes in our co-ordinates 

0MAQ) _ X + 2^ J02 (Ax) 0^(/?x) _ r I 
du d/3 2(X + n) [ 0aJ 0/3J 

(16) 

There is, however, a further condition to be satisfied by Q corresponding to the 

condition V2P = 0. Differentiating (14) and (15) with regard to a, (3 respectively, 

and subtracting we have 

These two equations connecting Q and x are consistent, for, if we eliminate Q by 

appropriate differential operators, we have 

(hx) = - 4 a4 (hx) 
da2 0/32’ 

which is readily seen to be identical with the condition Vlx = 0, as given in (8). It 

is obvious that hQ satisfies the same differential equation, and hence it also is a 

solution of V4Q = 0. 
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Lj i Li 

We have therefore from (16) 

2 (\ + n) 

and from (12), (13) and (14), (la) 

) M 7 OY 7 oQ 
>jfxU= . 

A + /U cot cp 

= 7T-A -A + h A + /x rp ca 

(18) 

(19) 

(20) 

It is readily seen that these equations determine u and v apart possibly from rigid 

body displacements, for, although owing to the double integration an arbitrary 

function of a and an arbitrary function of (3 will appear in AQ, these will be 

determined by (17), except for functions of a or /3, which make its left-hand side 

vanish identically. The only possible arbitrary terms in hQ are therefore given by 

AQ = aA (cosh a + cos /8) + B(cosh a —cos f3) + Ca sinh a + D« sin (3, or 

Q = Ar2+aB + Qz+Da? 

where r is the distance from the origin. These give rise to terms in u. v corresponding 

to motions of pure translation and rigid body rotation about the origin. 

§ 3. The Stress-Function. 

Turning now to the consideration of the possible forms for the stress-function in 

these co-ordinates, we note that the differential equation (8) can readily be solved by 

the ordinary method, and that its general solution is 

A^ = 6 (j>i (ot + l/3) + e a(p2 (ot + 1/3) + 6a03 (a— l(3)-\-6 a<pi (a— (/3). 

If we seek a solution of the type Ax = f(ot) cos n/3 or f (ot) sin n{3, (8) shows that 

the differential equation for/(a) is 

the solution of which is 

f (ot) = A„ cosh (n+ l) a + B„ cosh (n— l) a + Cn sinh (n + l) a +1),, sinh (n—l) ot, 

unless n = 0 or 1. In the latter case we have 

f (a) = A] cosh 2a + B! + C, sinh 2a Tl^a, 
and when n = 0 

/(«) = A„ cosh ot + B0a cosh a + C0 sinh a + D0a sinh a. 
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+ 2 <{ 
n = 2 

y 

If we now seek solutions for which hx is a multiple of sinh na or cosh not, we find 

the following solutions which are not included above— 

hx = (E cos /3 + F sin /3 + G cosh a+ H sinh a) /3. 

Since any constant multiples of x, y and any constant may be added to x without 

affecting the stresses, it follows from (2) that any multiples of 

sinh a, sin j3 or cosh a—cos (3 

may be added to hx- This allows us to take the coefficients of cosh a, sinh a and sin /3 

as zero. W e have then the following general expression for hx -— 

hx = (E cos f3 + F sin /3 + G cosh a + H sinh a) (5 

+ (B0 cosh a + D0 sinh a) a 

+ (A: cosh 2a + B1 + C1 sinh 2a cos (3 

+ (A,1 cosh 2a+ 0^ sinh 2a + D'ja) sin /3 

[A„ cosh (n+l)a + B„ cosh (n — I) a + C„ sinh (n+l)a 

+ Dn sinh ( n— l) a] cos n/3 

+ [A' cosh (n+ l) a + B'„ cosh (n— l) a + C'n sinh (w+ l) a 

+ D'n sinh (n— l) a] sin n(3. 

- - - (21) 

We have now to determine whether the displacements corresponding to this stress- 

function are single valued or not. The function (hQ) is easily obtained by simple 

integration from (16), and the arbitrary functions thus appearing can be determined 

by the aid of (17). We have 

— —(hQ) = (E cos (3 + F sin (3 + G cosh a + H sinh a) a 
A + 2/jl 

-(Bo cosh a + D0 sinh a) (3 

— (A] sinh 2a + CX cosh 2a + D'1(8) sin (3 

T (-A/x sinh 2a + C/1 cosh 2a —D1(8) cos (3 

f [A'„ sinh (n +1) a + B'„ sinh (n — 1) a + C'„ cosh (n +1) a 

I + D'n cosh (n— 1) a] cos n(3 

— [A„ sinh (n +1) a + B„ sinh (n — 1) a + Cn cosh (n + 1) a 

+ D„ cosh (n — 1) a] sin n/3. j 

. . . (22) 

It is clear, from the general expressions for h-x and hQ, that the only terms which 

can possibly give rise to many-valued displacements are 

hx = (E cos {3 + F sin (3 + G cosh a + H sinh a) f3 

+ (B0 cosh a + D0 sinh a + Dx cos (3 + D'j sin f3) a, 

2 Q 

+ 2 
n = 2 

VOL. CCXXI.—A, 
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and the corresponding terms in hQ 

— ^ - hQ = (E cos (3 + F sin (3 + G cosh a 4- H sinh a) a 
A + 2m 

-(Bo cosh a+D0 sinh a + Dj cos /3 + D', sin (3) (3. 

From (19) and (20) we may now find the corresponding displacements u, v. Each 

of these is found to contain a multiple of the many-valued co-ordinate (3. Equating 

the coefficients of these terms to zero we have the following relations 

E + G = 0, Bq + Dj = 0,1 

mF—(x + 2ju) I)0 = 0, //H + (\ + 2/i) = 0. J 

We shall now show that these early terms correspond to the resultant of the forces 

and couple applied over the boundaries. For this purpose we shall require the following 

elementary forms of the stress-function :—• 

(1) For an isolated force X applied at the origin in the direction of the x-axis 

x = -{2ir)-lX{y6-vx log r) 

where r, 0 as usual denote polar co-ordinates and v = /u/(\ + 2/x), 

(2) For an isolated force Y applied at the origin in the direction of the ?/-axis 
* 

X =(27r)~1Y (x6 + vylog r). 

(3) For a point couple of moment L applied at the origin in a positive sense 

X = -(27r)"1La 

(4) For a centre of pressure radiating uniformly from the origin 

x = log r, 

Inserting the relations (23) necessary to ensure single-valued displacements our 

early terms become 

or 

hx — G (cosh a —cos (3) (3 + (30 (cosh a—cos (3) a 

+ F (f3 sin (3 + va sinh a) + H (/3 sinh a — va sin (3) 

X = «G/3 + aB„a + F (x/3+vya) + H {y(3—vxa).(24) 

Now aG/3 = aG(61 — 9.Q and hence this term represents a couple of moment 2-rraG 

applied at a = co and an equal and opposite couple applied at a = — o°. The term 

a/30a represents two equal and opposite centres of radial pressure at these same points. 
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We also have 

K(y/3-vxa) = H {{ij + a) 6x-vx\og rx} — H{(t/-a)02-vx log r2} 

—aH (@j + 02). 

This corresponds to a force 2-7rH applied at a = + 00 parallel to the a:-axis and an 

equal and opposite force applied at a = — co 

(thus forming a couple of moment 47raH) and 

point couples each of moment 2-TraH applied 

at these same points (see fig. 2). 

Finally a. - o 

F x/3+vya.) — F {xOl + v{y + a)\ogr^\ 

-F {x02+v(y-ct) log r2} 

—avF log r 

This corresponds to forces each equal to 2ttF, 

acting at the points a = ± 00 and each directed 

towards the origin, together with two equal like centres of uniform pressure at the 

same points. This brings to light a new solution corresponding to the last term. 

Expressed in our co-ordinates we have 

log rxr2 — 2 log (2a) —2 log (cosh a —cos /3), 

and the corresponding form of hx is, apart from constants, 

hx = (cosh a —cos (3) log (cosh a —cos /3). 

It is easily seen that this can be expanded in a Fourier series which is included in 

our general expression for hx, but that the expansion is different on opposite sides of 

the line a = 0. For this reason we shall find it convenient to include a term of this 

form whenever the region under consideration includes parts above and below the 

axis of x, i.e., when it is bounded by two circles neither of which encloses the other. 

It will be noted that, taken together, the early terms allow for the most general 

resultant forces acting over the two circular boundaries enclosing the two points 

a=+oo, a — — co, subject to the condition that the forces acting over the two 

boundaries considered together form a system in equilibrium. If it is desired to 

investigate problems for which this condition is not satisfied we can readily obtain the 

necessary additional solutions. They will be 

X = iy + a) 6,-vx log r/ 

X = x61 + v(y + a.) log r, 

X = °i 

(25) 

2 Q 2 
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corresponding to forces and couple applied at a = — c°, and similar terms in 02, log r2 

corresponding to forces and couple applied at a — + go. The corresponding forms of 

/?X can be expanded in series which are included in our general form, but here again 

the expansions are different on opposite sides of a = 0 and diverge for a = 0, j3 = 0 

together, i.e., at infinity. This divergence corresponds to the obvious fact that forces 

or couples must be applied at infinity to maintain equilibrium. 

Owing to difficulties of this kind we shall find it convenient to insert the 

appropriate terms corresponding to the resultant force and couple over a boundary 

and to investigate the stress-function corresponding to the remaining applied forces 

which will be in statical equilibrium for each boundary. 

Let us write for brevity 

<pn (a) = An cosh (n+1) a + B„ cosh [n —1)«4 C„sinh (n+ l) a + D„ sinh {n— l) a 

(a) — A'n cosh (n +1) a + B'„ cosh (n — 1) a + C'„ sinh (n +1) a + D/ sinh (n— 1) a, 

if n ^ 2 and 

0! (a) = Ai cosh 2a + Bj + Cx sinh 2a 

xlsi (a) = A\ cosh 2a + C\ sinh 2a. 

Setting aside the terms corresponding to the resultant forces and couples over the 

separate boundaries we have 

hx = {B,,a + K log (cosh a —cos /3)} (cosh a —cos (3) 
oo 

+ 2 {(pn (a) cos n/3 + i/rn (a) sin n(3].(28) 
n = 1 

where the term in K may be omitted when the region considered lies entirely on one 

side of the line 

§ 4. Boundary Conditions. 

Let us consider a plate bounded by two curves a = a1} a2. We may suppose 

a1 > a2 and a.x > 0. Then, if a2 > 0 we have a finite plate bounded internally and 

externally by circles which are not concentric, if a, < 0 we have an infinite plate 

containing two circular holes, and by suitably choosing the values of a, a1} a2 we can 

make the circular boundaries in either case of any desired radius and centre distance. 

In particular if a2 = 0, we have a semi-infinite plate bounded by a straight edge 

and containing a circular hole. Suppose that such a plate is in equilibrium under 

given normal and tangential forces applied over the boundaries a = al5 a2, so that we 

are given over a = au 

cia/3 = a0+ 2 (an cos n/3 + bn sin n/3), 
1 

^v 00 / 

«aa = c0+ 2 (cn cos 71/3 + dn sin n/3), 
(29) 
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while over a = a2 we have similar expansions in which a0, an, bn, c0, cn, dn are replaced 

by a'o, a'n, b'n, c'0, c'n, d!n. 

If the tractions applied over the circle a = a.x are statically equivalent to forces 

X, Y at its centre, and a couple of moment L, then 

The coefficients of aa, (3(3 can readily be expanded in ^ourier series. We have, in 

fact, since a} > 0, 

and 

dx sinh a sin (3 
_ _ __ Qj ___i_ - 

8a (cosh a —cos /3)2 

8y _ ^(cosh a cos (3— l) 

0a (cosh a —cos (3)2 

sinh ax (cosh ax—cos jd)-1 = 

oo 

— 2a 2 ne~na’' sin n/3, 
1 

oo 

— 2a 2 ne~na' cos ?i/3, 
1 

1 + 2 2 e'"1' cos nj3. 

Substituting these and the expansions for aa, a(3 in the expressions for X, Y, L, and 

integrating, we have 

X = 2tt 2 n (an — dn) e 
I 

Y = -2x2]n(bn + cn)e-na\ 
1 

oo 

L = — 2-n-a cosech2a! 2 ane~na\ 

The corresponding components of the resultant of the forces applied over a = a2 

can be obtained in a similar way. We must, however, remember that in this case 

the forces act from that side of the boundary for which a < a2, whereas in the case 

of the first boundary they acted from the side for which a < ax. We obtain, if a2 > 0, 

X' = -2x2 n{a'n-d'n)e~na*, 
1 

Y' = 2x2 n{b'n + c'n)e-’‘% 
1 

L' = 2xa cosech2a2 2 a'ne,~na'\ 



278 DR. G. B. JEFFERY ON PLANE STRESS AND 

If a2 < 0 there are some differences of sign owing to the different Fourier expansions 

for the direction cosines. We have 

X' = — 2-7T 2 n (a'n + d'n) enCLi, 
1 

Y' = — 27r 2 n (b'n—c'n) ena*!, 
1 

oo 

L' = — (2j'kcl cosech2a2 2 a'„en02. 
1 

Hence, if the forces acting on each boundary are statically in equilibrium, we have 

with, if a2 > 0, 

or, if a2 < 0, 

2 n (an—dn) e~na' = 0, 

2 ane~na' = 0, 
1 

2 n(a'n-d'n)e-na* = 0, 
1 

in{a'n + d'n) en^ = 0, 

2 n{bn + cn)e~nai = 0, 
1 

2 a'ne±n“2 = 0. 

2 n {b'n + c'n) e na"- = 0, 

2 n (b'v—c'n) e1ia'- = 0. . 

(30) 

(31) 

(32) 

We will now show that it is possible to determine a stress-function of the form (28) 

which gives the appropriate stresses over a = a15 a2, and which gives no stress at 

infinity if the region considered extends so far. 

By the aid of (6) we can calculate the stresses corresponding to the stress-function 

(28). We obtain 

2aaa — K (l — 2 cosh2 a) — 2B0 sinh a cosh a. + 2<pl (a) 

+ 2 (K cosh a + B0 sinh a) cos /3—K cos 2/3 

[(w+ 1) (n + 2) 0n+1 (a) —2 cosh a (n2— l) <pn (a) 

+ (n— l) (n — 2) (a)] cos n6 

+ 2 <J + [(n+ l) (n + 2) i/rn+1 (a) — 2 cosh a (n2— l) \p-n (a) 

+ (n— 1) (n—2) V^n-i («)] sin n/3 

— 2 sinh a [^>'n (a) cos n(3 + i/r'„ (a) sin n/3]. 

n = 1 

and 

2«a/3 = i/r'j (a) — 2 (K sinh a + B0 cosh a) sin (3 + B0 sin 2/3 

® f [(w+l) V^'n+1 (a) —2 cosh a.7l\Js'n (a) + (n—1)^-1 (a)] cos 

71 = 1 ^ ~ [(n+ l) ^n+i (a) "2 cosh a.n<p'„ (a) + (n— l) </>'„_! (a)] sin nf3. 
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Identifying these with (29), we have the following relations from which to obtain 

the coefficients:— 

<piM = 2c0 + 2B0sinh «! cos a, + 2K cosh2^ —K 

1-2.3.02 («i) = 2cj —2 (K cosh a1 + BIJ sinh ax) +2 sinh ax <j>\ (a2) 

2.3.4.03 (a2) 2 cosh a1 . 1.2.3.02 (o^) = 4c2 + 2K + 4 sinh <j>2 (c^) 
r (33) 

^(ri+l)(w + 2)0n+1(a1)-2cosha1(n-l)(n)(n+l)0„(a1) + (n-2)(^-l)(n)0„_1(a1) 

= 2ncn + 2n sinh ttl <p'n (ax) (n = 3) . 

n(n+l) (n + 2) Vvn (a^-2 cosh aj(n-l) (n) {n+l)^n(a1) + (n-2) (n-1) (ri)^„_i(ax) 

= 2ndn + 2n sinh ax \^'n (sq) (^ = 1) 

_ • • • (34) 

V' i (ai) = 2a0 1 

(wt 1) ^»+i (“i) - 2 cosh aj W0'„ (a,) + (n-1) («j) = 2an (n=l) f 

20^ (ai) — 2 cosh a, 0'x (ax) = —2b1 — 2 (K sinh al + Bu cosh a,) 

3073 (ai) — 4 cosh a, 0'2(a,) +0'j (ax) = — 2&2 + B0 , . 
r • (36) 

(n + l)0'n+i(a1)-2cosha1n0'n(a1) + (n-l)0,n_1(a]) = ~2K (w=3)J 

Writing out equations (35), multiplying by e~na' and adding, we have 

(^+l)^»+i(ai)e_"a,-^/»(a1)e-("+1)Bl = 2 2 ape~” 
p = 0 

or 

(n+l)^,n+1(a1)-^,n(a1)e-ai = 2e- 2 . . . (37) 
P = o 

Now, in virtue of (30), we may write the right-hand side of this 

oo co 

— 2ena‘ 2 ape-ya' = -2 2 an+re~ra\ 
p = n+l r= 1 

and since 2«„ cos nfi is supposed convergent this tends to zero as n increases. Hence 

from (37) we see that the limit of (a^/V^n (ai) as n increases is e~a', and hence 

the functions yfrn{a.^) are finite for all values of n and tend to zero as n increases, if 

the resultant couple acting on a = ax vanishes. 

Multiplying (37) by e”a' and adding, we have 

71—1 g n—l 71—1 

n\ls'n (otj) e(n-1)ai = 2 2 2 apei2q~p)a' = 2 2 2 ape{2q~p)a', 
y = 0 p-0 p = 0 q = p 
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which, on effecting the summation with regard to q, leads at once to 

for n — 1. 

n—1 

n\fr'n («i) = 2 cosech ax 2 ap sinh (n—p) ax 
p = 0 

Treating (34) in a similar way we have 

(38) 

n{n+ 1) (n + 2)-</rn+1 (aj) —(n— l) (n) (n+l) \fsn (ax) e 

= 2eno‘ 2 p [c^ + sinh atx\f/p (oq)] e~pa'. . . (39) 
p = i 

We can readily show from (35) that 

sinh ax 2 pe-pa'\!s'p(a}) = \n (n +1) {yjr'n+l(ci.l)-e-a^fn (a1)}e“na'- 2 pape-pa\ 
p = i p = i 

and hence (39) may be written 

n (n + 1) (n + 2) ^n+1 (a,)-(n-1) (n) (ra + l) W, (a,) e“a' = n (n + l) [i/4+i (a1) + <?~a,'/41 (ai)] 

+ 2ena‘ 2 p (dp—ap) e~pa\ 
p = i 

As in the case of \jy'n (o^), we can show that the right-hand side tends to zero as n 

increases if conditions (30) are fulfilled. Hence \p-n (ax) is finite for all values of n and 

tends to zero as n increases, and we have 

(n—l)(n)(n+l)\frn(al)e(n~l)a' = 2 2 2 p (dp—ap) e{2s~p)a' 
Q=1P =1 

+ 2 g(g+l)e?ai[^/?+1(a1)-e“a,V4(a1)], 
9 = 1 

which, on reduction, leads to 

n—1 

n (n2 — 1) \fyn (<Xj) = 2 cosech aj 2 {(n—p)ap cosh (n—p) ax 
p = o 

+ (pdp—ap coth on) sinh (n—p) olx] . . (40) 

for n ^ 2. Equations (34) do not determine (o^). 

From (36) we have 

2(p'2 (aj) e~ai — <p\ (a2) e~2a' = <p\ (a1) — 2e~a' (K sinh ctj + By cosh al) — 2b1e~a', . (41) 

and if n^2 

(n + l) <p'n+x (ot,l)e~na'—7i(j)'n (ax) e~(n+1)ai = <p\ (ax) — 2Ke_a’ sinh ax — B0 

n 

-2 2 bpe-pa\ ...... (42) 
p = i 

and hence, if the sequence </>„ (ax) is to converge for large values of n, we must have 

(p'l(a1) = B0 + 2Ke_a' sinh ax-{2 2 bpe~pa>.(43) 
p = i 
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From (41) and (42) we have, if ft^ 2, 

n<t>n (aj) e(n_1>a| = <t>\(a j) —B0+ 2 (<f>'l(a1) — 2Ke~a’ sinh dx —B0)e2?a‘ 
g = l 

-2 V 2 hpe{2q-p)a', 
Q=1P =1 

from which we obtain 

ft sinh oti 0'n (aj) = (<p\ (dx) — B0) sinh ftdj —2K sinh (ft— l) sinh 

71—1 

— 2 2 sinh (ft— p) .(44) 
V = 1 

for ft ^ 2, while 0^ (ax) is given by (43). 

Finally we have from (33), omitting the first equation of the series, if n ^ 2, 

ft (ft+1) (ft+ 2) e~na‘0„+1 (aj)-(ft-l) (ft) (ft+1) e~{n+lUl<j>n (ax) 

= —2 (Bu + K) e~a' sinh a.x 

n 

+ 2 2 p (cp + sinh <j>p (aj) e~pa’. 
p =1 

By the aid of (36) we can reduce the right-hand side to 

ft (ft +1) (<p'n+1 (ai)-e~V* (a0) e“'ia, + 2 2 p (cp + 6p) e"^1, 
p = i 

from which it appears that 0ra+1 (dx) is finite and tends to zero as n increases, provided 

that the resultant of the applied forces over a = ax is zero. We then obtain for 

ft = 2, 

ft (ft2—l) sinh ax 0„ ( a2) = (0'j (aj — By) {ft cosh ftdj — coth a2 sinh ftdx| 

— K {(ft— l) sinh ftax —(ft+l) sinh (ft—2)dj} 

77— 1 

+ 2 2 {(pcp+6p coth «j) sinh (ft— p) dx 
p = i 

— (ft—p) cosh (ft—p) aj}, ... . (45) 
while 

20! (ax) = 2c0 + B0 sinh 2ax + K(2 cosh2a —l).(46) 

It appears that equations (38), (40), (43), (44), (45) and (46) give the values of 

0„ (dj), \Jsn (at), 0'B, (aj), i//„ (dx) for ft ^ 1 in terms of B0, K and the given coefficients 

an, &c., with the exception of \p-Y (dx). 

Now we have only assumed a.x > 0 in order to establish the convergence of these 

functions, and hence the corresponding functions of a2 will be given by the same 

formulae with a'n, b'n, c'n, d'n substituted for an, bn, cn, dn, provided that the conditions 

for convergence are satisfied. It may be shown that the new conditions of con¬ 

vergence are identical with (30) and (31), or (30) and (32), according as a? > or < 0, 

yol, ccxxi.—a, 2 R 
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The formula for fa (eij) given in (43), which is itself a condition of convergence, will, 

however, be replaced by 

<p\ (a,) = B0 + 2KeC4sinh a2+2 2 b'nena2,.(47) 
n = 1 

if a2 < 0. 

From (26) we see that the coefficients An, Bn, Cn, Dn for 2 are determined from 

<bn (a,), fa(a3), <p'n{ax), <j>n{a2), and similarly A'„, B'», C'„, D'„ are determined from 

W, (ai(*2), ^(ai), {eh), 
The values of ^(otj), fa(a.2), <j>\{ax), <p\(oi2) will give four equations to determine the 

three constants Aj, B1? C]5 and the condition that they shall be consistent gives one 

relation between Bu and K. The values of ^(a.,) determine the two constants 

A'], C'j, and ^(“2) are no't otherwise determined. 

We have thus just sufficient equations to determine the coefficients in (28) with 

the exception of B0, K, between which we have found one relation. If a2>0, so that 

the region considered lies entirely on one side of the axis a = 0,’we may take K = 0. 

If on the other hand a2<0 the condition that the stress shall vanish at infinity, which 

is h-x^0 when a, /3->0, gives one more relation between the coefficients, so that in 

either case B0, K are determined. 

We may therefore adopt the following method :—Insert terms of the type (24) or 

(25) corresponding to the resultant force and couple on each boundary, and calculate 

the residual stresses over the boundaries. These will now form systems in statical 

equilibrium over each boundary, and we have Shown how to determine an appropriate 

function of the form (28). 

The problem of finding the appropriate stress-function for given tractions over the 

boundaries might have been approached by investigating the values of hx and its 

normal gradient on the boundaries, on the lines developed by MichellA The direct 

method which we have adopted is, however, in most cases simpler in our particular 

co-ordinates. 

There is an exception to this rule, namely, when a boundary is free from stress. In 

this case the boundary conditions assume a very simple form. From (6) we have 

and 

WXl da 

02 0 
(cosh a —cos (3) —; (hx) — sin /3—(/iy) + cosh a {hx) = p sinh a 

dp“ o p 

the solution of which is readily found to give 

hx = p tanh a + a- (cosh a cos /3— 1) + t sin /3.(49) 

on the boundary considered. 

* ‘Proc, London Mathematical Society,’ vol. xxi., 1900, p. 100, 
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The relations (48) and (49) are the necessary and sufficient conditions that a 

boundary a = constant should be free from stress. The constants p, <r, r are 

Michell’s three constants of the boundary. 

§ 5. A Cylinder or Pipe with Eccentric Bore. 

In this section we will consider the problem of a cylinder, whose cross-section is 

bounded by two non-concentric circles, which is subject to a uniform normal pressure 

over its internal surface and a different uniform normal pressure over its external 

surface. By Filon’s theorem of generalised plane stress precisely the same analysis 

will give the average stresses in a plate of the same section under the same applied 

forces. 

Let the boundaries of the cross-section be defined by a. — a.x for the internal 

boundary and a = a2 for the external boundary. Then a1? a3 are positive and a,>a2. 

Let the applied pressures be Pj, P2 respectively, so that aa = — Px on a = au aa = — P2 

on a = a2 and a/3 = 0 on both boundaries. 

Let us assume 

= B 0a (cosh a — cos /3) + (Ax cosh 2a + B: + Cx sinh 2a) cos /3. 

Calculating aa, /3/3, by means of (6) and applying the boundary conditions, we find 

the following values for the constants :— 

B0 = 2a M (Pj —P2) cosh (ax — a2) 

Aj = -aM (Pj — P2) sinh (a^ao) 

Cj = aM (Px — P2) cosh (a! + a2) 

Bj = aM {Px cosh (a, —a2) sinh2a2 — P2 cosh (a] — a2) sinh 2a1 + (P1 + P2) sinh (a, —as)} 

where, for brevity, we have written 

M = \ cosech (a.l — a2) {sinlffaj + sinlffa2}-1 

The most important aspect of the problem is the value of the stress /3/3 in the boundaries, 

for it is upon this that the strength of the cylinder will depend. This is most readily 

determined by (7), and we find without difficulty 

aa— /3/3 = 4M(Pj — P2) (cosh a —cos /3) {sinh (a, + a2 —2a) cos /3 — sinh a cosh (a,-a2)} 

so that on a = 

/3/3 = — Pi + 4 (Px — P2) M (cosh aj— cos /3){sinh (ax — a2) cos /3+sinh aY cosh (a, — a2)} (50) 

and on a = a2 

/3/3 =— P2—4 (Px —P2) M (cosh a,—cos /3){sinh (aj — a2) cos 8 — sinh a2cosh — (51) 

2 R 2 
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In order to investigate these results further we will consider separately the cases 

when the cylinder is subject to either internal or external pressures. There is no 

greater difficulty in the consideration of the general case, should the necessity arise, 

except that the formulae are correspondingly longer. 

A Cylinder under Internal Pressure. 

If we put P2 = 0, we have on the external surface 

fi/3 =— 4Pj M (cosh a2—cos /3){sinh (al — a2) cos 6 — sinh a2 cosh (e^ — a2)}, 

if du d2 denote the distances of the circles a1? a2 from the origin, ru r2 their radii and 

d the distance apart of their centres, so that d = d2—d1 we may show from (2) that 

and 

d1 = a coth al5 

rx = a cosech ax, 

do = a coth a2 

r2 = a cosech a2 

d\ = (r2—r2—d2)/2d, 

a2 - Wi2—(n + c2)a} {r2 

d2 = (r2—r2 + d2)/2d 

-(n-d)2}/4d2. 

By means of these relations we can reduce the expression for fi/3 to the form 

Zq= 2Pxr2 {r22 (r2-2d cos (3)2-{r2-d2)2} 

(r2jrr2){r2 — (r1 + d)2} {r22—(r1 — d)2} 

From this and the obvious inequality d <r2—rx we easily see that— 

(l) The numerically greatest stress is when (3 = x, i.e., on the line of centres at the 

thinnest part of the cylinder. This is always a tension if Pj is positive and is 

given by 
2Pin2 {r22 + r12 + 2r2d-d2) , , 

(r12 + r22) (r22—r2—2r2d~ed2) 

(2) If the centre distance is greater than half the external radius there is minimum 

stress at the points corresponding to cos /3 = r2/2c?. This is always negative 

when Pj is positive and we have maximum compressions equal to 

_2P,r2 {r2—d2)2 _ 

(n2 + r2) {r2- (rx + d)2} {r22- (rx -d)2} 
(53) 

This is always numerically less than the maximum tension. There is a 

secondary maximum at /3 = 0, i.e., on the line of centres at the thickest part of 

the cylinder, which is equal to 

2?1{r2 + r2-2r2d-d2) 

(r2 + r2) (r2— r2 + 2r2d + d2) 
(54) 
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(3) If the centre distance is less than half the external radius, we have, in addition 

to the maximum tension (52), a minimum at /3 — 0 given by (54). There are 

no other maxima or minima and the stress decreases steadily from its value at 

the thinnest part of the cylinder to its value at the thickest part. 

On the internal surface we have 

/3/3 = —P1 + 4P1M (cosh a! —cos/3) {sinh {ax — a,) cos /3 + sinh ax cosh (a, — a2)}, 

or, expressed in terms of the radii and centre distance, 

^ _ p , 2P1r22{ (r22- d2)2-r2 (rx + 2d cos /3)2 

] (r12+r.f){r2-(r1~d)2}{r2-(rl + d) 
. . . (55) 

Hence it may be shown that 

(l) If the centre distance is greater than one-half the internal radius the maximum 

stress in the internal surface occurs at the points corresponding to 

cos /3 = — rj2d and is 

-Pi + 
2P:r22 (r.f—d2)2 

(56) 
{r2 + r22){r22-(r1-d)2} {r22—(r1 + d)2} 

(2) If the centre distance is less than one-half the internal radius the maximum 

stress is at /3 = 7r, i.e., on the line of centres at the thinnest part of the cylinder. 

It is 

-Pi + 
2Pir22 (r2 + r2 — 2 i\d — d2) 

(r2+r2) (r2—r12—2r1d—d2) 
(57) 

(3) The minimum stress is at 6 — 0, the point where the line of centres meets the 

internal boundary at the thickest part of the cylinder. It is 

_p , 2P:r22(r22 + r2 + 2rxd-d2) , , 
1 (r 2 + r2) (r2 — r2 + 27\d — d2) 

This may be shown to be essentially positive if P is positive so that, as would be 

expected, the internal boundary is everywhere in a state of tension. 

A Cylinder under Externcd Pressure. 

Putting Pj = 0 in (50) and (5l) we have on the internal surface 

/3/3 = — 4P2M (cosh dj — cos/3) {sinh (04 — a2) cos ^ + sinh a.x cosh (ax —a2)} 

2P2r22 {(r22—d2)2—r12(r1 + 2d cos ^)2} /5q\ 

{r?+ri){r22-(rx-d)2} {^-(n + d)2}. 

and on the external surface 

/3/3 = — P2+4P2M (cosh a2 —cos /3) {sinh (aj —a2) cos /3 —sinh a2 cosh (dj — a2)| 

= -P, - 
2P2rx2 {r2 (r2—2d cos /3)2 — (r2—d2)2} (60) 
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Hence if the centre distance is less than half the internal radius the compression in 

the inner surface decreases steadily from a maximum at the thinnest part of the 

cylinder to a minimum at the thickest part; otherwise there is a minimum at each of 

the points and maxima at the points corresponding to cos /3 = — rj2d. Similarly if the 

centre distance is less than half the external radius the compression in the outer 

surface decreases steadily from a maximum at the thinnest part of the cylinder to a 

minimum at the thickest part ; if the centre distance exceeds this value the 

compression is a maximum at each of these points and minima at the points corre¬ 

sponding to cos (3 = rJZd. 

If in these results we put d = 0, we have, for a concentric tube under internal 

pressure, tensions at the inner and outer surfaces which are respectively 

rj + r 

r22 —r 

, 2 
i_ 

. 2 
1 

Pi, 
2 Vy 

r22-rj 

while for a tube under external pressure the compressions at the inner and outer 

surfaces are respectively 

r, 

Ozv» 2 2 p 
2 „ 2 X 25 

1 ' 1 

r_l + rl 
ro-rd 

P2, 

These are the well-known formulae for thick tubes. 

6. A Semi-infinite Plate with a Circular Hole Subject to a Uniform 

Normal Pressure. 

If in the results of the last section we put a2 = 0 and P2 = 0, we have the solution 

for a semi-infinite plate containing a circular hole, which is subject to a uniform 

normal pressure, and bounded by a straight edge which is free from stress. 

We have on the boundary of the hole 

/3/3 = — Px + 2Pl cosech2 <xx (cosh2 olx — cos2 /3) 

and on the straight edge 

/3/3 = — 2Pi cosech2 a.x (l — cos f3) cos f3. 

If r is the radius of the hole, d the perpendicular distance of its centre from the 

straight edge, and x the distance measured along the straight edge from the foot of 

the perpendicular, 

d = a coth a, r = a cosech au d2—r2 = a\ 
and 

x — a sin /3/(l — cos /3). 

We have therefore on the straight edge 

~4Pj 
r2 (x2—d2 + rs) 

(x2 + d2—r2)2 
(61) 
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This has a maximum tension at the symmetrical point (x = 0) of magnitude 

4P ^/(cP—r2).(62) 

At the points x — + \/(d2—ri) it vanishes, and then becomes a compression which 

reaches a maximum value at points at distances ±x/3(d2—r2) on either side of the 

foot of the perpendicular from the centre of the 

hole, which is numerically equal to one-eighth of 

maximum tension. 

The stress round the circular hole may be 

represented by a simple geometrical construction. 

If in fig. 3 the centre of the circular hole is C, Q 

is any point on the circle, and CA the perpen¬ 

dicular drawn from C to the straight edge, and if 

Q denote the angle QAC, we easily see that 

tan <p = sin /3 cosech au 

and the stress round the circular hole is 

/3/3 = Pj (1 + 2 tan2 <p). . (63) Fig.3. 

Hence the stress is the same at points Q, Q' which lie on the same ray through A. 

The stress is minimum at the points nearest to and most remote from the straight 

edge, where it is a tension P numerically equal to the applied pressure. Thus at 

these points the stress is the same as it would be in the absence of the straight 

boundary if the plate were infinite. The maximum stresses are at the points of 

contact of the tangents drawn from A the circular boundary. At these points its 

value is 

Pi 
d2 + r2 

d2—r2 
(64) 

The maximum tension in the circular boundary is equal to the maximum tension in 

the straight edge if d = 3r. In this case each is equal to 2P2. If the distance of 

the hole from the straight edge is greater than this value the maximum tension is at 

a point on the circular boundary ; and if it is less, the maximum stress tension is at 

the symmetrical point on the straight edge. On the other hand, the point of 

maximum difference of principal stresses is on the straight edge or the circular 

boundary, according as d is greater or less than 2r. This suggests a simple 

method of determining whether, for a particular material, rupture occurs at the point 

of greatest tension or at the point of greatest stress-difference. If a circular hole is 

bored near the straight edge of a uniform plate, so that the distance of its centre 

from the edge is greater than ^/2 and less than ^/3 of the radius, and a uniform 

radial pressure is exerted over the hole in any convenient way and increased until 
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rupture occurs, the crack will begin on the straight edge according to the greatest 

tension theory, and on the edge of the hole if the greatest stress-difference theory 

holds. 

It will be noted that the stresses produced will become large if the hole is near to 

the straight edge. The formulae are so simple that it is hardly worth tabulating 

their numerical values, but a single example will serve as an illustration. If the 

shortest distance from the hole to the straight edge is one-tenth of the radius of the 

hole, the maximum tension in the straight edge is 19'5 times the pressure in the 

hole. 

§ 7. A Semi-infinite Plate Containing an Unstressed Circular Hole and 

Under a Uniform Tension Parallel to its Straight Edge. 

Let the circular boundary be defined by a = au so that if r is its radius and d the 

distance of its centre from the straight edge, 

r — a cosech al5 d = a coth ax, dfr = cosh ax. 

At a distance from the hole the stress-function may be taken as y = ^Ty* where 

T is the tension, so that, if a > 0, 

hxo = |-«T sinli2a/(cosh a —cos ft) 

= JaT sinh a (1 + 2 2 e~na cos nft) ...... (65) 

We have to add to this a stress-function which gives no stress at infinity and no 

stress over a = 0, and is such that the complete stress-function gives no stress over 

a — ax. 

We may omit the term in K in (28), since in this case the region considered lies 

entirely on one side of a = 0, and clearly the required stress-function is even in ft. 

It may readily be seen that the condition that act and aft shall vanish over a = 0 is 

satisfied by (28) if 0„(O) = 0 and <p'n(0) = 0 for n= 1, and hence from (26) and (27) 

A„ + Bn = 0 and (n+l) C„+ (n+l) D„ = 0. We may therefore take for our complete 

stress-function 

hx - «T \ sinh a -I 1+2 2 e ”a cos nft\ + B0a (cosh a —cos ft) + Ax (cosh 2a—l) cos ft 

+ 2 

L n = 1 

An [cosh (n +1) a — cosh (n — 1) a] 

+ E„ [(n— l) sinh (n+1) a — [n+1) sinh (n— l) a ] 
cos nft ] (66) 

At infinity a = 0, ft = 0 the first series diverges, but may of course be replaced by 

the alternative form in (65). If the second series converges it is clear that at infinity 

X = Xo- 
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We must now choose the coefficients in (66) so as to satisfy (48) and (49), and 

there is no difficulty in finding the following values for the coefficients :— 

Ai = ^e-2a,sech 2a,. B0 = sech 2ax 

» _ _ n2 sinti2^ — n sinh clx cosh a1 + e~nai sinh ?iotx 

2 {sinh2na.x—n2 sinb2^} 

(67) 

(68) 

E. = 
n sinh2aj 

(69) 

2 {sinh^aj — n2 sinh2aT} ' 

Substituting in (66) we have for the complete stress-function, 

hx = «T a sech 2ax (cosh a —cos /3)+|- sinh a + sech 2aj cosh {2ax — a) sinh a cos /3 

\n sinh ax sinh (a — ax) sinh na 

—sinh a sinh n (a — ax) sinh naj cos n/3 

sinh2wa]— n2 smlra. 

