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Dynamical generation of resonances in the P33 partial wave
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We investigate the formation of resonances in the P33 partial wave with emphasis on possible emergence of
dynamically generated quasibound states as a consequence of a strong p-wave pion attractive interaction in this
partial wave, as well as their possible interaction with the genuine quark excited states. By using the Laurent-
Pietarinen expansion we follow the evolution of the S-matrix poles in the complex energy plane as a function of
the interaction strength. Already without introducing a genuine quark resonant state, two physically interesting
resonances emerge with pole masses around 1200 and 1400 MeV, with dominant πN and π� components,
respectively. The added genuine resonant state in the (1s)3 quark configuration mixes with the lower dynamically
generated resonance forming the physical �(1232) resonance, and pushes the second dynamical resonance to
around 1500 MeV, which allows it to be identified with the �(1600) resonance. Adding a second resonant state
with one quark promoted to the 2s orbit generates another pole whose evolution remains well separated from the
lower two poles. We calculate the helicity amplitudes at the pole and suggest that their Q2 dependence could be
a decisive test to discriminate between different models of the �(1600) resonance.
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I. INTRODUCTION

Since its discovery in 1952 [1,2], the �(1232) resonance
has played a significant role in almost all attempts to un-
derstand the structure and dynamics of the nucleon and its
excited states. The early approaches were based on the ob-
servation that the dominant p-wave pion nucleon interaction
is attractive in the P33 partial wave—in contrast to the P11,
P13, and P31 waves—and may therefore generate a reso-
nance at the observed energy, provided that the coupling is
sufficiently strong. Since the pion-nucleon coupling constant
was known from the behavior of the P11 wave near the
threshold, the above condition required a sufficiently large
cutoff, of the order of 1 GeV/c [3]. With the introduction
of the quark model, the four charge states of �(1232) have
been identified as the isospin quadruplet belonging to the
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lowest quark decuplet. The excitation energy with respect
to the nucleon is usually explained by the gluon and/or
pion exchange interaction between quarks. The relatively
strong p-wave pion-nucleon interaction—though not the main
mechanism generating the resonance—manifests itself in siz-
able pion contributions to the photo- and electroproduction
amplitudes.

While the properties of the �(1232) resonance are well
understood, this is not the case with the next higher resonance
in the P33 partial wave, the �(1600). In the quark model, this
resonance is traditionally described as the radial excitation in
which one quark is promoted to the 2s orbit; the analog to
the Roper resonance N (1440) in the P11 partial wave. The
problem with such an interpretation is that in the harmonic-
oscillator model the 2s excitation is twice as large as the
1p excitation while the observed N (1440) resonance appears
below the negative parity resonances. Furthermore, recent
results of lattice QCD in the P11 partial wave show no clear
signal for a three-quark Roper state below 1.7 GeV [4,5]. To
resolve the problem of level ordering, an alternative approach
has been proposed in which coupled-channel meson-baryon
dynamics alone was sufficient to engender the resonance [6,7].
In our previous work [8] we have shown that, while the
mass of the N (1440) resonance is indeed determined by the
dynamically generated state with the dominant s-wave σN
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component, a genuine three-quark (1s)22s component with
mass above 1750 MeV is needed to explain the properties
of the resonance. The presence of a bare baryon structure at
around 1750 MeV has also been emphasized in the Excited
Baryon Analysis Center approach [9,10].

Since the �(1600) resonance may be considered as a spin
3
2 , isospin 3

2 partner of the N (1440), it seems at first glance
that a similar model could work also in the P33 partial wave
with the σN substituted by the s-wave σ� component.1 As
shown in [8] the N (1440) mass at the pole lies slightly below
the nominal Nσ threshold, rather independently of the model
parameters, which would mean that the mass of the �(1600)
would be at least 200 MeV higher than the mass of the
pole given by the Particle Data Group (PDG) [11], ruling
out such a model. Also, a preliminary calculation in the P33
partial wave has shown that the σ� component represents a
rather minor contribution to the scattering amplitudes below
W ≈ 1800 MeV. We therefore consider here an alternative
model, based on the observation that the πN as well as
the π� interaction are attractive in the P33 partial wave, in
which the dynamically generated state consists of quasibound
πN and π� states. Such a model is further stimulated by
the study [12] using a semiphenomenological approach to
extract photoproduction couplings at the pole of N and �

resonances up to W ≈ 2.4 GeV, which has confirmed the
dynamical origin of the �(1600) resonance with a dominant
π� configuration.

