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Measuring the Weizsäcker-Williams distribution of linearly polarized gluons
at an electron-ion collider through dijet azimuthal asymmetries
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The production of a hard dijet with small transverse momentum imbalance in semi-inclusive DIS probes
the conventional and linearly polarized Weizsäcker-Williams (WW) transverse momentum dependent (TMD)
gluon distributions. The latter, in particular, gives rise to an azimuthal dependence of the dijet cross section.
In this paper we analyze the feasibility of a measurement of these TMDs through dijet production in DIS
on a nucleus at an electron-ion collider. We introduce the MCDIJET Monte Carlo generator to sample quark-
antiquark dijet configurations based on leading-order parton level cross sections with WW gluon distributions
that solve the nonlinear small-x QCD evolution equations. These configurations are fragmented to hadrons
using PYTHIA, and final-state jets are reconstructed. We report on background studies and on the effect
of kinematic cuts introduced to remove beam jet remnants. We estimate that with an integrated luminosity
of 20 fb−1/nucleon one can determine the distribution of linearly polarized gluons with a statistical accuracy of
approximately 5%.
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I. INTRODUCTION

Building an electron-ion collider (EIC) is one of the key
projects of the nuclear physics community in the U.S. The
main purpose of an EIC is to study the gluon fields of
QCD and provide insight into the regime of nonlinear color
field dynamics [1,2]. The energy dependence of various key
measurements has been assessed recently in Ref. [3].

In this paper we focus on the small-x regime of strong
color fields in hadrons and nuclei [4]. An EIC, in principle,
is capable of providing clean measurements of a variety of
correlators of the gluon field in this regime. Here, we are
interested, in particular, in the conventional and linearly polar-
ized Weizsäcker-Williams (WW) gluon distributions at small
x [5,6]. These distributions arise also in transverse momentum
dependent (TMD) factorization [7–9]. (For a recent review of
TMD gluon distributions at small x see Ref. [10].) Our main
goal is to conduct a first assessment of the feasibility of a
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measurement of these gluon distributions at an EIC through
the dijet production process.

The WW TMD gluon distributions, and in particular the
distribution of linearly polarized gluons, appears in a variety
of processes. This includes production of a dijet or heavy
quark pair in hadronic collisions [11–13] or DIS at moderate
[14–18] or high energies [5,6,19] where the dependence on the
dijet imbalance is explicitly present. Dijet studies are the main
focus of this paper. The WW gluon distributions could also be
measured in photon pair [20], muon pair [15], quarkonium
[21], quarkonium pair [22], or quarkonium plus dilepton
[23] production in hadronic collisions. The distributions also
determine fluctuations of the divergence of the Chern-Simons
current at the initial time of a relativistic heavy-ion collision
[24]. Finally, we illustrate that the conventional WW gluon
distribution at small x could, in principle, be determined also
from dijet production in ultraperipheral p+p, p+A, and A+A
collisions. However, as explained in the next section, the
distribution of linearly polarized gluons cannot be accessed
with quasireal photons. This underscores the importance of
conducting the dijet measurements at an EIC.

II. DIJETS IN DIS AT HIGH ENERGIES

At leading order in αs the cross section for inclusive
production of a q + q̄ dijet in high-energy deep inelastic
scattering of a virtual photon γ ∗ off a proton or nucleus is
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given by [5,25]

E1E2
dσγ ∗

T A→qq̄X

d3k1d3k2d2b
= αeme2

qαsδ(xγ ∗ − z − z̄)zz̄(z2 + z̄2)
ε4
f + P 4

⊥(
P 2

⊥ + ε2
f

)4

[
xG(1)(x, q⊥) − 2ε2

f P 2
⊥

ε4
f + P 4

⊥
cos(2φ)xh

(1)
⊥ (x, q⊥)

]
, (1)

E1E2
dσγ ∗

LA→qq̄X

d3k1d3k2d2b
= αeme2

qαsδ(xγ ∗ − z − z̄)z2z̄2
8ε2

f P 2
⊥(

P 2
⊥ + ε2

f

)4 [xG(1)(x, q⊥) + cos(2φ)xh
(1)
⊥ (x, q⊥)]. (2)

Here, xγ ∗ = 1, b is the impact parameter, and

�P⊥ = z̄�k1⊥ − z�k2⊥, �q⊥ = �k1⊥ + �k2⊥ (3)

are the dijet transverse momentum (hard) scale �P⊥ and the
momentum imbalance �q⊥, respectively.1 Note that the mo-
mentum imbalance is explicitly preserved, enabling us to
probe a regime of high gluon densities at small q⊥ even if
Q and P⊥ exceed the so-called gluon saturation scale Qs (x)
at the given x [26].

The transverse momenta of the produced quark and anti-
quark are given by �k1⊥ and �k2⊥ and their respective light-cone
momentum fractions are z and z̄. The invariant mass of the
dijet is Minv = P⊥/

√
zz̄; for massless quarks we have ε2

f =
zz̄Q2. We restrict our consideration to the case when �P⊥ is
greater than �q⊥, also known as the correlation limit [5,6]. The
above expressions for the LO cross sections have been derived
in the small-x, high-energy limit, restricting to leading power
in 1/P 2

⊥ [5,6,25]. In that limit they agree with leading power
TMD factorization; we refer to Ref. [27] for an overview
of TMD factorization, and its relation to QCD resummation,
evolution, and factorization theorems.

Power corrections to Eqs. (1), (2) have been derived in
Ref. [28]. They generate corrections ∼(Q2

s /P
2
⊥) log P⊥ to

the isotropic and ∼ cos 2φ terms written above. Since Q2
s is

proportional to the thickness of the target such contributions
correspond to A1/3 enhanced power corrections. Moreover, a
∼ cos 4φ angular dependence arises from power corrections
of order q2

⊥/P 2
⊥.