We may now calculate the stress /3/3 in the boundaries by means of (6). We find, 

on the circular boundary a = al5 

/3/3x = 2T (cosh aj — cos /3) i sinh ax sech 2ax + 2 Mn cos n/3? . . . (70) 

+ 2 
71 = 2 

where 
n = 2 

iyr _ n (n — l) sinh (n+1) — n (n + l) sinh (n— l) olx _ v 

2 {sinffinaj—n2 sinti2^} 

The stress in the straight boundary cannot be directly determined from (69), for it 

is found that the resulting series diverges for a = 0. We can, however, find without 

difficulty from (66) that when a = 0, 

/3/30 = T j 1 + (l — cos 0) 2 Pn cos n/3 j.(72) 

where Pn = 4nAre. 

The series in (70) converges only slowly, unless otx is large, and for convenience in 

computation we may transform it by separating the more slowly converging part. 

Let 
M„ = 2n (n sinh a! — cosh ax) e~na' + N„,.(73) 

and we readily obtain 

2 sinh2 ax sin2 /3 
2 (cosh <xx — cos /3) 2 n (n sinh a.x— cosh ax) e~na' cos n/3 = 1 — 

n = 1 (cosh a.x — COS /3)2 

Substituting in (70) we have 

/3/31 = 2T 1 — 
2 sinh2 ax sin2 /3 

(cosh a,—cos /3)2' 

+ 2T (cosh ax—cos /3)\sinh ax sech 2ax + 2e~3a' cos /3+ 2 Nncosn/3}>. (74) 

2 s 

n = 2 

VOL. CCXXI.—A. 
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If 0 is the angle between the radius to the point «l5 ,8 and the perpendicular to the 

straight edge, then 
• n sinh ax sin f3 

sin u — —--— > 
cosh ax — cos p 

and if ax is large (74) reduces to /3/3x = T(l+2 cos 20), which agrees with the known 

result for a hole in an infinite plate and gives compression numerically equal to T at 

the extremities of the diameter parallel to the tension, and tensions equal to 3T at 

the extremities of the perpendicular diameter. 

The numerical values of the coefficients Pn, N„ are given in Tables I. and II. 

respectively. It will be noted from Table I. (that, as ax increases, P2 tends to become 

Table I. 

ax. 0-6. 0-8. 1-0. 1-2. 1-4. 1-6. 1-8. 2-0. 2-2. 2-4. 

Pi 0-3327 0-1567 0-0719 0-0327 0-0147 0-0066 0 0030 0-0013 0-0006 0-0003 
-P-2 3-5861 2-0401 1-2545 0-7987 0-5180 0-3400 0-2247 0-1493 0-0994 0-0664 
-P8 2-2393 1-0622 0-5110 0-2448 0-1160 0-0543 0-0251 0-0115 0-0053 0-0024 
-P4 1-3557 0-4874 0-1699 0-0570 0-0185 0-0059 0-0018 0-0006 0-0002 o-oooi 
-P5 0-7602 0-1970 0-0474 0-0108 0-0024 0-0005 o-oooi 
-P« 0-3964 0-0713 0-0116 0-0018 0-0003 
-Pr 0-1934 0-0237 0-0026 0-0003 
-P8 0-0891 0-0073 3-0005 
-P9 0-0391 0-0022 o-oooi 
-PlO 0-0165 0-0005 
-Pn 0-0067 0-0002 
-Pn 0-0027 
- Pis o-ooio 
-Pl4 0-0004 

o-oooi - 
-Pie o-oooi 

Table II. 

aj. 0-6. 0-8. 1-0. 1-2. 1-4. 1-6. 1-8. 2-0. 
' 

2-2. 2-4. 

n2 1-4649 0-7716 0-4139 0-2240 0-1219 0-0665 0-0364 0-0199 0-0109 0-0060 
n3 0-7457 0-2647 0-0914 0-0306 o-oioo 0-0032 o-ooio 0-0003 o-oooi 
n4 0-3238 0-0719 0-0148 0-0029 0-0005 o-oooi 
n6 0-1232 0-0162 0-0019 0-0002 
n6 0-0421 0-0032 0-0002 
n7 0-0131 0-0005 
n8 0-0038 o-oooi 
n9 o-ooio 
Nio 0-0003 

1 Nn o-oooi *- 
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large compared to the other coefficients. Hence, when the hole is at a considerable 

distance from the straight edge, the stress in the straight edge approximates to 

T {1 — C cos 2/3(1—cos (3)} 

where C is a small positive constant. 

This shows that the stress in the straight edge is a minimum at the mid-point, 

increases to a maximum as we move outwards, then diminishes to a second minimum, 

and finally increases steadily to the value T at infinity, where /3 = 0. 

In fig. 4 we have plotted the graphs of the stresses in the boundaries for a case in 

Fig. 4. 

which the hole is fairly near to the straight edge, a, = Q'8, for which the shortest dis¬ 

tance between the two boundaries is approximately one-third of the radius of the circle. 

It will be noted that the general character of the stresses is not affected by the proximity 

of the straight edge. It will be remembered that when the hole is at a great distance 

from the straight edge there are maximum stresses of 3T at the extremities of the 

diameter perpendicular to the straight edge, with points of maximum compression 

numerically equal to T lying between. For a.] = 0'8 we find that the maxima occur 

at the same places but are increased, the increase being more marked at the point 

nearest to the straight.edge, where the tension is 4'366T, while its value at the point 

most remote from the straight edge is 3'266T. The stress in the straight edge also 

maintains the same general character as it exhibits when the hole is at a great distance 

2 s 2 
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from the straight edge. Here again, however, the maxima and minima are 

accentuated. The minimum at the central point has decreased and has become a 

compression numerically equal to 1'956T. 

It appears that for the range of values which we have investigated the maximum 

stress is on the circular boundary at the point of nearest approach to the straight edge. 

Its value for different values of the ratio of the distance of the centre of the hole from 

the straight edge to the radius of the hole, together with the stresses at the centre of 

the straight edge and at the most remote point of the circular boundary, is shown in 

Table III. 

Table III. 

«1- 
Ratio of distance 

of centre from edge 
to radius of hole. 

Stress at mid-point 
of straight edge. 

Stress at nearest 
point of circular 

boundary. 

Stress at most 
remote point of 

circular boundary. 

0-6 1-185 - 4-080T 5-064T 3-362T 
0-8 1-337 -1-956 4-366 3-266 
DO 1-543 -0-895 3-919 3-201 
1-2 1-811 -0-269 3-609 3-152 
1-4 2-151 + 0-134 3-396 3-115 
1-6 2-577 0-405 3-254 3-087 
1-8 3-107 0-591 3-162 3-065 
2-0 3-762 0-721 3-103 3-048 
2 • 2 4-568 0-810 3-065 3-035 
2-4 5-557 0-871 3-043 3-025 

00 OO 1-000 3-000 3-000 

It will be noted that when the hole is very near to the straight edge, so that the 

two boundaries are separated only by a narrow connecting piece, the stress in this 

piece consists of a very large tension on the inside and a numerically slightly less com¬ 

pression on the outside. Hence, as might be expected from general considerations, 

the stress in this narrow connecting piece is a bending moment accompanied by a 

certain amount of tension. 

These results may 'be compared with some experimental results recently obtained by 

Prof. Coker and Messrs. K. C. Chakko and Y. Satake* by optical means. These 

deal with the stresses in a strip of finite width under tension with a circular hole 

centrally placed, whereas we have considered the case of a semi-infinite plate with a 

circular hole near its straight edge. The problems are therefore not quite comparable ; 

but as in each case the critical region will clearly be near the minimum section between 

the hole and a straight boundary, the two problems may be expected to exhibit the 

same general characteristics. For the strip of finite width it is found that there is 

maximum stress in the circular boundary at the points of nearest approach to the 

* ‘ Transactions of the Institution of Engineers and Shipbuilders in Scotland,’ vol. lxiii., Parc I., p. 33, 

ly 19. 
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straight edges and minimum stress at the points of the straight edge immediately 

opposite the centre of the hole. Moreover as the radius of the hole is increased in 

proportion to the distance of its centre from the edges of the strip these maxima and 

minima become more pronounced. In all the cases examined experimentally the 

minimum stress in the straight edge remains a tension, but Prof. Coker surmises that 

if the radius of the hole were still further increased in proportion to the width of the 

strip this minimum stress would become a compression. All these results agree 

qualitatively with the theoretical results established in this paper for the semi-infinite 

plate, and allowing for the difference in the two problems they may be taken as a 

substantial experimental verification. 
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29(3 MESSRS. E. H. FOWLER E. G. GALLOP, C. N. H. LOCK AND H. W. RICHMOND : 

Introduction. 

This paper contains the results, theoretical and experimental, of work undertaken, at 

the request of the Ordnance Committee, by the authors as Technical Officers of the 

Munitions Inventions Department. Permission to publish such parts as appear to be 

of general scientific interest has now been granted by the Ordnance Committee and 

the Director of Artillery. The publication of this paper has received their sanction. 

The experiments in question were carried out at the firing ground of H.M.S. 

“Excellent,” Portsmouth; the Experimental Department, H.M.S. “ Excellent,” also 

provided the 3-inch guns used and the material for the construction of the range. 

The authors’ best thanks are due to the officers of this department, especially 

Lieut.-Commander R. F. P. Maton, O.B.E., R.N., without whose cordial co-operation 

these experiments could never have been carried out; also to the other officers of the 

Munitions Inventions Department who assisted in the heavy work of making and 

analysing the observations. The aeronautical measurements at low velocities, 

required for comparison, were made in the wind channels of the National Physical 

Laboratory, by arrangement with the Director and the Superintendent of the Aero¬ 

nautical Department, to whom also we wish to express our thanks. 

The subject of this paper is the motion of a spinning shell through air at velocities 

both greater and less than the velocity of sound. We first attempt to describe the 

motion of the spinning shell, considered as a rigid body, under the effects of gravity 

and the reaction of the air; this latter is supposed to be known in terms of the 

position and velocity co-ordinates of the shell, and the state of the air through 

which it moves. We are thus concerned throughout with the “aerodynamical” 

problem of the motion of the shell alone, and not with the general “ hydrodynamical ” 

problem of the motion of the complete system formed by the shell and air together. 

The motion of the shell thus described is then compared with the results of 

experiments, and the more important components of the force system imposed by the 

air are determined numerically as functions of certain variables such as the velocity 

of the centre of gravity of the shell. The actual experiments consist of observations 

of the initial motion of the shell (more particularly the angular motion of its axis of 

symmetry), over a limited range near the muzzle of the gun. The velocities 

experimented with range from 40 f.s A to 2300 f.s., that is from about 0-04 to 2-1 

times the velocity of sound. Using the values of the components so determined, 

the actual motion of the shell can be calculated with equal certainty in the more 

general cases which are inaccessible to direct and detailed observation. 

As stated above, we make no attempt to attack the hydrodynamical problem. 

Such an attack is probably not yet feasible. By obtaining, however, an accurate 

descriptive knowledge of the force system imposed by the air, and the allied system 

* This velocity was obtained in a wind channel, using a current of air and stationary shell. The lowest 

velocity used in actual firing experiments was 880 f.s. 
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of pressure distribution over the surface of the shell, material is provided on which a 

successful attack on the hydrodynamical problem may some day be based. A first 

contribution to a knowledge of the force system is made by the present paper. It is 

hoped to make a similar contribution to a knowledge of the pressure distribution in 

another place.* * * § 

The problem proposed for discussion is of course by no means novel, f In the 

earlier work which is summarised by Cranz (cf. (4)) the treatment of the equations 

of motion is often open to criticism, in view of the lack of sufficient justification for 

the necessary simplifying approximations. The classical theoretical results, such as 

Mayevski’s equation for the drift], (see § 4.2, equation (4.204)) have therefore hitherto 

justly commanded little confidence. The discussion, moreover, is of necessity based 

on a prion assumptions as to the nature of the complete force system. Unless the 

results of these assumptions are brought to the test of detailed experiment, the 

assumptions themselves must remain unjustified and unjustifiable. It shoidd be stated 

here that the theory and experiments described in this paper confirm the classical 

theoretical results. Cranz’s own experiments (cf. (5)) were expressly designed to 

explode the fallacy that the axis of the shell, in steady motion, precesses right round 

the direction of motion of its centre of gravity. In this they are successful, but they 

were only carried out at low velocities, and give little in the way of quantitative 

results. The only real comparison of theory with experiment, which lias hitherto 

been made, is the comparison of the observed and calculated§ values of the drift. 

But the observed drift is the integrated result of the disturbing forces over a 

considerable arc of the trajectory, and moreover, can only be disentangled with 

difficulty from the effect of any cross wind that may be blowing. The observed drift 

does not therefore serve to determine the force system with any success, though it 

may be used to check the values of the components otherwise determined (§4.21). 

It may, therefore, be stated in general terms that, up to the present, there is no 

* “The Pressure Distribution on the Head of a Shell Moving at High Velocities,” ‘Roy. Soc. Proc.,’ A, 

Vol. XCVIL, p. 202. 

T See for example :— 

P. Charbonnier. (1) ‘ Traite de Balistique Exterieure,’ ed. 2, Bk. V., Ch. IV. (2) ‘ Balistique 

Exterieure Rationnelle,’ vol. II., Ch. IX. 

C. Cranz. (3) ‘Lehrbuch der Ballistik; Aeussere Ballistik,’ 1917, Ch. X. (4) ‘ Encyklopadie der 

Mathematischen Wissenschaften,’ vol. IV., Part II., p. 185, Art. 18, “Ballistik.” (5) ‘ Zeitsehrift 

fiir Mathematik und Physik,’ vol. XLIII., pp. 133, 169. 

J. Prescott. (6) ‘ Phil. Mag.,’ Ser. 6, vol. XXXIV., p. 332. 

Further references to previous authors will be found in (4), and the best account of Cranz’s own work 

in (5). 

f The lateral departure of the projectile from the vertical plane containing the initial tangent to the 

path of the centre of gravity of the shell. 

§ Actually, also, the important term in the calculated drift depends only on the ratio of two components 

of the force system, and not on their absolute values. 

2 T 2 
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knowledge of the force system acting on any shell at high velocities, except when 

the shell is moving “nose on, ” i.e., when its axis of symmetry and the direction of 

motion of its centre of gravity coincide.* 

Cranz (cf. (5)) and Charbonnier (cf. (2)) make little progress in the treatment of 

the general equations of motion. Prescott (cf. (6)) makes an appreciable advance 

in the reductions of the general equations of motion to a tractable form, which is not 

too restricted in application, and gives an exact solution of his reduced equations in 

the simple case in which all the components of the impressed force system vary as the 

square of the velocity of the shell. We understand, also, that the problem of the 

initial motion of the shell has been recently treated by M. Esclangon and M. Garnier, 

of the French Artillerie de Marine, with results that are closely analogous to ours, 

but we have not seen their work. 

We therefore propose, in this paper, to give in Part III. a detailed account of 

the complete equations of motion of a spinning shell, moving through air, and to 

justify as far as possible the reduction of these equations to various useful approxi¬ 

mate forms, some of which are classical. To do this, it is of course necessary to start 

from certain a priori assumptions as to the nature of the complete force system. 

These assumptions, which are far less restrictive than any that have hitherto been 

used, are carefully analysed when they are introduced. We then, in Part IV., submit 

the theoretical results so obtained to the test of the experiment described in Part II. ; 

we are thus able to justify to some extent our a priori assumptions, and to obtain 

numerical results of some precision as to the more important components of the force 

system acting on the shell, in the general case. These numerical results, with a 

general description of the actual motion of a shell, will be found in Part I. 

We have seen that the information to be obtained by comparison of the observed 

and calculated values of the drift is of very limited value. Two alternative methods 

are available, both of which are employed in this paper :— 

(1) The complete force system on a model shell at rest in a uniform current of 

air may be determined by observations in a wind channel, t 

(2) Certain components of the force system on a shell moving at high velocity 

may be deduced from the measurements of its oscillations just after leaving 

the muzzle. 

The highest velocity obtainable at present by the first method is 80 f.s., but by 

means of the “ square law ” (see § 1.01) the results may be extended to velocities as 

* In this case the force system has only one component of practical importance, namely, the resistance 

of the air, acting in the opposite direction to the relative motion of air and shell. This force component 

is here called the drag, in conformity with aerodynamical usage. The numerical values of the drag are 

known with fair accuracy for certain external shapes of shell and ordinary atmospheric conditions. 

f For a full description of the construction of the wind channels at the National Physical Laboratory, 

and their use in measuring forces on model aircraft, see Cowley and Levy, “ Aeronautics in Theory and 

Experiment.” 



THE AERODYNAMICS OF A SPINNING SHELL. 299 

great as 700 f.s. For higher velocities it is necessary to fall back on the second method 

which is the principal subject of this paper. 

For this purpose the shell is fired horizontally through a series of cards such as 

are used for measuring the jump* of the gun on firing. From the shape of the holes 

in the cards the actual motion of the axis of the shell can be reconstructed. Initial 

disturbances at the muzzle give rise to angular oscillations of the shell of sufficient 

amplitude for accurate measurement. These oscillations are very similar to those of 

the axis of a spinning top under gravity. If, as a first approximation, we regard the 

centre of gravity of the shell as constrained to move uniformly in a straight line over 

the range containing the cards, and ignore frictional damping forces in both cases, 

then the angular motion of the axis of the top and the axis of the shell are identical, 

provided that (l) the top and shell have the same axial spin and axial moment of 

inertia ; (2) the transverse moment of inertia of the top about its point of support is 

equal to the transverse moment of inertia of the shell about its centre of gravity ; 

and (3) the moment of gravity about the point of the top is equal to the moment of 

the force system on the shell about its centre of gravity. 

In this approximate case the formal solution of the two problems is identical. As 

is explained in § 1.3, from the periods of the oscillations of the axis of the top or 

shell, we can deduce the moment of the disturbing couple and vice versa. In the 

same way the nature of the decay of the oscillations can be used to determine the 

damping forces. 

In conclusion, we feel that a word of apology may be needed for the length of the 

introductory part of this paper. We do not here emphasise the applications to 

practical gunnery of the results obtained, but these are of some importance. We 

have, therefore, thought it desirable that the results should be presented in such a 

form as to be available to those who are concerned with the practical results, but 

who are not prepared to follow in detail the arguments of Parts III. and IV. At 

the same time it has been necessary to avoid statements which, without explanations, 

might convey little meaning to those who have not been technically concerned with 

ballistics and aerodynamics. It does not appear possible to achieve these objects 

except at the expense of a somewhat lengthy Introduction and Part I. 

Part I.—A General Description of the Motion of a Spinning Shell and 

the Principal Experimental Results. 

§ 1.0. The Classical Theory of the Plane Trajectory. 

According to the classical theory, a shell is supposed to move in a resisting medium 

like a particle on which the only forces acting are gravity, and a resistance tangential 

to its path, depending only on the velocity of the particle and the state of the 

* The angle between the axis of the bore before firing and the initial tangent to the path of the centre 

of gravity of the shell. 
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undisturbed medium. In sucli circumstances the path of the particle lies in a vertical 

plane and is called the plane trajectory* This theory would be exact for a shell if 

the axis of the shell always pointed along the tangent to the path of its centre of 

gravity. The total reaction between the air and the shell would then, as required, 

take the form of a single force, called the drag, acting by symmetry tangentially to the 

path of the centre of gravity, and depending only on the velocity and shape of the 

shell and the state of the medium. The equations of motion resulting in this simple 

case are insoluble in finite terms for the actual law of resistance of the air; in 

practice they are capable of rapid numerical solution to any desired degree of 

accuracy, by a variety of methods of step-by-step integration, when the drag has 

been specified with corresponding accuracy. 

In order to specify the drag completely it is necessary to consider with some care 

what are the variables on which the drag for a given shell can depend to an 

appreciable extent. This question is, as yet, by no means settled, and a few of the 

more important considerations are summarised in § 1.01. This fact does not concern 

us here to a very serious extent; an incomplete specification of the variables on 

which the drag (or, in the general case, the complete force system) depends will only 

invalidate the results of observation when an attempt is made to apply them to 

widely different conditions of the state of the resisting medium, or of the motion of 

the shell. The validity is unaffected when the experimental conditions are 

approximately repeated. It may be assumed that, in this case of symmetry, a fairly 

adequate expression for the drag is given by the equation 

(1.001) R = pv2r2fR (v/a), 

where R is the total drag, p the density of the air (or other medium), r the radius of 

the shell, v the velocity of the shell, and a the velocity of sound in the undisturbed 

medium; all these quantities, of course, are to be measured in a consistent set of 

units. In the numerical work in this paper the foot, pound, second system will be 

used. 

Since pv2r2 has the dimensions of a force, the function fR is a numerical coefficient, 

independent of the system of units chosen, called the drag coefficient. Existing 

determinations of this coefficient as a function of v/a are very inadequate from a 

scientific point of view ; satisfactory ones could now be made. We shall not be 

concerned here with the determination of this coefficient, whose value we shall oidy 

require roughly in the analysis of our experiments. We may therefore regard fR as 

known for all values of the argument from 0 to 3, for shells of the particular external 

shapes which we use, moving through dry (or not too nearly saturated) air, whose 

temperature is not too widely different from 0° C. 

* From the point of view of this paper, we regard the whole theory of the plane trajectory as 

“ classical,” though its adequate treatment was only evolved during the last years of the war. 
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1.01. The Functional Form of the Drag Coefficient.—A careful consideration of the possible forms of the 

function /R, from the points of view of the kinetic theory of gases and the theory of dimensions, suggests 

that y, l/r, and <rjr should be possible arguments of /E, besides v/a. Here y is the ratio of the specific 

heats of the gas, l is the mean free path, and o- the effective diameter of its molecules. We may, if 

desired, replace Ijr by the more usual viscosity argument vr/v, where v is the kinematical coefficient of 

viscosity. Wind channel work on aerofoil and airscrew models shows that the argument vrjv is of great 

importance at low velocities. Its effects, however, in the case of shell models seem almost to have 

disappeared by the time a velocity of 40 f.s. (or at any rate 75 f.s.) is reached. Rayleigh* obtains 

formulae for the pressure on a piston moving in a pipe, which show the kind of way in which y, as well as 

v/a, might enter into the expression for /E. Valuations of y are, however, very small in practice. There 

is experimental evidence that some argument, other than v/a or y, has an appreciable effect in practice, 

and that this argument is probably not the viscosity term in the ordinary sense. It is not possible to 

pursue the question further here, or to assemble in detail the evidence, which is to be found in various 

minutes of the Ordnance Committee. 

So long as the stream lines of the flow remain unaltered by a change of velocity, the motion remains 

dynamically similar, the drag varies as v2, and the coefficient /R must be a constant. The drag is then 

said to obey the square law. Experiments with air screws, of high peripheral speed, appear to show that, 

up to values of v/a as great as O'7, there is no serious departure from the square law once a certain 

minimum velocity is exceeded, above which the ordinary viscosity effects become unimportant; this 

appears, from all the evidence, to be the case also for shells, the minimum velocity being of the order of 

50 f.s. As velocities of less than 100 f.s. may be ignored in ballistics, it is therefore customary to assume 

that the drag obeys the square law exactly for all velocities less than about 0‘7a. For all such velocities 

the stream lines of the flow will remain nearly unaltered and the motion will be dynamically similar. 

Above this velocity (O'7a.) the effects of the compressibility of the air become rapidly of great 

importance, and the whole nature of the air-flow changes as a, the velocity of sound, is reached and 

exceeded. These effects are represented by the variation of /E as a function of v/a. A good typical curve 

showing this variation is given by Cranz.I Another example will be found in fig. 4. 

We have so far ignored the fact that the shell is actually spinning about its axis of symmetry. There 

is no evidence to show that the drag, in the case of symmetry, is appreciably affected by the spin, and its 

neglect is probably justified. 

A more important question is the legitimacy of assuming, as we have tacitly done in (1.001), that the 

drag does not depend appreciably on the acceleration of the shell. With regard to the acceleration at low 

velocities, it is known that the effect of the air is to increase the virtual mass of any body by an amount 

of the order of the mass of air displaced. This is an increase of the order of 1 part in 2000, and is 

entirely negligible. At higher velocities, and on the general question, direct experimental evidence is 

unfortunately lacking. It is, however, difficult to see, by theoretical reasoning, how the past history of 

the shell can have any large effect, and there is sufficient general experimental evidence that (1.001) is, on 

the average, an adequate representation of the drag in the case of symmetry to be certain that the past 

history is of little importance, except conceivably for a very limited range of velocities, for example, in the 

neighbourhood of a, the velocity of sound. 

§ 1.1. rThe Detailed Specification of the Complete Force System. 

The theory discussed in this paper treats the shell as a rigid body which is a solid 

of revolution, so that its axis of symmetry coincides with a principal axis of inertia. 

* “Aerial Plane Waves of Finite Amplitude,” ‘Scientific Papers,’ vol. V., or ‘Roy. Soc. Proc.,’ 

A, vol. LXXXIV. See in particular the last section of the paper, 

t ‘ Encyklop. der Math. Wiss.,’ vol. IV., Part II., p. 197. 
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It aims at determining the exact angular motion, as well as the motion of the centre 

of gravity. It confirms the classical theory of the plane trajectory (in accordance 

with the results of experiment), by showing that the divergences of the axis of the 

shell from the tangent to its path are generally small, but it aims, further, at 

determining the magnitude and effect of these divergences. 

In this general case the force system to be specified is more elaborate than in the 

case of the classical theory. In accordance with aerodynamical 

usage, we call the angle between the axis of symmetry of the 

shell and the direction of motion of its centre of gravity the 

yaw, and denote it by <L When the shell, regarded for the 

moment as without axial spin, has a yaw S, and the axis of the 

shell OA and the direction of motion OP remain in the same 

relative positions, the force system can by symmetry be repre¬ 

sented, as shown in fig. 1, by the following components, specified 

according to aerodynamical usage. 

(l) The drag, R, acting through the centre of gravity 0, in 

the direction of motion OP reversed. 

L, at right angles to R, called the cross wind force, which acts 

through O in the plane of yaw POA, and is positive when it tends to move O in the 

direction from P to A. 

(3) A moment M about 0, which acts in the plane of yaw, and is positive when 

it tends to increase the yaw. 

By analogy with § 1.0, we assume the following forms for R, L, and M :— 

(1.101) R = pv2r2fR {v/a, S), 

(1.102) L = pv2r2 sin SfL {v/a, <■)), 

(1.103) M = pv2rs sin d fu {v/a, S). 

These equations are of the most natural forms to make fl{, fL, and fM of no physical 

dimensions. The arguments of § 1.01, by which the form of equation (l.OOl) was 

justified to some extent, probably apply with equal force in this more general case. 

The form chosen is suggested by the aerodynamical treatment of the force system on 

an aeroplane. Since L and M, by symmetry, vanish with S, the factor sin S is 

explicitly included in (1.102) and (1.103), in order that the cross wind force and moment 

coefficients,/^ and //, may have non-zero limits as de^O. We shall use the symbols 

4 (''/«),/l {v/a), /M {v/a) for fR {v/a, 0), Lt /L {v/a, S), and Lt/M {v/a, S) respectively, 
«->-0 S-^-0 

and shall omit the explicit mention of the argument r/a when no confusion can arise 

by so doing. 

In view of the evidence mentioned in § 1.01, we may confidently expect that, for 

all values of S, all three coefficients will be nearly independent of v/a in the region 

0*1 < v/a <0-7, and shall, when required, assume their absolute independence of v/a 

p 

Fig. 1. 
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Fig. 2. Force components on the 3-inch shells A and B, measured in a wind channel at a wind speed 

of 40 f.s., plotted against angle of yaw. 

Shell of form A.—Moment measured about a point 4 -85 inches from base. 

>> >) B.—Moment measured about a point 4'85 inches from base. 

(a) Measurements at angles of yaw up to 
90 degrees. 

Scales. — Forces 1 unit = O'02 lb 
Moment 1 unit = O'005 lb. feet. 
Yaw 1 unit = 5 degrees. 

(b) Detail of forces at angles up to 20 degrees. 
Scales. — Forces 1 unit = O'005 lb. 

Yaw 1 unit = 2 degrees. 

(c) Detail of moment at angles up to 
20 degrees. 

Scales.—Moment 1 unit = O'002 lb. feet. 
Yaw 1 unit = 2 degrees. 

005 

10 

Yaw Degrees 

2 U VOL. CCXXI.-A. 
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when v/a <0-7. With regard to their dependence on 8 we are not here concerned 

experimentally with fn. We shall assume for the purpose of analysing our experiments, 

where only a rough value of fR is required, that fR (v/a, 8) is independent of 8 for small 

values of SA For the usual position of the centre of gravity of the shell, fM at low 

velocities is remarkably nearly independent of $ for all values less than 10 degrees, 

and then diminishes as 8 increases beyond this value. On the other hand, at low 

velocities, yL (v/a, 8) behaves curiously for small values of 8. The wind-channel value 

of fL (v/a) is in consequence uncertain. Typical curves showing fR, fL and as 

functions of 8 at low velocities are shown in fig. 2. It is the main purpose of the 

experimental part of this paper to determine fL (v/a), and fM (v/a) as functions of 

v/a, when v/a >0*7. 

1.11. The Effect of the Angular Motion of the Axis of the Shell.—In practice the 

direction of the axis of the shell relative to the direction of motion changes fairly 

rapidly. By analogy with the treatment of the motion of an aeroplane, we assume, 

tentatively, that the components of the force system R, L, and M are unaltered by the 

angular velocity of the axis, but that the effect of the angular motion of the axis of 

the shell can be represented by the insertion of an additional component, namely, 

a couple H, called the yawing moment due to yawing, which satisfies the equation 

(l.lll) H = pvwAfn (v/a, ...), 

where w is the resultant angular velocity of the axis of the shell. The form of (l.lll) 

is chosen to make fR of no physical dimensions 

and is the only one suitable for the purpose. 

The couple H is assumed to act in such a 

way as directly to diminish w (see fig. 3). 

The yawing moment coefficient fH may be 

expected to vary considerably with v/a. It 

may depend appreciably on other arguments 

such as wr/v and 8. This couple is suggested 

by, and is analogous to, the more important of 

the “ rotary derivatives ” in the theory of the 

motion of an aeroplane. It appears from con¬ 

siderations of symmetry that no other couple of 

the “ rotary derivative” type need be considered. 

We shall arrive at rough values of fR from our 

experimental results, and to some degree an a posteriori justification of our 

* By symmetry 0/E/oS = 0, when 8 = 0, since fR has a minimum for 8 = 0. It might therefore be 

expected that, when 5 is less than 3 degrees (say), /E would be nearly independent of 8. This, however, 

is not the case in wind-channel experiments. The drag at 2 degrees and 3 degrees yaw may be 7 per cent, 

and 10 per cent, greater, respectively, than the drag at zero yaw. Such evidence as exists indicates that 

the same increase may occur also at high velocities. An experimental study of the variation of the drag 

with 8 at high velocities would present no insuperable difficulties with modern apparatus. 
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assumption that L and M are unaffected by the angular velocity of the axis. But 

the values we obtain are too rough to enable us to study the variations of fn with 

any argument. 

1.12. The Effect of the Axial Spin of the Shell.—We have so far ignored the possible effect of the spin N 

of the shell about its axis of symmetry. We shall assume that the preceding components of the force 

system R, L, M and H are not appreciably affected by this spin. This is in accordance with such evidence 

as exists in the case of zero yaw (§ 1.01). If, moreover, the component M were seriously affected by the 

spin, the effect would have been detected by the present trial. No such effect was found (see § 4.13), and 

this fact provides some evidence of the validity of the above assumption, at least as a first approximation. 

The spin N will, however, give rise to certain additional components of the complete force system. 

There will be a couple I which tends to destroy N, and, when the shell is yawed, a sideways force, which 

need not act through the centre of gravity, analogous to that producing swerve on a golf or tennis ball. 

This force must, by symmetry, vanish with the yaw. The swerving force must act normal to the plane 

of yaw, otherwise it would merely have a component which altered R or L (acting in the plane of yaw), 

and we have assumed that no such component exists. The complete effects of the spin N can therefore 

be represented by the addition to the force system of the couples I and J and the force K, acting as 

shown in fig. 3. To procure the correct dimensions we may assume that those components have the 

forms* 

(1.121) I = prNV/i, 

(1.122) J = pvTS-r* sin 8/„ 

(1.123) K = prNr3 sin 8fK. 

The coefficients /x, /J} /K may depend effectively on a number of variables which we can make no 

attempt to specify in the present state of our knowledge. These components may be expected to be 

very small in comparison with L and M; no certain evidence that they exist is given by our experiments. 

1.13. Relations Between the Components of the Force System.—-The various 

coefficients in the foregoing specifications will all depend on the external shape of the 

shell; results obtained for one shape cannot be applied to another. For shells of 

given shape, however, moving in a given manner, the forces R and L are independent 

of the position of O, the centre of gravity, while the moment M varies with the 

position of 0. If Mi and M2 are the values of M corresponding to positions Ox and 02 

of 0, then 

(1.131) Mj = M2 + 0102 (L cos (5+R sin $), 

where C^Oa is positive when Ch is nearer the base than 02. Using the relations 

(l.lOl) to (1.103), and assuming that the yaw is small, the equation (1.131) reduces to 

(1.132) A = fn2 H--—- (/l +A)- 
r 

This equation is of considerable practical importance, as it enables us to deduce the 

* We shall frequently write F = I/AN, where A is the moment of inertia about the axis of symmetry 

of the shell (see § 1.31). 

2 U 2 
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values of fh from the values of fu for two different positions of the centre of 

gravity. It is found that fL cannot conveniently be directly observed. 

It will be found convenient in the practical use of (1.132) to introduce the force 

component normal to the axis of the shell. If is the corresponding coefficient, it is 

easily seen that, when the yaw is small, 

(1.133) /n=/r+/l 

and that it is that is directly determined by the variations of /M. 

No other relations between the various coefficients are available. Previous to the present experiments, 

when no definite information existed as to the form of fh and /M as functions of v/a, special arbitrary 

assumptions have been made, in order to carry out calculations of the drift of a shell, or of the twisted 

curve described by its centre of gravity. The authors have made considerable use of the assumptions 

that the fractions 
fn(vla, 8) ,/l (v/a, 5) fm (v/a, 5) 

/r (v/a, 0) ’ /R (v/a, 0) ’ /R (v/a, 0) 

are independent of v/a, and have determined their values by wind-channel observations. Cranz,* using 

essentially the same assumptions, has calculated the values of these fractions by an empirical law due to 

Kummer. It must be emphasised that the use of any assumption of this type is of very dubious validity, 

and that, so far as experiments have yet gone, they have not confirmed any such assumptions. When 

the values of the coefficients /R, /M and /L are required for a shell of any given external shape they can and 

must be determined by direct experiment. 

1.14. In the preceding sections, we have built up, by synthetic arguments, what 

appears to be the most probable complete force system. It will be seen that in so 

doing we have actually introduced what can be regarded as a complete system of 

three forces and three couples referred to three axes at right angles. Owing, how¬ 

ever, to the complex nature of the reactions, it appears to us to be essential to 

construct our force system in this manner, instead of attempting to analyse a complete 

system of three forces and three couples, and assign each component to its proper 

causes. In this construction, we have been guided by considerations of symmetry, 

the theory of dimensions, the analogy with the theory of the aeroplane, and also, of 

course, by the all-important fact that the results of this construction are in 

agreement with experiments, so far as these have yet been carried. Of our seven 

components by far the most important are It, L and M; then, some way behind, H. 

Our experiments were designed to determine L and M, and if possible to throw some 

light on the size of H, and in these objects a successful start has been made.' As a 

result, it seems reasonable to expect that the preceding specification of the complete 

force system will prove to be adequate; but much more work on these and other 

linest is still required. With the numerical knowledge already obtained, which is 

* 1 Zeitschrift fur Math. u. Phys.,’ vol. XLIII., p. 184. 

t For instance, the determination of the coupie I that destroys the axial spin and the behaviour of 

fR as a function of 8. 
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given in § 1.2, the motion of a shell, of the shape used in these experiments, can be 

calculated with some approach to certainty. The general nature of the motion is 

described in 5 1.3. 

§ 1.2. The Numerical Results of the Experiments. 

We now proceed to give the numerical results obtained by analysis of the observa¬ 

tions by the methods explained in detail in Part IV. 

1.21. The Values of fM and fL.—-The observed values of /M and fL are shown 

plotted against v/a, in fig. 4, for the shell of external form A.# The value of fn is 

Fig. 4. Shells of form A. 

Curve I.—The couple coefficient /M (v/a) for 3-inch shells, with the centre of gravity 4-73 inches 

from the base. 

Curve II.—The same, with centre of gravity 4‘20 inches from the base. 

Curve III.—The drag coefficient fR {v/a) for comparison on ten times the scale. 

Curve IV.—The cross-wind force coefficient fL (v/a). 

The plotted points ©, A, □ show the observed values. The numbers denote the number of 

observations whose mean is represented by the plotted point. The stars distinguish those groups 

fired from the gun rifled one turn in thirty diameters. The others were fired from a gun rifled one 

turn in forty. 

* See fig. 6. Form A may be specified thus :—Length 3-84 shell diameters. Base cylindrical. Head 

with an ogive of 2 diameters radius. Centre of gravity 1 ■ 517 diameters from base. 
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given on the assumption that the centre of gravity is 4*73 inches from the base in the 

3-inch shells used. The value of fR (at zero yaw) is also given for comparison. In 

fig. 5, the corresponding values of fM and fR are given for the shells of external 

fornTB,* the centre of gravity being supposed to be 4*965 inches from the base in the 

3-inch shells used. These values have been corrected as far as possible for the effect 

of the cards (see §2.32), and smooth curves have been drawn through the observations. 