There have not been many attempts to study the prop-
erties of �(1600) from the quark modeling point of view;
let us mention the calculations in the relativistic quark
model in a light-front framework [13–15] assuming the dom-
inant (1s)22s quark configuration, which leads to a similar
behavior of the helicity amplitude as in the Roper case,
and a calculation [16] using a relativistic diquark-quark
model.

In the next section we briefly review the basic features of
our coupled-channels approach and of the underlying quark
model that has been used in our treatment of N (1440).
However, in the version reported here we do not include
the σ meson, which turns out to have only a very minor
role in the relevant energy region. Furthermore, since the
πNN coupling constant is well established, we keep the π -
quark coupling constant fixed and vary the cutoff parameter
in order to study the evolution of the resonance poles in
the complex energy plane by using the Laurent-Pietarinen
(L + P) expansion [17–20]. In Sec. III we solve the coupled-
channels problem, first without including any genuine three-
quark resonant state, then by including a three-quark resonant
state corresponding to �(1232), and finally adding a three-
quark resonant state in a (1s)22s configuration. In Sec. IV
we discuss the prediction of our model for the photo- and
electroproduction amplitudes which may eventually support
our picture of the �(1600).

1In the following we shall denote the �(1232) as �; the �(1600)
will be eventually denoted as �∗.

II. THE MODEL

In our approach the scattering state in channel α which
includes a quasibound quark state �R assumes the form

|�α〉 = Nα

{
[a†

α (kα )|�α〉] + cαR|�R〉

+
∑

β

∫
dk χαβ (kα, k)

ωβ (k) + Eβ (k) − W
[a†

β (k)|�β〉]
}
, (1)

where α (β) denotes either πN or π� channels and [ ] stands
for coupling to total spin 3

2 and isospin 3
2 . The first term

represents the free pion and the baryon (N or �) and defines
the channel, the next term corresponds to a bare three-quark
resonant state, while the third term describes the pion cloud
around the nucleon and �. Here Nα = √

ωαEα/(kαW ), kα

and ωα are on-shell pion momentum and energy, and W =
ωα + Eα is the invariant mass. The integral is assumed in the
principal value sense. The (half-on-shell) K matrix is related
to the scattering state as [21]

Kαβ (kα, k) = −πNβ〈�α||V β (k)||�β〉, (2)

with the property Kαβ (kα, k) = Kβα (k, kα ). It is proportional
to the pion amplitude χ in (1),

Kαβ (kα, k) = π NαNβ χαβ (kα, k). (3)

The amplitude χ satisfies a Lippmann-Schwinger type of
equation:

χαγ (k, kγ ) = −cγ R VαR(k) + Kαγ (k, kγ )

+
∑

β

∫
dk′ Kαβ (k, k′)χβγ (k′, kγ )

ωβ (k′) + Eβ (k′) − W
. (4)

Our model utilizes two approximations for the kernel K: the
first one implies only u-channel processes,

Kαβ (k, k′) =
∑

i=N,�

f i
αβ

V α
iβ (k)V β

iα (k′)

ωα (k) + ωβ (k′) + Ei(k̄) − W
, (5)

and the second one implies that the kernel can be made
separable by assuming

1

ωα (k) + ωβ (k′) + Ei − W

≈ (ωα + ωβ + Ei − W )

[ωα (k) + Ei − Eβ][ωβ (k′) + Ei − Eα]
, (6)

where W = Eα + ωα = Eβ + ωβ . The factorization is exact if
either of the ω’s is on shell, i.e., ωα (k) → ωα = W − Eα or
ωβ (k′) → ωβ = W − Eβ . In the present work we include only
pion loops and the nucleon and � as the u-channel exchange
particles. Based on our previous experience in the P11 and
P33 partial waves these degrees of freedom dominate in the
energy region considered in the following. The spin-isospin
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factors in (5) equal

f N
NN = f �

NN = 4

9
, f �

NN = 1

36
, f �

�� = 121

225
,

f N
N� = f N

�N = 5

9
, f �

N� = f �
�N = 2

9
.

