
Why your extension will not be
enabled on Wikimedia wikis in its

current state!

(and what you can do about it)

Technical advice for extension developers

Roan Kattouw - Wikimania 2010 - Gdańsk, Poland

Focus of this talk
Most common issues with writing code for large wiki farms:

Security
Scalability / performance
Security
Concurrency
Security

Security
Security is important. Really.
People rely on developers to write secure software, so:

Insecure extension in SVN = security risk for unwitting
third-party wiki admins and their users
Insecure extension on Wikipedia = potential security risk
for 300 million people

SQL Injection

SQL Injection

What happens here:
 $sql = "INSERT INTO Students VALUES ($name, ...);";
If $name is not escaped, you'll get this query:
 INSERT INTO Students VALUES ('Robert');
 DROP TABLE Students; --', ...);
You need to escape the input:
 INSERT INTO Students VALUES
 ('Robert\'); DROP TABLE Students; --' , ...);

Use MediaWiki's DB Functions

Evil:
 $dbr->query("SELECT * FROM foo WHERE foo_id=' $id'");

Acceptable:
 $escID = $dbr->addQuotes($id);
 $dbr->query("SELECT * FROM foo WHERE foo_id= $escID");

Correct:
 $dbr->select('foo', '*', array('foo_id' => $id));

The database functions handle query building and
parameter escaping for you.
There are docs at Doxygen and usage examples are all
over the place in core.

Cross site scripting (XSS)

$val = $wgRequest->getVal('input');
$wgOut->addHTML("<input type=\"text\" value=\" $val\" />");

But what if the user submits ""/><script>evilness</script> "?
<input type="text" value=""/><script>evilness</script>"/>

The evil script gets executed and has access to the victim's
login cookies

Like with SQL injection, you need to escape your inputs:
value="<script>evilStuff();</script>"

Use MediaWiki's HTML functions

Reverted:
 $html = "<input type=\"text\" name=\"foo\" value=\" $val\" />";

Passes code review:
 $val = htmlspecialchars($val);
 $html = "<input type=\"text\" name=\"foo\" value=\" $val\" />";

Tim likes you, kind of:
 $html = Html::input('foo', $val);

Cross site request forgery (CSRF)

 <form id="myForm" method="POST" action=".....">
 <input type= "hidden" name="title" value="Foo" />
 <input type= "hidden" name="action" value="delete" />
 <input type= "hidden" name="wpReason" value="MWAHAHA" />
 </form>
 <script>
 $('#myForm').submit();
 </script>

If an administrator visits this page, they will unwittingly be
deleting [[Foo]].
MediaWiki core is secured against this, but if your extension
implements state-changing actions over HTTP, it may be
vulnerable.

Using tokens to protect against CSRF

Add a session-dependent token to the form and refuse to carry
out the action if it doesn't come back.
Cross-domain tricks can't use the result of the first request to
build the second.

$html .= Html::hidden('token', $wgUser->editToken());
...
if (!$wgUser->matchEditToken($token)) {

// refuse edit

Remember that bad token errors can be caused by session
timeouts, so use a nice error message:

General notes on security

Don't trust anyone, not even your users
Escape all inputs
When in doubt, err on the side of caution

But watch out for double escaping!
Write code that is demonstrably secure
Read [[mw:Security for developers]]
And best of all: try to break/hack your code

Scalability & Performance

Wikipedia's kinda.... huge
50k-100k requests per second
2k-4k of those fire up MediaWiki
enwiki has 20M pages and almost 400M revisions

For your code to hold up in these circumstances, you need
to pay attention to scalability and performance.
Performance: your code runs (relatively) fast
Scalability: your code doesn't get much slower on larger
wikis

Easy basic things

Run code / load stuff only when necessary
i.e. not on every request if at all avoidable

Assume nothing
"there's not gonna be that many pages with X"
"very few people will actually use X"
"my users can't be that stupid"

These things sound (and are) obvious, but are not always
followed in practice

Optimize database queries

Certain DB queries operate on way too many rows:
Full table scans: all rows in a table
Unindexed WHEREs: all rows in the result set
Filesort: sorts all rows in the result set (n log n)

This is bad because:
enwiki.revision has ~350M rows
[[en:Category:Living_people]] has ~450K members

EXPLAIN reveals these things:

Optimize database queries

Don't:
ORDER BY an expression, unindexed fields or mix ASC
with DESC
Use unindexed WHEREs (unless the condition drops
very few rows)
Use LIKE with wildcards (%) that are not at the end
Use OFFSET 50 or LIMIT 50, 10 for paging
Write queries that scan or return a potentially unlimited
number of rows

Do:
LIMIT your queries (usually 50 or 500)
Use a unique index for paging
ASK FOR ADVICE. This is a complex subject

Cache stuff

If it's expensive to generate, cache it!
In-code caching (within the same request)

Query results
Results of processing
Look for wasted/duplicated effort

Caching between requests
memcached for things that persist between requests
MW uses memcached for: parser cache, diff cache, user
objects, etc.
MW has transparent caching layer supporting
alternatives to memcached as well (APC, database, etc.)

Using memcached

Memcached keys:
 $key = wfMemcKey('mything', 'someID');
Getting a value:
 $val = $wgMemc->get($key);
 if ($val === null || $val === false) {
 // Value not in cache
 }

Setting a value:
 $wgMemc->set($key, $val); // No expiry
 $wgMemc->set($key, $val, 3600); // Cache for 1 hour

Concurrency

WMF has ~180 Apache servers running multiple Apache
processes
Potentially lots of instances of your code running at the
same time
Results in weird bugs that don't happen locally, so difficult to
test

Common concurrency issues

Slave lag
WMF has master/slave DB setup
Use DB_MASTER if data must be up-to-date,
DB_SLAVE otherwise

Updating things like counters
Needs to account for concurrent updates
Use e.g. timestamp-based smartness

Cache stampeding
MW doesn't even handle this properly itself (Michael
Jackson incident)
There is a framework to prevent this now, but it's not
used anywhere yet
This will hopefully become standard practice in the future

Closing notes

This talk is incomplete
There are more issues, avoiding the ones I mentioned is
no guarantee

This subject is hard
Understanding e.g. concurrency or database
performance is not easy

Ask the experts...
There's quite a few of them on IRC and wikitech-l

...but do what you can do first
Faster than waiting for people to get back to you
Saves the experts' time...
...and they'll like you for trying first

Useful links

References
http://svn.wikimedia.org/doc

Particularly, the DatabaseBase and Html classes
http://www.mediawiki.org/wiki/Security_for_developers
Other documentation on http://www.mediawiki.org

Contact
#mediawiki on irc.freenode.net
wikitech-l@lists.wikimedia.org

Credits
http://xkcd.com/327/

Their license says I have to credit them :)