The values of f’M and for shell A, and jfM for shell B, are given in the following 

table, Table I., for values of v/a varying by 0*1. These values have been read from 

the smooth curves of the figures. Besides fL, the value of /N, the force coefficient 

Curve I.—The moment coefficient /M (v/a) for 3-inch shells with a centre of gravity 4 • 965 inches 

from the base. 

Curve II.—The drag coefficient /E (v/a) shown roughly on ten times the scale. 

normal to the shell, is also given. These figures and Table I. represent the main 

results of the experiment. The values of fM have a probable error of less than 2 per 

cent., and the values offL of about 10 per cent. 

The differences in the various curves for fu, fL and fM are very instructive. They 

show the complete impossibility of regarding the ratio of fu/fu, for example, as 

constant for large variations of v/a. Unlike fR,fu is comparatively unaffected by the 

velocity of sound. It increases only to about 35 per cent, above its low velocity 

value, and does not maintain this increase except for a narrow range of velocities 

near v/a = 1. On the other hand fR increases to two and a-half times its low velocity 

value and maintains this increase. 

* See fig. 6. Form B may be specified thusLength 4 • 34 diameters. Base cylindrical. Head 

with an ogive of 6 diameters radius. Centre of gravity 1 • 655 diameters from base. 



THE AERODYNAMICS OF A SPINNING SHELL. 309 

Table I.—Experimental Values of the GWple Coefficient fu{v/a), the Normal Force 
and Cross Wind Force Coefficients fN(v/a) and /L (t)/a), for Shells of Form A, 
fig. 6 ; also Values of /M (v/a) for Shells of Form B, fig. 6. 

Determined by firing trials with 3-inch shells. 

v/a. 
Shell of form A. Form B. 

7m (v/a). 7n (v/a). 7l (v/a). 7h («/<*)• 

Wind channel. 8-57 3-34* 3-0* 8-95 
0-7 8-6 — — 9-05 
0-8 9-05 4 3 3-9 9-75 
0-9 10-35 — — 11-15 
10 11-55 5-2 4-6 11-7 
11 11-4 — — 11-6 
1-2 11-1 3-5 2-6 11-35 
1-3 10-8 — — 11-15 
1-4 10-55 4-1 3-1 11-05 
1-5 10-3 — — 11-0 
1-6 10-05 4-3 3-35 11-0 
1-7 9-85 — — 10-95 
1-8 9-65 4-5 3-6 10-95 
1-9 9-4 — — 10-90 
2-0 9-15 — — 

Eig. 6. Showing the external contour of the 3-inch 16-lb. shells, Design H.E. Mark IIb, used in the trial with 

(1) No. 80 fuze, Mark III; (2) 6 C.R.H. plug, Design 25420. 

Note.—The driving hand is shown cut off at a diameter of 3-02 inches, its mean diameter after engraving. 

* Uncertain. 
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As already mentioned in § 1.1, the low velocity value of fL, as determined in the 

wind channel, is somewhat doubtful.* There appears to be a distinct minimum in 

this coefficient soon after the velocity of sound, followed by a steady rise. This type 

of curve is rather unexpected, and confirmation by a repetition of the experiment is 

very desirable. We may emphasise again that fjfa is by no means constant, and 

that (see fig. 15) undergoes considerable variations. 

1.22. The Force Components/H and Others.—We have now to exhibit the information 

obtainable from the damping of the oscillations of the axis. When fh is known, 

this information (see § 4.12), provides numerical values for two quantities, one of 

which is /H and the other jR + e, where e depends on the coefficients and fx and is 

a priori unlikely to be comparable with fn. The data at our disposal are very rough 

and could be improved on in future experiments. The present results vary largely in 

some cases from round to round ; the value of e is much larger than its expected value 

and of the opposite sign. The general features of the damping (see figs. 12, 14) 

are however clear and qualitatively consistent. We can assert that the following rough 

values of/H, given in Table II., are of the right order of magnitude and perhaps not 

in error by more than 50 per cent. Owing to their roughness they are given for the 

groups as fired. An attempt has been made to determine fR in a wind channel at 

low velocities, the value 22 being obtained. 

Table II.—Probable Values of jfH, the Coefficient of the Yawing Moment due to Yawing. 

Groups I., II., III. refer to shells of Form A with various positions of the centre of 

gravity (see § 2.2). Group IV. refers to Form B. 

Group. 
Muzzle velocity. /h- 

Group. 
Muzzle velocity. /h- 

Group. 
Muzzle velocity. u 

I. 22-24 
1119 

80 II. 24 
1292 

70 III. 1-4 
2025 

70 

I. 25, 26 
1326 

70 II. 5-7 
22, 23t 

1587 

75 IV. 13-15 
1078 

55 

I. 27, 28 
1563 

60 II. 1-4 
2024 

60 IV. 16-18 
1547 

75 

I. 1-4 
2167 

35 III. 17-19 
1119 

40 IV. 24-26 
2120 

80 

I. 19-21 
2320 

30 III. 20,21 
1292 

70 

II. 17-19 
1119 

90 III. 22, 23 
1567 

60 

* In fig. 4, and subsequently, the low velocity value of /L is assumed to be /L(10°) in place 

of Lt /L (8), whieb is uncertain. 

t From guns of different riflings, with results in agreement. 
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An interesting feature of the damping is that, at a velocity of about 900 f.s., the 

yaw has a distinct tendency to increase {instead of decreasing) with the time; this 

happens with all four types of shells. Whether this represents a real phenomenon 

or is caused by the impacts on the cards (§ 4.5) is not yet clear. It is not physically 

impossible that ,/H may be negative for this velocity. These rounds are ignored here, 

and further details must be postponed for Part IV. 

§ 1.3. A Description in General Terms of the Angular Motion of the Axis of a 

Shell, 

The numerical values of ft, f^ and fM described in § 1.21, with the addition of the 

rough values of fn given in § 1.22 make it possible to determine numerically, by the 

principles of rigid dynamics, the motion of a shell projected in any manner, provided 

that the velocity ratio v/a, and the angle of yaw S, do not pass outside the limits for 

which the determination is valid. It is necessary to obtain and solve the dynamical 

equations of motion in terms of the force components before proceeding to the 

inverse process of deducing the forces from the observed motion of the shell. Before 

doing so, however, it is convenient to describe in general terms the motion of the 

shell in various circumstances; this description is qualitative only, and is inserted 

for the purpose of illustration : the quantitative results are reserved for Part IV. 

1.31. The Spinning Top Analogy.—We have already noticed in the Introduction 

the important analogy between the motion of the axis of a shell and the axis of a 

spinning top. With the reservations there made, the analogy is complete, so long 

as/M can be regarded as independent of S. The equations of motion of a stable shell, 

given in § 3.2, are a generalisation of the equations for the small oscillations of a top in 

the neighbourhood of the vertical. For the general case of stable or unstable motion 

where the yaw need not be small, some use can be made of the exact equations of 

motion of the top (§ 3.4). 

In particular, the condition for the stability of a shell is identical with the 

condition for a top. The condition that the shell should be in stable equilibrium 

with its axis parallel to its direction of motion is that 

(1.311) A2N2>4B y, 

where A and B are, respectively, the moments of inertia of the shell about longitudinal 

and transverse axes through the centre of gravity, N is the spin of the shell about its 

(longitudinal) axis in radians per second, and /u. sin § is equal to M, the moment of 

the air forces about the centre of gravity. It is therefore convenient to define a new 

variable s, “ the coefficient of stability,” by the equation 

(1.312) s = A2N2/4Bm. 

When s is greater than unity by a sufficiently large amount, a possible form of 

2 x VOL. CCXXI.-A. 
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angular motion for both shell and top consists of a small oscillation, composed ot 

periodic terms with two distinct periods. The values of these two periods are 

uniquely determined by the values of s and AN/B or Q ; conversely s and Q, and 

hence /u and fyi are uniquely determined by the values of the periods. The main 

object of the jump card experiment, described in this paper, is to determine the two 

periods of the initial angular oscillations of a shell, fired horizontally from a gun. 

As H depends only on the spin N (known in terms of the muzzle velocity) and the 

moments of inertia, there is in general an independent check on the observation.# 

By firing the shell at a series of different muzzle velocities, values of fM are 

determined for different values of the variable v/a, resulting in the curves of § 1.21. 

1.32. The success, of the experiments depends entirely on the occurrence of 

accidental disturbances at the muzzle, in order to produce oscillations of sufficient 

amplitude to be measurable. The methods of observation used were capable of 

giving accurate results, provided that the maximum yaw exceeded 1 degree. In the 

actual trial, no round was fired which developed a maximum yaw of less than 

2 degrees, and it is probable that with almost any type of shell the initial disturbance 

would be sufficient for observations of this nature to be made. It may be noticed 

that, for a given initial disturbance, the amplitude of the oscillations is greater, the 

smaller the value of s, until, as s approaches and becomes smaller than the value unity, 

the amplitude of the oscillations increases very rapidly. For this reason it was at 

first considered preferable to deal with a shell and gun for which s was only just 

greater than unity, but the experiments described in this paper indicate that a value 

of 5 in the neighbourhood of 1 • 5 will give the best general results. 

It is to be expected a priori, and is confirmed by the experiment, that the initial 

yaw of a shell, on leaving the muzzle of a gun, is very small, and that the angular 

oscillations are due mainly to an initial angular velocity about a transverse axis. 

The shell is completely unstable under the very large pressures of the powder gases on 

its base, so that as soon as it is released from the barrel it is disturbed from its 

position of unstable equilibrium by an amount, and in a direction, which depend 

largely on accidental circumstances, t The pressure of the powder gases probably 

continue to influence the motion over a short interval after the shell has left the gun, 

but the whole effect on the shell must approximate to that of an impulsive couple 

about a transverse axis. 

The angular motion of the shell, for some distance from the muzzle, approximates, 

therefore, to the type of motion of a spinning top known as rosette motion, in which 

the axis of the top passes periodically through the vertical. 

* This check is especially important in the case of shells of type II., as the shift of the lead 

block on firing alters the values of the dynamical constants as determined by laboratory experiments 

(§2.2). 

t \_Note added July 31, 1920. In view of further analysis of the initial circumstances of shells in this 

trial, this account of the matter is probably incomplete.] 
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1.33. Differences Between the Shell and Tap Movements.—We now proceed to 

consider the factors, so far neglected, which cause the angular motion of the 

shell to differ from that of the corresponding top. These may be enumerated as 

follows:— 

(1) The effect of the cross-wind force in causing the centre of gravity to follow 

a curve of helical type. 

(2) The effect of the force components denoted in §1.11 and § 1.12 by 

H, J, and K. 

(3) The effect of the diminution of forward velocity caused by the drag. 

(4) The effect of gravity. 

These effects will be considered in turn. 

1.331. The angular oscillations of the shell give rise to a cross-wind force, which 

varies in magnitude and direction as the yaw varies, and this modifies the straight 

line motion along the direction of projection into motion of a helical type. If this 

helical motion could be observed with accuracy it would give valuable data for the 

cross-wind force coefficient fu but unfortunately the amplitude of the oscillations 

is too small to allow of this. Hence the most important effect, from the point of 

view of these experiments, is the reaction of the sideways motion of the centre 

of gravity on the angular oscillations of the shell. This helps to damp out the 

oscillations. 

1.332. The yawing moment factor H has a similar damping effect as it is always 

opposed to the transverse, angular velocity. While the effect of the former factor 

is to damp the slow period oscillation and slightly augment the quick oscillation, this 

latter has exactly the reverse effect. In combination, they, in general, damp out 

the oscillations of both periods. For the 3-inch shells, used in this trial, the yawing 

moment damping factor is of gre'ater importance than the cross-wind force damping 

factor, and the general effect is to diminish the maximum values of the yaw, and at 

the same time to convert the initial rosette motion into the slower steady precessional 

motion.# The force component, J, due to the spin, has no appreciable effect on the 

angular motion, but the corresponding couple K might act as a small additional 

damping factor. 

1.333. The head resistance or drag slowly diminishes the forward velocity, and so 

increases the stability factor s, by diminishing m. The change in s diminishes the 

amplitude of the oscillations to a limited extent, and so assists the other damping 

factors. 

1.334. Gravity affects the angular motion of the axis of the shell by producing 

curvature in the trajectory. In taking account of the gravity effect it is necessary to 

* Ther.e are two possible types of steady precessional motion at constant yaw, one with a quick and the 

other with a slow precessional velocity. 

2x2 
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refer the motion to axes moving with the tangent to the trajectory (see § 3.2). The 

effect is quite insignificant over the range covered by the present trial, but becomes 

of importance at later stages of the trajectory, where it is responsible for producing 

the drift.* 

It is convenient to illustrate this effect by considering a simple case of steady 

motion. 

1.34. An Illustration of the Gravity Effect.—Let the centre of gravity of a shell 

be constrained to move through air at a constant 

speed v, in a vertical circle (fig. 7), the inclination of 

the path to the horizontal being 6 at any instant. 

Thus v and dO/dt are constant. There is a possible, 

steady motion in which the axis OA always lies in 

the plane through OP perpendicular to the plane of 

j,.o „ the circle, the angle AOP (S) being constant. The 

couple M tending to increase S will also be constant, 

so that the contemplated motion is the same as the steady motion of a top making 

an angle |-7r + <i with the vertical which corresponds to the normal to the plane of the 

circle. The angular velocity of the axis about this normal is — 6'; the value of S as 

given by the ordinary formula for the steady motion of a top under these 

conditionsf is 

(1.341) — ANff cos Bff2 sin S cos $ = M = n sin S. 

If 6’ is not too large and // is not too small, a possible value of S is small; we may 

now regard /u. as independent of S, and the equation then reduces to 

(1.342) S = -AN O'/fi = -4 sO'/Q, 

the term neglected being of order S3. When a shell is moving freely the angular 

velocity 6' increases, and the linear velocity diminishes up to a point beyond the 

vertex of the trajectory. If the initial motion is identical with the above steady 

motion, this will cause the couple M to diminish, so that the axis of the shell will lag 

behind its position in the steady motion. This lag gives rise to a component angular 

velocity of the axis tending to increase the yaw S, until a state of relative equilibrium 

is reached, in which the yaw is slightly less than its equilibrium value, and the axis 

lags slightly behind (i.e., above) the tangent OP. When the velocity is high and 

the spin N not too large, M is large and the true position of the axis lies very near 

the equilibrium position. It will be shown in fact, in Part IV., that the assumption 

* For a shell whose spin and direction of motion are related like a right-handed screw the drift is to the 

right of the plane of fire. 

t See, e.g., Routh, ‘ Rigid Dynamics,’ vol. II., Art. 207. 
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that OA is level with OP, and that S is given by (1.342), lead to a determination of the 

drift which is sufficiently accurate for all trajectories of elevation less than 30 degrees. 

The drift is produced by the cross-wind force resulting from the above value of 

the yaw. 

In the neighbourhood of the vertex of a trajectory of high elevation, both the 

velocity and the couple M become very small, so that S becomes large. A calculation 

has been made, by a step-by-step process, of the angular motion and drift of a shell 

fired at an elevation of 70 degrees. The yaw, soon after the vertex, reaches the 

value 60 degrees, while the axis lags behind the tangent to the path by more than 

45 degrees. 

1.35. The effect of gravity as described in the last section completes the list of 

factors which have an appreciable effect on the motion, and it remains to consider 

the way in which they combine. It will be shown in § 3.2 that the motion of the 

axis of a stable shell is determined, to a good approximation, when the yaw is not 

too large, by a linear differential equation of the second order. The effect of gravity 

is to produce the type of motion described in § 1.34, given the proper initial conditions 

in which the yaw and its rate of increase are both very small. The complete motion 

under arbitrary initial conditions may be obtained by superposing the appropriate 

type of initial oscillatory motion, which is unaffected by gravity. The superposed 

oscillations will ultimately be damped out, leaving the motion of the last section 

only. The motion of the centre of gravity will be appreciably affected by alteration 

of the initial conditions only in so far as they produce a certain small sideways 

displacement and velocity (§ 4.2), and increase the drag to an extent which is not yet 

known. 

More detailed results are reserved for Part IV., following the discussion of the 

mathematical theory. Actual examples of the observed motion of the shell’s axis can 

be studied in fig. 14. 

Part II.—Details of the Experimental Arrangements and Material. 

§2.0. General Arrangements. 

We propose, in this part, to explain the details of the experiments in so far 

as is necessary to enable the reader to understand the method used, and to 

form an estimate of the accuracy obtained, or capable of being obtained, in this 

manner. 

The experiments were carried out as the weather served in January and February, 

1919, four different types of 3-inch shells being fired, at various velocities, from each 

of two differently rifled guns. The constants of the shells used are given in Table IIP, 
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Table III.—Mean Values of the Dynamical Constants of the Shells used, 

Determined before Firing. 

Types I., II. and III., Form A. 

Type IV., Form B. 

Type of shell. 
Length, 
inches. 

Weight, 
lb. 

Distance 
of centre 

of gravity 
from base, 

inches. 

Axial 
moment of 
inertia, A, 
lb. (in.)2. 

Transverse 
moment of 
inertia, B, 
lb. (in.)2. 

B/A. 

I. (Normal) . . 11-53 14-09 4-727 18-37 143-9 7-83(5) 

II. (Centre of 
gravity for¬ 
ward) 

11-53 16-31 5-124 19-20 165-0 8-59 

III. (Centre of 
gravity back) 

11-53 16-48 4-203 18-93 129-5 6-84 

IV. (Shells with 
pointed nose) 

13-15 14-62 4-965 18-71 166-2 8-89 

and details of the groups fired are given in Table IV. The distance available 

between the firing point and the sea at Portsmouth is rather less than 600 feet. 

The motion of the shell was recorded over this range, within which the effects of 

gravity are fairly small and the path of the shell not widely different from a straight 

line. To achieve this the shell was fired through a series of millboard pistol targets, 

2 feet square, about -^o inch thick, which were fastened approximately at right angles 

to the path of the shell, at suitable distances from the muzzle.* The plane of the 

card was carefully adjusted, and it is probable that in no case did the angle between 

the path of the shell and the plane of the card differ from a right angle by as much 

as two degrees. As errors up to four degrees do not affect the shape and position of 

the hole in the card, which determine the position of the axis and the centre of 

gravity of the shell at the moment of impact, it may be assumed that in every case 

© 

* For the gun whose rifling made one complete turn in a length of 40 diameters of the bore (rifled 1 in 

40) ten cards were used, placed approximately at 60-foot intervals, the first card being 50 feet from the 

muzzle. For the gun rifled 1 in 30 twelve cards were used, the first seven being at 30-foot intervals and 

the later cards at 60-foot intervals as before. The distance of the cards from the muzzle of the gun was 

determined with a probable error of 1 inch. 



THE AERODYNAMICS OF A SPINNING SHELL. 317 

Table IY.—Showing Groups of Rounds Fired. 

The types of shell are numbered I.-IV., and the shells of each type are numbered 

1, 2, 3, ... in the order of firing.* 

Gun rifled one turn in 40 diameters of the bore. 

Group. 

Mean muzzle 
velocity for 

group, 
f.s. 

Remarks. Group. 

Mean muzzle 
velocity for 

group, 
f.s. 

Remarks. 

Type I. ; shells of form A centre of gnu dty normal. 

I. 11-14 
I. 8-10 
I. 17, 18 
I. 5- 7 

922 
1072 
1312 
1565 

1 
Stable 

Unstable 
Unstable 

Just stable 

I. 15,16 
I. 1-4 
I. 19 
I. 20,21 

2130 
2167 
2272 
2346 

Stable t 
Stable 
Stable 
Stable 

Type II. ; shells of form A ; centre of gravity forward. 

II. 8-10 
II. 11-13 
II. 14-16 

934 
1107 
1334 

Stable 
Unstable 
Unstable 

II. 5-7 
II. 1-4 

1585 
2024 

Stable 
Stable 

Type III.; shells of form A ; centre of gravity back. 

III. 8-10 
III. 11-13 
III. 14-16 

931 
1077 
1312 

Stable 
Unstable 
Unstable 

III. 5-7 
III. 1-4 

1583 
2025 

Just stable 
Stable 

Type IY.; shells of form B; centre of gravity normal. 

IV. 10-12 884 
IV. 7- 9 , 1553 

Very unstable 
Very unstable 

IV. 1-6 2130 Very unstable 

* Only the stable groups are analysed in this report. For a specimen yaw curve in an unstable case, 

see fig. 12. 

t Fired with cards on the far screens only, to determine by comparison the effect of the impacts on the 

cards. 
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Table IV. (continued). 

Gun rifled one turn in 30 diameters of the bore. 

All groups were stable. 

Group. 
Muzzle 

velocity, 
f.s. 

Group. 
Muzzle 

velocity, 
f.s. 

Group. 
Muzzle 

velocity, 
f.s. 

Typ e I. 

I. 22-24 1119 I. 25,26 

i 

1326 

1 

I. 27,28 
V 

1563 

Type II. 

II. 17-19 1119 II. 24 1292 II. 22,23 1589 

Type III. 

III. 17-19 1119 III. 20, 21 1292 III. 22,23 ! ’ 1567 

Type IY. 

IV. 21-23 
IV. 13-15 

900 
1078 

IV. 16-18 
IV. 19, 20* 

1547 
1547 

IV. 24-26 2121 

the centre of gravity of the shell was moving normally to the card, f Thus the 

angle actually recorded by the shape of the hole in the card is the true yaw of the 

* Fired with cards on the far screens only, to determine by comparison the effect of the impacts on the 

cards. 

t The angular motion of the axis of the shell is comparatively so slow that it can be ignored during the 

interval in which the shell is passing through a card. For instance, with the shells used in this trial the 

change in cj>, the orientation of the yaw, is never as much as 3| degrees during the complete passage 

through the card, and the change in S never as much as 8 minutes. These quantities are of the same 

order as the errors of observation and may be ignored. Thus the shell can correctly be regarded as 

equivalent for cutting purposes to its circumscribing cylinder (of indefinite length) whose generators are 

parallel to the direction of motion of the centre of gravity. 

If the direction of motion is normal to the plane of the card at the moment of impact, a certain hole 

will be cut in the card, whose shape will be precisely that of the normal cross-section of this circumscribing 

cylinder. But if tbe card is tilted through a small angle t about any axis in its own plane, the hole 

made by the shell will be the same as the cross-section of the supposed cylinder by the plane of the card 
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shell, that is, the angle between the axis of the shell and the direction of motion of 

its centre of gravity. 

On each card there was marked, by methods which need not be particularised, 

(a) the vertical, (b) a reference point from which the point of aim for each round could 

be deduced. The probable error in the marking of the vertical was negligible 

compared to the other errors of observation. The probable error* in each co-ordinate 

of the point of aim was about 0 • 2 inches. 

Times of flight from the muzzle to each card were not directly observed, but 

the mean velocity of the shell over a suitable interval of the range was observed for 

each round with two standard Boulange chronographs. These were sometimes used 

as a pair—in these cases their readings were in good agreement—and sometimes 

separately, at opposite ends of the range, to determine the loss of velocity, and so an 

approximate value for the average coefficient of the drag. From the data so obtained, 

the muzzle velocity and the times of flight from the muzzle to each screen were 

calculated by the usual ballistic methods to a nominal accuracy of 1 f.s. and 

10-4 second, respectively. It is improbable that any of these quantities are 

appreciably in error to the order of accuracy required by the rest of the experiment. 

A check on the calculated muzzle velocity is provided by the observations, for a 

discussion of which the reader should refer to § 4.1. 

§ 2.1.' Measurement of the Holes in the Cards. 

It is now necessary to deduce, from the position and shape of a hole in any card, 

the position of the axis and centre of gravity of the shell at the moment of passing 

the card. This can usually be done with considerable accuracy. It has been found 

that at all velocities less than 1600 f.s., and often at higher velocities, the hole has 

the form shown diagrammatically in fig. 8, and by photographs of actual examples 

in fig. 8 a. 

Inside the outer circumference ABA'IT of the hole, a considerable amount of 

bruised and partly torn card QQQ is left, which is still attached to the untouched 

part. It is found that, when the edges of this part are flattened out, they always 

define with some accuracy a circle of diameter 2 • 40 inches. A stiff paper circle of 

this diameter can be fitted to the hole with such certainty that its centre is seldom in 

doubt by more than 0*01 or at most 0*02 inches. 

in its tilted position. The dimensions of such a hole will only differ from those of normal impact by 

terms of order d (1 - cos r), where d is any dimension of the hole. Such second-order terms are completely 

negligible if t < 4 degrees. Thus in all cases the shell may be regarded as cutting the hole in the card 

as if the direction of motion of its centre of gravity is normal to the plane of the card at the moment of 

impact. 

* Throughout this paper “ probable error ” is used with its technical meaning, see e.g., Brunt, ‘ The 

Combination of Observations,’ p. 30. 

2 Y VOL. CCXXI.-A. 
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The external form of the shells used in the trial is shown in fig. 6. It will be 

observed that at the junction of the body of the shell and the fuze or plug there is a 

distinct cutting edge of plan diameter 2-402 inches. It is clear, therefore, that when 

the impact takes place, a circle of cardboard, 2-40 inches in diameter, is punched out 

and cleanly removed by this edge ; the greater part of the circumference of this inner 

circle is usually removed by the subsequent passage of the body of the shell, which 

cuts the complete hole, but enough remains, in a bruised state, for yaws that are not 

A 
Direction of 
,nose of shell 

Fig. 8. Diagrammatic sketch of a typical hole, for a yaw between 1 degree and 4 degrees, when the 

velocity is low or medium. 

CCC. Inner circle—radius 240 inches, centre 0. 

ABA'B'. Outer circumference of hole. 

QQQ. Bruised part of card. 

AA'. Axis of symmetry or greatest diameter of hole. 

BA'B'. Circumference cut by teeth of driving band. 

BAB'. Ditto cut by nose or shoulder of shell. 

The lengths AA' (346 inches in figure) and OA' (l-80 inches) each serve to determine the size of 

the yaw. 

The values of the yaw corresponding to the above values are 1 • 6 degrees and 1 • 8 degrees 

respectively, mean 1 • 7 degrees. 

too large, to define the position of the centre of this section of the shell at the 

moment of impact on the card. 

It follows, therefore, that there are two distinct methods by which the value of the 

yaw S can be determined. In the first place, there is a unique relation between the 

greatest diameter of the hole (AA', fig. 8) and the value of S ; secondly, there is a 

unique relation between OA' and S. These relations can be tabulated numerically 

when the plan dimensions of the shell are known, and the value of $ corresponding to 

any measured length AA' or OA' read off. 
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Round W. 19 
Screen I) 

Gun rifled V30; MY 1,547y/s 

Round W.m 
Screen. R 

Gun rifled V50 ; MY 1,547# 
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between tie cuts .produced If the dr map 
baud, are in lias case entirely remeed 
bp fanning. 

Hole circular, diamr 3-04 
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Round 1.13 
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Round lY n 
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AA= 3-o5"(about 
Yaw=o-4° 
OA =i-&o" ^ 
Yaw=o-5'3° JF 
Approved jA 

NOTE:- A A is very doubtful as fie 
' card has beep bruised near the top 

bp the shell, out ON. is well determined. 

/Round 31.18 
f Screen K 
Gun rifled Y0;11Y 

^ 'V Yaw= 3-S6c 

\ OA = Z-19" 
f JP Yaw= 4-190 

; A %Jr Approved 
yaw= 4-0° 

Note the sudden endinp%. $ = 2,90 
of the clean cut holes \ 
produced bp the drioing\t&nd, at each 

side of the hole, \fhis often 
i&dSllilplfo helps to determnK . 

*AA'=3-io"? 
Yaw=i-o°? / 
0A' = i-Ti" / 
Yaw= i-Zm° 

Approved yaw 1-2°; 6=150 

"NOTEThe hole is bruised at the top bepono: 
the black circle. 

Fig. 8a. 
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To determine the value of 0,* it is necessary to measure the angle between AA' 

and the vertical recorded on the card. The direction of AA' must be determined by 

eye from the considerations that it is (l) the greatest diameter, (2) the axis of 

symmetry of the hole, and (3) that it must pass through 0, which is located as the 

centre of a paper circle fitted into the inner hole. 

By proceeding in this manner it was found that the values of § could be nearly 

always determined with confidence by at least one method and often by both. When 

both methods were available the agreement in the resulting values of S was in 

general good ; the average difference between them in all cases for shells of type I. 

(99 in number), in which both measurements were available and both appeared to be 

a priori reliable, was 0*20 degrees. These cases were simply taken as a sample. 

The general features of the agreement were the same for all types. We may 

therefore fairly assert that the probable error of any determination of S is some¬ 

thing less than 0-2 degrees. The use of the measurement OA' is of special 

importance for small values of S, and in fact alone makes their accurate determination 

possible. 

The probable error in the determination of 0 is not quite so easy to estimate, as there 

is no alternative method of determining 0. The method is clearly theoretically sound, 

and the errors can only arise from faulty estimations of the symmetry of the hole. 

By making a number of independent determinations for the same hole, with proper 

precautions against a biassed judgment, and comparing their consistency, it appeared 

that the probable error of any determination of 0 was less than 2|- degrees, unless 

the yaw was small (less than 0*8 degrees, say). As the yaw approaches zero, the 

errors in the determination of 0 increase rapidly until, when the yaw is less than 0-2 

degrees, 0 cannot be determined at all. 

Proceeding in this manner the values of S and 0 were tabulated for each round for 

the values of the time corresponding to the position of each card. If the above 

estimates are correct it is doubtful if the accuracy obtained could be much improved 

on without a radical change in the method of recording the position of the shell. 

2.11. When the yaw has been determined, and the position of the centre of gravity 

on the axis of the shell is known, its position along A A' can be calculated from the 

dimensions of the shell. The position of AA' on the card is well determined, and so 

the position of the centre of gravity can be located with respect to the reference 

point, and so with respect to the point of aim. This part of the determination is 

considerably more accurate than the location of the reference point on the card. 

The path of the centre of gravity for a small number of rounds was measured up in 

this manner; the results of the discussion (§4.2) are mainly null, in agreement with 

theory. The measurements were therefore not completed for every round and are 

not given here. 

* The angle 0 denotes the angle between the plane of yaw OAP and the vertical plane through OP. 

See fig. 10, p. 332. 
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§ 2.2. Determination of the Dynamical Constants. 

All the shells used in these experiments were weighed before firing, and their 

overall lengths were measured. The variations from shell to shell were small, and 

the mean values given in the tables may be assumed to be correct for all purposes. 

No appreciable change in these quantities is likely to occur on firing. 

The moments of inertia were determined, before firing, for a selection of about 

25 per cent, of the shells of each type. The probable error of any determination was 

about 1 part in 2000. The mean values for the different types of shell are given in 

the table. The extreme variation of any transverse moment of inertia from the mean 

was 1 • 8 per cent., and of the axial moment of inertia was 0-8 per cent. The errors in 

assuming that the mean value of the sample is the correct value for each round may 

therefore be appreciable at times, but should not seriously affect the final mean 

results. The general accuracy of the experiments was, contrary to expectation, 

sufficient to warrant the refinement of determining and using the individual values 

for each shell. 

The centres of gravity were also determined, before firing, for the same selection of 

shells, and the mean value of the distance of the centre of gravity from the base is 

given, in the same table, for each type. The determination was made with a 

probable error of 0*003 inches. The values were fairly constant for the shells of any 

one type, the extreme variation from the mean being 0*022 inches. 

It is by no means certain a priori that the values of A and B and the position of 

the centre of gravity may not be changed appreciably in some of the shells by the 

stresses set up when the gun is fired. No change is at all likely in the empty shells 

of types I. and IV., or in the bodies of the other shells; they may be confidently 

relied upon not to be stressed beyond their elastic limit; but the lead and wood filling 

in the shells of types II. and III. is decidedly suspect. To test this point, two shells 

of each of the types II. and III., after the determination of their dynamical constants, 

were fired* over water for recovery, and their constants were then re-determined. In 

the case of the shells of type III., with a filling of lead at the back and wood in front, 

there was no appreciable change. In the case of the shells of type II. with lead in 

front and wood behind, the wood block, as might have been expected, was crushed, 

and the lead had moved back about three inches in the case of the high velocity and 

one inch in the case of the low. The axial moments of inertia, A, were unaltered, but 

the transverse moments of inertia B and the positions of the centre of gravity were 

of course seriously affected. It was found, however, *that the observed changes in 

both could be satisfactorily accounted for by the observed movement of the lead 

block, of weight 1 • 9 lb. When the centre of gravity of the shell of type II. is 

4*727 inches from the base, so that it coincides with the centre of gravity of a shell of 

* One of each type at a muzzle velocity of 1950 f.s. and one at 1530 f.s. 
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type I., the value of B is 145*7 lb. (inch)3. Neglecting the effect of the wood, suppose 

that the lead plug is x inches further forward. In such a case 

(2.21) B = 145*7 + 1*9£C2. 

If, moreover, l is the distance of the centre of gravity from the base in inches, then 

(2.22) l = 4*727 + 0*117;c. 

The altered position of the centre of gravity can therefore be recovered by 

calculation, if the altered value of B can be deduced from the observations. This is, 

in fact, the case (see § 4.1), so that even for shells of type II. the dynamical constants 

of the shells after firing are satisfactorily certain. 

§ 2.3. Possible Disturbing Factors. 

There are two further possible causes of error which we have not yet mentioned. 

These are (l) the wind, and (2) the impulsive action between the shell and the card. 

2.31. The Effect of Wind.—-Since we are studying the motion of the shell under the 

force system impressed by the air, we are concerned solely with the motion of the 

projectile relative to the air, but we can only observe, by means of jump cards, the 

motion of the projectile relative to the ground. 

If the strength and the direction of the wind are known, it is an easy matter to 

convert the observed values of the size and orientation of the yaw, and the observed 

motion of the centre of gravity, into the corresponding quantities for the motion 

relative to the air. It is, however, very difficult to determine what is the strength of 

the wind, at the moment of firing, only a few feet above the ground. It is, therefore, 

necessary to carry out jump card trials in calm weather. During the experiments 

the wind exceeded 10 f.s., only at the moments of firing three rounds, and was usually 

only 5 or 6 f.s. at 20 feet above the ground. Its strength near the ground will have 

been still less, and its effects may therefore be neglected. 

2.32. The Impulsive Action between the Shell and the Card.—When the experiments 

were started it was not expected that the effect of the cards would be decidedly 

bigger than the probable random errors of the results. This, however, appears to be 

the case. A limited amount of evidence, for determining the necessary correction, is 

supplied by the few comparative rounds fired without cards on the nearer screens. 

Such comparative rounds would have been included in all, or at least the majority, of 

the groups, if their importance had been realised earlier. The evidence supplied by 

the comparative rounds was carefully analysed, and was supplemented, after the 

conclusion of the trial, by determination of the magnitude of the impulse between 

the cards and the shells by observation of the extra loss of velocity so caused. The 
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magnitude of a single impulse, at not too great a value of the yaw, probably has the 

values 

14-3 foot-poundals at 2470 f.s., 

8*9 foot-poundals at 1140 f.s. ; 

the values at other velocities may be roughly obtained by linear interpolation. 

The effect on the observed motion of the axis due to an impulsive couple was 

calculated, and it was found that rough values could be assigned for the magnitude 

of the impulsive couple acting at any card. On calculating the total effect on the 

observed value of s it was found that the probable correction required varied from 

2|- to 4|- per cent, in the various groups. This correction was applied before 

constructing Table I. and figs. 4 and 5. The figures of Table II. have not been 

corrected for this effect as their accuracy is not great enough to make it worth while 

to do so. 

Q 

Part III.—Methods of Obtaining and Solving the Equations of 

Motion of a Spinning Shell. 

§ 3.0. Introductory. 

On the assumptions discussed in Part I. the equations of motion of a spinning 

shell can be written down at once by the rules of rigid dynamics. Three different 

types of these equations will be found of use in practice, all of which may be obtained 

most simply as special cases of the vector equations of motion of the shell, referred to 

axes rotating in the most general manner. The use of the vector notation, in the 

initial stages of the discussion, has the further advantage of showing most clearly 

the meaning of the various terms, and of presenting the results in a symmetrical 

form. 

In order to simplify the general equations, the only components of the force system 

impressed by the air, retained in the initial discussion, are It, L, M, and the spin- 

retarding couple I (= ANT). The remaining components are of less importance and 

will be inserted later on in § 3.5. 

After obtaining the general equations the three special types are deduced. They 

may be described as follows :— 

Type a.—Equations in terms of direction cosines, referred to axes moving with 

the tangent to the corresponding plane trajectory. 

Type —Equations in terms of direction cosines or spherical polar co-ordinates, 

referred to' axes moving with the tangent to the actual twisted trajectory. 

Type y.—Equations similar to the equations of energy and angular momentum 

of a top (spherical polar co-ordinates), referred to the axes used for type f3. 

In each case the equations obtained are simplified by certain approximations, and 
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the results are suitable for use only under certain conditions. Equations of type a 

are valid when the shell is sufficiently stable and the yaw is small; type /3 when the 

shell has settled down to a non-periodic motion in which the yaw may be large, the 

initial oscillations being damped out; and type y when the motion of the centre of 

gravity is nearly rectilinear. 

Equations of these types cannot be solved exactly, and the method of approximation 

used to obtain a solution is different in each case. The equations of type a are used 

for the analysis of the jump card experiments, for all sufficiently stable rounds, and 

could be used to compute the entire motion in any trajectory whose initial elevation 

is less than 45 degrees. Equations of type /3 have been used to compute the latter 

part of a twisted trajectory at an elevation of 70 degrees. Equations of type y have 

a limited application in analysing the jump card records for rounds which are nearly 

or quite unstable. 

3.01. Note on the Vector Notation.—All letters which represent vector quantities 

will be in clarendon type, to distinguish them from scalar quantities in the ordinary 

type. The three components of any vector A, referred to right-handed rectangular 

axes 1, 2, 3, are written Ax, A2, A3. 

If A and B are two vectors, their vector product is denoted by [A . B]. This 

represents the vector whose components are 

(A3B3—A3B2), (A3B1-A1B3), (A^-AjB,). 

It is perpendicular to the plane containing the two vectors in the direction of the 

axis of the right-handed screw, which turns from A to B, its modulus being equal to 

the product of the moduli of A and B into the sine of the angle between them. The 

scalar product of the two vectors is written (A . B), and is equal to the scalar 

quantity 
AjBi + A2B2+A3B3; 

it is also equal to the product of the moduli of A and B into the cosine of the angle 

between them, being positive when this angle is acute. For simplicity, we denote 

(A. A) by (A)3, which is equal to the square of the modulus of A. 

