

ANNUAL REPORT

OF THE

BOARD OF REGENTS

OV THE

SMITHSONIAN INSTITUTION,

SHOWHN:

THE OPERATIONS, EXPENDITURES, ANO (ONHOTION
OF THE INSTITUTION
'1 (

$$
\text { JULY, } 18!2
$$

WASHINGTON:

Abstract

FIfty-sECONI ('ONGRESS, SECOND SESSION. Concurrent resolution adopted by the senate February 9, 1893, and by the Monse of liepresculalires Febrmesig 15, 159\%.

Licsolved by the senute (the Honse of Representatives concorring), That there be printed of the Reports of the smithsonian Institution and of the National Musem for the rear emling June 30, 1892, in two octavo volumes, 10,000 extra copies; of which 1,000 copies shall he for the use of the seuate, 2,000 ropies for the use of the House of Representatives, 5.000 eopies for the nse of the Smithsonian Institution, and 2,000 copies for the nse of the National Musemm.

LETTER
 FはOM TJIE
 SECRETARY OE TILE SMITHSONLAS DSTITUTION.

AGO(HMDANYING

The anmul report of the bocerd of hegruts of the fustitution to the end of . Iune, $1 \times 9 \%$.

SMOPGONIIN IXSTHTGMON,

Te ther 'omgress of the l'mited Ntales:
 Shates. I have the homot, in behaf of the boand of Regents, to shbmit fo Congress the ammal report of the operations, expemditures, and com-

1 hate the honor to be very respeetfitly, yoms obedient servant, S.!'. LAN゙GLEY,

Nocpetar! of Nmithsomian Institution.
Honl. IGEVI P. MORTON.
lresident af the Nenule.
 speatier of the liouse of hepmesmtatires.

anvual report of the smithsoninn Institution to The END OF JUNE, 189%.

SUB.IECTS.

1. Proceedings of the Board of Regents for the session of Jannary, 1592.
2. Report of the Executive Committee, exhibiting the financial affairs of the Institution, including a statement of the Smithson find, and recejpts and expenditures for the year 1891-92.
3. Ammal refort of the Secretary, wiving an acount of the operations and condition of the Institution for the year 1591-92, with statisties of exchanges, etc.
4. General appendix, comprising a selection of miscellaneons memoirs of interest to collaborators and correspondents of the Institution, teachers, and others engaged in the promotion of knowledge.

CON＇TENTS．

Page．
Resolution to Congress to print extra eopies of the Report 11
Letter from the Serretars，sumitting the Anmal Report of the legents to Congress 111
Genural subjects of the Anumal hoport IV
C＇ontents of the Report V
List of illnstrations
Members ex officio bi the Establishment IX
Reqents of the smithoonian lustitution X
Jotrnar．of the Procerninas of the Board of Regents XI
suerial meeting，October 2I，1891 XI
stated meting．dannary 27，1892 NIV
Fperial meeting，March 2！ 3 ，18： 2 XX
 XXIII
Comblition of the finmal July $1,189 \mathrm{l}$ XX111
Rereipts for the year XX111
Expenditures lor the yoar NXIV
Sales and repayments XX15
Apropriation for international exchanges NVV
Details of expenditures of same ざい
Appropriations for North American Ethnologr XXV1
Details of expenditures of same XXV1
Appropriation for the National Museum 天ぶ11
Details of expenditures of same ズざ111
Appronriations for the National Zoological I＇ark XXXV11
Details of expenditures of same XAXIII
Appropriation for repairs of Smithsomian building $\lambda 1$
betails of expenditures of same N1．
Appropriation for Astro－physical Observatory $x 1$.
betails of expenditures of same N1，
General summary XLII
Jncone available for ensuing year N1．11
ACTS AND liesolivaloss of（＇ongress relative to the smithsonim Institu－ tion，National Museum，ete．，for 1891 Ni．V
REPORT OW THE SECRETARY。
TUE SMITHSON1AN INSTITVTION 1
The Establishment 1
TTe Board of Regents． 1
Administration ：
Finances ；
Page
The smitisonian Tnstitioton-Continifod.
Bnildings 6
Research 7
Astro-physical Ohservatory 8
Explorations 10
lonhlications 10
Internal Exch:mぁe survire 12
Library 15
Miscellancons 16
Tomb of smithsum 16
statue of Prof. Baird 16
Statue of Robert bile Owru 16
Perkins collection of coppre implements 16
Stcreotype plates 16
Use of Government collections 16
Assigument of rooms 16
Hodgkins donation 17
Thited States National Mnsemm 20
Burean of Ethmology 27
U'nited Situtes National Kö̈logical Park 28
Necrology 45
Appendixes 49
Appendix 1. Report of the Director of the Burean of Ethnology 49
I1. Report of the Curator of Exchanges 59
III. Report of the Aeting Manager of the National Zö̈logical Park 69
1T. Report of thr Arting Lihrarian 74
Y. Report of the Editor 80
(xENERAL APPENIOIX.
Adrertisement 87
Meteorological work of the Smithsonian Institution S!
The History of the Telescope, hy C'. S. Hastings 9.
Geological Change, and Time, by Archibald Gcike 111
Geologieal History of the Yellowstone National Park, by Arnold Hanne $13: 3$
Soaping Geysers, by Amold Hague 15%
Continental Prohlems of Geology, by G. K. Gilhert 163
Pre-Columbian Copper-mining in North America, hy R. L. Packard 17.
The Polymesian Bow, by E. Tregear 194
Hertz's Experiments 203
Discharge of Electricity withont Electrorles, by .J. .J. 'Thomsom 299
Molecnlar Process in Magnetic Induction, by J. A. Ewing 25.
Crystallization, hy G. D. Liveing $26!$
Rejurenescence of C'rystals, by John W. Jndd. 281
Detuction from Gaseons Theory of Solution, Jy Orme Masson 289
Suggestions Regarding Solntions, loy William Ramsay 299
Liquids and Gases, by William Ramsay 303
Present Problems in Evolntion and Heredity, bs 11. F. Oshorn 318
Report on the Migration of Birds, by J. A. Palmén 37
The Emprice of the Air, by L. P. Mouillard 397
Progress of Anthropology in 1892, by O. T. Mason 465
The Advent of Man in America, bey A. de Quatrefages 513
Primitive Industry, by Thomas Wilson 521
Prehistorir New Mexican lotacry，hy Henry Halos I．3．，
 5ij）
Ahorixinal Burial Mounds in ohio．hy R．J．Thompsom 571
 577＇rimitive Nomber Systems，hy levi l＇．C＇mamf
Anthropology of the brain，loy ll．K．Shato 5！！「が：
＇Thu Birth of luvention，by Otis＇T＇．Mason
American Inventions and Disenveries in Mediema，etr．，hy Julans．Jillings 1il：
Endownent for siontife lessareh，ly Adison brown 1i」l
The luventors of the Telegraph and Telephome，hy Thomas tirave （i：3！
Explorations in Mongolia and Tibet，by W＇．W＇．louckhill （3－！！
 が1
1N1H： 77

Secretary＇s Report：
l－ig．1．plan of the National Zoïlogisal l＇ank （i）
F＇ig．z．hear doms and yards 4
Fig．：principal animal honse of Zooilogical l＇ark 12
 $1:$
Fig． $\mathrm{S}_{\text {，homse for lison amd elk }}$ 11
（ieological history of the：Yellowstone Natiomal l＇ark：
Fig．1，mat，of the Yellowstome National I＇ark $1: 31$
Discharge of leleetricits withont Electroles： F＇age．
Fig． 1 $2: 0$
rixs．2．3．1，5 23t
Fig． 6 $2: 3!$
Figs． 7.8 $\because 4:$
Figs．9，10， 11 $\because 44$
Fig．12 $\because 46$
Fig． 13 $\because 14$
Fig． 14 $\because 5$
Fig． 15 2゙ッ1
Molecolar leroerss in Magnotio lnAlu－tion：
Fig． 1 237
Fig．ㄹ．． 2゙が
Figs．3．1，$\overline{5}, 6$ 20！
Figs． $\bar{c}, x, 9$ 260
Fign，10， 11 $\because 61$
rig． 12 20
Fig． 13 261
rig． 1. $\because(6$.
Fig． 15 $261 ;$
Crystallization：
「ig． 1 271
Figs．： $2,: 3$ 972
Fig．I $\because 7:$
rig．： 27
Crystallization－Continnerl． 1’には，
Fig．is 276
Fig． 7 27
Dexluction fom the diaseous Ther－ory ol Solntion：
Fig． 1 $2!3$
1is． 29）
F＇ig．： 29
Sngersfions légating がolntionsand liguids：
ドis． 1 300
ドig．： 311：
Present Prohlems in Wiolntion antHeredits：
Fig． 1 $3: 36$
Fign．2．：： 3！
 ： $1: 3$
Fig． 6 $: 11$
Fig． 7 ： 3 湤
Figs．ぶ，！ S3．7
ドig． 10 ： 40
「ig．1！ ：3： 3
ドis．1シ ：311
The Fmpire of the Air：
F゙ig． 1 107
「is．－ 139
Fig．： 131
The Empire of the Air-Contimmed. Page
Fig. 1 $13:$
Fig. 137
Fig. 6 41
Figs. 7, \& 112
Fiщ.! 48
Fig. 10 119
Fig. 11 450
Figs. 1", 13 551
Fig. 14 15
Prehistoria New Mexican Pottery:
Fig. 1 531
Fig. : 538
Fig. 3 539
Fig. 1 510
lig. 511
Fig. 6 512
1ig. 7 :13
Fig. K 514
Fig. 9 545
Fig. 10 546
Fig. 11 547
Fig. 1: 548
lig. 13 $54!$
Fig. 14 50
Fis. 15 क.) 1
lig. 16 $5: 2$
Jig. 17 9.)
Reljes of an Inclian HnutingGronnd:
Figs. 1-4 556
Figs. $5-13$ 557
Figs. 14-21 $5: 8$
Figs. 20-33 5.9
Figs. 34-37 560
Relics of an Indian IInnting (iromm-Continned. Page.
Figs. $38-12$ 561
Figs. 13-46 562
Figs. 17, 48 56.3
Figs, 5(0, 51, 52 565
Figs. 53-57 566
F"igs. 58, 59 567
Figs. 60-66 568
Figs. 67, 6x 569
Aboriginal Burial Momods in Ohio:
Fig. 1 57
Fig. 572
Fig. 3 573
Fig. 4 574
Indian Remains on the Upper Yel-lowstome:
Fig. 1 578
F'ig. 2 59
Fig. 3 580
Explorations in Mougolia and Tibet:
Fig. 1 660
Fig. 2 0,2
Fig. :3 664
Fig. 6.6
Fig. $\overline{5}$ 668
lig. $1 ;$ 669
Fig. 7 670
Fig. 8 671
Fig. 9 673
Fig. 10 675
Fig. 11 676
Fig. 12 679

THE SMIITHSONIAN INSTITUTTON.

MEMBERS EX OFFICIO OF THE "ESTALRASHMENT?"
(.J111:ary, 1892.)

BENJAMIN MARRISON, President of the Unitert States.
LEVI P. MORTON, Vire-I'wesident of the Gnited States.
MELVILLE W. IULLER, ('hicf-Jnstice of the Vnited fitates.
JOHN W. FOsTER, Semetary of state.
CHARLES FONTER, sucretary of the Treasury.
STEPIIEN B. ELKINが, Secertary of W'ar.
BENJAMIN F. TRA('V. sereptary of the Navy.
JOHN W ANAMAKER, I'ostmaster-General.
WILLIAM II. H. MHLIER, Attomey-General.
WILLIAME. SIMONDS, Commissioner of Vatents.

REGENTS UF TIIE INSTITUTION.

(List given on the fullowing page.)

OFFIUERS OF TILE INSTITUTION.
Sambel I' Langley, Secretery.
Direntor of the Iustitution and of the IT. Ss. Kational Muscum
(5. Brown (inobe, Assistant sectury.

RE(iENTS OF THE SMITHSONLAN LNSTITUTION.

By the organizing act :npproved Angust 10, 1846 (Revised Statutes,
 conducted at the rity of Washingtom ly a Board of Regents, named the Regents of the Smithsonian Institntion, to be composed of the VicePresident, the Chief. Justice of the Enited States [and the Governor of the District of Colmmbial. three members of the Senate, and threr memhers of the Homse of Representatives, together with six other persons, other than members of Comgress, two of whom shall he resident in the (ity of Washington apd the other fom shall be inhabitants of some State, but no two of the same State."

REGENTS FOR TUE YEAR 189?

The Chief-Justice of the Thited States:
MELVILLE W. FULLER, elected ('hancellor and l'resident of the Board Jannary 9, 1889.
The Vice-President of the I'nited States:
LEVI P. MORTON.
United States Senators: Term Expires
JUSTIN S. MORRILL (appointed Feb. 21, 1888, and Dec. 15, 1891). Mar. 3, 1897.
SHELBY M. (ULLOML (appointed Mar. 23, 1885, and Mar. 2k, 1889). Mar. 3, 1895.
RANDALLL. GIBNON (appointed Dee. 19, 1887, and Mar. 28, 1889) . Mar. 3. 1895.
Members of the House of Representatives:
JOSEPH WHEELER (appointed Jan. 5, 1888, and Jan. 15, 1892) . Dec. 27, 1893.
HENRY CABOT LOD(xE (appoiuted Jamuary 15, 1892). Dec. 27, 1898.
W. C. P. BRECKINRIDGE (appointed Jamary 15, 1892) Dec. 27, 1893.

Citizens of a State:
HENRY ('OPPEE, of P'emsylvania (tirst appointed dan. 19, 1874) ...Jan. 26, 1898.
dIMEA 1B. ANGELL」, of Michigan (fist appointed Jan. 19, 1887) ...Jan. 19, 1893.
ANDREW D. WHITE, of New York (first ippointed Feb. 15, 1888). Feb. 15. 1894.
WHLLIAM P. JOHNSTON, of Lomisiana (appointed Jan. 26, 1892) ..Jan. 26, 1898.
Citizens of Washington:
JAMES C. WRLLING (first appointed May $\mathrm{f} 8,1884$)
May 22, 1896.
JOHN B. HENDERSON (appointed Jannary 26, 1892).
Јан. 26, 1898.

THE SHITHSONIIN INSTITLTION.

() TTOBER こl, 1S!1.

Pumant to a wall by the Sermetary a sperial mortime of the Boand of Regents was held at the lastitntion to-day at In:*) A. M. Jresent: the Honorable Levi P. Morton, Vier-President of the United States; the Honorable S. M. ('ullom, the Ilomorable R. I. (iibsom, the llomorahle 1;. Butterworth, In. A. 1). Whitr, In. d. ('. Welling, In: Ifemy Coppée, Gen. M. (\%. Meigs, and the Servetary.

The Vice-Presinlent fook the ehair and walled the meeting to order, and on 1)r. Welling's suggestion, there being mo objection, the ratheng of the minntes of the last ammal moeting was dispernsel with.

The Secretary then stated that he had, some months since. entered on a correspomlence with Mr. Thomas \mathcal{U}. Hodgkins, of Netanket, Long Islaml, and that Mr. Horgkins had intimated his desire to give a considerable sum to the fund of the Smithsonian Institution ${ }^{\text {sen }}$ for the in"rease and diftision of knowledge among mon." Further correspond(rnce bed to visits to Mr. Ifodekins by the Secretary and by the Assistant Secretary, and to prolonged "onterenors with him, the result of whieh

 home on Long Istand, given this amome in ask to the Serorenv, who, In eompany with the Assisant Gerretary, had honght it fo Washington and deposited it in the Theasmy of the Lenited States. with the molere standing that an eanly meeting of the Resents would be rallad as a body to consider ats to its acereptanmo.

The rexat terms in which Mr. Hodgkins mate this wift would, the Secretary said, be stated later: but he wives - 200,000 to the Smithsonian Institntion to be added to the Smithson find proper oblor the increase and diffnsion of kowledge amomer men," with the combition that the income of $\$ 100,000$ of the sift shatl be ased, under this wemeral purpose for the experial one of the increase amd thtasion of kowledge by investigating and sparaling knowledge concerning all the phemomenat of atmospherite air.

This meeting was, therefore, called in pmsmance of this understanding, and also with regard to some matters concerning the Zölogical l'ark.

Dr. Welling said that he had been instructed by his colleagnes on the Executive Committee to bring the matter of this donation before the Regents in such a way that they san aceept or reject the munificent gift made by Mr. Hodgkins. He then read the following preamble and resolutions:

Whereas, Thomas G. Hodgkins, of Setanket, Long Island, has placed in the hands of the Secretary of the Smithsonian Institution, the sum of two humbred thomsand dollars, for the purpose declaved by him in a formal statement, as follows:

Septemiser 22, 1891.
I, Thomas (x. Horgkins, of Setanket, New York, desiring to increase the endowment of the smithsonitu Institution, foundel in the city of Washington, for the increase and diffinsion of knowledge among men, have transferred to Samuel Pierpont Langley, Seeretary of tho Smithsomian Institution, the sum of two hundred thonsand dollars, the same to lo delivered to the Board of Regents of the Smithsonian Institution, to whom I give it in trinst, to be invested permanently in the Treasury of the United States, as a part of the Smithom fund, and its interest to lee applied to the increase and diflitson of knowledge amomg men; this fund to be called the Hodgkins Fund, and all premimns, prizes, grants, or publications made at its cost, to be designated by this name; the interest of one humdred thonsand dollars of this fimd to he permanently devoted to the increase and diffasion of more exact knowledge in regard to the nature and properties of atmospherie air, in comection with the weltare of man in his daily life and in lis relations to his Creator, the same to be effected ly the offering of prizes, for which competition shall be open to the world, for essay's iu which important trnths regarding the phenomena on which life, health, and hmman happiness depend shall be embodied, or by such other means as in yeurs to come may appear to the Regents of the Smithsonian Institution calculated to produce the most beneficent results.
(Signed)
Thomas G. Hodgikins.
Witness:
(Signed) M. L. Chambers.
Therefore, be it
Resolred, That the Regents hereby accept the sum in question, sulbject to the conditions thas stated by the donor, and that the secretary is instrueted to carry into effect these conditions, and to administer the income as in the case of the income from other functs belonging to the Institution.

Resolved, That the Secretary is instructed to place the sum of $\$ 200,000$ in the U. S. Treasury, at six per centum interest, under the terms of section 5591, of Title mxinf, of the Revised Statutes of the United States.

Resolved, That the thanks of the Board of Regents are tendered to Mr. Hodgkins for his generons and public-spirited donation, and that an engrossed copy of the ahove preamble and resolutions he transmitted to him by the Seeretary.

In answer to a question as to whether this was an absolute gift to the Institution, the Secretary said that Mr. Hodgkins thoronghly mbderstood that this gift was subordinate to the general title of the Smithsonian funl, thongh it was to bear his own name as a sub-title.

Senator ('nllom addressed the meeting at length, quoting frequently from the Revised Statntes, arguing in fivor of accepting the gift with
its comditions, and romelnding his remarks with a motion that the resolutions be alopeted.

The Chairman havings put the question, the resolntions were manimously adopted.

The sercetary then bronght before the Regents the dificulties moner which he was laboring from the insufficient apropriations for the National Koölogical Park, and after a full disenssion of the special diffi culties of the situation belonging to a novel undertaking, where now ond conld say beforehand what appropriation wond certainly be reduired under eath item, but where limited appopriations are nevertheless made in mehangeable specific items, msupplemented by discretionary power, the following preamble and resolution were adopterl:

Whereas, the National Zoanlogiral lark has leen placed under the direction of this Board, muler legislative comditions quite other than those eontemplated at the time that the responsibility of its administration was arepted by it :

Risolved, That the seeretary is anthorized and instructed to represont to the proper eommittees of ('ougress the diffienties which these conditions impose upon the administration of the Justitution, and to advise surh legislation as may do away with the present system hy which halt of the expense of sath park is paid from the revenmes of the listriat of Colmmbin; and also to advise suthe rhanges in the form of futhre appopriation bills as may be refnisite to do away with the especially imposed diffonlties which are now encomntered in carrying on the work.

Adjourned.

ANNUAL MEETING (HF THE BOARI OF REGENTS.

$$
\text { JANUARY 27, } 1892 .
$$

The anmal meeting of the Board of Regents of the Smithsonian Institution was held to-day at 10 A. M. Present: Mr. Chief Justice Fuller, Vice-President Morton, the Hon. J. S. Morrill, the Hon. S. M. Cullom, the Jon. R. L. Gibson, the Iton. Joseph Wheeler, the Hon. W. O. I'. Breckimridge. Dr. Henry C'opuée, Dr. J. B. Angell, Dr. William Preston Johnston, the Hon. J. B. Hemderson, and the Secretary.

Exerses for non-attendance were read from Dr. J. (. Welling, eansed by illuess, and from Dr. A. D. White, by important engagements.

The Chancellor stated that the minntes of the annual meeting of January 28,1891 , and of the special meeting of October 21, 1891, were of considerable length, and the Secretary was requested to read them in abstract, which was done.

The Serretary anomed that the Vice-President on Deeember 15, 1891, re-appointerl as Regent the Hon. J. S. Morrill, a Uniterl States Senator: that the Speaker of the Lhome had re-appointed Representatives Joseph Wheeler, of Mabama; Hemy Cabot Lodge, of Massachusetts, and appointed Representative W. (. I' Breckinridge, of Kentucky, and that further vasancios in the Board land been filled by the re-appointment, hy joint resolntion aproved by the President, Jamary 26, 1892, of Hemy C'opmer, of Pemsylvania, and by the appointment of Willian Preston Johnston, of Louisiana, and John B. Henderson, of the District of Columbia.

The serretary annomed the death of (ien. DI. O. Meigs, a legent at large, on damary $2,189 \%$.

Dr. Coppece moved that a committere, to consist of one member of the Board and the secretary, be appointed to present to this meeting an obituary notice of the late Gen. Meigs. The motion was carried, and the Chancellor uominated Dr. Coppée to act with the Secretary. Dr. Coppee, after expressing his regret at the illness of the chairman of the Execntive Committee, and his personal sorrow at the death of his colleague on the committee, Gen. Meigs, read the following memorial resolntion:
memolial recori of gen. M. C. meigs.
The Board of legents of the Smithsonian Institution desires to place on record the expression of its sincere sorrow and its sense of the great loss it has suffered in the death of Gen. Montgomery Cumningham Mengs, a member of the Board and one of its Executive Committee. His valuable servicrs to the Institution began indeed before he was officially connected with it as a regent and continned until his death.

While Gen. Meigs was prominently associated with many usefnl undertakings, his record as a soldier and as a citizen is marked by unswerving fidelity and extraordinary eapability. The principal events of his life can only be briefly mentioned, as showing what varied experience he placed at the service of the Institution,
 D. Neigs, afterwards the ominent physion and author of lhilallobhia, was then

 artillery service, and in the following year was transferred to the ('onpo of Engineers. In 18.9 he was engaged in the Engineer Burean at Washington, and from that time matil the outbreak of the eivil war his activity was primelpally directed to the eonstraction of (ioverment works. Toward the chose of 1852 he madr a sme vey at Washington to determine the best plan tor supplying the rity with watere He was eventually phated in charge of the work, which inchuded the dexigning and construction of the Potomar actueduct. This remarkahle work contains a single arel of $2 \underline{2} 0$ feet span, which still remains the largest steme areh hitherto romstrncted.
lle also had elarge as supervising engineer, of the morth and sonth extemsioms of the National Capitel and of the comstruetion of the iton dome, as well as of the northwand extension of the (iencral loot-Gtfice hmilding.

When the war heoke out he was appointed rolonel of the Elexenth Lufanter (Day 14, 18:1) and aterwats quartermaster-general of the (T'. S. Amy, with the rank of brigadior-general. 'This posi requirel umsmal administrative ability, with a probity which commanded gemeral reengnition, and it was becanse of his high integrity and the efremgth of his persomal charater as well as his arknowhered capacity for hosimess, that he was ratrosted with the haulling and nse of honderls of millions of dollars in the ereatest war wer waged.

This is mot the plawe to reromet his military services. Thes were momerous and
 him with mang firdds of labor, aud agaged him on the most variol rommssions. Suffere it to say that ine fally justitiod the conderner imposed in him by iresident Lincoln, pertoming wihh signal ability the duties ratensted to him. In witat he received the well eamed fille of heret major-gemeal in the Army.

 devising the mew hatang for the National Musemm, amarel of exmomar design.

While still finll of vigor dent Meigs was retirel from ative servier on the gth
 period when military inaction begins. Sut he was hey momeans ithe. Ite sigmalized
 W:ashington betwen the rans faxe amd hat.
 of the simithemian hastitution, as a "eiti\%n of Washimem," ant diee ofly upm his
 tiwe ('ommitere. Whe waswas present, extremely panstaking. and eminent? judicions in his comsel and judgment om important pointe of homsins and pelier. He hat just treen mominated ate regent for amother term of six geare when he was

 gen, and as at man. homstrions and exact in hasimes, he knew no ille time. He

 ices and one great somew at his loss. He was a man fathenl in all things. Who has left lehind him an enturing mpatation.

Senator (iibson moved the aloption of the memorial and that a rops thereof should be sent to the family of ten, Meigs. Which was ramied.
three items: For buildings, improvements, and maintenance. While all were insufficient, that for maintenance (which was essentially for the care and form of living anmals) was peculially inalequate, since it left him mable to care for creatures who could not care for themselves, and onght not to be allowed to suffer. This item, then, was notably difterent in kind from those providing for huldings or roads, which might be lett incomplete with less immodiate damage or only peenniary loss.

Senator Horrill expressed his regret at the deplorable insufficiency of the appropriations for the park, and at the necessity of contemplating the sumdering of the park from the lustitution, but he was of the opinion that such a separation would become desirable maless some change was made. He thonght it ont of the question that the matter should continue on the prescht footing, and the Smithsonian onght not again to be put muler the necessity of "aring for any part of the park out of its private finds, even temporarily and indirectly.

Further remarks were made by Mr. Breckinidge and Mr. Whecler.
With reference to the administration of the Institution, the Secretary recalled that the Assistant Secretary has, an such, no power to act in the Secretary's place, such as the Assistant Secretary in any Executive Department possesses, and that he ean not even exeeate such rontine signatures of neressary vonchers and likr pajers as in Executive Departments the law anthorizes, not only him, but his suborlinates to do.

Apart from the important administrative duties assigned to the Secretary, there present themselves daily a great many vonchers and like routine papers for the Treasury fom the different bureans mader his charge-papers which, as has just been stated, would in every buran of any Executire Deparment of the dovermment be sigucd by a subordinate ofticer ; while here the secretary or Aeting Serretary mast personally sign stleh rontine money papers, muler a constom which has grown step by stef from small begimings to be a hardly tolerable burden in the ilhess or absence either of the Secretary or of the Acting Secretary, while for their joint illness no provision is marle whatever. To meet in part the difficulties arising from the necessity of delesating anthority for signing vomelbers and like Treasmry papers, it Was stated that hy proper action of the Board of Regents all reruirements of the Treasury bepartment might be met.

No similar dificulty exists in any Executive Department, because in all such the law provides not only for the Secretary and Aeting. Secretary but for a line of suression of subordinate officers anthorized to execonte such arts as the dally conduct of their respective lomeans reinhers neressary.

The Secretary pointed out that, owing to the established principles of couluct in the Smifhsonian lustitntion (which there was no intention here of (deprting foms), the Secretary's power had never been diffused
and telegated as was the ease in the Exeentive Departments of the fons amment, where thre were several persoms in every selarate buratu Who had a right, in rase of the ahsenme not only of tho Sorsetary amd Arting Secretary, hat of the head of the bmean itself. to carry on its attats, and esperially to sign such money papers as wre refuired for its chment busimess with the Treasury. There was no time, howerer, in the mast twelse years, when, in the joint event of the ilhness of the Socretary and the Arting secretary, there was any such provisinn for "ambing on the ement business of the Institntmo. The sereretary finther pointed wht that since the provision low an Arting Secretary Was tirst made in 1sia!, he had made a compmation of the amoment of business coming before the Serertary then and now, which shows that the work is at present from eight to ten times that when the first legislation for an Aeting Secretary was asked for.
1)r. Coppre sad that owing to his long eonneetion with the Institn-tion- رerhaps the lomgest of any member present, with the possible exception of Srmator Morrill-he felt partieulary in a position to con roborate the statements made by the secretary as to the growth of the business of the fastitution sime the passage of the ant relating to the appointment of an Aroting sercetay, and he thought the best mamore of effecting this immediate relief to the sereretaly was covered by the following resolntion:

Resolved, That the Necretary be empowered to appoint some snitable persm who,

 Hass of the Institntion of of any of its burams, and are onstomarily sigued in tha bureans of of her departments of the dovermand

II 0 alded that as this rame before the Board at a late how he wombl mover in order to give time for its romsideration, that the whole matter he put in the hable of a eommittee appointed hy the 'hanacellow with power to act.

The 'hancerlor stated that modombtedly the inceased growth of the Lastitution had introduced new demands, and that it was desimabe that the artion in reference to them shond be rarefinly statied.

Ater finther remarks bs Mr. Smekimidge and Mr. Henderson and other members of the Board, lor. Coppee sad that he thomght the action of the dxecotive Committee conld eover the gromed of the sesonlution, and, on motion of the Vicerresident, the whole sulyeet was refered to the Exerntive Committee with power to act on the resolution.

The Secretary sad, in emmection with what had fust been done, that the increased budens of extameons daties imposid by (ongress were acompanid by sperial axpernes for admbistering appoprial thons for which no legishative mos ision wan made, and which neeressat sily fell on the limited smithsonian fand. partly in indioed ways. There was no provision, for instance, for a disbursing ofticer, or private
secretary, or stenographers, or clerks, or messengers to attend to the administrative duties common to all the bureaus muldr the Regents' "are.

Dr. Coplée offered the following resolntion, at the same time ralling the attention of the Board that it referred to puble funds only:

Resolved, That the Secretary be instructed to ask for an appropriation ly Congress to meet the miscellaneous expenses incident to the administration of the public funds with which the Regents are intrusted.

On motion the resolution was adopted.
There being no further lusiness before thr meeting the Board adjourned.

A sperial mueting ot the Board of Regents was lield to-day at a fuarter before 10 o'elork A. m. Present: The Chancellor-Mr. ChiefJustice Fuller, in the Chair; the Mon. Levi I'. Morton, Vice. President; the Hon. S. M. Cullom; the Hon. R. L. Gibson; the Hon. Joseph Whucler; the Hon. H. C. Lodge; the Hon. W. O. P. Brerkin. ridge: llor. . . ('. Wellinge, and the Seccetary.

The reading of the mimutes of the last menting was dispensed with, and the Serctary read a telegran from 1)r. Coppre, expressing his regret at his inability to be present.

The secretary stated that the meeting had been called at the request of three of the Regents chiefly on aceonnt of the action of the Apmopriations Committee of the House of Rapresentatives-a matter in which the good name of the Institntion was in some measure involved, -whereby the apropriations for various Govermment interests muder the charge of the Regents had been reduced to such an extent that the posperity of all these departmonts womld receive a blow froni which they conld not loope to recover for years to come.

Especial stress was laid upon the inadermacy of the appropriations for the National Koölogical lark and attention was also called to the fact that the park is aheady visited on fair days by thousands uot only of adnlts but of childron, while dangerous animals are there with ont sufficient buildings or rages or inclosures, and without means to provide them, and that the only protertion of the public and esperially of chilhren mast be firm inecsanat ? small and ovorworked fonse is mable to properly render.

Tha Sereetary stated that ha was umable to carry on tha park with
 appropriation than s. 50.000 , in case it were made in one item.

The following resohntions were introduced by Mr. Wheeler:
Resolred, That the Boame of Regents of the suithsomian lustitntion would re-
 of the Chited States National Koähogical lark, repuired ly the ant of Congress of
 total alpuropriation than sive, 000

Lisobled, 'That the Semetary of the lastitution be requested to commanicate this Fisentition to the lresident of the semate and Sbeaker of the Ilonso of Representatives, with a preliminary statmont of the reanons and considerations on which it is based.

After some finther disenssion, the resolntions were aldoped, with the maderstanding that sumblimited modification of the wording might be made as to med any terbincality sugented lyy the Treasmy De partment.

There was a gemeral appessionof opinion among the legents that the
condition of the affairs of the park shonld be brought to the attention of Congress by explanation on the floor of the House and Senate from legents and firiends of the Institution.

Further remarks on the matter were made by Mr. Lodge and Dr. Welling.

The Secretary then read a commmnication from Mr. Thomas (x. Horlgkins, dated Manch 10,1892 , in whicls Mr. Horlgkins stated that he desired to relinouish the option of contributing the finther sum of \$100,000 to the Smithsomian fund.

There being no finther business before the board, the meeting adjourned.

To the Board of Regents of the smithsomian Institution：

 in relation to the timds of the Institntion，the approntations by Con gress，and the recopipts and rxpernditures for the smithsonian Instita fon，the C．S．National Thsmm，the Futermational Exehanges，the Berean of Ethmology，the National Zooblogioal Pank，and the Astro－
 balanese of former years：

SMITINONLAN INATITUTION．

（＇omlition of the finul ．Inly I，sis？
The amount of the berpest of James Smithson deposited in the Treasury of the Inited states，acemding to ade of（＇ongress of Amenst 10,1 s．t6，was $\$ 515,169$ ．To this was added by anthonity of Congress， Febmary s， 1867 ，tha residnaly legary of smithson，savings from ineome and of her somees，to the amomet of \＄134， 831 ．

Tor this also have bern added－a beymest from dames llamiltom，of Pemnsylvania，of $\$ 1,000$ ；a berumst of 1 tr．Simeon Habel，of New
 and a gift fiom Thomas（x．Ilodgkins．of New York，of＝200，000，mak－ ing in all，as the permanent find．sern： .0 ono．
 Recremps．

Cash on hamd Jnly $1,1 \times 91$.	\＄10，（4， $\mathrm{H}_{2} .11$	
Cash from Thomas（t．Hodgrins	2 O （1），006．00	
Cash fiom sales of publirations	3ヵハ，こ！	
（＇ash from repaymunt of froight，ctre．．．．．．．．．．．．．．．．．．．．．．．．	$\xrightarrow{2}$ ，\％1\％，9910	$\because .971 .23$
Total recelpts ．．－－．．－．．．．．．．．．．．．．．．．．．．．．．．．．．．	．．．．．．．．	$2 \times 7.517 .70$

EXPENIDITURES.
Bnilding:
Repairs, care, and improvements \$1, 892. 23
Furniture and fixtures \$2, 748.12
General expenses:
Meetings 558.50
Postage and telegraph 243.50
Stationery 486.37
General printing 284.55
Incidentals (fnel, gas, ete.) 2, 209.19
Library (books, periodicals, ete.) 1, 234, 52
Salaries * 16, 276.85
21, 293.48
Publications and researches:
Smithsonian contributions 6.067. 43
Miscellaneons collections 855.55
Reports 429. 04
Researches 2, 031.90
Apparatus 1,625. 61
Explorations 10. 75
Musemm 1,270. 00
12, 290. 28
Literary and scientific exchanges 3, 310. 49
Increase of fund $200,000.00$
Total expenditures (inclusting $\$ 200,000$ deposited in the
U. S. Treasmry October 22,1891 , to the rredit of the permanent fund) \$239, 642. 37
Balance muexpended Jnne 30, 1892 47, 875. 33
The rash received from sales of publications, repayments for freights,etc., is to be eredited on items of expenditures as follows:
l'ostage and telegraph $\$ 2.102$
stationery 4.2.;
General printing 2. 10
lmidentals 3.57
Smithsonian rontributions \$126.41
Miscellaneons rollections 196. 18
Reports 5.5.65378.24
Apparatus 4.00
Mlusemin 320.00
Rese:trolhes 120. 86
Exchanges. 2, 139. 19
Total2.974.23The net expenditures of the Institntion for the year ending June 30,$18: 2$, was therefore $\$ 236,688.14$, or $82,974.23$ less than the gross ex-penditmes, se39, 142.37 , above given. From the net expenditmes,S236,688.14, thore should be deducted so00,000, the amome depositedin the U. S. Treasiny to the eredit of the permanent fund, making the
In addition to the above $\$ 16.276 .85$ paid for salaries moler general expenses, \$4, 74.14 were paid for services, viz: $\$ 236.34$ from apparatus accomnt, $\$ 1,500$ from boilding account, \$306.2x from library accomnt. $\$ 1,431.90$ from researches account, and $\$ 1,394.92$ from smithsonian contribntions aceonnt.
net expenditures for the expernses and operations of the lastitntion

All moneys rapired by the smithsonian Institution firon interest, sales, refmeling of moneys temporarily advaned, or ot thrwise are deposited with the Treasurer of the E'nited States to the aredit of the Seeretary of the Institntion, and all payments are made byy lis cheeks on the Treasmer of the I nited States.

Som committee also presents the following statements in regarl to appropriations and expenditures for objects intrusted hy Congress to the eare of the Smithsonian Institution:

> ANTELNATGNAL ENGHANGBLS.
> Licecipts.

Appropriation lỵ Congress for the tiscal vear mining omme 30, 1s? " "for expenses of the system of international exelanges between the United states and foreign eommtries, moder the direretion of the suithsomian Institution, inchuling salaries or compensation of all necessary emb ployés" (sundry civil det, Mareh : $\mathrm{B}, 1891$)

Salaries or compensation: *

Total salaries ar fompernsation
$11,174.81$
Gencral expenses:

1'reight	*1, 「7ツ. 11
Packing lowx	513.3.0.0
Printing abul limbing	110:3. (1)
Postage	1111.17
Stationery and supplis	32.9. ! 1 ;

Total expernlitures for intrmational exelanges
$17,000.00$

[^0]
NOIRTH AMLRICAN RTHNOLOGY.

Appropriation hy Congress for the fiscal year ending June 30, 1892, "for rontinning ethmological researches among the American lndians under the direction of the Smithsonian Institution, including salaries or compensation of all necessary employés" sumbly civil act, Mareh 3. 1891 .. \$50,000.00
Balaner July 1. 1*91, as per last annual report
12.771 .24

Total
62․ 771.24
The actual ronduet of these investigations has been fontinned by the Semetary in the hands of Maj. J. W. Powell. Director of the IT. S. Geological Surver.

Salaries or compensation:
1 ethnologist, at dib, $^{2}, 000$ per ammum, 11 months. \$2. 750.00

2 ethnologists. at w. 100 jer ammm . 4, 800. 00
1 ethmologist, at $\$ 2,000$ per amnum.................................. $1,999.92$
1 (-thmolocist, at $\$ 1,200$ 1er atmmm. 1,800 . 00
1 archaologisl, at $4 \geq, 600$ per ammmm $\quad 2,599.92$
1 assistant archarologist, at $\$ 1,200$ per ammm................. $1,200.00$
1 assistant archarologist, at $\$ 1$, \%00 per ammm................. $1,500.00$
1 assistant ethologist, at $\$ 1, \times 00$ per ammm, 1 month $\quad 150.00$

1 assistant uthonlogist, at $\$ 1,600$ per ammm, $10 \mathrm{momths} . . . \quad 1,383.30$
1 assistant ethmologist, at $41, \therefore 001$ por ammm, 5 months.... 750.00
1 assistant ethologist, at $\$ 1,100$ per thmm, 9 montlis..... $1,049.94$
1 assistant rethologisi, at $\$ 1,200$ per ammm, 11 momtlis $1,100.00$

1 stenographer, at $\$ 1,500$ prr ammm . $1,500.00$
1 elerk, at $\$ 1,200$ per annmm, 11 montlis.......................... $1,100.00$

1 copyist, at $\$ 40$ per ammm . 810. 00
1 copyist, at $\$ 600$ per :mmm, 1 month.......................... 50.00
1 modeller, at $\$ 720$ per ammmm . 720.00

1 messmoner, at $\$ 600$ per ammm, 9 montlis 450.00
1 messenger, at \$600 per : 1 mum, 2 montlis and 23 days 138.33
1 lahorer, at $\$ 600$ per ammm, 7 months $\quad 350.00$

IThelassitied or special johs, the.. 1, 600.65
Total salarics or compensition 36.560 .33
Miseellameons:
Travelling expenses..................................... 660. 05
Trausportation . 1163.64
Fipld subsistence . \quad т19. 20
Fipld expenses .. 1,675. 25
Miscellaneons-Contimued.

Stationtsy -. .
Olime funture . 1:

Dr:ィwings. ! !ns. 77

11. 20. 20.5
+97.766. 18

Expenditures re-rlassilied loy sul,ject-mattor:

Explorations of mounds. $1,342.13$

Contingrиt expenses .
47,596. 11

Siummar!!.

(iㄹ, 774. 21

NATHONAK, MCNEUM.


```
lisecipts:
```

Appropriation by Congress for the fiseal war ending Jme 30 , 1822. "for fontiming tho preservation, exhilition, aml inerease of the eollere tions from the surveriug and exploring experlitoms of the forern ment, aurl from other somers, inclablag salaries or compersition of all neressary "mployr" (smmlry "ivil aet, Mar•h in, 1891)
$\$ 115,0000.00$

S.rpormituros.

Salaries or compensation:
HHECTUON.

[^1]
Salaries or compensation-Continued.

SCIENTIFIC STAFF

1 curator, 6 months, at $\$ 225 ; 6$ months, at $\$ 200$

\$2, 550.00
1 curator, 12 months, at $\$ 200$. $2,400.00$
1 curator, 12 months, at $\$ 200$. 2, 400.00
1 enrator, 7 months, at $\$ 200$; 5 months, at $\$ 175$ 2, 275.00
1 curator, 12 months, at $\$ 175$ $2,100.00$
1 curator, 12 months, at $\$ 150$ $1,800.00$
1 curator, 11 monthe, at $\$ 100$ $1,100.00$
1 acting enrator, 6 montlis, at $\$ 140 ; 6$ monthis, at $\$ 125$
1 assistant 'urator, 11 months, at $\$ 166.66 ; 1$ month, at 181.66 2. 014.92
1 assistant curator, 12 months, at $\$ 140$. 1. 680.00
1 assistant curator, 12 months, at $\$ 133.33$ 1,599.96
1 assistant curator, 12 months, at $\$ 100$ 1, 200.00
1 assistant curator, 1 month, at $\$ 125 ; 3$ months, at $\$ 50$. 275.00
1 assistant, 1 month, at $\$ 100$ 100.00
1 assistant, 1 month and 20 days, at $\$ 85$ 141.67
1 assistant, 5 months, at $\$ 65$ 325.00
1 assistant, 2 months, at $\$ 65$ 130.00
1 assistant, 11 months, at $\$ 80$ 880.00
1 aid, 12 months, at $\$ 100$ 1,200. 00
1 aisl, 12 months, at $\$ 80$ 960.00
1 aid, 11 months 15 days, at 83.33 958.00
1 aid, 3 months, at $\$ 80$. 240.00
1 aid, 12 monthes, at $\$ 60$ 720.00
1 aid, 8 monthe, at $\$ 50$ 400.00
1 aid, 10 months at $\$ 60 ; 1$ montl, at $\$ 40$ 640.00
1 airl, 2 montlis, at \$50 100.00
1 aid, 12 months, at $\$ 40$ 480.00
1 aid, 1 months, at $\$ 46 ; 1$ month, at $44.50 ; 7$ montlis, at $\$ 40$ 508.50
6. 769.88
$1,576.67$
6, 206. 80
171.00
1, 710.00
32. 652. 35Clerical staff.

1 chief elerk, 12 months, at \$187.50	2, 250.00
1 corresponding clerk, 12 months, at	2, 100.00
1 registrar, 12 months, at $\$ 158.33$	1,899.96
1 dishursing clerk, 12 months, at $\$ 100$	1,200.00
1 assistant librarian, 12 months, at $\$ 100$	1,200. 00
1 strmogrepher, 11 months, at $\$ 60 ; 1$ mon	745.00
1 dratisman, 7 months, 15 days, at $\$ 83.33$.	$1 ; 26.41$
1 assistant draftsman. 5 months, at \$10.	200.00
1 clerk, 12 mouths, at ${ }^{\text {d }} 12 \mathrm{~F}$	1,500.00
1 clerk, 4 montlis and 15 days, at	665.32
1 clerk, 12 months, at \$115	1,380.00
1 clerk, 12 months, at \$115	1,380.00
1 clerk, 12 months, at \$100	1,200.00
1 clerk, 12 months, at $\$ 100$	1,200.00

Salarics or rompernsation－C＇ontimued．
1 elerk， 12 months，at $\$!0$ \＄1．080． 101
1 clerk， 12 months，at 483.33 ！！！！！！！
 520．00

1 clerk， 12 months，at | do |
| :---: | ！00）． 010

1 clerk， 12 months，at 出 0 $\times 10.01$
1 elerk，12 months，at wito 720． 010
 7018． 15
1 rlerk， 11 months 1 day，at dion 661.91
1 cherk， 12 months．at $\$ 60$ 720.010
1 clerk， 12 months，at $\$ 60$ 720．（） 0
1 cherk， 11 months，at $\$ 60$ （6）0．（10）
1 clerk， 12 months，at s．5． 660． 10

1 clerk， 12 months，at | 2 |
| :--- | bito． 00

1 clerk，1！months，at \＄5 1600．04）
1 clerk，1こ months，at＊25． 664．（0）
1 （lerk，12 months，at ＊$^{2} 0$ 600． 00
1 clerk， 12 monthc，at $\ddagger .0)$ 600． 00
1 clark． 11 months 7 dars，at d．$^{2} 0$ 541.29
1 clerk， 3 months 9 days，at $\$ 50$ 165.00
1 copyist， 12 months，at \＄．5．5 （660． 00
1 eopyist， 12 months，at $\$ 50$ 600． 010
1 coprist， 12 months，at $\$ 50$ 600.00
1 copyist， 12 months，at $\mathbf{q}^{2} 0$ 600.00
1 coprist， 3 months，at $\$ 50$ 150． 00
1 copyist， 8 months 15 days，at $\$ 45$ 381.77
1 copyist， 12 months，at $\$ 40$ 480 ． 00
1 copyist，12 months，at sto 180． 00
1 copyist， 12 months，at $\$ 40$ 180． 00
1 ropyist．12 months，at $\mathbb{4} 40$ 480.00
1 coprist． 12 monthis，at +40 180．01）
1 copyist， 12 months，at +3 3\％ 420.00
1 copyist． 3 monthe 16 days，at $\$ 35$ 123.06
 （2）． 00
1 copyist， 6 months，at $\$ 30$ 180．00
1 copyist， 12 months，at w $^{2} 30$ 360 ．\％）
1 copyist， 12 months，at $+: 30$ 360.00
1 copyist，so days，at \＄1．50 per day 8.4 .00
1 type－writer，12 months，at 450 600.00
＊38，5x0． 16
PREPANATOR：
1 preparator， 10 monthis，at $\$ 100$ 1．000． 00
1 preparator， 12 montlis，at $\mathbb{*} \times 0$ ！ 160.00
1 preparator． 12 months，at $\$ 60$ 720． 00
 lays，at w60 per month，＊isx．0\％ 535． 100
1 preparator． 1 month 75． 00
1 peparator． 27 days，at +3.20 7 7．81）
1 artint， 12 months，at $\$ 110$ $1,3: 0) .00$
1 photorapher，！montlis，at \＄15x．33，$\$ 1.121 .97$ ： 1.5 days．month，咇1．お1．．5x：3．：3）
1 taxillermist， 12 months．at quat 2 720． 111
1 taxitermist， 12 months，at 42.5 1，5（10）， 010
Salaries or comprnsation－Continnct．
1 taxitermist， 12 months，at ${ }^{(120)}$（ \＄1．140． 00
1 taxidermist， 1 month， $480 ; 2,2 \times 0$ hours，at 45 cents 1，106．0）
1 assistant taxidormist， 19 days，at w60 per month 36.77
BUILDINGA ANI LABOR．
1 superinteudent， 12 months，at $\$ 137$ ．5o 1． 6.20 .101
1 aswistant suprrinterdent， 12 months，at $\$ 90$ 1，（180． 101
1 chief of watch， 12 months，at $+\left(i^{2}\right)$ T®0．（0）
1 chief of wateh， 12 monthe，at 4 din 2 7×0 ． 06
1 chefof wateh， 7 months，at 䉼 450． 00
1 watrhman， 12 months，at 世 2 ： 780． 00
12 watchmen． 12 months，at $\$ 0$ 7．200．00
1 watchman， 9 months，at $\$ 20$ ， $4.50 ; 29$ days，at $\$$ month，\＆18．33；29 days，at \＄50 per month，\＄48．34； 30 days，at $\$ 50$ per month，$\$ 18.39$ 595.06
1 watehman， 3 months 26 rlays，at 束解 191.9 t
1 watchman， 9 monthis 24 layss，at ex． 4 441.00
1 watchnan， 8 months 17 lays，at 445 3×4.6
1 watchnan， 3 months，it $\$ 4$ 135． 00
1 watchman， 10 months 29 days，at $\$ 45$ 492.10
1 watchman， 10 months，at $\$ 55$ ，$\$ 150: 30$ days，at $\$ 4.5$ per month， $43.55: 30$ days，at $\$ 45$ per month， 443.55 533． 10
1 skilled laborer， 12 months，at 中⿰㇀丶 2 621.00
1 skilled laborer， 12 months，at dato $^{2} 0$ （600．00）
1 skilled laborer， 1 month 16 days，at $\$ 50$ 75． 81
1 skilled laborer， 19 days，at 45 per month 27.58
1 skilled laborer， 27 days，at $\$ 2$ 54.00
1 skillal laborer，： 21 dayss，at $\$ 1.50$ 31.50
1 laborer， 8 months，at detb 2 ； 3 months，at $\$ 7.50$ ； 1 month， at 44.50 （20．5．10）
 at $\$ 9.50 ; 5$ months，at $\$ 15 ;: 3$ montlis，at $\$ 18$. 573． 50
1 laborer， 1 days，at $\$ 1.29$ ； 39 days，at $4.2 .2 ; 240$ days，at \＄1．50） 113．！1
1 baborre， 10 months，at $\ddagger 10 ; 1$ month，at $4!3 ; 1$ month，at \＄41．50 484．50
1 laborer， 12 months，at 40 ＋80．00
1 laborer， 12 months，at $\$ 40$ 480.00
1 hahorre， 12 months，at 410 480.00
1 laborer， 12 months，at $\$ 40$ 4×0.00
1 laborer， 1 ！days，at wto jrir month 24.52
1 laborer， 298 days，at $\$ 1.50$ 447． 00
1 laborer， $303 \frac{1}{2}$ days，at $\$ 1.50$ 455.95
1 laborer， 51 days，at $\$ 1.50$ 76． 50
1 laborer， 281 days，at ${ }^{2} 1.50$ 421.50

1 laborer， 297 days，at | 1.50 |
| :--- | 445.50

1 laborer， $287 \frac{1}{2}$ days，at 本 1.50 431.25
1 lahorer， 11 days，at $\$ 1.50$ 16． 50
1 laborer， 32 days，at $\$ 1.50$ 48.00
1 haborer． 78 days，at \＄1．5\％ 117．00
1 laborer， 321 days，at \＄1．80 481．50）
1 laborer， $3 \pm$ days，at Wlon 4 1r． 00
1 laborer，30－3 ${ }^{3}$ days，at $\$ 1.50$ 160.38
i laborer， 11% days，at $\$ 1.50$ 171．0！

Salarios or compmantion－1＇ontimmerl．	
	4－360．
	（190． 510
1 labomer，2s＊）days，at \＄1．50	121．
1 laborer，1̇2 days，at \＄1．50）	2ご心（1）
	117.00
1 laborer，13 dats，at wh．	1！9， 511
1 laborer，6．9 days．at \＄1．80）	97.80
	171．1：
1 laborer，2911 days，at \＄1．n0	18：3．7．7
1 labmer，万days，at \＄1．50）	7．50
1 lahorer，2．dass，at＊ 1.2 －	80.100
	（i4．0）
 	177．12
 	476.100
1 cleamer，12 monthes，at＊30．	8360.00
 	35\％．
	360． 310
1 •leaner，：31 dasse，at	$\therefore 14.010$
1 cloantr，314 days，at ${ }^{\text {d }} 1$	311．00
1 messenger，12 months，at \＄15	540． 00
1 messenger， 6 months，at ato ； 6 montls，	570.00
1 messenger，1\％months，at \＄30	360.00
	361．${ }^{\text {a }}$
	1．10． 00
	2－90． 100
1 messengeri， 11 monthes 26 datis，at \＄00	2．ats． 77
 	236．心
1 mesenger，\％montlis at \＄15	88．

\qquad

Miscerlameons：

Stationtry ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

Miscellaneons-Continued.

\$13, 430.43
Total expenditure to June 30,1892 , for preservation of collections, $18: 2$
$136,181.86$
Balanco July $1,1 \times 92$, to meet ontstanding liabilities
8.818 .14

Nationel Musenm-Furniture and fixtures. July 1, 1831, to Jnne 30, 1893.

RECBIPTS.

Appropriation by Congress for the fiseal fear ending June 30, 1892, "for cases, furniture, fixtures, aud appliauces required for the exhibition and safe-keeping of the collections of the National Mnseum, ineluding salaries or compensation of all neressary employés" (sundry civil act, March 3, 1891)
$\$ 25,000.00$

EXPENIMTURES.

Salaries or compensation:
1 engineer of property, 9 months, at $\$ 175$ \$1,575.00
1 cappenter, 127 dass, at $\$ 3$ 381.00
1 carpenter, $299 \frac{8}{4}$ days, at 43 899.25
1 carpenter, $308 \frac{1}{2}$ days, at $\$ 3$ 925.50
1 carpenter, 296 days, at $\$ 3$ 888.00
1 carpenter, 13 days, at $\$ 3$ 39.00
1 carpenter, 58 days, at $\$ 3$ 174.00
1 carpenter, 10 months, at $\$ 91$ 910.00
1 carpenter, 301 days, at $\$ 3$ 903.00
1 carpenter, 14 days, at $\$ 3$ 42.00
1 skilled laborer, 314 days, at $\$ 2$ 628.00
1 skilled laloorer, $318 \frac{1}{2}$ (ajs, at 朿己 637.00
1 skilled laborer, 1 montl $19 \frac{1}{2}$ days, at $\$ 50$ 81.45
1 skilled laborer, 19 days, at $\$ 50$ 30.65
1 skilled laborer, $11 \frac{1}{2}$ months, at 450 575.00
1 skilled laborer, 275 days, at $\$ 2$ 550.00
1 skilled lahorer, 315 days, at $\$ 1.75$ 551.25
1 cabinet-maker, :314 days, at $\$ 3$ 942.00
1 painter, 12 months, at $\$ 65$ 780.00
1 storekeeper, 12 months, at $\$ 70$ 840.00
1 property clerk, 12 months, at $\$ 90$ per month 1,080. 00
1 laborer, $8 \frac{1}{2}$ months, at $\$ 40$ per month \$340.00
1 latorer, 19 days, at $\$ 40$ per month 26.21
1 haborer, 1 month, at $\$ 16$ per month 46.00
1 laborer, 1 month, at $\$ 41.50$ per month 11.50
Special or contract service87.96
Total expenditures for salarips or compens:ation$13,973.77$
Miscellameons, materials, etc.:
Exhibition rases 4350.00
Drawings for casts 15. 00
Drawers, trays, boxes 543.79
Frames, stands, etc 169.50

Miscellaneons，materials，atr．－（＇montimurd．

dilass	＋2x1．7．
Hardware	1．016．95
Tools	15． 51
Clotli，cotton，ot．	133． 13
（ ilass jars	1，01620．97
I romber	1，660． 21
laints，oil，mrashe	499.70
Otrice furniture．	7 （i．）． 100
Metals	367.11
Rubher and leather	12\％． 28
Apparatus	129． 00
Travel．	2． 00
Plambing．	$638 \pm .00$

 and fixtures， 1892 $21,699.63$
Balame daly $1,1 \times 02$, to mert antsiambinin liabilaties 3,300 ． 37
Heating，lighting，eletrie，wht telephonir serice，July 1．1891，to Junt 30，1803．
にECE11」に。

Appropriation by Congress for the liseal year amding Sof Jome， 18.2 ＂for expenses of heating，lighting，elpetrioal．telegraphir，and tele－ phonic serviee lor the Natinnal Masemm＂
＂For removing old boilers moldr Masemm hall in Smithnomian huldines， replacing them with new ones，and for necessary alterations and onn－ nortions of stean－heating apparatas and for covering pipes with lire－ prof material＂（smmly rivil act．March 3，18！ 1 ）

Salaries or compemsation：

$2,20 \mathrm{R} .13$

1 laborer， 327 days，at \＄1．．0 per day．．．．．．．．．．．．．．．．．．．．．．．．．．\quad I90．50
sperial survice ．． 20.0 ．
Fixpenditures lon salarios or comperns：tion
5，2：3x，93
（inneral expronses：
Coal and wood ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．жи，зил。 хи

Telphones．．．位．位

Elertriesupplies．．．

H．Mis．114——II
（ieneral expenses－Continnet．
Heating repairs $\$ 329.00$
Wratingsupplies 433.62
New boilers（special appropriation） 2， 938.47
 lighting，etr $14,513.56$
 186.14

RECLIPTN．
 ＂for postagn stamps and foreign postal cards for the National Musenm＂（suntly rivil act．March 3，1891） \＄． 000.00
EXリドN゙いなTREが
（＇ity post－oftice for postage and postal cards $50 \% .00$ Approprialion all expembed July 1，1892．
Primling，July 1．18：11，to ，June $3 \boldsymbol{1}, 18: 2$.
RECEIJTH．Appopriation ly fongress for the tiseal year enting onne30． $18: 22$ ，${ }^{6}$ for the smithsonian Institntion，for printinglabols and hanks，and for the＂linlletins＇and volnmes ofthe＂Proceedings of the National Mnsemm＂（sundry civilaet，March 3，1891）\＄15，（10）（16）
For the Smithsonian Institution，for printing for the use ofthe National Musemm（deticiency act，March ？，1891），notexceeding

EXPENDITURES．

Bulletins Nos．39，40，41，12	＊3，630\％， 13		
Bnlletin，special，No． 1 （in part）	1，819．75		
Bnlletin，special，No．2（in part）	127.45		
		5.886 .73	
Procredings，Vols．Xils，xiv，XV		2， 317.96	
Extras from reports．		310.87	
Lists，ete．		74.46	
Labels for specimens．		2．023．66	
Letter heads，memorandmm parks，and envelopes		12\％． 14	
Tlanks		360．0\％	
lecord books		37.70	
Congressional Records		21.00	
Total expenditure．Jutr 1，18！1，to Jume 30 ， printing．National Mnseum	$18: 12, f o r$		11，160．57
Balamen July 1．18：\％			1，839．43

lıildint．
 RECEIPT：

 the Masemm building，substituting granolithie or artificial stome there for，and for slate for covering trenchese eontaning heating and elactric aplaralus，imeluding all neressary material and labor，to be immedi－ ately av：alable．＂

标，（000． 10

Inties on Irticles Imported for Nidional I／uscmm．

Appropriation by Comgress＂tomert rastom duties on glass，tin，amd other dutiable articles and supplies imported for the Vhited Niates National Mnsemu＂
1.000 .00

1 Bad direct by Treasmry Department：

luty on glass－tup boxes．．

！1 1 1.75

Ireservalion of 6 ＇olloctions． $18: \%$ ．

Salaries or compensation：

nt， 1	＊80． 111
1 issistant， 1 month，at \＄13．）．	（i， 110

事（6．5．0）

1×9.93

Travel．．2т： 0 ．

Expenditure to．Inan ： $30,1 \times!2$

241 汶

Statement of Total Expenditures of the Appropriation for Preserration of Collections, 1801.

	Expenditures.		
	From July $\mathbf{1}$, 1890, to June 30, 1891.	FromJuly 1, 1891, to June 30. 1892.	$\begin{gathered} \text { Total to J mue } \\ 30,1892 . \end{gathered}$
For salaries	\$117, 300. 52	\$489.93	\$117, 790.45
For supplies.	3, 052. 32	1.079 .37	4.131.69
For stationery	1,653. 02	422.54	2,075.56
For specimens	6, 211. 40	4, 191.51	10, 402.91
For travel.	1, !14.78	273.04	1,387.82
For freight	1,862. 57	465.95	2,328. 52
For books	825.40	768.15	1,593.55
Total	132, 020.01	7,690.49	139, 710.50
Balance	7,979.99	289.50	289.50
			2.08
		291.58

Furniture and Fixtures. 1890.
Batance July 1,1891 , as per last anmual report
\$0. 28
('arried muler the ation of Revised Statntes, section 3090, hy the Treasury Department to the eredit of the surphes find, Tume 30,1892 .

Furniture amd fixtures, 1891.Balauce July 1. 1891, as per last annual report\$3. 690.54Expenditures from July 1, 1891, to June 30, 1892:
Exhibition cases \$1.118.00
Drawers, trays, ofte 13.50
flass 397.91
Hardwate 212.42
Tools 23. 85
Cloth, ete 4.50
Glass jars 723. 76
Lnuber 737. 65
Paints, oil, and brushes 52. 77
Office furniture 316.70
Tin, learl, ete 42. 40
Rubber goorts 11.88
Travelling expenses 2.85
Total expenditure 3, 688, 19
Balance July 1, 1892 2.35

	From, buly 1 , 1890, to dinue 30), 1891	From duly 1. Ls 11, tor Jume $30,1 R 2 \%$.	$\begin{gathered} \text { Total to } \\ \text { June:30, 189.. } \end{gathered}$
salaries..	\$11.212.52	\$14. 212.53
Exhibition rastes.	1. 295.019	\$1.118.00	$\because 412.00$
Draigns aml drawinges	316.10	:36, 010
Drawers, trays, boxes	448.0心	43.50	491.55
Frames. stamds, ete	330.53		830.52
Gilass	1254. 510	397.91	1. 350.47
Hardwame	707.13	212.42	919.5.5
Turels	7:3.67	$2 \cdot 3.85$	97.5
- 'lothr, cottun, *tr	10s.03	4.50	112. 53
f ilass jars	(i1.9 ${ }^{2}$	723. 76	7.55.68
Lumber.	1.344. 05	73\%.65	$\therefore, 101.70$
'aints, oil, and brushes	2065.4)	S2. 77	618.17
(1tice furniture	5*8. 23	316.711	904.92
Metals.	26 sc .45	42.41	310.88
Kubber Eonds.	105. 04	11.88	116. 93
Iron hratiets.	8\%. 10		87. 10
Apparatus.	84.50		84.50
Tratelling expenses.	5.00	2.85	7. 85
Plımbing.	14.24		14.24
Tutal	21.309 .46	3, 6xs. 19	-4,997. 65
Halance.	3.660. 54	2.35	2.35

Heating and lightin!, "te... $18: 10$.
Balanee July 1, 1891, as per hast ammal report....................................... \$1. 8it
Carried umder the aetion of Revised statutes, section 3090, by the Treasury Department to the credit of the surplins fund, onn : $30,1892$.

Heating, lighting, mertrir. and trhephonie servier, 1s91.
Balande July 1 , 1891 , as per last ammual mport. $\$ 840.34$
Expenditures from July 1, 1891, to Jume 30, 1892:
Coal int word . *16. $_{160}^{20}$

Blectrie work. .

liantal of call boxes . 20.100
Heating supplies . र1. 7!)

Statement of total expenditure of apmopriation for heating, lightin!, etc., 18\%1, \$1:,000.

	$\begin{gathered} \text { From July } 1, \\ \text { 1890, to June } \\ 30,1891 . \end{gathered}$	$\begin{gathered} \text { Fron July } 1, \\ \text { 1891, to Jine } \\ 30,1892 \text {. } \end{gathered}$	Total to J ane 30, 1892.
Salaries	\$5, 084.91		\$5, 084. 91
C'oal and woorl	2, 766.96	\$46. 20	¢, 813.16
Gras	1. 233.84	74.75	1,308,59
Trephoones	64.40	200. 25	804.65
Electric work	7.50	32. 75	40.25
Electric surplies	905.68	384.95	1, 290.63
Rental of call boxes.	100.00	20.00	120.00
Heating repairs	448.95	81.79	$530.7+$
Heating smpulies	448.95	81. 7	530.74
Travelling exjetnses	5.42		5.42
T'otal	11,157.66	840.69	11,998.35
Balance	842.34	1.65	1. 65

Postage-N'tionul Maseum, 1889-'90.
Balance July 1, 1891
$\$ 500.00$
Carried under the aetion of Revised Statntes, section 30 , Dy the Treasury Department to the "redit of the surplas fand, June $30,1892$.

NATHONAL ZOijLAOHIAL, PARK.
Or!ftnization. improcement, maintenance.
REI'EAPTS

EXPENDITURES FROM JULY 1, 1891, TO JUNE $30,1892$.
Shelter of animals ... \$1, 249. 96
Shelter-barns, cages, fences, ete.. 312. 73
Artificial ponds, ete.. . . . $1,03 \pm .98$
Water supply, sewerage, and drainage...........-. $6,342.86$

Miseellaneons supplies
867.53

Current expenses . $7,101.63$
21, 663. 50
Balance July 1, 1892
1,778.34
Statement of the total expenditure of the appropriation for the Koïlogical I'ark, uet of April 30, 1890.

	From April 30,1890 , to Jume 30, 18!	From July 1, 1891, to dune 30, 1892.	'Total to Jume 31), 189\%.
Shelter of animals	\$13.675.25	\$1,249.96	\$14, 925. 21
Shelter-barns, cages, lences, ete.	$8,643.38$	312.73	$8,956.06$
Repairs to Holt mansion, et	2, 000, 00		2, 0100000
Artificial ponds, etc	56. 16	1,032, 98	I, 1889.14
Water supply, sewerage, and drainage.	657.14	6,342. 86	7. 0000.00
Roals, walks, and bridges	10, 244.19	4, 755. 81	15. 1000.00
Miscellaneons supplies	4, 132.47	867.53	$5,000.00$
Current expenst	29, 149.62	7, 101.63	\%6, 251.25
'rotal	68, 55 ¢. 16	$21,663.50$	\$90, 221. 66

 inclosures for animalsamb tor atministrative proposes in the datiomat Zö̈logical lark，iuchaing salaries or compersation ol all memessary
 1891）

Frnving ．．．$\$ 11 \overline{4}$. ．．．．
Finel．－．．． 1.20 ．

Limmber ．．．12：3． 11
Miscellaneons．．． 11

stone，brick．lime，pement
涊々。ス

Balantre．July 1 ，IN：
－31．

Imponemomls，ノ゙！．
Appropriation ly Congress＂for rontiming the romstruction of roats， Walks，hridges，water suplly，sewrage，ant drainage，and for eral－ ing，plating，and otherwise improving the gronnels of the National Zoölogital lark，including salaties or componsation of all herescaly

Builling bridge（contratet）
＋1，712．50
Building material． $\therefore 11.17$

Lımber ．．

suppliнs ．．

Tools ：mul implements．． 17.15

121.31

Vaintenture．バンス

Appropriation by Consers ．o for rate，subsistemer and trans－ portation of animals for the National Zabilogical l＇ark，and for the purehase of rame specimens mot otherwise obtatin－ able，including salaries or compensation of all necerssaty
 providal for，sevontren thomsamb live lambed dallars， one－half of which stm shall be patial fomen the revernes of
 ury of the luited states＂（smalry eivil att，Mareh ： 1841．）

Building material, lime, cement, etr545. 65
Gilass 30:\%. 71lron roof amb cejling (contract), 663. 12
19. 25
l'lastering (eontract)1, 490. 01
slate-work (contract)323.00

Balance July 1,1892
$11,861.08$

ASTRO-PHYSICAL OBSERVATORY-SMHTHSONIAN INSIITLTION, 1892.

Receipts.

Appropriation loy Congress "for maintenance of Astro-Plysical Observatory under the direction of the Smithsonian Institntion, including salaries of assistants and the purchase of additional apparatus" (smudry civil aet, March 3,1891)

Expenditures from July 1, 1891, to Jume 30, 189?.
Salaries or eompensation :
1 senior assistant, $7 \frac{1}{2}$ months, at $\$ 200 \ldots . .$.
1 astionomer, 1 month, at $\$ 180$. $\$ 180 ; 11 \frac{1}{2}$ days. at $\$ 180$ per month, $\$ 66.77$

HEC'AIITLLATION.

The total amomnt of fimds administered by the Institution dmring the gear anding Jume $30,18!2$, appears fiom the foregoing statements and the aceoment beoks to have bern as follows:

Smithsomiun Iustitution

From balaner of last year, July 1, 1891 Inwluding eash from erift of Dr. Alex. (iralam Bell) 5, 000.00	
	10,0000. 100
From interest on Smithsonian find lion the year	14.481.36
From salas of puhlirations.	378.24
Fromre-payments for livight, cte	$2.5!5.94$
From Thomat G, Horlgkins.	- 200,000.00

Appropriations committed by Combress to the rate of the Institution.

Internatmonal exehanges-Smithsonian lnstitution:
From appropriation for 1891-9.?
*17,000. (19)
North Amerian Ethnolesy:

l'reservation of collectious-Mnseum:
From balanve of $1889-90$. 11.9^{2}
From balance of 1890-91, July 1, 1891...................... 7, 979.99
From appropriation for 1891-y2 . 145, 1000.00
$152,994.91$
I'rinting-Musenm:
From balance of 1889-90...
From balance of 1890 , buly 1, $1891 \ldots . .$.
From appropriation lor 1801-92............................. $16,000.00$
Furniture and fixtures-Musenm:
From balance of 1889 -90. 28
From balance of 1890-91, July 1, 1891 3,64 . 54
From :ppropriation for $1891-62 . .$. 2 . 0 . 0 . 00
Heating, lighting, etr.-Mnsenm:
From halance of $1889-90$. .
From balance of $1890-91$, Jnly $1,18,1 \ldots \ldots$.
Fron ippropriation for 1841-42............................... . . $15,000.00$
15, $8+1.19$
Postage-Mnsenm:
From balance of 188!-90 .

Building-Nitional Musenm:
From appropriation for $1891-92$
$1,000.00$

1) uties on articles imported for National Mustum:

From appropriation for 1891-92
$1,000.10$
National Zoiological Park:
From balance of $1889-90$, Jnly $1,1891 \ldots . .$.
From appropriation for 1891-22 50, 0.00
simithsonian Institution luilding, repairs:

GUMMARI.

Furniture and fixtures. .
Heating and lighting... $15,844.19$

Irinting... 17. 12!.20
Building, National Museum . \quad. 1000.00

Zö̈logic:nl park.. 73.941 .84
Smithsonian building, repairs. ッ!, 585. 77

The rommitter has examined the vonchars for batyment from the
 Which bears the apporaval of the Secretary or，in his absence，of the Acting Serretary，amd a certiticate that tha materials and serviers charged were applied to the proposes of the lastitution．

The commitne has also examincel the aromots of the several appor priations committed by Congress tor the Institution，and finds that the balances hereinbefore given correspond with the certificates of the dis－ lomsing clerk of the smithsomian lnstitution，whose appointment as such diskursing ufticer was accepted and his bonds approved by the Serretary of the＇Treasmer．

The quatorly acounts－curent，the vonchers，and jommals have been examined and fombd corred．

As stated in the last ammal report of the committee，the balance of the appropriation for last year for ethmologial researehes（Burean of Ethnology was continued in the hamds of the disbursing elerk of the burant（M1．J．I）．Mcelhesney）．This balance having since been fally dishmesed ly him and the appropriation for ethmogical researehes for the present rear as well as the appopriation for the Astro－Physical Observatory having been added to those already in the hands of the disbursing clerk of the Institntion（Mr．William W．Karr），all the atr propriations rommitted by（＇ongress to the care of the lustitution are now dishursed by the dishursing clerk of the Smithsonian Institution， excepting the appropriation for＂printing，National Musemm，＂which is exeunted under the dirertion of tha P＇ulhic Printer（Revised statntrs． seretion 366i1）．
statement of regular income from the smithsonian fund areilubld for use in the yedr
conding fune atr， 189 ？

$102,02 \pi=33$
TRespectrully submitted．

> JAMES ('. Wellanti. HbNEY Cobpée, J. D. Ilendernox,
> S.xpentire ('ommitter.

Wasimiaton．I）．（＇．，Normber ハッ，ハッ！！

M＂TS AND RESOLTTONS OF CONGRESS RELATIVE TO THE SMITHSONLAN INSTITUTION，NATLONAL MLSEUM，ETY：

（In continnation from frevions leports．）
［Fifty－second（＇omgress．first session，1s！11，18！2．］
SHITHSONIAN INSTITUTION．
 sonian Institntion．

Resolred by the semute and IIonse of hepresentatioes of the V＂nited states of I merien in Congress assombith，That the vacancies in the Board of Regents of the Smithsonian lustitution，of the rlass other than members of Coneress shall be filled by the appointment of Wil． liam Preston Johmstom，of Louisiana，in place of Noah Portar，of Con necticut，resigned，and the appointment of John B．Hendreson．a citizon of the District of Cohmbia，in place of Montemory C．Meigs，dreaserl， and by the reappointment of Henry Coppee，of Pemmsylyaia，whose termof oftice expired on December twenty－sixth，eighteen humderd and nimety－one．（Approved Jannary $26,18!2$.

IVar Depurtmont．－Buildings amed Gromms：For imporoment，main－ tenance and rare of Smithsonian Grounds，inchuling amstruction of asphalt roads and pathis，live thomsamd dollars．（Smodry civil appro－

INTERNATIUNAI，EAGHAN（iNA．

For expernses of the system of international exehanges between the lonted states and forem eomotries，mater the direction of the smith． semian Institntion，inchding salaries or compensation of all meressary employees，fwelve thonsam dollars．（Smolry vivil appopriation art．

 officers of the＇Treasmy on accomnt of international exchange，Smith－ somian Institution，being for the servire of the tisanl year eighteen bundred and nincty，as follows：

Topay the baltimore abd Ohio Railmat Company，sixty－seren rents．

Libnery of Conforss：For eompensation of Librarian，「ete．｜＊＊ pight assistant librarians，at one thonsamd fom hamdred dollars eath， one of whom shath be in chatge of international exehanges．
＊＊＊For expenses of exchanging public docmments for the pmblications of foreign govermments，one thonsand tive humbred doblars． （Legislative，exerntive，and judidial act．Char，I！（i，stathtes，p．1st． Appored Joly 16，18！日。）

Iepurtment of the Interior-Cmited States Patent Office: For purchase of professional and scientific books, and expenses of transporting publications of patents issued by the Patent Office to foreign governments, two thonsand five hmodred dollars. (Legislative, executive, and judicial act. ('hap. 196, Statutes, p. 215. Approved July 16, 1892.)

War Department: For the transportation of reports and maps to foreign rountries throngh the Smithsonian Institution, one humdred dollars. (Sundry civil appropriation act, Chap. 380. Statutes, p. 37s, Approved Angust 5, 189\%.)

Nacal Olservatory: For repairs [ete.,] ** * freight, including transmission of publie docmments throngh the Smithsonian exchange. [etr.] two thomsand five homded dollas:, (Legislative, execntive and fudirial atet, ©hap. 196, Statutes,]. 211. Approved July 16, 189:.)

I'. s. Cicological survy: For the purehase of necessury books, for the library, and the payment for the transmission of pmblic docmments thomgh the Smithsomian exchange, two thonsand dollars. (Smadry Civil apmonniation act. (hap. : Soso. Statutes, p. 371 . Approved Auginst 5, 1892.)

NATOONAL MUSETM.
For contiming the preservation, exhibition, and increase of the collection from the surveying and exploring experlitions of the Government, and from other somres, including salaries or compensation of all necessany employees, one houdred and thirty-two thonsand five handred dollars.

For , ases, fimiture, fixtmes, and appliances required for the exhibition and safe-keepine of the collections of the National Musem, inrhaling salaries or compensation of all necessary employees, fiftern thousand dollars.

For expense of heating, lighting, electrieal, telegraphicand telephonic semvice for the National Mnsemm, eleven thomsand dollars.

For postago stampsand foreign postal cards for the National Musemm, tive homded dollars. (Sumdry civil appropriation act, chap, 380 . Statutes, p: :30. Approved Angust 5, 1892.)

Trecsury Inepartment.-To pay amonnts fommd due by the accounting officers of the Treasury on account of preservation of eollections, National Insem, being for the services of the fiscal year eighteen humdred and ninety, as follows:

To pay the Baltimore and Ohio Railroad Company, fomr dollars and forty-seven cents; to pay the Atlantic and Parific Railroad Company, two dollars and fifty cents; in all, six dollars and ninety-seren cents. (I)eficiencies appropriation ant. Chap. 31i. Statntes, p. 283. Approved Inly $2 s, 189 \%$.)

Public Irinting and Binding.-For the Smithsonian Institution, for printing labels and blanks and for the "Balletins" and annual volumes of the "Proceddings" of the National Musemm, twelve thonsand dollars. (Sundry civil appopriation act. Chap. 380. Statutes, p. 385. Approved Ingust 5, 1892.)

Jonst Resolltion [No. 8,] fo encourage the establishment and endowment of institutions of learning at the national capital by detining the poliey of the Govprmment with reference to the use of its literary and scientitie collections by sturlents.

Whereas, large enllections illustrative of the varions arts and seiences and facilitating literaty ant sobentific researeh have been acemmolater by the artion of Congress throngh a series of years at the national (appital; and

Whereas it was the orginal propese of the（iovermment therede to pomote researeh and the diftusion of kowledse，and is mow the set thed policy and present practice of thosic rhatered with the rate of these rollertions sperially to rmennage stmdends who devote the if time to tha investigation and stady of any branch of kowlodge by allowing to the？all proper use thereot；and

Whareas it is representar that the mmmemtion of these fabities and the formal statement of this polirs will racomage the establish ment and emboment of institutions of leaming at tha sait of（rovern－ ment，and promote the work of education by attranting students to avail themselves of the advantages atoresaid morder the direction of competent instroncos：Therefore

Resolopd by the Somate and Honse of Representatioes of the Vmited Nates of Amerian，in（＇ompess assembled．That tha farilities for resararla and illnstration in the following anm any other fiovermmental collere tions now existing or hereafter to be extahlished in the city of Wash－ ington for the promotion of knowledge shall be ancessible，molar sum rules and restrictions as the offeers in charse of each rollection may prescribe，sulbect to subla anthority as is mow may hereatom be per mitted by law，to the seientife investigatoms and to students of any institution of higher edncation bow incomporated or hereater to be in romprated matar the laws of Comgress of of the l）istrict of（＇ohmmian， to wit：
（ One．Of the Libnary of Comgress．
＇Two．Of the National Mnsemm．
Tharee © Of the latent Oftice．
Foomr．Of the Burean of Educations．
Fior．（of tha Burean of Ethoology．
Nix．（of the Army Modiad Whsemm．
suran．（of the Department of Agrioulture
Eight．Of the Fish Commision．
Nime．（）f the lootanice Gardens．

Eleven．Of the Geologiat Surver．
＇Twelve．Of the Naral Observatory．
（Apmowerl．April 1ٌ，18！ロッ．）

NORTH AMERICAN ETHNOLO（il．

 mader the dimection of the Smithsonian Institution，inelnding salaries on compensation of all neressary employees，forty thomsand dollars．
 poved August 5．189\％．）

For mantemane of astrophysical observatory undor the dimetion of the Smithsonian lustitution，including salaties of assistants，appar ratas，and miscollaneons expemes，ten thomsamd dollars．（sumbly divil
 ls：

N゙ATHONAL ZOOLAOHICAI，lAKん．
F゙or contiming the eonstromion of rombs，walks，bridgere，water sup
 imporing the gromads；rreting，and repaimes buldings and inchos－
ures for animals; and for administrative purposes, care, subsistence, and transportation of animals, incluling salaries or rompensation of all necessary employees, and genemal incidental expenses not otherwise provided for, fitty thousand dollars, one-half of which sum shall be paid from the revenues of the District of Colmmbia and the other half from the Treasmry of the United States; and a report in rletail of the expenses on aroomt of the National Zoological Park shall be made to Congress at the begiming of each regmar session. (Smmory eivil appropriation act. Chap. 380 . Statutes, p. 360. Approved Angust í, $18!\%$.)

For care and snbsistence of animals for the National Zoological Park, fiseal year eighteen hundred and nincty-two, one thousand dollars, onehalf of whieh sum shall be paid from the revenues of the District of Colnmbia, and the other half from the treasury of the United States. (Deficiency appropriation act, Chap. 12, Statutes, 1). (i. Approved March S, 189\%.)

To may Melville Lindsay for mbber boots furnished to employees engaged to work in water in the National Zoological Park, being a deficiency for the fiscal year eighteen hundred and ninety-one, thirtyeight dollars. (Deficiencies appropriation act, Chap. 311. Statutes, p. 284 . Approved July $28,18!2$. .)

WORLD'S COLTMBIAN EXPOSITION AT CHICAGO.
Treasmry Department: For the selection, purehase, preparation, transportation, installation, care and custody, and arrangement of surf articles and materials as the hearls of the several Executive Departments, the Smithsonian Institution, and National Mnseum, and the United States Fish Commission may decide shall be embraced in the Govermment exhibit, and such additional articles as the Iresident may desiguate for said Exposition, and for the employment of proper persons as officers and assistants to the Board of Control and Management of the Government exhibit, appointed by the President, of which not exceeding five thonsand dollars may be expended by said Board for clerical services, fom humbed and eight thousind two hondred and fifty dollars: Provided That all expenditures for the purposes and from the appropriation specified herein shall be subject to the approval of the sad Board of Control and Management and of the Secretary of the Treasury, as now provided by law. (Sundry civil appropriation act. Chap. 380. Statutes, 1. 362. Approved Angust 5, 1892.)

COLUMBIAN MISTORICAL EAPOSITION AT MADRID.

State Department: For the expense of representation of the United States at the Colmmbian Historical Exposition to be held in Madrid in eighteen lnudred and ninety-two in commemoration of the fom lumdredth aniversary of the discovery of America, tifteen thonsand dollars, or so much thereof as may be necessary, to be expended under the direction and in the discretion of the Secretary of State: and the President is hereby authorized to appoint a rommissioner-general and two assistant commissioners, who may, in his discretion, be selected from the ative or retired list of the Army or Navy, and shall serve withont other compensation than that to which they are now entitled by law, to represent the United States at sad exposition; that it shall be the daty of sueh commissioners to select fiom the arehises of the United States, from the National Mnsemm, and fom the rarions execu-
tive departments of the (iovermment surli piotures, books. papers, docoments, amb other attixles as may relate to the diseovery and and -etthement of America and the aboriginal inhabitants thereal: and they shall be anthorized to serome the lom of similar artiales fiom other mosemms and private collerotions, and anrange, enssify, and in stall them as the exhihit of the United states at thresaid expesition; that the President is anthorized to a anse the detail of oflows fiom the active or petired list of the Army and Nary, to serve without eompensation other than that to which they are now entitled lyy law, as assist allsto satid commissioners: amd the sad commissioners shall be anthorized to employ such cherial and other assistame as may be meres sary, subject to the apporal of the semetary of State. (Defiriencies

state Inepartment: For expenses of representation of the United States at said exposition, ten thonsamd dollars. (Smmdry rivil apporo

II. NIS. 114——IN

SECRETARY (OF THE SMITHSONLAN INSTITUTION,

To the Boored of Segents of the N'mithsomien Institution:
Gextlemen: I have the honor to submit lerewith my report for the
 tution, inchuding the work placed by Congress moler its rharge in the National Musem, the Burean ot Ethmology, tho Fntermational Exchanges, the National Zoological l'ark, and the Astro-l'lysianal Observatory.

Matters of gemeral interest have beren treated of in the booly ot the report. While in the Appendix will be found detailed reports on the mone important smblivisoms of the work of the lnstitution, mamely: the Bmean of Ethmology, the burean of Intemational Exchanges, the Library, the Sational Zowlogical l'ark, the Astro-Lhysical Ohservatory, and the Editor in chasge of Publisations.

The work of the National Mnsemm is reported on at length in a sep. arate vohme by the Assistant secretary in chanere.

THE SHUTHSONLAN LNSTTTVTUON.

THE ESTABLISHMENT.

- I have to record the following changes in the Estahlishment dming the rear: The resignation of the Hon. James \mathcal{G}. Blaine, secretary of state, on Jume $t, 185$, and the apmintment of his sureessor to the secretaryship, the Ihon. John W\% Foster: the resignation of the Ilon. Redfeld Proctor. Sirertary of W'ar. an Inceromber 6, 1891, and the ap pointment of his sume essor, the IIon. Stephen B. Elkins: and the resig. nation of the Hon, (hanles E:. Mitehell, Commissioner of l'atents, on
 his sulecessor.

Ln acomdanee with a resolntion of the boand of liegents lixing the time of the stated ammal meeting of the Boadd on the dometh Wednes-
\qquad
day of Jamary in each year, the Board met on Jannary 27,1892 , at 10 orlock Λ. M. The jommal of its proceedings will be found as usual in its anmal report to Congress, but for convenience reference is also here made later to a portion of its action.

A special meeting of the Board of Regents was held on October 21, 1891, at which a gift of $\$ 200,000$ from Mr. Thomas 4 . Hodgkins, of Setanket, Long Island, was formally accepted; and another was held on March 29 , 1892, to take action regarding certain Congressional appopriations.

The following changes in the persomel of the Board of Regents are to be noted: The appointment of the Hon. W. C. P. Breckimridge, of the House of Representatives, by the Speaker of the Honse (protempore), Jauuary 15, 1s92, to succeed the Hon. Benjamin Butterworth, whose term expired December 23,1891 ; the appointment, by joint resolution of Congress, approved Jannary 26, 1892, of President Williaz Preston Johnston, of Tulane University, Lonisiana, to succeed Dr. Noalh Porter, who resigned December 31, 1889; and the appointment, by the same resolution, of the Hon. John IB. Henderson, of the District of Colmmbia, to suceed Gen. M. C. Meigs, who died Jamary 2, 1892.

The following have been re-appointed to fill racancies cansed by the expiration of their own terms: The IIon. Justins. Morrill, of the United States Senate, by the Vice-President of the United States, December 15, 1891, the Hon. Joseph Wheeler, and the Hon. I Iemry Cabot Lodge, of the Honse of Representatives, by the Speaker (pro temprore) of the Lomse, Jamary 15, 1892, and Dr. Hemry Coppée, by joint resolution of Congress approved Jamian' 26, 1892.

The Board has suffered the loss by death of Gen. Montemery C. Meigs on Jammary 2, 1892. Dr: Noah Porter, an ex-membor of the Board, died on March 4, 1892. Reference is mate to them elsewhere in the necrologic notices.

ADMINISTRATIUN.

I beg to repeat the recommendation contained in my report of last year, that Congress be requested to make some provision for meeting the actual expenses of the administration of the aftiars of the General Govermment confided to the Institution. There is no such provision now for the considerable and increasing clerical expenses, which belong mot to any single Govermment burean moler its care, but to the charge of their common administration, and these expenses all fall ultimately unon the lastitution.

Another difficulty arising ont of the great extension of the interests under the care of the Regents, which makes the duties of the Secretary and the Assistant Seeretary altogether different from what they were in its early history, has been calling for relief for some time, and has finally been met by appropriate action of the Boand for, apart firm the need of a Congressional appropriation which shall provide for the

 tion of the Regents to the fart that the Chanerellom of the hastitution (in whom alome the power of appointing an Acting Serretary in pested by law may be absent when the Aeting serorenty is ill and when there is mo one to relieve him. Such a rase has actually presented itself, directing attention to the necessity of anthorizing the serretary to delegate anthonity for performing rortain suborlinate but imdis. pensable functions, such as signing a certain class of papers.

Owing to the establisherl prineiples of anduret in the smithsomian Institution (which there has been no intention of departing firnm) the Secretary's power has never been diffused or delegated evel as fiar as is usual in tha case of Exerative Departments of thr Govermment, where thereare seroral persons in every separate burean comstitnting a line of succession of those who are athorized. in case of the absurne of its head, to rary on ordinary business and esperially to sign all such rontine papers as are required for its curent hasiness with the Treasury. There has been no time howerer in the past twelve yoars, when, in the joint event of the illness or alnsence of the secretary and the Acting Secretary of the Smithsmian Institution, any surlo porision has existed for carrying on eren the rontine business.

At the meeting of the Resents on Jannary $2 \bar{\sim}, ~ 1 s: 12$, the folfowing resolution was introduced, and was duly given effect throush the Executive ('ommitter in the apoointment of an offiere of the lustitution to art acording to its provisioms:
"Resolred, That the Servetary be ampowered to apponint some suitable person, who, in arse of mod. may sign surble refusitions, rouchers, abstrate of vonchers, arounts riment, and indorsements of cherlks and dratts. at are neded in the "urrent business of the Institution, or of any of its lmmens, and are constomarily signed in the bureans of other Departments of the (iovermment."

FIN゙ANCME.

 Mr.. 'Thomas (i. Hodgkins, of' Setanket, Long lsland, to whiclı I luietly reforred in my report of hast rear, was formally accepted by the board of legents at a seerial meeting held October $\because 1$, 1 s ? 1 .

At this meeting I stated that I had entried on at arrespondence with Mr. Morgkins in which he had intimated las dexire to geve a considerable sum to the find of the smithsonian lastitution for the "increase and diffusion of knowledg" amonse men." The corvespontence was followed by personal visits hoth hy the Seeretary and hy the Assistant seeretary, the result of which was that Mr. Hodgkins oftered a donation of $\$ 200,000$, eonceming which the Secretary telompapher the Regents on June 2.2. [Tpon being advised of the individnal approval of most of the Recernts to the areptame of the sum mamed, Mr. Hodgkins later, on September $2 \cdot 2$, at his home on Long Island,
gave the amome in cash to the Secretary, who deposited it in the United States Treasury at Washingtom, with the mederstanding that an early meeting of the Board would br called as a body to consider its acreptance.

The essential conditions are that the income of $\$ 100,000$ of this gift shall be permanently devoted to the inerease and diffinsion of more exact knowledge in regard to the nature and properties of atmospheric air in eommedion with the welfare of man; the income of the remaming 100,000 being for the gemeral purposes of the Institution.

In view of the importane of the smbject $[$ have referred to it again later in the report, muler a distinet heading.

I may call attention in this plare to the fact that the Smithsonim Institution is, by reavon of its fan-reaching comection with the scientific world, enabled to make specially effertive use of sums given for immediate employment in specitic purposes or investigations. A few such special trusts (listinet fiom those for adding to the permanent endowment) have been committed to the Institntion in the past, throngh the Secretary, and yot I feel assured that, were the intentions of the Regents better molerstond in this regard, the Institution wonld much more ferfuently be mate the medinm for giving eftect to the plans of those interested in promoting specific researches, as well as in making permanent endownents.

The permanent funds of the Institution are as follows:

Bequest of Smithson, 1846	515, 169. 00
Resirhary legacy of Smithson, 1867	$26,210.63$
Deposit from savings of income, ete., 1867	108, 620.37
Bequest of James Hamilton, 1875	1,000.00
Bequent of Simon lathel, 1880	500.00
Deposit from proceerls of sale of bonts, 1881	51,500.00
Hodgkins' gift. 1891.	200,000.00
Total permanent Smithsonian fomel in States, bearing interest at 6 per cent	$\$ 903,000.00$

At the begimning of the tiscal year the balance on hand was $\$ 40,062.11$. Interest on the invested fund, amoming to $\$ 44,481.36$, has been received fiom the Treasury of the United States during the year, and from sales of publications and miscellaneons sourees, including repayments on acconnt of international exchanges, $* 2,974.23$, making a total of $\$ 87,517.50$.

The total expenditmes, as shown in detail in the report of the Executive Committee, have been s39, ift2.37, leaving an mexpended balance un Tme 30,1892 , of $\$ 47,875.33$. This inctudes a sum ot $\$ 10.000$, the amonnt of a bequest of 85,000 from the late Dr. J. H. Kidder and a donation of a like amome from Dr. Alexander Graham Bell personally to the Secretary for physical investigations, which was, with the donor"s consent, deposited by the Secretary to the eredit of the funds of the Institution, subject to order. Neither of these sums, then, forms a por-
tion of the invested funds, amd both have beeds hohl in the lope that Congress would hater provide a site for a permanent buidding for the Astro-Physical Observatory. The balance avaitahbe for the exmeral purposes of the Institution on July 1, 189\%, was s? in large part held against varions liabilities, for sementite purgoses.

The Institution has been elansed by Gongress with the dishomsement during the year of the following appropriations:

For Intermatiomal Exmlunges.. *17,000
For Ethoulugical Researches... 50, . 1000
For National Musmu:
Preservation of collections. 115, 1000
Furniture and fixtures.. 0.000
Heating and lighting.. 15,000
Postin..
Flowring for Massum buiding. ., 000
IMties on articles importel. 1,000
Purchase of C'iprom ('ollection of dapanese Works of Art............... 10,000
Printing 16,000
For National Zoological Park:

Buihings 18.000
Maintenaисе . 17,500
For Astro-Physical Ohservatory . 10,000
To these shoukd be artherl the small unexpenderl batance of the sperial appropriation of 892,000 marle April 30 , 1s90, fin the National Zoolog. ical Park.

The vond hers for the disbursement of these appropriations have heen examined by tha lxemtine Committee, am the varions items of expenditure are set forth in a letter addressed to the Speaker of the Honse of Representatives, in acondance with a provision of the Sumelry Civil Act of October 2, 1858; white the expenditmes from the smithsonian fund have likewise bern examined and appowed by the Execotive Committer, and :ne shown in their report.

I may a all attention to the tart that the sereretary has been desirous to see al change in the phaseology of the Smatry (ivil Act making ap propriation for ethmological researehes, which would relieve him from the persomal responsibility imposed ly the langotage of former bills. Surh a rhame has now beem madre, wherey the appornmiation is phared "under tha direction of the smithsonian Institntion," instrad of in the "harge of the . Seeretary of tha Smithsomian lustitution," as heretotore. The vourhers from the Bheran of Ethology are therefore mow somtinized by the lixerntive (onmmittee as are all otherexpenditnos of the Institution.
 the Serretary of the Treasury: under dite of (0.tober $\overline{7}, 1891$, were at follows:
Building, Smithsonian Justitution.. 䊉。 (010

North American Ethology.. . . 50,000
National Museum:
Preservation of collections. $\$ 145,000$
Heating and lighting. 12, 000
Furniture and fixtures 25, 000
Printing and binding 18,000
Postage 500
Dnties on articles imported. 1, 000
Addition to electric-light plant 5, 000
Galleries 8,000
National Zoolosical Park:
Improvements 15, 000
Buildings. 18,000
Maintenance. 17, 500
Astro-Physical Observatory 10, 000

BUILDINGS.

I have repeatedly urged upon your attention the necessity for more ample accommodations for the rapidly increasing collections of the National Mnsemm, a necessity that has been emphasized by the difthculties attending the preparation for the Musemm exlihit at the World's Columbian Exposition in Chicago and the Colmmbian Historical Exposition in Madrid.
In the light of past experience, it is not unreasonable to anticipate a large increase in the eollections of the Museum in the shape of donations from exhibitors at these expositions, if any assmance can he given that such material will eventually be properly installed. If no such assurance can be given a great amome of material will be lost to the Institution, the value of which would, in my opinion, nearly equal the estimated cost of a new lonilding for the Musemm.

The present Musemm building was finished and oecnpied in 1881. The collertions increased so rapidly that as early as 1883 the Regents, at their meeting of Jamary 17 , recommended to Congress the crection of a new building.

Since $\mathbf{1 8 8 3}$ the collertions have again increased to snch an extent that a new building as large as the present one conld now be advantageously filled with material held in storage, and I can only repeat with increased emphasis the elosing sentence of my letter of January 21, 1890, to the Hon. Leland Stanford, chairman of the Senate Committee on Public Buildings and Gromds, "That unless more space is provided, the development of the Govermment collection, which is already partly arrested, will be almost completely stopped."

The Musenm collections have overflowed into every part of the Smithsonian lmilding, and sperial provisions have been made for them, beginning with the galleries long since arected in the main hall, mot contemplated in the original plans of the building, and which serionsly interfere with lighting the exhibition open to the public. The storage space of the Institution building needed for other purposes, is now also almost exclusively occupied by Museum specimens, and some relief must be found.

A bill provaling for the moetion of a time-proof butding for thw National Musemm was introfuced in the Senate ley the Hon. .l. s. Morrill, and passed the semate on 1 pril 1 万. $18!2$, lont failed to secme favorable artion in the Honso.

The work of fire-proofing the sormalled "chapel" of the west wing of the Smithsonian buidling has heen practically rompleted, and I would esperially urge that the balame of this appropriation, mex pended, hy reason of a limiting danse introdnced in the alet, ou aceombt of which the money is not avalable for certan repains originally contemplated, should be now made arailable by Congress fon increasing the storage room in the east wing of the building, and at the same time that certain rooms be fitted for the sperial needs of the Government Exchange Burean, now orrmpying rooms in the Main Building, urgently needed for other purposes.

The new huildings arected or in progress of erection for the collertion of living animals, being all in the Koological lark, are mentioned in the report upon the park.

RENLARCII.

In pmanance of the longe established poliey of the Institution, financial aid has, dming the past year, heen extemled to miginal investigators in the domain of science, and considering the modest sum that it has heen fomm possible to devote to this purpose, the results are gratifying.

The subseription for twenty copies of the Astronomical Journal, Which are distributed abroad as exchanges of the [nstitution, has been continued.

To the Liek Olservatory, thromgh its director, Prof. I Moken, an additional grant has been made for the contimance of experiments in han photosraphy.

Prof. E. W. Momley is still engaged in his reterminations of the density of oxygen and hydrogen, for which some sperial apparatus has been provided by the Institution.

Mention has been made in previous repon tis of the aid axtended to Prof. A. A. Michelson, of Clark University, in his experiments with the refractometer, and in the determination of a maiversal standand of length founded on the wave length of light. In finflerance of the latter project, the Institution will, during the eoming summer, send one of its sadentife stafl to assist I'oof. Michelson in his investigations muder the anspices of the International Burean of Weights and Measwres in the laboratory of the Burean at Severe, France.

Both these latter investigations refer to fumbamental comstants of natme, and their results promise to be of wide and lasting imporfance.

Allusion was made in my last report to aid extended to Wr. Wolentt Gibbs in lus investigations of the physiological action of ehemical com-
pomads. These investigations are now completed, and have resulted in a substantial contribution to this branch of science.

Astro-physicul Olservatory.-TThe Smithsonian Astro-physical Observatory still occupies the temporary wooden shelter upon the grounds just sonth of the Smithsonian building, and the money given to the Institution for the erection of a more permanent building is still held while awaiting the action of Congress in poviding a site. The observatory has received much of my personal attention during the year.

In statements to Congress and elsewhere some brief official explanation has been given of the object of this observatory, which, as it has not been explicitly given in previous reports, I repeat here in the most succinct manner before entering on any description of the special work.

The general object of astronomy, the oldest of the seiences, was, mutil a very late period, to study the plates and motions of the heavenly bodies, with little special reference to the wants of man in his daily life, other than in the application of the study to the purposes of navigation.

Within the past generation, and almost coincilentally with the discovery of the spectroscope, a new branch of astronomy has arisen, which is sometimes called astro-physics, and whose purpose is distinctly different from that of finding the places of the stars, or the moon, or the sun; which is the principal end in view at such an observatory as that, for instance, at dreenwich.

The distinct objeet of astro-physies is, in the case of the sun, for example, not to mark its exact place in the sky, but to find out how it affects the earth and the wants of man on it; how its heat is distributed, and how it in fact affects not only the seasons and the farmer's crops, but the whole system of living things on the earth, for it has lately been proven that in a physical sense, it, and almost it alone, literally first creates and then modifies them in almost every possible way.

We have however armived at a knowledge that it does so, withont yet knowing in most cases how it does so, and we are sure of the great importance of this last acquisition, while still largely in ignorance how to obtain it. We are, for example, sme that the latter knowledge would form among other things a scientific basis for meteorology and enable us to predict the years of good or bad harvests, so far as these depent on hatural canses, independent of man, and yet we are still very far fiom being able to make such a prediction, and we ramot do so till we have learned more by suclo studies as those in question.

Knowledge oi the nature of the certain, but still imperfectly understood dependence of terrestrial events on solar causes, is, then, of the greatest practical consequence, and it is with these large aims of ultimate utility in view, as well as for the abstract interest of seientific investigation, that the Govermment is asked to recognize such researches as of national importance; for it is to sweh a knowledge of
canses with such practical comsequences that this wass of intostigat tion aims and tends.

Astrophysics hy means ronfones its investigation to the sum, though that is the most important subject of its starly aml one whieh
 ized world lont the Fonted states. Framer has a great astro-physical observatory at Meudon, and Germany one on an equal scale at Potsdam, while England. Italy, and other eombtres have also at the mational expense, mantained for many yearsinstitutions for the prosecution of astro-plysical science.

It has been observed that this recent semene itself was almost eoneval with the dineovery of the spertrosonoe, and that instrmment has ererywhere been largely employed in most of its work. ()f the hoat which the sum semls, howerrr. and which, in its terrestrial manfestations, is the principal obgeet of our stmy, it has long been well known that the spectroscope conld recognize only abont one-quarter-fluee-quarters of all this solar heat beine in a form which the ordinary spertroseope can not see nor analyze, lying as it does in the almost mbkown "infat red" end of the spectrm, where neither the eye nor the photograph can examine it. It has heen known for many years that it was there and we have hat a rough idea of its amonnt, with an almost total incapacity to exhilhit it in detail. Ome imprefert knowledge of this region is at present represented by a fow inalequate types of parts of it given in drawings made he hand, where the attempts to dernid it at all are even to-day more arnde than the very eanliest rhats of the visible spectum, mate in the infaney of spertroseopie semeners.

One of the first pieres of work which this observatory las molertaken is to explore and deseribe what may be woperly called "this great maknown region." hy a methon which the witer has recontly been able to bring to such a degree of success as to give good gromals for its contimed prosecotion and for the hope that a complete map of this whole region will shorty be produced by an antomatie and therefore trustworthy poress, showing the lines romesponding to the so-atled Frambofer lines in the upper spertrom.

The firstgeares work of any surlo observatory must ordinarily eomsist largely in perfecting its apparatus anf determining its eonstanfa, but a portion of this neressiary labor has bern deferred in faron of this principal task, of which it is hoped that another year will see the essputal completion. In this. the present prineipal sadentife work here, all resomrees of the ohservatory are, then, for tho fime being engaged

I have arkowledged in a previons report the valuable assistance of Prof. ('. C'. Ibuthhins, of lbowdoin Colleger, who efficiontly aided in installing the apparatas. Frof: Hutchins was ohliged to leave in Angust. ()n the 16th of November lor. William Ilalloek was appointed senion assistant.

At different times during the year, there have been employed as
assistants Mr. C. A. Samelers. Mr. C. T. Child, and Mr. F. L. O. Wadsworth. A photographer and a laborer complete the present force of the Observatory.

In the latter part of the year, Dr. Hallock, to my regret, advised me of his proximate call to another duty, and the work was later left temporarily in the charge of Mr. Wadsworth, who had joined the staff in Jume, but who was sent to Enrope in Jnly, for the purpose, elsewhere referred to, of contributing to the work of establishing a wave-length standard under Professor Michelson. The labor has been carried on under the disadvantages of these interruptions, and also mider others of another kind, due to the fact that the extremely delicate apparatus, which is used in a perpetnally darkened room, is, by reason of the location of the temporary observatory shed, in proximity to traffic-laden streets, where there is danger that the passing velicles affect the acenary of the observations both by earth tremors and by magnetic disturbances. Notwithstanding these latter drawbacks, much better results have been obtained than it was supposed could be reached in such a situation, and these, as I have said, I trust, another year will enable the Institution to make public.

EXPLORATIONS.

Several axplorations have been camied on during the year by the U. S. Fish Commission, resulting in the transfer to the Musemm of many large and varied collections of zoölogical, botanical, and geological material. Dr. W. L. Abbott has continned his work in Asia amd has contributed collections made in Kashmir. Dr. Edgar A. Mearns, of the International Bonndary Commission, has sent several large collections of natural-history specimens obtained near the border line between the United States and Mexien. Mr. P. L. Jony has made imprtant collections in Arizona and New Mexico. Collections of the fishes of Nicaragua have been received from Mr. C. W. Richmond.

Mr. W. W. Roekhilh, the distinguished traveler, whose previons explorations have bcen mentioned in my reports and who has already deposited in the Mnseum very valuable collections which he made illustrating the religions practices, ocenpations, and annsements of varions peoples in different parts of China, Thibet, and Turkestan, has started upon a second journey to hitherto almost mknown parts of Thibet, with such aid (mnch more limited than I could wish) as it was possible for me to afford him. From his known qualities as an explorer it may be confidently expected that his journey will result in important contributions to our knowledge of this country.

PUBLICATIONS.

The number of publications thuring the year has been about the same as in preceding years.

As has been frequently stated, the publications of the Institution proper are of three classes: First, the series of "Smithsonian Contribu-
tions to K"mwledge, in quanto form, comprising ordinal memoirs of researches believed to present new tonths, and whioh, as regnirot, are liberally illnstrated with himes or plates; secondly, the series of "Smithsonian Miscellameons Collertions," in netavo size, containing speetal reports, systematic lists of shopses of species, etre, whether from the organic or the inmenna world, instrmetions to matmalists for collecting and presreving specimens, special bibliographies, tabulaterl results. and other aids to scientific investigation not generally requiring illustrations; and lastly. the series of "Smithsonian Annual Reports," presenting to Congress, throngh the Seeretary, the comdition of the Institution, acompanied, under the early plan of Professor Ifemy, by seientific articles from competent writers, either original or selected, but as a mbe in mechnical trmas, representing the advances made in variousdepartments of researdiand freduentlyatmitting of ilhastration by platesor figures. These artirles are intended to be of interest not alone to the comespondents and collabmatoms of the linstitutiom, lont to that large momber of the elucated publie who follow such statements with profit when they are presented in populanly intelligible form.

Suthsomione C'ontributions to tanowledge-The only publication of the year in this series is a memor detailing the results of original experi-
 fages, mllustrated with 11 figmres and 10 pates.

S'mithsonime Jiscellamens Colloretoms.-The manlore of titles in this series during the fear is 47 , of which mone sem to call for any partioular comment.
 to a modifieation of the plan on which the Appendix was prepared. From 18s0 to 1888 the Aprendix was elipefly dowed to an ammal smmmary of progress in varions manehes of sebane. The growing indefticiency of this smmany, due to eansen elsewhere montioned, led mo to return in the report for 1 ss: to the earlier plan of l'rof. Henry, which was to present a selection of papersi by eminent, on at least eompetent, expositors, "losen fom the sedentitic literature of the year. This modification, or rather this return to the method of the adiel reports, has been contimurl, and sexms formert with general appreciation at the hands of the correspondents of the Institution and others to whom the reports are sent. Tharerert for 1890 issumd daring the year embares a considerable range of serentifie investigation and disenssion. Many of the papers are the work of distimgithed investigatomes, and all are

Lumar photographes.-I have devoted eomsiderable thomght to a plant for pmblishing a work on the moon, which shall memesent the presut knowledge of the physical features of om satellite. A stmoly of the

* Resolecel, That the Servetary of Phe Amithsomian lustitution be redursted to eonttime his researehes in physical seionees, and to present such fants and prineiples as may be developed for pulliration in the simithsonian Contributions. (Journal of Proceedings of Board of Regems, January 26, 1847.)
surface of the mom is of special and growing interest to geologists, who have rarely access to the largest dass of telescopes, and what we know of it is derived vely largely from maps made from eye-studies ly astronomers.

Within a few years photography has bern used with such increasing advantage in this interesting field, that it is believed by those competent to express an opinion, that photographs can shortly be produced which will exhibit in a permanent form everything that a trained eye can recognize at the most powerinl telescope. If this surprising result be not actually obtained, I am of opinion that it is attainable; and I have proposed to proome, through the association of the Smithsonian Institution with some of the leading observatories of the world, a series of photographie remesentations of hitherto mequaled size and definition, which shall represent the moon's surface as far as possible on a definite scale, and entirely withont the intervention of the draftsman. Photograplas of the moon made at the Harvard, Lick, and Paris observatories have been placed at the disposition of the Smithsonian Institution for publication, and it is intended to issue a series of thenn accompanied by explanatory text. Whether this considerable work shall appear as one of the regular series of "Contributions to Knowledge," or as a special publication in a more limited edition, has not yet been decider.

Smithsonion Tables.-The meteorologiral aud physical tables, originally prepared by Dr. Guyot and first published in 18:31, lave been in such demand that they have already passed through formeditions. The last edition was exhansted several years ago, and in considering the advisability of issuing a fitth edition, it was determined in 1587 to revise the tables to conform to the present state of our knowledge. The work has been divided into three parts, meteorological, geographical, and physical, each one being intepentent of the others, lut the three capable of forming a homogeneons volnme.

In carrying ont this plan I was able to secme the assistance of Prof. William Libbey, jr., of Princeton, meler whose editorship the last edition was issmed in 1884, aud Prof. Libbey, devoting gratuitously such time to the work as he could command fiom his engrossing college duties, prepared the first volume of the smies, the "Meteorological Tables." The plan of the work was then somewhat modified and a further rerision Was made by Mr. G. E. Curtis, who was at the time employed upon other work at the Smithsonian Institution, and by the end of I ecember, 1891, the mannseript was essentially realy for the printer. Since that time it has been passing through thepress, and it is loped that the volume will be entirely finished by the close of the present calendar year.

SMITHSONIAN INTERNATIONAL EXCHANGE SERVICE.

The international exchange service, through which the Smithsonian Institution is known to most of the large libraries and to a vast num-
ber of scientitice men thronghont the world, has readived surla attention in my recent reports that it serems momeressany to dwell upon it at length here.

The work of the lomean contimes formerease and in spito of many labor-saving devices in the cherimal worksuggested by experienore, it will be impossible to meet all the demands made for tramsportation of doe-
 appropriated by the General (iovernment in the near future.

The United states Govermment has molertaken, ly a traty formmlated at Brussels in 1sr6, and finally proclaimed by the President in 185!, to carry on a system of international exchanses. These varions combtries adhering to the treaty have formally agred each to estah). lish a burean charged with the dnty of attending to the exchange of official dochments, parliamentary and alministrative, which are pul, lished in the comntry of their origin, and the bureans of exchange will furthemore serve as intermediaries breween the leaned bodies and literary and serentitio sorieties of the contracting states for the reepr tion and transmission of their publications.

In transmitting abroad each State assmmes the expenses of parking aud transportation to the place of destination, bot when the transmis sions are made ly sea, spectial armagements resulato the shane of each State in the expense of transportation.

The Smithsonian Institntion, having sime 1850 conducted an exchange service with means of commmatation over the entire world, has been charged by the Enited Statas (invermment with the condact of its own exchange bosinms, and apmoprations lom the phopose have accordingly bern made of late yearis to the Institution, covering at present the greater part of the expense Tha deficiency arising each year has been met fiom the Smithsonian fomd, and the lnstitution has contimed its paid asents in Lingland and in Gemmany, as these two conntries have not signified their adhereme to the treaty in gurestion. but maintain axchange relations with the inited states independently of other conntries eoncerned in the treaty. By referming to the enne tor's statistioal report eontained in the Apperdix, it will be sem that over 100 tons of hookis pasied through the exelanger offiee during the

 exchange books, aceonnts of publications received and transmitted are kept with 20, (ise sorioties of iustilutions and individhals. The expent

 bureans, and s.30.7.) by state institutions and oflers. leaving in delicienry of \$1,171.30 to be met hy the Smithsonian lastitution.

The expenses, it will be noted, take no aceonnt of the rent valne of the roons in the lastitution orropherl in this manner hy the fermeral Govermment for exchange purposes, or that portion of the srevice of
the regular officers of the Tustitution occupied with exchange business, and the sum appropriated by Congress would be entirely inadequate were it not that the chief ocean steamship companies have, since the early days of the Institution, granted the privilege of free freight for its exchange boxes. I have repeatedly called attention to the impropriety of further trespassing upon the genarosity ot these companies, the privilege having been originally intended as a direct encouragement of the philantlropic aims of the Institution, whereas now a very large proportion of the freight thms carried is Covernment property and the service is conducted under an international treaty.

I may finther call attention in this place to the fact that an additional treaty made at Brussels in 1886 and prockamed by the President of the United States on Janmary 15,1859 , wherein provision is made for the immediate exchange of official jommals, parliamentary anmals and documents, has never been executed. A bill making an appropriation of $\$ 2,000$ for this purpose passed the Senate in 1891 , but no final action thereon has been taken.

The amount estimated for the conduct of the exchange service for the year $1892-93$ was $\$ 23,000$, a smm which was expected to cover the present expense of the Exchange Burean in a single item, ineluding the $\$ 2,000$ just mentioned. At the close of the fiscal year the Sundry Civil Appropriation bill, of which this was an item, had not become a law.

I desire to mention again here the increasing difficulty of making provision for the storage of Govermment publications not needed for immediate transmission abroad. A portion of the building is now devoted to this purpose which is needed more and more each year for the more legitimate purposes of the Institution.

The exchange offices are also needed for the growing reference library of scientific books belonging to the Institution, and with a view to relieving the overrowded condition of the library by removing these offices to the basement, I have urged upon Congress the desirability of making available for the purpose, the balance of an appropriation originally intended for repairs and alterations to the western part of the building, which, by reason of a restricting clause in the appropriation act, can not be used for the work first proposed. By the expenditure of about $\$ 10,000$ the basement of the east wing, now damp and sometimes flooded with water, can be made thoroughly healthy and well adapted to the needs of the exchange work.

In my report for 1890 I stated that there had been expended from the Smithsonian fund for the support of the international exchange system, in the interests and by the anthority of the National Government, $\$ 38,141.01$ in excess of appropriations, advanced from Jannary 1, 1868, to June 30, 1886, for the exchange of official Govermment documents, and $\$ 7,034.81$ in excess of appropriations from July 1,1886 , to June 30 , 1889, advanced for the purpose of carying ont a convention entered into by the United States, or an aggregate of $\$ 45,175.82$.

A memorandum in regaral to this matter was duly transmitted to the Hon. Benjamin Butterworth, a member of the Board of heqents, in the Honse of Representativer, for the purpose of taking the mecessary steps to procure a retmen bengress to the Smithsomian fumd of this last mentioned smm, mamely. * 5 , $17.5 .8:$, but I am mot aware that aretion has bern taken on it.

LIBRAK).

The aressions to the library have been weoreded an in the pevions year, the entry mumber in the acession book extembing trom es. to $2.26,109$.

The following statrment shows the mumber of volumes, parts of volmose, pamphlets, and elarts readived trom Jnly 1, 1891, to Jme 30, 189%.

 phlets- $\overline{6}, 434$ in all-were retained fon use in the Institntion and Masemm: and sit medical dissortations were deposited in the library of the Surgeon-Gemeral, U. S. Army; the remaining publications were sent to the library of (bngress on the Monday following their reereipt.

The reading room continues to lo well used: it has only been possibe to provide room mon the shelves for new periodieals by removing to the specia! libraties mater the charge of corators on to the Library of Congress such technical periodicals as reperienee has shown are seldom called for by gemeral readers.

The phan detailed in my report for 1 ss7-ss for increasing the ancessions to the library and for (ompleting the series of seientitie jomenals already in possession of the Institution has been contimed ; the sup)phementary work involved by the issue of new scjentifice jommals within the last few rears has added somewhat to the work origimally plamed.

The small rollection of books forming what in called "the Sedretarys libiary" has been added to this year, but is abrady encroaching upon the limited space avaibible for libara purposes. These books, as 1 have stated in my previons reports, are mostly, if not exclusively, books of seientitic reference, and are, muler ertain rostrietions, available to all comnected with the Institntion.

I regret to state that Mr. John Mardoch, who has been the eficient librarian of the Institution since 1857, resigned his position on May $15,159 \%$. At the close of the year his snecessor had not been appointed.

MISCELLANEOUS.

Tomb of simithson.-During the summer of 1891, upon the vecasion of a visit to Europe, I made a special journey to Genoa for the purpose of seeing if the place of sepulture of the fommer of the Institntion was properly cared for. The tomb of Smithson is on the hill of San Benigno, high above the Gulf of Genoa, in a small obsemre cemetery, whose existence is unknown to most of the people of the eity. It is the property of the English Govermment and in the immediate charge of the British consul. Suithson's tomb is a substantial structure, but it appears to have had moattention during the sixty years of its existence, thongh other tombs in the small inclosure give evidence of continued care. A small sum of mones, the interest of which is sufficient to defray the expense of the care of the inclosure and tomb, was placed to the credit of the United States consul at Genoa, who kindly consented to take charge of the mattrr.

Statue of Prof. Baird.- λ bill to provide for the erection of a bronze statue of I'rof. Baird in the gromeds of the Institution was introduced in the Senate by Mr. Morrill, but failed to pass. This was a renewal of previons efforts in this tirection and the result is particularly disappointing to the friends of the Institution.

Statue of Roberi Date Oren. - λ bill to appropriate $\$ 20,000$ for a statue, to the Hon. Robert Dale Owen, of Indiana, first chaiman of the Board of Regents of the Institution and one of its stanneliest frients, was introduced in the Senate by Mr. Voorhees and passed, but failed to secure favorable action in the Honse.

Perkins collection of copper implementr.-An amendment to the Sundry Civil Bill providing for the purehase by the Institution of a further collection of prehistorie copper implements belonging to Mr. Frederick S. Perkins, wat proposed, but failed to secure favorable action in the Honse.

Stercotype plates.-The Institution is possessed of a large collection of stereotype plates and engravers blocks. An effort has been made to arrange these in a systematic manner to facilitate reference, bot owing to the pressure of routine work, much yet remains to be done in this direction. It is the policy of the Institution to permit the use of these plates by publishers muler reasonable conditions.

Government collections ut Whishington.-There was passed during the first session of the Fifty-second Congress a joint resolution (H. Res. 92) defining the policy of the fovernment with reference to the screntific amd literary collertions, designed to facilitate the use of such collections by students, and to encourage the establishment of institutions of learning at the national eapital.

Assignment of rooms.-Penthlum observations by ofticers of the U. S. Coast and Geodetic Survey have been rontinued in a basement room specially fitted for such work.

The use of the "ehapel" of the Smithsonian building was granted
 amd later to the Art Compress for a lath exhibition of worke of Amer i (:an artists, held during the session of the ('ongeres in May. Lis92.

 he was advised by tha sumetary of the objerets of the Institution. At Mr: Morgkins"s requrst, the Seerotary, ame subserfently, the Assistant Secretars maln several risits tohim at his home and in conversation with him leaturd more in detail his wishes with referemee to a proposed gillt.

Mr. Horlgkins wished to present to the smithsomian lustitution the

 000 shomk he msed in the investigation of the propertios of atmosphare air comsidemed in its very widest relationstap to all bramehes of seremer.

Before taking any steps with resarl to this ofter, a telegram was sent
 requesting his indivirlual opmion of the propriety of arcepting Mr. Hodgkims proposition. Favorable opinions having boen received in answer to this from nearly all the Resonts, Mr. Modgkins later, on September 22, at his home on Long Eskiml. plaperl his gift of 玉200,000 in "ash in the hands of the secretary, with the menderstanding that an (arly meeting of the Regents womh be called to comsider its fomal

A moreting of the liegents was therefore ealled at tha eatlest day
 them in detail, the gift was acerpe $\begin{aligned} & \text { in the terms of the domor. }\end{aligned}$

It worns appropriate at this time ion make a statroment in elne intation of Mr. IVodgkins's wishes as they hase been expressed in varions
 his intention that his fuml should he applied to sjumal investigation in sathitary sedonee, lout he desires mather that the stamdard of work shonild br primatily in relation to the demands of pure sembere. believing that appliation in many diections wonld follow. Ha has spoken of the axperiments of Franklin mpon atmosplerim olectriaty as ond of the imvestigations which. if "arried on at tha present day, womldi be germane to his fommations and hats, in finther illustration of his meaninge, also referred to the prize awarded by゙ the Fremelt Arandemy of Sedeners to Panl bert fore his disoovery in regard for the intheneres of oxyern on the phemomena of vitality, as apporniate to his own proposed fommdation. Dis great interest in the diftasion of knowledge concerning ail grows out of his beliet that the air is of the highest importame to man in every aspert of his physical amd mental eombition,
 highest order by the best miuds, believing that by this means the I. Mis. 111 - 2
attention of mankind may best be come ntrated and kept concentrated on the importance of the smbject. He has expressed a hope that it might be thonght advisable to offer some very considerable prize, which, being published to the entre world, would by its magnitude call attention to the subject in which he was so much interested.

Much consideration mas been given to the question as to how the donor"s wishes may best be carried into effect, for no small difficulty arises from the universality of the application of his foundation, since manifestly there is 110 branch of natural seience which is not affected by it. Meteorology, hygiene and relater subjeets are most obviously concerned, while others, thongh less obvionsly, are no less immerliately commecter, such as geology, for instance, which has for its field the crust of the earth, now recognized as being largely formed of atmospheric deposits and mokded by atmospherie influences. This is only an instance of what we find in the case of nearly every one of the whole circle of suiences, biologiral and physical, all of which appear on examination to be affected by our knowledge of the atmosphere in a very real and important sense.

In orter to secure the advice and co-operation of scientific men throughout the world, letters were addressed to a number of aminent specialists, stating the circumstances of Mr. Hodgkins's gift to the Institution, and explaining his wishes. The following letter is an example:

SIR: I have the honor to inform you that a bequest has been made to the Smithsonian Institution by Mr. Thomas G*. Hodgkins, the income of a portion of which is to be devoted to the increase and diffnsion of more exact knowledge of the mature and properties of atmospheric air.

In earrying out the donor's wishes, it is proposed to offer a number of prizes for scientific investigations of a high order of merit bearing upon the properties of the atmosphere, to be awarded withont regard to the nationality of the author.

While hygiene will occupy a prominent place, it is not intended to limit these prizes to any single class of investigations, however im portant, but to extend them over the whole field of the natural sriences, as far as these may be regarded as related to each other throngh the atmosphere as a common bond.

In illustration of my meaning, I may instance as proper sulojects for investigation-

1. Anthropology, considerimg man himself as modified by climate. and his arts as affected by the atmosphere;
2. Biology, in connection with the atmosplere as a fonntain of life;
3. Chemistry, in its many obvions relationships to the sulpeet;
4. Electricity, considered in comection with atmospherie electricity;

万. Geology, considered in connection with the action of the atmosphere in its formation and deformation of the surface of the planet;
and so on throngh almost the whole circle of the sciences.
I now write to ask if you will kindly suggest the nature of the principal relationships existing hetween physics amd the atmosphere, and indicate one or two subjects arising ont of these relations which you consider to be proper tor prize essays.

 stmbes，that wond be materially adramed by a gant fom the fumbs now avalablo moder this liberal comstraction．

In further illustration of my mannins，I take the lihnty of inchosing a cops of a reply male to me in answer to a similar inguiry romerning thasemme of anthropolong，which I do merely to show more deamy the character of the infomation I desine

The following was the inclosmed It is an answor by a distingished anthopologist to a similar question，and was indosed as an illnstration of the fate that the terms of the ITodglins donation apply wen to sei entific matters which may appear at first sight diseomoreted with the subjeet（i．e．to anthropology）．but which upon consideration are seen to be intimately related to it：

DEAR SIR：In reply to yomr infuiry ronerming the redatms existing betwern anthopohngy and the stady of the atmospherel beg leare to saly that the natural history of man takes into comsidmation ：
（1）Man，as morlitied by climato．
（2）Ilis ants as oceasioned and affectod hy the atmosphere．
As to the first，the atmosphere，thenghe hmatr，elevation，ete．，upon man romsidered as an animal，is believed to have affecod his bodidy form aml stature，the rolon of his eres，hair，and skin；his longevity， fecmolity，and vigor，and therefore to have been the most potent factor of all in producias those varieties of our speries calleal races，and to be at the fommation of these problems whose dianssion constitntes the seicmer of ethaology．

As to the secomb，most of the arts and artivities of man depend mon the atmosphere for their sngestion and mothods．For example，his habitations，clothing，ant the common orempations of his daily life are most obvionsly enomolned hy his atmospherie sumondings，whin make lim in the Aretie regions a hunter of furs，dwelling muldrgromm；in the temperate zone a farmer，dwelling in homses；in the tropies a hunter of ivory，dwelling in open shelters from the sun．

Permit me forbare further，that the stmy of the air＂an mot be omitted in combertion with the sermee of sociolog．Even philoheg． doaws its material and perhaps derives it forms largely from the atmos－ phare and the primitive philosophirs and mythologies of the word are tilled with imagery and thendedorived theretiom．Therefore in select－ ing，at your request，from the relatiomshigs of the atmosplere to the seience of anthoprongy in gemral，wo or mone subjects for prize essays，I hate only too muth seopr．
 not less than $\$ 1,000$ should he offered for an essay upon one of the fol－ lowing topies：

1．The reation of atmospherie phemomena to the rosmogentes． （rords，aud rults of all peop）les．
2．Atmospherio changes as dotrmining the forms of primitive son ciety，family and tribal organzations，ofte．
B．As between the monogenistio and the polemenistie therer of the migin of man，what light is thenw upon the ghestion hy a sfuly of atmospherie inflances upon man＇s physionl constitution．
4．Atmospherio inthemos and phenomena as atfecting constructive and decorative architecture．

These essays shond be presented within a specitied time and submitted to the judgnent of a committee, of which I should he willing to be a member. Notice of this prize could adrantageonsly be made public throngh the following suecial journals: L'Anthropolge.e, Paris; Archiv fiir Anthropologie, Bramschweig.

In regard to your intuiry as to any important researeh germane to the sulbeet in which I am personally interesterl, which would be advanced by a grant of money, I beg leave to say that I am at present hindered trom pursuing my investigations into the influence of climate and other atmospheric phenomena in bringing about the distribution of tribes and stocks of North American aborigines at the time of the discovery, by the need of a small sum of moncy which might be placed at my disposal. If I had $\$ 500$ unfettered by conditions, I could within a year's time undertake to bring together the elements for the solution of this problem, which has puzzled for so mamy years students of etlinology amd philology.

Iam, very respectfully yoms,

> S. P. LaNGLEY, Var.,
> Secretary Amithsomien Instimtion.
> Whashiugton. I). (".

As soon as the attention of the publice hat heen direeter to Mr. Hodgkins's gilt, mumeroms applications for assistanme from the fund were male, amd I demed it advantageoms to appoint a special advisory committer, to whieh might he refored matters pertaining to the Horghins fund. This committee was compersed of Surgeon John S. Billings, U. S. Amm, Director of the Army Medical Mnsemm, in behalf of hygiene and the related soiences; Prof. F. W. Clarke, chemist of the U. S. Geologisal Survey; Mr. William 11. Dall of the U. S. Geological Survey, well known for his biological and anthropological studies; Prof. William C. Winlock, in behalt of astronomy and physics, and the Assistant Secretary of the Iustitution, Dr. G. Brown Goode, who acted as chairman. The committee has held several meetings, and I desire at this time to express my high appreciation of the valne of the work which they have already done, both as a committee and individually. At the close of the year, the committee had under consideration, at my request, a form of cirenlar to be issued to learned institutions and investigator's thronghout the world, calling attention to the establishment of the Hodgkins fhmd, and amonncing certain prizes whith it is intended to offer for essays upon specified subjects.

THE NATIONAL MUSEUM.

I took occasion in my last report to invite yom attention to the fact that the very rapid growth of the collections of the Musemm was be coming, under existing circumstanes, a source of great embarrass ment. The difficulties of the situation have increased during the past year, since, while the influx of specimens has continned, no ardditional space has been provided for their reception and only an insignificand additional sum of money for their maintenance.

This masolicited increase of the eothertions shoulal property le a somere of gratifeation rather than of embanmssment. Girowth is essen tial to the welfare of a musam, amb to cheek it is sure to produre me fortumate results. It seems modesirable to say to the friends of the Musem that their valuable domations ean mot be mereived. Such a eourse would alienate their sympathy, and the Musemm wonld lose the advantage of their good offions. Truler existing romblitions, howerer. the necessity of resorting to so madesirable a measme is perilonsly near. The incorase ot tha rollections from rertan other someres can not even thas be cheeked.

Large eollertions are made wery yar by the I bepartment of A grieulture, the Geologisal Smver, the Fish Commission, and other ber partments amb Bmeans of the Govermment, rither as an essential part of their work or incidentally: By provision of law the Musemm is made the custedian of these collections, and it can not, therwfore, do wthere wise than to receive atul preserve them.

Many valuable objects are exposed to dust amb vandalism firom the
 tion. Series of objects, such as the great Lacos rollection of fossil plants, recently arouired, are frequently offerd with the condition that suitable cases be provilled. For the sate-kepriag of the objeets already in the possession of the Masem and for the reception of those offered. momerous shomer amb exhibition rases are a meressity.

The momber of specimens of all kimh in the Masemm at the elose of the year, as shown by the following talnhe, neally equallert thee anm a quarter millions. The increase for the wan was abont 260,000 sperimens, or nearly dond be that of $18: 91$.

Table showin! thr anmul inerense in the departments of the Xitional Musemm.

Name of department.	18×2.	188.3.	18x4.	(1) 15x.\%-a6.	15.56-87.
Artand industries:					
Maferia merlica		4,000	1,142	4. 8.514	5,516
Finors.		1,244	1,580)	$\bigcirc 2$	877
Textiles			$\because, 900$:3, 06:3	3. 1.44
Fisherics			\therefore S,000	9, 370	10,078
Animal products.			1.003	2.79	2, N_{2}
Graphice arts.					
Transportation and engincerintr					
Naval architecture.			6019	.-....	
Historical relics				1002	
Coins, medals, paper money, ute				1,005	
Musical instrumemes.		-	400	417
Modern pottery, poreclain, ant bromats.			2.278	2, 238
l'aints and dyes.	77	100
"The Catlin tiallery"				500	500
Physical apparatus...				2.9	251
Oils and gums.				197	198
Chemical prodacts..				(6.9)	\$01
Domestic animals......					

Table showing the annal increase in the departments of the Sational Museam-Continued.

Name of department.	12.52	1883.	1884.	(1) 1×85	1886-87.
Ethnology			200.000	5090,000	50:3, 764
American aboriginal pottery			12, 000	25,000	26,102
Oriental antiquities					
Prehistoric anthropology	35. 512	40, 491	4.5, 25.3	65. 314	101, 6.5
Mammals (skins and atcoholics)	4,660	4, 420	5,694	7, 4. 1	7,811
Birds	44,354	17. 246	50, 350	55, 945	54, 987
Birds' eggs and nests.			40, 07\%	44. 163	48, 173
Reptiles and batrachians			23, 49.5	25,344	27,542
Fishes	50, 000	6.5,000	68,000	75, 000	100,000
Vertebrate fossils					
Mohusk.	33,375		400,000	460, 000	425, 000
Insects.	1.000		151, 000	5010,000	585,000
'Marine invertebrates	11.781	14.825	200.000	350.000	450,000
Comparative anatomy :					
Osteology.	3,535	3. 640	4, 214	14, 210	11. 092
Anatomy	71	103	3,000		
Paleozoic fossils		20, 000	73, 000	80, 482	84, 491
Mesozoic fossils			100, 000	69,742	70,775
Cenozoic fossils.		nchuderl w	ith molusk		
Fossil plants.		1. 624	7,291	7. 429	8,462
Recent plants (${ }^{2}$)			30, 000	32,000
Minerals.		14.500	16, 610	18, 401	18,601
Lithology and physical geotogy	9,075	12, 500	18,000	20,647	21,500
Metallurgy aud economis grology		30, 000	40, 000	48,000	49,000
Living animals					
Total	193,362	263, 143	1. 472.600	2, 420,944	$\because, 666,335$
Name of department.	1887-88.	18*8-83.	(${ }^{3}$) 1889-90	1890-'91.	1891-92.
Arts and industries:					
Materia medica	5,762	b, 94\%	${ }^{(1)} 5.915$	6, 083	6, 290
Foods.	877	911	1,111	1,111	1,111
Textiles	3, 144	3, 222	3, 288	3,288	3,288
Fisheries	10, 118	10, 478	10,080	10,080	10, 080
Animal products	2,822	2, 948	2,949	2. 994	2.994
Graphic arts.			${ }^{(5)} 600$	974	1,174
'Transportation and ongineerin			$\left(^{5}\right) 1,250$	1,472	1,737
Naval architecture		601	$\left({ }^{6}\right) 600$	${ }^{(6)} 600$	600
Historical relics	14,640	14,990	20,890	23,890	$\because 88390$
Coins, medals, paper money,					
Masical instrmments	427	427	447	542	636
Moderu pottery, porcelain, an	3, 01 i	:3,011	3, 132	3,144	3, 232

'No census of the collection taken.
${ }^{2} \mathrm{U}_{\mathrm{P}}$ to 1890 the numbers have reference only to speeimens reeejved throngh the Musemm, and do not include specimens received for the National Herbarimm through the Department of A grieulture. The figures given for 1890-91 include, for the first time, the number of specimens received both at the National Museum and at the Department of Agriculture for the National ILerhatinm.
${ }^{3}$ The actual increase in the collections during the sear $1889-90$ is mucb greater than appears from a coniparisom of the totals for 1889 and for 1890 . This is explained by the apparent absenee of any inerease in the department of lithology and metallurgy; the total for 1890 in lonth of these departments com bined, showing a decrease of $46,31 \mathrm{t}$ specimens, owing to the rejection of worthless material.
${ }^{4}$ Although about 200 specmens have ben received during the rear. the total number of specimens in the collection is now less than that estimated for 1889, owing to the rejection of worthless material.
${ }^{5}$ The collection now contains between 3,050 and 4.000 specimens.
${ }^{6}$ No estimate of increase mate in 1890 or 1891.

Name of department．	1887－88．	188s－89，（1）	${ }^{(1)} 1 \mathrm{nax}$（ 90.	$1890 \cdot 91$.	1593－92．
Arts and industries－l＇ontinumb．					
P＇umts amel dyes ．．．	100	109	117	$1!17$	195
＂The Cattin Gallery＂．	500	Sol	（2）	$\left({ }^{2}\right)$	
Physieal apparatus．	251	$\because 5$	263）	－27	$27:$
Dils aud oums	19\％	$21: 3$	11．）	1．11＂	1．11：
（＇hernictal proulutis．	661	（i8s ${ }^{\text {c }}$	1.1	1．11－	1．71－
Inrueslit animals．		．．．．	615	！	103
Ethmology	505.4164	5168301	Sils． 8.30	311，mide	512.87
Amorican aboriminal potlury	ご，12\％	动 30	29．－ 29	： 0 ，15s	\％3，\％05
Oriental antiquilies．		（i，	3， 48.5	$\therefore 3,1 \therefore 2$	$\therefore 4 \mathrm{c}$
1rehistoric anthropulow	108．6：3	116，4iこ	123，677	127,761	1：37， 127
Mammals（skins and aleoholics）	8．15x	8． 2.5	4． 8.31	！3：301	10，3s7
Birds	50． 1×4	$\therefore 7.971$	8i0． 219		6s． 416
limas exos and mests．	－0． 0155	［11）． 17.3	－1， 241	$\therefore 2 \mathrm{~F}$ 166	$55^{2}, 260$
lipptiles and batrachians	27.648	2 sc .40 .5	29.050	29\％93：5	30．93：
Fishos．	103， 350	107.350		127.312	129， 218
Vertebratefo			（4） 512	521	1，5x2
Moplinsks	45．5．0010	$46 \mathrm{~s}, 004$	471，500	176，500	4×2.135
Inseets	59．5， 0014	60\％3．000	618.800	（3：30．000	6．46， 800
Marine invertelorates	515.1016	515． 304	5 ± 0.1601		533,470
（＇omparative anatoms ：					
（3stronder ．．．．．．． Anatomy	11，Sis	31， 2.3	12． 2.66	13.9×1	（5）12， 5.55
1＇alerozair lossils	－4．64！	（1）． 126	92，35\％		（ta，439
Mesozule lirssilta	710． 3 2－	71．206	71． 315	79.754	2－3． 4.3
Cenozoic linails．		cimbed witl	ly molluitis．		
Fossil phants	30． 1001	10，15x	10.507	111．6x． 5	110， 6885
leceut Mants 1^{6} ）	Cis． 01%	3x，4．9	39.6 .74	S1）． 1617	1：3．001
Minerals．．	$\because 1.8(1)$	27.600	：3． 101	44． $2: 36$	48，：357
Litholoty abil physical modogy．	$\because 2.814$	－7．（\％）${ }^{\text {¢ }}$			
Mr＊allurey and comboni geobogy	51． 412	i）$)^{2}$ ， 1010 ，	）吅似	14，162	（ ${ }^{(}$） 35.787
Living animals．	$\because 21$	（4） 491			
Total	$2.803,4.5$	$\underline{3.84} 4.3+4$	2．8！5． 111	$8,12 \mathrm{~s}$ ， 114	3． $20.60,941$

${ }^{2}$ Included in the listorianl colleation．

 $1889^{\circ} 90$.
 skeletons to the thegat thent ot vertabrate fersils．

 The figures given for $1890-91$ include，for the first time，the momber of sperimens remered both at the

 the reserve and duplobate series is ineluded．
${ }^{8}$ Translierred to the Nat ional Zoablogieall lark．

 special reason it las not been possible to nbtain the tigures showing the increase．

Condition of the exhibition hulls.-The results of over-crowding are evident everywhere in the exhibition halls. The installation of the eollections and the comfort of visitors are interfered with. It has berome necessary to narow the aisles in many halls to such a degree that they are ahmost impassable, and on occasions when unusual numbers of visitors are in the city, many objects of interest have to be withdrawn from exhibition. The unavoidable crowding of the rases interferes with the lighting. so that many objects are practically hidden from view.

To relieve the present pressure, as regards space. I have, in addressing Congress, hronght forward two propositions. For immediate and temporary relief I have recommenden the rection of light galleries in two of the halls. with the intention of hereafter asking for others of the same character. Snch galleries, mulike those in the main Smithsonian hall, were provided for in the original plans of the building, and can be erected without detracting form the appearance of the halls.

While these galleries womld add materially to the available exhibition space, we most look to the rection of a new musem building for more permanent relief from the present overerowded condition. A bill providing for the constuction of a new building has twice received favorable action ly the Senate, but has failed to pass the Ifonse.

It is ereatly to be hoped that both the galleries and also an additional huilding may be providud without further delay.

Curatorships.-There are now in the Mnsemm thirty-three organzed departments ant sections, moler the care of eight curators, paid by the Musemm, and twenty honorary curators, detailed for special duty from different bureans of the (iovermment. While the latter render very important and highly appreciated scrvices, they are, of course, more especially ocrupied with their own peruliar duties, and can not devote more than a small portion of their time to the interests of the Museum. The technical character of the daties of the curators renders highly desirable the employment of a larger paid staff of men who have had sperial training for mosem work. In order to secure the services of such persons, loowerer, and to obtain the best results for the Musem, greater inducements shoulh be offered in the way of compensation. There are few protesson in our colleges who do not receive larger salaries than it is now possible to pay the corators of the Musemm, who. nevertheless, in addition to their onerons executive duties as custodians of the collections, we expected to furnish sientific information for replies to the thonsand of inquiries reseived every year.

It may be added that the proper preservation of the collections often entails much manual labor. and in many instances immediate and strentons efforts are needed to save from entire loss large collections of a perishable nature. Urgent work of this kind is not unfequently performed by the curatoms.

It is most desirable that the seientifie staff of the Musemm should be
 mules a matarity at least of the emators are paisl fiom its apponfiations. The jermanent assigmment of the rorators there theserefive departments, with atergate compernsation and tha abserne of extraneons
 tifie side.

The lack of means to employ a sultiefent momber of assistants in the lower grades atuses a large amonnt of minor rontine work to fall on the comators, who are rapable of rembering serveres of a higher chatater. Oif acrount of this condition of affans many blans of the spatest impor-
 merer ronsimmated.
 need of adrlitional elorioal assistanme in the Jhsemm. 'This meed beromes greater erery year as the eollortions increase in masuture. The salaries paid for elerieal work are less than in the exorentivedepart ments of the Geremment amt rew here, and thr Masemm on may oceasions has lost the serviers of rompetent rerks, trained in thein sjecelal work, who have been attraded to other fiek of labor hy higher compensation. Some of the departments in the llusemm are antirely without rerieal assistamere and the ematome ane obliged to devotr time which aonld be mond better employal, to the simple lont meressary work of ataloguing and laholling speromens, preparing invoires, and mparking hoxes.

For the saftereping of the collerotions, which hate gratly increased
 necessary. The forer is mow so small that it is dilioult for gant the
 It is also with difficulty that the eleanliness of tho flomes and rases is
 which the perent apmonniation will permit the Xnsamm to amploge

Distribntion of sperimens.-The distribution of duplicate matorial to edncational institutions has hern contimed as lan as practionble. This. means of cliffusing knowledge is one of the most pophlar fatures of the

 mammals, tishes, marine invortehmates, birls, shells, borks, ores, min
 eduational institutions in the l'uited states. while important exrhamser with similar institutions aboal haveresulted in mon goor to the Musemm. This work, tow, is mow bedog surionsly himdered, wwing to lark of spate for the proper handling and separation of the duplieate material, and its rlasidiation and antagement into serims lon distribution.

The material distribntod during the fad consisted rhielly of miner als, marine invertebrates, and rasts of prehistorid stome implements, and amounted to $320!8$ specimens.

Publications.-There has been musmal activityin the work of this department of the Museum during the year. The report for 1889 has been published, and the report for 1890 has been put in type. The mannseript of the report for 1891 was sent to the Problic Printer and is now going through the press. Vol. xif of the "Proceedings" of the National Mu* seum has been published. Of the "Bulletin," Nos. "39 (Parts A to G), 41 and 42 have been issued.

The Proceedings and Bulletins of the National Museun are uot "pul)lic documents," hence no part of the edition is regulaly apportioned for distribution by the Semate and llomse, or to the legal depositories. The edition of 3,000 eopies, now printed, is only sufficient to snpply in limited measure the very urgent requests from public librajes, educational institutions. and srientific investigators in the Cnited states and throughont the world. A larger appropriation for printing is needed, so as to enable the Musemm to place a full series of its publications in representative libraries in different parts of each State. It is not the intention that the anumal number of issues of the Proceedings and Bulletins should be increased, but that a larger edition of each should be printed. On account of the small edition, the Museum fails to receive in exchange the valuable publications of many seientifis institutions.

The amoments hitherto appropriated, though expended with strict economy, have been found inadequate.

Tisitors.-The total umber of visitors to the smithsonian building during the past year was 114,817, and to the Musem 269,525 ; total, $354,64 \therefore$. This is an increase of 13,433 over the previons year.

Heatiny and lighting.-The larger part of this appropriation is expended for fuel and gas. As has been explained in comection with the estimates for previous years, it is necessary for the safety of the collection that the buildings should be kept at a nearly even temperature day and night throughout the winter. The reduction of this appriation below the minimum of $\$ 12,000$ will make a deficiency estimate neeessary. From lack of fuel, required to maintain the proper temperature, some of the offees had to be abandoned on several occasions dhring the winter of $18: 12$. The longer the heating apparatus is nsed the less efticient it becomes, ant of late it has been neeessiny each sucfessive year to expend a larger sum fir replacing wor'out parts. The wires of the burglar alarms, watchman's call boxes, and other electrical apparatns. lave deteriomated foom long use, and need immediate attention.

There are at present in use in the Musemm building twenty-five are lights, and this mumber is not sufficient to illuminate the entire building, there being no lights in the courts and an insuffieient number in the halls. It is thonght that with an additional plant, costing about 85,000 , the building may be so lighted that it can be thrown open oceasionally to the pmblic at night, to the advantage of those persons who are unable to avail themselves of the regular hours of exhibition.

The purchase of an adrlitional amgine will also rember it possible in provide against the contingency of total (lankness in case of damage to dynamo. line. or motor.
 floors. and the substituting of granolithio or artiticial stone pavement therefor, it has been possible to eomplete a much needed improvement in seraral of the halls and eomets of the Musemur

With a view of semming the best pavement passible ans well an for
 the morits of the antificial stone Hooring made by difterent bidelers. three proposals which did not vary materially in amomnt, were anerpted. It will regnire a greater length of time than has yet rapsed to pronounce upon the relative merits of these parements, but they lave aheady proved themselves far more satisfactory than the woolen thons for whidh they were substituted, and it is hoped that it will soon be possible to put down the same, or some aqually thamble form of parement, in the parts of the masemm which still lack this improvement.

The Worlds Columbien Exposition.-The work of preparing an exhibit for the World's Fair in Chicago las been continned during the year. I full report of the barticipation of the Smith sonian Institution and the National Dusemu in this exhibition will he deterred until sued time as a complete statement can be made.

BUREAY OF ETMNOLOGY.

Ethnological researehes among the North Ameriban Indians have benn anotinned lyy the sulthsonian lnstitution, in oomplianee with acts of Congress, dming the year $1 s^{\prime}!1-{ }^{\circ} 9:$, mader the direction of Maj. J. W. Powell, who is also Director of the U. S. (reologieal Surrey.

The work of the Burean of Ethology dming the fear has been conducterl on the same systematic plan before explained as in suceressind operation. The authors of the publeations of the bureat prepare them from material persomally gathered bẹ themselves in the fichl, which is supplemented by stmely of all the intomation attainable firm other sourees.

In addition to the issur dming the year of the serenth Ammal has port and of six other vohmes of publieations, montioned moler that heading in the report of the I indector heremato appended, at the elose of the fiseal rear the Eighth and Ninth Ammal leports wow in type, the tenth had been delivered to the Publie Printar. and the elerenth and twelfth were on tile ready for delivery to flat wfterial as somb ats
 Other reports and paturs not intembed to form parts of the series of anmal reports were also filed as ready for printing.

Another feature of the rares work eomsisted in the eolledfon by officers of the Burean, under the anthority of law. of ethoologic objects
for the exhibit at the World's Columbian Exposition. This authority was opportme, as objects of that character are becoming scarce and costly and probably comld not, after a few months, be secured for preservation in a permanent collection. A similar work of preservation, also anthorized by law, was exernted in the restoration of the ruin of Casa Grande, in Arizona.

Mention of these special operations does not imply that the researches into the religions, customs, history and other ethnologic data of the Indian trihes were omitted during the year. Details respecting all the work of the Burean will be found in the report of its director, given in the Appendix.

NATIONAL ZOOLOGICAL PARK.

The insufficiency of the appropriations for the maintenance of the National Zoologieal Park was pointed out in the report for the year ending June 30.1891, and experience amply supports the opinions there expressed. It does not seem superfluous to repeat the following passage from this last report:
"The primary object for which Congress was asked to establish a National Zoological Park was to secure the preservation of those American animals that are already nearly extinet, and this object it was thought would be best seemed by the establishment of a large inclosure in which such animals conld be kept in a sednsion as nearly as possible like that of their native hanuts. It was belioved that, except for initial expenses for buildings and roads for the public, this comld be done with an ontlay comparatively small, probably not excee ling $\$ 50,000$ a year; for, after the necessary land was once aequired and fenced in, swaller inclosures and paddockscould be set off and inexpensive barns erected at about this yearly charge.

It was, in the nature of things, inevitable that some provision shonld be made for the conveninnce of a curious aud interested public, as well as for the care and well being of amimals maccustomed to the presence of man. For the tirst of these it was intended to set aside a comsiderable area, on which the principal buildings should be placed and to which should be taken, as was expedient, such of the animals as might interest the poblic, the larger portion of the park being still considered as a matural preserve where amimals need he disturbed by no musual smromblings, and where it was hoped they might, after the time necessary for their acelimation, heed their young.

The mantemance of a park devoted to these porposes, that is primarily to useful and scientifie ends, and secondly to secreation, seemed to those interested in its success a legitimate tax upon mational resontees, but when Congress decided that one-half of the necessary expenses should he raised by local taxation it seemed only fit that the tax-payers should he heard in their wish to have prominence given to the feature that principally interesterl them, and their chief interest was naturally in the park as a place of recreation. That this was recognized by a considerable body in Congress became evident from the subsequent debates.

The moral right of the people of the District to ask consideration of
their wishes for entertamment in ratmon for ontay whiol falls
 nized it introntued a tembency to providn an astablishment mone like an ordinary zoological garlen. on permanent menagerie. than the companatively inexpemsive scheme at iimst obotemplated.

In vew of the viremmstanees an aphopriation was asked of ('omgress, which was believed to be smaller than was (o)nsistent with the poper ultimate development o! the park. but on an restmate which proposed to begin on the most aromomical seale. Thms. for tho gemoral maintenane of the collection, s35,004 was asked, which is abont the
 York, having an area of abont 10 aneres, and at least $\leqslant 10$, (0)0 less than is
 having an area of abont 40 alores. Whan it is rofleoterl that these latter enternases are conducted for busimess purposes by hasinms men, that they have them conlertions almady manly romplete and pmorase but few new ammals, it will be sem that tha sum asked for tha main
 expensive amimals yet to be procored was rotainly not extravianat.
 experience has now show the Park wan mot be mantaned.
 nertion it may be reabled that in the bhiladelphatandens the build

The average whense of preparing smoll monltivated wromms in aty
 \$29, 000 was askel for that pmomere, as mo more than smblefent to fit such portions of the parli as were necossaty for the immerliato aceome modation of the pulatie. ('ongress reducest this to sts,000).

These reductions have mot onlyobliged me toretam the development an the lines that had been bad down. hat have inemeased the utimate cost ; for where living reatmes are in question it is plain that they have not maty to be feal ame wamederl lant to be bomsed: and all this at once, under penalty of their loss. Comgress has blainly intanded that they should be preserved. and that some sont of roads and aneees fom the public should be provided this feat.

The mesult has meressarily bern, that with exery effort to ohtain per manemt results. there has been a partial expernditure of the absohntely insulficient grant on coforeed expertionts of a temporary chatabter, which are not in the interest of reonomy.
 next afpropriation. ln carying farwad. from the begimning. movel
 imevitably arise. but no provision has berem made for these, mon arm for such readily anticipated emmeremedes as are callsed. for instance, by foods in gromds faremed by a strean which has beron kown to rise 6 feet in less than half an homm.

The difienties which these romlitions have imposed on the admin istration of the bark may be farly ealled extemme amm the amomnt amel
 nection. In spite of these the result, I think. maly be said to he that at least as a somme of intorest and ammsement to the ferople tha bark has exeeeded the must samgume expectations."

It will be observed that of the 101,350 asked, two-thirds were for buildings amd gromols which, if not provided for, comld wait with comparatively little inconvenience, white the remaning thind, of s: was for the care and food of living aminals, for policing of the park and for the safety of the public, matters which, when the gaden was once opened, comld not wait, and could not be materially diminished, but constituted a romparatively fixed sum without which the park could bot goo on, and which should therefore be given neanly as it stood or withheh altogether. Congress, howerer, it will be seen, reduced all these items nearly in the same proportion. that is, to about one-half.

Two-thirds of the desired appropriation was of a nature that could perhaps be reduced one year and made good later; the other third (that for food of living animals and maintenance), as painfin experience has shown, comld not be materially reduced and conlal not be madre good later; and it is the defiedency on this item that has been the special ranse of the difficulties of the administration.

Inadequacy of appropriations.-Embarrassment also arose from the fact that the small amome appropriated was specified and allotted under three separato subordinate heads and in three nearly equal amonnts, althongh the needs were not efnal. As the bounds of these allotments could not be overstepreal, it ocomed that, while there were relatively sufficient finds under one item (the rare of gromuls), there was entire inadequacy under the morh more essential head which provided for the maintenance and cure of living amimals. No matter how great the emergency or serions the need. it was, of comse, impossible to change this allotment, and while the total appropriated by Congress might, by close economy, have been sufficient, yet there was danger that the animals would be unfed and that the foree of watchmen and keepers, atthough orerworked, would be inadequate for their proper protection; and as there existed no anthority to give away or sell the animals, disaster of some kind would harecusued but for the aid indirectiy wiven by the Smithsonian Institution.

It may here be mentioned that it was expected that a large momber of amimals would be obtained fiom the lellowstome National Park, that being the principal great preserve for wild game controlled by the (iovermment of the United States. With the eomsent of the honorable the secretary of the Interior, a hunter was employed to capture large wild ammals in comsiderable nmmbers, which were to be forWarted to the park at Washington. When a number of bears, deer, and ehk were thas obtained, the reduced apmopriations were insufticient to continue his employment or to transport the animals already captured. A still more regrettahle consequence was the necessity of refusing absolutely all gifts made by the public, as there were no means of paring for the transportation of animals or for their subsistence when received. This has been a serions disalvantage to the collection, not only at present,
but as reamols its foture. fore it meed hamelly he satid that it has dis. combaged and rehmfed many public-spirited vitizens who would have beeng glad to present animals to the park, and who will mow rease to have any further interest in the enterprise.

Dameres by fireshet. On the ith of september, 1s? a a fieshet of munsual violence invarded the valley of lanck ('reek. Surh was the raphedity of the increase of water that in lese than half an hom the litthe stream had risen 6 feet and had berome a torrent of emsiderable mas. pitude and power. The piras for the bridge had just been rompleter, but tha banks above and below were not yot pootered trom the abransion of a blood. In conserpence of this the water formed an eddy near one of the piers, ransing it toloreak, and eracked one of the abnt ments. It is believed that this unfortmate aredent was not due to any defect in the design of the pia (which was constrowed marn the competent sumpision of the late (ion. Meigs). but lather to the lan that the firehat ocermed before the mighboring banks were popery pres pareed.

The damage to the pier wan ly mo means the tenal extent of that ransed by the flood. The hear-yards, then nearly rompleted and realy for orempation, were rary seriously injurd by the precipitation into them of many tons of rock abd earth. This made it evident that the bank of earth and deromposed rook on the eliff abowe the yands comble not be depended on withont some additional saferward. The heavy fall of water seriomsly injured and rat away the bow roads, gutters, and drains that were ret fresh and mesetterd, removed whond banks of eath from fresh slopes and washed ont trees and bushes. The ereek changed the level of its banks, contang out a new chamel for itself in several phaces, and overed the slopes with humdreds of tons of gravel and sand, and orcasionally even deposited eonsiderable stones, which wor lifted by the rushing water and left mon thr grass as atriking evidence of the viohenee of the floorl. Inmediatesteps were eommeneed to repail thedamagr, but this work was not rompleted within the fiscal

The bear-tands are in an abandoned forary, adjoining a precipice Whose smmmit is upon the extreme boundary line of the park. For this reason mo permanent protection ean be providad motil the Govermment secolres the few rontiguons roods neederlat the top. With this fle sumb mit of the precipice, formed of the original roek, womld eomstitute the (heap and matmal barior. For proterton under the artual, rxisting conditions, theonly meanare (and it is both incompleteand expensive) is to build aretaining wall reathing from flar solid rork of the clifí high enongh to hold any detritus that might be displaced by the arfion of rain or firost.* This has been commenced, but left incompleted owing to lack of timels.

A considnable force of men was employed in repairing the roads, gutters, and drains, and in diverting the romse of the stream so as to prevent further crosion of the banks. The amount expended in partially repairing the danage cansed by the fieshet was nearly $\$ 5,040$. This unexpected demaud mpou already insufforent appopriations was another cause of embarassment.

Iuflux of visitors.-Public interest in the park has steadily increased from the begiming, and evenin its present unfinished state the number of visitors in a single day sometimes reaches from five to ten thonsand or more. It was supposed that when the collection shomld be of notable size, when the buildings were completed, the grounds improved, and the means of aceess ample, that a large momber of visitors would fiequent the park, but so very large and so immediate an attendance could hardly have been anticipated. It was found that the force of watelsmen was quite insufficient properly to dieet and control the thomgs of people that on holidays passed thongh the unfinished houses and along the roads and paths. Theredre five entranees to guard, and eight separate honses and inclosures where animals and property are kept, so far distant from one another that a watchman or keeper should be stationed at each, while in the larger houses, like the general mimal homse and the elephant honse, it is desimable to have more than one keeper on hand, during the presence of great crowds, both for the purpose of protecting children as well as to prevent mischierons individnals from inguring the animals. The services of the keepers are required chietly in the day, but there must br watchmen to relieve each other during the whole twenty-fon hours. Under these circumstances, the appropriation allowed-for the grarding of the animals, the publie, and the policing of the 167 acres by day and by night-but six men including both watehmen and keepers.

Deficiency "ppropriation.-In view of these and other circumstances it seemed proper to ask a measure of relief from Cougress. The following estimates wore accomingly framed and a deficieney appropriation asked to meet them:
National Zoülogical I'ark: Improvements-
For contining the construction of roads, walks, and bridges, and for grading, planting, and otherwise improving the gromids of the National \%oülogical lark, being at deticiency for the fiscal year 1892.
$\$ 4,870.81$
Note.-This appropriation is remlered mecessary becanse of the storm of september 5, 1s91, which greatly hanaged the works of improsement in the prark. The sma asked is for the purpose of reimbursing the appropriation for the amount actually expended in repairing those danages and preventing similar ocenrences for the fature.
National Zö̈logical Perk: Maintenance, etc.-
For care, subsistence, and transportation of animals for the National

- Zoölogical Park, and for the purchase of rarespecimens not other-
wise olstainable, including salaries or compensation of all neeessary employes and general incidental expenses not otherwise provided for, being a deficiency for the fiscal year 1892.
$\$ 1,431.00$
Sational Zä̈lagical I＇ark：Maintemence，cte－－Continumal．
Nore．－This sum inelules
 Transpertation of sperimens altandy oflerell to and purelased hy thepark，vi\％：
From Culowstome Parm 35010.111
From sonth Amoriat． 910 .010
From Ansirallit 500.110
 $\$ 1610.010$
Care and manterance of the ehophats presented and lent to the park．1，500 or
Sational Zö̈logical I＇ark：（ngenization，improcement，maintentmor－
Fon repars to the Holt mansion to make the same suitabla for ocen－paller，and for mfice farmiture：
To bay Daverenx id Gaghan，phambing and gat ditfing がが21． 17
＇Bons Julins Limshurgh，chairs． 1．4．109
Io pay Barber of Ross，urates 16． 00
＇lo pay Georqe Breitharth，wairs 2．5． 75
Ton pay d．Eherly＇s soms，stoves． 20． 35
Total＋126．：7
Nire．－The above liabilities were incured amber thr supposition that they fondtroller is of the ephinion that they shonh be chargel against this item．
 amd materials for repairs urgently meassary for the prespration of the Itult mansion，inchang the following：
（＇．Burlew，comereting and pitrhing ＊ivo．Is
Belt \＆I yer，doors and moldings 37． 11
11．（＇，Momie，lathing and plastering 173． 141
（1．W．Hawes，carpentry 21． 100
W．O．Stricker，wapentry 33．3． 00
（＇harch A strphemson，limber 1115．24
O．1．Wolfoteiner of（＇o．，skylisht． ［5． 119
T＇utal$\$ 19 \cdot 9.45$
Note．－The amont apporpriated by comgrese for repairs to the Ifolt mansionWas expended hetore the roof was covered in，and upon the decision of the（＇omptroller hat it comblat becovered in fom the item for＂expenditmes mot otherwise irrovided bor，＂the smithsonian lnatitntion advancel this sum from itsprivate finma to provint the stestrotion hy the weather of what had alreaty
F＇or corrent expernses－daged to work in watar in the National／anionsiotl lark

[^2] an minht being wom omly white on thty．The Fitst fomptronter hodls that the ＊Hm can hut properly ln paid withont speriat legislation．
WII heing for the service of the tiseal your 18： 1 ．）
小ate of Mareh s，1s！z：

 halfor which stm shall be paid from the revemese of the bistritt of （＇olumbia amt the other hatl＇fom tha＇Treasury of the Unitod states．
 atvanoed athd mo additional apmonntation was matle loy（ongress，it
 was dond hy stopping all work mon the lomilimgs amd grombls，and r ducing the force till one watehman only conld be on duty at a time， П．Mis．114——3
and much danger to the public and many ancirlents to the animals ensued in consequence. The deer and antelope were annoyed and injured by dogs, the flork of valuable Angora gionts was nearly destroyed by being poisoned by visitors with lamel (Ḱalmid latifolia), and many other injuries were inflicted on the amimals, while the administration was in anxiety lest some grave accidents, such as were abunst to be expecterl under these circumstances, should ocen amomg the crowds of visitors, embacing not only adults, but rhildren, of the latter of whom there were often many hundreds present and mprotected.

That this andiety was not unwaranter was shown on the night of May 24 , when a grizzly bear, during the absence of the single watehman, scrambled up the almost perpendicular eliff in the rear of the yards and escaped from the park. After fruitless attempts to capture him, and the injury of one of the employés whom he wounderl, order's were relnctantly given to shoot him.

The following letter, setting forth the urgent needs of the park, was addressed to the Secretary of the Treasmy on Jannary 33 :

Silithsonian Institution, Washington, I). C., January 23, 1892.
SIR: I beg leave to invite your attention to the estimates muler the Smithsonian Institution for the fiscal year ending June 30, 1893, duly smbmitted to you October 7, 1891, and to the modified form in which these estimates were transmitted to Congress, whereby it would seem to be recommended that no increase be madn over the amomnts appropriated for the current year.

While feeling that all the amoments asked for by the Institntion have been only such as are adequate with the strictest economy, I have to ask your especial attention to the thee items for the National Zoiblowiral Park, i. e., Improvements, Buildings, and Maintenance. Disasters from flonds and like contingencies for which no provision was made by Congress in the appropriations for the present year emphasize the necessity of serming the full amonnt estimated under the headings [mprovements and Buildings, while there exists exceptional neressity in the item for Mantenamee, which is essentially for the food and care of living anmals.

The appopriations made by the act of March 3, 1891, for "maintenance" during the present tiseal year (for which s35, 000 was asked), was $\$ 17,000$, but the sum of $\$ 5,129.71$ from the appropriation of April 30,1890 , was avalable and has been used for this purpose; and even with this addition it has been necessary to ask fon a deficiency appropriation of 8,434 , chiofly to cover expenditures which were fombl to be absolntely neresiay to prevent loss to the Govermment.

The minimm expenditmes for the present year undes this item will therefore be sember.71; the expenses for the first six monthe being $\$ 14,269.73$, or at the rate of $825,539.46$ per ammm. I trust, therefore, that it is made sufficenenty cleas that with an appopriation of $\$ 17,500$ if with be impossible to properly care for and feed the animals now on hatud.

The past expmatures would have been still larger but that the work on the accomes for the Treasmo has in part beem dome gratuitomsy by the Institution, which has also smplied free of cost office rooms, as well
as thr aid and smpervision wfombaid matmalists. This ean not be reek. oned upen fon the finture, hut has bern sametomed by the Regents as a means to more the exigeney matil the need of a larger appopriation can be represented to Congrest, and in the meantime the working forer has bern erdued to an extreme degrer, the policing, for instane being now dome by one watehman, aided hy two employés who are lately engaged with othre daties: and these there men are required to mantan order
 These details are mentioned in comereton with the fact that (maless some small puralases of ammals mate at the omtset be expepted) it is moder like stringencies of eamomy in evary brancle of the alministration that the expenses have ahbeady amomoted, as shown above, to more than $-1+000$ in six montlı.

I can mot too emphatically represent the peculian difficultios that most arive in administering an insuffient apropriation for the care of living wild amimals, mable to "are for themselves where they are, if mo porision has been made by Congress fon disposing of them elsewhere

In view of increased expenses since the estimates were prepared, due directly to the mexpectedly great popnkar interest manifested in the park. and to the extraominary increase of visitors, 1 now feel rompelled to either increase the estimate for maintenance to $\$ 30,000$, to coser further contingencies, or to ask that the total appropriation reguested for the park be made in such form as to allow a rertain disartionaly power to mect them. If mader the ciremmstamers stated, the latter womld, in your judgment, be the more advisable comse, I would respectinlly ask that yon reommend to Comgress that the three items of
 bre appropriated in one sum of $\$ 73,000$, as follows:

Sational Zoähogical I'urk, smithsonian Institution:
('ontiming the fomstruction of mats, walks, bridges, watur supply, sewerate, and dealmge and for grabling. panting, and othorwise improving tho gronms. ereeting, and rejairing buililings and inclosures for amimals and for administrative purposes, (are subsistrome, and tramspotation of animals and for the purehase or exchange of spectmens mot otherwise ohtabable, inchalins salaries or compensation of all neecessary employés, and general ine inlental expenses mot otherwise proviled for, \$73,000.

I have the homor to be, very respectinlly, yours,

> S. I'. LaNeilery
> Secerctery.

The Abcremadey of the ThEANARy, Wrashingtou. I). (U.
 rivil appopriation bill was reporfed to the Homse, that but zes, 0000 Was recommended to heappropmated for the National Zoïlogieal latrk. This was divided into the following heads:

The matter sexmed to mes megent amd sorions as to demand the immediafo attention of the liowents. I therefore called a special meet ing of the Boand and lad the matter before them. The result of that meeting will be seen in the following letter addressed to the President of the United States Senate.

Smitusonian Institution,
Washington, April 2,1 s92.
Sir : In accordance with the instruction of the Regents of the Smithsonian Institution, I have the honor to transmit a resolntion passed by them on the 29th of March, 1592, together with the following prelininary statement of the considerations on which it is based :

The National Zoölogical Park was plaeed under the Regents of the Smithsonian Institution by the act of A pril 30, 1890, to be administered by them, first "for the advancement of science" and, second, "for the instruction and rerreation of people."

The necessity of protecting the unexpertedly large crowd of people that have been attracted to the Park and of providing for their access to the animals, as well as for the protection of the latter, has made it necessary to assign to this secondary object a disproportionate share of the appropriations, and it seems mavoidable that this subordinate feature shomld thas clam the larger portion of the expenses, as long as the collertions are open to the public, as in ordinary zoological gardens.

The appropriations for the fiscal year 1891-: 5 were made under three heads: Improvements and care of groumds, $\$ 15,000$; buildings, $\$ 18,000$, and maintenance, $\$ 17,500$, these amounts being about one-half those that were submitted to Congress as necessary to make preliminary provision for the security and accessibility of the collections and to administer their trust with safety to the public.

The Regents recognized the impossibility of doing this with such means; but, considering that the animals were already in the Park, in view of this public safety, and regarding the act as mandatory upon them, they, with the aid of a balance, economized, in anticipation from the original appropriation made for the organization of the Park, and a deficiency item of $\$ 1,000$, to meet urgent needs, have endeavored to get through the year until relief could be had from Congress. In doing so they have been obliged to reduce the number of watehmen and ennployés of the Park in every grade till the public safety threatens to be endangered, while yet a considerable part of these watchmen have been called on to labor continuonsly throngh Sundays and holidays ten to twelve homs a day without extra compensation, and have in other respects felt obliged to carry economy to a degree which would have been unjustifiable, except upon compulsion under such circumstances.

They would, in their opinion, bave been mable to administer the l'ark to the close of the fiscal year, even under these conditions, had they not, in view of the emergency, also given without charge the services of officials and employés paid from the private Smithsonian fund. The total expenditure for maintenance during the eurrent year may, under these conditions, be expected to be $\$ 23,600$. These farts were represented by them through the Secretary of the Institution in a letter dated January 23, 1892, to the Secretary of the Treasury (a copy of which is appended) and by him transmitted to Congress.

For the year $189 \%-93$ the following estimates were sent to the Treas11% Department: Improvements, $\$ 20,000$; buildings, $\$ 27,000$, and maintenance, $\$ 26,000$.

In the sundry eivil bill (H. R. 7520) as now reported to the Honse of Representatives, there is appropriated for improvements $\$ 9,000$, for buildings; $\$ 10,000$, and for maintenance, $\$ 10,000$; in all $\$ 29,000$. If the Regents considered, as they must, $\$ 9,000$ as inadequate for a year's expenditure in laying out the roads and grounds in a new park of 167 arres, they yet would not have felt compelled to make this present representation, since such improvenents may awat the action of a future

 the pulblia: and that in the easnofamimals. Whichan helpless to powide
 has been a pressing consibleration to them.

The Regents think it promer to remank that the romds of the jark in the ricinity of the rages have bean remwled with visitors, to the mumber of as many as 10,000 in a day, before there was time to make any means for the permanent care of the amimals. or powide proper roals to get to them, even had the means for these becin apmonmiated, and that thare is, in their julgment, every reason to oxpert dming the rom ing summer the vixit of still lager throngs. composed not only of adults, lont oft children.

The Regents fed desimons to remesent that they wan not he hald responsilnte fin the imminnt dimger which mast result, under the rontemplated withdramal even of these means for potertion which experieme has already shown to he absolutely insume ient. They would aha atsk attention to the fact that small as the apropration in, it is in someral itcms. and that muler mo emergency is any diseretion allowed them as to their relative amounts, althongh the whole matter of expenditure is here for a novel furpose, on whioh only experienw rombl daride the relative exigency of each part.

If Congress intended that the park must he matatained on the app prontation umder which the Regents have been mable to administer it
 \$17. $\boldsymbol{i}(0)$, they deem it reasomable to bring the attration of Congrese to the fact that a diswetion might popery he exereised by them as to what proportion they should apply to the imminent needs of the publice safoty and what to matters of lass wemency, and that they shomble either be allowed to expend on the part upen which the safory of the pulsio and the existrnce of the amimals esperitally depends. that whiclitheir axperience has show to be indisponsable, or that they should be relieved af responsibility for the consergurnces.

They desire to add in further explamation that they do not suppase that with the total appombation of s.jo.000, wf wheh sef.000 is for "maintenance" (mentioned in the resolntion), the park can he properly. conducted, and that they believe this smom to he in tate inadergate fors such eombluct. their intent being to state to Congress the sum helow, which, aerording to their experienere it is impossible to motertake that thre park shall he carried on another yratr. though not roditahly, vel without most probablo datreer.

The resolntions are an follows:

Resolced, That the Buard of Regents ofthesmithsonian lastitution would resperet. fully represent to (omgress the impossibility of manataming the [tuited itales National \%oüngieal Park, rapured by the act of (ongress of April:3n, 1sto, with a
 maintruancer

 bary statement of the reasons and comsiderations on which it is hased.

I have the honor to be, sir, with great respect your obedient servant. ミ. P. LAN:ARI.
serfectery.
Hom. heyt P. Morton.
President of the semate.

TREASILY HEPARTMENT，Jumury $25,1892$.

An：：I have the honor to transmit herewith，for the eonsideration of Congress，a commmoneation fiom the Secretary of the Smithsonian Institution of the 23d instant． in redation to the estimates on pare 231 of the book of Estimates，for the tiscal year
 Park，District of Cohmotia，for the fiscal rar cumber June $30,1893$.

Respectfully，yours，
O．L．Spathding．
I＇ting Secretary．
The Splakel：of the：Houte of lifplesentatives．

> Smensonian Insthetion.
> Washington, I). ('.. January , is, 180...

SIR：I beg leave to invite your attention to the estimates under the Smithsonian Institntion for the tisal year ending dme 30,1843 ，duly sumitted to yom October 7，1891，and to the monlifed fom in which these estimates were transmitted to（＇on－ gress，whereby it would seem to be recommemded that no increase be mate over the imonnts appropriated for the eurrent year．

Whik fereling that all the amomats asked for by the lustitntion have been only smeh as are admqate with the strictest emomy，I have to ask yom special atten－ tion to the three items for the National Zoaiogical lark，i．e．．improvements，buill－ ings，and maintenance．Dinasters from floods and like contingencies，for which no provision was made by Congress in the appropriations for the present year，emphat size the necessity of secmring the full ammont estimated moler the headings Impore－ ments and builhings，while there exists＂xomonomal meessity in the item for maintemance，which is rssentially for the food and caro of livme amimals．

The appropriations madr hy the act of Marchs，1891，for＂maintenanec＂during the present tiseal year（for which 象号， 000 was asked），was $\$ 17,500$ ，hont the simm of杨， 122.71 from the apporriation of April 80， 1890 ，wats avalahle and has been used for this propose aml arm with this adition it has been necessary to ask for a defi－ ciency appropriation of $\$ 4,134$ ，chiefly to cover expenditures which were fomm to be absolutely neesssary to prevent loss to the Govermment．

The minimm expenditures for the present year under this item will therefore be $\$ 29,629.7 \mathrm{I}$ ；the expenses for the first six months being $\$ 14,269.73$ ，or at the rate of $\$ 28,539.16$ per anmum．I trust，therefore，that it is made sufferiently clear that with an appropriation of $\$ 17,500$ it will heimpossible toproperly care for ant fed the an－ imals now on hamd．

The past expenditures wonld have been still larger but that the work on the ac－ connts for the Treasury has in part been done gratnitonsly by the Institution，which hats also smppled tree of cost offiee roms，as well as the aid and smpervision of mu－ paid natmralists．This can not be reckoned mon for the tinture，Jnt has been sane－ tioned by the Regents as a means to meet the exigeney motil the need of a larger ap－ propriation pan be representer to Congress，and in the meantime the working toree has been reduced to an extreme degree，the policing，for instance，being now done by one watchman，aided hy two employés who are largely engaged with other duties； and these three men are required to maintain order over an area of 167 arres，visited during earh day by thonsands of peonle．These details are mentioned in comertion with the faet that（unless some small purchases of animals made at the ontset be excepted it is mond likestringencies of eromomy in every branch of the adminis－ tration，that the expenses have aheady amonnted，as shown above，to more than出 14,000 in six months．

I can not too emphatically represent the peenliar diffonlties that most arise in administrring an insufficient appropriation for the care of living wild animals，un－ able to care for themselres where they are，if no provision has been made by Con－ gress for disposing of them elsewhere．

In view of increased expenses since the pstimates were prepared，due dirertly to the moxpectedly great popmlar intrest manifested in the park，and to the extraor－ dinary increase of visitors，I now feel compelled cither to increase the estimate for maintenance to $\$ 30,000$ ，to cover further contingencies，or to ask that the total ap－ propriation requested for the park be made in such form as to allow a certain discre－ tionary power to meet them．If，under the eiremmstanees stated，the later wonld， in yonr judgment，be the more advisable conse，I womla respertfinly ask that yom recommend to Congress that the three items of improvements（seo． 000 ），buidiner （ $\$_{2}^{2} 7,000$ ），and maintenance（ $\$ 26,000$ ）be apropriated in one sum of $\$ 7 \Omega, 000$ ，as tol－ lows：
＂National Zoälogieal Park，Smithsomian Institntion：Continuing the eonstrurtion of roads，walks，hridges，water supply，sewerage，and drainage，and for wrading， planting，and otherwise improving the gronnds，erecting and repairing buildings

I have the home to he very respert fally, somes.
\therefore P. LaNGian,
corctury
The sechatale of mathando.
W'tahingtom, II. 1:
The Committee on Apporniations of the Thitad States samate finally rerommended that the sum allowed by the Howse for the Park loe rated to 58.000 , aml that the amomet be appropriated in one ifem, that is 10 say, without assigning sperial sums to serial sulmodinate hearls.

In the eonferener rommitter upon the smatly wivil bill the amonnt
 ment of special shbheals ot appropriation! was remored. The bill was linally passed in the following terms.

 planting, and of herwis impoving the gromme: recting and repair, ing buldings and incoromes tom animals; an! for administrative purposes, ("ne, sulosistemor, and tramsportation of animals, including salat ries or compensation of all meressary employes, and gemeral inedental expenses not otherwise movided for, fifty thomsand dollans, one-half of which sum shall he paid from the revemos of the loistrict of Cohmbia amd the other hatf from the Treasme of the Thited states; and a repurt in detail oif the rxperses on acount of the National Zoïlogieal
 siom.

Work alrectly done.-Notwithstanding a compulsory waste of means (ansed hy the fiad that insulficient apmomiations madr it mecessary to do rertain mogent work provisionally am imprrfectly, it is believed
 establishments of the same matme elsewhere. The following table shows the cost of the prineipal works projeredel up to Jume 30.1892.

In elacidation of these statements, the plans amt drawings of a portion of the work given (on a nereswaty smath suate in the text) may

[^3]

Plate I --fieneral Plan of the National Zölogical Park.
A. Entrance to offices (Holl house)
1). Ontario arenue entrance.
(1. Principal temporary entrance at Raarry road.
I). Klingle roadentrance, commonicating with Guary road by britle path alomg letit bank of creek.
E. Connectivat arembe contrane
F. Butramer for foot passengers at Woodley bridge.
No. 1. Bear yards in abandoned quarry.
2. Animal honse.

No. 3. Birdinclosure.
4. Inclosure for wolves and foses.
5. Prairie-dog town.
6. I'roperty house.
7. Temporary shed for clephants.
8. Binfialo honse and fadelock.
9. Restamrint.
10. Goa1 paddock.

1I. Derr parlilocks.
22. Ponds for aquatic animals.
13. Offices (Holt house).
14. Stables.

In the appendix to the "estimates"* for the year ending bune :30,
 for the lark, made it will he remembered, with the expertation that

the grommats we to be used essentially in large preserves for the pes arvation of the natomal large game.

[^4]The area oremped by the buildings and inclosnes for animals in the Park is mot far from 40 acres.

Work for the wext fiscel yeer.-The limited amoment appropriated by Congress will not permit a rapid development of the Park. Nearly $\$ 30,000$ of the sum allowed will be rerpuired for the feeding and rare of the animals and the maintenance of the neessiary staff of employes. The remainder will be applied to carrying out the plans ancady devised; that is to say, to completing the structures yet minished, making secure the inclosures and hoikding additional quarters where necessary, in strengtheming the banks of the oreek against erosion, in completing the ponds for aquatio amimats, in extemting somewhat the water supply, sewerage, and drainage, and in grading and dressing the roads and slopes.

Plate V.-llonse for Bison and Elk.
There is an urgent need for a better structure for the elephants than the temporary ban which was hastily erected for their acrommodation and which they have ever since oceupied. It is calculated that a complete buidding suitable for the accommodation of elephants and other animals of the same general habits and needs would cost about \$15,010. Only a portion of this sum need be appropriated for the present, as the honse could be built upon a plan that aduits of enlargement.
Access to the parl:-The Rock Creek Railway Company intend, as I understand, to carry a branch of their road directly to the Ontario avenue entrance to the park and to transfer passengers from all the city street-car lines withont extra charge. In that case there is no donbt that the number of visitors will he greatly increased. The widening and improvement of Quarry road and the extension of Kenesaw
 ease of acocess to the park.

 acessions derived fiom the Yellowstome Vark. As ludore mentioned, lark of fumds has prevented amy motable indease fomb these sommers. It is decreased by the inevitable deathe which the experienew of aldere zö̈logical gatcons shows will mot he less than fome athllally.
 Harmo ranse of specimens and wan mot be debented on for prodneing a really vahable and chatacteristic colleretion of the Nowth Ameris:an fanma. Under the terms of the first appornmation act it was allowable to procore ly purehase 6 mare secimens not othervise attamable." This provision was neally indfertive owing to the inalegrate fand giver, and it was omitted fiom the ant passed at the reeont session of C'ongress.
 digemons to Nowth Americat. Fifty-five of the animals wore obtained by purchase.

NECROHOGY.

MONTGUMERY CUNNINGIIAM MEIGN.

Montgomery Comminghan Meigs was a som of the eminent physiotian and merlieal anthor. C'handes I). Meigs. He was borm May ${ }^{3}$, Lisif, in Angusta, dian and graduated fiom the Cnitedstates Military Araldm! at West Point in 1836. H0 was assigned tirst to the artillery servior,
 to make a survey at Washingtom, I). ('.. with the vinw of determining the best plan for supplying the rity with water. 'The plan paposerl

 rharged with its exerotion-a task that orreupard his attention for a
 the porsention of this important work ('apt. Theme was akn planod in
 the ('apitol, amb of the ennstrutton of its erowning itom dome as well

 masters Department. 'The plare sought him mot only for his high in

 title of brevet major gencral in the Army.

With the rlose of the war ends the most active period of his life, and logins the gentle comse of an homored old age, devoted among other orempations to the advancement of the best interests of this Institution. He was a member of the National Academy of Serenees and one of the fomblers of the Philosophieal Society of Washington. He was appointed ly a joint resolution of Congress in 1885 a liegent of the Smithsonian Institution, and from his entrance into the Board berame an active member of its executive committer, which positions he filled until his death, which ocerured at his residence in this eity on the $2 d$ of damurary 1892.

Of Gen. Meigs as aman alike in external on in moral aspects, one can only seak in terms of respect. Personally, he will be remembered by all, even mutil his very last days, as erect in carriage, with a soldierly beaning which did not recognize the lapse of years, and a mamer both dignified and engaging. In chanater he was not only conscientions and sagacions, bot firm at a time when firmmess tried every quality of a man. What more can be added when we have said that he was a man faithful in all things. who has left behind him a reputation hoth high and enduring?

NOAH PORTER.

Noalt Porter was born in Farmington, Uomn., December 14, 1s11, ant graduated at Yale College in 1831. During a tutorship in Yale in 18:331835, hederoted himself to the study of theology. He was appointed professor of moral philosophy and motaphysics at Yale in 1846. In 1871 he was called to the presidency of Yrale, which post he resigned in 1886. Juring President Porter's administration the progress of the college was marked. As a teacher, and in his personal relations with the students, he was one of its most popular presidents. He received the degree of D. D. from the University of the city of New York in 185s, and that of LL. D. from Edinburgh in 1886. His writings cover a wite ramge of sulyjects, but are mainly philosophical. He was one of the most scholarly metaphysicians this comutry has produced. Ilis connection with the Smithsonian Institution began Jammay 26 , 187s, when he was eleated to the Board of Ragents by a joint resolation of Congress, as a citizen of Comnectient, and this connection terminated with his resignation lecember 31 , 1859 , on account of failing health.

His death oremred on Mareh 4, 189: in the eightieth year of his age. President Dwight satid of him in an alderes deliveref at his fimeral:

He was stromg in the native forer of his mind. quick in his mental action, keen in his insight. firm in his grasp of tonth, rich in his thinking, but most of all, wide in his reach. llis eye kimfled with enthnsiasm as he saw the first opening of new ideas. His tace beamed with joy as he gamed new measmes of knowledge. The fich of truth was full of attractiveness for him, and he was glad to enter it by any pathway. He has been in the brotherhood of scholars a man of mark and of
 mended leaming by his own possession of it. Ile has stambated those nearest to him by his matry thonghts, hy his wide interest in many departments of kimwledger, amd by his fere amd liberal spirit. Ito has kept an open mind for truth and an open heat for his friends. Ile has stood among us as one of the ablest men in intelleretal power whom we have known in these past years.

Respeetfully submittad.
S. L' LANGLEY,

Necretury of the s'mithsonion Institution.

APPENDA TO SECRETARYM REPORT

Arpendix 1.

 gencral heads. vi\%, firlal work and witice work.

The tield work of the foar is divided into (1) arrheology and (2) general fichl sturles, the latter heing directed ebietty to religion, technology, and lingnistises.

Archeologhal firld worl.-The explorations of the burean for the last fiscal yan were continned muier the persomal smpervision of Mr. W. H. Hohmes, with Messers. Cosmos Mindeleft, (ierarl Fowke, and William Dinwiddie as assistants.

The work begun in the tide-water regions of Maryland and Virginia in the spring of $18!1$ was contimed thronghont the presint year. Carefnlattention was wivat 20 the examination and mapling of the shell alepasits of the Lower Potomate and thes Chesapeake, athl many of the histomic siflage sites visited by dohn smith amb his
 with those of the many other village silas of the rexions. Mr. Hohnes stmeliod the arrhandogy of Sonth, West, amd Rhone rivers and of the shoresot the hay above amb Jelow Ammpelis. The middle Patuxent was visited amd the site of the anciont village of Dattpament identiferl and "xaminerl. 'The valley of the Rappahammork in the vieinity of Frederickshorg and a mumber of the other western tributaries of the Potomate recoived alfention. Ancient soapstone guarries, one in fraiffax (omaty,

 fontting the stome were ohtained.
 metrie rathoworks at Newark and mear Chillienthe. I visit was marle folle great

 thin blade, the blank fom which varions implements wore to lo aperialized. The comutless handsomely shapod and tinted armow and shear points ant knixes scatfared over Ohio and the neighboriug States are derived chictly from this site.
H. Mis. 11t-- 1

When the work of re-surveying the earthworks at Newark and Chillicotne was finishod. Mr. Ilolmes made a jomrney into Imdian Territory to examine an aucient fuarry formerly supposed to he a Spanish silver mine. It was reported by Mr. Walter I'. Jenney, of the Geological Snrvey, that this was really an Indian fint quary, and the visit of Mr. Holmes confimed this eouchnsiou. Nevan miles northwest of Seneca, Mo., and 2 or 3 miles west of the Intian Territory line there are mmerons onterops of massive whitish chert, and in places this rock has been extensively worked for the purpose of secming thakable material for the manutacture of implements. The pits and trenches eover an area of ahout 10 acres. They are neither as deep nor as mumerons as the Flint Ridge quarries. The prodnet of this fuarry was also the leaf-shaped hades of the usual type, the size being greater than in the other similar fmaries of the combtry as a result of the massive mulawed character of the stone.
In May Mr. Holmes visited amel examined a mmmber of extensive quatries of novacnlite in Arkansas, one of which hat been visited during the previons year. A great fuarry sitnated upon the smmmit of a long monntamons ridge at the lead of Cove Greck is the most extensive yet discovered in this country. 'The ancient racavations extend along the crest of the ridge for several miles. The largest pits are still 2.5 feet deep and up wards of 100 feet in diameter. The product of this frarry was also leat-shaped blades of the type ohtaned from the wther (fuarries, and closely analogrons in size, shape, and appearance to those of Flint Ridge, ohio. Nr. Holmes next passed morth into Stone (bomnty, Mo., to visit a vary large cave situated abont 20 miles southeast of Itelenat, the comnty seat. Neither human remains nor works of native art were fombl within the care. The manufacture of ehert implements had been carvied on extemsively in the suromuling region. From stome Combty he went to sonthwest Minnesota, and spent ten diys in the study of the red pipestone fuarry so famous in the history of the Cotean des Prairies. Lividence of the prehistoric operation of this quarry was fomm in the series of ancient pits extenting across the pratie for nearly a mile in a natrow belt and following the outcrop of the thin layer of jipestone.

The ancient copper mines of Isle Royale, lake superior, were next visited and mapped, and extensive collections of stome hammers were ohtained fom the very mumerons pits and trenches.

Mr. Holmes then went west to Little Falls, Minn. to examine the lomaty from which certain thaked quartz objects, supposed to he of paleolithic age had been obtained. It was fomm that these bits of quartz wero the refuse of the mamfacture of blades of 'fuartz loy the aborigines and at a perion not necessarily more remote than the period of fuarry working already deswribed.

Mr. Cosmos Mincleleff, early in July, 1891, elosed the field work on the Rio Verte, in Arizona, an account of whicl was given in the last ammal report, amd retmench to Wrashington, after which time he was engaged for the remainder of the fiscal year in office work.

Mr. Gerard Fowke completed the exploration of the James River and its northeru trilntaries, making interesting discoveries in Botetomrt, Jath, Aleghany, and Highland comnties. He then hegan an exmmination of the prehistoric remains of the Shenandoali Valley, remaining in the lield motil forember. Later he examined the ishambs and coast betwen the savamah and St. Johns rivers locating monnds and sholl heaps. In the spring he resmmed work in the Shenamboah Valley, making a rareful and thorongh investigation of evory ponnty. The results show that this region was not the seat of any permanent occupation by the aborigines, thongh it scems to have been a phace of resort for hanters in large numbers.

Mr. Willian Dinwiddie was engaged during the year in maping and examining the shell banks and other ahoriginal mentins of the Potomate- Chestpeake region.

As Prof. Cymus Thomas was engaged most of his time during the year in necessary oftice work, his ficld work was limited. Finding it desirable that more accmate

 on acront of their pernlat ehatacher as compared with other ancent work of the
 them, and didso. During the same trip he examined erptain important momels in Hhinois, among which was the motell " (ahokia" or "Monk's Momml," of Madison
 mathathe momment, and twinvestigate weman other puints in refation tw which

 For hement, in blio, in order to settle some points which previons reperts hat

 hecel to show their exact form as they at present appear.
 aminations on the shomes ot Lake Eric, hear Datialo, and of Lake Ghtario in Orle:ms

 ravites in the sand. which he considered to tee emmered with the manmetare of
 kind he dnplicaterd the andent spermens fonnd in the vicinits and showe I that these pits, lined with ordinary tishing nets, hard actually herth used simp! and efiecticuly for shaping pentery. Fla has prepared an illnstrated report giving the details on the sulyert.

Cicural fied studies.-In Angust, 1891, Mrs. Matihat C'. Stevemson resmmed her investigations into the mythology, religion, and somology of the Zhñi Indians, making careful study of the shrine worship. which constitutes such an impentant leature in the religion of those people. She added to the ahready valuable collection of

 intresting ohjerts.

Thenght the induene of the war priest, the priest of the kitkit and themegiste of the "mericine socidice," Drs. Stevenson was :able to bre present at Zuñi ereremonials almost contimonsly from the time of her arrivalto Due departure in Marelo.
1)r. W. I. Ifolfuan proweded early in Angusi to the Menommen Reservation, Wisconsin, in response to all invitation from the Mitawofe of eliofis of the Mitawit (or "Gramd Mediemesorinty") of the Menmeme Indians, to observe the ritualistic ceremonies and order of initiation of a new "amblate for membership, for comparism with similar cormonials of other Mgonguian tribes. In addition to the myhologie material wollected at this attendanco, ho also seremped much valathble intormation relating to the primitive ristoms and nsages of the Nemomome for use in the preparation of : monograhl upan that porote. Specimens of their workmanship were alsw collerted.