Equation (5) implies dressed vertices; in the present calcula-
tion the vertices involving the � are increased by 30% with
respect to their bare (quark model) values, in accordance with
our analysis of the P33 resonances in [21], while VπNN is kept
at its bare value.

The vertices are determined in the underlying quark model,
which can be chosen freely; we use the cloudy bag model [22],
which involves two parameters: the pion-decay constant, fπ
(reduced to 76 MeV in order to reproduce the πN coupling
constant), and the bag radius which determines the cutoff.
In our previous analysis we used a typical value of R =
0.83 fm corresponding to the cutoff � ≈ 550 MeV. These
two parameters describe consistently the scattering and pho-
toproduction amplitudes, including the production of η and
K mesons [8,21,23–26]. In order to reveal the mechanism of
�(1600) formation we study the evolution of the resonance
properties as a function of R (which is inversely proportional
to the cutoff momentum) for a large range of its value, keeping
in mind that the physically sensible interval should be between
0.6 and 1 fm.

The pion amplitude can be written in terms of the resonant
and nonresonant parts,

χαγ (k, kγ ) = cγ RVαR(k) + Dαγ (k, kγ ), (7)

such that (4) can be split into the equation for the dressed
vertex,

VαR(k) = VαR(k) +
∑

β

∫
dk′ Kαβ (k, k′)VβR(k′)

ωβ (k′) + Eβ (k′) − W
, (8)

and the nonresonant amplitude,

Dαγ (k, kγ ) = Kαγ (k, kγ )+
∑

β

∫
dk′ Kαβ (k, k′)Dβγ (k′, kγ )

ωβ (k′) + Eβ (k′) − W
,

(9)
with

cαR = − VαR(kα )

W − mR+ ∑
β

∫
dk VβR (k)VβR (k)

ωβ (k)+Eβ (k)−W

, (10)

where mR is the bare mass of the resonant state.2

Since the kernel (5) has been rendered separable, equa-
tions (8) and (9) can be solved exactly (i.e., to all orders) with
the Ansätze

VαR(k) = VαR(k) +
∑
βi

xα
βi ϕ

α
βi(k) (11)

and

Dαγ (k, kγ ) = Kαγ (k, kγ ) +
∑
βi

zαγ

βi ϕα
βi(k), (12)

2Equation (10) becomes more complicated if the second resonant
state is included; see Sec. III C.

where

ϕα
βi(k) = 2mi

Eβ

(
ωβ + ε

β
iα

) V α
iβ (k)

ωα (k) + εα
iβ

f i
αβ,

ε
β
iα = m2

i − m2
α − μ2

β

2Eα

.

This leads to a set of linear algebraic equations for the
coefficients x: ∑

γ j

Aβ
αi,γ j xβ

γ j = bβ
αi, (13)

and similarly for z with the same A matrix. Here i ( j) refers
to u-channel exchange baryons (N and �). The expression for
the A matrix along with its graphical representation as well as
the right-hand side’s b are given in [8].3 Having obtained the
K matrix, the scattering matrix T is obtained by solving the
Heitler equation.

With increasing interaction strength the kernel may be-
come singular, and the K matrix acquires a pole which may
be interpreted as a dynamically generated resonance. In [8]
we performed the singular value decomposition of the A
matrix [27] in order to be able to determine the W dependence
of the lowest singular value, wmin, and to study how the
behavior of wmin is reflected in the evolution of pole(s) in
the complex plane as the interaction strength is increased. The
main conclusion of such an analysis in our previous work has
been that the pole corresponding to the dynamically gener-
ated resonance emerges well before the interaction strength
reaches the value at which wmin touches zero. Furthermore,
the mass of the pole turns out to lie close to the position
where wmin reaches its minimum, almost independently of
the interaction strength. This property persists even when
wmin becomes negative; however, additional poles may show
up at W where wmin crosses zero. From the corresponding
eigenvectors it is possible to establish the main meson-baryon
components of the dynamically generated state.