Constant use is made of the following identities :— 

(3.011) [A. A] = 0, ([A. B] . A) = 0. 

(3.012) [[A . B]. C] = (A . C) B-(B . C) A. 

(3.013) ([A . B] . [B . C]) = (A . B) (B . C)-(B)2 (A . C). 

§ 3.1. I'he General Vector Equations of Motion. 

We take a system (l, 2, 3) of right-handed axes of reference, see fig. 9, whose 

origin is O, the centre of gravity of the shell, and whose angular velocity at any 
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instant is represented by the vector 0, with components 01( 02, 03. The direction of 

the axis of the shell OA is represented by the unit vector* A, and the direction of 

motion of the centre of gravity by the unit* vector X. 

2 

With the notation already introduced in Part I., the total angular momentum of 

the shell can be expressed as the sum of two vectors :— 

(i.) The angular momentum about OA, ANA ; 

(ii.) The total angular momentum about a transverse axis. 

If the total angular velocity about a transverse axis is W, the angular momentum is 

BiU, and is equal to the moment of momentum of a particle whose mass is B and 

whose distance from 0 is represented by the vector A. Now the actual velocity of 

such a particle relative to O is A'—[A . 0], and therefore its moment of momentum 

about O is 

B {[A . A'] — [A . [A . 0]]}. 

The total angular momentum, H, of the shell about O is therefore given by the 

equation 

(3.101) H = ANA+B {[A . A']-[A .[A. 0]]} ; 

using (3.012) this becomes 

(3.102) H = ANA + B {[A . A7] — (A . 0) A + 0}. 

VOL. CCXXI.-A. 

* I.e. (A)2 = (X)2 = 1. 

2 z 
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The force components that we propose to include at this stage are It, L, M, and 

ANT. To simplify the algebra we write* 

L = Kmv sin S, M = p. sin S. 

The various components can then be represented by the following vectors :— 

(i.) The drag It, by the vector — It A ; 

(ii.) The cross-wind force L, by the vector! kuiv {A —X cos d} ; 

(iii.) The couple M, by the vector! jx [X . A]; 

(iv.) The couple ANT, by the vector —ANTA. 

The complete equation for the angular motion is therefore 

(3.103) H' — [H . 0] = /x [X . A] — ANTA, 

where H is given by (3.102). Taking the scalar product of both sides ol (3.103) into 

A, we obtain, with the help of (3.011)—(3.013), 

(3.104) N'=-NI\ 

After substituting for N', equation (3.103), written in full, reduces to 

(3.105) ANA' + B [A . A"] — 2B (A . 0) A'-B (A . 0') A+BO' 

-AN [A. 0] + B (A . 0) [A . 0] = fi [X. A]. 

3.11. The Equations of Motion of the Centre of Gravity.—The velocity of the 

centre of gravity is represented by the vector vX, and its acceleration is therefore 

represented by the vector 

In addition to the drag and cross-wind force impressed by the air, we shall suppose 

that gravity is acting on the shell. 

* The mass and velocity of the shell are m and v respectively. For the rest of the notation see § 1.31, 

t If a perpendicular AD be drawn from A to OP, DA is parallel to the direction of the cross-wind 

force L, and its length is sin 8, if OA is of unity length. The vector DA is equal to the difference of the 

vectors OA and OD, so that it is equal to A - X cos 8. Hence {A- X cos 8} /sin 8 is the unit vector 

parallel to the cross-wind force. Similarly [ X. A]/sin 8 is the unit vector normal to the plane AOP 

i.e., parallel to the axis of the couple M. It is easy to verify, with the help of (3.012), that 

A - X cos 8 = ([X. A]. X]. 
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The acceleration due to gravity is represented by the vector G, whose modulus 

is g* Under these conditions the vector equation of motion of the centre of 

gravity is 

(3.111) ^{vX}-v[X.Q] = - — X+kv {A-X cos<5} + G. 
dt 777/ 

Taking the scalar product of both sides into X, equation (3.111) reduces to 

(3.112) v' = -R/m+(G. X), 

On substituting this value of v' in (3.111), and dividing by v, we obtain 

(3.113) X'-[X .0] - k {A —X cos <5} + {G-(G. X)X}/v. 

Equations (3.104), (3.105), (3.112), and (3.113) determine the motion completely. 

§ 3.2. Equations of Motion of Type a. 

When a shell is initially sufficiently stable, and leaves the muzzle so that its initial 

disturbance is small, it will be shownf that the axis OA and the direction of motion 

OP deviate, at any time t, by small angles only from the direction of the tangent to 

the corresponding! plane trajectory at the same time. This is true of the early part 

of all trajectories, and for the whole of a trajectory whose initial elevation is less than 

45 degrees—at any rate, when the muzzle velocity is fairly large Under these 

circumstances we may follow the classical§ treatment in regarding the plane trajectory 

as a first approximation to the actual trajectory. It is then convenient to refer the 

motion to axes moving with the tangent to this plane trajectory. The axis Ol is the 

tangent to the plane trajectory drawn in the direction of motion ; axis 02 is the 

upward normal; and axis 03 is horizontal and to the right, as viewed from the gun. 

The components of A and X are (l, m, n) and (x, y, z), which are therefore the direction 

cosines of OA and OP respectively. 

It will now be shown that it is possible to express the complete motion 

approximately in terms of the two complex variables, m + in and y + iz, and the 

elements of the plane trajectory. We suppose that the equations of the plane 

trajectory have been numerically solved, so that, e.g., v1 and 6U the velocity and 

inclination in the plane trajectory, may be regarded as tabulated functions of t. 

* The vector G may, if desired, be regarded as representing any force which acts through the centre of 

gravity and is a function of position only. 

t See §4.21. 

\ The corresponding plane trajectory is the trajectory which would be described by the same shell, with 

the same initial velocity and initial direction of motion, if its yaw remained always zero. 

See, e.g., Cranz, ‘ Zeitschrift fur Math. u. Phys.’ The equations we obtain, however, appear to 

be new. 

2 z 2 
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The components of O are (0, 0, 6\). Using the foregoing values of the components 

of A, X and O in equations (3.104) and (3.105), we obtain 

(3.201) N'=-Nr, 

as before ; the second and third components of (3.105) give 

(3.202) ANm' + B — In") — — J$mn6"l + —Bnld,21 = n(zl—xn), 

(3.203) ANn' + B (lm"—ml") — 2Bnn'0\ — Bn26f'1 + B6"-l = ^{xm — yl). 

To solve the equations it is necessary to neglect certain terms. A discussion of 

the relative magnitude of the terms neglected, in various circumstances, will be given 

later in § 4.3. Some of these terms are negligible in all cases, on account of the 

smallness of 6\ in comparison with the angular spin of the shell. Others are only 

negligible so long as the yaw S is so small that 1— cosd and 1—sin S/S may be 

neglected in comparison with unity. By such arguments it is not difficult to justify 

the reduction of these equations to the form 

(3.204) ANw'—Bn" + ANO'j = /u.(z—n), 

(3.205) ANA + BnU + Btf'j = n(m—y). 

For the particular case of the initial motion of the shells from the gun rifled 

1 turn in 30 calibres in the present trials, the terms neglected are, in general, less 

than 1 per cent, of some term retained, and the coefficients of equations (3.204) and 

(3.205) may be regarded as affected by possible 1 per cent, errors. Even in the case 

of the gun rifled 1 turn in 40 calibres, where values of S as great as 7 degrees or more 

are met with among the stable rounds, the employment of (3.204) and (3.205) is 

justifiable. 

We now define new variables and constants by the equations 

*i + c£ = m+in, c£=y + iz, 

AN/B = £2, c — cos 6U 6\ + i6'\/Q — <f>. 

If we multiply (3.204) by i, and subtract from (3.205), we obtain 

(3.206) ^ + + 

So long as the yaw remains small, equations (3.201) and (3.206) may be taken as 

equivalent to (3.104) and (3.105). 

3.21. The Motion of the Centre of Gravity.—With the present axes, the 

components of G are (— ^sinfh, — g cos0u 0). Equation (3.112) becomes! 

(3.211) v' = — B, (v, S)/m*—g (x sin 6x-\-y cos 0j). 

t To avoid confusion the mass of the shell is temporarily denoted by in* 
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The second and third components of (3.113) become 

(3.212) y' -\-x9i = k (m—y cos $) — (g/v) cos 01 + (yg/v) (x sin +y cos Of 

(3.213) zf = k (n—z cos S) + (zg/v) (a? sin (fi + 2/cos 6j). 

The equation of the plane trajectory corresponding to (3.211) (S = y = 0, x = l) is 

(3.214) v\ = — It (v1} 0)/m*—g sin 6V 

Therefore, if u — v—v1} u satisfies the equation 

(3.2141) u' — — §) — R(-yl5 g{{x— l) sin 0x + y cos 0X}. 

In §§ 4.22, 4.31, we shall show that it is legitimate to regard the value of u determined 

by this equation as zero. We can therefore replace v by v1 in (3.206), (3.212) and 

(3.213). 

A further discussion shows that (3.212) and (3.213) can be reduced to 

y' = « {ni-y) + {g/vi) y sin 6U 

zl — k (71 —z) + {gli\) 2 sin 0lt 

the accuracy and validity of these equations being the same as those of (3.204) and 

(3.205).f These equations combine to give 

d , A qc sin 0, 

dt vx 

or, using the equation of the plane trajectory, 6\ — —(g/v 1) cos 6U 

(3.215) ^=xr,/c. 

In the cases contemplated this equation is equivalent to (3.212) and (3.213). Then 

(3.215) , (3.206) and the equations of the plane trajectory represent the required 

approximation to the complete equations of motion of the shell. 

In order to convert (3.206) and (3.215) into linear differential equations, it is necessary 

to assume that 71 and k are independent of S, and regard them as functions of vl% 

This approximation involves errors no greater than the previous approximations. If 

Q is treated as a variable, it must be determined by (3.201), T being regarded as a 

known function of the time. All the coefficients in (3.215) and (3.206) are then known 

functions of the time. 

§ 3.3. Equations of Motion of Type f3. 

In the neighbourhood of the vertex of a trajectory of elevation as great as 

70 degrees, the yaw, as stated in § 1.34, may reach large values. In such cases, the 

f With the exception noted in § 4.22. 
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plane trajectory can no longer be regarded as a valid first approximation, and the only 

possible method is to obtain equations of motion which are suitable for direct step-by- 

step integration. For this purpose the following set of moving axes are most suitable, 

as they reduce the equations of motion of the centre of gravity to its simplest form. 

We take the true direction of motion OP for the axis 1 and a horizontal line at right 

angles to OP for the axis 3. We define the position of OP by spherical polar 

co-ordinates 6, \fs with respect to axes fixed in direction at O, see fig. 10. Then X has 

components (l, 0, 0), 0 has components (— \Js'sin 0, — \p~'cos6, O'), Gr has components 

( — g sin 0, —g cos 6, 0) and A components (l, m, n) as before. 

Fig. 10. OX, Y, Z are fixed axes, OY being the upwards vertical; the plane XOY contains the 

line of fire. 

Equation (3.105), when written out in full, becomes very complicated. To simplify 

it, we can, under certain circumstances, neglect the angular momentum about a 

transverse axis compared to the angular momentum about the axis of the shell. The 

legitimacy of this approximation, which is equivalent to putting B = 0 in (3.105), is 

discussed in § 4.33. It should be stated that this type of approximation also is 

classical,* but that the equations we obtain are apparently new and of a wide range 

of validity. 

As before, we have 

(3.301) N' - -Nr. 

The second and third components of (3.105) reduce to . 

ANm'—AN {—nyj/ sin 6 — 16') — —^n, 

ANA—AN (—Zi// cos 6+m\Js' sin 6) = iu.m, 

* See, e.g., Charbonnier, ‘Traits de Balistique ExtArieure,’ Livre V., Chap. IV. 
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or, writing w for /x/AN, 

(3.302) m' — — n (w + 0/ sin 0) — 19', 

(3.303) n' = m (w + f' sin 9) — If' cos 9. 

The corresponding equations of motion of the centre of gravity are 

(3.304) v’ — — B. (v, 8)/m* — g sin 0, 

(3.305) 9' = Kin—(g/v) cos 9, 

(3.306) f' cos 9 = ten. 

The six equations (3.301) to (3.306) can be solved by a step-by-step process, if R, k, 

/x and T are numerically known functions of v and <5. They are valid without 

restriction as to the size of 8, and have proved of value for the discussion of 

trajectories at very high elevations. They are, however, necessarily invalid when 

any question of stability is under discussion. 

§ 3.4. Equations of Motion of Type y. 

For the purpose of discussing the initial motion of a shell which is unstable or just 

stable, equations of types a and /3 are invalid, and it is necessary to make use of 

equations corresponding to the equations of energy and angular momentum for a top. 

The equations we shall thus obtain are of far less general applicability than 

types a and /3. 

With this object we take the scalar product of both sides of equation (3.105) into 

the vector [ A . A'] + 0, and obtain, after reduction, 

(3.401) £B jf |(A')2 + 2 (0 . [A . A']) + (0)2 —(A . 0)2| = -/* (X . { A'-[A . 0]}). 

Using the axes described in the last section, we note that, over a limited range at 

the beginning of a trajectory, the first two components of 0 are numerically very 

small compared to the third, 9'. We shall find that the effect of 9' itself is negligible 

in the cases we consider. We shall therefore neglect the other components of 0 at 

once. Taking 8 and <p as spherical polar co-ordinates of the axis OA referred to the 

moving axes, so that 

l = cos S, m — sin 8 cos 0, n = sin 8 sin 0,t 

t The angle 0 is not exactly the angle measured by the jump cards, but the difference is negligible. 

The angle 8 is exactly the measured angle of yaw. 
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we find that (3.401) reduces to 

(3.402) |-B jcf2 + 0/2 sin2 <5 + 20' (<fcos (p — ^'sin 8 cos 8 sin <p) + 6'2 (l — sin2 8 sin2 <p) 

[ d cos 8 • « , 1 

This is the equation corresponding to the equation of energy. The first component 

of (3.105) corresponds to the equation of angular momentum for a top, and reduces in 

the same way to 

(3.403) ~ {AN cos 8+B<p' sin2 8} + 2B6f<f sin2 8 sin <p — B0" sin 8 cos 8 sin <f> 
CiL 

— ANO' sin 8 cos <p + B0/2 sin2 8 cos <p sin cp — 0. 

Equation (3.201) remains unaltered. Over the range of the jump card experiments 

a mean value of 8'/O' is 50. We shall therefore regard it as legitimate for our present 

purposes to neglect all terms containing O'. On integrating the resulting equations 

we obtain 

(3.404) |-B (T2 + cp'2 sin2 <5) + [ /xd cos 8 = TBE, 
Jo 

(3.405) AN cos ^+B<// sin2 8 = BF, 

where E and F are constants of integration. In (3.405) it is assumed that N is 

constant. If /u is constant these equations are of the same form as those of the 

motion of a top. In the more important applications to the jump card trial which we 

shall make of (3.404) and (3.405), n will be treated as a variable function of 8, and also 

of v. 

§ 3.5. The Additional Force Components H, J and K. 

It is now necessary to consider the effect of the additional force components, 

mentioned in §§1.1, 1.12, and denoted by H, J and K. These have so far been 

omitted from the general equations for the sake of simplicity. The couples H and J 

will affect the angular motion of the axis, and the force K will affect the motion of 

the centre of gravity. For algebraic convenience we define new variables h, y, X, by 

the equations 
H = hBiv, J — ANy sin 8, K = mNvX sin 8, 

where w is the total angular velocity of the axis of the shell. The force components 

may then be represented, in the notation of § 3.1, by the following vectors :— 

H by the vector —hB {[A . A'J —(A . ©) A + 0} ; 

J by the vector ANy (A cos 8—X); 

K by the vector mNvX [A . X ]. 
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To include the effect of these components we add to the right-hand side of (3.105) 

-/uB{[A . A'] —(A . 0) A + 0}+ANy(A cosS-X), 

and to the right right-hand side of (3.113) 

N\[A . X]. 

Equations (3.104) and (3.112) (type a) are unaltered. As a result, the following 

additions must be made to the right-hand side of succeeding equations :— 

To (3.202), +AEW+ANy (m—y). 

To (3.203), — hBm'+ANy (n—z). 

To (3.212), -Nx(z-n). 

To (3.213), -N\(w-2/). 

As the total effect of the extra components /?, y and X is certainly small in any 

practical case, we have neglected all terms other than those of the lowest order in S. 

Equations (3.206) (3.215), when modified by the inclusion of these extra terms, become 

(3.501) ^(,+cf)-(iQ-A)| (,+cf)-(|-iQy) , = ; 

(3.502) ?={K-iN\)i/c. 

3.51. The Additional Terms in Equations of Types (3 and y.—The additional 

terms in the equations of type /3 can be written down in a similar manner. The 

following additions must be made to the right-hand sides of the equations :— 

To (3.302), 

To (3.303), 

To (3.305), 

To (3.306), 

+ yrn cos S—h (nV — In')/Q. 

+ y?i cos S—h (lmf 

+ N An. 

—NXm. 

The terms in h are negligible, as they are O (hS'/Q2) compared with the principal 

terms —nw—10', so long as w/Q is not very small. The principal application of these 

equations is to the motion of a shell near the vertex of a trajectory at an elevation 

of 70 degrees, where the velocity becomes small while the spin probably remains 

large. Under these circumstances the terms y and A arising from the spin rise in 

importance relatively to the terms a and k representing the ordinary force 

components. The inclusion of the extra terms y and A in these equations is at 

present of no practical importance, as we have no definite information as to their 

value. 

The corresponding terms could be added to equations of type y by the same 

VOL. CCXXI.-A. 3 A 
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methods, but the results are of no importance as it is impossible at present to solve 

these equations unless these terms are neglected. 

§ 3.6. The Approximate Solution of Equations of Type a. 

3.61. The Nature of the Solution Required.—The system of equations (3.501), 

(3.502) are linear differential equations with respect to the time of the second order, 

the coefficients being regarded as known functions of the time t. Since these 

functions are in practice empirical and by no means simple, an exact solution is 

impossible. To simplify the discussion we write 

s = A2N2/4B/x, nx/B = Q*/&s, 

so that equations (3.501), (3.502) become 

(3.611) (,+cf)-(*'Q-A) ^ (,+<*)- •> = ; 

(3.612) ?-(K-im)r,/c = 0. 

If the terms in £, h, y be omitted from (3.611), and s, N and id are assumed constant, 

the equation reduces to that for the small oscillations of a top in the neighbourhood 

of the vertical. 

The coefficient s is the stability factor as defined in § 1.31. In order to be able to 

apply the approximations on which (3.611) and (3.612) are based, we shall find that 

it is necessary to assume that the shell is more than just stable, e.g., s> 1-1. 

We proceed to develop an approximate solution of the equations on the assumption 

that Q is large. If we ignore the dimensions of the various terms, and take the 

unit of time as 1 second, then Q is in practice greater than 100 (radians per second), 

all other terms being of the order unity. This is really equivalent to assuming that 

all the ratios k/Q, h/Q, ... , which are of no dimensions, are small. It will be found 

necessary to assume further that all derivatives with respect to the time are of order 

unity in units of 1 second, e.g., that k, k", s', Q'..., are of order unity. These 

conditions are satisfied in practice. As a result, we can say that k/Q, s'/Q... , are 

small quantities of the first order, and k/Q2, s"/Q2, 6'\/Q2... , are small quantities of 

the second order. For simplicity, we shall throughout ignore dimensions, and denote 

such terms of the first order by O (l/Q), and terms of the second order by O (l/Q2).# 

The arithmetical values of the various terms are investigated in detail in § 4.3 below. 

The above facts indicate the lines on which an approximate solution is to be 

sought—we require the asymptotic expansion of the solution (or its leading terms) 

for large values of the parameter Q. Methods of obtaining such expansions have 

* In practice the spin N, and therefore ti, decreases slightly along the trajectory, hut the diminution 

is not sufficient to affect the assumption that Q is large. 
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been investigated in general terms by Horn and Schlesinger.* A method, which 

is slightly different algebraically, is more convenient here; the asymptotic properties 

of our solutions, however, may be regarded as established by the researches of these 

authors. 

The equations (3.611) and (3.612) are a pair of linear differential equations with 

respect to the time for the two dependent variables >/ and £, (3.611) being of the 

second order and (3.612) of the first. There must, therefore, be three independent 

solutions. 

It is convenient to eliminate and from (3.611) by the use of (3.612), the result 

being 

(3.613) rj"—{iQ — h—/cx) r\ — {Q2/is + 'iQ (ki —y)——K\~~Kic'/c} >i 

— {iQc'—he'—c"} £ — iQQ?, 

where kx is written for (k—?’Nx). It is believed that NX is small compared with k, 

so that for simplicity the term NX will usually be omitted in subsequent work. The 

term y will however be retained. 

3.62. The Complementary Function.—A first approximation to the three inde¬ 

pendent complementary functions is obtained, following Horn and Schlesinger, by 

making the substitution, 

i — e y, f = e ?, 

and treating ij and £ as constants in determining >/ and £'■ We also neglect all but 

the highest order terms in 0 in each equation. The equations then reduce to 

(3.621) {-Q2x'2 + Q2x'-Q2/4:s)rj-iQc^ = 0; 

s 
(3.622) —Krj/c+iQx'£ = 0. 

** 

On eliminating rj and £, and retaining only the terms of highest order in Q, these 

reduce to 

x' (x'2—x'+ l/ls) = 0, 

a cubic equation for x! whose three roots correspond to the three independent 

* J. Horn, ‘ Mathematisclie Annalen,’ vol. 52, p. 271 and p. 310. L. Schlesinger, ibid., vol. 63, 

p. 277; ‘Comp. Rend.,’ vol. 142, p. 1031. The investigations of the complementary function given by 

these writers are fairly complete, the asymptotic nature of the expansions being established. The latter 

writer considers a system of n linear differential equations. A similar treatment of the complementary 

function and the particular integral of a special equation is suggested (without proof) by M. de Sparre 

1 Atti (Rendiconti) della R. Acc. dei Lincei,’ 1898, Ser. V., vol. 72, p. Ill ; this writer was obviously lee 

to the solution he gives by his researches on the motion of spinning projectiles. 

[Note added July 30, 1920. See also G. D. Birkhoff, ‘Trans. Amer. Math. Soe vol. 9, p. 219.] 

3 A 2 



338 MESSRS. R. H. FOWLER, E. G. GALLOP, C. N. H. LOCK AND H. W. RICHMOND: 

solutions required. The roots are |-±|- (l — l/s)*, 0, or writing, for shortness, 

<r = (l —1 /$)*, the three values of x are 

It appears that the first two solutions correspond to the complementary function 

of equation (3.613) with the term in £ neglected, so that r\ is large compared with £ 

If 5 < 1, it is imaginary, the motion is unstable and the solution fails. In the third 

solution l is large compared with q, and a first approximation to it gives a constant 

value to £ obtained by neglecting the term in in equation (3.612). It is convenient 

to obtain the first two solutions independently by a special method. 

We first omit the term in £ in equation (3.613); it is not required till the second 

approximation. Write the equation, for simplicity, in the form 

(3.623) J'-iAJ-Br, = 0, 

where 
A = Q + ih + iic, 

B — I22/4 s* + iQ (k — y)—Hk—k—kc'/c. 

Remove the second term by substituting 

tj — y exp | A cfc j > 

giving 

(3.6231) y"+Afy = 0, 

where 
M - iA2-B+^A' 

= JQV jl + Jt (ft—K+2y+N'/N) + o(^)} • 

Substitute y — Re±,p, so that (3.6231) becomes 

(3.6232) R"± (2^P'R/ + ^P//R) -P/2R + MR = 0. 

We may make P and R satisfy any single relation we choose, e.g., 

2P'R' + F,R = 0, 

giving P; = l/R2,# so that (3.6232) becomes 

(3.6233) R"—1/R3+MR = 0. 

* More generally P' = a/R2, where a is a constant, but the value of this constant is immaterial, as it 

disappears in the result. 
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This equation may be solved asymptotically, by successive approximation, by 

writing* 
R = R0(l + R1 + Ra...), 

where 
R, = 0 (l/M) = 0(l/Q2), R2 = O (l/124).... 

We obtain, in succession, the approximations 

R 0 = M-*, 

E, = 

verifying the relation R: = 0(l/Q2). The order of magnitude of Rj in practice will 

be discussed in § 4.32, where it will be shown to be negligible.! We therefore take as 

our two standard solutions 

yx = M-i exp jaj 

y2 = M_i exp | —i £ M* j» 

giving, for the complementary function of (3.623), 

(3.6234) r, = (Qo-)"*{ 1 + 0(1/12)} {K^ + K^}, 

where K1; K2 are arbitrary constants, and P1( P2 are given by 

Rn P2 = i [12 (l + cr) + i {h + K± (Jl — k + 2y + N'/N)/<r}] dt. 

This is the form of solution which is used in analysing the jump card experiments, 

and contains all the terms that can be required in practice. 

It is now necessary to examine the effect of the term in £ in (3.613), which has so 

far been omitted. The value of f', obtained from (3.612), corresponding to the first 

solution for t], is 
= (k/c) (Qa)~h elFl, 

so that, on integrating by parts to obtain the leading terms, 

£ = 
2/C77! 

icQ (1 + <r) 

* At this point the advantage of oar ad hoc method over more general methods is apparent, as we 

obtain in one step a solution with an error 0 (1/it2), whereas the general method requires two steps. 

t We assume that the numerical value of Ri, the next term in the expansion, is a measure of the error 

in the solution caused by omitting all terms after the first. The expansions for yx and y2 are known to 

be asymptotic for large values of R, so that the error will be some finite multiple of Rlt but the size of the 

numerical factor is unknown. 
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Similarly we have 

verifying that £ is small compared to r\. The contribution of £ to equation (3.613) is 

thus 

(3.6235) 
2kc'ij 

C (1 ±<x) 

which is equivalent to an addition to the coefficient of >/ of terms which are 0(l/Q3) 

compared to the principal term. The solution can be repeated with these terms 

included, but is unaffected to the order to which we are working. We shall take our 

first two standard solutions in the form 

(3.624) 

(3.625) 

>h — (SVoY /yiPl 

Qcr 

*12 
\* -tP, 

a,r 

ii 

& = 

2fo?i 

icQ (1 + <r) 

210)2 

icQ (1 —or) 

The differential coefficients of the solutions may be obtained by differentiation of 

these equations. 

For the third solution we have shown that the exponential index is zero to the first 

order, and that a first approximation is given by 

% — £ 3 = tz — 1- 

The expansions take a somewhat different form, like those for the particular 

integral, and we write 

(3.6261) r,3 = J0) + r,(1)/iQ + J2)/{iQ)2... , 

(3.6262) = fto) + fw/tO +WQ)*... • 

Substituting in equations (3.612) and (3.613), we obtain 

»?(1) = 4sc' — —4s 6\ sin 6U 

<?1] = 4 [ Ksc'dt/c. 
Jo 

The significance of this solution will he considered after the particular integral has 

been discussed. 

Our standard third solution is then 

(3.627) 
4 sc' kSc' 

dt. 
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3.63. The Particular Integral.—-The question of the particular integral is not 

treated generally by Horn and Schlesinger. The former considers shortly a very 

particular case.* Their methods can, however, be extended to obtain the results we 

require. 

We assume an expansion for the particular integral rj} f of the form of 

(3.6261), (3.6262). This integral can be specified in such a way that initially £ = 0, 

i.e., £<0) = £(1) = ... = 0, and >/0) = 0. It will then be found to be unique. 

On substituting in equations (3.612) and (3.613), with the right-hand side retained, 

and equating powers of iQ, we find first that £(0) = >/u) = 0 for all time, and then 

(3.631) ,<*> = 4s0>, f(1) = P isMt/c. 
Jo 

The first two terms in the expansions of rj and £ take the forms 

(8.632) » = Tsr + (S5?{! (4^)+(-r)4S$+c' £****/«}; 

(3.633) £ = j"* 

Equations (3.632) and (3.633) will be taken as the standard particular integral. 

Since, moreover, they contain no periodic terms, and the initial value of f is zero and 

those of rj and rj' very small in practice, it is convenient to take this solution as the 

standard solution of the equations of motion in cases where the initial values of >; and 

rj are not exactly known—e.p., in calculating the drift. 

The expansions for rj and f, of which the first two terms are given above, can be 

shown to be asymptotic, but we cannot take up this question here. The numerical 

accuracy of (3.632) and (3.633) will be considered in § 4.33. 

3.64. The general solution of (3.612) and (3.613) may be put in the form 

(3.641) r) — K^+K^ + K^+i,, 

(3.642) £ = + K2^2 + H3^3+ 

where K1; K2, K3 are arbitrary complex constants and rjlf ... , &, ... , have the values 

determined in the last section. 

The particular integral >?, £ represents the motion in an actual trajectory in which 

f is initially zero, and >? and rj start with what may be called their equilibrium values, 

which are numerically very small. The solution (K3^3 + ^), (K3£3+f) represents the 

motion, of the same type, in a trajectory whose initial tangent makes an angle 

(determined by K3) with the initial tangent of the chosen plane trajectory. This can 

* Loc. cit., p. 340. We hope to publish these extensions in another place. 
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be seen from the following considerations. The motion in a slightly different plane 

trajectory would be obtained by omitting all terms in ?? from the equations of motion 

of the centre of gravity, and ignoring the equations of angular motion. Equation (3.612) 

then reduces to = 0; this represents a trajectory which only differs from a varied 

plane trajectory on account of terms omitted in § 3.21, whose retention renders the 

equation non-linear. The value of % in (3.627) gives the alteration, through the 

change in direction of projection, of the first term in rj. 

3.65. In the usual practical case, the initial conditions take the form 

£o = o, ri0 = a, rj o = bQ, 

where a and b are arbitrary complex constants. It is desirable in such a case to know 

the degree of importance of the three standard solutions. 

The initial values of the standard solutions (retaining the highest order terms only) 

are as follows :— 

m=l, £ = 0(l/Q), 

I2=h & =0(1/0), 

%=0(1/Q), &=1, 

i = 0(1/0), 1=0, 

11 = 2^ ( 1 + °), 

12 — (l —v), 

iz = 0 (l/Q), 

M = 0 (i/o). 

The constants Kl5 K2, K3 are determined by the equations 

+ = a, 

K-i^r + K-2>?2' + + n — bQ, 

(3.6501) Ki^i + Kg^ + Kg^-j-^ — 0. 

Retaining only the highest order terms these reduce to 

(3.651) Kj + K2 = a, 

(3.652) ^i(l+a) Kj +%i (l o') ka = b, 

(3.653) K3 + 0(l/Q) = 0. 

It follows at once that K3% is completely negligible compared to and K2>/2, and 

that in investigating »; we may ignore the third solution (and the particular integral) 

altogether. On the other hand, the contributions of all the solutions to f are of the 

same order of importance. We shall therefore take as the solution satisfying the 

most general initial conditions— 

(3.654) = K,% + KaflSJ 
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where Kx and K2 are determined by (3.651) and (3.652), and 

(3.655) (, = K1f1 + K2fa + K3f8+ [ *rjdt/c, 
Jo 

where by (3.6501), 

(3.656) K3= -K, aOo-K, (£,),. 

§3.7. The Solution of Equations of Type y. 

The equations of type /3 are only soluble numerically by step-by-step integration, 

and will not be considered here, but the equations of type y (§ 3.4) reduce,-when p. is 

constant and damping effects are neglected, to the equations of a spinning top, and it 

is convenient to summarize here their solution, in terms of elliptic functions, in the 

form which is most suitable for our purposes. We shall only consider the initial 

conditions § = 0, S' = bQ ; this is the rosette form of motion (§ 1.3) and is usually a 

good approximation to the true motion in its earliest stage. In this case we obtain 

from (3.404) and (3.405) 

(3.701) <p' = 0/(1+ cos $), 

(3.702) S'2 sin2 S—Q2b2 sin2 $+ Q2 (l — cos <5)2 — (Q2/2s) (l — cos S) sin 2d = 0. 

If we take Qt as independent variable, the motion depends only on two pai’ameters, 

b and 5. The solution of (3.702) is given by 

(3.703) sin ^<5 = sin \a. cn (K — \Qt, k), 

where a, A, and k are given by the formulae 

(3.7041) = cos j^a cosh ^c, 

(3.7042) b = tan \cl tanh £c, 

(3.7043) tan € = sin rra/sinh Im, 

(3.7044) A = (sin ^a.)/'2k\/s, 

(k = sin e), 

and K is the complete elliptic integral of the first kind to modulus k. Thus the yaw 

oscillates between the values 0 and a, and the value of the period T—the interval 

between successive zeros—is given by 

(3.705) iTT = 2K/A. 

The curve of yaw, <b plotted against Qt is initially concave (convex) upwards, 

when s < 1 (> l). This corresponds to the case of instability (stability) for small 

oscillations. 

3 B VOL. ccxxi.—A. 
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In the practical analysis of the results of rounds whose stability factor is less than 

or near 1, it is convenient to use graphical methods. If the observed yaw is plotted 

against Qt, it is easy to read olf the observed values of a, the maximum yaw, and 

HT, the period. A chart was therefore constructed with suitable families of curves, 

according to (3.704l)-(3.7044), from which, when QT and a are known, s, b, c, and k 

can be read olf directly. 

Part IV.—Analysis of the Experimental Kesults. 

§ 4.0. Equations of Motion in Polar Co-ordinates. 

The theoretical results of Part III. will now be applied to the analysis of the 

observations described in Part II., which consist of determinations of yaw $ and 

orientation of yaw <p, for a shell fired horizontally over a range of about 600 feet. 

When the stability factor is greater than about 1*1, the maximum yaw for the 

corresponding round never exceeds 7 degrees, and it is then possible to make use of 

the complementary function solution of equations of type a as given in § 3.6. These 

rounds give more valuable information than those which are less stable. 

We treat certain of the force coefficients as constants over the range of the 

experiments, and verify that the results of the theory agree with experiment when 

certain values are given to the force coefficients. In particular the spin is treated 

as constant. The way in which the coefficients vary with the velocity is determined 

mainly by firing shells with various muzzle velocities. The final results have been 

already described in § 1.2 above. 

The experiments determine the values, at definite time intervals along the range 

(§2.0), of the angle of yaw S and the angle cp turned through by the line in which 

the plane of yaw meets the cards. The measured value of <p is zero, when this line 

is vertical and increases from 0 to 27r radians in the direction in which the 

shell is spinning. It is, of course, ambiguous by an integral multiple of 27t. Except 

where specially stated the yaw S is assumed to be an essentially positive quantity. 

When OA passes through the position OP, the yaw vanishes; the value of <p 

will change discontinuously by an amount ±7r, and dS/dt will change its sign 

discontinuously. 

It is convenient in Part IV. to express the solution of the equations of motion of 

type a in terms of the co-ordinates S and <p. The exact relations between the 

measured $ and <p and the'direction cosines (l, m, n) and (x, y, z) of § 3.2 are 

cos $ — lx + my + nz, 

tan <p = 
(nx — lz) cos (ny—mz) sin 6} 

mx — ly 
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where 6t is the inclination to the horizontal of the tangent to the plane trajectory. 

Since 61 < 1|- degrees, we may replace the latter by 

tan tp = (nx—lz)/(rnx — ly). 

Since is defined by the equation 

y] — (m—y)+i(n—z), 

we obtain, when $ is sufficiently small, 

t] = sin Se^; 

this expression neglects terms of the second order compared to those retained. It is 

an adequate approximation provided § < 7 degrees. 

The general solution for the equations of type a, given in § 3.65, equations (3.654) 

and (3.6234), is* 

(4.01) , = 

if we ignore, as we may, the particular integral and the third solution, 

write 

Then 

(4.011) 

(4.012) 

Pi = Pi + iqi+P‘j + iq3> 

P2 = px + iq1 — (p2 + iq2). 

Pi — :h\ — |-Q£, 
Jo 

qi = i ( (h+K) dt, 
Jo 

P2 — \ 

q* = \ 

[ Qadt, 
Jo 

I" (h—K + 2y) dt/<T, 
Jo 

We shall 

and a2 = l — l/.s. We observe that plf p2, q1} q2 are all nearly proportional to the 

time t. 

The general solution (equation (4.01)) contains two complex arbitrary constants or 

four real constants. By a suitable choice of origin for t and <p these may be reduced 

to two. If the time t — 0 corresponds to a minimum of S and the value 0 = 0, 

equation (4.01) may be written 

(4.02) >7 = J (<t0/ct em~q' {cosy^ sinh {j—q^+i sin p2 cosh (j — q3)}, 

* Treating N and R as constant, i.e., neglecting the spin reducing couple T. 

t Equation (4.01) reduces approximately to the form 17 = Kt, when s = 1, and to the form 

V = (<r0/o-y {K^’+Ko^2}, when s < 1, and the shell unstable, the principal parts of <f>i, 02 being real and 

positive. The solution then fails completely as an approximation to the actual motion except over a small 

part of the first period. As s approaches the value unity from above, the errors from this cause will begin 

to increase, but the magnitude of these errors can only be estimated by comparison with the solution of 

equations of type y, see § 4.3 below. 

3 b 2 
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where J and j are new arbitrary constants; of these j is small if \r/\ is small at 

t — 0.* The motion is a combination of the following components :— 

(1) A uniform rotation about the origin, represented by the term em. 

(2) A damping of the amplitude, represented by {a^crf e~q\ 

(3) An oscillation of period determined by p2 whose phase is continually changed 

by the factor {j—q2)- The values of $ and <p are given by the equations 

(4.031) §2 = £J2 (<r0/<r) e~2?1 {cosh 2 (j — qa) - cos 2p2], 

(4.032) ^ = ${)+pl + arc tan {coth (j—q2) tan_p2},t 

So long as {j — q2) does not change sign, the average rate of increase of <f> over any 

number of complete periods is (p\+p'2). 

Let a and /3 be the successive maximum and minimum values of S (assumed positive). 

In determining the values of a, ft and the corresponding values of t, it is legitimate 

to neglect the changes of qu q2, and a, which are very small in a single period p2. 