In Eqs. (1), (2), φ denotes the azimuthal angle between �P⊥
and �q⊥. Note that we work in a frame where neither the virtual
photon nor the hadronic target carries nonzero transverse
momentum before their interaction. For our jet reconstruction
analysis we transform every event to such a frame.

The average cos 2φ measures the azimuthal anisotropy,

v2 ≡ 〈cos 2φ〉. (4)

The brackets denote an average over φ of cos 2φ at fixed q⊥
and P⊥, with normalized weights proportional to the cross
sections in Eqs. (1) or (2), respectively.

Since2

x = 1

W 2 + Q2 − M2

(
Q2 + q2

⊥ + 1

zz̄
P 2

⊥

)
(5)

1Here and below the transverse two dimensional component of a
three-dimensional vector �k = (�k⊥, kz ) are denoted by �k⊥.

2W in Eq. (5) denotes the CM energy of the γ ∗-nucleon collision.

is independent of φ, for definite polarization of the virtual
photon we have [19]

vL
2 = 1

2

xh
(1)
⊥ (x, q⊥)

xG(1)(x, q⊥)
, vT

2 = − ε2
f P 2

⊥
ε4
f + P 4

⊥

xh
(1)
⊥ (x, q⊥)

xG(1)(x, q⊥)
. (6)

The polarization determines the sign of v2. In experiments it
is not possible to tell the polarization of the photon in dijet
production directly. Instead, one measures the polarization
blind sum, see Eq. (26). In Sec. IV, we show how one could
disentangle vL

2 and vT
2 .

A measurement of the φ-averaged dijet cross section
provides the conventional (unpolarized) Weizsäcker-Williams
gluon distribution xG(1)(x, q2

⊥) via Eqs. (1) and (2). A mea-
surement of the average of cos 2φ then provides the distribu-
tion of linearly polarized gluons via Eqs. (6). We note that
the conventional distribution can, in principle, be measured
in γA → qq̄X also in the Q2 → 0 limit. However, for a
real photon ε2

f ∝ Q2 → 0 so that the cross section for the
process becomes isotropic and one no longer has access to
xh

(1)
⊥ (x, q2

⊥).
Equations (1) and (2) are restricted to high energies not

only because the large component of the light-cone momenta
of the quark and antiquark are conserved (high-energy kine-
matics), but also because we neglect photon-quark scatter-
ing with gluon emission (γ ∗q → g + q). For an unpolarized
target, and massless quarks, the distribution f

q
1 (x, q2) of

unpolarized quarks enters [15,29] and gives an additional
contribution to the isotropic part of the dijet cross section. For
more realistic computations at EIC energies these contribu-
tions should be included in the future.

The linearly polarized and conventional gluon distribu-
tions3 are given by the traceless part and by the trace
of the Weizsäcker-Williams unintegrated gluon distribution,
respectively:

xG
ij
WW(x, q⊥) = 1

2
δij xG(1)(x, q⊥) − 1

2

(
δij − 2

qi
⊥q

j
⊥

q2
⊥

)

× xh
(1)
⊥ (x, q⊥). (7)

Their general operator definitions in QCD were provided in
Refs. [7–9]. At small x, xG

ij
WW(x, q2

⊥) is expressed as a

3We only consider the forward gluon distributions in this paper. In
the nonforward case the general decomposition of the WW GTMD
involves additional independent functions on the right-hand side of
Eq. (7), see, e.g., Ref. [30].
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(a) (b)

FIG. 1. xG(1)(x, q2
⊥) and xh(1)(x, q2

⊥) WW gluon distributions versus transverse momentum q⊥ at different rapidities Y = log x0/x. Qs (Y )
is the saturation momentum. The curves correspond to evolution at fixed αs [19].

two-point correlator of the field in A+ = 0 light-cone gauge
[5,6,31]:

αs xG
ij
WW(x, q⊥) = 1

S⊥

∫
d2x⊥
(2π )2

d2y⊥
(2π )2

e−i �q⊥·(�x⊥−�y⊥ )

×〈gAi,a (�x⊥)gAj,a (�y⊥)〉. (8)

Here S⊥ denotes the transverse area of the target and
gAi (�x⊥) = −iU †(�x⊥)∂iU (�x⊥), with the conventional defini-
tion of the Wilson line in the fundamental representation,
U (�x⊥). 〈· · · 〉 in Eq. (8) refers to an average over all quasi-
classical configurations of small-x gluon fields. At small x

the function (2qi
⊥q

j
⊥/q2

⊥ − δij )Ai (�q⊥)Aj (−�q⊥) exhibits large
fluctuations across configurations, in particular for q⊥ not too
far above the saturation scale Qs [32]. However, in the single
dijet production process one can only determine the average
xh

(1)
⊥ (x, q2

⊥).
The functions xG(1)(x, q2

⊥) and xh
(1)
⊥ (x, q2

⊥) for the
McLerran-Venugopalan (MV) model [33,34] of a large nu-
cleus were computed analytically in Refs. [6,25]. Explicit
expressions for a more general theory of Gaussian fluctuations
of the covariant gauge field A+ were given in Ref. [28];
also see Refs. [35,36]. Numerical solutions of the JIMWLK
evolution equations [37–48] to small x were presented in
Refs. [19,35], shown in Fig. 1. At high transverse momentum
one finds that xh(1)(x, q2

⊥) → xG(1)(x, q2
⊥) corresponding to

maximal polarization. On the other hand, at low q⊥ one
has xh(1)(x, q2

⊥)/xG(1)(x, q2
⊥) � 1, implying that there the

angular dependence of the cross section (1), (2) is weak.
For q⊥ ∼ Qs (Y ) these numerical solutions predict a sub-
stantial angular modulation of the dijet cross section since
xh(1)(x, q2

⊥)/xG(1)(x, q2
⊥)  10% − 20%.