As he had hem appointed a sperial agent for makingethonger contertions tor the

 workmanship of the ('row Indians. It was sperially desibabla toobtain some of the
 obtained, after which al visit was made to the isolated band of Ojihwa at lacelh Lake,
 early Ojibwa history:
On his return, Dr. Hotham again stopped at the Memmmere Finservation to make
tinal collections of ethnologic material and to complete his studies of the ritual and initiatory ceremonies of the Grand Medicine Society, a meeting of which body had bern called for this special phrpose. He returned to Washington in June, 1892.

Mr. James Mooney, during the field months of the fiscal sear, contimed the collection for an exhbit at the World's Commbian Exposition, of objects to illustrato the daily life, arts, dress, and ceremonies of the Kiowa in the sontheastern part of the Indian Territory. That tribe was selected as continuing in its primitive condition more perfertly than any other which could be examined with profit. He succealed in making a tribal collection which is practically complete, inchding almost every article in use among the Kiowas for domestic uses, and for war, ceremony, ammsement, or dress. A number of illustrating photographs were also obtained. On his return in Angust this collection was laheled and arranged in cases ready for transportation to Chicago on the opening of the Exposition, and by means of the photographs and contmoss ohtained several groups of life-size fignres were prepared to show charactoristic secnes in Indian life.

In Nosember he again set forth to oltain additional information mpon the ghost dance, especially among the principal tribes not before visited. After a short stay in Nelraska with the Omahas and Wimnebagoes, neither of whom, as it was fomel, had taken any prominent part in the dance, he went to the Sionx at Pine Ridge Agencs, S. Dak., the chiof seat of the late ontheak, where he collected a large number of songs of the dance and much miscellaneons information on the snb)jert. From there he went to the Pintes in Nevada, among whom the Messialo and originator of the ghost dance resides. Here be oltained the statement of the lortrine from the lips of the Messiah himself, took his portrait, the only one ever taken, and obtained a number of dance songs in the Pinte languge. He then retnrned to the Cheyemes and Arapahoes in the Indian Territory, among whom he had begm the study of the dance, and oltained from them the original letter which the Messiah had given them, containing the authentie statement of his doctrine and the manner in which they were to observe the ceremonial. He returned to Washingtem in February.
In lay he again started out to gather additional ethoologie material, especially with regard to the Kiowas, and to obtain further eollections for the World's Comuhian Exposition. Going first to the Siomx, he proceeded next to the Shoshones and Northern Arapahoes, in Wyoming, and then tumed sonth to the Kiowas, in the ludian 'Territory, where he was still at work at the elose of the fiscal year.
Mr. H. W. Henshaw, on May 14, 1892, proceeded to New Mexico and California for the pmrpose of pursuing certain lingnistic investigations and to make collections for the World's Colmmbian Exposition. This duty was continned until the close of the fiscal year.

Rev. J. Owen Dorsey, from January 14 to Fehmary 21, 1892, made a trip to Lecompte, Rapides larish, La., for the purpose of gaining information from the survivors of the Biloxi tribe. He found only one person, an aged woman, who spoke the language in its purity, and two others, a man and his wife (the latter the (langhter of the old woman), whose dialect contains mmerons moditications of the ancient language. From these three persons he obtained several mythes and other texts in the Biloxi language, material for a Biloxi-Englisll dictionary, loeal names, personal names, names of clans, kinship, terms, lists of flora and fanna, with their Biloxi names, and grammatieal notes. He filled many of the schedules of a "opy of the serond edition of "Powell's Introduction th the stads of ludian Languages" (English-Biloxi in this instance). He bronght to Washington a few hotanical spect mens, for which he had gained the Biloxi manes, in order to obtain their seientific names from the botanists of the Smithonian Institution. He photographeel three Biloxi men and two women, all that conld be fomm. There were abont seven other biloxi residing in the pine forest 6 or 7 miles from Lecompte, but they wonld not be interviewed. The Biloxi language contaius many words which resemble their

 sfory]ernliarly fliticult.

 dunt. Is!

 How issucd.

 tho surveral Pumbla linguistic storeks.

 rure fo the stuthoritioss quoled.

Nuch of his time during the year was employed in writing the dinal pages of the report on the field work and explorations which for sorral years had haen in his charge, and in aldubing it to a change in the form and manner of its publication Whieh had heen mate necessary. This involved the re-writing of many pages and a material condensation or the intrombery portion relating to the distribntion of fypes of mommes. It was completer bey ihe chese of the discal year and diled for publication, nearly all the illnstrations having been drawn and prepared for engraring.

He dexuted all his sparat time to the stady of the Maya Codices and in the preparation of a report of the diseoseries he mate therein. One of these, which is themed of mmeh interest and importanee is that, when the Ireselen Codex, which is considred the most anciont of those known, was written. the year ponsisted of 36 days, and that the calendar was arranged preciscly as it was fomm to he by the spanish comgnerors. lant his most important discovery was made during the elosing dilys of the year. 'This emsisted in what may be termed the discovery of the kry to the signifutation of tho hieroglyphic elaracters of the Corlues by which it is probable that the inseriptions may ultimately he read. This discovery, which the tests so far applied appear to confirm, consists, first, in the evilence that the characters as at rule are phonetic and, secont, in ascertaming the signification of a sutficient munber to form a basis for the interpretation of the rest. If this discovery proves to br What, fom the evidence presented, it appeas to br, it will be of incalculable intportance to American areheologs.

Early in the year the work of Mr. Cosmos Mindeleft dommenced in repairing and sembing the preservation of the Casa Gramberuin. This work was ordered by ate of Congress and plans had been prepared by Mr. Mindeloft while in Arizona during the previous year. These plans provided for the exeavation of the interior of the ruin, the maderpinning of the walls with briek and rement, the nse of tie-beams to hold the walls in place and remer them more solid, the restoration of the lintels over door and window oproings, and the filling of the cavities above the lintels with brick aml cement. The work was rompleted in November and was inspected and arrepted. Although all that was deemed meressary to preserus the min ennld not lo done with the appropriation provided, still it is helieved that enongh was done to preserve it in its present condition for many vars. All the work done was directed to the preservation of the rain, no attmpt at restoration being made. In dume, 1892 , the President, in accondance with the anthority vested in him by Congress, reserved from settlement twelver narter sections abont the rnin, comprising an area of abont 480 acres. A nmmber of specimens obtained during the pxeavation were shipped to Washington and deposited in the National Musemm.

During a part of the ypar Mr. Mindeleff was engaged in the preparation of a report upon his ficld werk of the previous year. This report, entitled "Ahoriginal Remains in the Valley of the lio Verde. Arizona," was completed amd will appear in the Twelfth Ammal Report of the Bureats. Aside fiom a comprehensive treatment of the rums in the yalley of the Vprole the report will contain the first illnstrations published of ancient irrigating ditches, and the dirst comprehemsive data, including illustrations of cerate lalges. It is fally illustrated from photographs, plans, and surveys marle by the anthor. Snbsernently he commencel a scientife report on the Casa Grande min of Arizona.

No new work was undertaken in the modelling room during the gear, as the phtire force was orenpied upon the preparation of duplieates of monlels previomsly made. for use at the World's Cobmbian Exposition and elsewhera. Six models, in addition to other material, were sent to Spain, to be wxhihited at the historital exposi-
 the Puelolo of Walpi. Arizona, Mammy ('ave "liff ruin, Arizona, all of large size, ame? three smaller umdels of ruins.

 was therefore mable to resmme promised work ou his ohfer Kmini material for the forean matil Angust, Ix!l, when he began the preparation of a contribution intended to appear in the Tweldh Ammal heport of the limean, on the Kani my the of creation and migration as relatml to the mythe drama-dance orqanization, or Fäláa of the Kunis, and the so-called ('achina reremonials of all Pumbo and other sonthWestern tribos. Mr. Coshing's disooverios as set forth in this essay conlime and substantiate the opinion held ly the birector that all primitive sotealled dande cer(bmomials are essentially dranatia, ame they go so far as to indieate also that all primitive ceremonials, of whaterer nature are essentially thamaturgir, thats making his contribution of genema as well as of sperial signifuratec.
 engaged as an thanologist of the bareat on the lat of February, and has since bern ocerphed in elaborating his paper on the myths of the drama daness and on a study of mamal comeepts or the inthence of primitive hand-nsanes on mental revelopment in the culture grow th of mankinul.
 was employed for the remainder, of the tiscal year in preparing her tield motes for publiation.
 port of the seasom's work hy him in arehaology, arranging amb dassitying the speri-
 , liscoseriss.

The oftion work of br. Iforiman consisted in armanging the material gathered daring the proceding firld season and in preparing for phllication an aromut at the Midrwiwin, or so-called "(irand Medicime soriotre" of the Ojibwat Indiams of White Earth, Mimesola. 'llas worle, whicl forms one of the papers acempanying the seronth Ammal lieport, cmbataces mew matorial and eomsists of the fratitions of the lulian eosmengony and genesis of mankiml, the "materia medica" of the shamans, ant the fithal of intiation, fogether with the musical notation of the chants ant somge mext.

 tain infomation "xplanatory of the less known pactices of the Junomonere eeremony of the Mitawit, or their "(trand Medicine sorioty," for the purpose of companison with the ritmal as observed by the Gjitwa. In addition a larew mass of mothologic material was obtained, as well as texts in the Jemomonere language.

On returning fom the tirld in Sngrsi 18!日, Mr. James Mooney spent about tern weeks in aranging his Kiowa mollection for the Worlts (obmbian lixposition, Writing wht aseries of descriphive labres, and in ropying all the more important

 ramging the material thas ohtaind and in writing the prominary rhapters of his rejort on the ghost dance. He also superintended the preparation, at the National Juscom, of a mumber of eroups of life-size digures to acempany the Kiowa collece tion at tha World's Vair.

Letters," a bulletin prepared from Q egihatexts oollerted by himself. He finisheir the eollation of all the Tutelo words menoted by fr. Hale, Mr. J. N. H. Hewitt, and himself, with the result that he had 775 words in the Thtelo-English dictionary. He fimnished a list of several hundred linguistic amd sociologie questions to be used among Indian trilies. 'These drostions ware in aldition to those contained in the second edition of l'owells Introtuction to the Study of Indian Languages and weme hased on original investigations made loy Mr. Dorsey mong the Sioman tribes. He prepared for publication the following articles: Sionan onomatopes (somur-roots), illustrated by charts; 'The Social Organzation of Sionan 'Trilus, illustrated hy figures consisting wietly of material gained by himself from the Dakota tribes, the Omaha, Ponka, Kwapa, Osage, Kansa, lowa, Otø, Missomri. Wimebago, and Tutelo; Nanibozhu in Sioman Mythologs; Games of Tetou fakota Children (translated and arranged from the original Teton manuscript in the Buslootter collection of the Burean of Ethnology).

After his return from Lonisiana he devoted most of his time to the arrangement of the material collected in his Biloxi mote-books. He prepared a Biloxi-English dictionary of 3,183 words on abont 7,000 slips in alplabetic order. He arranged the Biloxi texts for pmbleation, adding to the myths (with their interlinear and free English translations and eritical notes) a list of several humdred Biloxi phrases. In his article on the Biloxi kinship system, he gavo 53 kinship groups, of which number only 27 have their comterparts in the Dakota. (Gegiha, and other sioman languages of the Missomri valley. The elabotation of all the biloxi matrial comble not he completed hy Jume $30,1892$.

Mr. Alhert A. Gatschet assisted in angmenting and improving the data for the Tribal synonymy now in preparation, hy extracting material from a mumer of books and original reports especially referring to sonthern and sonthwestern ludians. Hismain work during the rear was directed towards extracting and arranging some of the more extensive vocabularies made by him previonsly in the field. Atter completing the Tonkawe of Texas, he carded each word of the Shawano and Crek latuguages obtaind hy him, copied the historical and legendary texts of both, and extracter the lexical and grammatic elements from them to serve as the gromme work for forture grammars. The remains of the Virginia of lowhatan languages that are known were also made accessible by carling the terms.

During the fiscal yoar Mr. J. N. B. Mewitt was a part of the time engaged in carofnl study of the grammatie forms of the Inouoian langnages, especially in the asecrdaimment of the momber and orter in which the affixes may be nsed with ome and the same stem or base. He was also engaged in translating, extracting, and transferring to library cards, tiom the "Déconvortes et Etablissements des Françis dans l'Amérique septrntrionale," ly I'ierre Margry, matter relating to the manners, customs, beliefs, rights, cormonies, and history of the lrognois, which matter is now placed on about 20,000 cards.

It continued his work on the Tuscama Dictionary and directed attention to developing the full mmber of orthary sentences in which every genorio mom may be muphoyed, which atfords a measure of the eapacity of the vocabnlary lor the rxpression of thonght.

Mr. James C. Pilling continued his bibliographic work thronghont the year, with sperial attention to the Athapascan family. Work upon this family was begm barly in the fiseal sear, on October 13 the mannseript was sent to the printer, and at the close of the year but a few pages of the final proots remained muread. The Biblography of the Athapasean Langmages forms a pamphlet of xiii+125 pages. While this volme was being put in type Mr. Pilling began the collection of material for a number of bibliographies relating to the languages of the northwest coast of America-the Chimokan, Salishan, and Wakashan, and natisfactory progress has bern madr. Probably ome or more of them will beready to send to the printer dar-
 visit to libmare in beston and Cambrilge in "onnertion with the rompilation of mat trrial rebating to these northwest languages.
 the illustrations fore the pholications of the limesan.

The total momber of illnstrations prepared during the rear was !avo. Theme drawings may bur chassitiod as follows:


```
Марм. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 堷 ;
O!jer`ts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :m% 
Diagram!*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i|
```


The mmber of illustration proofs hambled during the yeat was as follows: bighth
 nual Report were transmitted to the lablice l'rinter.

The photograplac laboratery manans matar tho able manasement of Mr. . . K. Hillers. I small but valuable mollection of portaits of North American Indians was seomed by him daring the year fiom sithings: twenty-six urgatives were obtamed. The following table shows the size and momber of photographia prints matre:

Nize.	Number.
2011924	4.5
11 ly 11	274
$\times 6510$	S46
\therefore by	875
4 bs	i, 1×7

The phlolications issumb daring the fear are as follows:
(I) "seventh Ammal lieport of the limean of Vthmology (o the seerelary of the
 an introbuctory report by the birector. 27 bages. With arompanying mapre, as follows:
"Indian Limgrastic Families of" America north of Mexico," by J. W. Powell; "The
 sacred lommias of the (homones," by danmes Mowney. The report forms a royal
 whirlo is a lobling plate in a pocker at the emb of the volume.
(2) "Contributions to North Amoric:an lithoology, Vol. H. part u." This part contans the Klamath-English and English-Klamath Diothomaty. Sy Wherl Nammel

(8) "('ontributions fos North American Ethology, Vol. Vi." "ontaining the fol-

 Diotionary, by Rophom Rotmon liggs, mitad hy dames owor borsey." This is a quate volume of $x+$ bian pages.

 of $\underset{\sim}{2}$ pages.
(6) Bulfetin of the Burean of Ethology. The work is a "('atatogue of l'tehistoric Works East of the locky Mommtains," by Cyrus Thomas. It forms an octavo vohme of 246 pates, with 17 maps, one of which is in a pocket at the end of the volmme.
(7) Bulletin of the Burean of Ethmology. Tho work is "lBibliography of the Algonquian Langnages." loy James Constantine l'illing. It foms an metavo volmme of

Very respectfully,
J. W. Powtil,
birector.

Mr. 今̀. J' Lanciley,
Serretary Smithsonian Institution.

APPENHE II．

The stanistis of work done hy the Burean during the year are sureinetly wiven

1）：1t．				Ledlav： 	commts． 			$\begin{aligned} & \text { B } \\ & \\ & y \end{aligned}$			
1801.		L，iss．									
July	（6，－2，${ }^{\text {a }}$ ）	12，568				．		．．．．	$\because 1$	230	177
Aturas	11．：31；	$\because 1.718$						．	（i）	17！	206
suphember．	7,21	1．5． 514					．．．	\ldots	17	$17!$	116
	9． 27.7	2．7．5ut							$111 i$	2%	－
	－ $6: 308$	11．411；		．					（9！）	211	312
Itremblor．	\therefore ，3： 1	24.201						．．	117	1×9	$2 \cdot 4$
129.											
Jinnury	－ 161	1：114i					．		（6）	18：3	212
F＊）${ }^{\text {arumay }}$	12．015\％	23,151							317	18：	$\cdots{ }^{2} 6$
Marcle．	12．aft）	シ2． 3 \％	．			－．．	－．		127	217	361
April	7． 43.5	1s，315	．			．．．．	．		9.1	17！	204
Miy．	S． 118	15，954	\cdots			\ldots			911	1＋is	236
Jいい＊	6． 1012	11052							11：	1tis	2303
＇I＇utal	97.027	$\because 2.317$	6． 214	2.11 .14	7． 010	1． 5.21	$2(6,1046$	$23+13$	i．015	こ．：\％	$\because \cdots$
Harreasmenver											
1890－31．．	1．： 31	11 101．	29：3	1.215	Sisin	$\because 17$	3.10 .7	1． $21: 3$	$\therefore 3$	116	3：\％

For comparison with prevons gears I add a tabnlar statement from 1886101892, inelasive, by which the raphid growth of the service clearly appeas:

	1886-87	18.67-88	15.58-69	1880 -	1890-91	1891-92
Nimber of patkages receiver	61,940	75. 107	75, 966	$\therefore 2,572$	(9), (666	97, 1027
Woight of packages receivel	141,203	149, 6:30	179.928	202,153	2:57, 612	226.517
Ledger accomats :						
Foreign societies.		(4,194	4, 466	5, 131	5, 981	6. 204
Foreign individuals.) 7,396) $4,15 \%$	4, 699	6, 340	7,072	7.910
Tomestic socicties		(1,070	1.35\%	1,431	1,588	$\because, 044$
Domestic individuals) 2.160	(1,5.5\%	2,610	3,100	4, 207	4,524
Womestir packages sunt	10,294	12,301	17, 218	13,21i	29, 047	26.000
Invoices writien	15.288	13,525	14,035	16,948	21,923	23.136
Cases shipperlabroal	692	663	693	873	968	1,015
Laters received	1,131	1,062	1,214	1,50!	2,207	2, 323
Letters written.	1,217	1,804	2.050	1,625	2,417	2, 752

EXDENSES

The expenses of the exchange burean are met in part by direct appropration by Congress and in part by appropriations male to Govermment bepartments or linreans, either in their eontingent funds or in sperified terms for repayment to the smithsonian Institution of a portion of the cost of tramsportation. In 1878 the Board of Regents established a charge of 5 cents per pombl weight for the pmblications sent ont or received by the varions Cowermment bureans, this charge being necessary to prevent an mudue tax upon the resmuces of the Institntion, as the arproprations made by Congress have never been suticient to meet the entire cost of the service. For similar rasons it has been fonnd neressary to make a charge of the same amomet to State instimtions, and from these a fiuther small sum has been recrived.
The appropriation made lyy Congress for the fiscal year 1891-92 was in the following terms:

For expenses of the system of international exchanges lotween the United States and foreign comntries, under the direction of the smithsonian Institntion, including salarios or compensation of all necessary employees, seventeen thonsand dollars.

The receipts and dishmsements by the acomoting officer of the Smithsonian Instifntion on acromut of intemational exchanges, under date of Jnly 1,1892 , and covering the fiscal year immediately preaeding, were as follows :

1: ECEDPTS.

DIGBURSEAENTS.

For-	From speritic Congressional :prrorriat ions.	From other somres.
Salaries and compensations.	\$14.074.81	
Freight.	1.792. 83	
Packing boses.	561.40	
Trinting.	98.50
Postage	145.00	
Stationery.	327.46	
	17,000.00	\$3,310.49

The formoin! table shows that the entire amomer revived from (fovermment ha-

 defieiency of $\$ 1.171 .30$ heing made up fom the smithsomian fund.

The advantages have been pointed ont in previons reports of rombining in at single item the varions approniations for the exehange serviee, now divided into connaratively small shms amonag the several larger appropriation hills of the (iovermment, hat the matter seems to be of smificient importance for call attention for it again in this plate.

 mentary themments with the combtries entering into the treaty of brassels in 1886. The amome appropriated was $\$ 17,0100$, the same as that for the preceling year.

The name of early prem or institntion semding or receiving pmblications thromer the exchange hurean was heretofore entered npon a large ledger card, showing afl such packages receised wemt. This system has provel itsulf of great convenience, but with the large incrase in the nmmer of "ards the space oecmpied has beemmo of serions moment, and it was therefore fomm desirable to begin a new series of "ards, of smaller size, entering in an ablureviated form the receipts from correspondants upon a bhe card, while the parkages forwarded to these correspondmats are entered "pon a white eam. This system was fut in "peration Jamary 1, 1892, and
 representing the momber of correspondents with whom commmication has been had during that prod. There have been added to the list of correspondents during the vear 1.xsl mamms.

Thlitions to list of eorrespombents.
Formign. Jonsestic.

 the offieisl pulbiations of the Vnited states Govomment with other govermments has bem rontimmed by the suithsonian lnstitntion. and it now foms a very large proportion of the harean's work.

This exchange on account of Government bureans is shown in detail in the fol－ lowing table：

Statement of（iorernment rxhanges during the yoter 1891－9？

N゙anne of bureath．	Packages Fieceived sent lyy．for．		Name of binrean．	Patkages－		
			Tieccived jor．	Sent bys．		
American Ephemeris	1			Navy Department library	18	
Astro－plysital Oiservatory	3	1	Office of Indian A thairs	2		
Burcan of Eilucation	8.5	1	Oftice of Naval Intelligence．	1		
Jurean of Ethnology	104	1，8019	Oftice of the Chief of Engi－			
Burean of International Ex－ changes	3		neers Ortbance Bureau（War De－	37	52	
letrean of Merlicine and			partment）	3	76	
surgery	3		Post－Oflice lepartment．	1		
lmrean of Navigation	4		Public Priuter		32,110	
Burean ur Ordnance Navy			Smithsonian Tnstitution	9． 975	6， 535	
ltepartment）	1		Surgeon－General＇s Office			
Burean of Statistios	19		（U．S．Army）	1515	555	
Burean of SteamEnginctrius．	2		Surgeon－General（U．S．Navy）．	10		
Bureat of the Mint．	3		U．S．Board on Geographiv			
Census Oftice	\checkmark	1	Names	1		
（＇ommissioner of Patents	1		U．S．Coast Survey	69	221	
Comptroller of the Currency	2		C．S．Commissioner of			
Deppartment of A griculture	143	893	Wreights and Measures．．．	\because		
Department of Justice	10		U．\therefore Entomological Com－			
lepartment of Lahor．	96	532	mission	6		
Department of State．	\because		U．S．Fish Commission	5	605	
Departmeot of the Interior．	29	45	TV．s．（ieographical survey．．	i		
Department of W：ar	13	295	U．心．Grological surrey	$4: 3$	3． 260	
（rueral Land Oftice．	4		U．S．National Muser	1，294	$3,566{ }^{\circ}$	
House of Representati	1		U．S．Naral Ohservators	112	951	
IIytrographic Office	68		T．$\stackrel{\text { Pater }}{ }$ Office	45	491	
Iurlex Medicus．	1		U．s．senate	2		
Library of Congress．．．．．．．．．	1，141		U．ふ．Signal Office ．．．．．．．．	41	111	
Light－House Board．	\because	1	U．S．Treasurs Department ．	9		
Marine Mospital Service．	5	94	U．S．Weather Burean	50	181	
National Acadeny of Sei－ ences．	48	91		14，941	52，783	
Natutical Almanac（1tice．．．．	14	183	Total		724	

Adding this to the $1 m m b e r$ of miscellaneous packages the total of 97,027 packages， weighing 113 tons，has passed through the burean．

EFFICIFNCY OF T1IE NERVIGE．

It is，perhaps，desirable to rehearse brictly here the method of recoiving and haud－ ling exchange packages received by the Institution．
Scientific societies and indivimals in the United States lesiring to forward their publications abroad send them to the Smithsonian Institution，where a record is kept of the number of packages recrived，under the sender＇s name，and also a record showing each person or institution to which a copy of the work in question is trans－ mitted．The books are then packed，with invoices from other senders，and for－ warded by freight to the Govermment horean abroad which has nudertaken the task of distributing all exchange packages in that country．The books are for－ warded direct to the paid agents of the Institution，if in Great Britain or Germans，

 their phbleations to be delivored with the same promptness with which they maty be
 with which we have comparatively intregnolt rommmanation. To England amt
 smithanian Insitution, and to France, cases are dispatehed on the average abont three times a month.

 weised bis the sember in sequring the proper adders of his romepondents.
 ment theren of the parkage in question, and when this reqeipt is phaced in the tike

 luitest states hy registered mail, areome tirst having been mado of the mame of the

 missions to that ahberes ran mot be matr. It shonld be horme in mind that ans mo

 is known.

 muldersterol hy all who have hat oreasion to make mae of it

1 am erafilied fo state that, the reeommemation for arditional assistande eomtabed in frevions reports havigig bern aprover, it has been possible to bring the
 the insutherent rherical forere fle work has been for several yoars past somewhat in

 this reflation in the work and the increase ot the fore it is only mow possible to keep

 nearly dombled.

 hamel to he disposed of.

Thu incerased mamber of shifments to the primeipal foreign combtries has bern maintained, as whown in the tables appenderl as bxibibit. 1. I firthrer improvanent

 somian Institntion in its endeavor to ibcreas and dithse knowlecter among men. whild fall rates womld be charsed for the Inted states Govermment for atmitar serviee: and where the privilege of treo froight has not bern semped the oxehame

attention to the interests of the Burean on the part of its special agents abroar, Doctor Felix Fliigel, in Leipzig, and Messrs. William Wesley dison, in Lomrlon.

Grateful arknowledgments are also dne to the following transportation companies and tirms for their continned liberality in granting free freight, or in otherwise assisting in the fransmission of exchange parels and boxes, while to other fixms thanks are due for redued rates of transportation in considnation of the disinterested services of the Institution in the diftnsion of knowledge.

d'Almeirim, Baron, Royal Portuguese consul-general, New York.
American Board of Commissioners for Foreign Missions, Boston.
American Colonization Fociety, Washington, District of C'olmmbia.
Anchor Steamship Liue (Henderson \& Bro., agents), New York.
Atlas Steamship Company (lim, Forwool de Co.), New Jork.
Bailey, H. B., \& C'o., New York.
Börs, C., consul-general for sweden and Norway, New York.
Botassi, D. Wr., consul-general for Greece, New York.
Bonlton, Bliss and Dallett, New York.
Calderon, Climan, consul-general for Colombia, New lork.
Caldo, A. G., consul-general for Argentine Republic, New York.
Cameron, R. W. \& Co., New York.
Baltazzi, X., consul-general for Turkey, New York.
Compagnie Généale Transatlantique (A. Furget, agent), New York.
Cunarl Royal Mail Steamship Company (Vernon 11. Brown © Co., agents), New York.
Espriella, Justo R. de lat, consnl-general for Chile, New York.
Florio Ruhattino Line-Navigazione (ienerale Italiana (Phelps Bros. d. Co.), New York.
II:mburg American Parket Company (R. J. Cortis, manager), New York.
Hensel, Brnckmam \& Lorbacher, New York.
Inman Steamship Company (Henderson © Dro., agents), New York.
Mantez, Jose, consul-general for Uragnay, New York.
Mnñoz y Espriella, New York.
Navarw, J. N., comsnl-general for Mexiro, Sew Vork.
Netherlands American Steam Navigation Company (IV. II. Vimelen Toorn, ageni), New York.
New York and Brazil Mail Steamship Company, New York.
New York and Mexico Steamship Company, New York.
North German Lloyd (agents: Oelrichs © Co., New York; A. Selmmacher © Co., Baltimore).
Obarrio, Melchor, consul-grneral for Bolivia, New York.
Paeific Mail Steamship, Company (11. J. Bullay, superintentent), New York.
Panama Railroad Company, New lomk.
L'ioneer Line (R . WV. Cameron © ('o.), Nerr Vork.
P'erry, Ed., di Co., New York.
Pomares, Mariano, ronsul-general for Salvador, New York.
Red Star Lime (Peter Wright as Soms, agents), Now York atul Philalelphiat.
Royal Damish remsul, New Vork.
Ruiz, Domingo I.. eonsul-general for Eenader.
Stewart, Alexander, consul-gencral for Pamagnay. Washingtom. Histrict of Cuhmbia.
Toriello, Enrique, consul-wencral for Cuatemala, Now Tork.
White Cross Line of Antwerp (Funch, Ldye dílo.), New Jork.

Argentine lipublir: Musen Xitional, Buems Aims.
 many.
Brazil: Bibliotherat Naciomal, Rio, Famero.

Bolivia: University, Clouquisaca.

British Colomies: Crown Apents for the ('olonies, London, Englaml.
British Cmiana: The Observators, (roorgetown.
Cape Colons: C'olonial Secretary, Capo Town.
China: Dr. B. IV. Dolocek, Govermment Astrouomer, Hong-Kong; for shangha: Zi-ka-wni Ohswratory, Shanghai.
Chili: Mnseo Nacioual, Santiago.
Colombia (U. S. of): National Library, Bogota.
Costa Rica: Iustitnto Fisico-geograítico Nacional, Nim José.
Cuba: Dr. Frederico Poey, ('alle dd Rayo, 19, Habana, © ©nba.
Dhmank: Kongelige Dansko Videnskaberues Selskab, Copenhagen.
Dut ch (iniana: surimanuche Koloniable Bibliotheek, Jaramaribo.
East Inda: Bireetor-fieneral of Stores, ludia ()there, Lombon.
Ernalor: Ohservatorio del Cohegion Nacional, Quito.
Erept: Iustitut Eqyptien, ('airo.
Frame: Buren Frangais hes Ehthages Intmationanx, Paris.
Germany: 1)r. Felix Fliigel, No. 1, Robret schmam Strasse, Leipzig.
Great litatan and lreland: Willian Wesley dion, 2s, Essex street, Strand, London.
Fireere: National library. Athens.
Guatmmala: [nstitnto Ximemal de Guatemala, (imatemala).
Ginadelompe (Name as Framer.)
Haiti: Secretairedetat des Rilations Extérimes, Port an Prines.
Hombuas: Bibliothema Namional, Tegmeigalpa.
Lomand: Icelambstiptisbokanáfn, Rewkiavik.
Italy: Bibliotera Nazionale Vittorio Emamale, Rome.
Japan: Minister of Foreign Affars, Tokio.
Javat: (Same ats Ifolland.)
Liberia: Libmeria Collage, Monmovia.

Malta: (samm as Madeira.)

Mozambique: Suciodald diongratia, Abzambique.
Mexico: Parkages sent mat.
Now Caldenia: (fordon © Gotel, London, Euglad.
Newfomdlam: Postmaster Cieneral, St. Whms.
New sonth Walde: (iovernment boad for International Exchanges, sydnes.
Netherlamds: Buran Sciontiligue (but mal Neerlandais, Dom Helder.
New Zealand: Cobmial Musemm, Wrollingtom.
Nimagra: caro Captain J. M. Dow, l'anama.
Norway: Konqelige Norske Promaks Unimersitul, (Indistiantia.
P:aramis: (Encommen, Asmencom.
Pern: Billintera Nacional, Lima.
Philippine Istands: lioyal Exwomical Suman, Manila,
Polcmesia: Department of Foreigu Aftairs, Homoluln
Portugal: Bibliotheea Nacional. Lisbon.
H. Mis. 111 - 5

Queensland: Government Meteorological ohservatory, Brishane.
Koumania: (Same as Germany).
Rassia: (Gommission Russe des Échanges Internationanx, Bihliotherine Impŕabo Publique, St. Petersburg.
St. Helena: Director Genemal, Army Modical Deparment, Landon, Englamh.
San Salvador: Museo Nacional, San Salvador.
Servia: (Same as (iermany.)
Sonth Anstralia: General Post-Office Aclelaiter.
Spain: R. Aeademia de Ciencias, Matrid.
Swerlen: Kougliga Srenska Ketenskaps Akademirn, Ntorkholm.
Switzerlame : Central Library, Bern.
Tasmania: Royal Society of Tasm:mia, Hobarton.
Turkey: American Boarl of Commissiomers for Foreign Missions, Boston.
Urugnay: Oficina de Deposito, Reparto y Canje Internacional, Montevideo.
Veneznela: University Library, Cararas.
Victoria: Publis Library, Musemm, and National dallery, Melbournc.

Arrway 4.
Trousmission of exchunges to foreign sometries.

Country.

Argentine Republie
\qquad
\qquad
Bolivia
Mrazil
British Colonies

Cape Colony
China...............................
Chile..............
Colombia
Costa Rica.......................
Cuba
\qquad
Dutch truiana
East Iudia
Ecuador
Egypt
France aud Colonies

Germany

Great britain, etc
1)ate of transmissiou, eft.

OCtober 13, November 10, December 16, 1s91; Famary 19, April 6, June 1 1 , 1892.
July 14, 25, August 19, Snptember 3, October 3, 14, 27, November 6, 19, 23, December $8,17,23,1891$; Janary 13, 25, Febrnary 5, 10, 17, March 1, 4, 11. 12, 25, 29, Ipril 11, 19, 30, Мау 3, 23, 28, June $20,30,1892$.

October 20, Nowember 12, 23, 1891; January 15, February 1, 19, Mareh 21, April 2, دlay 12. Jnue: $6,30,1892$.
December 16, 1 s91.
Octoher 13, November 10, 1s91; Fanuary 19, A Irril 16. Tume 14, 30, 1892.
October 29, 1891, Jamary 26, Jume 17, 30, 1892.
Angnst 1, November 16, 1891: Jaunary 26, Jume 1 (i, 1892.
January 18, April 4. Jume 10, 1802.
October 13, 1891; February 11, April 6, June 14, 30, 1882.
October 13, 1891; January 19, April 6, June 14, 1892.
Novomber 13,1891 ; Jamury 23, June 18, 1892.
November 12, 1881; January 23, June 18, 1892.
Jugust 15, November \&, Inermber 11, 1891; January 22, Fubruary 3, March 23, April 2, June 6, 1892.

October 31, December 4, 1891 : January 16, April 5, Jume 11, 1892.
Jaunary 19, April 6, 1892.
June 16, 1892.
July 17, August 1, 18, september 5, October 7, 13, 23, Noveuber 9, 16, 20, Decemher 10, 19, 23, 28, 1891; Jannary 15, 28, Febrary 10, 29, March 5, 12, 17,28 , April $2,19,30$, May 6. 27 , June $16,21,29,1892$.
July 14, 25, Angust 19, September 3, October 3, 14, 27; November 6. 19, 23, December $8,17,23,1891$; January 13,25 , February $5,10,17$, Mareh $1,4,11,12,25,29$, April 11, 19, 30. May 3,23, 28, June $20,28,1892$.
July 23, August 1, 19, 31, september 19, October ! , 24, 29, November 6, 10, 21, December 4. 14, 26, 1891 ; January 15, 26, February 4, 15, 24 Marcli 3, 10, 14, 19. 26, 29, Ipril 12, 19, 30, May 4, 17, 26, 31, Tuue 20, 29, 1892.

Trunsmission of exchunges to forcign comutries-Continued.

Shipments to ludia, New Somth Wales, V'iptoria, New Zealand, Tasmania, and Crown agents were made in humbles inclosed in case number 838 , June 30 , 1892.

Shipments of United States Congressional puhlications were made on August 26, November 24, 1891; February 29, May 17, 1892, to the Governments of the following named countries:

Argentine Republic,	Colombia,	Japan,	Saxomy,
Anstria,	Demmark,	Netherlands,	South Australia,
liarlen,	Framee,	New South Wales,	Spain,
Bavaria,	Germany,	New Zealand,	Swerlen,
Relgium,	England,	Norway,	Switzerland,
Buchos Aires,	Greece, ${ }^{\text {d }}$	Peru,	Tasmania,
Brazil,	ITaiti,	Portngal,	T'urkey,
Cauada (Ottawa),	1lumgary,	Prussia,	Venezalat,
Canata (Toronto),	India,	Queensland,	Victoria,
Chili,*	Italy,	Russis,	Wiirtemberg,

The distribntion to foreign conntries was marle in 816 cases, representing 283 transmissions, as follows :

Belgimm 25 Netherlands................................. 20
Bolivia 1 New Zealand................................. 6
Brazil. 11 Nicavagua 2
British Colonies 5 Norway .-....................................... 15
Cape Colonу 4 Perı....-... 4
China.................................-. 3 Polynesia... 4
Chile--............................. 7 Portngal... 6
Colombia 1 Qneensland................................ 11
Costa Riea............................ 3 Rommania (iuchuded in Germany).
Cuba-.-........................... 3 Russia37
Demmark 12 San Dominge 1
East India 9 San Salvador I
Eruador 2 Servia (included in Germans.)
Erypt 2: South Australia \bar{y}
France and Colonies 109 spain 14
Germany 139 Sivedeu 22
Great Britain 149 Switzerland 26
Grecee 2 Tasmania 2
Guatemala 2 Turkey 3
Haiti 2 Urumuay 2
Honduras 1 Veneznela 4
Italy 56 Vietoria 9
Jipan 16 Wrest Africit 1
Liberia 2
RECAPITULATION.
Total Gorermment shipments 169
Total miscellaneons shipments 816
Tutal shipments 1,015
Total shipments last year 962
Increase over last year 53Very respectfiully, yours,W. (!. WiNLOCK,('urator' of' Exchungres.
M.Ir. S. P. Langley,Sceretary of the Smilhsonian Instilulion.

Aipentix ill.

REPORT OF THE ACTON: MANAGER OF THE NATHONAL ZOÖLOGBCAL 1.入れK.

Sne: I have the honor to submit the following report of the oprations of the National Zoälogical Park tor the fisual year ending dma $30,18.92$:

At the close of the last yoar the park hat hot just hem owempied by the amimals of the collection. The experience of the prent season has been valuable as indicating the lines along which development shonld prowed.

The main roal having been laid ont, the promanent locations for the animals were establisher at convenient distances mear it. The hridere aross the ereek was contracted to be built, amd a temporary bridge estahlished matil sum time as the permanent structure shonld be completed. The work of completing the hear yards was also contimued.

On September $\overline{\text { On }}$, a disastrons rain storm ocemred, dmong which Rock Crpek, tho small strean that fows through the park rose to a height nearly erfalling that which it rached at the time of the famons Johnstown Hood in 1890 . The rise was extraordinarils rapid, being, according to the watchmen of the park, at thr rate of 6 feet within two honrs. Within a short time a cavity 10 fect deep was excavated by the strean alongside of one of the bridge piers, undermining one of its corners, the temporary bridge was swept away, a large drantity of earth amb rork was precipitated trom the cliff above into the bear pits, the banks of the reeek were eromed and a considerable amount of tilling washed away, and the roads and golters of the park recently laid were cut ont and injured to a very ereat extent. The cost ot repating the damages thas ocrasioned was nearly datono, a sum that romblat well be spared from the seanty appropriation, and the loss ambarrassed the park rery serionsly during the entire season.

The hrideq pier damagerl by the storm was rehmilt and this delayed the final completion of the bridge, which was not tinally openel for travel motil abont october 1.

F'or the samer rason the orrapation of the bear yards was postponed matil a retaining wall mach larger and stronger than had been anticibated romld be built, it heing ronsidered dangerous 10 place the amimals in yards where some toms of row and earth might fill alter any surious storm.

The man animal house, althongh far fom eomplete, was hastily prepared for the reception of anmals by chosing it up with temporary work and subsifuting fon the metal roof designed hy the arehiteret a felf root of cheap construction. The completion of the tower al the eastern end was defermed mat more fmals whald be avalable.

As soon as the cooler antmm weather set in the momber of visitors to the park \&reatly increasel. There was dmringe each sumdity of Ochober and matil mearly the last of November an average atemdance of about 7,000 people math Sunday, the
 during the week wats eonsiderably less.

This large influx of visitors fested the arrangements which had bren mate, and they were fomad wanting in several respects. The bridge was fonnd to be too narrow and dangerons for fool passengers. The doad was in some localitibs somarow that it became ineonveniontly and dangeronsly rowder. The nmmberof watelman was fomed to be entirely inalecquate, and the crowd was so great in the prineipal animal house as to be extremely moomfortable.

To remedy this state of affairs it semed mecessary to place footways upon the bridge, to relieve the main roadway by making side roals amd walks, to enlarge the gromud plan of the animal house, and to provide more ample means of exit. It seemed best also to remove from the house as many animals as conld be properly accommodiated in quarters ontside, both for the convenience of the public and the health of the animals.

The limited means at the disposal of the park did not permit the finll completion of this plan. New roddways were cut ont and new sidewalks bilt, an addition to the animal lonse was eommonced in the shape of a large wooten shed sitnated on the north side. None of these were entirely completed at the close of the tiscal year. A grading plan for a portion of the park was furnisued by Mr. F. L. Olmsted. This contemplated the excavation of a large pond for aquatic animals upon the meadow west of the bridge, the shaping up of the banks of the creek and their protection from erosion by means of riprap and the formation of a smaller pond to the north of the road near the main entrance. But little of this cond be done during the year, the expenses of preparing the winter fuarters of the animals being such that all surplus funds were exhausted. It was indeed fomm necessary to limit the expenditures to the barest necessities, amb althongh an adlitional appropriation of $\$ 1,000$ was made by Congress it was with difficulty that the park was maintained nutil the ent of the year. The force of employes was rednced to the lowest possible number, and every device was used to insure the strictest and most parsimonions economy.

The scantiness of the resources of the park made it necessary to post pone any purchases of animals, and the collection has therefore increased but slowly. There were on June 30, l48 living animals in the collertion, of which so were mammals, 63 birds, and 65 reptiles. A catalogne of the additions made is appended hereto. Ninety-six animals have been presented to the park floring the rear, of which 45 were mammals, 26 hirds, amd 27 reptiles.

The insufficient nature of the temporary prarters in which it has been necessary to keep the animals has led to a considerable mortality. Besides this, it is fomm that many specimens do not surviva the fatigue and "xcitement of the joumey necessary to reach the park, and they succumb shortly ater their arrival here. The most alaming mortality has been that of the hears, two of which died from injuries receisel, two others from pulmonary tromble. Whike the bear yards are certanlypicturesque and elfective from the landscape architect's point of view, it is believed that they are not now proper sanitary dwellings for the animals, as they are constantly damp, are too cold in winter amd too hot in smmmer. It is intended to take measmes to remedy their aleferts.

Owing to the small mmber of watchmen neeessarily employed, one of the hears escaped hy elimhing up a nearly perpendicular wall wer sof feet high. We was pursued and an attempt was made tocapture him. This was, however, unsueressfind amb it was fomm neressiny, timally, to shoot him.

The elephants have continned constantly to gain in weight since arriving at the park. "Immk" now weighs 7,260 pommls, having gained 1,110 ponnds. "(ioldelust" weighs 1.920 poumts, having gamed 860 pounts.

List of animels proseutad.

Nam.	Whater	
Catuehtin monkey		\because
Tretre	Ensign Tharr Wellus jr., 1\%.s. Sasy	1
Coyote.		2
(1)	1:. Mi. Ler, Burkland, Vit.............	1
licl fox.	deorge Fox, New Lisben, (hio......	\because
1 (\%)		1
Do.	...	1
Swift fox	П. Potersen, Washingtom, II. (')	4
Coati-mumli	C.O. Chmanlt, Jetsty Cityr, N.J	1
Raccoon	I'rot. Fl. A. TPard, Rowhester. S. Y	2
	Miss Margaret Kiewit, Noknsville. Va	1
I) 0.	Miss Busic Elliot. Waskington, I. (1)	1
Bhack bear	J. F. Thomas, Whattirr, N゙. ('.........	1
16.	C.S.ILay"s, Imamstia, D.C.	1
Cimamm bear	Lieat. (i, P. Ahern, Forst Missomla, Mont	1
Grizzly bear .	Coapt Ci.ss dukerson, Mammoth llat sprinis, Wyo.	1
Peceary......	Hem. R. M. Barthomam, C'aracas, Vemezuela	1
Zebou....	1tun.J. H. Starin, New York City	1
Virginia der	Thathens surler, White sulphur surges, ia	1
Lb....	I). W. Maxfirld, Bangor, Me	1
South Amerjam Jua	Hon. I. M. Baytleman, (aracas, Vinezue)a	2
American leaver	L'. S. Agricultural Expmement Statim, Neloraska, through I'm (\because V. Miley, Washingtom. II. C'	1
ratar	Ensign loger Wehtes, jr., I'.s. Nary	1
Agonti		1
	Mr, Grabers, Pont ot sbain, Trinitad	1
(1)	Ension Luger W, llas, jr.. I. S. Nary.	2
Arizona gray squir	W. H. Volanelt, Washington, D, ('...	2
Flyinge stuirrel.	Palph Satrs, Moment Ilvasaut, D. (4.	1
Praric dog	Miss Bilith A. Barnes, Smarowk, Maryland..........	1
Wonslchurk	I. A. Rubrtt Washingtom. I). C	1
White rat		2
Ammatillo..	Wim. Taydor, San Diewn, Toxas	1
1) 1 .	A. ('. 1)owhs, Lealitos, Texas.	1
(1)	I'rof. R. T. Hill, I. A. (icological surver	1
[1),	Hon. R. .h. lantlemm, Caracas. Venmmera	1
	W. IL. Batmenk, Washington, 1, ('....	1
13:	A. 1). 'bldwerl, Bethesla. Md	1
	J. W. 1hawhett, Washington, 1). (1.	1
10,.........	1'resildent Itarrisom, W:ashingtom. IV.	2
Gobler tagre	(apt.II. C Bambur, Washington, 1). ('	1
bahl eagle.......	() O. Chenambu dersey City, N.J	1
sparrow hawk..	(i. Bumehoma, Washingtom, D. C.	2
rigeon hatwk....	E. ¢\%, Call, Laturel. Md.	1
Marsh lawk.	F. B. Clark, W:ashington, 1). (1.	1
	(i. İ, Colduth, W:ashingtum, 1). ('.	1
$110 .$.	(i. W. Simpson, W:ashingtom, 1).C..	1
10........	II. W. AbCianrge. Washington, V. C*	1
humtaturd hawh.	J. L. Davisom, Lembjutt. N. V	1
Jawk	Ar. T. E. Intler, (ilan Illan, Miss.	1
darred (sw]	F.. Johnsom, W:abiugtom, 1).	1
	W. L. Bishop, W:ashingtom. 1). (4	

List of animals presenter-Continned.

N：！n！

Farriguta（Letgoflıix humbolltii）．

＇Jetere（Chathsuthrix sciumeus）
Matmoset（llipale jutchus）．
Lion（folislin）．
（）erlet（Felis purdulis）

Arctir tos（ Fulpes lu！gopus）．．．．．．．．．．．
Gray fox（lulpus vir！inianus）
switt fox（I＇ulpus weror）．
American ladger（Faxirlow ameriotua）
Common skmmk（Alphitis mephitice）
American otter（Lutrer canctensis）
Grizzly bear（ T^{r} sus horribilis）．
Blakk luar（Trsus umericunus）．
＂（immamon＂hear（Trsus umericunlls）．
Polar lwar（Thulessaretns maritimus）．．
Liarcoun（l＇rocyon lotar）．
Consi－mondi（ Vicsuar rufu）
Coati－mumuli（ Fasua morira）

Kalou（IBNE intlicrs）

 ca\｜（t）

Nanse（．lles matelis）

Jlyins spuimel（sicimoptores velurella）．
Arizonta gray suairmel
 iincetlos．s）

I＇rairid doge（C＇ymom！／s Lurloricionas）

Anskial（Fiber zibethicus．）．．
White rat（（l／us retllus）．

Whild rabbit（Lopus cuniculus）

Acourlhy（Dastlpmota aconcliy）
（inintal itis（feciot eperca）
Prelsa ammallllo（Tornesite nerromeineta）4
 5
 1
（iohlh－1＋atghe（．I＇fuilu chtysertox） 1
 2
 1
 \because
Marsh Jawh（e＇irous hmismentes） 4
 2
Barred owl（N！！rnimut achalos＂m）． \because
S． ©
 8
American crow frorras ammianats）． 1
Colden－wingerl woorlpreker（rolaptes （erratus） 1
Yellow and blate marcalw（．1 rat asetome （1411） 1
（irewil lirrat 9
1：arationt 1
Crested rurassom（C＇rex chlotere） 4
samditll rathe（Giow mixicame） 2

＂theticurax wtonius）． 1
siatrlet ibis（（ivarue rubra） 3
Whiterihis（frucrer allue） ゴ
（tiammet（Sula bassethat） 1
Alligator（．Illigatom wississippriensis）． 8
（＇aiman（．Jactursclerops）． 1
 1
Su：ppingeturtle（rholyctre serpentinu） 2
 ：3
（＇latek－molly（sumeomethe wter）． 7
 （1f心． 2
 5
South Americ：an lizazts（1tn－ntancel）． 23
 1
Diamond rattlesnalke（r＇rotelese atmane． ：
 3
Watry mace：asin（． 1 mistrodon pisrimo． r（x）． J
 ＂
 I
 1
lbarlk smakr（Bessamium emmshritor） 5
 2
（＇ommum low（Fion donstrictor）． 3
 1
 1
 1
 19

Respertfinlly submitted，

Appenind IV.

REPORT OF TIHE LIBRARIAN FOR THE YEAR ENDING JINE 30, 1892.

Sir: I have the honor to smbmit herewith the report on the library of the smithsonian Institution during the year euding Jume 30, 1892.

The operations of the library have been conducted as in the two preceding years. The entry mumbers in the accession book extend from 225,586 to 246,109 .

Following is a statement of the volumes, parts of volmmes, pamphlets, and charts received during the jear:

Publications receired between July 1. 18:11, and Juue 30, 189?.

Of these publications, 297 volmmes, 6,363 parts of volmmes, and 774 pamphlets7,434 in all-were retained for nse in the National Mnsemm.

Eight humdred aml fifty-seven medical dissertations were deposited in the library of the surgen-General, U.S. Army; the remaining fmblications were sent to the Library of Congress on the Monday after their receipt.

In carrying ont the plans formulated by the Secretary for increasing the libury by exchanges, so3 letters asking for publications not on our list, or asking for mumbers to complete the series already in the library, have been written. As a result of this correspondenee it gives me plasme to report that 44 new exchanges were acquired by the Institution, while 220 ofective series were completed either wholly or as far as the puhlishers were able to supply missing parts.
lelow is a comparative statement of the operations of the library sine . Thme : 30 , 1889:

Number of publicalions receired.

	1889-90.	1890-91.	1891-92.
Volumes	1,763	2, 1881	1.989
Parts of volumes	13,45.8	20,525	23.729
Pamplnlets.	4,330	3. 769	3,289
Charts	636	31.9	621
'Total	20, 187	27,294	29,928

The following universities have sent complete lists of all their acalemie fublications:

basel.	Halle a N..	Lemit.
Bran.	Heidelberg.	Mathurg,
Bonn.	Helsingrors,	Strasslmig.
1 Irristiania,	Itenat,	${ }^{\text {liillingen, }}$
Werpat,	К:1\%:11,	Viouna,
Erlamen,	Kiel.	Wiit\%hurg,
Freiburg, Bre,	Leipsic,	Utreelit,
(iicssen,	Lomvain,	Ziiricli.

The following phbications have been added to the list of regula surials:

A A Notes (Archit's Assoc:), London.
Acts of the l'arliament of sonth Anstralia, Adelaide.
Actes soriété Simico-raponaise, Paris.
Agrienltural Neience, state College, l'a. Amaterr Sportsman, New York.
Ameriran Amatemr Photographer, New York.
Amrrican Anthopelogist, Wishington, 1. 1 :

American Cyelist, Hartford, Comn.
Amerian blorist, Chicago.
American Gardening, New Vork.
Ameriean Joweler, Chiman.
Amerimin Joumal of l'hilately, New York.
American Naturalist, Philatel,hia.
Amerie:n Notes and Gneries, Plifadelphis.
Amalele Aembema Romana, Juchanest.
Anales de la l'niversidad (entral del Banalor, Quito.
Anales de la luiversidad de Montevideo.
Aumars Bibliotera Nimponal, Rio Jumero.
Annalender Ploysik and ('henne, Leipsic.
Amalles de C'himice et de Physighe, Paris.
Amalsof'sottish Natural listory, Edinburgh.
Ammaire, societo dessthedes juives, Paris.
Ammaire ismálite, rorifta des ftudes juives, latris.
Ammaire statistigue des I:ys-Pras. Amsterdam.
Ammal Ropor farioultural burem, Adeliade.
Ammal Rapert (hiswick Frew Poblic limary.
Ammal Baport bepartment of Agrientture, Brishanc.

Ammal lieport fordon Terhaical (bolluge, Cieclong. Austratial.
Ammal Report and brospectns solnow of Mimes, Starell, Anstralia.
Anmario scolastico liegia Coni mersita, l'armat.
Ambarion sompeta Reale Aeademia di Archeologia, Naples.

Annario, Asociarion de Ingenieros Industrates, Barcelona.

Archief Zecuwsely denootsehtip der Wetomschappen, Hiddelhurg.
Archives des sefonces biologiques, St. Petmsiourg.
Argus Ammal, Cap Town.
Army and Nary Jommal, New York.
LAAt et lialée, Paris.
Artist Irinter. Chicaro.
Atemen ltaliano. Riome.
Atti socmeta Reale Acondmia di Areheologia, ete., Naples.
Pabylonian and Orimital Reword, Lonlion.
Bacteriondogial Worlid. Battle (reak, Michigan.
Baptist Chartorly Review, New York.
Bebbaitter zon den Amalen der Ploysik man Chemie, Leipsic.
bargmans Kalender, Sarmidekn.
bericht ofes akademisehen Vereias ideutsicher llistorie, Vimum.
berichte der hayerischen botanisclen (iesellschalt, Munich.
Berichte der dentselten whisehen Gesellschatt, Berlia.
Bible Advocate, Bimmingham.
bible swiety herord, New lork.
Biblographic des Travanx Historigues at Archoologigurs, Paris.
Biblouthefal Ihilohogica (lassima, Berlin.
Bieveling World, linstom.
Bhacknuith :mad Whommight. N. Y.
Blackwomes Edinhorgh Magazine.
Body abl Soul, Cardift:
Boletim de la komedade bonteriana, Coimhat.
Boletims soridedale da (imographia, Rio dandiro.
Boletim de Agrimultura, Minerial "IndusHias, Mexico.
Bobetin Bibliographiony Escola, Mexien.
Boletin de lad Jnstitneion libre ab EnseIntur:a, Madrid.
Boletinde la linal Academia do ('inncias y Artes, Barceloma.
Bobetin de lat sociodad Ceográtion, Lima.
bolledino Mansile della Simazionn ani Conti, cte., Rione.
Bolletimo dello P'ublalieazioni haliante, Florence.
Bollettimodeda Rathe Aemdemia Mrdica, Gemom.

Bollettino della societil Adriatica di Scienze Naturali, Trieste.
Bollettino della Societi di Naturalisti, Naples.
Bollettino della Sorieta Romama per gli Studi Zoologica, Rome.
Book Buyer and Seller, Cimeimati.
Book Shop, New York.
Books, Denver.
Brazilian Missions, Brooklyn.
Breeder and Sportsman, San Francisco.
British Natmralist. Hartlepool.
Bnletin societatea (icografica Komana, Bukarest.
Bulletin Aéronantigne, Paris.
Bulletin Agriantural Experiment Station, Rano. Nevarla.
Brbletin Association lolytechniques. Paris.
Bulletin Astromomique, l'aris.
Bulletin of the Botamical lopartment, Kineston, Jamaica.
Bulletin Commission Areheologitge de Narbonme.
Bolletin Cornell Irniversity Experiment station, Ithaca.
Bulletin Department of Agriculture, Toronto.
Bulletin of the Geological Socicty of America.
Bulletin of the Library and Mnsemm of Lanrent College, Montreal.
Bulletin Mensuel des Publirations Etrangàres, l'uris.
Balletin Mensmel Statistigue Mmicipale, butnos Aires.
Bntletin du Ministirer de l'mstruction Publique, Brmssels.
BulletinNuw York Mathematical Society, New York.
Babletin Ontario Agricultural Experiment Fiam, Toronto.
finlletin lemasylvaia State College Asricultural Experimentstation.
Bulletin Socićto d'Agriculture dn Depot. fll (her, Bomrers.
Bulletin de la Noeinté Framequese de Physigue, l'mis.
Bulletin de Ia Societe dollistoire at d'Archéologia, (ieneva.
 Donbs, liesancon.
Bulletin Sorí́té Royale Liméeme, lbusserls.
Bulletin Société de Statistique des suriences Naturelles, Grenohlu.
Buletinnl Otservatimmilos Meteorolongei din Romania, Bucharest.
Bye-Gones, Oswestry, England
C'alabria, Monteleone, Italy.
Cambridge Iniversity Reporter.
Canadian Bee Jommall, Beetom, Ontario.
C'anadian Entomologist, Londom, Ontario.
Cauadian Patent Office Record, Ottawa.
Canadian Ponltry Jommal, Beeton, Ontario.
Canaliana, Montreal.
Cape Times, C'ape 'lown.
Capitale (now L'Iniverselle), Paris.

Carpet and Upholstery Tratle Review, New York.
Carpentery and Building, New York.
Carrirr Dove, San Fraucisco.
Casopis pro promysl chemicky, Pratue.
Cassior's Magazine, New York.
Cesky Lid, Trague.
Chinese-American Adrocate, Philadelplisi.
Christian Recorder, Philadelphia.
Christian Worker, Manchester, Englamd.
Chronidnte Industrielle, Paris.
('hurd aml Home Magazine, Loudon.
('lureh IGion, New York.
('ircular System, Oakland, California.
Cimmlar leland Stanford. Jr., Iniversity, l'alo Alto, ('alifornia.
Civies. New York.
C'ivil Service Reromd, Boston
C'lay Record, Chicago.
Clay Worker, Indianapolis.
('ollector (monthly), Xew Vork.
Collector (semimonthly), New York.
C'ollector's Monthly, Damielsonville, ('oun.
College Echo, Austin, Tex.
Compass, New lork.
Comptes Rendus des Séances de la Sociéto Américaine, Paris.
Comptes Rendus de L'Athénée Louisianais, New Orleans.
Concholowist, St. Andrews, Scotlamel.
Congo lllustré (Le), Brassels.
Contemporary Rッvier, London.
Comtributions Ilistorieal Suciety, Ilelena, Nont.
Comalitl Magazine, Lomdon.
Cramk, lthaca.
Cultura, liombay
Cmrent lieview, New York.
Jarkest Rissia, London.
berlham ilistorical Registev. Dedham, Mass.
Dentsche Zanckerimdnstrie. Berlin.
Diseovery, Lombon.
Ihormonto privitor la lstoria Romanilor ronlese do Eudoxin, Acaremia Liomâna, burharest.
Droit I'Autem (Le), Berne.
Erelesiastical C'lumicle, London.
Erho l'olyglotte (L'). l'alis.
Economista Español (EI), Barcelona.
Edinburgh Review, Ediubnrgh.
Electrie I'ower, New Vork,
Llectrical Entroprise, Boston.
Electricity, New Iork.
Elektrichestyo Zhurual, St. Petershnrg.
Electrotechnische Rmmhshan, Frankfort (). M.

Entomolagist's Pecord, London.
Erdúszeti Lapok Kïzlonye, Bulapest.
Enoterie, Applegate, Cal.
Experiment Station Bullatin (U.S. Wept. of Agricuitme).
Experiment station Record (IT. N. Hept. of Agriculture).
Fanciers' Jommal, Philadelphia.
Farben-Industrie, Derlin,
Farm, Field, and Stockman, Chiragu.

Farmors＇Bulletin（l゙．ふ．Dept．of Jori－ culture）．
Fthma，Luxemhmrg．
Federal Reporter，St．P＇anl．
Fermselan，Dliteiselawerariselan dero－ Eraphise－he Commercielle（iesellselatit Aaran．
Financial World，Boston．
Fortnightly Revirw，Lamlon．
Fortselaritte der l＇hysik，liorlin．
Framen－（iallia，Cassil．
French and Cerman Érlooss，Lourbon．
（frelong Naturalist，（melong，Australiar．
（fowerbelatle．New Yort．
（iewerbesshan，Hrestern．
（ireat Hivide，fraler．
Ginide，G］asgow．
Hapisgoh，Baltimore．
Harmess（iazotte，Romed．N．Y．
Helios，Frankiont o．U．
Ilide ans leather．（＇hicago．
Hintz＇s Moderne IIanser．Borlin．
Hoisting．Ntamford．Comn．
Home alm（＇omatry，New Jork．
Home（＇herr，New Vork．
lee and liefrigeration，（hicago．
Illustrirte Wrelt，stuttwart．
Insekten－Börse，Leipsic．
Instruttor（El），IEnas（＇alientes，Jexian．
buteruationale Patent－Zcitung，borlin．
Inventors＇Review，Lemblon．
Inzhjenjer，Kiev．
Iowa S＇chool Jommal．Des Moines．
hrish Naturalist，Dublin．
Irrigation Age，lenver，（colo．
Iron Pelt．Komoke，Va．
Jahresbericht（eoographiswhe（iessoll－ schatit．Bern．
Jahresheriahtr Vorein tiir Frillimude． （：assel．
Irwish Messenger，New York．
Jonmanl of Comparative Nemmology，（iman－ ville．Ohio．
Jomraal ale l＇Erlairage an（xaz，l＇aris．
．Womal of the Engineering socioty of tha Lehigh Thiversits，liethlehem，I＇a．
dommal of the Institute of damaira． Kingston。
Jommal of Modical Philosophy amel I＇ac－ tice，l＇hiladelphia．
Jomralal of Vhilatrly，New lork．
Jommal of Philology，Cambridge，Emo．
Jommal of the Polynesian sometery Wioll ington．
Jomrat of the socioty of l）yers ame（＇ot－ orists，Bradlord，England．
Jomraal of the V．A．Artillery，Fort Nom－ roc．
Juvenile Magazind for the Vomgy，Lan－ dons．
Kamsas（＇niversity Quartorly，Lawrence．
Kиowlodge，New Jork．
K．＇T．N．News，Monnt sturlm，Ky．
Lamblwirthselattliche dalorhurl｜
s•मwei\％，Brrm．

light，Lomilon．
Lithosvapher，Landon．
Lithographers＇Jommal．I＇hiladmphaia．
Littell＇s Living Age，liostom．

Litterarischer Merkur，Weimar．
Lotomotive Lnginerering，Now lork．
Lombuy（uarterly Lievi»w，Lomum，
Longman＇s Magazine London．
Mambineturer amd linilder，New Vork．
Manufacturess Enginerring ans Export Aonranal，Lombon．
Mstine Romelsehan，Berlin．
Marime Verordmugshlatt，lierlim．
Matriame et Docmments d＇Arehituotme \＆thesonlptore，laris．
Nedrlelelsw tiat（＇arlheror Labomatoriot， Copernhagen．
Mémoires Socioti Rayalz du（etographie． Antwerp．
Memoirs British Istronomieal Issmaia－ tion，Lomlon．
Memorias suciefad Cíentítica，Nexieo．
Memorie socicta Alegri Spettroscopisti Italiani，Rome．
Mermurio Oreidental，Guadalajara．
Metarologicleskija Nobljurlenija， Othessil．
Methorlist Keview，New York
Alilling，Indianapolis．
Mineralogists＇Magazines，forsey（＇ity
Minerals，Now York．
Minerva，Roma．
Minntrsofthe Minaqing（ommittor，Jro－ vincial Dusemm，Lucknow．
Mittailangen ans dem gesammonen（ie－ hiere der englisthen Sparhe mod lit－ teratur，Leipsic．
Mitteilungender Vereinignng von Frann－ den dor Astronomio und kosmiselan Physik，larlin．
Mitteilnusen Vereinsfïr K゙nnst mul Alter－ thinm，Elı．
Nittheilmugn von $\mathrm{F}^{\text {N }}$ ．A．Jrorkhans， Lajusir．
Mittheilunger ans dom（iehietr der ange－ waudten Naturwissemsehalten，Arlö̈n－ berg，Moravia．
Wittheilumgen das ornitholowischen Ver－ eins，Vie＇nua．
Mittheihngen der Section tiil Natmrknn－ de．Oesterreichisehen Tomristen－（＇lnb， Vienna．
Mittheilnogen dre statistischon Imtes， Inesilan．
Wittheilmgen des Verbandes temfseher Arolitakten und lngenienre．Berlin．
Nordern Langnage Monthly，London．
Monkran Miller＇，Kamsas（＇ity＇
Monatshlatt der mumisumtisehon（ises．ll－ schalit，Vicunal．
Monitor dr la Educarion C＇ommor linemos Sires．
Monthly BnItetincoloralostate Weather servier，bemver．
Monthly lonlletin Toxas Weathar surv－

Wonthly Chronicle of Nonsh（＇omatry ！ore

Monthly Weather lioview，＇alautha．

Nabytki hiblioteki，（＇ramw．
Nammgansett Histmical lewister，Imovi－ dencr．
Nashar listshat，Nt．Poterisburg．

National Coopers' Jomrnal, Bufìalo, N. Y.
National Edncafor, Allentown, Pa.
National Monitor of l'onltry ant Pefs, Fort Wayue, Inil.
Natmal Science, London.
Nature (La), Paris.
Neptunia, Venice.
Nene Mitfeilungen ans dem (ielicte drm hisforiseh-antignarischen Forsehmogen. Halle a s.
Nene Philologisehe Rundshan, ('otha.
New Jernsalem Magazine, Boston.
New Nation, Boston.
New bork State Library Bulletin, Alhany, N. Y.
Nineteenth Cenfurs, London.
North American Roview, New York.
Nonvelles féograpliques. Paris.
Observations faites à lobservatoire Météorologiqne, Kiev.
Ohservations Finska Vetenskaps-Societetens meteorologiska Centralanstalt. Helsingfors.
Olservations Institut Météorologique Ceutral, Helsingfors.
Oesterreichische Zeitschrift fiir Verwaltumg, Viemna.
Onderzokningen Plyssologisehe Laboratoriet, Utrecht.
One and All, Birmingham.
Ouward and Tpward, Aberdeen.
Operre principelier Jimileantermirn, Bucharest.
Ornithologist and liotanist, Birmingh:1m.
Our Day, Bostom.
Painswick Amual Register.
Painting anyl Decorating, Philarelphia.
P. C. P. Alnmni Report, Philatelphia.
ledagogical Seminary, Worcester.
Pestalozzibliafter, Zurich.
'eterborough Diocesan Magazine, Leısester.
Petit Etranger (Le), Paris.
l'harmacentical heeord, New York.
Phouographic Magaziue, Cincimuafi.
I'hosphate (Le), Amiens.
Photographie liork, Loudon.
Photographiseher Correspondenz, Viellua.
postal Rerord, New York.
Power and Transmission, Mishawaka.
Proce edings of the Cotteswohl Nafural isfs' Field C'lub, Cheltenham.
Proceedings of the Society of Antiquaries, Newrastle u. Tyue.
Protokoly Zasiedanij oidjelenij:, Khimii, St. Petersburg.
Public Library Balletin, Los Augelen.
Publications Alfred University, Alfred Center, N. Y.
l'ublicatrous of the Arehitectural Association, Lomilon.
Publications from Irr.C.I.A. Aurivillins, Tpsala.
PublicationsGuille-Alles Library, Guernsey.
Publications by Jardin, M. Ed.
Publicatons K. K. orientalische Akatemie, Yienna.

Publieationen les Königlichen Musemm fiir Naturkunde, Berlin.
Publications of Dr. Olsen.
Publications Section de Moscon de lat Société Impériale Technique, Moseow. Publieatious University, Viema.
Qmarferly Bulletin American Catholic Hisf. Society, Philadelphia.
Quarterly Review, London.
Raporti asupra activitatei, Acalemia Romana, Bukarest.
Rapport Ecole Polyterhique suisse, Bern.
Reeords and I'apers of the New London Comnty Historical society, New T.onlone, Comn.
Reformad Churah 11 wsenwer, Philidelphis.
Reformed Quartarly lieview, Philadnlphia.
Regents' Bulletin, N. Y. State Library, Alhany, N. I.
Religio-Philosophical Joumal, Chicago.
Rendiconti società Reale Aceademia di Archeologia, ete., Naples.
léportoire des Travanx de la société do Statistirue de Marseille.
Repertorium tïir Metcorolagir, st. I'etershorg.
heporforimm der fechuisehen JomrnalLitteratur, Berlin.
Report liotherhite Public Library.
Report Society for Promoting Christian Knowledge, London.
Leview of Roviews, New Vork.
Revista General de Marina, Madrid.
Revista Italiana di Reitnze N:turali, Naples.
Revista Militar de Chili, Smitiago.
Revista del Musro de la l'lata, La l'lata.
Revue du Bas-Poitun, Fontenay-leComte.
Revire de Botanirue, Auch.
Revne Botanique, l'aris.
Revne de Botanique, Tonlonse.
Revne de l'Euole d’Anthropologie, Paris.
Revue des Etudes Juives, Paris.
Revne d'Horficole, Marseilles.
Revne Internationale scientifinne et Populaire tes Falsiñeatious, Amstrrdam.
Revue des livres et de la Presse, l'aris.
Revie Memsnelle ilo l'Ecole d'Anthropologiv, Paris.
lievne des Questions llistoriques, Paris.
Revie des Questions scientitifues, Brassels.
Revne desseiences Natarelles de louest, l'aris.
Revae Iniverselle des Inventions Nonvelles, A, B, C, D, Paris.
Richmond College Magazine, Galle.
River-Plate sport and Pastime, Buenos Aires.
Romens's Jonmal, C'harlottenherg.
Rosario, Lar Nnova Pompei (II), Tille di Pompei.
Rural Califormian, Los Angeles.
Rutland County Historical Society, Newport, Vt.

Saloty V゙alい。Now lork．
－t．doscphis M小ocate，baltimore．
salem l＇ress Mistoriacal ant（ifunalogiral leword．sald．t．

seottish lowiow，Lomblar．
 siquar，l＇aris．
Scifansiedrr Zaitung，Lugsburg．
Sului（II），l＇：ルia．
Shendun Nows，shemdun，Via．
 Morphobogie und Ploysiologia，Munseh．
socialpolitisches（ormepondramolatt． berlin．
suciologir News．lirooklyn．
sunth Eastorn Naturalist，（＇andombur） England．

Southern Mistorieal Magazine，（＇lanles－ ton．WV．Va．
suziahoolitischos（xombalhatt．Herlin．
Apaker，London．
Sportsman＇s leview，＇licango．
Strand＂s Magazins，London．
singar，Lonton．
shyar bert，Philadelphian．
supplemente Ammalia alla Encielopodia di chimica scioutitica，ete．Trurin．
sworsk Kamisk Tiolskrit，Stockholm．
＇forhuics，stawell，Anstralia．
Temple Bar，Lombons．
Tennesse dommal of Matcomolngy，Nash－ ville．
Textile Record of Americat．Philarlelphian．
Thuosophist，Manhas．
Tidsshrift för Folkumdrrvisning，Stork－ holm．
Tinskritt Jimmlands Lïns Pommminnes－ fareuing．（）stersmad．
＇Tidsakrif for Jhysik oge＇hesmie，Copen－ hagu11．
To－lar．Bustonn．
＇T゙心reli，I．ondom．
Tratition，la，l＇aris．
 st．Ionlis．
＇Transations of the Canalian Institute． Toronito．
＇Transampons Manchester＇statistioal sor ricty．
 Wall，（＇amborme．
＇Transactionsoft the Vorknhire Naturalists． Inion，leseds．
Trasiax et Dómoiras des Fabultés du． lille．
Travanx da lat Rection d］．［＇hysion－Chim－ igur de las sorinte dessubences Experi－ mentales．Khankor．
＇Treasury ot Rarligious＇Thomght．New lork．
Irbersielat der Ein und Ansthbrarer wich－ tigstan Waarenartikrl，Bern．
Irlomij．jal Zapiski，Kazan．
linim l＇ostale（L＇），Bern．
Fninn signal（The），（？hiamo．
1．N．（＇ithoolio llintorical Magazinc，New lork．
I．S．Miller，Milwanker．
「uiversal Market，lerlin．
＇mwrrxity Extension Bulletm，Allany．
Iniversity Hagazine，New York．
Iniversity Star，Whala，Nobr．
 schaft，1）orpat．
 Aer Könighehrn Strmwartr，Berlin．
Vierteljahreshafte zur statistik ales dentschent Rajehew，Berlin．
Volem Illustré，l＇aris．
Volkskunde，（：hent．
Vom F＇els zum Mrer，stutterart．
Tremmmik＇Tsentralnija，St．Petershurg．
Weather crop Bulletin，Crete，Nebr．
Wer Willie Wiukir，Aberdeen．
Werkly billetin．Joston．
Weekly stationary Emginer，Chicago．
Wrestern Electrician，（hicago．
Woreestar Commereial and fonard of Trade Gulletin，Worrester，Mass．
Workshop，New lork．
World＂s ］＇ogress，Cincimati．
Wïrttembergisch－Frankru，Hall anm／ Kocher．
Sear Beok of Anstralia，Nydney．
Yorkshire Comnty Magazine，Bradford， England．
lorkshire Notcs and Qurries，Bradford， Fingland．
 W：aル！
Kaitselmili fiar anorganiselse chemic， Munirlı．
Zaitscheit fiir rentwhe lhilolowie Lalle： ！
Zeitsehrift fíir Oologis，Berlin．
Zoitschuift dus Vereins deutselur Iuge－ nirure，Thrlin．
Veitnrlarift Vereinfior Volksknude，berlin．
Koitschuift fiir Volkskundr．thalle a／s．
 Vewin，llanzig．
Zeitsehrift tiio wissenschaftliche（ieor

Záitachritt fïn wissensehaftlicho Mikros， kopie mad tio mikroskopisehe T＇echaik－ bramuschweig．

Very respertfolly sumbiterd．

Mr．A．l＇．Ladifility
secretary of the simithsonian Iustitution．

Appendix Y .

PITBLICATIONS FOR THE Y゙EAR ENOIN(: JUNE 30, I I 92.

SIn: I have the honor to submit the following report upon the puhlications of the Smithsonian Institution for the year emting fune 30, 1892.

Among the issmes in drarto size a fragmentary publication, referred to and partly deseribed in the last ammal report as werly ready, has been completed and distributed dnring thr present fiscal year. This fragiment, as explained in the precenling report, is uot incluled in the eolleeted volumes of the "C'ontributions to knowlenge," though prodnced in same form and style. It forms in the Smithsonian series:
No. 800. "Plates prepared between the years 1819 and 1859 , to accompany a report on the Forest Trees of North America, by Asa Gray." This is aruarto brocbure, comprising all the plates (23 in nmmber) prepared for Dr. Gray's long contemplated work on forest trees. Thongh nearly forty years old, these plates, carefnlly engraved and skillfully colored by hand. are here for the first time collected and issmed, withont any deseriptive text, mo accomts or deseriptions having been fommed among the lamented Inr. Gray's papers.

No. 801. "Experinents in Aerodynamics." Bys. P'. Langley. Quarto volmme of $1 v+115$ pages; illnstrated with 11 figures in the text, aucl 10 plates.

SMITHONIAN MH(BLLANEOCS COLLECTHNS.

No. 787. "Lists of Lnstitutions and Foreign and Domestic Libraries, to which it is desired to send future publieations of the National Musenm." (From the Report of the National Masemu for 1889.) (owavo pamphlet of 78 pases.

No. 788 . "Memoir of Heinrich Lebrecht Fleischer." liy Prot. A. Miillar. (From the Smithsonian leport for 1889 .) Outavo pamphlet of 20 pages.

No. 789. "On Aerial Locomotion." By F". W. Wenham. (From the smithsonian Report for 1889.) Octavo pamphlet of 20 pages; illustraterl with 6 figures.

No. 790. "Photography in the service of Astronomy." By R. Radan. "Translated from the French, by A. N. Skinner. (From the suithsonian lieport for 1889.) Ortavo pamphlet of 22 pages.

No. 791. "A Memoir of Gnstar lohert Kirchluff." By labert von Hehmholtz. Translated from the German, by Joseph de lerot. (From the Smithsoman Report for 1889 .) Octavo pamphlet oftit pages.

No. 792. "The Museums of the Future" By G. Brownfoode, Assistant Secretary of the Smithsonian Institntion. (From the Report of the Natioual Musenn for 1889.) Oetaro pamphlet of 19 pages.

No. 793. "Te I'ito te IIcmu, or Easter Istaud." By William .J. 'Thomson. (From the Report of the National Musemm for 1889.) Octave pamphlet of 106 pages; ilhustrated with 20 figures and 49 plates.

No. 79.4. "Aboriginal skin loressing. A stuly based on material in the IT. S. National Museum." By Otis 'V. Mason. (From the Leport of the National Musemm for 1889.) Octavo pamphlet of 62 pages; ilhstrated with 32 pates.

No. 795. "The Puma or Ameriean Lion (Felis concolor ot Linnans). By Frederick W. True. (From the Report of the National Mnseum for 1889.) Oetavo panpmat of 18 pages ; illnstrated with 1 plate.

No. T96. " Animals recently extinet, or theatened with extermination, as represented in the collections of the 1 . S. National Masemm." By Fredrack A. Lacas. (From the Repert of the National Masemm for 1880.) Octavo pamplate of 11 pages; illustrated with! figures and 11 plates.

No. 797. "The development of the American lailand Trachs, as illnstrated hy the
 port of the National Musemu for 1889.) Octavo pamphet of ts pares; illustrated with 11. figures.

No. Tas. "Exphomations in Newfomalland and Labrador in 1887, made in comection with the ernise of the L. S. Frsh Comminsion schooner (irampns." By Frederick A. Lncas. (From the Report of the National Mnseum for 1889.) Octaro pamphlet of 20 pages; illnstrated with 1 plate on sketch map.

No. 799. "Preliminary llandow of the Department of Geology of the IV. S. National Musmm." By George P'. Werrilh. (From the Report of the National Mhsemm; Aprentix.) Ovetavo pamphlato of ato pages.

No. 80\%. "The siguring of the ('irele." By Herman Slmbert. (From the Smithsomian Report for 18:0.) - (O.tavo pamphlad of el pages.

No. 80t. "An Aecomet of the lrogress in Astromomy for the reats 1889, 1890." By Willian (${ }^{\text {. Winlock. (From the smithsonian leport fier 1890.) Octano pamphet }}$ of 62 pages.

No. 805. "Mathematial Theorinat the Earth." By Roberin. Woodward. (From

No. sith. "On the Physical stmetmeof tha Earth." lisy Han'y Hemmessy. (Frome the smithsomian lipeot for 1800 .) (ortavo pamphat of 19 pages.
 for 1 s! 0 .) Ortano pamphet of 10 pages.

No. 80!. "The Mediteramean Physal and Itistorimal." bis Sir R. L. Playtair.

No. 夂11. "Antaretie Explorations." lis (X. S. (hithiths. (From the Emithsobian Roport for 18:\%.) Ochavo pamphat of 12 pages.

No. ste. "The History of (ieodetic: "perations in liussia." Diy Di. Witakowski and
 piones.

 Timbere By sylvams P. Thompon. (Fron the smithsonian Report for Lsoo.) Ortaro panphet of en pages; illustated with of figures.

No. xt.\%. "The ('hemieal Prohems of To-day." liy Vietor Meyer. (From the Smithsonian Repont for is!o.) Octavopamphat of bages.

No. 816. "The Photographic Lmage" By Raphael Meldola. (From the smithsonian Report for 1 e: O\%.) Octavo pamphlet of 11 pages.

No. 817. "A Tropical Botani Carden." By M. Treut, (From the Nmithomian Report for 1×90.) Octano pamphlet of is pages.

No. 818. "Temperature and Life." By Honry te Varigny. (From the Smithso-

No. 819. "Morphoheg of the Bhoel ('mpuseles.' By ('harles-Sedgwick Minot. (From the smithsonian Report for 18:90.) (otavo pamphet of :3 pages; illustrated with 1 plate.

H. Мis. 114

No. 821. "The Aseent of Man." By Frank Baker. (From the Smithsonian Report for 1890.) Oetavo panphlet of 20 pages.

No. 822. "Antiquity of Man." By John Evans. (From the Smithsonian Report tor $\mathbf{1 8 9 0}$.) Octavo pimplulet of 8 pages.

No. 8.3. "The Primitive Home of the Jyans." By A. Fh. Saye. (From the smithsonian Report for 1890.) Octaro pamphlet of 13 pages.

No. 824. "The Prehistorie Laces of Italy." By Isaac Tiylor. (From the Simithsonian Report for 1890 .) Oetavo pamphlet of 10 pages.

No. 825. "The Age of Bronze in Egypt." By Oscar Montelins. (From the Smithsomian Report for 1890 .) Oetavo pamphlet of 23 pages; ilhastraterl with 6 plates.

No. 826. "An Account of the Progress of Anthropology in the year 1890." by Otis T. Mason. (From the Smithsonian Report for 1890.) Octavo pamphlet of 82 pages; illustrated with $\&$ figures and 4 plates.

No. 827. "A Primitive Tru Burial." By 1r. J. F. suyter. (From the Smithsonian Report for 1890.) (Octavo pamphlet of " pages; illnstrated with 2 plates.

No. 828. "Manners aml Customs of tho Mohaves." By quorge A. Allen. (From the Smithsonian Report for 1890.) (one sheet of 2 oetavo pares.

No. 829. "Criminal Anthropology." By Thomas Wilson. (From the Smithsonian Report for 1890.) Oetavo pamphlet of 70 pages. -

No. 830. "Color-vision and Color-blinducss." By R. bratenell Cartrr. (From the Smithsonian Report tor 1890.) Detavo pamphlet of is pages.

No. 831. "Terhology and Civilization." By l". lieuleanx. (From the smithsonian Report for 1890.) Octaro pamphlet of 15 pages; illustrated with 2 tigures.

No. 882. "The Ramsden Dividing Engine." liy J. Elfieth Watkins. (From the smithsonian Report for $\mathbf{1 8 9 0}$.) ()etavo pamphlet of 19 pages; illustrated with 1 tigure and 3 plates.

No. 833. "A Memoir of Elias Loomis." By H. A. Newton. (From the smilhsmian Report for 1890.) ()etavo pamphlet of 30 pages.

No. 834. "A Memoir of William Kitehen Parker." (From the Shuithsonian leport for 1880 .) ()ctavo pamphlet of 4 pages.

No. 805. "Sale List of Publeations of the Simithemian Institution, Jamary, 18:22." Octavo pamphlet of 27 pages.

No. $83 x$. " Reporf on the Intermational "ongress of wrientalisk." Held at stack-
 (From the Smithsonian leport for isoo.) (betaro panphlet of \& pages.

No. 770. "Report ot the National Masemm. Ammail Report of the board of Regents of tho smithsonian lnstitution, showing the operations, expenditures, and eondition of the Institution for the your enting Jume 30,1889 ." This volume comprises five sections: I. Report of the Assistant Serretary of the Smithsouian Institntion, (f. Brown Coorle, in charge of the National Mnsemm, upon the condition and prospects of the Musenm; 11. Reports of the Curators of the Musemmuon the jrogress of work during the year; IIl. l'apers describing and illnstrating the collections in the Musemm; IV. Bibliography of publications and papers relating to the Mnsemm thring the year; and V. List of accessions to the Musemm duriug the year. The whole accompanied with an index of 39 proges, and Appendix E.- l'reliminary Handbook of the Department of Geology in the U. S. National Mnsemm, of no pages, by George P. Merrill, Curator. This Report fomms an ortavo volume of xvii +933 pages; illustrated with 144 cuts or figures in the text, and 107 plates.

No. 786. "Report upon the eondition and progress of the LT. S. National Musemm during the year ending June 30, 1889." By G. Brown Goorle, Assistant Secrebary of the Smithsonian Institution, in charge of the National Maseum. (From the Report of the National Musemm for 1889.) Octavo pamphlet of 277 pages; illustraterl with fomp plates.

No. 802. " Procedings of the Regonts, and Report of the Rxerntive Committed

No. sibi. "Ammal lieport of the Board of liegents of the Smithsonian Institution, showing the oprations, expenditures, and condition of the Institution to July, 1s00." This volume contains the Jommal of Procedings of the lbard of Regents at the ammal meating held Jamary 8 , 180%; the repert of the Vxecutive Committeo of the board ; acts and resolntions of congress relative to the Institution, for the year ; and the Report of the secretary of the Institution: followed by the "(renural Appendix," in which are given the following papers: "The Sopating of the Circle," by IE Coman sehnhert; "The Progress of Astronomy for the years
 Rolnot s. Woodward; "l’hysial Structare of the Earth," Hy Henry Hemessy; " (alacial Crology," by James Grikie; "llistory of the Niagara River," by Ci. K. (iflnert; "The Hediterranean, Physicaland Ilistorical," Hy SirR. L. Playfair; "Stanley aud the Map of Africa," by J. soott Kaltit; "Antactic Exploration," by゙ (x. S. (Griftitlss; "Mistory of Ceodedic: Uperations in Rassia," by B. Witskowski and J. Howarl fort; "(hartz Fiburs," hy C. V. Ioys; "Kunigs"s Researches on Musical llamony amd Timbre," by sylvames'. Thompson; "The (hamical lrohbens of
 Tropical Botanic Garalen." hy M. Trenls; "Temperatme and Life," by llary de Varigny; "Morpholowy of the Bhool Corphselen," by Charles s. Minot; "Weismanns 'Theory of I Lemetity," hy Georee J. Romames; "The Ascent of Mam," by Frank baker; "The Antiquity of Man," hy John Evans; "Primitive llome of the dryans," by A. H. Filye; "The Prehistoric Races ot Italy," by Isate Taylor;

 ('ustoms of the Molaves," by dieorge A. Allum; "(triminal Anthropology," by Thomas Wilson; "Color-vision and ralor-hhindmess," loy R. Brudumell Cater;
 by J. K. Watkins; "Memoir of Flias lammis," hy 11. A. Newfon; and "Momoir "f Willian Kitchen l'arker;" the whole forming an octar" volmue of xlifsos pages, illustrated with 29 figures and 26 plates.

Very respectfally,
Wh. B. 'TAyiont,
Editor.

Secrelary smithsouian Institulion.

GENERAL APPENDIX

Ti) THE

SDITHSONIAN REPORT' POR 189%

お川ERTLEMENT.

The object of the (idenerdi Aprendix to tha Ammal report of the
 ay in partienlar directions: oceasional reports of the investigations mate by "oilaboratorsof the hastitution; memoirs of a seneral charate ter or on special topias whotheromiginal and pereared expressly for the
 to present (as fally ans sume will permit) such paperen not published in thesmitheonian Contribmions or in the Miscellanerous Collections ats may be supposed to be of introses or value to the mumeroms corvespond(rlits of the lustitution.

It has heren a prominent object of the Band of Regents of the Smithsonian lustitution, from a vory early date, to enrich the ammal report required of them bis lath memoins illustrating the more remarkable and important deyelopments in physical and biological diseovery, as well as shaning the general chararter of the operations of the Instifution; and this purpose has. during tha greater part of its history, bean carried out largely by the publieation of such papers as wonld possessan interest to all attranted hy sementifie progress.

In 1 sco. the Sorretary, induced in part hy the diseontimance of an ammal smmany of postess whioh for thinty years previous had berm issued by well-known private publishing firms, had prepared by competont rollaborators a serios of abstracts, showing eomeinely the prominent featmes of reant sermific progress in astronomy, genogy, moteondogy, physies, ehomistry, mineralogy, botany, zoölogy, and anthropology. This latter fan was continned, thongh mot altogether satisfartorily, down to and ineluding the year 1siss.
lot the report for 1 ssel, a return was mate to the earlier method of presenting a misedtancons selection of papers (some of them original) (2mbracing a considerahbrather of somentite investigation and disenssion. This method has been rontinned in the present report, for 1892.

sTITLTION.*

The smithsonian lnstitntom has always mate it a ruld of antion to andertake sumblines of work as puint the way to great pmblir atilities, and these have sulseduently heen made the function of meful government bureans of applied seionce.

This is motahly trme in the ease of metemondogy, which was developed by the Institution in looth its somentife and its populan asperts. motil its importance beramo so well mulerstood, and its utility so widely apprectaterl, that in fsiso, (ongress made it the duty of the ('hiofe Signal Ofticer of the L^{+}. A. Amy toobserve amd report stoms for the benefit of commores and agrionlture.

The interest of the Smithsomian lnstintion in meteorology began with the organization of its work hy its first seeretary, Prol. dosep Hemry, in 1847, and from that time to the present-mearly half a cen-thr-meteorohgioal seience has been granten an important share of its labors and expenditure.

In his 'rporg:amme of organization," sulmitted on the Sth of December, 1st下, in wiving wamples of objoets for which appropriations might property be made, the sereetary mentioned first, and unged upon the immediate attention of the Tastitution, a "system of extembed meteorological observations for solving the prohlem of Amerian stoms.". This clear appreration of the existing state of knowledger and of the utilities to be gainerl, are set forth in the following worls, with which he comments this molertaking:

Of late yoars, in our comutry, mose additions have bern made to meteorolong than to any other hramela of physical science. Sevaral important wemeralizations have been arrived at, atm dafinite theories proposed, which now enable wis to direct ome attention, with scionlifu prexision, fo suld points of observation as can not fat to
 scrations whilla shall extend as fir as pessible over the North Amprican continent. The present time appears to be peonliarly anspiefons bor rommencing an enterprise
 every part of the sonthern and weetern portions of North American, and the exterded lincs of the telegraph will farnish a reaty means of watning the more borblern and eastern observers to be on the wateh for the first ippearane of an arivancing storm.

In the inangmation of this system of observations. Irof. Hemry solicited the suggestions of the most experieneed Amerian metemond
 t10)
smmmary prepared tor the section of history, World's ('ongress of Meteorology, Chicago. 1893.

Accompanying the above-quoted presentation of his programme the Serretary published a valuable, aud now historic, report by Prof. Loomis upon the meteorology of the United States, in which he showed what adrantage society might expect fiom the stady of stomms, what had been already done in this comntry toward making the necessary observations, and, finally, what enconagement there was to a further prosecution of the same researmes. He then presented in detail a plan for unifying all the work done by existing observers, and for supplementing it by that of new obsmrers at needed points, for a systematic supervision, and, finally, fur a thorongh discussion of the observations roblected.

On the 13 th of December, 1847, the Board of legents adopted the "programme of orgauzation," and on the 15th inangurated the systeln of meteorological observations by an appropriation of \$1.000 tor the purehase of instruments and other related expenses.

In the following year (1848) Prof. Expy, who was then the official meteorologist of the Nary Department, was assisned to duty under the direction of the Secretary of the Smithsonian Institution. In connection with Espy, the secretary (Henry) addressed a circular letter to all persons who wonld probably be disposed to take part in the contemplated systems of observations, and co-operation was solicited from the existing systems under the dirertion of the Surgeon-General, and of the States of New York and l'emsylvania. As a result of these efforts the Institution at the close of 1849, already had one hundred and fifty daily observers, and the nmmber continned to increase.

In order to mify the methods adopted by observers, Prof. Guyot was requested to prepare a pamphlet of Directions for Meteorological Observations,* which was published in 1850, aml to compile a collection of Meteorological Tables, which was published as a volnme of the Miscellaneons Collections in 185%. In 185T, after carefnl revision by the anthor, a second and much enlarged edition of the Tables was pub. lished, and in 1859, a third, with further anendments. Aithongh designed primarily for the meteorological observers reporting to the Smithsonian lustitution, the Tables obtained a much wider circulation, and were extensively used by meterologists and physicists in Europe and the United States. An important step taken at the inception of the Smithsonian system was the introduction of aceurate instruments. Standard barometers and thermometers were imported fiom Paris and London, with which those made for the use of the lnstitntion were compared, and sets of surh apparatus were furnished to observers.

In 1849 , Prof. Henry personally requested the telegraph companies to

[^5]dirert their operators to replace in their regulan morning dispatelas

 mary of the romdition of the weather at the ditherent stations, whirh shomld be commmoteated to him. This request wats romplied with. ame such elementary tregraphice weather reperts were thas fimmished the Institution dally, without chase This action of Prof. Hemey, which
 giming of telegraphin weather revier, nothing of the kime having bren attemptad in Ealope until a later datre, amd by moans of these reports predtotions of coming stoms, with all the mow reangized adrath tage to the remotry at large, wre made possible. With the material thas obtained the Institution Was rambled in 1sino, to remstrurt the tirst "mornt weather map, givingelaily. firm "live data," the meteronogical comblions ova the whole comntry. This map was lang where the publ lic conld have general ancess to it for observe the changes, and its indications were first pmblished at large loy signats displayed fom the high fower of the Institution. This methorl was followed, and further extembed, ly punlications in the Washingon Enemin! star in 18.57, and surfogemral intarest was manifesterl in thr subject that telegraphis wather reports wore thereafter furnished to the star for daily puhbication. The sistematic notifieation of the general pmblic by the press and otherwise of weather observations, appears, then, to have been mondoubtedly due to Ilenry, and mopestiomably to have preceded by a year a similar publiontion in 1858 , of Leverrier, to whom this phoneer ste] has bera erroneomsly attributed.

In 1858 , the metrorologionl map already in mse was impored by the adoption of cirenlar disks of different colons, which wre attached to it by pins at eatel station of observation, and indicated ly their color the state of thr atmosphore-whitr signifying dear weather; suray clondy; hatak, rain, ete. The disks had an anow stamped upen them, and as they were so arranged that they eond be attached to the map in any direction, the motion of the wind at ardatation was shown by them, and the "probabilities" thas more arecmately forecast.

The study of the meteorological data, laegm in 1s 49 , comtinued mader the direction of the Institntion for twenty-five years, during which time mmerons publications were issued relative to temperature, randall, hygrombtry, and casual phememena, while popular intormation was contimonsly disseminaterlly poblishing telegraphiw weather reports, maps. efe. Among the assuciates of the Institution in this branch of investigation may be mentioned Prof. Lispy, amd later. Prot. J. M. Coffa, Mr. ('. A. Sehott, and others. Thain work may he eomodsely deseribed as follows: Jrof. Esper utilizel tha aheady collected data in the proparation of his Thind amd Fometh Meterorolegiand Reports. Aiter the

Smithsonian observations were practi"ally completed, Mr. Sehott* took the data and prepared elaborate tables of temperature and preeipitation, which were fublished in the Smithsonian Contributions to Knowl--dge.

Prof. Coffint rompiled his great work on the laws of the winds, and rontributed various lesser works to the bibliography of the Institution on meterotogical subjects.

The finst collection of meteorological tables rompiled by l) ' Guyot, at the request of the lastitution, was published in $185 \mathrm{~B}^{2}$, as a volume of the Smithsonian Miscellaneons Colleretions, and new editions were published in 1857, and 18.99. Twenty five years later the work was again revised, and a fometh edition was published (1s8t). The demand for these tables exhansted this edition in a few years; it was then de. cided to re-wast the work entirely, and publish it in three parts, one of meteorological, one of geographioal, and one of physical tables, each reperentative of the latest knowledge in its fied, and independent of the others, but tha three forming a homogeneons series.

The desirability of establishing a moteorological department under one comprehensive system, with an adequate appropriation of funds, was frequently meged by the Smithsonian Tnstitution, and in 1869 an appropriation of 25,000 was made by Congress for the adoption and maintenance of a "ode of weather signals on the northern lakes, muder the direction of the Chiol of the Signal Congs of the Cnited States Amy. The Govermment having thus evinced a willinguess to take charge of the meteorologiral system of the country, and it being the policy of the Institution to do nothing which conld be accomplished as well by other means, the work of the Smithsonian in this direction was freely relinquished by the Institution, although its formal transfer to the War Department did not take plare until 187 t .

Inming the period when the Smithsomian was directly in wharge of meteorological researehes in the Thited States, its expenditures in this comertion, which had been volumtarly assumed, were over 800,000 . In addition to this the Institution mate a contribution of incalculable value in the stimulus given to investigations of this class by the active personal interest of its first Secretary, who always devoted much time

[^6]and tomght to this subjert, while exal atter the transfor of the Smith sonian system to tha W:ar Iepartment, the disemssion and publication of tha material already acermmatat was eontinned by the fastitution.

The Smithsonian Institution may, then, be termed the parent of the present Wrather Buran.

In Li:口, the presont secretary (Mr. S. D. Langley) dejosited in the Cuited States Signal ()ftire all the boluminoms monthly reorrls of the [nstitntion, and all the mamseript and minted observations and contributions relating to moteonology, subject to recall, but with the mo derstanding that the contire official record of researeh and progress in this comnection should be preserved intact by the Burean which now has these investigations in charge.

THE HISTORY (OF THE TELASCOME.*

liy Prot. C. A. MAstange, Vale Umirestity.

There is mo jnstrment which has done so much to widen the seoper of haman knowledser, to extend our motoms of the miverse, and to stimulate intelleetual aretivily as has the teleserope, unless the mieroseope be regarded as a suroessful rival. But eren admitting a parity in scientific importanere, the former instroment is incomparably more interesting in its history. in the same despee that its history is more simple and more eomprehemsible. To trate its development fiom a cumons toy in the lamds of its diseoverer, for we shall see that this term is more appropriate than insentor, to the midalle of this century, is to be brought into contare with most of the great philosophers, from the time of the Remassance, who have arhierod erathess in phesical seience, (balileo, Torverlli, Huyshoms, Cassini, Newton, Halley, Kepler, Enler, Calaiault, the Hersehels, father and sent Framonter, dianssfrom omly a pertion of the list of great names. Its growth toward perfeetion has eonstantly wamed with it inceased predision in the applied
 eas to show that aren phe mathematies would be in a far less forward
 tirst sugesested loy the employment of the teleseope. It is to this history that I venture to invite yom attention this evening. I parpose to roview sucernetly the origin and development of this potent aid in the study of nature, to name seme of the more important arliberements de-

 torial. After this sketchathall try give an idea of the imperfertions which the conserentions antisan has to conlemel with in attaning per-
 redncing these imporferetions in thr noble instrmment now ereeted at this institution, and explain why its possessors are so hopetnl of gratifying sumeres.

[^7]Galifen learned in 1609, while visiting Tenice, that a marvellons instrmment had bern invented the preceding year in Holland, which would enable an observer to see a distant object with the same distinetness as if it were only at a small fraction of its real distance. It required but little time for the greatest physicist of his age to master the problem thus suggested to his mind, and after his retmon to Padua, where he held the position of professor of mathematirs in the famons university of that city, he set himself earnestly to work making telescopes. Such was his sumeess that in August of the same year he sent to the Venetian senate a more perfect instrument than they had been able to procure from Holland; and in Janmary of the next year, by means of a telescope magnifying thinty times, lie discorered the four sitellites of Jupiter. This brilliant discovery was followed by that of the mountains in the moon; of the variable phases of Vemus, which established the Cupernican theory of the solar system as incontestible, and of the true natme of the Milky Way, together with many others of less philosophiral importance. Thongh Galile did not change the character of the telescope as it was known to its discoverer in Holland, he made it much more perfect; and above all, mate the first and most fertile application of the inst mment to increase the bounds of hmman knowlerge, so that it is inevitable that his name should be indissolnbly eonnected with the instrment. Thus the form which he used is to this day known as the Galilean telesone.

Comsidering the emomoms interest axeited thronghont intellectar burope by the invention of the teleseope, it seems sumpising that its early history is so confused. Less than two years after it was first heard of, a disoorery, perfaps the gratest of a thomsand years in the domain of matmal philosophy, had been made by its means. Notwithstanding these fats, the three contemporary, or nearly contemporay, investigators assign the honor to three different persons, and if we should write ont the names of all those to whom more modern writers have attribnterl the invention, the list wonld be a long one. The surprise will not be boundless, howerer, if we consider the tank before a historian in the next century who undertakes to justly apportion the honor of the invention of the telephone among its mumens claimants. The analogy, though suggested in the obvions fact that the telephone is to hearing just what the telescope is to sight, may be made much closer if we conld imagine the future historian deprived of all but verbat description, that contemporary diagrams and models were wholly wanting. Thder such conditions it is clifticult to believe that the historian would easily bsape ante-dating the disenvery of the telephone proper (on acoont of desmiptions, generally imperfect, of the acoustic telephone. But this would fairly represent the condition of the material at the command of an investigator of the present day into a question of science of the early part of the sevonternth century. No wonder, then, that the invention has been attributed to Archimedes, to linger

Bacon, to Porta, and to many others who have written on opties; but fo find the mane of satan in the list is certanly surprising. Still we real that a verg leamed man of the seventernth centmy, named Arias Montams, finds in the fombth chapter of Matthew, eighth verse, evi-
 wise, how ronld he have \cdot shown hime all the kingloms of the world and the glory of them"? It seems to be well established now, however. that Framz Lippershey, or Lippersheim, a speotade maker at Middleburg. was the real inventor of the telescope, and that fialileos first telescope avowedly suggested hy news of the Hollander's achievement, was an inderendent invention.

That this diseovery was really an acoident we may be quite sure, for mot mby was there mo devoned theory of opties at that time, but even the law of mefaction, which lies at the basis of such theory, was quite mknown. So, too, it sems to me quite rertain that Galileo's invention must have bern empirical and ginded by somewhat precise information, such as that the instrmment ronsisted essentially of two lenses, of which one was a magnifying and the ofther a diminishing lems. It last, that dialileo's telescope was like that of the Hollander; that, theoretieally comsidered, it is not so simple as that made of two magnifying lenses, an is evinced by the fact that kepler, the first philosopha to estahlish an approximate theory of optical instruments, mbly two yeas later insented the latter and prevailing form; and fimally, that (andilen pmblished no contribntions to the thoory of apties, serm quito sufticient reasms for sumb belief. But, in any case, (ias lilens merit is in no wise lessened by having failed to do what cond not be done at that time, and the valne of his disonveries in emandipating mon's minds from anthority in matters of pur reason is incalculable.

No ather discoveries of wrat moment were made until over a gen mation after (raliler) poved the existrace of spots on the sum in 1611. This cesseation of artivity was dombthess owing to the dillialty of se-
 amd which he would hately have loft matil its powers of diseovery had

 methors of grinding and polishing. that teleseones notably superior in
 and Campani, all ltalians, - Anzont, who eomstructed a foleseope (ion) fert in lengith, thongh mo means was erer fomm for dinerting sum an dhormons instrument towards the heavens, -but above all, llayghens, have won distinction as teleseome-makers. The last mamed philosopher diseovered, by means of a telescope of his constrmetion, the lan gest satellite of Satum in 165̃. thms alding a fifth member to the list
*'The history of the telescope is admirably treated in Poggentorft's dischichte der I'hysik, from which the statements above are taken.
U. Mis. 114— 7
of planetary bodies unknown to the ancients．But his most important astronomical diseovery，made also in 165.5 ，was the nature of the rings of Saturn．This objert had greatly puzzled Galileo，to whose small trlescope the planet appeared to consist of a larger sphere fanked on either side by a smaller one；but when in the comse of the orbital motion of Saturn the rings entirely disappeared he was wholly unable to suggest an explanation．This planet had thus prespnted a remarkable problem to all astronomical observers for more than forty years，and the records of the efforts to solve it during that inter－ val afford us a most excellent means of judging the progress in practi－ ealopties．Huyghens amonneed these discoveries early in 16．56，but that relating to the ring was given in the form of an anagram，the solution of which was first published in 1659．This discovery was contested in Italy by livini，hut was finally confirmed by members of the Florentine Academy with one of Divini＇s own telescopes．

A few years later the famons astronomer Cassini，having come to Paris from Italy as royal astronomer，eommenced a series of brilliant diseoveries with telescopes made by Campani，of Rome．With these， varying in length from 35 feet to 136 fect，he discovered four satellites to Satmen in addition to the one diseovered by Thyghens．The whole number was inereased by Herschel＇s discovery of two smaller ones in 1789，a humdred and five years after Cassini＇s last discovery，and again by Bond＇s discovery of an eighth in 1848．The Saturnian system，to which the telescope has doubtless been directed more frequently than to anything else，thus serves as a record of the surcessive innorove－ ments of the telescope．Inighly significant is the fart that the discov－ eries of the eighteenth rentury were male with a reflecting teles＂ope， the others all being with refracting instruments．

Cassini＇s discovery in 1684 of the two satellites now known as Tethys and Dione，wat not accepted as conclusive motil long afterwards，when Pouml，in 1718 ，with a telescope 123 feet in length，which Hyyghens had made and presented to the Royal Society，saw all five．This par－ ticular instrment is of especial interest，beanse it is the only one of those of the last half of the seventecnth rentury which has been care－ fully compared with moderu instruments．Moreover，it is without doubt quite equal in merit to any of that period．But we fimd that， athough it had a dianeter of 6 inches，its performanee was hadly better than that of a perfect modern telescope of t iuches in diameter， and，perhaps，ti⿱丷三丨日 feet in length，while in regard to convenience in use the modern compact instrunent is incomparably superior．

Another notable diseovery of this period was that of the duplecity of the limgs of Saturn by the Ball brothers in 1665，though its inde－ pendent discorery by Cassini ten years later first attrated the atten－ tion of astronomers．The earlier discovery was made by means of a telestope 38 feet long whith seems to have been of English manufat－ ture．We must regard Cassiui＇s discovery of the third and fourth sat－
ollites of Satmon, howerer, as making the bery fimhes rearh of the old form of telescope; a rentury was to elapse and an entirely new form of telasenpe was to be developed before anothere eonsideralole addition to onv knowledge of the aspeet of the heavenly bodien was to be madr. It is true larger telescopes were made. and IInyghens invonted a means by which they could be nsed withont tubes, but notwithstanding this imporement they poved sormbersome as to he impracticable.

The older opticians had fomed that if they attempted to increase the diameter of a teleserge they were ohbiged to increase its length in a much more rapid ration to serome distinet vision. The reason of this was bet cleanly madrestood, but it was supposed to be owing to the fact that a wave font, danged in purvatme hy passing thomgh a mherial surface is no longer strictly spherioal. This deviation in shape of the reftated wave form a truesphere is called spherical almeration. Whem the reftarting surfares are large and of eonsidramble comvature this soon lecomes voy serions, but by using small rmvature, whirh, in a

 of light and of the phenomenon of dispersion emabled him to exphat the then eanse of imblistincthess in short telescopes; mamoly, that the reftation by the ohjertive varies for different roldrs; consequently, it the ocolar is placed for one partionare eolore it will not be in the right position for aby of the others, whene the image of a stare or hane
 this somere of imlistinctuess in the image, wherh is mow known as chomatie aberration, many hamberd times as merions as the spher ioal aberations. As he was persuaded by his experiments that this
 supriable, he tumed his attention to a form of teleseoper whid had

 one with his own hamds whieh is still in the possession of the lioyal Socief: This little instrmment seems to have beed of about the same power as Galikers instrment with whioh he diseovered the satrolites of . Impitor, but is was harlly more than finches in length.

Since that time fhe refleeting toleswop has had a remarkible history of development in the hamds of a mumber of mosi skillful medman eials, who have also for the most part heen distinguished by their dis. comores in physical astromony; we may thereme alvantagemsly drpart fom the chromological treatment and follow the history of this type of instrment. This comese is the more nathmal heramse we may probably resand the sumbematy of the reflerer (madisumted a century ago as passed away forever.

Even after Newton's invention was made pmblic, Jittle wats dome towands the improvement of tabescopers for halt a erentury, mat landey presented a reflector of his own construction to the Lioyal suciety in

1723, which was foum to be equal to the Huyghens refractor of 123 feet in length. From this time we may date the legimning of the smperiority of reflectors. A few years later short commenced his career as a practical optician. and for thirty yens he was mapproached in the excellence of his instruments. Inring this time many telescopes, more powerful than the best of the previons century and infinitely more eomvenient in use, had been made and scattered thronghont Emrope, but during this period also there was a singular dearth of telescopic discovery. Perhaps men thought that the harvest had already been gathered; or, perhaps, we may find the explanation in that the great cost of telencopes so restricted their use that the impulse to discovery by their means was confined to a very small class. In view of the remarkable manner in which the stamdstill in this branch of science was finally followed by a brilliant period of discovery, rivalled alone by that of Galileo, we might well regard the latter canse as the chiet one.

Willian lHersehel was born in 1738 in Hanover. In 175.5 he left his native comotry, and going to lingland, secured a position as organist in Octagon Chapel, Bath, where we find him in 1766 . Here he became so proforudly interested in the views of the heavens which a bormower telescopo of moderate power yielded, that he tried to purchase one in London. The cost of a satisfactory instrument proving beyond his command, he determined to coustruct one with his own hands. Thus he entered upon a course which was to reflect honor upon himself, his conntry, and his age, and which was to add more to physical astronomy than any other one man has added before or since. With almost inconceivable industry and perseverance he cast, gromud, and polished more than four hunded mimons for telescopes, varying in diameter from 6 to 48 inches. This in itself would imply a losy life in any atisan, but when we remember that all this was merely subsidiary to his main work of astronomical diseovery, we can not withhode onr admination.

Fortunately for science as well as for himself, he made carly in his earece a discovery of the very first importance which attached the attention of all Christendom. On the night of March 1:?, 1781, Herschel Was examining small stars in the constellation of Gemini with one of his telescopes of a little more than 6 inches in diameter, when he per"eived one that appeared "risibly langer than the rest." This proved to be a new world, now known as Urams. The discovery led in the following year to lis appointment as astronomer to the king, George III, with a salary sufficient to enable him to devote his whole time to astronomy.

One of the fints of this increased leisure was the construction of a telescope far more powertul than had been dreamed of by his prede. cessors, namely, a telesrope 4 feet in diameter and 40 feet in length. Commenced in 1785, Herschel dated its completion as Angust :88, 1789,

When he discorered hy its means a sixth satollite of Satnon and, less than a month later, a seventh, even dosere the the phant and smallem than the sisth. Wremay regam this anhoroment as manking the limit of progress in the reflecting telespope, form althongh at latast one as large is now in nse, and one evell hati as lange again has been ront structed, it is more than donbtinl whether they were ever as perfert as Hersehers at its best.

There has bepn one improvement howerer in the retlerting teleseope since the time of llerschel whieh ought not to be left monticed heres. namely, that of replating the heary metal mirmo by one of glass, madr eval more highly reflective than the old minors by a thin coating of silver deposited by cheminal methods upon the polished glass. The great advantage of this modern form of reflector lies, not so moch in the sreater lightuess and rigility of the material as in that the surfare When tarmished ean be remewed by the simple poress of rephacing the old silyer film by a new one: whereas in the metal rethectors a tamished smfare required a repetition of the most diffent and eritiond pertion of the whole process of eonstruction. The eonstrmetion is alsu so comparatively simple that an efficient rethector is far lose expensive than are retratemg tedesopes of like power, so that this may be resarded as partionarly the amatemes telespope. (On the other hame, surla telesoopes arr, like their prederessons, oxtremely inconstant, and they re fuire math mose carofal attention to kern them in working order. It is for these reasons, tombtess, that silver-on-glass retlectoms lave done su little for the advancrment of astronomial diseovery. latasonominat photosrathy, however, they promise to do much; and indered, at the present bate by far the hest photographe we have of any nebular have been math hy Mr: Common's magnitirent reflector of 3 feet in diametrr, aml liy the 20 inch reflertor of Mr. lioberts.

We mast goback now to a duarter of a centmy before llersobel diseovered the new planet,-to the reser yan imberd when that great astromomer first set foot on English soill, -in order to trace the history of another form of telesenpe which has remained mmitalled for the last half century in the more dificult lichls of astronomieal researeh, and which to-day fuds its most perferet derelopment in the instruments at Momat Wamilton, at Polkowa, at Vienna, and at Washingtom.

Newton had declared that, as a result fom his experiments, separation of white light into its constituent colns: was all inevitable aceon-
 the mateldy reftators was impraticable The correetness of the experiments romaimed manestomed fom nearly a rentury: but a famoms Graman mathematioian, Enler, hid question his mondmion. Ifis argument was that sime the eve does prodne colorless datares of whate dhe jects it misht be possible by the proper selection of embesto surombine

from dispersion, his efforts had the effect of leading to much more critical study of the phenomena involved. In this John I olland, an English optician, mot with brilliant success. Repeating an experiment of Newton's with a prism of water opposed by a prism of glass he found that aleviation of light could be prorhued withont aceompanying dispersion into prismatic colors. Nore than this, he found that the two varieties of glass, then as now common in England-cown or common window glass, and flint glass, which is characterized by the presence of a greater or less quantity of lead oxide-possessed very different powers in respect to dispersion; thas, of two prisms of these two varieties of glass which wond deflect the light by the same angle, that made of flint glass would form a spectrom nearly twice as long as the other; hence, if a prism of crown glass deflecting a transmitted beam of light, say 10 degrees, were combined with one of flint glass which would deflect the beam of light 5 degrees in the opposite direction there would remain a deflection of 5 degrees without division into color. It also follows that a positive lens of crown combined with a negative lens of flint of halt the power wond yield a colorless image. Such combinations of two different substanees are called arlmomatic systems.

It is a singular fact, worth noting in passing, that more than twenty years before Dolland's success, Mr. Chester More Hall had invented and mate achromatic tolescopes, hot this remaned mbnown to the world of seience matil after Dolland's telescopes became famons.

For a long time this ingenions invention remained fruitless for astronomical discovery, (though they were early applied to meridian instruments, on aceonnt of the impossibility of secming sufficiently large and perfect pieces of wass, more particularly of thant glass. Not matil atter the begiming of this century was any real alvance in this branch of the ants exhibited. Eren then suceess appeared, not in England or France, where most stremons aforts land been made to improve the fuality of optical glass, hut in switzerland. There a humble mechanie, a watchmaker named finimand, spent many years in efforts, long mor fruitfor, to make large pieces of optical glass. What degree of sucess he attaned there dming twenty rears of experiment we do not know, thongh from the fact that during that period good arlaromatie teleseopes of more than 5 indies in diancter were monown we mast conrlude that his sumess was limiterl. In 180.) he joined the optical establishment of Frambofer and F tzwhmeiden in Munich. Here he remaned nine years, and with the imereased means at his disposal, and the aid of Frambofer, he perfeeted his methods so far that the production of large disks of homogrmeoms glass berame only a matter of time and cost; that is to say, all of the large pieres of optical glass which have since been modnced, whether in Germany, France, or England, have been made by direct heirs of the practioal secrets of this Swiss watchmaker.

Framboler was a gemius of a high order. Althongh he died at the
"arly age of 39 , he hat not only hought the achomatic telesconge to a小egree of optical pertertion which marie it a rival of the most pewertal of the retleetor type, and so far improved its method of monnting, that his system has replaced all others: lut he also made some rapital dis. rovories in the domain of physieal optics. Vis great arherement was the comstruction of an arhomatio trasenpe ! 6.6 inches in diamoter, with which the elder Sirmbe madre at Dorpat his rematalble series of diseoreries and measmrement of domble stats. The chatacter of Stromers work demonstraters the exerleme of the toleseope and shows us that it is to be ramked as the equal of all lut the very best of its prederessors. Indeed. it may taily bre ammaded that mot more than one or two telesennes, and those made amd nsed by [lersehrl, had ever been of greater power. While in combenionce for wise the new reftactor whis rastly smperior.

For along time Frambofer and his sumessors, Merz and Mahler, from whom the great telesiopes at loulkowa and of the llarvard Observatory were procherd, remained murialied in this tioh of opties. but they have bean followed hy a momber of skillime eonstanctors whose products lave, simer the middre of the wentmer loern suattered all over
 Xartin, and the Iomy lnothers; in England, ('onk and dirnhb; and in
 great telescopes which has remblowl his mame tamilian to all readers of astromomial history. Of these the Clatis, father ame som, have beyomd a dombt won the first place, whether datermined ly the eharareter of the disenseries mate by maths of their instrmments on by the fart that the two most powerfal teleseopes ill existernee were mate by theme

 lites of Mans and the rompanion to sirins: lint besides these there is a longe list of domble stars of the most diftionlt $\begin{aligned} \text { datareter diseovered by }\end{aligned}$

We whght not to friminate our review of the development of that tol

 mediate aim in viow, we might time aseat deal of interest and be
 and ragimeers of two redtmies bey taciag its comse. We shomblat

guide ns in ralning the results of the subsequent efforts of Lassel and Rosse. The same line of study would bring us to Grubb's clever and interesting equatorial mounting of that anachonism, the t-foot Melbourue reflector. But we should find nothing of very notable interest in the momntiug of refractors, after the time of Hoyghens and Hook, until Franmofer invented a type of momting for the famons Dorpat equatorial, which still remains in its essential features as the type in miversal nse. With the iucrease in size of the telescopes to be directed towards the heavens, however, the number and complexity of the mechanical problems to be solved has been vastly increased, so that thes have taxed the best powers of some of the ablest mechanicians. The Repsolds, of Crermany, and Sir Howard Girubb, of I)ublin, have specially distinguished themselves in this field of artivity. But it seems to me that none have shown greater fertility of resonces, greater skill in the solution of every problem affecting the comfort and efficacy of the obsorver, and greater taste, combined with accurate workmanship, than have the celobrated firm which has momed the telescope at Moment Hamilton and that at Carleton College.

We come now to a consideration of the present state of the art of lens-making. We ask why such a very large proportion of the trlescopes in existence are bat; why there was a time, brief it is true, during which the ghass-maker was certamly in advance of the demands of telescope-makers; and why, finally, the first of the great modern objertives was in the hauds of the most skillfnl optician in Great Britain for seven years, and even then this maker asserted that it was incomplete.

These questions can not be answered in a word, but we can, at least. gain much in perspicuity by recognizing that the reasons are of two distinct kinds, namely, purely technical, and theoretical; and by regarding them briefly in succession.

The art of lens-making can be certainly traced back to the 13th century. though the methods at a mueh later day than that were so mode that, as we have seen, Galileo had the ntmost difticulty in making a lens good emongh to bear a magnifying power of 30 times. At the present day there is little difficulty in selecting a spectacle glass which would rival that most famons of all telescopes. Not until after another generation of effort was there such notable improvement in the technifue of lens-making that further astronomical discovery was possible. The reasons for this slow progress are to be fomb in the extremely rritical requirements for a good lens. A departure by a fiaction of a hondred-thomsandth part of an inch from a correct seometrical surface will wreatly impar the perfomane of an oljective. But even at this day the limit of acemate measurement may be set at abont a one-humdred thomsandth of an inch, while it is quite probable that ten times that value was vanishingly small to the artisans of a century or more ago. It was neressany therefore to devise a mothod of polishingfor it is a comparatively simple matter to grind a surfare accurately-

Which should keep the surface true within a limit far transernding the range of measmements. Hnyghens is the first who serems to lave dome this, by polishing upon a paste which was formed to the glases and than dried, and by using only the central portion of a large lons. In Italy Campani dreclojed a system which he most jealomsly guarded as a secret motil his death, comsisting of polishimg with a dry powder on graper cemented to the grinding toots. This method still smvives in P'aris to the exdmsion of almost all others, and it is probably the best for work whish does not drmand the hishest serentifie prarision.

Newton however was the first to introduce a method which has since been developed to a state of sumpising drlacy. Casting about for a means which should be sutficiently "temder," to use his own expression, for polishing the soft speculum metal, he fixed upon piteh, shaped to the mireo while wam, as a bed to hold the polishing powder. But the enomoms value of this substance lies not so much in the comparative immmaty which it gives fom somatching, lom in the fimet that muler slowly rhamging foreas it is a liquid, but muder those of short duration it helares like a hard amd brittle solid. Thms it is possible to slowly alter the shane of a lens while polishing, in any desired direction. It was only after the practical recognition of this fact that really exerllent lenses wre much more than a question of good fortune. The perferting of this method lofongs withont donbt to the English of the hast century anf the early part of this. In the Philosophical Transace tions, we timl many long papers relating to this art, contributed by skillful and sumessfin amatems. We may therefore regard the teehnifue of the art of lems-making as practically romplete at the middle of this century and as eommon property. so that suceess no longer defends upen the holding of some special or secret methot.

Weare now (after this, I fear, somewhat dry disenssion of a necessary point) in a condition to explain the differences between tho processes pursued by most telescoper makersand that of the maker of the Carleton College telescope.

This is the ordinary methorl: After serming perfect pieces of shass, (rown aml flint, as like as possible to those gemorally used, and having fixed upon the eremeral shape of the lenses, a gress is madr as to the proper badia of the fom sumaces to dotermme the desined fored length and comertions both for color and spherial aberation. The sueress of this gurss has muth to do with the neressaby ontlay of labor, amd thorefore past exproidure is of great value as a guide. A for working the fom sufaces to the dimensions provisiomally adopted so far as to arlmit af failly good seefing throngh the objertive, an examination of the errors is mate. Shombt the ermes of color be so smatl that their fimal comrection will not make the tolesonpe more than from 3 to 10 per rent greater or less tham the desimed foeal length, the erown lens will prob ably be completed in areordane with the provisional figmes. 'Then the tlint lens will be modified in surlo a direction as will tend to corrert
the observed errors of color and tigme, matil, by a purely tentative process, the color error is practically negligible and the error of figure is small. Then follows a process when the qualities of skill, conseientionsness, and perseverance have full scope. This process first introdnced, or at least made pmblic by Fonnault, is known as local correrting. It consists in slowly polishing away portious of the lens surfaces so that errors in the focal image hecome so small, mot that they can not be detected, but that one can not determine whether they are on the one side of truth or the other. Local correcting has always seemed to me to he eminently masciontific and unecessary. It is a process of making errors small which onght not to exist.

Mr. Brashear's method is essentially different from this. Before the glasses are tonched every dimension and constant of the finished objective is known with great acenracy. His whole am is to make the surfaces geomstrically perfect; and by ingemons polishing machinery, which embodies twolve rears of his thonght and experience, he is emabled to do this with timly astonishing exactness. All the surfaces which admit of investigation-msmally three in his ordinary constrmo-tion-are made rigidly true withont resard to the rharacter of the focal image. This leaves only one surfare which is known to be very nearly a sphere, but probably deviating slightly within in the direction of a prolate on oblate spheroid. I slance at the chatacter of the focal inage will detormine this point. Then the polishing machine is adapted to bring abont a change in the proper direction, and alter action dmring a measured inter val of time, the image is again examined, and from the observed "hange in character the necessary time for complete correction by the same or contrary action may be dednced. It will be observed that by this means it is quite possible to correct errors which are much ton small to hetray their nature, since a step in the wronge diredion carries with it no consernences of the slightest moment, since any step may be retraced.

When we learn that Mr. Brashears telesope objectives have always had a focal length differing only fonn one-tenth to one one-hmedredand eightieth of 1 per cent of the value preseribed, we have a sugges tion of the sureess of his efforts. But adding to that the fart that he is absolntely montramolled ly purely mechanical considerations. either as to the shape of his hanses or the character of his materials, leaving these questions to be decided alone by the requirements of the astronomor, it seems to me that we may airly accom to him the merit of the most important improvements intronlned into his art for a very longe period.

I shall not venture to demand much of your time in considering the purdy theoretical difticulties in telescope construction, not merely be. canse the subject has abrady taxed om pationee, but becanse it wonld be of ahmost too techmical a chararter did we allow ourselves to regard anything but the most general features.
 inser fiom a point in the ohiget should be concentrated at a point in the image；but this，combined with a prescribed foral length，may he to dheed to three ronditions：lirst，a fised focal length；secomb，freedom from eobor error；thim，freedom from spherical abruation for a partic－ nar color or wave length of light．Now let us catalogue what pori－ sions we have for satisfying these comblions．They are，fome surfares， which most be sherical but may have any radia we please，the two thicknesses of the two lenses，and the distance which separates the lenses－that is，seven elements which may be varied to suit onr require－ monts．As a matter of fact，howerer，on aceomet of the cost of the material and the fact that glas is profectly transparent，for powerna telesopes we most make the lemses as thin an possible；and we shall find also that separating the lenses intronnces errors away thom the axis which are，to say the last．malesimble．We have left，therefore， only the fomr ramia an antrary amsants．These，howerer，are more than anough to meet the three reguirements．To make the poblem doterminate we must ald another combition．The sugseston of this fourth condition and carrying the prohlem to its sohtion is the work of the great mathematicians who have directed their thonght to it． Claimant proposed to make the formoth romdition that the two arjacent surtares shomblat together and the lemses beremented．This condition wombl be，dombthes，of great value ware it jossible to rement large lemses withont changing theix shapes to a degree which womd quite sumil thein performane se sir dohn Hersehel published a very important paper in上゙ご，in which he made the fometh condition that the spherical aberration shomld ranish，not only for oljerts at a very great distance，butalso for those at a monerate distance．la this paprer he computed a table，atter－ wards graatly extended by Prof．Balden I＇owell，for the avowed purpose of airling the practical optician．It was this feature undoubterlly which bomght his comstruction，not at all a good one as we shall sere，into mote gemeral nse than any other for some time．Wat，as all Herseloch tables whe derived from caldulations which wholly diseesarded the thekness of the lenses，I ann guite mahbe to see low they ronld have heen of any material aid，and am inglined to suspect that the diseredit with whict opticians have received the dicta of mathematicians ema－ cerning their instrments may have been due in part to this very fact． It is a simgular fate for which I have in vain somght the explanation， that Frambofers objerotives are of just surh a tom an tormuply with the Hersehelian solution，although they mast have been madre quite indepentlentiy．
（iamse made the fombth comblion that another rolor or wave lemgth of light shon！d be alsu fier fiom sharieal ahemation．This serms to
 of an improvenent in constrandion，for in a point of fart the ronstrme－ tion is very had．It was generally beliered that this romdition ronld
nut be fulfilled; therefore Ganss, who was particnlarly fond of doing What all the rest of the world helieved impossible, straightway did it. There has been only one effort to carry out this suggestion of Ganss, and that forty years later hy Steinheil, but it proved a disappointment. A much larger objective made by Clark a few years ago, of the general form of Gauss's objective, probably does not meet the Ganssian condition, -at least this condition is extremely critical, and I believe it is not asserted that the objective was ever thoroughly investigated. It has been the father of no others.

It is hardly surprising, since none of these forms have any real merit, that the practical optician has, following the line of least resistance, aropter a form which costs hinn less labor than those heretofore mentioned and is quite as gool. By making the rmve equi-a onvex the trouble and expense of making one pair of tools is saved, although this would hardly appear a satisfactory reason for ehoice of a partioular form to the astronomer, who simply demands the best possible instrinment ot research.

The reason for so much fintile work on the theory of the telescope objertive is not far to seek. It had alwars been tacitly assumed that the comblition of color forrection, one of those which serves to determine the values of the arbitrary constants, was realily determinable-in fact, one of the domne of the problem, whereas it is just this datum which has offered peculiar difficalties. Framhofer brought all the resonves at the command of his genins to bear upon this point, and frankly failed, although in the effort he made a splendid discovery, which has assured a permanence to his fame no less than that of the history of srience itself-the diseovery of the dark, or Framhofer, lines in solar and stellar spectra. Ganss proposed the condition that the best objective is that which prodnces the most pertect concentration of light about the place of the geometrical image of a point, just as the best rifle practice is that which prodnces the maximmm concentration of hits abont the center of the target. That this is a false gumle appears at once from the consileration that if we take even as moblo as 10 per cent of the light firm an object and rliverted from the image sof far that it ean not be found, the telescope may still be practically perfect; all of Hersehel's did much worse than this. But if you take that same 10 per cent and concentrate it very close abont the image, the telescope will be absolutely worthless.

The true difliculty with most of the theorists is this: There is no recognition of the relative weight or inportance of mavoidable errors. The optician is confronted at the very ontset by the fact that absolute climination of color eror is inpossible, for rertain physieal reasons which we have not time for considering farther. He can rednce the color error of the old single-lens type of telesmpes limndreds of times, and hence the length of the telescope tens of times. It is this fiact which prevents the still farther shontening of telescopes, which keeps
the ratio of lengeth to diametor not less than fitteral towe in laran telo

 romection: third. freedom from spherical abermation for a particmbat wave-length of light. We therefore hare still me arbitaray romstant umbetermined. How shall wr tix its value and thas solve the problem rompletely? Surely there is maly one ratiomal gnide. Comsiber the residual ermors and make the fourth romdition such as to redmee these
 colon ermer and spherical aberration for rolors other than that for which it is elminated, or mome seientifically, chnomatic diftereme of apherical abercation. Whide of these is the gravent deferet? Our answer must depend upon the nse to whirh the objective is to be put. If it is a
 objectior to be used for photographing at comsiderable angular distances fiom the axis, our question loses its physical signiticance, sinme We haterexchated the eonsideration of ecerntrio reftatetion. But if the whactive is to lof fin a visual telesenpe, there is no question that the defeet of secondary color emor is incomparably the most serions. Onr fourth and determining rondition must, therefore br bettere colon rorrertion.

These are therefore the eonsiderations which have served as entur in the constrution of the Carleton College objective. First, the selece tion of the materials which, in the present romdition ot the art of optical glass making, possers in the highest degree the desired physioal poperties; serond, a general disenssion of erery possible combination of these two pioces of stass and a selection of the forms whidh yidd the lest attainable results. This eonserentions strife atter serentife berfertion, the mexeedled skill with whieh the results of amalysis have been interpeted into the reality of substanee, the gratifying ilentity
 have led seme of those who have watehed the erowth of this new ine strument of reseateh with the most soliatoms attention to the belide that althomgh mot the most bowerfal in existerne it may well be the most pertect great trleswore get made. Let mis therefore congratulate the pmsersors of this moble instrment, wish them (ioxl sperel in their *adrla after kowwhere, while we remind them that although no as tromomer can ever makr another disomery which will rival that made by the insigniticand tube first directod toward the hearens by the
 truth, however trivial in apmarance, which may be added to that store Which we call "somonere"

By Sil Archilbaly (ienkie, Director-General of the Geological starey of ditent britain.

In its beneficent progress throngh these islands the British Asso--iation fon the drameenent of sacme mow for the fomth time reseives a welome in this anciont rap, Otal. Onre again, mater the shadow of these antigue towers, crowded memories of a romantic past fill oms thonghts. The stomy ammals of Sentland seem to move in possession betome our efes as we walk these streets, whose names and traditions hate bern made familiar to the civilized word by the genims of litera fare At every tann, tow, we are reminded, by the monsments which a gratefin! dity las erected, that for many geacrations the purnits which wo ate now assembled to fostor have had here their eongeniat homes. Literatme philosophy, sciense, have each in tom berengided by the inthenore of the great masters who have lived here, and whose renown is the brightest gem in the daplet arombl the how of this Quren of the North.

Lingering for a moment ofer these local associations, we shatl find a perular appopmiateness in the time of this remewed visit of the Asse.
 ment was disenssing here the wreat problem of the history of the eath. Janmes llatton, after many years of tavel and retlection, had com monicated to the layal Society of this city, in the year 17s. the first ontlines of his tamous Theory of the Earth. Amone those with whom ha towk comsed in the daboration of his doctrimes were blatk, the illustrious diseoverer of fixed air and latent heat: Clork, the sagate-
 les; Hall, whose terte ingemity devised the tirst ststen of rxperiments in illustration of the structure amd origin of rocks: and Ilaytate, fhomgh whose symbathetic enthasiasm and literary skill lhatoms views came oltimately to be understood and apprediated by the world at large. With these firionds, so well able to compurehend and eritioise his eflorts to pieree the reil that shromded the history of this globe, he

[^8]paced the streets amid which we are now gathered together; with them he sought the crags and ravines around us, wherein Natme has laid open su many impressive records of her past; with them he sallied forth on those memorable expeditions to distant parts of Scotland, whence he retmrned laden with treasmes fom a field of observation which, thongh now so familiar, was then almost motroden. The eentenary of Hutton's Theory of the Earth is an event in the annals of science which seems most fittingly celebrated by a meeting of the British Association in Edinburgh.

In choosing from among the many subjects which might properly engage your attention on the present occasion, I have thought that it would not be indppropriate nor minteresting to consider the more salient featmes of that Theory, and to mark how much in eertain departments of inguiry has sprong from the fruitful teaching of its author and his associates.

It was a fundamental doctrine of Hntton and his school that this globe has not always worn the aspect which it bears at present; that on the contrary, proofs may everywhere be culled that the land which we now see has been formed out of the wreck of an older land. Among these proofs, the most obvious are supplied by some of the more familiar kinds of rockn, which teach us that, though they are now portions of the dry land, they were originally sheets of gravel, sand, and mud, which had bern worn from the face of long-vanished continents, and after being spead ont over the floor of the sea were consolidated into compact stone, and were finally broken up and raised once more to fom part of the dry land. This eycle of change involved two great systems of natural processes. On the me hand, men were taught that by the ation of rmaning water the materials of the solis land are in a state of continmal decay and transport to the ocran. On the other hand, the ocean flow is liable fiom time to time to be upheaved by some stupendous internal force akin to that which gives rise to the volsano and the earthruake. Hntton further perceived that not only had the consolidated matemials been dismpted and elevated, but that masses of molten rock had been throst upward among them, and had cooled and crystallized in large bodies of granite and other eruptive rocks which tom so prominent a featme on the earth's surface.

It was a special "hamacteristic of this phibosophieal system that it sought in the changes now in pogress on the earth's surface an exphanation of those which ocemred in older times. Its fomder refused to invent canses or modes of operation, for those with which he was familiar seemed to him adequate to solve the problems with which be attempted to deal. Nowhere was the profonduess of his insight more astonishing than in the clear, definite way in which he prochaimed and reiterated his doctrine, that every part of the surface of the continents, from momatain top to seashore, is continually undergoing decay, and is thus slowly travelling to the sea. He saw that no sooner will the sea
floor be elerated intor new land than it most necessarily berome a prey to this miversal and moceasing degratation. He perceived that as the tramort of disintegrated material is carried on chiefly by rmming water, rivers mast slowly dige out for themselves the chamels in which they flow, and thus that a system of valleys, matiating fiom the water parting of a country, must neressanily result from the descent of the streams from the momatain crests to the sea. Ife diserernef that this ceaseless and wide proad decay would eventmally lead to the mine demolition of the dry land, but he contended that from time to time this (atastrophe is prevented ly the operation of the mader-gromel forces, wherby new continents are upheaved fiom the bed of the ocean. And thus in his systam a due proportion is maintained between land and water, and the condition of the earth as a habitable globe is preserved.

A theory of the eanth so simple in outline, so bold in conception, so full of suggestion, and resting on so broad a base of observation and reffertion, onght (we might think) to lave commanded at onee the attention of men of science, aren if it did not immediately awaken the interest of the ontside word ; but, as llayfair somowfinly admitterl, it attracted notice only rery slowly, and several years elapsed before any one showed himself publicly concerned abont it, either as an enemy or a friend. Some of its earliest critics assailed it for what they asserted to be its irreligious temundey, -an arensation which Hutton repudiated with murh warmth. The sueer levelled by Cowper a few years earlies at all inguibices into the history of the universe was perfectly matmal and intelligilde from that puet's point of view. There was then a widesurad belief that this wond ame into existemer some six thonsand yeas aso, and that any attempt greatly to increase that antiquity was meant as a blow to the authority of Holy Writ. So far however from aming at the overthrow of orthodox beliefs, Hutton pridently regarded his. "Theory" as an important contribution in aid of natural religion. He dwelt with unteigned plasime on the multitude of proots which he was able to atecmulate of an arderly design in the operations of nature, decay and removation being se nicely batanoel as to maintain the habitable comblition of the phanet. But as he wefused to admit the predominance of violent action in terrestrial changes, and on the contrary contended for the efficacy of the quitet, contimons processes which we can aren now see at work aromid ns, he was constrained to require an molimited duration of past time for the production of these revolutions of which he perecived such elear and abmotant proofs in the ernst of the carth. The gemeal puldice, howere failed to comprememb that the floctrine of the high antiquity of the globe was not ineonsistent with the comparatively recent apparane of man, -a distinction which seems. so obvions how.

Hutton died in 17:9. belowed and regretted ly the cirelo of frimens who had learned to appreriate his estimable character and to admire his
II. Mis. $114-8$
genius, but with little recognition from the world at large. Men knew not then that areat master had pasied away fom their midst, who had lad broad and deep the fomdations of a new seience; that his name wonld beeome a honsehold word in after generations, and that pilgrims would come from distant lands to visit the scenes from which he drew his inspiration.

Many years might have elapsed before llutton's teaching met with wide acceptane, had its rerognition depended soldy on the writings of the philosopher himself: For, despite his firm grasp of general prin"iples and his mastery of the minutest details, he had acouired a literary style which, it most be admitted, was singularly mattractive. Fortunately for his fame, as well as for the canse of science, his devoted friend and disciple, Playfair, at once set himsolf to draw up an exposition of Intton's views. After five years of labor on this task there appeared the classic "Illustrations of the Inttonian Theory", a work which for laminons treatment and gracefnl diction stands still withont a rival in English geological literatme. Though jurofsing merely to set forth his friend's doctrines, Playfair's treatise was in many respects an original eontribution to science of the highest value. It plated for the first time in the clearest light the whole philosophy of Hutton regarding the history of the earth, and enforeed it with a wealth of reasoning and copionsness of illnstration which ohtained for it a wide appreciaation. From long eonverse with Hutton, and from mofomed reflection himself, Playtair gained such a comprehension of the whole subject, that discarding the nom essential parts of his master's teaching, he was able to give so heid and acemrate an exposition of the general scheme of Natures operations on the surface of the globe, that with only slight corrections and expansions his treatise may serve as a text-book to-day. In some respects, indeed, his volme was long in adrance of its time. Ouly, for example, within the present generation has the truth of his teaching in regard to the origin of valleys been generally admitted.

Varions canses contributed to retard the progress of the Huttomian doctrines. Esperially potent was the inflnence of the teaching of Werner, who, thongh he pereetived that a definite order of sequence conld be recognized among the materials of the earth's crnst, had formed singularly narrow conceptions of the great processes whereloy that cust has been built up. His enthusiam, however, fired his diseiples with the zeal of proselytes, and they spreat themselves over Emrope to preach everywhere the artificial system which they had learned in Sax ony. By a curious fate Edinbursh became one of the great headquarters of Wernerism. The friends and followers of Hutton found themselves attacked in their own eity by zealots, who prond of smperion minerat logieal acquirements, tmoned their most chershed ideas upside down and assailed them in the mononth jargon of Freiberg. Inasmuch as subterranean heat had been invoked by flutton as a force largely instrumental in consolidating and upheaving the ancient sediments that

How form so sreat a pat of the dry latol, his followers rome nicknamed Platomists. On the other haml, as the agobey of water was ahmost
 to have been chiedly chemical prodipitates foom a primeral moversal wean, those who adoped his viows reedied the equally deswriptive Bame of Neptomists. The battle of these two contemdans selools raged dercely here for somm yatrs, and thomgh mainly form the yonth, zant, amd energy of damsenn, and the influence which his bosition ats pros fessor in the maversity save him, the Wrmerian doctrines antinned to hold their pare they were erentatly abmanded even hy dameson himself, amd the deht due to the memory of Hutton and lelaytia was tandily arkinowledsed.

The pursuits amb the quarels of philosphers have from eanly times been a fivorite subjeet of merriment to the ontside world. Such a femd as that butween the Platonists amd Neptmists woull be sure to fimmeln abmuant matter for the gratification of this propensity. Turning orer the pages of Kay's " Portraits," where sommeh that waskistinctive of Edinbmequsety a homdred rears ago is embalmed, we fiml linton's personal peculiatites and pussuts tonched off in grood-humored carica thre. In one plate he stands with arms folded and hammer in hand, meditating on the fare of at ditif, from which rocky prominences in shape of hmman faces. perlaps grotesque likenesses of his scientitie oppondents, grin at him. In another engraving le sits in conclane with his friend Black, possibly arranging for that famoms bancutet of garden snails whicll the two wonthies had persmaded themselves to look mon as a strangely megected form of human fool. Nore than a generation
 antagonism, the humorons side of the antroversy did mot essape the notiae of the anthor of " Wiareley," whan, you will remember, when he makes Jueg Dods rewomet the varions kinds of wise folk brought by Lady lemelope l'emfeather from Edinbugh to St. Ronan's Werl, does not forset to include those who "rin uphill and down dale, knapping the chatky-stames to pieres wi hammers (like sate mony roal-makers run dalt), to see how the watd was mate."

Among the names of the fiemals and followers of Hutton there is one Whel on this rexasion deserves to he hold in esperial honor, that of Sif Jamos ltall, of Dunglass. Having arcompaniod Hatton in some of his exdmesons, and having discussed with him the porblems presemterl by the rorks of Scotkand, Ilall was familiar with the views of his master, and was able to supply him with fiesh illustrations of them from different parts of the eomatry. Gifted with remarkahle originality and ingematy, he som promived that some of the fuestions involved in the theory of the eanth could probably be solved hy direet phosicat experiment. Hattom however mistrustell any attempt "to judge of the great operations of mature by merely kindlines a tire and looking into the botton of a little crucible." Unt of deference to this preju-
dice Hall clelayed to carry out his intention during Hutton's lifetime. But afterwards he instituted a remarkable series of researches whieh are memorable in the history of seience as the first methodical endeavor to test the value of geological sperulation by an appeal to actual experiment. The Neptunists, in ridiculing the Huttonian doctrine that basalt and similar rocks had once been molten, asserted that, had such been their origin, these masses would now be found in the condition of glass or shag. Hall howner trimmphantly vindicated his friembls view by proving that basalt eould be fused, and thereafter by slow cooling could be made to resmme a stony textmre. Again, Hutton had asserted that moler the rant pessmes which most be effertive deep within the earth's rust, chemical reartions mast be powerfully influenced, and that under such conditions even limestome may ronceivably be melted withont losing its carbonic acid. Vimious specions argments had been adduced against this proposition, hot by an ingenionsly devised series of experiments Hall sumerederl in converting limestone under great pressure into a kind of marble, and even fused it, and found that it then acted vigoronsly on other rocks. These admirable researches, which laid the foundations of experimental geology, constitnte not the least memorable of the services rendered by the Hatonian school to the proserss of science.

Clear as was the insight and sagacions the inferemes of these great masters in regard to the history of the globe, their vision was neces. sarily limited by the comparatively narow range of asoertaned tact which up to their time had heen established. They tanglat men to recognize that the present world is buitt of the ruins of an earlier one, and they explained with admiable perspicacity the operation of the processes whereby the degradation and renovation of land are bronght abont. But they never dreamed that a long and orderly series of such snecessive destrutions and renewals had taken phace and had left their records in the crust of the carth. They never imagined that from these records it would be possible to establish a determinate enronology that could be read everywhere and apmed to the elucidation of the remotest quarter of the globe. It was by the memorable observations and generalizations of William Smith that this vast extension of our knowledge of the past history of the earth beeame possible. While the seottish philosophers were building up their theory here, smith was quietly ascertaining by extended jommeys that the stratified rocks of the west of England oreme in a detinite sequence, and that (ach well-mathed gromp of them (an be discriminated from the others and identified across the romatry by means of its inclosed organie remains. It is nearly a hundred jears since he made known his views, so that by a durions coincidence we may litly celebrate on this occasion the centenary of William smith as well as that of James Hutton. No single discovery has ever had a more momentons and far reaching in Huence on the progress of a seience than that law of organie succession
which Smith established. At lirst it served merely tor determine the
 a world-wide value. fion it was fomm to fumish the key to the strmethere of the whole stratified crast of the earth. It showed that within that crust lia the cheonicles of a long history of plant and animal life mon this planet. it suppled the meams of arranging thr matarials dion this history in true whonological sequences and it thats opened ont a magnificent vista thomgh a vast serios of ages amb marked by its own distinctive types of orgatie lite, which, in proportion to their ant tiguity, departed more amb more fiom the aspert of the living world.

Thms a lmonded years ago, by the brillisut theory of llatton and the firntinl seneralization of smith, the staty of the earth received in wor "ountry the impetus which has wiven birth to the motern miduce of seolog?

Tor review the marvellons progres which this sededre has madre daring the finst rentury of its existene would rernine not one but manys. homs for adequate tratment. The mareh of discovery has advanced along a moltitnde of diflerent paths, and the domains of matore which have been included within the growing territories of luman knowledge lave bern many and ample. Nevertheless, there are certain depart mento of investigation to which we may potitably restriot ome attemtion on the present oecasion, and wherein we may see how the leading principles that were prodaimed in this eity a hondred years ago have gemmated and bome finit all over the world.

From the earliest times the nataral featores of the earthes surfare have arrested the attention of mankind. The mosed mommata, the cheft rasine, the searped eliff, the solitary bowlder, have stimmated emiosity and prompted man! a speralation as to their origin. Tha sheds embedded hy millions in the solid rocks of hills far remosed from

 mot merely that the elameln opposed itself to the simple and obsions interperation of these natmal phemomanas. So implicit had faidh heromme
 that exen laymen of intelligence and lamming set themsedres mbideden
 so persistently raised if, ame to reomede her tearhines with those of the theolngians. In the varions theories thas originalinge the amomat of knowlerge of hatmral law witally stom in inverse ratio to the shame

 cath hot be read bow without a smile. la mosense were they sodentite researehes: they ran only be looked mon as exeratations of leanded ighoramor. Sprinting mainly ont of a lamelable desire to promote what

inquiry, and exercised in that respect a baneful intluence on intellectual progress.

It is the special glory of the Edinbmeh school of geology to have cast aside all this fancifnl trifling. Hntton boldly proclamed that it was no part of his philosophy to aceount for the begimning of things. His concern lay only with the evidence furnished by the earth itself as to its origin. With the intuition of tue genins he carly perceived that the only solid basis fiom which to explore what has taken place in bysome time is a knowledge of what is taking place to-day. He thas founded his system upon a careful study of the processes whereby geological changes are now bronght about. He felt assured that Natme must be consistent and miform in her working. and that only in proportion as her operations at the present time are watched and moderstood will the ancient listory of the earth become intelligible. Thus, in his hands, the investigation of the Present became the key to the interpretation of the Past. The establishment of this great truth was the first step towards the inangmation of a true seience of the earth. The doctrine of the uniformity of cansation in Nature became the fruitiul prineiple on which the structure of modern geology ronld be built up.

Fresh life was now breathed into the stuly of the earth. A new spirit seemed to animate the advance along every pathway of ingriry. Facts that had long been familiar came to possess a wider and deeper meaning when their comertion with each other was recognized as parts of one great hamonions system of contimons change. In no department of Natme, for example, was this broader vision more remarkably displayed than in that wherein the circulation of water between land and sea plays the most conspicuons part. From the endiest times men had watehed the eoming of elonds, the fall of rain, the flow of vivers, and had recognized that on this micely admited machmery the beandy and fertility of the land depend. But they now learned that this beanty and fertility involve a continual decay of the terrestrial surface; that the soil is a measme of this decay, and would rease to afford ins maintenance were it not continually removed and renewed: that through the ceaseless transport of soil by rivers to the sea the face of the land is slowly lowered in level and carved into monntain and valley, and that the materials thms borne ontwarls to the floor of the ocean are not lost, but acemmate there to form rocks, which in the end will be upraised into new lands. Deday and renovation, in well-halanced proportions, were thas shown to be the systen on which the existence of the earth as a habitable giobe had been established. It was impossible to conceive that the economy of the planet conlal be maintaned on any other basis. Withont the cimenlation of water the life of plants and animals would be impossible, and with that rirenlation the decay of the surface of the lam and the renovation of its disintegrated materials are necessarily involved.

As it is notr, sommst it lare been in past time. Mutton and Playfair pointed to the stratified roers of the earthes crmst as demonstrations that the same processes which are at work fo-day have leen in operation from a remote antignity. By flas paring their theory on a hasis of actual observation, and providing in the study of oxisting operations a sulde to the interprelatom of those in past times, they resened the investigation of the history of the carth from the serentafions of thenlogians amd rosmongists, amd established a place for it among the reagnized indurtive seresters. To the gniding intluence of their philosophical systran the prodigions strides made by modern geology are in lase measure to be attributed. And hare in thero own rity, atter the lapse of a lombled years, let us offer to their memory the gratefinl lomage of all who lave pootited by their labors.

But while we reognize with admiration the farearhing inthence of the doctrine of miformity of "amsation in the investigation of the history of tha earth, we mast mpon retlertion arlmit that the doctrine has bern phsised to an extremb perhaps not eontemplated hy its original fommers. To take the existing conditions of Natme as a plat form of atotal knowlerge fiom which to start in, an ingmiry into former conditions Was logia: and prodent. Obvionsly, however, hmman experience, in the few renturies during which attention has been turned to such subjects, has beren too bujef to wamant any dogmatie assmmption that tho ramons batmal proesses most have been carred on in the past with the samm dumey and at the same rate as they are carried on now. Variations in emergy mixht have beren legitimately concoded as possible, thongh mot to he allowed withont masomable proof in their favor. It was right to refase to adnit tha opration of sipenative canses of "hatug when the phemomena were rapeable of natmral and adequate explanatom by referene to eanses that san he wateled and investigated. But it was an emor to take for gratod that no other kint of frocess on intuence, nor any varbatom in the rate of activity save those of which man has had actual rognizance, las played a jant in the terrestrial monomy. The malomitarian writers lad themselves open to the charge of mantanining a kind of perpernal motion in the machinery of Nature. They ronld find in the reards of the earth's history no
 suressive removations athd destrmetioms had been effected on the earthes surfare, amd that this lons line of vicissitudes formed a series of which the rarlest wore lost in antiquity, while the latest were sitl in provess towards an apparenfly ilfimitable fatmere

The diseoveries of Willian suth, hat they heren aderpately bader-
 formitarian eonception, for they revealed that the ramst of the rath rontains the long record of an momistakable order of prosession in organie types. They proved that plants and amimals have varied widely in suceessive periods of the earth's history: the present con-
dition of organic life being only the latest phase of a long preceding series, each stage of whirh recerles further from the existing aspert of things as we trace it backward into the past. And thongh no relic had yet been fonnd, or indeed was ever likely to be fomd, of the first living things that appeared mon the earth's surface, the manitest simplification of types in the older formations pointed imesistibly to some legiming from which the long proression has taken its start. If then it conld thus be demonstrated that there had been upon the globe an wrerly march of living forms from the lowliest grades in early times to man himself to-day, and thms that in one department of her domain, extending throngh the greater portion of the records of the earth's history, Natme lad not been miform, but had followed a vast and noble plan of evohtion, smely it might have been experted that those who discovered and made known this plan would seek to ascertam whether some analogons physical progression from a definite beginning might not be discernible in the framework of the globe itself.

But the early masters of the science labored muld two great disad vantages. In the first place, they found the oldest records of the earth's history so broken up and effaced as to be no longer legible. And in the second place, they lised mader the spell of that strong reaction against spernhation which followed the bitter controversy between the Neptonists and Platonists in the earlier decades of the century. They considered themselves bombl to seareh for facts, not tobmild up theories; and as in the comst of the earth they ronld find no facts which thew any lisht upon the pimeval constitntion and subsequent development of our planet, they shat their wars to any theoretical interpretations that might be offered from other departments of seience. It was enongh for them to maintain, as Hntton had done, that in the visible sthucture of the earth itself no trace can be found of the begiming ot things, and that the oldest terrestrial records zeveal mo plysical eonditions essentially different foom those in which we still live. They slonbtless listened with interest to the speculations of Kant, Laplaree, and Herschel on the probable evolution of nebule, smes, and phanets, but it was withe the languid interest attaching to ideas that lay outside of their own domain of researeh. They reeognized no pactical eomneretion between such spernlations and the data fimmished by the earth itself as to its own history and progress.

This cmions lethargy with respert to theory on the part of men who were popularly regarded as among the most specnlative followers of sedence would probably not have been speedily dispelled by any discovery made within their own field of observation. Eren now, after many years of the most diligent research, the first dapoters of our planet's history remain motiscovered or moleriphorable. On the sreat terrestrial palimpest the earliest inscriptions seem to have been hopelessly effaced by those of hater ages. But the question of the prim-
eval comdition and subsequent history of the planet might be considared from the side of astronomy and physies. And it was by inrestigations of this natme that the geologieal torpor was ewentarlly dissipated. To our illustrious former prestent, Lord Kelvin, who orempied this "hair when the association last met in Edinhurgh, is mainly due ther rousing of attention to this subjert. By the most rouvincing arguments le showed how impossible it was to beliwe in the extreme doetrine of miformitarianism. Ant thongh, owing fo uncertainty in resard to some of the data, wide limits of time were postalated by him, le insisted that within these limits the whele evolation of the arth and its inhabitants mast have been rompriserl. While threfore the geological dortrine that the present orter of Nature must be our guide to the interpretation of the past remained as true and fruithl as erer, it had now to be widened by the reception of evidence furnished by a study of the earth as a planetary body. The secular loss of heat, which demonstrably takes place both fiom the earth and the sum, made it quite ereain that the puesent could not hare been the original condition of the system. This diminntion of temperature with all its conserpences is mot a mere matter of spernlation, but a physifal fact of the present time as much as any of the familat physion agences that atfere the surface of the globe. It points with mmastakable directness to that beginning of things of which Huttom and his followers could find no sigu.

Another modification or enlargement of the uniformitarian deretrine Was bronght about ber rontimed investigation of the termestrial crust and conserpant incorase of knowledseresperting the history of the earth. Thoush Ilntton and Playtair berlieved in periodical eatastrophes, and inderd required these to refor in order to remew and preserve the habit able eondition of ow planet, their sucerssors spalmally eame to view with repngmance any apheal to ahmomal, and esperially to violent
 such slow and comparatively feeble action as had heen witnessed by man could alone be reegnized in the evidence from which geolegical history masi be compiled. Well do 1 remember in my own boyhood what a candinal article of fath this promesession had beoome. We were fanght hy our great and honored mastor, Lyedl, fo believe impleitly in gentle and miform oproations, extemded wer indefinite periods of time. thomeh fossibly some, with the zand of partisaths, cal ried this belief to an watren which Lyedl himself did mot appore. The most stmpendons mank of terrestrial distmbanme. sumb as the strmetme of ereaf monntain chains, were dermed to be more satisfartorily aceomed for by slow mownomts prolonged though indefinite ases than by any suhtorn convolsion.

What the more extreme members of the aniformitarian school tailed to pereedre was the absenmor all evidemer that tereestrial ratastrophes eren on a colossal seale might not be a patt of the present eeonomy of
this globe. Such ocemrences might never serionsly affect the whole earth at one time, and might returu at sneh wide intervals that no example of them has yet been chronicled by man. But that they have ocemred again and again, and even within comparatively recent geological times, hardly aduits of serions dombt. How far at different epochs and in varions degrees they may have included the operation of cosmical influences lying wholly ontside the planet, and how tar they have resulted from movements within the body of the plamet itself, must remain for further inquiry. Yet the admission that they have played a part in geological history may be treely made without imparing the real value of the Huttonian doctrine, that in the interpretation of this history our main gude must be a knowledge of the existing processes of terrestrial clange.
As the most recent and best known of these great transformations, the Ice Age stands ont ronspienomsly before us. If any one sixty years ago had ventured to affirm that at no very distant date the snows and glaciers of the Aretic regions stretched sonthwards into France, he would have been treated as a mere visionary theorist. Many of the facts to which he wouk hare appealed in support of his statement were alrealy well known, but they had received rarions other interpetations. By some observers, notably by Hutton's friend, Sir James Hall, they were believerl to be due to violent debacles of water that swept oser the face of the land. By others they were attributed to the strong tides and currents of the sea when the land stood at a lower level. The miformitarian sehool of Lyell had no difficulty in elevating or depressing land to :my required extent. Indeed, when we consider how averse these philosophers were to admit any kind or degree of natural operation other than those of which there was some hman experience, we may well womler at the bohlness with which, on sometimes the slenderest evidence, they made land and sea change phaes, on the one hand submerging momitain ranges and on the other plaring great barriers of land where a deep orean rolls. They took such liberties with geography becanse only well-established processes of change were invoked in the operations. Knowing that during the passage of an earthquake a territory bordering the sea may be upraised or smik a few feet, they drew the swerping inference that any amount of upheaval or depression of any part of the earth's smface might be clamed in explanation of geological problems. The progress of inquiry, while it has somewhat entailed this geographical license, has now made known in great detail the strange story of the he Age.

There can not be any donbt that after man had become a denizen of the carth, a great physical change came over the Northern hemisphere. The climate, which han previonsly been so mind that evergreen trees flomished within ten or twelve degrees of the north pole, now became so severe that vast sheets of show and ice covered the north of Europe and erept southward beyond the south coast of lreland, ahmost as far as the
southern shores of Euglaml, and anows the laltio into France and Cormany. This Aretie transformation was mot an ephende that lastedmerely a few seasoms, and latt the land tor resumb thereater its anciont aspert.
 thomsambs wt peans. When it began to disappear it probably faderi away as showly and imporeptibly as it had alrancod, and when it finally vanished it laft Enmore amd North Americal pofommlly ehanged in the chanatere alike of theit serenery and of the in inhathitants. The foged rocky contoms of earliar times way gromme smooth and pobished hy the mateh of the iow aross them, whild the hwer gromeds were buried wher wide and thiek sheets of chay, gravel, and sand, lelt behind by the mating iee. Tha variod and abmadant tlora which hand spread so far within the Aretic emele was driven away into more sonthern amd less magenial ellmes. but most memorable of all was the extirpation of the prominent lare animals which, before the advent of the irr, had roamed wer Eurone. The lions, hyenas, wild

 theif place came nothern torms-the reindeer, ghtton, mask ox, woolly rhinorevos, and mammoth.

Such a marvelons tramsiomation in elimate, in sermery, in vegetation and in inlabitants, within what was alter all lont a biol protion of geot logital time thomgh it may lave involverl mosmblen or violent ronsulsion, is sumberntitled to ramk as a catastrophe in the history of the glober It was pobably bonght abont mainly if not entirely by the operation of fores extmoal to the earth. No similar calanity having befallan the contiments within the time dmiag which man has been
 to the doctrine of mifmonts. And yet it manifestly armioed as part of the established meder of Nature. Whether or not we grant that other
 maler which it arose, so far as wo kow them, might eome eivally have
 into play by the extensive rofigeration of the northern hemisplare were mot different fiom those with which we are faniliar. Show fell

 nothing abmormal in the phemomema, sate the seale on which they Were manilested. Amd thms, takiag abomal view of the whold subjert,

 be integral parts of the machanery wherey the sumber of the wath is rontimally thansformed.

Among the dehts which seience owes to the llatomian sehool, not the least memorable is the promblemion of the first well-fommed eon-
ceptions of the high antiquity of the globe. Some six thonsand years had previonsly been believed to comprise the whole life of the planet, and indeed of the entire universe. When the eurtain was then first raised that had veiled the history of the earth, and men, looking beyond the brief span within which they had supposed that history to have been transacted, beheld the records of a long vista of ages stretehing firr away into a dim illimitable past, the prospeet vividly impressed their imagination. Astronomy had made known the immeasurable fields of space; the new science of geology seemed now to reveai boundless distances of time. The more the terrestrial chronicles were studied the farther could the eye range into an antiquity so vast as to defy all attempts to measure or detine it. The progress of research contimally furnished additional evidence of the enomons duration of the ages that preceded the coming of man, white, as knowledge increased, periods that were thonght to have followed each other consecutively were fomud to have been separated by prolonged intervals of time. Thins the idea arose and gainet miversal acceptance that, just as no boundary conkd be set to the astronomer in his free range through space, so the whole of bygone eternity lay open to the requirements of the geologist. Playfair, reechoing and expanding Hutton's language, had declared that neither among the records of the earth, nor in the phanetary motions, can any trace be diseovered of the begiming or of the end of the present orter of things; that no symptom of infancy or of old age has been allowed to apmean on the tate of nature, nor any sign by which either the past or the future duration of the miverse an be estimated; and that althongh the Creator may put an end, as he no donbt gave a beginning, to the present system, such a eatastrophe will not be brought about by any of the laws now existing, and is not indicated by anything which we pereeive. This doctrine was naturally esponsed with warmon by the extreme miformitarian sehool, which required an mulimited duration of time for the accomplishment of such slow and quiet eycles of change as they conceived to be alone recognizable in the records of the earth's past history.

It was Lorl Kelvin, who, in the writings to which I have ahready referred, first called attention to the fundamentally moneons nature of these conceptions. He pointed out that from the high intrinal temperature of our globe, increasing inwards as it thes, and from the rate of loss of its heat, a limit may be fixed to the planet's antrquity. He showed that su far from there being no sign of a begiming, and no prospect of an end, to the present eronomy, every lineament of the solar system bears witness to a gradnal dissipation of mergy from some definite starting point. No very precise data were then, or indeed are now, available for computing the interval which has elapsed since that remote commenement, but he estimated that the surface of the globe could not have comsolidated less than twenty millions of years ago, for the rate of increase of temperature inwards would in that case have
been higher than it actually is; ber mowe than fom lumdred millions of years ago, for then there would hare heen no sensible inerease at all. If was inclined, when first dealing with the subject, to bedieve that from a revew of all the evideme then available, some sum period as ome
 of the shlober.

It is not a pleasant rxperienco to diseover that a fortume whinh one has moncernediy believed to be ample has somohow taken to itsedf wings and disuppeam. When the gedogist was suldenly awakence by the enderetie waming of the physisist, who assmod him that he had emomomsly overnam his aromot with past time, it was but matmal moder the ciremmstances that te shomblamk the acomotant to be mistaken. Who thas returned to bim dishonored the laree dralts he had made on eternity. De saw law wide were the limits of time deducible from physiall considerations, how vague the data from which they had bern calculated. And thongh he conld mot help admitting that a limit mast be fixed beyond which his chomology and mot he extemded, he consoled himself with the reflection that after all a homdred millions of years was a tolerably ample beriod of time, and might possibly have
 of events recorded in the erwst of the path. He was therefore dis. posed to arguiesce in the limitation thas imposed upen geologiral his. tory.
 the anly history amd antignity of the rath. Further consideration of the inthenere of tidal fridion in retarding the earthe rotation, and of the suncs rate of cooling, led to swerping rednetions of the time allowable for the roblution of the planet. The geologist lomad himself in the plight of Lear whon his boely gand of loo knights was eut down. "What need you five-and-twenty, ten on tive?" demands the inexorahle physicist, as he remonselessly strikes sliee after sliee from his allowane of goological time. Lord Kelvin is willing, I believe, to grant us some twentr millions of years, lat lrofessor Tait would have us content with less than tem millions.
la scientitie as in other mombane questions there may often be two
 either. I famkly eonfess that the demands of the early geologists for an monitad series of ages were extrabamt, and even, for their own purposes, moneessary and that the physidist did good servier in me ducing them. It may ako be firely almitted that the latest concho sions from physical eonsiderations of the extent of geological time re guire that the interperation wiven to the reoord of the roeks shonk herigomosly revised, with the view of ascertaining how far that interpretation may be capable of moditieation or amembment. But we monst also remember that the geological rerore? ronstitutes a volnminoms borly of evidence regarling the dath's history whieh can mot ber ignoned, and
must he explained in aceordance with aserertaned natmal laws. If the ronclusions derived from the most coneful stody of this record can mot he recondiled with those drawn fiom physical considerations, it is smely not too mucha to ask that the lattershould be also revised. It has heen well said that the mathrimatical mill is an admirable piece of machinery, lut that the value of what it yields depends upon the quality of what is put into it. That there must be some flaw in the physieal aremment 1 can, for my ow: part, hardly doubt, timugh I do not pretend to be able to saly where it is to be fombl. Some asimmption, it seems to me, has been mate, on some consideration has been left ont of sight, which will eventually le seen to vitiate the conchnsions, and which when duly taken into acconnt will allow time enongh for any reasonable interpetation of the geological record.

In problems of this nature, where geological data capable of momerical statement are so needful, it is havlly possible to obtain trustworthy emputations of time. We tan only measure the rate of changes in progress now, and infer from these changes the length of time refuired for the complation of results achieved by the same processes in the past. There is fortmately one great eycle of movement which admits of careful investigation, and which has been made to furnish valmable materials for estimates of this kind. The miversal degradation of the laml, so motable a chanateristic of the earth's smeface, has been regarded as an extremely slow process. Though it goes on without ceasing, yet firm century to century it seems to leave hardly any perceptible trace on the lamdseapes of a comtry. Momenains and plains, hills and valleys appeat to wear the same familiar aspeet which is indicated in the oldest pages of history. 'This obvious slowness in one of the most important departments of geological activity doubtless contributed in large measure to form and foster a vague belief in the vastness of the antiguity required for the evohtion of the earth.

But, as geologists eventually came to pereenve, the rate of degradation of the land is eapable of actual measurement. The amount of material worn away from the surface of any thanage basin and carried in the form of mud, sand, or gravel, by the main river into the sea represents the extent to which that surface has been lowered by waste in any given period of tinc. But denndation and deposition must be equivalent to each other. As moch material most be laid down in sedimentary aceommlations as has been mechanieally removed, so that in measuring the ammal bulk of sediment borne into the sea by a river, we obtain a clne not only to the rate of demmation of the land, but also to the rate at which the deposition ot new sedimentary formations takes place.

As might be expected, the activities involved in the lowering of the surface of the land are not everywhere equally energetic. They are naturally more vigorons where the rainfall is heavy, where the daily range of temperature is large, and where frosts are severe. Hence they
 and thein mentis most constantly vary, mot only in difterent hasins
 Actaal measurement of the fropurtion of serliment in tiver water shows that while in some cases the lowering of the surface of the land
 as frone lanther worls, the bate of thenoxition of mew sedimentary formations. orer all ara of sea flom equivalent to that whith has yided the sediment, may vary fom one font in seren hamdred amd fhinty yans to ond foot in six thonsamd eioht hamdred years.
 of time requited for the deposition of the varions serimentary masces that form the outer part of the earthe crenst, we obtain some indiation of the dhation of geologiaal history. (On a reasomable computation these stratitied masses, whore most finlly derolomed, attain a miter thirkness of mot less than 1000000 feet. If they were all laid down at the most rapid recorded rate of dembdaton, they would iequire a period of seronty thee millions of yeans for their completion. If the wem land down at the slowest matr they wond demand a priond of not less than six humbed amb eighty millions.

But it may bergerd that all kimb of torrestrial emergy are grow. inse feble, that the most ative dommation now in progress is murh less vigomons than that of hyene ages, and heme that the stratitient bart of the dathes crust may have been put tosether in a much brioter spaco of time tham modern evolitis might lead ms to suppose. Sholn
 ronfimation of them ran he sathered form the rocks. On the contrary Ho whe "an thonghtfully study the vaions systems of stratified formations withont heing impressed ly the falloess ot their eviloner that. on the whole the arommulation of sediment has been extremely slow.
 like lamint of the finest silt. Which evidently settled down quietly ame at intervals on the seat botom. We find sumeessive layers comered
 of ameient shores where samd amd mul tramplitly wathered as they do
 ever-moneren any evilome which shesests-that on the whole the mate

 this bate frem anciont to modern times, it womld be incorelible that mo

lant in actalal fact the testimony in fane of the show arommation and high antignity of the geologiral recond is murh strongor than might be infered fiom the mere thiekness of the stratified formations. These
 but have had their eontimuty intermpted again and again by upheaval
and depression. So fragmentary are they in some regions that we can easily demonstrate the length of time represented there by still existing sedimentary starata to be vastly less than the time indicated by the gaps in the series.

There is yet a finther and impressive body of evidence fumished by the sucesssive rades of phants and animals which have lived upon the earth and have left their remains sealed up within its rocky crust. No one now believes in the exploded doetrine that sureessive ereations and miversal destructions of organire life are chronicled in the stratified rocks. It is werywhere admitted that, from the remotest times up to the present day, there has been an onward mareh of development, type sucheeding type in one longe contimons progression. As to the rate of this evolution predise data are wanting. There is however the important negative argmont furmished by the abseme of evidence of recognizahbe specitio varations of organic forms simee man began to observe and record. We know that within hmman experience a few speries have become extinct, but there is no conclasive proof that a single new speries have come inte existence, nor are appreciable varations rearily apparent in forms that live in a wild state. The seeds and plants fomb with Egyptian mummies, and the flowers and finits depheted on Egyptian tombs, are easily identified with the regetation of modern Exypt. The embalmed bodies of animals found in that combtry show monsente divergence from the structure or proportions of the same anmals at the present day. The hmman races of Nothern Africa and Western Asia were already as distinet when portrayed by the anement Egyptian artists as they are now, and they do not seem to hase undergone any pereptible rhange since then. Thus a lapse of four or five thonsand years has not been werompanied by ant recognizable variation in such forms of plant and amimal life as can be tradered in evidence. Absence of sensible change in these instances is, of comse, no proof that considerable alteration may mot have been accomplished in other forms more exposed to vicissitudes of climate and other external infmences. But it furnishes at least a pesmoption in tiaro of the extremely tardy progress of organic variation.

If howere we extend on vision beyond the narrow range of human history, and look at the remains of the plants and animals preserved in those younger formations which. though recent when regarded as parts of the whole geological record, mons be many thomsands of years older than the very oldest of human monmments, we encomiter the most impressive proofs of the persistence of specific forms. Shells which lived in omb reas before the coming of the lee age present the very same perolian itios of form, structure, and ornament which their deseendants still possess. The lapse of so ehomous an interval of time has not sutticed serionsly to modify them. So too with the plants and the higher animals which still suvire. Some forms have become extinet, but fuw or none which remain display any transitional gradations into
new speries. We mast almit that sum transitions have ocomred, that indeed they have bean in progress ever sineo organized existence began upon our planet, and aro dombthes taking place now. But we can not letect them on the way, and wo feel romstrained to believe that their march mast be expessively slow.

There is no mason to think that the rate of organce evolntion has ever seriously varied; at least no proof has bean adduced of subh variation. Taken in eommection with the testimony of the sedimentary rocks, the inferences deducible fiom fossils matirely bear ont the opinion that the building up of the stratitied arnst of the earth has been extremely gradual. If the many thonsands of years which have uaped since the ter age have produced no apprediable modification of surviving plants and animals, how vast a period must have been required for that marvellons seheme of organice development which is ehroniched in the roclis!

After careful reflection on the subjert, I atimm that the geological record furnishes a mass of evidence which uo arguments dhatw from other departments of nature can explain away, and which, it seems to me, can not be satisfatorily interpreted save with an allowance of time much bevond the narmow linnts which recent physical speenlation would concerle.

I have reserved for timal consideration a branch of the history of the earth which, while it has beromm, within the lifetime of the present generation, one of the most interesting and faseinating departments of geologieal inguiry, owed its first impulse to the far-seceing intellects of Ilntton and Playfair. With the penetration of genins these ilhnstrions teachers pereejved that if the hroad masses of lame and the great chains of monntains wwe their origin to stupendous movements which from time to time have combulsed the earth, their detaik of contome must be manly due to the eroding power of lumaing water. They recognized that as the surfare of the lame is contimally worn down, it is essentially by a process of soulpture that the physiognomy of every comatry has been developed, valleys being hollowed out and hills left standing, and that these inequalities in topographieal detail are only varying and lowal ancirlents in the progress of the one great process of the degredation of the land.
 have now advanced amid everewidening multiplicity of detail into a fulles and nobler conception of the origin of seenery. 'The law of evo lation is written as legibly on the landscapes of the earth as on any other page of the book of nature. Not only do we recognize that the existing topography of the eontinents, insteal of boing primeral in origin, has gradually bean developed after many beredent mutations, but we are emabled to trarr thase earber rexolutions in the struetme of every hill and glen. Wadeh mometain chain is thus fomed to be a
memorial of many suceessive stages in geographical evolution. Within certain limits land and sea have changed places again and again. Volcanoes have broken out and have become extinct in many countries long before the advent of man. Whole tribes of plants and animals have meanwhile come and gone, and in leaving their remains behind them as monnments at oner of the slow development of organic types, and of the prolonged vieissitules of the terestrial surface, have furnished materials for a chronological arrangement of the earth's topographical features. Nor is it only from the organisms of former epoehs that broad generalizations may be drawn regarding revolntions in geography. The living plants and animals of to day have been discovered to be eloquent of ancient geographieal features that have long since vauished. In their distribution they tell us that climateshave changed; that ishands have been disjoined from continents: that oceans once mited have bern divided from earh other, or once separate have now been joined; that some tracts of land have disappeared, while others for prolonged periods of time have remained in isolation. The present and the past are thus linked together, not merely loy dead matter, but by the world of living things, moto one vast system of contimons. progression.

In this marvellons increase of knowledge regarding the transformations of the earth's surface, one of the most impressive features, to my mind, is the porrer now given to us of perceiving the many striking contrasts between the present and former aspects of topography and scenery. We seem to be endowed with a new sense. What is seen by the bodily eye-momatain, valley, or pain-serves but as a veil, beyond which, as we raise it, visions of long-lost lands and seas rise before us in a far-retreating vista. Pictures of the most diverse and opposite character are beheld, as it were, throngh cach other, their Ineaments subtly interwoven, and even their most vivid contrasts subdued into one blended harmony. Like the poet, "we ser, but not by sight alone;" and the "ray of faney" which, as a sumbeam, lightened np, his landseape, is for us broalened and brightened by that play of the imagination which science can so vividly excite and prolong.

Admirable illustrations of this modern interpretation of seenery are supplied by the district wherein we are now assembled. On every side of us rise the most ronvincing proofs of the reality and poteney of that ceaseless scmpture by which the elements of lambcape have been carved into their present shapes. Turn where we may, onr eyes rest on hills that project above the lowland, not beeanse they have bean upheaved into these positions, but because their stubborn materials have enabled them better to withstand the degradation which has worn down the softer strata into the plains around them. Inch by inch the surface of the land has been lowered, and each hard rocksuccessively laid bare has communieated its own characteristics of form and color to the scenery.

If, standing on the Cantle Rork, the rentsal and oldest site in Elinburgh, we allow the bodily reye to wander over the fat landseape, and the mental vision to range thromgh the long vista of ("arlier landsoapes which sciame herereveals to us, what a strange series of piotures passes before om anze! The busy streets of to-tay seem to falle away into the mingled copserword and forest of pre-historife time. Lakes that have long simer vanished glam throngh the woodamds, amd a rude anoe pushing from the shore startles the red deer that had come to drink. Whike we look, the picture changes to a polar seene, with bushes of stunted Aretice willow and birch, among which herds of reindeer browse amd the hage mammoth makes lis loome. Thick sheets of show are draped all over the hills aromud, and far to the northwest the distant gleam of glaciers and snowfields marks the line of the Highland momatains. As we muse on this strange contrast to the living world of to day the scene appears to grow more Aretic in aspert, motil every hill is buried under one vast sheet of ice, 2,000 feet or more in thickness, which tills up the whold midland valley of Scotland and erecps slowly eastward into the basin of the North Seal. Here the motain drops upon our moving pageant, for in the geological record of this part of the country an enormons gap oceurs before the romine of the lee Age.

When onre more the spectacle resmmes its movement the scene is fomm to have utterly changerl. The familiar lills and valleys of the Lothians have disappeared. Dense jungles of a strange regetationtall reeds, (chal)-mossersand tree-forns-sipradover thestreaming swamps that stretell tor loasues in all directions. latoad lagoonsand open sabs are dotted with little yolcanie cones whish throw ont their streans of laviand showers of ashers. Beyomd these, in dimmer outline and older in date, wo desery a wide lake or inland sid, coverims the whole midand
 eral thousamd feet in height. Ambstill tintherand fanterover the same resion, we may eatela a glimper of that still earlier expanse of sea which in Silmian times oversprad most of liditian. But beyond this seeme ome vision fails. We have readoed the limit across whieh mogeologiont evidence exists to lad the imagination into the primeval darkness beyond.

Such in brietest outher is the sucession of mental pictures which modern seenoed enables us to frame out of the landseapes aromal Edinburgh. Thay may he taken as ilhostrations of what may lae drawn, and sometimes with eren greator falness and vividness, from any distriot in these islands. But I vite them esperially beranse of their lowal interest in combertion with the present mereting of the Assoetation, alme beranse the rorks that yidd them gave inspination to those ereat masters whose Clams on ome recolle etion, mot last for their explanation of the orizin of scemery, I have tried to meotht this evening.

GEOlOOICAL HISTORY OF TIIE YELLOHVSTONE NATIONAL PARK.*

By Arvold Hague, U. S. Cimogieal surrey.

In the short time allotted to me I can only hope to present a brief sketeh of the main geological featmes of the country which you are about to visit. My remarks most, of necessity, be more or less incomplete, as my desire is not so much to elncidate any special problem somected with the many interesting geological questions to be fomd lere, but rather to offer such a general view of the region as will emable yom, du'ing your five days' trip thromgh the Park, to understand clearly something of its physical geography and geology.

The Yellowstone Park is situated in the extreme northwestern portion of the Territory of IV yoming. Its boundaries, as determined by the original act of Congress setting apart the Park, are very illdefined. At the time of the enactment of the law establishing this national reservation, the region had been hut little explored, and its relation to the physical features of the adjacent combtry was but little moderstood. Since that time, surveys have shown that only a narrow strip, about $\ddot{\sim}$ miles in width, was sitnated in the Territory of Montana, but it was also fomd that a still marower strip extemed westward into the Territory of Idaho. The question of properly estahlish. ing the boundaries, based uron our present knowledge of the cometry, is now before Congress, and an ane has abrearly passed the Senate, proposing to make the northern homblary coincide with the bomodary botween Wgoming and Montama, and the western bomdary enincide with the W yoming and ldahn line. The act muder eonsideration extends the sonthem boumdary of the l'ark to the t4th parallel of latitude, earying the area of the reservation somthwad ! ! miles. The a astern boundary is madd to coincide with the meridian of $1095: 30^{\prime}$, adming a strip of country about 24t miles in width along the entire Paster'lu side of the Park.

The area of the leark, as at present detined, is somewhat more than 8,300 shatre mikes, and the proposed ardition inderases thareservation

[^9]ly nearly 2,000 spmar miles. The Park platem, with the adjacent momatains, presents a sharply defined regiom, in strong contrast with the rest of the northern Rocky Momutains. It stands out boldly by itself, unipue in topographical structure, and complete as a geological problem.
The central portion of the Yeltowstone Park is, essentially, a loroad, clevated, volcanic platean, between $\overline{7}, 000$ and 8,590 feet above sea-level, and with an average elevation of about 8,000 feet. Smromenting it on the sonth, cast, north, and northwest, are monntain ranges with culminating peaks and ridges rising from 2,000 to 4,000 feet above the general level of the inclosed table-land.

For present purposes it is needless to confine ourselves strictly to legal bonndaries, but rather to consider the entire region in its broader physieal featmes. It is worthy of mote, however, that by the proposed eulargement the protected area will agree closely with the geographical province.
South of the Park, the Tetoms stand out prominently above the surmonding conntry, the highest, grandest peaks in the northern Rocky Mombans. The rastern tate of this momatan mass rises with unrivalled boldness for nearly 7,000 teet above Jackson Lake. Northward, the ridges fall awaty abroptly beneath the lavas of the Park, ouly the ontlying spurs cmang within the limits of the reservation. For the most part the monntains are male up of conse erystalline gneisses and schists, probably of Archean age, flanked on the northern spurs by uptmrned Paleozoic strata.
To the east, across the broad valley of the Upper Suake, generally known as Jackson Basin, lies the well-know, Wind River Rauge, famons from the carliest days of the Rocky Monntain trappers. The Northern end of this range is largely composed of Mesozoic strata, single ridges of Cretaceons saulstone penetrating still farther northwand into the regions of the P'ark, and protruding above the great Hows of lava.

Along the entire eastern side of the Park stretches the Absaroka Range-so-ealled from the Indian name of the Crow Nation. The Absaroka Range is intimately comected with the Wind River, the two being so closely related that any line of separation minst be drawn more or less arbitrarily, based more upon geological structures and foms of erosion than nom physical limitations.

The Absarokas ofter, for more than 80 miles, a bold, unbroken barrier to all western progress; a rongh, mgged comitry, dominated by high peaks and erags from 10,000 to 11,000 feet in height. Ouly a few adventurous hunters and mountaincers cross the range by one or two dangerons, precipitons trails known to but tew. The early trappers found it a forbidding land; prospectors who followed them, a barren one.

At the northeast corner of the Park a confused mass of mountains
rommets the Absamkas with thr Smowy Range. This Sumy Ramge
 try, with elevided monntim mases covered with sumw the greater part ot the year, as the name wonld indioate. Only tha somthern stopes, Which rim the l'ark region, rome within the limit of om imestiga tion. Ifore the robks are manly granites, gnoissers, and shosts, thr sedimentary berls, for the most part, referable to the predambrian series.

The Gallatin Range inchoses the lank on the north and northwest. It liss directly west of the suows, only separated by the broad valley of the Yellowstone River. It is atange of great beanty. of diversified forms, and ramied geological problems. Electrie Peak, in tha extreme northwestron corner of the lark, is the rummating point in the range. and atfords whe of the most extended views to be fount in this part of the combtry. Arohean gmeisses form a mominent masin the range wry which ocenr a series of sandstomes, limestones, and shales, of Pale ozoif and Afesozoie age, representing ('ambrian, Silurian, Devonian, ('arboniferons. Thias, Juma, and (yeetacoons. lmmediately associated with these sedinentary bers, are large mases of introsive rocks, which have played an important part in bringing about the present structural features of the ramge. They are all of the andesitis type. but showing considerahb iange in mineral composition, inchading pyroxeme, hornhemde, amd homblembe miat valieties. These introsive masses are fomm in harow dikes, in mmense interbededed shects fored between the lifferent stata, and as tarenlites, a mode of oremr-
 (illnert, but now well reagnized bswhere in the northern (ordillara.
ile see then that the Alsandekas rise as a tommable lanrier on the
 West side, while the other ranges terminate atmently, rimming in the J'ark ou the morthand sonth, and lewing a depresed region mot mblike the parks of Coborato. only rovarime at more extemded area with a relat tively derper hasin. The region has been one of protomm dymanto
 acrompanying map of the Y'ellowstone l'ark, which shows the position of the principal ohjerets of interest, the relations of the ranges to the phatean are elearly indieated.

It is not mes purase at the present time to denfer mon the defails of geslogical strufture of theserange, earhoffering its own sperial stady and firlal of investigalion. My desine is simply to call yon attention to their wemeral features and matual metations. So far as their age is comerned. evidence goes to show that the action of upheaval was eon temporameons in all of them, and roinedent with the powertil dy Hante mesements which mulited the moth and sonth ralnges. stretehing atross Colorarlo, Wyoming, and llontanar. 'This dymamir move ment blocked out, low the most pat the Rooky Monntains, near the
close of the Cretaceons, although there is good reason to believe that in this region profound fanlting and displacement continned the work of mountain building well into the Middle Tertiary period.

Throughout'Tertiary time in the Park area, geological history was char-

Scale: 1 inch=12 mithes. YELLOWGTONE NATIONAL PARK
acterized by great volcanic activity, enormons volumes of erupted material being poured out in the Eocene and Middle Tertiary, continuing with less force through the Pliocene, and extending into Quaternary time. Within very recent times there is no evidence of any considerable ont-
harst: inded the magion may be considered long sine extinet. These volanic moks perent a wide range in chemical and mineral fomposition and physical structure. They may all lowerer be elassed under three great groms-andesites, wholites, and basalts-following earl other in the order maned. In somb instances, ermptions of basalt oecurred lefore the complete extinetion of rhyolite, but in general, the relative age of each gromp is clearly and sharply definet, the distribution and mond of oermerme of each presenting characteristios and salient features frepmently marked by periods of erosion.

Andesites are the only volanic rocks which have phayed an important part in producing the present structural features of the momtains smrounding the Park. As already mentioned, they orcme in large masses in the Gallatin range, while most of the culminating peaks in the dhanokas are composed of compart andesites and andesitic brectias. On the other hand, the ambesites are mot confinel to the momentans. but phayed an active role in filling up the interior basin. That the duation of the andesitic eruptions was hong continued, is made evident by the phantremains fomed in ash and lava beds throngh 2.000 feet of woleanio material. The plants have as yet been too little studied to detine positively their geological horizons. It is quite pos. sible that they may indicate manked differences of climate between the lower and mper bets.
ln eanly Tertiary times, a volcan burst forth in the northeast corner of the depressed area momed by the Park Mometains, not far from the junction of the Absaroka and sumw ranges. White not to to be compare in size and granden with the volemoes of California and the Cascande lange, it is, for the Romky Momitains, one of no mean propurtions. It rises from a base ahont d,500 tece above sea-level, the culminating peak attaming an elration of 10,000 feet. This gives a height to the vol ano of 3.500 fee from base to sumnit, measuring from the Areharan roeks of the Vellowstone Valley to the top of Moment Washburne. The aserage height of the erater rim is about 9,000 feet above sea level, the voleano measuring 15 miles atess the base. The ermp. tive origin of Mount Washbume has long been reagnizel. and it is firequently refered to as a voleano. It is howerer simply the highest peak among several others, and repesents a later outhmest wich destroyed in a measure the original rim and formof the ohder crater. The ruphions for the most patt were basie and asites. Drosion hass worn away the earlier rowke, and dormons masses of more ree ent lavas have se obscitred the original form of lavanow, that it is mot casy for ath inexperieneed eye to reengnize a volame and the surromding peaks as the more elevated points in a grand arater wall. By following aromad on the ancient andesitic rim. and studying the outline of the old rater, together with the compsition of its lavas, it. true origin and history may readily be madd onf. This ohber erater has as yet receiver no special desighation. lant when our maps and remorts are finally published, this andent geological min will remeivean appopriate
designation. This old rolcano of early Tertian time ocenpies a prominent place in the geological development of the Park, and dates back to the earliest outhursts of lava which have in this region danged a drpressed basin into an elevatel platean. We have here a volano sitnated fan inland, in an elevated region, in the heart of the Roeky Monntains. It lies on the eastern side of the continent, only a few - miles fiom the great rontinental divide which sends its waters to both the Atlantic and Pacitic.

After the dying ont of the andesitic lavis, followed by a period of erosion, immense volmmes of rhyolite wrere ermpterl, which not only thratened to fill up the crater but to bury the onter walls of the volcano. On all sides the andesitic slopes were sulmerged beneath the rhyolite to a height of from 8,000 to 8,500 feet. This enormens mass of "rhyolite, poured ont atter the close of the andesitic period, did more than anything else to bring about the present physional features of the lark table land. A tomist making the enstomary trip through the l'ark, visiting all the prominent geyser basins, hot springs, and the Grand Cañon and Falls of the Yellowstone, is not likely to come mpon any other rock than rhyolite, excepting, of comse, deposits fiom the hot springs. If he extended his jom ney to the lake region, taking in Shoshone, Lewis, and Yellowstome lakes, and spending a week or ten days going oyer the beaten rontes of travel, he will not, mess he as"mols Moment Washmme, leave the rhyolite lavas. A description of the rbyolite region is essentially one of the I'ark platean. Taking the bottom of the basin at 6,500 feet above sea level, these aciclic lavas wrep piled 11) until the aceumulated mass measured 2,000 feet in thickness. It completely encireled the Gallatin Range, burying its lowner slopes on both the east and west sides; it banked up all along the west famks of the Absamans, and buried the outlying spurs of the Teton and Wind River lauges.

The Park l'latean covers an area approximately 50 by 40 miles, with a mean altitude of 8,000 feet. It is accidented by undulating lasins of rasied outline and scored by deep ranyons and gorges. Striotly speaking it is not a platean; at least it is by no means a level area, but a rugsed comotry, waracterized by bold esearpments and abrint edges of mesa-likr filles. But few large vents or eenters of volcanic artivity for the rhyolite have been recognized, the two prineipal sources being the volcano to which reference has already been madle, and Monnt sheridan in the sonthern end of the Park. Mount Sheridan is the most commanding peak on the platean, with an elevation 10,200 feet above sea level and 2.600 feet abovelleart Lakr. From the summit of the jeak on a clear day one may orelook the entire platean country and the monntains which shut it in, while ahost at the base of the peak lie the magnificent lakes which and so much to the quiet beanty of the region, in contrast with the rugged scenery of the momtains. From no point is the magnitude and grandenr of the volfanic region so impressive. The lava-flows-bomnded on the east by the Absarokas-extend westward not
muly across the park, Wat aroses the Marlison Platean, and out on to the great plains Smake of Rivor, stotehing far Westwad almost without a break in the contimity of tharaptive flows. ()ver therentral pertionof the park, whe e the ryholites are thirkest. erosion has failed to pernetrate to
 and Madison Canoms have nowhere worn through these thyolite flows.
 beneath the thoulites. but the dempest wats fail to weal the maderlying sedimentary beds. Athomgh the rockse of the platean for the most part belong to ond gronp of adelic lavas, they by mo moans present the grat miformity and monotomy in ficla appearance that misht he ex
 structural forms. development of arystallization, and mode of ocernrence of aterlie lavas as could well be fombd anywhe in the world. They Vary fiom a nearly holocrestalline roek to one of pure volomic glass. Obsidian, pmonier, pitelnstone, ash, brecela, and an endless devolopment of transition forms alternate with the more compart lithoidal havas which make nu the great mass of the rhyolite, and which in colons, texture, and structural developments present an oqually variod aspect. In mineral composition these rock are simple enongh. The essential minerals are orthoclase and unartz, with more or less phatoclase. samidne is the prevaling feldspan. alf homgh in many cases plagioctase forms oceur mearly as abondantly arthoclase. Chemical abalyses, whether we comsider the rocks from the erater of Momet Nheridan, the summit of the platean, or the volcanic glass of the world-rnowned Obsidian Clift, present comparativelysight differenes in ultimate composition.