The maxima and minima are then given by putting cos 2p2 equal to — 1 and +1 

respectively in (4.031). Writing 

(4.041) aj = J (o-o/cr)4e~91 cosh (j-q2), 

(4.042) ft = J (.trja)ke~91 sinh (j-q2), 

so that <*!, ft are defined for all values of t, we have 

(4.051) « = «,(T,). 

for values of Tn given by 

(4.052) 

(4.053) 

for values of T'n given by 

(4.054) 

P2{ T„) = ^(2w+1)tt, 

/3 = ift (Tft)|, 

Pa( T'„) = n-K. 

An alternative expression for <]> is then 

(4.06) <p — 0O +_pj + arc tan (~ tan p2) • 
\Pl J 

* The curves of 8 against t appear to have a minimum very near the muzzle of the gun in all rounds 

fired, but it will be seen that, in analysing the results, it is not necessary to assume any definite origin for 

t or 0. 

t Here arc tan (A tan x) is determined in such a way that it changes continuously as x increases 

indefinitely. 
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The curves of fig. 11 were calculated from formula (4.06), assuming and 

constant, and pu p2 proportional to t. They show the type of curve on which the 

observed values of 0 may be expected to lie. 

§ 4.1. Analysis of the Experimental Results. 

It is now necessary to make use of these results to analyse the experiments. The 

analysis was carried out by graphical methods. The observed values of S and 0 were 

plotted on separate diagrams, examples of which are shown in fig. 12, against the 

abscissa Qt, Q being determined from the muzzle velocity and the observed moments 

of inertia. The constant factor Q was inserted to make the independent variable of 

zero dimensions; the values of the variable Qt, at given distances down the range, 

are also independent of small changes in the muzzle velocity. The observed values 

of S are sufficient to give a good determination of curves showing the relation 

between § and Qt, except in the neighbourhood of the minima (3, where rapid changes 

of curvature occur when /3 is small.* These curves give approximate values of the 

periods from minimum to minimum, and also the best determination available of the 

values and times of occurrence T„ of the maxima a. By drawing smooth (non¬ 

periodic) curves through the values of a we determine aj as a function of Qt. 

* When f3 is small it may be convenient, in a preliminary plot, to change the sign of 8 in each alternate 

period, so as to obtain smooth curves with 8 passing through zero periodically. 
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In drawing curves for <p against Qt it is necessary to resolve the ambiguities of 

amount 2mr as follows:—Equation (4.06), or fig. 11, shows that <f> increases hy 

-iOr 

30*- 

20- 

Fig. 12a. Jump card trial, January and February, 1919. 

3-in. 20-cwt. gun with 16-lb. H.E. shell, Mark IIb. 

Shell, type I. Empty, and fitted with No. 80 fuze. 

The lower curves show the observed values of the yaw (8) on the 
scale 1 unit = 5° yaw, and the upper curves show the observed 
values of the orientation of the yaw (<£) on the scale 1 unit = 500°. 

Along the base are shown the values of Of in radians, on the scale 
1 unit = 10 radians, where t is the calculated time to each screen 
and 0 = AN/B, N being the axial spin of the shell in radians per 
second, and A, B being the axial and transverse moments of inertia 
respectively. The slope of the broken lines in the upper diagrams 
corresponds to the ratio <f>/0 = 

Those parts of the curves which are not determined by the obser¬ 
vations are also shown by broken lines. 

These diagrams show a typical example with each muzzle velocity 
used during the trial. 
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of the minimum, especially when is small. Hence, by adding to the observed <f> 
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multiples of 7r, which are alternatively odd and even in successive periods of 8, the 

points can be fitted roughly to a straight line of constant slope. All the points will 

lie fairly well on this straight line, except those in the immediate neighbourhood of 

the minima of 8. By producing this straight line backwards we can determine the 

initial value of <p. The slope of the straight line determines an independent value 

of Q, which is equal to the value deduced from the muzzle - velocity if the slope 

is 0-5. 
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In practice the values of Q, obtained by the two methods, were in satisfactory 

agreement, except for the shells with centre of gravity forward, whose dynamical 

constants were considerably altered by the set back of the lead block on firing. For 

these shells the slope of the observed 0-curve was taken as defining Q. The value of 

B after firing was deduced from this value, and the position of the centre of gravity 

was determined by equations (2.21) and (2.22). 

The curve showing the true relation of <p to Qt must pass through the true values 

of 0, which differ from the observed values only by integral multiples of 27r. It 

remains doubtful whether the value of 0 increases or decreases by the amount ir 

radians in passing through a minimum of <5, in addition to its steady increase at rate 

|-Q. This question is settled by the divergence of points near the minimum of (5 

from the straight line of fig. 11 ; thus, if the points lie above the straight line in 

approaching a minimum, there will be an increase of amount 7r, and vice versa. In 

this way a continuous curve may be drawn which is consistent with the equation 

(4.06). Specimens of the curves obtained in the analysis of the actual observations 

are : shown in fig. 12. The portions of the curves in the neighbourhood of the 

maxima will then coincide approximately with a series of parallel straight lines at 

distances apart of ir radians. The method can only fail in one case when none of the 

points diverge appreciably from the straight line of fig. 11. This indicates that the 

value of the minimum /3 is indistinguishable from zero, while the value of 0 changes 

almost discontinuously by ±7r at the time of the minimum. It is then immaterial 

whether the change is taken to be positive or negative.* 

The observed values of 0 in the neighbourhood of the minimum also yield 

information as to the value of /3i/a1 and the instant at which the minimum occurs. 

Let P be any observed point on a 0-curve which diverges measurably from the 

nearest straight portion of the 0-curve ; lying above it by A degrees. Let t0 be the 

time of occurrence of the nearest minimum, and Sp2 the change in p2 between the 

minimum and P. Then, by (4.06), 

(4.101) cot A = 77-wv cot <k>2. 
v ' AW 

If, in this equation, A, t0, Sp2, and (£0) are regarded as known, we can at once 

obtain a value of /3. By adjusting the value of t0 we attempt to reconcile the one or 

more values of f3 obtained in this manner and also the value demanded by the 

^-curve. By combining all the available evidence in this manner, remembering that 

the d-curve is nearly symmetrical about a minimum, and the 0-curve at the same 

time halfway between two straight portions, we can draw fairly precise final curves, 

* The rapid changes or discontinuities in the values of 0 and S', which occur when 8 is very small or 

zero, are due to the singularity which occurs at the origin of polar co-ordinates. The motion of the shell 

is, of course, in all cases continuous. 
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obtaining values of /3X (t,) and the times of occurrence of the minima with some 

accuracy. Such curves are shown in fig. 12. 

The following quantities have now been determined from the observations, viz. : 

the (assumed constant) value of Q, the times T'j, T'2, &c., of the occurrence of the 

minima of S (those are more accurately determined than the times of the maxima), 

and the values of oq (t) and (3X (t) over the range of the experiments. These values 

are given in Table V. 

4.11. Derivation of the Various Force Components.—It remains to derive the 

values of the various force components. By equations (4.054), (4.011) 

(4.111) p2 (T'n) — p2 (T'n_j) = 71-, [ Qa-dt = 2tr, 
J TVi 

giving, as a sufficient approximation, 

(4.112) - 2ir/T (T = T'„—TV.), 

(4.113) s = 
1-(2tt/QT)2 

(4.114) 
, (v\ = A2N2 

M \a) 4Bspv2r6 

where <r, s, and v correspond to the time \ (T/n + T/n_1). T is therefore the time 

between successive minima of S. The values of s and f^ obtained in this manner, or, 

in a similar way, taking an average over several periods, with the corresponding 

values of /u and vfa, are given in Table VI.,* and provide the data on which figs. 4 and 5 

and Table I. were constructed. 

By comparing the values of fM for shells of form A, with three different positions 

of the centre of gravity, the values of jfL were deduced by the formulae of § 1.13. 

This deduction was done graphically as shown in fig. 13. According to § 1.13 the 

relation between /M and l, the distance of the centre of gravity from the base 

of the shell, should be linear. Fig. 13 shows that all the observed points lie 

on straight lines within the limits of error of the observations. The slope of each 

line determines the value of fL The values of fh are shown plotted against v/a in 

fig. 4. 

* For the rounds fired from the gun rifled 1 in 30 the time of the first minimum near the muzzle is, 

in general, badly determined, and the first period is therefore omitted in determining a mean value for s. 

For the rounds fired from the gun rifled 1 in 40 the time of the first minimum can be determined with 

fair accuracy by extrapolation. 

3 c VOL. CCXXI.-A. 
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Fig. 13. The determination of the coefficient of the force acting normal to the shell. 

The plotted points show the observed values of the couple coefficient plotted against the distance of 

the centre of gravity from the base. 

The slopes of the lines drawn determine the coefficient of the normal force. 

The numbers against the points for the Type II. shells give the number of observations whose mean 

is represented by the plotted point. 

4.12. The Damping Factors.—It now only remains to derive as much information 

as possible as to the damping factors k, h, and y from the observed values of ai and 

A- The factor k is known in terms of the value of fh, since, by § 3.1, 

(4.121) k = pvFfJm. 

Squaring and subtracting equations (4.041) and (4.042), we obtain 

rr0JJe~2gi = (T (a2 — /V), 

ql = —T log {cr (ad —A2).' + const., 

(4.122) h + K 

! 

(^2 h) 
log {^(a^-A2)} 

In this formula, as well as in those which follow, k, h, and y may be treated as 

sensibly constant over the whole range of one experiment. On dividing (4.041) by 

(4.042), we obtain 

(4.123) tanh {j-q2) = A/ai- 
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Since y and q2 are both small over the range of the experiments, the formula 

becomes 

(4.124) h—k + 2y = 
-1 

(t'J — tl) a. 

The three equations (4.121), (4.122), (4.124) for k, h, and 2y are in theory 

sufficient to determine their values completely. It may be noted again that 2y is 

probably negligible and Ji — k + 2y is always positive, so that q2 continually increases 

with the time, and AAa continually decreases. The constant j is always very 

small, but may be positive or negative. If it is positive, (31 is initially positive, 

giving the larger average rate of increase of <p, which changes to the smaller rate of 

increase when /31 becomes negative. If j is negative, <j> increases at the slower rate 

from the beginning. Exactly the opposite results would be obtained if h—K + 2y 

were negative. The values of Ji + k and Ji—k + 2y, obtained in this manner, are 

given in Table VII. 

In order to illustrate the actual path traced out by the axis of the shell, it is 

necessary to plot 3 and <p as polar co-ordinates. This is done for three rounds in 

fig. 14. The resulting curves are roughly equivalent to the path of a point on the 

axis of the shell relative to the centre of gravity. They illustrate the decrease of au 

the algebraic decrease of /3U and the tendency to change from quick to slow precession 

and to settle down to a steady slow precession. 

The process described above was evolved gradually during the work of analysing 

the results, so that a number of observations were analysed before it was fully 

developed. It is probable that if the calculations were to be repeated ab initio a 

number of periods and minima of 3 would be slightly altered, but it is unlikely that 

any serious systematic errors remain. 

4.13. Details of Tables V. to VII.—The information contained in the General 

Table of Results, Table V., has been compiled by analysis of the original standard 

diagrams. As first constructed these were drawn with the time t as abscissa and not 

Qt as in fig. 12. It contains practically all the information of importance provided 

by the more stable shells. In the unstable cases, a number of which occurred during the 

trial (see for example fig. 12), a detailed study of the whole yaw curve is required 

which will not be undertaken in this paper. 

Column 5 gives the values of the periods of the yaw curve in units of ywuo second. 

The periods are read off from positions of the minima and sometimes of the maxima. 

They are entered to the nearest 2 ()00 second. They are in doubt by more than this 

quantity in many cases, but mainly in the case of the longer periods, in which small 

errors are of less importance. 

Column 6 gives the values of the maxima of the yaw in degrees and decimals to one 

place of decimals. These values are read straight from the curves and represent 

roughly the accuracy to which the maxima are in most cases determined by the 

observations. 

3 c 2 
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Column 7 gives two entries. The first is the value of QT for each round, where T 

is the mean value of the observed period and 0 corresponds to the observed value of 

the steady rate of increase of <j> from column 4. 

The second entry in column 7 is the velocity of the shell at the middle point of the 

range of periods whose mean value T is used to determine QT. The stability factor 

deteiauined by QT is taken to correspond to this velocity Finally, in column 8, the 

values of &(£) are given with their proper sign as determined incidentally in the 

determination of their times of occurrence (§4.11). 

The effect of the cards on the observed value of the period and on s, is ignored in 

Tables V. and VI. The results obtained here are corrected for this effect, as far as 

possible, before use in Table I. The information given in Table VI. is deduced 

directly from Table V. by the equations of §4.11. In certain cases where the yaw 

was large it was checked by use of the chart of § 3.7. 

The total percentage spread of the values of s (or /ul) in the group is-in most cases 

satisfactorily small. The value of 6 • 7 per cent, for the high velocity group of type I. 

shells is probably partly due to the fact that the fuzes of shells 1 to 4 were slightly 

damaged before firing in forcing the shells into the cartridge cases. 

At a velocity of 1580 f.s. results were obtained with guns of both twists of rifling. 

The couple deduced from the results for the gun rifled one turn in 40 calibres is, in the 

cases of shells of types I. and III., slightly smaller than that deduced from the other 

gun. This is to be expected as the stability in this case is nearly critical and the 

maxima are rather large (one maximum is as much as 13 degrees for a type I. shell). 

The solution of § 3.6 can hardly be expected to apply. The next term in the expression 

for /n of the form /x, sin3 S may be expected to be becoming appreciable here ; apparently 

its sign is such that it will tend to diminish the observed value of /x, in agreement 

with wind channel observations (fig. 2). For the shells of type II. the maxima of 

the yaw are small in both guns and the results are in agreement. 

No perceptible dependence of s on the maximum yaw among the rounds of any 

one group has been detected in these tables. 

The agreement between the results for the two guns at this velocity, and between 

rounds with different maxima of the yaw, is therefore a satisfactory confirmation of 

the theory. 

The values of h + K and Ji — k + 2y, deduced from the observations as explained in 

§4.12, are given in Table VII. Of these, the former is more reliable as it does not 

depend on /8X (t) which is difficult to determine. The actual values vary considerably 

from round to round, and only mean values for each group are shown. The results 

are therefore very rough, but they indicate qualitatively the nature of the damping, 

which may also be studied in figs. 12 and 14. For example, in fig. 14c, the motion 

starts with /31 (t) positive, so that the loop encloses the origin, O, or point of zero yaw. 

But since Ji — k + 2y>0, /3X (t) diminishes and has become negative by the second 

minimum, the loop failing to reach 0. As /3X (t) diminishes further, the loop shrinks to a 
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cusp at the fourth minimum, and the motion soon becomes indistinguishable from 

a precession at the slower rate. In the meantime, the maximum yaw a1 (t) decreases 

steadily. 

Vertical 

Fig. 14a. Path of nose of shell. Round 1.21. 

Path described, relative to the centre of gravity, by a point on the axis of the shell in front of the 

centre of gravity, shown on an enlarged scale. 

The total time taken from O to K is 02572 second. On the scale used, 1 cm. distance from O 

represents 1° yaw (very nearly), and corresponds to a linear displacement of O'118 inch for the nose 

of the shell from the. line of motion of the centre of gravity. 

The numerical results for the damping must be affected to some degree by the 

impacts on the cards, but the available data are not good enough for corrections to 

be worth making. There is, moreover, the curious phenomenon of an increasing 

maximum yaw shown by the rounds at 900 f.s. to be accounted for. 

The value of k is known from equation (4.121) and the values of fL in Table I., so 

that the damping results determine h and h + 2y or, more accurately, h + 2y—T 

(§ 3.62). It at once appears that 2y —T is negative and of much the same order as h. 

This is somewhat unexpected. Of course F (or — N'/N) is positive, but it is hardly 

likely that its numerical value is much larger than 0-03. It is natural to expect 
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y to be small and positive,* which does not fit in with the observations. Farther 

experiments would be needed to throw light on all these points. 

Path described, relative to the centre of gravity, by a point on the axis of the shell in front of the 

centre of gravity, shown on an enlarged scale. 

The total time taken from O to K is 0‘3647 second. On the scale used, 2 cm. distance from 0 

represents 1° yaw (very nearly), and corresponds to a linear displacement of 0-128 inch for the nose 

of the shell from the line of motion of the centre of gravity. 

In the fourth column what appears to he the most probable value of h is given; 

the values of fa in 'fable II. are based on these figures and obtained by the equation 

(see §§ 3.5 and 1.12) 

/h — 
hB 

pvr4 

* The coefficient y comes from the swerving couple J (§1.12). This couple will only ai’ise if the 

swerving force K does not act through the centre of gravity. Since the air pressures are greater near the 

nose than near the base, we may expect K to act in front of the centre of gravity. By analogy with the 

connection between the direction of rotation and the direction of the resulting swerve on a golf or tennis 

ball at low velocities, we may expect K to act along the axis of M reversed in fig. 9, for a right-handed 

twist of rifling. This would result in a positive value for y. 
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The figures in Table VII. were obtained from the sufficiently stable rounds fired 

from either gun. In the one comparative pair of groups available the results for the 

two different stability factors and values of Q were in agreement. 

Fig. 14c. Path of nose of shell. Round IV.15. 

Path described, relative to the centre of gravity, by a point on the axis of the shell in front of the 

centre of gravity, shown on an enlarged scale. 

The total time taken from 0 to K is O'5502 second. On the scale used, 2 cm. distance from 0 

represents 1° yaw (very nearly), and corresponds to a linear displacement of O' 143 inch for the nose 

of the shell from the line of motion of the centre of gravity. 

Note that the first loop encloses 0, corresponding to the “ stepped up ” motion in <f>. Subsequent 

loops do not, as the motion in <£ has changed to the “ stepped down ” motion. (See fig. 12.) 

§ 4.2. Determination of the Motion of the Shell in Space. 

We now proceed to make use of the results of the experiments to determine the 

true path of the centre of gravity of a shell projected in a given manner. The 

solution of the equations of type a is sufficient for this purpose so long as the yaw 

does not exceed 0*1 radian ; the values of y*L, fu, fRy &c., which we have obtained, 

are sufficient to determine the motion completely in this case. Assuming that the 

maximum yaw due to the initial disturbances is less than 0 • 1 radian in the first 

period, it will remain so throughout the trajectory; the yaw arising from the 

particular integral will not exceed 0 • 1 radian until the velocity has fallen considerably 
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below 700 feet per second. Hence, when the yaw exceeds 0-1 radian, the wind 

channel values for the various force components as shown in fig. 2 can be used; it 

will, however, be necessary to abandon the above method of solution and proceed by 

the step-by-step integration of the equations of type /3. 

Throughout the following work all numerical results will be based on a set of plane 

trajectories of a 16-lb. shell, of external form A, fired at a muzzle velocity of 2000 f.s., 

calculated by the ordinary ballistic methods.* The various elements of the trajec¬ 

tories at elevations of 30 degrees and 50 degrees and a list of constants for the 

service shell, to which the calculations apply, are given in Table VIIIa. 

From the value of £ for the general solution, as given in § 3.65, we can deduce the 

true path of the centre of gravity in terms of the tabulated elements of the plane 

trajectory. Let (Xx, Yj, 0) be the co-ordinates of the shell in the plane trajectory at 

time t, and (X, Y, Z) the corresponding co-ordinates in the true (twisted) trajectory. 

The direction cosines of the tangents to the two trajectories are Y\fv1, 0), or 

(cos 0], sin 01? 0) and Xl/v, Y'/v, Z'/v, so that, to the usual order of approximation, 

(4.201) c£ = (Y'-Y'O (cos 0a)M“ (X'-X'a) (sin Oj/v. + iZ'/v, 

= (H'-kZOM, 

say, while the condition v = vx gives 

(4.202) (X'-X'O cos 0!+ (Y'-Y\) sin 0X = 0. 

It is convenient to separate the parts of the solution arising from the comple¬ 

mentary function and the particular integral. To determine the latter, we use 

equations (3.632), (3.633), and (4.201), obtaining 

(4.203) 
71 = ^ p — 4&vc0/ dt 

Vi Jo cQ 

= cVo 

say, neglecting the terms i9"jQ in (see § 3.20). 

Therefore 

(4.204) 

where \p- may be written (since —O'Jc = g/vj) 

This equation defines \Js. 

A = 
<7*AN dt _ Ag p N fL(v/a) dt 

ixvx mr Jo /M {via) v2 

To the same approximation (X' — X'j)/^ and (Y' — Y'^/vi are 0(l/Q2), so that 

(Xj —X) and (Yj—Y) are small compared to Z, so long as the approximations hold. 

The above result is identical in form with the “ classical ” formula of Mayevski, 

* Trajectories were calculated with the ballistic coefficient 1 ’75. 
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freed from the unnecessary restriction that /L//M and N should be constants.* We 

have thus justified the use of the plane trajectory as an approximation to the true 

motion. The leading terms in (X—Xx) and (Y—Yx) can be calculated if required. 

The effect on the motion of a change in initial conditions is obtained from the 

complementary function. Equation (3.655) gives the value of £ corresponding to the 

general initial conditions £0 = 0, )?0 = a, >/0 = bQ, where a and b may he complex. 

Substituting in equation (4.201) the part of £ arising from the complementary 

function, it appears that H + iZ is made up of three parts 

(a) A periodic term 

(b) A term 

H1 + iZY 4*^-5 / K]??! K,„ \ 

G3 V(l+<x)2 (l-<x)2/ 

H2 + iZ2 — — {Kj (^)0 + K3 (f2)0| cv£3 dt, 

which is the effect of a variation in the direction of projection, as mentioned in 

§ 3.64. 

(c) A constant term H3 + ?'Z3 equal to the initial value of H 1 + iZ1 with its sign 

changed. 

4.21. Numerical Residts as to Motion of Centre of Gravity.—-The only data as 

to the forces on the shell required for the calculation of the drift are the value of 

/l//m as a function of v/a. This is derived from the results of the jump card 

experiments for vja >0*7, and from wind channel experiments for v/a <0*7, and is 

shown plotted in fig. 15. 

* Prescott obtains a solution of the equations of motion in the form of a series of which the first term 

is also equivalent to Mayevski’s formula. (See Introduction, p. 296.) 

3 P VOL. CCXXI.-A. 
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As the value of the couple T is only known to be small, it is necessary to assume 

that N is constant. The principal steps in the calculation of the drift Z, by means 

of (4.203) and (4.204), for the trajectories at 30 degrees and 50 degrees, are given in 

Table YIIIb. for the gun rifled 1 turn in 30 diameters of the bore. For a different 

rifling the drift (N constant) is proportional to N. 

It is only necessary to estimate roughly the effect of the complementary function 

on the motion of the shell since the total effect is always fairly small. The periodic 

term Hj-m'Z, is obviously smaller than 4vy1a]/Q2(l —a-)2 in absolute value, where ax 

is defined as in §4.0, equation (4.041). The initial value of the coefficient of ax is 

1-25 feet for the gun rifled 1 turn in 30 diameters of the bore; both ax and its 

coefficient diminish rapidly. Taking ax — 0*1 radian as an extreme case, 

| Hi + iLx | <1*5 inches. 

The actual value in practice is probably always <0*5 inch, which is small. It 

explains why no evidence of helical motion was obtained in the jump card experi¬ 

ments. The constant value of |H3-mZ3| is equal to the initial value of |H1 + iZJ| 

and is also negligible. There remains only the term H2 + ?'Z2. This is equivalent to 

an angular deviation of j K] (c^)0 +K2 (c£2)01 > which is less than 2ko.JQ (l —a-). The 

coefficient of ax for the gun rifled 1 turn in 30 diameters of the bore is 1*8 x 10~2, so 

that for a value of ax of 0T radian the angular deviation is of the order 0° 6'. This 

is of the same order of magnitude as the angular jump likely to be due to changes of 

form and position in the gun and mounting under firing stresses. When it varies 

from round to round in magnitude and direction, it will account for an irregularity 

of the corresponding amount in the observed positions of the shells at any time. 

When, as may sometimes be the case, it remains fairly constant from round to round, 

it will cause systematic errors in the position of the shell at any time. It is probable 

that anomalous values of the drift, sometimes observed at short times, are due to this 

cause. Practical results, however, more often fully justify the use of the particular 

integral alone to give a mean value of the drift when the initial disturbance is only 

known to be small. 

The results of the above calculations of drift will now be compared with observa¬ 

tions of the Z co-ordinates of the bursts of shells, fired at Portsmouth, at corresponding 

elevations, in February and April, 1918. For this purpose use is made of the azimuth 

of the shell burst Z/X; the quantity A = Z/X£ is tabulated, since its value varies 

slowly along the trajectory (Table IX.). The agreement between observation and 

calculation is as good as could be expected, in view of the uncertainty in the wind 

effects, and provides important evidence as to the correctness of the whole theory. 

4.22. The Damping of the Angular Oscillations and the Effect on the Head 

Resistance.—We have now obtained the complete motion of the centre of gravity of 

the shell by use of the equations of type a for the two standard trajectories; we 

have, in so doing, assumed that the velocity of the shell is the same in the plane and 
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true trajectories; we must now examine more closely the possible effect on the 

drag of the angular oscillations and their rate of damping, by means of the values of 

h and k obtained above. From equations (4.031) and (4.032) it appears that for 

sufficiently large values of t, $ and <p are given approximately by the equations 

<5 = iJ (o-0/ar)~ e~{q'~q-\ 

<P = fo+iPi-Ps), 

so that the shell settles down to a steady precession with the slower precessional 

angular velocity, the yaw gradually diminishing in proportion to the factor 

(o-0/o-)® e_(?1_?s). This quantity is tabulated in column 9, Table VIIIb., on the assump¬ 

tion that y = 0 and h = 3 k. The damping is actually more rapid than is indicated 

by this approximation. 

The question of the rate of damping of the initial oscillations of a shell is of 

importance on account of its effect on the drag R, for the effect, though it may be 

small, will be cumulative, since it tends always to increase R. If it is assumed that 

the effect on R is given by# 

(4.221) R = R0(1+Mi), 

where R0 is a function of v and k is a constant, it is possible to obtain an approximate 

formula for the total change in velocity produced on the assumption that the time 

taken to damp out the oscillations is relatively small. We have 

(4.222) 
m Jo 

— Av = — [ (R—R0)c?£, 

<52 dt.  £R„ 
m 

Using (4.031), and integrating on the assumption that o- is constant, qu q2, and p 

proportional to t, and j zero, we obtain 

(4.223) — Av = 
&J2R0 

2 m 
e 2qi (cosh 2q.j— cos 2p2) dt, 

_fcJJRoO-02 (h0 + K0)_ _ 
2m {<tq (/;0 + /cu)2 — (Ii0 — k0 + 2y0)2} 

At present we have no information as to the value of h except at low velocities 

while J varies from round to round so that no numerical results can be given. It 

seems likely that this is a cause of irregularities in range in practice of first class 

importance. The yaw arising from the particular integral Mall also tend to increase 

the resistance, but the effect is of less importance in a low angle trajectory. 

* By symmetry, there can be no odd powers of S in R. 

3 D 2 
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4.23. The Exact Motion in a High Angle Trajectory.— It will be shown in the 

next section that, for a trajectory of much higher elevation than 50 degrees, the 

approximations for the particular integral break down, and the equations of type a, 

are not applicable to the later stages of the trajectory when the velocity has fallen 

much below 500 f.s. These later stages occur after the initial oscillations have been 

damped out, and are suitable for the use of equations of type ft. These equations 

can be integrated step-by-step on the basis of the wind channel values of R, L, and 

M (fig. 2), which apply to velocities up to 700 f.s. The process is analogous to the 

usual method of calculating a plane trajectory, but rather more laborious, and has 

been carried out in one case only for a 3-inch 12^-lb. shell fired at 70 degrees with a 

muzzle velocity of 2450 f.s. At 40 seconds the yaw has reached the large value of 

60 degrees and is still increasing. This is partly due to the large initial value of the 

stability factor (about 4*0) indicating that the spin is unnecessarily large for this 

shell. The results of comparing the drift with observation were again fairly 

satisfactory in this case; but details of these results cannot be given here. 

§ 4.3. Estimate of the Errors in the Various Solutions. 

In the development of the various solutions of the equations of motion in Part III., 

it was found necessary to neglect certain terms. We shall now proceed to examine 

these terms in succession, and to determine, as far as possible, their numerical values, 

using the values of the various force components obtained from our experiments. By 

so doing we shall justify the use of the*solutions by showing that the terms neglected 

are all very small over the range covered by the jump card experiments. In the 

applications to the later parts of a trajectory, the solutions break down in certain 

cases, and an examination of the error terms enables us to define the circumstances 

under which the solutions are valid. We proceed to examine the various terms. It 

is necessary as a rule to distinguish the terms neglected in obtaining the comple¬ 

mentary function from the terms neglected in obtaining the particular integral. 

In the complementary function, m, n, y, z are periodic functions of the time with 

periods comparable with £3. For the solution to be applicable we have to assume 

that S is always small (say d<0*l radian). Then m, n, y, z are all small quantities 

comparable with S, and m'/Q, m"/Q2, &c., are also comparable with S, while (l—l), I'/Q, 

l"/Q2, &c., are of the order of <f. In neglecting terms independent of 6\ from the 

equations (3.202), (3.203), we are guided by the condition that all terms neglected 

should be of the order of S2 compared with those retained. As regards the terms 

containing 6\ or 0"1, it appears that the maximum value of 6\/Q in the 50 degrees 

trajectory (for rifling 1 in 30) is 30 x 10-5, its initial value being 5 x 10-5. Hence all 

terms such as nm'6\, n6\2 are completely negligible in obtaining the complementary 

function. 

If all terms in 6\, 6"1 are removed from equations (3.202), (3.203), they become 
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equivalent to the equations of type y ; the errors in neglecting further terms may, 

therefore, be determined by comparing the solutions of equations (3.204), (3.205), &c., 

of type a with those of equations (3.404), (3.405), of type y (assuming p constant 

in both cases). Equations (3.7041), (3.7043), (3.7044), (3.705) can be made to give 

the following approximation to the true value of s in terms of T and a :— 

_L_ 

47T2/a2T2 
{l —i (2s + l) a2}. 

This is valid so long as (*l) a is so small that a4 may be neglected, and (2) 5 — 1 is 

positive and large compared with a3. Comparing this with the corresponding first 

approximation (4.113), we obtain the error in the value of s due to the neglect of the 

terms in (l— l), l", &c., in equations (3.202), (3.203). The relative value of the error 

is given in the following table :—- 

oc s = 1-1. s = 2. s = 3. 

10° 0-012 0-019 0-027 

5° 0-0030 0-0048 0-0066 

2-5° 0-0007 0-0012 0-0016 

In analysing the jump card trial, whenever the error from this cause is appreciable, 

the results have been corrected by determining the values of 5 from the chart 

described in § 3.7. 

It appears also from the solution of the equations of type y that when s < 1 the 

initial angular motion is still periodic, but no longer of the nature of a small oscillation, 

since the period is a function of the amplitude and tends to infinity as the initial 

disturbance tends to zero. 

In using equations (3.202), (3.203) to obtain the particular integral, the order of 

magnitude of the various terms is different. The term is now the most 

important, while n is 0(l/Q) and m is 0(1 /Q2) with the notation of § 3.6. Most of 

the terms neglected are then O (l/Q4) compared to the principal term, and completely 

insignificant, but Bnl9\a is O (l/O2) and would affect the third term in the expansion 

for tj. Its effect however is completely negligible. 

4.31. The Equations of Motion of the Centre of Gravity.—These equations may 

be treated in a similar manner. In obtaining the complementary function, y and z are 

small compared to m and n (see equations (3.624), (3.625)), k/Q being initially less than 

0*01. As regards the differential equation for u (3.2141), the effect of neglecting 

the terms arising from the variation of It with S has been discussed in § 4.22 ; no 
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numerical data are available ; the effect is theoretically second order. The term in 

1— x is obviously negligible. Omitting these terms, the equation can be reduced to 

the form 

where 
u'+au — —gy cos 6ly 

a = {Rfo + flw, 0<S)} (0 < 0 < 1). 
m* dv1 

As a rough approximation we may assume that It = kv2, so that a = — 2v\/v1. We 

then find that 
d u yq cos 6 

dtv?~ v2 ‘ 

In the case of the complementary function, y consists of a constant term less than 

2 x 1CT3, and periodic terms whose period is of order l/Q. 

The former makes a contribution tou/v1 which is still less than 10-3 after 20 seconds. 

The latter contributesf a term of order yg/vjQ which is always less than 3 x 10~6. 

In the case of the particular integral y is 0 (l/Q2), see § 4.2. Hence in all cases we 

are justified in putting u = 0, v = v1} so long as the equations of type a hold at all, 

with the proviso that this conclusion may be at fault if the k of § 4.22 is numerically 

large. 

In reducing equations (3.212) and (3.213) we put x = 1, cos § = 1. This amounts 

to neglecting 1—x, 1— cos 8 compared to 1, and is obviously justifiable. We omit 

altogether from (3.212) the terms xd\ + (g/v) cos Qu or — g cos (x/vx—l/v). This 

term is excessively small, but could be retained, if desired. Finally we omit the 

terms in y cos 0U justifying the omission by the arguments used above for the same 

term in the equation for u. 

§ 4.32. Errors in the Solution for the Complementary Function.—The second term 

R,! in the expansion of R in equation (3.6233) will be taken as representing the 

principal part of the error in the standard solution for the complementary function 

arising at this stage. Its value is 

E. = -iM-« (M-‘). 

where M has the value appropriate to (3.6231). For simplicity in estimating errors 

we may take only the leading term in M so that here 

M = iQV. • 

The values of s determined from the jump card trial and the data of the 50 degrees 

plane trajectory are tabulated in column 2 of Table YIIIb. The value of cr can be 

t This contribution is of the form j" f{t)eintdt, which is of the order (1/12) x (maximum of f(t)) under 

suitable restrictions on f(t), which are satisfied here. 
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deduced and its first and second differential coefficients obtained from a difference 

formula. In this way we find that initially 

Ej/Ro = 0-000011, 

Rj/Eo = 0-0031, 

for the guns rifled 1 turn in 30 diameters and 40 diameters respectively. Moreover, 

the value of Rj/R0 diminishes along the trajectory. The neglect of this term is 

therefore justified, provided s > 1-1, and the total error in the solution will probably 

be of the same numerical order. 

The contribution of f (see 3.6235) to the coefficient of rj in equation (3.613) is 

2 kc' 

c (1 + O')’ 

the principal term in this coefficient being — Q2/4s. The relative value of the error 

in omitting this term is therefore 

which is less than 

8 sc'k 

cQ2( 1 ± o-) 

4sat 4s0'i , . 

-Q IT tan 6 1 • 

The values of these three factors can be obtained from Table VIII. The maximum 

value of this ratio for the 50 degrees trajectory is tan $i- This is negligible. 

In evaluating M to obtain equation (3.6234), terms such as P/Q2, kJi/Q2, k'/Q2 are 

neglected. It is unnecessary to evaluate such terms in detail, since it is known that 

k/Q and h/Q are less than 0-02 in all cases. It would, however, be easy to write 

down equation (3.6234) with such terms included. 

4.33. Errors in the Particular Integral. —The errors of the expression for the 

motion of the centre of gravity of the shell, given in (3.632) and (3.633), may be 

obtained from the expansion of the particular integral in powers of l/Q. The ratio 

i6'\/Q0\ of the two terms in ff>, §3.2, can be worked out from the data of the plane 

trajectory. Its initial and greatest value for the gun rifled 1 turn in 30 diameters is 

(0-0008), so that the second term is entirely negligible in comparison with the first. 

Writing therefore <4>j = 6\, it appears that the terms of order l/Q2 in (3.632) are real 

and so do not affect the drift. The next term is (with y = 0) 

4s 

(jo? ■n'\+ (4s*/]) +fi\ (Ssk—h—k)+vi 
d 

dt 
(4.9/c) +4sk2 — h< — / 

where ^ (= 4.sff/1) is the coefficient of l/iQ in the first term in the expansion of ?]. 
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There are also a number of other terms involving c', c" and c'2. The terms in c' are 

very small initially and vanish at the vertex, so that they are never likely to become 

important. The other terms in c" are certainly very small provided that s is of order 

unity. Since s varies roughly inversely as the square of the velocity (i.e., 

constant), the magnitude of the terms containing s rises very rapidly in the later 

stages of the trajectory when v becomes small. The first term in >7, — AisO'jQ, is 

given numerically in Table VIII., where it appears how rapidly it increases as the 

velocity falls. The values of the second term as given in equation (3.632) are also 

given (Table VIIIb., column 8). It appears that the ratio of the second term to the 

first term is always small so long as the first term is small. This term represents the 

effect of the particular integral in altering the co-ordinates in the plane of fire. The 

third term as given above is more difficult to evaluate, and only a rough estimate 

has been made of its value at two points on the 50 degrees trajectory. The 

results are:— 

Seconds. Third term/first term. Third term. 

t = 0 -2-02 x lO-8 -8-5 x 10“7 

t = 20 - l-94x 10~2 - 7•2 x10~4 

The value of the drift as estimated by the first term is therefore slightly too large. 

The first part of the third term, — £syi'\/(iQ)3, is of special interest, as it represents the 

sole contribution of the term >/' in equation (3.613) to the value of rj to this order. 

The term rj' represents all that remains in the equations of type a of the 

terms in B neglected in § 3.3 in obtaining the equations of type (3. The initial 

value of — £sij'J(iQ)3 is only 3'46xl0-5 of the first term in rj in the 50 degrees 

trajectory, and this ratio does not tend to increase as the velocity diminishes. 

This makes it likely that the equations of type (3 give an accurate solution in all cases 

when the initial conditions are those of the particular integral. 

Returning to the particular integral, we have shown that the third term is only 

0*03 (?) of the first term at the vertex of a 50 degrees trajectory where the velocity is 

as low as 500 f.s. For a trajectory at still higher elevation the minimum velocity is 

lower ; the value of the first term soon becomes too great for the use of approximations 

which neglect 1 — cos §, while the third term can no longer be neglected in comparison 

with the first term. The solution therefore fails when the elevation much exceeds 

50 degrees as soon as the velocity has fallen much below 500 f.s. The true degree of 

approximation given by the expansion can only be obtained in a special case. If the 

terms in rj' in equation (3.613), and terms of the solution containing c', &c., arising 

from the terms in £ are neglected, it may be shown that the error of the expansion at 
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any stage is less in numerical value than the last term retained.* Hence the 

numerical estimates of the third term, obtained above, justify the use of the first 

term only to obtain an approximate value of the drift at all elevations up to 50 degrees 

and for the initial part of a trajectory at any elevation. 