Our event generator described in the following Sec. III em-
ploys tabulated solutions of the leading-order, fixed coupling
JIMWLK evolution equations [37–48] for xh(1)(Y, q2

⊥) and
xG(1)(Y, q2

⊥), where Y = log x0/x. The initial condition at
x0 = 0.01 is given by the MV model. In particular, the initial
MV saturation scale is set to Qs (x0) = 1.2 GeV correspond-
ing to a large nucleus with A ∼ 200 nucleons, on average over
impact parameters.

A. Moments of interjet azimuthal angle

In this section we discuss the relation of 〈cos 2φ〉 intro-
duced in the previous section to 〈cos 2�〉, where � is the
azimuthal angle between the two jets (i.e., between �k1⊥ and
�k2⊥). They are related through

cos2 � = (�k1⊥ · �k2⊥)2

k2
1⊥ k2

2⊥
. (9)

To obtain moments in the correlation limit at fixed q⊥ and P⊥
one inverts Eqs. (3) to express �k1⊥ = �P⊥ + z�q⊥ and �k2⊥ =
− �P⊥ + z̄�q⊥, and performs an expansion of cos2 � in powers
of q⊥/P⊥. This leads to

cos 2� = 2 cos2 � − 1

= 1 + q2
⊥

P 2
⊥

(cos 2φ − 1) + q4
⊥

P 4
⊥

[zz̄

− (1 − 2zz̄) cos 2φ + (1 − 3zz̄) cos 4φ] + · · · .

(10)

We have dropped terms that vanish upon integration over φ.
The dots indicate contributions of higher order in q⊥/P⊥.
Taking an average4 over φ at fixed q⊥ and P⊥ we obtain

〈cos 2�〉|q⊥,P⊥ = 1 + q2
⊥

P 2
⊥

〈cos 2φ − 1〉 + q4
⊥

P 4
⊥

[zz̄ − (1 − 2zz̄)

×〈cos 2φ〉 + (1 − 3zz̄)〈cos 4φ〉] + · · · .

(11)

Since d2k1⊥ d2k2⊥ δ(q2
⊥ − (�k1⊥ + �k2⊥)2) δ(P 2

⊥ − (z̄�k1⊥ −
z�k2⊥)2) ∼ dφ, the integral over φ is equivalent to an
integral over �k1⊥ and �k2⊥ at fixed q⊥ and P⊥. On the
right-hand side of Eq. (11) one can now replace 〈cos 2φ〉
by xh

(1)
⊥ (x, q⊥) / xG(1)(x, q⊥) times a prefactor, see Eq. (6).

Note that this ratio of gluon distributions appears in 〈cos 2�〉
with a suppression factor of q2

⊥/P 2
⊥ whereas it contributes

at O(1) to 〈cos 2φ〉. Moreover, xh
(1)
⊥ (x, q⊥) / xG(1)(x, q⊥)

4Recall that this average is performed with normalized weights
wL,T (φ) proportional to the cross sections (1, 2), respectively.
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also contributes at order q4
⊥/P 4

⊥ while power corrections to
〈cos 2φ〉 only involve different correlators [28].

B. Electron-proton/nucleus scattering

The cross section for dijet production in electron-nucleus
scattering is given by the product of the virtual photon fluxes
of the electron with the γ ∗-nucleus cross sections discussed
above [49–51]:

dσ
e−A→qq̄X
L,T

dQ2dW 2d2P⊥d2q⊥dz
= fL,T (Q2,W 2)

dσγ ∗
L,T A→qq̄X

d2P⊥d2q⊥dz
.

(12)

Here,

dσγ ∗
L,T A→qq̄X

d2P⊥d2q⊥dz
=

∫
d2b

∫
dz̄ E1E2

dσγ ∗
L,T A→qq̄X

d3k1d3k2d2b
. (13)

The transversely and longitudinally polarized photon fluxes
are given by

fT (Q2,W 2) = αem

2πQ2sy
(1 + (1 − y)2), (14)

fL(Q2,W 2) = αem

πQ2sy
(1 − y), (15)

with the inelasticity

y = W 2 − M2 + Q2

s − M2
. (16)

M denotes the mass of the proton and
√

s is the CM energy of
the e−-proton collision. The γ ∗-proton/nucleus cross section
on the right-hand side of Eq. (12) depends on W 2 and Q2

through Eq. (5).
Note that Eqs. (14) and (15) do not apply in the limit

Q2 → 0 where the photon flux is effectively cut off at Q2
min ∼

ξ 2m2
e/(1 − ξ ) [49], with me the mass of the electron and ξ

the momentum fraction of the photon relative to the electron.
We are not concerned with Q2 <∼ 1 GeV2 or ξ → 1 here
and hence ignore the modification of fT,L at low photon
virtualities.

For given W and Q2, Bjorken-x is defined as

xBj = Q2

W 2 − M2 + Q2
. (17)

III. EVENT GENERATOR MCDIJET

A. General description

The goal of the event generator MCDIJET is to perform Monte
Carlo sampling of the dijet (quark and antiquark) production
cross section described by Eq. (12). The code is open source
and publicly available [52].

In what follows, we will often refer to the acceptance-
rejection method (ACM) of generating random variables from
a given probability distribution; although this method is fairly
basic, it nevertheless proved sufficient for generating the re-
quired number of events on a single processor in a reasonable
amount of time.