III. SOLVING THE SCATTERING EQUATION

A. No bare-baryon resonant state

We first study the case without any genuine bare baryon,
so the problem reduces to solving Eq. (9) alone. We consider
two cases: in the first one we assume only the nucleon as the u-
channel exchange particle and fix the πNN coupling constant
to the experimental value; in the second case we add the � at
1232 MeV as the second u-channel exchange particle and fix
the π�N and the π�� coupling constants to the quark-model
values increased by 30%. We vary the coupling strength by
changing the bag radius. Figure 1 shows the behavior of wmin

as a function of W for some typical values of R for the two
cases. In the first case (thinner curves) wmin touches zero for
R ≈ 0.22 fm and crosses zero at 1232 MeV for R = 0.123 fm.
The situation is considerably more complex in the second case
(thick curves). For the physically interesting values around
R = 0.8 fm, wmin exhibits three minima at around 1200, 1500,

3In the present model the σ terms are not included.
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FIG. 1. The behavior of wmin, the lowest singular value of A as a
function of W for the kernel involving N and � u-channel exchange
(thick lines) and N alone (thin lines), for different bag radii R (in fm).

and 2000 MeV. For smaller R the middle minimum stays close
to 1500 MeV and touches zero for R ≈ 0.45 fm. The zero
crossing at 1232 MeV occurs for R = 0.20 fm.

In order to obtain the scattering amplitudes we have to
specify how to include the inelastic channel above the two-
pion threshold. We assume that the decay into two pions pro-
ceeds through the π� intermediate state as described in [23]
and in Appendix A of [24], which implies an integration
over the invariant mass of the πN system weighted by the
probability determined in the πN scattering in the P33 partial
wave. We assume that this probability is given by the Breit-
Wigner mass and width of the �. As we shall see in the
following, this assumption is consistent for sufficiently strong
coupling (small R) where the parameters of the �(1232) are
reproduced in the same dynamical model.

The resulting scattering amplitudes are displayed in Fig. 2
for three typical bag radii. While for larger values of R the
amplitudes do not show any visible sign of resonance, for R =
0.123 fm (for the u-channel N-exchange kernel) and for R =
0.20 fm (N and � exchange) they perfectly fit the experimen-
tal data below 1300 MeV. By using the L + P expansion we
have been able to follow the evolution of the pole(s) in the two
cases considered above from the (relatively) weak coupling
towards the strong coupling regime. Using the kernel with
solely the N exchange there is only one resonance which can
be attributed to the dynamically generated �(1232). It starts
far from the real axis (i.e., with a large width), approaches
the real axis, and becomes bound for R = 0.050 fm (see
Fig. 3). It is interesting to notice that its pole mass remains
close to 1200 MeV. For R = 0.123 fm where Re T reaches
zero at 1232 MeV, the pole parameters agree well with those
extracted from experiments (see Table I).

The situation in the case with N and � exchange particles
is much more complex: for larger R there are two poles,
and, for the radius for which wmin comes close to zero, a
third pole emerges. The lowest one exhibits a very similar

W [MeV]

0.123

0.123

0.22

0.22

0.50

0.20

0.20

0.45

0.45

0.80

19001700150013001100

1

0.8

0.6

0.4

0.2

0

− 0.2

− 0.4

FIG. 2. T -matrix amplitudes involving N and � u-channel ex-
change (thick lines, dashes for ImT ) for R = 0.8 fm, 0.45 and
0.20 fm, and N alone (thin lines, dashes for ImT ) for R = 0.5, 0.22,
and 0.123 fm. Experimental data are from [28,29].

evolution as the pole in the previous case, while the second
pole remains close to the mass 1380 MeV and width of
220 MeV, rather independently of R. Since these two poles
lie close to each other, their determination is not very precise;
the unsmooth evolution curve in the complex plane can be
therefore attributed to numerical instabilities. The second pole
turns out to be better determined in the π� channel (see
Table I). This pole can be interpreted as the progenitor of
the �(1600) resonance. For smaller R the mass of the third
pole coincides with the energy at which wmin crosses zero the
second time; it seems to have no physical interpretation and
might be an artifact of the model.