Part V.—Summary and Conclusion. 

§ 5.0. Summary of Preceding Results. 

In the earlier parts of this paper we have suggested a tentative set of components 

for the complete force system acting on a shell moving through air (or other medium), 

in which this complete system may be assumed to depend at any moment only on the 

position and velocities of the shell. We have submitted these suggestions to the test 

of experiment, and found that, so far as we have carried the analysis in this paper, 

the experiments confirm our suggestions, and provide, when the yaw is small, 

numerical values for two of the force coefficients (jfM with a probable error of 2 per cent, 

and fL with a probable error of 10 per cent.) for velocities up to double the velocity 

of sound. Plough values for a third coefficient fn are also provided. It appears 

probable that the other components (except of course the drag) are much less 

important, and that values of the yaw up to perhaps 10 degrees may be regarded as 

small in this connection. 

It is convenient to summarize here what we do and do not know about the 

components of the force system on the shells used in this trial. The values of the 

drag coefficient fR may be regarded as known for all velocities at zero yaw. The 

values of fM and fh are roughly known for velocities up to vja = 2*0, and values of 

the yaw less than 10 degrees. From wind channel experiments fR, /M and fL are all 

known for all values of the yaw when v/a is small, and these determinations probably 

apply so long as v/a <0-7. The damping effects are only known roughly, but 

sufficient is known to estimate how long a shell will take effectively to settle down to 

a steady state of motion. 

On the other hand the variation of fn with yaw is entirely unknown except from 

wind channel experiments, and so is the variation of fM and fL at values of the yaw 

greater than 10 degrees. The rate of diminution of the axial spin is unknown and so 

is the size of the swerve effect, though this latter is not likely to be important. 

The variation of fR with yaw could be studied experimentally by a suitable 

combination of jump card observations, with the use of the solenoid chronograph to 

determine as exactly as possible the deceleration of the shell at every point. The 

values of jfM and fL for larger values of the yaw could be obtained by a detailed 

analysis of unstable rounds in which large values of the yaw are realized. A start 

* The equation is now of the first order in -q only, so that the exact solution may be written down in 

the form of an integral. By successive integration by parts we obtain the expansion (3.632) together 

with an integral representing the error after n terms. 

3 E YOL. CG’XXI.-A. 
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could be made with the data of the present trial, but we cannot undertake this in 

this paper. 

In Part III., we have arrived at two separate solutions of the equations of motion 

of a shell treated as a rigid body, which together cover practically all types of motion 

which are likely to occur in practical shooting. (We ignore here the case of an 

unstable shell, since it is of no practical use.) A general solution of the equations of 

motion of tj^pe a has been developed, which applies with sufficient accuracy to the 

most general type of motion of a shell whose angle of yaw $ and inclination of the 

tangents of true and plane trajectories do not exceed (say) 0 • 1 radian. The solution 

of the equations of type /3 can be applied with sufficient accuracy to the steady (non- 

oscillatory) motion of a shell at any angle of yaw. In practice the large angles of 

yaw (> O’l radian) only occur in the neighbourhood of or beyond the vertex of a 

high angle trajectory, and by this stage the initial angular oscillations of the shell 

have been completely damped out so that the condition for the applicability of the 

solution of type fB is satisfied. Thus the solutions we have obtained, though 

theoretically inadequate, are probably sufficient to cover all cases likely to occur in 

practice. 

In order to make use of these solutions to determine the complete motion of 

a shell, information is necessary as to the complete force system acting on the 

shell. Our information, as we have seen, is fairly complete for angles of yaw up 

to 10 degrees, and can be applied to calculate the true trajectory of any shell for 

which the angle of yaw does not exceed this value, if the loss of spin and increase of 

drag with yaw can be ignored. 

Larger angles of yaw (exceeding 10 degrees) occur in general only as a consequence 

of the low velocity of the shell near the vertex of a high angle trajectory. The force 

system is then mainly covered by wind channel observations. The information as to 

the force system obtained by our methods is thus adequate for the calculation of a 

complete set of twisted trajectories at all elevations, at any rate for a 3-inch shell. 

§ 5.1. Problems for Further Discussion. 

5.11. Unstable Rounds.—We have already mentioned that further information 

about and fh, at yaws greater than 10 degrees, could be obtained by analysis of the 

unstable rounds. This requires the application of the exact top equation with a 

variable value of p. (§ 3.7) to the discussion. No means' of introducing damping effects 

into these equations has yet been devised. It should, however, be possible to obtain 

fairly reliable information as to the variation offM and jfL with yaw between the angles 

of 10 degrees and 30 degrees by the analysis of the unstable rounds fired in this trial 

(Table IV.). 

5.12. Initial Conditions.—By extrapolating the (bcurve and 0-curve backwards 

to the gun muzzle (t = 0) information may be obtained as to the way in which the 
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projectile leaves the gun, which may prove of value. Owing to the effect of the 

initial oscillations on the ranging of the shell, it is important to determine whether, 

in general, the initial disturbance takes place at, or nearly at, the same orientation. 

Secondly, it is important to determine whether the initial oscillations may be regarded 

as caused by an impulsive couple whose size is independent of the twist of the rifling. 

If this is so, the amplitude of the initial oscillations of a shell can be cut down 

indefinitely by sufficiently increasing the spin. If, however, as appears to be the 

case from a rough survey of the data of the present trial, the initial circumstances 

are such that the impulsive couple (or its equivalent) increases in proportion to the 

twist of the rifling, then no increase of spin will reduce the oscillation below a 

certain definite limit. This conclusion would be technically important, as in the 

later stages of flight the spin is always in excess of requirements, and so the initial 

spin should be kept down as much as possible. 

5.13. Wind Effects.—In calculating the effect of wind on a shell it is usual to 

assume that the shell at once turns its nose to the relative wind. This is not strictly 

correct, and the true angular motion in a wind when the velocity is known at every 

point can be determined by our theory, since the forces acting on the shell depend 

only on its motion relative to the air. Consider, for example, the special case in 

which a shell suddenly enters a cross-wind region from a region of still air; it 

starts its relative trajectory with a yaw S given by the equation 

tan S = w/v, 

where w is the wind velocity and v the velocity of the shell. At the same time 

S' = 0 and f — 0. The equations of § 3.6 enable the subsequent motion to be 

properly traced, and the errors in the usual treatment calculated. 

§ 5.2. Effect of Size and Shape of Shell. 

The jump card trials described in this paper were carried out with shells of two 

different shapes only. The differences between the two shells may he seen from fig. 6 

to be considerable, form A having an ogival head of roughly 2 calibres radius, while 

form B is of 6 calibres radius. For form B the experiments determine the moment 

coefficient only, for a single position of the centre of gravity, and give no information 

as to the cross-wind force. As experiments of this type are expensive and laborious 

to carry out, it is of importance to examine how far these results may be applied to 

shells of other shapes and sizes. 

From the results of § 1.1 it appears that there is no evidence that the size (repre¬ 

sented by the radius r of the shell) enters into any of the factors on which the force 

coefficients depend, so that the coefficients ,/K, fM, fL may be considered as entirely 

independent of size. It is therefore sufficient to make experiments on shells of as 

3 e 2 
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small a calibre as is consistent with obtaining accurate measurements of the jump 

cards. 

With regard to the effect of variation of shape we have very little evidence. 

If we compare the moment coefficients fM for shells of 2 and 6 calibres radius of head, 

as shown in figs. 4 and 5, it is obvious that the difference is much less marked than 

the difference between the two curves offu, and that the two curves offM are very 

nearly of the same shape. No great errors would be introduced by assuming that the 

values of fM for the two shells were in a constant ratio. Thus it seems reasonable, 

until the appearance of evidence to the contrary, to consider that the value of the 

moment coefficient for any shell can be obtained by multiplying the value, obtained 

in this experiment, by a constant independent of the velocity. It will then be 

sufficient to determine the value of this constant at a single velocity, which may even 

be a low velocity attainable in a wind channel. The value of the cross-wind force 

factor for any shell may be obtained in a similar manner but the results will be more 

uncertain. For rough purposes it may even be sufficient to assume fh and fm 

independent of the velocity except when dealing with velocities very near the velocity 

of sound. It thus appears to be possible to treat fM in the classical way in which 

was treated, in which it was assumed that the values offn for two different shells are 

in a constant ratio at all velocities. This treatment is inadequate in the case offK, 

but on present evidence is far more valid in the case off^. 

By applying the results of the present trial in this way, we may even hope to get 

reasonably accurate estimates of the drift and stability for any type of shell, on the 

basis of wind channel experiments only on the particular shape of shell required. 

The method would be especially valuable in connection with the design of new 

shapes of shell. It is known that, in general, the longer and more pointed a shell is, 

the less is its drag coefficient; by a series of wind channel tests on a series of shell 

shapes it would be possible to determine the greatest length of shell that would be 

sufficiently stable in a gun of given rifling, or the sharpness of rifling required to make 

a given shell stable. Useful information was obtained on this point from wind 

channel experiments before the jump card trial provided certain data for the extra¬ 

polation to high velocities. It must be emphasised, however, that this one experiment 

needs extension and confirmation before the structure sketched above can confidently 

be reared upon it. 

We have now discussed in general terms the applicability of our theory and 

experiments to the calculation of drift, stability, the effect of wind, and the design of 

improved forms of shell. Though the details of the calculations on these various 

points are not given here, enough has been said to show that the results form some 

advance in the subject of the application of aerodynamics to the flight of shells. 



THE AERODYNAMICS OF A SPINNING SHELL. 371 

Table V.—General Table of Results. 

Column 1. 

5 J 5. 

6. 

7. 

8. 

Number of round. 

Muzzle velocity, f.s., for round, or mean for group. 

Air density p, lb./(ft.)3 and temperature F. 

<p' = \0, degrees/sec. 

Upper entry—Calculated value for round, or mean for group. 

Lower entry—Observed value.* 

Period T, between successive minima of S, in units of 10-3 sec. 

Maxima of yaw, (t) degrees. 

Mean values of QT, radians, for each round, for mean velocity as stated. 

Minimal of yaw, /3t (t) degrees. 

* When there is only one entry there was no detectable difference between the observed and calculated 

values of <£. 

t Note.—The sign given is the sign of /31 (t) at the minimum, see § 4.0. The yaw 8 is always positive. 

Gun rilled 1 turn in 40 calibres. 

1. 2. 3. 4. 5. 6. 7. 8. 

1 ype I. 

I. 11 0-0792 2108 252 2-1 19-10 o-o 
918 43° 267 2-5 905 — 

— 2-11 

I. 12 0-0792 2108 276 6-1 19-79 -0-4 
918 43° 262 6-9 905 -0-6 

— 7*5 + 

' I. 14 0-0807 2113 296 7-2 21-60 -0-9 
920 42° 289 6-4 905 -1-5 1 

I. 13 0-0807 2139 234 1-5 18-44 - 1-0 
931 42° 260 31 919 - 2-4 ? 

— 5-5 + 

I. 5 0-0782 3595 230 12-2 28-87 -0-9 
1565 45° — 8-5 1539 

I. 6 0-0782 3595 227 13-7 28-49 o-o 
1565 45° — 9-5 1540 



372 MESSRS. R. H. FOWLER, E. G. GALLOP, C. N. H. LOCK AND H. W. RICHMOND: 

Table V. (continued). 

1. 2. 3. 4. 5. 6. 7. 8. 

Type I. (continued) • 

I. 7 0-0782 3595 354 10-5 41-71 -2-3 
1565 

' 

45° 3375 1526 

I. 15 0-0807 4892 2T = 18-19 
2130 42° 213 17-5 2082 -0-4 

5-5 

I. 16 0-0807 4892 2T = 17-33 
2130 42° 203 17-5 -0-6 

5-7 2085 

I. 1 0-0786 4977 931 4-5 15-98 - 1-0 
2167 42° 92 4-1 -0-6 

90| 3-7 2104 -0-6 

I. 2 0-0786 4977 112 7-5 18-85 o-o 
2167 42° 105 6-3 -0-21 

— 5-3 2117 

I. 3 0-0786 4977 107 4-5 17-94 -0-3 
2167 42° 991 3-5 -0-4 

— 3-1 2120 

I. 4 0-0786 4977 118 4-1 20-81 -0-4 
2167 42° 121£ 3-0 2113 -1-41, 

I. 19 0-0812 5217 98£ 5-0 17-20 -0-2 
2272 40° 901 4-3 -0-3? 

3-0 2217 

I. 20 0-0812 5388 964 8-7 17-96 + 0-4 
2346 40° 5250 94J 7-9 + 1-0 

7-1 2288 

I. 21 0-0812 5388 99 5-6 18-03 - 1-0 
2346 40° 99 4-0 -0-6 

— 3-3 2282 
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Table Y. (continued). 

1. 2. 3. 4. 5. 6. 7. 8. 

Type II. Fori n A. C.G. forward. 

II. 8 0-0807 1960 210 1-6 15-30 -0-9 
934 42° 2020 224 3-2 -0-5 

— 3-8 923 

II. 9 0-0807 1960 246 4-5 16-22 -0-3 
934 42° 228 4-0 - 1-2 

— 4-7 922 

II. 10 0-0807 1960 254 6-7 17-45 -0-8 
934 42° 256 6-8 -0-5 

— 8-1 921 

II. 5 0-0780 3541 1471 4-9 18-11 -0-7 
1585 46° 145£ 3-7 -0-7 

— 2-4 1554 

II. 6 0-0780 3541 144£ 1-2 17-92 -0-51 
1585 46° 145£ 1-2 - 0-51 

— 1-0 1555 

II. 7 0-0780 3541 187 31 22-07 -0-4 
1585 46° 170 2-2 1548 -0-3 ? 

II. 1 0-0786 4795 99 3-2 14-76 -0-7 
2024 42° 4530 891 2-5 -0-8 

91i 2-3 1983 -0-7 

II. 2 0-0786 4795 103 3-0 15-34 o-o 
2024 42° 4625 95 2-3 -o-l 

87 1-9 1982 -0-5 

II. 3 0-0786 4795 96 2-9 14-29 -0-2 
2024 42° 4435 89 2-6 -0-2 

92 2-3 1984 -0-2 

II. 4 0-0786 4795 98J 1-9 14-75 o-o 
2024 42° 81 1-7 o-o 

85 1-8 1985 o-o 

1 
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Table V. (continued). 

1. 2. 3. 4. 5. 6. 7. 8. 

Typ e III. F( )rm A. C.G. back. 

III. 8 0-0807 2450 247 5-7 20-23 -0-4 
931 42° 226 5-5 919 - 1-5 

— 5-8 

III. 9 0-0807 2450 254 5-0 20-10 -0-4 
931 42° 216 5-5 919 -1-3 

— 4-3 

III. 10 0-0807 2450 232 5-2 19-50 -0-3 
931 42° 224 5-5 -1-5 

— 7-8 920 

III. 5 0-0780 4166 217 8-7 31-06 -3-7 
1583 46° 4100 — 7-8 1556 

III. 6 0-0780 4166 196 9-0 28-52 -3-6 
1583 46° “— 8-2 1558 

III. 7 0-0780 4166 237 5-5 32-93 -2-9 
1583 46° 3980 — 6-3 1553 

III. 1 0-0785 5331 125 1-5 20-66 
2025 43° 97 1-2 — 

— 0-8 1994 

III. 2 0-0785 5331 113 3-7 19-54 -0-7 
2025 43° 97 3-4 1995 - 1-5 

— 3-4 

III. 3 0-0785 5331 109 2-4 20-10 -0-2? 
2025 43° 107 1-8 -0-5 

1-3 1994 

III. 4 0-0785 5331 106 2-9 19-36 o-o 
2025 43° 102 2-1 -0-8 

— 1-8 1994 
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Table V. (continued). 

Gun rilled 1 turn in 30 calibres. 

1. 2. 3. 4. 5. 
' 

6. 7. 8. 

Typ< 3 I. Forn n A. Empl ,y shell. 

I 22 1119 0-0811 3429 91i 2-1 10-07 + 0-1 
86i 1 -9 o-o 
82 1-9 - 0-31 

38° 86 — — 

79i 1-9 -0-2 
87 2-0 1089 — 

I. 23 1119 0-0811 3429 79 3-0 10-34 + 0-4 
91 2-4 -o-i 
87 2 * 2 -0-4 

38° 86 — — 
834 2-0 -0-4 
84| 1-8 1090 — 

I. 24 1119 0-0811 3429 85 2-8 10-27 + 0-4 
90 2-4 -0-2 
86 2-2 -0-4 

38° 84* — — 
84-| 2-1 -0-6 
84 2-1 1090 -0-91 

I. 25 1326 0-0811 4061 74* 2-0 9-91 o-o 
71 1-8 o-o 
69 1-9 o-o 

38° 681 — — 
71 1-6 o-o 
70 1-4 1280 -0-8? 
— 2-0 

I. 26 1326 0-0811 4061 71 3-6 10-04 + 0-4 
74 2-8 + 0-1 
71 2-6 o-o 

38° 73 — — 
661 2-6 -o-i 
694 2 • 2 1285 -0-81 

I. 27 1563 0-0805 4786 601 3-8 9-59 -0-3 
551 3-7 -0-3 1 
59 3-5 -a-2 

36° 601 — — 
55-i 2-9 -0-5 
56-i 3-3 1 -0-8 

2-5 1515 

3 F YOL. CCXXI.-A. 
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Table Y. (continued). 

1. 2. 3. 4. 5. 6. 7. 8. 

Type I. Form A. Empty she [] (continuec 0- 

I. 28 1563 0-0805 4786 59 3-1 9-66 -0 4 
59 2-6 -0 4 
59 2-1 -0 3 

36° 59 — — 
571 1-9 -0 2 
54| 2-0 -0 5? 

■ 
2-1 1515 

Type II. Form A. C.G. forward. 

II. 17 1119 

II. 18 

II. 19 

II. 24 

1119 

1119 

1292 

II. 22 1589 

0-0811 

38° 

3168 

3128 

92J 
90 
88} 
91 
911 

0-0811 3168 

o G
O

 
C

O
 3128 

0-0811 3168 

38° 3128 

0-0805 3709 

36° 

0-0819 4738 

36° 

88 
94* 
87| 
89“ 
91 

88 
89 
894 
90“ 
891 
914 

76 
74 
72 
76 
75 
76 

52 
51 
544 
564 
541 
52 
55£ 

2-8 9-85 
2-75 
2-6 

2-0 
1-7 1092 

3-3 9-88 
2-8 
2-6 

2-3 
2-2 1093 

2-9 9-82 
2-4 
2-0 

2-0 
2-1 1088 

| 

2-7 9-70 
2-9 
2-7 

2-4 
3-0 1259 

2-1 8-93 
1-9 
1-4 
1-4 

1-1 
1-4 1543 

•0 
•0 
•6 
•5 
•7 

+ 0-1 
o-o 

-0-6 
-0-7 
-0-7 

+ 0-1 
0-0 

-0-3 
-0-4 
-0-5 1 
-0-5 1 

-0-15 
-0-3 
-0-2 
-0-3 
-0-7 
-0-5 

+ 0-5 
+ 0-1 1 

+ 0-5 

+ 0-1 
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Table V. (continued). 

1. 2. 3. 4. 5. 6. 7. 8. 

1 -ype II. Form A. C.G. forwa rd (continue d). 

II. 23 1589 0-0819 4738 54 2-3 9-13 + 0-3 
5 periods 2-1 + 0-1 

in 276 — — 

36° — — 

1-9 _ 

1 
1-6 1548 -o-i 

Typ e III. Form A. C.G. back. 

III. 17 1119 0-0811 3928 67 1-8 10-08 o-o 
75 1-8 o-o 
71 2-2 o-o 

38° 73 2-2 o-o 
71 — o-o 
74 1-8 o-o 
77 1-7 1091 o-o 

III. 18 1119 0-0811 3928 63 1-4 9-91 + 0-2 
71 1-4 — 

75 1-4 1 + o-i 
38° 77 1-8 — 

72 — + 0-2 
1-4 + 0-1 

67 1-3 1091 -o-i 

III. 19 1119 0-0811 3928 64 1-6 10-17 + o-i 
72 1-4 + o-i 
77 1-3 + 0-1 

38° 74 1-4 + o-i 
74 — + o-i 
71 11 -o-i 
77 1-1 1091 — 

III. 20 1292 0-0805 4534 62 2-7 9-63 o-o 
59 2-7 -o-i 
62 2-2 -0-5 

36° 58 2-2 — 

63 — - 1-0 
63 2-0 1261 -0-5 
60 1-6 -0-9 
— 1-6 

3 f 2 
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Table Y. (continued). 

1. 2. 3. 4. 5. 6. 7. 8. 

Type III. Form A. C.G. bad : (continued )• 

III. 21 1292 0-0805 4534 60 3-6 9-50 o-o 
62 3-2 o-o 
59 2-7 -0-2 1 

36° 59 2-6 — 
61 — -0-7 ? 
59 2-3 -0-5 
60 2-1 1262 - 0-6 

III. 22 1567 0•0805 5501 42 3-5 9-38 -o-i 
50 2-9 -0-2 
49 2-8 -0-4 

36° 49 2-4 — 

50 — 0-4 
49 2-6 -0-3 
46 -' - 0-3 
— 2-3 1525 

III. 23 1567 0-0805 5501 51 1 1-7 1 9-22 o-o 
42 1-6 o-o 
51 1-4 o-o 

36° 47 1-0 — 

48 1 — — 

511 • • 1-0? o-o 
49? — 1526 o-o 

1-0 o-o 

Type IV. Form B. 

IV. 21 900 0-0811 2431 116 1-7 10-27 -0-6 
120 2-8 - 1-5 
122 2-3 — 

38° 116 — - 1-0 
126 2-7 + 884 -2-0 1 
— 3-5 + 

IV. 22 900 0-0811 2431 124 3-0 10-10 + 0-3 
128 2-8 -0-2 
119 1-9 — 

38° no _ -0-4 
119 2-3 884 -0-7 
— 3-0 + 

| 
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Table Y. (continued). 

1. 2. 3. 4. 5. 6. 7. 8. 

Tyi >e IY. F< 3rm B (cont inued). 

IY. 23 900 0-0811 2431 1-7 ? 9-84 + 0-2 
112 1-7 -0-8 
120 2-6 — 

38° 114 — -0-8 
118 2-0 884 -10 
— 2-0 + 

IV. 13 1078 0-0811 2911 113 2-0 12-39 + 0-3 
128 1-8 -0-4 
125 1-5 ? -0-6 

38° 113 1-6 -0/9 
— 2-0 1059 

IV. 14 1078 0-0811 2911 109 1-6 11-45 + 0-2 
123 1-5 -0-3 
110 1-8? — 

38° 105 1-6 -0-3 
— 1-7 1060 

IV. 15 1078 0-0811 2911 107 2-2 11-76 + 0-3 
121 2-1 -o-i 
118 2-2 — 

38° 108 1-7 -0-5 
1-8 1060 

IV. 16 1547 0-0811 4178 82 1*6 10-72 + 0-1 
78 1-6 o-o 
67 1-4 — 

38° 75 1-0 o-o 
74? 0-9 1503 -o-i 

IY. 17 1547 0-0811 4178 83 3-5 10-72 + o-i 
75 3-2 o-o? 
75 2-8 — 

38° 73 1-9 - 1-2? 
71 2-6 1503 -0-9 ? 

IV. 18 1547 0-0811 4178 83 4-2 11-09 + 0-1 
80 3-9 o-o 
75 3-3 — 

38° 73 3-2 -0-4 
3-1 1509 -1-1 

1 
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Table V. (continued). 

1. 2. 3. 4. 5. 6. 7. 8. 

Tyi je IV. F< 5rm B (cont inued). 

IV. 19 1547 0-0811 4178 77 4-0 10-96 
75 3-4 — 

38° 73 3-4 1496 

IV. 20 1547 0-0811 4178 73 3-3 10-69 
75 2-5 — 

38° 72 2-2 1497 

IV. 24 2101 0•0805 5675 55 4-6 10-70 -0-2 
57 3-8 -0-3 
51 3-5 '- 

36° 55 3-5 -0-51 
53 3-4 2045 - 1-01 

IV. 25 2112 0-0805 5705 56 2-2 10-70 o-o? 
55 2*2 o-o 
52 1-3 — 

36° 55 1-2 2073 o-oi 
54 1-3 -0-8 

IV. 26 2149 0•0805 5805 50 2-4 10-60 -o-i 
53 2-0 o-o 
54 2-0 — 

36° 53 1-7 — 

54 1-2 2093 -0-3 
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Table VI.—Values of the Stability Coefficient and the Air Couple deduced from 

Analysis of the Stable Shells. 

Summary of Notation used in the Headings of this Table. 

/ul sin S — couple due to air forces. 

s = = stability coefficient. 
4p 

v = mean velocity of shell, f.s. 

p = air density, lb./(ft.)3. 

a — velocity of sound, f.s. 

fu (v/a) — p./(pv2r3), the air couple coefficient. 

N.B.—The values of s, p and /M have not been corrected in this table for the effect of the cards. 

1. 2. 3. 4. 5. 6. 7. 8. 

Round No. 
or group of 

rounds. 

Twist 
of 

rifling. 

Value of s 
deduced from 
observation. 

Mean value 
of V 

corresponding 
to value 

of s. 

Value of p. 
Value of 
/m (v/a). 

Value of 
v/a. 

Total 
percentage 
spread of 
s or p in 
group. 

I. 11, 12 1/40 1-113 905 1220 9-58 0-824 
I. 14 1/40 1-087 906 1250 9-71 0-825 4-1 
I. 13 1/40 1-131 919 1230 9-26 0-837 

I. 22-24 1/30 1-61 1090 2230 11-85 0-996 3-2 
I. 25,26 1/30 1-66 1283 3030 11-62 1-173 1-7 
I. 27, 28 1/30 1-74 1515 4000 11-09 1-388 1-1 
I. 5- 7 1/40 1-005 1535 3920 10-89 1-394 0-9 

I. 15, 16 1/40 1-137 2084 6410 9-36 1-897 
I. 1 1/40 1-180 2104 6390 9-40 1-916 6-7 
I. 2- 4 1/40 1-118 2117 6750 9-80 1-927 

I. 19 1/40 1 • 152 2217 7190 9-22 2-023 
I. 20, 21 1/40 1 • 133 2285 7800 9-41 2-085 1-9 

II. 8-10 1/40 1-172 922 1170 8-71 0-840 4-9 
II. 17-19 1/30 1-69 1091 2000 10-46 0-997 0-8 
II. 24 1/30 1-72 1259 2700 10-86 1-153 
II. 5- 7 1/40 1-121 1553 3680 9-98 1-408 4-7 
II. 22, 23 1/30 1-94 1546 3800 9-95 1-416 3-8 

1 
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Table VI. (continued). 

1. 2. 3. 4. 5. 6. 7. 8. 

Mean value Total 
Round No. Twist Value of s of V percentage 
or group of of deduced from corresponding Value of p.. spread of 

rounds. rifling. observation. to value / M \Vla)‘ s or fi in 
of s. group. 

II. I 1/40 1-216 1983 5506 9-12 1-804 
II. 2 1/40 1-200 1982 ' 5689 9-42 1-803 
II. 3 1/40 1-2.32 1984 5320 8-80 1-805 
II. 4 1/40 1-220 1985 5809 9-59 1-806 

III. 8-10 1/40 1-107 919 1520 11-41 0-837 0-9 
III. 17-19 1/30 1-64 1091 2570 13-66 0-997 3-3 
III. 20,21 1/30 1-76 1262 3200 12-79 1-156 2-1 
III. 22, 23 1/30 1-84 1526 4500 12-32 1-398 2-9 
III. 5- 7 1/40 1-035 1556 4410 11-96 1-411 0-6 
III. 1- 4 1/40 1-109 1994 7020 11-52 1-814 1-4 t 

IV. 21-23 1/30 1-64 884 1270 10-25 0-808 2-6 
IY. 13-15 1/30 1 * 39 1060 2140 12-06 0-969 5-0 
IV. 16-20 1/30 1-505 1502 4070 11-41 1-373 3-7 

IY. 24 1/30 1-525 2045 7420 11-29 1-874 
IV. 25 1/30 1-525 2075 7500 11-11 1-899 1-0 
IV. 26 1/30 1-54 2093 7680 11-16 1-917 
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Table VII.—Observed Values of h + K and Ji—k + 2y, the Damping Factors for 

each'Group. 

Groups fired at a velocity of 900 f.s. apparently have negative damping and are not 

included. 

Group. 
Muzzle velocity, f.s. 

Calculated value 
of K. 

/?• -1~ k. h — k + 2y. Probable value 
of h. 

I. 22-24 
1119 

0-4 1-9 1-6 1 1-8 

I. 25, 26 
1326 

0-3 2-4 1-2 1-8 

I. 27, 28 
1563 

0-4 3-0 0-5 1-8 

I. 1- 4 
2167 

0-7 2-2 0-6 1-4 

I. 19-21 
2320 

0-8 2 • 2 - 0 • 2 1 1-3 

II. 17-19 
1119 

0-4 2-2 1-2 1-7 

II. 24 
1292 

0-2 0-9 0-6 1-5 

II. 5- 7 
1585 

0-4 3-4 0-4 
2-0 

II. 22,23 
1589 

0-4 33 0-6 

II. 1- 4 
2027 

0-6 3-0 0-6 2-0 

III. 17-19 
1119 

0-4 0-7 1 0-1 1 10 

III. 20, 21 
1292 

0-2 3-1 0-9 2-0 

III. 22, 23 
1567 

0-4 3-0 0-3 2-0 

III. 1- 4 
2025 

0-6 4-2 1-7 3-0 

IV. 13-15 
1078 

0-5 0-7 1-4 1-0 

IV. 16-18 
1547 

0-5 3-1 1-2 2-0 

IV. 24-26 
2120 

0-7 5-0 0-9 3-0 

N.B.—The calculated value of k is obtained by using the value of the cross-wind force coefficient 

given in Table I. 

3 G YOL. CCXXI.— A. 
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Table Till.—Plane Trajectories at 50 degrees and 30 degrees, with Calculations 

of the Drift, &c., for Shells of External Form A. 

Constants used in the Calculations. 

Muzzle velocity 

Centre of gravity . 

Weight .... 

Moments of inertia 

^ _ f gun rifled 1 in 30 

l „ 1 „ 40 

Ballistic coefficient. 

2000 feet per second. 

4*88 inches from the base. 

16-02 lb. 

0-1329 lb. (ft.)2. 

1-1555 lb. (ft,.)2. 

192-7 radians per second. 

144-5 

1-75. 

Table YIIIa.—Plane Trajectories at Elevations of 50 degrees and 30 degrees. 

Column 1. Time t, seconds. 

,, 2. Velocity vu feet per second. 

,, 3. Inclination degrees. 

,, 4. Horizontal distance X, feet. 

,, 5. Vertical height Y, feet. 

Elevation 50 degrees. Elevation 30 degrees 

1. 2. 3. 4. 5. 2. 3. 4. 5. 

0 2000 50 0 0 0 2000 

O / 

30 0 0 0 
1 1720 49 21 1,199 1,413 1726 29 8 1,614 917 
2 1506 48 36 2,254 2,628 1515 28 8 3,033 1692 
3 1342 47 44 3,201 3,686 1352 26 59 4,300 2354 
4 1218 46 45 4,068 4,624 1230 25 42 5,454 2926 
6 1059 44 28 5,648 6,241 1075 22 45 7,538 3867 
8 959 41 48 7,116 7,619 985 19 24 9,455 4608 

10 877 38 43 8,514 8,805 916 15 42 11,264 5182 

! 12 807 35 13 9,857 9,819 860 11 40 12,988 5603 
14 746 31 15 11,155 10,671 816 7 19 14,639 5881 
16 693 26 45 12,411 11,369 780 2 43 16,227 6021 

18 647 21 44 13,631 11,921 751 2 7 17,755 6030 
20 609 16 10 14,817 12,330 728 - 7 5 19,228 5912 
24 557 3 40 17,098 12,738 703 -17 11 22,017 5314 
28 537 9 50 19,266 12,624 700 - 26 55 24,608 4261 
32 547 - 22 55 21,331 12,013 712 - 35 51 27,011 2790 
36 579 -34 25 23,293 10,930 735 - 43 40 29,228 938 
40 627 -43 54 25,151 9,403 
44 681 -51 30 26,902 7,466 
48 735 -57 32 28,539 5,157 
52 786 - 62 23 30,057 2,521 
55 818 - 65 25 31,114 359 
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Table VIIIb.—Calculation of the Drift, Stability, and Damping Factors, for the 

Gun Rifled 1 in 30. 

Column 1. The time t, seconds. 

„ 2. The stability factor s. 

,, 3. —4 s6\/Q. 

,, 4. 4sk/Q. 

,, 5. \Js, equation (4.203). 

,, 6. The drift Z, feet. 

,, 7. The azimuth, arc tan (Z/X), degrees. 

,, 8. The second term in the expansion of Tj, equation (3.632), given by 

m=m Ut (4s9'i)+4sve'‘+c' f. 4s't9''dt/c} • 

,, 9. The damping factor (§ 4.22), 

Elevation 50 degrees. 

1. 2. 3. 4. 5. 6. 7. 8. 9. 

0 1-945 0-00042 0-0217 0 0 

° 

1 
1 2-598 0-00062 0-00038 0-2 0-702 
2 3-334 0-00098 0-0214 0-00082 0-8 0-520 
3 4-189 0-00139 0-00129 1-8 0-404 
4 5-129 0-00192 0 0221 0-00182 3-1 0-00007 0-330 
6 7-123 0-00321 0-00405 7-5 0 5 0-196 
8 10-95 0-00569 0-0570 0-00752 15-9 0-00066 0-115 

10 14-60 0-00868 0-0114 29-1 0 12 0-076 
12 18-39 0-01240 0-0518 0-0155 47-3 0 16 0-00155 0-055 
14 22-20 0-01693 0-0199 70-4 0-043 
16 26-33 0-0227 0-0585 0-0250 98-6 0 27 0-00334 0-034 
18 30-88 0-0297 0-0308 133 
20 35-16 0-0372 0-0663 0-0374 173 0-0056 
24 42 • 63 0-0511 0-0530 276 0 55 
28 45-87 0-0562 0-0755 0-0705 409 l 13 
32 43-24 0-0486 0•0885 573 1 32 
36 37-11 0-0353 0-0700 0-1050 762 0-0012 
40 30-11 0-0231 0-1192 971 2 12 
44 24-02 0-0147 0-0695 0-1315 1190 
48 0-1420 1415 -0-0019 
52 ' 0-1510 1637 

3 G 2 
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Table YIIIb. (continued). 

Elevation 30 degrees. 

1. 2. 3. 4. 5. 6. 7. 

0 1-945 0-00056 0 0 

• ' 

1 2-55 0-00086 
2 3-21 0-00122 0-00080 1-1 
4 4-79 0-00234 0-00174 4-1 
6 8-43 0-00368 0-00351 9-5 
8 9-11 0-00581 0-00655 19-2 0 7 

10 11-16 0-00785 0-01022 34-4 
12 14-01 0-01063 0-01417 55-3 0 15 
14 15-75 0-01276 0-01828 82-0 
16 17-48 0-01495 0-0225 114-3 0 24 
18 18-85 0-01671 0-0269 152-0 
20 19-92 0-01810 0-0316 195-0 0 35 
24 0-0191 0-0418 297 0 46 
28 0-0174 0-0525 419 0 59 
32 0-0143 0-0629 557 1 11 
36 o-ono 0-0729 708 1 23 

Table IX.—Comparison of Calculated Drift with Observations of April-May and 

February, 1918. 

The azimuth of the shell at time t (in minutes of angle) = At. 

Elevation 50 degrees. 

Observations of April-May. 

Rifling 1/30. 

Mean observed 
time. 

, 
Mean observed r, , , , , , 

^ Calculated A. 

10-9 1-46 1-27 
23-9 2-24 2-29 
33-3 2-89 2-85 
41-3 3-16 i 3-36 

Rifling 1/40. 

Mean observed 
time. 

Mean observed 
A. 

Calculated A. 

10-2 1-18 0-90 
22-9 " 1-30 1-66 
31-0 1-95 2-10 
39-1 2-00 2-44 
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Table IX. (continued). 

Elevation 50 degrees (continued). 

Observations of February. 

Rifling 1/30. 

Mean observed 
time. 

Mean observed 
A. Calculated A. 

6-99 4-54 0-86 
15-03 1-68 1-65 
26-08 1-99 2-46 

Rifling 1/40. 

Mean observed 
time. 

Mean observed 
A. Calculated A 

6-33 3-61 0-63 
14-07 1-40 1-18 
24-93 1-47 1-86 

Elevation 30 degrees. 

Observations of April-May. 

Rifling 1/30. Rifling 1/40. 

Mean observed 
time. 

Mean observed 
A. 

Calculated A. 
Mean observed 

time. 
Mean observed 

A. Calculated A. 

10-04 0-975 1-05 9-58 1-63 0-79 
20-6 1-575 1-77 19-35 0-80 1-28 
27-9 2-09 2-06 25-95 1 ■ 04 - 1-50 

Observations of February. 

Rifling 1/30. 

Mean observed 
time. 

Mean observed 
A. Calculated A. 

13-2 1-40 1-32 
22-52 1-36 1-86 

Rifling 1/40. 

Mean observed 
time. 

Mean observed 
A. Calculated A. 

13-02 
22-05 

1-73 
1-25 

0-97 
1-38 
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§ 1. Introduction. 

The instrument described in the following paper provides :— 

(i) A convenient means of detecting a note of given pitch when other sounds are 

present; and 

(ii) A method of estimating the relative intensities of sounds of the same pitch. 

The idea which formed the starting-point for the construction of the instrument—viz., 

the placing of an electrically heated grid of fine platinum wire in the orifice of an other¬ 

wise closed vessel—was originally employed by one of us (W. S. T.) in the construction 

of a sound-detector for the use of Sound Ranging Sections in the British Army.* In 

its original form, the detector was intended to respond to heavily damped aerial vibra¬ 

tions, such as those produced by the firing of guns. Further experiments, however, 

showed that the detector could be tuned to respond to any continuous sound of definite 

frequency by suitably choosing the dimensions of the vessel and its orifice. 