In order to make the MC generator computationally fea-
sible we have adopted the following simplifying assumptions
and approximations:

(i) The dependence of the cross section on the atomic
number A of the target enters via a single scale—
the saturation momentum,5 Qs0 ∼ A1/6, at x = x0 =
0.01. For a Au nucleus, averaged over impact pa-
rameters, we assume that Qs0 = 1.2 GeV. This is
compatible with Qs0 ≈ 0.44 GeV for a proton target
extracted in Refs. [53,54] from fits to HERA data.
The current implementation is restricted to impact
parameter averaged dijet production; realistic nuclear
thickness functions and fluctuations of the nucleon
configurations in the nucleus have not been imple-
mented.

(ii) The Wilson lines in the field of the target at x = x0

are sampled using the MV model. They are then
evolved to x < x0 using the fixed coupling Langevin
form [55,56] of the JIMWLK renormalization group
equation [37–48], as described in Ref. [57]. Note
that for many phenomenological applications running
coupling corrections are known to be important; they
are neglected in the current version of the event
generator. Also, the JIMWLK evolution time t =
αsY is converted to a momentum fraction x/x0 =
exp(−t/αs ) using αs = 0.25.

(iii) The Wilson lines are used to compute the dependence
of xG(1) and xh

(1)
⊥ on the transverse momentum, q⊥,

and on x. The distributions are then averaged over
the MV ensemble at the initial x = x0, and over
realizations of Langevin noise in small-x evolution.
The obtained averaged distributions are tabulated and
stored in the file “misc.dat,” which will be used by
the MCDIJET generator. We therefore do not propa-
gate configuration by configuration fluctuations into
actual event-by-event fluctuations in quark antiquark
production.

MCDIJET then performs the steps listed below:

(i) Using ACM based on the cross section summed with
respect to polarizations,

d2σL,T (Q2,W 2)

dQ2dW 2
= fL,T (Q2,W 2)

∫
dP⊥dq⊥dzdφ

× dσL,T

dP⊥dq⊥dzdφ
, (18)

where the integration is performed in a restricted
range of P⊥ and q⊥ specified below, we sample
Q2 and W 2 in the ranges 4 GeV2 < Q2 < S−M2

1−x0
x0

and M2 + Q2( 1
x0

− 1) < W 2 < s. The cross sections
dσL,T

dP⊥dq⊥dzdφ
involve the WW distribution functions and

thus implicitly depend on x, given in Eq. (5). Note that

5Throughout the paper we refer to the saturation scale for a dipole
in the fundamental representation.
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the calculation presented in this paper are based on
the leading-order expressions (1), (2). More realistic
estimates of the absolute cross section may require
a multiplicative K factor K > 1. Here we provide a
lower bound for the absolute cross section and refrain
from using a K factor.

(ii) The virtual photon may have either longitudinal or
transverse polarization; it is assigned by sampling a
random number 0 < r < 1 uniformly. If

r <
σL(Q2,W 2)

σL(Q2,W 2) + σT (Q2,W 2)

the polarization is longitudinal; otherwise it is trans-
verse.

(iii) Using ACM and the differential cross section for the
photon polarization defined previously we generate a
sample for P⊥, q⊥, z, and φ.

(iv) Using the obtained P⊥, q⊥, φ, and z, we can compute
the transverse components of the quark (k1) and anti-
quark (k2) momenta

�k1⊥ = P⊥�eP + zq⊥�eq, (19)

�k2⊥ = −P⊥�eP + z̄q⊥�eq, (20)

where �eP = (cos(ψ ), sin(ψ )) and �eq = [cos(ψ +
φ), sin(ψ + φ)]. Here, ψ is sampled uniformly over
[0, 2π [.

(v) Finally, the longitudinal momenta are given by

k1z = 1√
2
zq+ − k2

1⊥
2
√

2zq+ , (21)

k2z = 1√
2
z̄q+ − k2

2⊥
2
√

2z̄q+ , (22)

where

q+ =
√

2 y ′ Ee; y ′ = 1

2
y

⎛
⎝1+

√
1+

(
2xBjM

Q

)2
⎞
⎠,

(23)

q− = − Q2

2q+ , (24)

and xBj and y are defined in Eqs. (17) and (16),
respectively. Here, M denotes the mass of a proton,
Ee is the energy of the electron in the laboratory
frame, and q+ is the large light-cone component of
the four-momentum qμ of the virtual photon.6

The sampled kinematic variables and the corresponding nu-
merical value for the cross section are then passed to PYTHIA.
The interface between PYTHIA and MCDIJET is described in
Sec. IV.

6Our convention here is that the longitudinal momentum of the
virtual photon is positive. This is the most common convention in
the theoretical literature.

(a)

(b)

FIG. 2. The reference frames: (a) The laboratory frame. In the
laboratory frame, the electron and the proton have zero transverse
momenta; the energy of the electron (proton) is Ee (Ep). (b) The
analysis frame. Here, the virtual photon and the proton have zero
transverse momenta; the energy of the proton is the same as in the
laboratory frame, equal to Ep . The energy of the virtual photon is
Eγ ∗ = (q+ + q−)/

√
2, see Eqs. (23) and (24).

The momentum assignments (19)–(24) define the specific
frame in which we perform the analysis, see Fig. 2. That is, in
this frame the transverse momenta of the virtual photon and of
the target both vanish, the energy Ep of the target nucleon(s)
is equal to that in the laboratory frame, and the invariant γ ∗-
nucleon collision energy squared is W 2. While, in principle,
the analysis could be performed in any other longitudinally
boosted frame, such as the Breit frame (see Appendix) or the
γ ∗-nucleon center of momentum frame, we have found that
the reconstruction of the produced jets and of the target beam
remnant is rather accurate in this fixed Ep frame; see Sec. IV
for further details.