FIG. 3. Evolution of poles in the complex plane as a function of
R (in fm): the single pole arising from the u-channel N-exchange
kernel (open circles), and the three poles from the N + � exchange
kernel (full circles).
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TABLE I. S-matrix pole position, modulus, and phase for the
u-channel N-exchange (I) and � + N-exchange kernel (II), NN
refers to pole determined from elastic channel and �� to poles from
π� → π�. The PDG values are taken from [11].

Re Wp −2 Im Wp

R (fm) (MeV) (MeV) |r| (MeV) ϑ

PDG 1210 100 46 −46◦

0.123 (I) 1205 94 44 −56◦

0.200 (II) 1203 98 47 −55◦

PDG 1510 270 25 −180◦

Ref. [18] 1469 314 38 173◦

0.200 (��) 1376 255 10.6 −153◦

0.800 (��) 1379 219 15.4 −162◦

0.800 (NN) 1380 163 8.0 −107◦

The singular value decomposition mentioned in the previ-
ous section allows us to extract the probabilities for the πN
and π� intermediate states in the scattering amplitudes as a
function of W (normalized to unity). The probability for the
π� component in elastic scattering is displayed in Fig. 4 for
four different R. Similar behavior is observed also upon inclu-
sion of the resonant state discussed in the next subsection. Just
about the πN threshold the πN component is dominant, while
in the region around and above 1400 MeV the π� component
starts to dominate. This explains the constancy of width of
the second resonance, which primarily depends on the width
of the outgoing � (which is assumed to be constant in the
present calculation).

B. Including the resonant state at 1232 MeV

We now turn to a more realistic model introducing a
genuine three-quark resonant state. In order to be able to
identify the most relevant degrees of freedom in the physically
interesting region below 1700 MeV, we work with only two
channels, the πN and the π�. We adjust the bare mass by
fixing the Breit-Wigner resonance mass (i.e., the zero of Re T )

FIG. 4. The probability for the π� component in the DπN πN

amplitude as a function of W for four different R (in fm).

FIG. 5. T -matrix amplitudes with and without included genuine
resonance at 1232 MeV for R = 0.8, 0.60, 0.45 fm and 0.200 fm.
Experimental data are from [28,29].

to 1232 MeV and further fix the bare πN� coupling constant
to 110% of the quark-model value and the bare π�� coupling
constant to 55% in order to (partially) compensate for the
channels not taken into account.

In addition to Eq. (9) we now solve Eq. (8); both equa-
tions involve the same kernel, which is identical to the one
of the purely dynamical model, and hence the behavior of
wmin(W ) coincides with that shown in Fig. 1. The scattering
amplitudes are displayed in Fig. 5 for four different R. The
experimental amplitudes are best reproduced for R between
R = 0.8 fm and R = 0.6 fm, while at R = 0.45 fm a structure
at around W = 1500 starts to become visible. For R = 0.20
fm the amplitudes coincide with those of the purely dynamical
model. Analyzing the emergence and evolution of poles in
the complex plane in Fig. 6, we notice that the position
of the lowest pole corresponding to �(1232) stays close

FIG. 6. Evolution of poles in the complex plane as a function of
R (in fm) with included genuine resonance at 1232 MeV.
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TABLE II. S-matrix pole position, modulus, and phase with
one resonant state for R = 0.8, 0.6, 0.2 fm, and with an additional
resonant state with a bare mass 2.2 and 2.0 GeV. The PDG values are
taken from [11].

Re Wp −2 Im Wp

R (fm) (MeV) (MeV) |r| (MeV) ϑ

PDG 1510 270 25 −180◦

Ref. [18] 1469 314 38 173◦

0.800 1449 350 26.3 174◦

0.600 1508 427 50.0 −165◦

0.200 1367 271 12.1 −160◦

m�∗ = 2.2 GeV
0.800 1453 360 44 −174◦

0.600 1570 397 66 −166◦

m�∗ = 2.0 GeV
0.800 1452 347 46 −179◦

0.600 1631 340 68 −140◦

to the standard PDG value and only moves toward slightly
larger widths and smaller masses for very small R. There
is a second branch starting with masses around 1450 MeV
and widths of 350 MeV evolving towards higher values
for both quantities. At smaller values, below R at which
wmin crosses zero, a third branch emerges starting with a
small residue and evolving toward the second pole of the
purely dynamical model. There is a fourth branch essen-
tially identical to the third branch discussed in the previous
section.