The tuned instrument is highly selective in its action. It is very sensitive when 

used to detect low-pitched sounds, but its sensitivity is diminished for the higher 

* British Patent No. 13123 of 1916, and No, 8948 of 1918 ; United States Patent No. 269902 of 1919. 

VOL. CCXXI.—A 592, 3 H [Published March 3, 19-1. 
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pitches. The highest note with which we have experimented hitherto was one of 512 

vibrations per second. 

During the course of a large number of experiments with various types of sound- 

collectors and transmitters, we have found this selective form of hot-wire microphone 

to be of great assistance. It is very simply constructed and easily manipulated, and 

for many purposes the only electrical circuit needed is a Wheatstone’s Bridge. If, 

however, it is desired to use aural methods, or if the sound to be observed is exceedingly 

faint, it is necessary to amplify (by means of thermionic valves) the electrical effects 

occurring in the microphone. When amplification is used it is possible to detect and 

render audible a pure tone which is quite inaudible to the unaided ear. 

This form of microphone provides us with a very convenient instrument for comparing 

the efficiencies of various forms of sound-collector—particularly when these are considered 

in relation to the wave-length of the sound employed. It can also be used for deter¬ 

mining the distribution of intensity at the focus of an acoustical lens or mirror, and 

(what is very important in many practical problems) the manner in which sound is 

diffracted by obstacles of various shapes and sizes. In addition to these and similar 

experiments, the microphone can be employed to estimate the relative strengths of 

the harmonics in an impure sound such as that produced by the usual form of Seebeck’s 

siren. Some examples of these applications of the microphone will be given in the last 

section of this paper. 

So far as we are aware, there is no other instrument of a selective character which 

could be used for making observations of the kind indicated above. In nearly all 

cases where attempts have been made to measure or analyse sounds, the instruments 

employed have depended on the setting in vibration of some form of diaphragm. Such 

instruments are generally insensitive to notes of moderately low pitch, and are, moreover, 

easily disturbed by vibrations communicated through the mounting of the diaphragm. 

For this reason methods of amplification are often of little service if the mountings are 

to be moved during the experiment. 

The hot - wire instrument here described seeks to avoid this disadvantage by 

measuring directly vibrations which are set up in the air itself, but the displacements 

in progressive waves are so extremely small that they have been increased by resonance. 

This employment of resonance naturally limits the scope of the microphone (so that it 

cannot, for example, be employed for telephony), but it has the advantage not only of 

magnifying the sound to be recorded, but also of isolating from a complex sound the 

particular tone which it is desired to measure. 

The closed vessel with a single orifice (in which the platinum wire grid is mounted) 

forms the well-known Helmholtz resonator. The advantages possessed by this form of 

resonator are 

(1) That the resonance is sharp. 

(2) That the overtones are all relatively high. 
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(3) That the overtones are not in harmonic relation ; and 

(4) That the dimensions of the resonator need only be small compared with the wave¬ 

length of the sound to be observed. 

The simplified theory of such resonators is due to Rayleigh,* who showed that the 

number of vibrations in the resonant note is given by 

where V is the velocity of sound in the gas in the neck, S is the volume of the reservoir, 

and c is a quantity depending on the shape and dimensions of the orifice and called 

(from an electrical analogy) the “ conductivity ” of the orifice. 

§ 2. Description of the Microphone. 

The complete microphone, comprising the Helmholtz resonator with the platinum 

wire grid suitably mounted in the neck, is made for convenience in three separate parts :—- 

(i) The platinum wire grid, mounted in a circular mica plate. 

(ii) The “ holder,” which includes the neck of the resonator and the necessary 

contact-pieces and terminals for carrying current to the grid ; and 

(iii) The “ container,” or reservoir. 

A short description of each of these three parts will now be given. 

(i) The Platinum Wire Grid.— Fig. 1, A, shows one form of the grid. It consists of a 

circular plate of thin mica 4 cms. in diameter, in the centre of which is cut a circular 

hole 0 -65 cm. in diameter. A number of small pin-holes are punched at the edge of 

* Rayleigh, * Theory of Sound,’ vol. II., p. 174. 

3 h 2 
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this circular opening, and through these the wire is threaded to form a zig-zag grid 

as shown in the figure. To each side of the mica plate is attached an annular plate 

of silver foil (shown by shaded portion in the figure), and to each of these plates is 

soldered one end of the platinum wire. The two plates of silver foil thus constitute 

the electrodes of the wire grid. 

Fig. 1. B, shows another form of grid, for the design and manufacture of which we are 

indebted to the Besearch Department of the General Post Office. The wire is bent 

into three loops, and is supported by a small 

rod of glass-enamel placed diametrically across 

the opening in the mica plate. 

The grids are made in the first place with 

Wollaston wire, the silver sheath being removed 

by means of nitric acid after the wire has been 

mounted in position. During this part of the 

process of manufacture the silver foil electrodes 

are protected by a coating of paraffin wax. 

The grids used in the experiments described in 

this paper were, unless otherwise stated, of the 

type shown in fig. 1, B. The wire, the diameter 

of which was about 0 -0006 cm., carried a maxi¬ 

mum current of about 30 milliamperes, the 

exact amount varying in individual grids ac¬ 

cording to the sample of wire used in their 

manufacture. The average resistance at 10° C. 

was about 140 ohms, and about 350 ohms when 

carrying a safe working current of 25 to 28 

milliamperes. In the case of a particular grid, 

it was found that its resistance was 125-5 ohms 

at 0° C., 133 ohms when carrying a current of 

0 -5 milliampere, 156 -2 ohms at 100" C., and 332 

ohms when carrying its working current of 32 

milliamperes. The working current heats the 

grid to just below red heat. 

For certain purposes grids were made from 

wire 0-0015 cm. in diameter and carrying a 

maximum current of about 55 milliamperes. 

The number of loops was increased in these 

grids to eight, four on each side of the glass- 

enamel support. 

(ii) The “ Holder.”—The manner in which the holder is made up is shown in fig. 2. 

The cylindrical neck A, made of brass, is soldered into the centre of the circular plate 
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Ej made of the same material. Ej is provided with the terminal Tr The mica plate (M) 

carrying the grid is clamped between Ej and the lower ring E2, which is also of brass 

and carries the terminal Ta at the side of the holder. Beneath E2 is a rubber ring Ivr 

and this rests on a bed of ebonite (P) to which also the plate Ex is fixed by the screws S. 

The ebonite bed (P) is square, and is bolted at the corners to the square brass plate (B) 

which forms one end of the container. To ensure an air-tight joint a square plate of 

thin rubber R2 is inserted between the holder and the container. 

When the plate EL is screwed down on to the ebonite bed, so that the mica plate with 

its silver foil electrodes is firmly held between E: and E2, a current can be passed through 

the grid by connecting a battery to the terminals T, and T2. 

The neck (A) forms the channel of communication between the interior of the 

container and the outside air, and from an acoustical point of view is the most important- 

part of the holder. If the capacity of the container be given, it is on the hydro- 

dynamical conductivity of this neck that the pitch of the resonator depends. The 

dimensions of the neck generally used were : length 2 -2 cms., internal diameter 0 -75 cm. 

In certain experiments, however, the neck was made rather shorter than this in order 

to tune the resonator to some given pitch. 

When the grid is being placed in position between E: and.E2 it is important to see 

that the circular aperture in the mica plate is coaxial with the neck, since even a small 

displacement from this position mil change the pitch of the resonator by an appreciable 

amount. 

(iii) The “ Container.”—The containers were in most cases made from brass tubing. 

One end of the tubing is closed with a circular brass plate, while at the other end is fitted 

a square brass plate of the same dimensions as the base of the ebonite bed of the holder, 

which is bolted to it by means of the bolts b, as shown in fig. 2. A circular hoie |-inch 

in diameter is cut in the middle of this square plate to allow a free passage of air through 

the neck into the container. The thickness of the brass of which the tubing was made 

was 1 mm. 

The natural pitch of the resonator of course depends on the volume of the container. 

Thus, with the form of neck described above, a volume of 290 c.c. gives the resonator 

a pitch of 116 vibrations per second, while a volume of 68 c.c. gives it a pitch of 240 

vibrations per second. For pitches below 200 vibrations per second it has been found 

convenient to use brass tubing from 2 to 2| inches in diameter, while for higher pitches 

(above 200) tubing about 1 inch in diameter is the most suitable. 

Other forms of container have been made and tested, and reference to some of these 

will be found in a later paragraph. The material from which the container is made, 

and the thickness and rigidity of the walls, have a very marked effect on its resonating 

properties. The most efficient resonator which was tested was one which had been 

drilled out of a solid piece of brass, and its superiority must be attributed, in the main, 

to the increased strength of the walls. 

For experimental purposes it is often desirable to have a microphone whose pitch can 
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be varied at will. This can easily be made by fitting a wooden plunger inside the 

brass tubing of the container, or by making the container in two parts of different sized 

tubing so that one part will slide over the other. 

Another method of tuning the microphone is to alter the length of the neck. It is, 

however, inadvisable to reduce the length of the neck to less than 1 cm., as with shorter 

necks than this the grid is exposed to the effect of transient currents of air. 

§ 3. Electrical Connections. 

When the air in the neck of the resonator is set in vibration by a sound of suitable 

frequency, the platinum wire grid suffers a change in resistance, which may be regarded 

as being made up of an oscillatory change and a steady change. There are thus two ways 

in which the microphone can be used. 

(i) The Amplifier Method.—If the oscillatory effect is to be observed it is necessary to 

include an amplifier in the circuit. A suitable form for the circuit to take is shown in fig. 3, 

where the microphone (M) is connected in series with a battery (B), a milliannneter (A), 

a rheostat (R), and the primary of the input transformer of a three-valve amplifier.* 

The sound can of course be heard in the telephones, and provided that the grid lies 

in an approximately horizontal plane (i.e., that the axis of the neck of the resonator 

is vertical) the pitch heard is the same as that of the original sound. The effects which 

occur when the grid is moved out of the horizontal plane are described in § 8 ; but it may 

be noted here that not only the pitch of the note heard in the telephones, but also the 

sensitivity of the microphone, depend on the inclination of the grid to the horizontal 

plane. It is therefore important in any experiment where comparisons of the strength 

of sound are being attempted, that the position of the microphone relatively to a 

horizontal plane should not be changed during the experiment. The difficulty can be 

overcome by arranging that the microphone shall always hang so that the axis of the 

neck is vertical. Small deviations of one or two degrees from this position do not 

materially affect the sensitivity. 

* Several different types of amplifier have been tried for this purpose. The best results have been 

obtained with a four-valve resistance amplifier specially designed for low acoustic frequencies. 
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The grid carries, normally, a heating current of about 27 milliamperes. When the 

resonator responds to a sound, the to-and-fro motion of the air in the neck produces, 

as already stated, an oscillatory change of resistance, and the effect of this is to super¬ 

impose on the steady heating current a ripple of small amplitude (generally only a few 

microamperes). It is this ripple which is amplified and which is heard in the telephones. 

It is shown in a later paragraph (§7) that the magnitude of the amplified current 

may be used as a means of estimating the amplitude of a sound. For this purpose 

the telephones are replaced by a vibration galvanometer tuned to the pitch of the sound. 

This method of employing the microphone for the measurement of a sound, however, 

is not altogether satisfactory, on account of the difficulty of maintaining an amplifier in 

such a condition that the current amplification is constant for any length of time; and 

for this reason the Wheatstone’s Bridge method is sometimes preferable. The 

advantages of the Amplifier Method are that it is very sensitive (especially when a 

vibration galvanometer is used) and that the microphone can be placed in a moving 

piece of apparatus, subject only to the restriction that its axis must always be vertical 

(or at some fixed angle to the horizontal). Vibrations communicated through the 

mounting of the microphone (even when they are produced by striking the container) 

have very little effect on the sound heard in the telephones. 

(ii) The Wheatstone’’s Bridge Method.—This method is preferable to the Amplifier 

Method on account of its greater simplicity, and because there is no danger of the 

sensitivity changing during the course of a long series of observations. A convenient 

form for the Bridge to take is shown diagrammatically in fig. 4. The microphone (M) 

with the milliammeter (A) forms one arm of the Bridge. The balancing arm (R) is 

made about equal to the resistance of the grid when carrying its working current, i.e., 

about 350 ohms. The rheostat (Rh) is inserted (as shown) in series with the battery, a 

balance being obtained by adjusting (Rh) until the current through the microphone 

brings its resistance (together with that of the milliammeter) up to R. For some purposes 

it is convenient to have a small variable resistance p in series with the microphone. In 

most experiments it is sufficient to take the deflection of the galvanometer as a measure 

of the intensity of the sound affecting the microphone ; but other methods can of course 
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lie used, sucli as measuring the increase of current required to bring the grid back to its 

initial resistance, or determining the alteration in resistance when the current is main¬ 

tained at a constant value. 

It is important when using the microphone in this way that it should not be moved 

during the course of an experiment. This is one of the disadvantages of the method. 

A small alteration in the tilt of the microphone upsets the balance of the Bridge and 

renders the sound-measurements inaccurate. If 6 is the angle between the axis of 

the microphone and a vertical line (so that 0 = 0 when the microphone is held in its 

normal position with neck uppermost), then it is found that as 0 is increased the 

resistance of the grid gradually falls and reaches a minimum when 0 is about 100 degrees. 

The fall in resistance is then about 3 ohms (see fig. 13). 

The resistance of the grid also changes when the microphone is rotated about its 

own axis, except of course when the axis is vertical. Thus, if the microphone is held in 

a horizontal position and in such a way that the glass-enamel support also lies horizontally, 

then a rotation of 90 degrees, bringing the glass-enamel support into a vertical position, 

is accompanied by a fall in the resistance of the grid of about 1 ohm. 

All these effects are due to the influence of the convection currents issuing from the 

heated wire, and it appears that if the convection current from one part of the wire 

impinges on another part of the wire the resistance of the grid as a whole is always 

lowered.* As will be seen from the experiments described later, these convection currents 

play a very important part in the working of the microphone. 

Although the resistance of the grid is changed (current being constant) when the 

plane in which it lies is altered, there is but little change in the sensitivity of the microphone, 

whether it is held horizontally or vertically, provided that its initial resistance is the 

same. 

§ 4. Sharpness of Tuning of the Microphone. 

The natural pitch of a microphone can best be determined by plotting its resonance 

curve. For this purpose the microphone to be tested is set up at a distance of two or 

three feet from a siren (a modified form of Seebeck’s siren was used in the present 

experiments), and the grid is connected into one arm of a Wheatstone’s Bridge as shown 

in fig. 4. The strength of the blast of air in the siren having been adjusted to a suitable 

value, a series of readings are taken of the deflection of the galvanometer and the pitch 

of the siren note. The curve formed by plotting deflection against the interval njp 

(a/2tt being the resonant pitch of the microphone and p/2?r the pitch of the siren note) 

gives what we shall call the “ resonance curve ” of the microphone. 

* The mutual action due to convection of two electrically heated fine platinum wires is described 

by J. S. G. Thomas: “An Electrical Hot-Wire Inclinometer,” ‘ Proc. Phys. Soc. Loud.’, vol. XXXII, 

pp. 291-314 (1920). 
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A typical example of a curve obtained in this way is shown in fig. 5, the natural 

pitch of the microphone being 240 vibrations per second. 

Fig. 5. 

In order to obtain reliable resonance curves it was found necessary to make observations 

out of doors. When the experiments were performed indoors the results were in nearly 

all cases vitiated by the setting up of stationary waves in the room containing the 

apparatus. 

Experiments are described in a later paragraph (§ 7) which show that—within limits— 

the change of resistance of the grid is proportional to the square of the amplitude (and 

therefore to the energy) of the vibration in the neck of the resonator, when the pitch 

of the stimulating sound remains constant. The influence of a change in the pitch of 

the sound upon the resistance change of the grid (apart from its effect on the response of 

the resonator) has not yet been investigated. In dealing with the resonance curves, 

where in any particular experiment we are concerned only with a comparatively narrow 

range of frequencies, we shall regard the deflection of the galvanometer as being 

proportional to the vibrational energy in the neck. Precautions were of course taken 

to ensure that the deflections were proportional to the changes in resistance suffered 

by the grid. 

As stated above, the source of sound used in these experiments was a modified form 

of Seebeck’s siren. It consisted of a heavy circular brass plate pierced with a ring of 
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twelve equidistant holes. This plate was rotated by an electric motor, the speed of 

which could be regulated by means of a rheostat in series with the armature. A stream 

of air, forced through a nozzle against the ring of holes, was supplied from a gas- 

compressor. The speed of the siren-plate was given by an EllioO. speed-indicator attached 

to the motor, the readings of this instrument being proportional to the frequency of 

the fundamental note of the siren. The end of the nozzle and the holes in the siren- 

plate were so shaped that the area through which air cculd escape from the nozzle was 

proportional to (1 — cospf), p/2?r being the number of holes passing the end of the nozzle 

per second.* It was found by experiment (using a Hot-Wire Microphone) that with 

this arrangement the note produced by the siren was remarkably free from harmonics. 

It will be assumed in what follows that, within the limited range of frequencies over 

which a resonance curve is plotted, the amplitude of the sound produced by the siren 

remained sensibly constant. 

On the understanding that the results may be subject to some revision on account 

of these assumptions, we can deduce the degree of damping of the Helmholtz resonator 

used to obtain the curve in fig. 5. 

If the equation of motion of the forced vibration in the neck of the resonator is 

written 
d2x f.-rr dx 2 x 
rr +211 ——l-n x — r cos pt, 

dt2 dt J 1 

where — is the instantaneous current of air m the neck, and n2 
dt 

forced vibration is 

V2c/S, then the 

x f 
{{n2— p2)2 + 4K2jo2} 

i cos (pt — 6), 

and the average energy of the vibration in the neck is proportional to the average 

dx\a 

dt J 

r 
Vc alue of that is, to 

n 5-2Y+4K- 
p n) 

It is found that the experimental curves can be fairly well represented by an 

expression of this type, provided that a suitable value is given to K. Thus, by choosing 

II = 38 -5, we obtain the dotted curve shown in fig. 5, which approximates closely 

enough to the experimental curve to show that this is about the proper value for the 

damping factor. In all cases so far examined the value of II required to fit the 

experimental curves has been found to lie between 20 and 40, and it has generally been 

found that II is less for the low-pitched resonators. For example, with a resonator 

whose natural pitch was 112 vibrations per second, the value of K was found to be 22 -2. 

* For the design of this siren-plate we are indebted to Messrs. R. H. Fowler and E. A. Milne, of 

Trinity College, Cambridge. 
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The forced vibrations of a resonator, due to an external source of sound, have been 

considered by Rayleigh (“ Theory of Sound,” vol. IT., p. 195). If the periodic change 

of pressure at the mouth of the resonator is represented by ¥e'pt, the equation of 

motion applicable to the forced vibration in the neck is 

d2x 

d¥ 
p2c dx , o 

+n‘1x - 
2ttY dt 

cF 

P 
elpt 

where c is the hydrodynamical conductivity of the neck and p is the density of the air. 

Idle term representing dissipation is here a function of frequency, but it represents “ only 

the escape of energy from the vessel and its neighbourhood, and its diffusion in the 

surrounding medium, and not the transformation of ordinary energy into heat.” It 

is found to be quite inadequate to account for the experimentally determined rate of 

dissipation. If p/2tt = 112 vibrations per second, c = 0T3 cm. (determined experi¬ 

mentally), and V = 33760 cm. per second, then 

p2c 

4ttV 
0-15, 

which must be compared with the experimentally determined value of 22 -2. It is clear, 

therefore, in the case of resonators such as those used in these experiments, that the 

dissipation is due in the main to other causes than the escape of energy through the 

neck, such as the effect of viscosity on the motion in the neck, and the lack of rigidity 

in the walls of the container. When we consider the obstructions caused by the glass- 

enamel rod supporting the grid and the sharp edge of mica at the base of the neck, 

the comparatively high rate of dissipation is not altogether surprising. 

The expression for the natural frequency of a Helmholtz resonator (calculated without 

allowance for dissipation) is 

If N is found from the resonance curve and S is measured, the conductivity c can be 

calculated, and this should be a constant for a given size and shape of neck. For the 

cylindrical necks 2 -2 cms. long and 0 -75 cm. in diameter, and partially obstructed by 

the platinum wire grid, it is found that c is about 0 T3 cm. The following is an example 

of the kind of measurement taken :■—- 

N. 
vibrations/sec. 

S. 
c.c. 

c 

cm. 

240 68 0-133 
235 73-6 0-138 
140 197 0-131 
116 290 0-132 

Temperature 13 • 3 C. Mean value of c = O' 133 cm. 

3 i 2 
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As a rough check on these observations, we may calculate from hydrodynamics! 

principles approximate upper and lower limits to the conductivity of the neck. The 

required expression is given by Rayleigh (“ Theory of Sound,” vol. II., p. 181). For 

a cylindrical neck of length L and radius R, 

_ 7rR2 

'' “ L + all ’ 

where aR is the “ end correction ” to be added to L on account of both ends. Since 

one end is flanged and the other unflanged, we take a — 0 *8 + 0 -6 = 1 -4. To find 

an upper limit to c, take L = 2 -2 cms., 2R = -0 -75 cm. ; and for the lower limit take 

L = 2 -2 cms., 2R = 0 -65 cm. (the diameter of the circular hole in the mica plate). 

We then find 

0-162 > c > 0-125. 

§ 5. Sensitivity. 

The following experiment gives some idea of the smallness of the sound of which the 

microphone is capable of recording when it is used in conjunction with an amplifier. 

A microphone was constructed from brass-tubing 1 inch in diameter and tuned to 

respond to a note of 256 vibrations per second. This microphone was placed in one corner 

of a large field and connected by a long pair of leads to an army amplifier of the 

“ C Mark II.” pattern, the output terminals of which could be connected either to a 

pair of Brown telephones or to a Campbell vibration-galvanometer (also tuned to 256 

vibrations per second). In order to test the sensitivity of the microphone, a tuning-fork 

giving a note of frequency 256 was sounded over a resonator at various distances from 

the microphone. The sound produced was as a rule inaudible to the unaided ear at 

distances greater than 80 yards. It could, however, be heard in the telephones up 

to distances of about 200 yards, and when the vibration-galvanometer was used quite 

well-marked deflections were obtained up to a distance of 400 yards or more. 

As regards the conditions which determine the sensitivity of the microphone, these 

may be divided into two groups according to whether they have reference to the resonator 

or to the grid. We will deal first with those that refer to the resonator. Amongst 

them the most important is obviously that the resonator be accurately tuned to the note 

which it is required to record. The effect of mistiming is clearly shown by the resonance 

curve in fig. 5. 

When the resonator is accurately tuned, i.e., when n = p, the maximum velocity 

in the neck, according to the equations given in § 4, is 
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Since f = —, F being the variable part of the pressure at the mouth of the 
P 

resonator, the actual “ magnification ” of the displacements and velocities obtained by 

using the resonator is seen to be 

y c 
2K 

and is determined by the ratio of the conductivity of the neck to the damping factor K. 

Since, when c is constant, K is found to be larger the higher the pitch of the resonator 

employed, the efficiency of the microphone for the higher notes is correspondingly 

diminished. 

As a numerical example, we may quote the case of the resonator used to obtain the 

curve in fig. 5, for which N = 240 and Iv = 38 -5, so that, putting V = 33760 cm./sec. 

and c = 0 -13 cm., the “ magnification ” is about 57; while for a resonator of pitch 112, 

and K = 22*2, the “ magnification ” is about 100. It may be noted here for future 

reference that if Iv = 38 -5, and the amplitude of the sound outside the resonator is 

1 -27 x 10 " cms., i.e., Rayleigh’s value for the minimum amplitude audible when 

N = 256, then the maximum velocity in the neck of the resonator will be about 

0-0116 cm. per sec., and that, even if the amplitude is two hundred times the above value, 

the maximum velocity in the neck will still be less than 2 -5 cms. per sec. 

One of the most important factors in determining the efficiency of a resonator is the 

rigidity of the walls of the container. This was well shown by the following 

experiment. 

A cylindrical resonator of rolled veneer was tested and found to respond to the same 

frequency as a brass resonator of the same volume with the same orifice. The resonant 

note was 79 vibrations per second. Experiment showed that its degree of response 

(measured with a Wheatstone’s Bridge) was only one-third of that of the brass one, the 

conditions being as nearly as possible the same in both cases. The resonance curve 

for the veneer resonator showed that the appropriate value of Iv was about 35. 

We have next to consider some points in connection with the sensitivity of the grid. 

Almost the first problem that arises in constructing a microphone of this pattern is 

the choice of a suitable diameter for the wire. In the first experiments that were made 

with microphones of this type the diameter of the wire used was 0 -0015 cm. It was 

found, however, that better results were obtained with finer wire, and from time to time 

experiments have been carried out with wire of various diameters down to 0 -0002 cm. 

These experiments showed that the finer the wire the greater was the sensitivity (more 

especially for high-pitched notes), but that the increased sensitivity obtained with very 

fine wires was very often counter-balanced by their extreme fragility, which rendered 

them unsuitable for anything but very special purposes. Finally, a wire of diameter 

about 0 -0006 cm. has been adopted as being sufficiently sensitive, and at the same time 

not too fragile to prevent its being employed in ordinary out-of-door experiments. 

The sensitivity is most easily controlled by altering the heating current. No matter 
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in what manner the microphone is employed, it is found that its sensitivity is always 

increased by increasing the working current. The curves in fig. 6 show this effect in 

Fig. 6. 

two cases : (1) when the microphone is connected in series with the primary of a trans¬ 

former, the secondary of which is joined to a vibration-galvanometer ; and (2) when 

the microphone is employed with an amplifier and vibration-galvanometer. 

The curves were obtained by clamping the microphone so that its orifice lay just 

between the prongs of an electrically maintained tuning-fork making 250 vibrations 

per second. The tuning-fork was carefully maintained at a constant amplitude while 

the heating current of the microphone was gradually increased from zero to the maximum 

safe current of about 28 -5 milliamperes. In fig. 6 the heating current is plotted against 

the deflection of the vibration-galvanometer. Curve I refers to the case when the micro¬ 

phone is used with a transformer alone, while the effect of introducing an amplifier is 

shown by Curve II.* In the latter case, however, it must be borne in mind that the 

amplification itself is in all probability a function of the magnitude of the effect produced 

in the microphone. It will be observed that the effect produced by the sound is almost 

negligible until the heating current reaches a value of nearly one-third of the safe 

maximum. 

In the case of the Wheatstone’s Bridge, the effect of a change in the heating current 

of the microphone is complicated by the altered sensitivity of the Bridge. The variation 

of the sensitivity was therefore investigated by measuring the change in resistance of 

the grid with various heating currents for a given constant value of sound intensity. 

The method adopted in the experiment was as follows. A microphone was connected 

into a Wheatstone’s Bridge circuit in the usual manner, and its resistance measured with 

various heating currents so that a current-resistance curve could be plotted. An 

electrically maintained tuning-fork, with a resonator to reinforce the sound, was then set 

* For convenience the sensitivity of the gafvanometer was reduced when using the amplifier. 
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in vibration at a convenient distance from the microphone. The amplitude of vibration 

of the tuning-fork could be observed through a microscope, and it was found that, with 

care, its amplitude could be maintained at a given value to within 2 or 3 per cent. A 

second series of observations of current and resistance of microphone grid was then made 

and the new current-resistance curve plotted on the same chart. The results obtained 

in a particular experiment are given in the following table:— 

Without 

1 

Sound. With Sound. 

Current in Resistance Current in Resistance 
milliamperes. in ohms. milliamperes. in ohms. 

10-0 157-5 11-0 157 • 5 
13-6 177-5 14-9 177-5 
16-1 197-5 17-9 197-5 
18-5 217-5 20-3 217-5 
20-3 237 • 5 22-6 237-5 
22-1 257-5 24-5 257-5 
23-8 277-5 26-3 277-5 
25-2 297-5 28-0 297-5 
26-7 317-5 29-5 317-5 
28-0 337-5 

The current-resistance curves are plotted in fig. 7. If, for some particular value of 

Fig. 7. 

the heating current, the ordinate of the lower curve is subtracted from that of the upper 

curve, we find the change dR which the sound produces in the resistance of the grid 
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under tlie condition that the current remains constant. That is, iR is the change 

in resistance which would be measured if the bridge were re-balanced by inserting 

resistance in the microphone arm ; or if a bridge of the “ constant current ” type is 

used, c)R is simply proportional to the galvanometer deflection. 

The relation between ^R and R (the initial resistance of the grid), is a linear one, viz. : 

SR = 0‘2 (R—140), 

140 ohms being the resistance of the grid at air temperature. Therefore, by altering R— 

or, what is the same thing, by altering the heating current—the sensitivity of the grid 

can be varied in a perfectly definite manner. Con¬ 

versely, observations which have been made with 

the same microphone with different heating cur¬ 

rents can be very easily made to correspond by 

reducing them to some standard value of the 

current. If observations are taken under different 

conditions of air temperature, a correction on this 

account can easily be made if desired. 

A quantity which is more characteristic of 

the wire from which the grid is made is 

the change in resistance for a given sound in 

ohms per ohm. Probably the value of ~ for a 

given heating current and sound would provide the 

most convenient method of defining the sensitivity 
150 200 250 300 350 

/-? of a grid. The values of , obtained from 
_ it 

Fig. 8. 
the above table, are plotted against R in fig. 8, 

and show very clearly the way in which the sensitivity of the grid increases as its 

temperature rises. 

§ 6. The Resistance Changes in the Wire Grid. 

In this and the following two sections we shall examine more closely the means by 

which the platinum vdre grid is enabled to record electrically the aerial vibrations 

which are set up in the neck of the resonator. Suppose in the first instance that a 

microphone is held with its axis vertical (neck uppermost), and that the grid is connected 

in series with a battery and the primary of the first stage transformer of an amplifier. 

It is found by experiment that the temperature of the platinum wire, when carrying its 

normal safe working current of about 29 milliamperes, is in the neighbourhood of 

600° C., and we know that in these circumstances the energy supplied to the wire in 
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the form of heat is lost mainly by convection. There is in fact above the grid a free 

convection current whose velocity depends on the temperature and diameter of the 

platinum wire. A sound of suitable pitch produces in the neck of the resonator an 

alternating current of air which is superimposed upon the free convection current, 

with the result that the convection of heat from the platinum wire is alternately retarded 

and accelerated. It can easily be seen that if the maximum velocity of the alternating 

air-current does not exceed the velocity of the convection current, the periodic tempera¬ 

ture change produced in the platinum wire will have the same frequency as that of the 

sound stimulating the resonator. 

This is in accordance with the observed fact that when the microphone is held 

vertically the note heard in the telephones has the same pitch as that of the original 

sound. 

Next, suppose that the microphone is held so that its axis is horizontal and the grid 

lies in a vertical plane. The free convection current is now at right angles to the axis 

of the neck, and the effect of an oscillatory motion of the air in the neck (parallel to its 

axis) will be to produce a periodic change in the temperature (and therefore resistance) 

of the grid whose periodicity will be twice that of the sound which produces it. This 

is in fair agreement with observations, for when the microphone is gradually tilted 

over from a vertical to a horizontal position, the fundamental note heard in the telephone 

slowly dies away and the octave becomes more and more prominent. The octave is 

heard best, however, when the neck is pointed slightly downwards so that the axis 

makes an angle of about 20 degrees with the horizontal. This peculiar effect, which 

appears to be due to the asymmetrical construction of the neck of the resonator, will be 

referred to in a later paragraph (§8). 

We shall in the present section confine our attention to the case when the microphone 

is held vertically with the neck pointing upwards, and it will be assumed that the 

resistance changes which the sound produces in the grid can be attributed to the changes 

in the velocity of the air in the neck. In order to ascertain the nature of the resistance 

changes which are likely to occur, it is first of all necessary to determine the relation 

between the resistance R of the grid and the velocity U of the air-current which cools 

it. U here refers to the velocity of the forced air-current, the actual current passing 

the wires of the grid being the sum of the forced current and the free convection current. 

The velocity of the undisturbed convection current rising from the grid will not, of course, 

be evenly distributed in the neck of the resonator, but the effects of free convection can 

be represented by an “ effective ” current V0 supposed uniform throughout the neck. 

The actual current passing the grid is then V = U + V0, the downward vertical being 

regarded as the positive direction. We shall first obtain a relation between R and U 

for small steady values of U, and afterwards extend the results obtained to the case of 

oscillatory currents by putting U sin pt in place of U. 

On account of the applications to be found in Hot-Wire Anemometry, the cooling of 

electrically heated fine platinum wires by steady currents of air has received a good deal 
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of attention from physicists. The most complete investigation available is that contained 

in the well-known paper by L. Y. King.* King shows that, for fine wires in air-currents 

of low velocity, the heat-loss per cm. is given by an equation of the form 

H = aOjlog^, 

where a and /3 are constants, 0O is the excess temperature of the wire above its 

surroundings, Y is the velocity of the air-current, and d the diameter of the wire. 

This equation is theoretically applicable whenever 

Yd < 0-0187, a condition which is amply fulfilled in the 

present case with d = 0 -0006 cm. and V not greater 

than 6 cms. per second. We have not, however, been able 

to adapt this equation in any way which leads to useful 

results in the case of the Hot-Wire Microphone. It may 

be remarked that both the diameter of the wire and the 

magnitude of the air-currents with which we are concerned 

are considerably smaller than those used in the experi¬ 

ments of King, or of other investigators to whose work 

reference will be found in King’s paper. In view of this 

mounting, it was thought desirable to determine experi¬ 

mentally the relation between R and U for such small 

values of IT as are likely to be required to account for 

the behaviour of the grid under the influence of alter¬ 

nating air-currents. 

The arrangement of the apparatus used in the experi¬ 

ments is shown diagrammatically in fig. 9. A micro¬ 

phone grid is mounted in the holder at A. The interior 

of the small brass container (B), carrying the microphone 

and holder communicated by means of the short tube (C) 

with the reservoir (D), which was partly filled with water. 

A current of air could be produced past the microphone 

grid by opening the tap (T), which allowed the water in D 

to escape through the tube (E) into a second reservoir 

from 4 to 5 feet below I). A current in the reverse 

direction could be produced by allowing water to siphon into D from another reservoir 

at a higher level. 

The average velocity of the air-current passing the grid was deduced from a knowledge 

of the area of the aperture in which the grid lies, the area of the cross-section of D. 

Fig. 9. 

* ‘ Phil. Trans.,’ A, vol. 214, pp. 373AL32 (1914). 
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and the velocity of the fall (or rise) of the surface of the water in D. The latter was 

found by timing the movement of the level of the water in the gauge (G). The maximum 

velocity of the fall or rise in D required in the experiments was 0 -09 cm. per second, 

corresponding to a velocity of 6 cms. per second for the air passing the grid. 

The microphone formed one arm of the Wheatstone’s Bridge shown in fig. 4. The 

method of taking an observation was as follows. The balancing resistance R was given 

some prearranged value about equal to the sum of the resistance of the grid (carrying 

its normal current), the milliammeter and the variable resistance p set at 10 ohms. 

The resistance p could be varied by steps of 0 T ohm from 0 to 20 ohms. With the tap (T) 

closed, the bridge was then balanced by adjusting the rheostat (Rh), that is, by altering 

the heating current until the total resistance of the microphone, milliammeter and p 

was equal to R. The tap (T) was then opened and adjusted to give an air-current past 

the grid of approximately the required velocity. The exact velocity of the air-current 

was determined by timing with a stop-watch the fall or rise of the level of the water in 

G for 1, 2 or 3 cm., according to the magnitude of the velocity employed. The change 

in the resistance of the grid was determined at the same time by increasing or decreasing 

the resistance p so as to restore the balance. The resistance-change was determined 

to 0 -01 ohm by noting the deflection which remained after the bridge had been balanced 

as nearly as possible by altering p. The effect of a forced air-current on the resistance 

of the grid was thus determined under the condition that the electric current carried by the 

grid remains constant. 

The results of one experiment are shown in the following table, which gives U, the 

impressed air-current, in centimetres per second, and oR the change in the resistance of 

the grid. The air-current U is taken as positive when it flows into the container—in 

this case vertically downwards. 

Microphone Grid A1079. Heating current 28 -5 milliamperes. Resistance of grid 

when impressed air-current is zero = 270-8 ohms. 

u. 
cm. per sec. 

SR. 
ohms. 

U. 
cm. per sec. 

SR. 
ohms. 

-4-12 -9-73 +0-27 +0-46 
—3-54 -7-76 +0-53 +0-50 
-3-13 -7-46 +0-55 +0-56 
-3-04 -6-83 +0-90 +0-73 
-2-20 -4-34 +1-33 +0-79 
-2-07 -4-18 +1-40 • +0-74 
-1-65 -2-91 +1-97 +0-47 
-1-33 —2 • 15 +1-99 +0-43 
-0-74 — Ill +2-40 +0-10 
-0-48 -0-76 +2-67 -0-37 
-0-45 -0-61 +3-61 -1-92 

0 0 +4-30 -3-36 

3 K 2 
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The values of U and TR are plotted in fig. 10 and a smooth curve drawn through the 

points. As the impressed air-current increases from zero the resistance of the grid 

V in cms/scc. 

Fig. 10. 

(given by R = 270 -8 + dR) rises and passes through a maximum, the curve cutting 

the U-axis at U = 2 -45 cans, per second. The maximum occurs when U = T X 2 -45 

= 1 -225 cms. per second. When U has this value, the impressed air-current balances 

the free-convection current V0, so that V0 = 1 -225 cms. per second. Somewhat similar 

curves to that in fig. 10 are given in a recent paper by J. S. G. Thomas,* who used this 

method to determine the velocity of free convection from a platinum wire 0 -00784 cm. 

in diameter and carrying current of 0 -6 to 1 -2 amperes. 

The symmetrical form of the curve about the line U = Y0 = 1 -225 suggests that 

the relation between TR and U can conveniently be represented by a formula of the 

type 

SR = SR0+a(U-Voy+b(U-Voy+&c., 

where £R0 is the maximum increase in resistance occurring when U = V0. It was found 

that the results of the above experiment could be very fairly represented by the formula 

SR = 074-0A0 (U—l-225)2 + 0-0044(U—U225)4. 