B. Numerical results

In this section we show the distribution of dijet events over
various kinematic variables. The target is assumed to be Au
with A = 197 nucleons, the e−-Au collision energy is

√
s =

90 GeV. The event selection cuts are
√

Q2 > 2 GeV, P⊥ >
1.5 q⊥, q⊥ > 1 GeV, and x, xBj < 0.01. The distributions of
Q and W are shown in Fig. 3, those of photon polarizations
and quark momentum fractions z in Fig. 4.

IV. FEASIBILITY STUDY FOR AN ELECTRON-ION
COLLIDER

In this section, based on the theoretical foundation out-
lined above, we present a detailed study of the feasibility,
requirements, and expected precision of measurements of the
azimuthal anisotropy of dijets at a future electron-ion collider
(EIC). We find that, at an EIC [1], it is feasible to perform
these measurement although high energies,

√
s ≈ 100 GeV,

large integrated luminosity of
∫

Ldt � 20 fb−1/nucleon, and
excellent jet capabilities of the detector(s) will be required.

In order to verify the feasibility we have to show that (i) the
anisotropy described by MCDIJET (see Sec. III) is maintained
in the reconstructed dijets measured in a realistic detector
environment, that (ii) the DIS background processes can be
suppressed sufficiently to not affect the level of anisotropy,
and (iii) that vL

2 and vT
2 can be separated.

All studies presented here were conducted with electron
beams of 20 GeV and hadron beams with 100 GeV energy
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FIG. 3. Distributions of photon virtuality Q and γ ∗-nucleon c.m. collision energy W for dijet events subject to the kinematic cuts described
in the text.

resulting in a center-of-mass energy of
√

s = 90 GeV. As
previously mentioned, our convention is that the electron
(hadron) beam has positive (negative) longitudinal momen-
tum. We use pseudodata generated by the Monte Carlo gen-
erator MCDIJET, PYTHIA 8.2 [58] for showering of partons
generated by MCDIJET, and PYTHIA 6.4 [59] for background
studies. Jets are reconstructed with the widely used FASTJET

package [60].

A. Azimuthal anisotropy of dijets

MCDIJET generates a correlated pair of partons per event.
It provides as output the four-momenta of the two partons,
the z value, as well as general event characteristics such as
W , Q2, and x. Unless mentioned otherwise we restricted
the generation of events to 4 < Q2 < 90 GeV2, x, xBj < 0.01,
q⊥ > 1 GeV, and P⊥ > 1.5q⊥. For the ion beam we use Au
(A = 197).

Figure 5 illustrates the kinematic range in q⊥ versus P⊥
on the parton level in the relevant region q⊥ < P⊥, for two
EIC energies,

√
s = 40 and 90 GeV. In Fig. 5(a), we show

lines of constant x for both energies, and in Fig. 5(b), we
depict lines of constant azimuthal anisotropy for longitu-
dinally polarized virtual photons (vL

2 ). It becomes imme-
diately clear that substantial anisotropies, vL

2 � 0.15, can

only be observed at the higher energy. Even more impor-
tant, from an experimental point of view is the magnitude
of the average transverse momentum P⊥. Jet reconstruction
requires sufficiently large jet energies to be viable. The
lower the jet energy, the more particles in the jet cone
fall below the typical particle tracking thresholds (pT ≈
250 MeV/c in our case), making jet reconstruction de facto
impossible. For our studies, we therefore used the highest
energy currently discussed for e+Au collisions at an EIC,√

s = 90 GeV.
The partons from MCDIJET are subsequently passed to

parton shower algorithms from the PYTHIA 8.2 event generator
for jet generation. We assume the dipartons to be uū pairs. For
jet finding we use the kt algorithm from the FASTJET package
with a cone radius of R = 1. In DIS events, jet finding is
typically conducted in the Breit frame (see Sec. A), which
is often seen as a natural choice to study the final state of a
hard scattering. The Lorentz frame used in MCDIJET is similar
to the Breit frame in that the virtual photon and the proton
have zero transverse momenta but distinguishes itself from
the Breit frame by the incoming hadron (Au) beam having
the same energy as in the laboratory frame. Jet finding studies
in both frames showed no significant differences between the
two. We therefore used the analysis frame described in Sec. III
for all our studies.

FIG. 4. (a) The contributions of transverse vs. longitudinal photon polarizations as functions of Q. (b) The distribution of the quark
momentum fraction z.
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FIG. 5. Kinematic range in q⊥ vs. P⊥ in the correlation limit, q⊥ < P⊥, for two EIC energies,
√

s = 40 and 90 GeV. In (a), lines of
constant x for the respective energies are depicted while in (b) we show lines of constant azimuthal anisotropy for longitudinally polarized
virtual photons.

Figure 6 shows the pT and η distributions of partons (solid
circles) from MCDIJET and the corresponding reconstructed
jets (solid squares) in the laboratory frame. The uncorrected
jet spectra show the expected shift in pT due to the loss of
particles below the chosen tracking threshold of 250 MeV/c.
The pseudorapidity of the generated partons is well main-
tained by the jets with a typical r.m.s. of 0.4 units over the
whole range. This is caused by unavoidable imperfections in
the jet reconstruction. The smearing becomes more visible at
η < −0.5 due to the steepness of the spectra.