We conclude this section by noting that the main effect
of including a bare resonant � state is the mixing of the
bare state with the dynamically generated states, which results
in pushing the dynamically generated resonance obtained
in the previous section towards higher energies; for larger
R its properties come closer to the values in the PDG ta-
ble (see Table II) and it can be identified as the �(1600)
resonance.

C. Including the second resonant state

We finally consider the inclusion of the second genuine
three-quark resonant state in which one quark is promoted to
the 2s state. In our previous work on the N (1440) we found a
strong mixing of such a configuration with the dynamically
generated state; it is therefore important to check whether
such a mixing plays a sizable role also in the P33 partial
wave.

As discussed in the Introduction, we expect that a bare state
with such a configuration does not exist below 2000 MeV.
We therefore consider two possible bare masses of 2200 and
2000 MeV. We used the pion coupling constants obtained
in the cloudy bag model without any further adjustment: for
πNR and π�R the constants are 46% of the corresponding
quark-model values for the (1s)3 configuration. We assume
the same bag radius for both states.

The calculation proceeds by introducing an additional term
cγ R∗VαR∗ (k) in (4) with VαR∗ (k) satisfying an analogous equa-
tion to Eq. (8). The equations for cγ R and cγ R∗ , however,

FIG. 7. T -matrix amplitude with the included resonant � state
for R = 0.67 fm, and the amplitude with the included second state
at bare masses 2000 and 2200 MeV for R = 0.74 fm. Experimental
data are from [28,29].

become more complicated due to mixing of the bare reso-
nances through pion loops, as described in [8]. We fix again
the Breit-Wigner mass of the lower resonance to 1232 MeV
by adjusting the bare � mass; this procedure works, provided
that the bare � mass does not come too close to the bare mass
of the upper states, which occurs around R = 0.45 fm. The
resulting Breit-Wigner mass of the upper resonance remains
close to its bare value even for smaller R where the two bare
state strongly mix.

Figure 7 displays the T -matrix amplitude with and without
including the second resonant state for the bag radii for which
the amplitude agrees best with experiment. While the imag-
inary part of the amplitude is improved in the intermediate
regime by introducing the second state, a typical resonant
behavior emerging around 2000 MeV for the bare mass of
2000 MeV is not supported by experiment. It seems therefore
that such a low mass is ruled out. Adding further channels may
enhance the amplitude and improve the agreement and may
eventually support a bare mass as low as 2200 MeV. We shall
nonetheless include both bare states in our further analysis.

The evolution of the poles pertinent to the second and the
third resonances is compared to the evolution of the second
resonance discussed in the previous subsection in Fig. 8. We
notice that the presence of the new resonant state affects little
the properties for larger R but already for R = 0.60 fm the
mass of the resonance is further increased with respect to the
purely dynamical resonance as well as the resonance with a
single resonant state (see also Table II). The third resonance
pole, starting on the real axis at the bare mass of the resonant
state, evolves towards large −Im W almost in a straight line
and does not bend toward lower masses as in the case of
the N (1440) resonance. This indicates that the excited quark
configuration plays a rather insignificant role in the formation
of the �(1600) resonance (in the physically sensible range of
radii).
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FIG. 8. Evolution of the poles pertinent to the second resonance
(full circles) and the third resonance (open circles) in the complex
plane, as a function of R (in fm).

IV. ELECTROPRODUCTION AMPLITUDES

Electroproduction is an important tool to study the reso-
nance structure. In particular, the extracted Q2 dependence
of helicity amplitudes may reveal the spatial distribution of
quark and meson degrees of freedom. As an example, let us
mention our early calculation of the helicity amplitudes in
the case of the �(1232) resonance [30], in which we have
been able to disentangle the quark and the pion degrees of
freedom and have shown that the latter strongly dominate the
E1+ production amplitude; similarly, studying the structure of
the N (1440) resonance [23], we have been able to explain
the zero crossing of the A1/2 amplitude by its transition from
the pion-dominated region at low Q2 to the region dominated
by quarks at larger Q2. This type of calculation is based on
the assumption that it is possible to extract the resonant state
from (1) and calculate the electromagnetic (EM) part of the
electroproduction amplitude by evaluating the corresponding
EM multipole between the ground state and the resonant state.
Such an approach is justified if the resonance is sufficiently
narrow and can be separated from the background and pos-
sible neighboring resonances. This is certainly not fulfilled
in the case of �(1600). It seems that the only physically
sensible way to obtain the helicity amplitudes is to extract
them from the electroproduction amplitudes at the S-matrix
pole for different values of Q2.