A series of points for U = 0, + 1, + 2, etc., calculated from this expression, are indicated 

* ‘ Phil Mag.’, vol. XXXIX, pp. 518-523, and PI. XI, fig. II (1920). 
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in fig. 10. In all such experiments, where U did not exceed 5 cms. per second, it was 

found that the result could be expressed within the errors of the experiment by a formula 

of the type 

sb = m0-\-a(u-v„y+b{u-v{)y. 

In the above experiment the resistance was measured under the condition that the 

electric current carried by the grid was the same with and without the air-current. 

In many experiments, however, the cooling of the grid will be accompanied by an 

increase of electric current, which tends to restore the temperature to its initial value. 

The extent to which this takes place depends of course on the particular circuit in which 

the microphone is used, but in most cases its effect will not be very marked, owing to 

the dead resistance in series with the microphone. 

In a second experiment, performed with a grid of similar type to that used in the 

first experiment, the resistance was measured for various values of U by rebalancing 

the bridge with the resistance R, so that the heating current did not remain quite 

constant but increased or decreased according as the grid was cooled or heated. The 

resistance Rh was 240 ohms. It was found that the resistance-velocity curve had the 

same character as that in the first experiment, and up to velocities of 5 cms. per second 

the change in resistance could be quite adequately represented by an expression of the 

above type. 

It is convenient to write the expression for AR in the form 

SB = -2V0 (a + 2bY02) U + (a + 6bV02) U2-46Y(JU3 + 6U4. 

If the values of a, b and V0 determined in the above experiment are inserted we get 

SBv = 1 ’ L9U —0‘46U2—0’022U3 + 0'0044bJ4, 

so that if U is not much greater than 1 cm. per second, ^R is given by the first two terms 

to within 2 or 3 per cent. 

In applying these results to the case of oscillating air-currents, we shall at first suppose 

that U is so small that the third and fourth terms are negligible. If it is assumed that 

the resistance of the grid at any instant is the “ equilibrium " value which it would take 

up if the instantaneous velocity were maintained, then the changes in resistance produced 

by an alternating air-current U sin pt will be given by 

rlR = — 2V0 (rt + 26Y02) U sin pt 

+ {a + 6bV02) U2 sin2pt 

= l(a + 66Y,2)U2 

— 2Y0(a + 26V02) U siny>£ 

—\ (ct + 6&Y02)U2 cos '2pt. 
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The total change would therefore be made up of three parts :— 

(1) A steady drop in resistance given by dR^ = j (a + 6bY02) IP. 

(2) A periodic change of resistance dR2 = — 2V0 (a + 2bY 2) U sin pi of the same 

frequency as the sound stimulating the resonator. 

(3) A periodic resistance change dR3 = —|-(a+66Y02) IP cos 2pt of frequency twice 

that of the sound stimulating the resonator. 

The relative importance of these effects can be gauged by putting in the values of 

a, b, and V0 previously found. This gives 

m, = — 0'23U2, 

<1R2 = + U19U sinp£, 

dR3 = + 0'23lP cos 2pt. 

These resistance changes correspond to the three most obvious effects of a sound of 

suitable pitch upon the microphone. 

oRj is the effect made use of when the microphone is employed in a Wheatstone 

Bridge. Since it is proportional to IP, that is, to the energy of the vibration in the 

neck, it should be proportional to the intensity of the sound-wave stimulating the micro¬ 

phone. This is confirmed by the experiments described in § 7. 

()R2 is the effect which causes the ripple on the heating current, and which can be made 

audible by the use of an amplifier. It will be seen that the amplitude of tiffs effect is 

proportional to U, and therefore to the amplitude of the sound affecting the microphone. 

The extent to which this is confirmed by experiment is described in § 7. It should also 

be noted that the amplitude of the effect is proportional to V0, the free convection 

current from the grid. It should therefore be possible to increase the loudness of the 

sound heard in the telephones by artificially increasing the steady air-current passing 

the grid. That this conclusion is correct can easily be demonstrated by gently heating 

the brass container with a flame so that a current of air is forced out past the grid. 

The existence of ffR3, which should produce a note in the telephones an octave above 

the fundamental, is not easy to demonstrate when the microphone is held vertically. 

It cannot of course be heard in the telephones because it is completely swamped by the 

fundamental. When, however, the microphone is tilted the octave becomes relatively 

more important, and is easily heard at certain angles. These effects are described 

in § 9. 

In order to discover what will occur in the case of very loud sounds, it will be necessary 

to use the more complete expression for ffR which involves the third and fourth powers 

of U. Thus, writing the relation between ffR and U for steady currents in the form 

£R - AU + YURfflP + ffTJ4, 
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and substitutingUsinytf for U, we find that the total resistance change can now be regarded 

as being made up of five parts, namely :— 
* 

m, = p' ua(i+i^u>), 

£Ro — a'U (1 +f U2) sin pt, 
■a ) 

m3 = -p'Wi + y u2j cos 2Pt, 

= —^-c'U3 sin 3pt, 

^R5 = ^d'XJ* cos 4pt. 

The interpretation of the various terms is obvious, and it remains only to estimate 

their relative importance. To do this, we can take as an example the grid examined 

in the experiment described above and use the numerical values of a', b', d and d' 
already given. It will also be supposed that U = 2 -5 cms. per second, which, as 

previously shown (§ 5), would be the maximum velocity produced in the neck of the 

resonator if its natural frequency were 240 vibrations per second, and the amplitude in 

the primary wave were 200 times as great as the minimum amplitude audible. We 

find then that 

rlRj = — 0'23U2 (l — 0'0072U2) = — 1 ’ 37, 

SB,= + 1 ‘ 19U (l — 0*014U2) = +1-09 sin pt, 

£R3 = + 0'23U2(l—0‘0096U2) cos 2pt = +1*35 cos 2pt, 

dR4 = + 0'0055U3sin 3pt = + 0'086 sin 3pt, 

£R5 = + 0’00055U4 cos Apt = +0'021 cos Apt. 

So that, even with a comparatively loud sound, the notes of pitch three and four 

times the fundamental are quite unimportant. 

One other point remains to be noted. From the expressions just given it can be seen 

that the simple rule, that oik is proportional to the intensity of the sound stimulating 

the resonator, does not hold for very loud sounds. Similarly, the amplitude of the 

fundamental oscillatory effect is not proportional to the amplitude in the primary wave 

when very intense sounds are used. In both cases the effect with very loud sounds 

falls short of what it would be if the simple relations continued to hold. 

§ 7. Experiments on the Measuremeyit of Sound. 

Two experiments will now be described which were undertaken with the object of 

testing the correctness of two of the conclusions arrived at in the previous section, 

viz. 
'i 



412 I)R. W. S. TUCKER AND MR. E. T. PARIS ON 

(i) That the steady resistance change is proportional to the intensity of the 

sound affecting the microphone ; and 

(ii) That the amplitude of the oscillatory resistance change oR2 is proportional to 

the amplitude of the sound which produces it. 

As pointed out at the end of § 6, neither of these conclusions would be expected to 

hold quite exactly in the case of very loud sounds. 

(i) First Experiment.—The object of the experiment was to find out if the change of 

resistance ARj is proportional to the intensity of the sound. In order to do this it is 

only necessary to expose a microphone to different sounds of known relative intensities, 

and to observe in each case the value of ARi- The method adopted in the experiment 

was to observe the effect produced on the microphone when it was placed at various 

distances from a source of sound working at a constant rate, the relative intensities of the 

sound to which the microphone was exposed being deduced from the Inverse Square 

law. 

The source of sound was an electrically maintained tuning-fork vibrating in front of a 

glass-bottle resonator, the frequency of the fork being 250 vibrations per second. The 

fork with its resonator was placed on the ground in a suitable open space.* The 

amplitude of vibration of the fork could be observed by means of a microscope and 

micrometer eyepiece, and it was found that with care the fork could be made to vibrate 

with an amplitude which would remain constant within a few per cent, for quite long 

periods of time. 

The microphone was clamped with its axis vertical in a heavy retort-stand, so that 

it vras held at a height of about 1 foot 6 inches above the ground. The grid was 

connected by a long pair of leads to a Wheatstone's Bridge, which was set up inside a 

laboratory. A reflecting galvanometer was used, and a preliminary experiment showed 

that for the small changes in resistance to be observed (not exceeding 0 -25 ohm), the 

deflection shown by the galvanometer was proportional to the resistance change in the 

microphone. 

The fork having been set in vibration, the stand carrying the microphone was placed 

at a convenient distance and the reading of the galvanometer noted. A piece of card was 

then placed over the mouth of the glass-bottle resonator, so that the sound from the 

fork became negligible. This enables the observer to obtain a zero reading on the 

galvanometer, the difference between the twro readings being the deflection due to the 

sound. The microphone is then moved into another position at a greater or less distance 

from the fork and the process repeated. The result of one experiment is given below. 

The distances vary from 12 to 64 feet, and the deflections shown in the table are the 

means of three or four observations in each position. The actual readings for any 

particular distance did not differ amongst themselves by more than 0-3 cm., 

* The experiment was carried out on Woolwich Common, about one hour after sunset on a calm 

evemng. 
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except in the case of the first two deflections, when the maximum variation was 

0 *5 cm. 

Distance in 
feet. 

Deflection in 
centimetres. 

Distance in 
feet. 

Deflection in 
centimetres. 

12 13-0 36 1-7 
16 9-1 40 1-4 
20 5-7 44 1-1 
24 3-3 48 0-85 
28 3-0 56 0-8 
32 2-3 64 0-6 

In fig. 11 the deflection d is plotted against the distance r. By plotting log d against 

log r we obtain a straight line represented by 

logio d = 3'34-2 log10r, 

1 
which shows that the deflection d is proportional to —, that is, to the intensity of the 

7' 

sound. 

o 

10 20 30 40 50 60 70 

r in feet 
Fig. 11. 

According to the equations given in § 6, we should have 

.SB,! = — 0'23U2 (1 — 0'0072U2) 

for all values of U up to about 4 cms. per second. 

VOL. CCXXI.——A, 3 L 

It becomes of interest to estimate 
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what is the probable maximum value of U in the above experiment. It was found that 

the sound from the fork was certainlv inaudible to the unaided ear at a distance of 250 
«/ 

feet, this being probably rather an over-estimate of the distance at which the sound was 

just lost. Taking the amplitude of the sound at this distance to be 1 *27 X 10-7 cms. 

(Rayleigh’s value for the minimum amplitude audible when the note is 256), we find 

that the amplitude of the sound at 12 feet from the fork is about 2 -7 X 10-6, so that 

the maximum value of velocity in the sound-wave does not exceed 0 -005 cm. per 

second, and the maximum velocity TJ of the air in the neck of the resonator will probably 

not be greater than 0 *3 cm. In this case the effect of the second term in the expression 

for (iRj is negligible. 

A second experiment performed on another occasion under almost identical conditions 

confirmed the results already obtained. The distances employed in this experiment, 

however, did not exceed 32 feet. 

(ii) Second Experiment.—The expression deduced in § 6 for the oscillatory resistance- 

change of the same frequency as that of the sound is 

m2 = a'U (l +f G-, U2^ sinpt, 

where £ -r is very small, so that, except for exceedingly loud sounds, 
CC 

c®2 = a'U sin pt. 

In the case of experiments such as that just described, we may write 

£R, = — sin pt, 
r 

since £R2 is proportional to the amplitude of the sound affecting the resonator. 

When an amplifier is used as a means of observing this effect, its working depends 

in the first place on the fluctuation of the current in the primary circuit. The effect of 

the small oscillatory resistance change in the microphone is to produce a “ ripple ” on 

the steady heating current, the amplitude of which to a first approximation is proportional 

to the amplitude of the oscillatory resistance change. Without considering the processes 

by which this ripple is amplified by the series of transformers and thermionic valves 

which constitute a transformer amplifier, we shall at once proceed to enquire by an 

experimental method whether the amplitude of the current on the output side of the 

amplifier is proportional to the amplitude of the sound affecting the microphone. It is 

perhaps scarcely necessary to point out that in such an experiment it cannot be assumed 

that the amplification is constant for different values of the amplitude of the ripple. 

For ripples of very small amplitude, however, it seems probable that the amplification 

may be sensibly constant over a moderate range. In spite of these difficulties, which 

make the interpretation of the observations somewhat obscure, the results obtained 

appear to be of sufficient interest to justify their inclusion in this paper. 
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The general procedure followed in the experiment was similar to that already 

described. The Wheatstone’s Bridge was replaced by an Amplifier of the Army pattern 

known as “ C Mark II.,” the output terminals being connected to a Campbell vibration- 

galvanometer tuned to respond to 250 vibrations per second. The source of sound was 

the same as before. It was not necessary in this case to take a zero reading for each 

position of the microphone. 

The results of two experiments, carried out on different occasions and with different 

strengths of the source, are given in the following table:— 

Experiment A. Experiment B. 

Distance in Deflection in Distance in Deflection in 
feet. centimetres. feet. centimetres. 

8 11-4 20 10-1 
12 9-0 24 7-3 
16 7-2 28 6-1 
20 6-0 32 5-6 
24 5-4 36 4-8 
28 5-1 40 4-4 
32 4-6 44 4-2 
36 4-2 48 .. 4-1 
40 3-8 52 3-9 
44 3-2 56 3-7 
48 3-0 60 3-0 

• 
64 2-7 

The curves A and B (fig. 12) show the results of plotting the observations in 

Fig. 12. 

3 L 2 
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experiments A and B respectively. The curve A' (fig. 12) is calculated from d 
146 -3 

It will be seen that the observed curve A lies along A' when r is greater than about 

28 feet, that is, when the sound has fallen below a certain amplitude. When r is less 

than 28 feet, the amount of deflection is less than it would have been had the simple 

inverse first-power rule continued to hold. This is indeed what might be expected 

from a consideration of the action of the microphone grid, as pointed out at the end of 

§ 6, but the observed falling off in deflection is too great to be accounted for in this 

way alone. 

In experiment B (curve B, fig. 12), the agreement between the observations and 

the relation d oc - is better. 
r 

The broken curve B' is calculated from d = 
185-4 

Although the deflection corresponding to a given value of r is greater in the B curve 

than the A curve, it must not be inferred that the sound was louder in the former 

case. The deflection obtained depends not only on the loudness of the sound but also 

on the sensitivity to which the amplifier is adjusted and which can be varied over a very 

wide range. As a matter of fact the sound was louder in the A than in the B 

experiment. It may also be noted that in both cases the sound was louder than in 

the Wheatstone’s Bridge experiment. 

To sum it up, it may be said that the available evidence points to the fact that, when 

the microphone is employed with an amplifier and vibration galvanometer and only very 

faint sounds are observed, the deflection shown by the galvanometer is approximately 

proportional to the amplitude of the sound. 

§ 8. The Effect of Tilting the Microphone. 

It has already been mentioned that, when taking sound measurements with a Hot- 

Wire Microphone, it is necessary to keep the axis of the microphone inclined at some 

fixed angle to the horizontal. In fig. 13 a curve has been given showing the relation 

between the resistance of the grid and the angle of inclination of the axis to the vertical, 

the electric current carried by the grid being maintained at a constant value throughout 

the measurements. It is obvious from this curve that the tilt of the axis must not be 

altered while measurements are being taken by the Wheatstone’s Bridge method. 

The two most noticeable features about the curve are : 
9 

(i) That the resistance of the grid is less when the microphone is held upside down 

(0 = tr) than when it is in its normal upright position (6 = 0), although in both 

cases the plane in which the grid lies is approximately horizontal; and 

(ii) That the resistance is least—that is, the rate of cooling is greatest—when 6 is 

somewhat greater than T. 

These two experimental results are curious and difficult to explain. They are both, 
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however, quite characteristic of the form of microphone under discussion, and cannot be 

attributed entirely to adventitious circumstances, such as the bending of the wire loops 

of the grid out of their normal positions. 

Another point which may be noted is that, since the disposition of the loops about the 

axis of the microphone is not symmetrical, a rotation of the microphone about its own 

axis produces a change in resistance. It follows from this that when observations 

such as those shown in fig. 13 are continued for values of 0 between 0 and —7r, the curve 

is not in general symmetrical about the line 0 = 0. 

It is clear from these results that the resistance of the grid depends, not only on the 

magnitude of the current of air by which it is cooled, but also on the direction of this 

current relatively to the plane in which the grid lies. This is due to the free convection 

from one part of the grid acting upon another part, and is essentially the same phenomenon 

as that used by J. S. G. Thomas in the construction of a “ Hot-Wire Inclinometer.’ * 

When the Amplifier method is used it is found, as stated previously, that the effect 

of tilting the microphone is to change the character of the sound heard in the telephones. 

As 6 is increased from 0 to - the fundamental note becomes gradually weaker, while 

* “ An Electrical Hot-Wire Inclinometer,” by J. S. G. Thomas, ‘ Proc. Phys. Soc.’, Loud., vol. XXXII., 

pp. 291-314 (1920). 
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at the same time the octave becomes more and more prominent. For some value of 

0 exceeding blit varying somewhat with different grids and the way in which the 

microphone is held, the fundamental is almost suppressed and the octave is heard with 

corresponding clearness*. When 6 is still further increased the fundamental becomes 

gradually restored, and the sound of the octave is altogether lost to the ear w'hen 6 = tt. 

The value of 6 at which the octave is most clearly heard (generally between 110° and 

120°) is altered slightly if the microphone is rotated about its own axis. 

To demonstrate this effect, a microphone (M) was mounted with its neck projecting 

i---1 into a tube (TT) (fig. 14), which could be rotated 

AT about a horizontal axis. When so rotated the axis 

of the microphone could be inclined to the vertical at 

J m any desired angle, while the open ends of the tube (TT) 

14- were exposed to the same amount of sound throughout 

the experiment. The microphone was connected to an amplifier in the usual manner, 

and the output terminals of the amplifier were joined to a vibration galvanometer. 

The source of sound used was an electrically maintained tuning-fork making 250 vibra¬ 

tions per second, the microphone and vibration galvanometer being also tuned to this 

frequency. 

The curve in fig. 15 shows the deflection of the vibration galvanometer plotted 
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against 0, and demonstrates clearly that the amplitude of the fundamental vibration 

passes through a minimum when 0 is about 125°. 

An application of the experimental method of investigation described in § 6 leads 

to some interesting results. For example, an experiment was performed to determine 

the relation between the resistance R of the grid and the impressed velocity U of the 

air-current when 0 = - . The results are given in the following table. The value of 
2 

0 indicates only the tilt of the axis of the container and neck, and does not necessarily 

mean that the plane containing the loops is exactly vertical. 

Microphone Grid A1079. Heating current 28 -5 milliamperes. Resistance of grid 

when impressed air-current is zero = 266 -85 ohms. 

u. 
era. per sec. 

SR. 
ohms. 

U. 
cm. per sec. 

SR, 
ohms. 

-5-54 -9-25 + 1-04 +0-002 
-4-22 6-21 +1-11 —0-02 
-4-15 -5-64 +] -58 -0-31 
-2-98 -2-92 +2-15 -0-84 
-2-32 -1-78 +3-48 -2-99 
-1-36 -0-93 +4-49 -5-46 
-1-17 -0-70 +5-11 -6-51 
-0-64 -0-34 

These observations are shown graphically in fig. 16. 
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Assuming, as in the case when the microphone axis is vertical, that the relation 

between U and (dd can be put in the form 

sr = $K+a{Tj-v(>y+b{xj-v0y, 

we find that a fair agreement is obtained when 

£Et0 = +0*02 

a — — 0 ‘ 3 

b = +0*0007 

V0 = +0-25 

that is, 

Sli = 0‘02 —0'3 (U—0'25)2 + 0'0007 (U-0-25)4. 

Points calculated from this formula when U = 0, ± 1, etc., are shown, by the crosses 

in fig. 16. It will be seen that the fit is not so good as in the case when the microphone 

was held vertically (fig. 10), and also that the experimental curve is not quite symmetrical 

about the line U = V0 = 0 -25 when U is small. It is, however, difficult to obtain reliable 

readings of the resistance of the grid when the microphone axis is horizontal or nearly 

so, and the above formula appears to represent the experimental results sufficiently 

well for the present purpose. It may be written 

SU = +0-15U-0-3U2—0-00035U3 + 0-0007U4, 

and by putting U sin pt in place of U, and disregarding the terms in U3 and U4, it can be 

seen that the three principal effects to be expected when the microphone is exposed to 

a sound-wave of suitable frequency are 

SR! = — 0 ‘ 15U2, 

dR2 = + 0‘15U sinpb 

£R3 = + 0 ‘ 15U2 cos 2pt. 

If these are compared with the corresponding expressions in § 6, it will be seen that 

for a given value of U the magnitude of the steady resistance change and the amplitude 

of the octave are reduced in the proportion 15/23, but that the amplitude of the 

fundamental vibration is reduced to .15/119 of its value when 0 = 0. Although, 

therefore, all these effects are diminished when the microphone is laid horizontally, it 

is the fundamental vibration which suffers the most. So far the deductions made from 

the results of the experiments with steady air-currents are in accordance with 

observation. 

For values of 6 between 0 and ^, curves intermediate in form between those in figs. 10 

and 16 are obtained. When 0 is greater than 0, V0 no longer represents the velocity 
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of free convection from the grid, but is more nearly the component of the free convection 

along the axis of the microphone. That is, V0 is approximately equal to V cos 0, 

\ being the velocity of free convection from the grid. If this were strictly true, we 

should have V0 = 0 when 6 = ^, but this is not generally the case, probably owing 

to the fact that the loops are slightly displaced and do not lie in a plane which is just 

at right angles to the microphone axis, and it may even happen that they are not all 

in the same plane. For example, in the case of the grid used in the experiment just 

described, it was found that 

and 
V0 = 1 *225 cms. per second when 0=0, 

V0 = 0*25 cm. per second when 6 = — ■ 
A 

As an approximation we may take V = 1*225 and V0 = Y cos(0 + a) when 0 is 

near —, so that 
2 

Whence 

1*225 cos = 0*25. 

and we should have V0 = 0 when 6 = 101°. 

When V(J = 0 the expressions for the resistance changes produced by an oscillatory 

air-current (§ 6) reduce to 

£Rj — |-aU2, 

= 0, 

£R3 = — |-«U2 cos 2pt,' 

so that the total resistance change is made up of two parts only—a steady change and 

the octave—while the fundamental vibration is completely suppressed. Now the 

curve in fig. 15 shows that in that particular experiment the fundamental was suppressed 

when 6 was about 125 degrees, and this is indeed about the usual value of 6 for this 

phenomenon to occur, while (as in the above example) V0 vanishes when 6 is at most 

about 100 degrees. It appears therefore, that merely writing U sin ft instead of U, in 

the equation connecting U and <fR for small steady velocities, does not in this case 

explain all the observed phenomena. 

A satisfactory explanation of this difficulty has not yet been found, but the hypothesis 

that a jet may be formed in the neck of the resonator may be put forward. The 

possibility of this occurring in the mouths of ordinary resonators is discussed by 

Rayleigh (“ Theory of Sound,” vol. II., § 322). If a jet were formed in the neck of 

the resonator, then, in order to account for the observed phenomenon, it would have to 
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be of such a nature that the outward movement of the air takes place principally along 

the central axis of the neck, while the inward movement takes place close to the walls 

of the neck. Since the platinum grid is placed centrally in the neck and does not 

occupv any space near the walls, the effect of the jet could be represented by adding 

a term V' to V0, so that (approximately) 

Y0 — Y cos (9 + a) + V'. 

The fundamental would then be suppressed when 

Y cos (6+a) +Y; = 0. 

If a = —11° (as in the case of the grid used in the experiment described above), then 

. V' 
9 will be 125° if ===== 0 -4. 

A further point in favour of this hypothesis is. that the angle at which the microphone 

must be tilted for the octave to be heard best depends to some extent on the intensity 

of the sound. 

On the other hand, if a jet were formed, then since the amplitude of the fundamental 

is approximately proportional to V0, the amplitude when 9 = 0 should be to the 

amplitude when 0 = tt in the approximate ratio 
Y + V' 
V - V'* 

And since we must have 

V' 

V 
about equal to 0 -4 in order to make 9 — 125 degrees when the octave is heard best, 

it follows that the microphone should be more than twice as sensitive to the fundamental 

vibration when it is held upright than when it is held upside clown. This is not borne 

out by experiment, which shows that the sensitivity is only slightly reduced by turning 

the microphone upside down (see fig. 15). 

Rayleigh* points to the near agreement between observed and calculated pitch in 

support of his view that jets are not formed “ to any appreciable extent at the mouths of 

resonators as ordinarily used.” The further argument, however, that “ the persistence 

of the free vibration . . . seems to exclude any important cause of dissipation beyond 

the communication of motion to the surrounding air,” does not apply to the resonators 

used in the present experiments, for it is shown in § 4 that the dissipation caused by the 

communication of motion to the surrounding air is negligible compared with the total 

amount of dissipation which occurs. 

It appears, therefore, that the jet hypothesis, while offering a plausible explanation 

of the suppression of the fundamental at such large values of 9 as 125 degrees, is open to 

objection on account of 

(i) The nearly equal sensitivity shown by the microphone in the erect and inverted 

positions ; and 

(ii) The near agreement between observed and calculated pitch (see § 4). 

* Loc. cit., p. 217. 
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§ 9. Some Observations of Distribution and Intensity of Sound made with the 

H ot- Wire Microphone. 

The applications of the microphone to sound measurements are sufficiently numerous 

to justify a short description. It is quite obvious that the apparatus is not adapted to 

the measurement of the total quantity of a medley of sounds, since the microphones 

are selective, and the pitch or wave-length, of the sound measured must therefore always 

be given. 

Full advantage can be taken of the two alternative methods of using the microphone 

for sound measurement. In general, it should be laid down that the Wheatstone’s 

Bridge method should be adopted for cases in which the sound distribution can be altered 

by keeping the microphone fixed in space and changing the position of the source of 

sound or by movement of any screen, reflector, trumpet, etc., while source and microphone 
* 

occupy given positions. 

If, however, the microphone has to be attached to some moving object the amplifier 

method has to be employed, records of amplitude being given by a vibration galvano¬ 

meter, or in certain cases by rectifying the current and using a reflecting galvanometer. 

The simplest experiment to perform is that of observing the distribution of intensity 

of sound in a closed room. By the Wheatstone’s Bridge method the microphone can 

occupy some fixed position while a steady source of sound such as a tuning-fork is 

carried about the room. 

The effects are sufficiently strong for a pivoted galvanometer to be employed for 

observation. 

A variant of this experiment is to keep the source of sound in one place, and observe 

the effects of moving either one’s self, of altering the position of furniture in the room, 

or of opening of doors or windows. It is quite easy to vary these arrangements in such 

a manner as to reduce the intensity of sound as recorded by the microphone from a 

maximum value to zero. The position of nodes and antinodes in the room can be 

investigated by moving the microphone and employing the amplifier method with tele¬ 

phones or vibration galvanometer. The results obtained are sufficiently Striking to 

condemn any method of sound, measurement in a closed room—the mere movement of 

the observer being sufficient to vitiate any experimental results. Methods of ear 

testing, which so commonly employ tuning-forks, are equally unsatisfactory. All 

measurements must therefore be made in the open-air and full precautions must be 

taken to avoid obstacles presenting reflecting surfaces. 

Moreover, open-air work can only be performed under exceptionally calm conditions 

such as exist on certain nights or during a fog. 

These phenomena are of far reaching importance in architectural acoustics. It 

seems evident that in any room or concert hall there is a considerable difference between 

the musical piece as rendered by instruments and the sounds which the audience observes ; 

and it also follows that various members of the audience hear the same rendering 
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somewhat differently owing to their positions in the room. That the sensation of 

suppression of a note is not obvious is no doubt due in some measure to the distance 

between the two ears. 

Experiments on Refection.—A large sheet of uralite was set up out of doors with its 

plane vertical. An electrically driven tuning-fork served as the source of sound, and was 

mounted opposite the centre of the uralite at a distance of 30 feet from. it. The sound 

was thus incident normal to the surface and capable of producing stationary waves. 

The curve connecting deflection of the galvanometer and distance from the reflector 

is shown in fig. 17 and indicates clearly the position of nodes and antinodes. The 

Fig. 17. 

distance between the nodes agrees well with that obtained front a wave-length of 43 

inches, except for that nearest to the mirror. All observations taken with various surfaces 

showed that the first antinode was nearer the mirror surface than was anticipated, 

which may be due to the lack of rigidity of the reflecting surface. The effect at the 

reflecting surface varies very largely with itsjnature; thus, when a wooden door is employed, 

the effect is greatest at the centre of the door midway between the four panels and least 

at the panels where there is minimum rigidity. 

The reflecting qualities of different surfaces for sound can thus be compared. It is 

also obviously a simple matter to test the transmitting properties of various media— 

taking care to confine the sound transmitted to the material under test. 

Experiments with Trumpets.—A trumpet has certain magnifying and directional pro¬ 

perties, which depend on its dimensions and the wave-length of the sound employed; 

and another important factor in magnification is the material of which the trumpet is 

made. In the experiments described below the trumpet employed was conical, having 

a mouth 18 inches in diameter, a throat J inch in diameter and a slant side of 

25| inches. It was made of 1-inch wood in 16 segments. 

The trumpet was mounted on a stand with its axis horizontal, and was capable of 

rotating about a vertical axis, its bearing being indicated by a pointer travelling over 

a horizontal circle graduated in degrees. The narrow end of the trumpet received the 
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aperture of a resonant microphone, and the connection with the trumpet was such 

as to leave unchanged the resonant note of the microphone by modification of its 

orifice. 

The source of sound was the electrically maintained tuning-fork previously referred 

to and its distance from the trumpet was 50 yards. In order to enhance the source 

of sound the prongs of the tuning-fork were caused to set in resonant vibration the 

air in a glass bottle, and the mouth of the bottle was taken as the position of the 

source. 

To get the zero of bearing, cross-threads were fixed to the trumpet mouth so that they 

coincided with two perpendicular diameters of the mouth. A small sighting-hole was 

drilled in a brass plate covering the narrow end of the trumpet. By looking through 

this aperture and rotating the trumpet until the cross-threads appeared in line with the 

source one was able to observe the zero of bearing on the scale. 

The following table gives readings of the vibration galvanometer for various 

orientations of the trumpet:— 

Bearing in 
degrees. 

Deflection in 
divisions. 

Bearing in 
degrees. 

Deflection in 
divisions. 

0 48 50 36 
5 48 55 34 

10 47-5 60 31 
15 47 65 28 
20 46 70 25 
25 45 75 22 
30 43-5 80 18-5 
35 42 85 15 
40 40 90 11 
45 38 

It is interesting to note that the intensity of sound at the throat of the trumpet 

increases again as the bearing approaches 180 degrees and gives a maximum. Such an 

effect can be easily observed by fitting a stethoscope to the narrow end of the trumpet 

and listening by ear as the trumpet is rotated. 

When the trumpet is removed and the sound recorded by a microphone alone, an 

estimate of magnification is given. It was found that the ratio 

Maximum deflection with the trumpet 

Deflection without the trumpet 
14-5, 

which is a measure of amplitude magnification, since it has been shown in § 7 that 

deflection is proportional to amplitude. 
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The diagram (fig. 18) shows the nature of the polar curve of amplitudes. Experiments 

with sources of different pitches indicated that the higher the pitch the sharper the 

curvature in the region of the zero bearing. For highly directive apparatus, therefore, 

every advantage is to be gained by using big trumpets. 

The Hot-Wire Microphone gives an easy method of testing the resonance frequencies 

of trumpets, but the effect must not be complicated by using a resonant microphone 

of the type described above. In this case the trumpet itself may be used as the resonating 

cavity. A bare grid with an orifice of the type above described is fitted to the narrow 

end of the trumpet, as shown in fig. 19, and the amplifier is used with rectifier and 

reflecting galvanometer. The bridge method cannot be employed in this case as 

the open trumpet is subject to draughts, and there is constantly a movement of air 

in one direction or the other which would cause a change in resistance of the heated 

grid. 

The source of sound is the specially constructed siren referred to in § 4. As the pitch 
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rises a deflection is produced in the neighbourhood of resonance. The diagram 

(fig. 20) shows a relation between the pitch of the siren note and the response of the 

trumpet. The amount of resonance is expressed in terms of galvanometer deflection as 

shown by the following table:— 

Frequency 
(vibrations per sec.). 

Deflection 
(divisions). 

Frequency 
(vibrations per sec.). 

Deflection 
(divisions). 

80 3 200 30 
100 5-5 220 49 
120 7-5 240 32 
140 10 260 17 
160 13 280 16 
180 20 300 24 

The table shows an upward curve at the highest frequency, thus indicating approach 

to the next overtone. The maximum at 220 indicates the fundamental resonance 

note. 

By means of the microphone, therefore, the whole properties of a trumpet as a 

receiver of sound can be investigated, both as regards directive action and 

resonance. 

Since by the principle of reversibility we may employ the trumpet as a transmitter 

for any given note, we may also derive its properties as a distributor and magnifier 

of any sound produced at the narrow end. 

This has an obvious application to gramophone trumpets, in which the diaphragm 

acts as the source of sound. 
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In conclusion, one example may be given of the use of the microphone to measure 

diffraction of sound. 

An interesting example is that of the diffraction effect of a single disc. A large wooden 

disc, 1 inch thick and 10 feet in diameter, is suspended by one edge. The tuning-fork 

described above serves as a steady source of sound and is placed opposite the centre of 

the disc and 30 feet from it. The microphone, in tune with this fork, is mounted with its 

orifice at the centre of the back of the disc—the axis of the microphone being of course 

vertical. The disc, with microphone, is now swung round about its vertical diameter 

and readings are taken with the vibration galvanometer—using the Amplifier method. 

The bearings were observed by means of a sighting-tube passing normally through 

the disc at a point on its vertical diameter about one-quarter of the way from its lower 

edge. As the disc was rotated one could observe through the sighting-tube a number 

of white posts, which were driven into the ground on the circumference of a circle of 

50 yards radius, the sighting-tube being at the centre. The pegs were 10 degrees apart, 

and the zero reading was given when the central post, the source of sound, and the 

sighting tube were in line. 

Bearing 
(degrees). 

Deflection 
(divisions). 

Bearing 
(degrees). 

Deflection 
(divisions). 

90 45 0 43 
80 31-5 -10 16 
70 17 -20 Min. 2 
60 5-5 -30 10 

52 Min. 1 -4 -37 Max. 14-5 
50 1-5 -40 12 
40 12-5 -50 2 

37 Max. 14-5 -51 Min. 2 
30 10 -60 6 
20 2 -70 18-5 

19 Min. 2-0 
10 20 -80 32 
0 43 -90 45 

If we plot bearing and deflection, which for faint sounds measures the amplitude 

of the vibration, a curve of the form shown in fig. 21 is obtained. 

It is thus seen that the diffraction gives a central maximum equal in intensity 

to the sound which passes the edge of the disc, and this is surrounded by a ring 

maximum. 

A variant of this experiment was performed in which the disc was set to give different 

angles of incidence for the sound, and the microphone was moved along a horizontal 

diameter until a maximum effect was given. One thus obtains an image of the source 

for each angle of incidence, and the distance of this image from the centre of the disc 

gradually increases as the angle of incidence is increased. 
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The image, however, becomes ill-defined for angles of incidence exceeding 20 degrees, 

and the tendency is then to obtain a train of maxima of nearly equal intensity when 

the microphone moves from one edge of the disc to the other. 

The above illustrations give some indication of the manner in which the microphone 

can be applied to the investigation of acoustical problems. Many of the measurements 

described in this paper were made in a locality where a certain amount of noise was 

constantly occurring, but which the microphone, being highly tuned, failed to record. 

Tuned reception for sound has all the advantages of tuned reception in “ wireless 

in distinguishing and magnifying faint signals. 

A distinct limitation of this microphone is its restriction to the measurement of low- 

frequency sounds, but it is hoped to devise a microphone of the Hot-M ire type sufficiently 

sensitive to deal with speech frequencies. 

§ 10. Summary. 

A new form of Selective Hot-Wire Microphone is described, consisting of an electrically 

heated grid of fine platinum wire placed in the neck of a Helmholtz resonator. The 

effect of a sound having the same frequency as that natural to the resonator itself 

is to produce an oscillatory motion of the air in the neck, which in turn causes a change in 

resistance of the platinum wire grid. The total resistance change comprises a steady fall 
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in resistance due to an average cooling of the grid, and a periodic change due to the 

to-and-fro motion of the air. Two methods of using the microphone are described :— 

(i) A Bridge method, depending on the steady drop in resistance ; and 

(ii) An Amplifier method which makes use of the periodic resistance changes. 

Curves are given showing the sharpness of resonance as measured by the Bridge 

method. 

The various factors affecting the sensitivity of the microphone are discussed. The 

most important, from a practical point of view, is the variation of the sensitivity 'with 

the heating current of the grid. It is found by experiment that the sensitivity always 

increases as the heating current is increased. In the case of the Bridge method, it is 

found that the steady resistance change produced by a sound of given intensity is a 

linear function of the temperature of the grid above its surroundings measured on the 

platinum scale. 

The results of experiments on the cooling of the grid by low velocity air-currents are 

described. From these results it is deduced that the principal resistance changes to 

be expected when the grid is cooled by an oscillatory air-currents are :— 

(1) A steady drop due to an average cooling ; 

(2) A periodic resistance change at the same frequency as that of the sound ; and 

(3) A periodic resistance change of frequency twice that of the sound. 

All these effects are found in practice. 

Further deductions are that the steady change of resistance is proportional to the 

intensity of the sound, while the periodic resistance change in (2) is proportional to the 

amplitude. These conclusions are confirmed by experiment. 

A description is given of the effect to be observed when the microphone is tilted at 

various angles, and the observed facts are compared with what would be expected from 

the results of experiments with steady air-currents. 

Finally, an account is given of some experiments which exemplify the use of the 

Hot-Wire Microphone for observing the intensity and distribution of sound. 

The work described in this paper forms part of an investigation commenced in the 

Munitions Inventions Department, and continued later at the Signals Experimental 

Establishment, Woolwich. 

In conclusion, the authors wish to express their indebtedness to the Chief Experimental 

Officer of this Establishment for the interest which he has taken in the progress of the 

work, and for the facilities which they have received for carrying out experiments. 
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