The following analysen of two borks, representing extreme forms in physical halit, show how rlosely they appoarh earlh other in composition of the original magma:

$\begin{gathered} \text { No. }{ }^{\text {Matiman l'latran. }} \\ \text { Man } \end{gathered}$	$\begin{aligned} & \text { Nu. :2. } \\ & \text { ()hsinlian ('lim: } \end{aligned}$
7.5. 19	7.5.52
None.	Nonme.
Nolle.	Nolle.
1:1.7\%	14.11
0. 611	1.71
1.37	11.08
	10.11
Trame.	Non.
(1). fir	0.75
11. 119	0. 10
0.102	
3.33	3, $\mathrm{i}^{2}=$
: $3.8:$	3. $91 .:$
11.29	
11.65	
	10. 39
19) s\%;	1100. 2 s

The rock from Madison Platean was tollected on the north side of Madison Canyon and was selected as a typical rock covering large areas of the Park. It is purplish-gray in color, rough in texture, porphyritic in structure, and characterized by well-developed sanidin and quartz. The obsidian, from Obsidian Cliff, is an excellent example of pure voldanie glass, wholly devoid of porphyritic crystals. In general the investigations of the laboratory confirm the observations of the field genlogist, that the differences exhibited by the volcanic product are not of chemical or mineral composition, but rather of physical comditions under which the magma has cooled.
I have dwelt somewhat in detail upon the nature of these rocks for two reasons: First, because of the difficulty met with by the scientific traveller in recognizing the uniformity and simplicity of chemical composition of the rhyolite magma ower the entire platean, owing to its great diversity in superficial habit: second, on accome of their geologieal importance in comnection with the unrivailed display of the geysers and hot springs. That the energy of the steam and thermal waters dates well back into the period of voleanie action, there is in my opinion very little reason to doubt. As the energy of this undergromed heat is today one of the most impressive features of the combtry, I will defer commenting upon the geysers and hot springs until speaking of the present comlition of the Park.

Although the rhyolite eruptions were probably of long duration and died out slowly, there is, I think, eridence to show that they occupied a clearly and sharply defined period between the andesites and basalt eruptions. Since the ontporning of this enormons body of rhyolite and building up of the platean the region has undergone profound faulting and displarement, lifting up bodily immense blocks of lava and modifying the surface features of the country. Following the rhyolte came the perion of basalt eruptions, which, in comparison with the andesite and rhyolite eras, was, so far as the Park was concerned, insignificant, both as regards the area covered by the basalt and its influence in modifying the physical aspect of the region. The basalt ocems as thin sheets overlying the rhyolite and in some instances as dikes cutting the more acidie roeks. It has broken out near the outer etge of the rhyolite body and occurs most frequently along the Yellowstone Valley, along the western foothills of the Gallatin Range and Madison Plateau, and again to the southwarl of the Falls River basin.

After the greater part of the basalt had been poured ont came the glacial ice, which widened and deepened the pre-existing drainage chamels, ent profomal gorges through the rhyolite lavas and inodelled the two volcanos into their present form. Over the greater part of the Cordillera of the central and northern Rocky Mountains wherever the peaks attain a sufficiently high altitude to attract the moisture-laden clonds evidences of the former existence of local glaciers are to be
found. In the Teton Rangeseveral wolletimed whateristice waciers still exist mpon the abrupt slopes of Mount Hayden aml Mount Moran. They are the remmants of a moll larew system of glaciers. The Park region presents so broad a mass of clevated comntry that the entire platean was, in ghatial times, covered with a heary capping of ice. Evidences of glacial action are everywher to he seen.

Over the Absaroka Range sqlacieswere fored down into the Lamar and Celfowstone valleys, thence westward over the topot Momnt Evarts to the Mammoth Hot Springs Basin. On the opposite sidn of the Park the ice from the smmit of the Gallatin Ramge moved east ward across Swan Valley and passing over the top of Terrace Momntain joined the ice fielal coming fiom the east. The mited ice sheet plowed its way northwad down the valley of the Gardiner to the lower Yellowstone, where the broad valley may he seen strewn with the material transported from both the east and west rims of the lark.

Since the dying out of the rhyolite emptions erosion has greatly motified the entire surface features of the Park. Some dea of the extent of this aetion may be realized when it is recalled that the deep, canoms of the Yellowntone, Gibbon and Matison rivers-eanons in the strictest use of the worl-have all been carved ont simer that time. To-lay these gorges measure several miles in length and from 1,000 to 1,500 feet in depth.

To the grologist one of the most impressive objects on the l'ark platean is a tramsported bowher of granite which rests directly upon the rhyolite near the brink of the (ramd Canon, about 3 mikes helow the Falls of the Yellowstone. It stands alone in the forest, miles from the nearest glatial bowlar. Glacial detritus carying granitic material may be traced mon both sides of the canon wall, but not a tragment of rock more than a fow inches in diameter, older than the recent lavas, has been recosnizad within a ratins of many miles. This massive hoek, althongin inworan in shape and somewhat pointed foward the top, measures $\because 4$ feet in length by 20 feet in hreadth and stands is feet above the base. The nearest point firm which it conld have ben transported is distant 30 or 40 miles. Coming upon it in the solitude of the forest with all its strame smrommlingsit tells amost impressive story. In wo place are the evilences of frost and fire bronght so forcibly together as in the Yellowsome National Park.

Sine the close of the ier period no geologival events of any moment have hronght abont any ehanses in the physieal history of the region other than these produred by the diree action of steam ant thermat Waters. A few insignitiont ermptions have probably oecomerd, hut they faled to modify the broad ontlines of topographical structure amd present but little of gemeral interest beyome the eviteme of the contimame of voleanie action into ghaternary times. Voleanic activity in the lark may be consialered as longs sunce extimet. At all wrents indications of tiesh lafa-thows within historical times are wholly want-
ing. This is not without interest, as evidence of under-ground heat may be observed everywhere thronghout the Park in the waters of the geysers and hot springs. All our observations point in one direction and lead to the theory that the canse of the high temperatures of these waters must be found in the heated rocks below, and that the origin of the heat is in some way associated with the source of volamic energy. It by no means follows that the waters themselves are derived from any deep-seated somere; on the contrary, investigation tends to show that the waters bronght un, by the geysers and hot springs are mainly surface water's which have percolated downward a sufficient distance to become heated by large volumes of steam aseending through fissures and vents from much greater depths. If this theory is the correct one it is but fair to demand that evidence of long-continned action of hot waters and super-heated steam should be apparent nom the rocks through which they passed on their way to the surface. This is precisely what one sees in inmmerable places on the lark platean. Indeed, the decomposition of the lavals of the rhyolite plateau have proreented on a most gigantic scale, and cond only have taken place after the lapse of an enomons period of time and the giving off of vast fuantities of heat, if we are to judge at all by what we see going on around ns to-day. The ascending cmrents of steam and hot water have been powerfon grolugical agents, and have left an indelible impression upon the surface of the comity. The most striking example of this action is fomb in the (ramd Canom of the Yellowstone. From the lower falls for 3 miles down the river abrupt walls mon both sides of the cañon, a thonsand feet in depth, present a millianey and mingling of colon beyond the power of deseription. From the brink of the cañon to the water"s edge the walls are sheer bodies of decomposed rhyolite. Saried hos of orange, red, parple, and smphor-yellow are irregularly blended in one confused mass. There is seareely a piece of unaltered rock in phare. Much of it is changed into kanlin: but from rhyolite, still easily recognized, occur transition prodncts of every pos. sible kind to good procelain clay. This is the result of the longe continned action of stean and vapors upon the rhyolite lavas. Throngh this mass of decomposed rhyolite the comse of ancient stean rents in their upward passage may still be tracer, while at the botton of the eañon hot springs, funaroles, and stem vents are still more or less antive, but probably with diminished power.

It is needless to weary you with the details of this decomposition, but I may add that investigations in the laboratory upon these transition products fully substantiate field observations.

Still other areas are quite as convincing, if not on so gramd a seale. as the Yellowstone Canion. Joseph's Coat Basin, on the east side of the eanom, and Brimstone Hills, on the east side of the Yellowstone Lake, an extensive area on the slopes of the Absaroka Range, both present evidences of the same chemical processes bronght about in the
same mamer. It is not stating it too strongly to say that the platean on the cast side of the (iramd Canom, fiom Broat Croek to Peliam Creek, is rompletely undermined by the artion of super-heated stemm and alkaline waters on the rhyolite lava. Similar processes may be seen going out today in all the gerace basins. To acemplish these changes a long period of time must haw heen required. The study of comparatively fresh vents shows almost no change from year to year, at thongh caretnl scrutiny during a period of five years detects a certain amome of disintegration, but intinitely suall in comparison with the great boolies of altered rock. This is wedl shown in a locality tike the Monarch Geyser in the Norris (ieyser Basin, where the water is thrown ont at regular intervals throngh a marow fiswure in the row
The Grand Canon of the Yellowstone offers one of the most impres sive examples of erosion on a grand sale within recent geological times. It is selferident that the deep canon must be of much later origin than the rock through which it has heen wom, and it seems quite clear that the comse and outlines of the cañou were in great part determined by the casily erorled decomposed material forming the cañon walls, and this in turn was bronght about by the slow processes just desmibed.

The evidence of the antiquity of the hot spring deposits is, perhaps, shown in an equally striking mannet and by at wholy difterent proeess of geological reasoning. Terrace Momtan is an ontlying ridge of the myolite phatean just west of the Mammoth llot Springs. It is covered on the smmit with thick heds of travertine, among the chlest portions of the Mammoth Hot Springs deposits. It is the mode of ocenrence of these calcarenns demosits from the hot waters which has given the name to the momtain. Lying noon the sumtare of this travertine on the top of the monnain are fomed ghatial howhems brought from the summit of the Gallatin lange, fifteen miles away, and transported on the ice sheet across Swan Valley and depmsited on the top of the momentain, 700 teet alove the interpming valley. It offers the strongest possible evidence that the traver tine is older than the glacier which has strewn the comutry with transported material. How mull travertine was monded hy the ife is, of comse impossible to say, but so friable a matarial would yield readily to olacial movement.
still another method of arriving at the great antiquity on the the mat energy and the age of the hot spring fomation is loy determining the rate of deposition and measuring the thickness of the aecomulated sinter. This method, althmol the one which wonld perhaps first suggest itself, is in my opinion by mo means as sativfactory as the geo
 form rate of deposition ean be aseertained for eren an winde ara, like the Tpper Gegser Basin, and it is still more diflicult to arrive at any ronchasion as to the growth of the sinter in the past. Noreover. it is fuite possible that heavy depmits may have suffered emsion before the
present sinter was laid duwn. It howerer corroborates other methods and possesses the advantage of being a direct way.

It may be well to add here that there exists the greatest contrast between the deposits of the Mammoth Hot Springs and those found upon the platean. At the Mammoth springs they are nearly pure travertine, with only a trace of silita, analyses showing from 95 to 99 per cent of calcimm carbonate. On the platean, the deposits consist for the most part of siliceous sinter, locally termed "geyserite." The reason for the difference is this: At the Mammoth Hot Springs the stean, although ascending from fissures in the igneous rock, comes in contact with the waters fouml in the Mesozoic strata, which here form the surface rooks. The Jura or Cretaceons limestones have furnished the lime held in solution and precipitated on the surface as travertine. On the other hand, the mineral constitnents of the platean waters are derived almost exclusively from the highly acidic lavas, which, as it will be seen by reference to the analyses, carry but a small amount of lime.

Deposition of sinter from the hot waters of the geyser basins depends in a great measure on the amomet of silica held in solution, which varies considerably at the different localities and may have varied still more in past time. The silica, as determined by analyses, ranges from .22 to .60 grammes per kilogramme of water, the former being the amomet fomm in the water of the caldron of the Excelsior Geyser and the latter at the Coral Spring in the Norris Basin. Analysis shows that tirom one-fifth to one-third of the mineral matter hed in solution consists of silica, the remaining constituents being readily soln ble salts carried off by surface drainase. A few springs highly charged with silica, like the Coral, deposit it on the cooling of the waters; but such springs however are exceptional, and I do not reall a single instance of a spring in the Upper (reyser Basin precipitating silica in this way. It most springs anl geysers it results only after evaporation. and not from mere cooling of the water. It seems probable that the nature and amonnt of alkaline chlorides and carbonates present infloence the separation of silica. Temperature also may in some degree influence the deposition. My filend, Mr. Elwool IFofer, one of the best gumes to this region and a keen observer of matme, has called my attention to an observation of his made in mid-winter, while on one of his snow-shoe trips throngh the Park. He noticed that certain overflow pools of spring water, upon being firozen, deposited a considerable amount of mineral matter. He has sent me specimens of this material, which, upon examination, proved to be idnatieal with the silica deposited from the Conal Spring upon the conling of the water. Demipohms of geyser water which have beenstambing for one or two years hare fated to precipitate any silica. Quite reaently, in experimenting upon these waters in the laboratory, it was noticed that on reducing them nearly to the freezing point no change took place, but upon freezing the waters
 this Way were collected fiom the Coral Smince Nomis lbasin, and the Tamos (reyser, Shoshome Basin.

Agan, there is no dombt that the algons growthe fomm flomishing in the hot waters of the Park faror the secretion of silica and exert an intluence in builang up the serverite far greater than one wonld at first be led to smpose. These low forms of vegretable life acam in nearly all pools, springs, and moming waters, 1 po to a temperatime of 18:5 F. (anly $1: \%$ below the boiling joint), at the Uper (ieyser basin. If time permitted, much might be said on this subjert. I will only add that Mr. Walter II. Weed, in commertion with his other daties on the
 growthe ane the results of his investigations will form an important chapter in the final publications.

Several methods have heen devised for asmertaining the growth of depusition of the geyserite. One way is by allowing the water to trickle over twigs, hrid whases, or almost anything exposing considerable surface, and noting the amount of incrustation. This way gives the most rapid results, but is fan from satisfactory amb hy mo means reproduces the conditions existing in mathue. Other methods employed are placing objects on the sumper of the water or, still better, partially submerging them in the hot pools, of again by allow ing the water to lun down an inclined plane with firequent intervals for evaporation and rone entration.

The vandals who delight to inseribe their names in publice plates have invaled the geyser basins in latge mumbers and left thein addresses upon the seyserite in varions plates. It is interesting to note how quickly these inseriptions berome indelible hy thr deposition of the merent film of silicat mpan the lead-pencil marlis, amo, at the same time, how slowly they buid 1 p). Names and dates known to be six and eight years old remain perfectly legible, and still retain the rolor amb haster of the sraphite. That there is some incrase in the thickness of the inernstation is evident, althomgh it grows with incredible slowness. Wr. Wered tells me that he has bern alole, in at least one instance, 10 dhip ofl this siliceons film ant remodnce the Writing with all its miginal distinctness, showing eonclasively that a slow deposition has takra phace. Pencil inseriptions won the sili ceons sinter at Rotomahama Lake. in New Zaaland, are said to br legible after the lapse of twenty or thity yeans. It is easy tor see that varous ingenions devices might be panned to estimate the rate of aleposition, lut in my opinion mone of them equal a rlose stmby of the conditions fomm in matme, esperially where investigations wi this kind can be watched tion year to year. All observations show an exaedingly slow bulding mot of the geyserite formation. Thins is well seen in the repair goms on whe the rims sumbunding the hot pools have been broken down, and where it might be supposed that 11. Mis. $114-10$
the building-np process was muler the most favorable conditions; yet, in a momber of instances, I can see no appreciable change in three or four years. Re-visiting hot springs in ont-of-the-way places after several years absence, I am surprised to see that objects that I had noted carefully at the time rmain unchanged. Taking the entire area of the I pper (ieyser Basin rovered by sinter, I believe that the development of the deposit does mot axeeed one-thirtieth of an inelt a year, and this estimate $[$ believe to be much nearer the maximm than the minmmm rate of growth. The thickness of the geyserite has never been ascertamed; the greatest thickness masured is 70 feet, the depth rearhed in the conduit of Old Faithful geyser, withont meeting any obstruction. Supposing the deposit around the Castle geyser to have been built up with the same slowness as observed to-day, and assmming to grow at the rate given-one-thirtieth of an inch a year-it would remuire over twenty-live thousand years to reach its present development. This gives ns a great antinuity for the geyserite, but I believe that the deposition of the siliceons sinter in the Park has been going on for a still longer period of time. It is certain that the decomposition of the rhyolite of the platean dates still further back.

From a geological point of view, there is abmulant evidence that thermal energy is gradually beeming extinct. Tourists re-visiting the Park after an absence of two or thee years occasionally allude to the springs and geysers as being less active than formerly and as showing indications of rapinly dying out. It is true that slight changes are constantly taking place, that certain springs become extinet or diseharge less water, but this action is fully comuterbalanced by increased activity in other localities. Close examination of the somwe of the thermal waters fails to detect any diminntion in the supply. Moreover, it stands to reason that if the flow of these waters dated-geologically speakingtar back into the past, the few years embraced within the historical records of the Park wonld be mable to indicate any perceptible change based upon a gradual diminution of the leat. Aceurate deseriptions of the region go back only to 1571 , the year of the first exploration by Dr. F. V. Harden.

The number of geysers, hot spings, mul-pots, and paint-pots seattered over the Park exeeds 3, , non, and if to these be added the fumaroles and solfataras fiom which issue in the aggregate enormons volumes of stean and acid and sulphur vapors, the number of active vents would in all probability be dombled. Each one of these vents is a center of decomposition of the acid lavas. In the fom principal geyser basins the geysers in action-or known to have been active within the past sinteen years-mmbered s. The following list comprises all the geysers that are known in the Norris, Lower, Minway, and Upper Geyser Basins.

Bead.
Clepsydra, ('orrls. Fommtali, l’itfitl,

Excelsior.

Great Fountain. l'ink ('omm.
Impmlsiver. liosette.
Jet, 太ן:asm,
Mouml. spray,
Namissus. Steady.

> Floorl. Rabbitt, Tromp.

Fiplel: dievela lisisin.—I!.
Artemesial.
lope llive. Bijon, Bonit:s, lrilliant. linlger, ('isciale,
C'astle, C'atfish, Charn, ('liff. Comet, Cubs,
Laisy,
Fan,
(iant,
Giantess,
Ciraml,
Grotto,
Iufant,
Jewel,
Liberty,
Lion,
Lioness,
Mastift,
Midger,

Morlel.
Mortar. Oblong. Olı F゚aithful, Restless, liverside, Rocket, Saw Mill, Kentinel, Shell, Spasmodie, Spanker. spitefol,

Surprise. White Ihome.

Splendid, sponge, Sponter. sprinkler. sprite, T:udy, There sisters, Triplets, Turban, White.

A comparative stomly of the analyses of the feesh rhyolite, the varions transition-prodncts, and the themal waters points clearly to the fact that the solid contents of these waters are derived for the most part from the volcanic rocks of the platean. During the prowess of the work of tho Geologioal surver in the Yollowstone Park there have been collerted from neanly all the mone important localities samples of the waters, which have been subjected to searehing chemical analyses in the laboratory of the survey, by Mesis. F. A. Gomehand I. B. Whitfied : the results of whese work will loe pmblished at an early date.

The following analyes of hot waters from the three prineipal geyser basins serve to show theil "homical composition:

	Constant Geyser.		Hygeia spring.		Old Faithful.	
	Grams. per kilo of watrr.	Percent of total matter in solution.	Grams per kilo of water.	I'er cent of total matter in sulution.	$\begin{aligned} & \text { Grams } \\ & \text { perkile } \\ & \text { of water. } \end{aligned}$	ler rent of total matter in sulution.
Silica	10.4685	$28 \cdot 8$	$0-2477$	$20 \cdot 98$	$0 \cdot 3828$	27.52
Sulphe acid.	$0 \cdot 0923$	$5 \cdot 69$	1) 01919	$1 \cdot 6$	$0 \cdot 0152$	- $\cdot .99$
Carbonic acid.	10, 1515%	0) 95	(). 2407	24.62	$0 \cdot 0894$	$1 \mathrm{i} \cdot 43$
Boracie aciu	() -13317	1.95	0 -023!	$2 \cdot 02$	$0 \cdot 0148$	$1 \cdot 07$
Arsedious acid	0) 00018	0) $\cdot 11$	() (0)034	$0 \cdot 29$	$0 \cdot 0021$	$0 \cdot 15$
Chlorine	$0 \cdot 5740$	$35 \cdot 39$	$0 \cdot 2457$	$21 \cdot 06$	() 4391	$31: 57$
Bromine	Trace		Trace		() -0034	$0 \cdot 25$
Hyalr. smph.	None		None		$0 \cdot 0002$	$0 \cdot 11$
Oxygen (hasir)	() - (0)48	$1 \cdot 14$	() (1504	$4 \cdot 27$	$0 \cdot 1419$	$3 \cdot 02$
Iron	Trace		None:		Trace	
Manganese	None		None		Trace	
Aluminium	$0 \cdot 0185$	$0 \cdot 29$	$0 \cdot 0036$	(1) 31	$0 \cdot 6009$	0) 066
Calcinm	0. 0146	$0 \cdot 90$	0) 0064	1) $\cdot 54$	$0 \cdot 0015$	$0 \cdot 11$
Magnesium.	$0 \cdot 0018$	$0 \cdot 11$	() -0022	$0 \cdot 19$	$0 \cdot 0006$	$0 \cdot 04$
Potassium	$0 \cdot 0745$	4.60	$0 \cdot 0154$	1-30	$0 \cdot 0267$	$1 \cdot 92$
Sotium	$0 \cdot 3194$	$19 \cdot 67$	$0 \cdot 2654$	$22 \cdot 48$	$0 \cdot 3666$	$26 \cdot 36$
Lithinm	$0 \cdot 0030$	$0 \cdot 19$	$0 \cdot 17032$	$0 \cdot 27$	$0 \cdot 0056$	$0 \cdot 40$
Ammonium.	() $\cdot 00127$	$0 \cdot 08$	$0 \cdot 00021$	$0 \cdot 02$	$0 \cdot 00001$	
1Iydr. (HCl) .	0 -0008	$0 \cdot 05$				
Caesium					Trace	
Rubidium					Trace	
Total	$1 \cdot 62 \times 07$	$100 \cdot 00$	$1 \cdot 1 \times 0 \times 1$	$100 \cdot 00$	$1: 39081$	10.) 00

Conslant Geyser, Norris Geyser Basin. Date of collection, scpomber 13,1885 ; temperature, 198° F.; reaction, slightly acid: specific gravity, $1 \cdot 0011$.

Hygeia Spring, Lower Geyser Jasin. Date of colfettion, siptember 11, 1885; temperature, 109 F.; reaction, alkaline; specifio gravits, $1 \cdot 0010$.

Old Faithful Geyser, Cpper Geyser Basin. Date of collectiom, september 1, 1884 ; temperature, 190° F.; reaction, alkaline; speritic gravity, $\mathbf{1} \cdot 60096$.

They are all siliceous alkaline waters holding the same mineral con stiments, but in varying quantities. Silica forms the principal deposit not only immediately aromed the springs, lout over the entire floor of the basins. The carbomates, sulphates, chlorides, and traces of other easily soluble salts are carried off in the waters. Oxides of iron and manganese and oceasionally some caleite oceur under certain conditions in the cauldrons of the hot springs or immediately aromd their vents. Concentrations from large quantities of these waters fail to show the presence of even a trace of copper, silver, tin or other metal. Nearly all the waters carry arsenic, the amount present, acoording to Messis. Gooch and Whitfield, varying from . 02 to . 25 per cent of the mineral matter in solution.

Among the incrustations found at several of the hot springs and geysers is a leek-green amorphous mineral, which proves on investigation to bescorodite, a lyydrous arseniate of iron. The best ocemrence observed is at Joseph's Coat Springs, on the east side of the Grand Caunon of the Vellowstone, where it orems as a coating upon the siliceous sinter lining the canldron of a boiling suring. Analysis shows
a nearly pure seorodite, agrecing elosely with the theoretical composition:

100.100

Alteration of the scorodite into limonite takes place readily, which in tom nutheros disintegration by the wearing of the water, and is mechanically ramied away. So tan as I know this is the only occomrence where scorodite has been recognized as deposited firom the waters of themal sming's. Althomgh pure scomotite is moly sparimg preserved at a few localities in the Kellowstone Park, it is rasily reeognized by its rharacteristif green rolor', in strong rontrast with the White geysarite amd yollow and red oxides of iron. After a little paratie the mineral green of seoroditr is mot easily mistaken for the regetahle green of the algeous growths. The latter is associated everywhere with the hot waters, while the former, an exeedingly rare mineral, is obtained only in small duantities after diligent seareh. In America traces of arsenic have been reported from sereral springs in Virginia, and quite recently sodimm aremiate has bren detected in the hot springs of Ashe Comaty, N. C. Arsenical waters of sufficiont strength to be heneficial for remedial purposes amd mot otherwise defetrions are of rare ocemrence. In France the cumative properties of arsenical waters have long heen reongized, and the famons sanitation of Lat Bombonle in the volanie district of the Auverge has arhiever a wisle reputation for the effary of its waters in erertan forms of nervoms diveases. Wygeiastumgs, supplying the bath homses at the hotel in the Lower (reyser Basin, carres of of a grain of sotimm arseniate to the sallon. The Yellowstome lark waters, while they carry somewhat less assmis than those of La bombonle, greatly excel the latter in their enormons overfow. It is stated that the entire discharge from the springs of Lat Bomboule, amomits to 1,500 gallons per minute. The amonnt of hot water bronght to the surfare by the hot springs thronghont the park is by mo means easily detamined, athough during the progess of om investigations we hope to make an approximate estimate. Some idea of the amomat of hot water hronght to the surface and carried off by the great dranage rhamels may be fomed at the Midway Basin. A ecording to the most acemate measmements which eond be made, the discharge firom the caldron of the Exerdsior Geyser into the Firehole River during the past season amomated to t, 100 gallons of boiling water per minnte, and there is no evidence that this amonnt has varied within the last two of three years. 'The sample of the Excelsior deyser water collected Angust 2.), 18st, yiedded . 19 grains of somimm arsmiate to thr gallom. It is impossible to say as yet what amative propertios these park waters
may possess in alleviating the ills of mankind. Nothing but an extended experience under proper medical supervision can determine. I may say that no hot springs with which I am aequainted prove so delightful for bathing purposes and so agreeable in their action upon the skin.

Changes modifying the surface featmes of the park in recent times are manly those brought about by the tilling up, with detrital material from the monntains, the valleys and depressions wom ont by glacial ice, and those prodnced by the prevailing climatic conditions. Between the park country and what is known as the arid regions of the West there is the greatest possible eontrast. Across the park platean and the Absaroka range the comntry presents a continuons monntain mass 75 miles in width, with in avelage elevation unsurpassed by any area of equal extent in the northem Rocky Momatains. It is exceptionally situated to collect the moisture-laden clouds, which coming from the sonthwest precipitate immense quantities of snow and rain upon the cooled table-land and neighboring monntains. The elimate in many respects is quite mulike that fomd in the adjacent comntry, as is shown by the meteorological records, the amount of snow and rainfall being higher, and the mean anmal temperature lower. Rain stoms oceur frequently throughont the summer, while snow is fuite likely to fall any time between September and May. Protected by the forests the deep snows of winter lie upon tha platean well into mid-smmmer, while at still higher altitudes, in sheltered plares, it remains thronghont the year. By its topographical structure the park is designed by nature as a reservoir for recriving, storing, and distribnting an exceptional water supply, mexelled by any area near the head-waters of the great continental rivers. The Continental Divide, separating the waters of the Atlantic from those of the Pacific, crosses the park plateau from somtheast to morthwest. On both sides of this divide lie several large bodies of water which form so manked a future in the seenery of the platean that the region has been designated the lake comntry of the park. Yellowstone Lake, the largest lake in North America at this altitude ($\overline{7}, 740$ feet) and one of the largest in the world at so high an elevation above sea-level, presents a superficial area of 139 square miles, and a shore-line of nearly 100 miles. From measurements made near the ontlet of the lake in September, 188t, tine driest period of the year, the discharge was found to be $1,52 \pi$ cubic feet per second, or about $34,000,000$ imperial gallons per hour.

At the same time all the principal lakes and streams in the park were carefully ganged. Dr. William Hallock, who undertook this work, estimated that the amount of water rmming into the park and leaving it by the Yellowstone, (iallatin, Madison, Suake, and Falls rivers, the five main drainage chamols, would be equivalent to a stream 5 feet deep, 190 feet wide, with is current of 3 miles per homr, and that over an area of 4,000 square miles the minimum discharge was equal to 1
anbic foot per second per square mile. For the preservation and regulation of this water supply the forest, which rovers the monntains, valleys, and table-lands, and ererywhere borders upon the lake shores, is of inestimatale value. Of the present park area about st pere cent is forest cland, almost wholly made up of roniferoms trees. The timber is by no means of the tinest quality, but for the purpose of water peotere tion it meets every possible mequiremont. Murb has heren sad of lato years by scientifa and experionerd persons of the great neressity of preserving the forests near the somes of on great rivers. It is mand for the forest protection that the poposed entrament is demander by the public welfare. In my opinion no region in the Rocky Monnt. ams in so admirably adapterl for a forest reservation as the Vollowstone National Park.

NOAPING (iEYSERS.*

By Arnold llague,
1. S. Gicological surveg.

At the Buffalo meetins, Ortober, Rssi, lhr. Raymond presented a paper entitled "Soaping (ixysers" in which he valled attention to the use of soap by tomists to callse ermptions of several of the well-kown geysers in the Vellowstone l'ark. lucorporated in this paper appears a commmication recejed from me, written fom amp in the park, in reply to some infuiries on the subjeet. The letter disenssed somewhat briefly the mams amploged by visitoms to the park to lasten the armb tions from hot springs amit reservors of hot watre, which remain dormant for days, wreverems months, at a temperatme near the boiling-point, without any display of geyser-action. As the paper hats ralled forth comsiderable comment, l desire to elurdate one on two points in relation to the temperatme of the springs, and to answer some inquiries about the eomposition of the thermal watres.

In the summer of 185.5 , ('himamam, employed as a lamblryman for
 dentally disooverde, much to his amazament, that soap thrown into the spring from which he was acenstomed to draw his supply of water prodned an aroption in every way similar to the atotal workings of a geyser. Tomrists, with limited time at their command, who hand travelled thonsamds of miles to look upen the wonders of the Vellowstone. soon fell into the way of eoaxing the lamelryman's suming into arfion, to partly compensate them for their some disappointment in
 attempts upon this sprimg son led to varions amdeavors to areelevate artion in the domant and more lamoms gersirs. In athort time, so popular beeame the desirr fortimmate exersers in this way, that the park anthorities were compelled to enforee rixidly the rule aganst thowing ohjeets of any kind into the sprinss.

In comeretion with a thoromgh investigation of the thermal waters of the Vellowstone l'ark and the phemomena of the geyors, I moder-

Read at New Vork mooting of the American Instime of Mining Engineres, F゚ebraary, 18s!. (From Trans. Im. Inst. Mining Eingincers.)
took a number of experiments to ascertain the action of soap upon the Waters and to determine, if possible, those physical conditions of varions pools and reservoiss which permitted the hastening of an ermp tion by the employment of any artiticial methorls. This investigation, comblncted fiom time to time, as opportmity offered, thronghont the field-sadson of 1885, inchaded experiments upon the geysers and hot springs of the ${ }^{\text {thper, Lower, and Nomis geyser basins. The results }}$ proved, beyoud all question, that geyser-action conld be forced in a mumber of ways, but most conveniently loy the application of soap. The grater part of the more powerful geysers undergo no perceptible change with a moderate use of soap, although several of them may, under farorable physical conditions, be thrown at times into violent dgitation. In most of the experiments, Lewis's concentrated lye, put up in one-half pound cans for lamully purposes, was employed. Each package furnished a strongs alkali, equivalent to several bars of soap. In this form alkali is more easily handled than in bars of soap, more espectally where it is required to produre a viscons flud in the larger reservoirs: and, in conducting a series of experiments for romparative pmposes, it seemed best, in most instances, to rmploy the same agent to bring about the desired results.

Old Faithful, the morlel geyser of the park, exhibits such marked regularity in its workings that attempts to hasten its action appear fatile. The interval between ermptions is abont sixty-five minutes, and rarely exceds the extreme limits of fifty-seven and seventy-two mimutes. After an eruption of Old Faithful, the reservoir fills up gradually; the water steadily increases in temperature; and conditions favorable to another ermption are prorluced under ciremmstances precisely similar to those which have bronght abont the displays for the past eighteen years, or as far back as we have anthentic records. The few experiments which have been made upon Old Faithful are insufticient to afford any results bearing on the question; but it seems probable that soon after the water attains the necessary temperature an eruption takes place.

Of all the powerful geysers in the park, the Bee-Hive offers the most favorable comditions for produring an ermption by artificial means, all the more striking becanse the natural displays are so fitful that they ean mot be predicted with any degree of certainty. Observations, (xtending over a period of several years, have failed to determine any established law of periodicity for the Bee-Hive, even for three or forr comsentive months, although they indicate that some relationship may exist between its display and those of the famous Giantess. Frequently the Bee-Hive will play several times a day and then beeome domant, showing no signs of activity for weeks and months, althongh the water may stand above the boiling-point the greater part of the time. The name Bee-Hive was suggested hy the symmetry of the rone built aromm the vent. It rises about 4 feet above the sloping mound of
 the bottom of the rone the rent is less than 10 ine hes in wirlth. From the top of this marow vent it is only possible to sink a weight 17 feet before striking a projecting ledge, whirh interferes with all examina tion of the eround below. The constant loiling and bublblage of the Water. the irregularity of its artion, and the eonsenisht location of the geyser, within an easy walk fiom the hotel, make attempts to aree erate the ermptions of the bere-llive most attration for tomists.
 quently reward the astonished traveller that, unless the geyser were caretully watched by the anthorities, attempts would be made daily theonghont the season. It the eonditions are favorable to all ermetion, it usually takes place in trom ten to twenty-five minntes after the addition of lamdry soap or lye It is dombthal if more than two moptioms of the ber-Hive have erer heen borlued on the same day by artiti(ial means, althongh I know of mo reason, baserl mpent the stometme of the geyser, why mone displays might not be obtained, for the reservoir and rent fill wh with boiling water rery rapidly after cach eruption.

Althomgh the Giantess is sitmated only 400 feet fiom the beellive, these two difter in surtaer and moder-ground strueture and mote of artion as widely as any two of the more pominent geysers of the lark. Aromad the (riantesin mone or momind las formed. The broad basin is mbly partiall! bimmed in by a marow fringe of silicerons sinter. risug above and extending out over the deep blae water. It the surfare this hasin messures ahont 15 to 20 feet in widll by 00 to 30 feet in length. It has a fummelshaped maldron, 30 feet in depth. ending in a vertioal vent or merti, 1: feet deep,
 merting a projecting ledge or obstruction of some kind, (il feet below
 heen eomplately amptied of its water, gradnally tills again to the top: and, for days hefore another amption, ateady stram of hot water overthws the bim. The intorals between the ernptions of the Giantess vary foon twede to twenty days, and the displays last ser-
 in the There labsin. Artifial means have never beren sucessfal in bringing this gever into artion, althomgh for days before an ermp tion, it is an masy matter to canse an agitation of the water hy theow ing into the basin small pierese of sinter, we to porince a boiling on the surface lasting several minates. by simply stirning the watir with a stick.

The Giant, one of the most violent of the geysers in the depper basin. mowe closely resembles the beellive than any other of those along the leirehole River. It has hoilt mp a cone 10 feet in heeght, one side of which has bern partly broken down by some eruption more
violent than any witnessed at the present day. Throngh this notehed side, steam and broken jets of water are constantly emitted; and on this account but little examination has been made of the maderground reservoirs and rents. The (riant is fitful in its action, at times playing with comsiderable regularity every fourteen days, and at other times pying dormant for mearly a year. I have no positive knowledge that an ernption of the Giant has ever been produced by any other than natural eanses. At the time of my experiments no eruption of the Giant had taken plare for several months, although the water was constantly agitated, so murll so that it was quite impossible to examine the vent with any satisfactory results. The only effect produced by the application of lyw was additional height to the column of water thrown out and a decided increase in the thmmping and violence of the boiling.

In the Lower Basin. the Fountain has been more carefully studied than the other geysers ; and, its artion and periodicity of ernptions having been fairly well ascertaned, it afforded the most favorable conditions for observing the action of soap and lye upon the waters. In its general structure the Fountain belongs to the type of the (ibantess, having a finnel-shaped caldron which, long before an aruption, overflows into an adjoining basin. It the time of my experiments upon the Fonntain, the intervals between eruptions lasted about fomr homrs. This interval allowed suficient time to mote any changes which might take place. My own experiments with lye yielded no positive results ; although it seemed highly probable that action might he hastened by the application of soal or lye just before the time for an armption, or when, for some eallse, the eruption was ovedne. I preferred to make the attempt to bring about an explosion before the usual time, only waiting matil the water in the pool hat nearly reached the boiling point. All experiments failed. The previous year, when wishing to produce action for the purpose of photography, I was enabled to accomplish the desired result by vigorously stirring with a slender pole, the water near the top of the vent connecting with the lower reservoir. In this instance, it should be said, the usmal interval of time between ernptions had lons since passed; the geyser was, so far as time was concerned, a half-hom overdue. My opinion now is that the experiments with lye failed because the temperature had searrely reached the boiling-point.

The Monarch, in the Norris Basin, is quite mulike those already described, and affords evidence of being a much newer geyser. It is formed by two convergent fissures, on the line of a narrow seam in the rhyolite, probably coming together helow the surface. The main vent measures about 20 feet in length and, at the surface, 3 feet in width. But slight incrustation is found around the vent, the conditions not being favorable to deposition. In this narrow fissure the water, which ordinarily stands abont 15 feet below the surface, constantly surges
and boils, exepet immediately after an ernption. The intervals be twen eruptions vary somewhat from year to year: but at the time of these experiments the action was farly regular, the grysur playing Pery four hours. I was sucerssful inubtaining an ermption quite equal to the natural displays, which throw a column of water io feet into the air. Here at the Monarch there is no surface reservoir, and the narrow tissure, filled with loose blocks of roeks around which the water is in constant agitation, pevents all measmements of depth.

The results of the many experiments, not muly upon active geysers but upon a large number of hot springs, determine failly well the essential conditions which render it possible to bring about geyser artion by artificial means. Nesative results are frequently as vahable for this inquiry as experiments yielding imposing rlisplays.

Ontsile of a few exceptional instances, which could not be repeated, and in which action was probably only anticipated by a few minutes in time, geyser eruptions produced hy soap or alkali appear to demand two essential requirements: First, the surface caldron or reservoir should hold but a small amount of water, exposing only a limited area to the atmosphere; second, the water shonld stand at or above the boiling point of water for the altiturle of the geyser basin above seat level. The principal factor which makes it possible to rause an eruption artificially is, I think, the smper-heated and unstable condition of thr surface waters. Mans of the geysers and hot sprimgs pres sent simgular phemomena of pools of water heated aborr the theoretical boiling point, and, untess disturbed, frequently remain so for many days without exhibiting any signs of ebullition. It may not be easy to desoribe acchately these super-heated waters; but any one Who has studied the hot springs and pools in the Park and carefulty noted the temperatures, puickly learns to recognize the pernlian ap pearance of these hasins when hated above tha boiling point. They look as if they were •ready to boil," exepent that the surfare remains placid, only interrupted by mumerons stam-bubbles, rising throngh the water from below and burstag duietly upon rearhing the surface

Damet, the Erench physidist, has sperially investigated tha phenomrha of super-heated waters, and has sureeeded in attaning a trmperature of 10.51 . before ebollition. Super-heated waters in nature, however, appear to have been soarerly remonized, exeret during the prosress of the work in the V'ellowstone Park, in "onne tion with a study of the geysers. The altitules of the geyser basins above seatred have bern asertamed by longersies of barometrie radings, continned through seremal seasons. In comducting a series of observations mon the boiling points of the thermal waters in the l'arla, Ine Wil. limu Hallock, who hat "harge of this sperial investigation, dotermined the theoretaral boiling-point by noting the mean daily readings of the moremrial colmm. The exat boiling-point of a pure surfare water, obtained from a neighboring monntain stream and the boiling-
point of the thermal waters from the springs, were determined from actual experiments by heating over a fire, employing every possible precaution to avoid sources of error. Surface waters and deep-seated mineral waters gave the same results, and coincided with the eakenlated boiling-point at this altitude. Humdreds of observations have been carefnlly taken where the waters in the ative and running springs boiled at temperatmes between 195° and 1990 F .

As will be shown later in this paper, the thermal waters are soln. tions of mineral matter too dilute to be afferted to any appreciable extent as resards their boiling point by their dissolved contents. The theoretical boiling point for the springs and pools in the Upper (ieyser Basin may be taken at 92.50 O. (198.5 F.). In many of the large ealdrons, where the water remains quiet, a temperature has been recorded of $94^{\circ} \mathrm{O} .(201 . \therefore \mathrm{F}$.$) without the usual phenomena of boiling. This$ gives a borly of super-heated water, with a temperature at the surface $1.5^{\circ} \mathrm{C} .\left(2.7^{\circ} \mathrm{F}.\right)$ above the point necessary to produce explosive action. Thermometers planged into the basins show slightly varying temperatures, dependent upon their position in the basin. They indicate the existence of mumerous currents, and a very unstable equilibrinm of the heated waters, which are liable, under slight changer, to burst forth with more or less violence. It is under these conditions that geyser action can be accelerated by artiticial means. It into one of these super-heater basins a hamlful of sinter pebbles be thrown, or the surface of the water be agitated by the rapirl motion of a stick or cane, or even by lashing with a rope, a liberation of steam ensues. This is liable to be followed by a long boiling of water in the pool, which in turn may lead to geyser action. There is some reason to believe that, atleast in one instance, an eruption has been bronght abont by a violent but temporary gust of wind, which either ruffled the water or distnrbed the equilibrimm of the pool, and changed momentarily the atmospheric pressure.

In [celand travellers have long been aconstomed to throw into the geysers turf and soft earth from the bogs and meadows which abound in the neighborinoorl, the effect produed being much the same as that of sinter pebbles and gravel upon the geysers in the National Park. So well was this mulerstood that at one time a peasant living near the Icelamel locality krpt at shovel solely for the accommodation of those visiting the gersem.

In my letter to Dr. Raymond I mention the emrions fact that the Lamblyman̊: Spriag, now known as the Chinaman, in which geyser ation may most casily be produced by artificial means, has never been regarded by the feological Survey as anything but a hot spring, and no one has ever seen it in action withont the application of soap, exrept in one instance, when it was mane to phay to a height of 20 feet after stirming it vigorously with a pine bongh for nearly ten minutes, In our records it is simply known as a spring.

If soapp of lye is thrown inte most of the small pools, a viscons flaid is fommed and viseosity is, I think, the principal "anse in hastening geyser artion. Viscosity must tend to the retention of stean within the basin, and, as in the rase of the sumer-heated waters, where the temperatme stands at ar above the boiling point, explosive liburation most follow. All allabline solutions, whether in the latoratory or in mature, exhibit. by reason ol this vincosity, a tembery to hamp and boil irregularly. Visonsity in these lont springs most also temd to the formation of bubbles and foam when the stean rises to the surface, and this in turn aids to bring about tha explosive action, followed hy a redidef of pessme, and thms to hasten the timal and more powerful display. Of comse relief of pressme of the superincmbont waters mon the colmon of water below the smfane basin is essential to all emptive action. These conditions, it seems to me, aro porely plysical. Cndonbtedy the fatty substanes contaned in soap aid the alkali in rendrring the water viseons. On the other hami, when comoentrated lye is used it arts with greater encrgy and furnishes a viscoms thol, where soab woukd yield only surtase suds insufficient to ateomplish any phenomemal display.

It is well known that satumated sohntions of mineral substane raise the boiling point very considerably, the tempratme having bern determined for many of tha alkaline salts. In general, I belinve the hoiling point bucrases in proportion to the amount of salt held in solntion. Arfual tests have shown that the mormal builing-point of silibeons waters in the Park does not differ apperembly from the ordinary suffor waters, manly, il supose, becane they are extremely dilute solntions.

The amomut of lye remuired to produee a suftieiently viseous condition of the waters increases but slightly the pereentage wf mineral matter held in solntion.

All the waters of the primobal gevere hasins present the elosest resemblance in chemical composition, and. for the purposes ot this paper, may be comsidered as identioal in theireonstituents. They have a common origin, being, for the most part. surfare waters which have pereolated downward for a sufferont distance to come in contanet with large volmes of steam asembling fom still greater depths. The mineral contents of the hot spmings are mainly derived from the arid havas of the Park platean, as the result of the ation of the aserending steam and sumer-heated waters mon the rocks below. These thermal waters are essentially silieenns alkaline water, watyon the same constitnents insomewhat varying quantitis, lont alwas dilute sohtions, mex exceding two grams of mineral matter per kilogram of water. Wher eold they are potahbe waters, for the most part slightly alkaline to the taste, and pobably wholesome mongh, maless taken daly fon a long period of time.

The following analyses of thece geyser waters, selected fiom the

Upper, Lower, and Norris geyser basins, may serve to show the composition of all of them, the differences which exist being equally well marked in the analyses of any two waters from the same geyser basin.

	Bee-1live Geymer.		Fountain liryser.		Hearlens fryser.	
	Frams. per kilo of water.	Per cent of total mattrrin solution.	Grams per kilo ol water.	Per cent of total matter in solution.	(iramas per kilo of water.	1rar cent of total matter in solution.
Silica	0.3042	27. 12	6. $3: 315$	23,69	(1).4180)	25.60
Sulplinric acid.	. 0271	2.24	. 0195	1.39	. 0867	2.25
Carbonie and	. 0920	7.60	. 2307	16.4.	. 0046	. 28
Phosphoric acid			. 000004			
Boracie: acid.	.0145	1. 20	. 0138	. 91	. 0223	1. 36
Arsenious acid	. 0011	. 09	. 0027	. 19	. 0022	. 14
Chlorine	. 3894	32. 15	. 3337	23.84	. 6705	41.06
Bromint	Trace		. 0004	. 03	. 0026	. 16
Iodine						
Fliorine						
Hydr. sulph			Trace		Trace	
Oxygen (basic)	. 0364	3.00	. 0654	4.67	. 0113	. 70
Iron	Trime		. 000:	. 01	. 0006	. 04
Mangracese			Trace			
Aluminiun	. 0102	. 24	. 0057	. 41	. 0002	. 01
Colcimm.	. 0033	. 32	. 01114	. 10	. 0092	. 56
Magnesimm.	. 0000	. 02	. 0010	. 07	. 00001	. 01
Potassium	. 0213	1. 76	. 0373!	2. 71	. 0415	2.54
Sodimm	. 311s	25. 74	. 3522	25.1ti	. 4046	$2 \mathrm{2t} 77$
Lithium	. 0061	. 50	. 0035	. 25	. 0081	. 50
Ambroninm.	. 000021	. 02	. 000015	. 11	. 000025	. 12
Ciesium				Trace	
Rnbidium					Trase	
	1.21111	100.00	1.39979	100.00	1.63275	100.00

 F.; reaction, alkaliur : sperific gravits, 1.0009.
 F.; reartion, alkaline; surecilic gravity, 1.0010 .

Fearless Guyser, Nurtis Geyser Basin. Data of rollertion, August 18, 188t; trmperature 190, \boldsymbol{t}° F.; reaction neutral, specitic gravits, 1.0011.

The differences of temperature shown in these three waters are simply due to the varying interval between the time of collection and the last prefeding ernption of the ereser. In the case of the Fonntain, the water rises in a large open basin, which slowly fills up, increasing in temperature until the time of the ermption, the form of the hasin permitting the colleation of the water two or three homs before the next ontburst. In the rase of the Fearless the surface reservoir is a shallow, sancer-slatped basin, into which the water seldom rises before attaining a temperatme near the boiling-point. At the Bee-Hive the water only reaches a sufficiently high level to permit of its collection withont diffoulty when the temperature stands at or near the boiling-point.

Dr. Raymond has mate the suggestion that the addition of ranstie alkali wonld possibly precipitate some of the mineral ingredients found
in these waters, thereby rhanging thoir whomioal romposition suttieiantly to affere the point of ebmllition. At the same time le remarks that the geyser waters are probablog ton dilute solations to be math
 the Waters of the Ber-llise Fommtain, and Fearless monst sere, I think, that they are not only too dihate to maleriso any marked chamer of temperature, hat that the minmal amstituents eomsist manly of the (arbomates and rhlorides of the allablis, assoce iated with a relatively large amount of fred silica which wombl remain macted upon by a anstice alkali. There is mothing in the waters to be thrown down by the addlition of alkali or permit any chemical rombinations to be formed by the addition of a small amomat of somp. The desire of tomints to - sconp a gevser" during their trip thongh the l'ark grows ammally with the increase of tralsel, so mach so that there is a steatly demame for the wilet suap of the hotels. If visitors combl hate theire way, the heantifal bhe springs and hasins of the geysers would be "in the suds" comstantly thromghot the seanom. Thanding anything into the hot springs is now mohibited hy the (forermment antlorities. It is reptanly detrimental to the preservation of tha weysers, and the pratediee can mot be too strongly condemmed by all interested in the National Reservation.
H. Mis. $114-11$

CONTLNENTAL PROBLEAS OF（iEOLO（iY．＊

引う（i．K゙．（iILBERT．

Introduction．－For a decade attention has been turned tor the con－ timents．Through the distribution of amimals aud pants Wallace has studied the history of the former eommeetion and discommertion of land areas．Theories of interchange of land and water have been propomeded by Suess and blytt．By means of gendetio data Helmert has discmssed the broad mations of the geoid to the theoretice sherend．Darwin has computed the strength of terrestrial material necessary to sustain the rontinental domes．James Geikice treatirg nominally nl coast lines， has considered the shifting mations of land and sea，and at half some of able writers have debated the question of continental permanence． The American Society of Naturalists，now holding its ammal meeting at Priaceton，N．J．devoted yesterday＇s session to the consideration of such evidences of＂hange in the geograply of the American continent as are contained in the distribution of animals and plants．＇The inter－ ＂ontinental congresses anxiliary to the Workls Pair next summer are to be devoted to the disarssion of continental and inter－antinental themes：and a committere，at the bead of which stands one of ome vice－ presidents，invites the geologists of the word to assemble for the con－ sideration of those broader questions of earth structure and earth history which affert more than one hemisphere．This oceanion，too，in which， after three years sojomon in the land of the mecoon and the opossum， We return to the land of the sable and the beaver，bringe foreibly to mind the continental extent of our society and its contimental tied．It sis mot stange，then，that the rontinents have seemed to me a litting theme of which to speak to you to－day．Realizing not only the breadth and grandens，but the inherent difientty of the subjeet，I do not hope to enlarge the contribution the decade has made，bor shall I attempt to smmmarize it ；neithre is it my desire to antieipate the discossions of the World＇s Fais romgres．It is my bupwe rather to state，as Clearly as 1 may，some of the great msolved pobloms which the eom－ tinents propound to the coming intereontinental congressur weologists．

[^10]Differentintion of contincntal and oceanir platens.-It is one of the paradoxes of the subject that om ideas as to the essential charactes of the continents lawe been gratly morlifiol and clarified by the recent exploration of the sea. The work, especially, of the Chullenger and the Blake in delineating and sampling the bottom of the ocean has given new defintions, not only to the trm "deep sea," but also to the term "continent," as they are employed by students of terrestrial mechanics and of physioal geography. To the continental lands are now adderl the continental shoals, and the repth of the deep sea is no longer its sole characteristic. Look for a moment at this generalizerl protile of the earth's surfane. It expresses in a concise way the relations of area to altitude and of both to the level of the sea. Muray, to whose generalizations from the Challonger dredgings and soundings the sturlent of continents owes so much, las computed, with the aid of the great horly of modern data, the areas of land and ocean bed contained between eertain contoms, fontern in mmber,* and from his

Figure 1,-Gencralized Profilc, showing rclative Areas of the Earth's Surface at different Heights and Depths.
figures I have constructed the profile. Vertical distances represent heights aud horizontal distances represent terrestrial areas. The full width of the diagram from side to side stands for the entire surface of the earth. The striking features of the profile are its two terraces or horizontal elements. Two-fifths of the earth's area lies between 11,000 and 16,000 freet bencath the ocean, constituting a vast submerged platean, whose mean altitude is $-14,000$ feet. This is the platean of the deep sea. One-fomth of the earth's area falls between the contomr 5,000 feet abore the ocean and the contour 1,000 feet below, and has a mean altitude of $+1,000$ feet. This is the continental platean. The two plateaus together comprise two-thirds of the earth's surface, the remaining thind inchuling the intermediate slopes, the areas of extreme and exeeptional depth, and the areas of extreme and exceptional height.

[^11] pendent of the distribntion of land ame water, we have the owem flome rlearly differentiated from the continental platean. It is at once evident that for the disemsiom of the grater temestrial problems comected with the contiguration of the suthere, and aspecially of the problems of temestrial mechamies, we must substitute for the emotinents, as limited by consts, the continental patean as limited bey the margins of the continental shonals.

It dows not follow from the profile. which, as I have said, reperesents ouly the relation of extent to altitude, that all districts of contimental phatem are mited in asingle body, and in point of lant they are not completely mited: lont the greater bodies are bronght together, and the only outlying district js that of the Antarefie continent. Raming a lime along the edge of the wontinental shelf where a gentle shope js exehanged for a steep one and passing freely, as orcasion may manire, from the coast down to the line of 1.000 fathoms, a continental ontline is po-

duced in which North America and Eurasia are mited throngh the shoals of the Aretic orean, and in which Anstralia and the greater istands of the East Indies are joinel to somthwestern Λ sia. Antaretiea alome stands separate, boing parted from Somth America by a brome ocean ehamel, imperferetly surered asyet, but believed to have a depth of hetween 1,000 and 2.000 fathoms. The lower platem, or the floon of the deep orean, is less contimmens. being separated hat tracts of moderate depth into thee surat bodies, winding apmoximately with the Parifice, Atlantice and hadian oreans.

Rigidity rersus iswstasy. -The tirst of our continemtal problems refers to the conditions muder which the differentiation of the eathes surtace into oceanic and continental plateans is possible. How are the conti ments supporten? Every part of the oceanic platean sustains fhe weight of the superjacent wolmon of water. At the same lave bemeath the continental platean eakh mit of the lithosphere sustains a cohmen of rock both taller and denser than the colum of water and weighing
about three times as mnch. The difference between the two pressures, or the differential pressure, is about 12,000 pounds to the square inch, and this force, applied to the entire area of the continental platean, urges it downward and urges the oceanic platean upwad. Referring again to the diagram in Figure 1, the cutire weight of the continental platean, pressing on the trark heneath it, tends to produce a transfer of material in the direction from left to right, resulting in the lowering of the higher platean and the raising of the lower. To the question, how this tendency is countracted, two general answers have been male: first, that the earth, being solid, by its risidity maintains its form ; second, that the materials of which consist the continental plateau and the underlying portions of the lithosphore are. on the whole, lighter than the materials monderlying the ocean floor, and that the difference in density is the complement of the difference in volnme, so that at some level horizon far below the surfare the weights of the superincumbent colums of matter are equal. The first answer regards the horizontal variations of density in the earth's crust as mimportant; the second regards them as important. The first may be called the doctrine of terrestrial rigidity; the second has been "alled the doctrine of isostasy. At the present time the weight of opinion and, in my julgment, the weight of evidence lie with the doetrine of isostary. The differential pressure of 12,000 pounds per square inch suffices to crush nearly all rocks, and it may fairly be questioned whether there are any rock masses which in their natural condition near the surface of the earth are able toresist it. The samples of rock to which the pressures of the testing machine are applied have been indurated by drying; but it is a fact familiar to quarrymen that rocks in general are softer as they lie in the quary below the waterline than atter they have been exposed to the air and thoronghly dried. It is probable therefore that rocks lying within a few hundred or a few thousand feet of the surface are unable to resist such stresses as are imposed by contiments. At greater depths we pass beyond the range of conditions which we can repoduce in om laboratories, and our inferences as to physical conditions are less ronfident. The tendency of subterranean high temperatures is surely to soften all roeks, and the tendency of subteranean high pressures is probably to harden them. It is not known which tendency dominates; but if the tendencies due to pressure are the more powertul, we are at least assured by the phenomena of voleanism that their supremacy admits of local exception.

Nuture of Aensity differences.-If we accept the doctrine of isostasy and regard the material muler the continents as less dense than that under the ocean floors, the question then arises whether the difference in density is dne merely to a difference in temperature or whether it arises primarily from differences in composition. This, which may be called the second problem of the continents, is so intimately related to the one which follows that we may pass it by withont fuller statement.

What caused the continental platean? - The problem of the origin of the continents remains almost mintonched. Those who have propounded theories for the formation of mountain ranges have sometimes ineluded continents also, but as a rule withont adegnate adaptation to the speeial conditions of the continental prohlem. So far as 1 am aware the sulgeet has been suriomsly attacked only ly our second president, Prof. Dana. He postulates a globe with solid melems and molten exterior, and postulates, further, local differmenes of comdition, in consequener of which the formation of solid (rust on the liquid enrelope was for a lomg period confinel to certain districts. In those districts successive crusts were formed, which sunk throngh the liquid envelope to the solid molens amd by their acmmulation built up the continental masses. The remaining areas were atterward consolidated. and subsequant rooling shmuk the ocean bels more than it shonk the continental masses, becanse their initial temperatures at the begining of that process) were higher.* That the philosophice mind may find satisfaction in this explanation, it appears necessary to go hehind the seromd postulate amb diseover what were the conditions which determined congelation in certain thistricts long before it hegan in others.

Can it be shown that the localization of emgelation, having been initiated by an otherwise unimportant inequality, would be perpetnated ly any of those commative processes which are of sum importance in various deparments of physics? Amb can it he shown that surh a process of continent-builling would segregate in the continental trant certain kinds of matter and than institnte the comditions essential to isostatie equilibrim? To the first of these fuestions mo answer is apparent, but I incline to the opinion that the second may be answered in the affirmative. If we assmme the licpuil empelone to consist of va rions molten rocks arranged in the order of their densities and if we assume, further, that their order of densities in the liquid comdition corresponds to their order of densitios in the solid comblion, then the sucessive crusts whene heaping built mp the continents would all be formed from the lightest material. and the isostatie comdition would be satisfied.

It was the fashion of the last gemeration of physial geographers to study the forms of continents as delimited by coasts, seek ing analogies of continental forms with one another and also with varions geometric figures, especially the frampe. The gemationtions resulting from these studies have not yieldel valuable ideas, and the modem stment is apt to smile at the effort of his predecessor to discover the ideal geometric figure where the mbiased eye sees only imegnlarity. But haren as were hose studies 1 anm not satisfied that their method was faulty, and as at physiographer 1 have such appreciation of the ideas that sometimes grow trom stadies of form that I have aftempted to apply the old method to the new womeption of the comtinentalphatean. Con-

[^12]fessing in adrance that my only result has been negative, I nevertheless recite what l have done, partly hecanse negative contributions to an obsure sulbect are not entirely valueless and partly with the thonght that the forms whose meanings I failed to diseover may nevertheless prove siguificant to some other eyes.

What I did was to draw upon a globe the ontline of the continental platean and then view it from every direction. Afterwarts I developed the figme upon a plane surface, employing for that purpose a morle of projection which is probably novel. As this mode is not susceptible of mathematical formmation, and therefore will not find place in the literature of cartography, I may be pardoned for applying a trivial name and calling it the orange-peel projection. The name almost explains it. Conceive the continental platean to be ontlined upon a spherical orange and the rind of the orange to be divided by a sharp knife along the simosities of the ontline; concerive then that the portion of the rind

S
Figitre 3.- The continental platert developel on a plane surface.
thens ciremmscribed is peeled from the orange and is spread upon a flat surfaee, the different parts being strelehed and compressed so as to pass

N
Finione 4.-Ocranie ared comptementary to the contincotal platean develoned on a plane surface.
from spherical form to phane with the least strain of the rind. The resulting shape is delneated in Figne 3. Figure 4 shows the form as-
sumed hy the complementary part of the orange peel. whel represents. of comse, that portion of the orean motsirle the continemtal shoals. In (atill diagram the positions of the poles north and sonth are represented loy the letters ${ }^{\text {N a and }} \mathrm{s}$. From the stady of these figures, and esperially fiom their stmbly as delineated on the globe, it appered possible that a portion of the contimental phatean might belt the earth as a great cirele. The diseovery of such a belt would be important, for loy assmming that it was migimafly equatomial we might be leal to new hypotheses of continental devolopment. In a rotating liquid sphere the only differentation of surface eondition we can readily concerive is that betwedn equatorial and polar regioms, and if such differentiation were sufticient to canse or localize continental elevations, then these alevations would ronstitute eifler two polar trats or chse an equatorial belt. Normorer, I hare been indured hy recent stmotis of the physiral history of the moon to suspert that the earth may at one time have received considerable acessions from withont and that these accessions were made to the erpatorial tract. If these suspicions are well foumded, peculin characters may have been given to a tract having the form of a belt. So for a double reason l was led to compare the outline of the continental platean with a great circle. 'Jo this cud a great dircle was (hosen, roinciding as mearly as possible with the line of greatest ronfinmatal extemsion, and the projection was so modified as to render the

looms of that grat cime a straight line. The result appors in Figure or, where the straight line is the projertion of the hypothetir ancirnt egnator, and yom will pobably aldee with me that it gives little sup) port to the sugestion that the prindipal line of continental elevation was miginally efuatorial.
 eontinentaloseillations. The exologichistory oferervelistrid of the lamd
 To what extent are these danges due, on one hamb, to movements of the seat and, on the other, to movements of the land, and what are theile canses? With American geologists the idea, reontly adrocated, that the ehief movements are those of the aceall time little faror, beramsa some of the most important of the elanges of which we are dirertly cognizant are manifestly difírophtal. Onr palarozobe map pictures a seat where mow are Appalathian uphands and ublats where now are
low coastal plains and oceanic waters. In Cretaceons time the two margins of what are now the (rreat Plams had the same height, or at least the western margin was no higher than the eastern; but now the westorn marsin lies from fon thonsand to six thonsand feet above the eastern, and the intervening rock mass appears to have bern gently tilted without important intermal distortion. Snch geographic revo lutions are not to be explained by the shifting of the lyydro-sphere nor by its dilatation and contrastion. Neither can they be aseribed to isostatic restoration of an equilibrinm deranged throngh the transfer of masses by prosion and sedimentation, for that hypothetic process is essentially conservative. Neither is it easy to believe that the two margins of the plains have dittered, since the Cretaceons, to the extent of one mile in their radial contraction due to secular rooliug of the giobe; nor is it easy, at least for the disciple of isostasy, to believe that such a change can lave resulted from the localization of deformation consesuent on the slowing of the earth's rotation. Eachof these processes may hate been concerned, but I concerive that the essential factor still awaits suggestion. Our knowledge of smrace processes, as compared to subtermanan, is so full that the field of plansible epigene hypotheses may be exhansterl, lont the vista of liypogene possibility still opens broadly.

Are continents promunent?-The doctrine of the permanence of the contincutal platenn, emuciated long ago by lana and more recently adrocated, with a powerfnl aray of new data, by Muray and Wallace, has made rapid progress toward general acceptance. Nevertheless its conrse is not entirely clear, and among the obstacles still to be overcome is one whose magnitude is perhaps magnified for the American student by poximity. All who have studied hroadly the stratigraphy of the Appalachian district have conchuled that the sediments came chiefly from the east, and the detailed Appalachian work of the past decade is disclosing a complieated history, in whicl all chapters tell of an easteru palarozoic land and some chapters seem to testify to its wide extent. At some times the western shore of this land lay east of the sight of the Blne Ridge, and there is serions doubt whether the existing belts of coastal plain and submerged continental shelf afford it sufficient space. For the present, at least, the subject of continental permanence must be classed with the continental problems.

Do continents!rou? - Aceording to my own view there is yet another, a sixth, continental problem deserving the attention of the World's Fair inter-continental congress. We have been told by the masters of our science (and their teaching has been echoed in every text-book and in every classioom), that throngh the whote period of the geologic record the continents have grown; not that the continental plateans have been materially extended, not that the pendulum has moved alwars in one direction, but that the land area has on the whole steadily increased. From this doctrine there has been no dissent-
and possibly there should be no dissent-but the evidenee on which it is fombed appears to 1 me so far from conclasive that I venture to roubt.

The evidence employed romsists partly in the gencral distribution of fomations as show by the geologic map and partly in inferences drawn from certain formations which containinternal evidence that they miginated on coasts. With the aid of surb data are drawn the outlines of ancient oedan and land at varions geologie dates, and from the eom parison of these ontlines continental growth is inferred. In passing from the formation bommaniss of the geologice maj to the oceanic limits of the eharts of ancient weography, allowamere is made for the former extent of mon-littoral fomations beyond their present boundaries. This allowane is langely conjeetural and the range of possible eror is confessedly great. In passing from the observed limits of littoral formations to the coast lines of anciont geography little or wo allowance is nimally madr for the fommer extent of the formations, and I conceive that great possibility of erm is also thms admitted. During a periow of oreanic transgression over the land, all portions of the transgressed surface are successively coastal, and the coastal deposits they receive are subsequently buriod by off-shore deposits. When therefore littoral beds are fomd in remmants of strata smrving tho processes of degradation, it is indeed proper to infer the proximity of ancient coasts during their formation. but the inference that they remersent the limit of transgression for that epoch may be far trom the truth. For these reasons it appeats to me that the specitic comblnsons whieh have been reached with reference to the original extent of varions formations are subject to wide uncertainties; and, if this be granted, then but brief attention to a simple law of demulation is necessary toshow that the general conclusion may be illnsory. The process of degradation by aqueous agencies is chiefly regulated. not by the thickess of formations, but by the height to which they are uplifted. Thus the present extent of most formations is determined in large part by cristal oscillations subsequent to theirdeposition. As formationsare progressively eroded, the mbler-lying and older can not be attarked motil the oror-lying and younger have been carried away, and so the ontrops of the odder of neressity project beyond the boundaries of the gomere. The prosress of vague inferencr, making indefinite allowance for thembnown quan tity of eroded strata, nearly alway assigns to the older formation, which projerts visubly beyom the newer, a seater original extent. It appears to me thas possible that the greater part of the data fiom which rontinental growth is inferred may he factitions and misteading.

Furthermore, inferenere, such as it is, deals with only one phase of the problem. It is applied to the inemsions of the sea mon the land, but it is not applied to the exemrsions of the lamd upon the seat. Jnst as we inter from stratifed rocks the presence of the sea, so also we infer from meonformities the seats absence; and to the student of
ancient geography the two dasses of evidence are equally important. But the strata, spreat widely over the suffice of the land, are conspicnous phenomena, while monformities are visible only here and there and are usually difficult of determination. For this reason the data derived from unconformity have never been assembled. Essays toward ancient geography have dealt only with the minima of ancient land, never with its maxima, and the question of continental growth can not be adequately treated while half of the history is ignored.

We may horrow a figme from the strand of a lake. As the waves roll inward, earh records its farthest limit by a line upon the sand and each ohliterates all previons wase lines which it overpasses. The observer who studies the transient record at any point may find a series of lines, of which the highest is the oldest and the lowest is the newest, and he may infer that the lake level was higher when the first wave left its trace and that the water is receding from the land. But, if he continue his observations through many days and fix momments to record from time to time the lowest land laid bare between the waves, he may discover that the highest wave line and the lowest record of ebb correspond in time with the play of the largest waves, and that the lowest wave line and the highest record of ebb correspond to the play of smaller waves, and thus reach the conclusion that the lake level has remained unchanged. In the study of Time's great continental strand we are not even able to observe directly the wave lines of rhythmic transgression, but infer their positions from data often ambiguons: and of the lower wave limits, the lines of maximmm regression, we are absolutely ignorant.

It may be trme that a priori considerations afford a presmontion in favor of continental growth, lut such presmontion shond not be permitted to give color to avidence otherwise nentral; and moreover it is not impossible to discover an a priori presmmption in favor of continental diminution. Assmming that hypogene agencies camse continental areas to rise above the ocean, the work of epigene agencies constantly tends to remove the projecting eminences and deposit their material about their margins, soas to extend the area of the continental platean. Thus we have a strong a priori presmption in favor of continental growth. On the other hand, if we admit the principle of isostatic equilibrimm, then the continental eminences have low density: and as they are worn away by epigene processes the material which rises from below to restore them has greater density and maintains a somewhat less altitude. The process of isostatic restoration tends thus toward the permanent levelling of continents, and if the hypogene initiative should rease the continents wonld ultimately be reduced to ocean level, and fimally, through processes of solution, to a level below the occan; so, assmming the initiative processes of the under earth to be of fuite duration, the work of terestrial degradation, combined with isostatie restoration, should afford a continental history characterized in an earlier stage by growth and in a

 tion of hypotheses. As they hato dombtless surver to promote the theory of "ontinental growth, they shomlal also be permitted to indiate the pessibility of "ontinental retrosatations.
 so briefly that a summary is almost smperthoms. The doctrine of isostasy, thongh holding a leading fosition, has mot fully supplanted the doctrine of rigidity. If it he accepted, there remains the question Whether heat or composition determines the gravity of the ocean beds and the levity of continents. For the origin of continents we have a single hypothesis, whid deserves to be more finlly compared with the body of modern data. The mewly determined configuration of the contimental mass has yoded mo sugerstion as to its origim. The "anse of differential alevation amd subsideloe within the rontinental patean is maknown and has probably not been suggested. The permaneme of the eomtinental phatean, thomgh highly pobable, is not yet fally established: and the doctrine of rontinental growth, though gemerally ate cepted, has not heen placed berond the fied ot profitable disenssion. Thus thr sulpert of contments affords no less than a half rlozen of great problems, whose complete solntion belongs to the finture. It is not altogether pleasant to deal with a subjeet in regard to which the domain of our ignorance is so hood but if we are optimists we may be comforted by the reflection that the gedowists of this weneration, at least, will have no necasion, like Alexander, to lament a dearth of worlds to conguer.

By li. L. ГACKaRD.

The broad elassifteation of the successive stages of enlture of the prehistorif peoples of Emrope into the stone, bronze, and iron "ages" was based upon prehistoric finds, and is an induction derived from observation similar to that relating to the suceession of the different orders of animals and phants in geological history. It is also confirmed, as far as bronze and iron are concerned, by ancient tradition, for in early historical times it was known among the (ireeks that bonze had preceded irom at an earlior period, amb this knowledge, passing to the Romans in a later age, was expressed in the line of Lurretins which has been often quoted in this comection, "serl prion wris trat quam ferri cognitus usins."

But there is evidence to show that the use of copper was independent of, if it did not preedr, that of lronze, partienlaly in plares where the metal was indigenots. This evidence eousists in the disenvery of ropper implements and weapons instead of or sometimes arcompanying homze, mingled with mumerons stone articles of the same charate ter, in varions plares in Europe and the East. The prehistoric people had lammed the art of extracting eopper firom its ore, and in somerases practioed it near the places where the metal was used for implements and weapons. Prehistoria eopper mines have been reported form the Urals and elsewhere, and a cimomstantial aceont of sum a mine, Which was diseovered in 10.27 near Bischof:hofen in Salzburg, in Germany. has bern published by M. Mush, an areherologist who examined it in 1s7!.* The traces of the old workings, nearly obliterated atter so long a time. had lod to the establishment of a flourishing modern rop) per mine on the same voin, just as the trenches on the onterops of the enper bearing rocks in the Lake Simperior district served as giden to motern miners in simking shatts there. The salzburg mine. lowever, Was in copper ore and not native copper, and was a mine in the proper semse of the term, with extensive undergromed workings. The remains of small smelting fimmees, with slas heaps and other mbbish, were

[^13]found in the neighborhood, in the midst of which were a tew pieces of the copper prodnced from the ore on the spot hy the prehistoric smelters.* No iron tools or signs of their use were found in this mine, which was assigned by the archeologist who examined it to the time of the neighboring lake dwellers, who used its ropper for weapons and tools. Another mine in the Tyrol, referred to by the same author, was also apparently worked to supuly a colnom of lake dwellers sitmated near by.

It might beexpected on both mineralogital and metallurgical grounds that copper would be nsed hefore bronze, and even before smelting was discovered, because copper, like gold and silver, is fomed in the native state in many places, while comsiderable metalhmeical skill is necessary for the production of bronze. Moreover. bronze is an alloy of copper and tin, aml, except in the comparatively rare cases where copper and tin ores oceur together, tin wonld have to be transported to the copper-smelters to produce the alloy. [n North America, while copper was known to the natives, bronze had not appeared at the eporh of discovery by Europeans, and neither smelting nor even melting was necessary for the protuction of the copper artioles found in tre by the diseoverers.

The first comers to the northern part of this continent were struck with the absence of metals in the native weapons and implements, and found their place supplied by stone and bone. The inhabitants were in the neolithic stage of culture. They were, indeed, in possession of eopper, but, as far as the discoverers observed, it was almost exclusively used for ornamental purposes, and formed, apparently, no part of the native equipment in the arts of life. Exelnsive of the Spaniards, the earliest voyagers who left records or reports of their explorations sailed along the coast, or visited different parts of it, from Labrador to Flon' ida, and the inhabitants of the whole seaboard were fomm sparingly in possession of the "red metal." Thus, in the account of Cabot's voy age in 1497 , given in Hakluyt, there is this brief statement: "Hee (Cabot) declareth further that in many places of these Regions he saw great plentie of eopper among the inhabitants." The account is a translation from Peter Martyr, and the words "great plentie of" are not warranted by the original. + Cabot's observations were male on the northern coast of the continent, and he went as far as 60° north latitude. A similar brief statement is given in the aceount of the voyage of Cortereal in 1500 , who is said to have gone as far north as jho. The accomt (in Rammsio) eleseriben the painted in!abitants, their clothing of skins, and other particulars, and states that they hat bracelets of silver and copper. The mention of silver is mfortmate. Verrazano's

[^14]report goes more into partialars. He masted from 34 to beyond 410 north latitude in the year 1524 , and made serema landings. Hes sums of the natives, at a point on the eoast apparently in the nerighbordood of New Vork. that they hat "many plates of wronght eoppers, which they catceme more than golde." On sailing along the roant to the wast ward he saw reertain hills and conchaded that they had some "minerall matter in them, beeanse," he sitys, "we saw many of them [the matives] have beadstomes of copper hanging at their eares." (On the sonthern and eastern eoast, therefore, wording to these aceounts, the copper was used for monaments. Neithor of the obsarvers quoted sporak of copper weapons in that part of the comatry, whirl they would have been likely to notice, as they naturally paid seeceal attention to the ams they might have to emenmer. Sor did later explorers who doseribed the equipment of the natives in detail have oceasion to give greater prominenee to copper.

In Cartiers second woyne to the Nt. Lawrenoe, in disu5, ho kidnaped the principal chief of a local tribe to take with him to France, follow ing the common pratice of the time, and this ehiof was visited on shipbord hy condoling members of his tribe, who were assmred that he wonld return the next fear, "which, when they heard," says the aerount in llakhyt, "they gratly thanked om captain ant gave their lord thre bumbles of beaver aml seal wolves skimes, with a grat knife of red copper that rommeth from sagnenay." Ilere is an instance of a copper weapon or implement. The quantity of copper which the North American Indians possessed at the epooln of discosery, althongh the metal was diffused overa very wide ter ritory, was very small rompared with stome. A glame at collertions of aboriginal artieles, like that of the Smithsonian Institution in Washington or the I'eaborly Insenm in Cambridge, will at onee show how relatively insignificant it was. The smithsonian has between six and seven hambed ropper articles fom mombls, graves, amd other somress within the teritory of the buited States, while there are thonsands of stone arow and spear heads and implements in its rollection. The Peabody and othereoppor collertions are very much smaller. A eloser examination of the Smithsonian exhibit will show that the eopper articles fiom the somth and rast are manly of ant manmental character and few in momber compared with those fombl toward the now hwest. As Wisconsin is appoarched the copper articles not only increase in number, but the proportion of arrow abd surar hoads amd implements far exceeds that of the ormaments. Among the Wisconsin sperimens are pieces of "that " "opper, varying in size from those weighing several pomads down to magets, which indieate the convenient material of whirh some of the mamendemed articles wore probably made.

If one were toprobare a map, showing by sharling of colors, as is now the pratetiee, the relatise number of aboriginal copper finds in the L'ited Ntates, thaderpest shade or darkest colon would at present be in 11. Mis. 111 - 12

Wisennsin. This combition is no donbt largely due to the indefatigable zeal of Mr. F. S. Perkins, of Wisconsin, who has devoted himself for many years to collecting copper articles of Indian origin from all parts of the State, about four hundred of which are in the Smithsonian cases. But the phenomenon can be explained in another way when one reflects that Keweenaw Point is directly nortll of the State and was the seat of the ancient copper mines which have attracted the attention of arehseologists, and was the center of distribution of the native copper which was the object of the desultory mining earried on there. Wisconsin is also in a very favorable situation for receiving the drift which bronght "float" copper from the copper-bearing rocks of Keweenaw, which "float" was apparently often mannfactured into implenents. The State covers a district which was near the mines and is in a direct comse for people leaving them going sonth. It may be fond that that district was the seat of the ancient miners themselves.

The yield of momals, graves, mul fields, as shown in the collections, confirms in a genoral way the observations of the first discoverers. In the eastam and sonthern parts of the eountry the majority of the copper articles whish have been found are breast-plates, bracelets, heads, bobbin-like objeets and other ornaments, while in the north and west, and especially in Wisconsin, implements and weapons prevail. The Wisconsin specimens are like those figured by Whittlesey (Smithsonion Contributions, vol. XIn), which were fomd in the mining district itself, and those found at Brockville, Canada, and shown in Wilson's "Prehistoric Man." Others, apparently of the same "haracter, are mentioned by Wilson as being found near Marquette, Mich., east of the copper district.

The present evidence, therefore, shows that copper had not passed its ornamental or predions stage on the seaboard and in the sonth at the time this continent was brought to the attention of Emrope. It was not a part of the general native equipment, either for war, or hunting, or other useml purposes, and its position in the native economy was not like the noticeable part it played in the armament of the Mexicans and Central Americans of the same period.

It the adrent of Emropeans ropper was eagerly songht for in trade with the whites. An official present of eopper articles is particularly mentioned in the account of Cartiers voyage before referred to, and Ralph Lane writes from Roanoke, in $1: 585$, to his eompany in England that they could not do better than send over copper articles of all kinds to trade with: "copper carryeth the price of all, so it be made red," he explains. The eopper obtained from the whites was very soon, with other imported things, disseminated by barter among the different tribes. In Frobisher's third voyage to the Labrador coast (lat. 58°), in 1575, he noticed the evidence of this aboriginal trade, and says "the uatives have traffic: with other people, and have harres of iron, arowe, and speare heads and certain buttons of copper which they use to weare
uron their foreheads for ornament, as our ladies in the ront of England doe use great pearle." This trade with the natives must have been eonsiderable. The fishing theets which swarmed in the northern waters carried on trade, and copper and iron articles formed a prart of theil ontward eargoes. Aecording to Anthony l'arkhn'st, who had been in the lonsiness and on the fishing gromds, trale to New fommand from Dingland was brisk in 1.ists, and an estimate which ho made for Hakluyt shows that in bas there were 100 Spanish vessels anged in
 and Breton ressels. The English contingent was than much smaller than in former years.

Atter the arrival of Emopeans, bringing an assortment of "nowedties"of all kinds. there was no deason why tha lndians should trouble themselves further to obtain domestio eoplere by the toilsome process of searching and digeing for it, beranse they now had not wily a ready and suficient supply of that metal for ornmontal purposes, hat wre introduced to many other things of superion attractivences, esperially iron, in the form of knives, hatehets, ete. which at oner superseded eroberer for patactal use. "The Chippewa chiof, Kontila, asserted in liout that hat seven genmations of men had passed sinee tho French bronght them hras ketthes; at which time their people at once laid asike their own manufactures and adopted those of the French.."* The testimony of the earliest royagers to the possession of eopper ornaments by the matioes is therefore of importance, bramse there was rery som enongh of the imported article in the comntry to make a show. Incirlentally, also, arohnologists have torerp this fact of foraig importation in mind in deriding upon the origin of copper arti"les in "fuds." Lake superior eopper, of whieh pre Colnmbian Indian articles were marle, ocems in the mative state, and is free fom the impmities which are
 often deridn whether a givenspecimen was of mative origin or improted. On some conper articles fomm in the nometh, sperks ot silver have heen notioed. This is a sure token of Lake Superior eopper which has never beerl melted.

In the abseme of evirlener flat the Ludians of the U'niterl States had any kumwledge of smolting, it must bu infored that all the eopmer they possessed was temad in the metalle om mationstate. There is mothing to show that they were a wate of the existerne of "olpere ore as atome se of metal. No frmains of smalting places, on slag, on othor indieations of metallurgial operations have yet been fomblat It It had known smelting they eombl have han an ample smply of the motal, berame ores of conper are comparatively abumdant in the Vinited States, while, as a matter of lact, copper was a raty will them. Nativeropper ocems in small quantitios in many bares in the United States, hat there is mo -videnee at prosent that the nowthern Indians had knowledge of any

[^15]but two localities where it could be obtained in any quantity. These were the Coppermine River in the British lossessions, and the Lake Superior copper district. The latter affords the most remarkable occurrence of native copper in the world, aud the present mines on Keweenaw Peninsula-including the famous Calumet and Hecla, the Tamarack, Quincy, and others-are of word-wide fame. The same deposits were worked superficially over their whole extent long before the advent of Europeans to these shores.

By reterring to the map of Michigan it will be seen that Keweenaw Peninsula is a proninent geographical fature and extends a considcrable distance into Lake Superior. Its borthwestern shore and the contination thereof through Untonagon Connty is practically parallel to the opposite or morth shore of the lake. Through the middle of Keweenaw Point runs a belt of elevated land which is several hundred feet above the lake in some plares, and extends from the extreme point throngh the peninsula and Ontonagon County into Wisconsin. This elevated belt, which is known as the "mineral range," sometines rises into blufis which are abrupt on the sontheastern or shoreward side, but sloping in the opposite direction or toward the lake. The dip of the formation composing this range (sandstone, and sheets of igneous rock, including conglomerates) is in a general northwesterly direction, or towards the lake and the morth shore. On lsle Royale, near the north shore of the lake, the same formation oecors, but dipping in the opposite direction, viz, to the southeast or towards Keweenaw. "Trap" rock carrying copper is also found on the north and east shores of the lake at St. Ignace and Michipicoten Island. The ropper-bearing series of the "mineral range" consists of sheets of igneons rocks-diabase, diabase-anygdaloid, and melaphyr-which include beds of conglomerate all carrying mative copper. Both of these classes of rocks are mined. The famons Galumet and Hecla mine is in the conglomerate, as is also the Tamarack, while the Quincy, Atlantie, and others are in the anygedaloid rocks.

The product of the mines is divided by the miners into three chasses, stamp rock, "harrel work," and mass copper. By stamp rork is meant that whicle contains the copper in fine particles and is sent to the powerful stram stamps to be crushed, in order to separate the grains of (opper by washing (jigging), just as gold-bearing quartz is stamped. "Barrel work" means the pieces of copper which are large enongh to be detacherl fiom the rock without stamping and are packed in barrels and sent directly to the smelters. They vary in size from pieces abont as large as the land to those not too large to be conveniently packed in barrels. Pieces too large for this constitute the third class, "mass copper," which inchides the huge pieces of many tons' weight which are oceasionally met with. All this copper shows as such in the rock, and the ancient miners hat only to follow down a promising ontcrop showing "barrel work" for a few feet and hammer away the rock
from the copper to secme the latter. Whan thry came upon mass copper they were compelled to ababdon it, after hammering off projecting pieces, becanse they had no tools for cutting it un and remoring it. Several instances of this sort have been fomme

The ancient mines werr not mines in the strict sense of the wort, beamse they were not undergromul workings. As drseribed by Whittlesey, who examined them at an early date, they wrere shallow pits or trenches, and sometines excavations in the faces wi the clills, seattered along the mineral range from (n nonagon to mear the end of the peninsula. At the time morlern mining began they had berome mere depressions in the wromd, owing to the accmmations of eath, leaves, and deayed regetahle matter within them. Forest trens were growing in them and uron the waste thrown ont of them, so that it was dificult to distinguish them from natural depressions due to the weatherjeg of the rock berneath the soil, or, in some cases, from the hollows left loy the upturned roots of fallen trees. After their "haracter was discovered, howerer, they serfed as gutdes to tha modern miners, who often samk shafts mon the copper bearing rooks, which were revealed by clearing them ont. Nomine has beem opened on the lake that was not thas "prosjected" by the old miners. Trenelies like those on Keweenaw Point and Ontonagon, but, if anything, mone elahorate, were found on Tsle Royalr, ant Nir William Logan mentioned simila workings on the east shore of the lake near llamanse. All of these workings contained stome hammersor mans, amomuting in all to a countless number.

A few wooden shovels, strongly resembling canoe parlalles, were fom in some of the diggings, together with the remains of wooden bowls for baling, himeh-batk baskets, and somes suear on lance heatis and other articles of (enp)er. In Ontonagon Connty the ohd workings were for the most part shallow depressions only a finw feet deep. Some of them in the bhatf which showad onteroppings of ropper rock were hardly large enongh to shelter a bear, while others were larger. In Homghton ('ombty (i. e., on the keweenaw promontory) on the (Sumey location, there were broal and decp pits in the graw probably dug for the float coppre, hamps of which are still met with in the neighborhood. At the 'ratral mine. finther ont on the peint. there was a pit filled in with rubbish, which was at first supposed to bre matural. It was of feet deep and 30 long. On examination, a "flat pieer of copper, 5 to! ineloss thick and ! fere long, was fonnd, whicla formed jant of a piecestill in the vein. Broken stome mank were all about it, showing that the miners combld do mothog with it. Itsupper ertge had beren beaten by the stone manls se severely that a lip or mojeroting rim hat been formed, which was bent downwads:" (Other localities toward the end of the peninsula and at the Copper Falls lowation are desenibed by Mr. Whittlesey, and as late as 1 s! 50 depressions in the grombl, of

[^16]small dimensions, were pointed ont to the writer at the latter place as the work of the old miners. Modern miners would regard the whole system as nothing more than prospecting work and not mining proper, as there were no shafts or tunnels or underground workings of any kind. As Mi. Whittlesey expressed it, "the old miners performed the part of the surface explorers."

I am fortunate in being able to add to the foregoing the testimony of an eye-witness of some other diseoveries in this district, viz, that of Mr. J. H. Forster, a well-known mining engineer who lived in the district many years. He was at one time superintendent of one of the mines, and was engaged on the Portage Lake Ship Canal as State engineer when the canal was opened, when he discovered some copper articles in an ancient grave at that point. He writes in regard to the discosery of old operations: " The largest mass of float copper fomd in modern times - . . weighed 18 tons, and contained very little rocky matter. When found in the woods, on the Mesnard location, it was covered with moss and resembled a flat trap bowlder. It had been manipulated by the 'ancient miner,' and much charcoal was found around it. Its top and sides were ponnded smooth, and marks of stone hammers were apparent. All projections-every bit of copper that could be detached-lhad been carried away. Subsequent explorations disclosed the epidote lode whence the mass came-torn fromits matrix doulthess by the ice. The mass had been transportend onlyabont 50 feet and dropped on a ridge. When the lode was stripped of the drift the jagged edges of a mass in place were exposed. It was of the same lengtl, thickness, and structure of the 'float.' It was observed at the time that if the 'fioat' conld be set up on edge on the piere in place it would fit in exactly. A beantiful illustration of the power and direction of the glacier was thms afforded." Mr. Forster was present when the famous Catumet conglomerate lode was opened. At that point a small mound was found in the woods, while explorintions were in progress, mpon which large pine, maple, and birch trees were growing. Roots of trees still more ancient were found in the drift. After stripping off the timber a pit was sumk, which reached the solid conglomerate at the depth of 15 feet. "But it was a hard rock filled with stamp copper only, and conld not be mined by the ancient miners."

Numerous stone hammers and birch-bark baskets were found in the workings. Mr. Forster thinks the dirt was carried out of the pit in these baskets. On the north side of Portage Lake, on the extension of the Isle Royale lode (opposite Honghton), the drift being shallow, "long tremehes were duy on the back of the lode 3 feet wide and deep. There was much small mass or nugget ropper (barrel work) released by the disintegration of the soft epidote vein stone." This was thrown ont, while the earth was thrown behind the miner as he advanced, and the work resembled that of an expert "navvy." No evidence of deep
mining could be fombl. As usual, stone hammers and chareoal were fomen in the trenches. A remarkably deep treneh which was filled with barth and leaves was diseovered at the South Prewabie (now Athantie) mine, several miles west of the last locality, which extended 2 or:3 feet into the solid rock. It the bottom "was a welldedined transerse tissure vein of quartz, alont \because feet wide, containing here and there chanks of solid copper. By the several pits smin on the course of the vein. proof was had that it had heen worked superticially several hundred feet in length. I walked throngh it a long distance. The surface of the formation was shattered and decomposed, hence the old miners conld come at the quartz handily. They did not cary the rock ont to the surface to dump it, but piled it up neatly on cach side of the drift. At one point I found a hamdsome specimen of quartz and copper laid up carefully in a miche. It weighed several pronds.
As in other rases, we had proof that the ancient mine dial not sink any shafts and do real mining: he was only a surface gleaner." Of the ancient workings on Isle Royale, on the north shome of the lake, which were very extensive and have been described as extending 20 feet and more in the solid rock, Mr. Forster says: "AsI mulerstand it, these extensive works were mon a high outcrop, promising natmat drainage. And 1 should infer firm what I heard from Mr. A. ('. Davis, the agent, and others who opened the Minong mine* that the ancient workings were among distmbed shattered rocks, among which were fornd madt mass emper and barel work. The ancionts were after these pieces of copper. Mr. Davis fomd many comsiderable masses, handed and beaten ly the ancient men, which were too large for them (t) carry away." \dagger

* On Inse Fenale.

tryomalater tothe writer. Mr. Forster refors to the views of anothermining man on the old eopper workings on Kewernaw, who wats the thent (or superintendent) of the Mesnard mine, amd his opinions as am expert are valuable. Mr. Forster's letter contimues as follows:
"Mr. Jarol; Houghton, in a paper antitled "The Aucient Copper Mines of Lake superior", says, speaking of the su-called ancient mines:
". Their mining opreations were ermbe and pinitive. The process was to heat
 tially disintegrate the rocks hy eontratem porluced hy the sudden throwing on of Water, amb to complete the removal of the piees of mative copper ber mating off the adhering particles of rock with stome hammors. 'Fhis is attested by the presenee in all ancient pits of haree quantities of "hateonl and momberless hammors, the later showing marks of long nsage. The miners had mot adyanced to any knowlfalge of the artilicial elevation of watra, as is shown ly the fact that apparently, in all "ases. the pits lave only loen smak ho a deptlo where the limit in matu power in baling out the water is rearberl.
". The pits, the ehareoal. the stome hammers, and the implements and tonls mate of ropher are the only relies left of the races that wronght these mines. Neither a Erate, restige of a hatitation. skelefon, or bome has bern foumd.'
"In comection with these last remarks ly Mr. Iloughton, I beg to state that while I was State engineer on the Fortage Lake and Lake superior Ship Canal, the super-

At the Minnesota mine, in Ontonagon Comoty, was found a large piece of mass copper which had been raised some distance in the excavation and abandoned by the old workers. As this was the first large mass diseovered, and gave rise to considerable speculation, it deserves special mention. The account is taken trom Forster and Whitney's report on the geology of the Lake Snperior copper region, and is as follows: In the winter of 1sti-'4s, Mr. Knapp, the agent of the Minnesota, fomb an artificial cavern on the mine location eontaining stone hammers, and at the bottom was a vein with jagged projections of copper. After the snow had left in the sping he fomb other excavations, and particularly one 26 feet deep, filled with clay and a matted mass of moldering vegetable matter. On digging 18 feet he came to a mass of native copper 10 feet long, 3 feet wide, and nearly 22 feet thick, "weighing over 6 tons. "On digging aromul it the mass was fomd to rest on billets of oak supported by slecpers of the same material. This wood, by its long exposmre to dampuess, is dark-colored and has lost all of its consistency. A knite blade may be thoust into it as easily as into a peat bog. The earth was so packed around the copper as to give it a firm support. The aneient miners lad evidently raised it abont 5 feet and then abandoned the work as too laborions. They had taken off every projecting point which was accessible, so that the exposed surface was smootl. Below this the vein was subsequently found filled with a sheet of copper is feet thick and of an undetermined extent vertically and longitudinally. - . . The vein was wrought in the form of an open treneh, and where the copper was most abondant,
intendent in laying water pipes opened a very old grave. The grave was in the yellow sand, in a grove of Nomay pines, near Lake Superion. At the bottom there was an exceedingly thin layer of mokl, darker than the sand. Some hmman treth were fonnd and a string of copper heads strung on sinows. The sinews, much decayed, still hed the heads in place. The eoppex bead was a small thin piece of eopper about one-fourth of an inch long. It was rutely bent into a eylinder for the string to pass through, hut was not welled; the edges were in contact, but not fastened together. This grave was at the (xamd Portage or carying place.
"In dredging, the dipper bronght up from the bed of the ship canal where the sand drift had originally been at least 25 feet deep, several perfect stone hammers and a copprer implement which I pronomuced to have bren the head and forule of a pike pole. It was abont 18 inches long, tapering, sharp, and solid for two-thirds the distance from the small or lower and. At the npper or pole end the copprer had been flattened out and then bent round to form a sorket for the pole. There was a slight opening betwem the two edges of the enrved coppor; it was not joined or welded. The pike was bright and shining like a clean copper kettle.
"I saw it, and it was dredged from the bottom of the canal, and its position, as regareks strata, was meter the drift or dune sand and on the hard gravel and clay muderlying. I know of no other finds in that section. The gravel and hard pau fonme in the bottom of the dredged eanal I regarded as the bed of the ancient stream or estuary, now tilled up with dritt sand hown in from Lake Superior. How mnch the glacial drift had to do in filling up the ancient gorge in which the prosent canal is only a line, I can not say. In some of the marshes cut by the canal were fonnd three distinct forests, one growing on top of the other, to a depth of 14 feet."
there the excavations axtended derpest. The trench is generally filled to within a foot of the surfare with the wash from the surromblag surface, intermingled with leaves nearly decayed." Whittleser says of this mass: ' Its upper surface and edges were beaten and pounded smonth, all the irreguarities taken off", and arombl the ontside a rim or lip was formed, bending downwards. - - Such copper as combl be separated by their tools was thas boken off; the beaten surface Was smooth and polished.
"On the edge of the exravation in which the mass was fomblthere stood an ancient hembork, the roots of which extended across the ditch. I counted the rings of ammal growth on its stump and fommd them to be 290.0 Mr. Knajp felled another tree growing in a smilar position, Which had 395 rings. "The fallon and derayed tronks of trees of a previons generation were sern lying arross the pits." A shatt was sulsequently sunk on the lode revealed by this treneh, which was in rich gromad, to a great depth. The abamboment of this mass of copper formerly gaverise to conjectures. It was supposed that the aneient miners were interrupted in their work "hy some tenible pestilence or by the breaking out of war; or, as seems not less mobable, by the invasion of the mineral region ly a barbarian race, ignotant of all the arts of the aneient Monnd-buiklers of the Mississippi and of Lake Superior."* But from a consideration of the evidence of the charaeter and scope of the old workings whel we now possens it will be sem that it is mmeressary to go so far for an explanation. As was clearly the case at the Central and Mesuard mines and on Isle Royale, the mass at the Minnesota was abandoned by the old miners becanse they fomm it impossible to set any more pieces from it. They had no bools which could cut it, and wen at the present time mass copper is the last desiable form in which the metal presents atself in the mines, on aroont of the labor and expense of ("ntting it up, althongh there are steel tooks especially invented for the purpose. The practice of lammering off piedes from mass ropper is mentioned by visitors to the lake from the Frenel missionaries down to Schooleraft. 'There was a large mass on the Ontonagon, which has been in the Smithsonian lustitutinn for many fears, which was considerably rednced in size in this way in the comse of a lombed and fifty years by easual visits.

A great antiquity has been assigned to these workings by some writers, and it used to be supposed that a hosy industry was suddenly intermpted in them at some time over five handed years ago. The tree with three handiod amd ninety-five rings of growth has been msed to support an argment that the workings most have been abandoned at least as long ago as the miblle of the fifternth eentury, or, to be exact, reckoning from 1847, before the year 145.. This wonld be at least forty years before the poyage of Columbus and aighty-fom years before Cartier visited Montrabl. Althongh it may be true that work

[^17]ceased at the particnlar trench where that tree was felled at the date indicated, it does not neressavily follow that all the workings were abandoned at the same time. lndeed, the tree which grew on the dump of the pit where the Minmesota mass was fonnd did not begin its growth until orre a hunded years later, or after the French had been np the St. Lawrence and there had been consinlerable traffir with Emopeans on the seacoast. Hov long a puite ante the whole system had been worked ran only be a matter of conjecture. When one reflects that many hondreds of men were busily engaged for several conserntive seasons, with all the feverish encrey born of the modern thirst for goll, in the diggings of any one of the placer camps which are now seen abandoned in Idaho, Oregon, and California, it will be apparent that the old miners on Lake Superior must have taken a long time for their leisurely work. Their tools were primitive, their work was desultory, and they knew nothing abont the desire of wealth. Primitive peoples are smposed not to have prosecnted any indnstry persistently and assidnonsly, like modern civilized men. Where there are no wages, no expenditures, no companies and employés, no stocks or fluctuations of the market, nothing even whirl can be called a demand, there is no need of pushing a laborions work. It was also, prohably, only in the summer, and it may have been only at ronsiderable intervals, that Keweenaw, Ontonagon, and Isle loyalle were visited for copper. It must alsir not be forgotten that the ancient miners only carried away "barrel work." They were forced to abandon mass copper. Barrel work from the excarations and float copper from the neighboring and remote drift wond furnish the material necessary for all the tools, weapons, and ormaments that lave been fomm, and althouglı the quantity of copper from these sources was small when reckoned in tons, yet the desnltory and selective kind of mining which produced it, esperially if caried on loy a comparatively small number of persons over such an extensive teritory as the mineral range of Kewcenaw, wonld matmally require an indefinite length of time.

From the historical references which will be pesently considered, it will appear that Keweenaw and Ontomagon wre known as a copper district at the time the French arrived in Canada. But as it has been imagined that an extinct race smperior in culture to Indians opened the trenches and mined copper there, it may be wedl to give a comparatively modern instance of a similar seareh for copper by Indians before taking np the historical argmment. Such an instance is afforded in Hearne's narrative of his journey from I'rince of Wales's Fort in the Hudson's Bay Company's territory to the roppermine River in 1771. Hearne was : m employe of the Inulsons Bay Company, and undertook the expedition in the interest of the company. Itis party was composed of Indians who were not very far removed in point of culture from their sarage stonc-using ancestors of three or fon generations previous, and no better idea could be gained of the character and life of neolithic man
as he was in that part of the world, of his methods of obtaining subsist ence, his gemeral degree of development, and, incidentally, his stealtin and ferocity in attack on his neolithir fellow-mem, than is romtaned in this book. After a journey of several monthis thomgh harren waster, during which he radured the greatest hardships and was in danger of staration, Hearne reached the Coppermine liver, ablat, after his sav ages had sumpised and mmodered some mosmserting Wiquimand, he visited the copler "mine," which he thus deseribes: "This mine, if it deserve that appelation, is momore than an entire jumble of rock and gravel, which has been rent many ways by an earthomake. Thromgh these rums there rmas a small river. The Indians who were the weat sion of my undertaking this fommer represented this mine to be so rich and valnable that if a fartory were built at the river a ship might be ballasted with the ore instean of stome. . . - By their aceomet the lills were entirely composed at that motal, all in hamly lumps like a heap of pebbles. But their acomut differed so much from the truth that I and almost all my companions expended near fomu homs in search of some of this metal, with such poon suceess that amomg us all only one piece of any size eombly fomm. This, lowerer, was remarkably good, and wogherl above t pomats. I believe the copper has formerly been in mush greater plenty: for in many places, both on the surface and in the cavities and crevices of the rocks, the stomes are much tinged with verdigris." They afterwads fombl smather pieces of the motal.

He soes on to remark that the Indians imagined that every bit of copper they found resembled somenbject in natme, hat hardly any two conld agree what animal or part of an amimal a wiven piere was like. He also says that by the help of fire and two stones the Indians conk bert a piere of copper into any shape they wished. The indians were ratly living in a eopper age of their own. Heane saty: "Dafore Chmehill River was settled by the lludson's bay ('mmpany, which was not mone than tilty years provions to this jommey being madertaken, the morthern Indians had no other metal hut ropper among them, exepht a small quantity of iromwork, which a party of them who vis ited York Fort about the year 1713 or 1714 purdased, and a few pheres of old iron fomm at 'horehill liver, which had modonbtedly loeen left there by ('apt. Monk. This being the case, mumbers whem fiom ath fuarters ased evary smmmer to resert to these hills in seareh of copper,
 hearls, ete. The many baths that had bern beaten by the Indians on these oerasions and which ate yet in many plates very perlect, esperially on thedry ridges and hills, is sumpising. The Copper Indians set a ereat valne on the in native motal eventothis day, and prefer it to iron for almost every use exerpt that of a hatchot, a knife, amb an awt for
 tute." The Esquimate tents were phombed of their ropper by

Hearne's Indians. They found arrows "shod with a triangular piece of black stone, like slate, or a piece of copper." "Their [the Esquimanx] hatchets are made of a thick homp of copper, about 5 or 6 inches long and from $1 \frac{1}{2}$ to 2 inches square. They are bevelled away at one eud like a mortise chisel. This is lashed into the end of a piece of wood about 12 or 14 inches long, in such a manner as to act like an adze; in general they are applied to the wood like a chisel and driven in witha heavy club insteal of a mallet. Neither the weight of the tool nor the sharpness of the metal will admit of their being handled either as adze or ax with any degree of success."

This testimony of a modern eye-witness to the working and use of copper by aborigines is very instructive, and it requires little imagination to see that we have here a reproduction of the conditions that prevailed on Keweenaw I'oint two and three hundred years before. The summer visits of the miners, the manufacture of the copper into tools and weapons, some to be used in the neighborhood and others to be carried away for barter-for Hearne gives the rate of exchange between copper and iron from tribe to tribe-were doubtless the same in both cases; even the mythical or "medicine" feature of the subject, which was noticed by early writers in the stories of the Indians of Lake Superior, is not wanting here. The Coppermine story was that a woman (who was a magician) was the discoverer of the mine and used to conduct the Indians there every year. Becoming offended, she refused to accompany the men on one oceasion when they left the place, after loading themselves with copper, but declared that she would sit on the mine until it sank with her into the gromnd. The next year when the men returned (women did not go on these expeditions) she had sunk to the waist and the quantity of copper had much decreased. On the next visit she had disappeared and the principal part of the copper with her, leaving only pieces here and there on the surface. Before this untoward event the copper was so plentiful that the Indians had only to turn it over and pick ont such pieces as would best suit the different uses for which they intended it.

From this accomt it will be seen that it is not necessary to imagine a mysterions and extinct race more advanced in industrial arts than Indians to account for the ancient mines on Lake Superior. Besides, other workings requining as much labor have been carried on by Indians. The catlinite or pipestone quarry in Mimesota was worked far into the present century. The misa mines in North Carolina, which are now worked, were operated in a way and to an extent suggestive of the Lake Superior copper mines, and were abandoned, according to Prof. Kerr, the geologist who examined them, a little over three hmodred years ago, or after the arrival of the whites. There are also novaculite mines in Arkansas, obsidian workings in the Yellowstone Park, soapstone pottery quarries in several places in the Eastern States and in California, and especially the astonishingly extensive workings at Flint

Ridge, Licking County, Ohio, where ،hert was mincd and mannfactured into varions articles at "workshops" on the gromms. Some of these Various digeings were modoubtedly the work of "Indians;" what the others were mast be left foraredrologists to decide. All givervidence that the natives of the comntre were elose observers and posesessed a considerable degree of skill in detecting and obtaining thw varions minerals wheh phased their taste or wera of use in tl eil simple lives.

The reason which has bern given for supposing that the ancient miners on Lake Superion had disappeared before the arrival of the whites is that the ladians made no mention of the mines to the Fremeh and had no tradition about tham. But the first Frentlo explorers of the St. Lawrence, who left areeod of their voyage, were informed by the Indians even of the (into-over 1,500 miles away - that coppre came from a distant country in the west, aml this statement was comfirmed as they proceeded up the river. The sime story was repeated a humdred years bater, after settlements had heen made, and it persisted matil the souree of the copper was found.

In the arcount of C'artier"s second voyage, in 15:3., given in Ifaklayt, it is stated that the matives of the south shore of the (inlt of St. Lawrence informed him that the way to Camada was toward the west, and that the north shore bofore Canada was reached was the beginning of Saguenay, "and that thence commeth the red copper of them named Caignethage." Subsequently, at Hochelaga (Montreal), the matives described to the French the voyage mp the Nt. Lawrence and the Ottawa to Sagmenay. "Morrover, they showed us with signs that the said three fals being past, a man might sayle the space of three moneths more alongst that river, and that along the hills that are on the north side there is a great river which (even as the other) commeth from the west, we thought it to be the river that rumeth through the countrey of Sagnenay; and withom any sign or fuestion mooved or asked of them, they tooke the ehayne of our Captaines whistle whith was of silver, and the dager-haft of one of our fellow Marimers, hanging on his side being of yellow coppery silt, and shewed us that such stuffe "ame from thesaid liver." "()m ('aptains shewed them reddecopper, whieh in thoir language they eall Caignetadze, and looking towards that comntrey [in a different direction from Sacmemay], with signs asked them if any came lion thence, they shaking their heads answered no; but they shewed us that it came from Sagmemay" "But the right and ready way to go to Sagnenay is up that way to IFochelaga [Montreal], and then into another friver] that commeth from siagnenay [the Ottawa] and then antereth into the foresabl river \{the St. Lawrence] and that there is yet one moneths sayling thither. Moreover they tohl us amb gave us to molerstand that there are people - . . amd many imhbited towns and that they have great store of gold and red copper - - and that heyoml Sagmenay the sad river entereth into two or three great lakes, and that there is a sea of fresh water found, and as
they have heard say of those of Sagnenay, there was never man heard of that found ont the end thereof, for as they told us they themselves were never there."

Allowing for the difficulty of commmicating by sigms and the many chances of misumderstanding, of which the interpretation of the Indian signs to mean gold is doubtless an instance, this is a geographical description which can ahmost be followed on the map, and the accome shows that the St. Lawrence Indians knew that the copper they had came from a place in the west where there were great lakes and a " sea of fresh water:" This was all hearsay with them, as they had never visited the distant comutry, which was inhabited by other tribes. But it seems evident enough that there was at that time a widely diffused knowledge of the source of the copper, which would hardly have been the case if the supply had ceased two or three gencrations before. When, over a hundred years later, French settlements had been established and traders and missionaries began to push forwarl to the great ' sea of fresh water," they contimally encountered the statement that copper could be found on its shores, and Indian suides finally took them to the prerise localities where the metal had formerly been mined, and whence it was still occasionally obtained. Copper specimens, sometimes of large size, all reported as coming from Lake Superior, were not uncommon, at this time, as the following extracts show, and it seems evident that Ludians still visited the old diggings and carried away surh pieres of copper as they combl find.

The Abbe Sagard, who was a missionary to New France about the year 1630, gave an acconnt of the resomees of the conntry in his "Grand Voyage du pays des Hurons," published at Paris in 163:. He did mot penctate as far as the upper lakes, but says that there were copper mines in that distant comutry which might prove protitable if there was a white population to support them and miners to work them, which would be the case if colonies were established. He saw a specimen of copper fiom the mines, which, he says, were 80 or 100 leagues distant from the romntry of the Hurons. In Margry's Décourertes et étublissements tles Francais, Première partie, royages des Francais sur les grands luts, $1614-1694, \mathrm{p} .81$, is an extract from a letter relating to an exploration for copper written by Sieur Patoulet in Canada to Colbert in Paris. It is lated at Quebee, November 11, 1669, and is as follows: "Messrs. Toliet and P'énć, to whom M. Talon paid 100 and 400 livres respectively, to explore for the copper deposit which is above Lake Ontario, sperimens firom which you have seen, and ascertan if it is abundant, easy to work, and if there is casy transportation hither, have not yet returned. The first named should have heen here in September, but there is no news of him yet, so that a report of what may be expected of the mine must be postponed nutil next year." On page 95 of the same volume is a letter from olsan Talon to the king, dated Quebec, November: 2 , 1671, in which occurs the following reference to copper,
one locality of which had then become known: "The copper specimen trom Lake Superior and the Nantanmanon (O)ntonagon) liver whichl send, indiates that there is some deposit or some river bank which yields this substance in as pore a state as could be wished, and more than 20 Frenchmen have seen a mass of it in the lake which they astimate at eight humdred weight. The desuit fathers among the Uttawas nse an anvil of this metal which weighs alonet 100 pomads. It only remains to find the sumbe of these detached liores." Ife then gives some description of the Ontomagon laver, in which he attempts to aceome for the formation in situ of the copper speemens fomm in its neighborhood (gulets de ce mestail, evidently float enpper), and goes on to say: "It is to be hoperl that the frequent jommeys of the ludians and French. Who are beginning to make expeditions in that direction. will result in the diseorery of the plare which fimmishes such pure metal, and that withont expense to the king."

The passages fiom the Jesmit Relations, which lave been oftern quoted in this comection, show that the mining districts were woll known to the Indians. Father I)allon, in the Relations for li6e-70, deseribes these places, of which he was informed by the lumians. The first was Michipicoten Island, on the east shore of the lake; then rame St, I gnace, on the north shore, and then lste lioyate, "celebrated for its ropper, Where coukd be seen in the elifts several heds ot red copper separated firom each other by layers of earth." The other principal locality was the Ontonagon river, from which plate the French had received a cour per specimen three years previously which weighed 100 pounds. The Indian (Ottawa) women of this region, the father says, while digging holes for com, used to find pieres of copper (thoat (oppler') weighing 10 and $\because 0$ ponnds. A hundred years later Alexander llenry mentions the same thing of this locality, and adds that the [ndians beat the pieces of conper into bracelets and spoons. Father Dablon goes on to say that opinions differed as to the place the Ontonagon copper came fiom some thinking it was near the forks of the river and abong the eastern branch (near the old workings), while other guessers placed it elsewhere.

The information the Indians gave was not spontanenns, for Foather bablon says that it 1 equired some address to induce them to reveal the mineralogical secrets whinh they wished to conecal from the whites. This reluctane to sive information about mineral localities has sumvired down to a rery recent period, and stories are known to the older residmats of the copper district, some of them ammsing emongh, illus trating this tratit. At all wents, Father Dablon's Indians knew pres "isely where the od mining localities were. He sats he was assmed that in the land to the south there were deposits (mimes is the French word) of the metal in varions phaces. He hat just been speaking of Keweenaw loint, hat the commertion is not rlose enongh to warrant the inference that he meant immediately to the sombla of the point. If that conld be shown. there wombl be a direct reference to the "dig. gings" on tiae penin-nlat.

But most of the misapprehension in this matter has arisen from the use of the misleading term "mine" in connection with this distrietWe associate with that term shafts or tmmels and under-ground work. ings, none of which ever existed on the lake. The ancient miners were not miners in the proper sense of the word as were those prehistoric men who mined copper ore in the Tyrol, or those other prehistoric minc:s who sank shafts and ran drifts in the chert deposits of Belginm. On the contrary, they were, as has been abundantly shown, only surface prospectors, and appear to have dug for eopper wherever they happened to find it. If the pieces were loose float in the gravel, as at the Quincy location, and as the Ottawa sfuaws found them at Ontonagon, in 1670, and the later Indians in Hemry's and Schooleraft's time, well and good, they "mined" them and beat them into shape. If the copper was in hnge masses on the surface as at the Mesmard they "mined" it in that shape by working off pieces with their stone hammers. lif the copper was fast in the rock they broke it ont by hammering the roek away from it, and if the rock extended into the gromel they dng down around it, broke away what "barrel work" they conld, and treated the "mass" as they did that already dug for them on the surface. They had no idea corresponding to the word mine. Hence there is no apparent reason why there shonld have been much of a distinetion in the minds of people who were not miners between places where they dug copper out of the gravel, as in the trenches at (Qnincy, and places where they were obliged to dig aromd rocksto obtain it.

It is largely the motne emplasis upou the idea of mining that has led writers to create another race than the Indians to practice that skilled art on Kewcenaw I'oint, Isle Royale, and the Canadian shore. The false or exaggerated idea has led to an equally exaggerated inference. All this is well illnstrated in a passage in Wilson's "Prehistoric Man," describing an interview with an old Chippewa chief some fifty years ago. He was asked abont the ancient copper miners, and declared that he knew nothing ahout them. The Indians, he said, used to have copper axes, but mutil the French came and hasted the rocks with powder they had no traditions of the copper mines being worked. His forefathers used to build big canoes and cross the lake to Isle Royale, where they fonnd more copper than anywhere else. This is a distinct tradition cnongh of one famons copper locality-Isle Royale-although it may be mureliable from its late date, but the story shows how the belief that the Indians had no tradition of the old mines cond originate. The old chief very properly denied knowing about a thing that never existed. His ancestors never carried on mining, but only digging. Deep mines, where blasting is done, which very likely he had seen, were, of course, muknown to them.

Like this old chief, Father Dablon's Indians showed full traditional knowledge when they told him of the mineral loralities where, several generations before, copper had been extensively dug. The ancient
trenches in the woods had long been rovered and contaned no visibla copper. They possessed only an antiquarian interest to which the Indians werestrangers, and also, as Father Daholon relates, his Indian friends were not disposed to give more information than they mond help.

The thest systematic exploring or "prospecting" party to search for the Ontonagon lode was sent ont fom (bueber about the same year that Father bablon deseribed the planer, viz, 1669. The experdition returned without accomplishing its object for want of time, and was met on Lake Erie by La Salle sparty gomg to the Mississippi. No minimg was done there until a homhed years later moder Alexander Henry.

The foregeing extracts from the arcount of Cartiors voyage, the Abbe Sasard, the Jesuit Relations, and Margy, show the rontimity of the ancerent or pre-Cohmbian mining on Lake superios and the mod. eln. As soon as the French amion at the St. Lawrence in 1535, they fomd the natives knowing moprotionately as much about the distant some of the copper they possessed as the ordinary eastern ditizen does now. Over a hmadred years later, after settlements had been made. there was still living knowledge that ropper wane from Lakr Snuerior. and especially the Ontonason River, whore it was easy to find float copper. But dming this long period artive importation of European articles had been going on so that, as the Ghippewa chief explained, mative industries, including the seard for eoppres had been interrupted. Iron articles, knives, hatchets, Weapons, and immmerable other desirable things made it monecessiry for the Indians to exert thomselves in exploithg the ohd some of supply. lint when the French began to ingum for copper they were taken to tha press localitien whare the metal had formerly bern ohtained which, like all mining districts, were fall of almadoned and forgoten workings, and they werr shown the motal in phace.
 in the eastern pant of the comntry. In the A phatarbian region ores of (opper orent and have been extemsively mimed, hat mative copper does not orenr there exerpt as a mineralogital barity. Nevertheless it has bern shegestef that copper was pooluced in that part of the comatry in fre Cohmbian times. If this were so there shombl be evitences of old mines and of smolting operations of some kind, beranse copper ore must be smelted to profluce the metal. No old workings in that region
 no traces of aboriginal smelting have bere diseovered to support the shgestion. Jheirnt mica mines lave, momed. heren discovered in Nowth Garolina which are now worked, but if the ludians mined for copper at all in that mincral distriat the fact remains to be proverl. Moreover, the Smithsonian collection, so far from showing a companat tive abmadane of ropper atiches form the Aphatarhataregion, as would be experted if it hat been a renter of distribution like kewee-
II. Mis. 11.1_- 13
naw and Ontonagon in the North, has remarkably few copper relics from the Carolinas, Georgia, Alabama, and Temessee. The idea donbtless arose from the statements in the accounts of the spanish explorers of this region and of the French and English colomies on the coast. De Soto's march was a continnons pursuit of an ignis fituus. He was told that gold or enpper and other riches were in the Appala chians, and was kept perpetually on the move after them, while they eluded him in the most tantalizing manner. He din find pearls, and probably in large quantities; the contents of graves show that that form of wealth really existed. But that other form of wealth-":a melting of gold or copper"-which he coveted, kept moving before him from town to town and tribe to tribe all through his weary joumey, ant he never found it. The spaniarts on the Florida coast in the following years were persuaded that there was great mineral wealth of some kind in the Appalachians, and told of a town in the region where the minerals were supposed to be, which they called La Grand Copal. This town was said to lee 60 leagnes northwest of St. Helena, on the South Garolina coast.

De Soto's mareh was undertaken in 1539. In 1562 the French estab lished a short-lived colony at l'ort Royal, S. C., under Capt. Ribanlt, which was succeeded two years later by another at the river of May (the St. John's), in charge of Rene Laudomiere, the history of which, with its tragic end, was brought prominently to notice by Parkman some years ago. Landomiere wrote a full deseription of the resoures of the comntry, in the course of which he says (Hakluyt's translation), "there is foum amongst the savages good ifuantitie of gold and silver which is gotten out of the shippes that are lost upon the coast, as I have miderstood by the Savages themselves. They use traffigue thereof one with another. And that which maketh me the rather believe it, is that on the coast towards the cape, where commonly the shippes are cast away, there is more store of silver than towards the north. Nevertheless, they say that in the momitains of Appalatey there are mines of copper, which I thinke to be golde." From these momatains came "two stones of fine christal," which were presented to the French, together with a number of pearls, and they leaned from the Sndians that there was "an infinite cuantity of slate stone, wherewith they made wedges to cleare their wood," in the same momatains. A "king" of the comtry lying uear these montains sent Landomiere "a plate of a minerall that came out of this momitaine, out of the font whereof there rumneth a streame of golde or copper, as the savages thinke. out of which they dig mp the sand with an hollow and drie cane of reed until the cane he foll; afterward theyshake it, and finde that there are many small graines of copper and silver among this samd; which giveth then to muderstand that some rieh mine must needs be in the momatane."

If the spaniares had not been "prospecting" threngh this part of the comtry twenty years before, this pould be a most interesting
aeromb of prinitive panming, an operation familiar forll gold prospertors and known in maty patts of the world. Bint the suspicion arises that the ludians had watrhed the Spaniards oproating in this way in the sitreams in their searel lor gold and Wrar desoribing their method. The description, momeora, could not apply to ropper, aithomgh it is true of gold, which is fomel in the samds of the streams, and is "panmed out" in the mammer deseribet. The etfont to find eopper from this mineral region was mavaling. On libantt's arrival to sucer Laudomiores party, the fmbans offered to comburt him, in a few days jommey to the momatains of Apalater. "In those momtames, as they sayd, is fomm redde ropper, whinh they eall in their lamouge Sieroa Pira, which is as mach to say as reddrmothall, whereof I had a piece, which at tho vory instant Γ showed to Captaine Rihanlt. which ransed his gold finer to make an assay thereof. which reported muto him that it was preferet golle." This assay "onfims, or perhaps was the "anse of, landomaiores smmise that the copper of Apalater was gold. It is mot easy to molorstand at this distamer why there shombl have been any diffenlty in reengnizing the metal at once. There was evidently some mismolerstanding or misinterpretation of
 erence to the red metal, so that while the French meant ropper the Indians malerstood gold. At amy rate, tha Franch saw no eopper from the Appalarditans.
 which Ralph Lanw was suprintentent. He, also, soon heard of mineral wealth in the momatais to the west, amol was ager to fimd ropper there. It must be remembered that it was a ereat disappointment in Europe to dind that the land which Cohmmons and his sureessoms had discorered was a continent, and incessant attempts were made to find a way throngh or aromol it to the somth seas and (athay, whinh were rontimbed into the present rentmr. Therefore Ralph Lame wrote that 6the diseoverie of a enorl mine by the goothesse of (ionl, ar a passage to the somth sata. or some way to it, amd mothinge ean bring this "omatrey in request to be inhabited by when matio." dud particularly with reference to the rumomed mine to the west, he sats: "And that whicll mate me most desirons to hare somedoings with the Mangoaks,* (ither in friendship on otherwise to have had one or 1 wo of them pris. oncre, was, for that it is a thime most motorions to all the combtrey that there is a Provine to the which the sad Hangoak have recomese and trafige up that river of Momator (Roanoke) which hath a marreilons abl most strange Minerall. 'This mine is so notorions amonget them as not only the savages dwollime up the sad river aud also to the savages of the ('hawamook, amblall them to the Westwarl, lme also to all them of the mane; the romotreys manm is of fame and is ealled Chamis Temoatan.

[^18]"The minerall they say is Wassader which is copper, but they call by the name of wassader every mettall whatsoever: they say it is of the colour of our copper, but on copper is better than theirs, and the reason is for that it is redler and harder, whereas, that of Chamis Temoatan is very soft and pale. - - Of this mettall the Mangoaks lave so great store, by report of all the savages adjoining, that they beautify their houses with great plates of the same." Chamuis Temoatan, or the mineral countre, was said to be twenty days' journey from the Mangoaks.

This account rontains a variation of the description given the Freneh twenty years before, of washing or panning out, but in the English aecom there is a distinct reference to melting or smelting. The Indians told Lane that after the matrial from the stream was canght in a bowl it was "cast into a fire, and forthwith it melteth, and doeth yield in five parts at the first melting. two parts of mettall for three parts of oare." It is impossible to moderstand this statement as it stands. It may possibly have referred to the nse of fire in getting ont the mica, or may have been a tradition of some Spanish operations obsented by time and confused by interpretation. The story survised into the next century. The English, howerer, did not see this operation, nor did they see any "greate plates " of copper. The only things of the kind were small, probably like those fomod in graves and momods. "An hundred and fifty miles into the maine," Lane rontinnes, "in two towns we saw divers smail plates of copper, that had been made, as we muderstood, by the inhabitants that dwell further into the comtry, where, as they say, are monntans and rivers that yield also white grains of mettall which is to be deemed silver." If the Indians had possessed large plates the English wonld doubtless have seen them as well as the simall, aml some of them would have tumed up before now, as the smaller ones have, in graves.

That extensive mines really existed in the region indieated by the Indians, which produced a peenlian mineral in abundance, will appear when we put together the Spanish, French, and English accounts of the rumored mineral wealth and the region from which it eame, and combare then with the resnlts of modern discovery. The Spaniards were after gold, and learned, as they believed, that it was to be fonnd in the Appalachians, becanse when they asked atter a conntry rich in mineral they were referred there. Landonniere speaks of a singular mineral which was sent to him, which occurred in plates and was found in the Appalachians. together with "rhristal" and slate stone; and Ralph Lane hears of a "morveilous and strange" mineral which occurred in large plates with which the Indians adomed their houses. The mine, he says, was "notorions" in the whole conntry, and was in the monntains to the west of loanoke. This mineral, which was not copper or any ore of copper, occurring in large plates which were paler and softer than copper, was undoubtedly mica, and the aucient mines which were
the canse of the atary mining exatemont were redisentered in the
 agist of North ('arohma, thus describes them: "There is one point of grat interest connerter with the history of miadmining in this state which it is worth while to retio to in this commedon. 'This industry
 are contimally entting into ancient shatts and thmmels, and humdreds of the summ and lidges of the momatains, (all over Mitehell Comity espe(eially) are fomm to he homeyembed with andent womkings of great extent, of which mo ome knows the late or history. la lskis my attemtion was first called to the existence of old mine holes, an they are callerl in the region. bering invitad to visit some old sponish silrer mimes a few miles south of Bakersville. If fommed alozell of mone ofen
 depth, disposed along the sloping erest of a long terminal ritug or spur of a meighboring monntain. Tha exravated earth was piled in hage leapse about the margins of the pits, and the whole overgown with the heaviost forest trees, oaks, amd ehestmats, some of them is feet or more in diameter and some of the largest helonging to a former gemeration of forest growth, fallen and derased, facts which imbleate a minimmm of hot less than three handred rears. There is no appeatane of atmineral vein and no elew to the objeet of these extemsive works, maless it was to obtain the large plates of mina, or (rrastals of kyanite, hoth of whirelt abomm in the roarse simnite rock.

Sinee the ferolopment of mica-mining on a larse seale in Xitehell and the adjoining connties it hats been ascertained that there are homereds of old pits and commertime fummels among the spmes and knobs and ridges of this rugered region, and there remains mon donbt that mining was varied on here for ages and in a very systrmatio and skilltnl way; fon among all the seores of mines recently opened, I am infomed that searely one has thaned ont protitably which did not lollow the old workines and strike the ledges wronght hy those ane ient miners. The pits are always open bliggimgs, never regular shatis; and the earth and debris atton amomet to enormons heajs."

This description womld apply almost worl for worl to tha Latke

 tirms and explains very finlly the statementsof the stanish, Fremeln, and English explome's and molonists of the sixternth rentary. Now that we know what the mineral of "mottall" was, we mmlerstand and can rxplain away the eonflasion which arose in the inquity after eopper. The thing which was valuable to the indians, se valuable that they adomed their dwellings with it and plamed it. With othor rablables, in

[^19]their graves, was naturally proninent in their minds when the strangers were inminisitive about riches, and they answered according to their light. It does not appear that conper was known to the suathern Indians except as an article of barter, as it was all along the coast, but mica held the place with them in point of production that copper oreupied with the Northern ludians.

Reviewing, now, the whole evidence-historical, mineralogical, and, to a slight extent, areheological-it appears that when this comtinent was revealed to Enropeans the natives of the country were in the full neolithic perior, but were using copper to a slight extent. They were probably mining it in a desultory way in the Keweenaw workings just as they were mining mica in the momentains of North Carolina. How long this had beengoing on it is impossible to say. The metal was prineipally used for ornamental proses in the Sonth, where it was scarce, but where it was plentiful, in the North, and particulanly toward the center of production, it was put to a practical use. Thore is at present no evidence that the lndians had any knowledge of smelting, which art is neressary to a real metal age. The progress from stone, throngh copper, to bronze conld hardy be expected on the northern and eastern parts of this continent. beranse there was nos tin available in the northern and eastern parts of the comery with which to make bronze. To be sure the ludians had distant neighbors in Mexico and Central and Southern Anerica, some of whom possessed the rudiments of smelting and were in an incipient bronze "age," from whom a knowledge of smelting, whereby copper conld be obtained from its ores, might possibly have been acopuired in the comse of centuries by the slow process of aboriginal intercourse, if all native industrial development had not been interrupted by the intervention of Europeans. As it was, however, it seems clear that metallurgy was not known among the North American Indians when this continent was discovered.

TIIE POLYNESIAN BOW゙, *

By E. Tregmati

Perhaps one of the most prozling poblems known to anthropologists is to acomut for the apparent dislike shown by the fair I'olynesians fol the ase at the bow amd armo. They fomm the mighty weapon of the ardier in the hands of almost every Melanesian or l'apman inhabitant of the neighbormg islands; they had experienco of its tatal powers, and yot, exept in the canie of the Tongans, the weapons appeared to be viewed with disfavor and neglect.

The bows used by the Tongans in the fays of fook were slight and by no means powerfal instrmments. Each bow was titted with a single arrow of reed, which was carried in a groove ent for that purpose along the side of the bow itself. By the time that mariner arrived anong these islanders, in 180n, they had possessed themselves of more powertul bows and arows, brobably procmed fiom Fiji or imitated from Fijian weapons, as constant intercomse of either warlike or pacific character was then going on between the Friendly and Fijian islands. Moreover, they had also procmed gums at that epoch.

The Hawaian weapons were spears, javelins, chnts, stone axes, knives. and slings: the use of the bow being confined to rat shooting. The Tahitian msed the bow only as asmed plaything; the bows, arrows, quiver, etco., being kept in a certain plawe in charge of appointed persons and bronght ont on stated occasions. The arow was mot amed at a mark, but merely shot off as a test of strength and skill, one areher trying to shoot farther than another' The samoans did not nse the bow, but fonght with the chob and spens, the sling being the missile weapon, as it ano was in the Marquesas.

In regard to New Zaaland, the smineret has been hamded at any length only by two writers. The first was Mr. U. Phillips, whose paper appeared in the Transactions of the New Zealemel lustitute, wol.
 the weapon known to the Marois as kotahe, which consists of a stick atol whip with which a spear is thrown. Mr. Philips made some incodental remarlis on this paper, which prowoked Mi'. Colemso to reply in an artiele pmblished in the Trousuctions of the Seer Zedelud Institute, vol. Si, 1, 104.

[^20]Mr. Colenso's argument, briefly summarized, refers to the subject as follows. He considers-

First. That the bows and arrows fomd in the hands of Maori childien were probably imitated from models shown to them by Tunaea, the Tahitian iuterpreter brought to New Zealand by Capt. Cook, or, perhaps, from motels shown by foreigners, some of whom-notably a Hindoo, a Margnesan, and a Tahitian-were resident among the Maoris when the Rev. Mr. Marsden arrived in 1814.

Second. That neither Tasman, Cook, Parkinson, Forster, Crozet, Polack, Crise, Nicholas, Marsden, nor any other of the early visitors to New Zealand mention seeing the bow or hearing of its nse. That Mr. Colenso himself, in his frequent joumeys abont the country (in 1834) and contimal listenings to stories of war, never heard of the bow being used in combat.

Third. That there is no mention in old legends of the bow being nsed as a weapon, either in the stories of the destruction of monsters, the deaths of chiefs in battle, or in the lists of arms, althongh these lists are given with great fidelity and attention to detail.

Of these three divisions, the first is not scientifically decisive. It is possible, and even probable, that the Maoris were tanglit the use of the bow by early visitors, but it can not now be proven. The bow might have been kept as a childish toy, althongh not used as a weapon; exactly, for example, as with the modern English, with whom bows and arrows are playthings, althongh but a few years ago (ethologically speaking) they were the national weapons.
The second argment is from negative evidence. There may have been bows and arrows in New Zealand, and yet they may not have been produced or spoken of in the presence of new-comers; but that such a reticence occured is most improbable, and, although the evidence is negative, it is of great value. Few impartial people will belise that the bow was a weapon of the New Zealuder during the last century if no explorer or missionary saw or heard of it.*

The third argument is an exceedingly important one. If in the lists of weapons mentioned in New Zealand tradition the bow has no place, the couviction left in the minds of most Maori scholars will be that the omission maks the absence of the bow itself from Maori knowledge.t

Time, however, has a modifying effect on opinion, and the one thing certain to come to the interested student of anthropogy is a womlering faith in the power of Time to dissolve and form and redissolve not

[^21]
 of New Kealame，who informed me that in digexing atrain upon his
 vation，It wask loing in a bed of samdy day，the surfae of whirh was apparently madistmbed amd virgin．The finder proceded（in the minal fashion whell homifies arelawhogists）to rlean his treasure fown but， lackily，before ha had fathed his work of saraping and oiling the bow． a firend moterered，and the original soil adheres to a portion of the weapom．

I have depositmathe bow in the Masem fon satiokepring．It is 6 feet $4 \frac{3}{4}$ inches in length；in shape resemblang the bows of Fiji．tha New Hrbrides，amd othor Molamesian islamds．It is almost certainly a war－ bow，and it wonld thy the strength of an athetie man to draw an arow to the head upom so stift an are．It was mancompanied by ：my relios whatever．

Several methods of aceonting for the dobosit of the bow in the locality might be shggested．It might have been buriod in mosern times by a Eumpean or by a visiting mative of the sonth sea iskats． This is impobahle，as the weapon mast have beren of some value to its owner，and is too lange to have hem easily lost．Agam，the low，if not a Mani weapon，might have belonged to some prehistorid inhabi－ tant．There semms to be a eoncemsus of tadition that the lonynesian and Malayan islands were one peopled by races extominated or driven inland by the peesent occupiers of the seatwad positions．In New Zealaml many selolam holieve that the Mani immigration dis－ posiessed a people then in oermpation．＊It，on further testing，the how should be fond to be of Melanesian pattrin，but of New Kealamd woot， it womld strensthen the theory that a people of Wranesim oriwin once weupied this comutry．

The evinlener hought formar hy Mr．（＇olemso in his pionem makes it almost certain that no Mari within historical timos has used the how as a weapon．Bat did the ancient Mand nce the low？If we turn fo ennmative philology the answer is probably in the alformativo．＇The －vidence stamts thus：

MAIオ゙ーI．

t Malay，premeh，a loow．
davia，punch，a bow．
Bontoll，oputha，a bow． Salayer，pamuh，a lyw．
（：ajeli，promat，a low．
Massaľatiy．，panat，a bow．
－Ihtiagro，bumall，a bow ．

Marintano，jrente，all aroow 。

 517．Sed also the article on hint armowhads fomm near Wellington，by Mir．T．W．

† It is said hy Malay seholats that thr Malay word pameh，＂alaw，＂is commected with the samserit wotal reme or betur，＂artow，＂This variation as to＂bow＂and ＂arrow＂may be fommd in the islands；but，if commeded with sianserit，tho word ＂goes ashore＂into Asia．

PIILLIPRNEN.

Tagal, panu, a how.
Bisaya, pana, a bow.
MELANERIAN ISLAN1S.
Nemgone, pehna, a bow.
Ancitymu, fanu, a bow.
Rotmma, fan, a bow.
Fiji, fichet, to shoot with a bow.
Fiji, rame, to shoot.
Eddystone Island, mmbane, an arrow.
New Britain, punah, a bow.
Santa Cruz, , нонa, an armow.
Florida, remahi, to shoot.

PULY゙NESLAN PROPER,
'Tahiti, funct, s how; fu'u-funa, to enard property.
*Tongan, func, to sluot; the an't of shooting.
Samoan, fara, to shoot; fatcon, a bow ; "ufu"u. « bow; mй́"m, a volley of arrows.
Howaiian, pana, a bow; to shoot as an arrow ; panapuet, an archer.
Rarotongan, amf, a bow (dialect lrops f and $w h$).
Marguesall, pank, a bow.
Futuna, ferue a bow; to thmit.

In these comparatives we have evidence in a direct chan through the Malay, Melanesian, and Polynesian islands of a clearly marked word fana or perm, as "how," the probable root being V FAN or \checkmark PHAN. In New Zealand the equivalent for the Polynesian F is WH (as fure, "a house," becomes whare, ete.); conseruently we must expect to find the word as whent. The Mant word whence means" to recoil or spring back as a bow;" "a spring made of a bent stick, as a trap." When we compare the compound words, tuthent, bent like a bow; komhum, bent, bowed; koromhna, bent, bowed, etr., there can be little doubt but that whene originally with the Maori meant what it did with all other Pacific islamers, viz, "a loow," and that they knew its use as a weapon. Just as the Maori worls amatiatiu, temma, ete, for the double canoe or ontriggered canoe prove former use, even though the modern Maori knows nothing of sueh vessel. 'The other Mani forms, panc, "to thinst away," aml penyo, "to throw," have taken slightly divergent meanings.

The Hani word pered, meaning "arched, bow-shaped," and "the eyebrows" (with its compound, koropene", "a loop or bow") also probahy signified a weapon. Pera has been preserved as "bow" by the Motu people of New Guinea (a Polynesian colony among Papuans), but may be a foreign word, since it has 110 miversality in the Pacific as fonct has.

[^22]

I.

 are the remarks ome heas made hy those who think that a few soat
 It is mo dombt mutortmate that repeating a tomolo works is a different matter fom molestamblig them, and still more different firm malerstandmes the subjert they are intender torxplam. In this ase there is the added misfortume that the fom of words in mot acomately repateil, amd in its inacomate form does mot mean what in thene. It is often hatly worth whin remaking this to those who make these statrments, becanse the words romsey to them little or no sigutieation, and arr to them as trum as any other momeangs sentence. The romertion letween dectrinty and the athor is certamly not, as fan as known, well desmibed by saying that "rledricity is the ather", and we "an not say with any erertanty that electridity is or is not a vibration. Heatzis experiments have given an expermental prontof lanwells theory that
 deal with vibations. Ona eall not however saty beranse the pessure of 15 poturds per square inch expered ly the atmosphere is due to the
 Who studied the properties of the air had stadied them bey means of sounde propatated thromgh it, "an one assent that "pressum is a vibuta tion." It is to be loped no ome will now assert that "blectraty is pressure" Theresampe is given toillustate tho absumity of thestatements made as derlaretions firom rerent experiments, amb bot to tearla

 boges sommedressure metor, womld make the alowo statements, amd really think they understood them.

The subjere is very ditionalt ; one that has dugaged the attention of thoughtind and clevar mon for many yans, and is still in many bate, eren to the most acote, shombed with dificulties, uncertainties, and things manown, so that mobody merd be the least ashamed of not fol-

[^23]lowing even as fir as others can go into this wonderfal region. If the present articles can give to most who read them glimpses which mfold intelligible idras of even the outskirts of this region, it is all that any writer can reasomably expect who is not one of those masters of exposition who combine the highest suientific and literary abilities.

Consider for a minnte the question at issue. That electrie and mag. netic phenomena are due to the same medium by which light is propa-gateri-that all-pervading medium loy whose assistance we recoive all the energy on this eath that makes life hare possible, by whirh we learn the existeme of other worlds and sums, and amalye their structures and read their histories; that medimm which certainly pervarles all transparent borlies, and probably all matter, and extends as far as we know of anything existing: this womlerful all pervading merlinm is the one we use to pmsh and phll with when we act by meams of e]cetric and magnetic forces: and remember that wr can pull moleroles asmole by this means as well as propel trains ant light on homes. The fores between atoms are controlled by this all-pervading-medinm, which directs the compass of the mariners, signals aromm the globe in times that shame eren Shakerpere's fancy, rends the oak, and torrifies creaation's lords in the lightning flash. It was a great discovery that proved all concord of sweet sounds was dne to the merlim that supplies the means of growth to ammals and plants, and deals destruction in the whirlwind; and yet the 80 miles depth of on air is but an infinitesimal tilm compared with the all-pervading illimitable ather.

That there is a medimm by which light is transmitted in a manner somewhat amalogous to that by which the air transmits somm has been long held proved. Exen those who held that light was due to little particles shot ont by lmmons bodies were yet constrained to superpose a medimm to accomt for the many stramge actions of these particles. Now, no me thinks that light is due to such particles, and only a very few of those who has really considered the matter think that it can le due to air, or other matter such as we know. How does light exist for those eight minntes after it has loft the sin and before it reaches the earth? Between the sun and earth there is some matter, no doubt, but it is in far-smarated parts. There are Mercury and Venus, and some meteors and some dust no doubt, and wandering molecoles of rarions gases, many yards apart, that meet one another every few lays, perhaps, lont no matter that romld passon an action fom point to point at a rate of thousands of miles each second. Some other medimm most be there than ordinary gross mattor. Sonething so subtle that the planets, meteors, and eyen comets-those wondrous tleery tiery elonds roshing a handred times more duickly than a camon-ball aromed the sum-are imperepetilny imperded by its presenere, and yet so constituted as to take up the vilorations of the atoms in these fiery clonds and send them on to us a thomsmm times more rapidly again than the comet moves, to tell us there is a comet, and teach us what kinds of atoms
 How can it offer an impereptible resistance to the eomet, and get take
 has as yet but dim answers to them, hardly to be dignitied by the name of answers-rather dim analowes to show that the properties supposer to conexist, thoush semming rontratiotory. are not so in reality.

One of the most beantiful expriments man knows-one framght with more soggestions than almost any homdred wthers-is that hy which a ring of air may be thrown throngh the ain for many yards, and two such rings may hit, imd shivering, relommat. These rimgs move in curved paths past ome another with almost mo resistance to their motion, mged by an artion not framsmitted in time from one ring to another, but, like gravitation, ating wherever a ring may be, and yet the air throngh whioh they move com take my vibations from the rings showing thes that thore is mo real rontradiction between the propertios of things moving thromh a medimm umesisted!y in certain wath romd one another. and fet transmitting othe motions to the medimm. This same air can push and pull, as when it sucks mpatersponts and deals destruetion in tormadoes. Hemee there seems no real constradiction between a medimm that (an push and pull and tramsmit vibrations, and yet offer no resistance to such fragile, light. and large-extended thing's as ringes of air.

It is important to molerstamd something about the properties that this merlimm most have in orler to explain light, alectridity, and mag Hetism, hecanse there is no use expecting merlimn to possess contra diatory froberties. It is also woli to recolleret that for abont two handred years the existeme of a medimm loy whirh light is propacated has been considered as certain, and that it wond be very remarkable if this medinm, whieh can be set in vibration by material atoms, ated on matter in no other was. It serms anmost impossible but that a medimm which is moved by atoms, and which sets them into motion, :hond be able to move such armies of atoms as we deal with in material bodirs. Even if we knew nothing of elertherity and magnetism, it Would be matmand to look for some important plamomemas due to the artion of this medimm on masses of matter. The merlinm is at reve cousse athe if it can le show that the same set of poperties by whel electide and magnetio forese are explained will also comble it to transmit viburations that have all the properties of light, it will sumely be heyond a
 we would matmally expert fom the medtman that popatates light.

Clerk Maxwell some feas ago showed that this was so, but as lat as any fats known at that time coulal prove, there were othor theories of
 withont the intervention of a medinm. The mattor stoml somewhat thas: 'The obler theories of chertrie amd magnetie fore explaned all phenomena then known. These ohber themes assumed that weotric
and magnetic forces were propagated instantaneously thronghout space; that if the sin beeame electrified it would instantanconsly begin to induce electrivity on the earth; that there would be no delay of eight mimtes, such as ocmes hetween a light occurring on the sun and its acting on the parth. Similarly in the case of magnetic actions, they were supposed to be propagated instantanemsly thronghout space. It was, no donbt, known that it took time for an electric signal to be transmitted along a condurting cable. This is however a very murli more complicated problem than the simple one of supposing a body sumronded loy a non-conductor to be electrified. Will it or will it not instantaneonsly act on all conductors in space, and begin to induce electrification on them? As far as was known sheh actions as this, actions throngh non-conducting space, were iustantaneons. Such an instantanems action conld not be transmitted by the air. Air can not send on from point to point any dffect more rapidly than a molecule of air can moving carry it forward, and that is only a little faster than the velocity of somal ; and there was every reason to know that electric induction through air was propagated muelh more rapidly than that. There was every reason to believe that electric and magnetic forces acted withont any material intervention.

In fact, in these older theories there was no thought of any medimm to transmit the actions: it was supposed that electricity acted across any intervening space instantaneonsly. There is no real difficulty in such a supposition. As far as we know gravitation is just such an action, and as far as was then known there was no experiment that dispored the supposition in the case of electric and magnetie actions. It was known that no experiment had ever been devisel that could test whether this action was instantanems or whether it was propagated at a rate such as that of light. It was known that this action was enormonsly more rapid than sound, but as light goes abont 300,000 times as fint as somad there was plenty of spare velocity. These older theories explained all that was known, and they supposed nothing as to the existence of an intervening medium. Any theory that assmmed that indurtion was not instantaneons, but that energy having been spent on clectrification at one phace work would be done at another after some time. as in the case of hight generated on the smon not reaching the earth for eight minuter, any themy that assumer such a disappearance of energy at ome place and its re-appearance at another after the lapse of some time umst assume some medium in which the encrgy exists after leaving the one place and before it reaches the other. A theory that only supposes instantanems action thromghont spare need not assume the existence of a medim to tramsmit the action, but any theory that supposes an action to take time in being transmitted from one plare to another must assume the existence of a medium. Now, Maxwelf's theory assumed the existence of a medinm, and aloug with that lea to the conclusion that electric and magnetic
actions were not propagated instantanemsly hat were propagated with the relencty of light. Areording to his themy an clectric distumb ance ocruring on the sim womld not produce any offer on the eath for about cight minutes after its oremrence on the sman. No experi monts were known to test the tanth of this deduction matil the genims of Itert\% brought some of the most beantifully conceived ingenionsly devised. amb laborimily exeentod of experiments to a brilliantly sume cestinl romelusion, and demonstrated the propagation of electric and magnetic actions with the veloefty of light, and thereby pored experi mentally that they are due to that simme womerfing all pervading medium by means of which we get all the energy that makes life here possible.
The problem to be sotred was, are elertricand magnetionctions propagated firm phace to place in a fintre time on are the simultamens werwhere? How wanderiments be made to decide this? Consider
 termining the rate at which somed is propagated? Anexperiment that measures the rate can tell whether that rate is finite or whether it is intinitely great. There are two important methons mployed for meas. ming the velocity of somb. The seemen is really mily an modification of the first dirert methed. as will be seell. The direed methood is tomake a suddensomd at a place and to timd how long attemard it reaches
 stantaneons ray of commmibating between the two places, so that the distant observer may know when the somd started on its ionrues: A monlifieation of the metheal dees not reequim this. It deperids on the mes of reflection. It a somm be mate at a distame form a refiedeting surtaee, the intervalnf time between whon the sudden sombin is made and
 to travel to the rettertor and back again. A well-known moditimation

 mate surh a regular sureession of taps, and alter flo distance fiom the
 ing ine ident tap. Or if the distane at which we ean put the reflector be sudticionth great. we may arange it to be sumb that a meflected tap
 sumeding tap. The mindeldere of the tape with their redtertions wan be fairly acemately obserem, and a fairly aremate estimate fermed of
 fying of the air is propatated by the air. Lastead of altering the dis.

 and some places whem they orembetwen the indont mas. This is pretty evilent. for if we start fiom the somere towatid the reflector, as
we approach it we get the reffected taps earlier and the incident ones later than when we were at the source. How far most we go toward the reflector in order that the original and reflected taps may again appear simultancons? We must go half the distance that a tap is propagated during the interval between two taps-hatf the distance, becanse in going away from the source we are approaching the reflector and so make a donble change-we not only get the origimat ones later, but we also get the reflected ones earlier, and so coincidence will have again been reached when we have gone half the distance between any pan of compressions travelling in the air. Now, if the taps succeed one another slowly, the distance in the air between any two of them traselling throngh it will be considerable; any one of them will go a comsiderable distance from the some before its suceessor is started after it. If, on the contrary, they succed one another rapidly. the distance between the travelling taps will be small.

In general, if r be the velocity with which a tap tracels, and t be the interval of time between suceessive tajs, the distanee apart of the taps travelling in the air will be $\lambda=r \%$. liy arranging, then, that the taps shall sneceed one another very rapidly, i. e., ly making t small, we can arrange that λ may be small, and that consequently the wis tance between our somre of sound and the reflecting wall may be small too, ant yet large enough to contain several places at distances of $\frac{1}{2} \lambda$ apart between the source and the rethertor where the incident and reflected taps ocemr simultameonsly. Now, a very rapid succession of taps is to us a continnons somme, and where the incident and reflected taps coincide we hear simply an increased somm, while at the intermediate places where the incident taps oceme in the intervals between the reflected tilps we do not hear this effect at all. In the rase of a sucession of sharp taps we would hear in this latter place the octave of the original note, lont if the original series be, instead of taps, a simple vibration of the air into and out from the reflector, the in and ont motions of the incident waves will in some phaces coineide with the in and ont motions of the reflected wave, and then there will be an incoeased motion, while at intermediate places the in and ont motions of the incident wave will coincide with the ont and in motions of the reflected wave, and no motion, or silence, will result, so that at some places the somd will be great and at intermediate places small.

This whole effect of having an incident and reflected waw travel ling simultaneonsly along a medium (an be simply and beantifully illustrated to the eye by sembing a sucession of waves along a chain or heavy limp sope or an ludia-rubber tube fixed at the far end so as to reflect the waves back again. It will then be fomed that the chan divides mp into a series of phaces where the motion is very great, called hoops, separated by points where the motion is very small. called nodes. The former are the phaces where the incident and
reflected motions remforere while the latter are where these motions are opposed. If we measher the distaner betweentwo borles, we know
 the string, amd so ("all calcolate the velority of the wave it we kome the rate of vibration of the string. This is the seoond mothore men tioned abore for timding the relocity of somod. There are so many things illustated he this vibutine chain that it may werl to dwell on it for a few moments. We "an makr a wave travel mo it, either rapidly or sowly, by stressios it mum or litte. If a wave travels rapidly. we mast give it a rey rapid vibation if we wish to have many loops and bodes hetween one somere amd the reffector' for the distame fom mode to mode is hatl the distaner a wave travels during a vibuation. amd if the wave gees tast the vibuation mast be rapid. we the distance trom nowle to mode will be too great for there to be many of theme within the lengeth of the elasin.

Another point to be observed is the wis in whath the chain meves when transmittins a single wate and when in this eondition of loops and moters, i. e. transmitting two sets of wares in opposite directions. There are two different motions of the parts of the elain it is worth considering reparately. There is in the thest phate tho displacement of any link upe on (own, and in the serond place there is the rotation of a link on an axis whieh is at right angles to thas bum down motion. Now, when waves are gong mpthe chain those links are motating mose rapidly whelo are at any time mest displared: it is the links on the tops and hotems of waves that are motating most rapidlas. On the ether hand. in the wase of loops amd modes the links in the midnle of boos mever rotate at all; they are much displaned mp and down, bat they keep paralle to their wiginal diredion all the time, while it is the limks at the modes where there is mo displacerment up and down that rotate first in one direction and then bare again; there is, in the lowge and modes romblition, a separation of the most rotatme and the most displated links which does mot werom in the simple wate. There is a comexpmalng relation betwern the most fotated amd the most rapidly moving links. These are the same links halfway up the simple wases. bat in the loops and worles the most bapdly moving laks mever motate at all, while those at the modes that get most rotated are mot displaced at all. These remarks will he serel hereafter to throw light on some of the phemomema obs

It will he observed that the method of measming the roloeity at

 tion of the direet method of timding out how lome a distumbaner takes to go from one pace to aloother: it is me in which we make fhe waves register upon themselves low long they book, and so dows not remuire

11. Mis. 114
place to another more quickly than the waves travel, and that is very important when we want to measme the rate at which disturbances travel that go as fast as light. If the wave travels very fast, we must have a very rapid vibration, muess wo have a great deal of space at onr disposat; for the distance between two modes is half the distance the wave travels dming one vibration, and so will be very long it the wave travels fast, muless the time of a vibration be very short. Hence, if we wish to make experiments in this way, in a moderate sized rom, on a wave that travels very dist, we must have a very rapid ribration to start the waves.

11.

In the preceding article a general method of measuring the velocity at whel a distmbance is propagated was described. It depended on being able to produce a regular sucerssion of disturbances at erpal intervals of time. These were marle to measure their own relosity by retfecting them at an olstacle. Then, by the interference of the incident and reflected waves, a succession of loons and nodes are produced at intervals of halt the distance a disturbance is propagated during the time botween two distmbances. It is a general method applicable to any sort of distmbance that takes time to get from ome place to another. It has been applied over and over again to measure the rate at which varions kinds of disturbance are propagated in solids, liquids, and gases; it was applied in a morlified form years ago, to measure the length of a wave of light: and, within the last year, some of the most beantiful experiments on photography ever cescribed are applications of this principle by Herr Wiener and M. Lippman.

Thare are three things essential to this experiment: (1) Some method of originating waves; (z) some methol of reflecting then; (3) some methor of tolling where there are loops and where there are nodes. We will take them in this order:
(1) Tow ran wr expect to originate rlectrie waves? If, when a body is elootrified positively, the electric force due to it exists simmbaneously ererywhere, of course we com mot expert to prodnce amything like a wave of electric force travelling out from the body; but if, when a body is suddenly elocetrified. the electrin foree takes time to reach a place, we monst smpose that it is propragated in some way as a wave of electice fore from the body to the distant place. This of course assmmes that there is a medimm which is in some peculiar state when electric force exists in it, and that it is this pecolian state of the medimm which wr call clectriv fore, exisfing in it, that is propagated from one place to anothor. It must be carefully borme in mind what sort of a thing this is that we call thr electric fore at any phace. It is not a goorl name, -electric intensity would be a better oue; bot electric force has rome so mach into use it is harilly to be expected that it can be eradicaterl mow. Electric force at any place is measured by the
merlanical fore that would be exerted at the mace if a mit quantity of electricity were there. It is mot a forre itself at all; it is only a deserpition of the condition of the medium at the plare which makes elertricity there tend to more. Ther air near the eath is in such a condition that everything immersed in it temds to move away from the earth with a force of about 1.26 dynes fin earch mabre centimeter of the
 dynes. Now, the condition of the air that canses this is mever deseriberd as volume fore existing at the phace though we do describe the corresponding comblition of the ather as electric force existing thare; and as volume fore existing would be a very objectimathe dexeription of the condition of the air, when being at different messumes at vaions levels, it tembs to make bulies move with a fore promemal to their volmue, so clectric force existing is a very onjectionable description of the condition of the ather, whaterer it is, that temots to make loodies move with a foree in proportion to their cleatric charges. We know more abont the strmeture of the ain than we do about the in ther. We know that the structure of the air that canses it to act in this way is that there are more molembes jumping about in each soble centimeter near the earth than there are at a distanee, and we do not know yet what the structure of the ather is that camses it to act in this remarkable way: lant even thongh we do not know the nature of the strncture, we know some of its rffertr, by means of which we ean measme it, and we (an give it a mame. Althongh we know very little inded abont the structure of a piere of stressed india rmber, yet wo can measume the amonent of its stress at any place, and can call the india rubler in this perolian condition "stressorl india moner." As a matter of fact, we know a great deal more ahout the peculiar eondition of the ather that we desmibe as "electuie fore" existing, than we do abont the "stressed india mbler;" and there is erery rason to sumpose that the structure of the ather is, ont of all comprism. mone simple than that of india rubber.

When somd-wayes traw thongh the air, they emsist of compressions followed loy mefartions, and between them the persure varies firm peint to print, so that here we have thaveling forwand a stmetne the same as that of the air near the earth, and waves of somblemigh be deseribed as consisting of a suression of positive and megative "volume forese" travelling tonward in the air; this form of expression would no dombt be ohjectionable, lont still if all we knew aboont the properties of the ain near the earth was that it tomed to make heoties move away from the eath with a fore propertional to their volume, it is quite likely that this condition of allairs nam the earth might have
 and when it was diseneed that this artion was due to a medimm, the aite it womblaw heen quite natural fordeserite this state of the air as "volume force "existing in it ; and then when wave of somen we ob
served it would be quite matural that they should be described as waves of "volnme force," especially if the only way in which we conk dotect the presence of these waves was by observing the force exerted on bodies immersed in it, which was proportional to their volumes, and which we happen to know is really due to differences of pressure at neighboring points in the air. We do not know what is the structure of the arther that causes it to rext foree on electrified bodies, bat we know of the existence of this property, and when it is in this state we say that "electric force" exists in it, and we have certain ways by which we "an detert the existencr of "clectric force," one of which is the production of an electric cument in a conductor, and the consequent electrification of the conductor, and if this is strong enongh we can produce an electrie spark between it and a neighboring eonductor. When a conductor is suddenly electrified, the structure of the ather which is deseribed as eleetric force existing in it travels from its neighhorhood throngh the surronnding eether, and this is deseribed as a wave of electrie force travelling throngh the sumomeling enther. It is desirable to be quite colear as to what is mant by the term a wave of electric force and what we know about it. We know that it is a region of exther where its structure is the same as in the neighborlood of elec trified and some other bodies, and owing to which force is exerted on electrified bodies, and electrie ruments are pormed in conductors.

We may then reasonably axpeet that, if it is possible to electrify a body altemately positively and nogatively in rapid sucession, there will be produred all romed it waves of electric fore-that is, if the electric force is propagated by, and is the to, a medinm surounding the electrified body, if electrification is a special state of the medimm that fills the space between bodies.
(a) The next funstion is: ITow canwe rotlect these waves? In order to reflect a ware, we mast interpose in its thay some borly that stops it. What sort of bodies stoprectric force? Combuctors are known to act as complete screens of electric force, so that a large ronducting sheet would natmally be suggented as the best way to reflect waves of electric force. Rotlection always oecurs when there is a change in the natme of the merlimm, even though the change is not so great as to stop the wave, and it has long been known that, besides the action of conductors as soreens of electric force, different mon-conductors act differently in reference to dertrie fore by differing in specific inductive eaparity. Hence we might expect non-condurtors to reflect these waves, although the reflection would probably wot be so intense from them as from conductors. Hence this question of low to reflect the wares is pretty easily solved. All this is on the smpposition that there really are wares. If clectrie force exist everywhere simultanemsly, of comse there will be no waves to reflect, and consequently no loops and nodes produced by the interference of the incident and reflected waves.
(:3) The third problem is: How "all we exped to detert where there
 It tends to move recetrified bodies. It then and edertrifed hody were pated in a loop it womld temd (or vibate mp amd down. This method maly possibly be emploged at some fotme time, and it may br pat of

 able extent combly beperted to move sulticiantly to be visibly disturbed. It is possible that we may tind some way of detecting the vibrations hareby wen to the alectrifed ions in an emertrolyte; and it has recently been stated that wares migmated eledrically shate the elements in semsitive photographite films sulfichent forase changes that ran be developed. The other atotion of electrice fore is to produce an electrice coment in a romburtor and a restitant edertrification of the conductor. Two efferts due to this artion have actually been used to deteet the existence of the wave of eleotrie fore sent ont by a body altermately electrifors positively and mesatively. One of these is the
 direatly or indirertly nsed this way of deterting the mectro forre. The of ther way, which has pored so far the most masitive of ath, has bern
 ail suare. This is the mothod lart\% miginaily emplosed. a priori, (me womld mot haro expeeted it to be a delicate mothor at all. It takes vere comsiderable efectrice fores to produce visible sparlis. On the other hamd, the time the fores weed last in order to produre a spark is something very small indeed, amd hitherto it has not been possible to kerp mp the abtrmate enerifisations for more than a minnte tration of a seomal, amd this is the reason why other apparently more promisins methors have fated to be as semsitive as the methot of probluotig sparks. It two comblactors be phated vary dose to whe another in suell a direction that the aleetrice fore is in the line joining them, the ir neat surtaces will he oppositely electrified when the elerthe toree acts on them, and we may expert that, if tha fore low grat enomet
 the other. This is remohly the arrancement nsed ly that\% to dotert Whether there are loops and nomes betwern the oritinator of the wares atull the rerleetors.

 "iont rapidity?" 'To answor thiswormst form some estimato of how rap)
 theory they shomble at the same rate as light, some $300.000,000$ of

to give some result if the waves are propagated at this enormons rate. The distance from a node to a norle is half the distance a wave travels during a vibration. If we can produce vibrations at the rate of $300,000,0010$ per seeond, a wave would go I metre during a vibration, so that, with this enormons rate of altermation, the distance trom norde to morle wonld be 50 em. We might expect to be able to work on this sale very well, or evell on ton times this seale, $i . e$., with alternations at the rate of $30,000,000$ per second, and to metres fiom node to node, lont hardly on a much larger scale than this. It almost takes one's breath away to "ontemplate the produretion of vibrations of this enormoms rapidity. Of course they are very much slower than those of light these latter are more than a million times as rapid; bat $300,000,000$ per second is enormonsly mone rapid than any andible sound, about a thousamd times as fast as the highest andible note. A short bar of metal vibrates longitudinally very fast, but it would have to be abont the thonsandth of a centimeter long in order to vibrate at the required rate. It would be almost hopeless by mechanioal means to prodnce electrie altermations of this frequency. Fortmately there is an electric method of producing rery rapuid alternate electrifications. When a Leyden jar is discharged through a wire ot small resistance, the seiti-induction of the "urent in this wir keeps the emrent raming after the jar is discharged, amb re-charges it in the opposite direstion, to immediately diseharge back agam, and so on throngh a series of alternations. This action is cquite intelligible on the hypothesis that electrifications consists in a stramert comdition of the ather, which relieves itself by means of the eomductor: Thst as a bent spring or other stramed body, when allowed suddenly to relieve itself, relieves itself in a series of vibrations that gradually subside, similaty the strain of the ather relieves itself in a series of srathally subsidng vibrations. It the spring while relieving itself has to overome fictional resistance, its vibrations will rapidly subside: and it the fidction be sufficiently great, it will not vibrate at all, but will gradually subside into its position of equilibrimm. In the same maner, if the resistance to the relief of the strain of the medinm, which is affered by the ronducting wire, be great, the vibrations will subside rapidly, and if the resistance of the wire be too great, there will not be any vibrations at all.

Oit comse, quite independently of all frictional and visoous resistances, a vibrating spring, such as a tuming-fork that is probucings somed-waves in the air, which cary the energy of the fork away from it into the surrombling modimm, wall gratually vibrate lessand less. In the same way, quite independently o. the resistance of the conducting wire, we must expert that, if a discharging conductor produces recoric waves, its vibrations must gradually snbside owing to its energy being gradnally transferved to the surombling medium. As a ronsequence of this the time that a Leyden jar takes todischarge itself in this way may be very short inded. It may perform a good many oscillations in this very
short time. but then each osediation takes an exeredingly short time. To get some idral of what quantites we are alealing with, romsiler the rates of oseillation which wonld exive ware-lengths that were slant enongh to be consoniently dealt with in laboratories. There lmadrad million per second would give us wave i meter longe; consider what is meant by 100,000.000 per seeomd. Wemay get some eoneptionof it by alenlating the time corresponding to one handred million seronds. It is more than three years and two months. The pendulum of a clock womld have to oseillate three years and two months before it wonl bave performed as many ostillations as we require to be pertormed in one serond. The perdulum of a dock left to itself withont weights or springs to druve it, ant only wiven a single impulse, wonld prabtically rease to vibate atter it hat performed to or 50 vibrations, manes it wre very heary, i. e., had
 only a small resistance to the air. A light pendulam wombla be stoperd by ammmicating motion to thr air after a very fell vibrations. The ase of a Leyden far diseharge is more like the cast of a mass on a spming than the case of a pendnlum, becanse in the "asen of the Leyten fan there is nothing quite analogons to the way in which the arth pulis the penduium: it is the elasticity of the ather that canses therelectric (rnrents in the Leyden jar discharge, just as it is the elasticity of the spring that rames the motion of the matter attachend to it in the "ase of a mass vibrating on a suring.

It is possible to push this amalogy still fimether. Unuler wiat comditimas womb the spring vibate most rapilly? When the sining was stiffand the mass small. What is meat by a somog being stifi? When a comsiderable fore only bands it a little. This emmesponds to a rontsiderabla electric forceonly electrifying the Leyden jan watings a little. i.e. to the Leyden jar having a smatl caprarity. We wonld conserpently expect that the tischarge of a Leyden far with a small capacity would vilate more rapilly than that of ome with a large saparity. and than is the case. In order tomakea Leyden jan of very small "apacity we mast have small combluting surfaces as lat apart ats possible, and two sepat rate platesor knobs do very well. The serond dondition for rapial vibat tion was that the mass mover shomlat be small. In the rase of electrive
 diswharged and re-eharges them agath, is the so-malled sell'induction of the curent. It womld be we!l to low mpon it as masmetie mergy stored np in the ather aromul the curent, but whaterer vew is taken of it, it evidently corresponds to the mass moved. whose energy keppsits mov-

 and this is the case. 'Toattain this wemmst make the distance the entrrent has to mon from plate to phate as short aspossible. The smaller the plates and the shorter the comerting wire the move mapid the vilnat tions; in fact, the rapulity of vibration is airectly proportional to the
linear dimensions of the system, and for the most rapid vibations two spherical knobs, one charged positively and the other negatively, and discharging directly from one to the other, have been used.

Hertz in his original investigations used two plates about 40 cm square, forming parts ot the same plane, and separated hy an interval of about fircm. Each phate was comnested at the center of the edge next the other plate with a wire about 30 com lons, and terminating in a small brass knob. These knobs were within 2 or $3^{\text {mun }}$ of one another, so that when one phate was chargen positively and the other megatively they discharged to one another in a spark across this gap. An apparatus about this size would produce wases 10 or 12 meters long, and its rate of oscillation wonld be about $30,(40), 090$ per seecond. As the vibration actually produced ly these ascillators seems to be rery complex, the rate of oscillation cim only be described as "about" so and so. In a subsequent investigation Hertz employed two elongated cylinders about $15^{\text {con }}$ long and about 3^{3} "n in diameter, terminated by knobs about $4^{\text {en }}$ in diameter, and discharging directly into one another. Such an oscillator pronluces waves from to to 0^{cm} long, and consequently vibrations at the rate of between $400,000,000$ and $500,000,000$ per secoml. Lust ofther experimenters have used oscillators about the same dimensions as Hertz's larger apparatus, as the effects produced are more enorgetic; but many experiments, espectally on refraction, require a smaller wave to be dealt with, unless all the apparatus used be on an enormons seale, such as rould not be accommonated in any ordinary laboratory. When weare then aming at rapid rates of vibration, it must be recollected that we can not at the same time expect many vibrations after each impuse. If we have a stift spring with a small weight armaged so as to give a lot of its energy to the surounding medium, we can not expect to have rery mach energy to deal with, mo many vibmations, and, as a matter of fact, we find that this is the case. The total duration of a spark of even a large Leyden jar is very small. Lord Rayleigh has recently illustated this very beantifully by his photographs of fallingodrops and breaking bubbles.

We can not reasonably expect each spark to have more than from ten to twenty efferetive oseillations, so that, even in the case of the slower oscillator, the total duration of the spark is not above a millionth of a second. It is very remarkable that the incandescent air (heated to incandescence by the spark) slouid cool as rapidly as it does, but there is conclusive evidence that it remains incandescent after the spark proper has ceased, and conseruently lasts inemdescent longer than the millionth of a seeond. What is seen as the white core of the spark may not last longer than the electric discharge itself, and certainly does not do so in the case of the comparatively very slowly oscillating sparks that have been amalyzed into their component vibrations by photographing them on a moving phate. The incandescent air remaining in the path of such discharge is probably the conducting path
throngh which the ose illating marent mases backwarl and forward. Once the air gap has been broken throwsh, the chanater of the air gat as an opponent of the passige of electricity is complotely changed. Before the air gap breaks down it requires a considrable initial difference of eledrio pressure to stant a corrent. Once it has heen broken down, the electrie rmment oscillates barkwam and forwarl acrosis the incambesent air gap matil the whole difference of electrie pressure has subsided. show ing that the broken air-gap has beeome a conductor in whirh eren the feeblest elertric pressure is able to prodnce an electric curent. If this were not so, Leyden jars wonh not be diseharged ly a single spark.

All this is quite in aerondance with what we know of all that is-or even has lately been-incambesent: sueh air rondmets mular the feeblest eleetrioforee. All this is most essential to the sumeres of our oscillator. Only for this valmabe property of air, that it sives way sudmeny, and thence forwand offers but a feeble opposition to the rap indly altermating discharge it would have been almost impossible to start these rapial ostilations. If we wish to stant a tmung fork vibrating we must give it a sharp blow; it will not doto press its prongs together and then let them go slowly; we mast apply a foree which is short-lived in romparison with the period of vibution of the fork. It is necessary then that the alloga mant break down in a time short rompared with the rate of oscillation of the discharge; and when this is reduired to be at the rate of $400,000,000$ per second, it is rident how fery remarkaldy sudfenly the an-gap breaks lown. From the experiments themselves it sems as if any even minute ronghness, dust, ete., on the discharging surface interfered with this rapility of heak-rlown it seems as it the ponints spluttered out electricity and Eralually broke down the air-gaj, for the vibrations originated are very feeble untess the discharging surfaes arm kept highly polished; gilt brass knolos aet adminaloly if kept polisherl up orey ten minntes of so. One of the greatest desilemata in these exproments is some mothod of making sume that all the sparks shouk have the same character amal heall good ones.

III.

In the foregong, the principles upon which a rapidy vibrating elertric oseillator shomld be constrmeted have been eomsidered, and how the sudden break-down wh the airemp emabled these raphed vibations to be started. It is probable that this break-hown orexus in a time smaller than the thousandmillionth of a second. Ilow vory rapud the interatomice motions mast be!

Consider mow the principles on which an apparaths is to be eonstructed to receive the vibations produced by this oscillator: Wemay observe in the thest plate that as we are dealing with at suression of impulses at equal intervals of time wre ean ntiliza resoname to aremumlate the effect of a single impmlise. Resonance is nsed in an immense
variety of circumstances to accommlate the effect of a series of impulses, and is avoided in another immense rariety of circumstances to prevent accumulating the effect of a series of impulses. We see, we hear, we photograph by nsing it ; we use it to make musical somme, to keep clocks and watches going, to work telegraphs. By avoiding it carriages drive safely wer rongh roads, ships navigate the seas, the tides do not now ovorwhem the land, the earth and planets peserve their courses rombl the sun, and the solar system is saved from destmotion. Resonance may he thms desmibed: If a system is able to vibrate by itself in any way, and if we give it a series of impulses, each tending to increase the vibration, the effect will be commlative, and the vibration will increase. To do this the impulses nonst be well timed, at intervals the same as the period of vibration of the system itself. Otherwise some of the impulses will tend to stop the the vibration, and only some to increase it, and on the whole the effect will be small.

In order to nse resonance in the construction of the detector of Waves of electric force, we mast make onr detector so as to be capable of an electric vibration of the same period as the generator of the Waves. If we do this we may expect the currents produced in it to be increased by each wave, and thus the electrification at its ends to increase, and so increase the chance of our being able to prodnce a visible spark. Two ways of nsing a detector have been meutioned. One is to observe the heating of a condactor by the cmrent in it, and the other to observe a spark due to the electrification at the end of the condnctor. The latter is the most sensitive and has beeu most frequently employed, and is the method first employed by Hertz. Two forms of detector may be used for observing sparks. One form consists of a single conductor bent into a circle with its two extremities very "lose together. An electric charge can oseillate from one end of this to the other round the circle and back again. If the rirele be tha proper size, abont 70^{cm} in diameter for the large-sized wsillator and abont $s^{\prime m}$ in diameter for the smaller-sized one tescribed in the last article, the period of osciltation of this charge will be the same as that of the "harge on the generator of the waves, and its oscillation will he increased • ly resonance montil, if the ends of the circular wire be close enough together, the opposite electrification of the endswill become great enongh to eanse a spark across the gap. The other form of detector depends on nsing two conductors, each of which has the same perion of electric oscillation as the oseillations we wish to detect. These are placerl in such a position that an eud of one is near that end of the other which will at any time be oppositely electrified. For example, if the elerotic force in onr wares le in rertical lines, then if we place two elongated conductors, one rextically above the other and separated by a very small air space, the electric force alternating $u p$ and down will cause rmments to run up and down the con-
ductors simultanennsly, amd the aprere chen of both will be similaty eleetrified at any instant, while the lowerend of the mper one will always be oppositely electrified to the uper end of the low conductor, and if these two points, or two short wires emmected with them, be close bongh together, a spark will pass firmone to the other whenever the electric force sets in, these elentric ascillations in the rondurtor: Thins this apparatus is a detector of the electric foren. Whenever there is a spark we may be sure that there is electric force, amb whenever wo ram mot get a spark we may be sume that there is "ither no cleetric fore or at any rate too little to proince sparks. The apratatus will be mome sensitive for electric fores thatoscilate at the same rate as the nathan vibration of the electrie chate on the emonder, beanse the eftee of each impulse will then ald to that of the last; resonamee will help to make the electrifications suat, and so there will be a better chance of our being able to produce a spark.

We may weaken the strength of this ar-gap by redncing the pressure of the air in it. To do this the ends of the combetors, or wires conneeted with them, must head into an exhansted air vesisel, sith as a Geisoler's tube. There is modoubt that minch longer sqams may thus be produced. hat they are so dim and difitused that when deating with very mimute guantities of alectriaty thase sparks in a vammare not more easily seen than the smather and intensur sparks in air at atmes pheric pressure. The additional emplication and dilfenlty of manipmhation from having the terminals in a varum are not compensated for by any advantages. This whole deterting apraratus works on somewhat the same principle as a resonator of dofinite size commeted with one's ear when nased to detert a feeble note of the same piteh as the resmator. Such a resonator might valy well be used to find ont where this more existen and where it aid not. It would dentee where them were compressions and ravefations of the air poolncing cuments of ain into and ont of yon' ear. In the same way the enonductor sparking tells where there are alternating ededre fores making curents alternately up and down the comfuctor, and ultimately eleetrifying the and emongh to make it spark. In the somm resomator there is mothing exactly like this last phemomonon. We hase much more delieate was of deterting the curents of air than by making them borak any thing. If anytoody
 rectly into the wetina of his cye, it weud probally be a very drelicate way of observing, thongh even in this direct application of the coment to an organ of semse it is posible that these wery mpidly altematiog currents might fail to produre any sonsible effect, for they are not rapid enomgh to produce the photo chemical effeets by which we see.

To recapitulate the arrangemente propased in onder to detert whether dectric lence is propagated with a finite velocity, and if possible to measure it if finite, it is promend to ereate electrie oseillations of very great rapidity, misillating some fon on five lunded million times per
secombl, and it is expected thereby to produce wases of electror force whose length will be less than a meter if they are propagated with the relocity of light. It in proposed to do this by cansing an electric charge to oscillate backwards and forwards between two conductors, and across an air gap between them. This oscillating charge is to be started by charging the condnctors, one positively and the other negatively, until they discharge by a spark across this air gap. By making the condurtors small, and the distance the charge has to go from one to the other small, the rate of oscillation of the charge can be made as great as we require. If waves are produced by this arangement, we can reffect then at the surface of a lane ronducting sheet, and then loops and nodes will be produced where the incident and reflected waves co-exist. The hops will be paces where the alternating electric forces are great, while at the notes there will he no electrie forces at all. In order to detect where there are these alternating electrio forces and where there are none, it is proposed to nse either a single wire bent nearly into a circle, with a very minute air-gap betwern its ends, or else two condustors placed end to end, with a minnte air gap between their ends. In either case, if the natural perion of vibation of a charge on the single combuctor, or on each of the conductors in the secoud arrangement, is the same as the rate of alternation of the electric forer we wish to detect, there may he sufficient elertrification of the neighboring ruds to canse a spark across the minute air-gap. We are thus in fossession of a complete apparatus for determining whether electric waves are produced, and what their wave length is.

The experiment is conducted as follows:
The two conductors which are to gemerate the waves are placed-say, one above the other, so that the electric charge will rin up and down in a vertical line across the spark gap botween them. They might be placed horizontally or in any other line, but fon definiteness of description it is well to snppose some definite position. We may eall them A and B. They are terminated in polished knobs, between which the spark passes. A and I are commected with the terminals of a linhmkorff coil, or a Wimshmest or other apparatus by whirh a succession of sparks may be convoniently made to pass hom A to R. Before the spark passes. A and 7 ; are being electrified. and when the spark orems the electricity on A rushes over to B, and pant of it charges B, while the electricity on B rushes armos the spark and partly eharges A, this taking pace altermately up and down. Each time there is less electricity, for some is nentralized duing each oseillation by the opposite 'harge; for energy is being spent, some in overoming the resistance of the spark galp, i. e., in podncing the heat developed there, and some in broducing electric waves in the surrounding medinm. Thus the electric energy of the two oppositely charged borlies A and B is gradnally dissipated, and one way of deseribing this is to say that the two opposite electric charges combine and nentralize one another. This whole
language of talking of clectrid rhases on bodies, and electric cuments fiom one to the other, of eleetric elanes mentratizing one another, and so forth, is not in arombane with the most refent developments of electromagnetic theory. At the same time, those for whom these articles are whittra are tamiliar with this lansuse and with the view of the subjert that it is fimmol to suit, while they are manamilar with ather electrically and masuctically straimed and therehy the seat of Alotrie aml magnetice energy, and romsequently it wond have admed very murh to their dithernty in grasping the detals of a rompliated question it it had beran deseribed in matamiliar terms and fom an unfamiliar peint of vew.

The electric force in the neighborhond of the vertieal generator will lie in vertical planes throngh it, and as A and B are alternately positive and negative, the efertric fore will alternately be from above downwards, and from below uprareds. If then this fore is propagatedoutwarls in aseries of wates, we may expert that all romm ond generator Waves of electrid force will be diverging: waves in whind the torer will be alternately down and mp. The state of alfains might be romghly illustrated hy elastio strings strethed ont in every direction foom our genemator. If their emds at the gemerator be mowed alternately down and up, waves will be popagated aborg the strings, wars of alternate motion down and up.

In order to reflect these Waves we reanire a metallie sheet of comsid erable area some two or three wave lengths aray from the generator: so far aw:y in order that me may have roon for on detertor to find the loops and modes formed every half wave-length where the ontsongs Wares moet those reflected thom the sereen: not too far away or our waves will be ton fembe even at the loops to affect ond detector. The Waves are thrown oft all lomnd, bat are most intense in the horizontal plane throwg the spark, so that our detertom had better be placed as near to this phand as possible. The detector may be either a very
 and thimme than the ambined langths of the wanerating romblutors, and plared rertically wra whe another, and separated loy a minnte air gapl. As the theory of this latter torm of deterem is simpler than that of the eireln, it will simplify matters to romsider it alone. The two eonductors should eath have a period of ehectrical oseillation us) amb down it, that same as that of the darges on the gemerator. The gemerator romsists of two comburtors cartainly, hat then durime the time the spark. lasts they are virtably one conductor, being rommeted by the spark
 Whare the period of oseillation of the eharges on the gemerator corres sponds to that on a single combluctor of the same size as its two parts qombined.

Varions experiments have been made as to the lest form fion these romblucem's that form the meteren They might be mate identical
with the generator, only that the spark gap in the generator shonld be represented by a connecting wire. They may be longer and thinner. If longer, they shond be thinner, or they will not lave the same perod of vibration. On the whole, the best resnlts have been got with conductors somewhat longer and thimer than the generator. It is not generally convenient that the spark between the two conductors that form the detertor should take place divectly from one to the other. It is mot easy to make arrangements by which the distance apart of these conductors san lorequaten with sufficient aceuracy. The most ronvenient way is to commert tine lower end of the upper conductor and the mper end of the lower one each with a short thin wire leading, one to a fixed small knob and the other to a very fine serew impinging on the knob. The screw may then be used to adjust the spark gap between it and the small knob with great accmacy. This spark gap must be very small indeed, if delicate work be desired. A thomsandth of a centimeter wond be a fair-sized spark gap). The minnte sparks that are formed in these gaps when doing delicate work are too timit to lo seen, excent is a darkened room. Having baced the detector in position between the generator and the sercen, the difficult part of the observation begins. It is heart-rending work at first. A bright spark now and then aronsen hope, and long periods of darkness crush it again. The knobs of the generatoi require re-polishing; the spark gap of the detector gets closed up; dust destroys all working, and not without much patience ean the art be attaned of making sure of getting sparks whenever the conditions are favorable, thongh it is easy enongh not to get sparks when the conditions are mfavorable.

Before making any measurements all this practice must be gone throngh. It is hard enongh with the suceess of others before ns to enconnage us, with their advice to lead us, with a clear knowledge of what is to be expected to guide us. How much credit then is due to Hertz, who groped his way to these wonderful experiments from step to step, withont the suceres of others to encomage him, withont the advice of others to lead him, without any rertainty as to what was to be expected to guide him. Patiently, carefilly, thongh many bypaths, with constant watchfulness, aud checking every advance by repeated and varied experiments, Mertz worked up to the grand simplicity of the findamental experiment in electricity that is engaging our attention.

IIaving gained (n)mmand over the apparatus we may look about for places where sparks ocenr easily and for others where they can not be prodnced. Two on three places may be found where no sparks can be observed. These places will be found to be nearly equi-distant. They are the nodes we are in seareh of. The distance between any pair is half the distance an electric wave is propagated during the period of an oscillation. Their presence proves that the electrie force is not propagated instantaneonsly, but takes time to get from place to place. If
 place where the :ation of the raments indmed in whe reflectine sheet

 therting shert. That there are more than ane proves that aldective fored

 triv fore is dme 10 a modinm. Withont atmedimm theve (an! be mo
 raloulation that the rate of propasation is thas same as that of lighto This is a complicaled mattere It imvolves the question of how fast
 The problem has only beell acomately solved in arew sumen eases, such as that ot a sphere he itself. The eombluctors that have heen employed are mot this shape, are not by themselves, and so only romgh appoxinations are possible as to the rate at which these essollations

 this direet measume of the velonity has omly beon ramghly malle; bat it agrees as aromately as sonhl ho expectoll with Maxwells therory that it most low the same as the velocity of light if eleatreal phamomema are the to the same madinm as light. The ramvirtion that more acern-
 ground.

It was pointel but that the ather that tramsmits light amd is set in
 itsolf. 'This whel call hatelly hell havinge wher mopertios than
 hataly hal prodnaing other phemomeat. When if has bepa shown

 tamsmit wases like light: and when it las been shown that there is a
 the ratre at whieh they are comberad is approximately thre same as the ratr at whirh light is propagatal; the ramelnsion is almost manomid. able that we are deatime with the same mediman in both rases. and that

 and hy means of the lminifems ather with the releoty of light.

 the form of a wate of ale etrie fore The wates prothoed hy the

 protherel, atud fiom this, ath atso by mande of stitable detocetorsa we
"an study a great deal about their structure. They are truly very long waves of light. Atoms are Hertzian genemators whose period of vibration is humdreds of millions of millions per second. A Hertzian generator may viluate rapidly, hut it is miserably slow rompared with atems. And yet the wonder is that atoms vibate so showly. If a Hertzian generator were, say, $10^{-7} \mathrm{~cm}$ long, about the size of a good big atom, its perion of vibration wonld be some hundreds of times too rapid to produce ordinary light. Atoms are probably complicated Hertzian generators. By making a complated shape an, for exanple, a Leyden jar, a small object may have a slow perion of vibration. All that is required is that the capacity and selfinduction may be large in comparison with the size of the ronductor. Whesaw that these rapidly vibrating gencrators have but little energy in them: they rapidly give out their energy to the ather near them. This is also the case with atoms. These, when free to radiate, give up their energy with wonderfol rapidity. How short a time a flash of lightning lasts! It is hardly there but it is gone: the heated air molecules have so suddenly radiated off their cuergy. The reason why atoms in the air, for instance, do not radiate away their energy like this is beranse all their neighoors are sembing them waves. Lach molerule is a gencrator, but it is a detector as well. It is kept vibrating by its neighbors: it oecupies a part of the ether that is in contimal vibration, and so the atom itself vibrates. As cach atom can radiate so rapidly, it must be a good detector: its own vibrations must be very moch controlled by the neighborloom it finds itself in: and as the waves of light are very loug compared with the distances apart of molemes, those in any neighborhood are probably, independently of their motions to amd fro, each vibrating in the same way.

It is interesting to calculate how much of the energy in the air is in the form of vibations of the ather between the moleculen of air. A rough calculation shows that in air at the ordinary density and temperature only a minute fraction of the total energy in a cubie centimeter is in the ather; but when we deal with high temperatures, such as exist in lightning flashes, and near the sun, and with very smath densities, there may be more energy in the ather than in the matter within cach cubic centimeter. All this shows how wide-reaching are the results of Hertz's experiments. They teach us the mature of waves of light. We can learn much by considering how the waves are generated. Lat ns consider what goes on near the generator, consisting of two conductors, A and B, sparking into one another. Before each spark, and while A and B are being comparatively slowly what is called charged with elertricity, the ather aromal and between them is being stranem. The lines of strain are the familiar tubes of electric force. If A be positive, these tuben diverge from all points of A, and most from the knob between it and b, and converge on B. Where they are narow,
 Each tube must be looked upom as a tule of mut strain.

The batme of the stam of the ather is mot kown it is, most mob ably, some increaserd metion in a ferfect lifuld. W"e monst not he smprised at the mature of the strain being manown. We do mot know the nature of the rhange in a piece of Ludia rubler when it is stmimed. nor imbed in any solid, and though the erther is much simpler in strueture than india mbhere it "an hardly be womdered at that we have not yet diseovered its strusture for it is omly within the present rentury that the existene of the ather was demomstated. while men have known solids and studied their properties and struethere for thomands of years. Ans way, there is mo dombt that the ather is strained in these thles of force when 1 and D^{\prime} are oppositely
 is less than that of stramed acther, and that the work dome in what is called charging A and l 's is rally done in straning the arther all round then. When the air-gap, lneaks down, and an colectrie spark takes its place. there is quite a new series of phemomena produced. Suddenly, the strained ather relemos itself, and in domgs, sets up new motions in itself. The strainenl state was probably a peroliar state of motion, and in changing hack to ordinary ather a new and quite dis tinct state of motion is set up. This new state of motion all romblat the conduetors is most intense near the spark, and is msually described as
 ing of the electrid ehate from one conductor to the other. The elere trie corrent is accompaniod by magnetie force in rimeles romad it, and the tubes of magnetie fore dafine the matme of the mew movernent in the erther as far as we know it.
llitherto. for the sake of simplicity, the existence of this manetic forere has leara momoticerl. It is due to a perendian motion in the ather
 sists of little else than a lime, all romm which this moremont is gothes on: like the movement sumomuling an electritied borly, but also molike it. Whencror eleotric forees are rhanging, or electrified bodies moving, of electric rarrents rmming, there this other peraliar mostion exists. We have every reason for thinking that this, whicla mas be ealled the masuetir strain in the atherg, as the mowement all romad elertrified borlies was ealled the deetrie strain-that this magnotie strain only exists in these three cases: (1) When the electrice strath is
 corrats are rumbing. These three mat be atl eases of one action; certamy the magnetie strain that areonmpanies earh is the same, and it seems most likely that the electrif rhange is omly amother aspert of the magnetie stran. There are analogies to this in the motion of

H. Mis. 114
described in a former artiche of a chain transmitting wases. Atten tion was drawn to the displacement of a link and to its rotation. Now for the analogy: To seem at all satistactory the first thing that would strike one wonld be to pay attention to two motions, to the velocity of displacement of the link and to its rotation. This would lead to interminable difficnlties in carying out the analog. We can not liken electric strain to a velocity in this direct and simple way, becanse what are we to do with a change in the stamin which produces the same effects as a contimons cmrent? A change in the strain is all very well, it would be like a wange in the velocity, but what about a continnous change in the relocity: We can hardly suppose a velocity continnally increasing forever; we are evidently landed in immediate difinonlties. It is better therefore to be content to liken the electric strain to a displacement of the chain link. It seems most likely that it really is a peculiar motion in the ether, but we must be content for the present with the analogy. If we want to drive it further, we must suppose stress in the chain that draws the link back to lo due to a motion in the chain or of things fastence to it, and then the changed motions produced by a displacement of the wain might be analogons to the pecmliar motions accompanying electric strain. It would lead us too far to work out this amalogy.

Returning to the simpler rase of the diplsacement of the link representing electric strain, and the velority of its rotation representing magnetic strain, see how the artions near a Hertzian generator may be likened to what takes place when a wave is being sent along a chain. While the conductors are being slowly charged we must suppose electric strain to be produced in all the smrounding spare. This is a comparatively slow action, and as the rate of propagation is very rapid, the electric strain will rise practically simultanconsly in the whole neighborhood, and that it does so is a most important fact to be taken acoont of in all our reductions from these experiments. This slow charging must be represented by a slow raising of one end of the cham, which raises the rest of it to a great distance apparently simmltameonsly if the raising be done slowly. Suddenly the air-gap breaks. This miglit be represented by lifting the "hain with a weak thread, and by having the end of the chain fastened to a pretty strong spring. When the thread broke the spring would pull the chain bark quickly, wond pass itsposition of equilibrimu, and thos commence a series of rapid vibrations on each side of this position: the vibrations womld gradually die away owing to the energy of the spring being gradually spent, partly on friction in itselt, and partly in sending wave along the chain. In actually performing the experiment, an india-rubber tuhe or limp thin rope is better than a chain when lmoghorizontally, as the chan is so heary; when it can be hmog vertically, a chain does rery well. In the description it simplifies matters to describe a chain, because it is easier to talk of a link than of
a hit of the rope: a link has an individuality that identities it, while a bit of the rope is so indodinite that it is mot sorasy to kerp in mind any particular lit.

Consider mow what these wares are what sort of motion misinates them. Wharn the sprines tirst stants, the mear parts of the rhain mowes first. What happens to any link? One emd of it moves down before the othere. What some of motion them has the link? It mant be rotatiag. Thas it is that whage in the displarement is semerally acompanier bey rotation of the links. Thas it is that change in the electrie strain is arempanied by magnetice strain. The analogy goes farther than this. Eath wave thrown oft mat be deseribed as at wave of displated-or as a wave of rotating-links, and the most dis placed are at any time the most rapidly rotating links. Just m the same way. what have hitherto been ealled waves of electric force may also be lookerlupon as wive of magnetio fore Beranse there are two aspects in which the motion of the dhain may be viewed does not diminish from the essential mity of character of the ware motion in its Waves: and similaly the tant that these Hertam waves have an elecetric and a masnetic aspect does not diminish from the essential mity of elanacter of the wave motion in them. It the same time the two elements, the displacement of a link and the rotation of a link, are ghite distmet things: either might exist without the other; it is onJy in ware propagation that they essentially ro-exist. In the same way electric strain and magnetic strain are quite different things; though in wase motion, and inderd whemever areroy is transmitted form one pare to another by moans of the ather, they essentially co-exist.