Figure 7 shows the distribution of events over q⊥ and
P⊥. One observes that at the level of reconstructed jets the
distribution over P⊥ is shifted by about −0.5 GeV, and slightly
distorted. On the other hand, the distribution in q⊥ of jets
reproduces that of the underlying quarks rather accurately, ex-
cept for the lowest (q⊥ ≈ 1 GeV) and highest (q⊥ >∼ 2.5 GeV)
transverse momentum imbalances. In a more in-depth analy-
sis, which goes beyond the scope of this paper, the jet spectra
would be corrected with sophisticated unfolding procedures

(see, for example, Refs. [61,62]). Here, we simply correct the
jet P⊥ spectra by shifting it up so that 〈P⊥〉jet = 〈P⊥〉parton for
P⊥ > 1.5 GeV/c. No corrections on q⊥ were applied.

Figure 8 shows the resulting dσ/dφ distributions for the
original parton pairs (blue solid points) and the reconstructed
dijets (red solid squares) in

√
s = 90 GeVe + Au collisions

for 1.25 < q⊥ < 1.75 GeV/c and 3.00 < P⊥ < 3.50 GeV/c.
The results are based on 10 M generated events but the
error bars were scaled to reflect an integrated luminosity of
10 fb−1/nucleon. Figure 8(a) shows the azimuthal anisotropy
for all virtual photon polarizations, and Figs. 8(b) and 8(c)
for transversal and longitudinal polarized photons, respec-
tively. The quantitative measure of the anisotropy, v2, is listed
in the figures. The values shown are those for parton pairs;
the accompanying numbers in parenthesis denote the values
derived from the reconstructed dijets. Note the characteristic
phase shift of π/2 between the anisotropy for longitudinal
versus transversally polarized photons. Despite this shift, the
sum of both polarizations still adds up to nonzero net v2 due to

(b)(a)

FIG. 6. pT and η distributions of partons (filled circles) and reconstructed jets (filled squares) in the laboratory frame. The jet spectra are
uncorrected.
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(a) (b)

FIG. 7. Comparison of q⊥ and P⊥ distribution for partons (solid circles) and jets (solid squares).

the dominance of transversely polarized photons, as depicted
in Fig. 8(a).

The reconstructed dijets reflect the original anisotropy at
the parton level remarkably well despite the dijet spectra not
being fully corrected. The loss in dijet yield, mostly due to
loss of low-pT particles, is on the order of 25%. Since the key
observable is the measured anisotropy, the loss in yield is of
little relevance. However, when real data becomes available a
careful study for possible biases will need to be carried out.

In our studies we noted the momentous correlation of
the angle φ with the pseudorapidity, η, of the partons/jets
illustrated in Fig. 9. This behavior is introduced through the η
dependence of z and can be illustrated by expressing z through
the kinematics of the two partons as:

z = E1 + k1z

(E1 + k1z) + (E2 + k2z)
, (25)

where kiz = Ei tanh ηi = ki⊥ sinh ηi . Recall that z is the mo-
mentum fraction of the first and 1 − z that of the second
parton/jet. Rewriting P⊥ [see Eq. (3)] as �P⊥ = �k1⊥ − z�q⊥
shows that for z → 1 large P⊥ are biased towards �P⊥ ↑↓
�q⊥ thus favoring φ ≈ π . On the other hand, writing �P⊥ =
−�k2⊥ + (1 − z)�q⊥ we see that for z → 0 large | �P | prefers
�P⊥ ↑↑ �q⊥, i.e., φ ≈ 0 or 2π . This has substantial impact on

the experimental measurement since even in the absence of
any anisotropy the finite η acceptance of tracking detectors
will generate a finite v2. On the other hand, a tight rapid-
ity range also alters the actual anisotropy. For example the
generated vL

2 anisotropy in Fig. 8(b) of 14% requires at a
minimum a range of 0 < η < 3; for 0 < η < 1.5 the observed
vL

2 shrinks to ≈ 0.05. This effect was verified with PYTHIA

simulations where a limited acceptance showed a considerable
effect despite PYTHIA having no mechanism to generate any
intrinsic anisotropy. Only for wide acceptances with �η � 3
does the φ distribution become flat. Measurements at an EIC
will need to be corrected for these massive finite acceptance
effects.

B. Background studies

While MCDIJET allows the study of the signal anisotropy
in great detail it neither generates complete events, nor does
it allow us to derive the level of false identification of di-
jets in events unrelated to dijet production. The purity of
the extracted signal sample ultimately determines if these
measurements can be conducted. For studies of this kind we
have to turn to PYTHIA6, an event generator that includes a
relatively complete set of DIS processes.

FIG. 8. dσ/dφ distributions for parton pairs (blue points) generated with the MCDIJET generator and corresponding reconstructed dijets
(red points) in

√
s = 90 GeV e+A collisions for 1.25 < q⊥ < 1.75 GeV/c and 3.00 < P⊥ < 3.50 GeV/c. The error bars reflect an integrated

luminosity of 10 fb−1/nucleon. (a) shows the azimuthal anisotropy for all virtual photon polarizations while (b) and (c) correspond to transverse
and longitudinal polarized photons, respectively. For details, see text.
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FIG. 9. φ, the angle between �P⊥ and �q⊥, as a function of the pseudorapidity, η, of each of the partons. The strong correlation indicates the
sensitivity of the observed anisotropy in φ on the η acceptance of potential experimental measurements.

The presence of underlying event activity is key to an-
swering the question if one can achieve a clear separation
between the products of the hard partonic interaction and the
beam remnants. For that reason, one usually labels an event
as “2+1 jets” if it has two jets coming from the hard partonic
interaction, with the “+1” indicating the beam remnants. The
diagram in Fig. 10 thus depicts a 2+1-jet event.