The calculation is organized as follows: the K matrix
acquires a new channel, γ N , and the corresponding matrix
elements are calculated from (2) with the EM interaction,

V γ
μ (kγ ) = e0√

2ωγ

∫
dr εμ · j(r) eikγ ·r, (14)

replacing the strong one. Here kγ and μ are the momentum
and the polarization of the incident photon, and the current
involves the quark and the pion part:

j(r) = ψ̄γ

(
1

6
+ 1

2
τ0

)
ψ + i

∑
t

tπt (r)∇π−t (r).

TABLE III. Photoproduction residues at the pole of �(1600).
The values of the modulus should be divided by 1000.

|ResE1+| θE |ResM1+| θM

γ N → πN
Ref. [20] 0.44 127◦ 2.53 −149◦

R = 0.8 fm 0.30 143◦ 2.02 173◦

R = 0.6 fm 0.49 115◦ 4.46 122◦

γ N → π�

Ref. [32] 2 ± 1 30◦ ± 30◦ 12 ± 3 65◦ ± 25◦

R = 0.8 fm 0.41 158◦ 6.51 119◦

R = 0.6 fm 0.67 158◦ 13.3 127◦

Only M1 and E2 multipoles contribute in the P33 partial
wave. The M1+ and E1+ amplitudes (see Fig. 9 for E1+) are
calculated and the respective residues are determined by using
the L + P expansion. From these residues the helicity ampli-
tudes (photodecay amplitudes) Apole

h are calculated as [31]

Apole
h =

√
16π kπ Mp

3kγ mN ResπN
ResAh

1+, (15)

valid for the P33 partial wave. Here kπ and kγ are the pion
and photon momenta evaluated at the pole, Mp is the mass
of the resonance, and ResπN the elastic πN residue; A1/2

1+ =
− 1

2 (M1+ + 3E1+) and A3/2
1+ = −

√
3

2 (M1+ − E1+).
In the first step we calculate the photoproduction ampli-

tudes and compare them to the residues obtained by Švarc
et al. [20] for γ N → πN and of Sokhoyan et al. [32] for
γ N → π�; see Table III.

In the next step we calculate the Q2 dependence of the
helicity amplitudes A1/2 and A3/2 at the pole by first calcu-
lating the electroproduction amplitudes as a function of W at
finite Q2 and then determine the residue of the pole for each

FIG. 9. Photoproduction E1+ amplitude (in mfm) for R = 0.6
and 0.8 fm evaluated in the model with one or two resonant three-
quark states, the second one at m�∗ = 2.2 GeV. Experimental data
are from [28,29].

035204-7
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TABLE IV. Helicity amplitudes at the photon point in units of
10−3 GeV−1/2.