ON THE DISCHAR(YE OF ELECTRTOITY THROIGIX RX. HAUSTED TUBES WTTIIOET ELECTRODES*

By J. J. Thommon, F. R. S.

The following experiments, of which a shont aceont was read before the Cambritse Philosophical Soriety last February. wers origitally undertaken to investigate the phomomena attending the dincharge of elertricity thongh gases when the comblions are simplified by ronfining the discharge thromghont the whole of its comse to the gas, insteal of, as in ordinay diselargo-tulbes, making it pass from metallie or ghas electrodes into the was, and then out again firom the sas into the elertrodes.

In order to get a closed discharge of this kind we must produce a finite electromotive foree round a elosed rirenit, and since we can mot do this by the fores arising from a distribntion of elertricity at rest, we must make use of the electromotive forces produred by indurtion. To break down the eledrice strength of the gas such forces must be very intense while they last, though they need mot last for more than a shont time. Forres satisfying these conditions ocrur in the neighborhood of a wire through which a Leyden jar is diseharged. loring the short time daring which the oscillations of the jan are mantaned emormons currents pass through the wire, and as with a moderate-sized jar these currents •hange their diection millions of times in a second, the abetromotive forer in the neighborhood of the wire is exeedingly lange. To make these fores avalable for producing an wectrodeless diseharge, all wo have to do is to make the wire combeting the roatings of the far the primary of :an induction coil of which the diselharge-tnbe itself forms the secondary. 'The armagements which I have (mployed for this purpose are represented in the acompanying diagram.

In $(\alpha) X$ is the insidn coating of a Levdell jart: this is eommected fo E, one of the poles of a Wimshmst deretrioal marhime, or an induc-
 roating of the jar. A (1) is a wire comerted to the immer coating of the jar, a few thons © (which we shall (all the primary coil) are mate in
 lar if the diselarge-tuhe is a spherical bulls. Thewire at I) is attacherl to an air-hereak, the other sille of which is comerted with the onter

[^24]coating of the Leyden jar. The kumbs of this air-break onght to be kept brightly polished. The loop C is connected to earth. The dis-tharge-tubes, which were in general either rectangular tubes or spherical bulbs, where placed close to the tums of $($ C . When the difference of potential between A and B is sufficiently large, a spark passes across the air-break, and the electrical oscillations set up produce a large electronotive fore in the neighborhood of the coil, sufficient under favorable circumstances to cause a bright discharge to pass through the vaeum-tubes. In some experiments the jars, at the suggestion of Prof. Oliver Lodge, were comected up differently, and are represented

Fiti. 1.
by (β) in Fig. 1. 'Two jans were used, the outside coatings of which, A and B, were comected by the wire containing the primary coil U, the inside coating of the tirst jar was comnected to one pole of the Wimshurst, that of the second to the other. With this methon of armaging the jars 10 air-spare is required, as the sparlis pass between the terminals of the manhine, ant the polishing of these terminals is not nearly so important as that of the kmons of the air-brak in the arrangement (α) .

Betore procerding to describe the appearane presented by the discharge, I will mention me or two points which may pore useful to any one who wishes to repeat the experiments. Acoording to my experience the discharer is more easily obtaned in bulbs than in square tubes, and with a Wimshmest machine than with an indnction-coil. If an in-duction-roil is used a break which will transuit a large roment ought to be substituted for the orlinary vibuting one supplied with such instrmments. It is essential to sumeres that the gas in the Pmbs on tubes should be quite dry and at a suitable pressmo; there is a pressure at which the brilliancy of the discharge is a maximmo and as in endeavoringe to set at this pessure the exhamstion may be carried too tim, it is convenient to nse a fom of merom? pmone which will allow of the easy admission of a little gas: the patterm which I have used and found
to answer very well is rallod tho Lame-Fox pattorn. Whan any gis is introduced it shonld be sent thromgh sulpharice acid to wot rid of :any moistme that may be in it. Owing, I think, to the pressmre in ordinary incamberent lamps being very different tion that at whiela the
 eess in attempts to produce these dischances in alrady exhansted tubes surl as ineandescent lamps, thongh I have tried a considerable number by ditierent makers; on the other hamd, the radiometers whirh I have thed allow the diseharge to pase pretty radily, thongh it is interfered with hy the valles. and is not companable in brillianey with that obtamed in home-made tules amd buths. l hatrobtained sparks easily with apparatus of the following dimensioms: two sallon jans, the ontside coatings comerted he a wire abont 2 yatds longe the roil comsisting of thre on four turns. "ach abont 3 inches in diameter. I have somud bulbs which with this apparaths will give a hright discharge when the distance between the terminals of the Wimshnst is only $\frac{1}{4}$ inch; thesware, howerer. exceptimally good; it more freymently takes a spark an incll or an incls and a hatf long to podnce the discharge.

1 find that llittorf, in Wiedrmamms Immene xxi, p. 13s, drecribes the light produced in a thbe romul which the wire connecting the eoatingsof a Levden jar is twisted; the hmmosity in llittorf's experiments seems to have filled the tube and mot, as in the experiments dewribed int this paper, been contined to a ring. It seems possible that the diftference in the appearane in the thber may have beren due to the existBure of an electrostatic action in Hittorf's experimonts, the pimary coil getting raised to a high potrential before the discharge of the jar, and mbluring a distribution of electriaty over the inside of the elass of the folme: on the passage of the spark the potential of the primary roil will ball, and the clectricity on the ghas re-distribute itself: to effect this re-distribution it may pass throngh the raritied gas in the diseharge tube and prochere luminosity.
lamy exproments I took two preantions asamst this efferd. In the first pare : commeded the mimary (onil to earth, so that its potential hefore diselarge took place was maltered, and as an alditional precallion l separated the dis.hatere thbe lion the primary hy a rage manle of blotting baper moistened with dilate ardot the wet botting

 rxtent wilh the elcotromotive forres arising from raplelly alternating rompats. In this way we ran sereen oft any electrostatio effects fune fo
 Whan once these have commenerel, there onght not, I think, to be any separation of the electro-motive foress into two parts, one being ralled aretrostatice, the othere ebetro-dynamic. As this is a point on which it
 treat it at some length.

In the mathematical ireatment of the phenomena of the "Electro magnetic Field," it is customary and not inconvenient to regard the elcetro-motive force as derived fiom two sources, or rather as cousisting of two parts, one part being calculated by the ordinary rules of electrostaties from the distribution of electricity in the fiell, the other part bring the dilferential coeflicient of the vector potential with respect to the time. From a mathematical point of view, there is a good deal to be said for this division; the two forces have very distinct and sharply contrasted analytical properties. Thus the electrostatic foree possesses the property that its line integral taken romd any elosed enve vanishes, while the surface integral of its normal component taken over a closed surface does not in general vanish. The "vertor potential force," on the other hand, does not in general vanish when integrated romed a closed curve; the surfare integral of its nomal component taken over any chosed surtace however vanishes. When however our object is uot so much mathematical calenlation as the formation of a mental picture of the processes going on in the field, this division dues not serm nearly so satisfuctory, as the fundamental quantities concrined, the electrostatic and vector potentials, are both of considerable complexity fiom a pliysical point of view. We might judge that this division of the electro-motive force into two parts, the oue derivable from an electrostatic, the other from a vector, potential, is rather a mathematical device than a physical reality, from the fact which I pointed out in a report on electrical theories (B. A. Report, 1886), that thongh the electrostatic potential satisties the mathematical condition of being propagated with an infinite velocity, the total electromotive force in the electro-magnetic field travels with the ovelocity of light, and nothing physical is propagated at a greater velocity.

In an experimental investigation such as that described in this paper, it is not so important that our method of regarding the phenomena should lead to the shortest analysis as that it shond enable us to picture to ourselves the processes at work in the field, and to decide withont muld calculation how to arrange the experiments so as to bring any effect which may have been observed into greater prominence.

The method which I lave adopted for this purpose is the one deseribed by me in the I'hilosophical Maguzine, March, 1891, and which consists in referring everything to the disposition and motion of the tubes of electrostatic induction in the field. These tribes are either endless, or have their endson places where free electricity exists, every mit of positive electricity (the unit being the quantity of electricity on the atom of a mivalent element) being comected by a unit tube to a unit of negative electricity, the tube starting from the positive electricity and ending on the negative. It any point in the field the elec-tro-motive intensity varies as the density of the tubes of electrostatie induction at that point. When the electricity and the tuhes in the field are at rest, the tubes distribute themselves so that the electro-motive
futensity at any point is derivable from a potential finctions ans soon, bowerer, as the equilizomm is distmbed, the tubes move about amd get displaced from their orisinal positions, the disposition of thbes and therefore the electro-motive intensity are changed. and the latter will no longer be derivable fiom a potential funotion, and areording to the mathematieal theory would he sad to indme forres due to electrostatio and electromagnetic indurtion. Acosding to ome view, however, the canse of the electro-motive intensity is the same in both cases, viz, the presence of tubes of alectrostatio induction, and the electro-motive intensity eeases to be derived from a potential, merely beanse the distribution of these tubes is not neressarily the same whon thoy are moving abonf as when they are in equilimimm. It is shown, in the paner already refered to, that these tubes when in motion produce a magnetic force at right angles, both to their own dirertion and to that in which they are moving, the magnitude of the fore being 4π times the product of the strength of the tube, the velocity with which it is moving, and the sine of the angle between the direction of the thle and its direction of motion. In an electric tiold in which the matter is at rest, these tubes when in motion move at right angles to themselves with the velocity ${ }^{\circ} r$," that at which electro-dynamic disturbances are propagated through the medium. We can asily show that, K being the specifir indnctive rapacity of the medinm, the line integral of $4 \pi \mathrm{~K}$ times the density of these tubes taken romed a rosed ciment is ergual to the rate of diminntion of the nmmber of lines of magnetie induction passing throngh the cireuit. Thus, since the fundamental laws of electro-lynamie action, viz, Farakay's law of maluction and Ampre's law of masnetic force, follow from this concoption of the field as modured by tubes of mectostatio induction moving at right angles to themselves with the velocity or c, " and producing a magnotic foree at right angles both to their own direetion and to that in which they are moving, and proportional to the produrt of the strength of the tober and its velocity, it is a coneeption which will arooment for all the known phommena of the field. It fumishes, in fine, a eeometrical instead of all analytical theory of the ficld. It will also be seen that from this point of view the masenetio fowers, when introduced to cealealater the plectro-notive fores arising from indurtion, logically romes in as an intellertmal middle-man wast mgental refort.

We may thas reand the distinetion betwern elertrostatio and elece
 analysis lather than as having any phesioal reality. The only ditfer. dece which 1 think conld fiom made fom a fhysical point of view would be to define those effects as elerthostatie which are due to tubes of elertrostatic indurtion having free ends, and to eonfine the trom electromagnetie to the efterts produred by elosed emblless tulos. It is only howerer when the electromotive fores are problored axdnsively by the motion of magnets that all the tubes are eloserl: whemerer bateries or condensers are used, open folbes are present in the fiedr.

It will be usefinl to consiller here the disposition and motion of the tubes of electrostatic induction in the arrangement used to prodnce these electrodeless discharges．We shall take the case where two jars are used，as in β ，Fig．1，as being the more symmetrical．

Tust before the discharge of the jar，the tubes of electrostatic induc－ tion will be arranged somewhat as follows：There will be some tubes stretching from one terminal of the electric machine to the other；others will go from the terminals to the neighboring conductors，the table on which the machine is placed，the flom and walls of the room，ete．The great majority of the tubes will，however，he short tubes passing throngh the glass between the coating＇s of the jars．Let ns now consider the behavior of two of these tubes，one from the jar A ，the other from B ， when a spark passes between the terminats of the machine．Whilst the spark is passing these may be regarded as connected by a conductor； the tubes which originally stretehed between them now contract，the repulsion they exerted on the smronmling tubes is destroyed so that these now crowd into the space between the terminals，the two short tubes under consideration now taking somewhat the form shown in Fig． 2．These tubes，being of opposite sigu，tend to rm together：they do

so until they meet as in Fig．3，when the thbes break upas in Fig．4，the upper portion rmming into the spank gap，where it contracts，while the lower portion rushes throngh the diclectric to discharge itself into the wire connerting the coatings of the jars，an intermediate position being shown in Fig．．j．These tnbes while mshing thromg the dieler－ tric prodnce．as aheady stated，magnetic forces；some of them on their way to the discharging wire will pass through the discharge tnbe；if they congregate there in sufticiont density，discharge will take place throngh the rarefied gas．

The discharge of the jar is escillatory，and we have only followed the
motion of the tubes sluming a part of tha osoillation: when, howerer, this tube anters the wire betwern the jars a tube of opposite kind emerges from it; thes same thing hapurns when the other portion entres the spark gap). These go through the same poresses as ther tubes we have followed, but in the reverse order, matil we get again two short tubes in the jars. but aprosite in sign to the original omes ; the process is then repeated, and so on as longe as the vibrations last.

In order to ser what are the most adrantageons dimensions to give to on appanatus, let as comsider on what the maximmm electromotive force in the secondary drpembs. Let ns take the case of a condenser of capacity (Jischarging thromgh a cirenit whose cofficient of self-induction is L ; then, if the potential difference between the plates of the condenser is initially $V_{1 .}$, the coment y^{\prime} at the time t is suppos ing as a very rongh appoximation that there is uo deeay in the vibrat tions) given by the equation

$$
y^{\prime}=\begin{array}{cc}
0 V_{0} & t \\
\sqrt{ } L & \sin \\
\sqrt{ } 1 \pi
\end{array}
$$

The rate of variation of this, \dot{j}^{\prime}, is therefore

$$
\begin{gathered}
V_{0} \\
L^{L} \cos \\
\sqrt{1}(\ddots \cdot
\end{gathered}
$$

So that if M is the roeffienent of self-induction between the primary and a seromdary eincoit, the maximum eretromotive force aromad the secombary is MT0 L, whieh for a siven spark-length is indeperment or the raparity of the comblenser. In practice it is alvisable, however, to hare asmund anory in the jans to start with as possible amd better pesmlts are got with large jars than with small ones. Using asixplate W"imsharst marhine I got very gool results with two ." gallon jars:" with alarge imbuction roil the lest results were got with two "pint-and-a hall jars.".

The best munber of tmos to use in the primary coil d depends upon the size of the leads; if all the eirenit were arailable for this coil one turn wonld give tha larese derdro-motive fored, beranse, though for ar given rate of change of the cument in the primay the effect on the seematary increases with the momber of tams, the rate of change of the
 all the eirenit is in the coil \mathbb{C}. since an increase in the namber of thens will incorase the self-indration of the "iment faster than the mutual indaction, it will diminish the elartromotive torere romed the secomdaryIn practice howerer it is not possible to have the whole of the wire "ommetting the coatmes of the jar in the eoil (9; and in this case an in"rase in the manber of turns may inerease the matnal induction more than the self-induction, amd so be advalutaseons. The best result will be ohtanerd when the self-induction in the roil C is equal to that of the remainele of the cirenit. It is very easy to find by actual trial
whether the addition of an extra turn of wire is beneficial or the reverse. The brightness of the discharge depends upon the time of the electrical oscillations as well as upon the magnitude of the electro-motive fore. Thus, in an experiment to be described later, the brilliancy of the discharge was increased loy putting self-induction in the leads, which. though it diminished the intensity of the electromotive force, increased the time comstant of the system. When the discharge tube was square and the coil C^{\prime} harl also to be square it was found most convenient to make it of glass tubing bent into the required form and filled with mereury. When howerer the discharge was required in a bulb, the primary roil was marle of thick gutta-percha-covered copper wire wound ronnd a beaker just large enongh to receive the exhausted bulb. There is sometimes coasiderable difficulty in getting the first discharge to pass throngh the bulb, thongh when it has once been started other discharges follow with much less diffoculty. The same effect occurs with ordinary sparks. It seems to be due to the splitting up of the molecoles by the first discharge; some of the atoms are left meombined, and so ready to conduct the discharge, or else when they re-combine they form componnds of smaller electic strength than the original gis. When the discharge was loath to start, I found the most effectual way of inducing it to do so was to pull the terminals of the Wimshurst far apart and then, after the jars had got fully charged, to push the terminals suddenly together. In this way a long spark is obtained, which, if the pressure of the gas is such that any discharge is possible, with the means at our disposal will generally start the discharge.

Appearance of the dischuge-Let us suppose that we have either a square tube placed outside a square primary or a bulb plated inside a circular coil of wire, and that we gradually exhanst the discharge tulue, the jars sparking all the time. At first nothing at all is to be seen in the secomlary, but when the exhanstion has proceeded matil the pressure has fallen to a millimeter or thereabouts, a thin thread of rediish light is seen to goround the tube sitnated near to but not touching the side of the tabe turned towards the pimary. As the exhamstion proceeds still further, the brightness of this thread rapidly inereases, as well as its thickness; it also whanges its color, losing its red tinge and becoming white. On continuing the exhanstion the lmminosity attains a maximmm, and the discharge passes an an exceedingly bright and well-defined ring. On rontinning the exhanstion, the lmminosity begins to diminish mutil, when an exceedingly good varoum is reached, no discharge at all passes. The pressmre at which the lminosity is a maximum is very much less than that at which the electric strength of the gas is a minimum in a tube provided with electrodes and eomparable in size to the bulb. The pressure at which the discharge stops is exreedingly low, and it remines long-rontinned pmoning to reach this stage. We see from these results that the difficulty which is experi-
enced in getting thr diselage to pass throngh an ordinary varoum-tnbe when the pressure is rey low is not altogether due to the dificulty of aretting the electricity fiom the clectroules into the gas. but that it also oerurs in thbes withont electrodes. thongh in this case the eritical presume is rery math lower than when there are electroxes. In other Words. Wesee that as the state of the butb appoathes that af a perfret vadmm its insmbang bower beromes stronger and stronger. This result is conflmed ly several other experiments of a difterent kind, which will be deseribed later.

The discharge presenti a perfectly continnms apmearance, with no sign of striation, of which 1 have never observed any trace on any of these discharses, though I must have observed many thonsands of them mader widely different conditions.

Action of " magnet on the discharge-The discharges which take place in these tubes and bulbs are produced by periorlic coments, so that the discharges themselves are periodie, and the luminosity is produced by emrents passing in opposite diredions. As this is the case, it seemed possible that the mifomity of the lmminosity seen in the discharge was due to the suprer-position of two stratified dischanges in opposite directions, the places of maximum lmminosity in the one titting into those of minimmm hminosity in the other: since these discharges are in opposite directions, they will be pushed oppoaite ways when a magnetio forer acts at right angles to them, the disrlarges in opmosite directions san thas be separated by the appleation of a magnetic foree and examined sepanately. In the experiment which Was tried with this whect, a sparre thbe was used plated ontside the primary, the thle at one ore two places being blown ont into a bulb so as to allow of the wider semaration of the constitnent discharges. When one of these bulbs was phated in a magnetie fied where the fore was at right ameles to the diseharge, the lmminoms diseharere throngh the bulb was divided into two portions which were dhisen to opposite sides of the bult: each of these portions was of miform luminosity and exhibited motrare of striation. It was motiode however, in making this experiment that the diseharge seemed to have much greater dillaculty in bassing throngh the thbe when the eleotromagnet was on than when it was off. This ohservalion was followed up beveral other experimsuts, and it was fomm that the discharge is retarded in a most remarkable way by a magnetio forer aroting at right angles to the line of discharge. Thin offore is most strikingly shown when the
 is placed near a stonge eleatro-maghet, it is ease to adjust the lemeth of spark so that when the magnet is aft a brilliant diseharer pasese throngla the halb, while when the maget is on mo dischange at all ran be deterted. 'The artion is rery striking, atme the explanation of if which serems to fit in best with the phemomemal laveoteserved, is that the discharge throngh the ramed gas does not rise to its fall intensity
suddunly, but as it were feels its way. The gas tirst breaks down along the line where the electro-motive intensity is a maximum, and a small discharge takes place along this line. This discharge produces a supply of dissociated molecnles along which subsequent discharges "an pass with greater ease. Thus under the action of these electric forces the gas is in a state of mostable equilibrimm, sine as soon as any small discharge passes throngh it the gas becomes electrically weaker and less able to resist subsequent discharges. When the gas is in a magnetic field, the magnetic force acting on the discharge produces a merhanisal fore which displaces the molernles taking part in the discharge from the line of maximmm electric intensity, and thus subsequent discharges do not find it auy easier to pass along this line in consequence of the passage of the previons one. There will not therefore be the same instability in this case as in the one where no magnetic force arted mon the gas. A confirmation of this view is, I think, afforded by the appearance presented by the discharge when the intmsity of the magnotic field is reduced, so that the discharge just-but only just-passes when the magnetio field is on. In this case the discharge, instead of passing as a stearly fixed ring, flickers about the tube in a very undecided was.

If the strength of the magnetie fied is reduced still further, so that the discharge passes with some ease, the bright ring which, when no magnetic force is acting, is in one plane, is changed into a luminons band sitnated between two planes which intersect along a diameter of the bulb at right angles to the magnetic force. These planes are inclined at a considerable aisgle, one bring above and the other below the plane of the molisturbed ring. This displacement of the ring by the magnetic force shows that it consists of currents circulating tangentially round the rimg.

This action of a magnet on a discharge flowing at right angles to its lines of fore is not, however, the only remarkable effect produced by a magnet on the diselarge. When the lines of manetic fore are aloug the Ime of discharge, the artion of the magnet is to facilitate the discharge and not to retard it as in the former oase. The first indication of this was observed when the jans were commerted, as in (a) Fig. 1. The earth comnection being remoserl, in this case there is a wow firom the glass into the bulb, due to the re-ristribution of the electricity induced on the glass by the primary when it is at a high potential before the spark passes. If the primary is commected to earth by a eimenit with an air break in it, the intensity of the glow may be altered at will by adjusting the length of the air break; when the air-sace is very small there is no glow ; when it is long the glow is bright. The bulb in which the discharge was to take plate was placed on a piece of ebonite over the pole of an electro-maget and the air-space in the earth commection of the primary was aldusteal so that when the magnet was off no glow was observel in the tube. When the magnet was on,
however, a glow radiating in the direction of the lines of magnetid forer was prodmed, which lasted as long as the magnet was on, and died away rapidy, but mot instantaneomsly, when the magnet was taken off. In this ease the discharge serms to be monch easier along the lines of matinetire fores.

The following experiment shows that this rffect is not confincel to the glow discharge, but is also operative when the discharge passes antirely throngh the sats. A square tube ABCl) (Fig. (i) is placed ont. sible the primary EFdill, the lower part of the dise harge tobe ('l) being situated betweon the poles L M of an electromannet. By altering the length of spark of the Wimshmest machine, the electro-motive intensity

F゙14. 6.
acting on the reommary can br so adjusterl that no discharge passes romed the thbe ABO日) when the magnet is oft, whilst a bright discharge ocomis as bong as the magnot is om. The two effects of the magne on the diselatree viz, tha stoppage of the diselnarge arose the lines of magnotic forre, and its acereleration along them, may be prettily ilhsatrated hy paring in this exproment an exhansted bulb N inside the primary; then the sark length "an be adjusted su that when the magnet is off the discharge mases in the hallo, and mot in the square tube. while when the magnot is on the diseharge passes in the sefure tubre, and wot in the bulb.

The experiments on the effect of the magnetio tield on the diselanese
 ally difference in the bedation of the gases.

The explanation of the longiturlial effect of magnotio fore serms more ohseme than that of the tramserse effect : it is possible low"Fer that hoth may he due for the same rather, for if the feeble dis"hatge which we suppose preedes the main diselater brathehes away at all from the line of main diseharge, flae artion of the magnetio forer when it is along the diselarge will teme to hring thes brancles into the main line of diselarge: and thas thare will be a greater supply of

 is anting than when it is absent.

It is perhaps not necessary to assmme that the mechanimal action of
the magnetie force is on a small discharge prereding the main one; the action of the magnetic force on the chain of polarized molecules which are formed lefore the discharge passes might produce an effect equivalent to that which we have supposed was prodnced on an actual discharge.

The chain of polarized molecules would be affected in the following way: The magnetic field due to the electromagnet consists of tubes of electrostatic induction moving abont these tubes, as well as the direction in which they are moring, are at right angles to the lines of magnetic force. The short tubes of electrostatic induction which join the atoms in the molecules of the gas will, under the mfluence of the electric forces, set themselves parallel to the direction of the electro-motive intensity at each point.

Thus, when the magnetic force is at right angles to the line of discharge, tubes of electrostatic indurtion parallel to those in the molecules will be moving about in the field: and since parallel tubes exert attraction and repulsion on each other. the molerular tubes will be knocked about and their efforts to form closed chains made moch more difficult by the action of the magnet. On the other hand, when the lines of magnetic force are parallel to the discharge, the moving thbes are at right angles to those in the molecules, and will not disturb them in the attempt to form chains along the line of magnetic force; they will in fact assist them in doing so by preventing all attempts in directions across the lines of force.

Prof. G. F. Fitzgerald has suggested to me in conversation that this action of a magnet on the discharge might be the canse of the "streamers" which are observed in the aurora; the rare air being electrically weaker along the lines of magnetic force than at right angles to them will cause the discharge in the direction of those lines to be the brightest.

Discharge through different guses.-I have examined the discharge throngh air, cabonic acid, hydrogen, oxygen, coal gas, and acetylene. As I have already mentioned. at the highest pressures at which the discharge passes through air, the discharge is reddish, and gets brighter and whiter at lower pressures. If the discharge is examined throngh a spectroscope, the lines in the spectrom coincide with those obtained by sparking through air in the ordinary way with a jar in the cirenit. The relative brightness of the lines in the spectrum of the discharge without electrodes varies very much with the pressure of the gas and the leugth of spark in the jar circuit. With a long spark in this circhit, and the pressure such as to give a bright white discharge, the spectrum is very much like that of the ordinary jar diseharge in air. When however the pressure is so low that the discharge passes with difficulty, a few lines in the spectrom shine out very brightly, whilst others become faint, so faint indeed sometimes that if the air spectrom were not thrown into the fied of view of the spertroscope at the same time, they might pass monoticed. Three lines which are very persist-
ent, the tirst a citron green, the serond a more refiangible green, and the thind a bher, I am inclined to think most be due to meremry vapor from the prump).

I am indebted to Prof. Liveing for the loan of a very tine directvision spectroseope and to him and Mr. Robinson, of the Cimblidge ('hemiral Laboratory, for valuable advioe in the attempts whirh l made to photograph the spectrat of some phosphoreseent ghows mentioned bッlow。

1 should like to eall attention to the advantages tor spectroseopid purposes which attend this method of producing the discharge; it is rasily dnne either by an ordinary rleotrical machine or an indurtion roil. An intensely hight discharge is got, and there is mo danger of compliation arising from the spertrum of the gas getting mised with that of the aleatrodes.
bischarge in mequen.——y far the most ramarkable apmance is presented when the discharge passers through ox yeref for in this gas the bright diselabre is sucreeded ly a phosphoreserent ghow which lasts for a considerable time: indeed, with a strong diselarge it may remain visible for more than a mimate. When the discharges sureed one another pretty rapidly, the phosphoremere is so strong that it hites the sucessive bright diserharges, and the tabe seems permanently fult of a bught gellow fog. We can thas, ly the me of this gas, eonvert the intermittent light given by the hright diswhere into a rontimmons one.

Perlaps the most striking way of showing this phosphoresorene is to use a long tube about a moter lons and of or $\overline{\mathrm{a}}$ cantimeters in diameter, with a bulb hlown in the mindle, the mimary coil being twinted romm thas bulb. Then, when thespark pasis letwern the jass, a bright ring diselarge passes through the bulb, fiom whirh, as if shot ont fiom the
 moring slowly polegh for its motion to be followed by the eye. It ean not, therefore, he problued liy the direct action of the light fiom the spark on the gas in the thle, for it it were, the slow would trasel with the velocity of light. It is necessiner for mention this point, for the light from these discharges has grat powers of prodncing phosphoresrence.

The glow seems to ronsist of ats whieh has bern in the bath of the
 foom the line of dischates. This tas whath, when projerted. is in a
 to its oriminal combition, and it is while it is in this state of transition from its new eombition to the old that it phosphoreseres. If this is the atse we shomble expert that the period of phosphoresereme womblare shortened by raising the temperature. On trying the experiment I formed that this took plare to ar very maked extent A disclarere bulb

before the bulb wot hot each brisht diseharge was sinceeded by a bright after-glow, but as the bulb got hoter and hotter the glow became fanter and fainter, and at last ceased to be visible, thongh the bright ring Was still produced at each discharge of the jar. When the Bunsen was taken away and the bulb, allowed to cool the glow re-appeared.

The spectrum of the after-slow is a continuons spectrom, in which I could not deteet the super-position of any bright lines. The only gas beside oxygen in which l have been able to detect any after-glow is air, thongh in this case the range of pressure within which it is exhibited is exceedingly small; indeed it is often by no means an easy matter to get a halb filled with air into the state in which it shows the glow. The spectrom of the air-glow showed bright lines; I thomght myself that I could see a very faint contimous spectrm as well. Some friends however who were kind enongh to examine the speetrum, thongh they romld see the bright lines clearly enongh. were of opinion that there was nothing else visible. I endeavored to photograph it, but without success, so that the existene of a contimons spectrum for this glow must be considered dombthul.

When the discharge passes throngh aretylene, the first two or three discharges are a bright apple-green; the subsequent ones, however, are white, and as the green discharge does not reappear, we must couchde that the acetylane is decomposed by the discharge.

Phosphoressemer produced by the discharge.-The disehange without electrodes produces a rery vivid phosphorescence in the glass of the vessel in which the discharge takes place; the phosphoreseronce is green when the bulb is made of Cerman glass, blue when it is mate of lead glass. Not only does the hulb itself phorphoresce, but a piece of ordinary glass tubing held ontside the bulb and aloont a foot from it phosphoresces brightly; while manimu glass will phosphomesce at a distance of several feet from the dischares. Similar effects. but to a smaller extent, are produred by the ordinary sark between the poles of all electrical machine.

The vessel in which the discharge takes blace may be regarded as the secemdary of an induction coil, and the discharge in it shows similar properties to thase exhibated by cuments in ametalite secondary. Thus no discharge is produced moless there is a free way all round the tube; the discharge is stopped if the tube is fused up at any point. In order that the diselarge may take plare, it is necessary that the molecules of the gas shall be able to form a closet chain without the interposition of any non-rouducting substance; indeed, the discharge seems to be hinderad by the presence in surh a chain of any second body, even though it may be a good conductor of electricity. Thus, when a tube such as that in Fig. 7 is used, which has a barometer tube attached to it, so that by raising or lowering the vessel into which the tube dips a mercury pellet may be introduced into the discharge circuit,
the sark longth in the primary dirnit may be sombusted that a dis. charge passes when there is a clear way remed the thbe, lat stops when a pellet of meremy is fored mp so as to ehose the gameway. I noticed a similar effect in my experimonto with a long valoum tube deseribed in the I'rocerdings of the Roymel soceiety fir Jamary, 1891.

I had another discharge tube prepared. of which a sertion is shown in Fig. s, a, in which a diaphragm (AB) of thin copper phate was placed acoss the tube; the diapheagm happened to eatell at the bottom of the tube, so that it divided the latter wather unergully, and lett a narew passage romud its edge. As much of the discharge as there was room for went rom the edge of the plate; the remainder was not able to get through the eopper, hut fomed a clesed ciremit by itself in the larger segment of the fulde.

Fifi. 7. the copper diaphragm was attached to the walls of the tube bey seating. wax, so that there was no free way; in this wase the diseharge again refused to go through the eopper, and split up into two separate dis. charges, as in the figure. When the thbe was divided hy copper diaphagms into six segments, as in Figs, γ, ho diseharge at all would pass through. When the primary was slipped up the tube above the diaphagm, a brilliant discharge was ohtaned. These fome experiments all illustrate the difficulty which the elertricity has in getting transterred from a gas to mother comdnator.

l"ルi, s.
There is no diselarge through the secomdary, it it is of such a kind that, considering at closed eme drawn in it. the elobon motioe intensity as we travel along the equre temes to polarize the particles in one hall of the chain in one direetiom, and in the other hald in the opposite direction, the direction lumg reekned relative to the direetion we are traveling remod the enve. Thas for example if we take a tube whose asis is bent bark on itself, as in the figme, the cheretro-motive intensity will tend to pelarize the partiches in tha bart of the chain in the direction of the arrow, and those in the wher in the "pposite
direction; it is impossible to get a discharge throngh a tube of this kind.

On the other hand, the molecules exhibit remarkable jowers of making elosed chains for themselves when not actually prevented by the antion of the electro-motive intensity. Thus the dis. charge will pass throngh a great length of tubing in the secondary, 'ren if it is bent up as in Fig. 10, where the vertical piece in the upper part of the secomdary is at right angles to the direction of the electric force, and where the molecules will receive no help in forming elosed chains from the action of the external electromotive forees. I have cceeded in sending discharges through tubes of this kind $1 \underset{y}{ }$ to 14 feet in length.

Fig. 10.

Nereening effects due to the currents in the tubes.-One very noticeable feature of these discharges is the well-defined character of the ring, if the pressure is mot too low. If a large bulb is used for the secondary

Fiti. 11. with the primary just outside it, when the sparks pass between the jars a hright, well-defined ring passes through the bulb near to the surface of the glass, the gats inside this ring being, as fin as can be judged, fuite free from any disoharge. If now a bulb whose diameter is less than that of the luminous rimg is inserted in the primary in place of the larger bub, a lorglit ring will start in this, though at this distane from the primary there was no discharge in the larger bulb. Thas when the large buib was in the primary, the discharge throngh its onter portions sereened the interior from electromotive forces to an extent sufficient to stop a discharge which would otherwise take blace.
The sereening action of these diselarges is also shown by the following experiment: $A, B, C, F i g .11$, is the seetion of a giass vessel shaped like a Bunsen's calorimeter; in the inner portion $\mathrm{A}, \mathrm{B} . \mathrm{C}$ of this vessel
an exhamsted tulor is placed, while a pipe from tha ontra ressel leads to a meremy pomp and emables us to alter the pressme at will. Thas pimaty eoil, h, M, is womal round the outer tulse. When tha air in the onter tube is at atmospheric pressure, the diselarge eallsed by the artion of the primary passes in the tubs E inserted in A, ls, ('; but when the pressure in the onter thbe is redured matil a diseharge passes through it, the discharge in the inmer one stops; the diseharer in the outer tube has thas shielded tha inner tube diom the artion of the primaty. W the exhamstion of the outer tube is earriod se far that the diseharge throngh it reases, that in the immer tube begimsagam. It re fuibes very high rexhanstion to do this, amt as on aceonnt of the joints it is masate to make the vessel very hot dming the pmoning. I have fomm it imposible to keep a vatmom good emomgh th show this rfert for more than from half to threequatems of an home in that time sulticient gas seems to have escapord fiom the sides of the wesel to make the pressme too high to show this efferet, amd it then takes fom two to three hours pumping to get the tabe bark asain into its former state. An interesting feature of this experiment is that fon a small range of pressure, just greater than that at whirh the disehatore tirst apmeats in the outer tube there is mo diseharge in either of the tulbes; thas the artion of the primary is sereened ofli from the immer tubr, thongh there is molmmasity visible in the onter one this shows that a diseharere equivalent in its efferets to a emrent ean exist in the gis withont sufís rand haminosity to be visible evan in a dankened mom. We shall have oceasion to mention other eases in which the existeme of a diseharge mon laminous throngiont the whole of its eomer is malered evident in a similar way.

Another experiment by which the screening ean be effectively shom is to place the primary coil insidn a hell-jar which in comereded with a merary fump, the alectrian commexions with tho primary being led thongh meremry joints. An exhansted bull is plane d inside the pri mary, the bulb being comsiderably smaller than the primary, so that there is all all-spare between the two. before the hell jar is exhansted the dischange passes throagh the bulh, but when the bell-jal is ex hamsted sufforintly to allow of the dischange passing thongh the gas ontside the hull the diselange in the bulb reases, and the only dis. "hatere is that matside. I have nerer beren able to exhamst the bulb sulferently well to wot the diselaber ontside the leell-jan to cease, and that in the bulb to appear agath, as in the preoding experiment. In this experment, as in the preading one, there was a range of pressure when neithar the bulb nor the bell-jar was hominoms, shwing anan the existence of cmrrents in the gas which are not acompanied by any appreciable lmanosity.

A rorions bemting-in of the discharge which takes place in a sonare tube providal with a bulb catl, I think, be exphaned by the primeipe of shielding. The discharge in the bulb does mot, moless very long
sparks are used, take as its conrse through the bulb the prolongation of the direction of the tulbe, but is bent-in towards the primary. In Fig. 12 thr dotted line represents the conse the discharge

Fig. 1: would have taken if there had been no bull, the continuous line the eomse artually taken. This bending-in can be explained by supposing the currents starter near the minary to shield off from the outlying space the action of the primary, and thas make the dectro-motive intensity along the axis of the tube smaller than it would have been if no discharge had heen possible between the axis and the primary circuit.
Before deseribing some further experiments on this shielding effect, it will be useful to consider the means hy which it is brought about. Let us suppose we have a vertical pate made of conducting material, and to the right of the plate a region A which it shields. This region las to be shichded from tubes of electrostatic induction eoming from the left, which have to pass throngh the shield before reaching A, and fiom tubes coming fiom the right which have to pass thromgh a before reaching the field. The action of the shield in the first case is very simple, for when a tube gets inside a conductor it at once attempts to rontract to molernlar dimensions, and after a time proportional to the specifie resistance of the conductor it suceeeds in doing so. Thus if the shield is made of a good conductor the tubes of electrostatic induction will be transformed into molecular tubes before they lave time to get through; so that the shield will protect A from all tules which have to gothrongh it. The way the shichd destroys or mather nentralizes the effect of the tubes coming from the right is somewhat different: when a pusitive tube reaches the shied a negative one emerges fiom it, travelling at right angles to itself in the opposite direction to the incident tube; thus, when the first few tubes reach the shield from the right they will prodnce a supply of megative ones, and the presence of these negative tubes at A concurrently with the positive ones which contime to arrive there will waken the field to a greater and greater extent as A approarches the shield. At the surface of the shiehl itself the nentralization will be complete. A dielectric whose sperifie inductive caparity is greater than usual whll behave in a similar way to a metal phate, but to a smaller extent. It will emit tubes of the opposite sign, hut not so mmerous as those incident upon it. Thus a metal plate, or even one made of a dielertric of considerable sperific inductive capacity, will reduce very considerably the tangential electromotive forer on either side of it.

I have marle several experiments in which this effect was very strikingly shown. In one of these, two square discharge-tubes of equal cross section placed near and parallel to each other were connected by a cross tnloe, so that the pressure was the same in both tubes; a fine wire passed round the inside of one of the tubes, its euds being con-
noeded together so that it fomed at "fosed ciment, the other thbe comtained nothing hat air at a low pressure. When this domble tube was plated ontside the primary the disehnge wont. at the passage of eath spark, throngh the tobe withont a wire, while the tobe containing the wire remained quite dark. A similan experiment was trid by taking a "ylindriacal tuba and suspending in it a metal ring eo-axial with the thbe ; in this case it was rasy to adjast the spark-length so that no dis charge passed throngh the tube when the primaly was placed romm it at the level of the ring, while a diselarge passed as soon as the primary was mosed above or below the rias.

Another very convenient tube for showing this affert is the one with the hollow down the middre, Fig. II; when this is pumped so that discharges can pass through the onter tule the spark length ean be adjusted so that the diseharge stops immediately when a motal tube, a test-tube contabing atrong solution of an electrolyte, or a tube containing air at a fressure at whirh it is elertrically very walk, is plared in the rentral opening. The diseharge is renewed agan as soon as the tubes are remover. On one oreasios, when the large thbe was in a pecoliarly semsitive state, I was able to sere ristinetly the dimmution prodered hy a dielectrid in the eleretro-motive intemsity patalled to its surface. The disclarge stopped as soon ats atick of sulphur or a glass rod suftiefently lage almost to fill the opeming Was inserted, and Was renewed again as soon as these wore withdrawn. It reguires however tho large tubr to be in an extremely somsitive state for the rffert prodned by a didertide to lo apparent, and I have only on one necasion sucerederl in getting the tulne into this rondition. The rffere on that weasion however was so drfinite and regular that I have mo donbt as to the existence of the srreening effere due to the dielectride

When the tube is of areage semsitiveness dielectores do not pro-
 so after the addition of a ronsinderable quantity, 10 föl ber cent of sut phore ared or ammonimm chloride that the insertion or witherawal of the tube stopse or starts the diselange.
 the discharge, and the result of the comparison of the relative refferets of an 『xhansted tulo and a tube of the same size and shape contaning a solution of an cheetrolyte are very remarkahle. I fomm that an exhanstal tulb which contailed air at a very low prossure (Iasis than $\frac{1}{10}$ of amillimette) produred as math eflect on the diselarge in thr
 "nles of ammonimm chloride. This womld be expressed in the lamgatage of elactrolysis by saying that marr the aleatromotive intansity to which it was expesed in this experiment the motecolan eondmetivity of the gats is $\quad \mathbf{0} 0,000$ times that of the ebectrolyte. The propertion between the number of air molembes and the momber of molecoles of an elec-
trolyte, which prodnces an equal effect in stopping the discharge, depends upon the length of spark in the primary curent, and so upon the electro-motive fore acting upon the air. The longer the spark the greater is the molecular conductivity of the air in companison with that of the electrolyte. 'This melicates that the eonduction throngh the air does not follow Ohm's law. This is what we shond expect, as under large electro-motive forces more moleroles are split up and take part in the comblnction of the electricity. This great conductivity of rarefied gases in those "ases where the electricity has not to pass from metal, bte., into the gas are in striking contrast with the infinitesimally small values for the same property which are deducod from experiments on tubes with electrodies.

I was tirst led to suspect this high combuctivity for rarefied gases by observing the appearance presented by the ring-discharge in bulbs; the ring, moless the pressure is exceedingly low, ceases at a distance of little more than 1 centin fiom the surface of the bulb, this thickness of ronducting gas being sufticient to sereen off the electronotive intensity from the interior. From experiments which I had made on the screening effect of electrolytes (Pioc. Roy. Noc. xLV. p, 269), 1 knew that it wond require a very strong solution of an electrolyte to produce sereening comparable with this. To compare the screrning effects more directly than by the method just alescribed I tried the following experiment. The discharge-tube, Fig. 11, was pumped matil the discharge passed throngh it very freely; an exhansted tube was then pusled down the central opening, it remained quite free from any visible discharge; the primary was now wound romnd a cylinder of the same diameter as the discharge-tube of Fig. 11, and this cylinder was filled with distilhed water. When the thbe, which had previonsly remained dark when placed in the exhansted diselarge-tube, was immersed in the water, a brilliant diseharge took place in it; and it was necessary to add about 2. per econt of smphure acid to the water betore the shielding eflect of the mixtme was sufficient to keep the tube dark. This experiment shows perhaps even more directly than the other the great condnctivity of a rarefied gas under large clectro-motive forces when nothing but the gas is in the way of the passiage of the current.

An experiment made in this comection illnstrates the remark made before as to the large effects prodnced by discharges through the gas which are not arcompanied by lmminosity. I bulb A was fused into a tube B which was sumounded by the primary coil C, I). B was exhansted and then sealed off, while A was left conneeted to the pump. When A was at atmospheric pressme a bright discharge took place in B outside A; on pumping A a stage was reached in which no diseharge conld be seen in either A or B . On latting air into A the discharge appeared again in B ; on pmoning A still further a discharge appeared in A, but not in B. The appearance presented by the discharge roand the bulb A (filled in this case with air at high pressme) is very remark-
able. At the highest pressum at whinh the diseharge passed it tomk the form of at thin rimg romad the midale of A ; at the pressure got lower and lower the discharge broadened ont, and at rery low pressmes formed for the greater part of its comse two separate rings which ran together in the space between one side of the sphere and the tube

Fil: 13.
On the effect produced by conductors near the discharge tube.-The intensity of the discharge is very mand atiecterl by the presence of condurtors in the neighborhood of the dismbage thbe, esperially conductors
 take, for example, a very simple case, that of a bulb smrounded by a primary which is commeded to earth; in this ease the approach of the hamd. or amy eonduchor comberted to earth, will make the discharge brighter amd at the same time less well-defined at the edges; tomblang the thber, thomgh this is aheady eommected to earth, porlaces a bery marked cffert in increasing the lamility of the discharge. We cant, I thank, malderamd the reason of this if we comsider the behavion of the fubers of ale etrostatie induction. When the spark pasies, these tubes
 their journey to the primaty they pasis thengh the bulb and produce the discharge. Let ns suppese now that thore is a large conductor sitnated somewhere near the bull; the tuber, as before, rush fiom the fan to the primary, but in doing so some we them strike agamst the ronductor: the tubes which doso lase the portion inside the eondnetor, atepuire two emds each on the surtane of the comdnetor, and swing rombl matil they are at light anglas to its surfare they remain momenfarily anchored, as it were, to the romblutor, and if the combluctor is in the neighborhood of the lulb, they will in gememal help to merease the maximm demsity of the tubes passing through the bulb. Thongh these thbes may not appoximate to chased carves, and so direetly produere a ring discharge, they may readily lacilitate this discharge indirectly; tor even those hubes which go matially through the bulb may
prodnce a glow discharge from the glass into the bulh, and may thas furnish a smpply of dissociated molecules throngh which the ordinary ring discharge can pass with much greater readiness. For nothing is more striking than the enormons difference produced in the electric strength of these rarefied gases by the passage of a spark. It is sometimes dilficult to get the discharge to pass at first, but when once a spark has passed throngh the gas, a spark length one-quarter the length of that necessary to originate the discharge will be fomed sufficient to maintain it.

It is sometimes convenient, in cases where difficulty is found in starting the discharge, to avail ourselves of this property by connecting the meroury of the pump to which the tube is attached with one terminal of an induction coil. the other terminal of which is put to earth. When the induction coil is in action, a glow-rliseharge fills the promp and tube, and while this glow exists the electrodeless discharge ran easily be started; once having been started, it will continne after the inductionreil is stopped. An experiment of this kind, which I had occasion to make, gave wry chear evidence of the way in which dissociated molecoles arr projected in all directions from the negative electrode in an ordinary discharge tube, but not from the positive. The discharge tulue was fused onto the pump, and at an elbow two terminals, o and d, Fig. 14, were fused into the glass; these terminals were connected with an

Fig. 14. induction coil, and the pressure in the tube Was surh that the electrodeless discharge would notstart of itself. When the coil was turned on so that e was the negrative electrode the electrolless discharge in the tube at once took place, but no rffect at all was produced when e was positive and d negative. We may thus resard the effect producerl by the presemor of a conductor as due to the conductor catching the tubes of electrostatic induction and concrontrating them on the Orlischarge tubes; these tubes in many eases acting indirectly by producing a glow discharge through the tube, which, by diminishing the electric strength of the gas, makes dischargesot any other kind very much easier. Thongh the presence of a conductor near the discharge tube will, in general, concentrate the tubes of electrostatic induction on the dis harge tube more than womld otherwise be the ease, yet this does not ahways happen. When in some positions the condurtor may hold back for a time from the discharge tube tubes of electrostatie induction which would otherwise pass through it, and thus diminish the maximmm density of the tulns of electrostatic induction in the discharge tube, and hence tend to stop the discharge. I have
firguently met with cases where the presenco of a "onductor diminishes the intensity of the diseharge One of the most striking of these is when the two , jars are insmated, and a somare discharge tube used. The spark was adjusted so that the diseharge just, but only just, went rombl the tube. A sphere romnected to earth was then moved ronnd the diselarge tube; in some positions it increased the brillianey of the diseharge. and the tube beame quite bright, while in other positions it stopped the discharge altosether.

The observation of the bohavior of the discharges though these tubes is a very convenient method of studying the effect of courductors in deflecting the flow of the tubes of electrostatic induction which fall upon them; for the appearance of the discharge is affected not merely by the average, but also by the maximum value of the electromotive intensity which produces it. Thus a high maximum value. lasting only for a short time, might produce a discharse, while a more equable distribution of electro-motive intensity having the same arerage value might leave the thbe quite dark.

I have employed these diselarges to study the behavior of bodies muler the action of very rapid mectrical osemations in the following way: ln the primany diruit eonnecting the outside coatings of the jar two loops', A and IB (Fig. 15), weremadr, in one of which, A. an exhansted bulb was phaced, the sparklength and the pressure of the gas on it being adjusted until the discharse was sensitive, i. e., until a small alteration in the reatromotive intensity arting on the loulb prodmed a eonsiderable effert upon the appeatance presented by the discharge. The substance whose behavior umber rapid electrical vibrations was to he examined was placed in
 the loop l3. The results got at firstwore very per plexing. and at first sight eontratictory, and it was some time before I could see their explatation. The following are some of these results: When a highly exhansted bull was placed in la a brilliant diseharge passed thromgh it, while the diseharge in A stopped. A bulb of the same size. filled with a dilate sohtion of eloctrolyte, produced no apprediable effere : when ifled withastrongsolntion it dimmed the disediange in A but mot to the same extent as the exhansted bulb. A piece ar brass rod or tube increased the brightness of the diselarge in A: ou the other hame, a similar pieec of inon rod or than stopere the discharge in A at once. The most tlecided effect. howerer, was pradmed hy a small crucihle made of phomberg and elay: this. when put in the loop I', stopperi the diseharge in A rompletely. I fomad howerer that by considering the work spent on the substance placed in B, the pre ceding results could be axplaincd. When a laree amomot of work is spent in Ib, the diseharge in A will be dimmed, while no apprectabla effect will be protuced on i when the work spent in l' is small. Now
let us consider the work done in a secondary circuit whose resistance is R, whose coefficient of solt-induction is 1 , and which has a eoeflicient of matual indaction, M, with the primary circuit. If the fiequency of the cmrent circnating in the primary is p, we can easily prove that the rate of absorption of work by the secondary is proportional to

$$
\frac{\mathrm{R} \lambda^{2} p^{2}}{\mathrm{~L}^{2} p^{2}+\mathrm{R}^{2}}
$$

Thus the work given to the secondary vanishes when $\mathrm{R}=0$ and when $\mathrm{R}=$ infinity, and has a maximum value when $\mathrm{R}=\mathrm{L} p$. Thas the condition that the secondary should absorls a considerable amount of work is that the resistance should not differ much firom a value drpending on the shape of the cirenit and the fiequency of the empent in the primary. No appreciable amome of work is consmmed when the resistance is very much greater or very much less than this value. I tested this result by placing inside B a coil of ropper wire. When the ends were free, so that no cmman could pass thromgh it, it prodnced mo effert upon the bull in A; when the ends were joined so that there was only a very small resistance in the eircuit, the effect was, if anything, to increase the brightness of the discharge in A . When however the ends were comertad through a carbon resistance which could be adjusted at will, the discharge in A beame rery distinctly duller when there was a very ronsiderable resistance in the cirenit. This experiment eonfirms the conchsion that to absorb energy the resistance must lic within certain limits, and be neither too large nor too small.

We can now see the canse of the differences observed when the substances montioned above were put into B. The brass rod and tube did not dim the discharge in A, hecanse their resistance was too low; the weak solution of electrolyte, becanse the resistance was too great; while the resistances of the crmolble and the strong solution of elertrolyte which obliterated the discharge from A were near the value for which the absorption of ruergy by the system was a maximmo.

The case of iron is very interesting becanse it shows that even under these very mpidly alternating forees, iron still retains its magnetic properties. A striking illastration of the difterenee between iron and other metals is shown whan we take an iron rod and plate it in B, the discharge in I immerliately stops; if we now slip a brass tube over the iron rod the discharge in A is at once restored. If on the other hand we use a brass rod and an iron tnbe, when the rod is put in B without the tube the discharge in A is bright; if we slip the iron tube over the rod, the dischare stops.

To compare the amonnt ot heat prodnced in the brass and iron secondaries fealculations are introduced by which the author estimates that for iron and copper 'ylinders of the same dimensions it would be abont seventy times as large in the iron as in the copper, assuming
that the iron retains its magnetic poperties moler these vory rapidly alternating forees. The result explans the eflect of the iron in stop ping the discharge. As 1 am not aware that any magnotio poperties of iron umder subh raphly altemating fores have beren observer, I was ansions to make quite sure that the difference between iron and hasis was not due solely to the differanes between their sperifie resistaness. The tirst experiment I tried with this objee was to rover the iron rod with thin sheet phatinm, such as is wsed for Grove rells. As the resistance of platimum is not very different tion that of inon, if the effeet depended merely upon the resistance, slipping a thin tube of phatimm wer the ison onght to make very little differenor. I fomed howern that when the platimm was placed over the iron, all the peroblian effects produed hy the lattre were absent, thus showing that the effert is not due to the resistance of the iron. It then ocemred to me that I might test the same thing in another way by magnetizing the iron to saturation, for in this state μ is nearly mity; thas if the result depended mainly on the magnetic properties of thr iron it onght to diminish when the latter is strongly magetized. I accordingly tried an experiment in which the iron in the onil 13 was placed between the poles of a powerful elertro-magnet. When the magnet was "off" the iron almost stopped the diseharge in A; when it was "on" the discharge berime brighter, not indeed so bright as if the inon were away altosether, but still mmistakably heighter than when it was mmagnetized. This experiment, i think, proves that iron refans its magetid properties when exposed to these rappidly altemating forers.

Another result worthy of romark is that thongh a lnass rod or tube inserted in lo does mot stop, the diseharge in A, yet if a piene of glass thlning of the same dimensions is coated with Dutel metal, or if it has a thin tilm of silver deposited upon it, it will stop the discharge very deridedly. Wrare thus led to the somewhat mexperted result that a thin layer of motal when exposed to these rery rapid electrical vibuafoms may absorb more heat than a thirk one I find, on calenlating the heating reffere in sabse of Varions themeneses, that there is a thickness for which the hat alsorbed is a maximum.

The slight incerease in the briwhtness of the diselarge in a when a hatsos rod is plarod in 13 is due, I think, (on the diminution in the self: induction in the pumary eimenit pmodned by this rod whose ronduetivity is so geord that it absomb pratically no heat.

We will now return to the case of bad eombluters, where un is small; here the absorption of emergy is proportional to the conductivity, and we minht use this method to compare the condurtivity of elertontes for very mpinlly alfrmatins arrents. I tried a few experiments of this kind and fomme as I did in the exproments deseribed in the Pro-
 tivities of two elestrolytes was the same for rapidly altormating as for steady curronts. I was anxions, howerer, to see whether these rapidly
alteruating currents could pass with the same facility as stealy corrents from an electrolite to a metal. To try this two equal beakers were filled with the same electrolyte made of such strength that when inserted in B they put ont the discharge in A. I then placed in one beaker six ebonite diaphragms aranged s o as to stop the eddy currents, and a similar metallic diaphegm in the other. The ebonite diaphagm made the beaker in which it was placed cease to have any effect upon the discharge in A. I rould not detect however that the effect of the beaker in which the metal diaphragm was placed on the discharge in A was at all diminished by the introduction of the diaphragm. I conclude therefore that very rapidly alternating corrents can pass with facility from electrolytes to metals and viee versa. In this respect clectrolytes differ from gases, the curents in which, as we have seen, are stopped by a metallic diaphragm in the same way as they would be by an ebonite one.

It may be useful to observe in passing that a somewhat minute division of the electrolyte by the non-conducting diaphragm is necessary to stop the effect of the eddy currents; a division of the electrolytes nuto two or three portions seemed to produce very little effect.

Another point which is brought out by these experiments is the great conductivity of ranfied gases when no electrodes are used as compared with that of electrolytes, An exhansted bulb will produce as much effect on the discharge in A as the same bulb filled with a solntion of an electrolyte containing about a hundred thonsand times as many molecules of electrolyte. The molecular conductivity of rarified gases when the electro-motive intensity is very great and when no electrodes are used must be this enormously greater than that of electrolytes.

Bulbs filled with rarified gas used in the way I have described serve as galvanometers, by which we can estimate ronghly the relative intensity of the current flowing throngh the primary coils which encirele them. Used for this purpose I have found them very nseful in some experiments on which 1 am at present engaged, on the distribution of very rapidly alternating emrents anong a net-work of conductors.

THE MOLECULAR IROOESS IN MAGNETIC INDUCTION.*

liy I'of. .J. A. Ewintx, F. R. S.

Magnetic induction is the name given by Faraday to the act of be coming magnetized, which certain sulstances perform when they are plated in a magnetic field. A magnetir fold is the region near a magnet. or wear a conductor conveying an bertrife emrent. Thronghont such a region there is what is ealled magnetir force, and when certain substances are placel in the magnetic firld the magnetio forere ranses them to berome masmetized by masnetir indurtion. An effective way of producing a magnetie field is to wind a conducting wire into a coil, and pass a durent thromgh the wire. Within the coil we have a region of comparatively strone magnetic fore and when a piero of iron is phacel there it may be strongly magnetized. Not all substances possess this property. P'nt a piere of wool or stome or copper or silver into the field, and nothing motewortlay happens; lut put a piece of iron or nickrl on conbalt and at mer yon fiml that the piece has become a maguet. There there metals, with some of their allogs and compounds, stamd out from all other substanese in this respect. Not only are they (apable of magnotic induction-ot becoming magnets while exposed to the attion of the magnetic firld, but when withlrawn from the field they are fonme to retain a part of the magnetism they acentreal. They all show this property of retentiveness, more or less. lasome of them this rosidhal magnotism is feebly held, and may loe shaken out or otharnise removed withont diftioulty. In others, notably in some steels, it is very fersistemt, and the fate is taken advantage of in the mann facture of permaturnt magnets, whichare simply bats of steref, of proper
 betice fichl. (of all substances, soft iron is the most suseeptible to the atefon ot tha field. It wan ako under favorable conditions, retainWhen taken ont of the deld-a very laree traction of the magnetism that has lacen indnced-more than mine-tenths-more indred than is retaimed by steel; hut its hold of this residual magnotism is mot firm, and for that reason it will not serve as a material for permanent magnets. Aly purpose to-might is fo give some acoomet of the molecolar process throngh which we may ronceive magnetio indurion to take place amd of the strmetme which makes residhal magetism possible.

[^25]When a piece of iron or nickel or eobalt is masuctized ly indurtion, the magnetic state permeates the whole piece. It is not a superticial change of state. Break the piece into as many fragments as you please, and you will find that every one of these is a magnet. In seeking an explanation of masnetis quality we most penctrate the inuermost framework of the substance-we must go to the molecoles.

Now, in a molecular theory of magnetism there are two possible begimings. We might smpose, with Poisson, that each molecule beromes magnetized when the field begins to act. Or we may adopt the theory of Weber, which says that the molecnles of iron are always magnets and that what the field does is to turn them so that they face mone or less one way. According to this view, a virgin piece of iron shows no magnetic polarity, not becanse its molecules are not magnets, but beeause they lie so thoronghly "higgledy-pisgledy" as regards direction that no greater umber point one way than another. But when the magnetic force of the field begins to art, the moleenles turn in response to it, and so a preponderating umber come to face in the direction in which the magnetio fore is appled, the result of which is that the piece as a whole shows magnetic polarity. All the facts go to confinm Weber's view. One fact in partionlar l may mention at once--it is almost conelnsive in itself. When thr molecular magnets are all turned to face one way, the piece has clearly received as much magnetization as it is capable of. Accordingly, if Webers theory be true, we monst experef to find that in at very strong magnotie field a piece of iron or other magnetizab)le metal beromes satmoterl, so that it can not take up any more magnetism, howerer much the field be strengthened. This is just what happens. Experiments were published a few years ago which put the fact of saturation bevond a donbt, and gave values of the limit to which the intensity of magnetization may be forced.

When a piece of iron is put in a magnetic fielr, wo do not find that it becomes saturated uuless the field is exceedingly strong. I weak field indues but little magnetism; and if the field be strengthened, more and more magnetism is acouired. This shows fhat the molernles do not turn with perfect radiness in response to the deflerting magnetie force of the ficld. Their turning is in some way resisterl, and this resistance is overome as the field is strengthened, so that the magnetism of the piece increases step by step. What is the directing force which prevents the molecules fiom at once yiclding to the deflecting influcuce of the ficld, and to what is that force due? And again, how comes it after they have been deflected they return partially, but by no means wholly, to their original paces when the field ceases to act?

I think these questions receive a complete and satisfactory answer when we take aeconat of the forees which the molerules neressarily exert on one another in consequence of the fact that they are maguets. We shall study the matter by examining the behavior of gromps of
little magnets, pivoted like rompass needles. sothat catch is free to turn except for the constraint which each one sufters on acconnt of the presence of its neighbors.

But first lat us see more partionlarly what happens when a piece of iron or steed or nickel ar cobalt is magnetized by means of a field the strength of which is sradmally angmented frommothing. Wemay make the experiment by placing a piece of iron in a coil, and making a comrent flow in the coil with gradmally increased strength, noting at each stage the relation of the indiced magnetism to the strength of the field. This relation is observed to he by no means a simple one: it may be represented by a curve (Fig. 1), and an inspection of the curve will show that the process is divisible, broadly, into three tolerably distinct stages. In the first stage (e) the magnetism is being aroquired butsowly:

Fig. 1.
the molecnles, if we accept Webers theory, are not responding readilythey are rather hard to turn. In the reeond stage (b) their resistance to tuming has to a great extent broken down, and the preer is gaining magnetism fast. In the third stage (c) the rate of increment of magnetism falls off: we are there approachimg the condition of saturation, thongh the process is still a good way from being completed.

Further, if westop at any point of the process, such as P, and gradmally dednce the current in the coil until there is mo current. and theres fore no magnetie firdd. We shall get a eurve bike the dotted line $P Q$, the height of ? showing the amount of the residnal magnetism.

If we make this experiment at a point in the first stage (11), we shall find, as lood hayleigh has shown, little or no residual magnetism; if we make it at any point in the second stage (b), we shall find very much residual masuetism; and if' we make it at any point in the third stage (c), we shall find only a little mome residual magnetism than wr should have fomm ly making the experiment at the end of stage b. That part of the tmoning of the molecules which soes on in stage a contributes nothing to the residual magnetism. That part which goes on in stage c contributes little. But that part of the turning which goes on in stage b contributes very much.

$$
\text { H. Mis. } 114-17
$$

In some specimens of magnetie metal we find a much sharper separation of the three stages than in others. By applying strain in certain ways it is possible to get the stages very clearly separated. Fig. 2, a beantiful instance of that, is taken from a paper by Mr. Nagaka-one of an able band of Japanese workers who are bidding fair to repay the debt that Japan owes for its learning to the West. It shows how a piece of nickel which is moler the joint action of pull and twist becomes magnetized in a growing magnetic field. There the first stage is exceptionally prolonged, and the second stage is extraordinarily abrupt.

Fig.
The bearing of all this on the molecular theory will be evident when we turn to these models, consisting of an assemblage of little pivoted magnets, which may be taken to represent, no donbt in a very crude way, the molecular structure of a magnetizable metal. I have here some large models, where the piroted magnets are pieces of sheet steel, some cut into short flat bars, others into diamond shapes with pointed ends, others into shapes resembling mushrooms or umbrellas, and in these the magnetie fielil is prodnced by means of a coil of insulated wire wound on a large wooden frame below the magnets. Some of these are arranged with the pivots on a gridiron or lazy-tongs of jointed wooden bars, so that we may readily distort them, and vary the distances of the pivots from one another, to imitate some of the effects of strain in the actual solid. But to display the experiments to a large andience a lantern model will serve best. In this one the magnets are got by taking to pieces numbers of little pocketrompasses. The pivots are cemented to a glass plate, throngh which the light passes in such a way as to projest the shadows of the magnets on the sereen. The magnetic force is applied loy means of two coils, one on either side of the assemblage of magnets and out of the way of the light, which together produce a nearly miform magnetie field thronghont the whole group. You see this when I make manilest the field in a well-known lashion, by dropping iron filings on the plate.

We shall first put a single pivoterl magnet on the plate. So long as no field acts it is free to point anyow-there is no direction it prefers to any other, As soon as I apply even a very weak field it responds,
turning at once into the exact direction of the applied foree, for there was mothing (beyond a tritling firction at the pivot) to prevent it from turning.

Now try two magnets. I have rat off the emrent, so that there is at present mo tichl, but you see at once that the pair has, so to speak, a will of its own. I may shake or disturb them as I please, hat they insist on taking up a position (Fig. 3) with the north and of one as close as pos.

sible to the somth end of the other. If distmbed they retmon to it; this contiguration is highly stable. Watrla what happens when the magnetic field acts with grathally growing strength. It first, so long as the field is weak (Fig. 4), threre is but little deflection; but as the deflection increases it is evident that the stability is being lost, the state is getting more amb more rritical, matil (Fig. 河) the tie that hokls them

together seems to hreak, and they suddenly thrn, with violent swinging, into alnost perfert aligmment with the magnetie force H. Now I gradually remove the force, and you see that they are slow to return, but a stage comes when they swing lanck, and a complete removal of the force brings them into the comblion with which we began (Fig. :3).

If we were to pieture a piece of irn as formed of a Vast mumber of such paiss of molecolar magnets, eath pair far emomeh fom its neighbors to be practionlly ont of rearh of their mashetio influmee, we might deduce many of the observerl magnetice porererties, but not all. In partioular, we should not be able to aceonnt for so moth mesidual

Fig. f,
magnetism as is actnally fomme To get that, the molernles most make new comnertions when the old ones are boken; their relations are of a kind more complex than the quasi-matrimonial one which the experi-
ment exhibits. Each molecule is a member of a larger community, and has probably many neighbors close enough to affect its conduct.

We get a better idea of what happens by considering four magnets (Fig 6). At first, in the absence of deflecting magnetic foree, they gromp themselves in stable pairs-in one of a number of possible combinations. Then-as in the former case-when magnetic force is applied, they are at first slightly deflected, in a manner that exactly tallies with what I have called the stage 4 of the magnetizing process.

Next comes instability. The original ties break up, and the magnets swing violently round; but finding a new possibility of combining (Fig. 7), they take to that. Finally, as the field is further strengthened they are drawn into perfect alignment with the applied magnetic force. (Fig. S).

Fig. 9.
We see the same three stages in a multiform group (Figs. 9, 10, 11). At first, the group, if it is shuffled by any casnal distnrbance, arranges itself at random in lines that give no resultant polarity (Fig.
9). A weak fore e produces no more than slight quasi elastic deflections; a stronger force breaks up the odd lines, and forms new ones more favorably inclined to the direction ot the force (Figs. 10). A very strong force brings about situation ($\mathrm{Fi} \underset{\mathrm{s} .}{ }$. 11).

In an actual piece of iron there are multitudes of groups lying differentry directed to begin with-pernaps also different as regards the spacing of their members. Some enter the second stage while others are still in the first. and so on. Hence, the rove of magnetization does not consist of perfectly sharp steps, hut has the romped outlines of Fig. 1.

FIG. 10.

Five. 11.

Notice, asian, how the behavior of these assemblages of elementary magnets agrees with what I have said about residual magnetism. If We stop strengthening the field before the first stage is passed -before any of the magnets have become mutable and have tumbled rom id into new planes -the small deflection simply disappears, and there is no residual effect on the configuration of the group. Lint if we carry the process far enough to have mutable defections, the effects of these persist when the fore is removed, for the magnets then retain the new grouping into which they have fallen (Fig. 10). And again, the quasiastir deflections which go on during the third stage do mot and to the residual magnetism.

Notice, further, what happens tothesponif afterapplying magnetic fore in one direction and removing it, I he gin to apply fore in theoppositedirection. It first there is little reduction of the residual polarity,
till a stage is reached when instability begins, and then reversal occurs with a rush. We thus find a close imitation of all the features that are actually observed when iron or any of the other magnetic metals is carried through a cyclic magnetizing process (Fig 12). The effect of any such process is to form a loop in the curve which expresses the relation of the magnetism to the magnetizing force. The changes of magnetism always lag behind the changes of magnetizing force. This tendency to lag behind is called magnetic hysteresis.

Fig. 12.-Cyclic reversal of magnetization in soft iron (AA), and in the same iron when hardened by stretching (BB).

We have a manifestation of hysteresis whenever a magnetic metal has its magnetism changed in any manner through changes in the magnetizing force, moles indeed the changes are so minute as to be confined to what I have called the first stage (a, Fig. 1). Residual magnetism is only a particular case of hysteresis.

Hysteresis comes in whatever be the character or cause of the magmetic change, provided it involves such deflections on the part of the molecules as make them become unstable. The unstable movements are not reversible with respect to the agent which produces them; that is to say, they are not simply malone step by step as the agent is removed.

We know, on quite independent grounds, that when the magnetism of a piece of iron or steel is reversed, or indeed cyclically altered in any way, some work is spent in performing the operation-energy is being given to the iron at one stage, and is being recovered from it at another; but when the cycle is taken as a whole there is a net loss, or rather a waste of energy. It may be shown that this waste is proportional to
the area of the loop in our diagrams. This energy is dissipated: that is to say, it is seattered and rendered useless; it takes the form of heat. The iren core of a transformer, for instance, which is having its magnetism reversed with every pmation of the alternating enrent. tends to beeme hot for this rery reason: indeed. the loss of energy whieh happens in it, in comsequence of magnetio hystersis, is a serions drawback to the elticieney of alternating-enrent systems of distributing electricity. It is the chief reason why they require much more coal to be bunt, for every unit of electricity sold, than direet-curent systems require.

The molecular theory shows how this waste of energy ocemes. When the molerole beemes mastable amb tumbles violently over, it oscillates and sets its neighbors oscillating. mutil the oscillations are damped out by the eddy 'urrents of electricity which they generate in the surromding conducting mass. The nseful work that can be got frem the molecnle as it falls over isless than the work that is flome in rephang it during the return portion of the cyele. This is a simple mechanical dednction from the far that the movement has mastable phases.

1 can not attempt, in a single lecture, to do more than glance at several places where the molecular theory seems to throw a tlood of light on obscure and complicated facts, as soon as we recognize that the constraint of the molecules is due to their mutnal aetion as magnets.

It has been known since the time of Gilbert that vibration greatly facilitates the process of magnectic imduction. Let a piece of iron be briskly tapped while it lies in the magnetic field, and it is fomm totake up a large addition to its induced magmetism. Indeed, if we examine the snecessive stages of the process while the iron is kept vibrating by being tapped, we find that the first stage (in) has pactically disappeared, and there is a steady and rapidgrowth of magnetism almost from the very first. This is intelligible mough. Vibation sets the molecular magnets oscillating, and alhws them to break their primitive mutual ties and to respond to weak detlerting forces. For a similar reason, vibation shouth temd to reduce the residue of magnetism which is left when the magnetizing fore is removed, and this, too, agrees with the results of observation.

Perhaps the most effective way to show the intheme of viluation is to apply a weak magnetizing fore first, before tapping. If the force is andinsted son that it nearly but not quite reames the limit of stage (o), a great momber of the molecular manets are so to speak, hovering on the verge of instability, and when the piece is tapped they go over like a honse of eards, and magnetism is aconimen with a mesh. Tapping atways has some effeet of the same kind, even thongh there has been no. spereial adjust ment of the fiedd.

And other things hesides vibration will act in a similar way, precipitating the break-up, of molecular gromps when the ties are already
strained. Change of temperature will sometimes do it, or the application or change of mechanical strain. Suppose, for instance, that we apply pull to an iron wire while it hangs in a weak magnetic field, by making it carry a weight. The first time that we put on the weight, the magnetism of the wire at once increases, often very greatly, in consequence of the action I have just described (Fig. 13). The molecules have been on the verge of turning, and the slight strain cansed by the weight is enongh to make them go. Remove the weight, and there is only a comparatively small change in the magnetism, for the greater part of the molemlar turning that was done when the weight was put on is not undone when it is taken off. Re-apply the weight, and you find again but little ehange, though there are still traces of the kind of action which the first application bronght about.

Fig. 13.-Etfeets ol loading a soft iron wire in a constanr fiell. That is to say, there are some groups of molecules which, thongh they were not broken up in the first application of the weight, yield now, because they have lost the support they then obtained from neighbors that have now entered into new rombinations. Indeed, this kind of action may often be traced, always diminishing in amount, during several snecessive applications and removals of the load (see Fig. 13), and it is only when the process of loating has been many times repeated that the magnetic change brought abont by loading is just opposite to the magnetic change brought abont by unloading.

Whenever indeed we are observing the effects of an alteration of physical condition on the magnetism of iron, we have to distinguish between the primitive effect, which is often very great and is not reversible, and the ultimate effect, which is seen only aftur the molecular structure has become somewhat settled throngh many repetitions of the process. Experiments on the effects of temperature, of strain, ete., have long ago shown this distinction to be exceedingly important; the molecular theory makes it perfectly intelligible.

Further, the theory makes plain another curions result of experiment. When we have loated and unloaded the inon wire many times over, so that the effect is no longer complicated by the primitive action I have just described, we still find that the magnetic changes which occur while the load is being put on are not simply undone, step by step, while the load is being taken off. Let the whole load be divided into several parts, and you will see that the magnetism has two different Vilnes, in going up and in coming down, for one and the same intermediate value of the load. The changes of magnetism lag behind the changes of load; in other words, there is hysteresis in the relation of
the magnetism to the load (Fig. 14). This is becanse some of the molecnlar gronps are every time being broken mp during the loading, and re-established during the unloading, and that, as we saw already, involves hysteresis. Consequently, too, each loading and monating requires the expenditure of a small quantity of energy, which goes to heat the metal.

Fisi. 14.-CYolvof hading and umbadine.
Moreover, a remarkably interesting ronchasion follows. This hysteresis, and consequent dissipation of energy, will ahso happen though there be no magnetization of the piece as a whole; it depends on the fact that the molecnles are magnets. Accordingly, we should expeet to find, and experiment ronfirms this (ser Phil. Trans., 18s.5, p. 611), that il the wire is loaderl and moloded, even when no magnetie fied ates and there is no magnetism, its physical qualities which are ehanged by the load will chamge in a mamer involving hysteresis. In partionar, the length will be less for the same load during loading than during unloading, so that work may be wasted in every eqcele of loads. There can be no surh thing as perfect elasticity in a magnotizable metal, maless, indeed, the marge ol the stman is so very marow that none of the molecules tumble throngh mostable states. This may have
something to do with the fact, well known to engineers, that numerous repetitions of a straining action, so slight as to be safe enough in itself, have a dangerous effect on the structure of iron or steel.

Another thing on which the theory throws light is the phenomenon of time lag in magnetization. When a piece of iron is put into a steady magnetic field, it does not take instantly all the magnetism that it will take if time be allowed. There is a gradual creeping up of the magnetism, which is most noticeable when the field is weak and when the iron is thick. If yon will watch the manner in which a grom of little magnets breaks up when a magnetic force is applied to it, you will see that the proress is one that takes time. The first molecnle to yich is some ontlying one which is comparatively mattached-as we may take the surface molecules in the piece of iron to be. It falls over, and then its neighbors, weakened by the loss of its support, follow suit, and gradually the disturbance propagates itself from molecule to molecule thronghont the group. In a very thin piece of iron-a fine wire, for instance-there are so many surface molecules, in comparison with the whole number, and consequently so many points which may become origins of disturbance, that the breaking up, of the molecular commmities is too soon over to allow much of this kind of lagging to be noticed.

Fig. 15.-Relation of magnetic inductive capacity to temperature in hard steel (IIopkinson).
Effects of temperature, again, may be interpreted by help of the molecular theory. When iron or nickel or cobalt is heated in a weak maguetic field, its susceptibility to magnetic induction is observed to increase, until a stage is reached, at a rather high temperature, when the magnetic quality vanishes almost suddenly and almost completely. Fig. 15, from one off Hopkinson's papers, shows what is observed as the temperature of a piece of steel is gradually raised. The sudden loss of magnetic quality occurs when the metal has become red hot; the magnetic quality is recovered when it cools again sufficiently to cease to glow. Now, as regards the first effect-the increase of susceptibility with increase of temperature-I think that is a consequence of two independent effects of heating. The structure is expanded so that the molecular centers lie further apart. But the freedom with which the molecules obey the direction of any applied magnetic force is increased not by that only, but perhaps even more by
their being thrown into vibmation. When the fiek is weak, heating consequently assists magnetization, somotimes very greatly. Wy has tening the passage from stage " to stage b of the magnetizing proces. And it is at least a conjecture worth consideration whether the sudden loss of magnetir equality at a higher temperatme is not due to the vi brations becoming so violent as to set the molecules spiming, when, of comrse, their polarity would be of no avail to produce magnetiza tion. We know at all arents that when the change from the magnetic to the non-magnetic state occurs, there is a profome moleenlar change, and heat is absorbed which is givenont agan when the reverse change takes place. In cooling from ared heat, the irom actually extends at the moment when this change takes place (as was shown by (iore), and so much heat is given out that (as Barrett observed) it re-glows, becoming briglitly red, thongh just before the change it hat rooled so far as to be quite dull. [Bxperiment, exhibiting retraction and reglow in cooling, shown by means of a long iron wire, heated to redness by an eleetric current.] The changes which oedur in iron and steel abont the temperature of redn ess are very complex, and I refer to this as only one possible direction in which a key to them may be songht. Perhaps the full explanation belongs as much to chemistryas to physies.

An interesting illustration of the use of these models hats reathed me, only to-day, from New York. In a paper just published in the Electrical World (reprinted in the Electrician for May 29, 1891), Mr. Arthur 1 tompes supports the theory 1 have laid before yom ley giving aurves whiell show the connection experimentally fomed by him between the result polarity of a gromp of little pisoted magnets and the strength of the magnetic fied, when the fied is applied, removed, reversed, amd so om. I shall draw these curves on the serem, and rough as they are, in fonsequence of the limited mumer of magnets, you see that they suceed remarkahly well m reproducing the features which we know the curves for solid iron to possess.

It may, perhaps, be fairly elamed that the models whose hehavior we have been "onsidering have a wider application in physice than to merely elucidate magnetic processes. The molecules of borlies may have polarity which is mot magnetie at all-polarity, for instance, due to statio clectritieation-mater whieh they gromp themselves in stable forms, so that energy is dissipated whenever these are broken np and re-aranged. When we strain a solid bodybeyond its limit of elasticity, we expond work irrecorahly in oreroming. as it were, internal friction. What is this internal frietion dur to but the breaking and making of molecnlar ties? And if internal friction, why not also the surface friction which eanses work to be spent when one body rubs upon another. In a highly nggestive passage of one of his writings,*

[^26] 313.

Clerk Maxwell threw ont the hint that many of the irreversible processes of physics are due to the breaking up and re-construction of molecular groups. The models help us to realize Maxwell's notion, and m studying them to-night, I think we may claim to have been going a step or two forward where that great leader pointed the way.

CRYSTALLIZATION.*

By (i. I). Liveing, F. R. S.

There is something very fascinating about crystals. It is not merely the intrinsic beanty of their forms, their pioturesque grouping, and the play of light upon their faces, but there is a feeling of wonder at the power of nature, whieh eanses substances, in passing from the thuid to the solid state, to assume regular shapes bounded by phane faces, eath substance with its own set of forms, and its fiaces arranged with chanacteristic symmetry; some, like almm, in perferet octahedra; others, like blne vitriol, in shapes which are regularly oblique. It is this power of nature which is the subject of this discourse. I hope to show that crystalline forms, with all their regularity and symmetry, are the outcome of the aecepted princeples of merbanics. I shall invoke no peruliar fore, but only such as we are already familiar with in other facts of mature. I shall call in only the same force that produces the rise of a liquid in a capillary tube and the surfice-tension at the boundary of two substances which do not mix. Whether this fore be different from sravity I need not stop to inguire, for any attractive force which for small masses, sum as we suppose the molecules of matter to be, is only rensible at insensible distances is sufficiont for my purpose.

We know that the external forms of crystals are intimately comneoted with their internal strmeture. This is betrayed by the cleavages with which in mica and selenite everyborly is familnar, ant which extend to the minutest parts, as is sern in the tiny rhombs whirh form the dust of crushad caldite. It is better marked loy the optical properties, single and donble refraction, and the effects of crystals on polarized light. These fimiliar facts lead np to the thomght that it is rally the internal structure which determines the extemal form. As a starting point for considering that structmo, I assmme that (rystalline matter is made up of molecoles, and that, whoras in the fluid state the molecoles move abont amongst themselves, in the solid state they have little freedom. They are always within the range of each others inthenceand do not change their relative places. Nevertheless, these mole, enles are in constant and rery mpid motion. Sot only will they commonicate heat to colder bodies in contart with them, hut they are

* A discomrso delivered at the Rosal Instit 1 tion of Creat ! britain on Friday, May 15, 1891.-From Nature, June 18, 1891; vol, xliv, p1. 156-160.
always radiating, which means producing waves in the ather at the rate of many billions in a second. We are sure that they have a great deal of energy, and, if they can not move far, they must have very rapid vibratory motions. It is reasonable to suppose that the parts of each molecule swing, backwards and forwards, through, or about, the center of mass of the molecule. The average distances to which the parts swing will determine the average dimensions of the molecule, the average space it oceupies.

Dalton fancied he had proved that the atoms of the chemical elements must be spherical, berause there was no assignable cause why they shonld be longer in one dimension than another. I rather invert his argument. I see no reason why the excursions of the parts of a molecule from the centre of mass should be equal in all directions, and therefore assume, as the most general case, that these excursions are unerual in different directions. And, since the movements must be symmetrical with reference to the centre of mass of the molecule, they will in gencral be inchuded within an ellipsoid, of which the center is the centre of mass.

Here I may perhaps guard against a miseonception. We chemists are familiar with the notion of eomplex molecules; and most of us figure to ourselves a molecule of common salt as consisting of an atom of sodimm amb one of chlorine held together loy some sort of force, and it may be imagined that these atoms are the parts of the molecules which I have in mind. That however is not my notion. I am paradoxical enongh to disbelieve altogether in the existence of either sodium or ehlorine in common salt. Were my andience a less philosophical one I could imagine I hearl the retort from many a lip: "Why, you can get sodimm and chlorine out of it, and yon can make it out of sodium and chlorine!" lint no, you can not get either sodinm or chlorine out of common salt without first adding something which seems to me of the essence of the matter. Tou can get neither sodimm nor chlorine from it without adding energy; nor can you make it ont of these elements without subtracting energy. My point is that energy is of the essence of the molecule. Each kind of molecule has its own motion; and in this I think most physicists will agree with me. Chemists will agree with me in thinking that all the molecules of the same element, or compound, are alike in mass, and in the space they oceupy at a given temperature and pressure. The only remaining assumption I make is that the form of the ellipsoid-the relative lengths ot its axesis on the acerage the same for all the motecule sof the same substance. This implies that the distances of the excursions of the parts of the molecule depend on its constitution, and are, on the average, the same in similarly constituted molecules under similar circumstances.

I have come to the end of my postulates. I hope they are such as yon will readily concede. I want you to conceive of each molecule as having its parts in extremely rapirl vibration, so that it ocenpies a larger space than it would occmy if its parts were at rest; and that
the exmersions of the parts about the renter of mass are on the arerage, at a given temperature aml pressure, comprised within a cortain ellip). soid; that the dimensions of this ellipsoid are the same for all molerules of the same chemical constitution, but different for molernles of different kinds.

We have now to consider how these moloroles will park themselves on passing fiom the fluid state, in which they ean and do move ahont amongst themselves. into the solid state, in which they have mo seusible ficedom. If they attract one another, acoording to any law, and for my purpose gravity will suffiee, then the laws of energy require that for stable equilibrimm the potential energy of a system shali be a minimmm. This is the same, in the case we are ronsidering, as saying that the molecules shall be parked in such a way that the distances between their centers of mass shall on the whole be the least perssible; or, that as many of them as possible shall be packed into mit spare. In order to sed how this packing will take place, it will be easiest to consider first the particular case in which the axes of the ellipsoids are all equal-that is, when the ellipsoids happen to be spheres. The problem is then redured to finding how to park the greatest mumber of equal spherical balls into a givelu space. It is easy to beduce this to the prohlem of finding how the spheres can be arranged so that each one shall be touched by as many others as possible. In this way the cornered spaces between the balls, the unocrupied room, is redured to a minimum. You can stack balls so that wath is tonched by twelve others. hut not bey more. At first sight it seems as if this might be done in two ways.

Fig. 1.
In the first place we may start with a square of balls, as in Fig. 1, where earla is tonched hy fome others. We may then place another (shaded in the figme) so as to rest on four, and plate fomr more in
adjacent holes to touch it, as indicated by the dotted circles. Above these four more may be placed in the openings abcd, so as to touch it-making twelve in all. If the pile be completed, we shall get a four-sided pyramid, of which each side is an equilateral triangle, as

Fig. 2.
represented in Fig. 2. It will be seen that, in these triangular faces, each ball (except, of conrse, those forming the edges) is touched by six others. A gain, if we start with such a triangle, as in Fig. 3, where each ball is tonched by six others, we can place one ball-the shaded one-so as

Fig. 3.
to rest on three others, and can then place six more round it and tonching it, as indicated by the dotted cireles. In three of the triangular holes between the shated ball and the dotted balls tonching it we can place three more, so as to touch the shated ball-again twelve touch-
ing it in all. If we complete the pile. wo shall got the triangman pyramid represented hy Fig. t, where each of the three sides is a rightangied triangle, while the base is an equilateral triangle. It will be seell that in the fares of this byramid anch ball (exeept those outside) is tomeled by fom others. In fact, the armanement in these taces is the same as in the hase of the former pyramid ; and the two arrangements are really idential in the interior, only ond has to be tmoned over in order to hring it into parallelism with the other. lig. : rep resents half a regular octahedron; Fig t the corner of a cube. Ellip)soids if they are all equal and similiar to one another ean be packed in precosely the same way, so that eash is tomoled by twolve others, provided their axes arr kept parallel to earlo other-that is, if they are all orienterl alike. This, then, by the laws of energy, will be the arrangement which the molecoules will assmme in consequence of mutual attratetion, in passing from a fluid to a solid state.

Fig. 4.
Next, let us ser how the parling of the molecnles will affert the extermal form. And here l bring in the surfare tension. Wo are familiar with the efferets of this foree in the ease of liguids, and if we adopt the usually received theory of it, we must have a surfare temsion at the bommany of a solid, as well as at the surface of a liquid. I know of no aetaal measures of the surface temsion of solids; but (puincke has given ms the surane temsions of a mmber of smbstances at temperatmer near their points of soliditication, in dymes per lineal "ontimeter, as follows:

Platinum.	618	Antimony	244
(rold	98:;	Bomax	219
Zin!	(li	Sodinm carbonata	$204 ;$
'Tin	5×7	Sodinum chloriats	111
Herrury	577	Water	N6.
Lidid.	418	celenimum	70.1
Silver	11!	sиן保.	11.:3
Bismuth	:32	Phosplorus	11.1
Potassium.	0.10 .1	W:	:33. 1
Sodinm			

The surfate tensions of most of the solits are probably greatri than these, for the sumfee tension gemerally diminishes with inerease of temperature : and yousee that they amonnt to very eonsiderable forces. 1I. Mis. 114 _- 18

We have to do, tnen, with an agency which we can not neglect In all these cases the tension measured is at a surface bounded by air, and is sucl, as tends to contract the surface. We have, then, at the boundary between a crystallizing solid and the fluid, be it gas or liquid, ont of which it is solidifying, a certain amount of potential energy; and by the laws of energy the condition of equilibrimm is, that this potential energy shall be a minimm. The accepted theory of surface tension is that it arises from the mutual attraction of the molecules. The energy will, therefore, be a minimum for a surface in which the molecules are as closely set as possible.

Now, if you draw a surface through a heap of balls packed so that each is tonched by twelve others, you will find that the surfaces which have the greatest number of centers of balls per unit area are all plane surfaces. That in which the concentration is greatest is the surface of a regular octahedron, next come that of a cube, then that of a rhombic dodecahedron, and so on according to the law of indices of arystallographers. The relative momerical values of these concentrations are as follows, taking that of the faces of the cube as unity:

Oetahedron	1.1547	Tetrakishexahedron 0.4472
Cube	1. 0000	Eikositessarahedron-.......-. . 0.4083
Dodecahedron	0.7071	Triakisoctahedron................ . 0.3333

We do know that the surface tension is exactly in the inverse proportion to the conceutration; all that we can at present say is that it increases as the concentration diminishes.

If, then, the molecules occupy spherical spaces, the bounding surface will teud to be a regular octahedron.

Fig. 5.
But we have another point to consider. If a solid is bounded by plane surfaces, there must be edges where the planes meet. At such an edge the surface tensions will have a resultant (see Fig. 5) tending to compress the mass, wheh must be met by a corresponding opposite pressure, and unless there is some internal strain there must be a correspondent resultant of the tensions on the opposite side of the crystal. Hence, if one face of a form is developed the opposite face will also be developed; and generally, if one face of a form be developed all the
faces will be developed; and if one edge, or angle, be truncated, all the correspmang edges, or anglos, will be trmeated. Were it othorwise, there wonld not be a balance between the surface tensions in the several faces. But there is another point to be taken into accome. The surface energy may heeome less in two ways-either by redncing the tension per mit surfae, or by redmoing the total smfare. When a liquid separates from another fluid, as chloroform firom a solution of chloral hydrate on adding an alkali, or a cloud from moist air, the liquid assumes the form which, for a given mass, has the least suffacethat is, the drops are spherical. If you cut off the properting comers dud plane away the projecting edges of a eube or an octahedron, you bring it nearer to a sphere, and if yon suppose the volme to remain constant, you still diminish the smfare. And if the diminution of the total surface is not eompensated by the increased energy on the truncations, there will be a tendenry for the arystals to grow with such trumeations. The like will bo true in more compliated combinations. There will be a tendency for such combinations to form, provided the surface energy of the new faces is not too great as compared with that of the first simple form.

But it does not always happen that an octahedron of alum develops truncated angles. This leads to another point. To produce a surface in a continnous mass requires a supply of energy, and to generate a surfaee in the interion of any than is mot easy. Air may be super-saturated with arueous vapor, or a solution with a salt, and no rloud or crystals be fommed, muless there is some discontimity in the mass, sperks of dust, of something of the kind. In like mamer, if we have a surfare ahready, as when a super-satmrated solntion meets the air or thesides of the vessel containing it, and if the ennergy of either of these suffees is lass than that of a crystal of the salt, some energy will have to be smpplied in ortar to produre the new sultace, but not so moch as if there were no smface there to begin with. Hence, arystals usually form on the sides of the vessel or at the top of the liquid. When a solid separates from a sohtion threre is generally some energy avalable from the ehange of state, which supplies the energy for the new surface. But at first whon the mass deposited is very small, the emergy available will be correspondingly small, amd sime the mass varies as the exthe of the diamoter of the solid, whereas the surface varies as the sfrare of the diameter, the first separated mass is liable to be squeezed into liquid agam by its own surface tension. This explains the usual phenomena of super-saturated solntions. A deposit oeemrs most casily on a surface of the same emergy as that of the deposit, becanse the additional energy refnired is only for the inmedsed ratent of surfere. It explans, too, the tendency of latee arystals to grow more rapidly than small ones, becanse the ration of the facrase of surface to that of rolme dimimishes as the erystal grows.

While speaking of the differulty of arating a new sumface in the in-
terior of a mass, the question of cleavage suggests itself. In dividing a crystal we create two new surfaces-one on each piece, and each with its own energy. The division must therefore take place most readily when that surface energy is a minimm. Hence the principal cleavage of a crystal made up of molemles having their motions comprised within spherical spaces will be octahedral. As a fact, we find that the greater part of substances which crystallize in the octahedral, or regular system, have octahedral cleavage. But not all; there are some, like rock salt and galena, which cleave into rubes, and a very few, like blente, have their easiest cleavage dodecahedral. These I have to explain. I may however first observe that some substances-as, for instance, thor-spar-which have a very distinct octahedral cleavage are rarely met with in the form of octahedra, but usnally in cubes. In regard to this, we must remember that the surface energy depends upon the nature of both the substances in contact at the surface, as well as on their electrical condition, their temperature, and other circumstances. The closeness of the molecules in the surface of the solid determines the energy, so far as the solid alone is concerned; lut that is not the only -thongh it may be the most important-factor ronducing to the result It is therefore quite possible that, mader the circmomstances in which the natural crystals of floor were formed, the surface energy of the cubical faces was less than that of the octahertral, althongh when we experiment on them in the air, it is the other way. This supposition is confirmed by the well-known fact that the form assumed by many salts in crystallizing is affected by the character of the solution. Thus alum, which from a solntion in pure water always assumes the octahedral form, takes the cubic form when the solntion has been nentralized with potash.

To return to the cubic and dodecahedral cleavages. If we suppose the excursions of the parts of the molecule to be greater in one direction than in the others, the figure within which the molecule is comprised will be a prolate spheroid; if less, an oblate spheroid. Now, as already explained, the spheroids will be packed as cioselyas possible if the axes are all paralled and each is touched by twelve others. Now suppose the spheroids arranged as in Fig. 6, with their axes perpendicular to

Fig. 6.
the plane of the figme; plare the next layer in the black triangular spaces, and complete the pyramid. The three faces of the pyramid
will be equal isoscles tranges: and if the spherobls ion oblate, and the axis half the greatest diameter, the three angles at the apex of the pyramid will be right anges. Tha erystal will have conbicesmmetry. but the relative condensation in the bares ot the cube octahedron, and doderat hedron. will be as $1: 0.0754: 0.7071$. The easiest cleaviage would therefore be rabie, as in rock salt and galena.

Again, if the spheroids have their axes and sreatest diameters in the ratio of $1: \sqrt{2}$, and we plate fome, as in Fig. 7 , with thein axs perpern-

Fig. 7.
dicular to the plans of the fisme then phace one upon then the the middle and then fomr more mpon it, in positions corresponding to those of the first four, we gret a culncal arrangement, the center of a spheroid in each angle of a cube, and one in the center of the cube. Custats so formed will have ablie symmetry, but the concentration of molerales will be greatest in the faces of the dodecahedron, and their easiest deavage will be like that of blende. dodecahedral.

If spheroids of any other dimensions be arranged, as in Fins. 1 and 2, with their axes perpendicolar to the plane of Fig. 1, we shall get a crystal with the symmetry of the pyramidal system. If the spheroids he probate, the fundamental octaludron will be elongated in the direction of the axis, and if sufficiently elongated, the seratest condensation will be in planes perpendionlan to the axis, and the easiest rleavage, as in prussiate of potash, in those planes. On the wther hand, if the spheroids be sufficiently oblate, the easiest cloavage will be parallel to the axis.

If spheroids he arranged, as in Fig. 6, with their axes perpendientar to the plane of the tigne, they will, in genemb, prodme thombohedral symmetret, with the rhombs ando of obtase, acoording to the lengeth or shorthess of the axes of the spheroids. The chbiral form already deseribed is only a partionlar case of the rhombohedral. If the ratio between the axis of the sphrerods and their greatest diameters be only a little grater or a little less than $1: 2$, the contrmation will be greatest in the faces of the thombohedron, and the easiest rleavage will be rhombohedral, as in ealdoite. If the spheroids be probate, the easiost deavage will be perpendernar to the axis of symmetry, as in beryand many of har rrystals. Surlo rystals have a tendroney to assume hexagomal forms-equiansular six-sided purms and promids. To explain this, it may be seen in lig. of that, in placing the next layer upon the spheroids represented in the fignre, the threespheroids which tonch that marked "may orroper cither the three aljacent white triangles or the three black ones. Either position is equally probable. The layer oc-
cupying the white triangles is in the position of a twin to that occupying the black triangles. So far as the central parts of the layer are concerned, it will make no difference in which of these ways the molecules are packed. It is only at the edges that the surface tension will be affected. If the form growing be a rhombohedron, a succession of alternating twins will produce a series of alternating ridges and furrows in the rhombohedral faces, which will give rise to increased surface tension, which will tend to prevent the twinning. On the other hand, a hexagonal form and its twin, formed in the way indicated, are identical, and we have in this fact a canse tending to the production of hexagonal forms. This tentency is increased by the fact that, for a given volume, the total surface of the hexagonal forms is in general less than that of the rhombohedral. Indeed, such forms lemd them selves to the formation of almost globular crystals, as is well seen in pyromorphite and mimetite.

If the spheroids be arranged with their axes in other positions than those we have been diseussing, or if the molecules occupy ellipsoidal spaces, they will, when packed so that each is touched by twelve others, give figures of less symmetry. The results may be worked ont on the lines indieated in the foregoing diseussion, and will be found to correspond throughout to the observed facts.

Bravais long ago proposed varions arrangements of molecules to account for crystalline forms, and Solncke has extended them to further degrees of complication in order to account for additional facts in crystallography. But neither of them has given any reason why the molecnles should assume such arrangements. To me it seems that only one arrangement can be spontaneonsly assmmed by the molecnles, and that the varieties of crystalline form depend on the dimensions of the ellipsoids and the orientation of their axes. Curie also has indieated that the development of combined forms, as those of cube and octahedron, will depend on the surface tensions in the faces of these forms, but he has not indicated how the surface tension is connected with the crystalline arrangement, or why the energy of a cubic face should be greater or less than that of an octahedral face.

We are now in a position to understand the interesting facts brought forward by Prof. Juld in a discouse delivered at the Royal Institution early this year. However long a crystal has been out of the solution or vapor from which it was formed, its surface tension will remain mualtered, and when it is replared it will grow exactly as if it had not been removed. Also, if any part be broken off it, the tension of the broken surface will, if it be not a cleavage face, be greater than on a face of the crystal, and in growing, the laws of energy necessarily canse it to grow in such a way as to reduce the potential energy-that is, to replace the broken surface by the regular planes of less surface energy. The formation of "negative erystais" by fusing a portion in the interior of a crystalline mass is due to the same principle. Surfaces of least
emergy will be most easily prodnced inside as well as outside, and in a revatalline mass of comse they will be parallor to the extermal tares of the erysital. We see the same thing in the action of solvents. Most metals asimme a crystalline texture on cooling fiom fusion, and when slowly arted on by dilnto acids the surfaces of greater enorey are most easily attacked, in aroordance with the laws of emergy, and the modissolverl metal is left with surfaces of least energy which are the fanes of crystals. This is easily seen on treating a piede of tin plate of of gatvanized iron with very dilnte aqua regia. In tart, sulntion is rlosely connected with surtace energy. It is probably the low surface emergy of one form of 'rystals of sulphur which makes them insohble in carbon disulphide, and this low surfare emergy may be an eloctrical effect.

I pointed out that the develomment of all the fares of a form amb the similatmodifeationof all conrespontingedges and angles of a crystal are in weneral necessary in order to prodmere equilitrimm motrer the surfare temsions. But we sometimes find erystals with only latf the modifications recpuived for symmetry. In surb rases the surface tensions must prodme a stress in the interior temding to deform themolecules. When the ergstal was growing there must have been equilibrimm, and therefore a pressure equal and opposite to this effect of the surfare tension. There are varions ways in which we may suppose that such a fore Wonld arise. The plectrje field might give rise to a stress in opmosition to the ageregation of the molnoules in the closest possible way, and
 opposite stress. Inequalities of temperatme or the presence of mondecules of other kinds amomst those of the erystal might produce similar results. When the stress due to electricity or to tomperature was removed by ehange of eiremmstances, that dur to the surface tensions wonlel prsist, and the erystal would be left with an internal strain. Crystals of this sort, with mosmmetric laces, gencrally betray the internal stran either by developing eleotricity of opposite linds at the two ruds when hated or cooled, or they atfeet potarized light, rotating the plane of polarization. That these effects are dur to the intermat stata is shown hy the fact that tommalines and othor mestals which are pyodeleotric when masymetrical show nosuch property when symmetrically grown. Alsosodium dhlorate in solution, guatz when fused, and so on, lose their rotatory power. Sulstances which in sohation show rotatory power as a ruld derelop mosmmetrice dystals. 'This is woll seen in the tartates. Ther eonstitution of the molecmles mast be surls that they will mot withont some strain form erystals; and equilibrimm when the raystal is wrowing is attained by means of the opposing stress due fo want of symmetry in the smefece temsions. la all sumb revatals the rotatory power of the sohntion disappeas in whole or in part. We "an not test this in biaxial rovsals, hat, aroording to bes "loiseme, sulphate of stryehnine is the only substance which whows retation both in the solution and in the crrstalline fom, and in it the rotatory power
is much increased ly the rrystallization. Effects comparable with these may he produced by mechanical means. A cube of rock salt, which has no effect on phane-polarized light in its ordinary state, changes the plane of polarization when it is compressed in a vise. And a cleavage slice of prussiate of potash, which is miaxial, may by compression be distorted so as to give in a convergent beam of polarized light elliptical rings and two eyes like a biaxiad crystal.

THE RE.JUVENESCENOE OF ('RINTAI心.*

By Poot. domi W. J(tor), F. R, 心.

Tery soon after the invention of the mirroscope the value of that in strument in investigating the phenomena of crystallization began to be recoguized.

The stmy of reystal morphology and reystallo-genesis was initiated in this country by the observations of Robert Boyle; and sime his day a host of insestigators-among whoni may be espectably mentioned Leenwenhoek and Vogelsang in Tolkand, Link and Frankenhoin in Germany, and Pastem and Senamont in France-have aldnd langely to our knowledge of the origin and development of arystalline struetures. Nor can it be sadid with justice that this field of investigation, opened up hy English pioneers, has beren ignobly abandoned to others, for the cordit of british science has been fally mantained by the mumerous and brilliant discoveries in this department of knowledge by Brewster and Sorloy.

There is no branch of science which is more dependent for its progress on a knowledge of the phenomena of erystallization than geology. In secking to applain the complicated phenomena exhibited by the erystalline masses composing the earth's ermst, the seologist in romstantly compelled to appeal to the physicist and chemist; fiom them alone cam he hope to obtain the light of experiment and the lading of analogy whereby he may hope to solve the problems which ronfont hime
lbut if geology owes much to the researches of those physicists and chemists who have devoted their studies to the phemomena of erystalli zation, the delat has bern more than repaid through the mew light which has been thrown on these questions by the investigations of naturally formed erystals by minerabogists and geologists.

In uor rass of fhysical operations is time such an important fartor as in erystallization, and Nature, in producing her inimitable examples of revstalline bodies, has been masparmg in her expenditure of time. Hence it is not surprising to find that some of the most wonderful phenomman of (rystallization dan best be studied—some indeed "an omly be studied-in those exquisite specimens of Natmee's handiwnk which

[^27]have been slowly elaborated by her during periods which must be morasured in millions of years.

I propose to-night to direct yonr attention to a very curious case in which a strikingly eomplicated gronp of phenomena is presented in a erystalline mass, and these phenomena, which have been revealed to the student of natural crystals, are of such a kind that we ean scarcely hope to re-produce them in our test-tubes and crucibles.

But if we can not expect to imitate all the effects which have in this case been slowly wronght out in Nature's laboratory, we ran at least investigate and analyze them, and, in this way, it may be possihle to thow that phenomena like those in question mast result from the pos. session by crystals of certain definite properties. Wach of these properties, we shall see, may be severally illustrated and experimentally investigated, not only in natural products, but in the artificially formed crystals of our laboratories.

In order to lead up to the explanation of the eurions phenomena exhibited by the rock-mass in question, the first property of crystals to which I have to refer may be enmeiated as follows:

Crystals possess the power of resming their growth after interrup. tion, and there appears to be no limit to the time after which this resumption of growth may take place.

It is a familiar observation that if a crystal be taken from a solution and put aside it will, if restored after a longer or shorter interval to the same or a similar solntion, continue to increase as before. But geology affords immmerable instances in which this renewal of growth in crystals has taken place after millions of years must have elapsed. Still more curions is the fact, of which abundant proof can be given, that a crystal formed by one method may, after a prolonged interval, continue its growth under totally dinferent conditions and by a very different method. Thus, crystals of quartz, which have elearly leeen formed in a molten magma and certain inclosures of glass, may continne their growth when bronght in contact with solutions of silica at ordinary temperatures. In the same way, erystals of feldspar, which have been formed in a mass of ineandescent lava, may increase in size when solvent agents bring to them the necessary materials from an enveloping mass of glass, even after the whole mass has herome cold and solid.

It is this power of resmming growth after intermption which leads to the formation of zoned erystals, like the fine specimen of amethyst nelosed in colorless quartz, whirh was presented to the Royal Institntion seventy years ago by Mr. Snodgrass.

The errowth of errstals, like that of plants and animals, is determined by their environment, the chief conditions affecting their development being temperature, rate of grow th, the smply of materials (which may vary in quality as well as in quantity), and the presence of certain foreign bodies.

It is a very curions circumstance that the form assumed by a erystal
may be completely altered by the presence of infinitesimal thates of certain foreign substanes-foreign substances, bo it remarked, which do not enter in any way into the eomposition of the erystallizing mass. Thas there are certain erystals which ean only be formed in the pres. ence of water, flnorides, or other salts. Such forergn boties, whirh exereise an influme on a (rystallizing substance withont entrong into its eomposition, have been abled by the Frenelngeologists "miner alizers." Their action seems to "momsly resemble that of diastase and of the bodies known to chemists as "forments," so many of which are now proved to be of organie ariwin.

Stmdied aceording to their mode of formation, zoned erystans fall naturally into several different classes.

In the first place, we have the bases in which the suceessive shells or zones differ only in eolor or some ot har aderdental character. Sometimos such differently colored shells of the erystal are sharply ent off from one another, while in other instances they graluate impereptibly one into the other.

A seeond elass of zoned rrystals incholes those in which we find clear evidenco that ther have been pansers, or at all events changes in the rate of their growth. The internpion in growth may he indieated in several ditferent ways. One of tha commonest of these is the formation of cavities filled with gaseons, liquil, or vitreous material, acoording to the way the crystal has heen formed, by wolatization, by solution, or by fusion, the prodnction of these "avities indicating rapid or inregular growth. Not mofregnently is it clair that the erystal, after growing to a rertain size, has beell corroded or partially resorbed in the mass in whid it is being formed, bofore its increase was resumed. 111 other casas, a panse in the growth of the errstal is indioated by the formation of minnte foreign erystals or the deposition of merystallized material along rertain zonal planes in the erystal.

Some very interesting varieties of minerals, like the Cotterite of Ireland. the red quart\% of Cumberland, and the spoted amethyst of lake Superior, can be shown to owe their jeernliarities to thin bands of foreign matter zomally inchurlerl in them during thoil wrowth.

A amons class of zoned erystals arises when there is a change in the habit of the erystal during its growth. Thas, as Levalle shower
 octahedron of alnm be allowed to grow to a rertain size in a solution of that substance, and then a quantity of alkaline varbonate be added to the liquid, the octahedral arystal, without change in the length of its axes, will be gradmally tramsormed into a coube. In the same way, a scalenoheatron of walcite may he fomm inclosed in a prismatio arystal of the same mineral, the lengths of the vertical axes being the same in botla ervistals.

By far the most mumerons and impontant rass of \%oned arystals is
that which includes the forms where the successive zones are of different, though analogous, chemical composition. In the case of the alums and garnets, we may have various isomorphous compounds forming the successive zones in the same crystal; while, in substances crystallizing in other systems than the cubic, we find plesiomorphons compounds forming the different inclosing shells.

Such cases are illustrated by many artificial erystals and by the tommalines, the epidotes, and the feldspars among minerals. The zones, consisting of different materials, are sometimes separated by well marked planes, but in other cases they shade imperceptibly into one another.

In connection with this subject it may be well to point out that zoned erystals may be formed of two substances which do mot crystallize in the same system. Thus, erystals of the monoclinic angite may be found surrounded by a zone of the rhombic enstatite and crystals of a triclinic felspar may be found enlarged by a monoclinic feldspar.

Still more curions is the fact that, where there is a similarity in crystalline form and an approximation in the dominant angles (plesiomorphism), we may have zoning and intergrowth in the crystals of substances which possess no chemical analogy whatever. Thus, as Senarmont showed in 1856, a cleavage-rhomb of the natural calcic carbonate (calcite), when placed in a solution of the sodie nitrate, becomes enveloped in a zone of this latter substance, and Tschermak has proved that the compomed erystal this formed behaves like a homogeneous one, if tested by its cleavage, by its susceptibility to twin lamellation, or by the figures produced by etching. In the same way, zircoms, which are composed of the two oxides of silicon and zirconimm, are found grown in composite crystals with xenotime, a phosphate of the metals of the cerium and yttrium groups.

These facts, and many similar ones which might be adduced, point to the conclusion that the beantiful theory of isomorphism, as originally propounded by Mitscherlich, stands in need of much revision as to many important details, if not indeed of complete reconstruction, in the light of modern observation and experiment.
The second property of crystals to which I must direct your attention is the following:

It a crystal be broken or mutilated in any way whaterer, it possesses the power of reparing its injuries during subsequent growth.

As long ago as 1836, Frankenheim showed that, if a drop of a saturated solution be allowed to evaporate on the stage of a microscope, the following interesting observations may the made upon the growing erystals. When they are broken up by a rod, cach fragment tends to reform as a perfect crystal; and if the cerstals be cansed to be partially re-dissolved by the addition of a mimute drop of the mother liquor, further exaporation canses them to resume their original development (Pogg. Ann., 1836, Bd. xxxvii).

In 1 sto, Hemann Jordan showed that erystals taken from a sohation and matilated gradually barame repaired or healed when raplated in
 tions, which were published in a medial jommal, fo not howerer serm to have attranted mmeh attention fiom the physieists aud chemists of the day.

Lav:alle. betwern the reats 1850 amd 1853, *and Kopp, in the yeat 185. mando a mmber of valuable observations bearims on this interest-
 the sulbect was more thoromgly studied hy three investigators who published their results almost simmameonsly; these were hathach
 s00), and semarmont (ibicl., p. T99). They showed that crystak, taken from a solntion and mutilated in varions ways, upon being restored to the lignid berame completely repaired during subsequent growth.

As lomg ago as 18.51 , Lavalle had assertad that, whenome solid angle of an octahedron of ahm is removel, the ergital tembls to reproduce the same matilation on the opposite angle when its growth is resmmed! This remarkable and anomalons result has howerer by some smbsequent witers hern explained in another way to that suggested by the anthor of the experiment.

In the same way the eurions experiments performed at a subserpent datr by Kanl ron Landr, experiments whirh led him to conclude that hemihedrism and other peculanities in crystal growth might be induced by matiation, thave been asserted by other physidists and chemists not to justify the stantling eomblnsions drawn from them at the time. It most be admitter that new experiments bearing on this interesting fuestion are at the present time greatly meeded.
la lssl, loir demonstrated two very important facts with regarl to growing crostals of alum (Compt. rend., Bal. xom, p. 1166). First, that if the infories in such a erystal be not too deep, it does not resume growth over its general surface motil those ingumes have heen repaired. Serombly, that the injured surfaces of arystals erow more rapholly than natmal faces. This was proved loy phatis artificially rat octaherhat
 weight alter a rertain time hat elapsed.

The important results of this capacity of arystals for umbergange healing and enlargement and their applataton to the explanation of interesting geological phenommathar bern peninted ont by many an-

[^28]thors. Sorby has shown that, in the so-called crystalline sand grains, we have broken and worn crystals of quartz, which, after many vicissitudes and the lapse of millions of years, have grown again and been enveloped in a newly formed 'unartz crystal. Bonney has shown how the same phenomena are exhibited in the case of mica, Beeke and Whitman Cross in the case of hornblende, and Merrill in the ease of angite. In the feldnpars of certain rocks it has been proved that crystals that have been rounded, crackel, corroded, and internally alteredwhich have, in short, suffered both mechanical and chemical injuriesmay be repaired and enlarged with material that differs considerably in chemical composition from the original crystal.

It is impossible to aroid a comparison between these phenomena of the inorganic world and those so familiar to the biologist. It is ouly in the lowest forms of animal life that we find an mulimited power of repairing injuries: in the Rhizopods and some other gronps a small fragment may grow into a perfect organism. In plants the same phe nomenom is exhibited much more commonly, and in forms belonging to groups high up in the vegetable series. Thus, parts of a plant, such as buds, bulbs, slips, and grafts, may-sometimes after a long inter-val-be made to grow up into new and perfect individual. But in the mineral kingdom we find the sane principle carried to a much further extent. We know in fact no limit to the minuteness of tragments, which may, moder favourable conditions, grow into perfect erystals, no bounds as to the time during which the crystalline growth may be suspended in the ease of any particular individnal.

The next property of crystals which I must illmstrate, in order to explain the particular case to which I am calling your attention to night, is the following:

Two erystals of totally different substances may be developed within the space bounded by certain planes, becoming almost inextricably inter-grown, thongh each retains its distinet individuality.
This property is a consequence of the fact that the substance of a erystal is not necessarily contimons within the space inclosed by its bomming planes. Crystals often exhibit cavities filled with air and other foreign substancer. In the calcite erystals found in the Fontaineblean sandstone, less than 40 per cent of their mass consists of calcie carbonate, while more than 60 per cent is made up of grains of quartz sand, canght up during ystallization.

In the rock called "graphic granite," we have the minerals orthoclase and quartz intergrown in such a way that the more or less isolated parts of each can be shown, by their optieal characters, to be parts of great mutnally interpenetrant erystals. Similar relations are shown in the so-called micrographic or micro-pegmatic intergrowths of the same minerals which are so beantifully exhibited in the roek moder our consideration this evening.
There is still another property of crystals that mnst be kept in
mind if we would explain the phenomena exhibited by this interest. ing rock:

A crystal may molergo the most profoud internal changes, and these may lead to great modifations of the optical and other phys ieal properties of the mineral; yot, solong as a small-often a very small-proportion of its molecoles remain intact, the erystal may retain, not only its outwarl form, but its capacity for growing and repairing injuries.

Crystals, like ourselves, grow old. Not only do they suffer from external injuries, mechanical fractures, and chemical corrosion, but from actions which aftere the whole of their internal stronture. Thater the inthence of the errat pressures in the earth's crust, the minerals of deepseated rocks are rompletrely permeated hy flums which whemieally reat upon them. In this way, megative rrystals are formed in their substance (similar to the beantiful "ice-thowers" which are formed when a block of ice is traversed by a beam fiom the smor on electric lamp), and these become filled with secondary prodncts. As the result of this action, minerals, once perfectly elear and translucent, have arduired clomly, opalescent, iridesrent, avantmine, and "srhilher" chamacters; and minerals, thus modified, abommed in the rocks that have at any period of their history been deep-seated. As the destruetion of their internal strmoture goes on, the rostals grathally lose more and more of their distinctive optical ame their physical poperties, retaining however their external form, till at last, when the last of the original molecules is tramsformed or replaced by others, they pass into those mineral eorpses known to ns as "psendomorphs."

But while crystals resembleourselves in "growing old," and, at last, undergoing dissohtion, they exhibit the remarkahle power of growing foung again, which we, alas! never do. This is in conserpueate of the following remarkahle attribute of erystalline structures.

It does not matter how tar internal dange and disintegration may have gone on in a revstal; if only a cortain small proportion of the maltered moleronles remain, the rystal may remew its youth and resume its growth.

When old aml much altered erystals begin to grow again, the newly formed material exhibits nome of those marks of "ssmility" to which I have referred. The sand grains that have been battered and worn into microsenpir pebbles and have heen rendered clondy by the development of millions of secondary flaid cavitien may have elear and fresh puartz deposited apon them to form 'rystals with exquisitely perfect faces and angles. The white, clomded. abd altomed fehlspar erystals may be enveloped by a zone of clear and transparent material, which has been added millions of form after the first formation and the subserpornt alteration of the original a?rstal.

We are now in position to raplain the partionlar rase which I have thought of sufficient interest to clam your attention to-night.

In the Island of Mull, in the Tnuer Hebrides, there exist masses of granite of Tertiary age, which are of very great interest to the geologist and mineralogist. In many paces this granite exhibits beantiful illustrations of the curions inter-growths of quartz and feldspar, of which I lave already spoken. Such parts of the rock often abound with cavities (druses), which I believe are not of original, but of sece ondary origin. It all events, it ean be shown that these cavities have been localities in which rrystal growth has gone on; they constitute indeed veritable laboratories of synthetic mineralogy.

Now, in such cavities the inter-penetrant crystalsot' fuartz and feldspar in this rock have fomd a space where they may grow and complete their ontward form ; and it is curious to see how sometimes the quartz has prevailed over the feldspan and a pure quartz erystal has been produced, while at other times the opposite effect has resulted and a pure feldspar individual has grown up. In these last cases, however much the orig. inal feldspar may have been altered (kaolinized and rendered opaque), it is found to be completed by a zone of absolntely clear and unaltered feldspar substance. The result is that the cavities of the granite are lined with a series of projecting erystals of fresh quartz and clear feldspar, the relations of which to the older materials in an altered condition, composing the substance of the solid rock, are worthy of the most careful observation and reflection.

Those relations can be tully made ont when thin sections of the rock are examined muter the microscope by the aid of polarized light, and they speak eloquently of the possession by the crystals of all those curious peculianities of which I have reminded you this evening.

By problems such as those which we have endeavoured to solve tonight, the geologist is besct at every step. The crust of our glube is built up of erystals and erystal fragments-of erystals in every stage of development, of growth, and of variation-of crystals undergoing change, decay, and dissolution. Hence the study of the natural history of crystals must always constitute one of the main foundations of geological seience, and the finture progress of that science must depend on how far the experiments carred on in laboratories can be made to illustrate and explain our observations in the field.

BY PROF. いRTE MASSON.

Before passing on, let me briefly recapitulate the rhief penints in Sant llotiss gaseons theory of solution and the experimental laws on Which it is based.
(1) In every simple sohntion the dissolved substance may be regarded as distributed thronghont the whole bulk of the solntion. Its total volme is therefore that of the sulntion, the solvent phaying the part of so moch spare and its speritio rolmone is the volume of that quantity of the solution which contaitas 1 gram of the substamere. To aroid conlmsion, it is best tor speak at this as the speritios solntion volume (c) of the substance. It is obsionsly ia inverse ration tor the roncentration.
 asmotir persime (p). This is momally mopernlent of the matme of the solvent. It varies insersely as the sperife solution vohme (on di-

 constant for earla solnhle substance.
(3) The molerellal solution volume of all discoltod sulstances is the
 we. $\left.1\right|^{*} m$ be the molecular weight, $m \cdot r=\Gamma^{\prime}$ is the molerolar selntion
 A^{\prime} is the samme comstant for all substanmes.
(4) 'This constant R has the same value when the formatal is appland

 exerplons, hat apart fiom this there are and masi be variation from

[^29]the laws in the case of solutions of great concentration, just as there are in the case of gases and vapors of great concentration-for instance, in the neighborhood of the eritical point.

I wish now to ask your attention more particularly to the actual process of dissolving, and then to lay before you a hypothesis, which, as it seems to me, is a logical consequence of the general theory.

Imagine, then, a soluble solid in contact with water at a fixed temperature. The substance exercises a certain pressure, in right of which it proceeds to dissolve. This pressure is analogous to the vapor pressure of a volatile borly in space, the space being represented by the solvent; and the process of solution is analogons to that of vaporization. As the concentration increases, the osmotic pressure of the dissolved portion increases, and tends to beenme equal to that of the undissolved portion; just as, during vaporization in a closed space, the pressme of the aremmating vapor temels to become equal to the vapor pressure of the liquid. But if there be enongh water present, the whole of the solid will go into solution, just as the whole of a volatile body will volatilize if the available space be sufficient. Such a solution may lee exactly saturated or unsaturated. With excess of the solvent it will be unsaturated, and the dissolved matter will then be in a state comparable to that of an unsaturated vapor, for its osmotic pressure will be less than the possible maximum corresponding to the temperature. On the other hand, if there be uot excess of water present during the process of solution, a condition of equilibrimm will be arrived at when the osmotio pressure of the dissolved portion becomes equal to the pressure of the mulissolved portion, just as equilibrimm will be established between the volatile substance and its vapor if the space be insufficient for complete volatilization. In sueh a rase we get a saturated solntion in presence of undissolved solin, just as we may have a saturated vapor in presence of its own liquid or solid.

So far we have supposed the temperature to be stationary, but it may be raised. Now, a rise of temperature will distmb equilibrimm in either case alike, for osmotic pressure and rapor pressure are both increased by this means, and a re-establishment of equilibrium necessitates increased solution or vaporization, as the case may be.

Now, what will this constantly increasing solnbility with rise of temperature eventually lead to? Will it lad to a maximum of solubility at some definite temperature beyond which increase beeomes impossible? Or will it on in the way it has begur, so that there will always be a definite, thongh it may be a very great, solubility for every definite temperature? Or will it learl to infinite solubility before infinite temperature is obtained? One or other of these things must happen, provided of course that chemical change does not intervene.

Well, let us be guided by the amalogy that has hitherto held good. Let us see what this leads us to, and atterwards examine the available experimental ovideuce, Wreknow that a rolatile ligiad will at last
rearlo at temperature at which it hocomes intinitely volatile-a trmperatmer above which the lignid ath mot possibly exist in the presemee of its own vapor, Ho matter how great the pressme maty be. It thes
 becomes impossihme atod above this peint the substamere can exist only as a gats. Thas is the mitical temperatmer And so it semme to me that it we caty ome analogy to its loginal eomelosion, we may expert for erary shlstamore and its solvent adefinite temperature above which equilibimm of asmotia pressure between molissolved and dissolved substance is impossihle-a temperatme above which the substaner (all not exist in presemere of its own solutions. or in other words at temperature of intinite solubility. This may be spoken of as the critical solation temperature.

But a little comsideration shows that in one particular we have loem
 pared the solution of a solid bonly to the vaporization of a tonatile liquid. Wre fall howeray do bettar than this. tor volatiar solid bodies are mot wantims. It is to these. them. Hhat we mast look in the tirst in stance. Now, a watile solid (such as camphor or jorline) will not reach its eritical point withont having first meltad at somo lower temperature, and a simila ehange shomld be exhibited in the solntion process. It some definite temperature, below that of intinito solnbil its. Wr may expect the solid to melt. This solntion melting point will not be identieal with, but bwer than, the true melting penint of the solicl. and for the following reasm: No case is known, and probably no case exists, of two ligutiols ome of whirh dissolves in the other and yet ran mot dissolva any of it in retmo. Therefore there will be formed ley melting. not the pure liquid substanere, but a solution of the solvent in
 mast be lower than the trut one, in right of the laws of which l hare spoken when disenssing lianoltes mothons in the earlise pat of this adlliess.
 with two liquid layers. eath rontaining both shlstance i and solvent la, hat the obre being mostly substance a and the other mostly solvent

 volatile liguid and its satmated vapor. The liguid is like the shbstane er A in the i layra: the vapor (which is the same malter in :mothere state) is like the same substance A in the b layer. ds temperature
rises the liquid diminishes in total quantity, the vapor increasing; but the specitic rolume of the liquid increases, while that of the vapor decreases. The residual liquid is, in fact, constantly encroaching on the space of its vapor, just as the residual substance A in the A layer is constantly absorbing the solvent B from the B layer. Finally, in either case, the specific volume of the substance will become identical in both layers, which means that the layers themselves will become homogeneous and indistinguishable. Our system will then have reached its critical temperature-the temperature of infinite volatility in the one case and of infinite solubility in the other.

So murh for hypothesis. Are there any facts in support of it? Well, in the first place the hypothesis demands that (in the absence of chemical change) increase of solubility with rise of temperature shall be as general a law as increase of vapor pressure, and we find that this agrees with the known fants, more especially since Tilden and Shenstone (Phil. Truns.. 1884) cleared upeertain doubtfol cases. Secoudly, the hypothesis seems to demand some comnertion between the true melting points of salts and the rates of their increase of solubility; and such a relation has in a general way been "stablished by the same observers. Thitdly, we have the fact, in complete accordance with the hypothesis, that while no case is known of a solid body having, as such, infinite solubility in any simple solvent, several "ases are known of liquids of infinite solubility, and also of solids which, after they have melted in presence of their own solution, become at some higher temperature infinitely soluble. This last statement refers to the cases described by Alexéeff (Wiedemann's Innulen, 18si), of which I must say a good deal more directly. It would seem to apply also to the case of silver nitrate, which Tilden and Shenstone described an dissolving in water to the extent of 18.2. parts to one at so low a trmperature as 130° (\% The trat melting-point of the salt is 217°, and I have seen it stated (but have been mable to find the published account) that Sheustone has himself shown it to be fusible in water, and of infinite solubility at quite reachable temperatures.

With regard to substances that are liquid muder ordinary conditions, we have the well-known fact that some paiss are infinitely soluble in one another, while others exhibit the phenomenon of only partial solnbility. The hypothesis would draw no hard and fast distinction bet ween these cases, except the practically important one that sueh a mixture as that of ether and aleohol, which belongs to the first class, is usually above its critical solution point, while such a one as cther and water, which belongs to the secomd class, is usually below it. It should be possible, aceording to the hypothesis, to cool mixtures of ather and alcolol sufficiently to "anse separation into two layers, similat to those observed at the ordinary temperature in the case of ether and water; but I do not know that this has yet beeu put to the test of experiment.
 importanere amb to merit the ressest attontion in any inguiry into the

 not heen for this support. I should hardly hate ventared to disemss it at all. Thay refer to solations in water, below and above ion , of

 anilines. and mastard wil. All these aftom instances of peripuoral partial solntion thronghont at ronsidarable rancer of temperature, loading erentually at a definite temperature to infinite solnhility. Several of them alford instane as also of solid substanere with solution meltingprints below their trme melting-pmints.

Alexérfi experimentalty determined the tempratames at whirh dif. ferent mixtmes of the samm two liguids are just comverted into rear solutions: or: in other words, he aseretamed the streathe of the satupated solations rormesponding to difiereat temperatures. For and bail of liguds he fomm that when a partionlan strength of mixtmer is reached, the temperatme of satmation is lowered he futher aldition

 Heths solution: lont one of el of aniline to 79 of water assmes this comlition at lis. amd one of 7 atof amiline to .iff of water does so at 1.7. $5 . \quad 110$ photter his results in the firm of craves, with temperature and perentage strength ats
 for amble amd water is shown in Fig. 1, alld this may be taken as a fatio remersentative, the ernorat form of all being simila'. It is at chaer aplareat that for orory temperatorn upt to alortain limit there are two prssiblate satmated solutions. one of water in aniline and onte of : aniline in wator. The limiting temperatore at which

 solution, atme above which saturation heromes imposihbe, is called bỵ Alexéett the Mischangs Tromperatur. It iswhat I haveralled the witiond solution tomperature It
 gudge from the enve withont ateater mamber of experimental points than we have in this part; aml the comespomblag satruation strength is abont 50 ber rent. It is hardly neressing to saty that this equality
of the two ingredients is an aceident whirh does not eharacterize all (:ises.

Now imagine a 50 per cent mixture of aniline and water sealed up in a tube, shaken, and gradually heated. Let us assume that the tube is only large enongh to contain the mixture and allow of expansion ly heat, so that evaporation may be neglected as too small to materially complicate the result. The comse of events will be exactly what I have already described with refereace to the hypothetical A layer and 1: layru. There will be former a saturated solution of water in amiline, which we may call the cmilime loyer, and a satmrated solntion of aniline in water-the water layer. "iiven the temperature, the perwentage strength of each layer may be read off form the emre. As the temperature rises, the two layess will effect exchanges in such a way that the aniline layer will become poorer and the water layer rifher in aniline. and at abont 166° the two layem will have attaned egnal strength and become merged into one. Wree we to start with the aniline and water in any other proportions hes weight, there would still be formed the two satmated solutions, but their relative amomes would be different, and one or other would be nsed up and disappear at a lower temperature than 167°. To attan the maximmom temperature of complete solntion, you must start with the exact proportions which correspoud to that temperature.

But it is possible to learn eren more from Alexeff"s work than he himself has made evident. Lat me call your attention to the corve shown in Fig. - - * the data for which I have calculated in the following manner.

Fig. 2.-Volume ol saturated aqueous solution containing 1 gram of auiline.
From Alexeffes percentage figures was dednced the weight of water rapable of dissolving, or being dissolved by 1 gram of aniline at

[^30]each of his experimental tempratures, so as to form a satmated solntion. Then from curves showing the expamsion of pure water and pure aniline (the latter drawn fiom Thomers data, Trans. Chem. Noce, 1ssor) there were read the sperifice volumes of these substances at eath of chexeffis temperatures; and from the eombined intionation thas obtained, there was calculated the total volume of that quantity of the saturated solution at cach temperature which contains 1 gram of anilime. This is what I have already called the serectice sollation volume. A slight mom is involved hy the fart that the wehme of a solution is not exactly the sum of the volmes of its ingredicnts; but this arror is necessarily small-too small to affiect the general character of the curve or the nature of the lesson to be learned irom it.

The specitie solntion volumes of the aniline, catenlated in this. manner, were found to be as follows:

$\begin{gathered} \text { Iemperat } \\ \text { twre. } \end{gathered}$	Speritic solution wor mones of amiline.	
	In intilite latror	$\begin{gathered} \text { In water } \\ \text { layer. } \end{gathered}$
\&.	1.015	
16.		32. 16
25	1. 12.6	
39.	1. 0.50	
53.		2 Ln .27
65	1.087	
77.		195
137	1. 297	
$14:$	-	7. 13:\%
15iti	\cdots	5. 24.8
157.5.	1.4! 4	
164. $\%$.		2.41:

These specific solution volumes are represented as absuissar in Fig. ユ2, with the temperatures as ordinates. For the sake of comparisom, I

Figs, 3.-Volume of alcohol (lituid and salurated vapor) weighing 1 gram.
have placed side bey side with it at specitic volume and temperatme curve (Fig. 3) for pure alcohol and its satmated vaper, ploted firom
the experimental data of Ramsay and Young (lhil. Trons., 1ss6). The reason that alcohol was chosen is simply that the data were convenient to my hame.
The two eurves are strikingly similar in form and siguificance. In Fig. 3 we see the specific volume of liquid alcolol inereasing slowly with rise of temperature, while that of the saturated vapor rather rapidly decreases. In Fig. 2 we see the specifie solntion volmme of the aniline in the aniline layer slowly increasing, while that of the aniline in the water layer decreases more rapidly, with rise of temperatureIn Fig. 3 we see that above the rritical point the existence of liquid alcohol in presence of its vapor is impossible. In Fig. 2 we see that atove the rritical solntion point the existence of an amaline layer in presence of a water layer is impossible. In Fig. 3 we ser an inclosed area which represents those temperatures and specific volumes which are mutually incompatible. In Fig. 2 we see an inclosed area which represents those temperatures and specifie solution volumes which are mutually incompatible. In Fig. :3 we see that any two points on the curve which correspond to equal temperature monst also, from the nature of the case, correspond to equal osmotic pressure. In Fig. 3 some of the pressures are indimater, as this can be done from Ramsay and Young's data. In Fig. 2 the valne of the osmotic pressmes can mot be given, as they have not been experimentally determined. In Fig. 3 any point ontside of the curve and to the right, as at ", corresponds to the state of misaturated alcohol vapor, whose temperature, specific volune, and pressure are indieated-the last by the isobaric line which passes through the point. In Fig. 2 any point ontside the curve and to the right, as at ", must correspond to the state of an unsaturated anmeons solution of aniline, whose temperature and ipeceifie solntion volme (ean be read, and whose osmotic pressme conld be indicated by an isobarie line, had we the data for plotting it. A little thonght makes it evident, toe, that sneh isobaric lines would follow the same general course as those shown in the alcohol diagram.

Now, consider what must be the effect of gradually decreasing the volme of the masatuated vapor in the one case aud the solution volume of the amiline in the musatmated solution in the other, while temperature is kept constant. In the ease of the vapor (Fig. 3) the point " will pass to the left across lines of increasing pressure until the vapor beromes satmated at b. Then, if the dimination of volme comtime, a portion of the vapor will condense to the liquid state, or be transferred to c, while the rest remains saturated vapor at b. With contimed llecrease of volme, the proportion condensed will constantly increase but there can be no alteration of pressure till all is condensed; and alter that nothing but a very slight diminution of volume is possible without a lowering of temperature. Well, how are we to diminish the solntion volume of the aniline in the unsaturated aqueous solution? Clearly by depriving the solution of some of its
 out at smaller spare. And what will be the result of domes this while temperature is liept comstant? Evithotly, as in the other ease, the point " (Fig. 号) will travel to the ledt, acooss lines of increasing asmotie pressure, matil it rearles b-that is, until the solution is a satmated ome; amel after that. if more water be absitacted, some of the aniline will be thrown out or commensed, not as pme aniline but as a satmated solntion of watm in amiline, so that two layers will now coexist-the aniline in one having the seedice solation vohme repme sented at b, and the aniline in tho other having that weresented at e
 the ratio of residnal water to aniline is gust enongh to give the whole of the latter the specific sohtion vohme shown at r. It this stagu the water layer will disappeas, and maly satmated sohntion of water in amiline will loe left; and atter that only a very small volume elhange can pessibly result from further abstraction of water, as the seerife solntion wohmme is already mot late fiom the specitio volmate of pure aniline itself at the same temperature.

To romplafo the emparison ot the fwo enress, let mo ponit ont that,

 late fiom lix. $\because \quad$ the distribution of the miline between the milne

 line of that temperature, then (x^{\prime}, h, and a standing for the volmmes which ran he rearl off on the horizontal base lint $n \cdot x-c$ is the
 Hhe ligurd layer, and the volumes of the two layers in coble renti-

 respertively, together equal 11 . x.

If the artual weights of aniline and water in the mixtme be given,
 lay the method adopted in potting the corver: amd thas all the fate with resard to the distribution at amy temperatmor "an be ohtamed.

Now, if it be remembered that this case of aniline and water is mot an isolated one, but typical of many eases experimented on by Alex́eff, and if it be remenbered also that there exists no direct experinental evidence to show that the law which governs these cases is not the general law regulating all simple solutions it must I think be granted that the facts do somewhat strongly support the hypothesis of a critical solution point which I dednced in the first instance from the general theory of solution. It may be summed up as follows:
(1) In every system of solution which starts with a solid and its simple solvent, the solid has a solution melting point which is lower than its true melting point. Whove this temperature the system consists of two separate lifuids, each of which is a saturated solution.
(2) These two liquids become one homogeneons solution at a temperature which depends on the ratio of the original ingredients. There is one ratio which demands a higher temperature than any other. This is the aritical solution temperature, above which either ingredient is infinitely soluble in the other.

The brilliant presidential arderes of Imot. Orme hasson at the Chemical seretion of the Anstralasian Association for the delvancement of Seionce marks a distinct adrance in our ideas of solntion. The analogy between the behavion of a liguid and its vapor in presernee of earh othor and of a pair of solvants eapable of montual solution is so striking as to carry eobliotion. The resemblatere of the liguid-vapor cmese, with its apex at the eritical point, to the sohbility enree, with its apex at the eritioal solution point, appars to me to prove beyond ravil that the fwo phemomena are rssentially of the same hatmere

There are two other planomena, which, it appears to me are made clear by the idnas of I'rof. Masson. The first of these has relerence to super-saturated solntions. The comes (bublished in Vature, February $1 \ddot{2}, \mathrm{p}$. 3-18) showing the analogy between liguid-gas and solution emves, are isobaric raves, or, more commetly, they remesent the terminations of jsobanio curves in the region of mixtmes, where, on the ome hand, a liquil exists in presener of its vapror, and on the othere, ome solvent in the preselee of another (for both solvents platy the pat of dissolved substancers as well as of solvents). DF. Alexedfers data are bot sutio-
 region mapped ont hy the termination of isothermal lines. lint it is ohvoms that it would bre possible to drememe asmotio pressmes of
 isothermal romes for surf mixtmes of solvents. Sud there can be no
 rent-solvent display so dese an amalogy, the isothermal ratres wonld also dosely resemble earla wther.
(iranting then that this is tha (anse, we may comstomet an imaginary isothermal rarve on the model at the anve for aloohol pmblished in the
 bapers on thr liguid gas relations, we showed that with romstant volume
 calculate appoximately the pressmes ame volmmes for any isothermal

[^31]representing the contimoms transition fiom the gascons to the liguid state (see Thil. May., 1887, vol. xxid, p. 435). It would be interesting to aserrtain whether, if coneentration loe kept constant, osmotie pressure would also show itself to be a linear function of temperature. But this apart, it inpears in the highest degree probable that there should also exist, in themy at least, antimnons transition from solvent to solvent, the representation of which would be a contimons curve. In such a case, on increasing the concentration of the solution by eliminating ome solvent, the other solvent shomb not separate visibly, but the two should remain mixed matil one solvent has been contirely re. moved. The acenmanying diagram (Fig, 1) will make this elear. The

Fil. 1.
simumin curva I: O D) A may represent either comtimous change firom gas to liquid along an isotherma! on decrease of volmme, or it may represent a similar eomtinnons "hange from satmated solution to dissolvel substance on increase of concentration.

Mr. Aitken's experiments on the cooling of air contaming watervapor have shown as that it is pessible to realize a pertion of the curve $A B$; the phenomenon of "boiling with bumping" "omstitntes a practieal realization of a pertion of the enre 1) E; and we may profitably inquire what comditions determine such mintable states with solvent and solvent.

Reganding the portion of the curve A 13 , I think that no reasomble dombt can be entertained. It precisely corresponds to the condition of super-saturation. In the liquid-gas eurre the volume is decreased at constant temprature withomt separation of liquid: in the solvent-sonrent anve the concentration is inmeased withome semation of the solvents. Dr. Nieol has shom that it is possible to dismolve dry sodimm sulphate in a saturated solution of sominm sulphate to a very considerable rexent without inducing erystallization; and here we have a reali-

 vent dure erystallization dasues and the solvents separate. The phenomena are lowerer not rompletely analogons; the "ompleframalog would be if the temperature were so low that the substane in the liguid-gas eomple were to separate in the solid, not in the liguid. state This, so fat as I am aware, has mot been experimentally realized, hat obre seen bor rasoll why it shombl not he possible
I hate some hesitation in ofterinss seremations an to the state of matter at the jertion of the contimoms (emere I) E . It may be that it
 temperature dissolves water: indeed it is possible to ohtain a solution of 1 per "ont of water in molten eane shg: An' And such a solntion, if guickly (aroled. remains a symul). Shat it can be indued to erystallize by the presence of erystals. 'Thus, in such a mixtme of shear and water a few erains of cerstalline sus.an canse the whole mass to erystallize, and water satmated with shan, and sumar, separate into two layers. Here again a complote amalog fals us, for it is a solid whith separates.
 a dereetive onse: but it is probahbe that a dilate solntion of sugar would
 vemt. and analogy womd lated to the sumposition that the symp enin-

 onte; if lareks fomblation in botha rases.
(Ond peint rematas to he mentioned. I have tor the past nine months,

 vions that similar matiens ame detemimable for solntions, and poobably

 ate wholly wanting. It wonld be possil)de. ly a sories of different ex-

 tration. corresponting to sereitic heats al constant vohmme. I do mot
 wo are at present callying ont, hat they are at least well worthy of at tention.

LIQCIDN ANO GANES.*

By P'of. Williay Rimsay, F. R. S.

Almost exartly twenty years ago, on Jme $\because, 1$, 7 , Dr. Andrews, of Beltast, delivered a lecture to the members of the lioyal lnstitution in this hall, on "The Comotinuty of the diaseons and the Lifuid states of Matter:" He showed in that lecture an experiment whirh I had best describe ill his own words:
 a higher tomperature, and axpose it to inereasing pressure till 150 atmosphres have been rathed. In the process, its rohme will stealily diminish as the pressure angments; and no sudden dimmition of whme, withont the application of extermal pessure, wild oeem at any stage of it. When the full pressme has been applied, let the temperature be allowed to fall, until the carbonid acid has reached the ordimary trimperatme of thr atmosphere. Inuring the whole ot this operation. no break of comtimity has ocourred. It hewins with a gass and by a sories of graklabl rhanges, presenting mowhere any abrupt alterations
 vaniener, the poress has bern devided into two stages-the compress-
 tions might has been performod simultameonsly. if "are were taken so to arrange tha application of the pressure and the rate of conling that the pressure shonla not be less than 76 atmospheres when the carbonise arid had cooldel to : $: 100.0$
 sol at Beltast, to show yon this experiment, with the identiral piere of

I monst ask fou to sucme somb time to-nithit in romsidering this remarkable behavior: and, in order to obtain a eorrect islea of what ocemes, it is well to begin with the stady of grases, not, as in the case fom have just seem. exposed to high pressures, hat mador pressmes not difering greatly fion that of the atmosphere and at temperatmes which ean berexactly resulated and masamed. 'Tomany home to-night, such a study is mueressary, owing to its familiarily; hat I will ask such of my andiene to exomse me, in order that I may tell my story form the beginning.

[^32]Gencrally speaking, asas, when compressed, decreases in volume to an amomnt equal to that hy which its pressme is raisert, provided its temperature be kept renstant. This was discovered by Robert Boyle in 1660; in 1661 he presented to the Royal Society a Latin translation of his book, "Touching the Spring of the dir and its Effects." His words are:
"It is evident, that as common air, when reduced to half its natural extent, obtamed a spring abont twice as forcible as it had before; so the air, being thus compressed, being further crowded into half this narrow room, obtained a spring as strong again as that it last had, and consequently form times as strong as that of common air."

To illustrate this, and to show how such relations may be expressed by a curve, I will ask your attention to this model. We have a piston, fitting a long horizontal glass tube. It confines air under the pressure of the atmosphere-that is, some 15 pounds on each spare Buch of area of the piston. The pressure is supposed to be registered by the height of the liguid in the vertical tube. On inereasing the volme of the air, so as to donble it, the pressure is decreased to haif its original amomet. On dereasing the volme to half its original amonnt, the pressure is dombled. (Dn again halving, the pressure is agan dombled. Thms yon see a rurve may he traced, in which the relation of volmme to pressure is exhibited. Such a corre, it may be remarkal indodentally; is termed an hyperbola.

We ean repeat boyle sexperiment by proring mereny into the open limb of this tuhe rontaining a measmed anomet of air; on cansing the level ot the meremy in the open limb to stand 30 inches (that is, the height of the hamoneter) higher in the open limb than the closed limb, the pressure of the atmosphere is dombled, and the volume is halved. And on trebling the pressure of the atmosphere the volame is reduced to onc-thirl of its original amomet; and wh alding another 30 inches of meremry, the mome of the air is now one-yturter of that which it originally ocenpied.

It must be remembered that here the temperatmere is kept romstant; that it is the temperatme of the smmomuding atmosplere.

Let ns next examine the behavion of a gas when its temperatme is altered, when it beeomes hotter. This tube contans a gas-ail-confined at atmospherie pressure by meremy, in a thbe smommed by a . iatket or mantle of erlass, and the vapur of boiling water "an be blown into the space bet ween the mantle amd the tube rontaining the air, so as to heat the tube to 10001 , the temperature of the steam. The tempera-
 On blowing in steam, the gas expands, and on again equalizing pressure, it stament 373 divisions of the seale. The esas has thms expanded from 290 to 37.3 divisions, i. e., its volume has inereased hy 83 divisions; and the temperature has risen from 17° to 100% i. e., throngh 830 C . This law of the expmasion of gases was discovered almost simultane-
ously by Dalton and day-Lussar in 1801 ; it nsinally woes loy the mame of Gay-Lussac's law. Now, if we do not allow the volume of the gets to increase, we shall find that the pressme will increase in the same proportion that the volume wond have increased had the gas been allowed to expand, the pressure having heen kept constant. To formase the volume of the gas, then, aroording to boyle's law, will require a higher initial pressure; and if we wre to repesent the results by a enre, we shonh get an hyperbola, as before but one lying higher as regards pressures. Aud so we should get a set of hyperbolas for higher and higher temperatures.

We have pxperimented up to the present with air-a mixture of two gases, oxygen and nitrogen; and the boiling points of looth of these ele-
 ively. The ordinary atmospheric temperatmo lies a lons way above the boiling points of liquid oxygen and lignid nitrogen at the ordinary at mospherif pressure. But it is cjen toms to stody a gas, which, at the ordinary atmospherie temperatme and pressure, exists in the lipuid state; and for this pmone 1 shall chonse water asas. In order that it may be a gas at ordinary atmospheris pressure, however, we most hoat it to a temperature above 100 (... its boiling point. This tube contains water gats at a temperature of $10.5 \circ \mathrm{C}$; it is madre ordinary pressure, for the mercury colmmas are at the same level in both the tubes and in this reservoir, which eommmaicates with the lower end of the tube
 taned by the vapor of enloro-benzene boiling in the bull sealed to the jacket, at a pressure lower than that of the atmosplere.

Let ns now examine the effect of incrasing pressure. (On raising the reservoir the volume of the gas is diminished, as usual, and nearly in the ratio given by Boyles law; that is, the volume decreases in the same proportion as the pressure increases. But a change is soon observed; the pressure soon ceases to rise: the distance botween the mercury in the reservoir and that in the tulse remains ponstant, and the gas is now condensing to liquid. The pressure continues constant during this change, and it inonly when all the water gas has condrensed to liquid water that the pressure again rises. A fter all the gas is condenserl an enomons increase of pressure is necessary to canse any measurable decrease in volmme, for liquid water sareely yinlds to persure, and in such a tube as this no measurements could be attempted with sureess.

Representing this diagrammatically, the right-hand part of the curve represents the compression of the sas, and the curve is, as before, nearly a hyperbola. Then eomes a break, and great derrase in volume oceus withont rise of pressure, represanted hat horizontal line; the substance in the tube here comsists of waler gas in presence of water ; the rertical, or mearly vertical line remesents the sudden and great rise of pressume whore ligutal water is being slightly compressed. The pressure registered by the horizontal line is termed the 11. Мis. 111 —— 20
"vapor-pressure" of water. If now the temperature were raised to 110° C. We should have a greater initial volume for the water gas; it is compressible by rise of the moreury as before, the relation of pressure to volnme being, as before, represented on the diagram as an aproximate hyperbolat : and as before, condensation oroms when volume is suffieiently redured, but this time at a higher pressure. We have again a horizontal portion, representing the pessme of water gas at 1100 ('. in contart with liquid water ; again, a sharp angle where all gaseons water is condensed, and again a very sterp enrve, almost a straight line, representing the slight derrease of volume of water produced by a great increase of pressure. Ant we shonld have similar lines tor $120^{\circ}, 130^{\circ}, 1400,150^{\circ} \mathrm{C}$., and for all temperatures within certain limits. Such lines are called isothermal lines, or shortly "isothermals," or" lines of equal temperature, and represent the relations of pressure to volume for different temperatures.

Dr. Andrews made similar measmements of the relations between the pressures and volumes of earbon dioside, at pressures mueh higher than those I have shown you for water. But I prefer to speak to you abont similar results obtained by Prof. Sydney Young and myself with ether, becanse Dr. Andrews was mable to work with carbon dioxide free from air, and that inflnenced his results. For example, yon see that the meeting points of his hyperbolit curves with the straight lines of vapor pressures are corves, and not angles; that is eansed by the presence of abont 1 part of air in 500 parts of carbon dioxide; also the condensation of gas was not perfert, for he obtained curves at the points of clange from a mixture of liquirl and gas to liquit. We however were more easily able to fill a tube with ether fiee from air, and yon will notice that the points I have referred to are angles, not ames.

Let me first direet your attention to the shapes of the rurves in the diagram. As the temperatme rises the vapor-pressure lines lie at higher and higher pressures, and the lines themselves beeme shorter and shorter. And fimally, at the temperature of $31^{\circ} \mathrm{C}$. for carbon dioxide, and at $195^{\circ} 0$. for ether, there ceases to be a horizontal portion at all; or rather the curve touches the horizontal at one point in its course. That point corresponds to a detinite temperature, 19.5 C . for ether; to a definite pressure, 27 meters of mercury, or 35.6 atmospheres; and to a definite volmme, 4.06 cubic centimeters per gram of ether. At that point the ether is mot liquid, and it is mot gas; it is a homogeneons substance. At that temperature ether has the appearance of a bhe mist; the strie mentioned by Dr. Andrews and by other observers are the result of unequal heating, one portion of the substance being licnid and another gas. You see the appearance of this state on the srreen.

When a gas is compresser it is heated. Work is done on the gas, and its temperature rises. If I compress the air in this syringe forci-
by its temperature rises so high that 1 ("an set a pieera of timder om fire amd by its help exphorle a little gumpowder. If the ether at its critical point loe compressed by sorwing in the swew, it is somewhat wamed and the blue elomd disappears. Consersely, it it is expambed a little loy manewing the sorew and increasing its vohme, it is cooled amd a demse mist is seen, arompanied by a shower of ether rathe This is seen as a hark fog on the sereen.

I wish also to direet fone atterntion to what haprens it the volume given to the ether is greator than the eritical volmme-on increasing the volmme you see that it boils away and evaporates comphetery; and ahso what happens if the volume lue somewhat less than the reritical volmme-it then expandes as liphid and completery fills the fube. It is only at the eritical volmme and temmerature that the ether exints in the state of bhor rlomd, amd has its aritical pressme. If the volmome be too wrate the preswe is below the eritical pressure: if foo small, the pressme is ligher than the ratieal pressure.

Still ome more point before we dismisis this experiment. It a temperature some degrees bebow the eritical temperature, the meniserns, i. e., the sumface of the liguth is rumed. It has a skin on its surtace its moleroles, as Lord haytagh has rarently explaned in this room. attract mos anothere amd it whibits surtare temsion. láase the tem-
 neally that and ahmost invisihb; at the writical temperatme it disap) pears. having first become quite that. Surfare trosion therefore disappears at the ritical point. A lignide wombl no longer rise in a nar row capillatytube ; it would staml at the same lewol ont side and inside.

It was shogested ly lowt. dames Thomson, and ly Prot. Clausins about the same time, that il the indeal state of thing wore to exist, the fassage from the liquid to the gaseons statershomble be rontimens oue, not memery at and abore the eritioal point, but helow that temperatme. And it was shgested that the romers, shown in the digure, ins steat of hroaking into thestraight lind of vapor puresime, shond rontimme simomsly. Let us see what this comerption would involve.

 on increase of pressmo. This decrease shomble contiman antil the point E is rathed. The amomalomsistate of matters shoulal thenowar, that at decrase in volume should be arembanied by a deerease of pressure.

 unstable, and has never been realizat. After folmme has been deereased to a rertain print, F, dererase of volnme is asain attermed by incrase of pressure, amb the last part of the come is contimons with the realizable ernverepresenting the eomperession of the lignid. above I.
1)r. Sivduey Foung and I sucoeoded, by a method whieh I shall
brietly describe, in mapping the actual position of the unealizable portions of the corve. They have the form pictured in this figure. The rise from the gaseons state is a gradual 0ne, but the fall from the liquid state is abrupt.

Consider the volume 14 cubic rentimeters per gram on the figure. The equi-volume vertical line cuts the isothermal lines for the temperatmes $1750,1800,185^{\circ}, 190^{\circ}$, and so on, at certain definite pressures, which may be read from a properly-constructed diagram. We can map the course of lines of equal volmme, of which the instance given is one, using temperatures as ordinates and pressures as abscisse. We can thas find the relations of temperatme to pressme for certain detinite volumes, which we may select to suit our convenience-say 2 e.e. per ,ram; : $3,4, \pi, 6$, and su on. Now, all such lines are straight-that is, the relation of pressure to temperature, at constant volume, is one of the
simplest: pressmo is a linear fimetion of temperafme Expressed mathematically-

$$
r=l, t-u,
$$

where b and ${ }^{\prime}$ are constants. depenting on the volnme rhosen, and varying with eath volmae. lBat a straght line may be extrapolateal
 volume as die.c. jer gram, by help of experiments at temperatmes higher than 195°, it is possible hy extrapolation to obtain the pressmes corresponding to trmperatures below the eritial point 19.5 by simple means. but below that temperature the substance at volume $;$ is in practice purtly liquid aml partly sas. Iret it is possible by such means to ascertain the relations of pressume to temperatme for the unveatizable prortion of the state of a lipuid-that is, we can dednce the pressure and temperatme comesponding to a contimoms change from liguid to gis. Am in this mamer the simoms lines on the figme have been constructed.

It is possible to malize experimentally wertath portions of surb rontimunts curve. If we combense all gaseons other and, when the thbe is completely filled with lignid, "inefally redue pressure, the pressure may be lowered considerahly helow the vapor pressurn comespmoling to the temperature of ebullition, withont ans (hanse further than the slight expansion of the liguin resulting tron the reatuction of pres sme-an expansion too small to he seen with this apparatus. But on still forther reducing pressme, sudden rballition orems, aml a portion of the liguid sudenly rhames into gas, while the pressure rises quirkly to the vapor pressure correspombing to the temperatare. If we are suceessful in expelling all air or gas fom the wther in filling the tube, a considerable portion of this curveran be expromentally realizad.

The first notice of this appearanee or rather of one owing its exist-
 tamporay of liowle. It is moted in the account of the Promerdemess of
 conse of his. containing his themehts of the experiment of the quicksilvers stamling top fall, and far above tho hoight of a! inchore, to gether with some experiments made bey him, in ordar to dotermine the ("anse of this strange phemomemon. Ife was ordared to prepare those experiments for the view of the Soejety" And on November 18 "the experiment for the high suspension of quicksilver being wallod fors it Was fomm that it had falarl. It was ordored that thicker olassers should be provided for the next meeting."

There can be bo dombt that this behavior is ramsed hy the attale
 twe besutidernty low, the pressme may be so redmed that it beromes negative-that is, until the liguid is raposed to at stain on pull, as is the meremy. This has been experimontally realized by Na, Berthelot and by Mr. Worthington, the latter of whom has sumereded in stame
ing alcohol at the ordinary temperature with a pull equivalent to a negative pressure of 2. atmospheres, by completely filling a bull with alcohol, and then cooling it. The aleohol in contracting strains the bulb inwards; and finally, when the tension becomes very great, parts from the glass with a sharp "click."

To realize a portion of the other bem of the curve, an experiment has bem devised by Mr. Johm Aitken. It is as follows: If air-that is space, for the air plays a secondary part-satnrated with moisture be cooled, the moistme will uot deposit unless there are dust particles on which condensation can take place. It is not at first evident how this corresponds to the compressing of a gas without condensation. But a glance at the figure will render the matter plain. Consider the isothermal 1750 C . for ether at the point marked A. If it were possible to lower the temperature to 1600 C . without condensation, keeping rolume constant, the pressure wonld fall, and the gas would then be in the state represented on the isothermal line 1600 at G, -that is, it would be in the same condition ats if it had been compressed without condensation.

You saw that a gas, or a iiquid, is heated by eompression; a piece of tinder was set on fire by the heat coolved on compressing air. You saw that condensation of ether was brought about by dimimion of pressure-that is, it was cooled. Now, if air be suddenly expamded it will do work against atmonheric pressure and will cool itself. This globe contains air; but the air has been filtered carefully throngh mot-ton-wool, with the olpect of exchuding dust particles. It is satmated with moisture. On taking a stroke of the pmin, so as to exhanst the air in the ghone, no change is evident; no condensation has oceured, althongh the air has been so cond that the moisture should condense were it possible. On repeating the operation with the same globe, after admitting dusty air-ordinary air from this romn-a slight fog is produced, and, owing to the light behind, a circular ranbow is seen; a slight shower of rain has taken place. There are comparatively few dust particles, becanse only a little dusty air has been admitted. On again repeating the fog is denser; there are more particles on which moisture may condense.

One point more and I have done. Work is measmed by the distance or height thromgh which a weight ram be raised against the foree of gravity. The british unit of work is a foot-pomed-that is, a pound raised through 1 foot; that of the metric system is 1 gram raised through 1 centimeter. If a pound be raised through 2 feet twice as much work is hone as that of rasiug a permd through 1 foot, and an amome equal to thatof raising e pombls though 1 foot. The measme of work is therefore the weight multiplied by the distance through which it is rased. When a gas expands against presure it does work. The gas may be supposed to be confined in a vertieal tube and to propel a piston untard against the pressure of the atmosphere. If such a tube lats a sectional aren of 1 square centimeter, the gas in expand-
ing a centimeter up the tube lifts a weight of nearly 1,000 er"ams throngh 1 centimeter, for the pressure of the atmostphere on at somate eentimeter of surface is nearly 1,000 grams-that is, it dues 1.000 mats of work, or ergs. so the work done by a gas in expanding is measmed by the change of rolmme multipled ly the pressure. On the fiewre the change of volme is measumed horizontally, the elamge of pressure ver-
 the figure.

If lignid as it exists at ohange to sas as it exists at I, the substance changes jts vohme and may be made to do work. This is familiar in the steam engine, where work is dome by water expanding to steam and so increasing its volume. The pressure does not alter during this change of volume if sulinient heat be supplied: hence the work done during sum at change is siven by the reetangular area

Suppose that a man is conreying a tronk up to the first story of a homse; he may do it in two (or, perhaps, a greatermmber of ways. Ihe may put a ladder up, to the drawing-room window, shonlder his trunk, and deposit it directly on the first floor ; or he may go down the area stairs, pass though the kitchen, up the kitehen stairs, up the first flight, up the second flight, and down again to the first story. The end result is the same; and he does the same amount of work in hoth rases so far as combrying tho weight to a given height is enmerned, becanse in gromud down stains he has actually allowed work to be done on him ly the descent of the weight.

Now, the liquid in expanding to gas begins at a detinite volume; it reaporates grahally to gas withont altering pressure, heat being, of comse, commonicated to it during the chamge, else it would cool itself;
 at a definite pressure, and so doos a dofinite amomont of work, This work might be ntilized in driving an engine.

But if it pass continuonsly from liguid to gas, the starting point and the end point are both the same as before. An equal amome of work has been done: but it has been done by gome down the area stair (as it were), and over the romal I desmibed before.

It is clear that a less amoment of work has bern done onthe left hand side of the figme than was dome before, and as geater amome on the right-hand side; and if I have mate my meaninge clear yon will see that as mond less has been dome on the ome side as more has heern done on the other-that is, that the area of the tigure $I ; E: I I$ mast be equal to that of the figure I F / I. Ins. Youmg anm l have tried this experimentally-that is, hy moanding the calcolaterl areas-and we fommel them to be equal.

Thiscan be shown to you easily hy a simple devier, mamely, taking them ont and weighing them. As this diagram is an exalot represemtation of the results of onr experimente with ether the deviee ath be put in prate ice. We can detarh these areas, whirlo are cot out in tin,
and place one in each of this pair of scates and they balance. The fact that a mmber of areas thus measured gave the theoretionl results of itself furmishes a strong support of the justice of the conclusions we drew as regards the forms of these curves.

To attempt to explain the reasons of this behavior would take more time than can be given to-night; moreover, to tell the truth, we do not know them. But we have at least partial knowledge and we may hope that investigations at present being carried out hy Prof. Tait may give us a clem idea of the nature of the matter and of the forces which act on it, and with which it acts, during the continnons change from gas to liquid.

PRESENT PROBLEMS IN EVOLTTION ANI HEREDOTY.*

By Henry Fairfieli) (onborn.

In the past decade of practical research and speenlation in biology, two subjects have onstripped in interest and inportance the rapid progress all along the line. These are, first, the life history of the reproductive cell from its infancy in the ovum onward, and second, the assoriated problem of heredity, which passes insensibly from the field of direct observation into the region of pure speconlation.

As regards the cell it was generally believed that the murlens was an aramm into the mysteries of which we cond not far pondrate; but this belief has long been dispelled hy the eager sperialist, and it is no exagqeration to say that we now know more abont the meaning of the nurlems than we did about the patire refl a tew years age. At that time the current solution of the heredity problem was a purely formal One: it came to the main barrier, namely, the selation of heredity and evolution to the reprochetive rells, ambleapt wor it by the postulate of P'angenms. The germeell sturies of Balfonr, Van Benoden, the Hertwig brothers, Weismam, boveri, and others, have gradually led us to hope that we shall some day trame the comection betwern the intricate metamorphoses in these cetls and the extermal phemomena of heredity, and more than this, wrealize that the heredity theory of the linture must rest upon a far more exat knowledge than we enjoy at present of the history ol the reproluctive cell both in itself and in the inthence which the sumomating borly eells hase mon it.

These advamers affeet the problem of life and protoplasm, whether studied by the physidian, the anthropogot, or the zoilogist, thas comcentating into one forbs opinions which have been lomed by the observation of widely dherent dasses of facts. As eath class of facts bears to the observer a different aspet and gives him a persomal bias, the dischsson is by mo means irenical, and it is om privilege fo live throngh one of those heated perions whieh mark the comme of every revohtion in the world of ideas. Such a misis was bronght about by

[^33]the publication of the theory of Darwin, in 1858, and, after subsidiag, has again been aroused by Weismam's theory of heredity, published in 1ss:3.

This is the sitnation I have ventured to present to you as Cartwright lecturer, not, of comse, withont introducing some conclusions of my own, which have been derived fromvertehrate palaeontology, but which I shall direct manly upon luman evolntion.

So far as theories need come before ns now, remember that Lamarek (1792) attributed evolution to the hereditary transmission to offspring of changes (acquired variations) cansed by environment and habit in the parent. Darwin's latest view was that evolution is due to the natural selection of such comgenital variations as favored survival, supplemented by the transmission of aceuired valiations. Weismann denies the transmission of acquired variations, or characters, cutirely, and attributes evolution solely to the matmal selection of the individuals which bear the most favorable variations of the germ or reproductive cells. We mast threfore clearly distinguish between "congenital variations" which are part of our inheritance and "acquired variations" which are due to our life habits; the question is, are the latter transmitted".

At the outset I wonld emphasize the extreme complexity of evolution by a few words upon variation, or in terms of medial science, upon anomalies.

When we speak of a part as "anomaloms" we mean that it varies at birth from the ordinary or typical form; it may be minute, as the sman slip of a tendon, on large, as the addition of a complete rertebra to the spinal column. Wood has fomd that in the moseular system alone there are nine anomalies in the average individual. It is clear that the avolution of a new type, so far as the musralar system is concerned, must consist in the arcomulation of anomalies in a certain definite direction by leredity. Thus the amomalous comdition of one generation may become the typical condition of a very much later generation, and we observe the paradox of a typical structure becoming an anomaly and an anomalous strncture becoming typical for example, the supracondyla foramen of the hmmerns was one typucal, it is now anomalous: the retardation in development of the wisdom tooth was once anomalous, it is now typucal.

The same principle applies to rares which are in different stages of arolntion; an anmaly in the white, such as the early closme of the cranial suthres, is normal in the banck. Now the dedurtions of the Weismann school of evolntionists seem to be founded upon the principle "nde minimis non curut lex:" that we need only resard such major variations as can, ex hymothexi, weigh in the seale of survival. Against this \& mge that we most regard the evolution of particular structmes, the components of bager organs, the separate muscles and bones for example, for the very reason that while in some cases they play a most
hamble role in our eronomy we can prove berom a doult that they are in course of evolution. Minor variations in foot structure, which are possibly of vital importance to a quandreed whose very existence may depend mon speed, sink into obsumity as factors in the survisal of the modern American.
The evolution of man in the most mimportant details of his structure promises, therefore, to afford a far more crucial test of the damarekian r. the pure natural selection themy, tham in the domain of his higher faculties, for the reason that selection may operate mon variations in mind, while it taxes our eredulity to believe it can operate mon variations in mascle and bone. This is my gromed for selerting the skeleton and museles for the subject of the introductory leceture. Neverthelese, let ms review variation in all its forms in human anatomy before forming an opinion. Let us remember, too, that rongenital and anguired rariations are miversal as meressitien of hirth and life ; they are exhibited in the body as a whole-in its proportions, in the components of each limb, timally in the separate parts of eache component, as in the divisions of a complex musele. Thus the possibilities of transformism are everywhere. What is the nature and origin of congenital variations? Their ranses? Do they follow rertain dirertioms? Do they spring from acquired variations loy heredity? These are some of the questions which are still unsettled.

But striking as are the anomalies from type, the repetitions of type as exhibited in atarism and nomal inloritame are still more so, and equally dimieult to explain. Therefors on theory must provide both for the observed laws of repetition of ancestral tom and the laws of variation from ancestral form, as the pasture land of evolution. Adal to these that for a period in earch genemation this entire legislation of nathere is compressed into the tiny murlens of the fertilized ovom, and the whole problem rises before ns in its apparent impreguability which only intensifies on ardor of meseareh.

The anthopologisto and anatomists lave anosed a revtam monopoly of Ilomo sapiens, white the biohogists have direded the ir anergies mainty upon the tower weation. But under the inspiring intheners of the Darwinian theory these originally distinet hanches hase comverged, and as man takes his plaer in the zoïjogical system, comphe ative andomy is recognized as the intallible key to homan anatomy.

For onf pesent purpose we must suphess our sentiment at the outsot and state plainly that the moly interperetation of our berlily st we the lies in the thenry of our desernt from some eally member of the pimates, sumbla may have given rise also to the living Anthmpoden. This is also the only temable teleologieal view, for many of om inherited organs are at pesent mon-puposive, in some cases even harmful, as the appendix vermilomis.

From the typical mammalian standpoint man is a degenerate animal; his senses are inferior in acnteness; his upright position, while giving him a superior aspect, entails many disadvantages, as recently enumerated by Clevenger,* for the body is not fully adapted to it; his feet are not smperior to those of many lower Eocene plantigrades; his teeth are mechanically far inferior to those of the domestic cat. In fact, if an unbiassed comparative anatomist shonld reach this phanet from Mars he could only pass favorable comment upon the perfection of the hand and the massive brain. Holding these trumps, man has been and now is discarding many usefnl strnctmes. I refer especially to civilized man, who is more prodigal with his inheritance than the savage. By virtue of the hand and the brain he is nevertheless the best alapted and most cosmopolitan vertebrate. The man of Néanderthal or Spy, with retreating forehead and brain of small cubie capacity \dagger was limited both in his ideas and his powers of travel; yet lie was our superior in some points of osteological structme. But the period of Neanderthal was recent compared with that in which some of on rudimentary organs were serviceable, such as the vermiform appendix or the pamionlus camosus \ddagger moscle. These rudiments in turn are neogenetic when we consider the age of the two antique sense organs in the optic thalamus, the remnants of the median or pincal eye and the pitnitary borly, both of which were undoubtedly present, and probably useful, in the recently discovered Sihurian fishes.

I mention these vestiges of some of the first steps in creation to illnstrate the extrandinary conservative power of heredity (which is even more forcibly seen in our embryologieal development), partly also to show how widely our organs differ in age. Galton has compared the human frame to a new buikling built up of fragments of old ones; extend this back into the ages and the comparison is complete.

Ievelopment, balance, degeneration.-It is probable that none of our organs are absolutely static: and that the apparent halt in the development of some is merely relative, as where a fast train passes a slow one. The mumerons cases of arrested evolution in nature are always conneeted with fixity of environment, an exceptional condition with man, and we have ample evidence that some organs are changing more dapidly than others.

Adaptation to our changing eircumstances is mainly effected by the simnltaneous development and degenoration of organs which lie side by side, as in the muscles of the foot or hand; in terms of physiology,

[^34]We observe the hypertrophy of adaptive organs and atrophy of inalapr
 smm of matrition to any region remains the same during re-distribution to its parts, may beabled metatmphism. It is the "aderymander" pime ciplo in mature.
 minc whether an organ is actually devephing or dexonerating at the perent time althongh its variability or tememey to present indi vidual amomailes indieates that some change is in proseres. I may instance the highly valiable peronems tertas masbe (Vood). The rise or fall of organs is so romstantly assoriated with their degrer of utility

 from the question of ansation, it is a fixed mineiple that a part degenerating by disusw in eath individual will also be found degencrating in the race.

Degeneration is an (יxtramely shon foress; both int the masenlan and skeletal systems we find organs sian on the down erate that they are mere pemsioners of the hody, hrawing pay (i. co. , butrition) for past honorable sorvers without performing my comresporling work-the phantanis and palmaris mascles for axample. Of "omese an organ without at fumtion is a disadrantage, so that the fand duty of degeneration is to restore the balance hetween stmment and function, by placing it hom de combut entirely. One symptom of decline is variability, in which the orgat sems to be demonstrating its own uselessmess by oceasiomal absonce. As llmmphey remarts: "The muscles which are most frefuently absent by anomalies are in fact those which can disappear with least in*omsenience, either beanse they ean be repared hy otheas or berause they play an altogether secondary role in the organism." The stages downward are gradual: the rudiment beoomes variable as an adult structure, then as a fortal struetme; the pereentage of absence slowly increases motil it re-appears only as arersion; finally the part reases even to revert and all rerom of it is lost. This lomg strus. gle of the destruetive power of degencration, which you see is essentially an alaptive lantor, agatust the proterotive power of heredity is the most striking feature of the law of repetition. (See Galton's similar prineiple of regression in anthropology.)

A arefin stmdy of oum developing, degenerating, rudimental, and reversional orwans amply demonstrates that man is bow in atate of reohtion hadly less rapid. I helieve, than that which has produred the modern horse from his small five-toed aneestor. ds far as I ran see, the obly reason why mur evolation shomble shower than that of the ancient home is the fregnent intermineling of races, which always tends to resolve types which have sperialized into more generalized types. Wherever the human spories has been isulated for a boug perion of time, divargene of chanarter is very marked, as will be seen in some of the races I refer to below.

To lighten the long catalogne of facts, gathered from many authors, I shall frequently allude to liabit, hut will ask you to cousider it for the time as associational rather than causal. Pouchet says: "Man is a creature of the writing table, and cond only have been invented in a country in which covering of the feet is universal;" he shonld have added the "eating table." From the average man our fashions and occupations demand the play of the forearm and hand, the independent and complex movements of the thmb and finger; the outward turning of the foot in walking. These are some of the most conspicnous features of morlern habit.

The skeletal cariations.*-In a most valuable essay by Arthur Thomson upon "The Intlune of Posture on the Form of the Articular Surfaces of the Tibia and Astragalns in the Different Races of Man and the Higher Apes," \dagger we find clearly bronglit out the distinction between congental variations and those which may br acquired by prolonged habits of life. It is perfeetly clear from this investigation that certain racial characters, such as "platyenemism" or Hattened tibia, which have been considered of great importance in anthopology, may prove to be merely individual morlifications due to certain leral and temporary customs. Thomson's conclusions are that the tibia is the most variable in length and lorm of any long bone in the body. Platycnemia is most frequent in tribes living by lmating aud rlmbing in hilly rountries, and is associated with the strong development of the tibialis posticns. The great convexity of the external condyloid surface of the tibia in savage races appears to be developed during life by the frequent or habitual knee flexmre in squatting; it is less developed where the tibia has a backward cmve, and is independent of platyenemia. Another produet of the squatting habit is a facet formed upon the neck of the astragalus by the tibia. This is very rare in Europeans; it is fonnd in the gorilla and orang, hut rarely in the chimpanzee. We must therefore be on our guard to distinguish between congenital or hereditary skeletal characters which are fundamental, and "acquired" skeletal variations which may not be hereditary. The latter are of questionable value in tracing lines of descent, if not actually misleading; on the other hand, the teeth, as shown by Cope in his essay on "Lemmine reversion in human dentition," have distinct racial patterns and are reliable indices of consanguinity, because their form can not be modified during life.

The main features of present evolution in the backbone are the elaboration of the spines of the cervical vertebre, the increase of the spinal curvatures, the shortening of the centra of the lumbar vertebre and

[^35]shifting of the pelvis mparel. Wherely a hambar vertaba is added to the sacrum and subtracted from the dorso-hmbar serios.

Cuminghan has fomm that the division of the mamal spines in the uper cerveal vertebae distinguishes the higher races from the lower.* The spiue of the axis is always-hifid, hut the spimes of the erervalas three, time, and five, are also. as a mole, bitid in the Emopean, white they are single in the bewer races. The same author shens that the borlies of the lumbar vertebar are altering, by widening amb shortening, to finm a firmer pillar of supmen, with a compensating inmease in
 present mone narly their primitive elongate compressed form. With this is associated an incease of the forwat lumbar comature "Tur-
 ne eques the mollowter measurement of the posterion faces of the tive lmonars is greater than the anterion, in the popention of for to 160 ; whereas in the white the collective anterion fares axeme the posterior in nearly the same propertion- 160 to 96.
The lower region of the bard is also the satat of one of the mast interesting and important of the changes in the hody, mamely, the romelated arolution of the inferior ribe, the lumbar vertehne and the pelvis, - to which bubryology, adult and comparative anatomy and reversion all contribute their guota of proet. Lumost of the anthropeid apes, ame therefore presumatly in the promathopos. there were thirtern ambe plete rihs and fome lumban vertelnar, while man has twelser ribs and fige lumbars. Thas we may comsider the superior lumbar of admet man as a ribless domal: not so in the haman embryo, howerer, for Rosenberge hats fomm a catilagimus mument of the missing thir beenth rik, men the suratleel first lumhar. Atavism combthontes an earlier chapter in the history of this region, fion Biminghan|| reports, out of fifty cases examined in one rear, two in which theme were six lumbars, amd in bach the thirteenth ribl was well developed: this is an interesting example of "comedated reversion," for an the polvis shifter downwarl to its antestral pesition ubon the fwats-sixth vartohata, the thirteenth milh was als restored. The other ribs ane in what the ancients styled al "state of flux:" our righth rib has berm so recently floated from the sternm that, and acording to Cmminghamo it me verts as a true rib) in twenty casso mo of a humdred, showing a derided preference for the right side. Regarding also the oreasional finsom of the fifth hombar with the sarrum and the unstable comdition of the twolfth rib, whiml is heariation rudimentary or absent, lasenberg makes bohd to prediact that in the man of the futher the pelvis with shift another step upward to the fwenty-fourth vertebrat, amd we shall then

[^36]lose our twelfth rib. The upright position, and consequent transfer of the weight of the abdominal viscera to the pelvis, may be considered the habit associated with this reduction of the chest; at all events, in the evohntion of quadrmpets there is a constant relation of increase between the size of the posterior ribs and the weight of the viscera, until the rib-bearing vertebra rise to twenty and the lumbars are reduced to three.* It would be interesting to note the condition of the ribs in some of the large-bellied tribes of Africans in reference to this point.

The coccyx has maturally been the renter of active search for the missing flexible candals. As is well known, the adult coecyx contains lont from three to five centers, while the embryo contains from five to six. Dr. Max Bartels has made "Die geschwainzten Mensehen" the subject of an exhaustive memoir upon cases of the reversion of the tail, while Testut records all the pmimitive tail moseles in varions stages of recersion. Watson reports that the curvatores coceygia (depresseres candar) orcm only in 1 in 1,000 cases.
This snggests a moment's digression to consider the different phases of reversion. The thirteenth rib recurs ly what Gegenbaur calls "neogenetic reversion," + for it is simply the anomalous athlt development of an embryonic rudiment. Under neogenetic reversions many anthors also include cases of the "arrested development," or persistence of an embryonic condition to adult life, such as the rismited odontoid process of the axis vertebra, which happens to repeat a very remote ancestral comdition. I think such cases may illustrate a reversional tendency, although many rases of arrested development, such as anencephaly, have no atavistic significance whatever. \ddagger Hore rare and far more difficult to explain are the "palarogenctic reversions," in which the amomaly, such as the supacondylar foramen, reverts to an atavus so remote that the rudiment is not even represented in the embryo.

The features of skull development are primarily the increase of the cranimm and the late closure of the eranial sutures, in contrast with the more complete and carlier closure of the facial sutures.

So far as I can gather, this seems to be another regron where the white and colored rates present reversed contitions; the early closme and arrest of brain development in the negroes is well known; the later closure among the whites is undombtedly an adaptation to brain growth. In his valuable statisties upn the Cambridge students, (ialton says: "Althongh it is pretty well ascertained that in the masses of the population the brain ceases to grow after the age of nineten, or eveu earlier, it is by mo means the case with miversity students. In high homor men head growth is precocions, their heads prefominate over the aremge more at nineten than at twenty-five."

[^37]Many of the cases of anested closure of facial sutures are rever somal, as they eorrespond with the adnlt condition of other mares, sum as the divided malar, or as daponiom. The haman premaxillary a diseovery with which Gorthe's nathe will always be associatem, is some times partially, more rarely wholly, isolated it is late tomite with the maxillary in the Anstralians, and has been reported matimy semate ill a mew (aledonian child (Destongeramps) and in two (ireentambers
 sersion to the pitherod comdition, is believed by Thomsom, ather the examination of $1,0: 3$, skills, to be merely an aredental ramiation, without any deeper significance.* The develoment of the tempenal home from two renters, observed by Marel, dimber, amd mang others, is
 samo-mammalial. This I think is in the highest degree improbable (sere "Limits of leversion"). The open aramial and closed facial sutures
 ing jaw artion; in one case the growth is prolomed and the sutures are left open, in the other, the growth is arrestend and the sutures are claseel.
1s the lower jaw feverning or degenarang? This question has pecently been the sabject of a spirited contronersy between Mr. W. Platt Ball, \dagger representing the Weisman school, and Mr. F. Howard "ollins, \ddagger supprting Herbert spencers view that a diminishing jaw is one of the features of our evolution whid ean only be explamem by disuse. Mr. Conlins find that, relatiofly to the skull, the mass of the refent English jaw is one-ninth less than that of the ancient libitish and, romghy speaking, half that of the Anstialian. He apmeare to establish the view that the jaw is diminishing.

Elosely comected with this is the arolution of the terth; how are they tending?

Fhowers has shown, at regards the length of ome molar speriben, that we. together with the ancient british and Digytians, bedomg to an small toothed of "microdme" rate: the Chinesp, hadians (North American). Malayans, and negroes in part, are intermediato on "mesombot," while the Ambanames, Melanasians, Anstratians, ame Tasmanians are "man rondont." Whale modersize marks the molars as a whole, the wisdom theth is eretainly in process of elimination: it has the symptoms of de rline; it is very variable in size, fimm, and in the date of its apparab anee, is often misplaced, and is mot tacommonly phite rudimentary (Tomes Here is another instane where the knife and fork less rames revere om demencaty, for in them mot only is the last momal molar

[^38]1i. Mis. $111-\quad 1$
(m. 3) large and ent long before the tralitional years of diseretom, but in the first two lower molars are foumd two intermediate eusps (Tomes)* which are variable or absent in as (Jobott); moreover, in the marrodont races a surphis molar \dagger (m. 4) is sometimes developed. Mummery
 instance of associated habit I may here mention that Dr. Lumholtz, the Anstralian explorer, informs me that in adnlt natives the teeth are worn to the gim; in the absence of tools they are used in every ocenpation, from eviscerating a suake to rutting a root. A tour of inspection throngh any large rollection of skulls brings out the pontrast betwen the sombl and hard-worn molans of the savage, and the decayed and little-worn molars of the white.

Upon the descent theory, the rednetion of teeth in the progenitor of man began as far bark as the Eocene perion, for mot later than that remote age do we find the finll complement of three incisors and fomr premolars in each jaw; now there are hat two remaining of each. Banme, a high anthority, believes he has discovered eleven cases of a rmanental reversion of one of these lost premolast not cutting the jaw. Not infrequently both these missing teeth oecur by reversion. It is difficult to conceive of reversion to such aremote beriod, yet it is supported by other evidence. An embryonic third incisor has, I believe, been disoovered. As long ago as 1863 Sedgwick§ recorded a case of six upper and lower incisors in both jaws, and appearing in both the milk and permanent dentitions; this anomaly was inherited from a grandparent, a striking iustanor of hereditary reversional tendency. We might comsider that these cases of supermmerary teeth belong in the same uategory as polydatylism, or additomal fingers. which are not atavistic, but for the finct that they do not exceed the typieal ancestral number, whereas the fingers do.

We owe to Windte|t a carefnl review of the incisor reversions, in which he shows that the lost incisors re-appear more frequently in the mper than the lower jaw coinciding with the fact that the lower teeth were the first to disappear in the race); he considers that the lost tooth was the one originally next the canine, and conehtes by addius our present upser onter ineisor to the hong list of degenerating organs. 9 He smpports this statement by measurements and by citing cases in which it has been found absent. Yet the reduetion ot the jaws is apparently ontstripping that of the teeth, if we can judge from the

[^39]frembent prattice among Amorican dentists of relieving the arowed jaw by extraction.

Wrame thon to the areles and limbs. Filower has pointed ont that the hase of the suapmat is widenme in the higher lames, su that the
 assodiates this with the derelopment of the seapula-lammeral maseles and tind greater play of the hamerns an a prehemsile organ.
la general, the armincreases in interest as we desernd towand the hambl both in the skelotem and masolatmere becanse here we meet with tha dirst glmpses of farts which emabla ms to form some estimate of the
 with increased rotation aserals from lizo in the polished stome age to

 in : 30 per exent of sketons of the reindere period: in the dolmen premed it fell to 24 per erat: in Parisian cemeteries betwed the fourth and
 rent. The condylar tomamen, oceasionall! foming a romplete bridge of bobe abore the imme condyle and transmitting the median merve and barhial atery. is known as the "antepicondylar" foramen in eome parative anatomy, and is onf of the most ancient rhatacters of the mammaliax; it reverts palarogenctially in per cent of rearent skelsfons, but mull bome firequently in interior races (Lamb). In the wrist bone is somethaes beveloped another extremely ald strmetme-theoserntiale.
 is a rase of neogenotice reverson, for Leboncolt shems that there is a distinct "ratrale in wery haman rappos in the tirst patt of the serombl montla, which nommally fuses with the seaphoid by the midhe of the thind month.

The diverener of the female trom the male pelvis is an important
 as we desernd among the lower races it beeomes increasingly difternat

 ical canses of this divergence, which we stromery Lamanekian, may be Weighed with the theory of survial of the fittest. for the laner fomatr pelvis is perhaps the best example that wan beadduede of a skeletal

[^40]rersion (1 per cent) in our race anf not an acquired variation, as it is very freduently fomblamong the Sions, so per rent, Laplanders, fit per cent, ant Swedes, 37 per rent; like the condylar foranen it is ant ancient mammalian character.

The foot is fall of interest in its association of degeneration and de velopment with our present habits of walking; the great toe ts inereasing and the little toc diminishing, causing the oblique slope from within ontwatd which is in wide contrast with the sonare toes in the infantor in the lower races. la many races the second toe is as long as the finst, and the feet are canded parallel instead of the large toe turning ont. If anyone will analyze his sensations in walking, even in his shoes, he will be conscious that the great the is taking active part in progression while the little toe is passive and insensitive. We are not surprised, therefore to learn from Pfitzuer that we are losing a phalanx, that in many haman skeletons (41.5 per cent in women and 31 per cent in ment the two end jonts of the little toe are fused. The fusion ocems not only in adalts, but between birth and the serenth year, and in embryos of hetween the fifth and seventh month. The anthor does not attribute this to the merdaniral pressme of tight shoes becanse it is fomblin the porer elasses. He considers it the dirst aut of a total deemaration of the fiftla tore

Irariations in the muscles.-The evolntion of the museles of the foot looks in the same direction. As you know, the large toe in many of the apes is set at an angla to the foot and is used in climbing. It is still employed in a varioty of oecopations by different races. Aceorrine to Trembett, the celobrated sreat tow of the Ammmese, whieh normally projects at a wide angle tiom the foot, is eontemptmonsly mentioned in Chinese amals of 2extir b., the race being then deseribed as the "cross-toes." The long tlexor of the hallas is apparently degenerating, showing a tendency to fuse with the flexor communis; the ablumtors amb atdurtms of this toe are also degenerating, the latter being proportionately latge in whilden (hase . The little toe exhibits ouly by reversion its primitive share of the flexor bevis (legenbame); more freguently it varies in the direction of its faturedeclane by losing its flexor brevis tendon antirely. Two atavistie museles, the abolnctor metatarsi quintif (alwass present in the apes), amb the peronens parvas (Bischoff), alse point to the formor mobility of the onter side of the foot. In enemeral the hones of the foot are developing on the imer and degenelating on the onter side, with lass of the lateral movements of the hallux amd of all independent movements in the little toe. The associated habit is that the man axis of pressume and strain now comeets the here and great toe , leaving the outer side of the foot comparatively finmetionless.

[^41]The variations in the mmsentar system mate ofie more eleaty the
 tive than those in the skeleton. Musenlan anomalies lavo hownar

 distinguishing botween vaniations whith look to the fintare, those which perert to the past, and those which are fortuiters, for the anther is strongly inclined tarefer all anomalios for reversion.

The law of masentar erolation is sperialization hy the suceressive
 mental museles. While the law of sketetal evolation is reduction of primition pats and the specialization of antionlar surfaces. The 1 mom ber of museres in the primates as a wholdas therefore beren steadity inereasing, while the momber of bones has feen dimimishing. lu man the nomber of maseles is fabobly increasing in the rewions of the lower arm, and diminishins in every other resion. 'Tho analysis is

 tion of greater sperdalization when they were employed in swinging the body ly the arms, and in quadrupedal loromotion; while other muselds
 simplay armagemment whon the hamd was manly atrasping orsan, and the thamb was not oppossable.

A* in the skeloton, we find that masonlar anomalies indude (1)
 neoseneti reversions, or revivals of formor types in the relations of
 ation or sperialization point to futher type ; (t) fontatoms variations, Which eanotot le refrem to either of the above.

Waval ohserves that the Hexor longos polieis repeats in reversion all the stages of its arohtion betwern man and the apers, in wheh it is a

 (Ofthis Testut writes:

Spalking of the latud, Baker salys:

 reduring the maseles used mamly to assist polonged grasp, they he
 stant re-in! instment."*
 Also, suithsonian liemor\%. 18:!0, p. 11!!.

Fou have noticed the recent discovery that the grasping power of infants is so great that the rethex contraction of the fingers upon a slemder crossbar sustains their weight; this power and the decided inward rotation of the sole of the foot and mobility of the toes are persistent adaptations. On grasping muscle, the palmaris longus, is highly variable and often absent; like the plantaris of the rall; it las been replaced by other moseles, and its insertion has been withdrawn fiom the metapodinm to the palmar fascia. In negroes we frequently find the palmaris reverting to its former function of flexing the fingers by insertion in the metacarpals.

The rise of muscolar specialization by degeneration is beantifnliy shown in the extensor indicis, which, while normally smplying the index only, revarts by sending its former slips to the thmmb, middle, and even to the ring finger. Testnt * belicves that the extension power of the middle and ring fingers has declined, as the eases of reversion point to greater mobility; the extensor minimi digiti is distinct and highly variable (W ood), often semeling a slip, to the ring finger.

The entire flexor gronp of the hand, excepting the palmaris, is apparently specializing. The demonstration by Windlef and Bland sinton, that the origin of the flexors and extensors is shitting downward from their original position, is evidenes of an adaptation to the short special contractions required of them.

The abductor pollicist is also progressive and variable (Wood); the reduphication of its inferior tendon, whiels is sometimes provided with a distimet musele, apparently points to the birth of a serome abotuctor. The oppomens of the thumb is well established and eonstant. Viriahil ity seems to characterize both the developing and degenerating mons cles; the latter are ant to be absent ; it is rare that an important muscle. such as the extemsor indiesis, is alosent, hat such cases are reported.

It is interesting to mote that the lost museles of the borly are almost exclusively in the trunk or shoulder, and pelvic arches, and not in the limbs. It will be remembered that the hman shoulder foint is exceptionally rigid, whereas in the quadrupedal state it was a factor in progression. Some of the mascular reversions in this quadrupedaỉ region
 sealems infermedins, a(ommin-hasilaris (Champmers), transersm mubla (Gegenban'). Lpparently associated with the formor swinging of the body hy the fore limb in the arboreal life are the atavistice corater brachialis-brevis (Testut), the epifrochleo-dopsalis (Testat), arm perto. ralis tertius (Trestut).§

Centers of corieblility-- Ls the literature is so readily anoressible I will not multiply illustrations of the immmorable rongenital variations

[^42]Prated to haman evohation. I aall attention boseral important ins durtions. First. there ame several renters in whan hoth the skeletal
 spirmons rariations, and therefore the most frequently reonder, are

The comelnsions of Wiond, and of Testut, * are that variability is imbe-

 Of still greater interest are the statisties rollected by Wood between
 (18 of wath sex). These show that there are more anomalies in the limbs than in the trunk; that anomalies are sare in the pelvis: that there were 2 ? ${ }^{2}$ anomalias in the anterior limbs to 119 in the posterion : that in both limbs the amomalies in wase towat the distal rewments. ralminating in the mascles of the thmmb, where they rise to !o pres
 These farts seem to prove conclusively that while variation is miversal it rises to a maximmm in the centres wher laman evolution is mos

 those variations which alparently have a detuite relation totheromse of homan ronhtion. 'There is an raticely different rlass of congenitat Variations which maty be deseribed as torthitoms or indefonite beramse

 they are mot fombl in the hypothetieal atarms amol there is not sufti-
 fintimestrontorr.

Some may bot be tomly congenital (i. espminging direct fom tha germ acels) but may lop merely deviations fom the momal eomse of development. I may instanme tho valiations in the rarpus recorded by Thonert in which the fraprezinm and scaphoid motat, or the traprezoint
 soli).
'ihe best exampla of fortnitons eongenital lantiations are sern in su

 restors of man have but seren rervials. In rases where a rib) is de-

[^43]mote. The same distinction applies to polydactylism. How absmod it is to consider a sixth dinger atavistic, when we remember that even om Permian ancestors had but tive fingers.