While dijet studies have been successfully conducted in
e + p collisions at HERA (see, for example, Refs. [63,64])
most such measurements have been carried out at high Q2 and
high jet energies (Ejet > 10 GeV). In our studies, however, we
focus on moderately low virtualities and relatively small jet
transverse momenta P⊥ (see Fig. 6). Consequently, the dijet
signal is easily contaminated by beam remnants. To minimize
this background source we limit jet reconstruction to 1 < η <
2.5, sufficiently far away from the beam fragmentation region.

In our PYTHIA6 study we count fi + γ ∗
T,L → fi + g and

g + γ ∗
T,L → fi + f̄i (see Fig. 10) as signal and all other

as background processes. By far the dominant background
source is the standard LO DIS process γ ∗ + q → q. Figure 11
illustrates the Q2 dependence of the signal-to-background
(S/B) ratio, i.e., the number of correctly reconstructed signal
events over the number of events that were incorrectly flagged
as containing a signal dijet process. The S/B ratio rises
initially due to the improved dijet reconstruction efficiency
towards larger Q2 (or P⊥) but then drops dramatically as
particles from the beam remnant increasingly affect the jet
finding. In what follows we therefore limit our study to 4 �
Q2 � 12 GeV2.

p/A X

e

e′

jet 1

jet 2

FIG. 10. Photon-gluon fusion processes that contributes to the
2+1 jet signal cross section.

As discussed in Sec. IV A, the necessity to limit dijet recon-
struction to η < 2.5 creates a substantial anisotropy illustrated
in Fig. 12. The corresponding v2 is always negative regardless
of the polarization of the virtual photon and different from
the true signal where vL

2 and vT
2 have opposite signs. This

is a plain artifact of the limited pseudorapidity range. For
a wider η range the modulation vanishes but the S/B drops
substantially since beam fragmentation remnants start to leak
in. Since the anisotropy is of plain kinematic origin it can
be easily derived from Monte Carlo and corrected for. In
the following we subtracted this η-range effect from our data
sample.

Figure 13 shows the resulting dN/dφ distributions for
signal jets (solid squares) and background jets (solid cir-
cles). The signal-to-background ratio for the indicated cuts is
S/B ≈ 11. After the finite η-range correction both, signal and
background pairs show no modulation, as expected.

C. Extracting vL
2 and vT

2

In order to derive the distribution of linearly polarized
gluons via Eqs. (6), the contributions from transverse (vT

2 ) and
longitudinally polarized photons (vL

2 ) need to be disentangled.
With the exception of diffractive J/ψ production, no pro-

0 2 4 6 8 10 12 14 16 18 20

 Q2 (GeV2)

0

2

4

6

8

10

12

14

16

18

20

S
/B

Pythia6 √s = 90 GeV
1 < η < 2.5 
1.25 < q T < 1.75 GeV/c 
3.00 < P T < 3.50 GeV/c

FIG. 11. Q2 dependence of the signal-to-background ratio de-
rived from PYTHIA6.
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FIG. 12. Azimuthal asymmetry in reconstructed dijet events
from PYTHIA caused by the limited η acceptance.

cesses in DIS exist where the polarization of the virtual photon
can be measured directly. In our case there are three features
that do make the separation possible: (i) vL

2 and vT
2 have

opposite signs (see Fig. 8), (ii) the background contribution
shows no anisotropy (see Fig. 13), and (iii) the relation

v
unpol
2 = RvL

2 + vT
2

1 + R
(26)

ties together the unpolarized, i.e., measured, v2 with the trans-
verse and longitudinal components. R is a kinematic factor
depending entirely on known and measured quantities:7

R = 8ε2
f P 2

⊥ z(1 − z)

(z2 + (1 − z)2)
(
ε4
f + P 4

⊥
) . (27)

Our strategy is to perform a combined five-parameter fit of
all three components to the full data sample: The signal for
longitudinal polarization (σL, vL

2 ), that for transverse polar-
ization (σT , vT

2 ), and the flat background (σb). The fit uses the
constraint provided by Eq. (27). We generated the data sample
in a separate Monte Carlo combining the signal from MCDI-
JET with the background contribution from PYTHIA6 while
smearing each data point randomly according to the statistics
available at a given integrated luminosity. The fit provides the
desired vL

2 and vT
2 . In order to determine the corresponding

errors we repeat the fit 10000 times and derive the standard
deviation from the obtained dN/dv

L,T
2 distributions. With

reasonable accuracy the errors are distributed symmetrically
about the true value.

Figure 14 shows the result of one typical fit on data
generated for a integrated luminosity of 10 fb1/nucleon. The
scatter and errors on the data points reflect the size of the
potential data sample, the red and the blue curves illustrate
the input (solid curve) and the fit result (dashed curve) for vL

2
and vT

2 . The dashed curves were offset for better visibility.
Table I shows the derived relative errors on vL

2 and vT
2

for various integrated luminosities. These listed uncertainties

7The expression for R is derived from the leading-order cross
sections (1), (2).

FIG. 13. dN/dφ distribution of signal and background jets after
corrections.

refer only to the selected cuts of 1.25 < q⊥ < 1.75 GeV/c,
3 < P⊥ < 3.5 GeV/c, 4 < Q2 < 12 GeV2, and 1 < η < 2.5.
The errors show the expected (

∫ Ldt )−1/2 scaling. Systematic
studies showed that the relative errors improve with increasing
P⊥, i.e., increasing v2. Our results indicate that a proper
measurement of the linearly polarized gluon distribution will

FIG. 14. Result of a fit of combined signal and background to
a data sample obtained in

√
s = 90 GeV e+A collisions with an

integrated luminosity of 10 fb−1/nucleon. For details see text.
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TABLE I. Relative error on the extracted vL
2 and vT

2 for various
integrated luminosities.