∣∣Apole
1/2

∣∣ θ1/2

∣∣Apole
3/2

∣∣ θ3/2

Ref. [32] 53 ± 10 (130 ± 15)◦ 55 ± 10 (152 ± 15)◦

Ref. [12] 193 15◦ 254 175◦

Ref. [34] 53 ± 10 (130 ± 25)◦ 41 ± 11 (165 ± 17)◦

Ref. [35] 72 −109◦ 136 −98◦

R = 0.8 fm 44 −104◦ 47 −89◦

R = 0.6 fm 68 22◦ 79 25◦

Q2 separately by using the L + P expansion. The resulting
amplitudes are displayed in Fig. 10 and compared to the
phenomenological amplitudes of the MAID2007 analysis [33]
evaluated at W = 1232 MeV and at 1470 MeV. One should
keep in mind that the latter amplitudes have been evaluated by
assuming a Breit-Wigner behavior for the resonance, while
ours are extracted from the pole residue. It is known that the
quark contribution to the magnetic amplitudes is considerably
underestimated in our model, particularly at smaller Q2, due to
the fact that the spinors are limited to the interior of the bag.
We expect that this effect is present also in the amplitudes
pertinent to the �(1600) resonance. The helicity amplitudes
roughly follow the same trend for both resonances, similar to
the MAID amplitudes. At low Q2 there is, however, a substan-
tial difference due to the E2 multipole, which is considerably
larger than in the phenomenological parametrization; as a
result, the A1/2 amplitude at the photon point becomes almost
equal to the A3/2. Taking into account the simplicity of the
quark model embedded into our coupled-channels framework
as well as large uncertainty of the experimental data regarding
this resonance, our values compare favorably to the values
from Refs. [32,34] (see Table IV). Since the E2 multipole
contribution originates entirely from the pion current, this
effect is a strong signal of the important role of the pion cloud
in the �(1600) and supports our picture of the resonance.

Let us stress that our model reproduces reasonably well
the E1+ photoproduction amplitude (Fig. 9) in the physically
relevant range of W , which speaks in favor of our model. The
figure also shows that the presence of the second baryon state
at 2.2 GeV has little effect, particularly for larger R.

V. CONCLUSION

We have studied the mechanism of resonance formation in
the P33 partial wave in a model including only the πN and the
π� channels. The L + P expansion has been used to extract
the S-matrix resonance-pole parameters. We have shown that
assuming only the u-channel exchange diagrams, the system
supports two resonances of dynamical origin, the lowest one
with a pole mass around 1200 MeV, dominated by the πN
loops, and the second one, dominated by the π� loops, with a
mass slightly below 1400 MeV. For a sufficiently large cutoff
parameter, the position and the residue almost perfectly agree
with the PDG values, yet the corresponding size of the quark
core appears to be much too small to make such a model
realistic.

Including a genuine three quark resonant state in the s
channel, it becomes possible to reproduce sufficiently well
the scattering data in the intermediate energy region by using
physically sensible values for the cutoff. The properties of the
�(1232) are well reproduced and, furthermore, the second
dynamically generated resonance is pushed toward a some-
what higher pole mass of around 1500 MeV, acquiring a width
which agrees with still rather uncertain PDG values for the
�(1600) resonance.

We have checked whether the inclusion of the s-wave σ

meson as well as the quark configuration with one quark
excited to the 2s state—which has turned out to play a
dominant role in the case of the N (1440) resonance—may
change the above picture. The σ� channel, as the counterpart
of the σN channel in the P11 partial wave, starts to influence
the results only above 1700 MeV, while the evolution of the
pole stemming from the leading (1s)22s configuration is well
separated from the pole evolution pertinent to the second
dynamically generated resonance. The excited quark core
configuration could eventually be the dominant ingredient in
one of the higher P33 resonances.

Electroproduction in the energy region below ≈1700 MeV,
particularly the extraction of helicity amplitudes at finite Q2,
seems to be the most decisive test to confirm the validity of
our picture of the �(1600) resonance. Our model predicts a
relatively strong contribution from the E2 multipole originat-
ing solely from the photon interaction with the pion cloud and
dominating at small Q2 due to the large extent of the pion field.
As a result, A1/2 is enhanced, while A3/2 is diminished with

FIG. 10. Helicity amplitudes (units of 10−3 GeV−1/2, phase in degrees) at the S-matrix pole of the �(1232) and �(1600) resonances for
R = 0.8 fm, and the corresponding multipole amplitude E2, compared to the phenomenological parametrization [33].
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respect to their ratio of
√

3, assuming M1 dominance, and the
two amplitudes in fact become comparable in size. Further-
more, we predict that they drop smoothly to zero at large Q2

and do not exhibit a zero crossing, as is the case with the A1/2

amplitude in the Roper resonance, where the quark (1s)22s

configuration is strong and produces a contribution with the
opposite sign with respect to the pion cloud contribution.

We conclude that the �(1600) is perhaps the most clean
example of a dynamically generated nonstrange resonance in
the second and third resonance regions.
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