We can not however class as pmrely fortuitons a varation which occurs in a definite percentage of cases presenting twenty finm different varieties, but oerming in the same region. Such is the much-disrussel* musplus stmalis, a musele extemding rertically over the origin of the fectoratis from the region of the sterno-mastoid to that of the obliquas externus. Testut lightly applies his miversal reversion theory, and as this mosele is mot fomm in any mammal comsiders it a regression to the reptilian prestemal (Ophidia) ! Turner also considered it as reversional in comertion with the pamiculas carnosis, the old twitching muscle of the skin, whicls plays so many feeaks of reversion in the sealp and neck: this view is negatived ly the fact that this musche is imnervated by the anterior thoracie (Cumninghan, shepherd) which would comect it with the pertorial system, or by the intereostal nerves (Bardelaben). Althongh the high perentage of reemrence in the stemalis in anencephatons monsters (90 per cent according to Shepherd) supports the reversion view, it is offset by the high perrentage (4 per rent.) in normal subjects, fin this is far too high for a structure of such age as the reptilian prestemal. Cumbingham has advanced another hypothesis, first suggested by the frequency of this anomaly in women, that this is a new inspiratory muscle, having its migin in reversion, but serving a nseful pmose when it recurs, and therefore likely to lo perpetuated.

These fortnitous variations, as well as variations in the proportions of organs, play an important part in the present disenssion mon heredity, for it is believed by the Weismann school that such variations, if they chance to be useful. will be acrumulated by selection and thas become race characters.

The limits of rersion.-There is such :a wide difference of oninion mon the subject of reversions that it is important to determine what are some of the tests of genuine reversions. How shall we distinguish them from indefinite variations or from anomalies like the sternalis musele, which strain the reversion theory to the breaking point?

Testut, \dagger Duval, and Blanchard take the extreme position that almost all momalies reprodnce entirer normal struetmes, and that the exceptions may be attributed to the incompletmess of our knowledge of comparative anatomy. I may here observe that popular as the descent thenry has recently become in France, neithor these anthropologists nor the palaentologists show a vely elear eonception of the phyletic on bathehing element in ewolntion. If they do mot find a musele in the primates they look for it in other orders of mammals. Now, since these other branches diverged from that which gave rise to man at a

* See Tonver. Shepherd, and ('mumingham: Journal of Imutom! amd I'lyssiolot!!.
† Nur les Amomalies Musculnimes, B. 4.
most remote periond. the diseovery of a similar masela may be merely a coincidence: it is loy mo meats a proot of reversion.

The first test of reverson is therefore the anatomy of the atan and this is derived partly from the pabeontological record of the pimates, partly fom the law of divergence, vi\%, that teatmes which are common to all the living primates ware pobably also fomm in the stem form which gaverine toman; finally fiom the comparative anat omy of the living anthropoiden.
'The seond test is whether astrothe passes the limits of reversion as dotermined hy rases of atavism in which thereran be no reasomable dombt. Two of these phemomena have reerently been disemserd, which seem to extend the possibilities of reversion hack to strondmes which were lost at a very remote period. I reter to papmes loy Williams and
 he finds that supermumerary nipples of some form werme in two per remt, and that in all exeent fom of the wases examined the amomalies. tested hy position, ate.. support the reversion hypothesis. In the living lomms, which form a persistant primitive gronp ot momkers, we find that the tramsition from polymastism to bimastism is now in progress by the deseneration of the abdominal and insumalnipples: it is fail to assume that the higher monkeve also lost their abommal mipples at a primitise stage of development. and theretore that eases of maltiple nipples indicate reverson to a Lower Eowene rondition! Howerst has recently rompleted a most interestins stmby of the "in tranarial "pighottis." or cases in whioh the egiglottis is carried up into the postarior mares, as in fomg masmpials and some retarea, to subserve direct matal despiration. This has mow been observed to orem by reversion in all orders of mammals, including tho monkers and lemms. One case has also bern reported by sinton of its ocrmorence in a human foths. This is apparently a hman reversion to a strueture math older than the ane of the lemors.

The third test is tha inserse ratio to time. It womld seem, "priori,

 This law is apparently established in the rase of the rombly and and intereondylar foramina, and if we examine all the pereentages which have been established we see at oner that they bear a ratio to time:
 epitrochlearis (oper rent), and levator-davionla (1.60 per rent) mas
 is why it i s so important to ostablish peroontages for all on atavistio organs; fuller statistirs will not only hear upon lomedity, hut I can roncerive of their appleation to the extremely dillantt problem of

ard cames of congenital rariation in whirh the frequeney of reourence has been stradily declining in the same rave betwen two known periods of time-an avalable structure is the intoreondylar formmen or suratrochlear formmen, as recorded by blandard, Shepherd, and others.

The reversional tomdency is hereditary. There are many cases, looth of reversions (as in the teeth) and indefinite variations being hereditary, that is, re-appearing in several gencrafions, or skipping a generation and recurring in the second.

Summury.-There are clearly marked ont several regions in the luman body in which evolution is relatively most rapid, such as the lower portion of the chest, the upper cervieals, the shombler girdle in its relation to the trmak, the lower portion of the arm and hand, the outer portion of the foot. We notice that these regions especially are centers of adaptation to new haloits of life in which new organs and new reantions of parts are being acquired and old organs abandoned.

We obsore also that all pats of the body are not equally variable, but these centers of evolution are also the chief centers of variability. The variations here are not exclnsively, but mainly, of one kind; they rise from the constant struggle between adaptation and the force of heredity. Here is a muscle like the extemsor indicis attempting to give up an old function and establish a new one; it maintains its new function for several gemerations, and then goes back without any warning to a finction which it had thomsands of yens ago. Thus the fonce of reversion strikesus as a miversal fantor.

Now the singular fact abont reversion is the frequent proof it aflords of what Galton has called "particnlate inheritance." When the extensom indicis reverts, all the muscles aromed it may be normal; therefore we are obliged to comsider ach of these muscles as a structure by itself, with itsown particnlar history and its own tendencies to develop or degenerate. Thns it is mislealing to base on theory of evolution and heredity solely upon entire organs; in the hand and foot we have numerons cases of muscles in close contignity, one steadily developing, the other steadily degenerating. Reversion very woly acts upon many sturtures atonce; when it does, we have a case of diffused amomaly, some repetition in the epidermis, or in the entire organism of a lower type.

Yet in spite of reversion and the strong foree of repetition in inheritance, the human race is steadily evolving into a new type. We must, it seems to me, admit that an active principle is constantly operating mon these partioular structures, gumbing them into new lines of adaptation, acting upon widely separate minor parts, or cansing two parts, side by side, to evolve in opposite directions, one coward degencration, the other toward development.

I may now recall the two opposed thenses as to what this artive principle is:

The first, and oldest, is that individual adaptation, or the tendencies
I＇artial table of characters in rolution．

（ientral rexions of •＊olution．	Inevolopring oruanta					
		Rexlutiont	Variahle．	limlinents 	Revortsiens （hícout（omliryo）．	lin．Irrsions from－arm vells．
Skull and jaw．	＇raminu．	Fowial sutures．			Prematillaty	
Spinal curvatures．		Infior．maxilla．				
		1190ids．	L．tmbars ami jelvin．	（＇orwowid．		
Cervicals lumbars，ambl comey	Framale 1＋1vin				Thl ：and dith vandiak．	('alulials
Lowrer rils．			l2thrib．		131 r rill．	7th rerve rios．
A（：1ロハ）	scapula．					Cometylar fors．
	Clavirla．					\therefore trontear．fors．
Ohter sime at pres．	Hambx	tht ：anl ith rligits い1 1い心。	Trrminat phalans of ith ！！心．at 10：			： 61 trollantur．
	Tibis．				C＇rntrale－namma． Intwrmedimm．pux	
Tuph．		＇：nıims：．．．．．．．	．	．．．．．．．．．．．．．．．．．．	Latran incinar： Thirel premol：a	．．．．．．．
		lucisots．latural sill				Ith promolar
		：al molar．	Bid molar：			
Flexors amblextensurs of＇arms．．．	Flea．prof．and purt： Fixtrusor intir．jo． Fllev，lome pelliris． Aled lome pollidis．					＇Traths．multa＇．
						lipitrendh．dors．
						Sromiohanalar．
						Levator clavieular
						loct．teptins． （＇or，lnituls．bres．
		P＇yramidalis．				Is．liorpuhic．
Fhombler to fromk．	Tricepa＂xtonsursurar．	l＇soms parvors．				
						s＇ansurius．
Trunk（6 temur．	Glat：at gronl｜ Facial eromp．	Sbll amd ande hai－ lucis．	Masmens，5ill tor．	Plantaris．		dhd．mutars．ith．
				l＇ammás．		leromethi parvos．

（ientral rexions of •＊olution．	Inevolopring oruanta					
		Rexlutiont	Variahle．	limlinents 	Revortsiens （hícout（omliryo）．	lin．Irrsions from－arm vells．
Skull and jaw．	＇raminu．	Fowial sutures．			Prematillaty	
Spinal curvatures．		Infior．maxilla．				
		1190ids．	L．tmbars ami jelvin．	（＇orwowid．		
Cervicals lumbars，ambl comey	Framale 1＋1vin				Thl ：and dith vandiak．	('alulials
Lowrer rils．			l2thrib．		131 r rill．	7th rerve rios．
A（：1ロハ）	scapula．					Cometylar fors．
	Clavirla．					\therefore trontear．fors．
Ohter sime at pres．	Hambx	tht ：anl ith rligits い1 1い心。	Trrminat phalans of ith ！！心．at 10：			： 61 trollantur．
	Tibis．				C＇rntrale－namma． Intwrmedimm．pux	
Tuph．		＇：nıims：．．．．．．．	．	．．．．．．．．．．．．．．．．．．	Latran incinar： Thirel premol：a	．．．．．．．
		lucisots．latural sill				Ith promolar
		：al molar．	Bid molar：			
Flexors amblextensurs of＇arms．．．	Flea．prof．and purt： Fixtrusor intir．jo． Fllev，lome pelliris． Aled lome pollidis．					＇Traths．multa＇．
						lipitrendh．dors．
						Sromiohanalar．
						Levator clavieular
						loct．teptins． （＇or，lnituls．bres．
		P＇yramidalis．				Is．liorpuhic．
Fhombler to fromk．	Tricepa＂xtonsursurar．	l＇soms parvors．				
						s＇ansurius．
Trunk（6 temur．	Glat：at gronl｜ Facial eromp．	Sbll amd ande hai－ lucis．	Masmens，5ill tor．	Plantaris．		dhd．mutars．ith．
				l＇ammás．		leromethi parvos．


```
（ncatimbally atment）
```

（＇on awoid．
4th ：and Sth camials．

 Saduction． Fiveial sutures
Farial sutures．
lufor，mak xilla．
Intio．maxilla．
Hyomす． 1．umbars amidnelvim．
tith rils．
Frminal phahany of ith

Variable．

It is probable that some of these maselpes are represiented in the fintus．
established by mse and disuse upon partiandar structures in the parent we in some degree tramsmitted to the offepring and thas gende the mann course of variation and adantation.

The second is that all parts of the body are variable, and that wherever variations take a direction favorable (that is, adaptive) to the survival of the parent they tend to be preserved; where they take the oppoxite direction they teml to be eliminated. Thas, in the long ran, adaptive variations are accommated and a uew type is evolved.

It is evident at oncer, from a glance over the facts bronght forward in this lecture, that the first theory is the simplest explanation of these facts; that use and disuse eharacterizes all the eenters of evolation; that rhanges of strmeture are slowly following om changes of fimetion or habit.

But while the first explanation is the simplest it ly no means follows that it is the true onc. In fare it lands us in many diffombties. so that I shall reserve the pros and cons for my second lecture won heredity. The Lamarekian theory is a suspirionsly simple explana tion of such complex proeresses.

LECTURFII.—TIEE DIFFIGULTIES IN THE IIFREDTTARY THEORY。
Nur muss ich nochmals betonen, dass nach memer Anfassmg der Anfang einer nenen Reine erhlicher Ahweichngen, atso anch der Sintritt wher menen Art whe eine voransgegangene arworbene Abweichmg mulenkhar ist.-Vinchow.

Stute of opimiom. -The above quotation from one of the most eminent anthorities of our times represents the mashaken conviction of a very largeclass upon one side of the ruestion of transmission of aequired characters, which is met by equally firm conviction upon the other site.

Herbert Spencer, whose entire system of biologs, psychology, and ethics is based upon such transmission. says: "I will only add that, considering the width and depth of the effects which acceptance of one or other of thes hypotheses must have on om views of life, mind, morals, and politice, the question which of them is trme demands, beyond all other questions whatever, the attention of soinentitic men."* 'This shows that Spenore considers the matter still swh judire, and lest you may think I am hringing before you an issue in which learning and experience are ranged asainst ignorance and prejudice. I have takpu some pains by comrespontence with a number of friends aboad to leam the mesrat state of opinion. The two leading English and French anthorities upon this sulyect express themselyes donbtfully.
dalton's mind is still wavering, as in his work of 1 sse he sigs:
"I am unprepared to say more than a dew worts on the obseure, musettled, and much-discossed subject of the possibility of tansmitting arouired farnlties.

There is very little direct evidene of its inthence in the course of a single generation, if the phase of 'arequired farmlties' is used in perfect strictness and all inheritance is expluded that comld be referred to some form of natural selertion, or of infection betore birth, or of pernliarities of murture and rearing." \dagger
libot, althoughin therentern the Fromeh Lamarrkians, says: "NotWithetambleg these facts the tansmission of acomiored moditioations

Exaepting form Kialliker: His. the Leipsie anatomist: Piliiger. the physiologist: Zinglor, in pathology; and lor Vrios. m hotany, Wreismann has mot fomm moth sympathy fiom his own romatrymen in his

that there are mo poots of sum tramsmission, that its oremernee is theoretieally improhable and that we mast attempt tor wablain thr tramstomation of species withont its ad."* besides Virchow + and

 that, while Weismames monlificl themere as to the phomomena in the

 ter-transmission thenrs.
 lem "xprrimentally by observing the inheritane of the offectonf werve. lesioms, his assistant, Dupuy, (iard. Inval, Blanchand, mul others are on the aftimative. 1 We Lamatekians sile.
 think in the and they will he tored to take it me with the momphoto
 futmor Dot. Michat Poster, of Cambridge, and Prof. Burdomstan-
 into the physiologicalstage of inguiry at all. Set in England Wras-
 Hallace, Lankester, Thiselton IPrer, Meldola, Ponlton, Howes, and others; while, exereting Winalle. the amatomists, including Mivart and Lallsom Tait, with Sie William 'momer as the most pomiment, are all
 In this © ©
 know exery rertohate and invertelnate palaontolosist is a lamarek ians. for in this tiold all erolntion seems to follow the lines of inheriterl
 cline to follow Weximatan. I have rombersed mpen this subjeet with mang physinians, and find that withont exophtion the transmission of

Eireere statement of the probleme-It is impertant at the ontsint to

[^44]state most clearly what is and what is not involved in this disensson. Weismam, does not daim that the remondetion or germ cells are minfluenced by habit; on the other hand. ho admits that most important modifications in these cells may and do resnlt fiom changes of food, climate, from healthy on mhealthy conditions of the body: also from intections disease. where it is quite as pussible that the mirrobes may enter the reproductive cells as any other eells of the hody: from aleoholism, where the normal molernlar action of the protoplasm of the germ cells may be disturbed, resulting in abormal development, and there are some very interesting experiments which I shall cite on this point: from some nervons disorders which protomuly modify rellfunction in all the tissues: in other words, orum sanum in corpore sano. But to accept all this, amd evon to include all om rapidly increasing knowledge of the direct relation betwern such phenomena as production of deformities and determination of sex. and the influences of environment upon the ovim; or the influenes of the mother mpon the fertus-this is all aside from the real question at issme.

It may be stated this: (riven G, the oval and spermatozon, the germ cells or material vehicles of hereditary characters: N, the body or so matio cells of all the other tissnes comeying the hereditary characters of merve, muscle and bone; T, the variations in these body cells wacquired" during litetime: given these factors the real question is: Do influences at work probluring variations in cartain body cells of the parent so affect the germ cells of the parent that they re appan in eorresponding body cells of the offisuring? To take a concrete rase, will the increased nse of the cells of the extensor intions museld in the parent so stimulate that portion of the germ cells whidh represents this musele that the increment of growth will in any degree re-appear in the offispring?

This is what is required of heredity upon the Lamarekian hypothesis, and I think you will see at onme that while this lypothesis simplifies the problem of evolntion it in a corresponding dogree renders more driticult the problem of heredity-for we hase not the first ray of knowledge of what such a process involves. There is no quality more essential to seientife progress than common lomesty; if we take a position let us face all its eonsequences; the more we reflect upon it the more serious the Lamarekian position becomes.

In the present lecture let us first briefly review the progress of the seienceof heredity whirh has led up to the present discossion. Serond, let ns examine the evilence for and agamst tho lamarekian theory, and inquire how tar natmal selection can explain all the facts of evolntion. Third, let ns examine the evidence for such a continuous relation between the borly cells and germ cells as must exist if the Lamarekian theory is the true one.

History of the heredity theory. - In a vahuable summary of the past

[^45]thanies of heredity* J. A. Thompson distingmishes three eremeral prohlmas. Whioh are oftom domfased: Lst. What rhameters distinguish the ererm rells from other cells of the body? ひl. How do the germ

 ties in the offephing?

 fomintating inlea in (atch.

1. Pamgenesin. Tha ideal fervaling bamgonesin was first expmessed
 of material partiches fiom all parts of the hotios of both sexes, and that like pats produced like. Two thomsabd fars later, Buthon revived this concoption of heredity in his . Monerules organiques." In fistit
 derived fom the body erells of the parat. forming the germ rells amd thendeveloping into the botly rells of the offisume.

It is intmosting to mote the romse of Darwin's thonglit upon hais matter in his pulhished worksam in his " Lite and Lattors." He was at first strongly opposed to the views mone evolation atvanmeal by butfon, hỵ Easmms larwin, his grablfather, expanded by Lamarke, amblow known as lamarekian. Dint gradually bexoming eomvined that his own theory af natmal sele
 Lamanelis theory, and eontributed to it a feature which Lamarek had entirely onitted. nammely, a theory of heredity pxpressly designod to (xphain the thasmission of actuited rhatardars. Datwins "provisiomal hypothesis of pangemesis" tpostulated atmatratal rombertion
 from cach rell: each borly rell thrown off a "gemmma" containing its (hanateristies, these gemmules multiply and berome experially conern-

 which they wre origilally given ofig. (Nee Pige, liagram In.)

Galton, who has always bern dombtfal in regard to nse inheritamer, Whila alvanding athory of "contimuty," partly apmoved Darwin's
 few germs that timd their way into the cimention and therehy have a
 nted very important experimental dixpoof of the existence of "gem
 chataters in the blood, by a series of camelnal experiments mon the

[^46]transfusion of blood in rabbits；he fonnd that the blood did not con－ vey with it even the slightest tendency to transfer normal character－ istics fiom one variety to another．

Fili． 1.
f．o．fertilizel or゙mm or embックo．containing maternal and paternal chararteristics ：s，soma，or adnlt hody，containing n, s, m, d, v ，somatic colls of the varions tissues；ant G ，germ cells of the reproductive glands．

I．Histogenesis．－Showing the sucessive rise G ，and mion f ．o．of the maternal and paternal germ cells ly direct histogenesis．

II．I＇Angexesis．－showing the tissues of the boty s，rontributing to the germ cells fi，so that earh f ．o．is composed of clements from both the somatic and germ cells．

III．Continctar．－Showing the division of the embryo fo．，into somatoplasm，s（from which arise the body cells），and germ plasm，（f（whirh passes direct to the germ cells），establishing a direct con－ timnity．

Prof．Brooks，of the Johns Iopkins Thiversity，then contribnte and original modification of pangenesis in which the functions of the ova and

Spermatozo: were sharply differentiated.* (i) Ha regated the ovm
 tics, each characteristie being represented ly material partiches of some kind: thus hereditary chanantems wew handed down lample sell division, eath fertilized orum giving rise to the borly rells in which its herenitary chanaters were manifested and to mew wa in which these chamac. ters were conserved for the mext generation (this pmotion of Brooks's theory is very similar to (Galtom's and Weismam's). (2) The bondy edn have the powe of theowing off ". grmmales." bat this is exeremed manly or explasively when its nomal funtions are distmbed, as in metatrophe exercise or mulder change of emviroment. (:3) Thess gemmules may enter the orom, but the spermatozoan is their main center. Aremding to this view the female cell is rather comservative and the male cell progressive: the mion of these vells produms variability in the offispring, exhibiterl espectially in the regions of the offisuring conresponding to the regions of fimetional disturbane in the parent. This hypothesis was well considered, and while that feature of it which distinguishes the male amd female germ cells as dififerent in kind las been disproved, and the whole conception of gemmules is now almadoned. the fact still remains that we shall mevertheless be obliged to offer some hypothesis to explain the facts disregarded by Weismani fow which Brooks provides in his theory of the canses of variation.
\therefore Contimity of germ cells.-The rentral idea here is an ontgrowth of on more modern knowledge of 'mbryonesis and histogenesis, and is threfere comparatively recent; it is that of a fimbamatal dis. tinction between the "germ cello." as continmos and belonging to the race and the "body rells," as belonging to the imdividual. Weismann has retimed and elabomated this idea, but it was not original with him.
 dwelt "pon the distinction which Dr, Jaeger, now of manufacturing falle, first dranly stated:
-Through a great series of gemeations the germinat protophasm retains its sperific proproties, dividing in every reproduction into an matogemotic pertion, ont of which the imbividual is built up, and a phylogenotie portion, which is reserved to form the reprembetive material oft the mature oftesping. This reservation of the phylogene tio materiall d described as the contimity of the germ protophasm.
Enapumed in the ontugenetio material the phytugentic protoplasm is shelteren firm extemal inthences, and retains its sperifie and embyomic chamaters." The batter idea has mader Wremman, bean

(zalton intronluced the term "atirp" to express the sum total of

[^47]H. Mis. 111 ——
hereditary organic units contained in the fertilized ovom. His coneeption of leredity was derived from the study of man, and he sup, ported the idea of continuity in the germ cells in order to account for the law of transmission of "latent" characters; it is evident from this law that only a part of the organic units of the "stirp" become "patent" in the individual body; some are retained latent in the germ cells, and become patent only in the next or some succeeding generation. For "xample, the genius for hatural seience was "patent" in Erasmus Darwin, grandfather of the great naturalist, it was "latent" in his son, and re-appeared intensified in his grandson, Charles Darwin. I have elsewhere* summed up as follows Galton's general results, which so remarkably strengthen the "contimity" idna: We are made up, bit by bit, of inherited structures, like a new building, composed of fragments of an old one, one element from this progenitor, another from that, although such elements are nsually transmitted in groups. The hereditary congenital constitution thas made up is far stronger than the influences of envimoment and habit upon it. A large portion of our heritage is mused, for we transmit peenliarities we ourselves do not exhibit. The contributions from each ancestor ean be estimated in mumerical proportions, which have been exactly determined from statistics of stature in the English race; thus the contributions from the "patent" stature of the two parents together constitute one-half while the contributions by " latent" heritage from the grandparents constitute one-sixteenth, ete. One of the most important demonstrations by Galton is the law of regression; this is the factor of stability in race type which acts as gravitation does upon the penduhum; if an individual or a family swing far from the average chararteristies of their race, and display exeeptional physical or mental qualities, the priniple or regression in heredity tends to draw their offspring back to the average.

Now how shall we distinguish regression from reversion? Very clearly, I think; regression is the short pull which tends to draw every variation and the individual as a whole back to the contemporary typiral form, while reversion is the long pull which draws the typieal form of one generation back to the typiral form of a very much earlier generation. These forces are evidently akin, and in the shales of transition from one type to another we would mulonlotedly find a constant diminution mumerically in the recurence of chamaters of the odder type, and thus "regression" would pass insensibly into "reversion."

Weismann has carried the idea of rontimity to its extreme in his simple and beautifnl theory of heredity, which is founded upon the postulate that there is a distinct form of protoplasm, with definite chemical and molecular porperties, set apart as the vehicle of inheritalle: this is the germ plasm, (r, quite separate from the protoplasm of the body cells or somatoplasm, S. Congenital characters arising in
the werm-rolls are ralled blastogenotic, while arquimed whateres arising in the body rells are somatogenetic.

To clearly mandatam this view, let ns follow the history of the lep tilizerl ormm in the formation of the embryo. It tirst divides into soma-to-plasm : mat germ-phasm (see Fig. 1. I) iagram nt), the former supplirs all the tissmes of the borly- n, s, m, d, r, nervons, musenlar, vasmata, digestive, etro-with their quota of hereditary structure; the residual germ-pham is kept distinct thronghont the early prosess of embryonis rell division matil it enfers into the tomation of the nurde of the re probluotive cells, the wra or spormatozor. Here it is isolated trom "hanges of function in the somato-plasm, and in common with all of erer protoplasim is capable of mulimited growth loy cell division withont loss or deterioration of its past store of hereditary froperties: these propr raties are lorlged in the molens of each ovmm and spermatozoan, and these two rells, althomgh widely diferent in extermal aroresomy strueture (becanse they have to play an active and passive part in the act of ronjugations), are exactly the same in their essutial moleculan strueture, and the ancestral characters they convey differ only hecanse they come along two different limes of descent. When theserells mite they eary the germ-plasm into the body of another imlividual. Thas the somatoplasm of each individnal dies, while the germ-plasm is insmortal; it simply shifts its abole from one generation to another; it constitntes the chain firom which tho imbividuals are mere oftshoots. Thus the germ-plasm of man is contimons with that of all anestore in his line of descent, and we have an explanation of the eanly stanes observed in development in which the hman embryo pasises throngh a succession of metamorphoses resembliug the arlult forms of lower types.

In order to emphasize, as it were, the passage of the germ-plasim from one gemeration fo amother without deterionation in its marvelloms lareditary powros. Weismann added the ideat of its isolation. Not only does he repudiate the patheressis motion of increment of ererm-plasm ly addition of exmmoles, but he believes that it is mafferted by any of tha momal (rhamges in the sematia or bodye cells. As this romtimity amd isolation wonld rember impossible the tramsmission of clanaters aequired by the somatoplasm, Weismamb besan to examine the evidence for such tramsimision, amb coming to the condrasion that if was insulficient, in his motable essay on \cdot Heredity," in 1sisu, he boldy at. tecked the whole lamarekian theory and has contimed to do so in all his subsequent essays.

Baing forced to explain evolation withont this fador, ha clatmed that ratiation in the germ plasm was constanly arising loy the union of plasmata from different lines of dexernt m fortilization, amd that these variations are eonstantly heing acted upon by matural selection to produre new types. Ho thas revied barwins arlior views of coolution, and this in part rxplabs his strong support by English naturalists.

It will be seen at once that there are a number of distinct questions involved.

The matter of tirst importance in life is the repetition and preservation of type, the principle which insures the merring acemacy and precision with which complex organs are built up from the germ cells; the force of regression and the more remote forces of reversion all work in this conservative direction; the theory of the preservation of these forces in a specific aud contimons form of protoplasm is ly far the most plansible we can offer at present.
The matter of second importance, but erfually vital to the preservation of races, in the long rom, is the formation of new types arlapted to new circumstances of life. 1 shall now attempt to show that the facts of evolntion, while not inconsistent with the idra of continuity of the germ plasm, are wholly at variance with the idea of its independence, separation, or isolation from the functions of the body. This can be done by proving, first, that the theory of evolution solely by natural selection of chance favorable variations in the germ plasm is inadequate; secoud, that the inheritance of definite changes in the somatic cells is also necessary to explain evolution, and therefore there must exist some form of force or matter which comnerts the activities of the somatoplasm with those of the germ plasm.

In the following table are placed some of the facts of human evolution which we have observed in the first lecture, and as they are part of inheritance, they also constitute the main external phenomena of heredity:

Ihenomena of heredity.

Conservative (loward past type).
a. Repetition of parental type.
b. Vegression (in many characters) to contemporary race type.
c. Reversion (mainly in siugle charac ters) to past race type.

Natural.
Progressive (towarl fulure type).

> a. Wefinite variation in single charac lers, by accumulation $=$.

Fortuilous and indefinite.

V'ariability.

What are caunes of these varions phemomena?
Fuctors of crolution.-The term "Kinetogenesis" has been applied to the modern form of the Lamarekian theory, for it is an application of kinctic or merhanical principles to the origin of all strnctures such as teeth, hone, and muscle. It would be fatal to this theory if it conld be shown that the changes taking place in course of a normal individnal life, under the laws of use and disuse, are inadaptive, or do not correspond to those observed in the evolution of the race.
The relative growth of Organs.-Ball,* in his lomg argmment against Lamarekianism, claims that such is the case, and that mse

[^48]imheritane womld be ant adtal evil: "Bones womld often lor moditied disastmonsly. 'Thus the eombly of the hamian jaw wombl beeome

 sive or are lery seldom nsed womld dwindle until their weakness "ansal the ruin of the individnal or the extinstion of the sperios." Ha later "ites fiom loarwin* the "Report of the Ithited States ('ommission upon the soldims and samos of the Late Wrar." that the longer loge and shortor anms of the salors are the revere of what shomld resmlt from the derreased nse of the legs in walking and inmeased nse of the arms in pulling. A little retlertion on Mr. Balls part womld have share ms this arnde objection, for whaterer diticulfios may arise from thoretical suecolation as to the laws of siowth, or from statisties, the fact remains that activity monst increase adaptation in every part of the wsanism: otherwise the rumber and the trotting homs should be kept off the track to indrease thrib speed, the pianist shonlat employ as little tinger exereme as possible If the growtl tembendes in single organ are transmitted, it is evident that the ablaptive adinstments botweren these tendencies will absu be transmitterl.

The Fert.-In point of merhanieal adantation, man, with the single exception of his thmmb and forearm, has not progressed beyond the most primitive eocene quarluped. The laws of evolution of the foot
 ly Kowalersky, ligrler, Coper, and myself, aftords a comblusivo demonstration that the skeletal changes in the individnal roincide with those which will mark the evolution of the race. In the rarliast maEmbates the rarpals and tarsals are disjuserl, as in man, dirertly above earh of her, with serial joints. as in diagran 1 , Fig. 2 : in the romse of evolution all these joints became interlocking, as in diagram l b, F゙is. 8: thus prothoring an altornation of joints and surfaces smian to those which give strengeth to masom? Th stmying these facts Copet rearhed a certain theory as to the motion of the foot and leg in lowe motion. In trying to apply this, I fomm it conld not he hamoni\%er with all the larts, and I worked out an entirely different theory.it 'This I fomal sulsequontly coincided exabtly with the results previonsly

 Vania.s

The monodactylism of the homen was attained by the atmonthy of the

[^49]lateral tors, and concentration of the major axis of body weight and strain upon the middle finger and toe. llan is also temding toward monodactylism in the foot by the establishment of the major axis throngh the large toe and atrophy of the onter toes. The present atrophy of our small toe js as good a parallel as we can find of the changes which were ocemring in the eocene period anomg the ancestors of the homes.

The Teeth.-But how about the teeth, in whieh there is an alsolute loss of tissue in consequence of use? This is mother objection raised by Ball, Poulton, and others, which disappeans upen examination.
The dental tissues, while the hardest in the body, and, malike bone, incapable of self-repair, are not only both living and semsitive, but, to

a very limited degree, plastic and eapable of change of form. Ex hypothesi, it is not the growth, hat the reartion tendeney which produres the growth, which is transmitted. The evolution of the teetlo, therefore, falls into the same category as bome.* In the accompanying figures I have epitomized the slow tramsimation of the single-finged conieal reptilian tooth, such as we see in the serpents, into the low"rowned human grinder. We now know all the transition forms, so that we can homologize each of the cusps of the hmman molar with it, varied ancestral forms in the line of descent. For example, the anterior lingual or inner cosp of the uppor tone molars traces its pedigree back to the reptilian cone. The anterion triangle of cusps, or trigon, seen in the mesozoie manmalia and persisting in the first inferior trine molar of the modem dog, is still seem as the main portion of the crown of the human upper molars ($p r, p m, m e$). To this was added, ages ago, the

[^50]posterior lingual cusp，whyone whinh，as Cope has shown，is rax hibited in varions degrees of development in difterent races and is an

F11： 4.

 liagrams 2－b．－Desozni＂mammals，first lower molars showing rist of anerstral ensps．Diagran of Bocene carnivere（mitaris），showing how the low tuberentar erown m．is terived from the hinh crown m1．Diagram 7，－Encone monkey（．1 notomorphes），showing how the primitive anterior lingtal ansp fot dixappars．Diagram s．－lluman dirst molat with its ancestral chesp．
important race index．＊ 1 glaner through the diagrams shows that the development of the rewn has been by the sumersive addition of new raspo．Without entering upon tho details of evidence，which

F゙14，厅，
 frigon，with the protecome，pr，at the ape．The apex is on the inner site of the mper molars amb on He outer side of the lower molars．
would be mit of place here，I may aly，briefly，that the new man ensps haw developed at the points of maximm wear（i．p．．nser），and con－

[^51]versely in the degenaration of the erown, dinme foreshadows atrophy and disappearance.

Spon the whole, with some exceptions which we do not at present anderstand the romse of erolution of the teeth supports the eridence derived from the skeleton that, whether any true cansal pelation has existed or not, the lines of individual transfomation in the whole fossil series preceded those of race transformation.

Fig. 6.

The rise of new organs. - We owe to Dr. Arbathont Lame a most interesting series of studies upon the inflanences of varions oecmpations upon the human body. He pores conclusively that individual adaptation not only produces profond moditications in the propertions of the varions parts, but gives rise to entirely new structures.

His anatomy and physiology of a shomako shows that the life-long habits of this lahorions trade produce a distinet type, which if examined by any zoölogical standard would be mulesitatingly pronomed a nes speries-homo sartorius. The peychological analysis which a Dickens or Balzac would draw, showing the influme of of the struggle for existence upon the spirit of this little tailor, could not be more prathetic than Dr. Lane's analysis of his booly. The bent form. (rossed legs, thmmb and forefinger action, and peculiar jerk of the lead while drawing the thead, are the main features of sartorial habit. The following are muly a few of the results: The muscles tended to recede into tendons, and the bony surtaces into which they were in serted tended to grow in the direstion of the traction which the museld exerted upon them. The articulation between the sternum and the elavicle was converted into a remy complex artinodial joint, comstituting amost a ginglymoid articubation. The sixth pair of ribs were anchylosed to the bodies of the vertenne. indicating that they had ceased to rise and fall with stemal breathing, and that respiration was almost exhlusively diaphramatic. The region of the head and first two vertebse of the neek was still more striking: the transverse process of the right side of the athas, toward which the head was bent, fomed a new articulation with the muder surfate of the jugular process of the occipital bone, "a small symovial cavity surromed this acmured articmation, but there was no apparance of a

[^52]"apsular lisament:" the left half of the axis was mated by bone to the comesponding portion of the thime ervisal: there was fomm a new
 ln short. " the anatomy of the shomakre represents the disation and subsequent exaggeration of the position and tendendes to rhange which were present in his logh when he assmed the position for a short period of time.
latar of imheritanere-This illustration surves also to emphasize the sueat rontrast leetwern the rapidity of individual transformation and the slowness of rame transformation. No one wonlat experet the son of this shomaker to exhibit any of these andmed mallommations. Yet Wr. Lame thinks he has ohservel sumb effere in the thire generation by the summation ot similar intluences.

All palanotologital evidence goes to show that the offerets of momal habits, if tramsmitted at all. would br entirely impereeptible in one sencration. The hense, for example, has mot yot completely lost the lateral toes which beramo nselessat the emd of the [pper Eocran period. This objection as to bate of avolution may be urged with equal forer against the matmal sulection thoory. It is obvions that the activepore Eressive principle in ayolation (whaterer it is), mast eontemelwith the enormons conservative power of inheritanne, and this, to my mind, is Whe of the strongest argmments asamst the possibilitios ot the rise of ataptive organs ly the sefertion of "hane faverable variations in the gram plasm.
 trations may now lo appled to some of the fats in haman evohition homght ont in the first lecture. 'They show that if fanetional tenden "ies are transmitted wo "an eomprehend the distinet evolation history of each orean: the rise and fall of two argathe side by side the definta ant phrposive "hatacter oft somw anomalies: the increase of variability in the regions of most mpid evolntion: the worelation of dexelopment babanere, and degeneration in the semarateorgans of the shoulder. hame allad foot.
let even granting this theory there still remain difioulties. The relation of use and disuse to some of the rontemporaty danges in the haman barlibent is rather obsiome. I would hesitate to promomme an (spinion as to whether onr present habits of lifo are temding to shorten the lmmbars, imerease the spinal amvatures, and shilt the pelvis withont making an exhanstive sthdy of fuman motion. . Imong the falhe -解es which Dr. Lame has suggested * as greative here are the wear ing of hered shewe amel the inerease of the eranimm. Ho considers the additanal or sixth lambar vertabra as a new element rather than an a reversion, and works out in some detail the merelanical edierets of the
presence of the fetus upon female respiration (i.e., in the sterual region) and mon the pelvis. Now, if it he true that the pelvis is larger in the higher races than in the lowrr, I do not think that Inr. Lane can sustan his point, becanse in the lower races the fetus is carried for an equally long period, during a much more active life, and in a more contimonsly erect position. Therefore, if these mechanieal principles were operating, the pelvis in the modern lower races shonld be larger than in the higher. On the other hand, the form of the female pelvis in the higher races is one of the best established selecting or eliminating factors, a large pelvis favoring frequent births and the presprantion of those family stirps in which it occurs. I mention this to show how cantions we must be in jumping to conchasions as to kinetogenesis.
'The transformism in all the extemal featmes of the skull, jaws, aml teeth may be attributed to inherited temdencies toward hypertrophy or atrophy; but how abont the convolntions of the turbinal bones or the complex development of the remicircular canals and cochlea of the internal ear and the many centers of evolution which are beyond the influences of use and disuse? These are examples of strurtures which fortify Weismamns contention, for if complex organs of this character can muly be acounted for by natural selection, why consider selection inalequate to arcomen for all the changes in the body?

Infficulties in the matural-selection theory.--The answer, I think, is readily given: We do not know whether use and disuse are operating upon the mechanical constuction of the ear; we do know that the organ can be rendered far more acute by exercise; but even if it werr true that habit can exert no formative influence, the ear is one of those strnctures which since its first origin has been an important factor in survival and may therefore have been evolved by natural selection. Now, the very fact that selection may have to care for variations in sueh prime factors in survival as the ear, renders it the more difficult to eonceive that it also is mursing the minntia of variation in remote, obscme, and uncorrelated organs.

Even in the brief review of hmman evolution in the first lecture I have pointed ont eight independent regions of evolution, upward of twenty developing organs, upward of thirty degenerating organs. A more exhanstive analysis would increase this list tenfold. Now, where chance variation should produce an increase in size in all the developing organs, and a decrease in size of all the degencrating organs, and an arerage size in all the static organs, we wonld have all the conditions favoring survival. But the ehances are infinity to one against such a combination ocemring unless the tendencies of variation we regnlated and letermined, as Lamareki:ms suppose, by the inheritance of individual tendencies. But may not the favorable variations in the body be gronped to either ont-weigh or muler-weigh the unfavorable variations? This would be possible if combinations uscurred; but we can readily see that combinations, such as we observe
 other so far as "sumivial" is coneserned : how the foot would mentralize the hand, or the fent and hand would mentanize the hmbar region.*
it is this consideration of single organs, the observation of their in depmont history the rise of mew empmond orgats ber steady growth fom infinitesimal begimings of their separate elemente, the combined fextimme of anatomy and patantology which force us to regard the theme of evohtion ly the matmal selection of chane vartations as wholly untemble. With the ntmost desime to regard the disemssion in as fair a spirit as possible, the exphations offored by the admerents of Wrismamis doetrine strike me as stranerd, evasive, and illogiral. \dagger

We can howerer by mo means modervalue or dispense with natural selectiont. which must be in contimons operation mon every chatacter of suftionent importance to weigh in the seale of survival. I need hardly remind yon that this seleding minciple was first diso 1813 by 1)r. W. ('. Wells, wi 'harlestom, in comection with the immu-

The eliminating factor in selection is illnstrated almost daily in cases of chpenticitis. I regret I have mot had time to ascertain whether on bot this disease is monderem dur purely to arement or to congenital variation in the aperthe of the appondix, which favors the admission of had objects. If so, modern surgery is only beneliting the individual to the detriment of the race by its efficient preventive operations: and every individual who sucembes to this disease can refieet with melancholy satisfaction that he does so pron bone publico.

Conclasions as to the fartors of arohtion.-The comelusions we reach from the study of the musentar and skeletal sivisems are therefore an follows: 1. That imdividaal transomism in the body is the mand deteminant of variations in the germe colls. and is therefore the mailu canse of definite progresiow on retrgressive variat ions in single organs. 2. That exolntion in these organ is hastened where all members of the race are subjeet to the same individual thanstormism. The contrast between the rate of indivihat transformism and race tramsformism is due to the stomg enservative fores of the germ plasma. B. That erolntion is most rapif where variations ane of sufticient rank to beeome factors in survival. Them selection and use inheritane mite fores as antive progressive primiples opposing the emsemative prinriple in the germ plasma. 4. That fortuitoms and chane variations abso arise from disturbances in the body or germerells: they may be perpetuated, on disappear in sucereding generations.

[^53]\ddagger See Introduction of Darwin's origin of specics.

Applying these views to variation there shond theoretically appear to be just those two distinct classes of anomalies in the human borly which we have seen actually occuming: First, those in the path of evolution, arising thom perfectly normal changes in the somato-phasm and germ-plasm: secomb, those wholly monomerted with the romse of evolution, arising fortnitously or from abmormal rhanges in the somato-plasm or germ-phasm; to this head may be attributed the whole seale of deformities. Thus tranformism and deformism should be kejt distinct in omr minds. Nevertheless the facts of deformism contribute the strongest body of evidence which we can muster at present to prove that there does exist a relation betwern the somato-plasm and germ-phasm which reuders transtomism possible.

The relations between the somato-plasm and germ-plasm.-We have seen reasons to take a middle ground as to the distinct specifir nature of the body rells and erm cells, and this position is. I think, strengthened the more hroadly we extend om inguiry into all the fiedds of protoplasmie artivity.

There are three questions before us.

1. What is the evidence that the erem-plasm and somato-plasm are distinct?
2. What is the specifie nature of the germ-plasm?
3. What is the natme of the relations which exist between the two?
4. The separation of the gemmplasm is in the regulan orter of evolution upon the principles of physiological division of labor. The micellular organisms eombine all the functions of life in a single massof protoplasm, that is, in one cell. In the rise of the moliti-cellndar organisms the rarions functions are distributed into groups of cells, which specialize in the pertecting of a single finction. Thms the reprodnctive rells fall into the matmal order of histogenesis, and the theory of their entire separation is more romsistent with the laws governing the other tissues than the theory whioh we find omselves obliged to adopt, that while separate they are still mited by some manown thrads with the other cells.

The morphological separation of what we may eall the lace protoplasm becomes more and more sharply defined in the ascending seale of organisms. Wrismam's contention as to the albsolntely distinct specific natmre of the germ-plasm and somato plasm has however to meet the apparently insuperable rlifienty that in many multi-cellular organisms, even of a high order, the potential rapacity of repeating complex hereditary characters, and even of producing perfect germ cells, is widely distributed throngh the tissnes.

For example, cuttings from the leaves of the well-known hot-house plant, the begonia, or portions of the stems of the common willow tree. are eapable of reproducing complete new individuals. This would indicate either that portions of the germ plasm are distributed throngh the tissus of these organisms, or that each body cell has retained its potential quota of hereditary characters.

 cernes. As yom well know, in the gronp to which the foog and sabamander belomg, a limb or tail, or even a lower jaw, may be rejnorduced. The only lagieal interperetation of these phemomena is that the hereditary fowers are distributed in the entire potoplasm of the organism, and the calueity of remorluction is not exhanstrd in the oriwimal formation of the limb, but is rapable of being repeated. There has been
 It reems to me mot impossible that in the vertebrates it may be stomed in the gam cells, and it wond bo very interesting to ane ertain experimentally whether removal of these eerls would in any way limit or atfere this power: we know that such remoral in rastration om ovariotomy sometime portomally modifies the entire nature of the orgat
 arters to develop in the male.

So far as man is comemed it has been dammed by sment that gemuine recrescence sometimes occurs; for example, that anew head is formed mon the femme after exsection: hat my firmal Inr. V. I'. (ibher informs mo that this is an exaggaration, that there is mo temdency to reporluce a trum head, hat that a pesemb-head is formed, whirh may be explaned mpon the prineiple of regeneration and individnal tatnsformism by use of the limb.

Phligers opinion is that reerescence does not imlicate a storage of hereditary power that there is mo peexisting germ of the momber, but that the re-growth is due to the organzing and dintributing power of the cells at the expensed surtare, so that, as mem formative matter arrives, it is built mbadually into the limb. This view womld reduce re-rescence to the level of the regencration process which mites twa "ut sections of the elements af'a limb in the former order. It is patty Opposed to the facts above refered to, which seem for prove the dis. tribution of the hereditary power. Vet it seems to me quite consistent to eonsider these there processes- \quad, mporluetion of a wew individnal from exery patt h, reerescence of a new member tion any pat; a re

I have not space to monsider all the grounds which support the view of the sepanation of the erom "ells in man. Some of the mome promi nent are: the very eaty difterentiation of these cells in the embryo, observed with a few expeptions in all the lower orders of animals, and advancings sabally in the homan female that several monthas before birth the number of primordial ova is estimated at seventy thomsand, alul is wot berlieved to be increased atter the age of two and a hati years. The most patent practical proof is that wo may remone every
portion of the borly which is not essential to life and yet the power of eomplete reprodnction of a new individnal from the germ cells are me impaired. Among the many reasons advanced for pensioning the mippled sobliens of our late war yon never hear it moed that their children are incaparitated by inheritance of injuries. The strongest proof however rests in the evidence I have abrady eited from heredity of the extraorlinary stability of the gem cells, which is the safegmand of the race.
3. The speritic mature of the germ-plasm most be considered before we consider its relations. Wherein lies the conservative power of the gem-plasm, and in what direction shall we look for its transforming forces? Yon see at once that marvellous as is the growth of cells in other tissmes, the growth of the germ cell is still more so.

We find it utterly impossible to form any conception of the contents of the mierocosmie uncleus of the human fertilized ovom, which is less than one twenty-five-hmuliedths of an ineln in diameter, but which is nevertheless capable of produring humdreds of thousands of cells like itself, as well as all the mulike cells of the adnlt organism. We can ouly translate our ideas as to the possible contents of this nucleus in the terms of chemistry aml physics.*

Spencer t assumed an order of moleenles or units of protoplasm lower in degree than the visible cell mits, to the internal or polar forces of which, and their modification by external agencies and inter-action, he ascribes the ultimate responsibility in reproduction, heredity, and daptation. This idea of biological units seems to me an essential part of any theory : it is embodied in Darwin's "gemmules," in Haeckel's "plastidules:" yet, as Lankester says the rapid accommution of bulk is a theoretical difticulty in the material conception of units. In the direction of establishing some analogy between the repetition power of heredity and known finction of protoplasm, Harekel \ddagger and Ilering§ have likened heredity to memory, and advanced the hypothesis of persistence of certain matulatory mormments; the matnations being suscep. tible of change, and therefore of prodncing variability, while their tendency to persist in their established harmony is thr basis of heredity. Berthold, Gantier, and Geddes\| have specolated in the elahoration of the idea of metabolism: the former holding the view that "inheritance is possible only mon the hasis of the fundamental fart that in the chemieal processes of the organism the same substances and mixtures of substances are reproduced in 'fuantity and frality with regular periodicity."9

[^54]I have merely tonched upon these specnations to show that the monknown factors in heredity are also the manown lactors in operation in living matter. All we can stady is the external form, and ronjerture that this form represents matter aranged in a rertain way by foren peconliar to the organism. These lomes are exhibited or patent in the somatice cells: thay are potential or latent in the serm rells.

The last stage of ome inguiry is as to the modre in whith the attion of habit or enviromment mon the somatic cells can be browsht to bear npen the serm cells.

The mature of the relation betwen the body edls and germ rells.--I have already shown that we are fored to infer that surb a relation axists by the facts of avohtion, although these tatets show that the transmission of normal tendencies thom the body to the germ cells is orlinarily an extremely slow proness.

Virchonw says wery variation in rare character is to be traned bark to the pathological rondition of the originator. All that is pathologifal is not dispased, and inheritance of a variation is not from the influencer unon one individnal neressarily, but mpon a row of individuals. This is in the momal condition of things. In the ahmormal rondition the rate of tramemission may he arerlemated.

Does this transmission depand upon an interchange of material particles. of upon an interchange of forces, or both :

There are three phenomena abont which there is murbla skepticism, to say the least, which bear upon the question of a possible interchange of forces between the borly and the germ-ells. These are the inheritance of mutilations, the inthener of previons fertilization, and the influmere of matemal impressions. They are all in the quasi-sementitic realm, which embraces such montal phemomenats telepathy. That is, We incline to dony them simply heanse we van not rxplain them.

Mutilations.-Since the publeation of Weismann's resays the subjeret of inheritad mutiations has attranted remewed interest. I would first rall at tention to the fare that this matter has only an indireat bearing, for a motiation is something impressed mon the oreanism fiom withont: it is mot truly "acarimed;" the lose of a part hy acerobent pro.
 than the loss of a part loy degeneration. Nost of the results are nesat
 to be merecoinditenes. Weismannthimself rxperimested mpon white mice, and showed that !001 yonmer were produred ly tive groneations of artifecially motilated parents. amd yet there was mot a single example of a rudimentary tail om of any other abmomaliter in this organ. The aases
 cases of clefts in which the parentis cars were normal. Sohmidt and

[^55]Orustein report affirmative cases. His shows that an affirmative case, citsd by V. Zwieciki, is merely an inherited peenliarity. The entire "vidence is unsatisfictory, and upon the whole, is deciderly negative.

Not so however in cases where the mutilation results in a general disturbance of the nommal functions of different organs, as in the experiments conducted by Brown-Séquard* upon guinea-pigs, in which we see "acquired variation" intensified. In these, abnormal degeneration of the toes, mmsulan atrophy of the thigh, "pilepsy, exophthalmia, etc., appeared in the descembants of animals in which the spinal cord or sciatic nerve had been severed, or portions of the brain removed. It was also shown that the female is more apt to transmit morbid states than the male; that the inheritance of these injuries may pass over one generation and re-appear in the second; that the transmission by heredity of these pathological results may contime for five or six generations, when the normal structure of the organs re-ippears. These cases, which are incontestable, at first sight appear to establish firmly the transmission of acouired eharacters; they were so regarded by Brown-Séfuard. These lesions act directly upon the organs, and the abnormal growth of these organs appears to be transmitted. But can they not be interpreted in inother way, namely, that the pathological condition of the nerve centers has induced a direct distmbance in those portions of the germ cells which represent and will develop into the corresponding organs of the future offspring?

Previons fertilization.-Consider next the inthene exerter mpon the female germ coll by the mere poximity of the male germ cell, as exhibiter in the transmission of the characteristies of one sire to the offspring of a succeeding sire, observed in animals, including the hmman species, also in plants. The best example is the oft-quoter "ase of Lord Morton's mare, which reprodnced in the foal of a pme Arab sire the zebra markings of a previous quagga sire.
sume physiologistst harr attempted to acomut for these remarkable indirect results firom the previons fertilization or impregnation, by the imagination of the mother having been strongly affected, or from interchange between the freely inter-rommmainating cireulation of the embryo and mother, lont the analogy from the action in plants (in whirh there is no gestation hat early detachment and development of the fertilized cells) strongly supports the beliof that the poximity of male germ cells acts directly mon the female eetls in the ovaly. All that we ean dednce from these facts is that in some maner the normal characteristics and tendendes of the ova are modified by the foreign male germ cells withont either contact on fertilization.

Maternal impression.-The inthence of maternal impressions in the

[^56] dividual opminon

It is denied by some high anthoritios, led iny bergman and lemek-
 add that it is a maversal. popmbar helidet supperted by mumeroms "ases. I myself am atm believer in it. The bearing which the sub, jeet has upon hisis diselssion is this: If a deviation in the develop ment of a child is produced by matemal improssions. We have a proof that a deviation fiom momal hereditary tendencies ean bu prodnced without dither direct vasonlar or hervons contimaty.

We see an andogy betwed the experiments of Bown-siquard, the influence of the previons sire and the maternal inflnence. Neither, in my upinion. directly suports the theory of transmission of arequired characters, for they do wot prove that nomal whane in the body cells direct! react mon the serm! eells: they all show that the typical hereditary development of single organs m:y be diverted by living foress whidh have no direct comection with them areording to our bresent knowlerge.

What the matmer of these mees is I will not muderake to say but I believe we most almit the existener ot some maknown fore or rather

A year ago, recognizing folly the differnlty of adrancing any theory of heredity which wonld explain the transmission of aconimed eharacters,

 explain inheritatoe hat mot evolntion, while with tamarelk principle and Datwins selertion princible we 'an explain erolntion, hat mot, at
 that there is sume third fatere in erohation of whinh we are now ignorallt。"
 l'rot. E. B. Wilson. He writes that the tendency jn fermany at
 partly \cdot to the fexling that the recent womberfal advaneres in ome knowhedgo of © of a purely mexilanion phrsical explanation of vital pheromenal. In fant, it serms that the tomberey is to turn latek in the dieretion of the

In the final lerefne we turn to the fores exhabited in the werm "ells.

[^57]LECTURE III.—HERENITY AND THE GERAI CELLS.
According to the general law* the germ cell was consilered as matter potentially alive and laving within itself the tendency to assume a definite living form in course of individual development. The muclens mast be extrandinarily complex, for it contains within itself not only the tendencies of the present type, but of past types far distant. The supposition of a vast number of germs of structure is required by the phenomena of heredity; Niigeli has demonstrated that aren in so minte a space as one one-thonsandth cubic millimeter, $400,000,000$ micelle must be present.

The stndy of heredity will ultimately center aromed the stracture and functions of the germ cells. The precise researches of Galton show that the extermal facts oi heredity, questions of average and of probabilities, of paternal aud maternal contributions to the offsprings, are capable of being redneed to :mex exact seience in which mathematical calculations will emable us to forecast the characteristics of the coming generation.

There will still remain howerer a large residum of tacts which will present themselves to a mathematicim like calton, as fortuitons, or inexact, such as the physiological conditions of reversion; the course of pre-poteney, by which the maternal or the paternal characteristics prerail in parts or in the mire structure of the offspring; the material basis of latent heritage npon which reversion depends, and which compels us to hyputhecate either an mused hereditary substance or a return to an older disposition of the forees in this substance; the nature and dotermination of sex. These apparently chance phemomena must also be due to certain fixed laws, and by far the most promising rontes to discovery have already been taken by Van Beneden, the Hertwig brothers, Boveri, Maupas, and others.

They have attarked the problem of the relation of the germ cells to the heredity on every side. and by the most ingenions and novel methods, wheh are familiar enongh in varions branches of gross anatomical and physiological researeh. but seem almost ont of the limits of appliration to minute microsconie objects. For example, the Hertwig brothers have ascertained the influene of varions solutions of morphine and other drugs of the alcohols, and of the varions degrees of tempratme mon the ovom and spermatozon during the conjugation perion, with results which are highly suggestive of the canses of congenital malformations, anomalies, and donble births. The Hertwigs and Boveri have suceeded in robbing ora of their mumei and watching the results of the subsequant entrance of spermatozoa. In order to firther test the relations of the nuelens to the remainder of the cell. Verworn has experimented along the same line with extirpations of every kind firm the single cells of Infusoria. Of equal novelty are the recent studies of

[^58]Nanfas upon the multiplication and compugation of the Infinsoria, give imens a host of mew ideas as to the evele of life, the moanins of sex, and the origin of the sexalal relation.

In all this researeh and in the fature ontlook there arr two main questions:

1. What is the hereditary substame? What is the matraial hasis of heredity, which spreals from the fertilized ovoms to arry rell in the body, ronveying its ancestral danateristics? Is there any substance "orresponding to the hypothetical idiophasm of Niigeli".
\because. What are its regnlating and distributing forces? How in the he reditary sulbstance divided and distributed? How far is it artive or passive?

I may say at the ontset that the idioplasm ot Naigeli. a purely ideal element of protoplasm which he concerived of as permeating all the tis sues of the body as the vohicle of heredity. has been apparently materialized in the chromatin or highly coloring materials in the center of the muelens. This rests upon the demonstration by Van Beneden and others that chromatin is fomm not omly in all actire eolls, but is a conspirnous element in both the ovam and spermatoznon during all the phenomena attending conjusation.

Secombly, that while the rhomatin is apparently passive, it is phyed

 like the ehromatin, only comes into view wholl there is umsual ade ity. as durimg rell-division, and is mot evilent (with oum present histo logical terhoigue, al least), when the rell is armested by reagents in any of the ortinaly itates of motahotism.

The distribution of heratitar! substunar.-I maty first revirn some of the well-known phemomemat attemkitg the distribution of the chematin substance to the tissues.

I have borrowed from Parker，figures by Carnoy，to illustrate the rest－ ing and active stages of the cell，and from Watase，a Japmese student of Clark Thiversity，figures representing the high differentiation of the cell contents during division（Figs．8，9）．They bring ont the active and passive elements of the typical cell．
The phenomena of karyokinesis which attend the division and dis－ tribution of the hereditary substance thronghout the whole course of embrymic and aduld development are well illnstrated in Camoys fig－ ures（ Fig, J ）．Finst we have the quiescent period，in which the chro－

 M，The nlutlear mennheane：F，Achromatin or
 side of the mele－nis； $1-1$ ，The two centonsmates of atrehoplasm：13，Estra motear arehoplasmic filaments：E，Intra－unclear archoplasn ic Alat ments athached 10 m ． n^{\prime} ．the elpomatin rods．

EIG．9．－AFTER DIVISION．INTERIOR OF A DAL＇（iHTER－ （ELL in THE SQUDD．（After Watase．）Division his just taken place and the daughtermmenos，N，shows the chromation roil．The danghter rentrosome sis jusf forming two new centrosomes，A－A．by direet （ivision．
matin presente the apperamer of a coiled，tangled thread；suromul－ ing this is the clear nucleo－phasm（or achromatin）bonnled ly the nu－ clear membrane：the extra－muclear substance，or eyto－plasm，is appar－ ently undifferentiated．As soon as cell division sots in，however，ra－ dating lines are sem in the eyto plasm above and below the nuclens： these are called the arehoplamic filaments ly Boseri，sime they pro－ ceed irom what is now believed to be the dymanic clement，the archo－ pasm（Fig．\＆）．As the artivity becomes more intense the filanents are sce⿻二⿰丿丨贝刂灬 to diverge from a conter－the archoplamic controsome－which lies ．Wnst withont the melens at either polde：this radial display of cell forees suggested the term＂asters＂to Fol，and＂spheres attractive＂to Van bemeden．The behavior of the chromatin．or hereditary substance，

 roil mondre into lines of vertialal striation whidh beoome theard like. hence the term mitosis. and then more compade mint finally a momber

I remarkable and siguificant late may tre moted hore, that the mom-
 in the cells of diflerent varieties (asis in the dhereat wome of the homseAsedris mogulomplata), haf is comstant in all the (odls of the same rat riety througlall stages; hans the same mumber of "hammasomes ap pear in the tirst segmentation of thar fartilizer ormm as in the subse guent cell division in the tissume.
 or link preceding the lorizontal splitting: thas we may romedive of a thomoth redistrimotion of the rhmomatin berome it passes into the
 soma, sugersting to some anthors a contrafte power in tha aron-phasmide filamonts. wath ehromasomm being apparently withdrawn hy a

 enere of opinion as to what the merhanies of the ehamasome divatoms

 Watase:

It thas apheatis that both the chmomatian and ardho-plasmare permat nent elements of the eroll. such ats we fomerly eonsideral the matans:

 the rlavage fimetion.

 rells in order to give grater (mphasis to the inportane of wand dis "overies.

 be ripened or "watured" for the rexption of the spermatomainn, by the extrosion of two small "poban bodies." rontaining both rhomatin amb
hyaline protophasm, and separating off by karyokinetic division. After maturation is complete, a single spermatozoion normally penetrates: then a reaction immediately sets in in the cell wall of the ovnm which prevents other spermatozoa fiom entering. The head of the spermatozoin and the muclens of the ovom now fuse together to form a siugle mucleus, which it is obvions contans the hereditary substance of two individuals. This is the starting point of the segmentation or distribution process above described, and it follows that the fertilized ovem at this stage most contain its typical complement of chromatin, archoplasm, ete., for the whole course of growth to the adult.

How shall we commert these phenomman of fertilization with the facts of heredity? The most suggestive anigma in comection with the fertilization process has been the menning of the two polur bodies, especially sinee Van bemeden demonstrated that they enntained chromatin? For twenty-five years, serenation has been rife as to why the ovum shonkl extrude a portion of its substance in two small cells; why not in one cell? why not in a larger momber? Thanks to the intense curiosity which these polar bodies have aronsed, and to the great varicty of explanations which have heen offered for them, we have arrived to-day at a solntion which links the higher amimals with the lower, breaks down the smposed bamier botween the sexes, and accords with the main extemal facts of heredity.

It seems to me best to discegad the order of discovery, and to state the fiacts in the most direct way. First, a few words as to the sueculations upon the meaning of the polar bodies.

The early views of fertilization* were naturally based upon the apparent significance of this process in the hman speries, in which the sexes are sharply distinguished from each other in their entire strueture, and the reproductive cells are also widely difierentiated in form, the ovom large and passive the spermatozoon small and active. The readiest induction was to regard these elements as representing dis tinct physiological principles, comesponding to the essential sexual characteristics-in short, as make and female cells, the former vitalizing: and rejuvenating the latter. Thas one of the earliest definite "polarbody" theories was that the orum was hermaphrodite, containing both male and female principles, and that it was necessary to get rid of the male substance before the spermatozoon conld enter.

As Vou Siebold and Lemrkant harl demonstrated that some ova reproduce parthenogenetically, that is withont fertilization by spermatozoa, Weismam turned to such forms for the solution of this problem. and was surprised to find that parthenogetio oval only extrode one polar body. This led him to attactione meaning to the first polar body, and another meaning to the second, which he viewed as designed to reduce the heredity substane in the ovimu withont regard to sex. Thus both this and the older theory conveyed alike the idea of redue-

[^59]sion, but witla an chtirely different supposition as to the nature of the material redured or eliminated.

Aampas on Conjugation among the Infisorian.*-Among the newor researeles which throw light upon this old poblem, those of Mannas are certainly the most hilliant. After a mosi exact and ardmons re searoh. extending wer sermal ?ears, lan collected his results in two memoins, pmblished in 1 sse and 1 sato.

His experiments were tise direred upon the laws of direct multipliration by fission, which revaled a compute rerre of liti in the singlecelled hitusomia and showed that atter a lomg perion this mode of reproduction becomos less vigoms, then derlines, and fimally reases altogether moses the stork is rejurenated by ennjosation of individnals from different broods. In other words, these broods of minute organisms grow old and dio muless they are omabled to tirtilize wath other by an exehange of hemeditary substaner altogether analagons to that observed in the hitgher multirallular organisms.

The cultures were made in a drop of water unon a slide, and feeding was adapted either to the hemboroms or candromot habits of the speries. Under these combitions it was tomm that the rate of fission or direre multiplication varied dirertly with the temperatme and food, rising in some spories (filancomo semtillus) to five bipartitions daily. With the optimm of ronditions this rate, if sustamed for thirty eight days, would produre fiom a single indivinhal a mass of protoplasm equivalent to the volume of the sim. This rate is however fomble to be steady for a time, and then the oftsming derline into "senescence," in which they appear at times only one tomth the original size, with reduced homeal wreaths and degenerate modear apparaths. This is reached sooner in some species than in others; stylomichia pustuluth smrives thed lomded and sixtern semerations on fissions, while Le"tcophrys patula persists to six lumbed and sixty generations. Finally, even morler the most farorable conditions of eavironment, death (י)sues.

Not so where conjugation is bought about by mingling theorispring of different broods in the same tluid, as in the natmeal state. Mampas soon discovered that exhanstion of food would indued conjunction between members of mixed broods. We thas romld wateh erery liatme of the congingation process, and determine all the phases in the ceycle of life. These differed, as in the longerity of thesureies. In Stylonichiot, for example, "immaturit." "xtembed orer the first ome hamdred hipartitioms: "pmberty" or the earliest phase farable to ronjugation, set in with the one lmadred and thittieth bipartition: "engams," or the most farable comjugation phase extemed to the one handerd and seventieth; then .eseneserne" set in, charatererized by a sexand hyper fresthesia in wiach eongugation was void of result or rejusenesemere, owing apparently to the destruction of the essential melear apparatus.

[^60]Conjugation begins with the approach of two individuals, and adhesion by their oral surfeces. There is no fusion, but in immediate transformation in the rell rontents of each indivional sets in, concluding

with an interchange of muclear substance. In each cell Maupas dis. tinguishes between the (II) migemuelcus (Fig. 10, the marronucleus, nuclens, endoplast of authors), which presides over uutrition and
growth and divides by monstrictions and the (m) mioronnctens (parammclens, mucleolns. of authors), which persides over ile preservation of the species. The latter contains ehromatin: it is the soat of rejuseneseme, the lassis of heredit., it dwides by mitosis. showime all the typieal stages of karyokinesis exerpting the losis of the cell membme.

The transfomation in "aclo of these mopulating cells first affeets the centers of hereditary substance, viz, the midernumbe they divide thee times: thas the mirromelear substance is rednced to one-fourth of its origimal bulk. It is contaned in two surviving micromelei (the others being absorbed or climinated), one of which migrates into the adjoining cell: the other remains stationary. This migration is followed by a finsion of the migrant and stationary miorommeri: this.s fowion effeets a complete interelange of hereditary substanee, alter whind the two in-
 gannclens breaks up and is remotituted in each fortilizel well.

Mambes gathers from these interesting phemmena aditional pronf that the chromatin of all cells bears the inherited charaderistics and that the eyto-plasm and nuclen-plasm, or achromatin, is the dynamic agent, beeanse the micronnclei beang the chomatin are the only struct ures which are permand aml persistent, all the other structure -moleo-phasm, ardo-phasm, otr.-heing replaced and renewed. The redurtion of the chromatin is purdy yuantitative, the eliminatud and tertilizing mirroncher being exartly equivalent; ater the chromatin has been fuartered the eell beroms inapable of fortherativity matil it is reinfored by whanatin firm the woplating well.

No distinction between the sexes in horedity:- The three laws which moderlie these phenomena are: (1) That fertilization "onsists in the mion of the hereditary substame of two imdividuals. (-) That before the mion the hereditary substaner in conlo is greatly redncol. (:3) That there is no lime betwem male amb femate, the compatinge eells are simple in a simitar phesological romblion wheren a mingling of hereditary characteristios affords a new lease of life. As Manpas says:
"Les differrones apmeles sexulles portent sur des biate of thes
 consiste miguement dans la manion of la mpmation de doux noyaux semblables ef 戶́quivalents, mais pormus de denx cellules distinctes."

In this comelnsion as to the semondary and supertidial. rather that fondamental, hifferene betwen the two sexe, Mansas simply romfirms the views of strashmere the lotamist, Hemsen, R. and (). Inert wig, Weisman, and others, mandy, that sas has wobled firm the neressity of erflomingation; that ermin the higher forms the weths
 the wide difference of form of the gem erells is a result of phesiological division of tahor-h he mass and solk of the ovom having heen diftion entiated to support the eally stages of derelopment white the spermatozoon has dispensed with all these accessories and acquired an active
vibratile form for its function of reaching and penctrating the ovum. The evidence of the Infusoria is paralleled anong some of the plants, in which conjugation between entirely similar erls is observerl.

The canses finally determining sex may come surprisingly late in development, and areording to the investigations of Diising and the experiments of ling* and of Giron are directly related to mutrition. High freding favors an incrase of the percentage of females, while. conversely, low feeding increases the males. In Yung's experiments with tadpoles the following results were obtained:

Geddes expresses this principle in physiologital terms of metabolism, that anabolie (constructive) conditions proluce females, while katabolie (destructive) conditions produce males.

I think we may now safely climinate the factor of sex from our cal culations mon the problem of heredity, and thas rid ourselves of one of the oflest and most widespread fallacies. We shall thas, in usings the terms "paternal" and "maternal" imply merely the distinction between two lines of family descent.

The theory of rednction.-This leads us back to the significance of the polar bodies. Van Benelen's discovery that these bodies contained rhromatin led gradually to the view that they were not fras. ments of the ova, but repesented mimte, morphologically romplete eells. Biitschli showed that they were given off independently of, and prior to, the contact of the spermatozoon, and, finding in the lecehes that the first polar body subdivides to form two bodies, he considered them as formed by true cell division, and rontaining both nucleoplasm and ehromatin. Giard independently reached a similar opinion, assigning an atavistic meaning to the polar cells. Whatman, in 1878, whaned the idea that they represented restiges of the primitive monde of reproduction by fission, while Mark described them as "abortive ova."

At this point speculation subsided until it was revired by Weismanm's attempt to comect these borlies with his theory of heredity, \dagger alrady referred to. The whole history is clearly given in R. Hertwis's masterly memoir upon Ovo and Spermatogenesis in the Nematodrs. \ddagger Taking advantage of Boveri's discoveries in staning tech-

[^61]nique, and stmmated by Weismamm": pedietion that spermatozoat wondel also be fomm to extmele polar borlies this anthor examined all stages in the feremliarly fathable germ rells of the thread-worm of the horse (issereris megulocephuld).

Ile mate the smprising disoovery that wat and spematozot are formed in a substantably simila mamer ly repeatod divisions. the single difference being that the last products of division amomer the sperm cells are effoctive spematozoa, capable of dovelopment in fertilization, white the last products of division in the ovary are firs

Fic. 11.

the true ova, and, second, the abontive ova (!olan (eells), ineapable of development. In both ova and spermatozeat the mudems contains but

 somes while the momal body erells contain four. The manner in which this marmation of the sermerells for congosation is bought about is beantifully shown in these diagrams, taken fiom Wemmamms exsay, "Amphimixis." You observe that the mmber of chomasomes in the primaty gem colls is fom (Figs. 11 and 12, i). Then are formed hy sulntivision the ovime and sperm "bother cells." in which the cherematill substance is doubled, so that we observe dight chmomasomes The mother erells then divile and the ehomatin is redneed to fome rods, a second division rapidly follows whereby the chromatin is reduced
to two rods, or hald the original quantity. These last divisions take place by karyokinesis, but, as Hertwig points out, they differ from typical karyokinesis in the fart that the divisions follow so rapidly upon earh other that the vesicalar resting porion of the mulens is omitted. Thus. he suggests, is preventen an oneracemmatation of chromation substance prior to the fusion of the ormm and sperm.

Spermatogenesis in Ascarim-ifrom Weismann after lhertwig.) A. wrininal germ cell-4 chro-
 tion of secom danghtor wells. of mafnre shmatozon, with $\underline{2}$ rands vach.

It is evident that the polar cells are molimentary ova, which do mot possess the yolk mass, atco, essential to development, and are divided of at a very late stage, sometimes after the egg has loft the ovary, but are in other resuedes analogons to the spermatozoa. The reason these polareolls have not disappeared altogether in either phats or animals is that they orieninally possessed a doe physiological importance. As the first polar cell subdivides and forms two, it follows that from both oram and serem mother cells fon danghter cells are formed, rach containing half the rhomatin substance of a mormal muclens. In the ovary thase of these darghter cells abont and the fourth forms a true ovnm; in the sperm sland, however. all form danghter cells form spermatozoa.

We may thus consider the polar-cell poblem as in all probability setthed; the whole proerss is probably an inheritance or survisal of a primitive condition in which all four ova, like the four spermatozoa, were fully functional.

Tha relation between the chromatin and heredity. Wre have just seen that the last stages in the preparation of the ova and spermatozoa for conjugation result in lalving the number of rorls in the original germ cells. Now, as Hertwig and Weismann point out, one point is
still left in doubt. Why is the chmomatin substance donbled in the
 it to half the migutal quantity? Hortwig has mot attrinpted to answer this question, as he prefors to wait for forther researelh. Weismam,
 has offered a remonlativa solntion to this problem which he thests may guide futmo insertigation.

This leads me to saty a few words in regarl to his concertion of the relation of the ehromatin to heredity: (1) Ilis first premise is that in tertilization there is not a fusion of ehmonatin, hat that a cortan indepeme enme is freserved betwern the matemal amal paternal dements, based upon the observed fart that the two pairs of rods do not these but he side by side. and upon the assumption that these pairs are kept distinct in
 opment. It this is the case, the hematary substance contributed hy the father womld remain welarate fiom that contablented hy the mother, thronshont. (Z̈) "Eatcla of these pairs wond he made up of the (oollertive predispositions which are indispensable for the batheng up of an individnal, hat each presesses an individnal chararter, for they are not contirely alike. I have eallerl such mits : ancostral plasms, and I comerive that they are enntained in mombers in the whomatin of the matme germ rells of living organisms, ako that the older murlear fork are mate יb of a redtain momber of these

Ohviously these
 they most always wetain a rortain si\%e. This follows fiom the extremely compliatad strometme whid we must withont any donbt asoribe to them." These mats are not, howeref, nltmate, they are bu turn wtremely complex, and are "omposed of comothess biological mats of the
 matin only arouners a meaning when taken in emmertion with the above smposition of distinet allerestral plasmis. amd has momeaning if we aront llatwige viaw that thore in a romplete finsion of mas ternal and patromal germ plasm. This meaning is that mathon in the matmation of term rells is s.mi grmeris. it does mot divile the anese tal phasms intotwo similat wroup, but one danshtererell reore ves one set of germ plasms or hereditary predispositions, and another danghter
 view the fom sperm and ovim danghtoroell: wonlal each eontan a different ret of ancestan phasms. (1) Tha fact that the chmomatin sulb. stance is doubled in the sperm and ovom motheremers so that we obseme donhle the momber of tods chatateristic of the speres, is to be explatned as an ardaptation to the requirements of hatmal seleretion, for this doubling and subserpent domble division render pessible an intinite mmber of combinations (as many, in fato as there ame individ. mals) tor selertion for operater \quad pon.

This explatation of Wrismamme is an examphe of his apotheosis of
the theory of natural selection. Every process is made to suit this theory, which, as we have seen in the first and second lectures, is, in his opinion, the exclusive factor of evolution. But this very high degree of mingling and re-mingling of ancestral pre-dispositions would be fatal to evolution, for after a combination favorable to survival had been established in one generation it wonld be broken up into a new combination, perhaps untavorable, to survival, in the next generation. This entire essay upon "Amphimixis," or the theory of mingling of reduced hereditary substance, will, I beliere, mark a turning point to deeline in Weisman's influence as a hiologist. His whole reasoning is now in a circle aromed the natural selertion theory.

The meaning of conjugation.-Weismaun looks upon sexual reproduction as designed to mingle hereditary tendencies and to ereate individual differences whereby natural selertion may form new species. It is erident that these combinations must be mainly fortuitous and productive of indefinite variation; but we have seen that evolution advances largely ly the accumulation of definite variations, or those in which each successive gencration exhibits the same tendencies to depart from the typical ancestral form in certain parts of the body, and that these tendencies stand out in relicf among the diffused kaleidoseopic or fortuitoms anomalies.

The fact moreover that variability and evolution by the accumalation of certain variations in successive generations is also observed in organizisms which reproduce asexually, both among plants and animals, shows that we must look in another direction for the muderlying cause or purpose of sexual reproduction. Weismam rightly combats the old idea of "vitalization" of the ormm by the spermatozoon, and it is perfectly evident from the researches of Manmas and Hertwig that the ovom may as accurately le said to vitalize the spermatozoon as the reverse. Fecundation is simply the anproximation of two hereditary substancers of distinet origin and their incorporation into a single unclons. The action and reartion of these substances may be considered equal and mutnal. so far as we now know.

The remarkably ingenions experiments of Hertwig and Boveri, above alluded to, strengthen this intea. Some gears ago Weismam wrote: "If it were possible to introduce the female pronnclens of an egg into another egg of the same species, immediately after the transformation of the murlens of the latter into the female promuclens, it is rery probable that the two muclei would conjngate just as if a fertilizing sperm nuclens hat penetrated. If this were so, the direct proof that egg nuclens and sperm moleus are identical would be furnished." Boveri succeded in accomplishing a similar feat loy depriving an ovem of its muclens and subsequently cansing it to develop by admitting a spematozoan which fertilized the demucleated ovom and produced a complete individual.

In oprosing the vitalizing properties of the sperm, Weisman how-
exer went fintlace, and adrocated the view that there is mothing in the nature of vitalization or "rejurenesernce" in "onjugation-that, given poper chrimoment, protoplamisimmortal, and mans mon a course of muliminished ardivity. This we have seen is mot the case in the in-
 of organisms which. aconding to our present kowledge, are romphetely asamons ame immotal-mancly, the Momalina. It may in
 ment in which conjugation plays its part.

Manms expriments seem to establish the primitive and therefore the true, interpretation of the purpose of comjusation as well as of sex, the latter being a consenuence of the fomer, hamely, that after atong period of direct subdivision of hereditary material fiom a single individnal, a limit is rearhed beyond whid the formes of heredity are not reproduced in their onginal intensity mones rombined with another set of similar forees of different migin. This rombanation restores the original intensity. It is ohjected to thin that two sets of feeble tomers can unt constitute one vigorous form, but this is met by the observed tact that such mion does start anew life eyele, and is therefore rejnvensesent. We may reand this as the fundamental meaning of conjugation, and the proluction of varations ans entirely serondary.

The distribution of the chromatin.-We lave now reviewed some of the main phemonem of fertilzation: there still remans the relation of the hereditary substance to the finture develoment of the individual. Therw is, first, the astomishing fant that, as the whomatin goes ow dividing, its mass or volume remains apparently modiminished; that is, there is apparently as much chromatin in one of the many million antive cells of the hody as in the miginal fertilized ormon, and there is still an enigma as to the nature of this remomatin and its fimetions. Berondly, there is the prohbem of the maternal and paternat elements in earlo cedf; do they lir side by side on and they fisent?

1. In plants. De Vries* and others bolieved that all or by far the greater mumbry ofls in the phan body contain the total hereditary chamaters of the speries in a latent rombition. Källikw has fally
 in spite of the physiongiral division of labor prodnemg the tissmes. the properties of ali the fissmes (an be deriven from the melear sub)stance of a single tiswe as proved bex exeriments nom the bowe animals. Weismam, on the other ham, has held that the comse of development is marked hey a constant qualitatioe disurihntion of his germ-plasm or hereditary subtance, so that, so far as mullen content is comerned, there are thee firms of cells: (1) with murlen-phasm; (2) with mu-l"o-phasm and germ-phasm; (:3) with germ-plasim only.
[^62]Kölliker onposes this idea and mantans that the "idioplasma" passes into all cells, iu which it divides in course of development. Step by step from the embryonie layers to the tissues, the constructive proeesses are under the direction of the nuclei contaning this hereditary substance. It remains in every nuclens for a long period maltered, in order to finally, here earlier, there later, impress its emstructive forces. In certain clements, as in blood corposcles, epidermal scales, etc., it disappears, as the last modnct of division.
R. Hertwig takes a similar view. Since embryonic and adult cell division is differential, there must be a form of differentiation in the mulens: lont this does mot romsist in the total elimination of some qualities and survival of others, nor of a reduction in mass. The mass and the properties remain the same in every cell; the differentiation eonsists in the activity of certain elements in certain tissues. Thens we may say with De Vries that different "pangene" may leave the muclens aud enter the cell in different tiswurs; or with Naigeli, that special "micelle" come into activity at certain points; in other words, the potential of the muclens is differently exerted. Here again we have the idea of patent and latent hereditary elements, such as appear in the entire individual upon a larger siale.

This is one of the most interesting problems for fiture investigation, but the direction of research will, I imagime, eover a larger area of cell content than the nuclens, as we are now swinging hack to regard the extra-muclear arehoplasm as an important factor in the process.

In the following paragrapin Hortwig expressed his view of nuclear control and cyto-plasmic differentiation:
"As I saw in the transformation of the melens during fertilization proof that it is the bearer of hereditary substance, I reeognized a great advance in the fact that the melens leaves in the same form in every cell, and in its resicular capsule is somewhat removed from the metamorphoses of the rells. As Naigeli spreads his idio-plasm as a net-work thronghont the whole borly, so, according to my theory, every bodycell contained in its molens its quota of hereditary substance, while its sperific histologiral peruliarities were to be regarded as its plasma products.
ed. The next question is the fate of the maternal and paternal contributions to the embryo. Here there is a wide difference of opinion. On the one side Tan Benelen is the leader of thase who regard each cell of the borly as in a sense hermaphrolite: as we have seen, his views of maturation and the significance of the extension of the polar loolies were colored loy this theory, for he regaden the germ 'ells as hermaphrodite mitil me sex was climinated. But now that thr researehes of Mertwig have given the lasid blow to Yan Bemeden's theory, and it follows that there can be no male and female chromasomes, there still remains room for the analogons view that the matemal and paternal chromasomes remain distinet thronghont the rourse of development, not as sexual elements, but as substances with the same racial and

 observation that in cald division the patman and matemal eldments
 of earh division figure are paternat and two are matemal.

Th tavo of this hyonthesis we may place the following facte: 1 st that there are ant even momber of chomasome rods in all oells; Od, that the number is comstant thenghout all the smbsegnent changes in the
 that the momber is the same in each sex.
Gamst this rephament hypothesis we mans romsider the extreme complesity of the division procese, and the lomeresting. or theat stage in whim the chamatin lies in a comfused erail. Further. Hert

 fiom the mukens. fir lowth parts can mot share alike in the rentron of
 mugsthembe." of fusion theory, also advorated ly Wahdere, to the effoct that ly the complote mion of the matemal and paternal sub) stane a new protuct is finmed: in this insion the law of pre potener may rome intophay cansing ome of other of the parental temeneries to fredminate, or there may be an evell redistribution, wherebs, as axpresed by Homsin, "the hereditary subtane of the som is mot that of the father phes that of the motier, hut is his own, with a mew herentitary forlu resulting fiom the romblatation."
 aration or finsion of the momatili. wo may appal to the axtemald phemoma of heredity for light mon the pronalilities in the question
 partienlate imberitanere: he is so impresser with the fard that we are
 ters that he has even sugerested that the skin of the mulatom mas represent mot a finsion of white amd hark, hat an excessively time mosate in whel the colows are so distributed as to give the appearame

 the material hasis lim the formation of the comblate colon of the we
 rhade the development of the other: the lagial intieremee is that the

H. Мis. $114-\because 4$
strongly against this as a miversal principle, for many maternal and paternal structures are preserved in their absolnte integrity for generations withont the least intication of mixture.

Cell fores and herality.-We have thas far been considering only the chromatin as the heredity substance por excellence, and have disregarded for the time the archoplasm on dyamic: matrial of the eell.

If we advance mon the hypothesis that a typical well contains the more or less passive chromatin. and the archoplasm playing npon this "hromatin in course of every phase of re-distribution, it seems it prori improbable that elements which are assoriated with every vital change shonk be dissociated in the phenomena of heredity. We might suppore that the mectanics of karyokinesis are exactly similar in every cell of one individnal, lon it is highly improbable that they shonh be exactly similar in two individnals. We shomld therefore anticipate the joint transmission of the chromatin and archoplasm, implying by the latter the dynamic centers esperially romerted with hereditary function as distinguished from the general finctions of metabolism.

This leals us to look for evidence from the life of the ecll in its totality. We owe to Dr. Max Verworn* at fresh treatment of this subject, based upon exprimmatal researehes among the Intinsoria, mainly by the extirpation method. As his experiments inclucled ouly the phenomena of living dells in which the chromatin substance was of conrse molifferentiated to the reve, he treats of the mucleus as a whole withont distinction as to chromatin and achromatin. He conchafes that the physiologioal importance of the molens is exhibited in its constant interchange of matrials with the remainder of the cell borly; only throngh this interchange does it intluence the cell and control its life proesses. The interelange is in triple currents, a, from ontside of cell to eyto-plasm; b. fiom eyto-plasm to mulens; c, from mudens to eyto-plasm. These movements of interelange are the expression of life phenomena. He compares the role of the murlens to that of a rell organoid, like chlorophyll, as not constantly present but as invaribly necessary to activity. Thus he believes even the most lowly organized cells have nudear centers, and that even bacteria are differentiated into mulear and extra-muclear areas. Coapled with this idea of melear control is the somewhat paradoxical statement that the melens is not a dynamic renter, either antomatic or regulating, and the conchasion that the nuclens alone can not be the seat of fertilization and heredity, but both the nuclens and extra-muelear protoplasm most constitute the material basis of heredity. This conclusion is in the dirertion of the general reartion of opinion which is now taking place against the centralization of eell-government in the nuclens.

Vague as they must necessarily be, our ideas of cell forees are somewhat further defned by the brilliant experiments of the Hortwig
"Die Physiologische Bedentung des Zellkerns," Archic fïir I'hysiolonje, 1s91, pp. 113-115.
hothers mon sem eell phasiongy and patholngy. which are finl of suggestom as to the wasation of ahmmalities in inlmitane These were begun in hist, and wer first direded to the inthener of gravita tim upen the planes of "mbromie eell division, following u! the experiments of Phitiger amb Rauber. In 1885 the comditions of hastard fertilization weme stadied; in 185% the camses of prelysuermy or mul tiple fertilization : and in $18: \%$ the efferts of extreme heat and cold
 that in the mormal state there exist regnating forees in the orm which prevent multiphe fertilization or bastard fertilizations (i. e.. by sperma toron of other varietiess), but these foress are montralized where the lifermergy of the eell is diminished her ragente or by extremes of temperature.

For example. in the mormal state the entrance of a single sumatozoon proslures a reation in the orm wall preventing the entrance of other summatona, but when time ovem is wakened by chlowoform solution two more nermatozo enter before the raction appears: in fact that degree of polysuremy is directla promertional to the intensity of the ehemieal. thermic, of meedamial distmonere of the oxmm. Double fertilization or over-fertilization has mot in a single wase rembed in the production of twins, so that Fol's supposition is nexationd. althomsh other forms may helave differmotly. The wall fimetimmay
 patemal and matemal, about tomite, wat be hell apart ly homing the temperature. Polyspermy also resulto from a lowned tumperat thre. It is nomemotly that the womditions of hastand fertilization and
 former. Koptter has, I beline saceden in moduring twins, or rather two headed monstems by atmomal fertilization in tishers.

These researehes. althemgh made with a different oheret. reestablish the wher views as th the interedependene of melleat and extramelear

 phemomena of heredity in the following mamme:

Whate the mion of the murded in fertilization is the most obvions

 this pewer can mot wome from the parental side: but bowri shows that this is probably not the case and that the epermatomon binge its aern trosome with it. thus cutering the whm with both the paremal chow matin substamer and dyamir material. It is certain from this and

[^63]from the observations of Roux that the sperm cell is now to be resarded as more than a mere molens, that it contains both nuclein and paramuclein.

Intercellular forres.-The forces within the different portions of the cell lead us to consider those which must exist botween different cells. This is an obscure question at present; but, as I have observed in the close of the second lecture, it is an extremely important one in romection with the problem of heredity.

As Prof. W ilson writes: "My own conviction steadily grows that the cell is not a self-regulating merhanism in itself, that no cell is isolaterl, and that Weismans fundamental proposition is false."
it is a long ste] between an a friori conviction and the demonstration by experiment of a correlation of forces betwern the cells. This seems to me a most important fich of experiment. We have sern in Manpas's work that the contare of two infusoria initiaten a rapid series of internal changes; we have only to conceive of analogons changes taking place when two cells are not in actual contact, as in the phenomena of previons fertilization refered to in my second lecture. Hertwig and others have shown how gravitation is related to cell activity: Ronx las destroyed half an embryo with a hot needle ín the first stages of segmentation and followed the wther half throngh the stages of subserqent development. Another alever axperimenter has tmoned tertilized ova mpside down during the early stages of development. and shown how the protoplasmic pole and yolk pole forcibly change places. Driesch has traced the comection and meaning of the first phane of clavage in the embryos of echinoterms, and has suceeeded in raising a small adult from half an embryo artificially separated durmg the first charage stage. Wilson, in the larva of Nereis, hats shown how a rertain stage of division in one gronp of cells affects all the other gromps. All these experiments are in the line of determining the relations which axist between intemal cell forces and other natmal forces. What we most now sack to determine is the relation of cell to cell thronghont the body, in connection with the phenomena of heredity.

Comblusions.-Perhaps the most impressive result of our review of recent researches in exohntion and heredity is the miformity of life processes thronghont the whole swale of life from the infusoria to man. The most striking analogy is that seen in the laws of fertilization and congugation, which are shown hy Mampasis researehes to have been established substantially in their present form at a very early period in the evolation of living organisms. Such unformity furnishes a powerful argument for the advocates of the study of biology as an introduction to therapliad srience of medicine. Mach that is now entirely omitted from medical education. becanse it is considered too remote, is in reality at the very roots of the selenee. To moderstand the disorders of life

We should first thomomehly muldristand the essential phemomemat of normal life. Of comse we shall nerer ser life as it ratly is, heranse therr is always something beyoma om highest magnifying powers; but We come nearest to this invisible form of energy when. with surh
 thein areessmies amb vime them in them simplest rexteral form.
 those of heredits. No theory is at all alegrato which does mot exphath both classes of facts, and We have sern that the explanations offered hy the two opposed sehook-those who believe in the transmission of actuived \cdot hatateters and those who do mot-are diredty extusive of eath other. We should smapend judgment matioly mathor than rease to sather from every quarter tiacts which hear mon the most important and central problem of the tramsmission of acopured rhanators. I have erdeavored to point ont the oprortmities which medical pratoti-
 mast not be forgotten that while the inheritanee of individnal ampara tion to emvinomment is the simplest method of explanimg rame adaptation surl as wo wherve in the arolution of man, we know absohately nothing of lww such inheritance ran he efferetel though the germ "ells. Weran mot at present remstrat even any form of working hypothesis for surh a process. (bu the other haml, we have fomm low momemble is the altermative theory offered to us by Weismann, that it is solely natural selection or the survisal of the littest whicle

> "- - - hapes one emds,
> longhe hew them as we will."

At the same time W"emamms 'onseption of a contimity of germinal protoplasm, which we hase fomblo consist in chomatiu plus amor plasm. Welps us orom many of the phememema of heredity, esperially on the retrogressive side and if it were not that we most also areomet for progresive amb definite transfomation in horelity, we might redit the distingrisher Freburg matmalist with having loosened the Gordian knot.

In smmang mp, the order of treatment followed in the leatnes may
 more or less ascertaburl facts.

The werm colls:
(1) The material substance of hereditary tramsmission is the highty coloring protoplasm, or womatin, in the malens of the werm arells, probably commertad with a certain form of atehoplanm. ol dyanmic potophasm ontside of the mullous.
(z) Before ronjugation and ferfilization the hereditary substanm of both the male and lemalo wells is redncent to omberalf that fomed in a typical eell. 'This substance is howerer first dombled and thon quattered, the meanine of which poress is not mulerstoont.
(3) There is a difference of opinion as to whether the paternal and maternal hereditary substances, during fertilization, are fused or lie side by side; also as to how the smbstance is distributed through the tissnes, whether en masse or by qualitative distribution.

Heredity:
(4) No comection between the germ cells and body cells is known, but the facts of heredity sem to reuder such a comnection theoretically necessary. Several classes of facts comected with reproduction seem to support this theory.
(5) The facts of heredity support the theory of a continuous and specific form of protoplasm as the basis of repetition of type.

Evolution:
(6) The facts of evolution, both in present and past time, point to transformism by definite progression toward new types of structure in succeding generations, opposing the retrogressive forces of heredity.
(6) The theory (natural selection) of detinite progression by the accumulation of fortuitons farorable variations is found to be not only theoretically improbable, but not to correspond with the observed laws of variation.
(8) The laws of variation (amomalies) lend smport to the theory of hereditary tramsmission of individnal acquired variations, but even this (Lamarekian) theory encomters many diffienlties.

I think this is as fair a statement as wan be made at the present time, and it rests upon a general survey of the whole tield.

REPOR'T ON゙ THE MIGRATION OF MLRİS.*

By lrof. Dr. J. A. Palomén. \dagger
Milsingfors, Fimland.
[Translated from the fiemman lyy ('. Wr. Slomenaker.]

The ammal migration of hiods has at all times attracted the attention of thinking men but in vary different wils. Thas this phemomenon awakes in the simpore peasant other thonghts than in the man of enl the: the port and the atatmalist look reon the returning flocks with other ferelings than the hmones Natumal philosophers fimally take up tha migration as a very eompleated mahlom for investigation. They rasal it howerm from diffent points of view, and acomdingly the gurstion is trated in dissmalar ways.

Lime admonished matmal philosophers to observe the migration of birds. But this whlerting of data comd not be dome methodieally before the necessity for simultanems observations were greater areas
 amd in this direction a progran was patctically pariad out. Pucteret then in the vear lsit asked that the ohanges in living mature ako he noted in a mompehensive and resulan manmer, and his romatroman de
 gration of hids. This vereated warning was mow oheyed with zeal.

[^64]Helsingrulss, May i, 1591.

When the new impeths on the side of physieists and elimatolngists became felt, the inquiry asmmed adequate form. The arrival data were considered like other chmatological observations, and treated in the same manner as the notices on temperature, air pressure, etr., with the view of finding an expression for the climate of the corresponding regions. The bird of passage was regarded as a romplicated apparatns, by the observation of which the climatological problems could be explained in certain relations.

Koölogists however conld not permit the bird and its migrations to be regarded merely as a means to serve other purposes, but both constitnted independent problems in themselves, dependent only in critain respects mon elimate, ete. It was asked therefore how the question was to be examined in this regard: and, as may readily be conceived, methods were for the time being suggested which the elimatologists had already perfected.

Consequently the "climatological" material of data about the arrival and departure of the birds assumed the chatacter of an avi-phenological material. By its proper treatment, it was desired to fix the comse of the migration of the species of bids: and with this view first of all an effort was made to determine its time, in order to judge first by that of the direction of the migration. Two means were now available:
(1) Either data of arival from one year only were to be used, becanse only such can be compared with one another (Kessler, 185:, Fouth Russia):
(2) Or from as many years as possible, in order that the errors of observation, mavoidable in any case, combld be mutnally rorrerted. (v. Middendorfi, 185\%), Russian Empire.)

Both conditions were rery diftioult to fultill, the former however, easier than the latter.

At all events, both methods oftered a good vien of the gradual progress of the birl speries, as heretofore of that of the increase of temperature and similar dimatologisal phenomena, but hardly anything more. The enuelusion that the migration takes place at right angles to the isonipteses seemed justified; but, with regard to the direction of the bird's misration to be aseertained, could not possibly prove more exalet than the promises themselves, the methorls of inquiry, and the material.

As a reminder of the "elimatological" "onerntion of the prohiem and of the corresponting methods, somothing medimm, something of arithmetical mean values had to attarh to the result, which howerer did not exist in the phemomemon itself.

For the migration of birds is by no means a meteorologival hut a biological phenomenon, The pustion is abont the arlvance of living andividuals, who move acording to their own will. Their paths most be investigated, and the resnlt of this inmiry mast be given much more exactly than the adrance of the spring watmon. For, since the
indvialual ean fats over only mar line of migration，the durstion arisers Whether flocks of iudividals，and evell the whold sperpes．wath mot in the same manner follow fixed romtes whel suit them．（）therwise．how denes it happen that eretain suecies appear in mumbers erery pran in

 these questions：others mast be applied．

As in any eomplicated pooblem．the arder in which the different sides of the queston arr bakm nj is mot a mattor of indifferemere for the knowledge of somm of its sidse imdisputably helps to atm momestamding of eertain others．Whath side of the phomomenon of migration is to
 least，before the uther questions ratl be properly asked，mombless answかなり．

In fact．a prine ipal phohlenn al the investigation table within the
 route the spectios takes betore the timb regriad to traberse this ronte

sumderall pointed out empirically the eomse whob the insestigation
 tion of the rame in Emopr．
 1 ion ronk explain the migrations，the writer axamimed the question

 elabr light the mathorls of invertigation to be employed：for in this relation it is not posible to rompare all speets of bitas now all the regions penetrated will one another．

 sent themsples．

 introst of observers in mathy flaters：
 all the regions whieh it visits in its migrations．
 Hatrow－homatod regions long sime attrated attention for all deserip． tions from thase regions are highly pistarespar and antrataning．

the indiviclual voires. The whole thing must therefore appear to us as a complication, thongh a very interesting one.

Here also, then, an average answer is of no use, but the whole monst be closely analyzed. This however can not be attained by study of the general migration. Just as a tangle of threads can only be loosened by getting out the single threads. so ont of the net-work of migratory routes. that is out of the "highway," the separate rod of each species of bird must he picked out amd followed. And this work pre-supposes the knowledge of the last named, which however can only be acquired where the migration assumes a simpler aspect.

The existence of narrowly limited roads, ramified in at elaracteristic manner for each species, was felt beforehand by zoölogists who, in their investigations. depended mon the less productive climatological methods. Thus in admirable manner von Middendorff compared the rontes of separate species of hirds with the different forms of shrubs and trees which were drawn on the paper. The leaves eorrespond to the nesting places. the branches are to compare with the routes, and the roots with the winter duaters. On the man the shmbs would bear their foliage not far from the roots drawn somewhat more to the south; the treeslikewise ramiifed, but of lofty growth-wond take a higher place: and, nmamified, some gigantie stalks wonk jut ont, which on the map take root in Egypt, but with their brauches sharle the coast regions of the frozen sea, berond the tree limits.

With the indispemsably necessary geographical determination of the rontes of separate species of birds, all reliable loeal famms, as well as smaller lists. most first of all be used as material for investigation, and moreover, all notices of isolated discoveries of a species of bird in places which the migration passes. Such isolated notices and minor works are indeed the extreme roots of the inductive zoö-geographic inquiry. Out of the entire ornithological literature therefore a comparison is to be marle of all aceoments of the aprarance of a specios of bird. Commtry after country must make its contribution, and for each district a separate conclusion mast be drawn for the spures in unestion, and the result added to that of the next district.

The writer's investigation of the migration of some birds breeding in the Aretie regions, carried out on these principles, yielded certain results which need not be here considered in detail, but it may perhaps be well to note some of the main points.

During the migration, these birds do mot by any means take any direction they please, nor do they follow everywhere ond and the same direction, pertaps a "general migratory ronte." They rather follow well defined, geographically bombed ways, whose bends depend pri marily upon the toposraphical relations of the regions. Other not more accurately examined species of birds also act in the same or an analogons mamer; since their migrations, taking place almost everywhere, are to be traced to extremely ramifiod routes. The rontes of migration may be grouped into several categories according to their character.

The oreler of migration of the individuald may las redued to two simple tipes: (I) where a momber of individuals move fion one plate to another without rhanging their relation positions mathemanderzug) ; (2) where the mative positions are chatsent. some moving more rapilly than others woribur-zug) : with all transitions between the two.

The fregular migmations also are to bo distinguished form the recylar, and the stray visitons are to be comsidered in harmony with this prineiphe. These stray visitors ran msentially rontribute in the suming in different ways to the axtension of the breeding distriet.

Theoretically the origin of the migration instinct lowoms somewhat more comprehensible than betore: and the explanations fomme might be fit to eatrse a new discussion almot the phenomenon of migration. This comerption of tha partionlan's of the migrations mot with apmor

Birds nsmally migrate in atixed direction, -in the sreater patt of Eumpe essentially fom mortheast to somth-west. 'The maintename of this dirertion dojemts on the birds' sense of direction.

The pasiage of a partientar sumes extemts orn लery single point within its migration distriot ; for the hirds thy so lish in the ain that the direetion of thein flight beromes indepenchent of the topegraphy of the gromad. From this height they peredse suitable pesting places. where they can repose (on stop). Dis combining smeh phates, the pres.
 to the facts. The birds do mot mon along linear montes, at least not alomge coast ways. Ther mote with an extrmad fiont, merywhere.

Only in isolated plates are the bibls compelled by insimmomable whitacles, like high mombtams, to deviate fiom the wemeral direetion. and to colleret toserther in lasere mumbers at one point than at another.

The ermomensly soralled stray visitors have ly mo means geme
 ness of the obsorvations, are ormbonked in most plates.

All theoretical epeonkations on the migration are to be rejected. They are mot maly nseless. hat dinertly ingarons: becantse they only
 knowledge, merely open the door to fancy. The temdeney to comstruct hypothetioal migration rontes for the birls las sumang frem the mow

In hater vears llatwig followed li. von llanorors conception of the

Tha writer land abeady in the yan $1 \mathrm{~s}^{2} 2$ published his ...answor" to

[^65]the anthor of the "migrations". That coneeption has at all events its anthority as the persoual opinion of the renowned anthor. It conld however be fully aceepted only in case it were fonnded upon a material of commmincated facts, and conclusions had bern rached from these in a strietly logical and ronscientions manner. Brcanse, however, these conditions were wanting, a purely soientific examination of the views given conld be made only with difficulty or not at all. The disenssion conld only take the form of a personal defense, which conld at all events somew hat clear up, the question, dulled by the mamer of the attark, but could contribute little to the finther elucidation of the problem itself.

A little attention will suffice to show that the writer had neither subscribed to narrow - lincar" rontes for "birds" in general, nor the existence alone of coast and river ways. He maintained aboveall that the individnal speries of birds do mot move irregnlarly, and also that each species is not obliged to follow a fixed direction in the sky. They act according to the local and continental relations of the ground, and, besides, each suecies arording to its onn matnre.

There are then ano species whose rontes go thongh narrow plains, and which spread ont here as far as the spare promits. The migration rontes likewise often lead through regions where these sperims find ample scoper and ran choose snitable roads within wider bounds. The migration lines of individuals and bands gronp themselves then in bundes, which, acoording to cirommstances. brameh ont and mun together again, and tha individuals do not here confine themselves so strictly to fixal places, as in the marow bounded sections of the ronte. In surle wider foads, as may readily be conceived, a wider front is also developed. Even om opponents seem to allow that here also certain obstacles situated on the flanks prevent the mulimited extension of the individual rontes. Low many species of birds exist, which are not at all dependent on the conformation of the gromed and on the resting places, can not he decided beforehand.

Every species, erery variety, and evary form differing in the slightest respect must therefore, if possible, be treated separately. A complex of specims are to he examined together, which in the migration agree somewhat geographically. Thms in eertain respects a want of material in some species can be to some extent supplied hy analogies in others. Acomingly an arerage treatment of heterogeneoms species cam not be justified in a sperial srientifie investigation of migration, and in a region where the most dissimilar spereies are known to follow one and the samm direction or road, this smedy has its canse in topographicad (onditions which perhaps lie further and are only perceptible in the whole mass. The importance of such highways to the problem of migration was discusced above.

A "miversal direction of migration," Which perhaps all the species of birds in the expanse of whole rontinents should follow, doss not, therefore, convespond to a well fonnded conception of the phenomenon of migration. It is likewise evident that in an exaet scientific discus-

 casily lead astray.
 defined montes of migration began to prevail gradually. amd abmost

 W:allare abd A. won Middendorfit. The writer eath bot omit to mantion that in a personal interview hererevied the finll approhation of the last

 in general, and finally, liadders well-known statement ofhat avery-
 is event dictatomially eomeltioned, on the getief of the land which the birde pass" (1884).

 large (quatity of observations firom the most different phares. For indefinite aceomats of the oxemperee of the speries of hime in ereater districts permitted no reliable romolnsons reswaling the local watent of the migation rontes. It lather seemed desiabik to abtain momer ous observations on the migration, repeated arery yrar, fust as is done in the stuly of metenological phenomena.

 obrervations on the mismation of hisels aceoreting to a maform han in diverse regions. It was than refored to a commitam to promote the inuniry.

The calling into exisfoner of this committer for oherevation stations of the birds of (iलmany is known to the world: as also its ammal
 size, amd whose editius has retlected the greatest aredit on Prof. R. Blasins and lrof. A. Reirherow if is also fimther known how this

 repors, then fom the year Ls, appearing indepententy.
livery ornithologist is also acomainted with the poosess of develop-
 from the year lsia, esperially in the light-honses, atm pubiished anmally.
lulderemently of these efforts, investigations of fammas of difforme small amd later thates, as woll as of gemeral migrations, were stathed.
 cent arrangements in North Amerian.

So far lad the question advamerd when, in April. Rsit. the Finst laternational Onithological Congress met in Viemas and gave a power-
ful impetas to the furtherance of the investigations. Circulars were distributed in most combtries and observations collected, as appears from the following short summary.

Regarding the observations from Germany (inclnding Austria-Inngary, 1881-82), the following notices are takenfom the amumal reports which appeared in the downal fïir Ornithologie:

Report.	Tear.	Number of observers.	speries observed.
I	18716	is	250
II	18.7	41	264
1 II	1-8N	41	259
IV	1879	19	264
V'	18s0	36	280
VI	1881	39	245
VII	1482	29	204
'1II	188.3	34	216
IX	18×4	113	254
N	188.3	305	274
XI	18.46	$\bigcirc 38$	252
XII*	1887		

Ready for the press.
The first anmal reports (1s76-"81) contain only the special observations. In accortance with Mr. E. F. von Homeycr's wish (.Tourn.f. Orwith., 1880, p. :357), a general volume has since 1882 been sent in advance, wherein, by bringing forward some examples, a pirture has been given of the time of migration of the year in question. To this general description of the migration was added a short review of the meteorological incidents of the year with reference to their influence mon the course of the migration.

The observations were at first made for earch species, main! with reference to the biological phenomena (arival, breeding, departme. wintering'). The new impetus of the year $188 \pm$ brought changes in this respect also. The necessity for editing in a simpler manner the increasing mass of observations became apparent. The geographic arrangement of the notices was chosen, by which at the same time local famas were restored. To facilitate inquiries, the countries were arranged in alphabetieal order, with all their greater political dependencies.

Since 1886 it has been the intention of the committee to eonstruct maps showing the geographical distribution of the birds of Germany. Such maps have alrealy appeared relating to three sperien (Corvis eormix, C. corone, C. fingilegus; prepared by Matschie). The committee also intends to establish the migration rontes of certain birds in the German teritory.

At the ammal meeting in September, 1888 (eJomm. f. Ornith., 18S!), 1. 60), the instructions for observers were somewhat changed, and drawn up again as clearly and briefly as possible. The observations relating to this matter, esperially in the Kingom of Saxony, are edited
 the following momber：

	Ve：ar．	（）henervirts．	Sjuretes．
1	1－n，	4：	1411
II	1004i	（i）	190
11］	1sis 7	1；31	－1］
IV	18．s．in	1	$\because 17$

As stated above the wbervations from Anstria－Itmengy for the years $1880-$＂sl were ineorporated in the conresponding（ierman ammal reports．Since the year $18: 2.2$ mater the editorship of I＇rof．K．Von Dalla－Tor＇e and V．Yon Tschusi za Sehmidhoffen，independent reports from the first mamod combtries lave apmeaned in Ornis as follows：

	Sear．	observers．	Species observed．
1	18゙ャ	46	\％ 2
I］	1ss：	\therefore ：	：314
III	10xt	（6）	：2\％
IV	1－8．5	4\％\％	S419
1	1sut	（6）	．．．－．
11	1－at	7！	： 11
「II＊	1～RS		

In the same reans appeared also peports an the reently pmblished works on the avimmat of the monarchy．A map giving a vew of the geographical distrihution of the observation stations in the Austrian
 The armagement of the obsorvations in the peomes thas agrees pretty woll with the publiations of the（ierman rommittee．

Forthermore anmal reports have been pmblished in diforent Europath combtries on the omitholowical resmlts．arranged in ahmost the same manmer，and accompanied hy eremeral statements on the thpography of the region and on the meteorological phenomena of the rear．

A catalogar hy Studer and Fatio of the bidet observed un Switzer band is in preparation，and maps showing the distribution of twenty different speroies are added to tha first edition．

From Lreland in report has appeared (18s6; Ormis, n, (xrondal), wherein $2 S$ species are designated.

Giatke has published three anmual reports on the migration of birds on the island of Heligotand, in the form of continned diary-notes (January, 1884-1 ecember, 18s6) on the weather and on the observed species (Ornis, I-rit). Furthrmore R. Blasins published Gritke's work "Die Togelwarte Heligoland", wherein are preserved the results of fittythree years" observations of the circmmstances of the migration of the birds on this remarkable migration station (hrnis, vis, p. 132).

Some reports appeared on the migration of birds in Holland:

Inbois also pmblisherd the following reports fiom Belginu:

Three mombers of communications of the ornithologisal committee of the Royal Swedish Anadeny of Soiences, prepared by Sumlström and smitt, contain the observations mande ly 107 correspondents in Sweden during rewent years up to 1886 .

From the Linssian Baltic provinces, especially livonia, E. vom Misdendortf has sent three ammal reports, 1Ss.j-ist (Omis).

Abstracts of the phenologjeal observations made in Finland have been published by Arl. Moberg (Öfo. Finstict Vet. Soc. Föhh.) for a number of years: am in the years 1878-9\% amival data in tabular form for 12 species of hirds at $34-68$ stations have beren puhlished. The remander is still being prepared for publioation; also a comprelensive material of observations which were sont to the writer in reply to a smmons of the year 1s85. Ont of this material, only a few local famas have heen published hy way of preliminary.

We may here remark that in most of the other commtries of Emope and in some isolated states out of Emope, it has been resolved in principle to join the above mentioned efforts, and some observations are at hand ready for printing, while in others the way has been prepared for this accession only by a few (alls to the frimels of the birds.

The investigations on tha migration of birks in Great lbritain have, as is known, taken a form consomant with the insular character of the territory. It the instanmeot the British Ornithologists" Union and with eo-operation of the Brifish Association for the advancement of Science, observations were commenced at most of the British light-houses and

 (J. Cordeanx. J. A. Harvir-bown, I. Newton. R. Il. Liarington, A. (i.
 dividual observations in nime * Reports on the Migation" (as as - 1sist. as well as in a brief repont which has been made ammatl! to tha asso ciation.

Ahearly in 188: these notices prowed the wondertal constancy with Whicl! the hids of passiag year after year follow tha samm lins or great rontes when they apmoarla or abombon the british coasts, and
 nom. 'Two separate misrations may he distingnished: thr wreat perionical waves which sweep fiom the breerling plates in the far mortheast amd return: and fimther. quite indepemdent of these. a "onstant strean of immigrants, which moses fom the continent towarl the sontheastern and eastern masts of England, across the somthern part of the North sea i: the direetion of east to west or fiom somtheast to morthwest. On the other hamd, the west comsts. amd espordally lreamd, are comparatively seldom visitad by these birds of passiter
 all points on the (ast comst of Enslamb, hat appears eomstantly to follow fixed lines. For example the Farme islands on the roast of
 ripal stations for the passitge over the North seat likewise revtain parts of the coasts finther to the somth. To tha north of Norfolk, the migratory hirds apmall to pendrate thomeh the Wrash into tha
 Westwame.

It is finther pointed out that the vertical height at whirh the fights
 to yidd a better series of observations than the light honses. It wats anso aserertaned that only rertan speride were attrantad by the light.

 antmm rashes; but the direction of the wind which prevalls dming
 direction of the jommey and the ameld of the ronte to the roant hering to a great extent dromident uxen it.
 ont tha Atamtie Oereall. Ohservalions on the subject are noted ont the most frequmted limes of emmmmaration, amd also made over to tha commoliter.

The more the prablisherl material acemmatated, the mone desimale it seemed to utili\%e the whole masis in forming eondhatoms. This was

posed, in the year 1888, that the rollerting of observations should be stopped temporarily, that the immense mass of facts in the nine reports, arranged in concise form, statistically, and in strictly scientific maner, might be treated as briefly and elearly as possible, in order to attain practical scientifie results. ' 'his proposal was accepted by the British Association in the year 18s8, and a nember of the committee, Mr. W. Eagle Clarke, charged with the duty of directing the comprehensive undertaking.

The British example exerted a deep influence on the First International Ornithological Congress in the year 1884. Through the efforts of the authorities of the permanent ornithological committee of the Congress, the wish was commumicated to as many state governments as possible that the passage of the birds might be observed at the lighthouses. The authorities of those institutions are also eharged to advance the question as much as possible, from the White Sea to the Caspian. The light-honse officers on wide tracts of the roasts of sonth Asia, certain parts of Afriea. Anstralia, and sonth America are in the same manner called upon to make observations.

As yet, however. we have but few printed reports from the lighthonses, except from Great Britain. These few are the ones above menfioned from Demmark, 1886-'S!. and two reports on bird life at the German light-homses, publisherl by R. Blasins (Ormis, Vi, Vit).

In North Ameriea the investigations relating to the migration of birds have assumed quite an independent form and ratched considerable dimensions.

In the year 188: Prof. W. Wr. Cooke took the initiative with a sys tematie ohservation of the migration of birds, at tirst in the State of Lowa, but later in the whole Mississippi Valley. Thirteen observers were at work the tirst year and trenty-six in the year 1883 . But after the American Omithologists' T'nion had been organized in september of the last-named rear, it apponented ammittee for the investigation of the gengraphical distribution of the birds of North Amorica, as also another for the insestigation of the migration of birds. The two wrere howerer consolitiated later on. By the co-operation of this committer with Irol. Cookr, the investigations were eontinned systematically umder the direction of Dr. C. H. Mariam. The whole territory was divialed into fumbern. later sistern, districts, ealch muler a smperintendent; and for the year last thomands of question-sheets and instructions were rommminated to members of the most different sorial gronps, as well as to all light-houses and other phblir institutions.

As it was to be expered that the homogencons temitory of the Mississippi Valley, in conserquence of its immense extent from north to south, and the absence of momatain range or great lakes, wonld aftort a particularly farorable field for the investigation of migration. the observations coming firom there for 1884 and 185.5 were

la the meantime. the obsmbations collected han reached such a quantity that it did not seem judicions to axpert the Union alome to elabomate the material. It its instamere a sperial Division of Eennomic Omithology was "stablished by the Comgress of the Thited States in the Department of Agricultmere at first under the Division of Entomology, and with an ammal subsidy of sinooo. Since the fear 1 NSt it has oprated as a separate Division of Exomomir Ornithology and Mammalogy, with an ammal apmopriation of 810,000 . Economieally supported in this mammer, and moder dirertion of Dr. C. H. Merriam, the prosperite of the institution is ansurent.

In the year 18sis the Division insum a most exretlent publitation on the migration of birds: Repmen bun Bind Migration in the Mississippi Valley in the yeals 1 sat and 1885, hy W. W. Cooke. In this work are sulmitted tha data whiod 170 ohservers wollected resperting , dio speries of birds. The anthom also shows his method of investiGatimg the relations of the phemenem of migration to the prevailing meterological phenomema. by whieh methor he has extemsibely utilized the symopically grompen obarmations of the meterologieal stations existing in the territory
The old experience that weather exerts an important influme on migration was mow definitely contimed. Prof: 'hooke proved that the atmosphericcentemofdenession, moving from west th cast in the pring,
 responding fhemomana of wind and temperatmr, prohne in arporgion changing relations of temperature manely, altemate warn and coh periods, which changes are acempanion by detinite migration phenomena. A "wam ware" in the atmosphere of the region in guestion is also a neressany condition for the begmange of a ". bird wawe." . migration wawe." whese further proseses is chereked by the
 fowned and giver rise to others.

Prof. Cooke eprecifies the dime of these wate for the periond dowen (hast) and low the terriony in question. He expmesily states that his
 one and that sum a weries of ohservations mast be well prepared, and
 comditions me attempt womblate berem made to study the himed wase were it mot for the astreme impertane of the subient. It is during the nighte of hird wawe that the hulk of migration takes place. To stow migration suceresfally it must he stmbed when most aretive. Norearer. it is om bird wase that the adion of the wather is most appar ant: hemee these waves fimish the ranliest means of studying the relation betwem meterology and migration. The greatest drawhark is met with in the diffornlty of acrumato ohserving and reparting him waver. It is hey fall the hament part of the field wom in the stmber of
 nield than most whemers call give."

It is further pointed out by Prof. Cooke that the expression "hird wave" may be taken in a double sense, and consequently answers to two methods of investigation. First, a bird wave comprises a very large number of individuals of one or of several species, which extend at one time over a certain territory. In studying such a wave it is necessary to determine the species of which the moving mass is composed and the bomnds of the territory over which the wave exteuds. Second, certain species of birds which are proved to move in company on the same day may also be regarded as a wave, whose progress from day to day and from week to week must be aceurately observed.
By a critical study of these points of view and by a conscientions use of the meteorologieal and ornithological observations which embrace a precise time and a precise region, the rapidity of the migration, on which so much has heretofore been written, can be calculated. Only by attentive observation and multitarions labor can the migration be followed until the moving flocks have reached their resting places.

It is evident that Prof. Cooke's inventigation of migration over a long contimous route, apart trom all mavoidable shortemings, must be particularly adapted to elucidate migration with respect to its couse and its ontward conlitions; and that it is very desirable that similar investigations may heneforth be mudertaken in suitable regions.

This course is opposed however by the difficulty of finding a sutficient number of capable observers. Prof. cooke has been able to rely in essential degree upon one conscientions and expert observer, Mr. O. Widmann, of St. Lonis, whose methodically arranged motices he submits in lus work. In this connection the writer will only duote the words of a competent judge:
"A dozen observers like Mr. Widmann, sattered at proper intervals, would give a fairer basis for generalizations than humbeds of observers of the grade on whom Prof. Cooke was obliged to depend for many of his data. This should stimulate the more experienced and well qualified field ornithologists to contribute to the fullest degree possible to the furtherance of this important investigation.-I. A. Allen, The $A \| k, 1889$. ті, p. 61."

The continned meteorological phenomena were rendered in the usmal mamer ly synoptical maps, which alone made a view possible, and essentially facilitated the study of the intinence of weather on the migration of hirds. It may mot therefore be injudicions to here refer to an attempt to represent graphically the migration of birds and the composition of the avifana, changing with the scasom, as Mr. Wr. Stone has proposed (1 "k, vi, p 1 139).

Besides this material of observations, made chiefly with a view to explaining the problem of bird migration, mmerons famal works have appeared-minor local catalognes, and eomprehensive works on the birds of larger definite geographical areas, prepared with conseientionsuess and intimate knowledge. No one perhaps can valne these avifumal works more highly than the writer, with regard to their
importanes for the detrmination of the miswation rontes. Fixtermal eiremostaners forbid us to motiee all them works here, athonghather may be worth it, like those of Radle. I'leske, Olphe (xalliard, (hastalet, Dresser, and others, and notwithstanding they contain many singe mo sults. many valuabla thomehts on bird migration.

On the other hand, it serms proper to here eall attention to some sperial investigations on hird migration in certain regions, fombted on avitamal material.

Some places have long heen known in the westem portion of on rontincht where migrating hirds eolleret in "rowds becomse obstandes sitnated on the side, like seas. allow a passage here only; or, like momtain regions. only here leave the door open. sumh highways have heen examined farther eastward in regions which are important for the migration between graat distriots.

From his romprehemsive observations in the yars 1850-"0 in the Aral-Than-shan region, N. severtzow has given hs (bull. des Nat. Mosrone, 1sso, a very hiof view of the highways where the greatest mambers of birds of passage angregatr. He designates cartographirally three gromps of sumbroutes: A, thomsh the Kirgheaz steppen. from the river leal to the sir, chanaterized loy the anormons momber of merely passing binds: B , along the westarn border of the ThianNhan momtains, distinguished by a tolembly large migration, and by the circmostane that the mative smmme hims wive way to winter grests: and C , thengh the interior portions of the range mentioned. known ehiofly by the athmal whate of sperios just alluded to. The
 there.

Severtzow mentions fimther the rommertion of the rontes named with the known migration routes along the Irtish and the ob on the
 Afghanistan. Pumal), and in the pegion of the ludns. He designates the Altai as aregion whenee the migration rontes diverge: in the semthwest toward linssian Thrkestan: in the sonth towards the desert; and in the sentheast towa rels China. 'The movement of the bidel of passage in atertarl direetion fiom the highland of 'Thian-shan and Pamer towards the bow groumds is also shesested by hime
liderving to the details to breseritiod Jater, severtzow here eom
 the strppe rontes drpends on the existence and situation of the waters in them. On the other hand, the exemeral extent of the lofty ThianShan ramge compels the flocks moving at a short distanee trom it to follow a general direction from east notheast fo west sonthwest: therefore, great masses of birds of passage are presed together on the western border of the sanse (Tsehemkend-Tashkemd). whike these
 ward.
"This divergence towat the north (more or less rousiderable) depends essentially upon the firet that rach species has its particular rontes, the direction of which is modified according to the nature of the localities which suit this species, and which it seeks also during its migrations, at least for stopping places; and for this reason the migration routes even of a single species, starting from different parts of the region which it inlabits in summer, are not parallel, but for many species convergent towards the south, for many others divergent. This applies much more foreibly to the rontes of a momber of species which, in the season of migration, conerntrate in some locality particularly abundant in birds of passage."

The anthor therefore categorically mantains that the individnal species, acoording to their peculiarities, are dependent on the topographical relations of the territory through which they migrate, and that the rontes of each species accortingly assmme a particular geographieal form.

In the same spirit Prof. Menzbier also reports (1886, Bull. Soc. Nat. Moscow) on the resmlts of his investigations on the migration routes of the birds in European Russia. He meonditionally joins those inquirers who maintain that each species moves along jeculiar, strongly marked rontes, becanse cluring the migration they are dependent upon the condition of the country though which they happen to be passing. He agrees in dividing the rontes according to their topographical character into ("ategories. which, however, are complirated by transitions.

Ile also lays stress upon the fart (pp. 333, 351) that the relations of the ground and the ronditions of procming food do not always suffice to explain the situation of these rontes; but that the rontes mark fainly well the ways along which a species has once migrated, and that abont the same ways we still utilized as a result of inherited tendency. (Compare on this sulyect the writer's Zugstr., cap. x, as also Weismanli.)

Menzbier furthermore reters (p, 35t) to the importance of the spring stragglers (rompare Palmon, Zugstr.. ix, p. 238 st seq.), whieh moder favorable ciremostamers may remain in a region where they have arrived by chance, and, nesting there, may fhange the bird fama in a charanteristic mamer, Finally the anthor dixcosses the order of migration of the individuals, and appears to faror the beliefthat they change their relative positions (Voriberyg'). In conclusion, he de(lares that migration rontes in the romse of time, in consequence of geological changes in the topography, may pass from the compass of one gromp into that of another.

To these results, which agree with those of the writer, Prof. Menzbier adds corrections of some of my statements and conclusions, which are worthy of arknowledgment. The romelnsions reached in the years 187t-76 respecting the migration rontes were founded on facts which
reetainly suthere in a measme for the western and rentral pertions of Emope，but not for Emopean and Asiatie Russia．The more abmotant matrial of observations now avalable trom the latter cont mental dis－ tricts shows that the eomelasions based mandy whe oro hydrographia ronditions in the West do not filly answer for the mone eastern parts of the palararetie region，where the ground takes another form．Nant species of birds（for example，Hametopus，strepsilas．Totanns culidris，
 along the seashore breed and migitate also in the interios of continental linssia，along rivers，salt lakes，and on tho steppes．Iharelede glarialis moves regularly along the Kimat and the Volgat，as well as behind the I ral，along the lakes－is even sad to nest here－and winters on the Coppian sea．These bids belong，therefore．in the East．to the eromp submarimo Aučo－Iarostres．

Arcordingly，Prot．Menzbier distributes the birds of passage in some what diffrent mamer．He thimks that warial littoral rontes do mot exist，＊and groups the accepted rontes also in another manner in the different categorims．The following table shows the respertive arrange mente of the last－named worters：

[^66]1．I＇iu（ares）mi！r．aqr．
I．pelagiare．
11．liloweles．1．Vïr（ares）marime liforatas．
11．！letcietles－lil．
b．pelatiart－lit．
e．marimı－lit．
d．sulmarime－lit．
－．Intrinliles－lil．

111．Pulusthers．

13．Jiar（ares）migh：tervestrox．
1V．V：afons gronjs not distinguishod．
＂．prlatica－lit．
b．murima－lit．
 liburelos．

1 C ，thrio－lacustors．
1．1．flarior－lilurales．
8．butushacs．
h．comtionvinhos．

Atter Prof．Menzhier has in this way ronsidered and gronped his mi－ gration rontes dion the standpoint ot the ir peralian toposeraphial war－ arter．he dienses them with rexad to their gengraplical position． The allthor designates on two maps the rontes of European Russiat foumd hy him，basing his work on his mosiderably grater material from that eomatry－greater beramse now observations worr at his dis－ posal，and above all becanse he has homght more sonthern species also withon the scope of his investigation．

The question therefore is less about rontes uf indivilual sperios，for the anthor himself says（p． $\operatorname{sid}(0)$ he has paid little attrontion to such

[^67]than about routes of commmination (highways), which lead certain groups of migratory birds from their halitats in European Russia to their winter stations. This already appeats from the names of the
 all follow, at least partially, seater bodies of water, but receive their smplies also from the interior of the combtre. All the ways on the first map correspond more or less directly to the routes which are settled upon in the writer's work.

On the other hand. Prof. Menzbier's representation rontains entirely new assertions abont the continental routes (map : 2). According to the writer's method-but without giving fully the material of observation, which is now indispensably necessary-he has studied the habitats of 13 eastern species of birds with reterence to their geographical distribution, and fiuds this explicable only by the assmmption of rertain migration rontes, which he designates upon the mal withont "laiming to have thereby rxhansted the question (1). 349). In the text, he completes their contimation towards the cost. The rontes are provided with names in the same semse as those before mentioned: (1) Tin sibiricn begins in the northern half of Enropean Russia and passes in an easterly dirertion throngh the Siberian plains, on one side to the somes of the (Oh and Irtish, on the other side to Lake Baikal, along the northern slope of the Ekta-Altai, out of Dania in a straight direction towards Urga, and throngh Gobi to the Ala-Shan. A hranch goes besides to the Knku-nor. Individuals for example of Emberizu nureola from Emropean Russia might winter in sonthern China, and those from sontheastern Siberia might pass throngh sonthern Clina to winter in East India. (2) Tia turkestunica also leads from the northern half of Emopean Russia and from western Siberia, but towards the sontheast, between the Caspian Seand the Thian-Shan (therefore in part Suvartzow's highways), to the winter quarters in northwestern and eentral India. (3) Tia tronscorspic, (partly coinciding whth I. raspiu), leads to winter ymarters on the sonthern side of the Caspian Sea and the steppes lying to the east of it, as well as probably to the upper Oxus and the somres of the Indus. In eastern Asia this way might in part roincide with the l'ia sibirica. (1) Via anatoliraleads out at the Kirgheers and Calmuck steppes to the Blark Sea, throngh the Bosphorns to Asia Minor, Syria, Palestine, and northern Arabia.

As a matter of comrse, Prof. Menzbier has fommed these assirtions on the material which was at his disposal. The facts themselves were, howerrr, as before stated, not laid before the reader in detail, but in short abstracts, aceordingly all his conclusions relating to the position and the ramifications of these rontes are withdrawn fiom all control, and from any improvement in consequence of newly discovered facts. It is therefore quite impossible for the writer to jutge scientifically these rontes of Prof. Menzbier. Only personal opinions, formed aroording to analogies. (an be entertained on this subject; and the
 refotations.

These eontinental ways appean to me in a treat part rery dombthul. The rontes from west to east experially are of all ammons length, like that from the Duina to sontla China, lead antirely throngh the interior of a rontinent. without the gnidenere of a homogeneons well characterized conformation of soil. and tomel alternately great forest. desent, and monntain regions. It is dificont to connerive how birds of passage conld tind their way this ronte. It seems much more probable that we know too little just now abont the oremrence of the suecies examined. some of whirl arr dillimut to distinguish, and that their winter stations are eventually to be sought mueh nearer, at the most in the regions whither severt\%ow's rontes learl. In the meantimes, I will not venture mpon a saientific julgment in this respert motil the author submits the facts on which his opinions are based.

After this short statement of the derelopment of the question of the migration of birds, the writer takes the liberty to east a retrospectire view reon it. In the study of the migation of birds, two kinds of material for investigation present themselves-the avi phemological and the avi-fanal observations. Siner the first-named were collected for this very purpose, it was at tirst thought that the investigation shombl be commenced ou this side. The avi-phemological material explains the times of migration, aud from these results an attempt was made to infer the directions of the migration. Nerertheless these results ap. peared too inexact to serve as a starther point for further insestiga tions. Anattempt was therefore made to take the opposite "omse. first to fix the migration rontes from tha avi-tannal material, and alter ward to employ the method just mentioned with regard to the times of misiation.

An attempt to tix geographieally the rontes of some sperefes of birds proved that the gmestion enuld be advaned in this way. The need for more abundant material now made it self felt, and new observations were zealomsly collected yan after yar in different comatrios.

It must he conceded that at present very "onsiderable enorgy is devoted to the investigation of the distribution of birds and of the sereres of their migration. The ammal reports, which rontain observations from momerons stations, are moltiplying. This gratifyins increase in the material of tacte which are to extend and derpen ons knowledge of migration. is characteristie of the ornithological inguiry of the past years. It is to be desired that these efforts maty rontime and may be further completed, and that in consequence the quantity of material shall goon increasing. Nevertheless the comdition of at faiss may also examined and judged from amother side.

In such investigations the quantity of observations will erertainly not alone decirle the question. The material is also to be treated scientifically. The immer ${ }^{\circ}$ ommetion of the farts and their fitness to
form a hasis for courlusions must be tested, in order that we may judge whether the methor adopted is adequate or whether it can be completed in any way.

It seems high time to comsider the matter from this point of view also, if the seientific eharacter of the investigation, and with it its purpose also, is not to he laid at stake.

That this conception is shared by others we know from the fact that the result of nine years of British observations is now subjected to scientific treatment whose results will surely adrance on question; fiurther, from the fact that in North America, in a region where the ronditions of the gremed offer only small difficulties to the judgment of the direction of migration, an investigation of the time of migration and of the relation of the migration to the meteorological conditions has been undertaken, which has disclosed new points of view. The systematic observation of bird migration along certain lines, started in Hungary in the year 1890 , and a statement of which is expected on oceasion of the Secomd International Urnithological Congress in BudaPesth, also affords proof that we are not now satisfied with mere observations alone, but want these used scentifically, and that hereby new demands will surely be made of the observation in future.

Beanse therefore at present the existence of geographically fixed rontes for the individnal species is becoming more and more acknowledged, and these are to be determined from the material at hand, it seems timely to discuss the guestion according to the methorl to be employed.

Two different methods seem to present themselves, both of which have their advantages and disadvantages: (1) The migration routes of all the sprecies of a certain district are examined by the investisators of that district and reproduced cartographically: (2) One species for itself is examined monographically in the largest possible geographi(al area and reproducel cartographically.

The first method offers many advantages. The workers concerned are masters of the language of the district, and the entire local literature is accessible to them, even to the most insignificant writings. They can judge of the reliability of the observers at each station, exercise a final control, and complete certain points by correspondence. At all events the mative inquirers will thas be able to more completely gromp all the facts fiom a given country, as well as to wateh over them critically. In the second case the monographer can study more closely the species treated by him, then special variations, their nature, as well as also the specific pernliarities of their flight. He will pereeive more readily the difference in the flight dming the successive sections of the ronte, or on different rontes; in short, the route as a whole can be judged in a more exhanstive manner.

In the first method the following disadvantage becomes apparent: that in every comiry, unless it is a very large country, we get only
fragments of migration routes, which perhaps (:an mot he brought into eontinuity with those of the neighboring regioms. ()n the ather hame difteulties will arise in the seeond case regarding the use of the literary soures of information. It womld seem therefore the mosi pratorabl. if by a combination of the two methods the advantage of áath "onld he krpt in view.

In a practical view, it would loe allantamons if in every rombtry all acressible data on the oremernce of all the species met with in the region shomd be brought together into a mational avitama, in which
 the writer hey means muler-rates the importane of sum a work to the pephilation of the country itself, ret attention must be walled to the gemeral alvantage which seiemee might derive firm the translation of surlo a work into other moderol languages. As a model work of this kind. 1 take the liberty to mame l'leskes Oruithorgraphin Rossion.

It wenld also be very muth to the purjose if at the same time the habitat of the imbivinal sueces mombl be indiated wartographically, as has already been dome in Cramany and Switzerland. By such work the investigation of migration rontes would be greatly facilitated. The more complete the material at hamb, the more suitable apreans themethor of datermining the route of eath sperem for itself. At last the witer womld uneonditionally give the proference to this methot.

Finally we eome to the question of the distribution of the work. The writer takes the liberty to wree omee mone that a rhoise be mate of
 old of tha investigation, and it serms all rantaceons to first take mp the less diftient speries. Amons all the ategoricent hirds of passage the littoral withont dombt move along the routes asiest to bre deter mined. Among the comtimentat, on the other hamd, those which avoid high momtans, like the swallows and their eonsoners. might be easier to study,

Ono more division of work apperns to me atvinalle. Nime every in quirer is sperially interested in the sperise of his own eomatry it might be suitahbe for the bortherners to inserstigate the ir serefos with regar toall their migration rontes, the sontherners in like manmer theins: fur
 nu bey those who arr masters of the literature relatiog to them. That
 speries, they have abredy proved hy the lane
 persably neerssary to reend all facts whid eontributed to the result :

 terial. When al all possible is highly to be recommended.

A model prowedme for thr investigation of the individnal speries can mot be preseriberl. It is rather to berexpered that eath inturer will
learn something firom the practical methork of the others. The manner of representation will then develop of its own accort.

In conclusion, it is hardly neerssary to call attention to the fact that a very inviting field of inquiry, in the same direction as that entered upon hy Prof. Cooke in America, is open to those ornithologists who are sufticiently versed in practical meteorology. It is however to be foreseen that the phenomenon will be much more eomplicated in Enrope, and that for this reason the investigation is to he commenced with those species whose rontes have already been fixed geographically with some degree of certainty.

Section from Palmén's Map of the Main Migrating Routes of the Littoral, except Fluvio-littoral, Birds in Europe; in Ueber die Zugstrassen der VÖGEL, LEIPZIG, 1876.

THE EMI'Hl\& OF 'THE AIR:

AN ORNITHOLOGLCAL ERSAY ON THE FLIGHT WE BHROS.

By L. I'. Mouthatarl.

INTROIOC ("IION.

If there be a domincering, tyrant thought, it is the conception that the problem of tlight may be solved by man. When once this idea has invaded the hrain, it possesses it exelnsively. It is then a hame. ing thonght, a walking nightmare, impossible to rast off.

If now we consider thr pitying contempt with which surla a line of researel is appreciated, we may somewhat conceive the mhappy lot of the per inventigatm whose soml is than possessed.

Many of these searmars, either through pride or throngh timidity, have withdrawn themselves firm human intereomse, and have fomed themselves paralyard hes attempting to eary on their experiments in secret. Thry quitkly fomd themselves so cavalierly dassed as dreamars or as lanatics that they were rompelled. under bains of complete diseredht. toronceal firon others this su-romsidered flaw in their intelled.

It must howerar be :rknowledged that this perseeution has much diminished dming the past decade. We are mo longer classed with
 There has been progress since ('hates, danssen, Quatrefaten, and
 that they believed that the pooblem ambe selved. We mo longer risk the huatir asylum, but the ereneral publie stifl considers us as mentally unsormot.

The publir understandinge mated hy the assertions of somberdentists, has mate some progress. There were two math to possible sureess, tha ono broad, beantifing, smooth, amd bordered with fowers, but aftor all latange to rosult; it was that of amostationt, of balloons lighter than the air. The other way was montrarywise, a romgh, narow, moged path, hristling with diftionlties, hut still leading to sommothing; it was that of ariation, of rapid tramsit by marhines leatror that the air. Mos of would-be invontors hate taken the easy roal, and fiom

[^68]aviators still tlomadering in the quagmire, with little thonght that they may have to come down to this same quagmire in order to get somewhere.

O ! blind hunanity! open thine eyes and thon shalt see millions of birls and myriads of insects cleaving the atmosphere. All these ereatures are whirling through the air without the slightest float: many of them are gliding therein, without losing height, hour after hour, on pulseless wings without fatigne; and after beholding this demonstration given by the sonre of all knowledge thon wilt acknowlcolge that Aviation is the path to be followed.

It is therefore apparatus "heavier than the air" which I propose to study; and I mean to grasp the monster by the horns. I expect to have as a guide and as a smport that potent ereator of all prodigies, Nature herself.
She has wholly ignored the principle of "lighter than the air" in designing her creatmes, and all hep flying amimals ate heavier, much heavier, than the air which they displace. We can not err if we faithfully follow her teachings.

There are two methods of insestigating such an arduons problem; one may be termed the "closet" athd the other the "open air" method. The first calls in the aid of mathematies, it applies them to some few observations, more or less defective or irrelevant, and relying mon this fragile fomdation, it expresses by a goonlly show of equations all that the observations teach-and generally a good deal more.

Mathematios are dombtless nefinl, but they are less indsipensible than is generally believed towards the solution of this difficult problem. This arises from the fact that the basis of operation, the formula, is always erroneons.

Nothing seems more simple than to say: :" (xisen, that we know that I^{\prime}, R, and l^{\prime}, are equal to some other compond fartors, then it mast follow,"-and then quadmatic equations and calculus come in, and the student reaphes a final result, which completely disagrees with the facts.

When we start from false premises, we arrive at some conclusion just the same, but it is not the object soushit. But evern if the formman be comect, it is certain that for ninety-nine in one hundred intelleres, including even the computer limself, a mathemationl result will nerer be as convincing as a clear explanation of the phemomena. or what is much better a condrlisive experiment.

Thus. I conceive mathematios to be an interesting instruncot of iesearel, but not a convincing argmonent. I will not resort to them as a means of persuading others of the probalility of surcess, becanse I feel well comvinced that i never will meet with angbody willing to hazard his life umon the bare dictum of : ammala.

Il istoricul.-There is nothing new muder the sm ; and for the problem of llight, as for many others, this old proverh is trus,

In the farthest antiguity the problem is presented to ms an hamg been solved by Iearns. What is there absolutely impossible in that assertion? With close obsomation, good sense, and inventive farmby sureess may be acomplishod; latoms. perhaps, hat these matrallons good gifts.

At a later perionl, halloons rame with their emormons bulk athwart the question; for eighty years they obsemed the way to suceess. They led mens minds estray into conereptions withont issme abd inventors

 between the power of ascending into the air, and that of progressing thoongh it, and yet half a centmy's comsidnation has shown that there is a profound abysis between these two orders of idmes; they powe in point of fart to be directly opposed to cach other.

THOHGHTS UN AYIATION.

I have alread! said that Natme, povilent, infallible, alwas koms. ing far more than the most attentive stndy ran teach us, points out to us the way to imitate her works.

Let us mot wek to be wiser than she: let us in all simplicity follow where sha leads: thas shall we arive at a result easily, without far tigning our brains with that Chinese puzzle.-that mathrmatical rompoumling of x^{\prime} and y and \therefore which at the present day invades all arduous questioms.

By marely whatving with rlose attention how the winged bribes per-
 above all, by striving emocetly tomaderstand the modus opreremdi of
 leads to revatual sureress.

Mrthoms of ohsratation.-To be really fimitinl, observation mmst possess sereral peroliarities and qualities. In the first place, we

 tailed investigation af the performanere of thr ergat masters in the ant of tisulat.

 still more. to komw what to look at, what it is important to ohsempe For installer. When all amatroll, little arrastomed to this himd wi
 dot just pereaptible in the sk! is a malle hest rel falcon (Forerom
 assertion is quite true.

whether in soaring or in flappiug flight: its long tail is a sure index; there is no possibility of confombing it with a raven, a buzzard, a kite, or even with some other species of falcon; its pecmliarities are too plain. Now, as to the determination of the sex, nothing is easier. One need only observe the bird for a few moments, the male discovers himself by the petulance and rapidity of his beats, by the energy of his movements; the female is more supple and less ardent in her mode of cleaving throngh the air.

As for the "Pharaoh's chicken" (Perchoptere), the ease is again easy. Afar off it may be distinguished amid a flock of kites, which it often accompanies, by a slight pecoliarity in its flight, a remarkable unsteadiness in its forward progress, also by the narrow width of its wings, and ly their decided rectilinear set athwart the body, for they are partly folded or flexed only when the wind is very strong. As to the male bird, he may be distinguished from the female as far as the eye can reach by his color, for the is white and the female is dark brown.

The great tawny voltures (Gyps fillens) are to be recognized ly their steadiness in somring, by the amplitude of their circling sweeps, and by the majestie deliberation of their movements.

The atrians (Trultmr monechus) and the oricoms (Otogyps: curicular) are moticeable by the exaggration of all the ene latter qualities and by a darker plumage.

As for the bearded griffin ((iypuiztos), it a long tail, broad and romeded. easily diseloses him after off; there is no bied of similar ontline among the large soarers.

Here then in all its simplicitr, is the explamation of a feat of dis. cerment which gemerally astonishes the inexpert. In order to determine accurately the kind of bird seen afar off in full flight, it is simply necessary to have observed it long and well. When eagles have started off within so yards, and the eges have followed them many times, the evohtions have become photographed on the memory: and later, on other occasions, when the samb rhythm of movement is perceised, there is mo longer need to eoncentrate the attention on the shane of the claws to determine whether the bird in view be an eagle or a vulture.

Close proximity is greatly to be desired in studying the mandures of birds. I have been mabled to observe at very chose range several kinds: the crows, the kestrel falmons, the peregrine falcon, the kite, the Egyptian vulture, the pelicans, the tawny vilures, ete., have yielded many of their sectets to me.

I will not here amplify on what I saly as to the crow and the kite in the chapter deroted to them: in Cairo it is easy to tonch the latter bird in full Hight, by going abont it dexteronsly, but the most stiming. exciting sight (the word is not tom energetic) is to stam in the vilture ronst on the Mokatan ridge, mear Cairo, and to look mon the figp, fintcus. passing within tive yards in full tlight.

How useless to seek to deseribe this spertarte ! Wher these ror moms bibds rash by so close to yom. an astomishing mstling may be heard: the great primary teathers vibuate like tomgore of steed, and
 bear.
 tures" are mo longer to be rerkomal, they are bat atamishing, while the kites creep in among tho lot amb make thamsolves small. amd the
 his domain. Beak bows are momerons: ratol suallor bird mast keep his distance, for if he passes within ueck length, at satage perek he gets from the valture. The larger birds are soarcely more amiable to their own specios: if interference threatens in alighting, a shrill warming cry is head, a blow impends, and the weaker most diva away, to begin all over again the complicated evohatoms required to eberek the motion, and to alight mon the pereln in sale ty.

One of the manemres whirla always astonisher the observer is the alighting. The great valtures arise abowe the pereh at the average height which they generally kerp abowe the gromal-that is to say,
 sweep aromad bor a few minntes to inspere the topengaploy, and then they eldermine to desedme. The eagle comes down like a meteor ; he is so powerful that he can control his movements at lot miles an
 He drops perpemdiaularly like the eagle, but he seldom folds his wings to sain sperd. He womld ame down ton tiast. and the descent is somme times very sreat; lon l have seen birds whioh wore aldealy in that deseent when first they apmeared at the zonith, sily at a hoight of nearly $\because \because$ mikes. If they had then folded their wings. and allowed ace celeration to necom, they conld no longer have rontrolled than volocity : they would hase been disabled, for their power would then have been inadegnate $t a$ a change of direction.

Next to close and acemate observation a proper modenstambing moss be attained. This second stage ts more difienalt torearh than the first ;
 obseure the eyes of the mind.

Then the ohservations mast also be acrompamied by acemate data.

We eath no longer ateept the immense dimensions and the monstrons weights of gutsiswork. We musf hate exart measuremonts and ace curate live weight of birds in full hoalth and in umanal comdition. Above all, it is indispersable that the observer shall be emomoth ot an ornithologist to determine at once the speries and peroulianties of the bind he is looking at; not merely on the disioreting table, but also ation off, on a pereh, and esperially in thli tlight.

This knowledge is to be actuired neither fion books nor from

of nature, by taking acconnt and thonght of the various movements, operations, and evohtions of the birds, by becoming acquainted with all their manouvers, and above all by understanding them correctly, the how and the wherefore. Without all this information sucees is not possible. If the man does not clearly understand what the bird does and intends in a given position and a certain conjuncture, how (an he hope to imitate its flight?

The observer must constantly set poblems for himself, in the hope that oceasionally the bird will demonstrate a solntion. Thus, l was convinced, a priori, that an rexpert swarer rould, in a fresh breeze, rise directly into the air and advance against the wind at the same time. I felt sure that the feat was feasible. I waited for years betore witnessing this evolution. At last one day in Africa, two eagles 13 love afforded me this spertacle. One of them lanched from the top of the ash tree which served as a perch, descended against the wind 6-to 10 feet, was mised up by a gust of wind, and thus continued to rise, slowly, steadily, for a humdred yards into the air, while he also advanced some mo yards against the wind, withont a single beat or impulse of his mighty wings.

Such convincing demonstrations are not to be seen every day; they must be persistently awaited: the observer must burn with the sacred tire; he must be drawn to the study of flying ereatures by that undefimable enthusiasm which shall rause his heart to throb when he witnesses certain evolntions.

It is but rarely that a bird manouver as absolutely incomprehen sible; for pecnliarities and motives not understood mpon a first demonstration are explained by tiesh observations made under happier conditions. In all cases, to learn the how and wherefore, the study must be a labor of love.

All my life slatl I remember the first flight which I saw of the Gyps fulrus, the great tawny vultures of A frica. I was so impressed that all day long I could think of mothing else; and indeed there was good eamse, for it was a practical, perfect demoustration of all my preconreived theories concerning the possibilities of artificial tlight in a wind. Since then I have ohserved thousamds of vultures. I have disturbed many of the vast tocks of these birds. and yet, even now, I can not see one individual passing throush the air withont following him with my eyes motil he disappears in the distant horizon.

Fruitful observation requires that the model be well chosen. Ordinary observers are contined to the bad examples which are found in their locality. They can only study the Happing birds-the pigeons, the bats, the little iusects evell. What good is to be got from studying a model which ean not be imitated on a larger scale? It is impossible to reproduce an insect, a sparrow, even a pigeon, upon proportions which will carry a man. No material will bear the strains of wing beats as fuergetie as those of the sparow. Steel itself is ton weak in proportion to weight.

Common sense indieates that the weak can only aspire tolight task. Which then are the birds that expend the least energy? They are cloanty the soaring birds, swepping over great distances, by the sole power of the wind.

The vultures needs are firw, and his strength is moderate. To carn his tiving he lont needs to sight the dead animal from afar. And so what does he know? He knows how to rise, how to float alott, to sweep the field with keen vision, to sail mon the wind withont effint. till the eareass is seen, and then to deseend slowly, alter carefind weon maisance and assmance that he may alight withont damer, that he will mot be surpised, and compelled to percipitoms and painfuldepart we. And so he has evolved a peruliar mode of tlight: he sails and forends no force, he never hurries, he uses the wind instead of his mus. (les, and the wing tap occasionally seen is meant to limber up rather than to hasten thromgh the air. And so the trme model to study is the vulture-the great valture. beside him the stork is as a wrem, the kite a mere butterfly, the falcon a pin feather.

Whose has for five minutes had the fortune to see the Oricom vulthre in full sail throngh the air, and has not pereesed the possibility of his imitation by man, is-1 will mot say of dull moderstanding. but certainly inapt to analyze and to apporeciate.

ORNITHOLOGY: SURVEVED IN FLIGIIT.
And here 1 must deliver a little lecture upon ornithology, from a point of view vital to the question, that in to say, the ants of flight,-a point of view, preerty enomgh, which is generally ignored in bowk.

Flight is the bird's chief peombaty: it is his ome good gitt, so let ms rapidly meriew the acts of the cratures which travel on the air.

The lowest class is that of the insects. All of them progress ley beating flight: they are rowers (rameurs), satre perhaps some mid diy butterflier, which oecasionally sliete. Their wings are elastic, trom phans. alterng their shape and arting on the air thengh tlexible tomion on the nu and the down stroke.

Dr. Marey has given very interstime destriptions and grablice diagrams of insect flight. Ther are pictured motions, exactly re-promed. Nothing better is to be desired.
 adays only produce that little East ladian lizarid. the Draco colans. who glides from tree to tree. Ho call compass but a few gards, 一sily. fiom one branch to another.
 It the eporch of the Lias. nature produced a whole famity of reptiles
 in order to math their livine hame pessessed the tameth of moving and sailing of the arre, fust as the large birds do to-day:

The class of fishes, as might be expected, presents few specimens of Hying ereatures; perhaps a dozen species can project themselves from the sea, glide a few air yards with great effort, and retmen to their liquid element.

Flight progression is certainly the most elegant mode of motion wiven by mature to her creatures. But all birds are not equally gifted although "ach animal has morles of flight appropriate to his needs, for life depends on this.

Which of all the birds is best endowed for flight by nature? A question often put, and amswered many ways.

Is it the eagle, with his majestic sweep? He is certainly great; the king of the air; but the humble pigeon outstrips him in the sky, as the greyhomud flashing ly the mastift. Is it the frigate bird, with his great spread of wings? Assmedly no, I answer; there are circumstances when the frigate bird can not rise from the ground. Is it the gromp of the great vultures? These may be the best for man to imitate, but for speed, for endmance, for quick evolution, their vast wings require too much space to prodnce modes of tlight entitling them to birdlife primacy. A condor can not get under way and rise like a sparrow.

May it not then be the chaming swallow, so lively, so quick, so agile? Alas! no; her great proportion of wing surne is the sport of a gust of wind. II er small mass is insufficient in great currents of air. The sparows are after all the best colowed for bird dight and bird life. Speed, quirkness in action, difficult feats, constant readiness, all are (rompassed by them. And yet these birks during their whole year, do not tlit as far as sea birds in a month.

From these remarks it is safe to conclude, and to sity to ourselves, that each hid flies perfectly, according to his needs. Yet, from bird point of view, the sparow approaches the type of perfection. As to speed, he may outstrip the pigeon; as to power, he "an rise vertically to considerable heights; as to journeys, he equals other birds, for he also has his periodical migrations.

This selertion may at first sight appen cmrions: but it will be remembered that it is only small birds which compass all the monstrous difticulties of flight. The warblers, the sylvias, the humming-birds, are constantly performing astonishing feats and gymnastics; they are athletesandacrobats. We may even at this point formmate an ornithological law, and here it is: The proportional power is in direct ratio to the smallness of the bird.

We do not senerally appreciate this power; and yet let us observe the metalhe clasticity of the warbler's museles, in its zigzag Hashings in pursuit of a fly; observe the wings pulsation, vibrating like tongue of sterl, amd ahmost prorlucing harmonit: notes; and ronceive of the energy spent in such rapid motions. A condor whose pertoral muscles could produce suchlightuing beats, needs have his wings of steel: their roar would be as thomder.

From the hirds peint of view, the small are best eblowed: hat the if

 ant forms of wings into fwe groups: the alente wings and the obtuse wings: then asain these are subetivided into the super-anoute and sult. achte, the super-obthse athd sulbohtuse

This classification, howrer exorllent it maty be, is but sufficiont. In order to explain satisfartorily the momerons fats whered comerm ing flight, we must have more data than are furmished hy these divisions, which are too vagur amd geremat. We mast take acount of the amount of wing surfacr, in froportion to weright, of the longth of tha wing in relation to its wialth, aml to the mass of tho bird: in fact we
 each family by itselt, in order toreach satisfartory eondusions.

As a result of the study of all these comditions-a study to be fomm farther on, -we may now establish a semies of principal divisions, which may be comdensed moder tha remarks following.

It may be sataly allimed: that a bird with long and wide wings is well ronipped tor sompongtight. A gift which gotson increasing with the mass: that tha birl with long and narow wings is well erpapmed for orlaling in grat winds. and that this gift also incorases with the mass: that short and wide wings (in proportion to boely) indieate and produce a light at small cxtent: limally that short and marow wings denotr great rectilinear sued. We materall lay down the law: Verocty is in inverse mato to wins surface
 and the apteryx wonld be the most rapid of hirds: lut we may say that among hying birda volocity, stationlyad, incrase as the prown tional smfare diminishes. It most be so to sustain the inereased rela tive wright. Evary sportsman lonow the astonishing sued of ducks. trals, looms, atco, and thr showess of haroms, lat wings, and bam owts.

It is useless to chlarge mon these fumbanental primetples, for wro
 flight of rath fathered tamily.
 dirert, alld to preserve the rquilibrimm.

It is a mseftul orsall, but not indisumsable. A bird who has been deprived of its tail will fly, with its own partionlar morle of thight, ater some datserartiore, and withont monch variance or diftionlty.

Many hirds whirol are expert thers have scarely ally tail: the heroms. the allatross. the durks, the teals. the peliealls. the sulls. ete.. atre

Xgam, the tail may be lage or small withom apparent reason. As witness the turtle-dove and the Eigytian dove, the magpo and the jay, the volture and the tumblereasle.

Great size of tail ahways indicates fecher thight, esperially when the apuendage becomes very large.

Wramy neglect to consider this organ, as giving but vague intications of its ntility, yet if we must arcount for the fimal canse, for the neressity for this organ, particularly when it is well developerl, we arive at the following dednction:

The tail of birdsserves as either anornament or as an organ for flight. The ormamental comsideration concerns us not, it may here be neglected. As an organ of flight. We mas be enlightened as to its nse by the following description of a mamomer witnessed.

A kestrel falcou was skimming close along a hedgr, almost at gronnd level; its speed was moderate and its direction straight; when all at once,-as if moved by a released spring, it darted a right angle and pounced upon a lizard. The angle deviated was predise and the action of incredible swiftness. 'To perform this, the bird used its tail; it absolutely needed this rudrer, so ample and powerful.

Here we see the use of a creat development of this organ of locomotion; it permits surprising the prey by a sudden change of direction.

It seems probable that the powerful tail of the gypaëtus is destined for the same function; his mode of lunting among the rocks, delivering grat body blows must be farilitated by its ample and powerful tail.

In fine, the tail hest serves in pursing the prey, but is not indispensable for longeontimed tlight, as indeed may be proved by remoring it from the bird.

We then conclude that the tail's chief use is in producing rapid rhanges of direction; and cmionsly enough when the bird does not employ it, his flight is always straight. This may be formulated as follows: Aptitnde for changing the direction of flight is in direct ratio with the amplitude and power of the tail.

It is only from the theoretical point of view, from its application to artiticial dight, that the utility of this organ is here disregarded. The equilibrium may be maintained upon two points of support, as witness our legs, stilts, the velocipede, ete, yet we must acknowledge that in pratice a third point of support hecomes very usefnl; it introduces alson? testability, and minimizes that constant strain on the attention required to avoid falling.

Therefore a third point of support obtains even among birds with rudimentary tails. For example, the pelican dazzles not with the development of his candal appendage, but we may note that the genaral form of his body supplies the defieiency. When in full tlight he presents the following attitude: (Nee Fig. 1.)

It will be observed that bis arm and his forearm form prononnced angles, like those of a thattened letter \boldsymbol{M}, and that he may shift his center of gravity by playing these wings back and forth withont compromising his equilibrinm. This leads, incidentally, to another formula: Birds without tails all have the forearm very long.

 moms of streritge his movements wonld be drattully hampered at

Fliti. 1, - Jorlic:an in tlight.
low spereds. He substitutes. as we shall sare for this imperfort artion other and more ensrgetio moans of rhatging his dire tion

The flight of the flapping birds.-Lat us view tha hirl when tirst has
 his wings hang down loosely.

Let as analyar this tirst movernont. 'Tha wing is divided intor there planes, one fommed by the hamerns. another by the rathas and the ulna, and the third by the lamal. The result porlurat hy thr position of these thate planes is to affer mo resistanmer to tha air.

But this does not exhanst the derompesition of this attitula: all the

 wesee that the wing is nerer raised on the 11 g stroke at fall sprearl. hat well fohled on itself, so as to present the lasist possible surtare abll pet

 the all'. 'The artion is simple: the wing is lally extembal anl stitio, the
 There is therefore a great dittoremee in the result obtamed low wern the
 reflect in flapping tight.
 take the freshly serored wing of a later biod. grasp it ho the hamerns,
 tor madratanding of heating tiont than all !essihld deseriptions and

 suringe of the legs. and the tirst beat of the wings, hate laturhed the bird in the air. He repeats the beats baphelly and rises. bent roptieally, hut at an angle within for. To rise perpendernlaly the hind is rom-
pelled to reverse himself, a diftionlt manowser, sometimes performed by pigeons in the pigeon house to limber up their wings.
To pass from this inclination of some 45° into horizontal course, the bird brings the tail into play. He depresses it, and produces through the pressure corresponding to the velocity (sometimes aided by a particular light beat) a decomposition of forces which results in changing the conse fiom 45° to the horizontal. If the tail is weak, he nses his deltoin musiches, which raise his boly relatively and so produce the same result. In general. birts oftern employ both means simultaneously.

Horizontal motion being attained, the mamer of flight is slightly modified with increasing speed. The wing no longer beats perpendicularly, but is slightly inclined in the dirertion of the rourse in order to increase the sperd.

Soorring fight.-Some naturalists have alvanced most curious explanations of birl tlight, uspectally of soaring or sailing flight. For their purpose lightness is the main refuisite. They have pointed to the porous bones, to the spaces filled with air sometimes occuring under the skin of these creatures, as indispensable conditions for support in the air.

These are fallacies. Birds always exhibit coporal density, practically the same as land animals. Deprived of their feathers they sink in water: their specific gravity is about 1 , as is that of man, of mam. mals, and of fishes.

To rightly explain the flight of birds, we must comsider them as highly organized machines, which are sustained thongh the reactions produced by muscular effort: not as a balloon floating in the air, but as a stone glancing along the water, or a skater whding over thin ier. All that apparatus deseribed for distending the gameet, the pigeonall those hollow bones of the pelicam, the albatross, etr.. serve fight in no degree. Their utility in diftirent.

After all, experiment is casy. Strip a bird of his body feathers, leaving him only the wing and feather's, and his flight will be in no way thanged; he will get elilled, he will not he able to swim if he is a Water hird, but he will assuredly not thy the worse.

Let ns now explain the Hight of the soming birds, or as I prefer to rall them, the sailers. Birds soar perfectly in proportion to the mag. nitude of their sustaining surfates amd of the greatness of their mass. This is an munestionable principle. A large bird, an average sized birl, and a small bird, all three having the same proportional surface relative to their weight, will soar the better the heavier they are.

Let us consider, then, only the larger hirds. fir these alone can effect the decompositions of wind-force which produce fight without flapping of wing. As the sailing bird first lamehes ont with Haps, unless from a perch he phunges to get speerl, we will suppose him in full action in air, and possessing initial velority: He will then glide on rigid wings. If
 always to his surface, and aloove all, tor his mass: therefore an arrian valture will glide farther than a lawny valture, and this latter farther than an Egyptian vulture. yot they are all construeten very mearly in the same propertions.

When there is no wind, salling birds most rome down: Hight is not possible umless they choose to Hap, This sore necessity rarey brings enty hirds, for the moming is msually calm. partionarly in the tropics. but lot thore be a ament of air, a eiswomstanm almost alway fresent at a certain hoight in the atmosplere; at oner the seend "hanges. the sabler swopes in cireles, he rises upon the air to sreat altitudes, and theme he glides downward where he wislos to go. even against the wint.

Let ns try to explain this rimering ant. The bird gloles in his sweep in tha dirertion with the wind, losimg as little height an possille, the wind imparting velocity almost equal to its wwn by impart in the rear. This push is effertive: there is a good hold agamst upturned feathers, whereas when the bird thrns agan against the wind all feathers are smoothed down sumg aginst each other and presonting sumaces of least resistance. This difference macton is akin to the revolving raps which serve as anemoncters thongh the different resistances of the convex and concave smrfares.* As the bird furtler sweeps aromd ho
 ing fresh eleration.

In all sobermess is this fraction of an explamation presented ; for this "ircling adtom is little momerstood and is evilently wfeat nese to the bird. When he faces the wind in the sweep he deseribers, the bird add fusts his wings and tail so as torise slightly, lis own anduired speed inreasing the normal wind pressure, he rises more than he has dropped to derelon his own speed.

Tors sum it mp, there is a balance of bemofit: tharesult, a lift pro daced by the forer of the wimb. which does mot ate with equal efferet whether the birds front or rear is presented therefo.
 every lap. Tha greater is the mass of bird and the more meaty conventrie are the sweeps, especially when the breaze is light. Vot eran among those binds lest ahle to probluce those decompositions of foror approathing theory, the swerps are only exatety comerntric in the sole case when there is no wind ; while he s. awafing the vivifying end rent the hird simmbates the cireling rise, he still swergs around to sus
 reives the observer, and loank him to behere that the biod is risimg muless they are both placed on the samo level.

It is not well however to ascribe mulue mortane to the varring effere of the wint on the feathers, front and rear, and to rely on this
as a sole explanation; the problem contains many more elements. The variations in the amonnt of wing surfaces infolded to the wind, in the different portions of the rireles describerl, the variations in speerl, and the shifting in position of the center of gravity of the bird are all of them factors to be taken into accomet.

The bird's elevation is gained by the skilfthll utilization of all these elements, and by the happy use of a number of casmal dircumstanses, beginning with those of ascending currents, which have been so much discussed of late, but which are not to be reckoned upon as a steady, sole canse, and ending with the utilization of the coming puff of wind, which the bird takes advantage of by breasting it at the best angle of incidence, just at the right moment; finally, and especially, by the difference in length of course while sweeping with the wind or against it, the latter being shorter, and the difterenee being more marked, as the rise becomes steeper.

The alvantage obtained in rising on circling sweeps is easily observed and understood, yet it must be confessed that there is a weak point in the analysis, an insufficient explanation. This pertains to the stage when the bird is going with the wind. Is the acquired momentum, the velocity necessary to support the bird, sufficient to account for the subsequent phenomena? I searcely think so, and I feel that the explanation is not absolutely correct, for observation shows that there is often complete arest of motion. In any case, whether my analysis be good or inadequate, the cireling sweel is mneh practiced by birds, and observation indicates that it is the mancurer which affords easiest ascent, for it is the process always employed by the sailing bird when there is a minimum of wind.

While still lacking a clear, convincing explanation, we may hold to that above given provisionally. Relying on the instinct of the birds, we may without risk accept the usefulness of the sweeping circle.
lustead, a mancenver which supports analysis, and which is easily uuderstood, is that of direct ascension against the wind, either by drifting back, which is an easy feat, or vertically, which is more diffi"ult, or even while advancing against the wind, the most difticult of all.

Whem we note the corred angle of incidence presented by the bird, the adjustment of his surfaces, and his skillful utilization of the varying velocities of the wind, advancing forward in the calm, and ancending on the increased relocity, we muderstand his manouvers and find his solntion of the problem easy to follow.

But we remark that this particular process of rising in the air refuires that the wind shall possess such speed as to sustain at all times an areoplane with no relocity of its own, whik, if in circling sweep, this same areoplane would have an initial velocity, thas enabling it to utilize breezes too ticeble to serve in direct ascensions.

We must never think of the wind as a regnlar eurent of ain-we
 the ronstant wormence of imegular wnsts. not only near the gromat. but wen upt to the limits ot the visible atmosphere.
 Sllst of wiml: the "mbing ehange of "olor on the water indieates to the seaman the approadell of tha sopall. How is it that the bind pereeres thr coming gust? It may be diffornlt toronceive how it is dome, but the fant is certain. for the inworan fuff is often ntilized: and yet here agall is a hasis it is not salle to buld on oremmelt. for the laravy soaring hirels serem to disclain to use these putis of winl: they anerpet them.
 themselfer to profit fully by tham.
 understand amd to adooment for it, we mast separate two conditions of
 the irergular sust.

It woulal seem at first ronsidaration that when in a regular courent of air the bird sireeps a cirele, he must loser, against the coment, just so murh momentum as he has reorived ingoing with the wind, phas the firetional losses. ete. But we have ohserved that this is not the ease, and as we sily becamse the bird hreasts the wind with his smooth reaving shape, a shape more perfect as he rxerls as a saler; which - leaving shape difters much from the rear, which latter is aranged in quite another form to catch the wind as a sail. Now to the difference in the corefticient of result upon these different shapes we must add the effect of the varying angle of the incidence of different speads of wing as volocities rhange the reative shont comse against the wind, and thally that mysterions first callse which we call life, which exhibits marvelons womlersof "dnilibrimm of rest and of motion and governs the artive part of existence.

Yet.asis said before, very lange soming binds do not seem to tromble themselves muth to milize all these little areessomes the experts in the ant having arlusted their surfaces at an ararage angle, judged sufficiont firon theif experionce, do not readily montify their attiturle: they know there is small potit to them in small manombers, such as the furling and monding the wing, to modity the extent of sustaining surface in different portions of the cireling swerp; one might say that they alljust their areoplane mp to atixed noteh, whirh they know to bre practically good, and trast to the wind ginst for material uprise. There are probably minute changes in adjusting the equilibrimm which the telesenpe dows not disclose, such, for instance, as movement of the heat. which is a preedons balane ing pentulum admirably located: there are evon meonscions movemonts of the whole berly: but as to intentional changes in the size and set of the salls (that is, the attionde of the birds ilight), they may reman for whole homs at the point tixed, with reasomably steady wind, inst like the sails of ships. We must there-
fore examine the problam finther, and seek a more satistactory solution of the aircling problem. This we shall fimb in stmbying the effects produced by irregular gusts of wind.

The wind gust is the very rssence of the mprise; it is the magic wand which, striking the childs hoop, keeps it urright in rolling, drives it along, or raises it up to overleap elevations on its way. Suppose the toy to be placed on a steep inclined descent; gravity will canse it to roll to the bottom. If beyond this an ascending plane follows, the hoop, urged forward by momentum of acquired velocity, will rise to a height equal to that of fall. minus the losses by friction on the soil and by air resistance. But if, iustead of utilizing gravity alone, we accelerate the hoop with the wand, it will rum up murh higher than the point it started from.

Let us sumpose further, when the hoop is about to ascend, we can displace the ascending plane, in contrary direction to the toy's course, so that the phane shall glide under the hoop, then we would still more assist the ascension, by adding a supplementary force, independent of the others, and whose resultant would likewise be an mprise.

Let us now re-ronsider the action of the vivifying rarent of air upon the bird.

If the gust of wind oorurs just where the bird is going with the wind. its effect is akin to the blow of the wand on the hoop; it stores up energy and economizes descent, hence the bird profits to that extent.

If the gust ocens when the bird fares the wind, then the sustaining plane is glding beneath him, and the resulting pressure canses him to ascend: therefore again profit results in an uprise, nowise connected with antecedent fall.

If the wind gust occurs when the bird is on the guarter sweep, forward or batk of the wind's course. it still exerts contributory rise; there is alwas, in each case, an impulse, a thrust from foreign soure. which the bird profits by; or else a saving of arquired momentum. which the rreature transforms into mprise.

But, after all, these explanations avail only for the pablic, curious to kaow why. They neither corroborate nor dispore the facts. Whether We understand and mathematically demonstrate the mechanicsof sailing Hight, or whether we fail in the attempt, the result is the same. There remains always the demonstration prodnced by the Great Master, who in His wishom has implied: • If you muderstand it, it is well; it yon do not understand, "tis to be regretted: but in any rase, look! that is the way 'tis done! I exhibit it all day long, mot in a dark corner, but in the blue; and if you can not eventually profit by the lesson, you will really deserve never to join me in the skies."

Thas acts the bird: le demonstrates. Wesee the demonstration; and what morr can we do with a formma which leads to no result? What testimony is an explanation more or less clear? Can there remain a doubt as to the fact of sailing flight, when the proof is evident and visible
every day? The bird works no magic, hedoes hot violate natmal laws. We have not as yet rigoromsly explained these multifurons dacompositions of furces becanse they are all complicated by movement and by life: but they are demomstrated each instant, and they eomstantly invite ns to imitate a morle of motion which ean not be beyond onf attributes any more than the feats of equilibumu which we perform umensorionsly "rry moment of our lives.

Wrappreciate well enough the ats of walking, of leaping, of gym nasties, of the velocipede: have the manomvers which mantam then stability hem calenated mathematically" No, they have mot. Ome vital instinct suffices for surh action, not only aeenrately, but with all rapidity required by the need. Thus will it be assuredly for that remain ins. problem of equilibrinm which resembles the others su greatly-the sailing on the wind: for man's life. that wondrons reservoir of menn scions scienore will rertainly prove equal to this new allievement.

The main requinement will be skill. The knowing how, and when, amd why, and att is to be pertormed, to be expert in all possible manornvers required to prodnce varions results or to meet contingencies; in fine. the man must thoronghly komw his business-as a bird, a somping birl, just as loe knows in time his busimess as a swimmer, a skater, a bievole rider, an acrobat-and, in short, as an expert in any gymastio expreise.

Noper of the wind.-For the saling hime, the wind is the some of all good gained while sustained. Fo wind, mo uprise, no sitiling flight possible, therefore, in a dead valm, they are all on the per"h. Now, what least velocity of wind can support and mpaise the most expert soaning birds?

Observers may tame they are kites amd moltmes aneremiong in drad ralm. ‘Tis an impossible fata. There must absolately be at a rertain haght. a curent in the aine perhas indinermible to the ere, hat meve

'The sailing bide risimg during a calm, generally thaps his wings till he is up our lamdrad yams. At that rlevation he begins to cilcle, party gliding partly thapinge then he diminishes his brats as the ravation incorases, and timally stops them altogether: this pooves that the air is motionless only near the gromme

It is well koown that there is almost alway at somes coment af alio at prominent altitules: we learo tha balley whore absolnte stilluss

 however a hmadred yards above some fwents-two miles per homr, at
 tire-works, bombs, whose smoke is most semsitite.
 it erreatly exceers twenty-two miles an home at an altitule of 1.000 feet. A good wim, a fresh sea breere, one in which the sailor takes
in no reef, but kerps an eye on his sails, is found to blow forty-fomr miles an hour 1,500 feet up above the sea. The great North wind, measured by the transit of the clond's shadow, blows from 67 to 89 miles per hour, while a violent "Kamsin" at a height of 500 yards shows ineredible speer.

In this terrible wind, a tawny volture moving with it, has a frightful velocity ; in a moment it has thaversed the field of vision, say (for a bird of that size) four or five miles.

These are the tempentuons winds which expatriate the birds, which cause the ereatures, after a day's jowney, to find themselves 3,000 miles from their own habitat.

These chormons volocities are prover loy artaal facts. The balloon "Ville d'Orleans," which left Paris cluring the siege at $11: 45 \mathrm{P} . \mathrm{m}$. . arrived next day near Lifjeld (Norway) at $3: 40$ r. m. Say 900 miles in 15 homes, or 60 milas an hour. The balloon lannelsed at the coronation of Napoleon 1, travelled during seven consecutive homs at a speed of about 90 miles an lour. During a long smmers day, say 18 hours, a bird swept away by such a current of air, and rowing in the same direction, might travers 1,800 miles!

What splendid journeys a powerful wind might enable man to make if he conld navigate the air! But let us entertain no illusions; it will be the accident, not the rule.

Let us now consider every day winds, those of moderate velocity. Observation indicates. by compariug birds' progress with that of railway trains, that the slow flyers go at most 25 miles an hour, and that birds well endowed, such as the turtle-doves and the large sailing birds, in full flight throngh space, get over some 37 miles in the homr. So that, for general use, we may assmme a speed of a little over a mile in two minntes, as a probable achievement, if man sails on the wind.

If the problen: can be worked ont, if the skill be acquired, this is the rate of translation man may expect to compass, less perhaps, rather than more. But it is a fair promise. He may jommey 300 to $t 00$ miles in the day of 10 homs, with no expenditure of power whatever, for the wind will do the work.

Telocity of the bird.-The speed of the hind's translation, considered generally, especially for sailing birds, is composed of the bird's velority with that of the wind. With flapping birds the case is different. and the speed results from thee factors; the speed of wind, the theoretioal speed of the bird (which is to be estimated as if he were a sailer), and the additional speed produced by personal exertion. This latter speed, already object of many experiments withiu doors, and of reams of calculations, nowise interests the observer who watehes the sating hird in all the simplicity of its flight. We therefore will comsider only the lesson to lo leamed from prastical premonances,

To measure arcomately the speed of transation of the bird. We camnot surveg him in the arr. for we have no reference points. It is to the bial's shadow mon the gromal that we must direet our attention. This shatow is easily followed by the rye it may he gemead hy tha

 For instrmetine observation it is well to study many models. and to live dose to them.

For instancer an I write these limes two families of domesticated ravion are within a few yands, awaiting for the food I alll about to thoow to them. On tha mostur, in front, my pet kites are jerehed, waiting my apparance to plome fowards me, at the least gestme 1 may simmate of casting mast to them. Thms I ran elosely viow this expert at full sped, for there aro two of them which shateh their pittance from my hand.

There are endless battles between ravens and kites and amoner kites themselves, amd battle abwas brings the performance of leats: comstantly does the kite torn wra back downwart, this being a farorite fighting posture with all the ragle tribe. I often see two kites loek claws mp in the ait, "hateded fast, and thus locked spin down handreds of yards.

When as great wind hlows, the observation is wonderfally interesting. To try to $\times x p h a i n$ these complicated movements with mathamatial formule sems a farere. Their mer deseription is difformit enongh; how then can we fasten within algelman rigid rules the evolutions. the feats. the stratagems, which shitt with each wind girst, with rach famer? It is like an attempt to calfolate the foot pomads expermed by
 gle between two athletes.

What is most koww coneerning the sped of binds is gemerally vague, for they do mot lend flamselves to acamate experiment. Tha speed of thapping dight is perty well indieated by the carrior pigeons.
 species.

We know that the tortledore flies faster than the worl-pigeron, its wority being abont $\pi 0$ miles an homr. lomeks and teals have ereator
 the effertive speed is soverned by the fore and diredion of the wind. It is therefore almost impossihle to be exatet as to the speed of Iapping bides, and the grestion possasses small interest for him who thinks the soarime birts to be the fowe motel to imitate
 speed of flisht, which naturally valies with the wimf. but whichalwas:

 the kite.

Near the .. Abbassich " wate at Cairo, amid momatains of potsherds, dead animals are deposited by the scavengers. They are not buried; there is no need, for between vagrant dogs and rapacious birds, they are eaten up in a few hours. As soon as the carcass has been laid down and the knackers have finished skinning it, carniverous birds appear. They pass in the zenith of the observer and arrive at their destination, all the time visible through the telescope. The distance is known, and only the time need be noted which is consumed in the joumey.

This trip is performed with the same velocity by the three birds named, but the force expended is evidently much less when the mass is great. The actual speed, of course, varies with the velocity and direction of the wind.

As a final result, deduced from such daily observations, I think that I closely approximate the fact when I state that a kite, soaring to survey the hmoting ground beneath him, has a mean proper speed of 11 miles an hom when the wind blows also 11 miles an hom ; this is the sailing bird which seems able to obtain support with the feeblest current of air. The tawny vultures, in order to rise on surch velocity of breeze, need to unful their entire possible wing suface. For them it serms that the wind velocity shonld be at least 17 miles an hom to be in full accord with their faconlties.

Effect of specd.-Theorists frequently set themselves this problem: What is the power required to obtain smpport in the air?

The lifting force, (ascensional power if you please so to ("all it), is muder many circumstances so slight that it may be neglected. and is reduced to the force necessary to sustain the apparatus.

In soaring flight this ascensional power is only indispensable when there is no wind. The problem would be better stated thus: What velocity monst be imparted to an aroplane, bird or machine, in order that it may be sustamed on the air and may rise". Now for this, as for all aspects of this problem, we find a solntion provided by nature.

Birds whose pectoral museles have not power to raise them borlily are not rare. Sailing birds can, maided, compass but little rise; especially the very lare birds. A tawny valture can not rise 20 yards on a start of 45°; he can not rise 10 yards vertically. So this king of soarers may be kept a prisoner in a rootless rage, provided the sides or walls are 20 yards high and 20 yards apart. Among birds with narrow wings this peculiarity is still more marked.

The Swift, this widd, darting, rustie inhabitant of the air, can not rise vortioally 6 feet. It is perfertly caged in a large box withont a rover, and get if any ratme is thoronghly equipped for tight it is he The same is trum of the laree sea birds. A frigate bird is impotent with less than a cortain space to perform its evolutions, whereas as soon as the two birls I have named have acquired speed, or are lamehed in is current of air (which amounts to the same thing), they become forth-
 this tells the whole sterye.

I maty here formulate an axiom: No speed, mo fight.
T once han a curionts problem to solve, based on the above prindiple. ft was years ago, abd I was in Mgeria; so far as I wow rembember, it was in latif. in the spring. I alreatly morerstom the problent pretty Well. and with a li help and better sumoundings T might have sud reededinimitating tha birds. I apprexiated the possibld results: perhaps the Frencla collapse of Lsito would have been averted, the Rossor 'Tukish war might have remained in limbo, nations might have gamed freedom. or Asia might hare invaded binope with rountless thongs: whoknows? But why xpernato? Let ns leave all that aside.

I was saying that one fine morning. in the port of Algiers, I lad wonn to the hamber to look over the fish "anght wern might. This was my way of stmbing the dogishan the form of the great smbmane swimmers, ete. There I rall adoss a peddler, who instead of fish had some sea hiteds for sath. There were some fitty of then. I did uot at first know what kiud of hideds they were, but after a while I rerognized
 which I had alreatly seen at sea, but maly atan off. As they were rheap, I treated myself to fomb, and then I took the tamin at siclock, and at 10 I was at home on the plam of Mitidja.

It was my object to examine and measure these birds, and then to set them at liberty when I was fired of them. I theretore depensited them on the water, in a little duek-pond, near my farm. Here I think it may he woll to give a short deseription of this lipd, so that persoms Who are mot arpalated with it may fally appreciate all my mishaps.

The petrel is a bixd about the size of a smath hern. Dy referring to my
 that its epreal of wings is 4.10 feet. ly a widthof only oinches. Thas its equipment for tlight comsists, as it ware, of two drmmsticks, which only permit its lammbing forth undor sperial romolitions. Wramay form a lan inder by imagining a pullet equiped with two Hat rules, sumb as
 the feet are webbed. The hird aill scandery walk: it rums sor losteps. then stops as it fatigned.

My fomb birls, seton the pomd, did mothing in particnan: they semed to hate no motion of taking Hight. I took mpone, the weakest one, and
 against a wall and knorked its brains out. I was vexed: I took a
 bind was siok; it fell so sfuphlly that I allownd the doy tor strangle it. Sol took a thime amd l fook my oath that day to see a stormy petred in full dight. Poblning this abont, I want fo the top of \quad Hy ohservat tory, whieh was several leet higher that the peak of the jowt' 'Thenere
 II. Мis. 111 - \because
better luek than the others; he Happed his wings vigoromsly, sinkinser downwarl, and just as I believerl him to be fairly under way, he struck a post and broke a wing.

I must own that I was not pleased with my purchase, amd there was good reason. To spem good money in conferving liberty on captives, to rark my brain about them, to carry them nj to the roof of the house, abd then to fail flat, this was hard luck.

There was still one bird, a forlorn hope. I had got it into my head that I most see this bird in full flight and I was determined not to miss my aim this time.

I rethected a long while; at last an ideastruck me, and here was the result.

Less than a mile from my farm there was an open trart, naked, bare of grass, flat, smooth as a mirror. It struck me that these combioms were somewhat analogous to the surface of the sea in a calm.

I carried thither my No. 4 , who appeared to be just as stupid as his three predecessors. I set him lown on this extended area, and retired to a distamere. The "reatme remamed squatted down for a good while, then he turned, with his beak to the wind, and he stretched his wings. Then he showed me that I had reflerted to some purpose.

Hestarted rmming and heating his wings, which were not hampered by any herbage, and ran in this way about 10 y yarls, carying his weight less and less upon his feet, and finally all on his wings, but all the time skimming the gromud. At last, with a single bomel, catehinge the wind, he rose some 60 feet, retumed towards me, and as he glameed by on his way, I thonght he sabll to me, "Remember hereafter", oh! my preserver, that suceess in flight is all based upon speed."

Efferts of Mass.-Among birds of the same shape and same musenlar power mere differnce of weight produces offects quite varied. and yot all of a pieco.

Let us note how a diffirult excreise is performed by the eagle, by the falcon, and ly the lark, all three being perfectly romparable as tu their ronstruction.

The eagle remains motionless in the air, on ligid wiugs, using only his tail to balance hamself; he is as fixed in spare as if spiked to the sky. The falcon also remains at a fixed point, hut he leats his wings; while the lark camot perform this manemver, under the same atmos pherie conditions, withont painfin effort, as it is eonstantly carrien away by the wind.

This law of disproportional aptitude for flight between the smaller and the larger birds constantly deceives the eye and confuses the data gathered. An actnal example will exhibit the law.

The quail, whel averybody knows, is an especially heavy hidr. It flies with great effort. It is a romal ball with two small wings which
barely sustain it. Yet. antually measured and weighed, it presents the follewing surprising results:
It waighs ouly 0.92 pound per square foot of sustaining surface, bory and wings, and this is less than the flamingo, which werghis 1.56 pounds per square foot of surface, and yet this rosy wader is generally thonght of as a merr pack of feathers. Or than the peliean, which weighs 1.36 pounds per surare font, and which thies rery well. Or than the stormy petrel, which weighs 1.17 pounds per square foot, and must depend upon speed for a living. (Or, it will mot be believed, the quail weighs: antually less than the tawny vulture, which weighs 1.47 pommes to the suluare foot of surface, and yet floats for whole days without a single flap. And yet how badly the poon quail flies! Its usial course is 209 yards. and it is them ontflown. it pants for breath.

From the comparison of the rates existing between the weights and the surfaces of the birds which I have measured and inseribed in the talles of this work, I may deduce a general law: The amount of porprotionate surface repuimed ly a bird for agen mode of flight diminishos as the weight of the bird incrases.

The exant porontion is yet to be deduced from more complete tables than those which 1 present, and from experiments to be made mon the sustaining power of amoplanes ronstructed uponsimiliar models, but of different sizes, and loaded with ballast mil they produce similar nativfactory results.

The exact advantage obtained throngh large mass, while indieated by my tables in a derided and regular maner, is somewhat difticult to formulate. The mamer of inerease of the volume, in relation to the contaning periphery, wertainly cuts a figne: it is a factor to the credit of the larger mass, by diminishing the relative air resistance; this is umpestionable. Incrasing sustaning surfates, on fle other hame, produces increased friction and ressistance. but the gains and losses do not increase with the same factors, and hence result complications.

We might reasomahly expert that the area of smitace required to sustam each pomud of bird would be fixed and definite ratio; any deviation shombl only bo produced throngh gata in the ratio botwern the volume abl its abeloping surfae, on thromgh loss by inveased resistance amt firfon of the smstaming surfaces. And yet it is mot so. The tables 1 have construeted show that things are very different: they iodicate emormons discreppatios.

Thns the surface of 3.62 square fert required to sustatin one pound of bank-swallow is reduced in the tawny valture (which flies and is sus tained at least as well), to 0.6is square feet per pombl, a variation of five times and more.

If we seek an explanation fin this phenomenon, we fiml that a dis. turbing camse always brings advantage to the larger mass ; it is the variation in the coeflicient of air resistances opposed to different mases.

Continning our study of the effects of mass upon flight, we shall notice in the tables that as the weights of birds vary between 15 grains and 3.5 onnces, the peeuliarities of their fight become very different. From 3 ounces up to 10 ounces, from 1 pound up to 2 pounds, from 5 pounds u_{p}, 10 pounds, and $1 u$ to 16 pounds, there are as many steps in the increased economy ot power and support in the air. So it seems at least from information firnished by the experts, by the birds.

It is probable that the benetits to be dorived from large mass confinme to make themselves felt beyond the weights compured in the tables, and that up to some 200 ponnds the law remains the same, or, to express it in another way, the curve of variation which may be constructed with the figures contained in these tables would continne in regular sweep beyond the points observed.

When we observe the saling tlight of the Nubian vulture, whose weight varies fiom 17 to 22 ponnds, the one astonishing thing which strikes us immediately is the great steadiness in advanciug. When the bird has set his comse, accidental wind-gusts do not seem to affect his great mass, which appears insensible to them, and which continues its majestic motion without disturbance. An ä̈ronlance, therefore, weighing 200 pounds with its load, ought to move on the wind with even more persistence and regularity than the Nubian vulture. How will it be, then, when from 200 pounds we pass to 1,000 or 2,000 pounds in artificial flight? We may rest well assured that unsteadiness and aceidents of the flight, under equal conditions of wind, will diminish in a still greater degree.

For weights $11 p$ to 200 pounds, intuition furnishes as with a pretty sound idea of what manner of flight we can get on the wind: we lave, as it were, bench marks to refer to; but when we shall come to weights of a ton or so we know searrely anything, and as for 10 tons, we are in the dark maknown. However, matil the contrary be proved, I shall believe that the adrantages shall continne to srow in the direction of the havier weights.

Effects produced by aygregution (in Aocks), Observation seems to show that birts (Whether sailing or rowing birds), have more pown to penetrate the air when they are eongregated in flocks than when Hying singly.

It is a fact well known to sportsmen that a charge of shot so rammed as to seatter does mot pernetrate as far as when well rammed so as to ald is a single ball.

Binds must know this property of aggregated bodies, for they firequently avail of it. Thms the perserimes make no long transits muless gromped in elose order, beginning with the sparrows which have a well fixad order of Hight. ligeons, ducks, geese, swan, crames, etr.. never travel save in serried lamks, in always the same order for the same species.
lerleans on their tharels armage themselves in the form of a werlge, Whirlo foom a distanco simmates the point of an arow. Thoy move with a rarions shorewhess, and with the regnlarity of iron rollingmill marlames. These emomous palmiperles sometimes alford a most
 a fork of them come sailing ont of the sky, thopping fiom a height where dirst they semed as swallows, alighting within eot yards of my boat. river. I followed all their evolutoms, through at tobsope, atad the spectarle lastad half an lomb. It was astonishing! How beantifnl were these great birks in their wheelin os among the rbouds! From aftar oft oue conld hear the hissing of thein wings clearing the air, their hoarse "ries, somewhat like the donkey's lamy, and "ren the slapl of therim great fert as they strone the liguial mond.

The there suppors.-Eath family of Hyins reatmes presonts in tha

There are hide with longerms ame others with shont arms: seme have loug primary feathos and athers havo them short. Some birds hase long marow wings. others have them thin and short. Bome
 length: others again mis to a point in which either the thirct. the sere ond, or eren the dinst. pimaty feather is the longest. . . For
 wing forms internded?

When matme had to provide a later bidd (and we meed only ronerern olloselver with such with wings for saphel tight, sho mate these wings small and marow. and porided powerfal pertoral maseles, as witmess the durks. When the birles suress in liferequired it to move in high wimels. like wean storms. she insariably dadowed it with long and natrow wings. to avoill frietion, as witness the gull, the mew, the gatm net, and the ablatross. When she determined, as in the ease of the
 Pudowed it with lere hest gifte; that is lo sill, with the aptitude of sail ing indelmitely withont fatigue while surverias the deld. For this she gase it the wings of the saline hird, and to thres joimad powertal moter maseles, su that it might flap vigoromsly mase of med. When she determined only to provide a biad with the facolts of remaining in the sky without fationes, she emblowed it with fwo things: al latere mass and a large surfare.

As for other birds, her unfabored ehildren. the disinherited, she mande
 forer, flapping and fatigue.

Let ns now ingrire as to what mation there is botween the mote of
 tion to the hand.

Before going furthrar whonld remark that the lengtheming of the
forearm coincides with that of the arm ; there is an almost constant relation between these two parts of the wing, but there is a decided divergener in the relation of these two parts (taken together) with the hand.

Each tying family is proportioned somewhat differently; these peenliarities should be ascertained by detailed and minute measmrements, but in their absence some general remank may ba madr.

We may rover all gemera of soaring birds ly the two types we proreed to specify.
(1) Among soaring birds the general posture of their wings at in acute angle of about 1000 (the summit of the angle being the brak) corresponds with the shortening of the arm and fore-arm. and the excessive lengthening of the hand. This covers rapid somers, such as swallows, martins, and in lesser degree, the kites, fish-hawks, etc. Let us remark, by the way. that this kind of soring necessitates a powerful tail.
(2) In the extreme opposite type, that of show soring birds with wide wings, the angle mostly afferter is about 2000 , and sometimes more, and here we notiee a diminution in the leogth of the hamb, and a great development of the arm and foream. The best type of this genus is the vulture. In the latter gemes the tail is generally small.

There is howerer a fanily of sailing birds with marow wings, which has an exaggerated length of arm, fore-arm, and also. gencrally. of the hand. This is the family of the Pelicemide, comprising fom or five generat which are constant, paralozal sailing birds.

The tropical phatom soars wonderfully. The Egyptian pelican is a charming instance which can be closely studied, for it is easy to see him in full sail over the water. But the frigate-bird is the ne plus ultre of soaring creation, the chef texure of mature in that direction: in this bird the lengthening is general, the arm, the forearm, the hand, all are of mormons longth; therefore the wreature soms fast or slow just as it chooses. It is perfert of its kind but of no use as a molel, for man can not imitate it. Let us therefore dismiss it in this essay.