Integrated Luminosity (fb−1/A) δvL
2 /vL

2 (%) δvT
2 /vT

2 (%)

1 23.7 16.7
10 7.5 5.3
20 5.5 3.9
50 3.4 2.4
100 2.4 1.6

require integrated luminosities of at least 20 fb−1/nucleon or
more. Hence, this measurement would be a multiyear program
assuming that an EIC initially starts off with luminosities
around 1033 cm−2 s−1. The errors were derived assuming
cross section generated by MCDIJET that are, as described
earlier, somewhat lower than the ones from PYTHIA6.

V. OUTLOOK

Our current proof of principle analysis relied on a variety of
simplifications and approximations as our main focus was on
the reconstruction of relatively low pT jets and their angular
distribution. In this section we address some improvements
that would improve the accuracy of the model and of the
analysis.

First, a more realistic modeling of the impact parameter
dependence of the thickness of the target nucleus would be
useful. This is due to the fact that cuts on the minimal P⊥
introduce a bias towards more central impact parameters as
the dijet cross section decreases with P⊥ but increases with
the saturation scale Qs . In fact, this bias does also affect
the shape of the small-x gluon distributions as functions
of q⊥/Qs [32,65,66]. To account for this effect the event
generator would have to employ individual JIMWLK field
configurations rather than the unbiased average distributions.

Another improvement is to include running coupling cor-
rections to the dijet cross section and to small-x JIMWLK
evolution [67]. These would be important, in particular, if
the analysis is performed over a broad range of transverse
momenta.

The measurement of the distribution of linearly polarized
gluons via the cos 2φ azimuthal dependence requires signifi-
cant jet momentum imbalance q⊥ not much less than the satu-
ration scale Qs . On the other hand, the cross section decreases
steeply with P⊥ and so, in practice, the ratio q⊥/P⊥ cannot
be very small. Hence, power corrections to Eqs. (1) and (2)
may be significant and should be implemented. (Expressions
for the leading power corrections in the large-Nc limit can be
found in Ref. [28]).

One should also account for the Sudakov suppression,
which arises due to the presence of the two scales q⊥ and
P⊥ [68–70]. In view of the relatively large ratio of q⊥/P⊥
employed in our analysis we do not expect a very large sup-
pression of the amplitude of the cos 2φ azimuthal dependence.

Given that the light-cone momentum fraction of the target
partons is not very small even at the highest energies envis-
aged for an EIC it would be important to also account for

the γ ∗ + q → g + q process, unless one attempts to identify
events producing a gluon jet.

As the electron-ion collider projects progresses detector
concepts will become more refined. Once the design of the
envisioned multipurpose detector(s) are finalized the feasi-
bility study discussed in this paper should be repeated using
detailed detector effects (acceptance, resolution) and include
full unfolding procedures that would improve over the simple
corrections used in this work. There is an increasing interest
in jet studies at an EIC that could potentially lead to improved
jet finding procedures tailored to the specific kinematics and
energies relevant for this study.

VI. SUMMARY AND CONCLUSIONS

This paper presents a study of the feasibility of measuring
the conventional and linearly polarized Weizsäcker-Williams
(WW) transverse momentum dependent (TMD) gluon distri-
butions at a future high-energy electron-ion collider via dijet
production in deeply inelastic scattering on protons and nuclei
at small x. In particular, we have found that suitable cuts in
rapidity allow for a reliable separation of the dijet produced in
the hard process from beam jet remnants. A cut on the photon
virtuality, Q2 <∼ 12 GeV2 suppresses the LO γ ∗q → q + X
process and leads to a signal to background ratio of order 10.

The jet transverse momentum �P⊥ as well as the momentum
imbalance �q⊥, and the azimuthal angle φ between these
vectors can all be reconstructed with reasonable accuracy
even when P⊥ is on the order of a few GeV. The φ-averaged
dijet cross section determines the conventional WW
TMD xG(1)(x, q2

⊥) while v2 = 〈cos 2φ〉 ∼ xh
(1)
⊥ (x, q2

⊥)/
xG(1)(x, q2

⊥) is proportional to the ratio of the linearly polar-
ized to conventional WW TMDs. Furthermore, with known
P⊥, Q2 and jet light-cone momentum fraction z it is possible
to separate v2 into the contributions from longitudinally
or transversely polarized photons, respectively, to test the
predicted sign flip, vL

2 · vT
2 < 0. We estimate that with an

integrated luminosity of 20 fb−1/nucleon one can determine
vL

2 and vT
2 with a statistical error of approximately 5%.
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APPENDIX: BREIT FRAME

In any frame the ratio of plus momenta of quark and virtual
photon is given by

z = k+
1

q+ = |�k1| + k1z

q0 + qz

, (A1)

and therefore in any frame

k1z = [z(E0 + qz)]2 − k2
1⊥

2z(q0 + qz)
. (A2)

Similarly, for the antiquark

k2z = [z̄(E0 + qz)]2 − k2
2⊥

2z̄(q0 + qz)
. (A3)

In particular, in the Breit frame (q0 = 0 and |qz| = Q) we
get

k1z = (zQ)2 − k2
1⊥

2zqz

. (A4)

Taking the longitudinal momentum of the photon to be posi-
tive (following the convention in the MCDIJET code),

k1z = (zQ)2 − k2
1⊥

2zQ
. (A5)

Recalling that z̄ = 1 − z we can finally write the longitudinal
momenta of the quark and antiquark in the Breit frame in the
form

k1z = (zQ)2 − k2
1⊥

2zQ
(A6)

k2z = [(1 − z)Q]2 − k2
2⊥

2(1 − z)Q
. (A7)

The longitudinal boost leading from Eqs. (21) and (22) to
these expressions defines the transformation from our analysis
frame to the Breit frame.
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