Thins we have reached the fact that the two extreme types of soming flight are the martin and the Nubian vulture. The first presents its wings at ant acute angle, and this proluces instability of equipoise requiring great velocity, just like the velowipede which cam not remain upright muless it is in motion.

Vultures, on the contrary, can spread their wings at a momering angle. The two wings and the tail then furnish three points of support, upon which the system is balanced. The relative positions of these three moveable supports govern the motion and the speed. Therefore the variable positions of these three supports promede all the evolutions of those avian acrobats which have been termed soarers or sailers. The variation of the angles between these points of support
eovers all the types of sailing tight, and prochaces all the manamoers, fiom that of absolute immobility in the sky to that of vertical lall; fiom great velocity to the actual stopping. fiom gomg forward to going batkwarl: for. from a theoretical standpoint, backward thight or batkward gliding may be considered as foasible.
 by sombing birds is somewhat like attempting to descride a piotme or a pliee of mase in words, -the hest possible desoription will never be worth the romshest sketeh, or a line of notes.

Howerer. as we can not rest content with always preaching olswervation to those who dan go where the birds are to be fomm, we shall try to say a few words comerning somm evolutions of sailing winger creatures: for before man dare trost himself to any apparatus, howerer well designed, he onght to know. approximately at least, what may be done in the air with surlo an apraratus, for else he can only be sme of the drescent to the grommd.

Binds get their initial start in many ways. For most of them this is the easiest act. Those which have to vamonish the greatest difforulties are the large water birds, which in starting from water or ground are compelled to 1 mo a long distance, msing both feet ant wings, in order to gatu the speed required for support. This applies to large sea birds with narrow wings, and in gemeral to all water birds: such as the geese, the swans, the pelicans, ete.

The rowing birels simply jump into the air to take thight; their peeforal maseles are so powerina that they emable them to get support withont moch healway; moreoser this leap possesses great energy; this may be realizal by watching the leaps of a large paserine bird deprived of his wing teathers, such as a laven or a maghe: one single leap sumds them in, three feet.

The smaller the bird the grater is this initial leap in proportion; as witnese the barkhirel, the lark, and that liferspark, the tom-tit. Among the birds, the strength of the lege follows the samu law as that of the pertoral muselas; it increases in proportion as the woinit dininishes. In fact, a nightingale or a sylvia nse theif wing when in a thicket only as an aid to equiblımon and as direoting power.

The phovers, certain scolopax. The tringas, ete., get into thight hy pred vions rumbing. 'The lareer mumber of the great waters. the larere val

libias of pare in geneal have two mothorls of getting under way. When they start lion the gromml, with of without a prey (exeren voll tures). thry always moter into atom by a leap measmring a yarl. When they are on the pereh, being alway at ereat herights, they simfy lameln into space and spreat their wings open to get moler fall motion.
('oming to a rest is always a serions busintess for a large liord, and serms to berome more so the heavier they are. (iemerally they mamage to face the wind, and thas to extinguish in part their veloeity. A pigeon withont experience, alighting with tall to the wind, is generally mpset and tombled over. Th a state of nature, a wild bird knowing his busincss perfectly, never misses making a sate landing. When the wind is high, the heavier hinds of large surface perform wonders in coming to a rest. An eagle alights with incredible lightness; the shock is now greater than that due to a tinch fall.

When there is no wint, the winged experts who dislike to be jarred adopt another way. They glile upwarl, the steeper the slant the bet ter, and bey thus opposing gravity to speed they completely extinguish the inertia of their motion, rising as high as may be required before fommeng to lest.

When man comes to experiment with an aderial apparatos the bird's mode of alighting will needs be studied on outronce. The man may add a lot of embellishments, such as elastic nets, beds of straw, suspemded cords with elastic comnections, rings for attarbment, watery beds for Hoating machines, etr:

The act of alighting is the trrmor of all winged rreatures. There is especially one class which drearls (and with reason) even the smallest fall; these are the waders. Therefore do they possess great proportional wing surfare, which perhaps may be intended to allow them to come to rest withont the risk of breaking their long legs. Happy are the birds which alight upon the water. The reader donbtless has seen aswan come down to his liquid bed; it is a striking spectacle; they plow deep finrows with their palmed feet: the jets of water and the foam which they raise with great fins attracts attention foreibly. This is the more of coming down, simple and practical; which man must ponder well, and try to imitate.

OBSERYATIONS OF BIRIS.

I give in the following pages some data concerning birds, which, althongla scant in extent, have required from me many long years of honting. I now have but the later specimens; two-thirds of those I had gathered have perished in mmerons removals-they have been lost, forgotten or abandoned.

It is not enomgh to kill a bird: this must be done under favorable circmmstances, that is to say, we must have two things whirh are not always at land -ncales to weigh the ereature directly after death, and appliances for measming and calculating its surface.

Birds sold on the market in the towns of Europe are generally unfit to gather data from, becanse they have been drawn or are dried up, and the exact weight can not be ascertained. Among fifty rare birds which have been sent to me, only threerould be utilized; all the others lacked something on other and had to be rejecterl. One of the latter

Was a rarions bind: it was bomght fom the shat eomatry by the ex
 and at fow large secombaries. I rould only say, attre examining them that if these were feathers of the griflon, that bird attains an extrardinary si\%e in that region, for the longest feather was at least as large as that of the condor and was 293 inches long. If may have helonged to at errat manown valture of ('ratral Afric: the existence of which I suspert from the areoments of Abyssimians. If so. it must be upon the old contiment the amalogne of the hapy of the Amazon liver.

I was in possexsion for many years of the most beantaful eagle which I have arer sean; mother Paris nor Gemeva ponsessed. to my knowledge, anything its equal in figure and beanty. Vet I "an fimish no aremate data of eate measmements. I have killed over a dozen, and 1 "an wot present ond of them to the readm. flowerar, as the porerb somen we rall not wive what we have mot got: sol wive the hest intormation l have.

All the hides l present wree werghed when tresh killed. As to thein surfare, this is the way I proved: I spread ont the bind, bark down warl. "pon a large shee ot parer, the wings being strotelned ont into the attitude of their Hight when there is no wind; this beings set down in the tables as ${ }^{-}$wind, 0 per seromd." Sometimes, when the wing happened to bre stiff and romld not br fully extemed, the attitude resembled that which the bind assmmes hen there is a light hreaze: in
 (11 biles per homr). Finally, some measmements have been mate with tha hirdse wings aljusted as when they sall on agood wind. In suth
 homis).

Once laid down on its bark, well aljusted in projer attitude of sat ing tight, the biod is made immorable hy weights, these being plates of leal to datten down momly feathers. and two of three large masses wi lead to hold the wings in position and to comenterat the contration
 atte. Wre thus get the total projerted smfare of the hirt-wings, tath, body. head and fect. Now, if we only measure the surfore of the wings, we womlal ar: for when maler way, all parts serve to suppor,
 rording to its shape. Assmedly, we might meghert the fere of the wators, as being mothing lut an imperlament which the creatore trats
 it derives motrlapert fiom the alir.
 of the hird.

conrage with both hamls, as the saying is, and when the opration is ended we may say that this is another stake planted.

When the weight and surface are ascertaned, we next measure the spread of the wings (allar dimension) and the mean width of wing, which two latter indicate the proportions of the aieroplame of the hird. This relation is indicated in the tables by a simple proportional fratetion, $5: 1$ for example, which indicates that the width being 1. the total spreat is 5.

In addition. I set down the amomet of surface necessary to carry 1 gram, also the weight sinstained per square meter, and fiually the aggregate surface requirel to support 80 kilograms (176 1omms). This weight of 80 kilograms corresponds to the weight of a man efnipped with a light ampolane. The figures therefore indicate the total surface required for an aëroplame of that particular type.

In order not to present at raudonn (alphabe tieally) the different kinds of birds, they are gromed according to their mode of Hight. This produces strange grompings; all mithological rules are boldly violaterl; the charadrius (plovers) are elassed withont hesitation with the vanelhs; even classing the aceipiters (night birls) with the passerines (sparows, etc.), which is an intimitely more grave departure. It will thus be seen that similitnde in flight has alone been takell accome of:

The Reil type.-V'uder this lead are romprised all the birts which, in flying. hold their borlies at an inclination of abont 45 degrees, instead of spreading themselves ont horizontally, a position invariably assmed by the other birds. The maromettes (raik), the different rails, the waterfowls, and the domestic fowls, here compose this branch of flyers.

The thrkeys, the suinea-hens, the eanepetieres, and the peacocks do not form part of this class, becamse they stretch themselves ont horizontally when in full tlight.

The above class of liods (rails), althongh they ty but rarely are sometimes compelled to make long jommeys; they potably then utilize strong wind of good shstaining force. These great air currents have indeed a power which human instinct does mot reveal.

During a strong siroco, howing at least 20) meters per second (tir miles per how , I have compelled Kabyle poultry, which, to he sure, Hy somewhat hetter than European fowls, to take extensive tlights, during part of which they soared in at way surprising. The gumeathens were loy this violent wind sustained in the air with an ease one wonld never surpect in a gallinacents fowl.

Here, methims, the goon honsewife will ask, were many cyss laid on that day? I confess that this did mot disonuidet me. I wombl have sacrificerl the whole barn yard for such a beantiful demonstration: fir after all, when knowledge is songht, we must do all requisite things to arrive at that kowledge, cen to the sarking of the poultry yard, if need be.

My poor pigeons! what a time they had. They were adjusted in all

			$\stackrel{3}{11}$	$\begin{aligned} & \text { 令 } \\ & \vdots \end{aligned}$	$\begin{aligned} & \because \\ & \vdots \\ & \vdots \end{aligned}$			，
			菏		漖	－		
	$\begin{aligned} & \text { N } \\ & \\ & \hline \end{aligned}$		号					
					$\ddot{\square}$			
欴						\vdots		
気部	$\stackrel{y}{\vdots}$							
	$\begin{aligned} & \text { B } \\ & \hline \end{aligned}$		善					＋
左		：	\％	i 2 ：	0			
	－		\vdots	\vdots	ミ			
关					$\stackrel{\square}{\#}$			
			$\begin{aligned} & \vdots \\ & \\ & \\ & \end{aligned}$	B	実		\＃	峀
		$\begin{aligned} & x \\ & \\ & 0 \end{aligned}$	\％		$ミ$		为	\＃

sonts of ways. Their wingswere clipped short: their wings were lengthrmed ont. They were made semi-long, narrow and long, narow and short. They were piecerl ont with primary feathors from birds of prey, thoronghly fastened on with gher, and pressed on in the vise.
'This is what happens when a bird's wings are altered; when the actire surfaces are changed in extent and form, the reature being accostomed to a partianlar mode of Hight starts off in his habitnal manner; but his organs are no longer adapted to prodnce their enstomary effeets, they are shaped to produce different effects. Thus the bird finds itself with habitudes and instincts for one morle of flight, amd with a new arrangement of feathers arlapted to another mode. The latter constantly impresses him with the neeessities of the moment, amd these neressities compel him, willy-nilly, to fly as tlies the other type of bird which has been formed upon him.

Thns, a kestrel falcon, a gool soarer, who hani his nest near my observatory, has just one-half in length of his primary feathers cut off; the result was forribly to transform him into a rowing bird. I restored him to liberty, and as he remained on his honting gromm, I had every opportunity to observe him. Although murh hampered the hird was not very unlappy: the prey sometimes eseaped, but he made np for what he had lost by incroased activity. He was easily singled out, for the mutilation gave him an musual figure; his long tail seeming longer. now that it was not accompanied with two long wings, and it attracted attontion from afir. Aml so he Had to row ronstantly. Once in a While he wonld try glinting in the old firshion, hat as he fomud himself dropping too rapidly, the instinct of necessity for support compelled him again to heat the air.

I have transformed kites into stormy petrels by clipping oft half the width of the wing for its whole length, and abolishing the tail. The result was to compel them, notwithstanding their habits of soaring upon light winds, to await justead the bersk wimk which alone rould sustain them without fatigne.

As will be seen, to surceed in such observations we must absolutely control the bide and have himat command. Experiments withincreased surfaces did mot suceed as well; I tried them on pigeons, and on two kites who were old neighbors of mine. I only suceeeded in prodncing. hirds which were exreedingly awkward in their movements. I ought to have puatised mpon a goss-hawk, but how eomld I have afterwards observed smelt a mere hird of passage, whereas the kites a have fixed habitat, they are well recognized, so that if there is an important feather missing in one of the kites in yomr neighborhood, fon can recognize him, single him ont, and consequently observe him.

The Hanck type.-These are here separated from the great family of birds of prey, hecanse, although they are raptores, there are between
the two divisions protomd differences; one may he called laptores of long flight and the other of short flight.

Among the eagles, the falcoms, the kiter, and the hazands the primary feathers are long, the second and third being the longest, the result being an acnteshaped wing. Among the hawk the tifth guill is the longest, and momeore the whole combination of primary feathers is remakable for its shortness. They are mot hirds of extemsive flights, either as regards mation on duration; they trequently are perched. They comprehem three speries-the sparow-hawk, the onss-hawk, and the harp. which has the same contimation as the two preceding, and must tly in the sane mamer. I do not know the manner of movement of the harpy, newe having seen it myself, but I ans sum of heing right in saying that its gat is in gemeral the same as that of the goss-hawk.

Nature has momethis bird for a forest hunter. Its lifo is passed anomg the trees. Its forter is mot the attack of a hare or a duck in
 hirds on after mammals maler the trees. The powerful tail of this fam-

ily of birds has beren siven them to tarn short cormers: thry needs must seize monder the trees a bigeon of a turtie dover, and this vigoroms rad
 trees with all rednired valocity.

There is abother hird which areomplishes the same results by othar

Its life needs are the same: it is also in the verere of the forests anmong the trees that its hanting exploits aro performerl. It has no tail to spara of: it "amot afforl it: for in the hole where the bive cowers in the day
 brings into play a peculian aftitude, bon'l of meressity; this is a mohil ity and an extrandinary power in the mondeot presenting the planes of
The Hawk Type.

its wings. Changes of plane aganst the aim which change the direction of its thight wath incredible celerity. No other flying creature has this gift equally developed.

With what astonishment is the Hight of this rommons bird beheld moler thetrees! Nosuchdrxterity canbere-called. Theobservorishabit boing to see birds gemerally poocod in atraight line, it remers the flight of the great-eared owl faimy stupetying ; it semms at every monment as if it were abont to dash against a tree, and yet wery obstacle is aroided. It flashes silently, horizontahy, or even vertioally thongh spaces where there would seem to be no passage; and this is dome with absobinte merhanical precision, without hesitation or slarkening of speed.

This is truly the most extraordinary mode of Hight, but it is a rare sight aren to dwellers in the comntry.

The Gull type. This gemas teathes one thing, mamely, that in order to hover or to penetrate in great emrents of wind. the rexistance of the

Fは, 3.-The 反inglisher.
aroplane mast be rednced to a minimm. The spread of wing is of less consequence that its width. When we thank of it this is mational, but it must be confessed that mature dide well to demonstrate it. for it Was a differult derluefion to get at. The table shows that in this type the spreads of the wings is fiom di to 10 times their width.

The athatross, which is mot included, mast greatly exeed this por portion, for travelers mention some 16 or 17 feet as the extreme spreat of winge, and as its width is about 10 inches we have for this bird a propertion of about 20 to 1 .

This tearling is of great importanere, and shombl be bor'me in mind in the design of amolanes with adjustable sufferes.
Tife Gull Type.

Commonn name.	Scientitic name.		$\begin{gathered} \text { Weisht } \\ \text { of } \\ \text { bird. } \end{gathered}$	Surface within contour.	$\begin{gathered} \text { suread } \\ \text { of } \\ \text { wings. } \\ (b) \end{gathered}$	Mean width of wing. (a)	$\begin{gathered} \text { Pro. } \\ \text { purtion. } \\ b \\ a \end{gathered}$	One gram of bird's weisht sustained by-	$\begin{gathered} \text { One } \\ \text { square } \\ \text { meter } \\ \text { sus- } \\ \text { tains- } \end{gathered}$	lielative surface re. quired to sustain 80 kilos or 176.4 pounds "soirdnpois.
Oiseatrmourbe		T	Gricme	Ar.meters.	Weters.	Meters.		sif. meters.	grams.	Sl. meters.
Hirondelle grise........ Batnk swallow	Cotyle rupestris	$0^{\prime \prime}$	16	0.012384	$0 \cdot 31$	${ }^{1} \cdot 05$	$6 \cdots 0 \div 1$	1.0000774	$1 \div 91$	61.92
Hiroudelle de fenetrr.... Martin	Hirundo urbica									
Hirondelle de chemined. Barn swallow.	Hirundo rustica									
Martinet switt	Cypselus apus	$0^{\prime \prime}$	33	0.015918	$\begin{array}{r} 0.376 \\ 1 \because 3 \mathrm{it} . \end{array}$	0.648	7.83:1	$0 \cdot 000482$	2073	$38 \cdot 56$
Sterne................ . Tern	Sterna	11								
Crlaréole.	(ilareola torymat	$0^{\prime \prime}$	67	$0 \cdot 031946$	$0 \cdot 525$	0.065	8.00:1	$0 \cdot 000476$	2097	
Engouievint Night hawk	('aprimulgus	$0^{\prime \prime}$	62	0.040334	1.549	0.08	6-36:1	$0 \cdot 000650$	1597	$38 \cdot 08$
Mouette............... I'ewit gull	Larti.	$0^{\prime \prime}$	$23:$	$0 \cdot 109283$	$0 \cdot 946$	$0 \cdot 13$	7.27:1	$0 \cdot 000471$	2123	52.
Monette	do	$0^{\prime \prime}$	280	$0 \cdot 134756$	6.965	$0 \cdot 13$	$7 \cdot 4 \geq 1$	(1)000481	2709	$37 \cdot 68$
(roel										$38 \cdot 48$
Prucellaria pelagica Stormy for	1'uftinus Kiulhij.	$0^{\prime \prime}$	500	0.14	$\begin{gathered} 1 \cdot 17 \\ 3 \cdot 84 \mathrm{ft} \\ 1 \cdot 25 \\ 4 \cdot 10 \mathrm{ft} . \end{gathered}$	$0 \cdot 124$				
Procellaria Petrel	Procellaria	$0^{\prime \prime}$	700			$0 \cdot 125$	$10 \cdot 00 ; 1$	0.000175	5714	
Fou Frannet	Sula									14.
ate bird.	Fregate aquila.									
Flammant (mite). Flatuingo										
Petrel geant	Procellaria gigantea		$\because 8 \sim 0$	$0 \because 3 \mathrm{~S} 130$	$=\frac{175}{565}$	$0 \cdot 21$	3.33:1	$0 \cdot 000131$	7616	$10 \cdot 48$
Albatros Albatross.	Diomedia exalans .									

Teal and Duck type-These hinds are the representatives of rapidity in flight. They flap to excess, supplied with "arbon as they arr he the heave layer of oily fat which covers their jectoral masiles. This is the type to imitate for aviation with motors. These birds afforl pratetial lessons as to methods of gotting maler way and of alighting. looth of them points of 'apuital importance.

These limes need, like the seolopax, to tharerse orer fong distances, from one lake to the next, and as they are weapenless sperd is their sole safeguarl. It is mough for their satety, for they are mever at tacked in the air.

The eagle, their chief enemy, abantons pursuit as som an they are wedl under way.

The I'elicen.—Hure is a wage allal a philosopher, a switt sybarite, monnted ont wo grat wings.

Where is his mest? Whence does he rome tons? I confess I hardly know. I merely am awate that we see a good deal of him in kigyt. Great flocks of these birds ane fomm on the inmodated lamds, upon the the Jlareotis and the Manzaleh lakes. There are even some in the eity, domesticated. I bonght one for a dolar in the Monski. Every rear they are peddled in Cairo dming November, lowermber, and dannary.

Fば, 1.-The I'rlicall.
Whal a droll cratme! I had two of these for ms persomai trimbs. They were more hadiorons than will be aredited. Bufl must abstain, for it I were to begin telling of watgish tridis of pelidans. I nevor Would be dome. Lat hamorists treat themserves to one and have bo tear of his bill. which is ynite inoffensive, and they will have their moners worth of ammsement. latt. dopplage the hmmoristir feather

The pelican possesses a perolianity in his strmetmer it is an exese sive length of anm and fore arm. Ho is withont a tail. Ilis rontor of astillation, or the limits within which he can shith his conter of gravity withomt rompromising his anipoise. lios within the bathehes of that 11. Mis. 111 -
great Hat M which is ontlined by his extemded wings and body. This is the disposition of parts which gives him that equilibrimn, lengthwise, which his rudimentary tail could not furnish.

His mode of flight is magnificent. He rows lont seldom, for as soon as the wind permits he becomes a sailing bird.

The effect prodnced by great mass is always surprising. If a bird be large and has adequate surface, he practices sailing flight, as witness the pelican, who has less surface, proportionally, than the teal, and yet soars to perfection, while the other only rows. The teal is proportioned at 1 gram per 172 square millimetres (1 pombl for each $0 . S 6$ square feet), and the pelican at the rate of 1 gram per 150 square millimetres (1 pound for each 0.73 stuare feet).

When in full flight he does not stretch ont his neek a yard in front, like the goose, the stork, the swan, hut he curves it bark like tho heron, and rests his head gently mon his shonlders, which attitude gives him a peculiarly graceful appearance. Ho then seems so much at his rase, he appears so comfortahly posed upon his two immense wings. set at pioturesour angles, that onre well lanuched he seems to glide through space without the least fatigue.

Of all the large birds he is rertanly the one which presents the most elegant silhouette. The great rulture is rigid, and looks as if cont ont of tin plate: the swan and the goose have an attiturle as if already spitted; the eagle is stiff and all of a piece, but the pelican, notwithstanding his awkward heaviness when on the gromed, becomes as graceful as a gull once he has mounted in the air. The varied attithdes of his wings, the great length of their arm and forearm, offer every moment new asperts which the evolations of other birds never. present.

In point of intelligener the pelican is among birds what the elephant is among mammals. Like the latter animal, a boundless emriosity attracts him to man. The domgs of the sovereign of creation interest him profombly. The attention which he bestows upon all movements is a sure sign of great intelligenee.

He will mot, like the large birds of prey, moroscly assume a gloomy state of sulks, beginning with his captivity and ending with his death: le will not go eronch in a corner and motionless ponder on his last liberty-not a bit of it. After two or three days. if, without looking at him or apharently notieing him in any way, you are ocenpied in doing something, he will not let half an hour pass before he is between your legs, the better to observe your actions. Every now and then he will stretch out that frightful bill of his. but there is no need of extra ghard; all there is to do is mot to draw the haud barek, beeause it might be cut agamst the saws of his mandibles. When he sees no reply to his overtures he will become ahmost tronblesome in his fimiliarities: he will come into the house as if it were his own. he will pick Heas off the dogs, he will purloin a shoe he will make waty with a ball from the billiard table with an an of perfert innorence; and he will not even
DUCK ANi) GeOASE TYPE.

Commont	Hambe. Hritish or Americand.	Siontitic name.		$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { bird. } \end{gathered}$	surface withilu comtotl2.	$\begin{gathered} \text { spe;ill } \\ \text { wings. } \\ \text { (b) } \end{gathered}$	M"an wilth of wins. (el)	$\begin{gathered} \text { lro. } \\ \text { portion. } \\ b \\ a \end{gathered}$	One ervant of hirel's weight Nustained by -	$\begin{aligned} & \text { Onf } \\ & \text { sylate } \\ & \text { meter } \\ & \text { sns- } \\ & \text { tains- } \end{aligned}$	Relative surfince re flitirnd formatain 80 kilos or $176 \cdot 4$ porindes avoirdu. pois.
Martin perohur (fomelle)	Kingtisher	Alcerto haspurda	${ }_{1}^{17}$	Giretime. 27	sy. whtes. 0 (01167°	$\begin{aligned} & \text { Metrix. } \\ & 10 \cdots: 8 \\ & 0.7611 . \end{aligned}$	$\begin{array}{r} \text { Meters. } \\ 0 \cdot 05 \end{array}$	4.54:1	sig. meters. $0 \cdot(100+32$	Circtus. 2314	Nis. meters. $3.4-56$
Martin prehear (mator..	.14	110	1^{\prime}	31	$0 \cdot 013000$	$\begin{array}{r} 10 \cdot 25 \\ 0.82 \mathrm{H} \end{array}$	$0 \cdot 08 t$	$4 \cdot 55: 1$	$0 \cdot 60043 \%$	2009	: 4 ¢ 61
1%	. 110	. 16	0	34	(1) O1.3080	$\begin{array}{r} 0.4 \mathrm{c}^{2} \\ 14.86 \mathrm{ft} \end{array}$	11.0.2	. 5 0:3:1		2604	:10-7
situelds.	Teral	Anats ducripurdinla	0	297	$11 \cdot 050684$			1) (60017	(6) ${ }^{\text {a }}$	$1+14$
(anamel (fermelle)	Wilal durk	Anas elypeata	0	727	11.074..5i\%	$\begin{array}{r} 16.76 \\ \because-30 \text { ft. } \end{array}$	$0 \cdot 10$	(5:3ti:1	() 00010	97.51	- 20
('animal (mite)	.1/1	.170	0^{\prime}	93	1) 0 (6x:37(0)	$\begin{array}{r} 0.7 \% \\ 2 .: 6671 . \end{array}$	(1) 11	6-54:1	(1) $\cdot 0000930$	110.\%	$7 \cdots 3$
C'matral kasarka.		Aman ratsarkar									
('amard ate Parhar											
(\%ram:a	Commorant										
	Wild mowner	Anser syluestris	$0^{\prime \prime}$	20.0	1) $3+4: 317$	$\begin{array}{r} 1: 7 \\ 4 \cdot 49 \mathrm{tt} \end{array}$	$0 \cdot 19$	$7 \cdots 6: 1$	$0 \cdot(040120$	8:3:33	() $\cdot 60$
Oif. Mumestight.	froose.										
rygrt	Sw:11								-	
leplionth mris	l'elican	P'clicanas unocrotalas	$0^{\prime \prime}$	6tien	1) -9ambite		(1) 36	$7 \cdot 17: 1$	$0 \cdot 000150$	(itiot	12 。
$1 / 10$...d/1	110	166:5	11.92364\%m	2 al	$0 \div 3$	$7 \cdot 17: 1$	11.000132	3.76	$111: 6$
110		... 110	20^{\prime}	(66:5	(178878	$\because \cdot 20$	$0: 39$	$7 \cdot 17: 1$	$0 \cdot 000111$	90119	$x \cdot 88$

cease his rascally tricks at might, for if he is allowed he will stay up, like the human biped.

In the garden or yard, you must not expect him to fraternize with the other inmates; lu has a profond contempt for these weak-headed winged (reatures. He will not eqnit the neighborhood of man's social gathering, but he will squat down all rolled up in a ball, in the mildle of the group, rest his hill on his back, and from this vantage gromm his intelligent eye will follow every gestme and every word spokn.
He imposes himself npon man as his companion; he decides that his society will be accepted, and as after all he is not very tromblesome, as-far fiom being repognant-he is clean and stately. man gives in and beromes his firiend.

We have yet to speak of the peliean when in possession of his fall wings, when he is able to tly; for up to this we have only described the bird whose wings have been elipped; but the chapter wonld be entless. I will only add this, that his familiarity grows with his wings. Julge then what it becomes when his plnmage is complete.

It might perhaps be possible to acclimate the pelican in Enrope, in finll liberty. He would find himself so expatriated that he might not attempt to escape. Shond his wings be allowed to grow his tirst trials of flight woukd not permit him to think of undertaking a long journey; at most, he might visit the surmonding comery the first year. (are being taken to keep him "aptive in September-the period of migration-we might in a comntry wherein hmoting them was pro hibited treat ourselves to the comions sight of the evolutions of these great water binds which are as amiable as the swans which we have are stupid and mischievons.

The Surn.-There are two eities where the swan is easily observed, (ieneva and London. The foggy atmospheve of the Thames does not permit of keeping them in sight rery long, moroover they look very melancholy on that foul stream.

To observe them thoronghly, there is but one spot-the lake of Geneva. There these beantiful birds are quite at home and art as if they owned the whole lake.

They build their nests in the moats of the city, and make the rounds to beg, or rather to collect their daily rations of bread, as far as Villenenve. They even do more, they follow the steamboats and dip down to wather food thrown over to them; then when the boat has saned a mile or two ahead, they resume their tlight, ("atch up with the ship and settle in its wake.

Their tlight is a eomposite of beats of small ampliturle, alternated with rectilnear glidings. They don not wheel in circles like the pelicans and birds of prey; they always proceed in a straight lime. like the ducks, the geese, and in tact like all bints which have but little proportional surface at their command.
 painters brash womld better desmibe him than a pern. Those great hom-like ears, those large yellow ryes. that plomage spoted with rrosses and drops, the noise which he makes when sumpping his bill, which misht be mistaken fom that of a crackling bone: everything in fact, even its attitutes, give it a satanice air. little like anything in this word. lint let mas disegarl thisinfermal aspert, and examine him in broad day.

It in a large bird of prey its talons are strong, its wings are powerthl; its beak, while almost entirely hidden beneath the hairy feathers protecting its nostrils, is merertheless strong and with a fore not found in the bill of most dimmal binds of prey. Its eas are very large: we see at first sight, that in fonseduence of the chormons development of this organ, the sense of hearing must exist in great perfection. This gronp of brilliant pualities, joined to a reckless courage, remder this bid an animal of extraodinary power.

The great eared-owl might dispute with the engle the empire of air. The eagle is like the lion: he has the moble look of royalty, whilst the tiger, which has only a brillant reputation for ferocity, might easily dispute for the pey should both meet on the sime hunting gromms.

Fis. 5.-The great maredown.
Let us eonsider the bird finther, for we are confonted with a remarkable reature. His bony frame is robust, bis feathers are like hose of all meturnal birds, of velvot-like soltuess; but ths soft down fovers muscles with a different ordar of ation fiom those of the easte: they are shomer, quicker, and more rigid in their eontrations the lever arms are longer. The flight is amary it is exessively rompli-
 like a pigeon, and possesses moreover the finalty of stopping sumbenly When at full sperd, and of glancing off in another direction. This he does to avoid collision with tree trumk at every moment. The Hight is absolntely silent. Wr see these large ereatmes hash muler the foliage, and we do not hadr a mumme. This silence results fiom the

范

菻
8
荌
The Owl Type．
conformation of the teathers, which are not constructed like those of dimmal birds, and the shock of tho quills against dath other is deadmod hy an exceedingly soft down. It is only at dawn, in the spring. that the bind is to be seen high in air; then an oceasional eomphe is sect wheeling np high, but as the day adrances they rapidly eome down and make for their slomy dens, where they remain crouched till sumset. (one evening I witnessed the setting out of two owls on their hunt. I had ilmbed with a yomsentide to a ravern high mp, and we looked down upon the pine forest. The day was dying atray. We wre shatered behind a large rocky shoulder which hid us porfectly, and there we waited. Five minntes alter smaset an owl appeared, as if by enchantment, perehed on a rock in formt of the cavern. We hat neither seen nor beard it eome. A tew instants later a second bind appeared, taller and larger than the first; this was the female, and it was huge; its height was at least 31 inches. They slowly thrned their homed faces from side to side. then omb awakened the eerhoes of the valley with three pierang notes, and yet hamonions, in the fashion of sereech-owl melody. The roice is strange amd impresses mollo. Then the male descemded to a rivulet flowing from the glacier; the female followed; they drank, bathed their faces alittle and re-asended to the rork where first we saw them. There they dried themselves and smoothed their feathers, and then they began to dance. I had been told beforehamd of this prommane aud it had been desmibed in tems someessive that I had not believed ; but now I witnessed themost grotesque scenc which can be imagined. Fancy two hoge aratmes, hy momeans elegant, springing into the air altermately like jumping jacks, snapping their heaks by way of acompaniment.

At this extraordinary sight a wild sutfaw eseaped me; the shepherd put his hand mon my arm to beg fon silence. I looked for the birts and they were gome, the rock was bare; they flitted away as silently as
 pombls of bones, "hiefly of the hare of tips of partridges wings. and of the balls of hair regeeted thom the hird's stomatel.

I pressessed a comple of these birds in captivity. They were the yomge of the pair I have just deseribed. Inming the ensuing yen the little shepherd took them from the mest and brought them tome.

These binds, althongh their wing suratl is mearly fien arress,
 rections, making sereral whole romblis withont coming to rest, while the lange dimmal liseds of prey in the same cage comfind themselves to single jonrneys bengthways. passing owe the epare with there moisy beats of wills.
 surfaces in proportionto their weight. Now what is natmrensojere in endiwing them with such exmess in that dimertion" It isprobably to enable them to soar in eatm weather when the wind is light, and alove all to
The Heron Type.

French. Common нанв. Britinh or American.	Scientific name.		$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { liirl. } \end{gathered}$	surface within con tour.		$\begin{aligned} & \text { Meal } \\ & \text { wirth of } \\ & \text { wing. } \\ & (a) \end{aligned}$	$\begin{gathered} \text { pro- } \\ \text { portion. } \\ b \\ a \end{gathered}$	$\begin{aligned} & \text { One gram } \\ & \text { of bird's } \\ & \text { weight } \\ & \text { sustained } \\ & \text { by- } \end{aligned}$	$\begin{aligned} & \text { Gue } \\ & \text { square } \\ & \text { meter } \\ & \text { sins- } \\ & \text { tains- } \end{aligned}$	Rolative surface re. quired fo silstain 80 kilens or $17 \mathrm{t}^{\circ} 4$ pounds a voirdupois.
Huppe Hooprex	Lpupar props	y^{\prime}	Cirames.	Nig. meters. 0.017493	$\begin{gathered} \text { Mtris. } \\ 0+3.30 \\ 1.41 \mathrm{ft} . \end{gathered}$	$\begin{aligned} & \text { Meters. } \\ & 0.115 \end{aligned}$	3.73:1	Sq. meters. 0.000774	$\begin{array}{r} G_{1} a_{129} . \\ 1291 \end{array}$	sig. meters. 61.92
Pluvier armé	' 'haralrias spinas	0	170	$0 \cdot 070230$	$\begin{array}{r} 0 \cdot 600 \\ 1 \cdot 97 \mathrm{ft} . \end{array}$	(12\%	+ $80: 1$		2420	$33 \cdot 04$
Vauneau	Vanmlus cristatus	$0^{\prime \prime}$	210	$0 \cdot 113770$	$\begin{array}{r} 19735 \\ 2.48 \mathrm{ft} \end{array}$	$0 \cdot 1: 8$	54.7:1	$0 \cdot 000494$	2024	39.52
Héron garde-brenf	Buphus minatns	$0^{\prime \prime}$	318	$0 \cdot 131300$	$\begin{array}{r} 0 \cdot 893 \\ 2 \cdot 9: 9 \mathrm{ft} . \end{array}$	(1) 15.5	$\therefore 76: 1$	$0 \cdot 000+13$	2421	$33 \cdot 0.4$
Ihis Ihis	Iths fatcinellus.	$0^{\prime \prime}$	365	$1 \cdot 123990$	$\begin{array}{r} 0.900 \\ 2.95 \mathrm{ft} . \end{array}$	0.150	600:1	$0 \cdot 000339$	2943	$27 \cdot 12$
Bihorean............... Nightheron	Ardea nseticorax	$0^{\prime \prime}$	615	0-180826	$\begin{aligned} & 1 \cdot 0+40 \\ & 3.41 \mathrm{ft} \end{aligned}$	0.200	5.20:1	1).000294	3402	2352
Hiron rouge	Ardea prorpurea									
Hérongris.............. Grey heron	Ardea cincrua	$0^{\prime \prime}$			$\begin{array}{r} 1 \cdot 6664 \\ 5 \cdot 46 \mathrm{tt} . \end{array}$					
spatule Spounhill ..	Platalea leucoradia									
(igogne................. Stork	Ciconia alba..	9"	2140	0.615240	$\begin{array}{r} \cdot \stackrel{2080}{6.82} \mathrm{ft} . \end{array}$	()300	6.93:1	6.000285	3 S 36	226
Girue.................. Crans.	Girus.									122
Argula.................................	Argala vulgari									
Jabiru	Mysteria sene calensi									

alisht without heaking their legs. It is chen howerer that they are hampered by this rexees oftsurface; not one of them is ramakable as a Hyre neither as to volocity-which is easily explained, nor even as a permament denizen of the ar-which is more extratodinary.

They are in fart su well equipped for saling on lisht winds that the surface resistance destroys all the other qualities when tha breeze theshems. It is maly when the weight becomes 4 pounds or more that the mass momentum suceeds in wereming the friction of the air against these over-tathered wings.

The birds first named in the table hy ans unsteadily as the bontterfly: the honnee, the armed plover, and the bapwing can alvance aganst strong winds only by completely folding their wings. This deticiency diminishes with the inerase in weight. The ibin flios better than the small herom. and both are distanced hy the storks.

ドa, 6.--Thatgrey Haron.
We find proof in this trpe that the useful, active surface of the wing lies in the hand and the foream, and that the arm remains almost guiescent in thapping. The demonstration is palpable, as is evel the (asis in mature. The feathers of the humerns have been simply sup) bursed in most of the herons, and miy those of the covert remain, Which latter feathers arremerely momental.

The kestrel Fellem.-Whe kestrel is common in France. It inhabits om lare cities. It isknown by allobservers, and they donbthess have sathered their best knowledge from its evolutions. Its strength is great and it always rows when hanting; but when there comes a change of Weather and the sonth wind sets in, then the creature elimbsup sombing into the sky anel exhibits its talents ans a saling birl, which talents are fully as great as might be axperted from its mass.

The peregrime Felcon. - A rare bird, and therefore dilloult to study. An astonishing rowroreaching at times a velocity ahmost mirge; the pigeon, the duck are then greatly ont-distanced.

It soan's well, but only when at leisure. It weighs 1.32 pounds, and its surface amounts to 1.72 square feet, beng in the proportion of 1.3 square feet to the pound.

Fig. 7.-Kestrel Falcon.
Eagles.-With the fish-hawk (Pumdion fuvialis) we reach the heavy birds. We still find a bird which beats the air, but abrady the results of inertia are manifest. When the mass is 2 pounds or more there appears a steadiness in flight not found among the 1 -pound birds.

Fig 8.-I'eregrine Falcon.
The small eagles of Europe and of \triangle frica, the imperial eagle with white back (Aquila heliaca), and the great golden asme (Aquila chrysä̈ta) formd in the Alps, all have the same modes of floght. Their talents as sailing birds increase with their weight.

The necessities of their existence require many different qualities: Wirst, they must be able t_{6} remain easily in the air, in order to surver the field, to watch a possible prey for whole hours; therefore they most be able to soar well, and this they do to perfection. Once the prey discovered, there needs be great speed to capture it, for often it is a duck, and a duck fles very fast; or it is a have to be canght on the rom, and this is not at all an easy enterprise. To gain this great sperd the eagle utilizes gravity; he lets limself drop 200 or 300 yards, ant employs the velocity so acquired with great dexterity to cateh the game. These violent hmting excrtions in catching other rapid animals reguire an enormous muscular power on the part of these birds.

A few eagles are to be fomed in Saroy: they are the tinest, hat they are rare. Some few are also to be seem in Egypt. From time to time a passing bird is reen with an musual figure; when it is far distant one remembers that it is all eagle. In Algeria I was ambled to observe this deature close at hand. In winter there were always thee or four stationed some 200 vards from my famhouse. Thry were huting for wild ducks on a drowned meadow. Sometimes they eane to inspect my barnyard, hat from a distance, as they were not well recerised. Ipon the whole, they kept nearly as far away as one wonld desire for a chicken's sake, for it does not take long to pick up a fowl. There is a tremendous ontery from the roosters, then a terrible hissing and somffe, and an mhappy egg producer is seen ascending into the air, strewing her feathers by the way during her dizzy rise.

The tales which are told of the eagle letting his prey drop when a ghan is fired at him, aren when bevond range, we perfertly the Only in this, as in all else, it most be done at the proper moment. I onee cansed the experiment to be tried by a sportsman who dominted the fart. He made surh haste that the cagle had not had time to kill the duck before letting him go; the result was that the eagle went one way and his viotim another. As both by that time were three times beyond range, we had to be content with looking on.

Not far from there, grew two great ash trees, where often in the spring eagles were sorn in pains. Here it was that ocenred that wondrons four de fore of rising in the air, alvanoing aganst wind. an observation of prime importance already deseribed in a precedings chapter.

The great golden Eaglr.-Here is undoubtedly the king of the birls. He possesses strength and courage. Having no enemy his equal, he peacefnlly passes long days in the beatitude of uncontested antocracy. The eagle feas mone but man, and even him he fears but little. Bronght to bay. he does not hesitate to hurl himself at his enemy. In captivity he is at first excerdingly dangeroms; his forocions temper remders him an matamable animal. It requires great skill to succerel in impressing him with fear, and moroover he most not be exated, for then he will fight to the death.

Natme has ereated han to keep down modue inmerase. In this he is
 (pike wte.) This tyrant of the air is ahmolantly provided with all the wapons necessary for his murabons life. Ilis ams romsist in eight talons as kong as a finger, comved and shatp pointed and moved by
 mal perforated by his taloms.

His wings ane large and exaedingly strong. They are pre eminently adapted to saling tlight. He rarely hotas the air moless there is 110 wind, or moless he is loaded with a prey. Pell is powerless to depiet the majesty of his gait, the amplitude of the immense
eincles which he sweeps in the air. At times he is ahsolutely motionbess. He is examining the field or watching a prey; then suddeny he drops hmolreds of yards. Lle falls like a meteor with the velocity of bodies falling through space.

The speed is such that it prodnces a somm difficult to deseribe. It is not like that of the bullet or of the camom ball, but must he heard to get a the conception. Then, when within a dozen feet of earth, his wings' great strength safely checks his descent; and this at onee-in half' a second-merely by expanding his wings to their full spread.

Hisskill is wonderful: never a miss makes he. His eyes are excellent; from high up in the air he spies ont the rabit hiding in the thicket, or the inconspicuons duck swimming among the reeds. He uses his talons, the arms with which he kills, in a remarkably skillful manner. In captivity, when he is hungry, he catches on the fly the morsels of meat thrown to him with a single claw, and never misses them if they pass within his reach. His movements have all the precision of those of small birds. He is fiee, quick, sharp, and powerful in his movements: above all, his coup \boldsymbol{t} wil, the power of taking all in at a glance, is very remarkable. As the motor museles of the eye-ball are but little developed, he is compelled to turn his head whenever he desires to see anything sharply. His head then assumes iplendit poses: his eye, that brilliant gem set under a deep arch, darts ont lightning glances; his cmrved beak, his savage air, his sharp head feathers bristling up and forming a diadem-all that ensemble of vehement sweeping outlinemake the eagle a model of power and of audacity.

He lords it over a territory which he always selects of vast extent. All the smaller mammals dread him; the young of larger animals fear to be seen by him; the young ehamois eromehes up to its dam, the old bucks call the herd and stamp their feet with fury. Man himself-in infaury-has been attacked by lim.

He is intelligent only from a lmuting point of view. A very interasting spertacle it is, that of a family of cagles making a buttue in order to furnish the nest with provisions.

The male is 11000 yards in air, quite motionless, the female is beating the thickets; her flight while doing this has an ease of great elegance; she follows the modnlations of the gromud withont effort; glides from one hill to another, descends and re-ascends the momitain slope; then when a prey appears the two sponses are upon it almost at the same time. It often happens that a hare stating up 10 yards from the female is eanglit by the male, who was stationed 100 yards, in the air: he dives head foremost, is upon the prey in four or fire seconds, and pieks it up on the fly: then, it he is in the momtains, he first plunges in the valley with his load, and with great wing-heats re-ascends to his eyrie. There the spoils are divided, and this never takes place withont much dispute, spite of the charms of matrimonial bonds.

Aside from this old leaven of ferority, which eonstantly appears, the
The：Fabon ani Eagle Type

－ciontitic nome．		$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { birm. } \end{gathered}$	$\begin{aligned} & \text { surfact } \\ & \text { withincon } \\ & \text { tour. } \end{aligned}$	$\begin{aligned} & \text { sproad } \\ & \text { "ll } \\ & \text { wings. } \\ & (h, 1) \end{aligned}$	$\begin{aligned} & \text { Mran } \\ & \text { winth of } \\ & \text { wink. } \\ & \text { (a) } \end{aligned}$	$\begin{gathered} \text { Pro. } \\ \text { portion. } \\ b \\ " \\ " \end{gathered}$	$\begin{gathered} \text { Whe uram } \\ \text { of bird } \\ \text { weight } \\ \text { shatatimed } \\ \text { by- } \end{gathered}$		$\begin{gathered} \text { Helative } \\ \text { surfare re- } \\ \text { quired } \\ \text { hosnstain } \\ \text { solilos } \\ \text { or } 17664 \\ \text { pounds } \\ \text { avoirdu- } \\ \text { pois. } \end{gathered}$
diahtridia crintata	$\stackrel{1}{1}$	rirarn.x.	$\begin{array}{r} \therefore \% \text { metors } \\ 0.0 \geq 000 \end{array}$	$\begin{aligned} & \text { Meters. } \\ & \text { (1:30. } \\ & 1.01 \mathrm{ft}^{2} . \end{aligned}$		＋3： 1	Nig．metros． 0 （W）	$\begin{gathered} \text { circmins } \\ 1092 \end{gathered}$	$\begin{gathered} \text { sy. meters. } \\ 50.24 \end{gathered}$
．． 14	0	：	0＊0241： 0	$\begin{aligned} & 10331 \\ & 1.09 \mathrm{it} . \end{aligned}$		1－13：1	טヶ\％16\％\％	1，3\％	52．14；
Falen timuneulas．	11	1×1	（1049：03）	$\because 4: " 7 t$	1110	542	＂1000．ank	1！nix	14．tis
Fialooperagrinus	${ }^{\prime}$	Sis）	$10.1542 \times$ \％	$\begin{aligned} & 1 \cdot 43 \% \\ & 3.40 \mathrm{ft} . \end{aligned}$	（1－1．5	6：9\％：］	いけいいご65	\％\％\％	219
Milvaー－gyptiames	${ }^{1}$	（44）	0ッ2゙ア460	$\begin{gathered} 1 \cdot 3: 3 \\ \text { 4. :iti } 1 \mathrm{tt} . \end{gathered}$		600：1	（1） 1 \％\％ 449	2	38.9
Butce									
（＇ixcathe．．．．．．．									
Prandion flurialis	1	$1 \because 71$	（133917\％	$\begin{aligned} & 1 \cdot 3 \mathrm{x} \\ & \text { s. } 0 \mathrm{ftt} . \end{aligned}$	$0 \cdot 4$	6．4．7： 1	1000025	89	2072
．．．．．tio	1：	120	0．239175			，	10.60016		12：96
Arpila naria									
Ayuilat heliaca．									

Sritivh or Amerieam

White tailed nagto
老
Nhone：terinनtry

> Kirsirul

．Ii，lerov゙al
Fremeh。

[^69]
Cerlien ragle
\[

$$
\begin{aligned}
& \begin{array}{l}
\text { Buse.... } \\
\text { ('ivaite }
\end{array} \\
& \text { 13allhatral } \\
& \text { (1) } \\
& \text { Aínirrriard... } \\
& \text { Ainle imprerisl }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \begin{array}{l}
\text { Aizhererian } \\
\text { Aigle impe }
\end{array}
\end{aligned}
$$

family is perfertly well bronght up, and above all abundantly smpplied with nomrishment. During the education of their young, families of eagles consume enormons quantities of game; the eaglets during this period require much food in order to furnish material for the growth of their great feathers. Nature then iuspires the parents with an activity, which, happily for neighboring hares and rabbits, has nothing in common with their usual indolence. During this time, this period of artivity, lasting a month, there is no respite; the vicinity of the eyrie is generally encumbered with putrefying carcasses; but luckily the erows have an eye out for everything which is spoiling, and possess the audacity to go for it even in the eagle's nest. All things consimered, the crows rinn little risk; they are so adroit that even in a very confined space they manage to escape.

The great golden eagle, which I possessed for years, had always a magpie with him. There is no sort of malicions trick that this mis chievous little creature did not play mon his terrible and taciturn companion, but he received no more attention than the tom-tits, which may be seen with the telescone roving among the branches among which the nest of the eagle is built.

The eaglets, after a month and a half, are as big an papa and mamma. Their first flights are timid enongh and the parents then follow chem with peculiar solieitude; then little by little, as skill in Hight and hmonting inereases, the fimmily affection wanes, the eyrie is abandoned, aul each by degrees becomes a honter mon his own account.
'Two eagles are rarely seen together when they have no young ones. Those shut up together in cages, all perish in the same manuer, from a stroke of the talon, penetrating the brain.

Tultures-Let us rest long in our studies of this type of flight, for it is full of useful instruction: this is the type which will learl man to navigate the immensity of space.

This great family of birds solves the problen of remaining in the ain with the least expenditure of foree; we may even say, in other words, that it is that which tlies, or rather soars, with the utmost seience. The life needs of the creatme, here as everywhere, determine its kind of talent. The volture, to make a living, must rise to a great height thence to gain a large field of observation, aud he must there loug remain without fatigne.

Now consider the construction of this bird. His weight is very great, his wings are immense, both in length and breadth; lis large proportional surface sustains him, and his great mass stores up momentrm. So we see him after a few beats of wing, at once begin to soar, rlimbing up in the air and floating there with no expenditure of force, save for the start aud for guidance. Certain species of vil tures, particularly the larger, absolntely ean, unon a windy day, leave their perch in the morning, travel many leagnes, spend the whole day
in the air. and get hark to their pereh at night withont one single beat of their wings.

In this family, velocity is only wefinl to tha smaller speries, which are, alter a fashion, the purveron of thr larare therefore the Exyptian voltures, tho turkey-hazands, thr mouns, having to experte more varied moramonts expend much more forere

Sow, here is the way a volture spends his day mon one or the other continent. The larger speries have spent the night prorbed among mesed and inacessible rocks, where they gather for shelter fiom the wind. if they have noither aggs nor yonng ones. Tha tarkey-buzands and the Egyptian valtures har bern roosting in the lower regions, they are less fieree and murh more intelligent. The sun comes ont and dries the duw collected on their feathers; the valtmes stretel their wings, limber "u the joints and trim the growing quills with all the ware that the maintename of an rssential organ nedd. Abont 7 oclork there are many flappings of the great wings. but withont fuitting the pereln; then they sink their heads between theid shoulders and resmme their sinistar. forbidding look. botween S and 9 ơdork the breeze begins to rise; once in a while the volture glances into the valley throngh those magnifirat eyes, mignu in creation for their power, then with form or tive great beats of wing he lamelaes into space. He descends some no yards on rigid wings, and is then in full sailing Hight. Thesmaller spooies, who are earler risers, are already at work and searehing lor tood.

The large valtures sail at heights which vary with the seeries. The tawny valtmes. the Samoramphes of pope of Sonth Amerian, generally keep at devations of "ol or 600 yads in the ary they are sameely visible from the gromme. 'The arian valtmes, the otogys, the eomdors msally thoat much higher: they berome quite invisible.

The arrian voltures surver the movements of the tawny valtures, wha
 Watell the doings of the kites, amberperially of the erows.
 bey the propere and this last by the condore.

As all these serat binds of prey thas establish a complete bet-work of whervation wrat the eath, from the more tact of mathal surveillame just as soon as a meal is fomblall the meighbors elose loy start in that direction, they are at oner lollowed by the others, amd thms they assemble very rapidly.

They sernt the carass. is the rommon expression. la point of fate this is quite incorred, being impossible it the birds are to wind wand of the dead amimal. 'Their olfactory apmatas is so little devoloped that
 This may be pasily tested liy hiding some tainted meat and attanetine a vilture to the neighborhooh. Ho will pass elose to it without thed its the meal; his semse of smell will mot have revealed it.

The attitudes of these birds in the arr are particularly worthy of attention. Their aspect when sailing upon a wind of about 11 miles per hour, which velocity is best adapted to exhibit their faculties, becomes a most interesting study of flight withont beat of wing.

It is clear that to rise upon so feeble a current of air they must spread all their surface. At this speed of 11 miles jeer homr the Egypthan vilture holds his wings to an even straight line; the fypoierax cathartoide slightly brings the tips of his pinions forward: the tawny volture advances them so much that the angle produced in front is 165°; the oricon 01 Nubian vilture goes much further, to make a satisfactory sketch of his attitude in flight, would require an angle of d4r.

The great tacuy l'ulture. Wre are now face to face with our desiderutum. Look at his beak! We might disregard his talons, but the beak is terrible, of a force not to be imagimed; garments are insufficient to protert a man from this boak.

Frua. 9. The tawny Vulture.
Once he is deal, your gorge rises, for the smell is horrible. This odions perimme is in no way figations, for it persists worse than mask; the whole body of the animal is impregnated with it. The room in Which it remains for only a few hours will not lose that manseating odor for many months. Then look ont for lice; they are of good tig. ure. The first of the emormons parasites one sees, wandrang over ones clothes, canses inexpressible astonishment. However, notwithstanding its size, it is not dangerons, for it does not beeome aredimated to man.

But, passing by these petty amoyances, what a magniticent animal We have liefore our eyes. Here we have alar spread of 8 fect or more of wing, a weight of 16 pomels for this admirable living acroplane. Beyond him there are but three or four varieties which surpass him in size, but without rausing us to forget him. In amy case he is quite their brother in sailing fight.

Little ned he sand conceming the oricon (otomps), sater that the Fosestattention is reguined to recognize them in any group.

As to the comdors, inasmuch as their conformation is the same an
 ing a mistake. that therif mode of performame in the atio is praterally the sillle.
 Thas will betta-in five minutes-explain the artion of sating tileht amd the possibility of its imitation than lome whemvations of all the other families of bitds.

The domimant mote in this tlight. the remankable featmre is the
 begliding. loy soming tight, and to arod all performane whirl inrolve Happing the wings. The mixoll and the arian are in the same
 only beat the air whenthere is a dand (alla, an atmospheride diremm
 theis support it is ramely the tramullity of the aim which kereps them at rest. Rain trombles them manch mone than a ealm; thay seem

to dread havinge wot wings. Girat wimble also disorder the eeon oms ol their matre ot light: lhey are poppotioned to sat well

 tharir lamilities for lowemotions.
 wings; thus, whame the gulls, the stomey petrel. the allathoss. In a
 activity, chasing adently and moving with ease-they are in thato arment; there is no hating the alir: they are theme as it were set on
 astonishing predison, lingoring it with their wing tigs, bising and dese ending with the billows withont exer being wirtaken. These same birds, in a wind ot 11 miles jer home, a light breeze, are com 11. Mis. $11.4-29$
pelled to settle down on the water, to dabble aronind like common duclis: while in this same wimd the great land-sailing birds sweep with ease those great rircles which tramsport them, withont fatigne, up to enormons heights.

Thus the valture is the bind which can utilize the feeblest cument of air in order to obtain sustaming power; he exaggerates the type of what we might call permanent rest in the air.

I have already said-and I repeat it, a large vidture can make long flights withont one beating the air. I have seen the following perform ance, not onee but a lmmered times: At the abattoirs of oriental cities valtures are to he seen in great mumbers, waiting a propitious moment to get at their fool, and smstaining themselves in the air meanwhile withont a single beat of wing. They monnt up ont of sight, they de seend within 200 farts of earth, mivame agains the wind, glide with the wind, slide to the risht of left, mosing in a single home over ail the suromoding country to see if therebe not a dead animat more easy of aroess: and they perform these manomers the whole day home making twenty asconsions of 1.000 yards each, gliding over 100 leagnes, and all this withont one single stroke upon the air.

F'ur. 11.-- Oricon or Nubian Vulture.
When you go still-hmating fon a tawny valture, take motice how he first comes into sight ; he does not then appear to be a large bird. At the altitude at which he hahitually soars he apears of exactly the same size as the kites amd the Lgyptian voltures; he makes no more impression than they. Yon will however lann quirkly to distinguish him by the angle to the fiont produed hy his wings. hy the absence of wing beats, and above all, by the slowness and steadiness with which he moves in spare. This is an infallible sign by which to recognize him as far as the eye man reach. It is only murh later that his true size will be understoon, when he is only 200 or 300 yards off; and as he appoaches within that distance le will grow in appearance much faster than other hirds. You will thrther distmgnish him by the peentiar spread of his wing tips. We may say that this is

 fuill abont live times the width af the feathere.
 fowark the point. ate eonsimetal ont the rexerse plath: they sem to he implanter into the wing hy the thin eme : the outa tip being matr. rially wider than the part whide serms the he attarhed to the wing. and Which preedes the main widening of the hatros. These later feathers,
 would phease atists eratly if they eomble observe this bird in his Hative habitat.
 partial rotalion of the quills within their soresets, which action is obsersed only in these large himbs. These gulle must he womderfolly
 the eftort - which he makrs when stating upfome the gromel ant when his protoral maseles are doing theis ntmost. the tips of the feather point direatly to the \%enth. Th short, fiom erery point ot view these grat hirds, when free, are oxeredingly interesting to obsere. There are altitudes quitr maknown to those who only sed the bird in masemms,
 them.
 less as milestones, one illomelling valture woryins themselves for death, their hards smothered betwern their shomblas: two asports which hano mothing in anmmon with that of these kincs of air mently tramesing the jmmensits of the skise. Thar ond rimmostane whirlt
 teresting arohtions is the hirl's alam. Al thw wightest appmoner sion these grat reathres prod to rowing tight. they dexire to wet
 of wing they quickly ty away.

 requifes the mosi extemsive viads.
 powerful orgat of sisht would be meedless. amd therefore atrophied in

 that we mast serk bor these pertore lemses. capabla wi collereting all divergent J:a!s of lisht.

When rompared with the ${ }^{3}$ or 4 miles required by the valturesto study their field of researeh?

We may safely comblume that the constant meeresity for seemg further than other birds has cathed them to anomire in the orean of vision a pertaction hot jussessed by other birds. Whamst therefore be omselves invisible to be abla to witness their extrandinary evolntions when sailing; or bettor still. We must serk them in the primitive combtries where they haw mot yet lamed to he atiand of man. and even there
 wise they will not rome down to a meal.

Th ender to see these birks. French observars mast leave home. There
 Alps. and the Promers. where there may he fomm (rey rarely how-

If dhame dees mot bine to ms one of the latter master somers. We mast mble him: a dead calcatss phated in some isolated soot is the best means to athract him. By comsing the Mertitermanan to Algeria one is certain. with a poper hat, to see the hime partionary in

 November. There are mudombtedly a few at all seasoms, but it is only during those thae monthat that they are in comsiderable mombers ; either in consequence of their ammal migrations from north to somth, or from other canses. In any case, eren where there are many they are not mifombly abmodant. Sometimes we may chance unon a flock of a hundred, and then remain for years withont seeing them exeept afin oft.

It is unfortmately an manown bird to those interested in the problem of flight, for mot one person in a humhed has seen it in the air. In Alsuia, wen in ('airo, (where there are soms sailing wer the city every day dming thre montls of the year,) most of tha Emopean residents are maware of their existence. But when the sturdent takes the pains to go where the bird is to be fomm ; when ho sees this great animal, large as a sheep, pantully rising fiom the gromm with strokes pon the air Whose hissing is haral 300 yards away in the silence of the desert; When he sees them atterwads describing their endless sweeps. he appreciates this most interesting sight: every hman being is chained to the spot; even the Arab is stirred with emotion; for in this bind we have fomm motion under a mew aspect; it resembles as to majesty and impressiveness the ation of a locomotive at full speed.

When wa watch a martin flashing through space we think of high specd mechanisn! when it is a smipe or a partridge which flies off, we we reminded of the attion of a released spring; at gull suggests pers petal motion of the cmdless sweep of a penduhm: but the view of the great valture in sailing tlight inspires at once the desire for imitation; it is a dirigible parachute which man may hope to re-produce.
The Videde Thpe.

Common Siruch.	hiritish m Ammerican.	Sichtitic name.		$\begin{gathered} \text { Weight } \\ \text { oird } \\ \text { birel. } \end{gathered}$	$\begin{aligned} & \text { surtiue } \\ & \text { within ron } \\ & \text { tour: } \end{aligned}$		$\begin{aligned} & \text { Mrith } \\ & \text { with ot } \\ & \text { wing } \\ & (a) \end{aligned}$	$\begin{gathered} \text { Pro } \\ \text { Iortiun } \\ b \\ a \end{gathered}$	$\begin{gathered} \text { One gram } \\ \text { of brat's } \\ \text { weight } \\ \text { sustatine } \\ \text { hy- } \end{gathered}$	$\begin{aligned} & \text { One } \\ & \text { square } \\ & \text { metier } \\ & \text { suls- } \\ & \text { tains- } \end{aligned}$	Lirlative surface required to sustain 80 kilos or 176.4 lominds avoirtupois.
. 1 irit		Catharlow athor	1	(i) ${ }^{\text {coums. }}$	sim.meters.	Neters.	Melers.		Sif. meters.	Ci'tus.	si\%. meters.
Vrulu		Catharles furmus						 $=$. \cdot.	-.7. ${ }^{\text {a }}$
	Equprian whtm		(1)	170.7	$10 \cdot 41321.7$	$\begin{aligned} & 1 \cdot 615 \\ & 5: 30 \mathrm{ft} \end{aligned}$	1025			413	1:9:36
P'ap:		sareor ramphom papat..									
Gypuieras		(iyjulijeran		.							
digis incrinlentatis..		divps mexdentalis					\ldots		...		
I : momir thave	T:awy viltar.	biyps mande.	${ }^{\prime}$	Tin	1.14 .4576	$\begin{array}{r} 251 \\ \times 1 \mathrm{ft} \end{array}$	13.47	5*it: 1	$0 \cdot 004135$	71.4)	$11 \cdot 14$
bo.				* $-2+11$							
Arrian		\checkmark 'ulure monathes									
(1ric."	Nuhion valtur		0	-152	1.112950		$10.4 i$	5.6e: 1	(0) (60以1:3\%	7393	10.88
(comber.........	. \cdot....................	Sareramphos gryphms									

THEORY (OF THE AEROPLANE.

Vertical and horizontal equilibrium. - To change the equipoise of his aeroplane in the vertical direction, the sating bird makes use of his tail, which muller the action of the impinge air serves in all respects as a rudder; but he has at much more energetic means of displaying his center of gravity, which consists in altering his renter of figure; that is to say by changing the form of his sustaining suffer, and by displacing it in relation to his body.

Fife 12. -Wings in normal attituk.
When the bind has disposed his organs of sailing Hight in proper equipoise, when his aeroplane is set for efferent progress, as for example in Fig. 12, should any necessity whatever require him to ascend suddenly, he will not employ his tail for that propose, especially it it be a feeble one, because it will not produce sufficient action, but he stretches his wings forward, Fig. 13. His center of gravity and his center of figure this recede decidedly to the rear, and upward gliding and ascentsion must follow.

196. 18... Wings projerctert.

It, on the other hand, the bird assumes the following attitude, Fig. 14, the enter of gravity being carried forward produces downward gliding.

These displacements, produced at will by the variable position of the wings and the guidance obtained by the action of the air on the tail. constitute the bird's directing power in a vertical direction.

As to guidance in the horizontal direction, it is very simply brought about. It is also almost always proved though the derangement in the equipoise of the airplane, except with birds having very ample tails and that possessing an organ capable of this service; these use it constantly, as witness the mantle r amd the kite.

When a bixd is sweqping in a eirele, the wing pointing towards the center of that cirede is alway less extended that that which sweres
 one of his wings. it may tor kemw that he is abont to tom towards that side.

FIti, 11.--Wines rethanted
The whole body add in this movement: the whole bird bears itself to that side, the tail. even when motimentary and lemere feente in action, concurs in the exemtion of this manomer. If is an instinetive action among the feathered tribe ginst as with man, when he mses his ams to equilibyate himself on his legs.

The two winss nerer halaner earh ather prefectly: one side is always heavier than the other, as the surferes are not equally divided. Differenees in weights and sulates raluse a tilt towards the side most heavily lowled or expesing hast sulare as the ease may he; hence aiepolatues, whether mathines or hids, always telle to sweep to one side or the other. To ohtain rextilnath prowession some convertive

 might be possible to prorluere rectilnear pregresson antomatieally, in large aiepplanes, ly means of eleetrical apmaratus, in which contarts would be made throngh the ase of meremey which womd seed its level.

When wr whserve attentively a salling hird olitlisg in a strong and istegular "urcont of wiml, we are struck with the rapulity with which the conter of gravity is shiterl in ordar to satisfy than neds for support and for maintaning the ronmes. A pulf of wind immediately results in a llexing of wings, their 1ips silling the tear, the renter of gras.
 sure produced by the aromation in the coment of aire

This adroit evolation, perlermed just at tha right time, which at litst sight serems to be an instimetion action of the reatme is polathly ater all simply antonatic. Wromay he assume that this change in form of subtare this alteration in the equipmise is not prodneed hy the dome seions vital ation of the nerver, hat is simply a phemomemon of maser-
 his attention is otherwise ragraged, his wings are stretohed at their
nsmal tension. When they emoumber a messure greater than usual, the tips yield, swing to the rear, and antomatically perform the necessary mancurar.

In mechanical aëroplanes it will be indispomsable, and very easy, to imitate nature in this art; two springs of calculated strength, maintaining the wings in the position of ordinary equipoise, might rery well answer the purpose.

It follows from the tacts just staterl that it is probable that birds often sail umonseionsly. This is the conclusion resulting trom attentive observation. Whosoever has closely watehed sailing birds will infer that during three-fourthe of the time they expend neither foreo nor will power, that directartion on the part of the erature only wecurs when he makes a decision, such as to change his gait on his direction.

This line of thought leads us to faney that the soaring birds sleep on the wing. Assuredly no bird actnally goes dead to sleep sluring Hight, yet those sufticiently gifted to spend six or eight hours in the air for no particular purpose must rearlo a state nearly approaching shmber, and which must be very restful. This may resemble the slumber of the horse while standiug, in which hestill retains sufferient control over his muscles to preserve the erpipoise on his four legs.

How far will antomati mechanism permit man to progress with his aëroplanes? It is easy to foresee, at first glance, that he need take action omly when first starting, npon reaching decisions, and in final alighting; the rest of the time his faculties may be otherwise oreupied, and it is quite certain that mere support will be attaned without rompelling lum to intervene at each instant.

MAN-FLIGIH TIIEORETICALLX (!ONSIDERED.

Ls the reader then to infer that the anthor has dared to dream of smpassing nature in aerial evolntions? It is certain that before talking of improving upon nature, it would be more becoming to make an attempt to imitate her; mot as a lord of creation, but as an humble adept. Yet, as the author has serionsly contemplated prodneing a larger bird than ayy existing in mature, and as there may be some value in his thinkings, notwithstanding the deficieney of experiments, he will enter upon the question of possuble man-tlight.

We are led to consider this question by nature herself; she oceasionally lifts a "orner of the veil through certain evolutions of her farorite children. In point of fact, when we rontinually observe the sailing hirds, when we expend on this study much time, mada action, and morh thonght, wearerewarded once in a while-rarely, it is true-by the sight of some manoruver which sets us to dreaming of its imitation.

We say to omselyes mon obsmving it: Bat why does not the biret, instead of fatigning himself hy whecling. rowing or struggling as he gencrally does, always employ his present evolution, so economical of force ?

The answry is simple. If there be a ereather with smereabmalant lite, it is the bird. With him, mormont is mot the mesmlt of refledion; it promeds form the grat feress of power he possesses. and as ber knows no will but his own. he call mot resjst the desire and tollows it to the detriment of his foree.
'Jher simple eomparison of the different monles of theht is aheady a step towads sueress: we have been able to seleet ond mode as most available to man. and as best within the reash of his means of imitation. Lef miske another step forwand and eomsider which erohe
 the sreat tawne valture it is most easy to reporolure, amb what is most protitable for our pmoses. Them, even while rambassing this selection, if we meret any hapry thomght, lef us amalyze it coonly but without shymess for by carring it to an axtrome we may perhats fimd something Hew.
issuredly, when man shall have sumereded in atilizing the wind in Hight, he will bring to bear his ingematy upon that art and it will cmable him mot muly to imitate mature but to surpasi her performances. Thas it will not be impractieable for him to produre a sailing' aphamatus more steady and show than the amblor or the onfor vulture: or perhaps a motor marhine possessing greater sued than the teal: this he will ho by exaseratmg the feathes of these different modes of 1light. But he will exerpespecially in the frotomblathe of the sebence of fliglat. Ho will not. like the bird. be emostantly distracted hy his meessities or hy fan : every movement will be foresern and frovided for: every dangex and contingency will be vanuluished in alvanee, amb he will need but to mind his evolntions - a daty which he will lublell resolate? with his chameterintir sidenee

As methons of entting abont-mot tomation the ratway, the steambat, or the ballon-mant has imentod, ont aml ont, two new morles of loxomotion, completr in all their barts and with no analoge in nature: I mean the skate and the veloripede: why then should he not

Whan the tirst deed has been eompurad, when the bowor of ampt! space has here mastored throngh habimede, introligent man, atter having rexporlmed all the gats of the biteds, will want to impore men them. ILe will inquire whether there are not persibilites beyond them.

 pertormed without swerping in direles; and beyond all this, he will

With the wind dead aganast him, man will needs study whethere it is most allantageons to rise direct, even alvaneing to windward. as
 in erreles. thus drifting bark amd atterwats regaimmg the lost gromud
at the expense of height. This last procedme in the one generally employed by the birds. but as we know that they dan do better upon ofeasion, it might he well to experiment. Birds are like all inferior ereatures: they do not like to tax their brain with sustained attention, and the circling swee, brings no tax upon their hoals, while it enables them to search for foord. Inasmmeh as man will only desire to get formard over the ground, and possesses grater faculties for combinations than birds, the care in balancing required ly direct ascension will be mere sport to him.

With the wind aheam nothing is more simple. All there is to do, so io speak, is to allow ourselves to sail. The sailing birds while doing this wear a happy look; the observer ferls that they are laboring neither with body now with brain, especially if the wind be brisk enongh to sustain them well. If the breeze is feeble then they have to take to circling from time to time; but when it is suftiriently strong sailing on a fuarter wind is cortainly the most convenient, and it is the first mode which will be sueresstully employed by man. It will be the system causing the least difficulty, and which man will utilize much more than the birl, the forme being always ansions to get to lais jonmey's end.

A brisk wind ought to permit of direct ascent, erall if blowing from the direction sought; bey facing the wind and rising while drilting back, or even by receising it in the rear of the aroplane, that is to say by gliding with the wind during a lnll, and tuming an angle and descending slightly during a puff of wimb. These two different mancuvers are performed by the sailing birds, but they employ them sorarely that they may be said not to be in their line. With a good wind, when we desire to proceed in its direction, both the ascent and the horizontal progress will be achieved in the latter mamer.

Summing up, even almitting that man shall intent no new manceuvers, be will nevertheless have a choice among mans, and their combination will constitnte what onght to be termed the haman type of tlight. We may condense our studies into a sinaller rompass and say: When the aproplancenters into motion, its renter of pressure varies in the direction of that motion and is displaced ly an amount which varies with the speed.

With marhines "heavier than the air" aërial mavigation may be comspassed with two sprarate classes of apparatus: (1) By machines with propellers. (2) liy aëroplanes withont propellers.

The first class is quite ontside of my present design. Mechanical science will eventnally furnish quite a monber of different solutions; such as flapping wings, propelling sorew, rocket propulsion, ete.

The second rlas-that is to say, the aẹoplane withont a propellerit is the object of the present essay to promote. What has been stated herein permits me to affirm that in the flight of the saling birds (the voltures, the eagles, and other birds which fly without beating the air), aseension is produced ly the skilltal nse of the fonce of the wind,
and that the erndanme is the fesult of skilltal mamentras; so that by
 motor whatera; rise u^{2}, into the aris and direet himself at will, even agamst the wind itself. Jan theretore can, with at igit smface and
 and gudance pertormed hy the soming birds, and will meed to expend 10 muscular fore whaterer. sate for whatace

As to the exact shape to be given to the airaplane it meer not he discossed in this whper becanse there are many shapes amb devices which may tor amployed: but all forms al apparatus. howerer dissimi lar, mast he hased upon this idea, whith I repeat: Ascension is the result of the skillinl ase of the power of the winl, and no other foree is required.

It will flonbtless be very difficult for many persoms to almit that a bird can, with a morlerate wind, demain a whole day in the air with no
 ible prossures ar some imperaptible beats. In point of fand the hat man mind does not readily admit the above altimation; it is astonisherl and sereks for all the evacions it ran fimd. All those who have not seen the proformance say, when ascension withont rxpentiture of fore is
 Four observation." lt even ocrons sometimes that a "haner or sumer. fictal observer who has had the good fortme to sea this manomer well perfomed by a hide, when he tums it wer in his mind afterwarls frels a donbt invaling his moldestanding: the perfomance soms so astonishing so paraloxidal, that he asks himself whether his eyes did not derefire him.

F'on ohsmation of this manmerer, in order to "arry alosolnte conviefon, mast hear sumb the pertormaner of the lagest valtures, and Hom them atome, and this is the reason: it is beratse all the sther birds which aseend into the air by this proersis do mot pertorm the neressary decompesition of forese rempired in all its maker simple its.

 winds and high up in the ait. But even when fardilly obspered with
 the mantin, who cath promet himsedt forwand mone than a yand with a single heat of wing.
 perform such eompliated manornors ats to permit a donbt.
 the great eagle, whose mamander is mot rasily followed by the eve, and We mast absohator ronfine om observations for the raltares. Siere
 over, we may ansider if a dead letur when hmman life is to be risked in experiment. The moral result of obsarvation is intinitely mone con-
vincing, but, alas, it is beyond the reach of most persons. It is not in Paris that the seeker will become convinced, it is not even in Emrope, where soaring birds are so rare that monthe may pass withont one leing seen.

In short, one most gor abroad to enter this new path of investigation; the path through which I have rearled absolnte emviction, and which must be followed by all who desire to know what can be done. If they will thas observe the soaring birds in their own habitat, they will donbtless witness all the proformances which 1 have Meseribed, and probably still others which have esaped me.

But to he convinced a man must see; for to see, even only once, is better tham a whole rohme of explanations. Therefore, O reader, if you are interested in this subject, go and see for yourself and be edified. Go to the regions where dwell the hirds which perform these demonstrations; and when yon have hehed them for a few instants, being alremdy initiated as to what to observe, comprehension will at ouce come into your understanding.

Imperfect machines.-It is somewhat minortmate that I have not sufficient space left for a little treatise upon "paper arrows." This school boy's toy, simple as it may seem, is 'quite instructive when its principles are stulied. The arrow may be constructen in varions forms, from the acnte triangle, which is the type of speed, to the broadside rectangle, the aëroplane type, proportioned like a stomy petrel, in which the plane is narrowest in the direction of its motion.

Moreover. we mote that nature has not comstrueted all sailing birds upon the same model. If we compare the aspect of the great tawny vulture with that of the stomy petrel, who saits wonderfully in a high wind; or with the aspect of the tern, or the gamet, or the frigate-bird, when the latter assme their arow-hike forms, we shall perceive that there is a great diversity of models; we might aren say there is an antagonism in models, for we have noted that all of them are perfect in their tlight as considered in relation to their life needs. But, notwithstanding these diversities, the gliding Hight of each ereature, whether smpurted on elongated or on square wings, is always based upon the same gencral primele: it results fiom the possibility of shifting the center of gravity by a change in the position of the sustaning surfaces, and this confers the faculty of mantaining equipoise in the air.

Aërophanes, proviled with the necessary snstaining surfaces, and equipped with this farmelty, will be sufficient to repronduce the sailing evolutions of the bideds. We may now condude, thempore, that a partienlar, special shape is really not indispensable for aërial locomotion: all sorts of forms, even the most cmions, may be utilized; only, they will produce the remnired decompositions of foress, under the action of the wind, in the ration of their individual pertections.
Man may suceced in gliding on the wind with "itcnlar, triangular,
or rectansular forms, with aerial ratis in the shape ar all arrow, with irresular toms wrom. posided alwass that he "an shat the "enter of gravity as refuired : provided also. that the sustalling surtare be sutti"ient in rxtent. and that the speed of the wind. or tha sperd of the

 mended. holding togethre by the graw of lowidrara, and yet gliding

 an ineredible pair of wins. Itr had losi six or soren primary feathers at least. aml the mest of his phmage Was far fiom "omphate. Vet,
 sometimms sucerederl in getting moder was. Once tairly mp in air, la becamo most surprising. (ilialimg Hpon his ragge! wings he wombl kinn within a gat of tha obsaver, his nerk bent hamk, his hade rest ing upon his shomblers with an air of suprome impertinener. Ile would go ont for a tome over the seal, womld eome bard to inspere the matket, and eomplets his prigrinations by settling down on the
 quite tame, pasis close at hame, very wifty, near the spertators. be prodnered a strallge sensation by gliding ber with ease and moxertion.
 gliding, in which the hind-professor was torching the beholders the att of sating flight.

Alter all these digressions, the matin question which abmes up is the

 even now say that it probably will astomish hy its morlioerity. Iny
 176 pornds in sailing tlight.

 wh the wther side of the shichl: for so important an arhievernent as this new mode of lownotion can not take place withont produring dis. turbances.

Let ns admit that the prohlem is solvel, and let us speculate upen the effects upon society. Let his begin with property. Property will be riven with an emormons gap. With the patent insuffieiency of inclosure, with intrusion into the mivacy of home, hedges, wals, will no longer be of servire: the inclosme under the roof will be ineomplete and will ued ememdation. All this will constitute a cmrailment of the privileges of possession. for a little comsideration exidences the dimininished efthenency of bariers. We shall no lenger he at home as heretofore: there is no neod to dwell on this. it is easily gramped.

But what of the mollertors of rostoms and the police in the presence of this new mode of locomotion? Ther olten fail to control existing ways of commmication which mevertheless are now well-defined lines. where all must pass and are masily insperted. What will these offioers do when they mast watch the air, that immonse pathway some 1 or a miles high? buring the day it may bessible to fancy some partly satisfactory sumollance: with a large force good telescomes, fast ermisers of the air, we might perhaps axerose some rontrol, but at night, what is to be done? Hone wan we bar the empire of air? How can we so much as watch it when opares fog aminilates the effects of eloetric retlectors? Smugglers will certainly have sumblacilities for plying their imbustry, that the only thing to dowill be to sumpress the erstom-homse entirely:

But then what will berome of the wemes and the balane of the bulget? These perturbations to property. to the chstoms, to the pobice are mere bagatelles when compared to the perturbations which will result in political matters. After all there may le found in time means more or less sufficient to supervise the transportation of goods; men will hecome aconstomed to the new limitation of privacy; but as to political matters we shall find ourselves in the presence of such fa cilities for ronfusion that the like has not beem seen siner the tomer of Babel.

What will heeome of the army. this new invention being suceessful? All will have to be done over again; the fortitiotions. the manowers, the defenses of the fromiens, strategy, all is brought to manght. It will even canse, in a very short time. the smppression of nationalities: races will be mapidy commingled or destroyerl, fin there will ?no longer be efficient barriers, not even those movable barriers which we term armies. Nomore frontiers! No more insmar seclusion! No more fortresses! Whither are wedrifting?

It must be confessed that we are face to tare with the great monown. What will be the result? Will society proish? Assmedly no!

As to the procedure that society will adopt to ronform to this new mode of existene 1 have not the least illea, hat it may he aftimed that society will emerge victorions fom the stroggle; that after the tempest cansed by ingured interests a period of restored aquilibrium will follow: and that in the end at the eost of a time of distress. hamanity will enter into possession of the empire of the air.

Thas we may reeover man manimity and calmly comsider the possibility of suros.s. We may proded terand that phatos. that lieacom, which is the immeasmable law of natme amd whicl? we call progress; for human progress is syouymons with welfare.

Finally. I comsel the greatest possible promene to all whomber take to solve the problem of saling fight. Let them "arefully eanvasis all the camses of aderdents whid it is possible to foresee : but ome they hatemade this camass, once they have completed their rescarelnes. I recemmend them to ate with energy and will. and 1 know of wo better worl to say to them than the one with which I began this momeraph: "Ose\%"--daring wins.

Anthoprobsy has busied itsedf with the multipliration of sorieties, jomrnals, congresses and other means of "o-aperative work. The benefit of this is sern in many ways it peremots duplations it puts mat terial where it should br looked for ; bat, "hef of all, it enables men to undertake enterprise that and entirely beyond tha "aparity and the resmores of imfivinals. The increasing faror of the seience is oberved in the fact that most of tha mange governments have at great axpence oramized explorations and studies. "The year 1890 , " said Prof. Maralist 1 ' before Section II of the British Assoriation, "has not bern tatile in discoraries bearing on those wreat questions that are of popular interest." Indeed, there has been a growth of wholesome donbt on questions concerming whirh men's minds wre thonght to be settled. This will berern most apparent in the archarologioal area, wiperially in America. Ther rxamination of anciont comber stomes and fommations. the elearing away of emembering materials, are preparatory to the strengthening of the structure at every point.
 in Korhester. N. Y. As Hinat, the sotener of anthropology received a larer amonnt of attention. Wen ontside section II. This fact is
 tioated amimals and mants.

The address of Vice lressident lahmes hat far its topice . the evolntion of tha asthetie." Tha following papers wore rat
 l). (i. lirimonl.

l'imitive mmotersyolems. L. L. ('matht.

 palamlithie matr. W. II. Jiohmes.
 एerior, id.

H. Mis. 111 - 30

Comparative chronology, W, J. NeGee.
The early religions of the Irognois, W. M. Batmehamp.
Early Indian forts in New York, id.
Prhistoric earthworks in Henry County, Ind.. 'T. 13. Redeliner.
Prehistoric objects from the Whitewater Valley, Amos W. Buther.
Indian camping sites near Foonkille, Ind., id.
Earthworks near Anderson, lnd.. id.
Pebbles chipped by modern Iudians ats an aid to the study of the Trenton gravel implements, H. C. Mercer.

Ancient earthworks in Gntario. C. A. Hirselifeliter.
1
Prehistorie trade in Ontario, id.
Fort Ancient, Ohio, S. S. Scoville.
Copper implements and ornaments from the líopewell wroup, lioss Comety, olin; W. K. Moorehead.

The luins of sonthern Utah, id.
Demonstration of a recently cliseovered ecrebral porta.
Pueblo myths and ceremonial dances, F, H. ('nshing.
Ancient hearth in stratitiod gravels on Whitowater River, Inclinna, A. W. Butler.

Skull of a pie having an arrowhead imbetherl in the bone, R. W. Claypole.
Ruins of 'liahanaed. A. E. Donglas.
Involnntary movements, Joseph Jastrow.
Pottery from a mound in leoria, Ill.. J. Kost
A definition of anthropology, (). T. Mason.
The Department of Anthropology at the Worll's coblumbian Exposition, F. W. Intman.

Model of serpent mombd, Hhio, id.
The adress befor Section I by its vice-president, Lester F. Ward, shonld not be orerlooked in this romncetion. The smbject is, "The prychologic hasis of social ecommics." The active co-operation of Section Il in anthopology at the Worlds Fair was secured, and the assochation was adjommed to Marlisom, Wis. so as to be near the eity of Chicago. Plans were laid to have the Association and the Congress of Anthropology contimous.

At the British Association for the Adrancement of Science, held in Edinhmegh, Angust, 1sig, the following committees reported work done along the lines of Amorican anthropology :

Report of the committre appointed for the purpose of editing a new edition of "Anthropological Notes and ?ueries."

Report of the committee for investigating the ruins of Nashomatand and the habits and constoms of the inhabitants.

Report of the committee appointed to report on the pre-historic and amcient remains of Glanmoranshire.

Eighth report of the committee appointed to insestigate the physical chararters, languages, and indnstrial and social condition of the Northwestern Tribes of the Dominion of C'amada.

Remarks on lingnistic ethology, introdnctory to the report on the Kootemay ludians of southeastern british Columbia.

Report on the Kootenay Lhdians of Somtheastern British Cohmmhia.
Report of the committer appointed to investigate the habits, "ustoms, plyssical characteristics, and religions of the natives of India.

Report of the committer for the purpose of ramying on the work of the anthopometre labomatory

The adhess hefore Sertion Ib-Anthropology-was delivered by President Alexander Maralister, Mo D. VF. R. S., probessor of anatomy in the University of (ambridge.

The following 1apres were read:
(1) On the organization of loeal anthopolorical researeh, by E. W. Brabrook.
(3) Discosery of the common ocenmenee of palatolithic we:pons in seotland, by Rev. Frederick smith.
(3) Notes on eyclopean arehiterture in the Sonth lacitie Islands, hey R. A. Sternlale.
(1) On a fronto-limbie formation of the homan cerebrum, by lor. I. Manonvrier, professor at the sehool of Anthropology, laris.
(5) 'The Indo-Emojeans' conception ot a future life andits bearing mpon their religions. ly lrof. G. 11 atwell Jones, a. A.
(f) Exhihition of photographs, wapons. 1 (tr, of the 'Tobse ludians of the Gran ('hamo, ly J. liraham Kerr.

(8) 'The present inhahitantsol Mashomalam and their origin, by J. Theorbore Bent.
(9) (On the value of art in ethoblog, by lrot. A. C. Hadmon.
(10) Nimilarity of revtain ancient necropoleis in the l'vemes and in Noth Britain, by Dr. lhené, F. A. A.

(12) On the past and present comblion of the natives of the friandly Islands, or Tonga, by R. 13. Leefe.
(13) Dammal Island amd its mativis, bo I'. Wr. Bassettsmith, surgedn R. N., F. P. m. s .
 of Paris.)
(16) Somm developmental and wohntomal aspects of wiminal amhropology, by T. S. Clotalon, M, I., F. 1. s. 1:.

(16) Wh the articnta: processes of the veraphar in the gorilla compared with flose in man, and on costo-vertebral variation in the gorilla, by Prof. struthers, M. 11., LLL. I'.
(17) Wh the probable derivation of some chanateristic sommes in certain lamgrages lom reries or mois: math hy atmals, lyg. Mansel Weahe.
(18) On the pehensile power of intints. hy In. lants lahinson.
(19) 'The integmentary growere on the palm of the hand and sold of the font
 demonstrator of allatomy, ! 'merersity af E! !inburgh.
(20) On the eontemporaneity of man and the moa, by Il. O. Forbens.

 Garson.
 Children, by Francis W:ancr, M. 1 .

(28) On a sknll fiom lort lathol, (ilamomembhire, hy ('. Phillips, 1. A.
 A., M. J.
(30) On the nse of nareotice by the Nicobar lskaniers. and rertain deformations connected therewith, by E. H. Man.
(31) Exhibition of the philograph-a simple apparatus for the preparation of lecture diagrams, bey (x. W. Bloxams, M. A.
(32) Exhbition of photographs representing the prehensilo power of infants, by L. Robinsou, м. I.

The strong peont for anthropology in the british Assuciation is its eminent committees, which have gaided exploration in many directions. In the French Association for the Advancment of Science, held at Pan muder the presideney of In'. Magitot, September 15-21, the following papers on the program are of interest to anthopologists in general:

Affintios between the Basque language and rertain idioms of the two continents Charency, Vinson, Manomvriar, Azema, (inillibean, Gnido Cora, and Dodgson; Les Triganes, Axalo Cora; arehatogy of the Pyrences, Cartailhac; lepopukation of France, Chervin; prehistoric finds in the valley ot the Vézere, Girod et Masserat; anthropolony and the arehalogy of the Prrences, a discussion, proposed by M. 'ratte; Le Tonkin, Barbier. The question of the Basques, their anthropological characters, their history, their langnage, their traditions, and folklore consmmed the bulk of the time.

The twenty-thind annmal session of the derman Anthropological Society was held in Ulm, Angust 1-3, The following important matters were discussed:

Ein Bihl ans Schwabens Vorzeit, E, von Tröltsch.
Wissenschaftlicher Jahresbericht, J. Ranke.
Die Schsialel von Cannstadt mul Neamderthal, v. IFïlder.
Die anthropologisehe Stellung der Juden, F, von Lnschan.
Die Menschenrassen Europas und die Frage narh der Herkunft der Arier, J. Kollmann.

Authropologisches ass Malacea, R. Virehow.
The German Anthropological Society devotes all its time to this one subject. In their national congress of natmalists and physucians, topics relating to man are also discossed by derman Anthropologists.

It the elevently session of the congres intemationamx diarcheologie prehistorique et d'anthopologie, convened at Moscow, the following papers were reat:

What is the most ameient race of central Rassia? Auatole Bogdanove
The races of men in Europe and the Aryan curstion. Dr. Kollmamm.
The anthropometrie types of great Rassiams in the central governments of Russia. Zograt.

New classitication of hmman crania. D'rof. Nergi.
thancient skulls in línssia artificially deformed. Ihr. Anontchine.
Revinw of the anthropometry of peoples of 'Tramseameasia. Eruent Chantre.
Race in anthropology. Panl Topiname.
lroposal for a reformed nomenclatme of the peoples of Asia. Ernest Chantre.
Anthropometrie methods pratered in Russia. Zograt.
Three dommissioners were appointed dming the congress, upon craneometry, on anthropometry, and an the nomenclature of the peoples of Asia.

The first mamed mater the whirmamship of Virehow. deporten at the meeting. as follows:

1. Jormen or orientation of the skinlla. Viande one is free to talke the one whith he
 ant for photograjus.
 acording to the French methorl aro adopted to the exelusion of ot are analogons diameters. Whenever these last are emphoyed they mast brammommot.
 is adhed the maximmu width, whirh onght to he measured on the ktephanic point, of lirore:
 be taken or it will fall into dismse.

The committee profer for this purpose the compasis of lirehow. If this instrment is mot alopterl the logs of brocats stiding rompass most be lengthened. The utility of this morification is pereededed in memsurations on the living. It is only with a compasis with longs batmehes that the total heright of the skall "an be taken throngh the ambicular points.
V. The curves.-The curves must be taken with anseel metriv ribhom. The hom-
 The transerse by the anditory upenings and the bergma.
VI. The fuce.-The width whgh to he taken molouger on the jugomanillary sutmes, but upon the two points that wive the maximmm width. The latight of the ansion onght to he taken at the rpper alveolar point. The total heright of the nasion on the mentomal points.
VII. The orbits.-The dimmedre of the orhits onght to he measured on fle juternal borders. For the widtla the darion shonld le abamboned.

VIll. 'The ophrio-naso-alveobar angleought tu be taken with the farial goniometer of Ramke or with that of broed. In this, as in all moasmes, the instrmmente and the methods should bastated.

In his paper before the tenth congress of archeology and anthon. pology, Ermest Chantre made a report on the measmements of the peoples of the C'allasms, of which the following is the abstract :
 merlinm instaturu.
(2) Aderbeijanis, brown, dolichomphathos, dolichoprosopir, leptombine, amb above the medimm stature.
(3) Kurls, generally brown, with elongated linces, eves mever bridged. dolicho rephatous, leptorrhine amb ahove the medimm stature.
 them mesoprosopism, leptorlhimsm, and a statme below the mana.

(6) Hadjomi I'ersians, very bown also, leptormine, dolishoceplablia, dolielooprosopic, and of medimm stature.
(7) Jews, medium eolor, ultra-brachycerphalic. They arn distinguished hy flath mesoprosopism, their leptominimism, and medimm stature.
 instature.
 They are brachyorphalie and of stature abowe 1 ha mean.
 leptorrhine, amd very tall.

This is by far the most important assemblage of anthropologists in Europe. Throngh their increasingly closer co-operation it is hoped to unify methorls of research that roports from one comntry may be taken np and ntilized in another. This in some lines has been hitherto ims. practicable.

At the Anstralian Assoriation for the Advancement of seience, hedr Jamary 7 to 14 , the president of the sertion of anthropology was the Rev. Lorimer Fison. The following is a list of subjects and anthors:
The story of Thic and Lie. Hervey Is., Ir. Gill.
The omens of pregnance, Mangaia, lm. Gill.
New Britain amb its people. P. Danks.
Sythey matives fifty years ago, W. B. Clarke.
(ironp marriage and relationship, l. Fison.
Nair palyandry and hieri liraurn, 1. Pisom.
Sanoa ancl Loyalty islands. S. Ella.
('ave paintings of Anstralia, J. Matthews.
New Hobridtes. 1). Mardonald.
Notes on the Tameser, W. (aray.
At the eighth ammal moeting of the Indiana Arademy of Scrence,
 anthopologic interest were read :

Evithences of man's early existence in Indiana. from the oldest rivor gravels along the White Water River, Wy A. W. lather.

The Craw ford mound, by 1I. M. Stoops.
Notes on arehacology in Mexico, by J. T. Sewerll.
Ancient earthworks near Anderson, Iud., hy F. A. Walker.
Arehanolog neal Tipperanoe Combty, by̌ O. J. Craig.
some Indian eamping sites near Brookville, ly A. W. Butler.
Remarkahle pre-historie relic, hy E. Pleas.
The monnts of liookville Township, Franklin Comnty, Ind. ly II. M. Stoops.
Remarks on archeological mal makiug, hy A. W. Butler.
The preparation for the World's Cohmbian Exposition ocenpied the time of most of the Ameriean anthropologists in 1892. A rlassifiration of the material was first made upon a pmely anthopological basis, and in its completed form mande fall provision in bepartment II for this suljeet moder the topics: Wthnology, Armatology, Progress of Labor and Invention.

The exhibit was bound by the law creating the Exposition to be donble-tha Govermment portion and the Exposition portion or department.

In order to aroid all runtfiets it was arranged that the first-mamed display should set forth the resources amb methods of the dovermment in the proserention of anthropological work. The complation of the great linguistic map furnished the key-note, and ail the national exhibits were set \quad If : around the idleas there set forth.

The area covered lyy the Department M was of a much wider scope. Somatic and fanctional anthopology were to have the widest range, and tribes of living jeoples were to encamp on the grounds to give emphasis to the exhibits. A separate building was provided for, in which
the phases of the subject shond low selandely trated amd the ditferent combtries might make theit diplats．＇The following is the wheme of the dicplay：

 fousts，hats（of hark，gratss，etr．），womben linotses．
 locks．
 eivilized ratees．

C／ass ats．－Articles used in coolilng and eating．

Gisocr 167．－Lie－promactions of anciont maps．
 the Discovery．

（isotr 17：—State，mational，and foreign govermment exhibits．
Gisobr 17．－The North Jmerioan ladiams．

Gronf 176．－Isolated and roblertive exhihifs．
 thorized a represemtation in the Expmition of Maldid to commemomatr
 partments and thr Nationtal Masemm were anthorized to participate．
 Peabody Musemm，the Vuiversty of Promsylvania，the drademy of Natural seremers of Philaldghiat took part in the rxhibits tionn the United States．Tha Sonth Ameroman repulabes were whll remesentorl，

 It afformed the rarest oppormaty of bringing together a great variety of art products fiom the two Americats．

A great deal of the material monnted in Washington for the World＇s Fair in Chicago was exhibited in Madrid，adding to the interest of the exhibit．The catalogne was prepared by Mr．Walter Hongh，of the U．S．National Mnsemm，and an account given by the same author in the American Anthropologist for July，1893，271－277．

Dr．Brinton assumed control of the current notes on anthropology in Sirience（New Fork），enabling the reader to profit at small expense by a vast amomut of research，especially into Emropean literatme inas－ cessible to most．The method pursued is to devote short paragraphs to the comprehensive statement of the anthor＇s aim and a short amaly－ sis of the work．

An extensive catalogne of anthropological literature is to be found in each volnme of Arehiv fiir Anthropologie，classified as follows：

I．Pre－history anl Archaenlogy：1．Germany；A．Anstria；m．switzerland；iv． Great Britain；v．Demmark：vi．Swedon；vio．Noway；vil．France；s．Bolgium； x．Italy；xı．Ameriea．

II．Anatomy：1．1888；if．1889；inf．I890．
III．Tölkerkunde（1890）：I．Somers：11．Ethonology（1．Methode，history of the wrieuce；2．（iemeral anthropology ；3．Influence of climate and enviromment；I． Gencral sociology；in Serial sociology）．

111．Ethography：J．Enneral whography；H．Special ethography（A．Enrope， with 15 subdivisions；B．Asia，with t：divisioms，each with sereral subdivisions；C． Australia，with 4 divisions；I）．Africa，with？divisions；E．America，with 4 divinions）．

1Y．Zoology：Aceome of zoologinal literature in combection with anthropology for the rear 1890．（A．Mammals and human remains from the diluvinm and pre－ historie times；B．Mammals from the dilusimm，with no near association with man；C．Mammals from the Tertiary and Mesnzoir times；I）．Reen nt mammals，looth systematic sturly and distrihution．）

There are many things to be said in favor of the elassified bibliogra－ phy，but the tendency nowadays is to a single alphabet．The title col－ lection of the Archiv is excellently done，and frequently a brief review aceompanies of great value．The only drawback to the bandy use of such a bibliography is the impracticability of carrying so long an amalysis in the memory．The list is especially finll by reason of its in－ cluding only works that are two years behind the date of the Archiv．

1．BIOLOGICAL AN゙THROPOLOGY゙。

Dr．Friedrich Ratzel＇s Anthropogeographie at the close of 1891 reached the end of its second volume．In the first vohme the physiographical and the dimatological differences were disonssed as conditioning the raried forms of settlement and rivilization and the endless varicties of mankint．

The serond volume is devoted to bio－geography，inchuding araphic picture of hmman distribution，a sketch of the peopling of the wath as a whole（the oxtmmene of the（ireeks）atid the effert of position in this akmume．In the second part of this volume some important matters are taken up，namely，the significance of the density and the distri－ bution of populations，the want of progress in some peoples，their ex－
tinction when honght into rontant with higher＂nlture，and their self－ amilalation．The rath as moditied loy human atotion is an ohd theme， but with the new light of morlern serence the books of（xayon and Ritter and Marsh may be re－witlen．The anthor of this series has qualiforl himself for this trask by a series of leotores，the repertion of which hat mande him quite familiar with all phases of the smbjeret．

Inthropometry－br．R．Collisnon，of（＇herbours，France，issined a Projat d＇Entente Enternationale ponr arraten un Progzamme Common de Recherehes Anthropologiqnes．The object of this projat is to bring abont miformity ever？where in the matter of bodily masmements． Th reading whe the action of the several mational associations and inter－ national congresses the readre will see that the old strusele for agree－ mant roncerning common measmes and method goes on．The convir－ tion is contimally strengthened that mo good results dan preede such ascerment．

M．Eicme lanlat puhbished in lavore Srientifune in Angust（rol． 50，1．170－17．⿹弔 a table of coetheients for deduring stature fiom the measumant of the long bones．

	Femur．	Tihnt．	Fibula．	Hımerus．	Radins	1＇］na
－－	－－			－		
Minimum．	3． 64	4.53	1．85	5． 06	6.56	6． 41
Maximmm	：3．71	4．61	4． 66	5．29	7． 16	6． 6 fi

Anatiply the length of the long home named by the enefficient in the table to obtain the stature．The worth of the publication is greatly emhaneed by a multitude of references to anthorities．
 Panl Topinard makes the following résume of his studies：

> First sulrortir－Man．
> First family，Anthropoids．
> Second family，l＇ithecidar．
> Thixd family，Cebider．
> Fometh family，Aretophtherdar．
> ＇Third sub－order－
> The lemmors．

［．Vinture，Idomd．，Minr．17．1892．
In comparing Womanis brain with man＇s，I＇rol＇．（＇richton lirowne con－ firms the inferionty of the former，amoming to thinty stammes，cond rection made of the roeftriant of statmre．He has prosed that the frontal lobes are not so well imisated by the blood，and that，on the ＂ontrary，the diremation of bloon is more active in the posterion and superion portions．The postarion parts of the encephaton，cervelet，and ocejpital lobes are mowe deroloped in women，and that theria left hain weighs less than the il right lamin．The rombohtions are lase compli－ rated than in men．The caliber ot the intermal and the vertemad cans otid present maked differences in the two sexes．Whenee it results that the distribntaon of blood in the brans of the two sexes differ
greatly. The internal caroted with its principal branches (eerebral, anterior, and intemediate), which are distributed among the suborbital convolntions of the insmla, of the Rolamdir region, and of the first sphenoidal convolntions, are larger, absolntely and relatively, in men than in women. On the contrary, the vertebral carotid, which is distributed among the occipital and temporosphenoidal lobes, are lager in women than in men, and the basilar tronk, which is only a continnation of the vertebral, is also larger, its mean diameter being $28^{m m}$ in woman and 26^{mm} in man.

II. PSSCHOLOGY.

Prof. Ward, in his vice-presidential address before Section I of the American Association, says that the doctrines of physiocracy laissez fairé and Spencerian individnalism and the biologic economy generally are not smstamed, and that the facts which soeiety presents are for the most part the reverse of those which were promised by them. The explanation is that the old political economy is true only of irrational animals and is altogether inapplicable to rational man. Darwin modestly confesses that he derived his original conceptions of natmal selertion from the reading of Malthns on Population. But he did not, perhaps, perceive that in applying the law of Nalthos to the anmal world he was introrlncing it into the omly field in which it holds true. Yet such is the rase, and for the reason that the advent with man of the thinking, knowing, foreseeing, calculating, resigning, inventing, and constructing faculty, which is wanting in Iowar creatures, repeated the biologic law or law of nature and enacted in its stead the phychologic law, the law of mind.

In the American Jourucl of Psychology (1892. Iv, 491-in02) communications are made to the editor of comes in experimental psychology as follows: In London the present examiners in mental science are Dr. James Sully and Prof. Knight. In University College (Gower street) Prof. Croom Robertson conducts the instruction. King's College, Bedford College, and the City of London College affiliated with the University provide teaching in psychology. But there is no labora. tory in any of them for experimental psychology and research, indeed the only one in England is at the University of Cambridge.

In Copenhagen there is at the miversity a psydological laboratory under the direction of Dr. Lehman. The instrmetion in philosophy is under the direction of Prot. Harold Itoffling.

In 1891, a chair of experimental psydhology was reated in the faculty of sciences of the University of Geneva, but without a laboratory. Whaklimir v. Tschisch presents a brief report on the clinic for nervous and mental diseases in Dorpat.

Yale University has provided a comse of study in experimental philosophy with reference to the degree of Doctor of Philosophy.

Three comses of psehological instruction were pmened in Harvard.

A department of parmblogy was openel in Comell linersity in combethon with the simsan Lim sage sedoen of Phomephs.

berlin.-Dhthey, lectures on bsymongy and pedagngy: Lazarns, lertmres on
 and therapentice of mental disenses.
lionn.-Elemente of pagehology ; I'elman, mental disturhance that borders on msanity; Fochs, hypuotism, slefp, and the namentic comdition.

Grittingen.-(i. B. Mialler, lectures and expermental pushohegual msestigations: Meyers. psychatric cliniw.

1): William (Krohn spent nine monthe workins tut the retebrated
 Mmurh, Plas, Berdin, Halla, friattingen, and Bomm. In eareh of these the laboratories were warenlly msperted and in some of them the doctor

The Institute Psyoho-1Phsiologique de Pais was fombled in 1891 for the thenretical and pratical stady of the psycholowiad and therat prentical applications of hypnotisum.

The Soriate d'Hypmologie of Faris beid monthly meetings.
Prof. E. W. Seripture proposes in the peychologioal motes of the American Jommal of Psombolog (I , 584) a list of tomms with dedinitions for prycholowical use, acomeding to the meanings attached to therin:
(1) Feelings are the indivisible clements into which mental phenomena are composed. Every fact of romscomsmess that has mot berm proved to be a emmbination of other fants is to be called a berdiag.
(2) Sensations are those teelings whith are regaded as emming fiom withont: they are passively experienced feelings.
(3) Impulses are those feelings that are regarded as originated in the mind itself: they are actively experiened feelings.
(t) I leas are compounds of ferelngs of any linul.
(a) Jerepptr are those ideas that are eomposed mainly of remsations.
(6) Volitions are those illest that are composed manly of munases.

The Amerban branch of the Society for Physeal hesearel was held

 rated with the same physiad indivithal there may bo two or morts personalitics, both of which are romsames. They may be roorextemt
 persobalities: ammesia the barrier which separates sumessive person alities. •En manot il peut y avoir chez mu mem individn. phralité de mémoires, pharatité de consciences, phanaté de personalites; et
chacmue de res conscienter, de ces peisonalites ne rommat que ce qui se passe sur son territoiŕ́. (Natur, Lombl., Duly 7.)

In La Revue Srientifique (XLix, 7!7) M. Latassagne, director of the faenlty of medicine in Lyon, publishes a unestionnaine on physiological psychology. The object is to stimulate statistical researehes on the relations between the semsorial apparatus, flo quality of memory, and the mode of finstioning of the centers of langage and of ideation. Hm. H. Beamis and A. Binct follow mp thes subject in the suceeding rolume ($L, 340-34 i$) with a questomatire addressed to painters, somptors, and designers relative to a visual memory of color and form, the chief points of the inquiry heing the distinctness of visual reanlections, the qualities of vismal memory, dustinction betwern form memory and color memory, fidelity of this characteristie, the role of visual memory in the art of design, peenliarities. Dr. Riccardi's 'Luthropologice e Pedagogia is a study in the science of edneation fommed on a basis of experimental psydhology ant anthropology. He has collected during the last seven or eight years, with the help, of teachers, some humdred thonsand observations on two thousand children of Modena and Bologna, and in this first part of the work he presents the data concerning this psyehological and sociological condition. He divides the pupils into good, middling, and bad, and investigates the clararters of these classes with reference to family life, number in a fanily, healthiness of the family stuck, social position, etre, in each case first taking the sexes together and then consulering boys and girls separately. Italian chiddren, to a large extent, live under bad conditions and are decidedly below the anthropometric standards ot other nations. There is a marked contrast between the chillren of the poor and of the well-todo classes, to the advantage of the lattri. [Rev. in el. Anthrop. Inst., xxif, 281.]

The second International Congress of Experimental Psychology convened in London on Tuesday, Angust :3.

The third Congress of Criminal Anthropology was held in Brussels from the 20th of August to the 3 d of September.

A laboratory was established in the L'niversity of Toronto.
Prof. Angell ocoupied the chan of psychology at the Stanford Uni versity.

Dr. Edward I'ace, a pupil of Whudt, organized a laboratory in the Catholic University in Washington.

Dr. Edmund Delaharre organized the study of experimental psyehod ogy in Brown Thiversity.

The following is the program of the International C'ongress of Experimental Psychology heh in London, August 1 :

Introspection and experiment in psyehology, Alex. Bain.
Suggestion and will, M. Baldwin,
Psychological questioning, Prof. Beamis.
Hypuotic suggestion and education. Prof. Brmheim.
Psychology of insects, M. Binut.

Lanea Brideman, Jr. Wonaldson.
Psychotherapertics, In. Vin Eerlen.
Theory of color perception, Drof. Dbbinghans.

l'seloology of thr skin, ktanley llall.

Inlibition of presentations, frof. Iteymans.
The degree of lowazation of movemants and dorelative sensations, frof. llorsley.
Loss of volitonal power, l'rof. Janet.
A law of preeptiont. Prot. Lallge.
The female poisobrer of Aior Pezzar, l'ruf'. LAgenis.
Relation of respiation to attention, l'mí. Lahmann.
bireet amb associative factors in jublyments of asthotie popmotion, br. L. Witmer.
Sensibility of women, normal, fasane, wiminal, l'rof. Lombroso.
Parallel law of Ferhuer, lor. Mendrlssohn.
Limits of anmal intelligence, I'rof. L. Norgan.
Experimontal investigation of memory, (t. E. Miitter.
Psechophysical basis of the forlings, Prof. Miasterbers.
Experimental induction of hallacination, F . Wr. H. Myers.
Characteristics and comblitoms of the simplest forms of beliot, W. R. Newhold.
The origin of numbers, I'rof. P'river.
(ieneral ineas, Prof. liboot.
The future of psyelology, Prof. Ricket.
Anatomical and physiological retation of the frontal lobers, Prof. Schailer.
Experiments in thonght transference, Ars. Sidewick.
Binocular alter-images, E. IB. Titehener.
Relation of reation time to the breath of perenption, 1)r, Tsehiseh.
Physiological hasis of rythmie speesh, Dr. Verriest.
Functional attributes of the eerebral eortox. Wr. Walle
[Sature, Lomion, An\}y 11. Angist 11.
The followings subjects are treated in the 1 mreviren Jomruch of I'syrholor!!!

Kine jerk ('The) in sleen in a case of dementia, Noyes.
Memory in sehool chihlren, growth of, liolton.
Kiallueis figmes amd other related illusions, , bastom (studias).
lowoluntary movements, dastrow (studise).
Smell, absente of the somse of, Jastrow (studies) .
Classification time, Jastrow (stmlies).
Finding tims, Jastom (sturlies).

Natural dealism, psyehological fommation of, Fraser.
Nerrous systom, pisploglogical literature, Donaldson.
Assoriation, ('alfell
Reaction, ('attell.
11ypmotism atud suggestion, Jastrow.
Suggestion, hypuotism amb - dastrow.
sight, pisehologrial literature, sathond, soriptare.
I'hysiohoric:al peyrhologr, cinford.
I.anral lridgman, Jomald<on.

Vismal area of the cortex in man. I onaldsen.

> Voluntary movements, rapidity of, Dresslar. Attention, phenomena of, Angell. Contrast, effects of, Kirschmann. Musical expressiveness, Gilman.
> Regular variations, pitch, intensity, ete., Scripture.
> Uneonscions suggestion, Forel,
> Disturbance of attention, Swift.
> I'sendo-chromesthesia, Kohn.
> l'sychiatry, Noyes.
> Taste and smell, Bailer.
> Tonch, pain, internal sensation, Bailey. -
> Lingnistic psychologr, Chamberlaiu.
> Volnutary motor ability, liryan.
> Training of animals, hossignol.
> Jndgment of angles, lines, ete., Jastrow.
> Inconscions cerebration, Chila.
> Action and rolition, Baldwin.

III. ETHNOLOGY.

Prof. Alexander Macalister. in his vice-presidential address before Section H of the British Association, regrets that there is not in our literature a more definite nomenclature for the divisions of mankind, and that such words as race, people, nationality, tribe, type, stock, and family are often used indiscriminately as though they were synonyms. There are several collateral series of facts, the terminologies of which should be discriminated: (1) Etmnic conditions whereby individuals of mankind are gronperl into categories of different eomprehension, as chans or families, as tribes or groups of allied clans, and as nations, the inhabitants of restricted areas moder one political organization-Ethnology. (2) Individuals regarded as descembants of a limited number of original parents, each person having his place on the genealogical tree of hmanity. As the suceessive branches were subjected to diverse environments, they have differentiated in chameteristics. To each of these subdivisions is applied the name of Race. [Hacckel terms this study anthropogony.] (3) The third ategory is that of language, sometimes conterminons, out it is as absurd to speak of an Aryan skull as of a brachycephatic language-Neture, London, 1892, Angust 18, p. 379.

The British Association appointed a committee to organize an ethnographical survey of the United Kingdom. The committee, in pursuance of the object for which they had been delegated by the Society of Autiquaries of London, the Folk-lore Society and the Anthropolosical Institnte, and appointed by the British Association, propose to record for certain typical villages and the neighboring districts, (1) Physical types of the inhabitants; (2) current traditions and beliefs; (3) peculiaritics of dialect; (4) momments and other remains of anejent culture: (5) historical evidence as to continnity of race.

Dr. Georg Geoland has published through Jwstus I'erthes, Gotha,
an Athes der loblierkmale. There are in it fifteen folio maps, to wit: 1. Distribution of skin amd hat: 11 . Donsity of fopmlation: In, Distribution of religions: 1r. Distribution of diseases; V. ('lothimg, ford,

 preceded by descriptive toxt and an alphabotic catalague of all tribes mentioned, with reference to the latitude and longitude of their lanhitat.

The origin of the Mancha race, to whinh the reigning dynasty in
 China Ilerahl. Shamghai), is thas set forth:

The Tungus 1 ribes, to which the Manchn belong, are seatrered about in siberia and Mamburia in rather small commmities. They appear in hintory in the Chow dymasty. The Momgols as a race are probably an ofthoot from Tmgis stock. The comanguinity that exists between Manchu and Mongol is greater than that which is fonme to preat betwen Mongol and Turk, and therefore it may le combuded that the Tumge, either in Sheria or in Mamelneria or on the Amme, threw ofit a brach which herame Mongol. Genghis Khan and his tribe starten on their compest of the Asiatic continent from the neighborhool of the gold mines in Nuehinsk, and the Mongols are not tis lemen be preference nor linnters of the sable, martin, and beaver. They are rather keepers of sheep and riders of horses and cauch. They might easily develop their language in the virinity of the Altai monntains and the bakal.

As to the Manchus, they have forgoten their early orenpation since coming to China, and they attend now mly to the dnties of the pulnie servied or to military thatuing. The langage like the Mongen is rich with the apoils of antiquity. All the varions forms of enl ture, whe the belonging to 'inamanism, ('onfucianisn, or fouldhism, whith wheh they have becomestecessively familar, have contrihuted a share. To these must be alded the vorablary of the hontiman, the hisherman, and the sheplowd, and all the terms necessary to feulal relationship as well as those of the trades and orcupations of the ohd "ivilization.

Ethmology of Jhehgreh.-l) Brinton proposed to adopit the Arab mame, Maloges, for that portion of Atirea west of the Nile Valley and nortli of the southern bomulary of the Sahara. From time immomorial
 (For the prehistory of this region comsult A. 'hatelin, in Rerne Neientific, Apmil ! is!日. Salanlithic man is said to have beren lare, succoeded by moolathie commonitios amd megalithio stmotmes, erected by andestors of the Berbers. The same Burber stock has possessed Aahgrel lion the very earliest times to the present day.
('alts.-An instructive disemssion on the origin and migration of the Colts was begun hy low. Rinton in science (lawell 11) and contimed themoh subsequent mombers. This disamssion is not only valuable for What the anthom of the motes saly but for the exerellent works fameded.

 Melanesia, whirle is reprinted in Arehir fïir Anthropologie. xxı, 339384. The essay is remarkable, among other exoellemeer, for the ex-
tensire list of comnotive terms for measurements of the head. Many of these words are old but quite a momber are new:

Index of length.-Dolichocephal, mesocephal, brachycephal, hyper-dolichocephal, byper-hrachycephal.

Index of height.-Hypsicephal, orthocephal, chamareephal.
The face.-Leptoprosop, mesoprosop, chama prosop.
The nose.-Leptorrhine, mesorlhin, platyrrhine.
The eye carity.-Hypsicomch, mesoconch, chamerouch.
Cranial atpucity-Microcrphal, elattocephal, oligocephal, metrocephal, megalocephal.

The julls.-Prognathic, arthognathic, mesognathic. For alveolar proguathism, prophatnic; for the upper face, chamalognathic; for zygomatic width, euryzygic.

The shape of the skill.-Steno-cephatic, en-cephalie, stenoteric, lopho-cephatic, spheno-cephalie, tetragonic, poikilo-cephalic, chomato-rephalic, pro-ophryo-rephatir, rhomboido-tephatie, ornid, ellipsoid (dolicho-ovoid, brachy-ellipsoid, etc.)

The forehcal.-Brachỳmetopic, brachychitometopic, leiometopic, hypsistenometopic, eurymetopic, stenometopic, curycletometopic, clitoplatymetopic, clitobrachystenometopic, emmetopic.

Parietal bones.-Emrybreguatic, emryomalohequatir, hyjsistegolmequatic, euryoncobregmatic, oxyomeobregmatic.

Occipital bone.-Opisthocranion, cremmepisthorranial.
In the text the Greek roots arr given and the etymologies worked out.
IV. (ilossolugl.

The Seventh Ammal Report of the Bnrean of Ethnology to the Smithsonian Institution by J. W. Powell, director, bears the imprint of 1891 , but was really made pmblic in 1892. This is in one sense a jubilee volume, the crowning glory of American linguistics, commenced systematically loy (iallatin and ended by Powell.

The nanmes of Ameriom Ludian tribes have been in very great confusion, rach tribe laving many mames. This ronfinsion, as for example with the Mohawkis arose by having the spelling in three languages, by having their own real name confommed with terms of reproach gathered from neighboring tribes, by imperfert and conflicting systems of translit eration. But in combining the North American tribes into one system rules were necessary, therefore Maj. L'owell lat down the following:

1. The law of priority relating to the momendature of the systematic philology of the North American tribes shall not extemb to anthors whose works are of date anterior to the year 183 .
II. The name originally given ly the fomder of a lingustic gromp to designate it as amily or stuck of languagen shall he permanently ratained to the explusion of all others.
III. No family name shall be recognized if composed of more than one word.

1Y. A family name once estahishod shall mot he canceled in any subserneut division of the gronp, bat shall be retained, in a restricted sense, for one of its constituent portions.
V. Family names shall be distinguished as such by the terminations "an" and " iau."
VI. Xon man shall be aterpted for allignistic family muless nsed to designate a tribe or group of tribes as a linguistic stock.
VII. No family mame shall be acerpted mons there is wiven the habitat of tribe or tribes to whirll it is applied.
VIII. The original orthography of: mame shall be rigidly preserved except as provided for in Rnle inf, and unless a tyographical error is evident.

As fixed in lowellis last revision the familises stam thas: Agon quian (Eastern North America); Athapascan (Northwest North America): Attacapan (Lonisiana): Beothmkan (Nova Srotia); Caddoan (Threer groups, uorthern, Arikara, middle, P'awnee; somtherı, Catdo); ('himuknan (Juget Sound) ; Chimarikan ('Trinity liter, Caifornia); ('himmesyan (Iritish Cohmbia); Chinookan (Cohumbial liver): ('hitimathan (Lonisiana); Chmmashan (Sianta Barbana, Cal.); ('oahuiltecon (Texas); Conehan (northern California): ('ostanoan (Golden Gate to Monterey, Cal.) ; Eskmanan (Areticcoast); Esselenian (Monterey lay, ('alifornia); Iroquoian (Great Lakes); Kaloopaian (Washington State); Karankawan
 (Cohmbia liver) ; Kohnschan (sontheast Alaska); Kulanapan (Mendo(cino. Cal.) ; Kısian (Oregon): Latnamian (Oregon); Mariposan (California); Moquelumman (Calaveras Comoty, ('al.) : Muskhogean (Sonthern States) ; Natrhesan (Mississippi) ; Palaihnihan (I't River, (California); Piman (Gila River, Arizona); Pujnnan (Sarramento River, California); Quoratean (Sahom liver, Califonia); Saliman (Monterey Comnty, ('al.); Salishan (Washington and British Colmbia) ; Sastean (Northern Cali fornia) ; Shahaptian (Frasr River); Shoshonean (lnterior Basin) ; Sionan (Missouri River) ; Skittagetan (Qucen Charlotte Islands): Takilman (Rogue River); 'Tañoan (Rio Grande River): 'Timmonanan (Florida): Tonikan (Red River, Arkansas); Tonkawan (Texas); Uchean (Georgia); Waiilatpuan (Wallawalla River); Wakashan (Vonconver lnland): Washoan (Carson Valler, California); Weitserkan (Klamath River): Wishoskan (Eel River, Oregon); Yakonan (lmpona River, Califomia); Yanan (Pitt River, California); Ynkian (Romul Valley, California); Ymman (Colorado River, California); Zunian (New Mexico).

Finns.-Dr. Theodor Koppen (Archir $!$ I Athropr. Xx) defends the unity of the Fimic and the Aryan linguistic stork, allewing the annrestral home to have bern on the midde Volga. The sejaration into eastern and wostern branehes took phace on the river loon, at which

The pulbleation of Middendort"s sixtla volme on the Pernvian langhages completes a most Valuable series. Thr languages ronsidered are the Kechua, the Aymara, and the ('himu (Nurlik or Vomea), with an appembix on the Chibotha. The work was issued by hrockhaus, Jeipzig. (Brinton, Nrience, xx, 6.)

In Philadelphia has bern established the de laiurel fond for the study of the graphio system of the ancient Mayas, by collerting vorab). nlaries of the language and its dialeds and photographes of the ruins and inseriptions and manuseripts. Dr. IV. T. Cresson has chargeof the explorations.
H. Mis. 111 - $: 1$

V. TFCHNOLOGY.

A remarkable contribution to the matural history of asthetics, which the anthor of this summary has elsewhere called asthetology, is the address of Willian H. Holmes, as vice president, before Sertion II of the American Association. The science of the beautifnl was examined in order to study the phenomena of the beantiful as the botanist studies the rad flomers of the field.
"The science of the beantiful monst deal with actual phemomena; with facts as hard, with principles as tixed, and laws as inflexible, as do the sricnees of biology and physies."

The anthor takes up the subject firom the phenomenal sirle and ignores the purely metaphysical element altogether, which is alleged to have worru abont it a clense and very subtle web of transcendental fancy!

The author"s appreciation of the amoment of time and energy given to this field of human artivity is charming. "WTe totally fail to realize low much time and thonght are given to aesthetic considerations, and what a lare placo they really fill in the thonghts and activities of the world. This wonld come home to us if by some sudden change in the constitntion of things all that is asthetic should be rndely torn from us and lanished from the world. - . To make this clear, let us suppose that some dire disease should destroy our perception of the beantiful, a world of useless things would encumber our existence. The fine artswould fall into disuse. Painting, sculpture, architecture, poetry, music, romance, the drama, and landscape gardeming would disappear utterly. No picture would grace the wall of gallery or dwelling. Temples and halls would be without statury and books withont illustrations. Architerture would degenerate into the merest honse building, without projections, moldings, earving, painting, frescoes, hangings, or carpeting. Churehes would be but the plainest barns without archways or colmms, or steeples, or towers, or staned glass; the organ and the choir and the singing of hymms as thongh they had never been. All artists, sculptors, architects, poets, authors, composers, and dramatists, and all the multitude that depend upon them, decorators, engravers, carvers, musicians, actors, book-makers, manufacturers of all that pertains to the polite arts, and all merhants who deal in esthetic things would turn to other callings. The ships and railways that transport the products of arsthetic industry, silks and rugs, and laces, and ornamental goods, and furniture, and tiles, and paints, and dyes, and porcelains, and brasses, would cease to plow the sea and girdle the land. The range of hman livelihood wonld be reduced to a dangerous degree, and existence-a burden withoutart, would beoverwhehned with poverty and distress. Now, there was a time when this picture was a true one, and men had no sreat resmlts in asthetic art to show. From then to our day, Mr. Holmes declares to be a question of evolution.

By passing up through the sabe of enlture states from savagory to culightenmont. We see that each surcembing porion has a largor share of art and a correspondingly larger share of the withetie. eath stage being prophetic of the succedins stage. The last stage, that mpon which the mations of the world are now entering-ther onlightmedis also necessarily prophetie of a still mone adrameed stage: and byy adding to the number of asthetio gromps those yet to be concerived and prolonging the expanding lines of earh gromp indefintely, we are led to comprehend the true relations of the present to the marvellous future, and to form some notion of the magnifiecht smatal of the esthetic that future gencrations will be privileged to enjog.

V1. ARCH.EOLOCIV.
In the Procedingse of the Royal Ceomfrohical Noridy (Lond., 1892, xiv, $27.3-309$) and in other journals will be found ant aceomnt of the marvellons ruins of Mashona-land, in the wateroshed of sonth Atrica, between 180 and 200 sonth, by Theodore Bemt, the explomer. There are many ruins on the Limpopo and elsewhere in thas area, hut the author confines himsell to those on the (iceat Zimbabwe, sitnated 200 16^{\prime} South, and $31^{\circ} 16^{\prime}$ East. They eover a Vast area and comsint of at large circular building with a network of smaller buildings extruding in the valley below, and a labyenthine fortress on the hill, about 400 feet above, maturally pootected by huge granite bowhlers, and by a precipice rmaming romd a considerable portion of it. The lower buidding is constructed of small blocks of granite broken with the hammer into uniform size and laid up withont mortan' The encireling watl is 30 feet high in pats and 16 to 17 fret thick. There is a long mamow passage between walls coudncting to what 11r. Bent calls othe sacred inclosure" in which are standing two towers, one of them $3:$ feet high, a womdeftul structure of perfect symmetry, and with courses of mvarying regulanity.

The principal jart of Mr. Bent's work and his most interesting discoveries tenk place on the hill fortress, the babyinthine nature of which is explained in the phans. The appoade is protected at every tum with traverses and ambusearles, and fhen commenees at the botfom of the precipice a thight of stepsis leating mp. In fact, the redumban'y of fortitieation all ore this mombtalle the useless mepetion of walls over a preciphee itself inareessible, the care with which avery hole in the bowhers through which an arow ronld pass is rlosed, prove that the ocrapants were in "onstant dread of attack. I'ottery and iron ofjects oremered in abmolance, but the most interesting find wis commered with the manufacture of gold, ermeibles, boken quatt, and fmonees.

These ruins are in no way commested with the dfrionn late. They formed a garrison forgold workers in antiquity, who came, doubtless from the Arabian peninsula, in the pre- Mohammedan period.

One of the results of the Congress of Archeologioal Societies, in
union with the London Society of Antiquaries, is the issue of an index of archeological papers, published in 1891. There is a list of 45 sorieties and joumals in all, and 33 pages of titles, succeeded by an alphabetic list of places, subjects, authors, and socioties with their publications. The secretary of this congress of societies is W. II. St. John Hope, Burleigh House, London.
M. A. C. C'latelier eontributes to La Reve Scientifique (xlex, 457461) a résume of prehistoric sturlies in North Africa. To the work of codification is added a bibliograply of 70 titles upon the same subject.
M. Zabmorski walls attention to the doubtful antiquity of the Canstadt skill. It was diseovered in 1700, hant, according to Dr. Hervé it was really seen first in the vitrine of the musema of Stuttgard a hundred years after the digging from which it is smposed to have come. Dr. Brinton also reverts to the same question in Science. Indeed, the year 1892 marks an epoch of decline in the belief that man has had an exceedingly high antiquity in Europe or America. The result of such questioning.s will be a review of the grounds of belief, with a strengthening of the foundations of knowledge.

The article of Lonis Thenrean, in La Revue secientifique (L, 36t-369) on alimentation in India, calls esperial attention to the fact that it has been from time immemorial a comutry whose food was essentially reqetal, whder the influence of an idea on which is fonnded a philosophic and religions system, belief in metempsychosis or migration of the soul. About fifty titles bearing on the subject are quoted, adding great value to the article.

An epoch-making investigation for archeolgoists was that of William H. Holmes upon anclent quarries in the United States. The result of the first investigation into the puarry site on Piney Branch near Washington, is givenin the American Anthropologist, (HI, 1-26). 1)r. Brinton calls attention sharply to this work in a short paragraph on 'quarry subjects,' in Srience (November 4, 1892). Since then a controversy, characterized by no little acrimony, surang up between what might be termed the ohd school and the new sehool on this sulbect. Two distinct questions are involved in the controversy, namely. whether the objects are palaolithic implements or the rejected pisces of the aboriginal fuaryman; and, secondly, whether they are geologically sitnated to deunte rery great antiquity.

The trusters of the lhitish Museum printed an album containing autotype facsiniles of the Telel-Amarna tablets. A review of this work will be fonud in Nuture, vol. xlvi, pages 49-52. During the summer of 1887 a woman belonging to the honsehold of one of the "antica" dealers, who live at or near Tel-el-Amarna in Upper Egypt, set out to follow her usual arocation of digging in the sand and loose earth at the foot of the hills for small antiquities. The exart details of her search will never be known, but it is certan that in a small chamber at no great depth below the surface she fom a momber of clay
tablets. the bike of which hat never hefore heal dug up we Eght. There were orer there hamberd of them, of whath momber the british

 histories of two or three of the ervatest mations of antignity at a coritieal period. They ware all written between the gans 1.500 and 14.50
 whitten from Kings of Balyyonia, Mashiyah, Mitana, l’ornicia, Syia, and l'alestine to Amemophis III, and to his som, Amenophis IV. Mang of them are also of a personal or friate natme

Alfed P. Mandslay, who spent seven winters 10 (entral America
 coming of a work on this smbjert. tha gist of whiah is wiven in Statmer of April 29. A map on page G1s bays down graphically the limits of Naya inscripetions.

The orientation of buidings is comsidered by ftr. brinton m serence
 trast with that of the cormers as in Mesopentamia amd Kani. It Zime babwe areries of ormaments on the walls of the ereat temple are so disposed that one gromp will rereive theetly the suln's lays at his rising and another at his setting at the period of the winter solstioe, when these points in that latitude were respectively ens south of ast amblers, while a thind series of ormaments faced the fall midelay sum.

Prof. W. (). Itwater, in the Formm for Jnur, disensses the seientifir sturly of food as one of the most important poblems in anthopologys. At present the poorer classes the world aver ane samoty monrished and the majority of mankind live on a low motritive plante. The eomEng math will not biy as expensive foods herallse some of the least expensive are most motritive amd palatable. Ila will value foods for
 required to keeje a man in his best estate. There will be a rewhotion in eonking, which is both wastefol and primitive.

 by a theory of haman advancembat not only wot gememally reeognized lut mot hitherto formally emmeiated. Sombe mat fime it paraloxioal,
 of the food supply on an atificial as distinguished from a hatmal hasis. The orgalazation of food porision on the attiticial hasis has heen combined with that of defense, aml rommmaties in which these combined orwanizations hate been finlly raborated haverextended their

true features of the advanced communities of the New World. to analyse their social structure and economy, to measure by some definite standard the degree of progress they had attained, and to trace their history, so far as it can be recovered, distinguishing what can fairly be accepted as fact, from what can be shown with reasonable erertainty to be fabulous."

Vil. Nofiolagy.

The (marterly , Tourmal of Etomomics, published for Harvarl Cniversity, in Boston, is valuable to the student not only for the papers and original investigations which it reports, but for its biblography of economics. The titles are classified muder (1) general works, theory, and its history ; (2) prodnction, exchange, and transportation: (3) social questions, labor, and capital (4) land; (5) popnlation, emigration, and colonies; (6) intemational trade and cnstoms tariffs; (7) finance and taxation; (8) banking, "umency, credit, and prices; (9) legislation; (10) ecomomic history and description; (11) statistics; (1ٌ2) mot classified.

Native fairs in Alaska were reported to the Numismatic and Antiquarian Society of Philarlelphia by Lient. Gorgas, U.S. Nayy. Beginning at the south a fair is held in June at Port Clarenee, just south of the marowest part of the straits. It is mumerously attended by Chukchis of Siberia, the natives of St. Lawrence Island, south of the straits, and by others from ('ape Prinee of Wales on the Ameridan mainland. The second fan is held at Ilotham inlet, on the north shore of Kotzebue Somml. It lasts through July and August, and is atteuded by about $1, \% 00$ people, some Siberians, but mostly matives, esperially from Pont Hope, these being the prineipal traders of the eonst.

A third fair is at loint Lay, and a fourth at Camden Bay, not far from the mouth of Markenzie River.

The trading boats makr a regular round of thesp fans, earying articles in demasm from one to another; so that some from the far interior of dsia will in a few years be transported along the shores of the Areter Saland southerly indefinitely into the center of the continent. (Brinton, Ncience, xIX., :287.)
(ialton's work on finger prints is thus brielly reviewed in the .fournal of the Authromologieal Institute:

The anthor considers the subeet under the following divisions: (1) hutroductory. (2) The previous employment of finger prints among varions nations, which has been almost wholly confined to making danks, withont paying any regard to the delicate lineations with which this hook atone is concerned. (3) Varions methods of making good prints from the fingers are described at length, especially those used at Mr. (falton's authropometrie laboratory at Sonth Kensington. (f) The character and purpose of the tidges whose lineations appear in the finger print. (5) The varions patterns formed ly the lineations. (6) The question of persisteuce; whether the patterns tre so durable as to afford a sure basis for identifieation. (7) An attempt to appraise the cevilential value of finger prints by the law of probability: (8) The frequeney with which varions kinds of patterns appear on the differ-
ent digits of the samm person, sererally and in (annertion. ()) Mrethons of Index-

 sidered ans ditterent gromera or specian.
dinstane le Bon having allimed that highor tame ran mot impose theil divilization upon lower baters, matertakes, in an address before

 1892, Ont. 1) to show that to "hange tha civilization of a peond it is noressary to change them sonls (ames). ('enturios and mot conmests (anl aceomplish a task like that. The empine of the womla has ahmatis belonged to the comvined. whose grat foner consists in thair sharery to an illea, aml in therir complate incapacity to reflect and to reasom. Withont these, prithas, no civilization womld have been lorn and humanity would not have arisen above bamarism.

Lombroso and Ferrero disenss, in atork entitled " hat Domat delinquente." the subject of the rmminality of women. To their view the crimes of men and those of women are two quite different malaties, having certan symptoms in common lom many more in which they differ widely. Women commit fewer erimes than men, all statistics are agreed on that. N1. Gmillat estimates the eriminality of men to be six times wreater than that of women amb, arrording to poetelet and Tande, the tendency to crime is five on six times more developed in mell.

Leaving out of vixw difference in lexinlation as to the sexer, Ml. Proat attributes the feredom of women to theiresater religions spinit. the indoor life, thr smalla momber of amplogments whish provoke to crime. like forgery and defalcation. Women go abont less, and drink less, than men.

 tion produces rrime in men. Ferrem sums mpthe eanses of woman's smaller suseeptibility to rime as follows:
(1) W:murn are physically wakre and mome timid.
(2) Feehner sexuality, strong maternits and pits.
(3) The intelligene of woman is less.
 Sore. Roy. des Antig. du Nord a stury upon entting implements in the
 rim peminsula were inhabited fist. Tha atgoment is based upon the
 nes," holds to the oninion, howrem, that abont 1200 13. ('. The Lisuri ans came smothwart, tinding rentral France and Spain ocropuad hy lberians who were driven westwad hy (belts.

pologische (iesellschaft the subject of ancient commeree is discussed by G. Schweinfurth and Merensky, the former dealing with the intluence of western Asia and India upon Egypt, the latter with India as affecting even the industries of Central Afriea.

The archeologists are also able to bring some noteworthy contribntions to this enquiry. In America certain types of basketry and pottery are known to have heen peculiar to certain linguistic stocks. But examples of these are fonm elsewhere in ever-decreasing numbers as they rlepart fiom this somre.

VIII.-RELIGION AND FOLK-LORE.

On the l6th of April there was publicly opened in the Musem of Archaeology of the University of Pennsylvania a loan collection of objects used in worship. It was divided into sections, that devoted to the religions of Egypt being in charge of Mrs. Cornelins Stevenson, that of India was armoged by Suamee Bhaskara Nand Saraswatee; that of China by Chinese scholars, and so on, each section being assigned to some one specially fitted to the task.*

The American Folk-lore Socjety was organized in December, 1892, for the ensning year, as follows:
President, Horatio Hale.
Vice l'residents, Alée Fortier and D. P. Penhallow.
Combeil, Franz Boas, H. Carrington Bolton, I. G. Brinton, A. F. Chamberlain, J. Owen Dorser, Alice C. Fleteher, George Birl Grimell, Otis T. Mason, Frederiek W. l'ntnam.

Necretaries, W. W. Newell, J. Walter Fewkes.
Treasurer, John 1I. Hinten.
Curator, Stewart Culin.
The organ of this society is the Journal of Amerian Folk-lore, issued quarterly. In atdition to the miginal papers and proceedings of the society and its branches contained in this jommal, there is a résumé of folk-lore thronghout the world, and an extended bibliography, which is especially good in periodical literature.

The fourth anmual meeting of the American Folk-lore Society was held at the Thoruवike Hotel, Boston, Mass., on Derember 28, and at the Peabody Masemn of American Ethnology and Archeology, Camlnidge, Mass., on December 29, Prof. Edward s. Morse presiding. The following papers were read :

[^70][^71]> Blackfoot mythology, J. Maclean.
> The Algic Manabozho. J. ('. Mamilton.
> Medicine men and crrtain Indian myths, Henry Mott.
> Dortrine of souls among the Chinook, Dr. Framz Boas.
> Christ in folklore, A. F'. Chamberlain.
> Animal and plant weather proverbs, Fimny D. lergen.
> ('nstons and traditions of the Ainos of dapan, l). I'. I'enhallow.

The permanent results of the Folk-lore Congress held in London in 1801 are given to the public in a volume of 4 法 pages, entitled "Papers and Tramsantions." Thematerial is arranged under the form sectionscalled Folk Tale; Mythology; Custom and Institution; (xeneral Theory and Classitication. The president of the rongress, Mr'. Andrew Lang, and the vice presidents of the sections delivered addresses, and papers of great merit were read. The most important dismssion was that concerning the independent wigin of folk ineidents. Whaler the title "Bibleïthèque du Garabas," David Nutt has issued seven volumes which are of especial delight to folk-lorists, to wit: 'rupid and Psyche, by William Adlington: Euterpe, the Second Book of Herodotns, Englished by B. R., 15st; The Fables of Bidpai, or the Morall Philosophie of Doni, Englished out of Italian by Thomas North, 1.rio, now edited by゙ Joseph dacolus; The Fables σ Esopas pronted by W. Caxtou in 148t, edited by J. Jacols: The A:us of Cains Valerins Catullus, translated, etr., by Grant Allen; Plntarel's Romane Questions, translated in 1603 by Philemon Holland.

Phatareh's Romane Questions, tramstated in 160:3, by I'hilemon Wolland. Mr. A.. of Trinity College, Cambridge, has again been edited by Mr. Jevons, of the Chiversity of lourhan, with additional dissertations om Italian cults, myths, taboos, man-worship, Aryan mariage, sympathotic magie, and the eating of heans. Platareh's Romano Questions is said to be "the earliest formal treatise on the sulyert of folk-lore." Platarch was the first "to make a rollection amd selection of dates, and to give them a place of their own in literatmere" Plutareh's answers, howerre, are not in the monlern vein, fir they are framed on the assumption ${ }^{6}$ that the enstoms that they are intemded to explain were consefously and deliberately institnted by men who possessed at least as murla "olture and wisedm as Plutareln himself."

The "urrent literatme on the seientife study of relierions is to be followed uje in thr Amales da Mase Gimimet, and esperially in the Revor de lollistoire des Religions, published on the (inimet foundation mader the direction of M . Jeall de Raville, with the eooperation of Darth, Leclera, Decharme. Hihd, Lataye, Maspero, Renan, and Tiele.

The volume of La Revae for the rear 1892 contains the following original papers:

Le dien romain Jams. J. S. speyrr.
Les hymmes du Rig Voda, sont-ils des priores. Panl Regnand.
Butletin de la Keligion dnive.
Le dénombrement des sectes mohametanes. 1. (ioldziher.
Bulletin arehénlogique de la Religion Romaine, Aug. Aetollent.

Contes Roudhiques: 1. La Légende de Cąkhupala e. La Légende de Mauldhakmulale. Valle e-l'onssin et Godefroy de Blomay.

Esquisse des huit sectes boulhistes de dipon, Gyau-neu (1289 13. C) trans. Alfred Millwht.

Ernest Renan, Albert Réville. Bulletin archéologique de la Religion Greeque. Pierre Paris.

Garci Ferrans de Terena et le jnif liana. Scènes de la vie religiense en Espagne a la fin du XIV siocle. Lacien bollfus.

Fragments d'óvangile et d'aporalypses déconverts en Egypte. Ad. Lods.
In eatrln momber is a review of books, a ehroniche of what is doing along the line of the seientific staly of religions, abstracts from periodical artieles and from the transactions of leamed societies, and a classified bibliography. For some reason the date of publication is omitted in every ease, which detracts much from the value of the book lists; but in the abstracts from periodicals an indispensable list of journals and their contents will be fommd.

BIBLIOGRAPIY OF ANTHROPOLOGY, 1892.

Abвотt, C. C. Palicolithic man in North America. Seience, N. Y., xx, 270.
Recent archaeologieal explorations in the valley of the Delaware. Bost., Ginn, 11+ 30 pp . 1ll. Svo. [ITniv. l’a. Ser, in philol., lit., and areheol., II, No. 1.]
Abercromby, J. Samoan tales. Folk-1,ore, Loud., inf, 158-165.
Apans, Oscar Fay. The presumption of sex. Boston.
Alemannia, Bonn. Vol. xx. [Bevoted to Folk-Lare.]
Alexanier, W. 1). Brief history of the Hawaian people. N. Y., Am. Bk. Co. 341 pp. 8 ro.
AdLison, Mrs.S.S. Aecount of the Simielkancen Indians of British Commbia. J. Antrop. Inst., Lond., xixi, 307-31\%.

Allen, G. A. Manners and chstoms of the Mohaves. Wash., 1891 [1892]. Gov't 1'rint. [From smithsom. Rep. 1890.] 2 pr. 8vo.
Alythla, Gobletir. Lectures on the growth of the idea of God as illmstrated by anthropology and history. N. Y., Seribmers. Hibhert Leetures for 1891. 8vo.
——L'influenco des astres dans la destince des monts. Lth chapitre d'astrologie primitive. Resume. lbuff. Soc. naththop. de Prax., $1891-2 . x, 1892.171$.
American anthropologist. Organ of the Anthropological Soriety of Washington. Vol. v. Judd \& Detweiler.
American Antiquarian. Bimonthly. Menton, Ill. Vol. xiv.
American Autiquarian Society, Procechings of the. Worcester, Mass. Vol. Vint.
Americau Institute (The) of ('ivies. WV. E. Sheldm, lioston. Sec. founded $188{ }^{\circ} \mathrm{F}$.
American Jomrnal of Archaeology. Boston, Gim it Co. Yol. vin.
American Journal of Psychology. Woreester, Mass., 1892. Clark Iniv. Yol. v.
Am. Tr-Quell. Lunden in Holstein. Vol. nif in Monatschrift frir Yolkkunde.
Ammon, (). La selection naturelle chez l'homme. Authropologie, Par., 1892, in, 720-736.
Andirson, Elhzabetil (x. Sex im elucation. Brit. M. J., Lome., i, 1048.
Andrassex, W. F. Minzen mul andere Tauschmittel in Africa. Das Ausland, Stuttgart, 21-23; 41-46; 6河.5-9.
Annales de la Société d'archéologie de lBrnxelles. Tol.vi.

Anmal archerological report and（＇anadian Institnte（session 189）1）．Being an appendix to the report of the minister ot edneation．（ontario．＇Toronto，18．t2． Warwiek．
L＇Antropologie．Paris．Vol．111．Monthly

Areharolowical and ethmological papers of the lealondy Mnsemm，Cambridge．Mas，
Arehiv fior Anthropologie，Ethnolomie umd Itresehichte．Bramnshweig，Vieweg． Vol．xxi，Parts f－hif，with（＇orvespondenz blatt．Vol．Xxir
Arehis fiar slavisele Philohogie．Berlin．Vol．Xr．
Arehives deloanthropologice（rminelle．Paris，vie．
Arehivio per l＇antropologia，etnologia p pientogia romparata．Orqan of sorfeta italiana di antropologiat e etnologia．Florence，Vol．xxin．
Arehivio per lo studio delle tradizioni penpolari．I＇alermo．Vol．st．
 sequences．Science，N．Y．．XX，211－21？．
 Ann．med．－psych．，Par．，7．s．，xソ1，42！－1t1．
ACDDEAT，A．De la combition des fons ot dew potlignos entroit romain．Areh．

ACOSAND，DAs．Vol．iAv．
Babss，C＇，and F．Horesty．I trayers la Perse méridionate．Le Tour du Monte

Baden－Powell，B．F゙．ふ．lasavige islen and settled lamds：Malasia，fustralasia， amd Poly̧nesia，188か－1891．Lamel．，Bentley．
Banfor－Powell，B．H．＇The haml systems of British lumia．（oxford，（＇barembon

Banfy，E．H．S．Psychologieal literature．Taste and smell．Am．J．Paychol．，
 107.

Babrorr，Hevry．Stome imploments fom the Malay peninsuba in lett Rivers Mnsenm．Archaologia（）xoniensis．
Hatowis，James Malik．Ilambook of Psechology：Fexling and will．N．l．，Jolt．

 $97 \because$.
 W＇jen，XX11，57－67．
 Am．Ethnol．ame Sreharol．．losion，Im．
 $30 こ-301$.

 f．Antlorop．，Berl．，215．

 ххเ斤，98－10．1．

Bartels. Notiz über emen neuen Fall von Schwanzbildnng heim Menschan, Verhandl l. Berl. Gesellseh. f. Anthrop., 1891, xxir, 725.
Bassett, Pletchers. Sea phantoms. Chicago, Morvill \& Co.50ápp.
Bastian, A. ldeale Welten nach manographischen Provinzen in Whrl und BildEthologische Zeit- und Strentfragen nach Gesphtspunkten der Indiselien Väl. kerkunde. Berlin, Felber. 3 Bande, Qe Tafeln, fol.
Batcheloh, Rev. J. The Amo of Japan. N. Y.and Clue., Revell. Vi-336 ple. Ill. 12mo.
Bates, Henry Whater. The hatmralist on the river Amazons. [El, by Edward

Bearchamp, WY. M. Iroquois notes. J. Am. Folk-Lore, Bost. and N. Y., v, 2es-209.
—— The early rehgion of the Irognois. Am. Antignarian; Rhymes on old powder horus. J. Am. Folk-Lore, Bost., V, 28.
 sisch und tiirkisch Armenien. Ztschr. f. Ethnol., Berl., xxir゙, 122-152.
Benedikt, M., ot H. Benedikt. Eturle anthropologique des cerveanx et des rrânes de la collection Hoffinan. Areh. ele l'anthrop. crim. P'ar., va, 237-263, 1 1,l. : also Mitth. 1l. anthrop. Grestllsch. in Wien, xxif, 101-105.
—_Les suggestions riminelles et la responsabilité pénale. Arch. de l'mutbrop.

Bent, J. Theobore. The rnins of Mashomaland. l'roc. Roy. Geog. Soc. Lond., xiv, 273-298. Ill. ; J. Anthop. lust., Xxil. 121-136.
—— The rnined cities ol Maslonaland, etc.; with a chapter on the orientation and mensuration of the temples, by R. M. W. Swan. N. Y.. Longmans di Co. Ill.: pl. Maps. 8vo.
Berard, A. Les hommos et les théories de l'anarchie. Areh. de l'antlirop. rrime, Par., if, 609-636).
Bergen, F. D. Jopular American phat mames. I. Am. Folk-Lore, host. and N. Y , Y, 89-106.
———some bits of plant-lore. J. Am. Folk-Lorr, Bost. aml N. Y.. ř, 19-22.
bergner, Repobpli. Zur Topographie mud Ethnologio siebeubiargens. Das Ausland. 325-328; 340-344; 358-363. (The peoples of Transylvania.)
Bernier, François. Travels in the Mognl Empire, A. D. 1656-1668. Westminster, 1891. Coustable \& C'o. H, 500 plP ; maps and ill. Revised and improved.

Berthelan, A. Tableau des mumces de l'iris lamain. Bull. Soc. d’antliop. de. Par., 1892, 4. s., If, 384-387.
Berteand, A. Conrs munidipal de sociologie. Mreh, de l’anthrop, crim., l'ar., vir, 6.)6-678.

Bemtany, F . T. Nohammendaism and other rolinions of Mediterranean combtris, etc. N. Y., Ward of Co. V-32g py. [The World's Religions.] 12mo.
Biflenstens, A. Die Greuzeu des lettischen Volkstammes und der lettischen sprache in der (iegenwart und im 13.0 ahrhumdert. St. Petersh., 1892, xvi, 548 ple; Atlas.
Bijdragen tot de Tanl-, Land en Volkenkmuld van Nederlandsch-Tndiz. By the Koninglijk lnstitunt vor de, etc. Hang. Vol. vil in current year.
 Stuttgart. 279 p$\}$.
Binet, Alfreb. Les altemations de la personalité. libo. suient. intoruat., l’aris, Germer-Balliare de. [Rev, in Nature, July 7.]
Binger, Copiltine. Du Niger an folfe de Gninée, ete. Paris, Hachette. 'ِ rols. 513 and 416 pp., ill. sud maps. Syo.
Mishop, Mrs. Isabelha bind. Jonrueys in Persia and kurdistan, ete. N. V., Putnam. 2v. Ill. ชvo.
Bhack, d. Whllam. Marylands attitude in the struggle for Canala. Johns 11. Univ. Stul, in hist. and polit. se., 10th ser., vif, 73 pll . Svo.

 Bolletino di paleontoloria italnama．vur．

 Hachette．：80 1r．；11aps；ills．

 s．，111，15－2l．（Discussion） $2 x$ ．
 19－3t；separate $1-18$ pup．

 Luipzig，Tenbner．fot plo．；plates．Ito．
BREW：TER，（．E．＇The symmetrical development of whr fomm women．I＇op．sie．

—— Further moters on the betoya dialects．l＇oe．Am．Dhil．Noc．，xNX，271－278．

 l＇owrll）．Am．Anthron．．W：ash．v，26：3－27．
—— Proposed classilication and matemational momenclature of the anthrophogie

－The question of the basques．frience，N．Y．，XX，bot．
 ソ，17T－1ヵ．）．

Bryce，J．The migrations of the races of men considered historically．Scot．Geog． Mag．，V111，401－f21．
Bulletin archéologique du comité des travanx historignes et scientifiques．Paris， Ministire de l＇instruption publiqne et des beanx－arts．
Bulletin de Folk－lore．Lifge．Premier spmestre．
Bulletin of the American Geographealsociety，New York．Quarterly．Vol．r－xxulf to 1891.
Bulletin do la suciote d＇anthropologie de Lyon．
Bulletin historique et philologique du comité des travanx historiques et semoti－ fiques．I＇aris，Ministere de l＇instruction publipue et des beaux－arts．
Bulletin de la Soeiété inpóriale des naturalistes de Mosson．
Buncett，心．M．The nodern apothesis wif nature．Am．Antlrop．，Wash．，V， $247-262$.
Buschanc（ieonti．Die tertiaren Irimaten mad der fossile Mensch Siadamerikas． las Ansland，心̌tuttgart，1892，Lxソ，698－700．
——Review of French anthropologral literature．Archiv f．Anthrop．，Bramuch．， גズ，471－502．
Caixes，Hall．＇iho little Manx mation．N．Y．；lovell．na， 159 pp ． 12 mo
Calaliria（Monteleonc）（Lat）．Vol．V．［Devoted ta Folk－Lore．］

Camplbele，Cu．WY．A jommey throngh Nuth Korea，ete．Pror．Roy．（ieog．Boc．， Lond．，141－160．
Canpbell，J．Siberian mscriptions．Tr．Canad．Inst．，Toronto，if， $261-283$.
Capus，（xbldadme．A travers le royamme de Tamorlan（Asie centrate）．Paris， lemmyer．xit＋ 134 ph．；maps，ills．Sro．
Calider， C ．Des rapports de la taille ave le ben－itre；étude faite dans l’arron－

Cahimas，M．Di aheme anomalie scheletriche mei eriminali．（fior．d．r．Aecad．di med．di Torino，3．s．，xl，549－563．

－Nomments primetifs des iles Baleares．Tonlonse． $\mathrm{x}+80 \mathrm{pr}$ ．；plates．ito．
Cattell，I．Mck．Psychological literature．Association，reaction．Am．I．l＇sy－ chol．，Worcester，IN，460－470．
Cesky Lid．（The Tzerin people．）Devoted to the stady of the Tzeeh perple in Bohemia I＇ragne，simácek．
CEvi，A．J．Astronomic and Zeitreehmang der Perser．Das Auslamd，Stutterart， 1892，LХソ，5：31－538．
 v，116－119．［Experiments 111 onomatopreia］．
 81 ll．

A Mississaga legent of Nan mhoju．J．Am．Fonk－Lore，lbost．and N．J．．1892， ข． 291.

 Co． 188 pp．，maps aml pls． $12 m$ ．
（Hapin，H．1）．＇The survival of the mitit．Popl．Ne．Month．，N．Y．，Xle，182－187．
Chamriñ et（iley．We l＇hérédité．Compt，rend．soc．de lohol．，Par．，9．s．，1v， 818.
CHAUVIN（Jeame）．Eturle historique sur les professions accessibles ans fommes， ete．Paris，1s $9:$ ，Giard et Briere， 996 p．8vo．
Chind，Charirs M．statistues of uneonscious eerebration．Am．J．Jsychol．，Wor－ cester，v，2．19－259．
Cholet，Compte de．Armeme，Kmelistan ot Mesopotamic．Paris，lom \＆Co． 394 pl．Svo．Maps and ill．

 Ker., I.ond, N. Y.), 1. (1, 205-218.
 11 Nature.]

 teres anthronologiques. Anthropologier, Par., an, 1:3-i.
 l'mojet dentente internationale ponr areter me conseil de rivision f'aris.
 1-17.

Cosway, II. M. 'The dawn ot'art in the anciant world. Loml.
Cook. danes. Thu vosages of disomery of Capt. dames (ook, +te. N. Y.. Ward A ('u. Zvols. 1176 pp.; mips: ill. Rvo.
 semimonthly od. by fernando Fermari leatez.

Cortagie, 14. Lhe lointhene des professions sur la riminalite. Areh. de lan-

 mont. Del. Cambridge, Peahorly Mas. Papers i. No. I.

The antemne and sting of Yikileaty as components in Maya may signs. Sni-

 N. Y., V. 19-п̈t.
 Am, Anthrope, H:aslı, v, 28:

The Villard-Bameling sonth Ameritan expedition. Am. Inthrop., Wiakh., V, 27:3-276.
 65; 275; 115; 3 pl.

 Loud., XLVı, 280-'283.

Dawson, sir J. W. Prehistoric times in Egypt and Palestine. N. Am. Rev., New York, CLIV, 672-683.
Deans. J. Legend of the fin-back whale erest of the Haidas. Queen Charlotets Island, B. C. J. Am. Folk-Lore, Bost. and N. Y., v, 43-47.
Debienisf, C. Valem de la fossette occipitale moyenne en anthropologie. Compt, rend. Soc. ste biol. Par., 9. s., 1V, 787-792.
IJECROW (G.) Folk-Love from Mainc. J. Am. Folk-Lore, Bost. and N. Y., 189\%, v, $318-320$.
 Londres (Hérault). Anthroprogie, l'ar.. 111, 317-33\%.
Delayatio, L. La Rossie. Géographie, ethnologie, historigne. Paris, Laronsse. [Rer. in Acad., I ond., Jan. 28, 1893,]. 77.]
De Monthlet, A. Exohation de la hache en hronze en Italie. Rev. mens. de l'Eeole d'anthrop. de Par., if, 313-329.
Deschambs. E. An pays des Veddas. Paris. Aor. édit. scient. 492 pp ., ill., ch.
I'Estray, M. Le bétrl on siri chez les peuples de l'Insulinde. Anthropologie, Par., 111, 193-200.
Dialect notes. Boston. Part v.
Distant, W. L. A naturalist in the Transvaal. Lond., R. H. Porter. x $1+276$ ple, col'd pl., and ills.
Dixon, W. A. The morbid proclivities and retrogressive tendencies in the offspring of mulattoes. Med. News, Phila., lxi, 180-18\%.
Donalinon, Henry A. The extent of the vismal area of the cortex in man. as Neduced from the study of Laura Pridgman's lorain. Am. J. of Psychol., iv, $50: 3-518$, ill., alnd bibliog.

- Anthropological literature. The nervoms system. Am. J. Psychol., Worcester, 15. 451-460.
Donovan, J. The festal origin of hmman speeh. Mind, Lomd, and Edinb., in. s., 1, 325-339.
Dorsey. J. Owfor. Naltunno Thme measmres. Science, N. Y., xx, 194.
——_Nanibozhn in Sioman mythology. J. Am. Fork-Lore, Bost. and N. Y., Isar, V, 203-304.
Dot glats (R. K.) The sorial and religions ideas of the Chinese, as illustrated in the meographic characters of the language. J. Anthrop. Inst., Loud., 1892-3, xint. 159-173.
Oragomano, M. Slavonie folk-tales abont the sacrifice of one's own children. [Transl. by Oliver Wardrop.] .I. Anthrop. Inst., Loud., Xxi, 456-469.
Du Pasquter, (... The point de la physiologie du langage. Bull. Soc. d'anthop. de l'ar., 1891, 4. s.. $1,4 \times 3-502$.
1)Cpont, Mantri De lorganisation politique et sociale du penple Anmamite. Bull. Soc. de grog. comm. dn Havere, pp. 9t-114.
Duvale, J. HUNTER. The stone, bronze, and iron ages. I popmlar treatise on early archarology. London, sommenschein. 296 ply. 8 ro.
Emblemt, E. G. Customs and smperstitions of New fininea natives. Proc. and Tr. Qucensland Br. Roy. Geog. Sor. Australas., Brisbane, 1891-92, vif, 9-23.
EnWAins, [Miss] A. B. Pharaohs, Fellahs, and Explorers. Lond., Osgood, \& Co., $325 \mathrm{pp} . ;$ ill.
Eells, M. Twins among the Indians of Puget Sound. Science, N. Y: Xx, 19\%.
Egypt Liploration Fund. Fonnded in 1883. Sce. W. C. Winsor. Boston, Mass.
Ehrbach, Emenhamb Zr'. Strom moll Kistgebiete des Orinoco. Leipzig, 1892; ill.
Elifs (A. B.) Marriage and kinshipamong the ancient laraelites. Pop. Sci. Month.. N. Y., 1892-8, X1и1, 325-337.

Ely, Talfourd. Olympos. Tales of the gods of Greece and Rome. iv. Y., 1891: Putnam's Sons. 6 plates: 47 ill, 12mo.

FErast，A．Noter on some stone－yokes from Mexico．Internat．Wreh．f．Ethog． Leiden． 1 ， $71-76,1 \mathrm{\mu}$.

 343． 1 pl ．
 Longmans，バ +366 1 plo．；ill．
 Fentia，Helsingfors．Vol． $5,2 \begin{aligned} & \text { 2．} \\ & \text { ．［Jomrnal deroted especially to Finnland．］}\end{aligned}$
 2 diag．8wo．
Fewkes，．I．Walter．A jemrnal of American ethology and ardaology．Boston， Houghton \＆ c $^{\circ}$ o．Vol．ir
——A few smmer cerpmonials at the＇Tusayan pueblon．I．Am．Ethmol．and Archaol．，Bost．，II，1－159， 1 11．
——A repert on the present condition of a rinin in Arizona fallend（＇asal（iramde．
－I．Am．Ethnol，anil Archicol．，Bost．，11，17：1－193，2 2 I．
—— The ceremonial circuit anong the village Indians of Northeastem Arizona． J．Am，Folk－Lore，Bowt．and N Y＇．1，33－42．
\longrightarrow and J．Ci．Owexs．The Latici－konta，a Tnsayan dance．Am．Anthrop．．Wash．， r，105－129， 3 pl ．
——and A．M．Stepmen．The Na－ír－nai－ya，a Tusayan initiation eremomy．．J． Am．Folk－Lore，Bost．and N．Y．，V，18：9－217．

The mam－zraíti，a Tusayan ceremony．Am．Antlornp．，Washı，b．217－ $245,5 \mathrm{pl}$ ．
Fiske，W．M．The regulation of mariage hy law．N．Am．J．Homerop．，N．Y．．，an， v11，705－713．
Fifetcher，Alice（＇．Mae－thm－ska somlety of the Gmaha tribe．I．Am．Folk－Lore， Bost，and N．Y．，4，13n－14．
Folk－Lore，London，yol．Ait，Folk－Lore Bibliography．

Fowhy ，P．M．The fertility of hybrids．Med．News，Philat，hat，dis．
Fer risimi def fata．Developmente of statisties of religions．Translated by Aliere R．Jachsoni．Pub．All．Statist．Ass．，Bost．，11，s．，11，18－37．
 L＇11，233－238：263－288．
 nam 300 pp ；ill．Xro．
 Mitler．

——Hareditary genins；an inçury into its laws and ronsequences．N．S．，Mac－ millan，xxi－37！ 1 י10．Svo．

－．．．．Aheseription of the skeletons lound in Howe bill barmw．．J．Antrop．Inst．，

 Quellen dargestellt．\％tsohr．f．Ethnol．，licrl．，xive，1－18．
The Karankawa Indians，the coast people of Texas．Arehieol．and Dithon． papers，Peahorly Mus．，I．No．ロ2，C＇ambridge，Mass．

11．Mis． 114 ——： 2
—— Winke für das Studium der amerikanischen Sprachen.
Cor.-Bl. d. dentsch. Gesellsclı. f. Anthrop., ete., Miinehen, xxirf, 19-23.
Gavit, P. Position ethnologique des peuples de Ferghanah. Anthropologie, Par., 111, $5 \overline{5}-65$.
GELCI'H, E. Teborsicht der Entdeckmosreisen, welche monternommen wurden mom die Nordtestkiiste Amorikas zu erforschen. Mitheil. d. k. k. geog. Gesellseh. in Wien, xxxv, 261-371.
Geographic nomenclatme of the District of Colmmbia. A report. Am. Anthrop., Waslı. 1893, v1, 29-53.
Gengraphical Congress. Y. Cong. Internat. des sc. qéog. Berne, 10-14 Angust, 1801; Berur, Schnidt © ('o., Parts 1, 1F, 11. (l'art 11 is the Catalogue of the (ieog. Exposition.)
feographical Society of Califomia, San Francisco.
Germania, Viemma. Fol. NXXVil.
Ghacomini, C. Amotations sur l'anatomie du negre. Arch. ital. de biol., 'Turin, xvir, 337-371, 1 11.
(imbs, Morris. The effect of civilization on ome birds.
(iffcilenko, N. V. Anthropological sketoh of the Ossetes. Protok. zasaid. Russk. antrop. Obsh.. St. Petersh.. 111, 11-26.
Gifforid, J. Attakipas comntry. Science, New lork, 1892, xx, 37e.
Gigloli, Henlix 11. Modiglini's explorations in Central Smatra and Eugano. Nature, Lonl., xLv, 565̄-567.
Gubmenko, N. Y. Contributions to anthropology of the Cancasus: Tersko Cossacks. Protok, zasaid. Russk. antrop. Olssh., St. l'etersb., 111, 109-117.
Gibman, Beniamin Ivis. Report on an experimental test of musical expressiveness. Am. J. of 1'sychol., Worcester', 以, 558-576; v, 42-73.
Gharie, E. J. In savage Africa, etc. N. Y., Dellitt I'ub. Homse, v +247 pp. 8 ro. (dobus. Weekly illustrated, jourmal. Bramschweig, Vieweg. Volume 61.
Gomme, G. Lawrence. Ethology in folklore. N. Y., Appleton, vit +203 pp . (Mod. se. series, No. 4.)
Gore, J. 11. The Go Backs. J. Am. Folk-Lore, Bost. and N. Y., V., 107-109.
GhiAfr, H. llen norsk Races fysiske begeneration i Nordammrika. Norsk Mag. f. Lagevidensk., Christiania, 4. R.. Vil, 818-821.
Gremewons, J. M. Heights and weights of ehildren. Am. Pub. Health Ass. Rep. 18!1, Concord, 1892, x'vil, 199-204.
Gifffis, Wr. Elentt. Japan in history, folk-lore and art. Rost., Houghton \& C'o., VH +230 1pl?
Grinevisi, A. [on the physical development of children.] Odessa, E, I. Fesenko. 36 pl . 8vo.
GRinnell, G. bind. Blackfoot lorge takes. Thestory of a prairie people. New York, 1892 (1893), Srribner's Sons, 12 \& 310 111 12110.
—— Development of a lawner myth. I. Am. Folk-Lore, liost. aud M. Y., v, 127-134.
—— Early Rlackfoot history. Am. Antlıop., Wash., v̌, 153-164.
GRos, Jules. L'homme fossile. Paris, Flammarion. 256 pp. 16 mbo .
Gutch, Mrs. Einz. The Pied Piper of Hamelin. Folk-Lore, Loma, , in, 2n7-252.
Hara, A. Neerlandsch Nieuw Gninea en de Papoosche Eilanden. Historische Bijdrage, 1500-1883. Batavia, 1881. 2 vols. ["Most complete listory of New Guinea yet written." Proc. Roy. Geog. Soc.]
llaben, Kahl. Ueber die Musik ciniger Natmrölker (Australier, Melanesier, Polynesier). Hamburg. Jenaer Inangnral dissertation.
bann, C. Ans dem Kaukasus, Reisen und Studien. Leipzig, Dumeker © Co. 299 pp. 8ro. [Excellent ethosraphic study.]
——Die Vorstellng der Swaneten ron dem Lebrn nach denTorle. Das Ansland, 1×ソ, 571-573.
Makluyt society, London. Publications,

 of schleswig．］
 1．10fi－117．

 Just．，Lomsl．，X：1s，171）－476．

 Ansland．Stutterart，Le：92，LXV，833－83।．
Hermatis．D）．The integmandary grooves on the palm of the hand and solde of the font of the man and the antliopoid apes．J．Anat．and lhwiol．，Lomel．xxtu， $11 \because-13 \%$ ．

 Frriinz．J0．4，x7－12\％．
 Y．，Ap．1，189\％，未ג，1p．19月－19\％．

 ו．1x， 33.
 and N．Y．，V，113－120．

 239－2らヶ。

 ind palarolithic man；so－called palaolithic imphements of the Urerr Missis－

Holub，Emil．Ilhnstrierter Fiihrer durch die Siidafrikanische Ansstelmmg．I＇rag， Otto． 94 pro ；ill．
Ifoman， 1 ．Land liberation as a publichealthmeasure．Am．Pub，Ilealth Ass．Rep． 1891．Concord，1892，xソir，80－84．［Disenssion］， 219.
Hommel，Fritz．Die Astronomid der alten（＇haldiar．Das Amsland，1892，Stuttgart， vol．65，59－6．3，72－75，87－91，101－106．Contiuned frou 1891，No．12 and No．20．
Hore，E．C．T＇anganyika：Eheven yearin Central frica．Loml．，xit 306 pl ．Xro．
Horsforis，E．N．The ladfall of Leif Erikson，A．U．1000，ete．Boston，Damrell． 150 pp．，maps amd ills．4to．
Honsley，Victors．Thestracture and functions of the hranand spinal cord．Lond．， Grititin．［Rev．in Nature，NLvt，Oct．27，1×92．］
Horze，E．et L．Warnots．Existe－t－il type de＂rimimel anatomignemont deter－ mine？Arch．de l＇anthrop．crim．，Par．，Vn，547－ín：．
Hough，Watita．Catálogo de los objetos expuestos por la comision de los Fistados Unidos de Amórica en la Lxposi،保 histórico－americana de Madrid．Madrid．
Houminton．Bernari，Essay on the language of the kontherm Chins．Ramgoon． $\because+131+$ xxx pl．ふvo．
 d＇anthrop．de Par．，if，262－26＊．
Howitt，A．W．Anthropology in Anstralia．Proc．liny．Aore．Victoria，1890，Mel－

Hebbard，Gardner．The evolation of commere．Presidential address Nat． deog．Soc．Jinh．15，18！2．Nat．Geog．Mag．，Wash．，IV．［Cf．science，N．Y．， Ap．15．］
 Wallace in Natmre，Nav，p．mis．］
 28： 18.
La Theme，Everard F．British Gmama；the morthwest district．Proce Roy．Geog．

Index to archabologisal papers，published in 1891，moder the direction of the Con－ gress of Areharological societies in mism with the Society of Antignaries．See． W．11．St．John Hope，Burlington Homse，London W．
Indian Antiguary（The），Bombay，l＇art ccoxiv．
Inerrationales Srehiv fïr Ethographie．Leyden，Schmeltz．Dand v．
International（Gongress of Anthropology and Prehistorir Archioology，xi．session held
 mamm，502－512．
Iuternational Folk－1 ore Congress，18：I．Fapers and Transactions．Eatited by Joseph Jacobs and Alfied Nutt．Lond．，David Nutt，XXLX＋472 1p．
Iowa Academy of Scirnce，Des Moines．
Jacobsen，J．A．Der Koniyut－Bund der Bellar bola ludiamer．Das Auslaud，Stutt－ gart，1×ソ，4：37－441．
JAbRINZEFF，N．M．The momadic life of hatoms and its relation to history of human enlture．Frotok．zasaid．Russk．antrop．Obsh．，St．P＇etersh．，111，64－699．
 $18: 2.2310$.
 alists，NXile，fase．1．In Russian．）
James，Whbian Text book of lesyehology．Lomd．．Marmillan．（Rev．in Nature， May 5．）
 pls．（A work on the peoples of Humsiry．）
Jastrow，Jusepri Wh the jodgment of anglos and the position of lines：A．－On the fudgment of angles．Am．J．Psychol．Whreester，v，214－248．（Other studies Univ．of Wisconsin．） W゙orrester，lati．
 ソ，20－230．

 theque de C：aralhas．VIt．）
 as at general introduction to the llistory wi sefonce．london，Griftith and

Jones，A．Copren．Arrow poison．Natura． 3 l 3 ．
Jonrnal of Ludian Art．Lombon．
 sonthwestern Exploring Experlition．Boston．HI．J．Walter F＇ewkes，editor．
Jonrnal of Americin Folk－lore．
Jomrnal of Montal scioure．
Jonrmal of the Anthropolowieal Institutr of（ireat livitain amd lreland．Lambon，

Jomrnal of the Andiropological sucioty of hombay，Lity，Vol．J．
Journal of the East ludia Assoriation，さXル．
Jomrand of the liypsy Lore Socioly，Lomdon．Val． 1 ．
dommal of the Polymesian socelety，Vol． 1.
 v．II．
 AXIV．
Journal of the loyal statistical somioty，Vol．Th．
Jommal of the loyal louted survice Institution，Vol．：sif
Jommall of the soricty of Irts，Lomd．V＇ul．\al．

 horn．Challt．

 fols．Nap心：ills．Nơ．
 oftoman．berlin，lifiture．

 32 1י．
 Correspomben\％hl，x．sis，102－10t．

Krall，J．Die etruskischen Mnmienbinden des Acramer National－Mnsemms．Wien； Tempsky．［Rev．by Brinton in Science，N．Y．，xx，212．］
Krohn，Wilhas O．Psemdo－chromesthesia，or the association of color with words， letters amd souvids．Am．J．Psychol．，V，20－11，［with 85 titles on the same sub－ ject］．
Laborne，J．V．，et I＇．Rondeat．Les fleches empoisnonnées du Sarro（Haut Niger）． Rev．mens．le l＇Ecole d’anthrop de Paris，if，12－19．
Labard．La race lbive（erâmes des Canaries et des Acores）．Bull．Soc．d＇anthrop． de Par．，1892，1．s．，i1I，294－330．
Lalibmand，Charles．La Thnisie．Paris，Maison Qnintin． 253 pp ．4to．
Lambert，M．Note sur la torsion de l＇hmmérus ehoz I＇homme．Compt．reud．Soe．do biol．，Par．，9．s．，IV，243．
Lang，Andmew：A series of his books poblished in Lombon and New York by Longmaus，Green \＆C＇o．
Lang，H．R．The l＇ortugnese element in New England．J．An．Folk－tore，Bust： and N．Y．，V， $9-18$ ．
L＇Anthropologic．Paris，Masson．Vol．In．
Larbabee，W．H．Cave dwellings of men．Pop．Nc．Month．，N．Y．，Xhi，27－15．
Lader，Padle E．Church and state in New England．Johms H．I＇niv．Sturl．in hist．，ete．，Balto．，10th ser．，II－II．
Ladrent，E．Anomalies de la verge chez les dégénérés criminels．Areh．du l’anthrop．©rim．，l＇aris，vin，24－34；Amn．méd．－psych．，Par．，7．s．，xvi，Iot－ILS．
Lebégle．Notice sur les fonilles de Matres－Tulosanes．Angers，Burdin et Ce． 29 pp .8 8＇ 6.
Le Bon，GUstave．＇The evolution of＇civilization and the arts．Pop．Ne．Month．， N．Y．，1892－93，xL1，342－349．
Le Conte，Joserif．The race prohlem in the sonth．［Brooklyn Ethical Assoria－ tion．］No．29．N．Y．，Appleton．I＇p．318－402．
Lefe，C．Some negro lore from Baltimore．J．Am．Folk－fore，Bost．and N．Y．，V， 110－112．
Leffingwell，Albeit．Illegitimaty and the inlluence of climato on condurt． New York．Scribner＇s Sons．12mo．（Nocial science series．）
Legrain．De la dégénérescence de l＇espéce hamaine，sa definition，ses origines． Ann．de la Policlin．de Par．，if，111－126．
Leland，C．G．＇The folk－lore of straw．J．Am．Folk－Lore，Boston and N．Y．，V， 186－188．
Leroy－Beadlied，Paul．De la rokonisation chez les peuples morlernes．I．ed． Paris，1891．x1x＋8tis pp．8vo．
Letourneat，Charies．Ia sociologie d＇après l＇ethographie．Paris，Hennmer． Xvi， 608 pp．Itimo．
——Property，its origin and development．Lond．，Walter seott．［Rev．Na－ ture，Lond．，lec．※．］
 Shirley． 280 pp ；ill．（ir．8vo．

Lockyer，J．Nobman．The origin of the veat．Natnre，lomd．Xhy，Marefi 24， 487 ；XLVI， $104 ;$ XLVII， 32.
－On some points in ancient Egrptian astronomy．Nature，Lond．，290－299 seq．
Lohnve，k．I＇mer Ruminatin hmmana．Minchen，med．Wehnsehr．，xxxix，47．f．
Lombroso，（＇Appleazoni pratiche mell antropologia riminale．scuola posi－ tiva，Napoli，11，32．．－36io．
———Criminel doceasion et criminellw－né．Areh．di psichiat．，etc．，Torino，XIIf， $87-92$.
et R．Laschif．Le erime politique et les révolntions．Traduit par A．Bon－ chard． 2 v．Par．，F．Alcan． $209 ; 428$ pp．， 6 pl．8vo．

Lombroso，（．Les applications de l＇anthropologie criminelle．l＇iris，J＇．Alean． 224 1卩． 12 mo 。
 razze mmane．Torima，frat．Bowe s！

Gmattro eranii di assassini Raremati．Gior．d．r．Aecod．di med．di Torino，

The whysical insensibility of women．F＇ortnightly leview，X．Y＇．（1．ombl．）， 1．1，35 1－635．
Low，B．＇Tho natives of bomeo；etited from the papers of＇the late lirookr low，

Lommis，C＇mabes F^{\prime} ．some strange comers of our comntry，the womderland of the Sonthwest．New York．，Century Co．XI，27011． $12 m o$.
Luschan，F．vos．Die anthropologische stellung der Juden．Correspondenzhl．， xxuri．94－1ば．
Machaster，Alexanner．Viec－presidential admess boforesection 11，british Assor－ －iation．Nature，Lond．，NLM，：378－38ン．
 N．Y．，Xlif，96－100）．
MeCrackes，W\％．D．The lake－hwellers of switzerland．Arema，Boston，Vi， $40-4 \%$ ．
 Lond．，LXi，som．
Ma（iee，W．J．（＇omparative chronology．Am，dnthrop．，Wash．，V，327－34t．
MCfowas，Dr．The origin of the asis，the eat and the sheep in（＇hina．Nature， Lonel．，Jan．21，foom China braneh，Ros．As．Lor．
Me（ivime，J．D．Materials，apparatus and processes ol the aboriginal lapidary． Am．Anflurop．，Waslı．，V，16：－17t．
Maclitchma，DAvid，A visit to al＇iet＇shonse．Seience，N．Y．．Xx， 13.
 Arch．f．Ethnow．）

 Lomd．，1891，Harrisom，178 pp．；Map．Noぃ．

 in Nature，May 12．］
 sinsk．Fhoto despribed．storkhohm．samson at Co．sore．Sumbise d＇anthrop． ut the grog．lmprim．roy．

 320 ．

Maudslay, Alfred P. The ancient civilization of Central America. Nature; Loud., xlv, 617-622, with map.
Meakin, J. E. 13. The Moroceo Berbers. Rep. Brit. Ass. Adv. Sci; 1891, Loud.; 1892, LXI, 804.
Mélusine. Paris. Vol. vi.
Mémoires puloliés par les memberes de la mission archéologiquie françaisé bi Carre. Paris, Lemox, I-Xv.
Nendeniall, T. C. The uncertainty of conclusionis. Pres, address, Philos. Soc. W:ash., Vol. xir, plp. 1-18.
Mercer, H. C. Pebbles chipped by monteru Imlinis as an aid to the study of the Trenton gravel implements. Proc. A. A. A. S., vol. xu, 2×7-289.
Meringer, R. Studielr zur germanischen Volkskunde. Mitth. d. anthrop. Gesellsch. in Wien, xxu, 101-106.
Merrana, C. H. The geographic distribution of life in North America. Biol. Soc. Wash., 64 lip., ch. 8vo.
Merrill, B. J. Concerning laws governing the examination of insane persons in probate courts. Northwest. Lancet, St. Paul, xir, 227.
Messhomaer, H. Acltere Masken aus der Schweiz. Internat. Arch. f. Ethnog., Leiden, 1 , 239.
Mestorf. Jlelia. Ans der Skandinavischen Literatur. Arehiv f. Anthropr, Brana-

Meyer, A. B. On ernde jadeite in Switzerland. J. Anthrop, Inst., Lond., XXf, 319.
Meyners d' Estrey. Les Kalangs de Java. Rev. Scient. de Paris, xlix, t6- 19.
——. Etude ethographique sur le lézard chez les peuples malais et polynésiens. Anthropologic, Par., 1892, in, 711-719.
Midoendolif, E. W. Das Muchik, oder die Chimm-Sprache. Mit einer Einleitung. iiber die Knltul-Väker die gleiclizeitig mit den Inkats mad Axmaras in Sidamerika lehten. Leipzig, brockhans. $11+22 \mathrm{pp}$. 12 mo .
Mikelelen, Michael. The Bishop hill colony, a religions commmistic settlement in Illinois. Balto., 10th sec.. Johns Hopkins Univ. Stnd. in hist. and polit.. $80+\mathrm{pr}$. 8 ro.
Millen, Eefeen. Die l'rostitntion. Miinchen, J. F. Lehmann. 114 Ipp. 8ro.
Miller, O. D. Har-Moad; a series of archeological stmedies chielly from the standpoint of the elneiform inscriptions. North Adams, Mass., Stephen M. Whipple. $21+4.5 \mathrm{pl}$. Svo.
Milner, Alfret. Eiggland in Egypt. London, E. Arnoled. 4 te pp. Svo.
Mingazzini, G. Osscrvazioni intorno alla scafocefalia. Bull. A. r. Accad. med. di Roma, 1891-92, xナ11, 27-2-287.
Minovici, M. Identificarea anthropometrica. Methoula Bertillon. 1'aris, OllierHenry. $77 \mathrm{pr} . ; 39 \mathrm{pl} . ;$ portr. (ot Bertillon). 8vo.
Mittheilmgen der anthropologisehen Gesellschaft in Wien. Vol. xxir.

Mockler-Fehiman, A. F. Up the Niger. Lond., Philip, \& sun. xx +326 pp . Bro. [Vocah. and Chapter on Music.]
Montelifs, (1. Zur 'hronologie der jingeren steinzeit in skandinavien. Cor.- Bl. 1. dentseh. (iescellsch. f. Anthrop.. etc., Mïnchern, 1891, x xil, 99-105.

Moorehead. Wabrea K. Primitive man in Ohio. N. Y., Putuam. xvi+246 pp.; 5.1 figs. Svo.
——The ruins of sonthem [tah. Proc. A. A. A. S., Salem, xli, 291-29.1.
Morgan, C. L. The law of peychogenesis. Mime, Lomd., h. к., $1,72,73$.
 517.

——On the older forms of terra-eota moting-tiles. Bull. Essex lust., Salem, xxiv, Felo.-Mar.
 11, 137-154.

 624 p.p. mapsand ill. fto.

Nabablac, Marquisme. Intelligenew amf instimet. Paris. in fup. No.
——Mamers and monmonts of prehistoric peoples; tr. Namey bell. New Sork, lutnan. x. +41211 . ; ill. Slo.

Nature, a weekly jumbal of sciener. Lombon, Mamillan. Vol. Hi.
Nehmaka Aeademy of sidence. Thiversity of Nehaskia.
Newbermi, J. S. The aneient viritizations of Amprica. Jopl. Sco. Month., N. Y., xli, $1 \times 7-200$.

Noyes, Wilama. Psyeholngical literature. Psyhiatry. Am. J. Psechol., V, $74-94$.
Obst, Hermany. Das Kankasiscibu Musemu in Titlis. Das Ansiand, Nuttgart, 1892, (onta, हxv, 38!-392.
Olshatsbex. Leichenverhremmg. Yorhamdl. d. Berl. Geschlsch. ft. Anthroph, Berl., 129-17̄.
 for 1892. Med. Rec., N. Y., xle, 197; 2:3: 14!: 233.
Ottobexhis, Ladoma delingmente in rapporto alla paichiatrial limense. Vazz.

and M. Cablana. 11 piede premsile negli alemati amei delinphented Areh. di psichiat., etce, Torine, ©113. 373-381.
Owhess, I. (i, Natal epremonies of the Hopi Ludians. I. Am, Ethnol. and Arehami., Rost., II, 16:3-1\% .
 map: ills. Xvo.
 1891, Nimpinon Low. [Ricv. in Nature, 2him.]
Ранкв, W. T. Concerning Amerisan Indan womanhool. Imn. (iynace and Padiat., Philia, $1 \times 91-92, v, 330-341,2 \mathrm{p}$ p.
——Conerning American lndian womanhood; an ethoological stmey. Am.

Payne, EDWabd doms. History of the New World wallod Ameriat. Wxford, (lar"ndon l'ress. xxvintiolip pro.
P'eal, S. E. Gu the "Morong" and other customs of the matives of Assam. Rep. Brit. Ass. Adr. sc., 1891, Loml., 18:22, h.xı, xol.
——The commmal bararkn of primitive races. Science, N. Y., xx, 22s-2029.

 wiputation. Nature, 395-397.
 8vo.

Perrot and Cimpiez. History of art in Phrygia, dydia, Caria, and Lyeia, [See Rev. in srience, N. Y., XIx, 286.]
Petrif, George. Chmreh and state in early Marylaud. Johms H. Univ. Stuch. in hist., ete., Balto., 10th ser., V.
Petrie, W. M. Flininers. Prehistory of Egypt. Nature, 1892, Lomd., xlv, 380.
———Ten years digging in Eyypt, 1881-1891. Chicago, Revell. 201 pl.; ill.; map. 12 mo .
Pinené. On comparisons of ancient Welsh enstoms with those of contemporary nations. Rep. Brit. Ass. Mdv. Ne., 1891, Lond., Lxi, 807.
Pinllips, H., jr. Seconel contribution to the stndy of folk-lore in Philadelphia and vicinity l'roc. Am. Phil. Soc., Phila., xxx, ロ46-249.
Philosophical Review (The). Boston, Mass., (iinn of ('o. Ed. hy J. G. Schmrman, Vol. 1, No. 1.
Phes, Warburton. The barren grombls of northern Canada. London, Mamillan. 1上t. 300 pp . 85o.
Pilgrar, C. W. Genins and smicide. Poj. Sc. Month., N. Y., 1892-3, Xlit, 361-369.
Pilling, James C. Bibliography of the Algonquian langnages. Washington, 1892, Gov’t Print., $x+61+$ Pp.
Pinto, J. O. On itentity and the means of identification. Indian M. Rec., Calcintta, ins, 1.
Pisson, (t. Races des hantes vallées du Tigre et de l'Wmphate. Rev. scient., Far., Nilx, 581-588.
Pitt Rivers, Lient. Gen. Excarations in Bokerly amd Wansdyke, Dirset and Wilts, 1881-91. Vol. 11. Loudon, 1892, printed privately, x̌v-308 pp., maps and pls. fto.
Playfair, W. S. Nex in education. Brit. M. J., Lond., i.
Pokroveki, E. A. Games of Rnssimm childron. Moskra, M. Volchaninoff. 11, iv, 5-128 pp. 8vo.
Polynesian Society. Wellington, N. Z. S. Percy smith and Ed. Tregear, secretaries. Publishes Jomrmal.
Pool, Joun J. Studies in Mohammedanism. Westminster, Constable. xvit 419 pp.
Prembeniast, L. The development of the reformatory and indnstrial school system in Englant. 'T'r. vin. Internat. Cong. IIyg. anil Demog., 189f, London, 1892, iv, 146-170.
Prma y Arteaga, F. ine. Le Mexique tel qu"il est amjomplhui. Parix, 1891, Savine, $x+376$ pre, maps. svo.
Proal, Leuts. Le crime et la peine. Paris, F. Altam. 5.59 pm , 8vo.
Proceedings of the American Association for the Alranement of seience. A1st merting at lochester, N. Y. 380 pp .
Proceedings of the Royal Geographical Society, Loudon. Vol. Niv, us.
Proceedings of the Socicty wi biblical Archaology, Lombon. Vol. xv.
Proctedings of the American Ihilosophical Sociots, Philadelphia. Vol. 1-XXirf, in 1891.
Proctor, EnNa Indan. The song of the ancime people. With preface and notes hy John Fiske and rommentary hy F. II. ('nshing. Boston and New York, 1893 [1892], Itonghton, Miftlin \& Co. xvir, 69 pp . Šo.
Quarterly dommal of Economies. Boston, Ellis. Vol. Vi,
Ranke, domannes. Beitrage zmp physischen Anthropologie dor Bayern. Miinehen, F. Basscrmann. 132 pp. ; :30 ph. 8ro.
——Bezichungen zwischen Schaidelgrmal, Gehinn and Gesichtsschädel. Beitr. z. Anthrop, in. Crgesch. Bayerns, Mionehen, x, 1-110, 30 p .
——Wissemschaftliche Jahresbericht. Correspondenzhatt, xxxim, $78-$ - 6 .
Ratzhl, Frimbrich. Anthopogeograplie. Zweiter Teil. Die geographischo Verbreitung des Menschen. Leipzig, 1891.

Regnadet，F．La religion béguine．Bull．Suc．d＇Anthrop du Par．，1891，\＆．s．，if， 750－792．

 s．，HI，171－47！．
Reicharib，Pacl．Dentsch－（）stafrika．Das Laud und seine liewohmer．Leiprig， Spaner．施当 fle；36 ill．Svo．
Reach，E．Die Linheit ses Menshen mod der imere Znsammenhang von Anthro－ pologie，Hygiene mad socialwissemsehatt．Athenaemm d．（icgenwart，Minn－ when，1－5．
Remacn， s ．L＇étain celtique．Anthropologir，P＇ar．，1if，275－281．
Report of the Burean of Ethnology．Vol．Vits．
Report of the Smithsonian Institution．I＇arts I，H，1890．
Results（The）of anthromonetry，as derived from the measurements of the stndents． of Amherst Collage．Campoll \mathbb{A} Morehonse． 7 iq．； 3 tak．8wo．
 Print．Office．Tol－71！pp．Svo．
Revoe do linguistique．l＇aris．ser．IN．Vol．inf，quarterly．

Revere des traditions populaires．l＇aris．Vol．var．
Revne de lohistoire des rehigions（Amales du Muśm（inimet）．Paris，E．heronx．Eid． hy M．Jean Reville． 13 th yre，ations．
Rever internationate de socbologie．Vol．at．
 Assoriation pour lenseignement des sciencestanthopologiqnes．2dyear．Vol．n．
Revuescientitique．Yol．L，Li．
 111，253－204．

 35－5－391．
Romiway，Whabang．Origin of metallip emraney amd weight stamdids．Cam－ hridge．xilt＋17 p．Nivo．
lowimes， F ．Les noureans spuelettes hamains des grottes ditis de Mentom

Ronsarse，C．Sex in whcation．Brit．M．J．，Lomul．I，I112．
Romssos，L．The meaniug of：：haby＇s foot－print．Nineteenth c＇ent．N．Y．［Lomd．］， xxмı， $7!5-80 f$.

 luis de leanti de la tite．Paris，L．Plon，Nomrit el＇ie．Krum．
 v， $20.5-213$.
Romin，II．L．Convadr．Rep．Brit．Ass．Alv．Se． $18: 11$ ．．ond．：J．Anthrop．Inst．．

 crim．，l＇ar．，vis，191； 101.

 1892，3．s．，xxvini， $75.3-76.1$ ．
 Auslaml，Stuttgart，1892，Lxげ，593－597．

Samson-Himmelstierna, 11, ron. Russia muder Alexander \{ll, and in the preceding period. [「rans. by J. Morrison, with notes by F. Yalkhoviky.] N. Y., 1893 MacMillam of Co. 306 p . svo.
SANFoRd, EnMund C. A laboratory course in physiological psychology. 3d paper. V. Vision. Am. J. Psyrhol., Worcester, 15 , 474-490.

Saville, Marsiall H. Explorations of the main structure of C'opan. Proc. A. A. A. S., salem. Vol. xir. pp. 271-276. Vandalism in Contral America, id., 276.

SChelemas, I^{\prime}. Die Gättergestalten der Maya-Hanlschriften. Ztselur. f. Ethmol., Berl., xxiv, 101-121.
SCilleicher, A. W. Die Somali-Sprache. Berl., Fröhlich. Pt. i, xvi+106pp.
Scillegel, Gustave. Fonsang kono. Le pays de Fonsang. Leide, Brill. 68 pl. 8 ro.
Schlicilter, Henry. The Pigmy tribes of \frica. Scot. Cicog. Mag., Edinb., viif, 289-301.
Schmedtz, J. D. E. Leber Bogen von Afrika und Nen-Gminea. Das Ausland, Stuttgart, LXv, 689-694.
Schmidt, Emil. Die Anthropologie Indiens. Glolms, Bramschweig, Vieweg. lxi. Nos. 2 and 3.12 pp. 4 to.
——Review of physical anthropology. Leipzig. Nu title-page.
Scurader, F. La Chinc. Rev. mens. de l'Ecole domthrop. de Par., if, 177-190.
Schrenk, L. Von. Reisen und Forsehungen in Ammr-Lande in den Jahren 1854-1856* Bd. if, Lfg. 2, Die Vöker des Ammr-Landes. st. Petersburg, 1891. xix+311630 p .
Sollunk, EDWarr. Notes on some ancient dyes. Mem. Proc. Mauchester Lit. and Philos. Soc., 4. s., v, 1891-92. [Reprint in Nature, Nov. 3.]
Schwalbe. Beiträge zur Anthropologie des Ohrcr. Internat. Beitr. z. wissens:. Medicin, Bd. ı, Berlin.
Scimbartz, W. Mythologische Bezïge zwischen Semiten und Indogermanen. (Mit einem Excursus iiber die stiftshitte.) Ztsuhr. f. Ethnol., Berl., xxiv, 1:7-yす6,
Science, N. Y. 10th year, in 189\%. Weekly. Vol. xix, xx. N. D. C. Hodges, editor.
Scott, D. (. A eyclopedic dictionary of the Mang'anja language, spoken in British Contral Africa. Edinbureh. xxif, 737 pp. \&vo.
Seottish Geographical Magazine (The). Pub. lyy the Royal Scottish Geographical society. Vol. VIII.
Scripture, E. W. Psychological notes in the American Journal of Psychology. Tolume IV, 577-ixit.
—_ Psyrholowical literatmre: Sight. Aın. J. Psychol., Worcester, iv, 470-473.
segel, B. W. Judische Winndermanner. (ilohns, Braunschweig, 1892, Lxit, 312-314; 331-334; 343-345.
Seler, Ed. A phonetic key to the Maya hieroglyphic writing. Science, N. Y., $6-10 ; 121-129$.

- The palenque tablet. Science, N. Y., NX, 38 .

Semitic religions. [Rev.] Edinh. Rev., N. Y.. [Lond.], CLXXv, 325-341.
SERGI, G. Melanesia e Mrlancsiani. Boll. d. r. Accad. med. di Roma, 1891-92, xVif, 92-176. Repr. in Arelh. f. Anthrop., Brannsehw.. xxi, 339-381.
—— Sensibilità femminile. Arch. di psichiat., ete., Torino, xne, 1-8.
Shaler, N.s. Nature and man in North America. Lond., Smith \& Elder. 290 pp. [Rev. in Nature, Jan. 7, 1802, 220.]
Shattinger, C. Rumination in man. Mel. Fortnightly, St. Louis, 11, 167-171.
Shumeddt, R. WT. A comparativestuly of some Indian homes. Pop. Se. Month., N. York, xli, $798-810$.

Suree, J. Divination among the Malagasy, together with native illeas as to fate and destiny. Folk-Lore, Lond., Int, 19:3-226.
Sicamb, Hexta. L'évolntion sexurlle dans l'espice hmaine. Paris, J.-R. Baillìre et Cie. 318 pp . 12 mo .

 (ifosell.

 $16 \bar{\circ}$.
smbion, J. K. Midwitiry amomg thr Maskan bulians. Oeridental N. Thimes, sateramento. Vi. 61.
 pologie, l'ar., 11, : sás-lol.
 Ottice \& Pb. 大ro.
society of l'syehical lewsareh. Amer. lbranelh.

somentilas, l3. T. Vocalmbry in various dialerts med in some islands of the New Helrides. Lomd., Amimalty, ix pp. Fol.
 $206-210$.

sowembs. J. The forest rantons of switarland. Lond.. lerrival. 2h8 pro, mapl. Xros.

 1×91, п11, 366-3! 4.
 307.

 latrotage on hoalwaters of the Nhingo liver. liatil.]

 den, Joesburgh. 120 pl . 大vo. (With hiblowraplay.)
 (iniana II. Amn. I Memerara. 121-126, 1 ch.

 ethongraphiswhe Unt x11, 19-12.

Straven. Samoa, Legi (Salomons-Ins.). Nen Britannien, Athiralitaits-Inseln. Verhandl. 1l. Berl. Gesellseh. f. Anthrop., Berl., 220-231. 1 11.
Stroxg, II. A. Notes on the cat and the rat and the testimony of langnage as ta their history. Acad., Lomel., 1893, pp. 81-82.
Sully, Jamps. The hmman mind: a text-hook of peyrlology. Lond., Longmans. 2 vols. [Rov. in Natare, Hay 5.]
 PP. 57 万- $281: 504-604 ; 616-620$.
Sur'Ang Alex. Die Verschiebmir der Bevalkerung in den inthstriellen Mrossataten Westemropas, 1881-1891. J'eterman's Mittheil.。 fiotha, xxxvin, 59-66.
svobons. W. Die Bewohner des Nikobarenarchipels. Internat. Areh. f. Ethog., Leiden, v. 149-16×, 을.
'Tabbor, E. S. A sturly of the degeneracy ol the jans of the hmman rince. Dental Conmos, Phila., xxxIr, 25: ; 337; 421; 512; 589.
 brews.] Protok, zasait. Russk. antrol). (Obsh., St. Petersb., III, 71-8ti.
Tarbe, G. Eturles pénales et sociales. Paris, Masson.
—— Les crimes des fonles. Arelı. de loanthrop. erim., Par, vir, 353-386.
Tancovski, I'. N. [New works on criminal anthropology.] J. Russk. Obsh. ohhran. narot. zdsavija. St. Petersh., 1 , 132-145.
'Jerietmener, W. B. Vtilization of homing pigeons. Nature, Lond., $320-322$; ill. and mat.
'Ten Kate, Il. F'. C. Somatologieal observations on Indians of the Southwest. J. Am. Ethn. and Arch., Bost. and N. Y., 18!2․ , 11, 119-14.
Terbrbl, J. W. The demon of ronsumption. I. Am. Fohk-Lore, Bost, and N. Y., v, 125.
Texas Academy of Srience, Anstin. Organized 1802.
Thanet, U. Folk-lore in Arkansas. J. Am. Folk-Lore, Rost. and N. Y.. V, 121-125.
Thomas, A. R. Evolntion of the earth and man. Philadelphia. 30 pl . Ryo.
Thomas, Cyras. A briefatuly of the Palenque tablet, seience, N. Y., Nix, 32x.
——Is the Maya hiowglyhie writing phonetie? Seience. N. Y., xx, $197-201$.
——Key to the Maya hieroglyphies. Science, N. Y., xx, 44-16, 80. [Rev. by Seler, id. 80.]
Thomson, A. 11. The ethnology of the facer. Dental Cosmos.
Thonnton, Rommson. The Rommanian language. J. Roy. Hist. Soc., Loud., 11. s., VI, 69-86.

Tuwartes, R. G. The story ot the Black Hawk war. Coll. Hist. Soe. Wise., xil, 217-265.
——'he Wisconsin Winnebagoes. Coll. IIist. Soe. Wisc., Vol. xir, 399-133.
Thate, A. German Christmas and the Christmas tree. Folk-Lore, lomd., iff. 166182.

Tissannier, Albert. Toyage antour tumonde, linde et Ceylon-Chine et Japon, 1887-1891. P'alis, Masson. 298 pp.; ills. [Chiefly deroted to temples and other arehaoological olyjects.]
Tolstor, L. Nutre alimentation. [Trans.] Rev. scient., I'ar. 1, 225-326.
Tooke, W. Mammonir. The God of the Ethiopians. Natmre, Lomd., xlvi, $78-79$.
Topixaris. I'. Lantaropologir à l'aposition de 1889 . Srience biol. à la fin elu xixe siocke. J'ar.. 100-106.
—— Lanthropologie tu Bengale, on étude des docmments anthropométriques.

- De l'érolntion des molares et prémolaires chez les primates et en particulier chez l'homme. Anthropologie, Par. 1892, if1, 641-710.
- Man in natme. (Transl. from: L'homme dans la nature.) Pop. Se. Month., N. 1., 1892-093, xı.II, 455-453.

Tößï, Aumel von. Dir qeometrischen Principien der elementaren Schädelmessungen und die leutigen kraniometrischen Systeme. Wien. 88 pp. sro.

 Uso, T Pber die hentige swhatelthere. 17 pl .
 . 1 mene 17.387.

 Volkeskumale.
Trarlition (La). Paris. Vol. Vi.
Jramsactions and lorocedings of the New Vatalaml Lnstitute.
'Tramsactions of the C'andian lnstitute.

Tramsactions of the lesall Society of Literatore.
Trı:

 pologie, Par., $11,257-271$.

 $\because \mathrm{v}$. Svo.

 Geog., Xv. 31-3n. [Map, of density of popalation.]

 Xros.

 113, $8: 9 x-126$.

Transformation and desemit. J. Vath. and lianteriol., Vilintr. and Lomal., 1 , 1-12.

 Salem, XLt, 301-;32l.

- The utilitarian rharactar ui dynamic sociohogy. Im. Anthoph. Wash., V, $57-105$.

Whters, li. Jl. Jrimitive segmentation of the vertebrate brain. Jand., halaral

 Jilited by E. B. Ponlon and S. J. Nhipley. Lomion, Frowde. 2ef jpr sio.

Wirymper, EDW atte. Trikels amongst the Great Andes of the Equator, Lond., Murray. x smithep. 8vo. Supplementary appendix with contributions from many aut andis.
Wiefken, v wint. Gier Bernstein in Oldenburg. Das Ansland, vol. 65, 78-79.
Wells, ' A. Th. Evolntion in folk-łore. An old story in a new form, Pop. Sc. Mor allb., X., Y., LXLI, 45-54.
Wilh gins, TE. L'étude anthropologique du pavillon de loreille liev. biol. du a@ride la Frahce, Lille, 1891-92, 1v. 201, 241, 329, 392.
W In爪mas, A. M. Folk-songs of the civil war. J. Am. Folk-Lore, Bost. \& N. V.. 718922, v, 265-283.
Thilson, Daniel. The lost Atlantis and other ethographic studies. N. Y., Macmillan.

The right hand; left-handedness. London, 1891. [Science, 1892, xx, 60.]
Whlson, Edwand F. Indian mumerals. Srience, N. Y., Xix, 9.
 Inst., $76 \mathrm{pp} .8 \mathrm{r}^{\mathrm{t}} \mathrm{o}$.
——Les instruments de piorre dure en Amérique. Paris, Leronx. [Cong. intermat. l'anthrop., ete.]
——Proceztings of the Intermational (Songress of Anthropology and Prehistoric Archabology in Paris in 1889. Washington, 1892, Gibson. [From Am. Naturalist.]
Whislacial, H. Von. Aus dem inneren Leben der Ziguener. Das Ansland, shattgat., 1892, LXv, 655.
Wohla's Columbian Exposition, Chicago, VT. A. A., 1893 . Plan and elassification of Feprartment M. Chicago, Worll's Colnmbian Exposition. $27 \mathrm{pp}$. ; 5 pl. Svo.
Watar, jr. Ipoh poison of the Malay peninsula. [From kew Ball., No. 58.] .I. Anthrop. Inst., Lond., 1891-99, Nxi, 476-481.
Whagirp, G. F. Man and tho glacial period; with an appendix on Tertiary man, by II.W. Haynes. N. Y., D. Appleton o Co. 13-3x. pp. [Internat. Scient. Sex.] The ico age in North America and its hearings men the anticuity of man. Now York, 1891. Appleton. 625 1p. Xvo.
WYmax, H. C, Prehistoric trephining. Am. Lancat, Detroit, n. s., XVi, 9-13.
 193-198.
 $769 ; 808$.
Zandern, K . Ist die Polydactilie als theromorphe Varietiat oder als Missbildung amzusehen! 'Postragzur Kemotniss des Wesens und Entstehens der Polydactilie. Arch. f. park. Anat., wte., lerl., 1891, Cxxv, 453-487.
Zanetti, ${ }^{\prime}$ Y. La medicina delle nostra donnc. Studio folk-lorico, Castello, 1892, S.'Thit, xux, 271 pp. 8vo.

Zeitschitit fïr Volkskunde, lerlin, Asher. (Nene Folge der Zeitschrift fiir Väker13yehologie und Sprachwissenschaft, begriindet von M. Lagarus und 1F. Steinthal. Vol. 1 .
Zeitsolifift fiar Ethnologie, Rerlin, xxiv.
Zelle, 1. J. Les Orangs-Kouhons. Buhl. Soc. d'anthrop. de Par., 1891, 11, 20-34.
Zrammicn, J. Toteninseln ind verwandte geographisehe Mythen. Internat. Arch. f. Ethnog., Leiden, 1891, Lx, 217-244. 1 pl.
Zrocanellt, A. A proposito del processo Notarbatolo; i processi indiziari e l'antropologia criminale. Anomalo, Napoli, 1891, in, 329-339.
——Degenerazione e delinquenza, saggi di antropologia criminale. Ramanth diti osservazioni. Napoli, 1891, ,A. Toeno. 61 pp. 8yo.

Un delimquenteripato ed il sentimbnto di vendetta, nei ilegenerati. . Anomalo. : Napoli, IF, 1-6.

By MRMAND DE QuATREFAGEA

One of the chief problems of anthropologists in resard to Americab is that of the origin of its inhabitants. Were the original American people related to those of the Old World? Or were they indigenoms to America and withont ethologic relation to other populations? Both these views, as you are awire, have had their partisans. I have alreaty made known my opinion upon this subjeet, which is that Ameriea Was originally peopled by emigrants from the Old World. I propose to give a brief résmé of the grombls of this conviction.

I reall two rules which I have constantly followed in the solution of questions sometimes so ardently contested, whirh are baised in the history of Man. The tirst rule is, to put aside absolutely every consideration borrowed firom dogma or philosophy. and to invoke only seiener, that is, experience and observation. Tha second rule is, not to isolate man from other organized beings, but to recognize that lie is subject (in all that is uot exclusively hmman) to all the general laws which govern equally animals and plants. Hence mo doctrine on opinion is to lee regarded as true which, considering man as an inimal, makes him an exception among organzed beings.

Let us apply these principles to the 'question before ns, lont more broadly; for it is lut a special case of a still more general problem. Man is evorywhe now. Did he appeareverywhere in the hegimine? It not absolntely cosmopolitan in its origin, did the fhman race originate at an indefinite mumber of points; or, originating at a single and limited spot, has it quadually taken possession of the whole earth hy migration? It first thought, we might suppose the answer to these questions would be different acorrling as we admit the existence of one or many haman species, but this is an error: for we shall see that on this point, at laast, the Polyenists may shake lanals with the Monogenists withont being involved in any contradiction with the facts. Let us take first the Monogenistic view.

Physinlogy, which leads us to rerognize the mity of the lmman speries, teaches us nothing relative to its geographic origin: it is

[^72]otherwise with the seience that is ocerpind conceruing the distribution of animals and plants over the surface of the globe. The geography of organized beings has its general latrs, which it is necessary we should know aud interrogate if we would solve the problem of the peopling of the world.

The first result of this study is to show that true cosmopolitism-as attributed to man-does not any where exist either in the animal or in the vegetable kingrlom. In support of this proposition it is proposed to cite some testinmay. On the subject of the vegetable kingdom, Candolle says: "No phanrogamous plant extends oser the whole surtate of the earth. There are not more than eighteen of these plants which extend over an area equal to half the earth, and mo tree or shomb is among those plants which has the greatest extension."

In my lectures upon this subject, I have rited the best scientific anthorities respecting the principal groups of marine animals, either of salt or fresh water. I have review ed the fama of the air, begimning with the insects, and I have dwelt to some extent on fishes and reptiles. Onitting all the rest of the birds I notice the Poregrine falcon, the area of whose habitat is the most extended, ocupying, as it does, all the temperate and warm regions of the Old and New World, but does not reath the Aretic regions or Polynesia.

Anatomatically and physiologically, Man is a mammal, nothing more, nothing less. This rlass interests us more than the preceding, and fimmishes us with knowledge more precise. Permit me, then, to enter upon certain details, taking for my guide the great work of Andrew Hurray, which became rlassic upon its appearance. By reason of their strength, their great power of locomotion, and by the expanse and continnty of the seas which they inhabit, the Cetaceans would seem to have hoth the greatest capacity and opportmity to become rosmopolitan, but such is not the rase. Each species is restricted to an areamore or lessextended, firm which a few individuals oceasionally make exemsions, but abways soon return to their proper limit. Two exerptions have been clamed to this gencral rule. A Rorqual, with large flippers [the "hmmphack"], and a boreal Balaroptera ["finbark" whale], natives of temperatrand firigid seas, have been fomm, the first at the Cape of Good Mopr, the secomd at Java. But even these are sald by Van Benelen amd (iervais, the two greatest anthorities on Cetology, to be at least doulotfin; but accepting them as true, it ret remains that neither nemeriss has ever been found in tha seas that border America or Polynesia. Among other animals than the Cetaceans, there is nothing to be fomud approaching even a narow cosmopolitism. Here ayain I am to spare yon details. It is familiar to all, that Edentates and I'achyderms have their respective rountries clearly defined, and if the horse and the hog are to-day in America, it is because they were imported by Enropeans.

The number of Raminants whieh inhabit the north of the two con-
timents is rery smatl]. The Roindect and the Caribon are gemerally regarked as only varieties of one species. Brandt, with some reservations, says the same of the Bison ant the Amoeh, the Argali (Asiatie wild sheep), and the Bighorn (Roeky Monntain sheep). But none of these speries are fomm in the wam regions of these two hemispheres, nor in all Ocranica. The Uarnivora ofter similar facts to the proceding: but when we come to the Chwiroptera amd the (?nadrumana we do not find a single specios enmmon to both continents, or to the rest of the world.

Thms among all organized bexims, whether phator animal, there is not at eosmopolitan after the mamer of mans. Now it in evident that the areat of the atetal habitat of any animal or regretablo species inchades the erenter where that speries first appeame by virtue of the law of "xpansion the center shonld tikewise he less in extent than the oecnpied area. Noplant and no animal. thomefore, wiginated in all the rexions of the globe. To suppose that in the begiming man appeared evervehere that we bow ser him would be to make an exception of him which wonld be moligue. The hypothesis theretore call not be ar"epted. and erery monngenist will rejeet tha supposition of the initial cosmopolitism of thr haman speceres as a false comelnsion.

The Polygenists most aceret the same eondelasion maless they refuse to apply to man thr laws of geography, hotany, and zoölogy that govern all other beings. In fact, to whatero extent they have multiplied the species of mall, whether they assume that there are two with Virey, fifteen with Bery saint-Vinment, or an muletermined but considerable number with diliddon, they lano alvays matod thern into at single gemus; and they mold not do otherwise. Now a hmman gemus ran be no more cosmopolitan than a hmman spories. Speaking of plants. Cambolle says, .. The same c:anses have hormeon gerneratud on speries," and this is as true of atamals as of plants.
 thimks that the gemmal of the romalal and the dolphin are representerl in all the seas. Vian bemeden ambly fervais dispute this. We will however almit it; it dues mot all wakem onl conchasion, for, exerpting the

 wat, bear, etro. have manesentatives in both worlds, but none in Ans-

 simgle gemus of monkey is known to bre (ommen to the old atod the New Continent: and the simian type itarlf" is wanting in the greater part of both worlds and oreathia.
 of their habitat berommes mow restrioted as the animals are highor in ther zoölogic suald. It as the same with the reqetahoringelom. Oan

to which they belong has a more complete, more developerl, or in other worls a more perfert organization."

The greater restriction of the area in proportion to the increasing perfection of the organism is then a general fact, a law appleable to all organized beings, and which is easily explained by physiology. Now this law is in direct opposition to the hypothesis that there ean exist a human gemms comprising several distinct speries which have appeared in every quarter of the earth, wherever we now find men. Inroking the authority of Murray, and the moiversality of habitat which lie attributes to the genera of the rorqual and the dolphin, polygenists might be tempted to say, "non-rosmopolitism atready presents two exceptions. Why may there not be a third? Two genera of cetaceans are represented natmally in all the seas. Why may not the homan genus have appearel at the start in every land?" This reasoning is fanty at its foundation. The rorgnal and the dolphim belong to the lowest order of mammaliz. Man, if we regard the body alone, is of the highest mder. Thuless we constitute then a single exception, they must obey the laws of the superin gromp; consequently they can not escape the law of increasing restriction ot area.

It follows thorefore that a human genus, as the polygenists understand it, must have orempied, in its origin, an area no more extended than that which has comprehended some genera of monkeys. But among the monkeys themselves all naturalists recognize a hierarchy; all place at their head the order of anthopoid apes. It is then from the secourary gromps of this family that polygenists shouk ask for indications of the possible extrnt of area primarily accorded to the human gemus; and it is well known how inconsiderable is the area ocenpied by the genera (xibhon, Orang, (xorillat, and Chimpanzee.

Whaterer on point of viow, we have cithor to assume that man alone escaped the laws which have regulated the geographical distribution of all other organzed beings, or else admit that the primitive tribes were domicild mpon arer restrieted space. Judging fiom present eonditions, making the largent concessions, neglerting the incontestable superionity of the hman type over the Simian type, all that the polygenistic hypothesis permits is to regad that area as having been nearly equivalent to that ocempied by the different species of (ribbons which range on the continent firom Assam to Malareat in the islands from the Philippines to Java. Monogenism of comse tends to restrict this area still more, and tomake it equal at most to that of the Chimpanzee, which extends mearly tiom the C'ongo river to the White Nile. I would be the first forrognize that we may perhaps have to enlarge these limits at some later time. I eonsider the existence of man during the Tretiary geologie epocla to be demonstrated; and only the grographical distribution of the monkers, his rontemporary, ran furnish more precise information upon the primary extension of the center of man's appearance. Pabeontology has tanght us that
the area fomerly oconpied by the simian type was exidently more considerable than it is now. It may hare here the same with the anthropoid apes, but down to the present time, no lowsil is comene wed with that family. The extinet dryoutherons, long regarded as helonging to them. has been show hy the exammation of the best peserved remains to be mothing more than an interion ape. The gemeral laws of the seographic distribution of beings, and especially that of inereasing restrice. tien of area. with superiority of organization, jermit ns to affirm that man primarily occupied ouls a very limited part of the ghobe, and that if he is now everywhere, it is because he has covered the earth hy means of his emigrant tribes.

1 am aware that this idea of the peopting of the globe by migrations has disquieted may persoms. It puts directly betore us an immense mankown ; it raises a world of questions, a large mumber of which may appear inaccessible to on investigations. It has been often said, "Why reate all these difficulties? It is more natural to emfine omselves to the popular mormont attested hey history, and aceept antochthonism, esperially among tho lower sarages. How rould the Hottentots and the Fuegiens rearh their present comutry starting from some mudetermined point posited in the north of Asia? Such voyages are impossible; these peoples were bow at the Cape of (iood Itope and at Cape Horn." These suggestions may be answered by an anecotote borrowed from Livingston, the bearing of which will be easily comprehended. This ilinstrims trawer melates how in his youth he with his lowthers made long exrursions devoted to observations in matmal history. "In ome of these exploning toms," he says, "before the study of geology had berome as commen as it did later, we went into a limestome quary It is imposible to experes with what joy and astonishment I set myself to picking out the shells which we fomen in the Carboniferons rocks. A quarryman looked at me with that air of compassion which a kindly man takes on at the sight of a persom of teeble mind. [asked him how these shells came in these rocks, he answered. When (ion made the roeks. he made the shells and put them there.' Livingston adds, "What pains geologists might have spared themselves by atopting the Ottoman philosophy of that workman." It may be asked, in turn, where would geology have been if men of semence had adopted that philosophy? I ask the anthopologists to imitate the geologists: I invite them to inquire how and he what way the most distant peoples have radiated from the center of the first appearane of man to the extremities of the globe. I am not aftaid to prediet hilliant diseoveries to those who will set themselves serionsly to the stuly of the mumeroms and well-established migrations. In this the past permits a glimpse into the tinture.

Some rears since, when objestors nsed the langnage 1 have just weralled, they did mot tail to add Polymesia to the list of requins wheh man. then destifute of all om perfected arts, womble mave reached.

It is now known how eompletely such assertions have been contradicted. Adding his personal researhes to those of his predecessors, Hale first drew a malp of Polynesian migrations. Twenty years later, aided by the docmments subsequently rolleeted, I was able to complete the work of the leamed American. Now, as has been said by the lamented diansin (so rompetent to speak in all that relates to Ocennica), the peopling of Polynesia by migrations starting from the Indian Archipelago is as clearly demonstrated as the invasion of Europe by barkarians in the Midtle Ages.
Like Polynesia, America was peopled by colonies of emigrants fiom the Old World. Their point of departure is to be discovered and their tracks to be followed. The labor will indeed be more diffirult and longer upon the Continent than in Oceanir:a principally becanse the migrations were more mumerons and wo back to a higher antiquity. The first lndonesian pioneers who, departing from the Tsland of Bomo, landed in the Samoan and Tongan arrhipelagos. probably made the passage near the end of the fitth centmy, or abont the time of the conversion of Clovis. The peopling of New Zealand by emigrants from the Manaias goes back at most to the early years of the fifteenth rentury. Thus the peopling of Polynexia was all arcomplished twing our Middle Ages, while the first migrations to America date foom geological times. Two sarants, to whom we owe precions discoveries, Ameghine and Whitney, have traced the existence of man in America bark to the Tertinry ase. It is true that this opinion has been contested by men of equal repute; but lorlieve that the view of thase men is confirmed hey a comparison of the fossil famas of the pampas of Brazil and the California gravels.

Judging ly what little we know, man rached Lombardy and the Cantal before he had penetrated to America. It is necessary here, without doubt, tomake the most fomal meserves in faror of futmediscoveries: lont if the fart is comfimed, it womld seem to admit of easy explanation. Everything leads me to believe that the separation between America and Asia as now rxisting took place before the Quartemary epoch. If it was otherwise the spories of mammalia common to the north of both continents wonld have been more momerons. The men and lam animals on the shome of the Bering sea and Strat have been stopped there. But when the great geologid winter substituted the polar temperature for a climate similar to that of California, the antent Tratiary tribes were fored to migrate in wery dirertion. A eertain number of them may have embarked upon the ice extending between the two shores. and thas have arrived in Ameriar with the reindeer, as did their western congeners in France with the same animal. From that time tho era of immigration was opened for Amerial ; it has never been closed since. Each year the winter rebuilds the bridge which mites East Cape with the Cape Prince of Wales; each year a road-relatively easy for the hady pedestrians,
 ulation of the two opposinge shores take allantase of it to mantan eommmioations with earh other.

Whenever ond of those great sorial agitationsol Asiamade its waves felt in distant comentes; whenerer revolutions, politial ansorial, overwhemerl them. is it mot wident that the fagitives or the vanomished womla often hava taken this ronte, of the rxastence of which they were aware? 'To reject the idea of surlamigratons wer the foren seas, it would be nowes:ay to suppose that sino tha "ommancement of the Quatmmary prion all neighboring regions have minged a perpethal peare: but wa all know that surh a peare is mot of this world. This seat may mot have heen thr only romte bollowed hy American immigrations.

The chan formed hey the Mentian islamds. and Alaska further to the
 navigation. 'The Aleuts orenpy in lrof. Dall's athomogical chart the whole extremity of the peninsula.
liy these ways, what we might all the mormal perghing of America may have taken plare. But bathed onderthor sidn by areat ocean, this contiment rond not fail to protit hy the hazards of mavigation, and we can rerognize more and more how it may have bean done. It may* now be said. that with Earope and D fiva on one side and dsia and Oceania on the other, these have sent to Amerisa a mumher of invol matary colonios more comsidorable porlaps than might be supposed.

Immigrations in Americalas well as in Emope have beenintermittent,
 by a great lmman river, which, rising in Asia, has traversed the continent fiom north to south, reediving along its comse a few small tributaries. This river resmbles the toment streams of which there exist examples in Francr. Usmally, imal sometimes for yerrs at a time, their
 descends from the mombtans where their sommers rise, envers and rav ages the plan, buningover the ancient allnvimms, disturbing and mingling the old and new material, earying fartler earh time the rebris
 Its lloods moreover hase often been diverted to the right or last, and it has opened new ehammes. It has also hat its addies: but its ge:eral direetion has mot rhanged, and we can trace it down to the present.

One of the most agrababe task for the stmants of Imeriean pres historice anthropology will he to retrane this river up to its source; to determine the suceession of its llools: for distinguish the origin and nature of the doments which it has swept down: to follow those elements fiom stage to stage, and to thas rewer the ronte arh one of them has taknot the point of its arrival; in other words, to write the history of these migrations of the different people of Amerida. The aceomplishment of this fask, as has alreaty been saifl, is indeed murh more difitenlt in Amerian than in Polymesia. Those who madertake it
will eneomer nothing rorresponding to the historic songs and the geneologies composing the orab arehives and traditions so religionsly preserved in all the islands of the Parific. But morlern science has resomees, the power of whieh we are better amd better coming to understand, combining the data furnished by the study of geologie strata and their fossils, of comparative eraniology, of linguisties, and of ethography. We may hope to anter mon this group of problems and to foresee their solntion. Serious afforts have aheady been made in this direction, which lave not been mffuitful. One can even now indieate upon the chart a considerahbe number of itineraries, even though as yet only partial and loral. They are searcely more than fragmentary traces, similar to those which the predecessors of Hale found in Oceania. I'ossibly it will bo a long time thus; nevertheless, the Amerieanists should not lose comage; eath new discovery, of however small importance it may at first ippear, is some progress toward the general end. Year after year these tiramentary traces, now so isolated and scattered, will be ronsolidated and coordinated with each other, and then will come a day when a map of American migrations can be constructed showing the movement of enly man from Asia to Greenland, and to Cape Horn, similar to the mat alrealy made of Polynesian migration from the Indian Arehipleago to Easter Istand, and from New Kealand to the Sandwich Islands.

PRIMITIVE INITSTRY:

liy Tmomas Wilson, LLL. D.

The modern signification of primitive indmstry is the art work of primitive man, and as such is a test of his civilization. As we know of the earliest man muly by his industries, it is justifiable muler this head to romsider man in the highest antiquity. The origin of man and his first known appearance mon earth havealways beeninteresting subjects and have attracted the attention of all men thromghont all time. It is mysterions, monown ; it awakens emiosity: it exertes that portion of mans nathee which desires to trace things to thein omgin, and to find a rational and satisfactory explanation of the camse dut manner of man's appearing. It has been stmedied fiom varions points: hy biology, by palaontology, linguisties, history, psecho-phys
 which the history of man can be studied, hot they are all modern. The aneients knew mothing relating to the antiquity of man.

I ntil the times of Copernious and dablilen it was believed that the farth was the center of the solar system, and that the smm, mon, amd stars revolved around it. Until the time of Michaed Angelo, and Ber nard lallissy, fossil shells fomm in the eath were believed to be the fragments of stas fallen from the heavens. One hmadred and fifty or two hundred years ago the seience of geology rommenerd to be stmedied. and the formation of the earth, with its poper phace in the solat system, began to be muderstood. At the begimuing of the nineteenth "Rntury it was an aceepted thenry that mans appearanee mon earth dafed moly abont six thomsam years aso. This thenry was acerphed for want of any better: those who rejeeted it did so a priori, and not becallse they had another or juster theory to propose. In the arly part of this century, the (iovermment of lommank organizel a commis
 with the duty of investigating that comatry on the lines of their respertive seriences, in the comse of whid they rame nanon the att works of primitive man. They pursued their investigations for nigh thirty yars before the first pableation was mate, which resulted,

A saturday leature delivered in the lecture hall of the I. S. National Masemm, umber the anspices of the Anthropohoriand soriety of W:ashington.
after many disputes and much consultation, in the establishment of the I're-historic Ages of Stone, Bronze, ant Iron. This commission found varions monuments and implements, evidently of human origin and manufacture, which being molike anything helonging to the historic man of that comntry, wers devided to be the evidence of an carlier and pre-historb man. The most important of these were the Dolmen, whith was his tomb, and the stonehatchets. These discoveries were pmblished in 1836 by Thomson, arehatogist, and founder of the Prehistoric Ansemm at Copenhagen, of which he continmed rurator for fifty years. They were recognized thoughout westran Europe, and they accomted for similar monmmentsad implements which theretofore lad been unexplained, or if so, were attributed to supermatmal means: the hatchets especially being beliered to have descended from heaven in a bolt of lightning or clap of thmoter, and they were called by those names respectively. "Lightning Stone" or "Thonder Stone," and were grarded as amulets for the protertion of property against fire. This was the first stry in the diseovery ot primitive industre.

In 1859) Darwin pmblished to the world his theory on the Origin and Evolution of Species, and thas he songht to establish ant explain the antiquity of man. Gontemporaneous with this was the discovery of l'alaolithic implements by JI. Imoncher de Porthes in northem France. The plate of their original and lirst discovery was St. Achenl on the rivpr Somme, but afterwarl they were fomd in other places. Chelles, on the river Manc. near Paris, being me of the principal. The latter station gave its name to the implements, and they have since been called Chellean. So tar as can mow be asserted with confidence, these implements are the earliest made or used by man. They may have served as axes, hatrhets, or knives, spear-heads or what-not. They appear to have been a tool for every use, just as a sailor would use his jackknife if he had no other tool or weapon. They have been called in England "drift implements" beranse they were found in the river dritts or deposits. 'Their positions when thas fomd indicated for them an antiquity equal almost to the river vallors themselves, and as helonging to that geologic period called by the French geologists "Quarternary," by the English "Jleistocene." aml by American "Post-pliocene."

There was a teologic period when the waters of the earth were engaged in "arving ont the river valleys, eroding and entting them out between the blatis on either side. In that time the rivers filled the valleys from the hills, pouring down their waters with a rush and carying the greatest phantity of water to the sea. As time progressed the waters subsided more or less and the rmrent became slower and less powerful. At the close of the Pliocene and at the begimning of the Quarternary period, the samd and gravel which had before been carried out to sea, besan to be deposited here iu this bend and on that point until the deposit came to the surface of the water and formed what is now the highest terrace. 'Thus the river was narowed and the terrace became a new river bank. This process was repeated again and agaiu
until the river fimally rererad to ifs fresent bod, loaving sometimes three terraces, each ond hisher, derper, and more distant from the river than the other. These trrares may not exist on the rapid momatain streams of the Atlantic slope, but they are planly to be seen upon the longer rivers of the western slope of the Alleghenies. They are plandy manifest in the Mississippi river and its tributaries. One who has had the opportunty for inspection of these gravelly terraces, ran see at more how the material was hrought down by the water and here deposited. It is deprodent mon amomot and whocity of the wathe amd the size of the pebble whether the deposit is of the finer dobris or made nup of pebblos only. Its layers or strata are plainly marked, and the volume and rafidity of the emrent can easily low sume mise if not actually ealentated. In France amd England hones of anmals belongmg to that periorl, amimals extimet in morern times, the mammoth, aren its ancestor elephas antiquns, the thinomes merkii, the hippopotamms, the ware bear, the saber-toothed tiger, had berol eateht the the whirls of water, carried down and doposited with the pebbles. In these gravels, amd associated with these amimals, have been fommd these chipperd stone implements called chellean. If these implenments had been fond as isolated sperimens. only at few in momber, they would not be nearly so consineing as when fombl as they hate been in almost every river valley of Western Emope by the thonsamds if not the tens of thomsands. They are threre usmally of thint, probably beranse flint was tho material easiest promed and best suited to the purpose In localities where flint was not indigenous. quartzite has been used, mud there are in the [. N. National Jusemm sperimens of this material from Englaml, France, and Asia. Thry wre made altogether hy chipping, that is, by being struck with the hammer; it may hase been another pebble: and so flakes kooked off. first from one side and then from the other, until the implement was reduced to an irrowlar hot shapp edse and point. They are made sometimes of a bowlder. whether of flint or of gutartzite, and the rrust of the original pehble is shown and part left for the grip. They are of a size to be held in the hamd and haed as tools or weapons. There is no evidence that they were ever hatter, bat on the eontrany thein form is such as to render them most diffient for satisfactory hambling. An envelope of hide, grass, leaver, moss, or something similar probably served to proteret the hand. They have two or there perentiantios, which it is proper to motice, other than being ehipped and having a grip. They are always of appopriate size for hse; they are thicker in pro portion to their width than any other stone-ontting implement: they are msually ahmond-shaped, and their cotting-edge is at the point. The condhsion that the implements were of human manufatme, amd are evidence of the antignity of man, was not admitted until after murh disconsion aml investigation. Tho finst of them was fomm in 1830. M. Boncher de l'erthes soon after publishod his beliof that they were
evidence of what he ealled "Anterlelnvian Man." It was disputed, tirst, that they were not of homan mamfacture. M. Mantel, an English geologist of some eelebrity, oner read an extended paper before one of the scientific societies of London to prove they were not. The fact of their discovery was disputed, the location hat to be identified and established; and it was not until 1859 (thirteen years or more), that the conclusion as aforesaid was acrepted, and then only after the investigation of a joint committee of fifteen prominent scientists, half from England, half from France, which met on the ground and were fortunate enongh to find some specimens in sitn. Nince then the belief in the gennmeness of their evidence as high antiquity of man has been accepted by all men. It was soon after the discoveries of M. Boncher de Perthes and those of M. Lartet of the caves of southern France, that sir Joln Lubbock, noting the difference between this industry and that of the dolmens and polished stme hatchets of Demmark and other conntries, and that they all belonged to the Stone age, took upon himself the division of that age into periods, of which he named the former Palieolithie, that is, the early period, and the other the Neolithic, or the later perion of the Stone age. Thus it will be perceived that the existence of a Palacolithic period, the evidence of the oceupation of that comntry by man in a period of time earlier than the Neolithic, was as much opposed, and refuired as long a time to secme a favorable settloment as has the discoveries of Dr. Abbot of similar implements in the Trenton gravels. From France and England the new evidence concerning the antiguity of man spread to other countries, and it was found that similar implements existed in nearly erery conntry in the work. They have been found in Spain and Portugal. Mr. H. C. Mercer, a gentleman from lhiladelphia, while at Marhid during the last exposition in 1592, visited one of the gravel beds of the neighborhood, San Isadore, where these implements were said to have been found, and he discovered one in place which he declares impossible to have been other than an original deposit. He secured all evidence hy photographs, plaster casts, ete. So also of Italy. They have been found in varions localities and are to be seen in the museums of different cities. Prof. H. W. Haynes, of Boston, found the same kind of implement on the left bank of the Nile, not in the alluvial deposit, hut in an eroded gully or waterway in the original gravelly deposits. Christian missionaries to the Holy Land have fonm and reported similar implements, and they are de. posited in the musemm at Paris. Two great stations in Ilindostan were also disclosed,--one near Marlras, in sontheastern llindostan, and the other in Nerbudda, on the northwest coast. In many of these cases suel implements were deposited deep in the gravel together with the bones of extinct animals, accompamied only by their necessary débris of chips, hammers, flakes, ete: and exeept certain implements, the hammer, seraper, and leaf-shaped blade, whieh, from their nature, belonged to both priods, mothing was foumd which
had any mation with the Neolithic or polished stone periond No it has come to pasis that throughont the world, whatever differences there may have bern between the sementists as to the antiquity of man, or the locality of his original apearamere, mamer of his civilization, nse of implements (and these differmoes lave been almost intinite), nearly all of them have agreal upon the existence of this labarothic perion, and that it was anterion to the Noolithe period. It is not therefore for me to contime in this comontry a discossion of matters which belong to other comotries, and whirh have been fally investigated for years loy the scientists of those combtries and bern ancepted as settled. If the wilenco as to Palaolithio man in America be dovaloped, arguments made and insestigations reguired, it will be nothing more than what Was redulded in France and England at the time of the original diseovery; but I am not withont thr belief than it will he finally arknowledged to be thue in our comotry, as it had boren in other comontries. A series of protinent questions may hare ahrady suggented thomsolves: What is the Pakeolithic age? What are its characteristics? By what test is it to be known? Before the name Palarolithic: was given to it, indeed many times since, it was called the age of "hipped stone. It must not howerer be ronsilered that ererv stome implement belongs to the Stone age beranse it was dhipped. Onr own North Ameriman Indian, during all the time he has been known, even into the present contury, has made -indeed pre-historio man has always made-his stone arow and spearheads by chipping. The term Pabaolithio age syonomoms with chipped stone age (to be translated as the arly stone age), is to be regarded as descriptive of a "ertain stateof hmman culture. -at stage of human civili zation belonging to the antiquity of man, and as its mame indicates, one of the earliest. if not entirely thr andiest, civilization known. Some prehistoricanthronologists believe thre have leen earlier civilizations, but this conclusion is dispmed, and has mot heen generally arrepted by seientifice investigators. In this cally state of eultme primitive man amphoyed stone as the material tor all his ratting implements. He was mor acquainted with the processise of perking or grinding, and so, to retnce thesestones to a sharperge or puint, he had recomse fo chipping. This he acoomplished by pereossion with a hammer or pumblh, or a posher of some kiad. or possibly all three. With these he eould kanek off the large chips and thakes, and could pmsh and press off the smalles ones. In this way he reduced his inplement to a entting elge ow peint. The tirst epoch or period of mans civilization was charatratized hey these implements. This epoch was called liy M. de Montillet the chedram "poch, lint by M. Roinach and others, the allovial period, heranse the implements were fomd in the allowial depositson theriver valleys: while others callad the age of the mammoth.

As time progerssed man made certain improvemants of inventions and attaised a higher rulture. These epoels have bern diftionently diviled and difierently mamed; hy some they have been walled the eav-
ern period; by others the reindeer period; and M. de Mortillet made tiner distinctions to which he gave the names of localities in which the implements oceur: Solntre, Moustier, and Madaleine. These were car* erns or lock shelters, and they all represent the eavem period, with the mammoth and the reindeer the most abundant, as the representative animals. The flint implements of these epochs were changed in some degree, -the points lecome smaller, scrapers appeared; bone, horn, ivory was used; harpoons and fish-spears are found along the river banks, and there have been already discovered about 400 specimens of engraved animal bones, some of which are only ormaments while others are decorated implements, laggers, poignards, ete. It is coming to be somewhat fashonable in the Cnited States to deny the authenticity of these works of l'aleolithic art; to denomure them as firauds, decharing them to be too fine to have been the work of a savage. It is mot my purpose on this occasion to enter into any defense thereof. When ever these charges shall take proper form and appear over responsible signatmes in the scientific publications of this comutry, and be transmitted to France and England, their people. who are most interested and best acpuainted with these objeets, will be abodnantly able to make response thereto. I ntil that time, they will as I do-ignore all insimations.

It has been amomeed that now diseoverice made ley some of om local areheologists. whose namen were mentioned. had abont demolished the Talseolithic: ago in Enrope as well as in Americ:a. I dissent from this opinion, but it is not to be diseussed here. Wharn the proposition shall have heen puhtished, so that we may know exactly what is charged and what is to be combatted, then it can be twoned wer to the Emopean pre-historic experts fon them to defem their proposition, and no one will doubt their ability to do so. The secker atter knowledge may properly ask, how it ean be known that these different staces of culture surceeded ons another in the orler mamed, and why they should be elassed with the Palarolithice age, I ran only upon this oceasion state the facts which appeared satisfactory the varions investigators, withont attempting to argue or prove them. In the alluvial period, the chellean epoch, these implements have been tomm in varions parts of Europe by the ten thonsand, and always without the slightest trare of the association with implements of polished stone. A single locality, it is agreed, would be little or wo valur, but when it romes to be repeated hy tho seow of times in localities widely separated, belonging even to different ronntries, with never an exerption, it has ben admitted as satisfactory evidence that there was a Pabaolithic age independent fom the Neolithie. That it was earlier than the Neolithice seems to lee established. The position in which the implements have been fomm, indicating their srat age: the contitions moder which they hase been fommd. deep) in the malisturbed gravels ot the river valleys, and assoriated with the hones of extinct animals, which, in the
opinion of the incestigating eneogists. proves that they belongel to a prior weong gid period, the (haternary, or Post-pliocene.

The progressivesteps of rulture and invantion mentioned as belong. ing to the eaverol period sem to have been satisfactorily establisherl by investigation made in the wrerns themselves, where in momeroms instames the gradual filling up) of the cavern has jeserver the eardier orempation at the bottom, while the subsequent orerpations have takers their respertior plates, "arlh one abowe the other in thein orders of time. For example, at Krnts Cavern, near Torduay, England, the var (whs invostigated with all possibld cate during a period of twelve ox thirtren yans, in whirh as maty thomsam dollars were expended, moder the dirertion of a committee apponted by the British Association, where the strata of these eary wapations were eovered hy layers of stalagmite spread over what was then the entire surface, separating and sealing it hermetially from subserpent ocempation. Under it, in various parts of the wavern, were fombl these same chipped thant inmpe ments. which have bren denominated chellean, and bryond the chips and flakes possihly the hammersincident newessary for thein fabrioation. No other trame of hmman indnstr? was fomm. In the Gionte de llacard, in southwestern France, the same super-position was fonmf, which gave satistartory evidence of this suscession of haman oreapation amb of the arcompanying "hanges and improvenments of laman entrure. The strata contaning Nowlithie and Jalarolithic objeots are distinotly marked and
 matle mp (hietly of hoken stoms thom the roof of the cavern, sereral inches in thieknesis. The earmo of langar. Hante gives the same rridence and is eran more positive for the storile stratmo is alont + feet Z3inches in thickness. In the firotte de la Vache the stalagmitie stratmon botween the I'alarolithic and Neolithio inthstries is about 1s inches
 When M. Bould was ealled from l'aris to visit the prehistorie station

 drawing. engrated on home, of the reindere bowsing. X. Tombe has just published a report of his inventigations in the Somelles atremes des l/issions, tom" In, and he shows (pl, B), the drawing whiell he has made of the debris left on the side of the earern showing the superposed and comsermenty smeressive orompations and romesponlay imporements in hamam imvention and lmman colture.
 Europe, the only place where it has been sfadial. awe marked bey dit-

 at the chose of the Pleistocene ase rembered it reve imporobable that

The ciave men were in any way represented by the Neolithice tribes who we the first to appear in pre-historic Emope. The former possessed $n 0$ domestic animals, just as the latter are not known to have been acquainted with any of the extinct species, with the exception of the Irish Elk. The former lived as hunters, unaided by the dog, in Britain, while it was part of the rontinent; the latter appear as farmers and herdsmen after it became an island. Their states of enltme were wholly different. We might expect on it priori grounds that there would be an overlap, and that the former would have been absorbed into the mass of the new-comers. There is however no evidence of this.

From the facts at present before ns, we may conclude that they belong to two races of men, living in Emope in successive times, :mol separated fiom each other ly an interval sntficiently great to allow of the above-mentioned changes taking place in the physical conditions of Britain."

Sir John Evans, in "Ancient Stone Implements of Great Britanin," page 618, says:
"There appears in Britain to have been a complete gap between the river dritt and surface-stone periods (that is to say, the Palacolithir and Neolithic periods); so far as any intermediate forms of implements are concerned; and here at least, the race of men who fabricated the latest of the Palaolithic: implements may fiave, and in all probability had, disappeaced at an epoch remote from that when the country was again ocrupler by those who not only chipped out but polished their tlint tools, and who were moreover associated with a mammalian faum far nearer resembling that of the present day than that of the Quatenary times."
M. Gabriel de Mortillet, in "Le I'rehistorique," page 479, disenssing the difference between the Palarolithic and Neolithic: periods, says the former belonged to the Quaternary geologie period while the latter belongs to the present or actual periorls. "Between these two epochs there wre differenres everywhere; there exists a veritable revolntion." And he puts these differenes, one against the other, in the form of a table.

In the later epoch of the Palarolithic period the climate was eold and dry with extreme temperatures; while in the Neolithie period the elimate was tempreate and miform.

In the Paladithir periorl were living many grat fossil animals like the eave bear, the giant beaver, and, most plentifnl of all, the mammoth: in the Neolithin period all these were extinct. Ont of is wellascertaned species living in the Palaolithic period in France, and England, only 31 were contimed in the Neolithic period.

Of the animals living in the center of Europe on the plains, and associated with man in the Paleolithie period, no less than 18 were coldloving. In the Neolithic period, 13 of them, such as the reindeer, antelope, musk ox, blue fox and white bear, emigrated to cold countmes by latitude; while tive, the chamois, marmot, wild goat, and others have emigrated to cold comntries by altitude, going up the monntans.

In the Palarolithic period there were no domestic animals. In the Neolithar period they were abmalant.

In the Pabablatice periond the popmation was nomadir; they were hanters and fishers. hut not agrioulturists. In the Neolithic: period the population was sedentary, and agrionlture was well developed.

In the Pabeolithie period there was pratioally no pottery in Franee and Englamd; in Belgimm there have been two foralitios where pottery has brent fomme

In the Palaolithie period there ware mo monmments of burials, and apparently ne respert for the dow. In the Neolithe period there were many and great mommonts, dolmens, amd menhits of grat size, with elaborate burials.

There is in the Pabarolithe perionl mothing to show that man had any idea of religion or a finture state: in the Neolithis perionl these sentiments and ideas were well devoloped.

In the l'alaenlithic perion man has an artistio sentiment: in the Neolithie period he apparrently ham nome.

So it appears that the revolation and rontrast hetwern the two periods is at one physical and indestrial, natmal and social. The chatses in climate stogest "hanges of equal importance in mograplo and geor graphy which must have been arompanied by protound geologit modilication. All these changes in man's divilization, his smrommlings and enviromments. tow place hetween the Pabeolithic and the Neolithic periods, and this in aldition to the marked elange in his imdnstry fiom chipperl to polished stome. Thas it will be seen that the batter difference is lout slight, amd only ond onl of a dozan, which equalled if it did not wareerl it in importanore and reffert.

Nir John Evans, in "Ancient Stom" Implements ot (imeat Britain," page (618, says:
"The antiquity then that must be assigned to the implements in the highest beds of river dritt may bereresented (1) hy the preriod requisite for the excavation of the valleys to their present depth; plas (z) the perion neressary for the dying ont and immigration of a large part of the quarternary of post-glacial lamat, and the coming on of the prehistoria: phas (: $:=$ the polshed stome period ; plas (1) the bronze, iron, and historie periods, whioh there latter in this combtry orenpy a spare of probably mot less than there thonsablyans. A single erpation involving so many unkuown quatities is, as alrandy observed, not susceptible ol solntion."

1 resime the discossion of the rexistemer of the labarolithir age in the Uuited states. There hare been foume in the 'romen sravels, numbers of puldy chipped implements of argillite which have been called labaolithir. They were miginally diseovered by Dr. Abhott, who resided at Trenton and who has beron interested in pre-historid areharology, and was employed by the I'eabody Muselm, and who for many years has been dewoted to the phrsuit of widence ol early man in the Delaware Valley. He is now chrator of the moserm of areheology in H. Mis. 11t_ \quad :
the University of Pennsylvania. 1n. Abbott, like 11. Boucher de Perthes. Was subjerted to much investigation and had to stand muder the light of fieve eriticism from the opponents of his theory. In. Abbott's character or ability as an arelarologist, a naturalist, or an observer, is not at issme at the present moment. No person can now deny the fact that he believes that he has fond a momber of these implements deeply inbedded in the original grave deposit of the Delaware River at Trenton; the implements fomm at 'Trenton and otherwheres in the United States have the same gendral appearane of those heretotore shown from uther parts of the world. [n aldition to my own testimony on this subject, I may add the testimony of M. Bonle, a noted French geologist and student of pre-historic man, on the same sulbject, which has

"1)uring my royage in the Lnited States in 18!1, on the oceasion of the lnternational Congress of Grokgy, at Wrashington, I was able to see some of the chipped stones of Trenton, in the collection of prehistorie archaology at the Smithsmian Institutionsand in the l'eaborty Mnsemm. I conld there study at leisme the collections of Dr. Abbott. That which struck me most forcibly was the similitude, I may say almost identity, of the form of the Amerian instruments with the European paleolithie implement. It Trenton, as at Amiens, Paris,
 with a certain number of "hips and mormed pierex, also a mumber of finishod pieces showing "arrfinl work, and which "omld not be 'rejects' of tabrieation. The most carefin amb most eompetent areharologist of our country will lo mabla 10 distingush otherwise than by the mature of the material the difference between the instrments of Trenton (as well as of ofter parts of the Thited States) fiom the pre-historic implements of Emope. There is, in this fat, an aremment in favor of the antiquity of these sperimens which will inpores pre-historice archanlogists of expwience."

The fact that other exentromen entitled to erpal credit for aceuracy as observens have songht at Trenton tor these implements in 1893 and faiked to fimd amy, is no evidence that In'. Nboot may not have found them there form !sidito 1890. The gravel at Trenton seads over and fills up a samar-like defression abont theremiles in diameter, and from :3.5 to to feat in depth in the center. That these gentlemen shond have songht with all care aml (lensuess these gravels in the great sewer which has been lately lan throngh the city of Trenton near the river, amd have fomm nome of these implements, is no evidence that Dra Abbott may loot have fomd them amomg the ateres of gravels 10 to 30 or mone feet in thicknosis that have bern dhes ont a mile away from the aforesaid sewer hy the Pemsylvana Raihoml, hming a perion of ten on tifteen years past, to ubtan gravel for its road ballast.

Illustrafive of my proposition, I may cite the lepot of Chelles, near Paris, where thomsamb of these implements have been fomd. It is an immense gravel lank, much the same as at Trenton, 20 or 30 feet thick, extending wer an area of a homded or more aces in the valley of the liver Marne. It is located on a railnoad, and was used as was the
gravelat Trentom, having been dhg ont and transported as rahoad ballast. I visited this station on the examsion of the International l're-his torice Congress at Paris in lis? , and there listened to an arrimonions disenssion as to the precise loeality in which the respertive kinds of implement had been fommb, as for example what kinds were fommat the top, and what kind at the bottom of the deposit: and it was there made apparent notwithstanding that ther ton thousand implements obtaned from that depot, the prineipal disputants, the leaders of opposing sehools, those who had deroted their utmost time, care, and attention, to the insestigation of these implemonts amd the theory of antiguity and civilization to be hased thereon, mome of them hat ever found these implemunts in place. N. Bonle, himself a noted geologist, a ${ }^{\prime}$ lose observer. aml an ardent investigator, interested in this branch of stmaty, makes the same dealation in the last mumber of the a nthoopologist. As it is made since his visit to the I nited States, and bear. ing upon this disenssion, I mas be permitted to quote his opinion as to the want of value in the objeetion male that other persons than Ur. Abbott have not fimmel these implements when they songht them in the Trenton erarols. M. lanle silys, in the last mmber of lefuthropologie,
 last international geologio rongress:
". I did not myself timl any of these chipped stome implements dming mo exemsion to the wran pit at Trenton, hot there is amilar locality in the neighhorhood of l'aris, wary rich in implements-in Chelles for example-where I have been manytimes andmys searehes have abrays been infinetmons: lat the deposit of elavel presthts entrely the same topographe and stratigraphie disposition ol the balaenlithir alluvimu of the north of F'ance and sonth of Englamel.

This poposition will be lester umderstood when the eonditions are once explained. The depent at 'helles is in the neighborhood of 100 aress area, 11,000 spluare fert to all arre, 100 times that to 100 ares in
 times that momber, s's.000,000 ruhbe feet of gravel. I have satid 1,000 implements; there may have been 10,000 surh implements found at

 times they are bunched so that one may find a dozen in a singlo poeket. or a humbeal in a single day, but this only deereases the whaces of finding them within any sperifed time. This explains M. Bonless statement that a man may stay there and watrh the diggors for a week withont findnge a single implement-this tow in a gravel bank which fimmished 10,000 implements. I do mot give these figmes as exact. They are only to serve as illostations. I do not know that there were
 When I estimate its depth at 20 form and I ouly astimato 10,000 implements as having been fonnd there.
M. de:Mortillet has made a similar estimate with regard to St. Achenl,
that other ereat depot of Pakeolithic implements whirh furnished a greater mmber probably than any other in the work: and he has shown that the dissemination of the implements throngh these gravels rendered it very molikely that any person could find an implement in any given length of time. On the other hand, Dr. ('apitan discovered a deposit in the sonthrestern part of France during the summer of $18: 2$, of which hesaid he found an implement or a bit of worked flint every five mimutes. It was quite different from this in the workshop of Bois de Rocher in Brittany, diseovered hy MM. Mieault and Fornier. That wats a workshop, and the implements were fomm all together and in a few days on homs' excavation. Consider the comparative scarcity of these implements in the Ohelles and St. Achenl gravel banks, and the comparative seareity of these implements in the gravel deposits at Trenton will not appear strange, non will the fact that gentlemen spend weeks or "vell months in the searel through these gravels in what proved a vain attempt to find Palablithic implements be evidence against their existence. Imagine the gravel bank adjoining the Pennsylvania Railroad depot at Trenton, extending by estimate, eastward half a mile, a quarter of a mile in width, the gravel 20 or even 30 feet in thickness, dug down and thrown into eans upon temporary tracks, which are moved each day or each week close into the bank-imagine, I say, this great mass of gravel, amomentig to millions of cubic feet, with the number of Palieolithic implements said to hava heen fomd by Dr. Al)bott, I eare not whether we take the smallest mmber, 40 , or the largest number 400 or 500 , scatter them throngh this pile of gravel, and then consider what would be the chame of a persou finding one of these, I rare not what his ability as an obserer, how ubiguitoms he was, nor with what attention and zeal he followed the shovel of the diggers and inspected the fine gravel they threw ont. I only repeat the sole conclusion intended ly this line of argument-that it is no proof these implements do not exist in these gravels that other gentlemen have sought for and failed to timd them: while Inr. Abbott, who has lived in the neighborhood all his life, has been engaged in the seareh for twenty years or more, has invoked the a id and enlisted the co-operation of his neighbors, the diggers, and the public in general, and during all that time has found only the mombur sngested, I ware not whether it be 40 or 400 . No attempt has beell made by anyone to imprach the veracity of Dr. Abbott in this matter. We most areept his statement as to the finding of the implements. The eomelasions to be drawn from his facts are fair subjests for argument, and I would not pretend because we must follow Dr. Abbott's facts, that therefore we must necessurily adopt his conclusions.

It may be said that in this matter Dr. Abbott has been deceived; that the implements to which he has attribated this antiquity lave been fabricated, imposed unon him as genuine, when they might have been made by the workmen with incent to deceive. This has oceurred in
other places. M. Boncher de Perthes himself was sadly doweded in sereral cases. One prof of the antinity of stome implements, of of some of them, is by the pretime or wathering shown on the exposent surface. Any of the agillite implements from the Trenton gravels may be broken and thas show the difterener of color between the inside and the omiside. On the omtside it in a dall glays, on the inside it is shining black: the back color is the matural appearame of the stome; this is shown when first chippedt the gray apparance is firom the weathering. and it has beem made hy long exposime.

Evidences of the primitive imbustry of man haw heen found in many other places of the United States besiders Trenton. At Loveland and Madisom. Ohio. My Wr. Met\%: at Newemmersown, Ohio, by Mr. Mills: at Fedoral Iml. Wy Dr: Cressim. and at Little Falls, Mimm, by Miss Bablitt. All of these localities have beemattacked in late publieations by dishelievers in the existeme of Pateolithic Man. In order that I may be fair in argment, and arept filly the fants areorling as the are fomb by the obsenver, it must be moneden that the evidence of palarolithic oermation at Little Falls has heen sumessfully assailed by the investigations of last summer made there loy Mr. Holmes. I have upon another oceasion complimented Mr. Holmes mon tho system, thormghess of his investigations there: and his comolnsions, so far as they are based mon those investigations, must stamb mil some nubsequent investigator, going wer the same gromm, shall change the facts. I may hame disisureed with Mr. Ihohmes in his comelnsioms. but I comerde his facts minst staml.
some years agol mand an apmeal in the form of a dirular from the Smithsonian Institution, asking for infomation, which was seatemend thomghont the loniter states, comerning these objecto, and 1 are eompanied this with ents ant mataving of simila obpets, some from Europe ath others from Amerial I reereved responses fom neanly every State in the lonited stater, and many states responded with great mombers. I do mot propose to forlow ther result of this investigation mall its detals, hut to sily that there was reperted to the Smithemian Institution a later mumber of implements similar in wery resand tor thes fomed in the grave at Trenton and other pares, and th thes fiom Western Europe. Many of these reportal were not Pataonithia-did not resemble Paboolithice implaments-many of them wer lout difis and vald thake-some ohjerts were man ifestly Neolithic; but onit all these, still there was a comsideralle num-
 stater, which womld comernom in "rey particular (save in some "ases material), with thase from Linsope. These identioal implements, had they bean finnd in westron Enrome and presentel hefor any committee of the best ardheologists, they would be promomed labland lithice. In this comeredion. I refer again to the rantation made a little time agn from M. Bomle, wherein le states the same thing. Bint these
implements were not found in Emone, and their valne as evidence of Pre-historic Man in the United States has bean dispmed.

Yon will ask what is my conclusion with regird to this matter. I conclude that this similarity of such vast numbers of these implements from two continents and representmg widely separated peoples is, as M. Bonle has said, "an argument in faror of their antiquity which will greatly impress pre historic arehaologists ot experience." It is to be taken as serions evidence in favor of Palaolithic Man in America, as it has proved him to have existed in Enome. But it is only a single step in the ladder of prehistoric seienor; and is to be treated more as a working loypothesis ralculated to direct attention and stimulateinvestigation. My ronrlusion is not anmonnced dogmatically, nor will it be defended at all hazards. It is expressed under all reserve, and subject tofuture discoveries. It will haveserved a good purpose if it shall promote the search of the river valleys for these implements, canse them to be gathered and saved as of value to seience, to note well their associations with other snbjerts to be noted. and to disoover their material and if possible the original deposit and the place of their fabrication. By these means we may hope to arrive at the truth concerning these implements and their relation to Pre-historic Man.

By HENRI HaLEA,

In Jannary, 1889, I received some ancient pottery from a friond in New Mexier. I was surprised to fiml that solittle was k!own of this deseription of ware among rollertors. Not a single piere was serall in the New Vork musmons. I met Prof. Frealerick Starl in the Masemu of Natural History, who took much interest in the ware. Lieferming to several works on Ameriean antigution I fornd framents of this ware illustrated in John R. Bantatt's personal marative as bomblary rom-
 found in the Gila Valley. Althongh so mans fragmenta had bera fonnd, the whole ware had been seddom seen. All tha intomation I conld get about it was very meager. That it was fomd in the valleys and deep in the gromma, arompanied by skeledons. alse that moch was broken in gettine it omt. Was all I romld hear about it. With these fow hints I dotermined to aro to New. Mexion to abserve for maselt, and sam information regatime this permbia fottry. Iy ronte was hy

 dila rivers.

 indicate rums is a few loose stomes on the smfare of the gromat.
 mudistmbed. In most rases I fomd them where flat antoms unemed into little valleys, witlo a books, or, more oftem. What had omoe been one, lom now a dry gully. latworen the allavial levels of these water combes and the foot of the mesas or momatains, there is gemerally a slightly rising swombl, which aphears lo fre out of danger of toods: these were the solectod spots for holding. The earth is mot as rich as the lower levels, and is composed of clay, a little sand, and some broken stome, with a growth in patehes, of pimon pince, jumipers, a speceies of small walnut, and, in moist plates, very large, tall pines, variotios of "arti and yurcas.

I found in some rooms very large old dead juipurs that were larger than the suromoling trees. Some of the ruins are miles firom any water. They are seattered at short intervals of a hombed yards to a mile or more apart in different direetions, as the gromd lies favorable, and at times on higher rising gromd. From these comblions it would appear that the population was at one time monerons in these valles. I found some extensive ruins on a banch canyon a long distance fiom water. The ruins 1 excavated in were dio fert, plainly traceable, with appearanes of extembing 100 feet fimthere by 117 feet. The 60 feet was divided into the widthis of there reoms-the first 16 by 2 of feet, the seemend 18 by 24 , and the thind 1.5 by 18 , which, with the width of walls \because to 3 feet, made the distamee. There were there other romms which I could trare, adjoining the ents of these rooms, as seen in Fig. 1 , and a small middle room on be feet, but the walls were mot acomately lad bare. The outside walls were bad up with roughly hewed stone, worked into squares of about $1+$ inchess and about 3 inches thick. Some of the partition walls were lad with mond bowdderstomes. The watls were lad inclay cement smoothly plastered inside: most of the lonse stome on the surface was ment stone. Therlepth of walls was from it tos feet, with (lay floors at the bottom of roms. In rome 16 by 20 , on the outside wall, were two openings, one apparently ach for dow and window ; they wereblocked up with rongh stone laid withont cement. This would make it apperar that the floors of the roms were once almout the level of the carth outside. Below these forms, am close to or monder the fommations, were skeletons of adults. Dut so far dermposed that only the large bomes and skulls were wencrally thateable very few of these can be exhmmen whole. Nearly all the teeth are wey somd. I fomm in one room two skeletons in a dombed position, partially under the fommdations, as shown in Fig. 关. There was a hearth made of four lomg pirces of squaredressed stome forming the frame, fillen up with cement in the middle. ITuler this hearth Ifome the skeletoms of two chidren. There were pots about the hads of the adulta. I nder the whin of one 1 found eleven shell rings and a turpoise bead. Ali the skeletons are not arompanied with juts; some have nothing wifl them, while others have several pieers; some eontain bad ne kianes, ehared rom, beans, pmonkin seds, fiagments of wovell fabriss, comd, haids, and hmman hair, ette. Asw bome implements in a perfed state of preservalion are fimm near the hman bomes that ane so deromposed. The pottry eom siste of sereral kinds; thereare the coil pots, as are found in momeds and eliff dwellings, hat many are of a mush tiner watre. A reel, smooth, gloses ware without ornamentation, all of a botte or vase form. But the ehief interest emters in the white of rather light gray and black
 form (which is carions.) and the style of figure in dreenating. much of which is like steps in colless variety of changes, comere, and limes in a maze-like intricary in some, with geometrical lignes in others, hat the
egually well-distributed balane of color and forms mark this peculat pottery. It is of a rather soft majolica-like material in body, whike the glazed surface is hamd and brittle, but it is thin and light in weiglit. Another ware, red and black, is fomm in the form of bowls and pitchers; this differs somewhat from the white and blark, and is very fracile.

I have seen no whole specimens, but some are easily repaired and become harder after being exposed to the air for a time. A great many lowhs the foumd of a drab or yellowish-browin color, smooth inside, with plumbago worknd into the day and made very smooth. These are often fomblbackromb ontside fiom fire, and inside a hack charcoal-like dust. Thase ware probably cooking utensils. Stone implements are quite

2
等禺

11. Min. 111 (i.)

骨

7
愿
余 , 둔

\$

plentiful,-metatas, montars, axes, hammers, and most of the usual artides of the kind, exept spear-heads. or war implements, which I did notsere. The littleohsidian arow points. very fine and small, are fomed all thromgh the soil: I saw sommerme smoking pipes, atul two lengths

of what appeared to be water pipes: also a bell of bronze similar to frix. H. Sixth Ammal Report of Burean of Lthmology, but having the shoml-
 I also saw some finely carved small figmes of animals mot over an inch

polished on one or more sides. A few were of black, fine-grained stone, which the Mexicans called moist stones, for after holding them in the warm hand and using a little friction they feel moist. In somm of the rooms chared parts of beams of pine were fonnd; all the raw wood hat andonbtedly rotted away. Many wre the speculations of the inhabitants I heard expressed about the race of people, and why they left, none of which gave any solution to the difticulty. It is evident that ouly a very few bonlies were buried under the houses, or they would be much more numerons after a long contimed ocentation. It seems a great mystery how these huldings became filled up and have fragments of pottery through the earth from top to bottom. The earth in most localities is quite hard, and can be removed only by a piek-ax. If an archarologist had an entire building cleared ont and laid bare inside and out, a better solntion might be arrived at.

RELIC'S OF AN INDIAN HUNTING GROHNI),

BY ATRRUS WANNER.

Fork Comonty is assumed to have herd only nerasionally visited by Indians and reputed to be comparatively barmof of reme. In a re"ently puldished history of the county it is satid that-

- It [York Comoty | Was, as it appears from the Tudian complaints, prearding its sattloment, a honting gromal, or on the way to hnnting grommds, nearly all worls, and daimme by the Indians to have beren ex pressly reserved for them by William I'onn. The ariginal settlers here foum immenso tracts of land entirely demmed of timber hy the ammal tires kimalled hy the ladians tor the purpose of imporwing their lantingerounds."

Such a statement ancorning the ladian weropations. withont ralling

 settlements in the torritery.

Desimons of learming mome about these aboriwime settements, the
 fully wareh the gromad. The objert was to asiortain just what evidemes of Imdian orempation eond yot he tomad sterem orer the tields, many of which have been colltivated for more than a homded rears. That thr searel was wrll rewarled is powell by themmber and valioty aft sperimerns colloreded.
 breadth of two miles, amd alength of six. with tha city of Yow, (York
 forks of the ereek, above flor "ity, to two high hills, bef wern which the (ordorms flows. Tha surdace of the land is malalatory and well watered ly momerous rums. It is mon a thirkly sottled amd hiohly coltivaterl part of the comaty: All the reliss deseribed in this paper hava hera

 in vanious tields.

Leaf-shetued implemont.-- Whether the specimens ilhstrated were nesed as lameleads or not is, of comse, mere specmlation. In addition to "the absence of a motrhed or stemmed base or both," by which br. Abbott separates lance from spear-heads, these specimens are of comparatively great thickness. The acempanying illustrations will more clearly serve to point ont the difference between lance-heads and spearheads, whether such differences are enongh to warmat the inference that they were used for different purposes or not.

JANCD-HEAM, - (Half-size.)

(1) (iray compact sumdstone: Length, $4 \frac{1}{2}$ inches; width, $1 \frac{5}{8}$ ins. ; thickness, 妾 ins.

(3) Suart\%, sray: Length. By inches; width, 15 inches; thicknss, $\frac{1}{2}$ inch.
(4) (puart\% gray: Thirkness. ! inch.

Sperer-hemb.-All of the specimens ilhstrated muder this head have bases so fashiomerl as to provide for the attachment of a shaft. Whilst the preceding bearno evidrnces of having heenso wronght. Figs. 9, 10. 11, 12, and 13 may have heen used fon "tishing spears." Itamyate, owing to their shape, they womld haseansworat that phapose better than any of the other stone binplements we have fombl. The shallow Codorns, with its generally clear water, along the banks of which all of these slender. spear heads were fomm, must have been a good stream in whirh to spear fish. Only one point, Fig. 1ٍ. is represented, though we have a number of them, to which we reformed when outlining the supposed shape of the basal pieces- $i, 9,10,11$, amt 13 . Figs. ! and 11 bear some resemblame to perforators, hat their appearance and better finish seem to indieate a different use. Fig. 10 has on each side, just below the moteh, a row of prominent teeth, a peenliar variation of the usual form. Other specimens hot desuribed are like the ones illustrated. All those described were fomed in different fields.

Arook-hededs.-Several humdred armowheads have been picked up within this area. They seem to he generally distributed over the fields adjacent to the Codoms and along all the vaious rumsemptying into the same. There are five or six localitics where more fragments and more whole speeimens hase been found than elsewhere; hat in several of these the washing away of the soil and the conseduent exposure of the stomes account for the greater "find."

SPEAK-HFA!N:-(Half-size.)

Thesperimens selected for illustration are samples of the best wronght arrow-heads, sheming variety in shape. They are firs superion in workmanship to the average arow-head. Before ome such fine sperimen can be picked up a dozen or mome primitive ones will be fomm.

The minerals of which they are made are linestone, slate, quartzite,
ordinary whitequartz, a felsitic rock, jasper, agate, and chert. The first four of these substances occur within the region: the others do not. Were the arrow-heads of the other materials mate here, or were they brought here already made from elsewhere? Wre shall refer to that question under the head of "Stoneworkers" Chins."

Arrow-heals.-(Full size.)

(15) Felsilie rock, gray: Length, $2 \overline{3}$ inches; width, greatest, $\frac{7}{8}$ ins, thickuess. $\frac{8}{8}$ in.
(16) Folsitic rock, gray: Length, el $\frac{1}{2}$ unches: width, $1 \frac{2}{8}$ inches; thickness, $\frac{8}{8}$ inch.
(17)

18

19

20

21

(18) Folsitie rock: Length, $1 \frac{1}{5}$ inches; thiekness, $\frac{15}{6}$ inch: width, $\frac{1}{2}$ inch.
(19) Quart\%, milky: Langth, 18 inches; width, greatest, $\frac{5}{8}$ inch; thickness, $\frac{1}{4}$ inch.
(20) ('hert: Length, $1 \frac{8}{1}$ juches; witth, 务inch; thickness, $\frac{1}{3}$ inch.
(21) Quartz, milky: Length, ——; wilth, 1 inch; thickness, $\frac{8}{8}$ iuch.

 (2.3) daspre: lenerth, 17 inches; width, 量inch; thickness, $\frac{1}{4}$ ineh.

(30) Felsitie rock: Langth, imeh; width, : inch; thickmess, imeh.

(3:) Quartz: Length, \bar{z} inch: wilth, 8 inch; thirkness, $\frac{1}{4}$ inch.

Khines-Fig. 3π is a curved aud somewhat angular piece of yellow and red jasper. Along its entire concave margin is a serated cutting edge. It looks as though it had been originally a part we some larger implement and had been rudely chipped after detachment to its present shape.
KNUES.-(Halfsize.)

(34) Felsitic rock, gray: Length. द̈ inches; width, $1 \frac{1}{2}$ inches; thiekness. $\frac{8}{4}$ ineh.
(35) Jasper, yellow: Length, 38 inches; wirth, - inch; thiekness, $\frac{1}{y}$ inch.
(36) Felsitic rock, gray: Length, $2 \frac{1}{2}$ inches; width, ${ }_{8}^{6}$ inch; thickness, 冬 inch.
(37) Felsitic rock, gray: Thickness, $\frac{1}{2}$ inch.

The base of Fig. :3t is hroad, concave, and not ehipped. The rest of its margin is chipped to a cutting edge. Fig. 36 is a thake of felsitie rook with a somewhat blunt, serated edge. Fig. 34 has been chipped to a remarkably good edge, with the exeeption of the hasal end and a small flat area at the eomvex margin. By plating the forefinger on this flat surface and the thomb on the side a firm grip can be had which will emable one to make exeellent nse of the entire concave erge. This edge is deridedly the better of the two. We have nothing else from liere like this specimen, but a knifo of "hert, from Ohio, in our collection resembles it.

Perforutors.-One of these perforators, Fig. 11, of felsitie roek bears mumistakable evidences of having been used to drill holes. The point is worn smooth and more or less even, whilst above it, on both sides, the serrated edges are sharp and angular. Figs. 35 and 39 have broad bases and can be easily and firmly held between the thamb and finger. The points are cylindrical and stont. Figs. 40 aud 42 might have answered very well for several purposes. Their shape is an excellent

One for drilling holes, fot both are su well wronght as forsiggest that
 are the omly whe implements of the kime that we hate fomm in this
 bot of comse deride whether they bemos to dilling stomes or not.
PGiFOBATORS-(Full sizo.)

(38) Quartz: Length, is inches; width, groatest, 1 inch; thirkness, inch.

(40) Felsitic rock, gray: lumeth, ㄹ inches; width, : inch; thioknoss, finch.
(11) Folsitia rock, bleo: Lengtl $1 \frac{1}{2}$ inches; width, $\frac{1}{2}$ incll; thickncess, incho

Celts-KFigs. 43 and 44 are sommeh alike in general ontline as to justily the opinion that both wrere lesignated for the same purpose. Neither is perked or sharpened, but both are ehipped. Fig.. $4: 3$ is mate of quatzite and is muthy fashiomed. The other, of state, is mumb more symmetrixal. The matrons of both are vary hant. Either if shapened would serve
 out speculating as to what they were intembed for, we have calleal tham (hipped colts. Fig. 4. 5^{*}, of shate, is "hipped and shanpened along the lower margin. Fig. If, manle of trap, is smontloner its entire surfore, and pessesses a moderately shaty edse. There is 10 evideme of ehipe
 to its present shape by rubbing. Nrarly all the relts from har Singue
hama are chipped and pecked, or if smooth are simply water-worn stones that have been sharpened. The fact that it is made of a very hard and tongh rock makes it all the more difficult to understand why this celt should have been laboriously rubbed to its present shape, and

(43) Felsitic rock, gray; Length, 5 ins. ; width, graatest, 2.8 ins. ; thickness, 1 in.
(44) Slate, brown: Length, $4 \frac{3}{4}$ inches; wilth, $2 \frac{3}{8}$ inches; thickness, $\frac{8}{4}$ inch. PECKED, ()R (iROUND.

(45) Slate: Lengtl, $4 \frac{1}{2}$ inches; width, $1 \frac{7}{8}$ inches; thickness, $\frac{8}{4}$ inch.
(46) Trap: Length, 3 inches; wirlth $1 \frac{1}{2}$ inches; thickness, $\frac{1}{2}$ inch.
also suggests that this specimen may have been used to dig in the ground and that the striac on its surface may have resulted from some such use.

Ares.-The axes as a male are small, with a groove extomdmg aromad the stome. Most of those that eome from the suspumbana, near the month of the Codoms, where mmbers are fomm, have ome magrooved side. Fully three ont of arery fonr are thas fashoned. Noreover, the

$$
\therefore \text { NE: - } \| \text { litif-sizr. }
$$

(47) Trap: Length, is inches; widh.

(tx) Trap: Length, 7_{1}^{2} inches; width, sreatest, 1 inches; thickness, 2 inches.

srowe often extends obliquely aross the stone, yet I have not seen a single ax from this region with an obligue groove, and only one (in the eollertion of Gasper Lonks) that was mot grooved entirely aromed the stone. Now, why should the predominating trpe of a region distant only about ten miles, and within easy acoess, be represented here
by but a single specimen? The most plansible inference is that the two types were intended for different purposen; probally the axes fonnd here were carried about for general use, whilst the heavier ones form the Susquelanna, often differently grooved, as stated, were designed for some special use as boat-hilding. One of the axes, weighing only one pound (Fig .4 4), has two parallel grooves extending entirely aromd. Of comse, it is hard to assign the reason for two grooves in such a light stome, when other axes weighing much more, as Fig. 48, are provided with only one. This ax is slightly battered at the bark, and has also a small picce out of one end of the monlerately sharp edge. There is one noticeable difference between the edge of this specimen and that of Fig. 48. Fig. 47 bears transverse strice on its smonth sides near the edge, which evidently weremade in sharpening it, whilst Fig. 4s is marked with rather coarse longitudinal strie. The latter looks very much as though it had been used as an agricultwal implement and had been seratched throngh such use. It has a blunt edge, and, being of tongh and hard material and of a pointed shape, would have made a good digging tool. Fig. 49 is made of quart\%ite. It is well wronght, and with the exception of a slightly broken back, is without a flaw. We were not able to collect many axes, and we do not know of more than 14 from the region in question. Of these, the illustrated ones are the best specimens. The number found seems comparatively large when the circumstances are considered. Axes, being conspicuons objects, are amongst the first specimens picked up. And in a region cultivated for more than a hundred years, such as this, it is quite probable that many of them were found and carried away. Moreover, it is the enstom of our farmers to collect the stones from the fields and throw them into low and waste places. Several of the axes were picked mp, in the public road, where they had been thrown into mind holes along with other stones from the fields. Along the Snsquehama it is not an musinal thing for the fishermen to use these axes, on aceome of their convenient grooves, as sinkers for their fish nets! Of course, whenever the strings with which they are tied break, which often happens, the axes will be left anongst the waterworn stones at the bottom of the river.

Hammers.-Fig. 50 is a water-worn and smooth sandstone. It has beeln slightly ronghened on each side, near the center, by pecking. The marginal area is less smonth than the rest of the surface, having been evidently ronghened, but not battered by use. The evidences of its use by the Indians, whilst mmistakable, are very slight, and show that this particular stome was selected because it maturally possessed the desired shape. No doubt other worn pebbles were used as picked ul) by the Indians; at any rate, we oerasionally find a spherical stone with a hattered margin that looks exactly like a much-used hammer, only there are no pits pecked into it.
 ings stone. The margin is quite romgl amd indanted fiom its use as a hammer-a nse also indicated ley the presenerof a shallow pit mear the renter of one side. Almost the antire surfare of onm side, the ome shown in the illustration, is very smooth. It leans ummistakable evidence of having bern so worn atter the pit had bern perked. The stome is
HAMMy:s.-(Half-size.)

hemi spherieal, and when held in the hand is fomed to be well adapted for polishing purposes-a nse also likely tohave beenstogested by the sitit of the stone. It is a type common alomethe Susprehamma. Very few hammers lave been collereded in this region.

Fig. 5 ds is water-wom oral pebble somewhat hattered at one end. Very romgh notrhes have lean perked into the opposite sides to provide for the aftadhment of a hamdle, indident to some subsequent nse of the stome. It was fomd half a mile from the Codorns, near a spmong in a ticld plentitully strewn with "chips." Was it a "pogga-mogem" stone?

Pestles.-Even fragments of pestles are searce. I know of only one, Fig. 53, that has been fomd whole. It may not he ont of place to state here the origin of such specimens, as given by whe not acenstomed to collect relics. A very smooth and cylindrical section, abont two inches long, of a pestle was shown to a farmer, near whose honse it had been found. He immediately pronomaced it a thonderbolt!

```
HEsTlN: (0)1e-sixth size.)
```

53

(53) Quartzite: Length, 15 inches: thickness, 2 inches.

Pottery. We fomnd a few fragments of pottery in four witlelyseparated localities. In two of these localities pieres of soapstone, parts of dishes, were also picked up. The pieces of pottery, made ont of clay and broken pebbles, materials easily obtained here, are similar to pieces from the Snsquelamna. The impressions are evidently of two kinds, those made by atylus of some sont in the hands of the ancient potter and those which resulted from the structural irregularities of some receptacle within which the plastic clay was first shaped.

(54) Pottery Fragments: Thickness, 3^{3} inch.
(55) Pottery Fragment: 'Phickness, $\frac{1}{4}$ inch.
(56) Pottery Fragment: Thickness, inch.
(57) Soapstone Dish: Thickness. $\frac{3}{2}$ inch.

Soapstone dishes - Niagments of soapstone dishes were collected in fom or five separate localities. The "ear" piece illustrated is one of eight pieces found near together and avidently all parts of the same ressel. The largest of these fragments is six inches long and eight inches wide. The dish originally must have been a foot in length and nearly as broad, with a depth of five or six inches. Soapstone is not
found in situ in this locality, lont it ocemes plentitully in the adjacent commty of Harford, in the State of Maryamel.

Implements of unknown uses.-Fig. 59 has heen broken so that its original torm is a matter of eonjertmre. However, it is so strikingly like another strange specimen (Fig. is) fiom the Susquehanna, which is entire, that we have no hesitancy in concluding that both were designed for the same purposr. Both are made ont of "hlorite, and are not in the least battered. They conld not have been used as weapons or as agricultural implements, sume the stone is bery brittle and is moreorer so soft as to be easily seratehed with the finger-mail. These are the only specimens of this shape, or of chborite, that I have ever seen from this w^{\prime} aljaront localities. We think they were probably used as ceremonial implements.

(58) Chlorite: Length, 1 inches; width, greatest, $2 \frac{1}{2}$ ins; thickness, greatest, 1 in. (59) Chorite: Length, $3 \frac{1}{2}$ inches; thimeness, 1 inch.

Figs. (i0), (il, fiz, and (63, are pieces of slate. The holes in all of them ware, apparmaty, mande with stone dribls, since they are irreg. nlarly grooved and taper towards the center of the stone from both sirles. These pieces are so fiagmentary as to prevent any attempt at restoration. No. 60 is worm quite smooth, with romuderl edges, and has a slight polished depression extending a short distance from the imon margin of eath hole along the surfae of the stone. This polished surfare was doubthess produced by a cord passing throngh both holes, fiom which the slate was shspemded. The holes in Fig. 61 are polished, the result of firetion.

Figs. 64 and 6.5 are both well wonght implements. From the care with which they have been tinished they were evidently designed for somm sperial use. They are the onls sperimens of the kind that wh know of fiom this locality. They might have been used as tecth in
warelubs, but whether they were so used or not is of comse mere speculation. Among omr implements of monown uses, perhaps the most interesting and valnable one is Fig. 66. So far as I have been able to ascertain, it is the only one that has thus far been tomud. It is a triangular prism of slate. with sides three fourths of an inch wide,

(64) Folsiticroek: length, $2 \frac{7}{8}$ inelies; wnith, greatest, $1 \frac{1}{8}$ inehes; thickness, $\frac{5}{8}$ inch.

(i6) Slate, lorown: Winth of earli side, $\frac{7}{8}$ juchos.
originally about 5 inches long, and having at eachend two holes that meet. The one hole is lored with a slant of about 45 degrees (see section ") from near the end of one side till its junction with a lole bored from the end af the prism. The other end of the specimen, thongh mueh broken, was evidently fashoned in the same way. The holes are fimmel-rhaped and are surb as would be prodnced by a stome drill. Two sides of the prism bear symmetrieal seratehes, evidently once of some sisulticance, now in part defaced by wear and in part by the ancient use of the stone for whetting purposes.
lig. 6 is a gmeissoid rock. Lery rudely laked amd somewhat perked. It is hard to conjecture to what use it may have bean put, thomgh there is mo frestion alront its having been worked into its present shape. Fig. 68 is made of green slate. It is either an monthished implement, or if completed, a very mulely fashoned one. The fact that it is made of shate, as well ats its shape, incline us to call it a banmer stome.

(67) Slate: Length, 5inches; thickness, 1 inch.
(6is) Slato: Lenirth, finthes; thiekness, $1 \frac{1}{4}$ inelhes.
Nome Wrorler's Chips.-Flakes of fixite rork, of jasper, and of agate, are lomm well distributed ahng the Codorus and its tributary rums. The fact that the rocks of which these flakes are pieces are mot maturally tomed hore is very similitant. The presenere of these "ehips" proves that implements were here wronght ont of the romgh some into drsimale shapes. Rat thase minerals, folsite rock, jasper, and agate, are mot fomm in sitm in this rewion. 'Ther folsite rorle weroms fally thirty miles distant, in the Somth Mommtain. Where the asate and jasper Wrore homght from has mot been determined. Derasionally takes of White fratio cover a small arm in a died rontaining in another part a spot rich in thakes of falsitis: mock. The preseloce of such spots serms to indiate that "ath atheinh stome-worker conlined his lahmes to chip ping a pattombar mineral.

Comelnsion.-Whst what comblnsions as ta the ludian orempation of this part of York comoty call sately be dawa from the number and
varicty of specimens fomb is not so casily determined. One thing is certain, that as the result of persistent search, almost a complete "series" of relies has been collected. Thongh the anthor found nearly all the objects here illustrated and described, yet any one else, had he as thoronghly and persistently searched the same region, would have been equally successtul. This is proved by the fact that several others (Casper Loucks, Freorge Miller, and John J. Frick) interested in the subject have found specimens in the same territory. The discoveries here made lead ms to infer that other places, in the eastern portion of the U'nited States, now thickly settled, wonld be just as productive of specimens. We do not believe that this region is more favorable to the production of relies than other localities similar in natural features. Attention is called to a few difficulties that beset the careful searcher. Fields that now yield few relies may have them deeper down. The building of dams has materially changed our streams. Places that once were high and dry on the bank are now covered by every freshet. As a consequence, the sediment has accumulated, and the relics have been buried beyond the reach of the plow. Oceasionally a field is washed bare of all the loose soil. In that event, you can mot reasonably conclude that the number and varicty of specimens found there indicate a more dense settlement than elsewhere. Taking these and other circumstances into consideration, in connection with the relies found. the anthor believes that this region was oftener frequented, and longer occupied, by larger bands of Indians than the historian leads us to infer. This place may have been the site of a well established settlement; a settlement in which much the same primitive oceupations were engaged in as chatacterized well-known and more extensive settlements along the Susquehanna. If this region is an average sample of supposed "barren" lauds, may we not conclude that America was more thickly settled, or longer inhabited (perhaps both), by the Indian than is generally supposed?

 ('O1 YTY. OlHO.

By hesele d. Thmipenn.

These momuls, there in momber, are on were, lowatem ahout 4 miks east of Tiftin (NE. $\frac{1}{t}$ if section 4 , township 1 north, range 1.5 east. Eden Townslifp, Seneca Comuty, (Ohis, and on the west side of the Morrison State road whre it mosson lane (reek). (Map, Jig. 1.)
'onceming their origin, the Inomwk* Indians then inhabiting that seetion cond give the settiers no intormation. The lndians had no theory or tradition acemuting for the presconce of the lamanark. large forest trees conered these momments then, and anong them
 soil after fle remoral of the forest hand altered the propertions of the momels, they were well rommed. and the bargest was perhaps if fect ar more in height and abont to feet in diameter. Two, the largest and the smallest, were near bach other on the sontla sine of tha stream. (Sue matr.) The fimmer was slightly less than ann righth of a mile !irom the bank, and the smaller one abomt half

Fig. 1

 the corek valler. The bankson the sumth side were rather steep and so to to feet hegh. The large momid was luated on tha sommen bowder

Tha momb mo the noth side of the werk was aressed by the fence dividing the mand fiom : modrong grawand, and when a grading was

 of the ferme. The wher half probality still remains intare.

In lisati, the gromat owe the site of the smallest momme was on a
 somth.
level with the general surface. It was tentatively excavated by one who had seen it before being plowed down and a small excavation, made in search of the charcoal and ashes, whose presence would confirm the hypothesis of position, diseovered hman remains. These however had been once exhmed and wete reinterred in a confused heap. They were preserved by the writer, but no further search was made then. It was at the largest of the momeds, and the one least disturbed, that the systematic, thongh partial exploration was undertaken. This was in the summer of 1886 , and then the mound was hardty, if any, more than 4 feet above the general surface, and 60 feet in diameter. (Fig. ᄅ.) Hurried excavations brought to light the charcoal and ashes, clean shells, broken bones of animals, and broken pieces of primitive dark pottery. Another morderly opening resulted in the discovery of the two smaller human skeletons, but they were not secured entire. The skull of one of these "individuals" probably remains in the mound.*

Fla. 2.-View of largest mound, looking southward.
Human remains were found in all of these. The largest mome contained three skeletons (Fig. 3) that were meovered, and a complete exaration might be expected to reveal more.

Feasting acempanied the interment. Fires were built on the mcompleted funeral pile, with which meats were cooked. Good sized pottery vessels were brought to the grave, probally for use in the feasting, and at least some of them were either aceidentally or intemtionally domolished and the fragments seattered with the ashes and chareoal and broken bones of anmals over the half-built mond. The fires were probably lmming during the burial. The feasters enjoyed the meat of the deer, heaver, racoon, sinuirel, hare (?), turtle, hirds, fish, and clam. The marrow was a mueh relished portion of the meat: every bone was broken so that the marow was moverad. The need of something with which to arcomplish this breaking may aceome for the presence of monderate sizal limestone bowhers a few feet apart

[^73]among the ashes and other stomes of the sizn of a tist in wrat abme dimere.

I feot ow two of rath was sperad wer all this whamal amd ash layer. The soil of the strmetme was aven, light, amb asily worked. The hame momolested day was 4 feet on se helow the top, as the
 slight exatation was made in this hard soil to receive the remains.

FIf. ©. Excavations of larexst monnd. (Sor mat.) Abont tio fert in diatheter, $4 \frac{1}{2}$ iu height.

The heads wore laid to the mortheast and the bodies flat and shatight on therir hacks, at least so with the largest and what may be called the principal skeletom. This hody lay furthest to the monthwest amel a few steps from the ernter. Nothing whatere of a dhable natme in - losed the rematns. I few pieers of elareoal were fommed mader the bones of the principal corpse. These, an clegant pipe (Fig. 4), and a few eamine jaw fiagments and forements of the jaws of some smatl (atmivoroms animal, Were the only wherets fomel with the sketen. A home torkey rall. : inches lomg, and antiticially 玉rooved on both sides at the emd, was tomal on the gromal about one of the skeletons. The jaw formonts wor laying besidr the right shoulder; the pipe was on the same side rext to the bock vertebrar. The eondition of the homes of the principal individual gate morerne of violence having been intlicted "pon his body:
 foot or two feet bencath the surfare. The fragments of amimal bones
and pottery were scattered momiscnomsly, with the ashes and charcoal patehes, throngh a vertical range of mome than a foot. The limestone bowlders wre abont 6 inches in diameter, and lay with a rude maiformity a few feet apart thromghout the layer. The underlying rock of the section is limestone (rornstons), the boundary between the onterop of this and the water line is near, and the sonthwestward moving glaciers have made this elemont strong in the drift products of the comontry

In the ehameal lays tha most mameroms bomes were those of the

b

Fig. 4. Pipe (full size). a, end view: b, side view. dees. 1 good mmber of anly partially broken lowre jaws were fomme and a few deatyed hom fiagmonts. sereral spectmens of frasmentary bearer sulls, retain ing the terth, amd a tew manon jalls, are in the exhleretion, lent some of the elan shells were not broken: these showed the effect of fire.

Making exeeption of the two small pootterypues matarthed from the ehameal layer, no antire sperimens of pottery were disconarex. Tha pottery wias rude blackish, and gritty. Dimote feldspar raseals formed part of the material. The sumfaes ware ronghered by perpendicularstriations which conld bo imagined to have been impressid by hark. liy propecting the entre of ome of the fim fraserents, the opening of the jar of which it was omer a part, was fomal to have been sinches in diameter. A dark bhish or greenish slate, had, tomgh, and fine, was the material of whieh the laree pipe, buried with the largest skeletom, was mate (Fig. 4). It is the same stome as that from which most of the find momme onament were ent. Erosion revealed a kind of enamel, perhapes due to chemical action on the surface. The evesion orewred where the stome had been stained, presmathly ty the adrds of the dead body. The finish was excellent. The form might suggest that the maker had intended the relie for a phallie: momber. The pipe is 3等inches in length. Littledifference in size between the individual interred in the "levelled momad" and the principal male buried in the large momad. was shown by the remains. The bones of the two skeletoms to the somtheast of thr latter were pereeptibly lighter.

These bones were fonnd in the renter and a litta more than 4 feet below the top. Not satisfied with this method of poreeding, the writer himself soon altar spent theee days in the fiedd. A babrow trench was made to approarh the mommentil the wharoal was reacherd, and then with a width of : feet was extended to the center (Fig. : B). After the earth had been carefully removed fiom over the body. an entire afternoon was ocenpied in pieking ont the bones, Theireondition Was sumb that even then at momber were broken. The oeriput fell apart when the skill was lifted. The lines of fratome indieated a recent breaking.

LNOHAN REMAINS ON TUE ITPPER YELLOWNTONE.*

By Col. War. S. BRachert.

If fou look on almost any lange maf of Montama and Wyoming you will mote the somrer of the Yellowstome River near a momatan maked on the man) as "Youth's l'eak," and lying abont e. miles sontheast of the Yellowstone National Park. The river flows fiom an immense snow-field on this monntain, in a northwesterly direction, and empties into Yellowstone Lake, which lies wholly within the park: then it Hows ont of the lake at the lower or mothern and and laping downward a sheer repth of 360 fert, over the Geat Falls of the river, it rushes still northward for a hundred miles-one of the most beantiful streams of the Rorky Momntains. The real name of the monntain where the Yellowstone rises is Vount's Peak, so called after a trapper who lived for a long time along the bank of the river in the "arly days of Montanas settlement. Derhats the fine new maps of this rewion now being made hy the Initerl States deological survey will mot rob lount's Peak of its true name.

About 2.5 miles north of the park is a widening of the vallery of the Fellowstone, where there are a mmber of fime rame hes, and on one ot them, opposite Emigrant Prak. Where 1 am writing, there are interesting remains left hy the lmdins who lived and huted in this now fertile valley as late as the rear 1506.

 the lofty momatains hemming in the valley on every side. (Only ten fears ago there were wo roltivated tiedds in this valles, and the ofks and imflabes fomm here their tavomite feedinge gromad. The plain on this mesa is almost roetangular in shate, and at the cormer, werlooking the whole region, are stome strmetures that we have named the "ludian Forts." We donol koww whether the ladians, whomodonbtedl! built them, used them as forts for defending thrir village or camp in on the mesa, or whether they were used as watelatowers for there semtincls. Sometimes we think the budian hanters used them to ererep into and to spy out the large game feeding among the hills and in the valley below.

[^74]These forts are semicireular in form, and are built of selected square stones, piled up in a parapet or breastwork about four feet in height. They are open on the imer side of the phatean. and have space for two or three men to lie concealed and protected within. The forts must have been built many years ago because the stones are now pretty well covered with moss and lichens, and these do not grow as rapidly in this dry climate as in the Eastern States. No one is permitted to disturb these momments of a race now almost departed, and I hope that some carcful stulent of American archaeology may hereafter explore this region and explain the ancient nse of these so-called "Indian Forts."

Fig. 1.-The Indian forts, Park Comnty, Montana.
Just below one of the forts and at the bottom of the cliff I found, last summer, a buffaloskull and homs, over-grown and almost concealed by a wild roselnslı. Perhaps the hoflate was shot by an Indian lying in the fort above. This made me think the forts might have been used for watehing large game. But when you are up on the mesa you can easily see how well adapted the phace is to prevent surprise and for military defense. The sides are perpendicular precipices of volcanic rock. At only one place can you go up on horseback; there are only two or three places where you can climb up on font. (On the level top a thonsand men could be placed in camp. The forts may have been nsed, like watchtowers on the rorners of a feudal castle, by the wild chivalry once inhatioting these momatains.

About half a mile from this mesa is a little sheltered valley, back in the foothills, where the Ludians used to pass the winter one of the phonerrs of this region tells me. The place is sheltered from the winds and the snow seldom drits there. In a level spot in this valley are three circles of smooth flat stones laid on the ground, each circle being abont 15 fect in diameter. Washed by the rains of many seasons, these stones are now partly imbedded in the gromd. We do not know exactly the purpose of these water-worn rocks laid so regularly in circles, but one of our neighbors, an "old timer" in Montana, tells us the

Indians used them in winter to lay aromed the bottom wewer lowe of their tepees to keep ont the cold. Mast hadian tepers are ronical in shapeand cireular at the bottom. with a lole at the top where the poles meet for the eseape of smoke fiom the fire built in the renter of the structure. In the old days, when the butabo and other large gama were plenty, the Indians manle their tepers of smoke-tamed hales. Now the butfatos are entirely gone, and other large game is so searee on the Indian reservations that the tepees are covered with eloth, generally thin white calico. The Indians have but few skins left and their calico tepees are very eold in winter.

Fig. 2.-Tepee rings, Park County. Moutana.
The most interesting of the Fndian remains on our rameln is at Buffalo Blaff, where there is aremarable game drive. Under the eliff, which is abont f_{0} feet high, the gromm is white with the splintered bones of large same animals that have beern hriven over the predipicebuffaloes, relks, amd deer. Sbove is a level plain stretching back for several miles into the fonthills. The elifit is only about a homdred yards wide at the steep part where the game was driven over. How did they manage to make widd animals rom to this natrow eliff and leap over? You can see at once how this was acomplishorl when you climblo the phan above. There can be seen two long lines, composed of piles of stones, stretching out on the plains, eath line about half a mile long and diverging from the edge of the cliff like the two arms
of an open fan. The piles of stones are about 10 feet apart and each stone heap is 2 or 3 feet in height. When the Indians last used this game drive, which was abont fifteen years ago, they set up wooden stakes about 4 feet long in each stone pile. From stake to stake were stretehed lines of stont buckskin cord, like wires on a barbed

Fig. 3.-Ancient game drive in Park County, Mont.
wire fence. and from these cords were humg at short intervals feathers, strips of bright cloth, and scraps of white buckskin, flattering in the wind. Of couse this fence could be easily broken throngh, but the firightened amimals always turned back from the fluttering rags, feathres, and other objects hanging from the long lines of cords.

A heard of latialos on deer was rarefolly smommod hy the Ludian hunters, and then sradually driven toward the openines of the drive, which was orer half a mile wide. Gnce within these lines, the hunters drove the herd towided the bhaf. waving their blankots as they rode forward. The teror-stricken animals mahed toward the preripice. keeping away and tmonge bad in fitight fom the lines of ofence," Which gradually ronverged toward the eliff. At last, in a widd stam pede, the frantio amimals ware driven over the edge of the preapice where those who were not killed outright wore dispatehme by another party of honters below. Only speas and arows werr hed bebow the cliff, beramse the nose of tiratms womh fitightell bark the amimals aphoarhing the edge of the hhaft. Jmong the masis of rembling white bones beneath this Butialo Blnff (as it is called here), where su many wild amimals have bern shanghtered, yon can fo-day oreasion ally find sean amd arrow heads, beantifinlly formed of shining black obsidian. or volranio glass, the material being fonnd in lan we quantities on the wreat platean of the Yellowstome National lank.

By havi L．（6xavt，1h．1）

Among the spernhative questions which arise in commetion with the study of mathematies from a historical standpoint the origin of num－ ber is one that has prosoked muth disemssiom and has led to extemsive researeh among the primitive and sabage languages of the hmman race． A few simple comsiderations will however show that such researeh must neressarily leave the question entirely unsetted，and will indi－ cate that it is，from the very nature of things，a question to whinh no definite，on at least no dinal．ansmere can be given．

Among the barbanos tribes whose langages have been sfadied， even in a most cursory and imperfect way，none lave ever been dis－ covered which did not possess one or more words indicating familiarity with the momber concept．Some tribes have been found in which knowledge of mumber was so slight that the statement has been made that their language contained mommerals．The Chiquitas，of Sonth Ameriea，for example，have no word even which we dan acerpt as a distinct substitute for＂one．＂That mmmeral they express by a word meaning nearly the same as＂alone．＂There the momber sense appears at its lowest ebb，but still it does exist；and going lower yet，one would be rash，indeed，if he were to assert that the higher ammals can not distinguish between 1 amd 2．Not a few trihes have been found who could not count beyond two：more yet with 3,4 ，on or an their momber limit，while 10 marks the bonntary of the momeral sys－ tems of a very great momber of the primitive rares of the world．The assertion would seem then to be a safe one that the momber sense is never wholly lacking．It is evident also that mumerals must be among the earliest words to be fomed in any lamgase．They expmess ideas which are wholly concorete，which prowele hmman intelligenee，and which are in many ways manifested by the higher orders of the brate ereation．The origin of mumer therefore mast be eoncerled to lis beyond the proper limit of infuisy，and the primitive conception of number to be funtamenfal with hmant thonght．

Historiacal investigation must begin not with mmber itself，but with modes of expression of mmber．Here．in precisely the same manmer as in the expression of all forms of thomeht．desire and amotion．tha sign language prodeded words．We are all familiar with the mamer
in which a child when learning to comnt makes use of his tingers. ('hildren have for ages done the same; and the chithen of the homan race, the savages of pre-historie times, nuquestionably comed on their ten digits just as the African, the Eskimo, and the Sonth Sea Islander do to-day. So miversal has the finger method of coming always been that many investigators, prominent among whom is Grimm, have laid it down an an axiom that all numeral words arise from names of the fingers of the hands. Savage races employ, as might be experted, a great variety of methools of recording their count-ing-as splints, pebbles, shells, kernels of grain, knots, ett. Then come simple scratches, notches rat in a stirk, Robinson Crusoe fashion, and other similar devices. But lack of all these, and forming a common origin to which all may be referred, is the miversal finger method of connting, the method with which all begin, the method which is too convenient to be entirely relinquished, even by avilized races.
This universal recourse to the fingers often resulted, as might be expected, in the development of a more or less extended pantomime number system in which the fingers were nised in much the same way as in the deaf and dumb alphabet, thongh the signs actually employed were very different from those employed by mutes. A system of this kind was much in vogue among the ancients, by means of which any number up to 10,000 could be expressed: mits and tens by inflections of the fingers of the left hand, hundreds by similar inflections of the fingers of the right hand, and thonsands by a repetition on the luft hand of the signs used to denote units and tens. The Clinese still employ a finger method of expressing numbers less than 100,000 , and among nearly all Eastern peoples a digital arithmetic of one sort or another is to be found. Of so common use is this sign language that traders are said to communicate to each other the price at which they are willing to buy or sell, and at the same time to conceal their offers from bystanders, by putting their hamels under each other's cloaks and tonching earh other's fingers.

Recent anthropological research has developed many interesting facts respecting the limits to which the mumber systems of the various uncivilized races of the world extend. As a matter of comse, all races cum indicate mubers as high as 10 , the fingers serving as a means of showing what they have no words to express. In nearly all cases we find this limit extended to 20 , the second 10 being told off on the toes, or on the fingers of a second man. But savages have in very many instances no words for numbers higher than 2,3, or 4 . The Botocudos have no definite mmber beyond 1. For e2 they say "urahú", many.* The Pmris and the Watchandis stop at 2. The former express 3 by "prica", many, and the latter express the same number by the combination 2, 1. \dagger The Andamans have only two mumeral words, though

[^75]\dagger Ibid.
they connt as high as 10 by means of their tingers. * Ten they express by their word for "e all." 'The Bushmen have the same number limit, expressing any number greater than 2 by the eqnivatent word for "many." The Veddas of Vevlon comat "ekkamaï," 1 , "dekkamaï," 2 , and then continue by repeating again and again the word "otameekaï," meaning "and one more." \dagger

Numeroms as are the instaneses in which two stands as the munle limit for savage triber, three is thms used still more frequently. The New Hollanders have no names for mombers grater than three. $\frac{\ddagger}{}$ The low forest tribes of Brazil rommonly express any momber wrater than three by their equivalent for "mony."§ The Austratians of Herbert
 merly to ten, but at the present time their entire mumber system is comprised in the three words: "kaoneli," 1 ; "compaïpi," \because : "maten," 3.** The Campas, of Peru, comut: "patrio," 1 ; "pittem," 2; "mahnimi," 3. Beyond this they ean express no mmber except by some sum expres. sions as 1 and $: 3$, 1 and 1 and 3 , ete., showing the total indicated b: loodding up the proper number of tingers. As a definite nomber anything beyond ten is to them inconceivable, and they refer to it as "to haine," "many." $\dagger \dagger$ The Anstralian tribe of the Wirathoi have no mumerals which enable them to coment herond $: 3$. With them fow is "many," and five "very many." Almost raactly the same statement may be made of the Dippil, the Kamilami, the Alclaide, the Tumbbul, the West Aus tratia, the Enconnter Bay, the New Sonth Wales, and thr Tasmania tribes it some of these indicate fom by expressions surf as "two-two," or "two pair," and tiva by "two three," or "two-two-onf." The Encom ter Bay tribe uses an amalogoms reduplication for six even, saying "kuko-kuko-kuko," that is, "two-two-two." The Vaucos, of the Amazon, express the mumber three by the astomading word "poettarrarorincoaroae," at which La C'ondemaime duly remarks: s§ "Happily for those who have dealings with them, their arithmetic goes no finther."
'The general limitation of the number sense existing among the low races of the world now legins to become apparent. Specilic words rxist for one, two. three, ate., and beyond that anything is "many." The entire mumber system of a tribe may be "one," "many," or it may be "one, two, many:" Hore numerons yot are the "ases where the eonnting gees onestrp farther. and gives "once, two, three, many," as the seale throngh whidh tha satrages mumber sense call eordure him. In the same way

[^76]we might expect to find the cases where counting stops with form more momerals than those where three is the limit, just as three is a much more common limit than two. Such is not the case, however. Investigation shows that if comuting extends beyond three, it is almost sure to reark five, the commonest linit among races whose mumber sense is very weak. A few instances have been found where tribal numerals extend to four withont going beyond that point. The Tupis, of South America, have only the four mmerals "oyepe," 1; "mokoi," "; "mosapira," 3, and "erundi," 4.* The Australians, of Lake Mas"puery, have no numeral beyond "woran," d, except the indefinite expression "kanwol-kanwol," which signifies "great-great." \dagger The Tasmanians also have form as their proper number limit, hat they have a eompomol expression, "pagan-amara," $4+1$, which they use for fise of A few other instances of the same limit are given by various anthors, but they must be received with great caution. If a savage can coment to four he is practically certain to extend his system one step further, and to make his scale contain the number of steps which corresponds to the mmber of fingers on one of his hands.

This brings us again to the consideration of the relation existing between the hand and its fingers, and primitive comnting. Three com. mon nmber limits are fonnd among savage rates, 5,10 , and 100 . A savage counts on his fingers until he reaches $\bar{\sigma}$, and then he often stops, saying merely "many," for any greater number. With a slightly higher dagree of intelligence, or with an environnent calling for more extended nse of the number sense, others go on from this point, connting now on the tingers of the other hand. As a nmmber limit 10 is msed ahmost as commonly as $\overline{5}$; and it is no infiequent thing to find the toes as well as the fingers made to do duty as counters, thus bringing the total up to 20 . The last named mumber is rarely the limit, howerer. If a savage can count to 20 he is usually able to go on to 100 , and often to 1,000 .

The manner of comnting just indicated has given rise to a peculiarity in the names of certain mmerals which most not pass monoticed. Combing as he does, the savage, on reaching is says, not monaturally, "one hanl." It 10 he says, following the same anology, "both hands." At 20, having completed the tale of counters which Nature has placed at his disposal, he says, "one man." Thongh by no means miversal, these names for 5,10 , and 20 are so common in all parts of the world that specific examples of them need not be giveli. We also find $\boldsymbol{i}, 7$, etc., often expressed by "hand one," "haul two," of "one on the other hand," "two on the other hand," ete.; and 11, 12, ete., by "one on the foot," "two on the foot," ete. So frequently are these equiva-

[^77]lents found that they are recognized by competant anthority as underlying one of the most common of the methods of mmeral formation.*

In a ronsideration of the smbject of primitive mmber onn thomght most be kept pominently in mind. Savage races may have mmerals hy means of which they roment to $5,10,20,100$, or even 1,000 , heyond which they rarely ventmre. lint it by no means follows that, after passing beyond the very smallest, they have any exact mofons of the mumbers they are using. As long as they can check off on the fingers, or by means of pehbles, sticksom shells, they mombtedly have a faily distimet idea of the totals they mame. But want of familianity with the nse of nmmbers, and lack of any convenient means of comparison, must result in extremm indefiniteness of mental emoreptiom, and most, When reconse can mot he had to comnters of some kind, inevitably give rise to great vagheness in the use of mmbers. This has been noted and commented on ly many ohservors, Itmmbold among them, who remarks \dagger that he never mot an Indian who on being asked his age would not answer indifferently 16 or 20 .

The statement has been made abore that the mmber systems of savage races rarely, it ever, extend beyond 1,000. A single ohservation resperting the development of the systems of civilized races may not here be out of place as showing of how maversal application is this statement. The nmmber systems of the rivilized world to-daty are of molimited axtent. But we need go bate but a tew centmrias to fimd a time when ome own systems were as diminutive as are those to which reference has just been matle. Althongh in response to the demamds of commeree and science our English system has been bronght to its present elastic: condition, the evidence of language shoms momelnsively that on Tentonic ancestors stopped at the same limit that las been named as the maximm for savage tribes. The higher momeral words ol our language, million, billion, trillion, etc., are all borrowed words; while the worl thousand is pure Sinom, like the words one, two, thee, tro, humdred, ete. The German, the Seandinavian and ot her lamguages have borrowad their higher momeral words, and the samestatement is probably true of the French. Other languages, like the (hinese, Samskrit, Aztec, ete., contain only mative mumeral words; hat howerer high these systrms may be found to extend, there ean be mo dontht that they were at one time limited to a simgle thomsamd, and porhaps less. In this commertion it is instructive to observe the momber limits of the half covilized mations of the present day. The tribes of Arabia, the Persians, tha Abysinians, and most of the North Afriean peoples have mamber systems terminating with cleph of alph (1,000). The Laphand ers and the Erse have no words higher than zhinette and cied, resperetively, each of these words signifying 100. In ancient times the Latins were content with mille (1,000), and the Greeks with mineas (10,000), as their number limits, and the Malays of to-day with ribon, also mo:aning

[^78]1,000. In general it may be said that in the chithoow of any race the number concept is weak and the number systrm is correspondingly limited. As civilization develops the number sense and the momber system are extended aceordingly. To this law some remarkahle exceptions have been noted, but they are exceptions and do not in the least invalidate the rule.

Respecting the bases used in the mumber systems of the varions languages of the word, uo full and comparative acemot has ever apmeared in English. From the carliest times in which arithmetic legan to assume the dignity of a science and its history to receive serions attention, it has been hamden down as a tradition, the touth of which was never ques. tioned until recently, that all races throughont the world used in their computation the decimal system. Aristotle indeed mentioned one obscure Thacian tribe which was said to rerkon with a different base, but he seems to have regarded this solitary instance as the exception which proved the rule, for he taught that the miversality of the decimal system proved it to have had its origin in nature. This tradition was for centuries accepted as true without question, and the naturaluess of the decimal system was argned from the fact that the mumber of counters, the fingers, with which nature had equipped man. was ten. But the last three or four centuries have brought to the knowledge of civilization a multitule of tribes hitherto manown, and among them a very great number have been fermd to use systems having some base other than 10. It was also pointed out by Peacock* and others that 10 was not the only natura lnumber base-that, as 5 was the mumber of fingers on one hand, and as 20 was the number of fingers and toes combined, either, on 20 eonstituted a base in all respects as naturai as 10. Hence the use hy any race of either of these mubers for that purpose could constitute no gromad for surprise. Peacock indeed mentions many examples of Indian, negro, and Mongolian tribes, among whom such bases are actually used, amb his list can mow be enormonsly increased, so great has been the energy and activity displayed in anthopological research during the last half century. That 10 has been, and is, the practically universal hase of the world's number systems is indisputably true, but to this general law the list of exeeptions has been fomm to be so great that a brief consideration of the subject seems desirable.

Of all the mmbers capable of use as a system base, 12 presents the greatest number of practical advantages. We have, through the familianty which custom hats produced, become so acemstomed to the use of 10 in that canacity that the assertion just made seems muwarrantable. But a moment's reflection will show that the ten fingers of the human speries have entailed upon us a number base deridedly inferior to 12 . In the simple business atfairs of life we deal most extensively with the three simple, familiar fractions, $\frac{1}{2}, \frac{1}{3}$, and $\frac{1}{1}$, and the auxiliary fractions $\frac{2}{3}$ and $\frac{3}{3}$. Such being the case it needs no argn

[^79]ment to prowe that the most rombenient hase is that whicl！will ahbit
 be divided by but one of these mombers without remaindor：henere the
 hand，is an exart multiple of eath of the there mombers．It offers，then， to the mass of mankind an mormons advantage over 10 on any other small momber as a hase for computation．With the erowth of business in its many forms．the rivilized word has lomg since come to rerognize this fart，and in mathy ways to make paractial mse of it．The word ＂dozen，＂and its equivalent in other lamgnages．has been coimed as a nomn to axpres the momber le，and in a very great mamber of the commerem transations of the world the dozen and its spuare，the gross，are the common mats of measure．So palpable are thr alloan tages of 12 from this point of view that some writers have gone so far as to alvorate the entire abolition of the derimal syentem and the sub－ stitution of a thorlecimal system in its phare．Gharles Xll，of＇sweden， may be mentioned as an experially zatous abrocate of this rhanger which lar is said to hate had in actnal contemplation for his own dominions at the time of his death．＇The alopetion of the duoforemal notation wonlf involve the intrexturtion of t wo new symbols，for 10 and 11．respertively．Twelve wonld then be remesanted hy 10 ，thirten by
 100．otr．No surla rhanse call ever meet with areneal favor．so fimbly bas the decimal weale become intrenched；lut it is mome than probable that the world of trade and rommerer will contimas to war the dozen， its firactions aml its multiples in many of its transartions iat thr future， as it has for centuries in the past．It was thas used by the lomanas， amd it has heren and is used amomes all Tombonio mations at the presant day．It is more than probahle that the English divisions of Werghts． measures．and money were inthermed her the eane with whish mental complation is effected when frational parts of 12 are involved．The dhoderemal is not a hatural scolde in the same semse as are the decimat， the duthary and the vigesimal；but it is atsten which is bonght into bise at a later day and at a higher satae of development，solely throngh its combenionce when appled to the averyday transations of bosiness life．Jhmboblt，in disemsimg the momber ststrms of the barions peentes he had visited in his travels，remarked that mopeople had are used axelasively that best of bases，1ٌ．A possibla exophion to this has siner Ilmmboldt＇s time been moted by liobert Filegel in the Aphos of Bemaí，who mont loy simple words to lo．and then proceded

Remarkable as it may at dimstancer seem，the mumber 兰 has in a few seattered imstamers berem made fo do dhfy as the base of momber system．＇Thirion siyst it was thas amployed by lisyptian surveyoms：
 lifist＂，1．2！ 0 ．

in our own language we find an oceasional hint of the same thing in the words "pair," "brace," ."couple," ete.; obsenre traces of a binary mmber system appear on some of the early Chinese monmments, but we have no real evidenor that such a system was ever definitely and exclusively used by the Chinese. Certain savage tribes, however, comnt exchsively or in part by twos. The Baccaraabi, a South American tribe of the Xingu region, comnt only to 6. But they call 4 , \because and $2, \quad 5,2$ and \because and 1, and 6,2 and \because and 2. The least developed of the Anstralian tribes are in many eases fomd to reckon in the same way.* The structure of the Arikara mumerals would indicate that this people conted at first exclusively by pairs, the odd numbers being interpolated afterwards. ${ }^{+}$The lowest of the native tribes of the East Indian Archipelago connt upon a binary seale, if indeed they can properly be said to use any. \ddagger Examples of this kind might be multiplied to a very considerable extent. lint it should not be overlooked that these are hardly to be considered as fair examples of the use of any system. The tribes mentioned have no form of notation other than repeating scratches or puling pebbles: and their numeration is of the rudest kind. All that can be said is that, as far as any system is used among them, that system is the binary. Making the same gualitication, we may note that the Cuchans of Colorado count with a mixed temary and quaternary scale, expressing 6 by the phrase "关 3 's," 9 by "3 3"s." and s by "2 4"s;"§ and that the Lulos of Sonth America, the Triton Bay and the Endé Polynesians connt with a quaternary scale, expmessing immbers as far as 4 by simple words, and then connting $4-1,4 \cdot 2$, ets. The last-named tribe gives a further indication of the use of the ruaternary scale by using for S a word signitying "3 4s." $\|$ Occasionally we come, in the midst of some other well-defined system, upousporadie traces of reckoning upon $4,6,8$, or 9 as a base. The Wallathians, for example, say "den-maw," 2-9 for 1s. The Bretasnes call 18 "trionche," 3-6. But otherwise these languages contain no trace of the senary or octonary scales. Pott states** that the Bolans of West Africa appear to use 6 as their mumber base; but aside from this solitary instance we know of no tribe which employs 6 , 7,8 , or 9 for that purpose. The most remarkable example of tribal eecentricity in this partioular is that of the Maoris, of New Zealand, whose mumber base is 11 . To that mmber they count by means of simple words; 12, 13, 14, ete., are with them 11-1, 11-2, 11-3, ete.; the multiples of 11. as 29 and 33 , are formed directly on the word for 11 ; and the square and eube of $11,01.121$ and 1331 , are expressed by simple words having no comneetion with the names of smaller numbers. $\dagger f$ Oceasionally a rude immber system orours which shows no

[^80]trace of a base, the mmmers, as far they extent, bering independent of each other. Such rases are howerar, neerssambly rate.

The only remaning example that need be mentioned of the use of an monsmal momber as the hase of a system, is the babrlonians. As is well known. the hase of their mamber system was do, the largest
 that the Babylomians used 60 as their mat of rerknomg is most im portant. for that fact has entailed upon us a sexagesimal system of astronomical computation.

Witlo the exraption of a small mumber of isolater rases, sumb as those mentioned above, it may be lad down as a minersal law that evory language contaming a nmaber systen extending heyond of feveals the use of one of the three mmbers. δ. 10 , or 20 , as the base of that system. Each of three mombers requires extended mention.

One of the most interesting points to br met with in ammection with the stmdy of momeral words, is the resemblame fomm tor exist in many lampades between the words for "hand "and ofive." Comnt ins as they do. liy means of their fingers. savase rates matually mes for tive somm expressom like "one hamd." on ${ }^{-a}$ a hand finished," or simply "hand." Then, proceding with their "omat. they hewin to
 one." "hand two," "hand three," ette. In sucle a system, 10 is, of comste "two hands." Comnting above lo, we thal two common meth ods pratetised. The fingers being finished by the enant 11] to 10 , reeomse may be had rither to the fors of to the fingers of a seerme man.
 ing the tale of both tingers and toes, is "allend "onn man." beyond thas pont there is lass miformity in the methen of combting than be fore. but examples are momerons of tribes whith mse exartly this

 mon as the decomal. Tha Hatmathess of this seate is very revornt,
 scale so so very eommon, bat bather that it is not mome common than the decimal. Tho reaton for this wall aljeral whan wo rome for con sider the latter.
 the world.* It is the seale of many of the mative North Siberian tribes. of the demts, the Kamtselatkans, and at least there of the tribes of
 Whicls were visited by Mango l'ark, the Kammis, the Temmes, the

The mmerats of the wibes here montsomal, but for which no spersfe refremere
 methade bei Jolkern aller II eltheile.

Eifiks, and two tribes visited by Stanley: the Kiyans and the KiNyassas.* These and amumber of others use pactically a pure quinary smale. The Dinkas, the Fulbes, the Pigmos, \dagger and others use a mixed quinary and decmal scale, while the Nupes and one or two other tribes employ a quinary vigesimal system. Among the Australasians and Polynesian islands abmolant traces are fomm of quinary number systems, but they are in almost all cases mothing more than tratces. Thaoughont that part of the word the quinary system has been supersealed hy the decimal. This has been widely spead throngh the islands of the l'acific and lulian Oceans by the Malays, who in turn obtained it from the IIndus. But the home par excellence of the quinary, or rather of the qumary vesemal seale, is America. It is practically maversal among the Exkimo tribes of the Arotic resions. It prevailed among a considerable portion of the North American Indian tribes, and was almost miversal with the native races of Central and South Amer ica. So numerous are the examples which might be given, that mention will be made rather of the exceptions, that is, of those using the decimal base. It is interesting to note also that a considerable number of langhages show that the quinary system was onee in use among peoples which, whth the development of civilization, discamed that system for the decimal. The Greeks of Homer's time used a system in which thares of the quinaly base are observable. The common Roman notation shows clearly that the ancient Romans made at least a lmited use of the same hase, as did also the Persians.

The exclusive use of $\overline{5}$ as a number base is never fomd in any sys tem of any considerable extent. Wheneron the fuinary system is ex tended beyom the marowest limits it invariably rums into either the decimal or the vigesimal. Fouchmg this point llamkel says th that no race, even though it began its mumber system on the qumary base, over
 the system passes immediately into the deemal. This statement is only partially correct. The qumary m many instances runs into the vigesimal, no trace whaterer of a derimal base aprearing. Further
 pressed by "two hands" or "both hands." Mungo Pank observed this among the Volofs and Foulkas of I frica; Humboldt and others among the Omasuas, the Karmiscas, the Tamanacs, the Tompmambos, and many more of the South American trobes; and Russian explorers fonm the same methor rommon among the native Siberian ratres. Hence the statement as the German historian makes it needs mortant qualiferation.

Vigesimalmmber systems are less common than quinary, but as the two are so persistently interworen together it is difticult to separate them from each other. The use of a base as large as 20 mast necessarily be cumbersome, and it can constitute mo gromd for suld

[^81] It is a matter of some smprise, howerer, that the frimary shomld in so many eases merge into the vigesimal mather than the deoimal system.

The vigesimal system is never fomm entirely pure. Exammation always shows some trace either of the quinary or the decimal systrm subordinate to it. Among the mative races of Amerioa it is almost as eommon as the quinary and is more eommon than the decimal, but it is there always fombl mixed with either the one or the other. The same commingling is observed among Asiatio and African tribes. The clabomate \backslash zter system is the most perfeet known example of the vig. esimal-mmber system, but it contained both the quinary and the derimal seales sobominate to the vigesimal. The Mnyseas of bogota possessed an exceerlingly eabomatembextended vigesimal systrm, but the decimal is msed to smpplement it. The same is tran of the Basques of Horther'll Spain.

For some mexplained rason vigesimal-mmber systems are rare in the Old World. The omly European example 1 am abld tu cite is the lascou system. Tha Aims of northera Sileria reckon by twenties, and a momber of the tribes of the Cancasus do the same. In Africa this mote of combting is almost manown, only two or three examples of it leeing on record. It is only in America that vigesimal-mmber systems have flomished and hold their own. But it is a noteworthy fact that n ancient times 20 was the momber hase nsed in many parts of Emope, as is attested by abmolant traces in the modern Enopean langonges. The Ihomicians, and presmombly the Carthagenians, also nsed this method of merkoning, and through rontaret with them the ('eltic mations of western Emrope gradually became familiarized with it. From using it in commereial intercomse with these traders from the Moditermanan they may have arlopted it as their own seale. Crrtain it is that the vigesimal-mmber system was a strongly marked charactoristic of all the Celtie races, as their langmages megnivorally
 71. The Fremeh say "quatre vignt " for so, and from that point to 100 comot upon a pure vigesimal seale, as far as the mames of their mumbers are concerned. The Welsh. the Erse, the Girlie. the Manx, and other Celtic races show in their languges similar trates of a former nis of the vigesimal base. Singulary enomgh, like traces are to some slight extent fomm amongr Tentonic lamenges also, but they are so inferenent as to indicate but little and to bowe nothing. A humdred ronsisting of 120 , and known as "the great humdred" or " lome hamdmed, " wat formerly in mes in England, and was legal for rexgs, spans, and rotain other articles. That this was a common use womld alpeat fiom the popular ald distich quoted by l'arnock:

> Five swore of men, money. ably jins,
> Six seore of all other things.

The vary word "seore" and one or two happily preserved expressions, as "three score and ten," show that an meonscions flavor of the vigesimal seale was to be fomb in the England of a few centuries ago. The Danish and other Tentonic langages contain words and expres. sions which indicate that the same was true of other north European conntries. But here the reckoning by 20's seems always to have been restricted to material objects rather than applied to pure number; so that the 'Gentonic number systems can not be sad ever to lave been vigesimal systems. Ancient Palmyra possessed a mmber system of great extent which was almost purely vigesimal. But scanty traces of it remain howerer.

We have last of all to consider the decimal scale. However great the number of examples that may be wiven of races that have used or now use the quinary or the vigesimal seale, the fact remains that by far the greatest number of meivilized people perform their reckoning by tens; and that, with five or six exceptions, all civilized peoples have done the same. The decimal sale is miversal in Enrope: in Africa it is almost miversal; in Polynesia the same is true; in Asia all civilized peoples and the great majority of the moivilized tribes count with this hase: in North America it is used by the greater mumber of the Indian tribes; and in sonth Amerian it is sometimes fonnd, thomgh the prevailing base is quinary or quinary-vigesimal. The simplo and undoubtedly the corrert explanation of the origin of this system is the laying aside of the comnter, or the scoring of one mark on the completion of earh tale of 10 on the fingers. This develops into a perfect decimal system, and needs only the device of characters for the representation of number to become a written nmmber system like the Roman: or with value of place like the Arabic system of the present day. That it is preferable to either the quinary or the vigesimal seate is a fair inferene to be dednced firon the momerons instances in which it has superseded the one or the other. As a mmber base 5 is too small and 20 is too large. Probably no single-number seale would serve the needs of mankind better than the decimal with the single exception of the duodecimal. But the adrantages of 12 as a base never become apparent until the arithmetie of a people has reached a degree of devolopment such that a change in the scale nsed would be attended with difficulties so great as to reudrr such a thing altogether impracticable. (ivilization is apparently weded to the decimal system; and though it may contime to barter by 12 's and to perform its astromomical complations by bo's, it will always contime to use the arithmetic of 10 s. in preference to any other. It seems probable also that the decimal seato, already in nse among all rivilized mations and among the native races of so large a protion of the world, will tend more and more to displace the quinary and the rigesimal scales, and to become at last in reality what it was in the minds of the ancients, the universal number seale of the world.

By J. Knaroot Sutte. M. W.

By •anthoopology of the loran" wr mulerstand sereral distinet, but closely related, s.iemees, viz, the amatomy of the hain, its physiology, psyehology, ethology, etr.

In the shont space at my disposal it will he impossible to do anythas more than lugetly mention the more important farts bearing mon this motersting sulaject.

We whll reter brietly, in the first flare, to the more saliont featmes of the allatomy of the bram.

This romplex visols may be looked mpon as a hollow has, with seve aral romstrictions at ditferent plares, whose wall is trilaminar, the immermost layd of which is named epentyma, the middle one the nere tissme. and the extermal layer the pia mater.

The momer (‘pendyma) and ontor (pia mater) layes are fuite thin, and may be said to maintain a miform thickness: but the middle (nervetissue) larer possesses very varying degrese of thimbess at different points in the wall of this hollow bag-the bratu.

The nerve tisumelayer may be very think at some places. and it may be entirely absentat other points. In this latter arse the integrity of the cavity of the dnain is maintained berthe rpendyma and phat mater coming in contact, this.bilaminar portion of the bran wall taking the sencral mame of relom.

In orfar to give you a meessalry ontline idea of the anatomy of the bain, it will be best to refer mudly, hat suermotly, to the more salient
 matal growth the bain comsists of there primaty vesirles; soon these threr, he additional growth and romstridioms, berome fice vesicles, all lla a series, one in fiont of theother (athollow bag with fone romstrio. fions and trilaminal wall).

Tho prosemeqphatom, at first the smallest amd most anterionly (pres. asially situated of all the segments. is destimed to grow out of all pros portion to the other segments. It grows in all diredions, upwarl,

[^82]forward, barkward, and downward, and more or less completely hides from view the remaining and, morphologically ronsidered, more fimda mental segments. This great increase in size of the prosencephalon is due to the tremendons growth of its middle layer-the nerve-tissue layer.

The cavity of the prosencephalon is called the frosencephalic cavity (lateral rentricles of adnlt hmman anatomy) ; that of the thatamencephalon, the thalamencephalie eavity (third ventricle of human anatomy). the point of eommmication betwen the two cavities being known as the foramen of Monroe.

The cavity of the mesencephalon is called mesencephalice cavity (syl vian passage; or iter e tertio ull quertum ventriculum of hmman anat. omy).

The cavity of the "moncephalon is known as epencephalie cavity (pre-axial half of the fometh ventricle); that of the metemephaton is the metencephalie cavity (post axial half of the fourth ventricle).

The "fomrth ventricke" thas beromes a ravity common to two seg. ments of the brain.

Along the "floor" of the prosencejhalid eavity (lateral ventricle), in the form of a donble horse-shoe, is a portion of the brain wall in which the middle (nerve-tissue) iayer is wanting. At this place the ependyma and pia mater come in contact, forming the prosencephalice velum (aromeonsly called, in luman amatomy, "transverse fissme"), by which the integrity of the ancephalie cavity, at this pare, is preservert.

Likewise there is a thalamencephatir vehm (rehm interpositum of homan anatomy in the "roof" of the thatamencephalon: a metencephalic velum in the "roof" (Alorsal surface) of the metencephalon. In the latter velum is fomd the foramen of Magendie, the opening by which the cerebrospinal thid in the encephalie cavities commmentes with that in spaces on the ontside of the pia mater known as sub-abachnodidian spaces.

The nerve tismeot the prosencephalon (cerebrum) consists of "inner" or "white matter" and "onter" or "gray matter," the individual ele ments of which are bond together by a tissue called memroglia. The siay matter, otherwise called cortex, is about 3 mollimeters in thick ness. Thecerebrum has mmerous fissures and convolutions on its surface-these for the pmpose of increasing the area of gray matter withont molnly angmenting the bulk of the brain. The superticial area of the cortex is about 200,000 sopure millimeters.

Two of the most important fissures of the bran are the fissme of lobando and the fissme of Sylvins. In relation with the former fissure are fonnd the great "motor areas" of the brain, and in relation with the "forking" of the latter is "Brocas center" (the center for speech).
lan the adnlt the cerebrum is the largest portion of the brain. The 1 ext largest portion of this viscus is theerebellum, which constitutes the great boulk of the epencephatom.

In the brief space at my dicpesal I wan hat mention two of the great physiological processes commected with the brain. l'mobally two of the most ronspichons artivitios of a hmman being are those of intellection amd locomotion: and, in consomane with this lact, we timel the two pertions of the hata presiding over these timetions, the most monsionoms and bulky segments of it. Thererebrum is the ploysical loasis of intel hertual processes and the rerebelhmot beomotion, in that the latter is the great coibrlinating ernter of the bram.

Whether we extemt ons studies along the lines of phylogeny or
 sal, that those ammals laving the largest rerphat possess the ereatest degree of intelligenere, and those with the largest rembella are rapable of the most varied and complisated motions.

From an ethologiral stamperint the size and weight of the human brain arefacts of erat interest and importanee.

The size and weight of the brain are capahle of heing estimated by two methorls, viz, the direet and imdirert. The direct method is to wrigh the brain when it is acessible. The indired is to aseretain the cabical eapacity of the cominm, and then dednoe the wright of the brain that oner oreupied it. This latter mothod is partionlarly appli"able in the stuly of the brains of ameient peoples, the skulls of which have beren preserved to this time. 'The aserage weight of the hman mate adult brain is 1.390 grams. That of the femalo is 1,250 grams.
 carefol examination of a barge mamber of skults classified acording to sex; for sex exereises a most potent mflume orer ramial eapacity, witen exereding the difterence ot rate

The following are some of the principal modifying ronditions whire inthence cranial capacity and thence hran woight, viz, age weight of body, stature, sex, mare, vigor of intellect, and education.

The earlier antatomists believed that the lmman brain attaned its maximm development at 7 yeas of age. We now know that this is incorreat; fet fiom extemsive resarehes it has bean fomm that the male hrain does artmally rearlh five-sixthes of its ultimate werght hy
 mate weight at the cull of the same pritex.

The arerage werght of the ham malerges a progresive incorase up 10 a point between the twentioth and fortieth yars. Theremeatest ara. rage weight for the mald bram is reached at from son to 10 years.
 thimioth frar.

There is a slight dimimation in weight fion to to motan of age and a still greater dimimation fom in to bo fars. Ther rate of
 brain weight has decerased be fom so to go grams. . In the aged, brain weight and inteltigenter derrease pari pussu" (Thurnam).

It has been truly said that there are many exceptions to this general law, esperially amons" people of cultme and learning, "who often pere serve to extreme old ago all the fullness and vigor of their faculties.
"The brain of such men, as the late Prot. (iratiolet observes, remains in a state of perpetual yonth, and loses little or none of the weight which belonged to it in the prime of life" (Thmonm). The ratio of brain weight to body weight varies. In lean persons the ratio is often as $1: 23$ to 27 ; in stont persons as $1: 50$ to 100 . The homan brain is smaller in eomparison with the borly the nearer man approathes to his full growth.

As to stature, the weight of the bain, in both sexes, is relatively smaller in short persons than in tall ones. The diffrerence between the two is about \bar{y} per eent, i.e., the bran of a man of short stature being represented by 95, that of a tall man womld he 100 .

The arerage weight of the adnlt male brain is about 10 per cent greater than that of the female. Nor is this difference due to the difference in stature of the sexes. The difference, as was shown by M. Parchappe, is grater than eall be accomated for in this way. While the stature of woman is only is per cent less than that of man, her brain weight is 10 per rent less.

In relation to this question of the difference of cranial capacity dne to sex, it is very interesting to mote the remarkable fact, pointed ont by Vogt, that the differene increases in favor of the male as the development of the race proceeds, so that the male European extels mueh more the female than the negro the nogress.

In the words of Vogt, "The lower the state of culture, the more similar are the ocempations of the two sexes. Among the Australians, the Bushmen, and other low rater, possessing no fixed habitations, the wife partakes of all her hushand's toils, amd has, in adition, the care of the progeny. The shbere of orempation is the same for both sexes; whilst amonge civilized nations there is a division both in physieal and mental labor. If it be true that every organ is strengthened by exercise, increasing in size and weight, it most equally apply to the brain, which must become more developed loy poper mental exeroise."

Le Bon has pointed out that the differane existing betwern the ramial caparities of the male and female modem l'arisians is almost donble that which obtains betwern the eranial caparities of the male and female inhabitants of andient Egypht. These facts show the intimate, and motnally reacting, relatoms of civilization and brain weight ; advancing divilization leading to incorased dovelopment of the hrain, and the entarged brain making the people capable of higher and broader enlture.

The arerage bath waght in diftrent races of men las mostly been studied by the indirect method, i. e., hy the investigation of cramial (:apacities. Skulls having a (ranial "aparity of 1350-1450 (rubic centi meters art classed as mesocephatic' those muler 1350 cobic centimeters
are microcephalia: those abore 14.00 whio rentimeters are mega rephalie.

Below are given averate brain weixhts in male adnlts of diferent people:

Frotch (Peacork)	$\begin{aligned} & \text { (irams } \\ & 1,117 \end{aligned}$
English (leacock)	1,3sk
English (Boyd)	1,3.1
(iermans (Waguer)	1,:31
French (Parchappe)	1,3\%
Negroes (I'earoc	1.20\%

Thmom says that the average brain weigint of tha mate negre is the same as that of the female Emopean.

What kind of brain weights are fomm amonge men of great mental powers and acominements? The following table will show:

Irain weights of distinguisherl men (Thurnam).

Name.	(W, rujations.	A 2 e.	Wrights.
			'irumis.
Cuvier	Naturalist	(3)	1, 心; 0
A ${ }^{\text {a }}$ -	1'hysirian	it	1.785
Srleill	Jort	41	1, $7 \times .5$
Winicl Werister.	Statesminn	70	1.516
Arassiz	Naturalist	(if)	1.5!
Je Jorata	Mathemativian	73	1. 4116
Grote	Ilisturinn	76	1,1111
Whewed	1'hilosoghar	71	1. 310
110rmanm	Philologrist.	. 1	1, \%\%
IIngltes liedurtt	l'hysician..	(i.:	1,332
Tiv¢lemata	Anatomist	m1)	1, 2.44
Hahsmbal	Mineralusisi	73	1. 2×6

The above-nameal men have been among the formont representatives of laman intelligrace.

The list is very interesting, not only from the fant that it includes some very high brain weights (which we would matmally experet from their high intellectual attamments), but also fiom the fact that it in-- hades brain waghts of form distingotished men which fall distimetly below the average (1390 grams), even when allowance is made for atrophy consequment apon age.

These farts, and many others that ran be mentioned, natarally raise the question, "Is there any invariable comme and mere weight or size of brain?" Bafore answering this question we desire to rite a fer additional tants.

Very high hatin weights are not only fomm among men of grat intelleetnal attaimments amd enltmer as moted in the above table, but also anmong very ordinary sane individuals and anomg rpileptide and ins:me persons. Dr. Buckaill recorts a brain wedght of $18: 30$ grans tor
a male epileptic. This was the brain weight, it will be observerl, of the celebrated Cuvier.

Dr. Spae records the heaviest female brain weight on record that I ran find. The patient was not epileptic but ${ }^{\text {el }}$ labored under a monomania of pride," dying at the age of 39 . The brain had, for a female, the astomding weight of 1743 grams.

The heaviest hmman lorin on record, as far as I have been able to ascertain, belonged to a man who was perfectly sane and healthy, bnt of very ordiuary mental attamments. The man fiom whom it was taken was 3 years of age, a bricklayer, and died from blood poisoning, after a smegical operation, in a London Hospital in 1849. Dr. James Norris says of this brain:
"The weight of the brain, taken immediately on removal, exceederl 1945 grains. This weighing was most carefnlly made, and was witnessed by several students. The brain was well proportioned; the convolutions were not flattened, thongh the surface was fairly moist; it only lost abont 32 grams weight after the usual dissection and draining for two hours. The man's height was 5 feet 9 inches, and he was of a robust fiame. It was difficult to obtain any satisfactory history of him-his wife and his landlady gave different accounts. It seemed, however, that he was a native of Sussex, Eugland; that he had left his native village and changed his name on acrount of some poaching trombles; that he was not very sober; had a good memory and was fond of politics. He could neither read nor write."

How are these facts to be reconciled with one another? In this way. It is now miversally held that it is the gray nerve tissue in the front portion of the cerebral hemi-spheres (prosencephalon) that has to do, more particularly, with the intellectual activities, the white nerve tis. sue consisting, essentially, of nerve threads that conduct impulnes to and from the gray matter. The nerve dements, as stated above, are bound together and held in phace by a form of connective tissue called nemoglia. The nemoglia has no eomection, whatever, with the generation or conduction of nerve impulses-it is morely a supporting tissue. If this tisume, in consequence of disease, increases murl in quantity it may add very much to the weight of the bain-as ocems in epileptieswithont increasing the gray matter which is conerrned with mental processes. lat reality the increase of nemoglia decreases the gray matter and thas deteriorates the mind.

Or, if there is no increase in the nemoglia, there may be, with a large brain, an moduly small amonnt of gray eortex on aceont of a comparatively small mumber of fissmes and convolntions. Or, again, the cortex of gray matter may mot reach the areage thiokness. Or, the textme of the brain may be poor-its microseopic elements feeble and pooly related and romelated.

Thus it may be molerstood that a romparatively small brain-one below the average brain weight-may be capable of vastly finer and better work than a much harger one.

So, in answer to the question, "Is there any invariable connection
between intelligence and mere weight or size of hain?" we answr, decidedly, " nor."

Should the question be asked whether a larger mumber of mega-re. phatie brains is likely to be fomm among races of high intelligence and colture, we have the amswer of Bon emphatioally in the affirmative, and it is in this direetion, as Lee Bon has tanght us, that we must look for evidmes of social superionty. As illustrating this proposition, the following table of perentage of Le bon will prove very interesting and instructive:

Perrentage of cramial capacity in different haman mases (Lat low).

In commetion with this table it is interesting to remember that Le lobn says: "The camial raparity of the gorilla often reaches 600 colbie centimeters, so that it follows that there are a large monber of men more allied by volnme of brain to the anthropoid apes than they are to some other men."

Among other things, this table reveals the interesting fart that in the course of seven humbed yadrs of advancing divilization the arrmage I'arisim 'ranial eapacity has distinetly increased in volume.
It may be well to state, in comblusion, that brow extimated that at bain in the male, weighing 1,049 grams, is the lowest limit compatibe with ordmary human intelligence; in the female 907 extans. Hmman being's with brain weight's lower than Broca's figmes are ithots, ate.

THE BIRTH OF INVENTION.*

By OtLi T. JAson.

In this apotheosis of invention and insentors, to me has been assigned the pleasing task of leading you batck for a few moments to the cradle of hmmanity. Those are happy homs to most of as when we recall the days of childhood. To trace the lives of celebrated men and women to the springs of then moral and intellectan power brings never-farling delight. 'To study the rise and progress of a mation or any soemal mit is worthy of exalted minds. But the most profitable influiry of all is the search for the origin of epord-making ideas in order to comprehend the history of civilization, to conjure up those race memories in which each people transmits to itself and to posterity its former experiences.

Every invention of any importance is the musery of future inventions, the cradle of a sleoping Heremes. But my task is to speak of primitive man and his efforts.

It will aid us in prosecuting onr journey backward to ordent ourselyes with reference to the present. For two days we have listened to the elofuent papers of my predecessors, written to gloridy the nineteenth centmry. Through this taculty of invention the whole earth is man's. There is not a lone island fit for his abode whereon some Alexamder Selkirk has not made a home. Every mineral, plant, amd animal is so far known that a place has bean foumd for it in his Systema Vature. Every creatme is subject to man; the winds, the soas, the smshine, the lightning do his bidding. Projecting his vision beromel his tiny panet, this inventing animal has catalogned and traced the motion of wery stan.

But hic rowning glory (which always fills me with almination) is his "ver increasing romprehensiveness. After renturies of cultivating acquaintane with the diserete phenomena aronnd him, he has mow striven to coordinate them, to makr them organie, to read system into them. He has learned hy degrees to comprehend all things as parts of a single meehanism. Sir Lsaac Newton and Kepler eomecived all ohjerts and all worlds to be held loy miversal gravitation. And thas, in omb erntmey, von Baer and Inmboldt tanght that the world, in all its forees

[^83]and materials, is an integrated cosmos. Anyone who is the least familiar with the progress of philosophy will recall that since the dawn of written history the thonghts of men were tending to this mification. Shortly after this first effort at comprehensive mity Mayer, Rumford, and Joule invented the methods of demonstrating the oneness of physical forees, the conservation of energy. Wollaston, Kirchoff, and Bunsen devised the delicate apraratus to prove the chemical identity of all worlds. Lamarek, Geoffroy st. Hilaire, and Darwin tanght the consanguinity of all living beings. Helmholtz and Meyer coordinated nervons excitation with mental activity. Comte and Spencer grasped the mity of all semsible phemmena. Newton, Leibnitz, and Hamilton projected their minds beyom phenomena and invented mathenatics of four or more dimensions, conceiving of worlds and systems that under the present order of nature can have no objective reality. Over all this, into many great somls, have come the notions of infinite space and time and cansation. The idea of limitation to thonght or achievement no longer enters the imagination. The depth of the sea, the distances of the stars, the concealment of the carth's treasmes, the minnteness of the springs of life and sense, the multiphicity and complicity of phenomena are only so many incitements to greater achievements. The daring souls of this decade are determined at any risk to answer the inguiry of Pontias Pilate, What is truth? With sympathetic enthusiasm we wave them on, bidding them God-speed.

But, I ask son now to forget all this and go with me to that early day when the first being, worthy to be called man, stood upon this eath. How economical has been his endowment. There is no hair on his body to keep him warm, his jaws are the feeblest in the world, his arm is not equal to that of a gorilla, he cam not tly like the eagle, he (an not see into the night like the owl, even the hare is fleeter than he. He has no (lothing, mo shelter. He had mo tools or industries or experience, mo soriety or language or arts of plasme, he had yet no theory of life and poorer conceptions of the life beyond.

The road from that condition to our own lies next to the infinite. The one endowment that this creature possessed having in it the promise and poten'y of all future achievements, was the creative spark called invention. The smperabundant brain, over and above all the amome required for mere animal existence, held in trust the possibilities of the tuture, and stamped upon man the divine likeness. This naked ignoramus is the father of the elothed philosopher, looking out into infinite space and time and cansation. It may give you pleasure to know something about the comections between these two and the witnesses to these comncetions.

There are five guides whose services we have to engage on our interesting journcy. The first is history, who does not know the way very far back-not over three thousand years-with much certainty. The second is philology, the study of which in our own century has ena-
bled us to find the eratle-land of many beoples. 'The thitel is folk-lore, the survival of belief and costom among tha merhasted. The fomth is archarology. history writem in things. The fifth is ethology, which informs us that in deseriling this are of divilization some races have omly marked time, while othershave moverl with sadia of varime lengths. The result of this is that we now have on the eartlo tyes of every sort of cuiture it has ever known. At the present moment, within haling distance of yonder most heatifnl dome in the world dwell all these wit-nesses-the relies of the stone age, the Tadian village of Narochtank om Anacostia, the folk-lore of both continentr, and the literatures of the World. Whing you are listening to the cheominms of onf deate, patarolithie man sends in the testimony of his hamdicralt, the smithsomian Institution treasures the inventions of the most primitive races, and the Buran of Ethology marach the mysteries of satage tomges.

As the fiagment of a speech or somg, a waking or a slepping vision, the dream of a ramished hamd, a dramgh of water from a familiar spming, the almost perished fiagranee ot a pressed flower, wall back the singer, the loved and lost, the loved and wom, the home of rhildhood, on the parting homr, so in the same mamer there longer in this erowning decade of the conwning centmy bits ot ancient ingennity whish renall to a whole people the fragrane and beanty of its past.

From the testimony of these five witnesses we learn that there never was a time when man was not an inventom-nmer a time when lie had not some sort of patent on his invention. They affim that every ant of living and all the arts of pleasme were born in the stome age; that graphie at, semptrare, arehiterture, panting, masie, and the drama had the che childish poototypes in that early day: that language is one of the very earliest of inventons, the vehide of savase oratory, philosoploy. and seimer. They affinn that society has been a series of inventions from the first; that lesislation, justice, govermment, property, exchange, commerer have met spmang onf of the groumf. lant within ome
 whateror vew you may take of the divinc element madronath them. havobern thought out and wronght ont with infontr patus fom time
 in the inlaney of our lace. What we enjoy is ouly the fall-hlown thewer, the pertered fruit of which they posisessed the germ. Let me entoree this idea, as we glorify the material prosperity of the nimeteenth remthry, that many (enturies ago men sat down and with great pains and
 which mald ond mathenes foasible and desibable.

There is no ennmid betwern the testimony of these witnesses and the doctrine commonly tanght that men do mot insent ronsoms and langrages, but fall into them. Redert a mement upon your own daily life and yon will reeognize two sets of artivity. those which yon originate and those in whicln yon follow suit. Animals "an lean to follow
suit, and to a very limited extent can originate. But it is the spark of oriwinality which underlies every thonght or device in this world. As one man invents a machine and others by thomsands fall into the use of it, as the musician composes a song and millions sing it, so was it in the cradle-land of hmanty the inventor, tomelhed with: fire from the divine altar, set new examples to be followed. If we were to interrogate om five witnesses, particularly with reforence to the ancestry, the family tree of the notable inventions of the nineteenth eentury, their answer wonld be somewhat as follows:*

The ancestor of the steam plow is the digging stick of savagery, a branch of a tree sharpened at the end by fire; the progenitors of the steam harvester and thresher were the stone sickle, the roasting tray, or, later ons, the tribulum.

The cotton gin and power loom are among the wonders of our age. Yet in that day of which we are speaking human fingers wronght the textile from first to last. They gathered the bark or wool, eolored them to suit the primitive taste, spun and wove them with simple apparatus, and left upon the fabric patterns that are the despair of all modern machine-makers-patterms that are a pleasure to the eye by their infinite variety, replaced in modern fabrics by a dreary monotony that awakens pain instead of pleasure.

The first sewing marhine was a needle or bodkin of bone, with dainty sinew thread from the leg of the antelope, and for thimble a little leather cap over the ends of the fingers. Coarse, indeed, the apparatus, but the hand was doft, the eye was true, the sense of beanty was there, and so that needlewoman of long ago wronght in fur from the mammals, feathers from the birds, grasses from the fields, shells from the sea, wings from the beetle, and skins of suakes with tastefnl geometric figures. Ion do err who think those ancient needle-women had no taste. It would be hard to invent a pattern now that was unfamiliar to them.

The first engine was run by man power, then man subdued the horse, the ass, the camel, and invented engines for those to propel. He next domesticated the winds, the waters, the steam, the lightning, but the first common carriers and machine power were men and women. The first burden train was women's backs; the first passenger car was a papoose firame.

The poetry of to-day is the fact of yesterday; the dream of yesterday is the fact of to-day. When the savage woman a century or two ago, upon this rery spot. strapped her dusky offspring to a rude fiame, hung it upon the nearest sapling for the winds to rock, or lifted the nofor-

[^84]thatate suckling from the gronmal to which it had been hamed by the bending of an mase homgh, that was a fact, a stage in the history of invention. Ln onf now-aldals ronclas of down, swmog form gilded hinges, we bave got far ablad of the papense rathe, the memory of
 Why habies shouh bre hang in the fops of trees and think, dombthess. that the falling cradle was a just retribution on the silly parents.

What is more beantitil than an ocean stemmer, with skin of steel drawn orer sibs of sted and "dosed above against the intrusion of the waves? Have yon never sern the pirture of the Eskimo, still in the stone age, who, orer a fiamework of diftwoul or whales ribls, stretehes a "overing of sealskin and learned therein to defy the waves hundreds of years ago?

Guly now and then the angry sky was lighter for the primitive man by electricity, and exיn then it filled him with terror. lont it was he that invented the apparatus for conjming from drided wool, by a rule sort of dymamo, the Promethean sark. It was onf Aryan abestors that paid their devotions to the rising sum by kintling firesh fire every momine as the orb of day flashed his tirst beam acrosis the wath.

Who has not real, with almost breaking heart, the story of Palissy, the Hagnenot potter? Bat what have omr witnesses to say of that long line of hamble creatmes that conjured ont of prophetic clay, withwht whee or furnace, forms and decomations of imperishable beanty whicl: are now being eopied in glorifed material in the best tactories of the world? In reramic as well as in textile art the first inventors wrere women. They quaried the day, manipmated it, constmeted and decorated the ware, bumed it in amde fimman, and wore it ont in a hamelred uses.

He had no printing press, but he could tie knots in a marvellons fashion and wite letters on hark or on hits of baw hide and leave memorials of limself in the book of stone. He mate words and sentences, invented language, developed artistic forms of sperch handed down to mis in the eloquent harangues of his sages. ife hreathed his thoughts in poetry, a kiud of childish rhythm.

In the time of which we now are speaking the tolegraplas waser of signal tires and a womderfal code of signs, which at distinguished scholar of our city has just muravelled.

Primitive man developed the art of war, means of offense and defense: weapons of percossion, for "utting and thensting: projectiles, armor, fortitication, strategy.

Nowhere has man pressed his hand so effectively mon matme as in the domestication of amimals. It is almost ineredible that ravening wolves and mereiless felines should beoome faithfinl dogs and purriog rats; that the wild sheep and goat should deserom firam their inareres sible fasthesses, and yidd their Howe and thesh and milk: that horses, asses, camels, elephants, whould he induend to lomel their backs and
limbs to lighten the loads of the first common carrier. This process of impressing his own qualities on wild creatures began very early in history, and has continued uniteruptedly from first to last.*

His affairs of state were managed through his patent system. The great inventors were made the rulers of the people, and his highest title to uobility was a most puissant and ingenions one.

He had comrts of justice, heard witnesses, executed his laws. It is true that the methods were summary, when a chancerysuit was settled by execution on the same day as the death of the devisor. But out of his struggles came our methods, and the greatest drawback to securing justire now is the survival of his antiquated customs into our new practices.

He invented philosophies and sciences, explained the miverse and himself to himself. This seems puerile now, but it was the begiuniug of all our own speculations, necessary to us at present, but which will to-morrow become folk-lne. Over and over again, those who preceded me on this platform have pointed to James Watt as the tue deliverer of mankind. Far be it from me to take one leaf fiom his laurel crown; but the inventor of the alphabet, of the decimal system of notation, of representative government, of the golden rule in morality were greater than he.

For the dream in stone and carving and decoration called a cathedral,
"Where, through long-diawn aisle and fretted vanlt, The pealing anthem swells the notes of praise,"
that early day has only to offer wild shouts in unison under the stanlit. dome, touched by the first rhildish aspirations after the divine, or hopes of immortality.

While you look with admiration upon these panoramas of progress you can not have failed to observe on the eanvas that the art, the process and rewards of iuventing itself, have molergone the very same development and improvement as the thingsinvented. There is in this a marvellous similarity to the life processes of animals and plants. The homogeneons yolk of the egg during incubation becomes wonderfally complex and heterogeneous; hat all of these diverse parts come together into a higher mity, in which each organ ministers to the goot of all.

[^85]The earliest invention was at single homogeneous att，an original suges
 vidnal bencfit．I slarper knifa of Hint，a loetter seraper，a longer
 ＂ution．Now，the man who made the best weapoms killed the most atme，from that game he got better food，that foud made him stronger， that strength made him rhiof，that wieltaincy gave him mone wives， more children，mome cohonts to suppert his throne．The hest woman to cook or sew or carry loals gat the best hashamb：that was her pat－ ant．Fron these simple methortsof invonting and rewarlage invention We come on to the Olympice games，the momopolies，the patent system． And mow．in the inventors lalonatory of（imham．bell，on Elisom the climax is ratherg．Where one mathine is the of operative result of any number of trained minds，and the ratard is meted ont to earh by the manlataturer；or，in this l＇atent（ongress itselfo we may have a still more highly organized mit，wherein the invantors of Amerina berome a hody sorial，alled together shake lathds mader the sea with the Emperor
 ome meetjog．

The law of progres in the derelopment of the thime insented，of the phocess of mind amd hand in the act of inventing．of tha rewatd paid
 is from the homogeneons to the heterogeneons，as Werlort spencer has well indiatod．This applies to the wise of materials，the eomquest of Hatural fores．the development of the qualities of thimgs，the perfere tion of tha instrmants sam modes al alplying thom，amd tha wants which atre gratitiod amd to he gratilied by the limished prodnets．

 forexoing school of 『xperixace

Foless indebted to yon for lifting their bordens ate thar common abriors of the world，since for have tratued the winds，the waters，the amimal kingolom，to modertak for mankind jomrorys that woukd
 common carring organizations aro as much an evolntion or elabonation as the took they rise．

But what shall l sily of the mammadnem－his methods，his rewands， his gutuds，his interest in politics？P＇ari prosish with those effociont tools．that complicated marhinery in his hatads and about him，he him self has been inventer．He is no longer hke the primitiventisan wion struck the tirst thakes fiom hritte stone．Dis is in touch with many
 factory or assoriation of factorits．It was once satid that it takes nitue tailors to makre a mann，hut，surely，it takes mine hundrad men and women for make a sut of elothes．of a homse．of a lowomotive．The
co ordination and organization of these industrial cohorts, I affimand repeat, is invention of the highest order. There are no letters patent on them. They enjoy matural patents, that is, by selection and the

- survival of the fittest; those who do the best and work together the best, get the reward.

The commerce of the world is an excellent example of invention affecting men as well as their tools. Merchants and bankers, exchangers of goods and exthangers of the prices of goods, have been also invented. It would hardly be aftimed that this worldencireling comrent of activity called trate had come about by morely following suit or following the fashon. Were that so, Wall strect bankers and New York merchants wonld now be standing naked on the shores of Manhattan Island bartering peltries for rams. Patent Congresses would never have been thomght of. aml this essay would not have been written. At first every man was his own exploiter, carrier, manufacturer, merchant, banker. and customer. Bat now all men are servants of all men. By a system of crealits only one one-thomsandth part of the world's business is done for eash or barter. The human species, regardless of race or language or education, has become a universal combine for mutnal helpfinlness. And this combine has more parts playing into parts and wheels working into wherls than may he seen in a vast cottou factory. All this is the result of exogitation, of invention. 'The trater is the som of the traprer, the storekeeper is the son of the trader. In the direct line roms the retailar, the wholesaler, the firm, the importer, the trinst. The gatherer of cowries is the father of the wampum maker, and the son of the latter is maker of metallice shess bearing the stamp of a domestie beast; his som issued the first coins, and the family tree hings you straight down to the hothichilds, who have handled at least onse alli the money of the world.

Now, what have to say about the fonsmone, who, after all, is said by dortrinaires to pay all the bills? The ronsmmer also has been inventen, from my point of view. The first ensmmer wore ont little clothing, dwelt in an inexpensive habitation, and his bill of fare was limited. His service, equipage variety of anjoyments, were riremmscribed. ('an you think of any one so bereft? Inome cities, if we fomd wandering abont a perison so poorly endowed, our hearts would be filled with commiseration. Now, fiom that man to any surerssful modern, or more correctly to omr whole morern time eombined, is the road afong whieh consmmers have been invented. The kinds of wants have been refined and increased in mumber. Each want has beeome more exacting and discriminating. Intellectnal, social, asthetie, moral, and political wants have heen rreated. Aud these, not in singla persons only, but there have been composite wants, wordereabraring wants and ambitions thought ont, whese gratifieation "onne to human beings in families,
 tionalities. Ind these, comsmang what they have producet, find that the earth is inexhamstible.

W'e are assembled to glorify the first rentury of Ameriana patents. A few monthe ago the discoples of bagnere met in om rity and set mp in the National Musemm a momment to the inventor of photography. I do not know that thore is another memorial in America to an inventor. 'There is no better way to insure for posterity the recollece tion of this day than lim stimulating among the great industrien the desire to continme this good work of memorializing their fonmders. l'erhaps you may not build your momment of stome or bromze; you may set up a library, you may solicit a romer in the National Musem or Congressional Library or youmay serara a better Patent building.

In our publie phares we set mpstatmes of tha destroyers of mankind and erect momments in ons mational cemeteries to the amonymoms dead. Whan we go to hang garlands upon the rologimm-bearing tombe we do not forget to satter Howers mpon the mansolem of the unknown.

We can mot gather fiom the fom comens of the world the bomes of all the great inventors and honor them with a costly harial. Even their names have perished from the rerords of mankind, but their works endure. What better can we do than to gather these and guard them in our great musemms, mute witnesses of antiquated arts. I ean imagine these anonymotis inventoms looking mon us to-day and gian of this tarly recognition of their vicarious sufferings.

With Joving recollection of yomr labors I jhark at fowre from my heart and strew its petals over your meglected graves:

In freta dum thevii current, dum montibus umbralustrabme comvexal, pulus dum sidera pascot, semper houos nomurnque tumm landesque manchunt.

AMERICAN INYENTION゙S AND JISCOVERIES IN MEDICLXE， SURGERY，AN！）PHAOTICAL SANITATION．＊

By John A．Bhlantis，M．D．

In connection with this colebration of a century＇s work of the Amer－ ean patent system，I have been requested by the adrinory committee to prepare a brief paper upon inventions and discoverises in medicine， smogery，and prartical sanitation，with seecial referene to the progress that has beem made in this comntry in these branches of science and art．

Itarould be impossible to present on this oreasion surle a smmary as would be of any spertal interest or ase，of the proseress which has been made in merlicine and sanitaton dming the centmy，either by the world at large on by Amorican physicians and sanitarians in par－ ticnlar：and I shall therefore confine my remarks mainly to the progress Which has been mate in these branches in comnerton with mechanical inventions and new chemical fombinations devised by American inventors－which will recquire mach less time．

The application of the patent sistem to medicine in this eomentry has had its adratages for certam perple，has givan employment to a con－ siderable amome of caplital in prochertion（and to a mucla larger amomet in allertisings），has contribinted materially to the revemes of the Gov－ ermment，and has made ateat deal of work for the medical profession．

So far as 1 know，lout one complete system of modicine has been pat－ ented in this comatry，and that was the steam，（＇ayemme proper＇，and lobelia system—commonly known as Thomsonianism—10which a patent W：as granted in 1s：弓⿸广＇Theright to pratice this system，with a book doseribing the methods，was sold by the patentere for se and perhaps some of yom may havesomeseminise encesof it comereded with yom boy－ ish days．I am erntain I shall meverneet the efferts of＂omposition powder，＂or of＂＂mmmer six．＂which was cssentially a coneentrated tincture of C＇ayenme pepper，and one dose of which was emongh to make a boy willing toge to school for a month．

From areport made hy the Commissioner of l＇atents in 18t！，it appears that 8 g patent：for medicines had bern granted up to that date；but

[^86] fire. 'The greater momber of patents for medicines were issumb betwern
 during the last decate (18xt-1s!0) is info. *

This, however, applies only to "patent medicines," poperly so called, the clams for which are, for the most pat, presented by simple-minded men who know very little of the ways of the world. A patent requires a finll and umeserved disclosme of the recipe, and the mode of compombling the same, for the publie benefit when the trm of the patent shall have expired; and the ('mmmissimer of l'atents maty, if he chooses, reguire the applicant to fimmish sperimens of the composition and of its ingredients, sufficient in quantity for the purpose of experinent. The law, howerer, does not require the applant to furnish patients to be experimenter on, and this may be the reason why the Commissioner has never demanded samples of the ingredients. By far the greater number of the owners of panaceas and mostrums are too shrewal to thas publish their secrets, for they can attain their purpose much better under tho law for registering trade-marks and labels, designs for bottles and packages, and congrights of printed matter, which are less costly, and do not reveal the areanum.

These proprietary medicines constitute the great hulk of what the public eall "patent medicines."

The trade in patent and secret remedies has been, and still is, an important one. We are a bitters-and pill-taking people; in the fried pork and saleratus biscuit regions the demand for such medicines is unfailing, but everywhere they are fombl. I suppose the chief consmmption of them is by women and children-with a fair allowance of elergymen, if we may judge from the printed testimonials. I sampled a good many of them myself when 1 was a boy. Of comse, these remarks do not apply to bitters. One of the latest patents is for a device to wash pills rapidly down the throat.

According to the census of 1880 there were in the United States 592 establishments devoted to the mannfacture of drugs and chemicals, the cupital invested being $828,598,458$, and the annual ralne of the produet $\$ 38,173,658$, while there were 563 establishments devoted to the manufacture of patent meducines and compounds, the capital invester being $\$ 10,620,880$, and the value of the product, $\$ 14,682,494 . \dagger$

A patent antomatic doetor, on the principle of "put a quarter in the shot and take out the pill which suits your case," has been proposed, lut this patent is said to be of Duteln and not of American origin. The irlea of this may late come from Japan, for an old medicine case fiom that comutry which I possess has four compartments filled with pills, and the label says that those in the first eompartment are good for all

[^87]
 are a sure vernifiter

Form the commereial and ind astrial point of view the

 ing, silent-prambulating, family pills, which cost 3 reuts. some day
 with his vews as fo the matore and "handere of those prople who were

 ings. which clisplay forms such a pomblemt featare in maty of one

 ness shrewduces of the men who pay for these abominations. I should also like to know low mord a farmer gets for allowing his huildings to

 ind drbt.
 in this partionlar style of masance, althongla they far exeed them in viogonshess when it comes to applyging to jgmble purposes. The
 not be clear to you: lont it axists nevertheres. fin many of these soaps make work far tha dortors by mornanis skin tronkles.

I jou the whale. I shomblathe that the momber of people who would takr some troubla fo aroid purelasing all ardele which is thas alvertised mast he rapidly incrasing. so tlat surfo displays will som be no longer potitable. The great importance of adrartining fors mot relate to the flatand or chromo business. bom to its relations to perionliad literatmr- to the daily amd weekly press and the monthly masazines and jommats.

To the establishoment and smpert of some of onf bewspapers and jommals, medical as well as whers, these proprictary and seret medi-
 largely.

I an somy to say that I have been mable fob obtain delinitre intomas tion as to the dirert herefits which inventions of this kind have emmfermed on the pulbie in the way of the rare of disease or prenting death. Among the questions which were mot jat in the selodedes of the last cemsns were the following namoly: Did yon eror take any patent or probrietay medicine? If so, what and how mone and what Wase the result? Some very remarkablestatisties wombl modombthave bed obtained lad this inguiry leen made. I andonly say that I know
 to the resomees of practical medieine, and the composition al all these
is now known. These fom are all powerfal and langerous, and shomad maly be used on the advice of a skilied physician. Most of such remedies have little value as 'mative ageuts, and some of them are prepared and purchased almost axclusively for immoral or aminal pmposes.

In France the sale of secret and patent medicines is not allowed muless they have been examined and approved by the National Academy of Medicine, and the same general rule holds good in Italy am Spain.

The Japanese have folloved the French method, and their experience is interesting. The Central Sanitary Bureau established a public lab. oratory for the analysis of hemicals as a medicine. The proprietors of each of such medicines were bound to present samples, and the names and proportions of the ingredients, directions for its use. and explanations of its supposed efficacy. According to a report in the British Medical Iowroul, during the first year there were 11,904 applicants for license to prepara aud sell 148,001 patont and secret medicines. Permission for the preparation and sale of sistias diffrent kinds were granted, 8,592 were prohibited, 9,91s were ordered to be discountenanced, and 70,043 remained to be reported on. The great majority of those which wepe anthorized were of no eflicacy, hat few being reme. dial agents; but their sale was mot prohibited, as they were not fomm to be dangerous to the liealth of the people.* I do not vonch for these figmes, which throw our reerrls entirely in the shade.

In 184! a sperial committee of the U. S. Howse of liepresentatives reporter to the Ifonse a bill to prevent the patenting of medicines, accompanied hy a report. This hill provided that after the passage of the act Ietters patent shall mot be grauted for any article whatever as a medicine, provided that this shall not apply to machines, instruments, or apparatus. When the matter came hefore the Monse for consideration the bill was laid on the table. \dagger

Yon are all aware that the great majority of the medical protession consider it to be improper and discreditable for a physiovian to patent a remedy. The medical code of ethies dectares that it is derogatory to professional character "for a physican to hold a patent for any surgical instrument or medicime or to dispense a serret nostrmu whether it be the composition or exmsive property of himself or others. For if surth nostrom be of real aftoracy, any concealment regarding it is incomsistent with beneficence and professional liberality; and if mystery alone give it value and importance, such cratt implies either disgracefnl ignorance or frandulent ararice. It is also reprehensible for physicians to give certifurates attesting the efficacy of patent or serret medicines, or in any way to promote the use of them." Like all legislation, this is a formal deratation of the corstoms of the profession, which customs are of great antiquity. The principle upon wheh it is fommded is thus expressed by Lord Facom: "I hold every man a delotor to his profes-

[^88]
 amends to be a help athd arnament theremato."

Therule, howerrs, is not always adhered to hy physicians, the most notable exeption having hera, perlaps, the wse of Kochos lymph before its composition was revaled. As regrats the patenting of sumgical instrmments and aplanatns, the opinion of the great majority of physicians is in acomdanme with the mule fust stated, but the are are some who fuestion its propriaty, althongh ther obey it-and there are fow who would not use a patenterl instrment in a ease to which they thomght it was appliable.

The total mmber of surgical instruments and applianers patented during the past decade has been ahont $1,20 t$, the patents having been in almost all cases taken out by mamnarturors. With these may be classed dentists" tools and apparaths, of which about sol have been patented during the last ten years, and in this field of invention the T"nited States leads the world. The sime may be sail with regard to artiticial limbs, of which our great war gaverise to many varieties.

As you know, the law preseribes that a patent may be given for a "bew and usefnl art, marhine, manufactme on' composition of matter." I nsed to think that thr worl "useful" in this law had its ordinary meaning. and therefore wondered execelingly an to why the l'atent Oftice examinss allowal patents to erstam things which came mater my notire. Onm day, however, I reerived an artiele fiom the Patent Oftiee, with the request for a report as to whether it was useful in the semse in which that word was used ly tha offee, namely, "not pernicious or prejudiejal to public intorest-capable of heing nsed "-and then for the tibst time I muderstoral one of the first primeiples of the patent law of the Thited States, that is. that it does not takir into consirleration the degree of mility in the deviee ore in other words, that "usefol" means " harmbess."

If a patent is granted to a medicine it mant bo as ar comporition of matter as a sperial article of manalactare. The practior of thr y atent Ofice in these matters is not gemerally malerstord. It does not now consialer that medial freseriphions ane imventions within the meaning of the law, of that a mere ageresation of well-known remedies to ob, tain a commatise effert is a patentable romposition of matters. A certan number of ratans for (invomment motertion in the fom of patents or trade-marks are made for median compoumdsom for apparatus
 Hemmatisu or dyspepsia or displacemont, withatarning agatust theio mse muder certain conditions, the rat design being that they are to be nsed moler precisely these conditions in order to procura abortion, ete. These are sometimes ditionlt wase for the latent oftioe to treat prope aty, for the law doen not allow a large diseretion tor retmsal on mere suspicion, and where there is ostensible and possible utility (in the

Patent (Offere sense) it can had y rejert the chaim on the gromm that the invention might be used for immoral purposes.

I said in the beginning that I can not on this orcasion give any sufficient account of the progress of invention and discovery in medicine amd sanitation during the rentury just gone. The great step forward which has been made has beren the rstablishment of a true serentific foundation for the art nom the diseoveriss made in physies, chemistry, and biology. One hundred jears ago the practior of medicine and measmes to preserve health, so far as these were really offocacious, were in the main empirical-that is, certan afferts wre known to nsually follow the giving of eertam drugs or the applieation of certain measmres, but why or how these affects were prodnced was maknown. They saled then by deadreckoning, in several sanses of this phase.

Since then not only have wreat advaners been made ly a continnance of these (mplitical measmes in treatment, lont we have learned much as to the mechanism and fimetions of different parts of the body and as to the nature of the canses of some of the most pervalent and fatal foims of disease, and, as a consequence, can apply means of prevention or treatment in a moch more direct and definite way than was formerly the case. For example, a hundred years ago mothing was known of the difference between typhos and typhoid fevers. We have now discovered that the first is a disease propagated largely by aerial enntagion and induced or aggravated by overerowding, the preventive means being isolation, light, and fresh air; while the second is due to a minnte vegetable organisu, a bacillus, and is popagated mainly by contaminated water, milk, fool, and clothing; and that the treatment of the two diseases should be very different.

The most important improvements in practical medicine made in the IThited States have been chiefly in surgery. in its varions branches. We lave lod the way in the ligation of some of the larger arteries, in the removal of abdominal tmons, in the treatment of diseases and injuries peeuliar to women, in the treatment of spinal affections and of teformities of varions kinds. Aloove all, we were the first to show the nses of anmsthetics-the most important advance in medicine made during the rentury. In our late war we tanght Enrope how to buik, mganize, and manage military hospitals: and we formed the best musemm in existenee illustrating modern military medicine and smgery. Onr contributions to medical literature have been many and valnable; and our Govermment possesses the largest and best working medical library in the world. We have more doctors and more medical schools, in proportion to the population, than any wthersomntry, and, while this is not good evidence of progress, I am glat to be able to say that the standard of aequirements in medical education las been and is now lising, and our learling medical schools are now being equipped with buildings, with apparatns, with laboratories, and, most important of all, with brains, whieh enable them to give means of practical instruction equal to any to be found elsewhere.

 rhiefly beranse, matil quiforeremtly. We hater mot had the stimulns to prosistent aftor whid comes fion density of popalation and its anm
 had the information relative to lowalizad ranses of disease and death, Which is the essemtial fombtation of pmble hegiente, and which "an only be ohtained by a propersstem of vital statistias. Wr wan, however. show enongh and to spans of invorions in the way of sanitary appli-
 ingemity of inventors has hopt pace with the increasine demands dom protereton from the efleots of the hleromposition of wasto mattex as increase of knowledge has matle flese known to lis. Tha total mumber

 Worthless. The impulse to improvements in this diredion has rome manly from England, where most of the primeiples of good wenk of this kind has bean devolobed: hat we have dovised some details botter alapted to omr climato anl modes ol'romstruction. amb while many of the patent traps and sewer-gas axcluders are only usolyl in the patent law : Phse and some not aven in that, it is nevertheless true that the safety,

 same may be sall with regard to heating apatianees, including rentihating stoves and fircplates, rambiators, ato.. bat I am mable to express any enthusiam with rosam to what are commonty called patent rentilatons.

No donbt the greatest prosress in medical science during the next fow years will be in the dirertion of prevention, and to this end merhaninal and chemical invention and discovery must go hand in hand with indrease in biological and medieal knowledge. Neither can aftord to beglect or despiss the other, and both are working lin the common good. If the American patant system has not given rise to ans suerially valuable inventions in practical medicine, in law, or in thenogy, it most lee due to the natme of the subjerts, and not to any fant of the sysiem.

ENDOWMENT FOR SULENTIFIC RESEAlBOII ANH PIBLICATlON。*

By Addison brown.

Twenty years ago Prof. Tumdall dolivered in Now Vork and in other cities of this comotive a series of lectures mon light. The last of the series was an impression plea for a more thorongh proserntion of original researrin in pure sadince; and incilentally, for the need of enflowments to maintain it. I was fortmate in having the opportmity to listen to that remarkable romse of lectmes, and to that plea for seience. Its impression has mever left me. The impression was the deeper, beranse Tymall set upon it the seal of self-rimial. Some $\$ 30,000$, nearly the costire net proveds of his lectures in the forited Statesmoney for which he moloubtedly hat abmetant tse in his own atiairs, or at least in the prosereution of researehes in his own eomutry, and which hy all preredent and the example of other lecturess he would have taken with him-this ha has given to the seience of this combtry, endowing therewith, in lsis. there schobarships for the prosecution of origimal resanch in physies, one mond the direction of Colmmhan College, one mader Marvari, and a third at the Thiversity of Pemsylvania.

The thon have already many times borne finit. The late lresident Barmard, of Cohmohia College, who was a warm supporter of loof Tymball when here, hermeathed to Cohmbia mon his decease a few yans sinm the sum of $\leqslant 10,000$ for the (antowment of another fellowship) lor the ene onmagement of semptife researeh, upon substantially thr same terms as those of the Tyudall sololarships. In other parts of the comery there have hern some other matowments foe similar purposes. lat the last

 this bequest is not primarily for the prosecution of original researd, it is mot restricted by hampering romblitions, and will to some extrat, it is hoped, admit of a direet and continmous support of the highest and most allanmed sturlies.

[^89]The appeal made by Tyndall has been often renewed by scientific men; by the heads of universities; hy the presidents of scientific associations, here and abroad; and by none, perhaps, more sloquently than by Dr. Edwin Ray Lancaster, in his address betwe the biological section of the British Assuciation at Southport. in 1883.

What shall we say to the call and the examples of such men? Was the gift of Tyudall based only mponan idle fancy? Or was it the result of a clear perception of a protomad truth, viz, America's need of that money as a stimulus and support to more scientifie researeh; the call on him being telt to be the more imperions, becanse the need of it was so plain to him, while obsenre to others; and making his act, therefore, a noble instance of self-rmmoriation in an mapreciated eanse?
"To knep society as regards seience in healthy play," he says, "there classes of workris are necessary:
"1. The insestigatom of matmral tmath, whose roation it is to pursur that truth and extem the fiek of discovery for truth's own sake, with out reference to prartical ends.
"2. The teaclier, to difinse this knowlerge.
"3. The applier of thene principles and truthe to makr them available to the needs, the comforts or the luxuries of life.
"These three classes onght to co-exist amb inter-art. The popular notions of seience often relate, not to selence strictly so callerl. but to the application of soirnce."

The great diseoveries of scrientific thoth, he continnes, ane "not made by pratical men, and they nevre will be mate hy them; beeause their minds are beset by ideas which, thongh of the highest value n one point of view, are not those which stimulate the orginal diseoverer."

In a chanme eonversation, a tiw werks since, I receved a confirmetion of these words, so direct and mexpected, that it may bear eitation. I Was talking with an electrical expert who hat matr several very interesting and important inventions. I asked him of how much importance he conceived that the scientitie men of the eloset, the original investigators, socalled, had been in working ont the great inventions of electricity during the last fifty yearn-the telegraph cables, telephonss. the electric lighting, and the electric motors; and whether these arhievements were not in rality due, mainly, to the practical men, the inventoms. who knew what they wreafter, rather than to the men of seience, who rarely appled their work to pradtieal use?
"Not at all," he said, " the scientitic men are of the utmost importance; everything that has beren done has poreeded upon the basis of What they have previonsly discovered, ant upon the principles and laws which they have laid down. Nowadays wr never work at random. Look at that electrif light! (of the energy expended in pothemit.
 in heat. Wre are all now trying to prevent this emormons waste. I Want to mome that poportion: lont if I man rednce the waste to only

38 per cent. a patent of my insention will be worth millions of dollars for ats eronomy in prodnetion. In recking this we do mot work at ran dom. I go to my laboratory: staly the appleations of the primepes, lacts, and laws which the great serantists like Fararlay, Thompson, and Maxwell have worked out, and endeavor to find such devices as shall serome my aim."

This is but an expression, in another form, of what 'Tyndall sat twenty years ago: "Behind all om pratetical appleations, there is a regon of intellertual ation to which practieal men have rarely contributed. but from which they draw all their supples. Cut them of trom that region, and they become arentanlly helpless."

What is the in one department of hatmal sumber is, lappehend, equally true 1 all. The practical men do mot work at ramion, hut upon the basis of what sementific researeh and publication have previonsly put within their grasu.

It is evident therefore that mot moly the alvancement of knowledge itself. but all possibility of ally contmoms allane in those givat improvemonts which are to mitigate the sormoss, and promote the health, the comvenideres amb the pomforts of men, is vitally dependent mpon the progress of sombtife researeh, farerent frars how marvellous have these imporoments beron! besides those that are mast common and tamiliar to all, what minaldes, ahmost, have heen arheved though the photograph, the spectosenpe, the mieroseope: by the disensery of the sommes of fermantation and of putafaction; by the discovery of
 13 the treatment of other lestoms! 'These latter disconorides alone have amolionated beyond experssion tha sufferings of man; they save more
 the satioty lamp of Sia Itmonhey Daty-an invention which, at the time it was madr. was sad to hato exceded every previons diseovery as a means ol sathes homan life, exept, possibly, inoculation for smallome.

This vital relation betwern the advanement of knowledge and the

 Work of diseovery mast alwatis leall; that most always precole the

 is no lamit to the alvanoe of knowledges, su there ean be mo limit to the
 Hhe idvanoe, the more suredy the anjoyment of its froits. In this relation alome, the meed of atmple provision for sedentiac pogress is one that aldresses itsalt equally for the mation, to thar statre (on phitan-
 bowdest alld most rallum? lames.

gator of pure scieuce does not work for profit. His discoveries are not marketable. The law allows no patent npon a minciple of nature or the disovery of a new truth. Newton rombl not patent the law of gravitation, nor Volta the galvanimo of the roltaic pile; nor Ehrenberg and Schwann , the discovery of the widespread inthence of bacteria; nor Fararlay, nor Henry, electro-magnetism; nor Jonle, his rorrelation of forces; nor Jackson, his anwsthetics ; nor Lister, his antisertic treatment; nor Koch nor Pasteur, their discoveries of the bacilli, the destruction of whirl may lead to the cure or amelioration of trrible diseases. To the practical men and to the inventors, on the other hand, who apply to the specific wants of men the tmoths and principles which the seimotists have made known to them, the law, in the form of a patent, gives a monopoly of from fomrteen to fwenty-one years. They thus obtain, as a rule, a reasomable, and, in some eases, even an excessice, peomiary reward. In this comotry alome nearly 500,000 patents have been issmed: they are increasing at the rate of aloont 25,000 per year. In the extreme montiplication of patents aflecting a large part of everything we nse, the whole world, it might almost be said. is paying tribute to the inventors and practical men: while to the original discorerers who have made so much of all this possible, there is no promise of pecuniary reward.

This is not said by way of complaint. In the nature of things, it is scarcely aroidable. The aims, the motives, the methods, and the genins of the two classes of minds, are and erer most be widely distinct. Orignal discoverems ean not be tmoned aside from their special work to become mechanics and inventors without infinte loss. Prof. Ilenry had one form of the electrice telegraph in actual use some years before Morse conceived it.* But how great would have been the loss to seience, without any corresponding gain, had Prof. Hemry in 1830 tmene away fiom pure seience to do the subsequent work of Morse in adapting the telegraph to common and valuable use?

Research in pure seience can never be made a self-supporting pursuit. It can never therefore be earried forward broally. and continmonsly, and effectively, exerpt throngh men sustained loy some form of stipend or endowment. (beasionally, it is true, men of independent fortume, like Harvey, and Darwin, and Lyell, and Agassiz, have devoted themselves to original researeh upon their own means, and hare accomplished most important resuls. Lint these instances are rare. Many other persons, too, with aptitndes and tastes for researeh, thomgh not following a scientitic career, have carried on private rescaches m the intervals of leisure, stolen from the exatting demands of profes sional or hasiness life; and these hare, in the aggregate, atded no small amount to the common stock of knowledge.

It is no disparagement lowerer of these subordinate workers to say that nearly all the great disooverios and nearly all the great advances
along the lines of kmowledge, have been achieved by men who in the
 thromgh matitations or emownemts which madre thin devotion pessible. (

 tamed hy diovermment aid, or by the bounty of private individuals.
 ours. There, matersities are fombed by the govermment; here, ehietly by the people.

In (iermany there are twenty ene matresitios maintained by the (iove momemt. In each of these, as Inr. Lancastar states, there are tive in depembent establishments 10 the departmont of hologs alone, viz, in physiology abatomy, pathology, zoiblogy, and hotamy It the had of each of these establishments there is a professor, with two paid assistants, making altogether abont 300 for biological wseareh in Germans: and he estimates about one-gnarter of that mumber in the same dejartment in England. In all the seiences, therefore, there wonld probably
 ments, supported by the Government in the miversities, who are resulanly and systematially engaged in the dinoovery of new sedentifie truth. For it is there made both the objest and the duty of the professors of natural science to cary on original investigations by work in the labs oratory. Their positions aro obtaned thongh previons distinetion in such investisations. and it is for this work that their small but dixed stipermed is pathl hy the Govermment.

In the College de France, alse maintaned by the Govemment, theme is the same requirement, thongly with a hager salary to the professons, and with the added duty imposed on them to Abliver to the stmdents about forty lectures yearly upon the sulyeets of the professors res. searoles; while in Germany the profestors also receive from earlo stu dent who attends their hecturess a moderate fee, which serves to ins eraser their meager stipend, as well as to stimalatr their artivity and ustrinhess. I'uder this system, (immany has becomm the gratest sehool of seremere and the resort of the whole workl.

In this combtry the opposite system prevals. Tha rolleges amd min versities are mainly privale fommations, depement on private gits
 or less "ramped for money. 'This limith the momber of professors and assistants appointed ler instruction, and reowels them with routine work. The result is that in all hat a few rolloges, ame in these matal comparatively recently, the datien of instmetion lave left to the pro
 restigations; allal these with but poor equipment !?nd inarlequate mealls.
 I. Mis. 114 40
able to ascertain, is there a single professorship endowed or fommed, even in part, for the avowed objeet of original scientific research. Instruction, not discovery, is the only avowed object. It is to the great credit of American professors and teachers that, with so much routine work on their hands, and so little leisure for rescareh, they should have accomplished by purely voluntary studies so much as is shown in their contributions to our scientific publications.

To what is said above, perhaps a virtual exception should be made as respects our astronomical observatories, in which, the labors of instruction being less, original work has been perhaps expected, and has been accomplished with most sigmal snecess. To some extent this may possibly apply to our medical schools also. And in othor departments, generally, wherever time and opportunity have been afforded, much original work has been done hy our professors; some of it of the first class. This is attested, not to mention living instances, by the work of Prof. Hemry at Princeton, Dr. Torrey at Columbia, Dr. Silliman at Yale, Dr. Gray at Harvard, and many otloers that might be named. In a number of the States, also, and at Washington, there have been maintained by the State or Nation a number of scientific men, in comnection with certain State or national interests, who have accomplished most important results; of these, Dr. James Hall, of this State, is a conspicnous instance. At Harvard and at other colleges some noble opportunities for special study have been also provided in their scientific sclools and muscmus; notably in the zoölogical museum, the Jefferson Pliysical Laboratory, and the Jeabody Musemm of Archatology at Cambridge. and also in the department of hygiene at the University of Pennsylvania. But in most of these the great complaint is the lack of neceessary endowments to make possible the active advanced work in original discovery for which those institutions are designed. In the Peabody Musem there was in 1891 a gift of $\$ 10,000$ by Mis. Hemenway to establish a post-graduate fellowship; and also a gift of like amount by Mr. Wolcott, for the general support of the musemm's work. New York also has within a few years past seen spring up almost as by magic, throngh the efforts of a single leading spirit, seconded by other pulble spicited men and women, and by municipal aid, a museum of uatural history that bids fair to stand in the front rank of scientific opportunities; but the endowments of fellowships and professors necessary to make its opportunities avalable in active research are as yet wanting.

England hohs a position midway between the United States and Germany. Her scientificmen lament her deficiencies. They are striving to increase their means for scientifie work, and are doing so yearly.

If experience teaches anything, it is that no broad and seneral revelopment of scientific work of the first class is possible, except either throngh independent establishments for sperial work, or else by the university system, in which professors in science and their assistants are first selected on account of their previons distinction in original
researoh, and are then appointed to contime that work, and in the teaching of stulents, foramsuit to them the zeal of disconvery and the trone methods of andrance.

It matters litula whether the smpert of the university on of special
 emdownemt, provided the provision is aleghate and monstant. The dificonlty with us has bere, amd still is. that fands are insuificient, the means and eqnipment inadergate, and the time allowed to the pros fessors for research insutiferent. There has been ter munch of the sehoommaster, alm too little of the real professor. Thoo great alsorption of the frofessors time in the work of instration is injorions to both teacher and pupil. Tha most stimulatiog of teathers is he who by daily experiment is in vital touch with Nature, -he who brings form the fires of the laboratory the warmoth. the illmmation, and the inspiration of his own researehes.

This is now woll roorgnized: and so far as their means will permit, the lealing oolleses are hy degres relieving their professors of the work of elemontary instruotion, so that they may the better proseconte original researehes, and at the same time leroms loest qualified for the highest work of mstruotion. This system will donbthes demand watehfulness and discrimination. To prerent almses, resulation and responsibility may have to be imposed. Bat it imvolves the apmont. ment of additional instrmators. It requires added means. And this is indispensable as a part of the framsition of our leadine colleges to the miversity system. It is indispersaber, also, if we are to lave in this country any comsiderable ststematie proserotion of original researefo. We mostuse existing instrmmentalities and existing institutions. And all axperience shows that ontside of the few (iovermment positions, and in the absence of sperial institutions for research, the professontal dhats are best adaped to surblusestigations. No greater surviee conld be done to scienere than to makr such endowments as shond insure sys. tematie and eontimons researeh hy the professors an a part of the new miversity system.

Endowments for the same objert, and operating in the same lime, might also take a different form, vi\%, the embownent of sermal pro-

 either within the eomatry or within the State. I knew of mo mere quirkening impulse to original seientifit researeln than sumb as wonld be given to it by those mealls.

How backwand we have been in this romatry. thremghthe lack of proper cadowments, in makimg mise of the hest existimg oplortanities for researelo, may bre ilhstrated hy at singr instamer. Some twenty years ago a school was restablished at Naples for the proserortiom of marine biologion researeh. It is most thoromghly equipperl, and, being a general resort, is the most adrantageons for study in
the world. It is maintaind ly a charge of $\$ 500$ per year mon each table occnpied, each ocempant being entitled to all the ad vantages of the institution. Of these tahles, the (iemman states for several years have taken thirteen; Italy, eight: Austria, Russia, Spain, and England, earh three; Switzerland, Belgimm and Holland, each one; the United States, mitil 18!1, none, axept one table supported by Williams College for two yen's. and one by the Thiversity of Pemmsylvania for one year. Prior to that time abont fiftem other American students in all had ohtained phares at the tahles taken and paid for by other mations. In 1890, this amangement was probibited by the administration of the institution; and the right to a table in 1891. Was secured to Americans, only through the private bencfaction of Maj. Alex. Hemry Davis, of Syraonse. For the year 1802, the use of a table has been secured through a subseription started by the American Association for the Advancement of Srience, toward which the Association itself granted ont of its scanty funds $\$ 100$ and was the means, I believe, of procuring the rest.*

We have not however been wholly without some such means of study in this comntry through the marine hiological laboratories established some years ago at Newport and at Wool's Holl, by Prof. Alex. Agassiz. The former has been now enlarged so as to accommodate eight advanced students, besides the professor and his assistant.t The Johns Hopkins University also has supplied some opportunities of this kind by its summer school, formerly at Beaufort; later, at Jamaica; but at present, as I understand, it is withont any permanent location.

Our neighbor, the Brooklyu Institute, has organized similar investisations, on a minor scale, dhring the summer months at difterent places on Long Island. But what is needed for the most effective work, is snitable endowments for professors and advanced students, in connection with an adequate biological laboratory, such as the Newport one molarged might afforl, efual in means and equipment to that at Naples, or at least to that recently completed. largely through private enterprise, at Plymouth. Englant. \ddagger

[^90] tield, in which additional ambowernts are gratly needed, viz: for fellowships in scieme for post-graluate studies.

Fpou the post-graduate workers, the finture of serener, and the re-
 that view the importane of post-w ardata emblowments in seipnce can seareely be magnified. The great mapority of the foms men from Whom all the new redruits must he drawn have litta or on permiany means. After granlatang, often thomgh many diftionltios, they must face the question of their futmo alling. 'They monst consider what formise of a reasomable and comfortable support a life davoted to seidere affords. If this risk shomld not detor them, still there are many with talents of a high order who would be absolntely mable to proceed futher in the adranored serentife studies neressiny to cralify them to enter tipon remmerative scientifir work, or to obtain sithations as professors or assistants, exepht by the aid of substantial endowments for their support, dming the three or form years more of neressary assiduons study.

In the stress of modern life, and in the allurements towards more rertain peembary results, mothing but such embownents can avert the withdrawal fom seientite pursuitsod many yomg mon of high promise, Whose genins and tastes and ambition strongly incline them to serence, and who womld he sermed to it if this temporary support were atforded.
 ate work in selenee atre mollt less, I suppose than is commonly imasimed. I find mo such sumport for post mialnate work in stience, either at Comell Univasity, at the Iniversity of the ('ity of New York, at I Bown Thivasity, at Amherst, or aral at the Johns Hopkins University. Nostatement of the endowments of the new Clark University at Worcestar has as yet been puhbished. Irineetom, though
 ate fellowship for seienere Yale but two, -the Nilliman and the Sloane V「ellowships.
('olmmhia ('ollege has two followships expersly restrieted to sedence,
 lowship, helone refomed to, wh about sisoo ammally. Besides these, however, twonty fom eremeal miversity fellowships have bern establisherl, of \& \&ot eatho for post-grahate stady, of which rightern are in fresent operation. Abont one-thirl of these are assimed to serence; making now eight for seience at ('ohmobia, with probally 1 wo mone in 1s9:3 or 1894. In arohitaetme momeover, there are three additional moble post-marlate fellowships at Commbia, the Sehermerhorm of st, 300 ammally, and the two Mrkim Fellowships of $\$ 1.000$ each, to support study in forrign travil. In the Medical Department, also, there are five valuable prizes for proficiency.

The Thiversity of Pemsylyania has the Tyudall Fellowship, hefore referred to; and, in the Defartment of Hygiene, an admiable laboratory fitter $\quad 1$, by Mr. Heury 0 . Lea, with a fellowship of $\$ 10,000$ endowed by Mr. Thomas A. Scott, at present applied to origimal research 1 macteriology.

At Harvard, besides the three Bullard Fellowships of $\$ 5,000$ each, established in 1891, to promote origimal researeh in the medieal sehool, there are two post-graduate fellowships restricted to seience exclusively; mamely, the Tyudall Fellowship of about \$500 ammally, and the income of the recently established Joseph Lovering Fund, the principal of which is now abont $\$ 5,000$. There are also eleven other general fellowshups, viz: The Parker, the Kirklamd, and the Morgan Fellowships, avalable for promising graduate sturlents in any branch, of which about five have bean nsmally assigned to seience. These fellowships give an meome of from \$450 to sion a year. Harvand has also forty-six scholarships available for graduate students, varying in income trom $\$ 1.50$ to $\$ 300$ each, of which abont seventeen are assigned to science. During the last year, acoorling to the report of Prof. Pieree, the dean, there were 193 appleations for those post-graluate fellowships and scholarships, seventy-one of which were in science. Only one-thind of the applicants conld receive the aid. The Deanadds:
"The number of appointments is still rery insufficient to meet the demands of promising students who wish to enter the graduate school and are unable to do so withont assistance."* The tables published by him indicate that a considerable momber of those not aided withdrew from seience; and that many others who were entered for the first year in the gralluate school, would, if not aided, afterwards leave. It is gratifying to observe the further fart, so encouraging also for the yomg graduates who wish, if jossible, to enter upon a scientific career, that all who had enjoyed these followships for the finll tem of three years, and did not continne their studies finther abroad, at once rereived honorable positions.

From the above synopsis it appears that in all these colleses fand I know of no other similar fellowships elsewhere) there are only about twrity-six alequately endowel post gradnate fellowships in seience. As these should be contimed for at least three years, there is provision altogether for only abont nine per year-not one fonth the momber required to supply the ammal loss in on for colleges, to say mothing of the incrasing demand throngh the growth and improvements in the colleges themselves. As it is from such specially framed students that the great professons of the future must be drawn, the need of moneh greater endownents for nem recmits is apparent.

In England the aids afforded her fellowships in their universities are familiar to all. Sir Isaar Newton, who is to morlern science, what Shakespeare is 10 literatmo. was sustaned from lis student days suc-

[^91]ressively in a seholarship, a Rellowship, and an formenom at Trinity College at Combridge. Besitus those aids. The Royal Commiswoners of the Exhibition of 16.5 institated last year (1891) •• Exhibtion
 is to be applied in sums of sain) eath, last sear sixtere apmointments were made, to be hekl for two and probably for three james by stadents who show capacity, and "whondance wienee les experimental work."*
On this subpert a most interesting disemssion tonk pare last ya mom the French Aeademy of Sereme On Apil 27.1 s91, the seretary read the following extact from the will of the late M. Canoms, adecrased member of the Aealemy:
"I have firequently had the opportmity of observing, in the comse of my srientific rareer, that many romg men distinguished and andowed with ral talent for swiene fomm themselses onliged to abondon it, becanse before hewiming they had no effecacions help which powided them with the first neressities of life, and allowed them to derote themselves exclusively to serentifu stumes.
"With the object of cucomraging such young workers, who for want of suliticient resomeres timd themselves powerless to finish works in comse of exerntion, - . I bequeath to the Arademy of sciences 100.000 firancs, the interest to be distributed yearly by way of choomagement to any voung men who have made themselves known by sume interesting worke, and more pasticulany by chemical researeloes: as far as possible to yonag men without fortune, not having salaried offices, and who, from want of a sulficient situation. would fime themselves without the possibility of following up thei wseares. These permiary enomagements onght to le given for seperal years to the same roung ment if the Commissioner think their productions have sumbernt value: - to rease when the shath hate other sutherently remmerative positions."
M. Jansen, then addessing the Aralloms, satal:
"Thise alfords an example to all who herealter may desire to encourage the seiences loy their liberality. M. C'anmers, who knew the ment neressities of wienere hatd. like most of nse berome eomsinore of the

"Our prizes will always contime to meet a grat and moble neeressity. The ir value, the diffoulty of ohtaining them, and the erlet they take from the illustrionsines of the body that grants them. will alwas make them the highest and most vahable of remompenses. But the ralue also of the work it is mecessary to prowne in order to bay clatim to them, forbids them to hegimmers. It is a tield onty aceressible to mat tured takents. But there are many gomg men entowed with precions
 Patien carem by the diflicultion of existene and taking withe regret a direetion fowats mome inmediate results. And yet many among

them possess talents, which, it well cultivated, might do honor and good to science. - - These difficulties are increased every day by the marked advance of the exigencies of life.
We must fiud a prompt remedy for this state of things, it we do not wish to see an rud of the recrnitment of science. This truth is beginning to be gencrally felt. The (iovermment has already created institutions, scholarships, and encouragements, which partly meet the necessity. Some generons donors are also working in this manner. I will mention specially the moble foundation of Mlle. Dosne, in acoordance with whose instructions a hall is at this moment being built, where young men, having shown distinguished aptitudes for high administration, for the bar, or for history, will receive for three years all the mealus of earrying on high and peacefnl studies. Let us say then planly (and in speaking thus we only teebly echo the words of the most illustrious members of the Academy), that it is by following the way so nobly opened by Cahours, that the interests and prospects of science will be most efficationsly served."

Huxley is said to have once stated that "any comntry would find it to its interest to spend $\$ 100,000$ in first fimding a Firaday, and then putting him in a position where he could do the greatest amount of work." It is the post-grathate eudowments that must first find aud retain to science the Faradays of the finture.

A notable instance of the need and value of such aid is found in the recently appointed head of a great university, who by such endownents alone, here and abroad, it is said, was enabled to prosecute his studies for ten years sucressively. reaching therely the front rank in his chosen department of philosophy.

111.

Another department ingreat need of pecuniary support is that of the learned and sedentifie societies. In these England is preeminent. Our own sordeties have entleavored to follow, so far as they conld, their English models. The English societies have rentererl to seience invaluable service in three main lines:

1. In providing ample means for the pmblication of scientitic papers, showing the progress and the results of their scientific work. In this every society has takeu part.
2. In the direct maintranace of original researeh, in which the lioyal Institution has been most eonspicnons.
3. In the awarl of prizes for scientific distinction: but still more important, in the distribution of pecmiary aid, for the proserntion of sperial scientific researches.
(1) Of these, I rawd publiation as, perhaps, the most inportant: not only because it puts the work in possession of what has been doue by investigators: but becanse the very fact that there are means of

[^92]publieation，is one of the greatest incitements to eomplete amd thorongh original scientitice work．

Of the English societies the Royal soedety is the ohdest．having been chatered in lafoz．It has published 1 si volumes of Transeretions and aboup io vohmes of Proceduys．For these purposes，in 18st the expenditme was betwero $\leqslant 11,000$ and -12.000 ．It has property to the value of about two－thirds of a million of dollars，more than half of which is in trust fimbls，hedr for soiontifir uses．The income on the trust
 Sl0．000 in B^{3} per rent．（onnsols＂to promote scientitic researeles．＂ changed mon the soriety＂not to hoard the incoms parsimmionsly， but to expend it liberally for the objects mamed．＂

The Royal lnstitution of Grat Dritain was fommed m 1769 ，langely through our combtryman Jamos Thompson，of Romford，V̌t．，afterwatis Count limatorl．In 18SS it had property amd insested fumds for gemeral pmposes 10 the amome of s．30，000，and abont $\mathcal{F} 10,000$ of invested
 about sa，000 in publications．and it has issmed abont 40 volmues．\dagger

The Limatan Soriety，mow furnshed ly the Govermment with per－ manent aceommodations in Burlington Homse，free of fent，was fonnded by Nir James E．Smith in 17s8，and is devoted to botany and zoölogy． Its propury amomuts to about s 82,000 ，but it has $n o$ endowed fonds for semontibe investigation．For some years past its receipts，manly from contribntions，have been abont sto，000 a year，of which one－half． abont s． 5000 ，is spent on its publications，which now number neaty 50 volumes of Thoustefons in quarto，and as many more of its ．Jomrmal． In 1855 s $\mathbf{-} .000$ were expenderl in publiration．\ddagger

Next in order of time is the British Assomation for the Adrancement of science，fombed in 18：31．It is sustamed chietly by yealy rontribn－
 rontributions are abont＊ 10,000 anmally ont of which it appropriates
 imvestigations，amd abont $\$ 1, ⿱ 000$ ammally for its yeary volme of pro－ ceredings．Its publications now momber twente fire volumes．
 dohn Ray，who lived fiom lowe mat lan．Maller，himself ome of the

 The society has fublished about fifty volmmes of sedontific work of the
 or anomisitions：nor have l fomm any fandeal report of the seientifie socioties of Vdintmrgh or Joblin．

[^93](2) Of these socicties, only tho Royal lustitution directly supports professors for seientifie researela. It has two labonatories. one chemical and one physical. These were re-hoilt in $1 \times 5=$, "in order that original discoverymight be more effectively "arried on." The societ y was fonnded for the declared purpose of "pomoting sofentific and literary resench," It has three professors, -one in chemistiy, one in physics, and one in physiology. Davy, Fanday, Tyudall, and others who lave spent their lives there, have made its ammals immortal.
(3) In stmonating researela by the apropriation of moneys for spe cific objects, the Royal Society and the lintish Association are the ehief agencien. Besides some of its own finds, the Royal Society distributes ammally $£ t, 000$, or $\$ 20,000$, granterl ley the Govermment "for the ad vancement of seience." This has been done hy applying it to mmerous purposes; in 1891, for fifty-seven lifferent scientific objects, in smus ranging from 825 to $\$ 3,100$ each; not confined to natural seience alone, but including ethoology and magnetic surveys. Most of the grants were in sums of about $\S 350$ or less.*

The British Association las distomsed ammally for the last forty years from $\$ 6,000$ to $\$ 7,000$ per ammm, upon the same system of dividing it up for momerons specifie purposes; usually from thirty to forty objects yearly, the grants being in sums ranging fiom $\$ 25$ to $\$ 1,000$. The grants are called for and expended for the specific purpose named, and under the direction of some prominent scientifie man. Scientists like Sir William Thompson, and others of like renown, have had the administration of many of these grants. These have included for the last six years (save in 1890), the appopriation of $\$ 500$ per year for a table in the Naples Marine Laboratory. \dagger

We have no single society in this conntry, save the Smithsonian, that fan rival in importance those that I have named in England. And the Smithsonian is not a society, lut an institution, established by one man, and he an Englishman. This Institution, based upon the bequest of James Smithson, was fomded by act of Congress of August 10, 1846. I donlot whether in any comutry or in any age the bequest of half a million of dollars has ever been followed by such beneficent results, or has ever so profoundly effected the life of seience in any comntry, as the Smithsonian Institution lias dome in America during the last fortyfour years of its existence. This has been owing (1) to the wischm and the profound scientifie insight of Prof. Heury, its first secretary and director; and (2) to the corps of able assistants and successors whom his spirit and policy have inspired. Its publications nmmber 26 quarto volumes of Contributions to Kmonlerlye, 40 volumes of Miscellancous Collections, and $4 t$ volumes of Amumal Reports. Its C'ontributions to Khoulenge rival, if they do not exeel, in rarity and imporitance, the publications of any other society during the same period. Its expendi-

[^94]

 seiontitia work of the lastithtion, however, its intherner has been very great, especially in the relations with the other departments at Wiabsington, and as a modinm for the promention of other serentife enterprises. momer anthority of Congress. Many of the appopriations of Congress for wemtife expeditions for researehes in ethology patame ology. chemistry, and physios have been due to the presence and co-n)eration ot the Smithsonian Institution. For ethmologio researehes alone dming the last twelve years, maler the administration of the Smithamian. Comeress has aproprated * 400,000 : to patarontohgic researehes within the last thee years, 6160.000 ; to chembeal amb physioal researeh, s6s.000: and to astro-physical researeh. Elo,000. Besides these. there have been for many years appronriations for maintaining the important investigations of the Coast and Geodetio Survey. and of the Weather limean in Meteorology : and for the great sciontifie work of the Naval Observatory and of the varions serentife divisions of the A grienltmal Department and of the Geological Survey. Ome (iovermment has been by nomeans imactive 1 sedene

The principal American scientitic associations, ombting those of comparatively recant origin, are the American I'hilosopheal Society of Philadelphia, originally fommed in 17.4t: the American Academs of Arts and Serences at loston; the loston Society of Natmral Ilistory : the Aradems of Natural seremes, and the Franklin Institnte, at Phil adelphia; the latter fommed in 1 set (see Jommot, vol. I. pp. 71, 12!!); the New Yomk A eademy of Sirenere (a contimation of the Lyeemm of Natural History) ; the National Acarlemy uf Sedence at Washington, fommed in 1 sisi?: amb the A meriean Asseriation for the A dvaneement
 mmes of its Trensertions: the Ameriean Aradems, 20 volmes of Tramsactions and ! quarto vohmes of Memoms: the Buston Soejety of
 Academy of Natural scrence of lhiladelphia. 18 rohnmes of Proced ings. and 12 ghanto rolmmes of its Jommal, at an arerase cost of about \& 1.000 per fear : the Framklin Institnte, $1: 3$ vohmes of its dournal: the New York deademy amd its prederessors. alont 30 bohmes of

 ation fow the Advanemmen of sedence, about fo wommes of froced in!s.

 has any fimd sperially devoted to researeh, or makes any sperafic approntations therefor. The National Academy ant thw Academy of Philadelphia have each some funds for their support, and the later also
the Jessup Find for students m science, on which the income is about $\$ 550$ yearly. The Philosophical Society from time to time awards the juize established by John Hyarinth de Magellan in 1786, an oval gold plate, "for the most useful discovery or inverition in navigation or science." One of the earliest awards of this prize was for painting lightning rods with black lead.
The American Academy of Arts and Sciences awards a gold and silver medal from a bequest of $\$ 5,000$, mate to it Dy Comet Rumford, who in 1796 made a similar bequest to the Royal Soeiety. In 1888 this prize was most worthily awarded to Prof. Michelson for his researches in light.*

The Boston Society of Natural History has a general fund, of which the ineome is almont \$6,000. It has also a small Walker prize find and a grand prize fond, from which in 1854 it awarded a grand prize of $\$ 1,000$ to James Hall, of Albany, "for his distinguished services to seience." It also administers the expenditure of about $*=, 700$ a year for instruction in laboratory work, drawn from the Boston University, and $\$ 1,500$ from the Lowell fund for the instrnction of teachers. \dagger

From this comparison of the voluntary associations, it appears that the property, endowed funds, and equipment of the English societies named are nearly tenfold greater than the American, and their publications double; while for direct orginal researel, our societies maintain no laboratories and no professors, as is done by the Royal Institution. The English sorieties distribute yearly from $\$ 2.5,000$ to 830,000 for from sixty to seventy-five different scientifie pinposes, while ours make no such appropriations, simply becanse they have no funds. To supply this deficiency there is need of large cudowments.
The publications of our societien are valuable; the paperss have often been of a high character, rivaling those published abroad. But the funds available for publication are insufficient; it is always a duestion of means. There are a press and surphos of valuable scientific matter, which either is not printed at all, or only gets printed by special subscriptions for the parpose. This ought not to be. After valuable original matter has been produced with great pains and without hope of pecmiary reward. mothing is more discomaging to finture research than that even publication ean only be had as a charity. This I know, from repeated personal applications, is the coudition of things in New York at this moment. It is not creditable that in at state and country like ours there should be practically mowhere adergate provision for even the poullication of the researeles of those who work for nothing but their love of science and its progress. There is very great need of a considerable publication fund, in the hands of some scientific body, throngh which every valuable contribution to seience, not otherwise provided for, might be ensured a speedy publication, after it has been

[^95]found worthy, as in the practice of the dimman society, dirst hy a rritical expert in tha particular department, and then by the council of prblication.*

 the liopal sorioty and by the liritish Asooriation, wowlal also be ver

 sordoties, atter the model of the lioyal lastitution. should wot in time he followed by results equally brilliant, and ranally bemeficial to man kimu.

I have condeanored to point ont three main dirertions in which there is megent need in this combtry of peromiary emfowments.
(1) In relief of protesoms during the transition of the colleges from the sehool-master syistem to the miversity system, whereby all professors in sedene shall hecome artively enlisted in the proserention of original discorrys as a part of their duties.
(*) In providing for the finture weruits in sience, by more endowments for post-graduater study.
(3) By radowments of our scientitir associations, both directly to promote original research, and rsperially also to supply larger means of publicathon.

It is grat ifyins to proedve what beerimings have been recently made in response to the needs of seience. Only a short time since, in 1885, Mrs. Elizaloeth Thompson, of Stamford, Comb, gave en, 000 to a borard of trustees of which Wr. Bowditelh, of Benston, is president, for the "advancement of semontife researd in its boadest sense." The in. rome is ammally distributed in smas of firon two lmudred to tive hme dred dollars.

Mr. Ilodgkins, of setanket, Lomg lsland, has reeently bequeatherl to the Smithsonian Institntionse00,000, the income of one-half of which is to be devoted to researel into the properties of atmospherie air.

Cohmblat College has, during the past rear, meeived fom Mr. De Costa's estate, before refered to, \$100.000 for hiology; Harvarl, the
 photospaphy of strular spertra; the emdowments in areharology, above Hamed; and some smaller giffs for varions seientite purposes. 'Thw University of ('hicago and some other institutions have also received important sifts, mot to mention those yo to beralized toother colleges from the estate of Mr. V"arweather.
liy a meront bequest of ©haldes Leming, the Academy of semares of Philadelphia will, in time, receive 50,000 : white half a million of dollass will go to the l niversity of Pensylvania in aid of instruction in theoretiral and practioal mechanios, and \$200,000 to maintain seholarships. At this loniversity, also, a superb structme for the "Wistar

[^96]Lnstitute of Anatomy" is now building by Gen. Isaac J. Wistar, at a cost of about $\$ 200,000$, including endowments designed for original research.*

Our reliance in this comntry must be mainly mon mivate endowments and an intelligent apmeciation of the neerls of science. The national Goverment has dome, and is doing, much in certain directions. But aside from the dispositions of legislators, it is restricted by the provisions of the Federal Constitution, anm ly dobated questions of constitntiomal right. state aid is not thes hampered; but State aid is diffientt to obtain, to any aldegnate degree. on accomit of the previous hatbits, prejulices. and political training of the people. No donbt this onght not so to be. The State of New Yonk ought, abstractly comsidered, to maintan one university of the first class equal in every department to any in the world. But the multiplication of instintions already existing, local jealonsies, and aversion to State taxation. make this now probably impracticable.

The remedy is with the people, and throngh their own voluntary methods. It is the people who have made our Govermment, its institutions, its methocls, and the great aggregate, whatsoerer it in, such as we see it today. Wealth is rapidly ammulating; moch of it in the hands of those who, springing from the people, bear the love of the commmity in their hearts: and when they and the people at large shan come to see that the canse of scimifie advance and the discovery of all new trith are in the deppest sense their ranse, responses will, I believe, come to every urge: need: mitil the work of the people, by its own methods, shall, even in science, be able to confront, without shanc, the best work of the monarchies of the old Worh.

[^97]

By l＇of：＇moman（irar，ド．K．A．K．

The word telegraphl was introdmeed abont one homberl years ago as a name for a mands of convering intelligence to a distance hy means of signs．The signs werepoduced in a varoty of wass，as．for example， by the shapes or positions of bodies placed oun high poles．or hey letters or words of sutheient masultule similarly raposed．The meaning of the wom telegraph，intmputad loy its original use，womlal thme be to wite or make signs at ond phace in sum a way that they eond be read or intropeted at a distant phere．It appeas，therefore that so long as we conifine om attention to maty methools of tolegraphing．the signs or signals were mate at the semding station and wan fom the rereiv－ ing station．Modem nsage gives a slighty diftront meaning to the worl，Hamely：a means of podmeine visible andible or written signs at a distanee＇That is to saty，the signs are to be produed at the re－ ceiving station．This was tirst areomplished on an extensive suate and at geat distanmes lye means of＂hedricity．Methors ot tramsmittins

 howrea been known for sereral ranturies．
 and used form rary raly times．Fires seem lo have beron the earliest
 in the writings of the Prophet Joremiah，of Exelyyns，of loblohes，and
 the telesenpe to view posts ereded on an emine mer at a distant station， and on which signs were for be pared．Thar Marguis of Worester，in his（＇rntmy of Imcentions，dmmerates a day and a night telegraph；and
 make them visible at a distame by plating thom over the dod of a mak
 posed in proper sucession any message＂an he transmiterl．

One of the earliest temeraphos of which we lave mow a diret repre－

[^98]enternth century by the Duke of York (afterwarl James II, of England), who was at that time admiral of the English fleet. This was the begimning of the flag telegraph still used for commmicating between ships at sed, originally introdncell for the purpose of directing the manmeners of the Heet. [n 1684, Dr. Robrept Hook commmicated to the Royal Soriety of Loulon a proposal for a telegraph. In this method the signs were to consist of bodies of different shapes placed on high poles in an exposed position. Some years afterwarls a similar method was proposel to the Arademy of Sciences by M. Amontous, a French natural philosopher. In 1767 Mr. R. L. Edgeworth proposed to telegraph by means of the arms of a wiml-mill, the positions of the arms of the mill to be nsed to indieate the signals. In 1784, the same anthor proposes to make the signals indicate mumbers, and to interpret by means of vocabularies of numbered words. In 1794, the semaphore telegraph of M. Chappe was adoptel by the French Government. This telegraph consisted of a high post and two bars of timber, the middle one pivoted to one end of the other, and the free end of this second bar pivoted to the top of the post, so that the whele of the motions conld take place in a vertical plane. The positions, relative to the vertical or horizental, of the two arms indicated the signal. These and other modifications of the semaphore have been at varions times used, and are still used on railways for train sigmals.
The chief interest of these early telegraphs-a great many forms of which might be enmerated-is in ilhstrating the fact that some means of conveying intelligenec to a distance quickly and without a messenger has, from the carliest times, been recognized as of wreat importance. It is, well also to keep before us the things that have been done in earlier times when we attempt to judge of the advantes which have been mate by modern invention.
The telegraph of to-day is almost entirely electrical, and in its present form it is of comparatively recent growth. It may be well, however, in this branch also to glance briefly at the early history of the subjeet. To begin with what we may call the fable peried, we find in the year 1617 an allusion in one of Strada's Prolusiones Academice to the belief that there existed a sympathy between needles which had been tonched by a species of loadstone, which cansed them always to set parallel to each other if they were free to take up such positions. Two such needles, it was said, conld be msed to convey intelligence to any distance, becanse if they were piroted on carls marked with letters or words and the card properly phaced, so that rorresponding lefters necupied similar pesitions, when one needle was made to point to any letter or mark the other needle would immediately point to the correspontling mark on its card. The same belief is referred to by Galifeo in one of his dialognes in 16:32, and again by the Abbe Barthelemy in a work entitled "Voyage du Jeme Anareharsis," published in 1788. So far this may be said to be mere fable, but it

 persent day with respert to eloctricity.

 ably thr first of direct inthence in connertion with telespapy. As ar result of this diseovery, and tho investigations which followed it, we
 transmission of intelligence. The first of threseof which thore is ans

 to be sigualed were to be erered betwern the two stations. It there cerving station the embs of the differentwire were to be eombered to a series of halls, modromeath which the rhanatere, pronted on light pieres of paper, were to be placed. If any one of the wies berame electri-
 ity, the rhatader mader the ball an the and of at would be athacterd and thms indioatr the sismal. An intresting mondifation was sug gested in the same letter, mamely to replater the balls ly series of bells of different pitelh, armaged in surl a way that when the wires berame eleetrifer they would disehatere into the bells atm ratme them
 size, will inform his romperondent by the somm what wires have heen tonehed: and thas, hy some practior they maty come to matristand the lansuage of the ehimes in whole words withont beingent to thr tronhla of moting down everyletter." A similar telegraph was imvontodialiat hy Joseph lioznhs, a lesuit and aleretare on hathaal philosophy in

 rople was established hy La sage. In this system earh wire trmoi
 ance with the imlications af these dertroseopes. of which twaty-fonf
 one wire mbly being nsed, and a eote of sixmals forming the means of interpertation! A similar poposal was madre by batancomet in the

 room experiment in physial leatures. The mext to propese the nse of

[^99]statie electricity for telegraphic purposes seems to have bren Romalels, of Itammersmith, in 1816. In this telegraph the letters were printed on a disk which was mometer on the seconds arbor of a clock. One of the elocks was phated at the sending and the receiving stations, and arranged to bring coresponding letters simultanconsly opposite a small window in the dial of the elock. When the proper letter was exposed a signal was sent by means of a pith-ball telegraph. This telegraph Was mome complirated than several which have been mentioned above, and reguired two rocks going syachrononsly.

In the year 1767 an important observation was male by sulzer. He fomme that when two plates of different metals were phaced ond above and the other below the tongene a pernliar sensation and taste were felt when the metals tonched each other outside the tongur. Sulzer failed to find the explanation of this phenomenon, and no finther advance was made mutil the well-known foge experments of Galvani wave fiesh impetas to the subjert. The disooveries of Volta and the invention of the voltaic pile shortly followed. Th the same yar (1soo) an attempt to "lose the cirenit of a voltaic battery by means of a drop of water led Nicholson and Carlish to the diseovery that water is decomposed by the salvanie eurvent.

This gave rise to tha galvanio or elerotrolysis telegraphe of Simmering. Coxr, and sharpe and is the basis of all the ehemical printing and copying telegraphs whinh have in mone recent times been produced. Sibmmeringes telegraph was invented in 1809 , and was similan in principle to that of Momrisor, exeppt that the decomposition of water amd consequent areomulation of was in a serien of tubes gave the necessaty indieations. To rall attention, it was poposed in combertion with the telegraph to liberate an alam by means of an aremmulation of gas.
loof. Coxe of Pemsylyaia, deseribed a similan telegraph in 1810, and proposed to use eithor the doomposition of water or of metallie salts. Mr. .I. Li. Sharpe proposed a voltair telegraph in 1si3, and exhibitad it before the Lords of the Admiralty, "who spoke approvingly of it. hat alded, that as war was orer and money searee, they conld not cary it intorfert. (Sor heprtor! of Irts, Seroml Series,

 little attration amd mo develogment matil it was redineovered by Oerster in lisla. This was the disworey that a wire rombering an

 mereased whert he womblte wire sereral times romblthe theedte. These two diseoverise formed the fommation for the eonstrurtion of the

 síe applications has bren to telagraphe,

 of insention we find, prominent among the arl! workrrs, the distin-

 fication of Ampere's telegraph was carried ont by liturhtr, and after Wards exhibited in Edinhmeh he Alexander. In this telegraph thinty wires were used, twentr-six for the letters of the alphabet, there for
 nerdes rach carried a small serean whirh in its mormal position cos. ered the letter, hat which. on the passage ot a cment through the wire. Was drawn aside. exposing the leter to view. The transmitting keys were arranger like the kegs of a piano-liote. With the exeeption of the use of atalanio instrad of statice electricity this trelegraph Was not muth in alvance of the proposal of Jorrisom. I simsle cir-
 used at aralvanoserper as the imlicator.
 used a single nowle and single riment telagraph, using reverse eme rents amb eombinations of signals for all alphaber. Jobleds of this telegraph were matd amd whihstad before the Emperor Alaxamer
 was attained. In 183: S. Shillinges telograph was deroloped to some
 The chiaf monlitiation introduend hy these rexpermenters was the sub

 The lollowing tanslation of a bat of a report of the maghetir observar

 tion with these armagements, a grat and motil mow in its way movel
 ereeted during the past year al domble-wiar lime orm the homses of the town (iättingen fom the lhssical d'ablatet the observatory, and
 tory: thas : m immense salvanic ehath (line is fommed, in which the

 for at manber of interestingexpriments. Wir rexard. not withont

 bas, whiclo is deflected at ohre for orer a thomsamel divisjoms of the
seale." And fimther on in the same report: "The ease and rertanty with which the manipulator has the direction of the rmrent, and therefore the movement of the magetio needle, in his command, by means of the commminator, had arar ago suggested experiments of an application to telegraphic signaling, which, with whole words and even short sentences, completely surceeded. There is nodoubt that it would be possible to arrange an mintermpted telegraph rommonication in the same way between two plares at a considerable number of miles distance from each other."

The method of producing the emrents in Ciauss and Weber's experments was an application of the important discoveries of Faraday and Henry in the induction of curcents by currents and by magnets, which have since horne so very important fiuit in the field of dynamoelectris: marhinery.

On the recommendation of (xams this telegrapl was taken up by Steinheil, who, following their example, also used induced rurrents. The important contributions of stemheil were the disoovery of the carth ciremt, male while attempting to nse the rails of a milway as telegraphic conductors: the invention of a telegraphis: aphabet and a recording telegraplo. ()f these the disoovery of the arth rimot, made in 18:37, has proved of great value. An interesting description of Stemheil's telegraph, together with mlnstrations of the magneto-electric and recording apparatus used on the line ereoted in 1837, between Munich and Bogenhansen, will be fomud in Sturgeom's Ammels of Electricity (vol. 1ul). This accomet, written by Steinheil himself, shows that he had at that time an excellent appreciation both of the merhanional and electrical properties which a good practical electric telegraph shomld have, and also that he was well versed in the knowldage then existing of clectrical seience. The relative merits of seopire, acomstice, and recording telegraphs are diswased, and the adrantages, which experience has since bronght into prominence, of the acoustic telegraph is pointed ont. A rery good disenssion of the most ecomomical method of armaging signals for a telegraphie alphabet will also be fommd in this papert.
schillinges telegraph, which we have just sern, was the model on which (ianss and Weber's, and, therefore, also steinheil's telegraphs were based, was, as we shall see preseutly, also the hasis of Cookers. and of ('ooke and Wheatstone"s needle telegraphs.

Previons to the date which we have now rearhed (1835), another epoch-making disowery had bern made, whirh has had great inthr ence on tolegraphy. This was the disoovery of the magnetizings intheree of the curent. The discovery of Gersted was followed by Ampere in a lomgeres sef researehes, in which, anmong other things,

 any other part of the corroit, and that a spial of wire forming part

 Stmeron fomal that a bar of sott inon was bembered temporarily mag-

 and by magenets. Wre see fiom these lading facts that in the twelo
 wf masmetism in the dimetions important fon telegraphice applation Was very grat, alld wre wall sed that it quickly hore fillit.
selabling* telagraph was exhibitod at a merting of (ixman math
 Hemblberg, who, after his retmon to Hadelbers, malre models of the telegraph and whibited them in his chass room. These modrla were seen by Cooke in the early part of fsab, and gave him the dow of introduring the electris telegraph in England. Cooke immediately set to work to (onstron at tekgrap on a similar plan, ame worked ont

 introdmed by him 1 ronjunction with Wheatstome. While arrans. Bing for experments on the bembon and Hamelaster liablay, Cooke was introdurod to Wheatstome, amb afterwand comsulted him as to difíonlties he had met with in his experiments. A parthership soon followad, Which led 1 Theatsonne to devote considerable attention to the subjeet. The result has bern the produetion of a comsiderable vargety of telographic apparatus of great value and ingemity.
 graph self rexording by Morse, of New York, who, acendmg to a com sielerable amomet of evidenere bronght torward ley Morse himself,
 tirst ideas were seems somexhat donhtiml, and he did mothing till 1s:35.
 graph. This telegraph romsisted assentially of a porlalum, which
 by an electro-magnet. Thu dodections of the pendnhan wrer weoreded on a band of paper, which was moved forwand by doekwork mader the permblam, almd simple combinations of datertions were to repre sent mombers. The interperation of the message was to be made hy
 tenees were to be mombered. There was no hint at this time of the alphabet with which we are mow so tamiliar as the " Morse Conde" or

Hating the name of dorse, bering that which perpofuates the mame "Morse System," was not invented by Monse but by Vail. Who was associated with him in the development of the telcemplap.* The dice tionary of mombered words proposed by Morse was proposed by Eigeworth in 17!t. in commection with his semaphome telegraph. The model mate in 1835 shows little meronanical ingenuity. The method of transmitting the signals. which was by means of type moved thongh a contart-making devire. was somewhat rpudr and much less convenient than tha simple make-and-break dimuit hevires of several previous workers; and the electromagnet used to deflect the pendnlum showed almost complete jgmoraner of the prineiples then known of electro-magnetism. The ehief points of interest in comertion with the early history of the Monse trelegraph lie in the proposal to use electro-magnetism as the motive fore to move the reconding pemblum ant the ideat of making the telegraph self-reeording. Alorse mate pesitive ramims to bare been the dirst to do both of theser, amb it reems proper that his claim shomld be examimed.

After the discovery of Sturseon in elorto-magnetism berame known anong scientitu men the sulbeet was taken up by l'rot. Henry, who Was then tearhing physics in Albang Acatemy. An acoomt of prat of llemry's experiments was publisherl in Sillinan's Amorican Jomrond of Noience, for Jammay, Ipril, and July. 1s:31.

The following, among other things, were subjerts of insestigation in these experiments: The laws which govern the masnetizing effect of a helix moder varying eouditions as to mmber of turns in the helix, natwe or arranemont of the battery, amd length of the external rivenit; the carrying power of magnets having diffrent kinds of winding amd different lengths of wire in the roils; the eonstmetion of an electromagnetie engine. The transmission of power to a distance hy means of his electo-magnetice entine. Among the applications were the cosing of a distant electric ridenit by means of the armature of an electric masuet, the coils of which were inchated in another cirenit passing throngh an operating or framsmitting station, and the transmission of signals to a distance by cansing the amatore of an electro-manet to strike a bell each time a coment was sont throngh the coils of the magnet firon the tramsmittines station. The latter of these applications was illustrated loy means of a model apparatus included in a long wireuif of wire taken several times romm onr of the romms in Albany Academy. The following elams made in this commertion ly lorofessor Hemy are well fommed, and deserve quotation:
"(1) Previous to my investigations the means of developing magnetism in soft iron were imperfectly understood, and the eleetric magnot which then existed was inapplieable to the tramsmission of power to a distance.
"(2) I was the first to jrose, by actual experiment, that in order to

 toreroive this rament.

 iments to the tractapht.

 Danå laberatory in New York. The magme marlaby lonse was itselt

 formation and supplied the matrobals for makime the dhange atterwards
 form the writags of lont. Ilany. lowhaly the idea of nsing an

 ratly turn to that means of ohtabing motice foree. It is mot meressary,
howerr．Whan wing Mors due credit for his orisinality，to igmore the fart that，althongh mknown to him，the soicntilis：pat of the in rention had already bean worked ont by Hemr，and besides that，throngh Dr． Gale，Homse artmally made me of Hemry＇s discoveries before he suc－ reeded in making his srheme practicable．Morse afterwards objected to Henrys claims，whieh wre brought before the public by enforced testimony in the law courts，and not by any individuad motion on Henry＇s part．The public have landed Morse and have paid him liber－ ally for the little he artually dis，while it was with great difficulty that Congress could be persuaded to make a petty allowame to Henry＇s family，althongh he had been for many yars a publie servant，and besides had pobably added more than any other man to the scientitic reputation of the Thited States．Mans people think that sementific men onght not to patent their diseoveries．Which is the better known mame．Hemry or Morse？Would mot Hemry have gained both in popu－ larity and in seientife reputation if he had patentad and made the publie pay liberally for his diswoveries？

From the brief sketch just given it will be seen that in looking over the history of the emrly endeavors to produer a telegraph many ideas have been brought forward as to corles of signals，alphabets，telegraphie dictionaries，methods of calling attention bư alarm apparatus，methods of arranging and operating the dircuits，and so on，that only required an efficient motive fore to render them prattical and reliable systems． lu reviewing the subject，therefore，we are fored to the conclusion that the telegraph was not the invention of any man．but the result of a gradual growth toward which many minds．some of them the ablest the seientifie world has known，have eontributed．

We have now ratched a stage in the history of this subject when in－ ventors may be sad to have had tho fumdamental principles of the sub－ ject，as it now stamds，before them and we have simply to look for de－ velopments．These developments have been queat and of a very varied whander．It is impossible in this address to do more than sketch a fer of their loading features．

As aheady stated，the tolegraph of schilling，thongh a model exhibiter by Prof．Muncke，of Heidelberg，gave the incas of an elec－ tric telegraph tw Cooke in the year 1836 ．It appears，also，that Wheat． stone was aware of these ealy experiments，and had himseli paid some attention to the subject．His experiments on the velocity of eler－ tricity，made in 1834，are sufficiont to show that he was at that time aware that sigmals rould be produred at the end of long arcuits of wire by electrical means．The joint work of dooke and Wheatstonc led，within a few years，to comsidemble improvements in the needle telegraphs．The various forms of needle telegraph used by them． resulting in the final aloption of the single－needle system，for a long time extensively used in England，wre pasced orer in a few years．Varions moditiontions of the medle telegrapl were，somewhat

Later, patented ly the brothers H. and E. Hoghton, Burluding an inter esting fom in which the empent was passed thromeh astripe of gend

 iudes nerdle.

A patent was samatal to Wheatsfan and Cooke in lita for imporove ments in giving sizmals and smmonge alams at distant planos byy means of certrix curents. In this patent the time form of the letter showing, dial, or A. B. C' telegraph. as it has been varionsly called. is described. Improvements wore shbsequently made in this apparatus by Wheatstone, and seremal morlifications have bern made ly other in ventors, of which the hest known are liment's, Froment's, siemens', Chestrros. Kramer's, Siemmens and llakkis, and Hamblat's. The firs apparatus devised by Wheatriome was actuated by voltade olectridity
 of these methods has been used in the other foms of apratatus fon the same jurpose. Wheatstone also worked on atyeprinting tele graph, which was a modifantion of his A, l', (' instrummen, but it never came into practical use. Probably the greatest adorevement of Wheatstome, julsed at least by ite pratetical bremlts, was his antomatie wording telegraph, which is so largely med for press and other long dispatrhes in Ensland, and which has attained to mavellons speeds lin a medanical freordar.

Morse se telegraph first came before the Patent Offee in the form of a

 adapted to regulate and eommmoneate the signs. with rules in which
 lating the movement of the type rules which rules. hy means of the
 formoth, a register. Which reonds the sighs permanently; fifth, a die tionary, of Vowbulary of words. mombered and adapted to this sys. tem of telespaph: sixth. modes of lating eonductors to presere them trom ingury.

This raveat gives agool idea of the invention ly Mons of the re comding telegraph previons to his partmersip with Vail. The partmer ship was tgreed mon in september, 1s37, and acoording to it Mr. iab mudertow 10 construet at his own expense and exhibit hefore a com

 Work. and assmme the expense of exhibiting the apparatus and of pro coming patentsin the Unted siates. In consideration, Vail was to mo.
 Provision was also made fon seroming to Vail an interest in any foreign

[^100]

 share of the rerelit of the insation of the telegraph as it is mow kowne The patents taken ollt in Morsers manm imeluded many important im provements whirl were ratirely dur to Vall, and for which Monse promised to give him redit, a pomise whith was mever publicly rereemed. The alphabet mow msed was, as I have alreaty sad. worked out hy Vail. who. it appears, timst began its formation by an attempt

 working on this for some time it ocermed to him that valatole mfor-

 Hsed in this comotry and also. With sombesmplitications, as a Emopean amd intermational corle. 'Tho morlitiontion of the reroreling alparatus
 ment with a hori\%ontal laro ame metalige stylns. marking hy indentation, used on the first telegraphir line between Wishangten and baitimore, Was also dhe to Vald. Mamy other things misht be mentioned to show that in the early staces of this invention, which has marked so wirle a step in our motarn divilization, the mame of Vail deserves a prominent place. It is very mondmate that his own modesty. tor gether with his comblemoe in Morse's promises to do him justice, pras
 of the insentors.
 the expense of bulding a line of suftiogent lemgth to practically test the fropusals of Morse an alppropriation of *30.000 was made in Marelo, 1843. for the purpore of lmilding a line from Wishington to Baltimore. This line was completed and succestully operned on the B4th of May. 1s4t. The system pratically introdued with the oproning of this line, morlified in some of its mochanioal dutails. has contimed to be tha prinoipal one used, and is the hasis of most of the recording telegraphs in all comitries. One important monlitation shombl however be mentionerl, that is the wide use of the alirk of the amature for reading the message in proferene to the recordor. This is a retmen to the electromasuetic acomstic tolegraph of Hemry. It gives one of the simplest possible receiving instruments, aud as was long ago pointed ont by Strinhem, possesses the great adrantage that it leares the eyes of the "perator disermerd. Of other forms of telegraphic apparatus, the most important are the typerninting telegraph. Among the earle imsenters of these we find Vail, who invented a typerprinting telegraph as eally as 1 s.f. and Wheatstone: but the first instrment mantioally

 motion is kept mp. 'Tho lotter frimted is regulatat liy the positom of
 meder the control of the opreater. Phelpe is also the invertor of stere

 others. 'These instrumemh work on the step-ley step primeipla and all

 that is the rhembal mothorl. Wr havereen that rell rally in tele
 were malde the hasis of delegrafls. It was som fommathat ribbon

 that, I heliere, was nevor worked ont. The lirst patent fors surh a

 tion and reguted fom lime wimes. Onf interesting beatme was the

for tranmission, very high speeds can he attained hy this methom of rerording the sigmals.

The chemical method of remoding has been mostly used for coploying of autographic telegraphs, and of these a comsiderable mmber have bern devised. The antomatir methor of transmission has been bronght (o) a high state of perfection. Amomig others who have worked at the subject are Wheatsone, Siemens and Halske, Garnier, Humaston, Little, Edison, Park, Thomson.

The next important step in telequphy was the employment of one line-wine to convey more than one message at the same time. A solntion of the prohlan at sembling two messages, me in eath direction, was
 Friselaen and her Siemens and Halske. These methods were not very surcesstul, but they wore merhanically sufficjent for the pmpose. They howerar left ont an inportant item in the account, namely, the eredrostatice capacity of the line. The proper solntion of the difficulty was given by J. B. Stearns. of boston, in 1871, who solved the problem completely, so far at least an land lines were conrerned. The same prineiple is sufficient for all purposes, hat some importantmodifications in detail are necessary for submarine ables. These modifications were surcesstully madd by Muirhead, of Lomdon, amd at the present time duplex working is an ordinary aromplishment. The chirf workers in this field were Frisehen, Siemens aid Halske, Stark, Edhund, Gintt, Nystroin Preere, Fur Nedden, Farmer, Maron, Winter, Stearms, and Muirhead.

Text the problem of rending two messages in each direction was worked out. This imvolves the additional pohbem of the simmlaneous sending of tho messages in the same direction. The solntion of this problem Was attempted by I)r. Wm. Gintt, of Viemma, in 1853, and during the following ten years it was worked at lyy Borscha, Kramer, Maron, Schati, Shreder, Wartman, and others. The first to obtain sumeess was Edison, in 1574 ; and his method, with some modifications, is still nsed. Systoms of quadruplex were also invented by Gerrit Smith, in 187.) and 1876, of the Western Thion Company, and a moditication of Edisom's mothod was made by Preseott and Smith. Smith's 1876 method is known as the Western Union Company's Standand Gnadmuplex.

A systen of multiple transmission was devised by M. (i. Farmer, of Saldon, in 18.5 , in which, by a commatation arangement, the linewire was put sucersisely in contact with a momber of loral eirenits. A similar system was exhibited by Meyer at the Viema Exposition in 1873, and an improved form was introduced a few years ago by Delany, which is in use in several comutries. These systems are of use if the line-wire is capable of doing more work than any one of the stations is caprable of smpplying, and may be likened to one of the man wires from the central to a distriat telephone exelange, with this exception,
that all the cormespondener goxs on simultaneonsly, and there meed be bo ditherntty as to peredence. Distimetive from these is the hatrmoniad telegraphe of Elishat (imol. Edisem, alnd boll. In this system, Whicl has beren most completely worked out by (iray. any momber of messidges may he sent simmltamemsly. withont reference to speed of
 number of vibrating reeds at one end to prudued phlsations of the exurrent thowing throgh the lime which hare the same period as the vibura tions of the reed. A comesponding set of reeds at the receiving end of the line are arraneed so as to be ated on electormagnetically loy the emrent. Each of these recervingreds will respond only to the pals: tions of its own matmal priod, and hemor only to the vibations of the
 tions may be brokem mp by means of a semding key, and thas a message trallsmitted in the ordinary" "Thorse" alphabet.

The antogranhic or writing telegraphe apparatus, which has been developed of recent years, is of great interest. both fiom the faret that the hambritiner of the sember is reprotaced in litesimile, and firom the great ingemuty of the apparatus employed. The writing telegraph of Cowper and the telantograph of Elisha (ray are good examples of this mode of tramsmitting messatges.
la Cowpers sisstem two reetangular componentsof the motion of the pen are made to vary the resistanee, and eonsequently the coment, in two line wires. These enrents act on two electro-masnets at the re-
 to produre two rectamsular "ompoments of thr motion of the receiving per. Bambs of papare kept moving at approximately the same mate mader eath of these pers, and heme the characters traced by the motions of the transmitting pern are reprodned with considerable acermacy by the reeriving pen in consergence of the varying positions of the arma tures of the reariving magnets, cansed hy the variations of the corrent.

 of two receiving mandets, whixhate mate to move the rectiving pen in
 rate electro-magnetio artangemonts lift the pen oft the pater betwern the words and at the end of the lines and allow the receriving pen to be moved barkwams or forwards withomt marking the paper. still
 wand betwern the lines. The whole apparatus is racerdingly ingenions. but much too extensive and eomplicatad to admit of elear deseription here.

 presented fhemselves for solntion in this extension. Mang of these
problems were of a more prel scientitio character than those presented in the developments which had been in progisis, and romsequently tested the knowledge then existing of the laws of electricity mmeh more severely. It was very soon discovered, for example, that the rate at which sighals combl he tramsmitted. and the battery power or other dectromotive foree neeessaly to rffect the transmission, did not, as in lamd lines. depend almost entirely on the size and length of the comductors med. The alectostatic caparity of the line immediately began to play an important part, and signals were foumd not to be tramsmitted so instantaneonsly as they were on existing land lines. Again, there Was no oppontanity of maing relays, so as to effectively shorten the longer lines, and the investigations of Thomsom led him to point ont that the rate of signalling would be insersely as the square of the length.
such ditianlties as these, combined with the resy evident difficnlties involval in mamfartming and submergince a cable in deep water, were, to say the heast, liscomraging. Kxperiments on short lengeths in the English chamel and derwhere proving shomessful. faith in the possibility of longer mbles grew, and rery som, throngh the enterprise of a few American and English bosiness and selentitio men, an attempt was made to lay a mble acoss the Atlantic. The history ot that undertaking and its vadous falures are almost common knowledge, but perseveranere comurered all the diftrulties, and to-day mo one thinks of the probability of failure when a longe eable is proposed.

The laying of long mables bronght ont the fant that, as had been anticipated, existing telegraphic apparaths was not of great emongh sensibility to rembler moderately mpid sigmange posible. This diftientty was almost immediately met by the mirror gallanoseophe receiver of Thomson, followed some gats later by his siphon recorder, which is modoubtedly by tar thr most sensitive recording telegraph known. Lmproved metheds of working eables soon followed, athong which, in the darly days, probably the most motable is the intrometoren of rondeasers between the ends of the eable and the eath by Varley. The
 to, hat it is smmewhat cmrions to mote that althonght the electricians
 haps earlicre, with the difiemalty whirh had prevented suceess on land lines. Hot one seems to hatio thonght of applying the remoly. As eatly as lsis, a patent was taken ont hy Thomson, in which ho poposed to
 ment for varying tha compusiting roments at the same rate that the signalimg dmrent varien. Ha has simme said that he dial mot popose

 able for weary twonty yats altor the above date and was finally producod he making mactically a fope of the actat rable. nsinge tinfoil
 paraftimed paper. so as to give meetrostatio vaparity.

The imsention of the telephane roustitutes ond of the greatest at
 aroustie telegraph, whirh has the very important merit that the amble

 in which the mesage is tramsmitted.

It is well komwn that somul is transmitted thongh the air form the sonnee to the hearer by wates of comdensation and raveraction, whirlt
 these wares remld be tramsmitted fiom one place to anothrer, at a mox

 comsindralsk distance. by eommerting the two diaphagms together by a stretched comer wite. This appears to have been known for weveral "entmrios in the ratheal districts of lndia, and a similar apparatus was described bey Hook in 16fí. A similam apparatns is mow nsed and known at the mechanial telephome.
 vibuations in another diaphagm at a distance, through the agency of

 gested the nse of two platex-one at the tramsmittimg station, which, by the varying presime of the air due to the sombl waver, womboren and close an eloctrie citenit: while the other was to be arted on at the

 hmman sperefh. Tha appatathe romsisted of at sterthed membatar
 pieere the somads conld he direrted. Thais memblane was matr to open

inability to proture, with any approarh to acemeace, the meressary variations of lomdness and 'quality.

To produce not only the fremuency of vibration, but also the londuess and quality of the somuds evidently reguired a transmitter and a receiver which did not depend for its action on simple intermption of the current, but which varied it in an undulating manner, similar to the variations of pressme to which the diaphragm receiving the somed vilnations was subjected due to the sound waves. Such an apparatus of a very pertect type was produced by Graham Bell in 1876, who, in the deseriptions of his apparatus giveu in his patent speeifications and dsewhere, shows that he thomoghly understood what had to be done. We all know from actual experience that the instrment which he produced did it. Since the publication of Bells invention a great many moditications have heen produced. Most of them have, howere, been held to embody the same essential principle as that of Bell, the variation being simply one of merhanieal arrangement. One ficld of investigation has, however, been truitful of improvement. In the original patent of Bell, and also in a caveat filed almost simultaneonsly by Elisha (rray, it is pointed out that the variations of the enrrent may be protureed by cansing the vibrations of the diaphagm to vary the resistance of the eirenit. This idea has proved of great value in increasing the loudness of the somuls given out by the Bell teldphone when used as a receiver. A great many forms of these "microphone" transmitters have been invented. Among those who have made important contributions we may mention Berliner, Blake, Edison, Gower, Gray, Inglies amb Humings.

Another form of telephone has been proned by Prof. Bothear. In this telephone system one diaphagm of the receiver is made to form one phate of an electric condenser, and the varying electris force (on this plate, due to the fluctuations of the charge, canses it to vibrate in response to the varying electro-motive force produced by the transmitter. This comdenser telephone can evidently be used cither as a tramsmitter or a a receser, amd, as Dolbear has pointed ont, may be randered sensitive by keeping one plate of the condenser at a high potential.

Another interesting diseovery in this sulbject should be mentioned, namely, the transuission of sperh from one place to another by means of beams of light or ratiant hat. This was based orgigally on the discosery be May and Smith of the rariation of the electric resistance of selenimm when exposed to light or ardiant heat. Many other substances have since been foum to have the same property in a greater or less degref. The experments of Bell and Sumner Tainter have shown that if a heam of light be reffected from a thin mirror, and, by means of lenses on otherwise, made to pass as a parallel beam from the transmitter to the remiving station, and there received on a har or serics of hars, on a coil of a substance laving the properties of selenium,
the resistance of the selenimm will be affected by vibration of the mirror. If, then, the mirror be used as a transmitting diaphragm, like that of a telephone transmitter, words spoken to the mirror will be repeated by a telephone in the circuit of which the selenium, is placed and through which an electrie current is kept flowing.

In this address an attempt has been made to sketch very briefly the development of the application of electrieity to the transmission of intelligence. Many important applications (as, for example, fire-alarms and railway signal systems, etc.) have not been referred to, and a host of important contributors have, as a matter of necessity, been entirely ignored. To go into detail and do justice to everyone who has contributed to the present state of the electric telegraph was an impossibility and has not been attempted.
H. Mis. 11t- U' 2

EXPLORATIONS IN MONGOLIA AND TIBET.

By W'. Wooivylle Rockimll.

On the 1st of December, 1891, I left I'eking for a journey in Mongolia and Tibet. proposing, if possible, to traverse the latter country from north to sonth and reach British India-Sikkim or Nepal.

I was well provided with scientificapparatus, and very scantily with money, and so I started ont with the anticipation of having to endure many discomforts, and possibly see my chance of ultimate success lost for want of a few hundred dollars and my collections poor for lack of funds and means of transportation. This is the one insurmountable diffenlty a traveller can have to contend with; nearly every obstacle can be overcome or tumed, but how to travel on an empty moner bag (and an empty stomach. as it turned out in my case), in a strange land, is a more difficult problem for most men than the quadrature of the circle.

I will pass over the first few stages of my jommey, which led me throngh Chang-chia k'on to the great emporimm of eastern Mongolia, Knei-hna Ch'eng, where I arrived on the 1Sth of December.

This town was known in the T'ang' beriod (A. D. 618-907), and how long before that I can not now say.

Col. Iule* thinks it was Tenduc, the eapital of Prester John; but in this 1 can not quite agree, as I believe the latter town is to be identified with the present Ton Ch'eng (in Mongol Togto), at the month of the Hei-ho, which flows by Knei-hua and empties into the Fellow River (Huang-ho) at the former place.

Father Gerbillon visited Kuei-hna Ch'eng in 1688, in the suite of the great Emperor K'ang-hsi. He describes the place as follows: "C"est une petite Ville fu'on dit avoir ćté antrefois fort marehande, et d"un grand abord, pendant que les Tartares d"oiiestétoient les maîtres de la Chine: à présent éest fort peu de chose: les murailles bâties de briques sont assez entières par tehors; mais il ny a plus de remparts an dedans: il n’y a même rien de remarquable dans la Ville, que les Pagodes et les Lames:" \dagger

[^101]

In 1844, Father Hue, when on his way to Lh'ancid, stopped for a while at Kuei-hua Ch'eng. He says of it: "With the exception of the lamaseries, which rise above the other buildings, one only sees an ag. glomeration of houses and shops huddled together without order, the one against the other. The ramparts of the old city still exist in their entirety, but the overflow of the population has been forced to cross them. Little by little numerons homses have been built outside the walls, vast quarters have been formed; and now the extra muros has acquired more importance than the city itself." *
Fifty years hardly count in the life of an inland city in Asia, and Kuei-lua to-day is what it was in the days of Int-an inegular mass of tumble-down houses built around a small central walled town. Dirty, moddy, unpared streets, innumerable small shops, crowded streets along which loaded camels and mules and clumsy carts are moving, and where an oceasional Mongol, very often much the worse for liquor, is seeu aecompanied by his women folk in green satin dresses and much jewelry of silver and numerous strings of coral beads ornamenting their hair, neck, and ears.

The chief industry of the place is, and has been for at least ia century, the preparation of sheep and goat skins. Tallow is also an important article of trade, and sheep and camels in vast numbers are ammally sold here to suply the Peking market. The population, exculsively Chinese, of this place is probably between 75,000 and 100,000 .
On the 25th of December, having completed arrangements for continuing my journey to Ning-lisia Fu in Kan-su in commodions earts like those which had brought me thus far on my way, I left Kuei-hua and in two days reached the Yellow River at Ho-k'on, \dagger where it makes a sharp bend southward.
Crossing the river-here about 400 yards wide-on the ice, we first travelled over a country with sand dunes intersecting it here and there, and finally entered the vast alluvial plains which stretel westward to Alashan and are bounded to the north-on the left bank of the river, by a range of mountains of an average altitude of some 1,800 feet. This chain is called on European maps the Inshan (a corruption, I believe, of Ch'ing shan, a name given to the eastern part of it) and is locally known by a variety of names-as are all ranges in eastern Asia-Ta ch'ing shan, Wula shan, Lang shan, ete. \ddagger

For thirteen days we travelled through the sandy waste, now and then passing a small village of Chinese colonists settled in these Mongol lands, where they cultivate the soil after a great expenditure of labor on vast irrigation ditches, which are necessary to water the parched soil aud which the sands, driven before the nearly incessant

[^102]westerly winds, are contimally filling up. We saw but few Mongols; they live remote from the route, or when they have remained in their former lhanuts, now settled by Chinese, have adopted Chinese modes of dress and of living, and too frequently their vices.

Some antelope, a few liares, and vast flocks of sand gronse (Syrrhaptes Pullasii) were occasionally seen; but what a sportsman's paradise these plains must have been in the days of K'ang-hsi, when Father Gerbillon came here with him to hawk and shoot, and the great Emperor never failed to return to camp with scores and scores of hares and other game killed by his arrows!

Father Huc has so fully and graphically described the Ordos country that I will not venture to try and improve on what he has said, especially as one forms a more agreeable opinion of the country from his narrative than one would from what I might say of it. It has, I fear, changed for the worse since his time.

Fig. 2.-Baron gomba or Hsi Kung mian Lamaist Temple in the Orlos country.
The only place of any importance we saw was the palace of one of the Orat Mongol princes, the Hsi Kung or "Dnke of the West," and near it a small but very handsomely built lamasery, the temple itself of pure Tibetan style. It is called by the Mongols, Baron gomba, and by the Chinese, Hsi Kung miao.

On the 9thef Janary, I reached the large Chinese Christian community (some three hundred families residing in four villages) of San-tao ho-tzŭ, created and managed by the Belgian Catholic foreign mis-
sions. Here I remained two days and was most hospitably entertained by the bishop and fathers of the mission. This locality is in the domains of the Mongol prince of Alashan, colloquially designated by the Chinese as Hsi Wang or Western Priner. His perple. so Traidam Mongols have told me, inhabited in old times the country west of Hsi-ning Fu in western Kan-su, and are of the same stork as the Tsaidam Mongols. This agens with what Timskowski tells us, who says this tribe of the Elents came to the country they now inhabit in 1686.*

Following the course of the Yellow River in a sontherly direction, I passed snccessively through Shih-tsui (Hotun jeli in Mongol), the first town on our route in the Province of Kan-sn, Ning-hsia Fin, Chung-wei IIsien, and finally reached Lan-chon Fu, the capital of the Province of Kian-su, on the 31st of Jamary, where I joined the ronte I had followed in 1888-s' when on my way to Tibet for the first time.

Ning-hsia Fil was the most important town we traversed before reaching Lan-chon, but it has greatly fallen from its ancient importance, having suffered terribly during the late Mohammedan rebellion. \dagger

Father Gerbillon, while journeying with the Emperor K'ang-hsi in 1697 , visited this city. He says it was then one of the largest and most famous along the whole length of the Great Wall. It was densely populated, the houses built so closely together that there was no room even for court-yards. He also noted that "building timber is here very cheap, becanse they go to get it in that chain of monntains which is to the northwest, some 60 or 70 lys from the city,$\frac{\ddagger}{7}$ where it is so abundant that from the neighboring localities, more than 400 or $\tilde{0} 00$ lys away, they come to biy it at Ning.hia."§ At the present time not a forest tree is to be seen, only a few poplars recently planted along the irrigation ditches.

The father says further on (p.372): "They presented also to his majesty several foot rugs, resembling enough our 'Turkey carpets, but coarser; they are made here, and the emperor had the curiosity to bave the work done in his presence, as also paper which is made at Ning-hsia, with hemp beaten and mixed with lime water."

Now the town is, for half of its area, a desert of brick-bats, but rugs and paper making are still the chief-or rather the only-indnstries of the place.
[arrived at Lan-chou the day after Chinese New Year and on the fifth of the first moon. I witnessed the yingrolimn festivities, in

[^103]which the local magistrates go outside the east gate of the city to "welcome spring" (ying-ch'un). A huge cow made of wicker-work and coated over with mud was tragged along by scores of men, and following it was the image of the god T'ai-sui. A man disguised as a woman led the procession on foot and following him was another, in like disguise, riding a donkey. This one impersonated, I was told, the princess who introduced into China the practice of compressing women's feet. The cow was painted of a reddish brown color, a portent that con-

Fig. 3.-Kokonor Tibetan pony (Konsa stoek). 'I'ıetan mastiff (l'anaka stock).
flagrations would take place in the year now begiming, for the colors used on this occasion are symbolical,-yellow means plentiful crops; white, floods; black, sickness; and blue, war. In like manner, if the image of T'ai-sui is bare-headed it is symbolical of heat; with his cap on, of eold; if he wears shoes it portends much rain and if he is barefooted, dry weather.*

[^104]Theatricals, a banquet at the magistrates office, and merry-making followed. On the morrow the cow was broken to pieces and famers began to till their fields. This feast isoobserved over most of china.

Having engaged mules to carry me and my lugage to the lamasery of Kumbum, or rather the contignons village of Lasar, some 20 miles sonth of Hsi-ning, I left Lanehon on the 5th of Febmary and following up the Yellow River and the Hsi-ho, a ronte I had taken previonsly in 185!,* I reached my destination on the 11th, and took up my quarters in an inn in the lower part of the village and at one began preparations for the journey into Tibet.

I secured the services of the men who had accompanited me on my first joumey, bought six stont ponies and a supply of provisionsparched barley-meal (tsomba), rice, Hour, vermicelli, tea, ete.-enongh to last, if used with economy, for about five months. While my head man, Yeh Chi-ch'eng, was buying pack-mnles, fitting the saddles to their backs, and purchasing all the thonsand and one little things required on a long journey in a conntry devoid of every necessary of life save a fer varieties of very coarse food, I went for a tour through the portion of comntry along the Yellow River due sonth of Lusir, a region of great ethoological interest, inhabited by tribes of Tibetan, Mongol, and Turkish descent; those of the latter called Salars or Salaris, being particnlarly interesting, as they have rotained their original type and language though residing on Chinese soil for the last four hundred years and surromnded by Chinese and Tibetan peoples.t They nmmber some 40,000 sonls and are the most fanatical Mohammedans in western China. The Salar priests (ahons) began the late Mohammedan rebellion in or near the little town of Bayamrong. Fortmately for the Imperial Govermment, dissensions arose among the Mohammedans and they were soon fighting among themselves. It was this way: One said smoking was permissible (he was a Ho-chou teacher), another said it was forbidden, and so they came to blows. At the town of Tankar, 30 miles west of IIsi-ning, these two factions fonght so savagely that the authorities made use of this quarrel to rid the place of them. All the male Mohammedans were invited to the mosipue to talk over the matter in the presence of the colonel commanding the town. When all had assembled in the court-yard, there came men who called them ont one by one, and as they issued ont of the gate they were behearled, and in this way 3,500 were made away with. Their wives and danghters

[^105]were sohl or otherwise disposed of when good-looking, and Tankar, with a remaining population of a few thousands or so, enjoyed quiet once more.

At Hsi-ning, for several years after the rebellion had been suppressed, no Mohammedan was allowed to enter the city (none of them could live in it) without having a stamp impressed on his cheek by the guard at the gate; and even now, after twenty years of peace, none of them may have a kuife, even the usual small one which is carried by all travelling Chinese in a little case with their chop-sticks.*

On the 29th of February, I was back in Lusar, but though I used all diligence and expended a vast amount of energy, it was the 14 th of March when we made our final start for the Kokonor country, the first stage of our journey to Tibet.

Ftg. 4.-Chinese composing Mr. Rockhill's party.
My party, as finally organized, comprised four Chinese, three of them frontiersmen from near Lusar, and one, a cook, engaged at Kueihua Ch'eng, and a native of Tung-chou, near Peking. We had two small blue cotton tents, and our saddle blankets formed the bulk of our bedding, for the very heary sheep-skin garments we wore were enough covering for the coldest weather.

[^106]In order to keep the jark-mmles in good combition fon as long a time as possible, I had the greater part of their loads carried hy donkies from Lasar to the Mmi- Wahon romntry, east of the 'Js:aidam. Thence to Shang, yaks relieved them, and in the Triad am, camels did their work to a great extent, so that when wo started into the wilds north of Tibet my mules were still in failly good rondition-though very little forl— and stood well the terible fatigues of the jommey, but they finally gave out fiom foot-soreness and none reached the journey's rud.

I began a survey of the road at Kalgan, north of Proking, and earried it an about $\because .400$ miles, to Bat'ang, in eastern Tibet, where my route joined that surveyed in 1876 by Capt. William Gill.* The method I followed in my work was to rum the traverse by prismatie eompass and aneroid, taking the distance betwen consecutive points by my wateh and controlling frequently the distances thas obtained by pacing them oft.

Every day the altitude of one point at least was dotermined by the temperature of boiling water, and all adjacent points, where aneroid reatlings were taken, were corrected by this and the one taken the day before. Sextant observations were made whenever possible for position. and thus the inevitable errors on my survey conld not acemmate, but were divided over the whale length of the line.

Besides the work of surveying I had to take photographs, note the gemeral charactrristics of the comotry, keep an eye on the parks to see that they wre not awry, and attend to innmmerable details romected with the everyday life of the party. The animals gave me less tromble than the men (this is usmally the ase in this world, and how true is the saying, "Plus je vois les hommes, plus j’ame les bêtes")!

In 1859, I had, when going to the Tsiadam, taken from Lasar the ronte lading along the north side of lake Kokonor. This time I decirled to follow a new trail leading throngh an mexplored conitry (that of the I'anaka living somth of the Kokonor), and thencedirectly hy the momatans to Shang, in the sond heast eorner of the Ts'aidam. I was most anxious to re-visit this place so as to be able to go onee more to the Tosu nor (lake) and determine by actual observations its position and altitude.

The nature of the comutry to the sonth of the Kiokomor lake is more momentams than that to the morth, but the elimatic eomelitions are the same-violent westerly winds, great drymess: msually a rlear sky, and thongh the nights are invariably eold, the temperature rises very high during the day. 'These peenliar conditions result from the high altitude of this region, which is ower 11,000 fert above the sea level.

The ronte we took was as follows: Leaving the province of Kian-sh at Sharakinto, on the sonthern main feeder of the headwaters of the IIsi-ho (whirla thows by Hsi-ning Fu), we traversed in a gencral west-

[^107]sonthwest direction the comntry of the Panaka or Panakasum, as the Tibetan tribes inhabiting these regions are called. These tribes, which were in past centuries located principally sonth of the Yellow River all the way from the Chinese frontier to its sources at Karmat'ang, have within the last hondred years pushel northward and dispossessed the Mongol owners of these rich pasture lands, driving them either into the foothills around the swampy Ts'aidan or nearer to the Chinese borders. The Tibetan tribes which first came to the Kokoner were eight in mumber and all bore the word N it in their names, hence the

Fifi, 5.-.Panaka Tibetan camp in mountains near Shang.
mixed Chinese-Tibetan name of Panaka by which they are now known and which they use in speaking of themselves.*

The Panaka may number in all a hundred to a hundred and twentyfive thousand sonls. I have described elsewhere the dress and mode of living of these tribes, t so will not dwell on these questions here, and

[^108]the illustrations will enable the render to form a better idea of their camps and general appearance than conk a long description.

Crossing a ligh and very difficult pass in the sonthwest corner of the Panakasmm's comery, we entered the basin of the Twahan ossm, an important river of the Tsaidam, the existence of which was mot heretofore snspected; and on the thof April I reached the Mongol village of Shang (or Shangetha), on the upper Bayangol (or Yogore gol), the main river of the Tsaidam, which has its sonce in two lakes callent Tosu-nor and Alang nor.

Fig. G.-Foot of Wahm Jamkar lasa leading into the basin of the 'Tsahan ossu.
Sending the bulk of my baggage to the camp) of a former acpuaintance, the chief or Dzassak of Baron Ts'aidam, I went with two men and a Mongol guide to explore the Tosu-nor, reathing that large sheet of water (about 13,5(0) fect above som level) on the 12 th of April.

Dowf, the Mongol guide, the same who had led me in 18s: by the sonces of the Yellow liver to Jyiainudo, told me one evening while we gosiping over the ramp fire, that he hat heard at Sat chom of widd men (ygérésun kn). Two had been captured by some Mohammedan Sifin (or Huang fan), hat one soon died and the other made his escaple. These savages live between Sa-chou and the

Lob nor,* make their dwellings of reeds and feed on wild grapes, which they dry. From this description I have no donbt these people are the half-wild inhabitants of Turki origin seen by Prjevalsky and other travellers in the marshes and canebrakes of Lob-nor.

On the 1 th of A_{p} mil, I started back for Shang. Crossing the Yogoré my pony broke through the ice and was drownet, I nearly sharing the same fate. The next day my saddle was recovered, also my notes and papers in my saddle-bags. On the 18th I joined my other men with the pack animals in the valley of Oim. where the Dzassak of Baron was

Fig. 7.-Scene in Mongol village of Shang (S. E. Ts'aidam).

[^109]camped. Here I was detained for eleven days trying to make arrange. ments with the chief to supply me with pack animals and a guide to go to Shigatsé, in Ulterior Tibet. After a vast and reckless expenditure of my limited sfore of patience, I fabed to get more than fom camels and a guide as tar as Tengélik, a Mongol encampment in the marshes of the Ts'aidam, not a limmed miles away.

On the second day out from Oim we left the village of Baron (or Baron kure) and travelling throngh sand and mud and brush for four days came to the pools of Tengelik. Life in camp in this horrible Ts'aidam is miserable indeed, and thongh I was used to the dirt and misery of such an existence, 1 had daily to use all my persuasive power's to keep myself in the belief that I would be able to stand it for six months more. The Mongols of the Tr'aidam have a saying that a Mongol eats 3 pounds of wool with his food yearly, a Tibetan 3 pounds of gravel, and a Chinese 3 quarts ot dirt. Living in a Sinico-Mongolo-Tibetan style, I swallowed with my miserable food the dirt, the wool, and the grit, portioned by a harsh destiny to these peoples, and I verily believe that I found enongh wool in my tea, my tsamba, my meat, and my bread while in Mongolia and Tibet to stuff a pillow. The dirt and the sand could be easily swallowed, but the wool-nothing conld be done with it, 110 amomet of mastication could dispose of it.

Leaving Tengélik on the 7th of May with four prack ponies, three oxen and a camel, the latter loaded with leather jars filled with water, we reached the Naichi gol in five days, travelling all the time through sand or swamp.

On the Naichi gol I stopped for a few days to engrage a famous guide of whom 1

Fif, n ,-l'rayer-wheel twed by wind ${ }^{-}$ Erested over Mongol and Tibetan dwellings. had heard tell in Shang, and ako to replenish my store of provisions as far as possible in this poverty stricken comntry. We got a supply of fairly good tsamba, but the butter we lece bought, made of sheep s milk, was the strongest smelling and the vilest I ever tasted in my life, but such as it was I harl to eat it and be thankful till I reached the inhabited parts of Tibet in July.

Loaving this place we tumed south and following up the Naichi River, entered the mountains which all along the sonth side of the 'Ts'aidam mark the northern edge ot the great tableland dividing this
conntry from Tibet, and is some 200 to 400 miles wide. Usually this region is called Northern Tibet, and though physically it belongs to that country, from a political point it is a no-man's land, a desert waste over which at rare intervals wander some robber bands that prey on passing earavans.
It would take me too long to deseribe this part of my journey, in which we crossed four chains of mountains of an average altitude of about 16,000 feet. Between each of these, in broad valleys rumning from west to east, flow shallow rivers over beds of soft sand or gravel in which we were forever getting bogged, we, our lorses, and mules.

Though we were in May and lovely June we had snow-storms and hailstorms daily, the nights were bitterly cold, and in the middle of the day the thermometer rose to the nineties.

With no fuel but the droppings of wild yaks, with hardly any grass for our animals, to which we had daily to feed balls of our parched barley meal, it was no wonder we made slow progress, or that before we had neared the inhabited regions of Tibet our supplies gave out and we had to subsist for five days on tea alone. On the 7th of July we saw for the first time black tents and I learned, on sending two of my men to one of them, that we were among the Namru in Namru dé, a dependency of Lh'asa at the northwest corner of the great Tengri nor (or, as the natives call it, Dolma Nam-ts'o). My plan had been to go aromed this lake to the west, and had our provisions held out a fortnight longer I have no doubt we would have succeeded, so sparce is the population of this region, and reached our goal, Shigatsé, the capital of Ulterior Tibet. To accomplish my plan it was necessary to make detours around every camp we sighted, for I knew of the stringent orders issued by the Lh'asa government against admitting foreigners onto their soil, and I entertained no hopes of seeing them modified in my favor. Unfortunately our supplies did not hold out and so, when we made these first Namru tents and asked for food we got ouly a few handfuls of tsamba and a little cheese. The news rapidly spread that a small, but very suspicious looking party, had arrived from the northern desert. The next day, after making some 12 miles more in a southerly direction and reaching a broad valley dotted all over with tents, we were stopped by the local headman and ordered to remain camped where we were until the officers of the Lh'asa government, who resided about a day's ride away, could come and crossquestion us.
This was on the Sth of July. By the 13th it had been decided that I was to go under escort of a detachment of soldiers, not the way I had planned, but by a circuitous route (of considerable geographical interest however), to the high-road leading to Lh'asa from IIsi-ning, joining it a little to the north of the first Tibetan station, Nageh'u or Nageh'r-k'a, where there was a high official, a warden of the borders, who would settle about my further movements.

For ten days my escort took me in a general easterly direction over
the foothills of the great Dang la chain, which we fremurntly saw to the north, its peaks covered with eternal shows readhing far down their tlanks (the snow line in this comntry being at about 17,500 feet above sea level). We crossed a momber of streams, all flowing in a sontheasterly direction and probably forming the head waters of the Jyama-mu ch'u, the upper Salween, it is believel. The rain fell daily in torrents, the spongy, tussorky ground was soaked, and dry fuel mowhere to be found, so that finally we had to burn our pack saddles to

Fifi, 9.-Tibetan bors from Jyadé.
boil our kettle. In an utterly exhansted condition, we reached, on the ged of July, the highroad to Lh'asa in the Dang w'ol valley, a day and a half's ride north of Nageh'uk'a.

Here the Namru men left me, but I was soon espied by some of the gurde stationed along this road for the very purpose of arresting foreiguers, and requested to remain where I was till the officer in command at Nage el'th could come and see me.

Before this I had been obliged to give up all idea of "arrying out my original plan of getting to India, and I had now solely in virw reathing China by some heretofore mexplored route which would keep me in H. Mis. $114-43$
the inhabited parts of Thibet, so that my ethological researches could be successfully carried on.

While waiting here on the Dang ch'n for the arrival of the Nag ch'n officials, I was visited by some natives from the left bank of the river, and I learned from them that they and the tribes to the east of them were not subjert to Lh'asa, and that by traversing their country (called Jyadé or "Chinese Province") I could reach the important town of Ch'amdo, on the highroad to China, whence I would be able to continue my fourney commodionsly to Tachien-lu in Ssur-ch'aan.

I at once made up my mind to follow this ronte, only waiting to see the Nag ch'r officials to satisfy my curiosity, and possibly pick up some interesting details concerning them, their comntry, and its customs.

On the 27 th of July, I crossed the Dang ch'u and was kindly received by the chief of the Péré band, who, on the following day, introduced me to one of the big chiefs or Débas of the country, Nor jyal-tsan by name, who was about to start for his home, a fortnight's ride to the east and on the road to Ch'ando.

It was arranged, after a short consultation and the presentation to him of some presents (50 ounces of silver, some knives, red lacquer rice bowls, ete.), that he would take me with him, and see to all my wants on the way. On reaching his home he would further supply me with a guide as far as Mér djong, the first locality on Cl'amdo territory, beyond which neither he nor lis people ever went; and he gave, anong other reasons, for this that, while the Cli'amdo people professed lamaism, he and the people of yade foliowed the Bönbo religion, the modern and corrupt form of the old pre-Buddhistic shamanism, which has, at one time or the other, prevailed over all Asia.

Since leaving the Ts'aidam in May, I had continually travelled over country with an average altitude of about 15,800 feet above sea level, frequently crossing ridges and plains considerably higher. On leaving the Dang eh'u we very gradually descended till we reached near the Rama-eh'n, the timber line on the 12th of Angust, something over 13,000 feet above sea level. At this altitude cultivation also began, barley and turnips being the only crops. These are cked out by the use of seeds of several kinds of plants foumd growing in profusion on the hillsides. Above this altitude the people subsist entirely on what their flocks and herds of yaks can supply them, the necessar'y tsamba and tea, being procured by them at Lh'asa or from traders, who anmally visit these regions. The principal article of trade of the Namru and other adjacent tribes is salt, procured by evaporation from some of the large lakes to the west of the Dang la and brought thence on the backs of sheep, each one carrying about 25 pounds. All the salt I have seen in these parts is of a brick-red color and very impure.

On the \%oth of August, we reached Mer djong gomba on Ch'amdo territory, having traversed the whole of Jyade withont any mishaps, and having met everywhere with the greatest courtesy and kindness from the chiefs and people. The comitry round Mer djong is, where-
ever possible, well cultivated, harley and wheat are the mineipal (erops. and bear each of the houses is a little garlen-patch, where whe saw with delight cabbages, onions. peas ame turnips, but we noticed no domestic fowls; these are fomad only in the Chinesilial portions of the comber.

From Mer djong, we went to Riwoche (a clependen'y of Lh'assa) on the Tse ch'u. passing throngh some beautiful alpine comitry (along the Fé ch'u), the mountain sides covered with fine forest growth and the valley bottom a mass of flowers of every hue. Frequently we saw large bunches of silur pheasints (C'rassoptilon tibetamm, in Tibetan Snya). moving rapidly about in the thickets of rhododendrons and lanrel-like plants, caling their young with a cry peculiarly like that of the guinea fowl. Very few varieties of birds were noticed lowever here, or, in fact, anywhere along the route, singing birds being especially rare.

Fig. 10.-Half-breed yaks with Ioads.
Riworhe is a place of some importance commereially, but from a picturesque point of view it is especially noteworthy for its perntian temple. with walls of white and red, and trold spires rising from its green tiled roofs. Around the temple are the dwellings of some three hundred lamas, near which are the homses of perhaps a humded families of laymenl. The village is at the base of steep, forest-clad momatains, and before it flows the swift river. This place is one of the few in Tibet which can boast of a wall aromed it; it was built by the Chinese, in all probability, about 1711 .
Two stages down the Zé eli'u valley brought us to Nyulda, a Chinese post station on the highood to Lh'asa, where the soldiers supplied us with the first eggs and regetables we had had for many a long month.

We were now about two and a half days journey from the town of Ch'ando, which I was not however destined to see, for when I had advanced towards it another day's ride, I was stopped by the lamas of

Fig. 11.-Tibetan prayer mill, turned by water. A, Section of water-wheel and cylinder.
that place, and requested to take a cross road leading around the town at some distance and joining again the highway to China near a place called Pung-dé.

I refused to follow this road and timally obtained permission to take
another trail over the monntains to the south, which bronght ns out, after four days of travel through the most beantiful scenery I know of anywhere in Tibet, at the post station of Pang-dé, the Paor-tun of the Chinese.

The worst pat of my long joumey was now orer, for from this point I travelled in comparative comfort, with an escort of Chinese soldiers, relays of pack and saddle horses, and houses every night to put up in; thongh I still frequently preferred my tent, where I conld enjoy some privacy and escape the attack of the fleas which swarm in all Tibetan dwellings, to say nothing of rats and other vermin.

The first town of any importance wer eame to after leaving Riwoché was Draya, or Chamdun Draya as it is also called, the capital of an ecclesiastical, semi-indepemlent state, on an aftlment of the On ch'u, which flows by Ch'ando.

The town is pretily situated on a gentle slope, the lamasery, as msual, ocempying the higher part of it, with a little plain in front, beyond which flows the Ombo ch'u, here met by two other streams. of considerable size. The crops were ripening and fieds of barley and wheat covered every little patch of gromed susceptible of eultiration. Un high frames, with which every country house is provided, grass twisted in eables was drying for the winter's forage. and in some places, where the high precipitons momtains did not overshadow the fields too much and the crops were early, barley, wheat, and turnips, were already langing on these frames, which are used everywhere in Tibet for this purpose.

Though I was very ronghly received at Draya-in fact, in lieu of fire-crackers I had a volley of stones let off at me as I entered the town-I remained here for two days and gathered anood deal of interesting information bearing on both the comntry and the people, which it is not possible to convey here, and for which I must refer the reader to my complete report now in preparation.

On the Gith of September, I left Draya, and after an interesting joumney of five days, mp hill and down dale, reached the important town of Gartok, or Chiangka as it is called by the Chinese, the chief town of the province of Merkam belonging to Lh'asa. It is curions in this conneetion to note that vassal states, governed by officials sent hy Lh'asa, are found scattered all over Tibet ; the Nyarong or "arable lowlands of the Nya River," the Tsarong, Riwoché, and immmerable localities in southern and sontheastern Tibet belong to this class.
These districts have frequently given in their allegiance to lhasa (or "tied their head," go-tu-н", as they say) on accomut of similarity of religions beliefs. Sometimes, however, Lh'asa has got possession of them through intrignes or open aggression.

Gartok is an important center for the musk trade, which of late years has taken considerable extension. It has a native pembation of about seven hundred, besides some two humdred or three humdred lamas.

From a hundred to a hundred and thirty Chinese also reside here, all, or nearly all, of them having native wives.

Wheat, oats (wild?), and barley are grown here extensively, and the gardens supplied us with cabbages. turnips, and several other kiuds of vegetables, one, called in Chinese osung, I found especially palatable. Cats, pigs, and fowls were seen in every honse, and I was presented by the Chinese officer in command of the little garrison here with grapes, peaches, and apricots (wild varieties, I believe), bronght here from the Rongmi, or "terres chandes," as the French missionaries call them, some two days' distance down the River of Golden Sands (Chin-sha ho or Chin chiang ho).

For the first time in Tibet I saw honse sparrows (chenba, in Tibetans at Gartok.
Leaving Gartok on the 12th of September, we reached Bat'ang on the 15th, and here the geographical portion of my work was at an end. The people between Gartok and Bat'ang are Chinesified to a considerable extent, and have also a ferw customs introduced anong them from intercourse with the tribes living south of them, Lissus, Mosso, and others. Among other things borrowed from these tribes is a peculiar jew's-harp, carried by every woman of this region, and consisting of three different toned harps of bamboo; two or three women often play together, and to this accompaniment they dance a slow, shuftling step in which grace and beanty are conspicuonsly absent.

I remained at Bat'ang four days, and then proceeded to Lit'ang, which I reached on the 24th, and finally arrived at Ta-chien-lu, on the Chinese frontier, on the $2 d$ of October. From this locality to Shanghai, where I arrived on the 1st of November, I followed the route taken by me in 1859, and for a deseription of which I must again refer the reader to the published account of my first journey.

Before closing this brief account of my jomrney I must mention that in July, when on the Dang ch'u (and even earlier, when in Namru), I heard that some foreigners had passed throngh the country some six months previous, coming, it was supposed, from the west. In August I again heard vaguely of these travellers, and on the 18th of that month, while camped near the Zé ch'n at Lah'a in Nar peihu, I was shown by a native a note he had received from a foreigner commanding an expedition which had passed through here several months before. It was signed Capt. Henry Bower, of the Seventeenth Bengal Caralry, and he had come, I learned later, from Ladak by way of the deserts to the northwest of Tibet

Since then I have lad the pleasure of meeting Capt. Bower in London, and we have been able to compare notes. From this comparison it results that after the 10th of August (I had then reached the I ch'u Valley), our routes were very nearly parallel till we arrived near Ch'amdo, after which point they were identical.

Finally, I would like to call attention to the rieh fields of research China and its dependencies afford the explorer, be he geographer, botanist, geologist, or ethnologist. Thongh volumes enough to fill a goodly
library have been written about the Chinese Empire, a great deal remains to be done. Our geographical knowledge of China is still based on the surveys of the desuits, executed in the serententh contury, to which a few itineraries have since been added. P'monelly, liachthofen and a few others have only studied the geology of a part of this vast region; its botany is less well known jerhaps than that of any other part of

the ghobe. It ethnolngy, thongh it has beem more or less studied hy humdreds of writers, has mever, as far as 1 know, been systematically treated, and the sciontific study of the languages of China is omly just begun.

Of the scientife results of my journery 1 will here say nothing; they will be submitted in the report which I am at present preparing, together with a route map on a scale of 16 miles to an inch, reduced from my original survey. The illustrations arempanying this paper are from photographs taken loy me on the journey, and of which I seemed some two hundred fairly good ones.

PROGRESS OF ASTRONOMY FOR 1891 AN1) 1892.

By Willian (! Winlo('K.

A review of the progress of astronomy for the years 1×79 and 1880 was contributed by l'rof. E. S. Holden to the Smithsonian Roport for 1880. and reviews for each suceceding year were continucd by him in the anmal reports of the Institution up to 1884: the reviews for 188: and 1886 , and for $185 \%-88$ and $1859-90$ were prepared by the present writer, the publication since 1886 being licmial instead of annmal. The arrangement of the review for $1891-92$ is essentially the same as in previous years and, in its compilation as hitherto, notes in recent journals have been freely drawn unon without sperifie citation.

It should be borne in mind that the review is intended for those having a general interest in astronomy rather than for the professional astronomer who has access to a large working library. To the latter the bibliograply appended may be found convenient as a referenee, and will supplement the text in giving a gencral idea of recent publications on any special subject. Many very important papers are of such a nature that they do not lend themselves readily to condensation for the purposes of such a summary as the present.

Within the last fow years many new aids have bern provided to facilitate reference to the constantly-inereasing volume of the literas ture of the subjert. 'The most romprehensive of these is to be found in the Bulletin astronomique, published mudel the anspices of the Paris Observatory aud the able editorship of M. Tisserand. In addition to extensive eritical reviews of important memoirs, there is a brief summary of the contrilontions to other astromomical periodicals, and the whole is madr basy of referenee by an admiable index (wherein most jomrnals are defective at the elose of the year, which, in fact, to a large extent, supplies a bibliography of astronomy for the year. The Jomenal of the Pritish Astromomical Associntion eontains a smmmary of coment periodical literature the valae of which to the members is abundantly vonched tor. The I'ublicutions of the Astronomicol Socicty of the Perific contains a great mumbre of adminable reviews or notes, and this department is receiving increased attention in Astromomy and Astrophysics. The obserentory has perhaps the most rombplete notes, without an attempt at a systematic summary of corrent
literature, to be fonnd in English, while the excellent reviews in Nature and the more popular notes of the Athencum need no special comment here. The Astronomische Naehrichten and the Astronomical Journal contain occasional notices of important works.

The "Notes on some points comnected with the progress of astronomy during the past year" in the Monthly Notices of the Royal Astronomical Society have been increased in scope and fullness, and as the reviews in different branches of astronomy are furnished by specialists, these notes form a most valuable commentary on the year's work. The Vierteljahrsschrift der astronomischen Gesellschuft is, of course, the critical astronomical review, and is the recognized authority for summaries of cometary and planetary discoveries.

STELLAR SYSTEMS.

The Milky Way.-The independent researches of Prof. Pickering at the Harvard observatory and of Dr. Gill at the Cape of Good Hope have led to the conclusion that the stars of the Milky Way form a veritable sidereal system, separate and individual. This conclusion is entirely opposed to the views Sir William Herschel reached from his earliest observations (1785) which are still generally received by those who have not given mnch attention to this special question. Miss Clerke points out in the Observatory for September, 1891 (p. 302), that "the study of nebular distribntion might alone, and long ago, lave driven ont of the field every form of 'projection theory' of the Milky Way. For it showed the great majority of gaseons nebula to be embraced within its circuit, and this alone amomed to a demonstration that a physical reality, and not simply a geometrical appearance, was in question."

A brief statement of the arguments of Prof. Piekering and of Dr. Gill is contained in a lecture by the latter delivered at the Royal Institution of Great Britain, May 29, 1891. Dr. Gill said:

I pass now to another recent result that is of great cosmical interest.
The Cape photographic star-charting of the Southern Hemisphere has been already referred to. In comparing the existing eye estimates of magnitude by Dr. Gould with the photographic determinations of these magnitudes, both Prof. Kapteyn and myself have been greatly struck with a very considerable systematic discordance between the two. In the rich parts of the sky, that is, in the Milky Way, the stars are systematically photographically brighter by comparison with the eye observations than they are in the poorer part of the sky, and that not by any donbtful amount, but by half or three-fomrtlis of a magnitude. One of two things was certain, either that the eye observations were wrong, or that the stars of the Milky Way are blner or whiter than other stars. But Prof. Pickering, of Cambridge, America, has lately made a complete photographic review of the heavens and by placing a prism in front of the telescope he has made pictures of the whole sky. . . . He has discussed the various types of the spectra of the brighter stars, as thus revealed, according to their distribntion in the
sky. He finds thas that the stansof the sirine typeremerebiefly in the Milky Way, whins stars of other types are farly dividnd wor the sky

Fow stans of the sirims type are rery whitestars. very rimh relatire to other stars in the rays which act most strongly on a photographine plate. Here then is the explanation of the results of om photographio starecharting, and of the diseordance between the photographic and vismal magnitmdes in the Milly Way.

The results of the Cape chanting further show that it is mot alone to the brighter stars that this diseordance extends, but it extends also, though in a rather less degree, to the faintar stars of thr Milky Way. Therefore we may eome to the very remarkable conclasion that the Milky Way is a thing apart: and that it has been developed porbaps in a different manner, or more probably at a different and probably later epoch from the rest of the sidereal universe.*

NEBITLE.
In a paper by Prof. Keeler, commonicated to the Royal Society by Dr. Huggins on Mareh 19, 1891, the question of the position of the chief nebular line seems to be detinitely settled. Prof. Keeler has not only made a series of sixteen complete measures, obtained on cleven nights, of the ehief line in the spectrom of the Orion nebula, thas defining its apparent position when correeted for the earth's motion, as λ. 50 oti.20 \pm 0.014 , but has supplemented these by ten measmes of the green hydrogen line on seven nights. The latter show the nebmla to be moving relatively to the solar system with a motion of $+10.7 \pm 1.0$ miles per second, and oblige us to tix the true position of the chief line at h.500.5.93. The chief line is therefore 0.43 tenth meter more refiangible than the lower edge of the magnosiom fluting, and as it has no resemblance to a fluting in appearance, and as flutings and lines of magnesimm, whieh could not fail to appear at the same time with the flating at $\lambda 5006.36$ are entirely absent from nebular speetra, the incorrectness of the view that the nebular line is the remnant of the magnosimm thting appears to be demomstrated.

Mr. Buruham has made a set of measures of the medoula in the Pleiades elose to the star Merope. Me remarks that it is one of the most singular and interesting objects in the heavens. With reepeet to its nearness to a bright naked-eye star (the distanco botweren the centers is less than $40^{\prime \prime}$) it is mique. There may be other examples, but eertainly no other has ever been diseovered, and this conse association of a faint nobula and one of the prominent stans of the Pleiades is an interesting fact, whether such astociation as acemental or otherwise. The acemate measmes made hy Mr. Bmonlam and Mr. Bannard will enable this point to be ascertained when others shall have been made sometime hence, and it will be possible to determine by comparison whether the new nelonla is drifting in spaco with Mornpre and the other stars of this famous group. We have, of comse, many examples of large stars involved in widely diffinsed and extended nolbulous mases,
but no instance has hitherto beeu known of a star bright enough to be visible to the naked eye having a small definite nebula within even several times the distance of this from Merope.

ASTRONOMICAL CONSTANTS.

The Constant of Aberration.-Prof. Comstock, of the Washburn Observatory, has been making careful trial of a modification of the method of determining the constant of aberration first suggested by M. Loewy. The essential feature of M. Loewy's method is the introduction of reflecting surfaces in front of the objective of a telescope, by means of which images of different portions of the heavens are simultaneously produced in the focal plane of the objective. By means of the micrometer the apparent distance between the images of two stars thas produced may be measured, and the angular distance between the stars determined from a simple relation involving the measured quantity and the angle included between the reflecting surfaces. It is obvious that great difficulties would attend the determination of this angle, and M. Loewy avoids these difficulties by measuring the distances of two pairs of stars and taking the difference of these distances, this eliminating the angle between the mirrors. Prof. Comstock has found it advantageous to place before the objective three reflecting surfaces instead of two, making approximately equal augles among themselves, and to employ successively each pair of surfaces in measuring the distance between two given stars. If the normals to these surfaces all lie in the plane passing through the two stars and the earth, the mean of the three dihedral angles formed by the surfaces will be exactly 120°; and by taking the mean of the results furnished by the three pairs of surfaces the distance between a pair of stars may be determined independently of the angles between the mirrors. Prof. Comstock's provisional result for the constant of aberration is $20^{\prime \prime} .49 \pm \pm 0^{\prime \prime} .017$.
MM. Loewy and Puisenx's work on the Coustant of Aberration is summarized as follows in a communication to the Comptes Rendus for March 16, 1891.

1. Struve's value $20^{\prime \prime} .445$ is very near the truth. It would, in our opinion, be premature to alter it.
2. M. Fizeau's result, that reflection does not affect the behavior of rays with regard to aberration, is confirmed.
3. The new method for determining aberration can be regarded as satisfactory and definitive.

STAR Catalogues and charts.

The Star Catalogne of the Astronomische Gesellschaft.-The zone undertaken by the Harvard College Observatory $+50^{\circ}$ to $+55^{\circ}$ declination has been puolisherl as the fifth part of the great catalogue. The observations were made with the new meridian circle in the years $1870-78$ and 1883-'84, chiefly by Prof. W. A. Rogers, under whose direction
the reductions have also been made. The right asechasions were observed chronographically orer eleven rertioal wires, and the derlinations also chronographically wer an inclined wire, the circle being read by two microscopes. The probable error of an observation in
 rather greater for stars fainter than the eighth magnitude than for brighter stars.

The fiftla volume of the Amals of the Leyden observatory contains: the second half of the zone conservations hetwern +30 and +35 -embracing ten thonsand observations.

The I'aris Cutalogne.-The second part of this work, containing the places of stars from $6^{\text {b }}$ to $12^{\text {h }}$ of right asrension, has recently been issued, the first part having heen published in 1857. There are really three catalogues, the first comprising observations from 1837 to 1853 reduced to 1845.0 ; the serond, those mate from 1854 to 1867 reduced to 1860.0, and the thind from 1868 to 1881 redured to 1875.0. The stars are arranged in the order of right ascension at 1575.0. A valuable memoir on the proper motions of the stars contaned in the ratalogne has been prepared by Bossert.

Second Mrunch C'atulogne.-A second catalognte, eontaining 13:200 stars for the epoch 1880.0 has been published muler the direction of Prof. Seeliger supplementary to the larger catalogue recently issued. The stars are from the serenth to tenth magnitude within 250 of the equator, and were observed with the moridian circle during the years 1884 to 1888. The positions depem upon Aumers's Fundamental Catalogue.
 is deduced from observations made with the meridian dircle during the years $1874-80$, and prepared for publication by llerr Romberg. The stars are of various classes, including many of the Struve domble stars. A comparison is mate with the phaces of several other catalogues.

Oeltzen's C'atalogue.-A new editon of Oeltzen's matalogue of Argelander's sonthern zones, -15° to -31°, has been published by Prof. Weiss. The total mmber of stans is 18,276 , the positions being given for 1850.0 with the amome of the precession necessaly to bring them to $\mathbf{1 8 7 5 . 0}$. The phaces of stars north of - 230 have bern compared with Schönfeld's Southern Durchmusterung, and sonth of that limit with other catalogues, thereby climinating a considerable nomber of errors from the original places.

Bueddicker's map of the Milliy Way.-Dr. Buddicker, of the Earl of Rosses observatory at Birr Castle, has been at work since 1884 upon an elaborate map of the Milky Way from the North Pole to 100 sonth declination, and has at length finished this very laborious task. His plan has been to "xhibit the ramifications of the Milky Way as it alpears to the naked eye, a necessary first step to the knowlenge of the structure of the sidereal miverse. No optical help has heell used.

STELLAR PARALLAX.

Prof. Pritchard has contimed in Part iv of the publications of the Oxford University Observatory his work upon the photographic determination of stellar parallaxes. He has concluded "from actual and prolonged experieure that an accuracy, amply sufficient in the present condition of astronomy, is secured by observations of each star made on twenty-five nights advantageonsly selected thronghout the parallactic year, four exposures being usually made on each night."

The general result of the investigations of the parallax of thirty northern stars of the second magnitude is that the average parallax of a star of the second magnitude is $0 .{ }^{\prime \prime} 056$; and comparing with this the result of Drs. Gill and Elkin for the average parallax of fonteen first magnitude stars, viz, $0 .{ }^{\prime \prime} 089$ we see that there is distinct evidence that the brighter stars are nearer-thongh it should be borne in mind that the heliometer was used by Drs. Gill and Elkin, and the photographie method by Prof. Pritchard.

Following is a tabular statement of the Oxford results. Two results a and b are obtained, from two comparison stars; the probable error of each result is about $\pm 0 .^{\prime \prime} 025$:

Star.	Parallax.	
	a	b
	11	"
a Andromedie.	$+0.0565$	$+0.0600$
β Andromedre.	$+.0610$	+.0860
a Ariptis.	$+.0880$	$+.0715$
a Persei	$+.0996$	$+.0738$
β Jersei	$+.0642$	$+.0529$
β Tauri.	$+.0736$	+ . 0529
β Aurige	$+.0591$	$+.0652$
y Geminorum	--. 0135	. 0333
a Ursa Majoris	+.0486	+ . 0436
β Urse Majoris	$+.1177$	$+.0434$
γ Urse Majoris	$+.0768$	$+.1206$
e Urse Majoris.	$+.0832$	$+.0792$
η Ursa Majoris	-.0309	. 0628
β Leonis	$+.0490$	$+.0087$
β Trsat Minoris	-. 0200	+ 0.0644
a Coronie	-. 0255	. 0493
γ Draconis.	$+.0625$	+ . 0371
$\boldsymbol{\gamma}$ Cymıi.	+. 1107	$+.0931$
e Oygni	$+.0927$	$+.1629$
a Pegasi	$+.0913$	$+.0719$
e l'egasi.	+ 0693	+ . 0919

Fale heliometer determinations of stellar parallax.-Dr. Elkin publishes the following preliminary results of his investigations of the parallaxes of the first magnitude stars in the northern hemisphere, proposing to continue his observations until he has secured one hun-
dred sets of measures of each of the ten stars--that number being required in his opinion to furnish parallaxes with probable errors not much above $0^{\prime \prime} .01$:

Star.	l'arallax.	Probable error.	No. of comparison stars.	No. of suts.
	"	"		
a Tauri	+0.101	± 0.022	6	65
a Auriga	+0.095	0.021	5	51
a Orionis	$+0.022$	0.022	6	48
a Canis Minoris	+0.341	0.020	6	48
β Geminorum	+0.057	0.021	6	$4{ }^{\circ}$
a Leonis	+0.089	0.026	10	43
a Bootis	+0.016	0.018	10	89
a Lyre	+0.092	0.019	6	67
a Aquile	$+0.214$	0.02:3	10	46
a Cymi .	-0.012	0.020	\checkmark	49

Determination of stellar parallax with a transit instrument.-Prof. Kapteyn las published a paper of much interest, upon the determination of relative stellar parallax by observations of the differences of right ascension between the selected star aud neighboring comparison star's made with the transit instrument and chronograph. The comparison stars are selected of about the same declination as the star whose parallax is to be determined and symmetrieally situated at slightly greater and less declinations. The differences of right ascension and of magnitnde should be small. Special precautions are taken to elimi. mate all ordinary instrumental errors, particularly the error of elock rate, which has an important effect.

The following are the results published by Prof. Kapteyn. The prob. able error given in each case is not far from $\pm 0 .^{\prime \prime} 03$:

star.	Parallax.	Star.	Parallax.
Boun VII 81	$\begin{array}{r} \prime \prime \\ +0.074 \end{array}$	Bonn FII 104	$+0.128$
θ Urse Majoris.	$+.052$	105	$+.168$
Pomin V1I 85	$+.064$		$+.030$
20 Leo Minoris.	$+.062$	111	$+.016$
Bonn VII 89	$+.176$	112	$+.139$
Loun V'1194.	+. 101	114.	+.038
Bonn VII 95	+. 038		+ 0.056
Lal. 20670.	-0.011		

Parallax of is Hereulis.-Prof. Leavenworth has found a parallax of $+0 .{ }^{\prime \prime} 050 \pm 0 .^{\prime \prime} 014$ from his own observations of this star; and from a series of observations published by Dembowski in his " Double Star Observations," $+0 .{ }^{\prime \prime} 0: 30 \pm 0 . .^{\prime \prime} 015$.

Parallax of I' Crsa Majoris.-I Dr. Franz finds from heliometer observations of this star at Königsberg from 1883 to 1890 a parallax of
$+0 .{ }^{\prime \prime} 10$ with a probable error of $0 .{ }^{\prime \prime} 01$. As the annual proper motion is $3^{\prime \prime}$, this parallax implies that the star is moving through space at a rate of 88 miles a second. Dr. Franz's result is cousiderably smaller than that obtained by Prof. Geelmuyden from transit observations, $\pi=0 .{ }^{\prime \prime 2} 2$ from differeuces of right ascension, and $0 . / 24$ from differences of declination.

DOUBLE AND MULTIPLE STARS.

Gore's catalogue of binary stars.-Mr. Gore has compiled a useful catalogne of binary stars, for which orbits have been computed, giving, besides the elements, date of computation, etc., the magnitudes, colors, spectra, hypothetical parallax, observed parallax, relative brightuess, and the constants A and B for use in Mr. Rambant's method of computing the parallax from the orbital motion of the star in the line of sight. The more recent measures are given in a series of notes. The eatalogue was originally communicated to the Royal Irish Academy, in June, 1890, and has been reprinted from the Proceedings.

Prof. Asaph Hall has made a turther disenssion of the relative motion of the two components of 61 Cygni and the question whether there is anything in the nature of a physical connection between the two. His conclusion is in favor of such counection, but although aceurate observations of the mutual distances and angles of position date from 1825, and Prof. Hall includes in the diseussion those made by himself up to 18:1, it is not possible to reach any result with regard to the period of revolution, except that it is loug.

Two lists of double stars disenvered by Mr. Burnham, most of them with the 36 -inch refractor, have appeared during 1892, bringing Mr. Bumham's double star discoveries up to 1264. Nost of his measures are of the more difficult or interesting donbles, a measurement of $0^{\prime \prime} .1$ being apparently fuite a simple matter. Mr. Burnham has also published a mmber of investigations of donble star orbits, and collected lists of measures.

Among lists of recently published measures of donble stars should be mentioned the series of observations of 950 stars by Prof. Hall made from 1880 to 1891, with the 26 -inch equatorial, of the United States Naval Observatory. With reference to the reduction and discussiou of double star measures, Prof. Hall says: "The formule aud corrections for personal equation of observation seem to me of doubtful utility, and a better way is to compare the measurements of the same star by different observers."

Diseorery of double stars by means of their spectra.-In the review of astronomy for 1889-90 attention was called to Prof. E. C. Pickering's diseovery of the duplicity of ζ Ursa Majoris and β Aurige throngh pecularities in their spectra which indicated differences in the motions of supposed components.

 sembles that of the sum. exeret that the herlengen limes are all stome.

 may bot ratly be domble with romponents so close that they can mot be

 does show a displateonent of the lines whath, if the phemomenon is dar to therelative movirntent of alaint compmonent, wonlal serem to indicate

 arations may passilly br donble.

period of alout 130 years. The size of this arbit aromud the common center of gravity is about equal to that of lrams around the sme The plane of the orbit is inclined abont 200° to our line of vision.

Sereral interesting rases of variability have been detreted in the examination of the photographs of stellar specta at the llarvard Ob servatory all showing the bright hydrogen lines; the ehange in brightness exceding two magnitudes. The director of the Harvard Obserratory has called for the coiperation of astronomers provided with telesoopes of moderate power and not otherwise engaged, for the observation of a list of serentecn cirompolar variables of long period. The methords to be followed are set forth in a cireular issued by the observatory, and accessible to all who are interested.

Noru A wrigu--One of the most remarkable outbursts of "new stars" or "home" that has ever been remoded. nomred during the year 1892a phemomenom of double interest in that it afforded an opportunity of study under improved astronomical apparatus.

On Febmary 1, 18! 2 , an anonymous postal card was received at the Royal Observatory, Edinhurgh, announcing the presence of a new star in the ennstellation Auriga. It subsequently turned ont that the dis. coverer was Dr. Thomas A. Anderson, an amatenr astronomer living in Edinburgh, that the diseovery had been made hy the help of a star-athas and a small pocket telescope, and that the star had been seen by him forsome days previons to Fehnary 1 ; it was of abont the fith magnitude. ln the first obsemations at Edimburgh it was fomud to be of a yellow tint and about the sistl magnitude, its position for 189 bering right ascension $5^{\text {h }} 25^{m} 3^{\text {s }}$: dealination $+30021^{\prime}$. Very fortunately systematic photographis of this resion had been made for some time by Prof. Pickering at the Harvard observatory, and the Noce was in fact fomd to have been photographed on thirteen plates taken between December 10, 1s , and damary 20,180 ; while it does not appear upon a plate taken at Heirlelberg on inerember S , which shows stars down to the ninth magnitude. The outburst, at least above the ninth maguitude seens, therefore, to ber protty well fixed betwern Derember \& and 10 , 1502.

The Nova remained of the fourth on fitth magnitude till the end of February, then diminished somewhat rapidly, and by the end of March it was of the twelfth to fourteenth mangitude.

In Angust it was again easily visible. At the Lick observatory it was foum to be of 10.5 magnitude on August 17 , and 9.8 on August 19, and further inutuations in brightuess have oceured.

The spectrom was of the greatest interest. The chief characteristic was a brilliant aray of bright. broad lines, attended by dark eompanions on the more reftangilbe sides. Nomerons finer details were then added, dark limes mossing the broad. bright bathdis, and bright lines marking the darik companions.

Throw lines have attractom more experial attention on acemat of their intimate commertion with the suspered physical comstitution of the star. " These are (1) the bright erementine mear band the lese reftamgible edge of the hydrombon band; (2) the bine near the whef
 lines $\lambda 4923$ and $\lambda+22^{2}$. When the wave length of these linese as photed he the whervers, are correene fen motion in the line of sight, and arranged in a table, the mean raher come ont very close to the wave lengthe of threa motale mairs of solar chomospherie lines; while mag. mesime and the leydrombens, as possible origins of line (1), are axchuden he the absenee form the lists of their insegrable eompanion lines and thotings.

Lium (2) is alamed by four observers for the chief nebular line, but the wright of evidence seems to be against its nebular origin, and the outhust would serm to be a vast chmomosheric distmbance a viow contirmen hy lor. Ihggins' ubervation of the eomplete series of bright hydrogen times in the ultra-rindet-the same that Hate and bestandres found in the solar momosphere-but each with its dark compmion.

An interesting article adrowating the metere theory in applanation of the outhurst is given by Prof. Lomker in Volme 31 of the Nine. teentl Century. The thomospherie theory of the mear appmomel of fwos stars is given by Do. Ihagins in the June momber, 189\%, of the Fornighty Review ; Seeligers monlifation of the meteorie theory is translated in Astromman and Astrophesics for Deromber. and a singlestal ehomoshberic theory is offered by Sidgreases in the Oetoher number of the Observatom?

STELLAR SVEC"TRA。

Inerper catalogure of stellar spectro- - Vohme er of the Harrand An nalk contains a satalogne of the photographic spectra of more than ten thonsand stars moth of 25 south deedination. The photugraphe were taken with an s.inch Voigtländer fons, in tront of wheh was placed a
 frism was so fixem that the stan's light was dispersed inderdination, the length of the speretrma being about a centimeter, and the stan beng allowed to trail slighty save the seertrom a width of about a millimeters. Each plate covered 10 sumare and the spertrat of all stans to tha sixth magnitude wrep photogaphed. The spectra are divided, for consenieller, intwa large mumber of elasses-A IS (') indicating varieties of the
 the fometh type : and O P (a spectrat that do not resmble any of the prederling typers. One of the most jmportant feathes of the work is the methon bye which photestaphic magnitules have been asigume. "The quantity masimed in "ath "asis is the intensity of the spectrom in the vicinity of the (iline. Acemelingly. whenstars having difterent spectra are comparal. the mantis will mot be the same as if the entive
light of the stars were measuren. In the latter case, the results will differ with the rolor of the star, acording to the method of measurement employed. This is a serims defert in the measures of the brightness of the stars in catalognes hitherto published. Since the present measures relato to rays of a single wave-length, the same result should be obtained whether the methot of comparison was by the photographie plate, the eye, or the thermonile."

The loraper eatalogue gives the approximate positions of the stans for the year 1900, with their reference numbers in the lomm Durchmatermg and the Harvard Dhotometry ; their class of spectrm ley letters; them photographic magnitules and the differences of these from the magnithedes of the Dmehmusternge, the Argentine (ieneral Catalogue and the Harvard Photometry. A well arraged table gives the details of the measures of magnitude on the varions plates on which each star appears. The whok sky to 250 sonth decilination was photographed twiee with plates overlapping.

Volme e 6 , part 1, of the Harrarl Amals gives additional details respecting the photugraphs, their measurement and reduction not conveniently included in the catalogne volume itself-a complete history of the Inaper Memorial. A point bromht out in the varions mattors discnssed in this volume is the predominance of the finst type spectra in the Milky Way elsewhere referved to, and the systmatic underval ning of the brightness of the dalactic stars by about one-tifth of a mag. nitude, by the "Durchmustermg" and "Uranometria Argentina" as (ompared with the Harvard photometric and photograplic magnitudes.

A thind volume is to follow devoted to the work of the s-inch Braper telescoped during the years 1889 and 1892 and to the dischasion of stan of peculiar spectra.

A fifth type of stellar spectra.-Prof. E. ('. Pickering has proposed to rlass in a "fifth type" stars whese spectra resemble these of the stars discovered by Woil and Rayet. In geneal, his photographic survey bas confimed Sechits fourfold division of stellar spectra, but many stants in Orion and the neighborhood differ considerably from the ordinary first-type stars, the additional limes, instead of being faint as in Vega. being nealy as intense as the hydrogen lines, while two Masses of objects, the planetary moble and the stans. the spectra of which consist chiefly of bright lines, are left mapovided for. Prot. lickering points out the close similarity of the gromping of the lines in these three dasses and also the striking chanater of their distribution. While stars of the second and thind types are about equally dividel between the Milky Way and the repons remote fiom it, two thirds of the first-type star lie in or near the Milky Way and of the Orion stars fom-fifthe are form in the Milky Wiay.

A similar distribution of the phatary mebula has long been recognizal, and Prof", l'ekering shows that, of thirty-three stars known as
 withan 100 of the falantir equator, two-thinds within 2 of it.
a V"irginis.-Dr. Vogels mome recent blservations of or "irwinis at Potsdam amond with his earlier observations of the same stan' showinge that it is a rlow hinary The mothod of observation is yater interestin! : Tha spertam of the stan and of terestrial hedrogen are photographed tosether, and the displarement of the star lines on the photograph in the neighborhoot of 11 : is atterwathe measmed under

 OHE a:nt shamb.
 the bydrogen lins being botal and difinse, withont any detinitamasiman of intensity and there wrer mo distinet limes in the viemity of

 trom in a complete perion of almot fome tays, the maximm displacemont towad the viole indicating a motion of the stan toward the sun of Gis.! English miles. and that foward the red a !eredinc motion of
 smprosing that sipion is a hinary stat having a perjed of onf (omper-

 the emajoments, and the hata given her observation, the mass of the

 than thal which seplanates the sixth satellite of satam firom its

 that we mast atmil their veality:"

 lines in the spertorn of the stan apmeat double on exere seond day, and the (ombonent, in the line of sisht, of the motion whthe sivem ran amonnt to narly 1.50 miles a seeond, while the whale system las a
 of this amonat per sacond townd the solat systom.

G Trase Megoris.-The duplicity of $巨$ Urse Majoris is not so satisfactorily confirmed. The maximm relative velosity of its two components scems to amomet to about 100 miles per second.
a Bootis.-Mr. Kerer's recent measures upon the D line of the spectrum of Arcturus show that the velocity in the line of sight is not 80 kilometms per second, the valne hitherto accepted, but 6.4 kilometers, which accords with the result obtained by Dr. Vogel. The mean of the measmes at Potsdam from October 5, 1888, to May 23,1890 , is -7.1 ± 0.3 kilometers. The Lick observations trom April 20, 1890, to Augnst, 15,1890 . give -6.9 kilometers.

ASTRONOMICAL PIIOTOGRAPIY.

The photographic chart of the sky.-The third* meeting of the permanent committee, appointed by the Astrophotugraphic Congress at Paris in 1887, was held at the l'aris observatory from March 31 to April 4 , 189\%. Adminal Mourhez presided, the members of the committer pres, ant being Bailland, Bakhuyzen, Beuf, Christie, Denza, Donner, GillHenry (Pant), Hemry (Prosper), Janssen, Kapteyn, Loewy, Monchez, Pujazon, Rayet, Ricco, Tacehini and Trépied. The following astronomers were also present by invitation, Messrs. Abney, Andoyer, Belopolsky, Bouquet de la Grye, Cornu, Knobel, Gantier, Maturana, Plummer, Scheiner, Tisserand, and Wrolf (C).

Drs. Bakhuyzen and Gill were elected vice-presidents and Prof. Kapteren and Trépied necretaries.

From reports of progeess made at different observatories the following notes indicate the advancement of the work:

Some delay lad been experienced in secming the plates containing the reference lines or "reseaux," but provision was finally made to furnish them at an early day, as well as the photographic phates which it was necessary should be of a specially good quality of plate glass.

Algiers.-Instruments ready and only awaiting the plates and "réseou."
Bordeanc.-Photographic installation has been ready for ahont a year; a mumber of experimental photographs have been taken and the work can commence as soon as a suphly of plates is secured with the necessary "résean."

Cape of Good Hope.-Instrment patatieally ready.
'intamin.-The instrument has been completed.
Helsingfors.- The instrment has been ready for several months and a considerable number of photographs have been taken.

La I'lata.-Instrmment ready.
Melbourne.-Instrument ready and a number of experimental plates have bern secured.

Oxforld.-hnstrument ready and a number of plates snbmitted to the committee.

[^110]I'aris.-Instrmment rath!.
 the committon.

Rion de Jemeiro.-The photographir eqnatorial has heren reqeived and will how momated at the mew site of the observatory
liome (Intionem). Whae instrmment has bern rompleted.
 the résente is raceived.
 it is impossible to fix aday for begiming the work.
sydury.—Ready exept for the "réseun."
Tarabogn. - Instrmment ready and a mumber of experimental phates submilted.
 photorraphie plates are only needed to hegin the work.

(1) No robare is made in the eomditions of distance amm mensmiture
 cuide stans.

 at the plate.

 be beterred to the apparrat equinows.

 the clailet).
(a) Neoratives fionn which the ratalosure is to be formod will have

 tion of the newatives.

 tion.

 the erenter of the plate. Further stury will show whather it is desin-
able that in the secomd series (those with an odd degree at the center) there should be two or three exposmes.
(9) To make it possible to pass miformly and with eertainty from Argelander's ninth magnitude to the eleventh magnitude desired for the negatives of the photographice cataloge there will he distributed among the observatories fine wire-ganze sereens, absolutely identionl. Which, when placed over the object glass of the telescope will diminish the magnitude of a star by two unts (adopting the coefticient 2.512 for the ratio betwern two conserotive magnitudes). Wath observatory will from time to tima make type nesutives of rettain specitied regions.
(10) The sommitere shgests fonty minutes as the length of exposure ofthe plates for the chart (the series of erem dedinations) under the ordinary atmosphrife conditions of I'aris, and with the Lmaire platesused.

Therommitteeom metallie serems will fmons the Musse. Henry with a screen with which they will determine the time ifor obtaining the elerenth magutude stars of Argelander's seale. 'Then for each observatory provited with an identical sereen, the matio 40 :t will be the finetor by which to multiply the time of exposme meressary to secme satisfac fory images of eleventh magniture stars, in order to obtain the promer exposure for the chart plates.
(11) The questions of the mmber of referemorestan for earh negative for the eataloge, the choire of the stars, amt the neressary steps to secure meridian observations are pramed to a special committee, consisting of Messis. Anwers, Baklmyzon, Christif, Ellery, Gill, Kapteyn, and Loowy, with finll powers.
(12) As som an comvenient each observer will pepare. or will hare prepared by any observatory or harean he may seloct-
(a) Measmes of thr position of each star on the satalogne referved by rectilinear eourdinates to the nearest lines of the "réscou."
(b) Measures neressary for the etermination of the stars'magnitndes.

The diflereat observatories will publish the separate results of these measmres and the lermanent Committer will undertake their reduction as soon as a sulfirient momber of meridian observations of the reference stars is at hand.
(1:i) The work upon the chat will commence at each observatory as soon as the metalliesmeen reducing the stam by two magnitudes is received, involving probably a delay of twomonthis. Eachobserver may, however. begin before reepiving the smem if he is eontident that he can get all stars of the eleventh magniture upon the catalogne plates.
(14) Withont adopting a formal resolution, the eommittee would refommend as a separate and personal investigation, that a spectalseries of negatives with long exposuresbemate of the region near the erliptic.
 tories was datintively adopted in pare of that prevomsly pmblisind:

(15) The thatisis of the conference were boted for the combese of the Acadeny of Sciones in printing the balletin, and fhe hopr was expressed that the limerent suvemments womld peovide the neressay moans for the ohservations themselves and for the pmbleation of the rhart.

 Monthly Voticers.

 Mr. Jacoly as oterime an opmorimity for comparing the aremane of the photospaphe with that of helometer and micrometor measures. Fach

 and distance fiom the star obt p and he finds the prohahle ermon af the

 resulting from the labe and kaniosturg helometers shows that the photographs ane fally entitled to lre taken intoremsideration in makin!
 the groupl

In: Wax Wolf, of Hedelbers, with a pontrat lems of ex inches

 left perferetly distimet merords.

In a series of papers in the Bulletin Astronomigne M. Schmllof has developed in an interesting way the relations existing between the elements of a comet's orbit before and after it suffers perturbation by a planet. That the periodic comets of our system have been captured through the perturbing action of planets appears established; and Merrury has form comets assigned to it, Vems seven, the Earth ten, Mars fomr, Jupiter twenty-three, Saturn nine, Uramms eight, Neptune five, and a further group of comets appears to give a feeble indication of an ultra-Neptunian planet at a distance from the sun of abont seventy times that of the earth.

The search for new comets has been systematized by the cometary section of the Britinh Astronomical Association muder the direction of Mr. W. F. Demuing. The aims of this sertion are to secure observations of comets, to discover new comets and nebula, to record telescopic meteors, etc. It is intended to sweep the sky regularly for new comets, a definite region being assigned toeach observer according to convenience and choice.

The following notes, relating chiefly to the comets of 1891 and 1892 , will complete the list of cometspublished in these "Reports of I'rogress," from 1883 to 1890 . It is harlly neressary to remark that the most complete and anthoritative ammal smmmary of cometary phenomena is that published by Dr. Krentz in the Tierteljarsschrift der Astronomischen Gesellschuft.

The arrangement adopted below is the order of perihelion passage, except in the case of well-known periodic comets, such as Encke's, Winnecke's, ete., which are armaged alphabetically by their recognized names. The table of elements appended is to be regarded as only appoximate, but is sufficient to furnish an idea of the general form and position of the orbit.

C'omet Encke: The return of Encke's well-known periodic comet; $=$ Comet 1891, III. first found by Barnard, from the ephemeris, on Aug. ust 1,1891 . It was then exceedingly faint, but in september it had increased to a nebulons mass of about the sixth to seventh magnitude. The comet was mafavorably situated for observation after the end of September, the last observation reported hemg October 11. It is moteworthy that its path at this return was ahmost the same as in the return of 1858 , and a comparison of the brightness on these two occasions would seem to indicate that it has not moterone any material change in physical condition during the interval.

Comet Tempel.-Tempel's first periodir comet, and of rather unusual interest, was unfortunately missed at its return in 189°, being nnfavorably situated for observation.
Comet Tempel ${ }_{3}$-Swift :
$=$ Comet 1891 V .
This periodice romet returns to the sum once in every five and a half years, lout un-

 1sive by Switt, and again upon this retmon bog Parnard. At its inter
 the farth and sum as to have been entirely insisible. A very watelly

 :30. It was deserbed as a laint, shapeless melohosity. with slight eom densation about the center, hut eren at its brightest, towarls the emd
 all the more to be resretted as its position wonld mender it of experial value for the determination of the distance of the sum.

 ephemeris. by Spitale at Viemma om Hareh 1s, 1892: it wat them an
 sisterenth masuiturle. It increased in brightoses towards perihelim (on Jume Bo) and after peribelion was observed in the sonther"n hem isphere till the eme of september.
 Was expereter tomakr its first retmen to peribelion in the latter part of 18!日. but wat mot fomm. Tha orbit is somewhat mueratam.

Comet 1859 V .-To quote form the first of a series of masterly papers on the whit puhlished hy Mr. ('hambler in the Astromomical dommal: "The vicissitudes in the history of this comet sive it an interest
 ment of the problems commered therewith promisers to illmmmate our

While the matmore in which the eomet herame separated into sieveral bats, hy its (monmer with dupitar in 18sti, may possibly require for its merive expositon the observations which will be obtamed at the
 the carefol disenssion of those made in 185 ! alone

Tob begin with, it is meessary to motion sume of the physical phomomena presented by the exmbanoms. 'The notation wed will be the

 It is assable to remark here that the reasom for therin not having been
 been shperposition by perspective, at least in the ease of (${ }^{\prime}$ amd the more distant companions; for the orbit of r'
such superposition orrmred two months previons to discovery of A by brooks, and gives for duly 8 a distance of 190 at $6 \geq 0.5$ position angle. That the rompanions were not seen in July, may be matmaliy ascribed to interference of moonlight up to about duly 20 , amd after that either to the fact that the attention of observers was not sufficiently directerl to the phenomenon, w to the fact that the objects hat not yet become bright mongh to be easily discrmible. We have the evidence of Spitaler that on July 30 and 31 nothing aboomal was noticed with the 27 inmp the slight elomgation on those dates, seen by him in A having no relation to the matrer in hand. Two nights after, at the time of discoverv, Barmard estimated the brightness of C at about one-tifth that of A. It then gradnally increased in brilliancy, also becoming less diffused and devoloping a strong condensation and melens, until at the end of Augnst it was actually brighter than A al thongh only one-third its size. In cally September it was about equal in brightness to A but fiom the middle of that month fased, and became larger and more diffuse matil it disappeared, late in November. The faint meleus of E, in the begimming apers to have bern a little brighter than that of (', and its coma smaller and less diffinsed. Abont the midalle of Angust it had grown to be larger and fanter than at flrst, later more rapidly so, being excessively dilticult to see or measure in the first fur days of September, and invisible immediately therafter. I) and E wre measmed only on the night of diseovery, and wrere seen only at rare intervals until the last time on Δ ngust es.

Such, briefly deseribed, are thr man fatures as to lorightuess amb visibility of these objects. I bege eourteously to dissent from the view which has bern confidently expressed, that the diffusion amd disappearance of l, whan it was theoretimally increasing in lorightness, indicate 'that it actually dissipated itsclf into spare and absolntely reased to exist, if indeed it were not absorbed into the main comet.' Such a con ('lusion is inherently improbable, nowaranted by any knowledge we possess as to the process of cometary light doreloment, and contra diated by infrenees drawn from other cases, of which only the most analagons need be cited, namely, that ai the two numei of biela's comet, the capricions action of which affords a strict comerpart to the present instance. It will be recollected that fitful alternations of visibility ocenred in 1846 , and esperially in 1852 , when they repeated themiselves abmost from day to day. The two companions were not habitnally seren at the same time, but sometimes one, sometimes the other; so that obsevers conld not tell which they were looking at, withont comparison with the ephemeris. Thas, in the space of one week, for example, 18.5., September in to 22.2 , both mulei were visible, then only the sonthern, then only the northern, then hoth together; again only the sonthern. and, finally, only the morthem, on sucessive nights, respectively.

It may be added that there aplears to be little reason for interpreting these remarkable variations of hrilliancy as standing in any rela tion of effect with catme which poolnced the dismption, either in Biw.

 ohjerots bearly alike aro in the same tiedd."
 the impertant popesition that the Coron whinh lerl ta the separation of the components A and (', whateror its naturs, "prexated in the plane of
 the ronire sectiom, lat only in its size, and in the diredtom of its major

 tions: a little fartha hate.

 ahout 1^{\prime} in dianctor abll with a tail 70^{\prime} to a' lons. It the time of dis. "overy its proition was a $15.5+450$ it mowed rapidly south,

 ! , 1s!!.

- Comel lxal 11 .

 the ephomoris. It was at fiost small amel foblat,

 altogether sow ohthe resulterl. The perion of revolution is aboul six athel there-fourths years.

Comet 1s!11 1II:
Cometir 18:91.
= Encke's comet.

Comet 1s91 IV: I teleseopic comet of the twelfth magniturle, disComet e 1×91.

Ne romet Encke. avered by Barnard at the Lick Observatory on Ortober 2, 1891. At the time of cliseovery it was in the ronstellation Argo; it mosed farther sonth and was hot seen at all in the northern hemisphere rxcept at the Lick Observatory, where it was followed up to October 9; in the sonthern hemisphare it does not seem to have been followerd beyond (ontober 11 .

Comet 1s9] I': Ser comet Temple Swift.

$=$ Comet $1 \times 691 \mathrm{II}$.
-1 'omet 18801 V .
Comet d 1891.

Comet 1892 I:
Diseovered by Swift on March fi. 1892, at $17^{\text {h }}$
= Comot "1892. Rochester mean time, or jo idock on the morning of March 7 , in 30° sonth dechation; the brightest romet sern in the northern hemisphere since the great september eomet of 188%. At the time of its greatest brilliancy, which was at perihelion, April 6 , it was as bright as a star of the third or fourth magnitude, with a bright, romud head and muclens of $10^{\prime \prime}$ to $15^{\prime \prime \prime}$ diameter. The tail, on tho wther hand, was exceedingly faint, and was varionsly estimated at from 10 to 20 in length. Bannarl reporten it on 1 pril 3 as tonble. The photographs of the tail were of musual interest, especially those taken in Marel at Sydney and in April at Monnt Hamilton. On the morning of April 5 a photograph, made by Barmad at Mount Hamilton with a Ginch lens, showed three main branches to the tail, each being separated into several others, so that in all at least a fozen eomld be dounted. At a distance of two degrees from the head, along the northern side of the middle tail, there was atuden bemd sonthward. On the ith "the sonthern eomponent, which was the brightest on the 5th, had berome diffosed and fainter, while the midde tall was very brioht and broad; its sonthem side, which was the best defined, was wary in mumerons places, the tail appearing as if distubing curents were flowing at right angles to it. At 42^{\prime} fiom the head the tail mald an alorupt bend towards the south, as if its rurrent was deftected by some obstarle. In the densest portion of the tail, at the point of deflection, is a conple of dark holes similar to these seen in some of the nebule."

The romet was visible to the naked eye till the begimning of . Jne, and was still moler observation with the teleseope at the close of the year.

The spectrum as observed by Konkoly on Λ pril 1 and 2 ronsisted of a continuons spectrm and five bright lines, while Camplell, at the

Liek observatory. whose observations extend fom Apmil in to lome 1:3, satw, in addition to the contimans spertmm. the threre manal com retay hamds. the lese reftagible sides of these bambe being sharply defined amd the middr one in fart, teminated by a very bright line.

The orhit of the romet is mondotedly elliptie, belomging to the interesting gronp of romots with a period of about two thonsand fears. During this appearance, as it was for a romsiblerable time in the neighborhood of Jupiter, its path may le considerahly danged.

Comet 18:2 I I :
$=$ Comet $\mathrm{c} 18: 2$.

Diseovared by bemaing. at Bristol. on Iareh 18.
 tion: it was then at its maximm brightness, small, romal. with rontral condensation of from eleventh to twelth maniturla. and motail. It remained small and inconspiconots. but wats mader observation for ser eral months. The orbit is parabolie. withont specially intresting pernliarity.

$=$ Comer f 129\%.
$=$ Holmests comet.
 also independently on November 9, by Davidsou, at Mackay, Queenslam-a romm nelumbus mass in in diametre with a rentral conlensation, hut uotail: the suspicion that it was a motmof Bielast comet was shown to be matomaded as soon as stlficient obsers vations were avalable for aldermanation of its orhit, thongh the orhit froved to lore elliptic and of short period. I shont fant tail was sem soon after disoovery, and unon a photograph taken by banmank, on November 10. it ean be followed for half a degree, while abont a deree from the head and beyond the tail there is a diftised mebnlons objeet, apparently belonging to the combet, and this comeetion siems substantiated by Campbell's spectoreoppie observations.

The comet was visible to the maked eye to the amd of Nowember and in telescopes of medimm power during the first part of Derember, and then diminished very raphedly in brightness, not tollowing at all the computed seale of brilliancy, but showing a remarkable and inexpliea
 peconliar in that it seemerl to be purely continoms.

Areoneling to the elements romputed by selullof the comot passed perihelion on Jmo 13,1892 , and its perion is 6.9 yame the orbit vems to lie enfirely within that of Jupitor, the nearest posisible approath of the two being $0 . t$, (the mand distane of the earth from the sum being 1.) but sume 1861 the two bodies do not seem to have been very elose at any time. The small ererentricity, not far fom that of Trapers first periodie comet, brings it quite near to the mpere limits of the wam. tricity of the asteroid orbits. lat with such a short perionl, as it ran

 be commeted in some way with the very great and abmomal variation
in brightness actually detected while monde observations, the canse of which still lies beyond n s in the manown characteristies of cometary material.

Comet 189: IV:
$=$ Comet b 1892.
$=$ Winnerkers comet.

Fomme by spitaler, at Vienna, on March 18 , 1892.

See Comet Winnerder.

Comet 1892 V: Esperial interest attaches to this comet, as it is
= Comet a 1892 . the tirst discovered by photography, if we except the single case of the "Tew fik comet," shown near the sun on a plate exposed during the total eclipso of May $17,188^{2}$. The present comet was metected as a suspicions looking objert noon a plate exposed near α Aquila on Oetober 12,1892 , by Barnard. On the following evening the cometary character of the object was contirmed by the 12 -inch refractor. It was faint, 1^{\prime} in diameter, and from twelfth to thinteenth magnitude, somewhat condensed towad the center. It changed but little in appearance and was last seen in December.

Dr. Kruegers elements give a perion of revolntion of only 6.3 years ant show a remarkable resemblance to those of Wolf's comet-so great, in fact, as to smgest a common origin for the two, as in the case of Biela's comet and brooks's comet, 1889 V .

Comet 1892 VI: Discovered on Angust 26,1892 , in the constella = ('omet d 1892. tion Gemini, by Brooks, a quite bright, round nebula, with distinct molens and short fant tail; it was visible to the naked eye in November, and the tail conld be followed, upon a photographic plate, November 2bth, for 50 ; after the middle of December the comet was observable only in the sonthern hemisphere.

The spectroscope showed a continuous spectrum with the three usual conctary bands.

Comet 1893 I: This comet was alkn discovered by Brooks, at =Cometg 1892. (ieneva, N. Y., in the constellation Bootes, on the moming of November 19, 1892: it was then quite bright for a telescopie comet, but showed no tail, while its increase in brightness and northerly motion made it an easy olyject for observation during the rest of the year.

In chmoleling the comets of the year Ls92 mention shonk be mate of a mispucions ohject detected by Prof. M. Wैolf upon photosraphic plates exposed on Mareh 19 and 20,1892 . It combl not be foumd upon a photograph of March $2 x$ nor in a later search with the grat Vienma refiactor.

The anmonmement of a domet diseovered by Freeman on November $24,1 s^{2} 2$, proved to be erporeots.

A eomet anmonned by Swift on Inecember 23,1859 , has been identi-
 to he stricken limon the list of lost ammets．

リ以T以Oに心，

 part of the grat stream combered with Bialas comet，which was an－
 casions the path pobanly pased theromh the matu swatm．While in
 From a romparison of the positions of the eomet and of the dates of

 11．Mis． $114 — 15$
a distance of $300.000,000$ miles in front, and lollowing at to a length of $200,000,000$ miles in the rear of its athal position, or orempying, if there is morason to sumpe the elongated meteor emont discontimons. finlly $.00,000,000$ miles in its ohserved length along the "omet's path."

sol.AR SlSTEM.

Motion of tha soldres.stem.-Prot. Porter has disenssed the proper

 fome groups, aroreding to the magnitude of therif proper motions, he has rontimed Dr. Stumpers result that the proper motion of a star is att modex of its distance fiom ms. The mean pesition of the .esme's way"

1)r. Vogel has atso published the results of an inguiry ou this subpert based on the measmed relocities of stans in the line of sight. The motion of fifty-one stans has been determined at Totsdam. and the probar ble eror in the measurement is below 1.16 geestaphical miles, but the resulting value of the apex of motion, thongh the observations hase been discussed in varions ways, is mot in vary satisfatory areord with other investigations. If the stellar motions be treated wither with equal weights, of weights appoximately proportional to those assighed beg lla. Vogel in his ratalogne of proper motions, the roordinates of the apex are 20 of 1 ± 123.0 in right asension and $+55.9 \pm 2$ in declination, with a velocity of $11.60+1.8 .0$ geographical miles.
NUN.

Fiometer of the sun.- A large mumber of heliometer measmes of the diameters of the sum and Vemus made by the derman tramsit of Temms parties in 185 and 1880 , incidental to the more important determinat tion of the solat parallax, have been disenssed hy lor. Anwers, who finels for the mean result of the sums diameter (thirty-one observers) $1.91!^{\prime \prime} .3$, which differs considerably fiom that alopted in the varions ephemerides; the berlin Jahbuch, for instance, mes 1.9 gen".4. the connaissance des 'Temps and British Nantical Nhanatel, $023^{\prime \prime}$. 1 , and the American Ephemeris $1,5 f^{\prime \prime} .0$. Dr. Auwers manks that it the value he finds is affected by irradiation it can only be ton large, while the adopted diameters are largev still. He amommes that a chatrge will be made in the value used by the Berlin Jahrburd in the volume for 189\%.

Temperature of the sun.-The momerons attempts that have been made to determine the temperatmer of the sim hate led to the most
 metbod employed, howner, has alwas been the same (that of I'onil-

 perallor. Newtons law, which holds only for an intoral of at fow

 made by M. II. Le ('hatelier, and is pmblished in the ('mmptes liendus for

 aroomat of arons which mayr after the law of raliation, mot grater
 a hody of emissive power equal to maty mast have it order to sednd as radiations of the same intensity as the sum. The athal temperature of the photosphere is howne for arart of its radiations are absorned by the less highly heated solar atmosphere, and promaje also (althomgh this serems hatelly pobahle beratuse the emissive pewer of the sum may be lesse that muity.
solar actirit! in $1 \times 9:$. -The development of the selat artivity during 1stre was mo less marked with regard to prominemes than with regark to sum spots. (On Apmil di Tromelot reported an arehed prominemere "xtemlins some 90,0 on miles along tha limb of the sun and attaning a

 the riremonferner.
 tion of the gromp towk plare on the farther side of the sum, and it tirst rame muldr obser vation on Nowomber 1.5, 18.91 , when it was sem as a - pot of considerable size elose to the east limb. ()n Nuvember lli the eromp consisted of three spots. and hy November 1 sit had assumed the appearance so typial of the mone important disturlanees, ot a long procession of spots of varions sizes, the spot in ther vall alld that in

One spot, ronghly cirenlar in shape, alone appeared on dannaty . It is not quite elara whether it represented the principal sronp of the
 it and which ba"ame prominent during Deeromber. It secomed to oce
 practically to be resamed as sho disturbance.

tham 3,000 millionths of the sun's visible hemisphere, did not eover one-fittenth of that area on March 5, thongh it revived somewhat before it was last seem at the west limb on Mareh 17 , but did not smrvive to make a sixth appearance at the east limb on Mareh 31 or April 1.

Aceording to Mr. Mannder thre great spot, the largest on record at
 entire group of which it formed the principal part was 162,000 miles long and 75,000 broad. The area of the spot on Fabrary 13,1892, was 2,940 million sthane miles, and the whole group 3,530 million square miles. This is about eighteen times the area oit the earth, and seventy globes as latee as ours ronk have lain side by side in the immense hollow. Mr. Mammer thinks that the effert upon the weather of a spot even of such enormons size must be very slight, if appreciable. The magneticneedle, however, undergoes violent disturbane upon their appearance.

In an article in Knowledge for April and May, 189:2, Mr. Manmer brings forward some important evidence in regard to the connertion between sum spots and magnetic storms. The article concludes as follows:
lu a perion of nearly nincteen years, therefore we have three mag. netie storms which stand ont preeminently above all others dming that interval. In that same period we have thee great sum spot dis-plays-romating the two groups of April, 188\%. together-which stand ont with equal distinctuess far above all other similar displays. And we find that the three masnetio stoms were simultanenns with the greatest development of the spots. Is there any eseape fiom the conclasion that the two have a real amd hinding comertion? It may be direct, it may be indirat and seomblary only, but it must be real and effective.

Consider that the period in question is practically some six thonsand eight homdred days. A magnetic storm does not last many homs ; a sum spot soon derlines from its greatest development. or soon passes away from the center of the apparent disk. Suppose we take an ontside limit, and give a period of two days to a siant spot to exercise its inthence or a magnetie storm to expend its violence ; what are thr pobabilities against 3 out of 3,400 of surh periods of the one phenomenon agreeing with ${ }^{3}$ out of 3,400 of the other, if they are mot related? If 3,460 nmmbers were placed in ond box and 3,400 more in a seeond. and one firom each box were drawn at a time, what is the chance that the three highest mombers would be drawn fiom the one box simultaneously with the three highest from the other, each to cach, if the matter had not been prearmaged ? Indeed, we might legitimately eall the roincidence of 1 pril, 1882, a domble one, and ask the odds against the fom highest mombers from each box being so thawn.

Brtween sun spots and storms of the second magnitude it is more difficult to make a satisfactory comparison, becanse it is mot so easy to frame a satisfactory defintion as to what coustitutes a secoudary distubanee. Nevertheless. the following brief table of large sum spotic sems since the brgiming of 1881, which were coincident with cousiderable distmbances, may prove of interest. The suoted area is given in millions of stuare miles:

liate．	Sumtiol ilvat．		11．1t：．		
	$\begin{aligned} & \text { Entire } \\ & \text { sıin. } \end{aligned}$	$\begin{aligned} & \text { Lircost } \\ & \text { aromp. } \end{aligned}$		$\begin{aligned} & \text { Vintiru } \\ & \text { sit11. } \end{aligned}$	$\begin{aligned} & \text { l.itrbav } \\ & \text { aroil!. } \end{aligned}$
	1， 29.5	listi		21101	7×1
xepromber la	$\because, 0 \times 9$	917	Norember 19，	3．tix	1，fori
	2，480	1． 234	1sat－March：	1，510	（60）
O．toher 5		1，1918	April 24.	$2,34 \times$	1．7110
188：3－． 1 pril 3	1.345	$\mathrm{CH7}_{7}$	Apilso．	1，74i	097
A［ril 1！	2．170	1711	185\％Timblar 23	1．tixi	518
Jume 30	3，650	$\because 210$	Fehruary 5	1， 345	511
［11］ 11	1．887	1． 1005	Febmary 13	1，569	4×11
July 29	1．+25	1． 26.4		1， 123	647
Sepiteruber 18	2， 017	1．263	Jnue －4＊$^{\text {a }}$	2， 348	
W－tいhット16	4，730	1，73：3	July 18	1， 83.3	514
（）W6her \％	1， 6,511	1，36t9	1891－Nがember	1． 966	1，371

Some of the above those marked with an asterisk．may faily be taken as eontiming．thongh with less deliniteness，flar romelnsion
 greatest stoms．But with the otheres it is mot so．Soots as impor－
 tered，and stoms as distimet have aremed when there have been only few spots，and those bint small．upon the visible disk of the sum．The table is important．therefore unt as adding to the weight of the revi－
 tmbanoes，but as（mphasizing a point which must not be forgotem． Thomeh the dimmal and ammal changes of terodetial magnetism com－ rlasively pore tha solar influme mon it，thongh the romelnsion be－

 by masmally violent magnetio stoms，we＂an not，as yet，pored the thar amb expers the magnitude or eharactar of the magnetie disturn－

 bat that thomgh sum sonts are the partiontar solar phemomenom most rasily observert．wa mast mot infer．therefore that their momber and extent aftord the towest indication of the rhaners in the solar activity

 tography of solar promintace hy Prof．（i．li．llale of the Komwood observatory．（hicalgo．and hey．Hestandere of the Paris observatory． loot．llald suggester two plans for the pmonese the dirst was to allow the image of the sim to dritt areoss the radial slit of a powerthl spere troscope the drivinge elock of the teleseope herinestowed to produre the Weft．If then there were a pomineme on the smas limb the length of

 thenghe a slit fat within the forens of the whervinge telaseope of the
 hegond the slit．all that is recpuimed（ob botograph the prominemer is to move the phate slowly at right amgle to the seeond sit．Fixesh pertions of the plate ate that expesed to romesponding portions of the memi－
 line images of the slit. In the seromed method poposed, the elork of the equatorial is so adjusted that the image of the smo is kept in a fixed position. The phate on the and of the collimator which carries the slit, is then slowly moved aross the smos limio at the point where the prominence is present, and atwond slit moving at the same sped before a stationary plate excludes the light from the speetrom on either side of the line in use, and rednees forsing to a minimum.

In April. 1s91, Mr. Male seemed the first photograph of the spertrum of a prominence obtamed without an arelipse. This showed two very strong, bright lines nearly at the centers of the dark solar bands H and K. Tha same lines were photographed on subsegent occasions, but it Was not motil June 2:3, that any new lines were discovered. On this oceasion fom lines were obtainerl in the nltra-violet-a momber since increased to six. Of these six, 5 lines helong, mmistakably, to the series of hydrogen lines diseovered by Dr. Hngesins, in the ultra-violat of the spectia of Sirian stars. The sixtl line forms a close domble with one of these hydrogen lines (α (hat its origin has not yet been accomed for.

Mr. IIalds conclusion that II and Kiae not dne to laydrogen, is abundantly confirmed hy Prot. Vomg and also by M. Destandres, since the measmes have shown beyond a donbt that the "eompanion line to H," and not $I I$ itself, is the one really due to hydrogen. Mr. Hale and M. Deslamdres asmibe these two giant bands of the solar spertrme to calcium.

Mr. Hate has also met with romsiderable success in photographing the forms of solar prominemes, some of the photographs showing a satisiactory amoment of detail. In one instance a prominence photographed at Kenwood was being sketched hy Herr Fenyi at Kalocsa at the same moment of time, and draming and photograph are in ciose aceord. A smgestion byy M. Deslambes that it might he possible to photograph the entire dhomosphere at a single exposme las been "amied into effect by Mr. Hale, by means of a "spectroheliograph," in which the slit of the spectrosenpe is mate to travel arross the image of the sum, and a precisely similar motion, but in an opposite direction, is given to a serond slit nearly in the focos of the view telescope, amd so arranged that the K line of the spectrom of the fometh order falls upon it. Since the K line is always hright in the spectrm of the rhomosphere and prominnmes. it is easy, by shatimg off the image of the smo by means of a diaphragm, to build up a complote picture of the entire ehromospher and prominences, and so to prodnce what may be deseribed as an "artilicial total solar erlipse." The discovery which Mr. Late has madr that the Π and K lines are alwass reversed in the facular has mabled him to extemd the applation of this principle. If the diaphram covering the image of the sum be disatrded a photogiaph will he obtamed, mot merely of the chromosphere and prominences, but ol the dise of the sim itself, showing the spots and
 of the sum, hat wherer they eremb. wan in the rey renter of the dise. In this mamer it has bern disenvered that farula, invisible to the eye frequently doat abow the spots, and one series of photergaphes
 sprad. rompletery hide alarge group of suts, and passed awas, all in a few mimutes of time.

 a diseorery of sperial intmpest as bening ume the intometation we the
 this diswery ly ohtaing a similar result with an intorating apertroseope the smberig treated as a star would be its light as a whole,
 ination.
II. Destandres has bell making finther experimentis mon photor graphing the corona without an erlipse. The principle upen whel he proceeds is to ohtan photographs of the sim from light of limited peftanghility, not her using coloned media or stamed plates. hat lay mems of two prisms, the secomb of which is armaged so as to recompese the light dispersel ly the first. But only eretain rays firm the first prism are allowed to tall on the seromel: the resulting image of the

 Hu coroma has the suatest hightness as compared with that oi the

HCI, IVSEN.

 exhibited low the erclipsed mome
 Washiegtom lonisesit! paty, whim was statiomed at Noman. Cal.. is

 pols. There ate staight line of light armaged somemhat like the

 within : show distance of the sums limh. The broal and strongly maked equatorial belt stretches divedly amose this mass of filaments,
apparently antling off the filaments at the somewhat inegular line of separation. The impression comeyed to the ere is that the equatorial stream of denser coromal matter extends acoss and throngh the filaments, simply obscuring them by its greater brightness. There is nothing in the photographes to prove that the filaments do not exist all round the sim.

Delipses of 1891 and 189?-L 1 the year 1891 there were two erlipses of the sum, an ammar ectipse on Jme 6, and a partial ectipse oil November 30 -1)ecember 1 ; and two erlipses of the moon. May $2: 3$ and November 15, both total.

In 1892 there were also fom exlipses, two of the sun and two of the moon: a total eclipse of the sun April 26 , and a partial eclipse of the smon October 20; a partial erlipse of the mom May 11 and a total eclipse November 4.

Eeripse of the mom, 1891, May 23. - A total eclipme, visible thromghont the westem part of the Patite Ocean, Anstralia, Asia, A frica, and Enrope. No observations of spectal importance.

E'clipse of the sum, 1891 , June (6.-Visible as an ammlar eclipse only in the northern part of siberia and the Aretie Oeman. A few observations of contacts were secmed in the westrm part of the donited states.

Eeripse of the moon, 1891, Nocember 15. Whe total eclipse of the moon on November 15, 1891 , was visible gemerally thonghout North and sontl America, Europe, Asia, and \backslash frica. The whole of the eelipse was visible in the eastern and central parts of the United States white in the western part the moon rose eclipsed. Dr. Dïllen selected fiom photographic phates made at Potslam some 138 stars to be ocenlted at extablished observatories, but the weather seems to have been generally unfacorable. A few contact observations were secored.

Eechipse of the sum, 1s91, Norember 30.-A partial eefipse, visible only in the Antaretic ocean.

Eclipse of the sun, 1499, April 26.-Total eclipse, visible only in the Southern Pacific: no observations of importance reported.

Erlipse of the moon. As 9 , May 11.-The phenomenon of the partial ectipse of the moom on May 11, 189\%, was stmdied at Greenwich and fisewhere, and the oroultation of a comsidemble number of small stars was observed.
 America: a few observations of contacts reported.

Eclipse of the moon, 1892, Normber f.-Total edipse visible generally in Emope and America. No ohservations of spectal importance.

NOLAR PARALLAX AN1) THE TRANSITS OF VLNTS.

The Linited states transit of tenus observutions.- la a report dated September $\because 1$, 1s91, the Sumerintendent of the Tuited States Naval Observatory states that mo provision has yet beatm made for publishing

 upon the 1574 transit is only partly eompleted and romsiderable work still remains to be dome mpon the reductions for $185: 3$, thongh results for the solar parallax and eretain dements of the onh of Vemus. Whieh are pratracally final. have been pmblished. Some orembations of stans by the mon, telegrapie deteminations of diffrences ol longituld, tidal observations. and pendulnm experiments still ramain to be rednced, for which, however. no finds serm to be avalable.

Dr. Anwers resnlt* for the German helometer measmes of the transit of Vems in 187.4 is a solar parallax of $\mathbf{S}^{\prime \prime} .875 \pm 0^{\prime \prime} .04{ }^{\prime}$, there
 tions were orempied and thimeasmes wore obtamed. the resulting barallax heing $\mathrm{s}^{\prime \prime} .879 \pm 0^{\prime \prime} .037$.

In. Battermam, of the Balin Observatory, has dedured a value of the solar parallax from $2 \tilde{D}^{0} 0$ oreultations of stars between Aphil, Lisst, and Oetober, 1885 , having by eareful observation heen able to utilize
 Thas resulting solar parallax is $\mathbf{S}^{\prime \prime} .794 \pm 0^{\prime \prime} .01(\%$.

The determination of the solar parallax by means of meridian obs supations of Hass at opposition was attempted in $1812=$ and agath in in 15:7, but the results olotamed were gencmally ronsidered by astronomers as too lare there bering indieations of a systematie aror for the observations of Mars. of of the comparisom stars, of of lotla. A shent modification of the brevions methots of observation was sugerested by
 tory requesting the enöperation of other observatomias in the observat

MLANETS.

 ably with the generally alopted valur.
 disk took place on Ma! ! 18!日, the hest sinee November 7,1851 . The

 servations of the contane thet werem the disks of the sum and plathet are

bartially visible in the Vonted States. Ont the Laditice eoast the sma was two on thee homs high at the time of the first and seromel contarts; it had set in most pares on the Atlantir coast before the first contact, and in WW^{*} shington was only ten minntes high. Reports fiom twenty five observers in the I nited states have been forwarded to the Naval Observatory for redhotion. The whole tramsit was visible in Ohina, Japan, eastern Siheria, and the Malaysian Islands, while in England equess took place soon after smmise. No phenomena of special importanco serm to lave been moted. In Emope several observers saw the "black drop" or lisament. At tho Lick Observatory a ravefnl series ut observations was madr, both vismal and photosraphic, and the planet was looked for, but withont sincess, before it entered upon the smos disk.

For more than an hour after ingres the planet was also carefally examined, with the 36 -inelı Liek telosone, hy Profs. Dolden and Keeler. If "was perfectly romd, and in the best moments sharply terminated

Not the slightest trace of a satellite was seen: and both observers were ronfident that no subh bory cond then be on the smes face and escape detection moless it were exeedingly minnte."

Texts.-The conchsion reached by Schaparelli that Vems motates bery slowly mon its axis. in tare in abont the same time that it motates abont the sum, has bean oballenged byseral observers. MM. Niosten and Sthyvart, of the Brassels Observatory, have wiven the matter "aretinl study, amd H. Trourelot has puhbished a series ot observations
 tion does not difiar sreatly tion twenty-fom homs.

An rehanstive disenssion of perent pmblations rancerning the physical appearance of Voms is printed by lor. Wislicomas in the
 acerrate observations are neressary.

Thes valme of the diamoter of Vemse dedmed by lor. Anwers fiom the heliometer measmes hy the (imman 'Tramsit of V'mus parties, in 1874 and 1 SS:. is $16^{\prime \prime}$. s 0 .
 portant sulyjects that has been monder disernsion dming the past two years-important to astronomy and goodesy alike-is the variation of terrestrial latitudes. the strongesmesion of which has been ronfirmed by reeonf vory aremate observations, and when once admitted is abmantly fortified hey the disemssion of older observations.

There seems to be now distinet avidane of a rotation of the geographical romm the astrommion polde in tat days. The problem has of comse attracted the attention of the abhest astromomers and mathematielams. but the ereelit for the ablest disernsion and the most satisfactory solution is modoubtedly due to Mr. A. C. Chandler. The following smmmary of his work is taken from a review in the Monthly Notices (r. Es', No. 4).

 but the law of the variation. Twels monthe olservations were of
 though they might sugest it: contimation was, howerm. fimishem has H: Kiisther, who, in his determination of the abreration fom an serims of observalions coimedent in time with those of the almurantar. "anme unon similar anmadios. Further exidence hearing on the grestion was fortheming in the parallel deteminations at larlin. I'ragne. Iotsilam, and Pulkowa, which showed changes in apparent latitude. mot only strikingly sympathetio amomg themelves, but of the same range and periodidity as those motiond in 1s8.i: and Mr. ('handler ${ }^{\circ}$ wate led to make further investigations on the subjert, whirh sem to establish the
 pesent them in due order."

The fonsequent suries of papers in the Astromomicel Jomemel (an hardly tail to take its place as ome of the astromomical rlassios. The

 an impertant subjere. But it will beren that dming the gear lise
 been madd in timdamental astronams.

The finst parer (regarding that alremd mentionen as preliminary) deak with the observations with the louknwa bertioal cirele (lstion-
 any sulution of the ammalies whigh the shew in reand to the gues-

 rahere of the alremation comstant in the difterent yars and an mative paralax in all." Mr. "hameder timds that a lea -day perime in the lati.
 Pulkowa latitudes." and "arames to their migin the amomalies in the Washingtom wher wations." Finther, the romparison of the two series beals for the same romelusion as that alranly show from the simul
 the dienetion of the polar motion. In the mext paper it is mentiond
 are in complete aceordane with these madre at the same time at lout kowa and Washimfon: and that the teiday period aneomes for the

 laty the wollmation emor. It is then womednd that the ohservations
melieate a rotation of the pole in little mone than al feat and with a larger mans than that of $1860-1$ sso, the range heing abont $1^{\prime \prime}$. In the same paper Mr. Chandler states that Brinkley's ohservations at Jublin ($1808-1 \mathrm{~s} 13$ amd $1818-18 \times 3)$ are fomm to indiate arotation in abont a year, with range more than $1^{\prime \prime}$. "wherein lies the solution of the hith. erto unsolved enigma of Brinkley's singular results which led to the spirited and almost acrimonions dispute betwern Brinkley amd Pond with regard to stellar paraliaxes." The details were promised in a later paper. but have not yet been wiven, owing donbtless to the necessity of attending to a vitally important point which will presently appear.
 reductions extending from 1837 to 1891 , mate at no fewer than seventeen observatories. The whole is broken up into forty-five series, or short gromps, for the purposes of this paticular dismssion; and the result of this mimute inguiry, confirmed (or perhaps suggested) by the observations of Bradtey and Brinkloy above mentioned, seomed clear. viz, that the "instantaneous rate of angular motion of the pole has been diminishing dming the last half "entmey at a sensibly miform bate, by its one-humdred-thousamulth part."

Mr. Chambler was led to modify this statoment in a remarkahle manner and within a few weeks.

Astronomers had hesitated to accept the 427 -hay perjod. even in face of the very strong evidence of the $1860-1880$ observations, owing to the diflioulty in arcounting for it theoretically. It had been pointed ont by Enlar that. treating the rath as a riginl bods, the permod of mation of the pole mast be 306 days. Prot. Newcomb, however, happily pointed out that a qualified rigidity (either actual viseosity or the fomposite character dae to the ocean) afforded an explanation of this longer perioil; and after this suggestion Mr. Chandlers 427 -day priod was well and even wambly received. But the further elaboration of this hypothesis by a rhanger period was a new difticulty.

Prof. Newromb. who had reconcilen the first article of the hypothesis with theory, was not slow to dechare that the second was ineeconeilable. Mr. ('hambler's reply, in paper 6, is a mondel of controversial romest and skill. He says: " It should finst be said that in begimning these investigations I deliberately put aside all teachings of theory becanse it seemed to me high time that the facts shonld be examined by a purely inductive process: that the menatory results of all attempts to detect the existeme of the Eulerian period probably arose from a defert of the theory itself; and that the entangled condition of the whole subject required that it shomld be camined atiesh hy processes unfettered by any preconceded notions whaterer.

The appeal to observation, treated imespective of fheory in the present series of papers. shows that a rotation of the pole really exists, but (a) at al daily rate of but 0 .N: (for 1sin), amt (b) that this velocity is
subjer to a Sow retardation, whicia in its turn is mot miform

Now, maty it mot reasonally he asked. if tha dired deduction from observation has lad to the eormertion of the theory in the tirst par

 pared for therembeiliation of ohservation and theory in the very mext bater of tha serias, puhtishod sit werk latere

 itication is that the emplitude of the lateme is apparently variahbe, mot the perion. The superposition of these two motations is almost exatly equivalent. for the whervations asalable, ter the law (on summary of ohservation, as it might failly le ralled) porionsly amomberd. To make "lear the movelty on this discovery it mat be remarked that. although thutations in zenith distances of ammal perion hatio loms

 alle mitwinter. lath this is mot the case with the ammal trom mow
 perle mowes gust as in the case of the ter day torm.

It is sommewhat remakable that twe formala difleringso mond in form shomble be fontal foreresent the observations abmost equally well. Apmarntly this is to be atributed chielly fothe variability in amplitude of the amamal term, and as yet this lariability has

 paper dated Jamary $2,18!3$. that the diseotery of these periondie inequalities in the latitude makes it meressamy to worer murh whe wots atrestr, and is himsell leading the way with a disemssion of the atherat tion (a)hstant.

In the same paper he shows that the reerent results whatated at bere

 aroordance of the separate valure is hith testimone to the skill of the
 laterions and romsedontoms work."

ada Partiament has dectared as legal thr normal homrs from Greenwich adopted since 1 ssi by ralways and later by a great mumber of towns. In England a commission has reported tavorably upon the system of homby meridians. and the (iovermmont has strongly recommended it to the colomies. In France, Paris mean time is used for all the comntry, inchaling Mgeria. In Belginm a commission has recom mented the homly moridiam system, with direenwich as the starting point. In Holland the Govormment has anthorized the adoption of Greenwieh time for intorior ralway survice In Prussia mean Emobean tmo (mittelenmpaische Zeit ar M. E. Z. . which is one hom greater than Greenwich time, replaced Berlin time fiom the 1st of June, 1s!n, for the rallway survee of the interior. Bavaria. Wiirtemberg, and Baden have also derided on M. F. Z., which will also be used in Al-sace-Lorraine. Anstria and Huncon! adnpted II. E. K. from (october 1, 1891. for ailway, post, and telegraph service, and there is a stronge feeling for its adoption in eivil life. In Italy, at the instance of the Academy of Seieners of bologna, which favors the maridian of , Jermsalem, there was a plan for assembling a new rougress at Rome, but this however, seems to have been abandoned. There is here as well as in Switzarland astrong sentiment in far or of (ireemwich as thestandard.

It the Cape of (iow Hope the extemsion of railways bought about the adoption of a single-standard tima throwshont the colony in Feh. tuary, $189^{\circ} \mathrm{z}$. 'The meridian me and one-half homse east of Greenwich is in use tor all furposes in Cape ('olomy and the Orange Frea State, and all time signals arr given at (ifeenwidl noon.
 amt 18't showed somm sigus of retmon, thomgh in lesser degree, in the early part of 1891 . The tint and genelal appearanee are reported to have greatly resembled the amomal displays.

The systematid stmy of these " hminoms night cloms" has been taken up by Prof. Foerster and Har desse of the berlin observatory.

The Moon.-A rabnable contribution has been made to the study of the moon in "An essay on the distribution of the moon"s heat and its variation with the phase," by Mr. F. W. Very, of the Allegheny Ob-servatory-a paper which satined the prize proposed in July, 1890, by the Utrecht Soeiety of Arts and Sedences. Mr. Verysinverstigation Was made with one of Lamgley"s "bolometars," and the principal results may best be desmibed in the anthor's own words:

First, that visible rays form a much larger proportion of the total badiation at the finll than at the partial phases, the maximmon for light being mach more pronomed than that fow the heat. Next, as has beron foresem from the ecentricity of the heat areas, their greater extrasion towarid the westerai limb, and the greater steepmess of the sumset than of the sumrise grailient, the dimimation of the heat from the finl to the thima guarter is slower than its increase fiom the first yuater to the full. Finally, there is a fair agreement between these results and those of Lard Lonare, which extends even to some minor details, such as the attamment of the hogest heat at little before the full.
 the minion that the moon eath mot hate all atmosphere one two thote sandth part as demse as thal of the eath at seat lefer. It matis. how erer. be femembered that, wrer ons atmosphere transidred to the

 athl araters ont the mesatives.

 describes batious changes in the topography of Nats. the mose strikimes

 Hersehel 11 has lerert tramstormed into a straight domble ramal.
.IUPITEA: Hisromer! of "fifth satrllitr.-The most interesting as

 planet Jupiter.
 ins his searela for new objects in the Sstronomical fommal:

Nothing of special importance was emronmtered motil the nighat of september !, wher, in carfolly rxamining the immediate region of the phamed hupitas. I deterted an arodedingly small stan elose to the phate

 Was hardly poot chorgh for ammennerment.

I replaced the wires the mext momme. The mext night with the

 fossible 10 tell. Taking into consideration its pesition, howerne in the
glare of Jupiter, it would perhaps net be famber than the thirteenth magnitude.

The satellite has been seen and its pesition ohservel at the Universits of Virginia, at Princetom, at Ealing, and at Evanstom; the 182 $\frac{1}{2}$ inch refractor at Evanston being apparently the smallest instrment with whieh it has thas fan been seen, and it was then reported as being a much more difticult olyject than Ariel or l'mbriel. the satellites of Crams, thongh Mr. Reed with the eximeh Princeton ghass fomed it an easier olject than Ariel.

The new satellites orbit seems to lie semsibly in the phane of Jupiter's equator; the distamere of the satellite from the eenter of the planet is probably over 110,000 miles and its perion of rotation about $11^{14} 55^{-14} 37^{7}$.

Diameter of 'Jupiter.-An admirable series of measures of the diameter of Jupiter, by br. Schur, with the (ijittingen holiometer, is published in No. 30 ä: of the Astronomische Nacherichten. The effect of personal equation was eliminated by the use of a reversion prism eyepiece. Dr. schur finds the disk a sensibly true ellipse with dimmeters $37^{\prime \prime} .4$ and $3 \tilde{5}^{\prime \prime} .0$, a flattening of $1-15 \frac{1}{2}$.

Mr. Bumbam communicated to the November meeting of the Royal Astronomical Society. in 1891, a paper on the spots and makings of Jupiteras observed with the Le-inch equatorial of the Lick Cbservatory. Noting the decided elanges of color in the different markings on the planet's surtace, he expresses the opinion that the red color is an indication of age, or, in other words, when a spot or marking other than the whiterpots first appeas itisdark or black, bat after some time turns red. Duting the year 1891 the planet wasextremely interesting, owing to the remarkable amome and variety of detail displayed on its surface. The two hemispheres were, as manal, strongly in contrast in their individual markings. In the southern hemisphere, besides the great red spot, new spots appeared, and a great momber of romd white spots were visible. These white spots are quite characteristic of the sonthern hemisphere, thongh imdividual white spots have at rare intervals been seen in the northorn hemisphere. In the latter a system of small dark spots appared, with very short periods of rotation. Mr. Burnham reports that the great red spot had reganed mucl of its former distinctness, both in color and form.

Saturn- - (On September 22,1891 , the earth passed thromgh the plame of Saturn's rings. From the exd of the month to October 30 the earth was above the plane of the rings, while the sum was below that plane and, consequently, shining on the southern side of the rings. After October 30 the sinn was again shining on the north side. The phenomenon of the disanpearance of the rings was described by several observers.

Traver.-A seard for new satellites made ly several observers at the Lick Observatory fom 1sis to 1 wi has resulted negatively. The

 suth whent exists wi！hiat the olloit of Thtania．＂

 liarlo，ls解，rontirm the reality of the slow motion，mearly moportional fothe time，of the orbit plane of the satellite with resperet to the orbit

MNOR PlANETN．

 Who has rontributed so gemorously for the arkanermont of astromomy．

In Ls！f wenty－fwo new asteroind were added to the gromp moolving between Man＇s and ．Jupiter，allol photography now having berome a pownfulaid in the datection of these small hooles，the number still likely to be fomd semme almost limitlese．Ther last on the list for 1891,
 Amother asteroid was．in timet，fomm upon the same plate，hut it proved to br identical with 27．万（Sapiontia）．

 its diseovery（18sis），has been fomm again hy the aid of photography：
 riod with that of Jmpitar．
 the last list puldisherd，and is，therefore introdured here to make the lists romplatr．

List ！！minm plancia of バック。

List of minor plants of 189 -C'ontinued.

Asteroids of 1892 - The further and very successful application of photography to the discovery of asteroids by Dr. Wolf, at Heidelberg, and loy M. Charlois, at Nice, resulted in such rapid additions to the list that the notation of these bonlies was thrown into the utmost eonfusion. Hitherto the simple numbering in tha order of discovery had beelu a rule easily applied by the discoverer, but where several asteroids were found upon a single photographic plate it was not always possible to determine until later observations and computations whether they were really new asteroids or not, and when the planetary character of the object was reeognized it was frequently fond imprinted mon some ealier photograph.

It was accordingly snggested, in No. 266 of the Astronomicul Jourunl, that as a temporary omission of the number is attended with less inconvenience than is maned by the employment of an erroneons one, the numbers for the asteroids after number 32y shond be onitter until the diffornlt task of fixing a definite emmeration should be delegated by common consent to some one authority to which all could defer.

Common consent semed to point to the Berlin Rechen-Institut as the only phace attually in possession of the needthl resomeres for solving the questions of identity continually arising, and it was agreed that to avoid further confusion Prof. Krneger, director of the Kiel observatory, the European "Central-Stelle," and editor of the Astronomische Sachrichten, shouk assign to each asteroid a provisional notation ($1892 \mathrm{~A}, 1892 \mathrm{~B}, 189 \mathrm{C}$ C ete.) in the order of its amomerement to the "Telegraphische Central-Stelle:" and that the definitive numeration should be sulsequently unlertaken by Prof. Tietjen. director of the Rechen-lnstitnt, in Berlin. In this definitive assignment of mmbers those asteroids will be omitted, for which sufficient material is not available for a determination of the orbits.

The first asteroid to which the new motation was assigned was that
 visionally known as $189{ }^{2} \Lambda$ ，and subsequently repoded its move pro manent designation，number 333 ，from Prof．Tietjen，and its name， Badenia，from the discorer．

In 1892 thity bew asteroids were amomeed：one of these， 1893 B ， has already proved to be ilentical with Erigone， 163 ；and it is possible that further study will identify some of the others．

Some slight diserepancios are still found in the diftierent lists of as－ teroids for the year，but as the new system of motation heromes estab）． lished they will probably disappear．

In the following list all the disenveries were by photography exent $324,326,327$ ，and 331 ．In the wase of the photugraphic diseoveries the date given is that of the earliest photegraph on which the planet ap． pears．It was in many cases mot moticed on tho plate till considerably later，which accounts for the departures from chronologieal order in the ＂date of discovery＂：

List of minor planets of $182 ?$ ．

Letter．	$\begin{aligned} & \text { Num. } \\ & \text { ber. } \end{aligned}$	Name．	Discoterer．	$\begin{aligned} & \text { Datr of } \\ & \text { dis. } \\ & \text { fovery. } \end{aligned}$
	324		lalisa，at Vienna	ド・的， 25
－．．．	395	H10inelberga	Woli，at Itridelberer	Mar．\＆
\cdots	？ 27	Tamara	Jithsa，at 「iomma	Mar． 19
	327	Columbia ．	＇Mlar？ois，at Niu．	Mar．2：
	32－	diurrum	Woulf，at Mutulumer	Mar．18
	329	Sveat	do	Mar． 21
	330	llmatar	． 10	Mav． 19
	331		（＇harluis，at Nice	Ifr． 1
	333	Niri	Wolf．at lleidrebrer	Mar． 19
1892－1	33：3	Patconia	．．．．．de	1ug．20
189213	16.3	Erimane	10	sipt． 1
1892 （：	335	liobertia．	Stams，at Hedeldurers	sum． 1
1892 H	3：36		Chariujs．at Niar．	Stept．19
1892 1：	$3: 37$		d 10	
18902 r^{\prime}	3 SH		．do	Scpl． 8
1892	$33!$	Dorothe：a	Wolf．at 11eidelluerer	Scple 25
1892 if	3415		.110	Siplt． 5
18！2 J	341	．．	．${ }^{\text {d }}$	Suply
1892 K	312	．．．．．．．．	． 110	Orel 17
1802 I	3334		．dl）	Aug．2\％
1802 II	314		Charlois，al Niret	Nov．15
145\％	34.3	．．．．．．．．．．．．．．．．．．	Wrold．al Heidelbery	Sove 15
18020		．．．．．	（＇latolois，at Nice	Nov 23
18！日 1＇			．．dor	Nov． 25
1892 ！	．\cdot		． 110	Nov． 28
1892			．．．．．${ }^{\text {d }}$ ）	Nov．
1092			． 111	lere．E
1×92			do	ber． 9
18921^{1}			\cdots dor	Dre． 14
$18.82{ }^{\text {2 }}$			Wolt al Huchelberer	Dee． 16

OBSERVATORIES.

The chief sources of information concerning the recent work of as. tronomical observatories are the Jierteljahrschrift der Astronomischen Gesellschoft, for continental and a few Ameriean observatories, and the Monthly Notices for Englishobservatories: in addition to these are the reports of the obsembatories themselres-though few pulbish independent annal reports-and notes in current jonmals, chiefly the Observatory and the Sidereal Messenger.

In the following résume the length of the untes is by no means always in proportion to the importance of the institntion. The character of the work of the older oloservatories is generally too well known to sequire more than the briefest mention, while for the new ohservatories an effort is made to put on record as much information with regarel to the equipment, ete., as can be fomd. In most instances it has mot semed necessary to distingnish between the two years covered by the review.

Among papers of interest on observatories is a series of notes on visits to some American observatories made by Mr. II. F. Newall, of the Cambridge Observatory, England, and pubished in the Observatory.

Abastuman. - A new momitain observatory has been establishen at Abastmman ($2^{\mathrm{b}} 51^{\mathrm{m}} 2 \mathrm{n}^{\mathrm{s}} \mathrm{E},+41^{\circ} 42^{\prime} \cdot 4$). It is 4,500 feet abore sea level and is equipped with a 9 -inch telessope by Repsold.

Anelaide: Torld.-Reolservation of Weisee stars: observations of Juspiter; weather service.

Alabana University.-An astionomical observatory attached to the University of Alabama, near Tusealoosa, was completed in the summer of 1844 . The building was originally 54 feet in length by 22 in brearth in the center. In 1858 another apartment, 40 feet in length by 20 in width, was alded to the east wing. The instruments consist of a 4 -inch transit rircle of 5 -feet focus by Simms, the circle being 3 feet in diameter, divided to five minutes, and read ly four microseopes to single seconds; a clock loy Molyneanx; an equatorial, also by Simms, of 8 inches aperture and 12 feet forms, provided with a filar micrometer and donble image micrometer, the hom circle being divided to one serond of time and the dectination circle to five seconds of are, read by opposite vorniers. As an accessory to the empatorial there is an excellent clock by bont. There are ako two portable achomatic tele-seopes-one by Dollamd of 7 fect foral length and 4 inches apertme, the other by Simms of is feet focal longth and 3 inches aperture-and reflecting circle ly Tronghton, of 10 inches aperture, read by three vemims to twenty seconds.

The observatory was bnilt and the instrmments pmochased and monnted mader the smerevision of Prof. P. A. P. Barmard. A woodent of the bulding is given in number 15 of the publications of the Astro-
 sitates C'ommissionar of jetheation for ISS:

 the lick observatory, was abected professor of astrophysies in the
 heing assomiater! with him as aldanct poldesson of astromomay.

Throngh the generesity of Mrs. Willian Thaw the observalory has bed provided with a rary powertil suretroscope by Frashear: a new drivusg elonk was presented by Mr. William Thaw, .11.
 servations of Jupitrr.

AThrNs: Eginitis-The National Astronomiral and Meteorohogical Observatory at Athens las heen rearganizal matme the dirertorship of Prof. Eginitis.

FAMBERG: Martwig-The lare heliommer of 181 millimeters alertare has been bronght into degular ase. Gbservatoms of variable stars and of a few oreultations have herd made hesjules observations for the determination of chatnge of latituld.

BAsEL: Rig!genberth.-hastruction of stmbents.
Berbin: Foerstor.-Thansit cirele observations, measmes of douhbe stars, ete.

BERMERSIDE (IGalifa): ('rossloy. Weasmement of double stars; observation of the phemomena of duphtersand Satmen's satellites. Jle teromogieal observations.

Baston: Né Liverpool.
 orologes.

 + no was completerl.

 1891.
 the disturbane indedent to the pemosal of the abservatory to lowla greatly inderfered with the work of 1 s!ot. Ki. Niesten has rontimed his

BUDAPEST: Konkoly. - The new ohsarvatory of the Rosen! Motano logical heichsanstalt romsists of a transit room (it meter's (21 feet) by

4 meters (13 feet) and a room for the refractor with a dome $4 \frac{1}{2}$ meters (15 feet) in diameter. The instrumental equipment is very meager, consisting chiefly of a $4 \frac{1}{2}$-inch telescope, a transit, clock, chronometer, chronograph, electrical and other subsidiary apparatus. The director reports but little astronomical work accomplished.

Cambridge (England): Bull.-Prof. Adams has been succeeded as director by Sir Robert Ball. Considarable progress has been made upon the zone work. The ex-inch Newall reftator has been used for physial oliservations of planets and photograplyy of stellar spectra. A spectroscope has been provided from "the Bruce fimd."

Cape of Good Hope: Gill.-Transit circle observations of the sun, Mercmy, Yenns, and of stars for a new ten-year catalogue, stars occulted loy the moon, stars employed for latitude determinations, ete.; with the heliometer, measures for stellar parallax and measures of Jupiter's satellites have been made, and with the zenith telescope, atter its renovation, observations for an investigation of the constant of aberration. The photographie work has consisted of miscellaneons photographs of stars and planets, in addition to regular astropinotographie charting.

The catalogne of the Sonthern Photographic Durchmusterung has been made ready for the press.

Carleton: Net Goodsell.
Chamberlin: Howe-The building has been completed at a cost of $825,000$.

Chicago-See Kellwood, Yerkes.
Columbia (Missomi): (Tpdegraff-The observatory of the University of Missomi (lat. $+38^{\circ} 56^{\prime} 50^{\prime \prime}$; long. $1^{\text {h }} 1^{\text {min }} 6^{\text {s }} .4$ west of Washington) was first built in 1853, and then cousisted of a small wooden structure in which were mounted a 4 -inch Fitz equatorial, a $\frac{1}{16}$-inch transit by Brunner, a sidereal clock, and other smaller instruments. It was used for the purpose of instructing students in astronomy, and few clanges or additions were made till 1880, when a $\frac{1}{2}$-inch equatorial by Merz \& Mahler was bought. The building was then removed to another part of the college gromuds and enlarged by the erection of a brick tower, with a dome, for the newly acquired telescope. Soon after a sidereal clock, a chronograph, and spectroscope, all by Fanth \& Co., were purchased. A 2 -inch altazimuth, by Blunt, of New York, had been bought some years before. The director at that time was Prof. Joseph Ficklin, who died in September, 1886.

Prof. Milton Updegraff was appointed director in Jnly, 1890, and while much of his time is taken mp in teaching classes in astronomy and mathematics, he has done excellent work in the observation of planets and comets, besides a redetermination of latitude and longiturle, the latter by telegraphic connertion with the observatory of Washington Ithiversity, St. Lomis. The observatory building las been enlarged by the addition of an oftice room and a library.

Copenhagen: Nielsen.-M1. Vietor Nielsern at his private observa tory has a $7 \frac{1}{2}$ ind refrator lys Remtelder and lletol, the ohjertive of Wena glass. The work has been chatefy upon the moon.
 is one of the highest points in tha somth of Ensland, iso faet above sea level. The hemispherical dome has two slits to effeet thomomb ventilation. Photographis of stars, blanets, melulat, and fhstems. A pho tographie search has leen made for a trams Neptuman panmet.

DAKOTA AGRICULTURAL Colleme (Brookimgs, Dakot:a.) - Fommand
 graph.

Denter.- Née Chamberlin.
DREADEN: Dr. B. ron Engelhardt.-(Observations of (onnets, mebula and asteroids, and micrometrie measmere of Bradley stars.

DrDLEy: Bosx-Miss Catherine Wolfe Brace, of New Fork city, who is already known for her muniticent gifts in aid of astronomy, has given 825,000 to the Dudley Observatory for the increase of its permat
 has been seroured to defray the cost of rebuilding the observatory on a new site and of fimmishing it with anew eruatorialof 12inchesaperture, together with other improvements in its equipment. The cost of the telssoppe is provided for hy Robert C.and Charles L. D'royn: it is to be of the most approved modern ronstruction. The cost of re estab lishing the oleott meridian cireln (s inches aperture), comstmeted by Pistor and Martins, of Berlin, in 1 SES , together with a collimatimg meridian mark and other improvements, is alse provided fors. The old site is very unfarable to astromminal observatom, owing to its proximity to the four tratek of the New Yorle Central lanimat, which with a very heary traftir, gronp aromd the base of (Dhereratery Hill at a distance of abont 150 yards from the instaments. The new site is about 2 miles somblase of the present loxation upon a plot of about ef aleres.
 pointed to sucered Prot. Alams at Cambridge, and the valdane in the directorship of the Donsink Ohservatory was filled (otoher ore by the appointment of Ifr. A. A. lambant. Dr. Rambantis assistant is Mr. A. E. Lyster. Thar 15-inch rednotor has heen used for stellar photog rapley, primeipally for deforminations of stellar patallan.

 meters form the observatory las mot seriously intermed with the obs. servations.
 spectroseope have been made for the great telescope. Photographs of mebulae and of the mon have been taken.

Edinberair: C'opeland.-'Thereduction of the meridian obser'ations
of nebula has been undertaken and some further observations have been made at Donecht, but little observing has been done pending the completion of the new buildings. The main building of the new obselvatory is to be 180 feet from east to west, terminating in two towers surmounted by domes, or rather "drums." The eastern tower, rising' to a height of 75 feet, will contain the 15 -inch Grubb refractor, while the $6 t$-inch reflector trom the old site at Calton Hill will be mounted in the western dome. A single range of rooms, opening on a corridor on the sonth, extends from tower to tower. The roof is designed as an asphalted platform, affording free commmication between the towers. Begiming at the west there are a spectroscope room, general laboratory, electrical room, cleaning room, mechanic's workshop, chronograph and class room. Light and dark photographic rooms, as well as a computing room for the equatorial aud photographic work, are in the eastern tower. A central extension of the builling toward the sonth, 80 feet by 26 feet, will contain the chief computing room, hallWay, ete., director's room, and fire-proof library-34 feet by 23 feet, with a light iron gallery affording access to the upper shelves. An upper story to the southerm part of this portion of the building, 66 feet in length, is designed for optical work. In the basement will be placed the heating apparatus, a dynamo, and accumulators for supplying electricity for lighting the observatory and illmmating the instruments. In the observatory there will thas be but one chimmey.

The tramsit circle will be in a separate building, with light walls and roof of corrugated iron, 80 teet mest of the western tower, aceessible by a covered way. The remaining buildings are the astronomer's house, two assistants' houses, and a gate lodge.

Geneva: G̛utier.-Ool. Emile Gautier died on Felormary 24, 1891, and was succeeded in the directorship by his son, R. diautier. The principal work of the observatory is the testing of watches and chronometers, and meteorological observations. A number of observations of comets have also becol made.
(ilasgow.-Meridian circle observations.
GiöTTINGEN : Schur.—Observations of asteroids, comets, and Prasepe, and measures for stellar parallax; regnan meridian obsurvations, and physical observations of the moon, Jopiter, Saturn and Urams.
(ioonsell : Payne.-The observatory of Carleton College received a new name, in honor of Mr. C. F. Goodsell, the fonnder of Carleton College, on June 11, 1891.

The new Williams equatorial, costing $\$ 1 \tilde{0}, 000$, was installed in 1891. Its clear aperture is 16.8 inches and focal length 22 feet, the lenses having been figured by Brashear mon Hastings' curves and the monnting provided by Warner and Swasey.

Gotha: Harzer.--Reduction of previons observations. The director's time has been given almost entirely to lectures and to his theoretical investigations.
 contimmed murh the same as in movions fears．and in aldition astro photographio whervations have grown to be at bat of the romtine．

 Lasisell egratorial as a photohelograph．The erection of the mew

 to the present time hy Mr．Tharkeray has fumbsad a very satis－ factory rontimation of Mr．＇＇hamder＂s dombly periontir vatiation of the

 Englishand Fremeh ohservers．some additions to the equipment have
 settlent．

 servations．amb time service．

 been mondoyed on observations partly photometrice and partly micor－ motric，while the peineipal work dome with the west equatorial hat
 bariahle stars of long prox．

Photographic observations．powided for ly the Ham？Draper me
 （lair uight，and with tha aid of them telescopes．

 Pflatmial was momated ame olservations were commented．The

 most striking ；stas of the G．⿹勹口 mathitude are pieked ont asily with the waked rers，the eleven Plobales wan be rownted．and the diesen－ whein can be really sern any revening after ！ardorli．

The Harvarl Observatory time service，which had heren in operation

 that time signals from the United States Nabal Observatory were
offered to the public in Boston through the Wristern Itnion Telegraph Company at a lower rate than they cond be furnished by the Marvard Observatory.

Hathorn (Saratoga Springs, N. Y.) : del Corrol.-I'hysical observations of Jupiter with a 6-inch telescopr.

HAVERFORD CohblaE: Leuremorth.—Work on stellall parallax; sun-spot observations.

Heinelbera: Wolf.—Stellar photography. photometrie observa. tions. Prot. Wolf has been very sucressful in the discovery of new asteroids by photography.

Herény: ron Gothard.-Spectroscopic researchen: photography of nebula : observations of variable stars: meteorological observations; time service, and computations of asteroids.

HongKona: Doberck. - Time service: meterologidal and masmetiv observations.
lowa University: Weln.-A student's astronomical observatory has recently been established at the State I'niversity of [ow: lowa City, mader the direction of i'rof. L. (x. Weld. The main building is 12 feet sutuare, capped by a cylindrical turet in which is monnted a Grubb equatorial of 5 inches aperture, and $77 \frac{1}{2}$ inches focal length; a Wiirdemann transit of $1 \frac{7}{8}$ inches aperture and 24 inchos focus is monnted in at wing 10 hy 12 feet. Sulosidiary apparatus eomsists of a t-inch portable Fitz equatorial, clock, ('hronometer, and 'hronograph.

Jackson (llich.)-Small private observatory of Mr. U. IV. Lawton.
Jent: Knopf.-The observatory was fonntrd in 1812 by the Grand Duke of Saxe-Wemar. Observations of comets, occultations, phenomena of Jupiter's satellites, variable star observations; time service; meteorology. A new equatorial of 20 sentimeters (7.9 inches) aperture amd 3 meters (9.8 feet) has been installed.

Kalocsa: Fényi.-Solar and metrorological observations.
Kenwood: Hale.-The Kenwood Physical Observatory, the private observatory of Prof. George E. Hale, had its inception in a spectroscopic laboratory erected in Chicago in the summer of 1888 . The addition of a tower and wing during the winter of 1890-91 brought the building to its present form, and it now inclurles a reception room, library, equatorial room, "slit room." "grating room." photographie dark room, general laboratory, and workshop. The grating room rontains a tinch concave grating ot 10 feet radius of curvature, monnted in the mamer employed hy Prof. Rowland. A shorter girder allows the use of a grating of only of feet radins in cases when the light sombe is too faint to admit of the highest disporsion. Sunlight is furnished by a heliostat on a pier some distance to the morth of the buikding. Elertrioal power is supplied through a gas engine and storage battery and also from the main city wires.

The mounting of the equatorial was finished in Mareh, 1s91, by Wanner and swasey, and the excellent 12.2 -inch object glass, figmed

 Work in the vismal rexion. Thas smang is a timeh diat, in addition to

 tube.

 trol is vested in a board of thastees. 'The plan of work indules a stuly
 tions of the spots, \cdot hamosphere and pominemes. An interesting and well-illastated dearoiption of the obsematory, together with an alderss Relivered at the dediantion by Prol. Yomog, is pmblistred in the sidereal Messenger for Anginst, 1s! 1 .
 Spectroscopic aml photometrio ohservations, observations of romets and asteroids amd computations of onbits and ephemerides.

 of the moon. Metemologey.

 ings. Tha monnting embotios several eomseniont doviers. The sere troseope, which is of special exerlleme, is by brasheat.
'The rlork room is a chambra in thr anatorial piar, and erntains a Howard sidereal and a Molymeanx mant time dork. The other instros-
 studemts ase, a Wamber and swasey ehwomgraph. several "homomaters and sextants, a hamerah, hermograph, and beronding hygrom-
 and ordinary meteorologidal instrmments. The ohservatory is designed primarily for the instrmen of stmentio, but also low researdh, and the equipment has been plammed for a possible extension of the latter as the resomeres of the ohservatory may allow. 'The director is Jrof. Winslow l peon.

motions, observations of phanets and astrembls. Kone work $+\overline{5}^{\text {P }}$ to + 10 , and $+10^{\circ}$ to $+15^{\circ}$; triangulation of trapraium of Otion. Time servide and meteorological observations.

Lick: Holden.-A new building has been erected to cover the Willat photographic lens (apertme 5.9 inehes, lincal length 31 inches), and its mounting by Brashear, presented by Hon. C. F. Crocker. The dome is 10 feet in diamoter, and attacherd to it in a photographio dark room ahout 10 by 11 feet.

A graduate school of astronomy has been established at the Lick Observatory as a part of the graduatesystem of the University of Cabiformia, and a sperial timd established hy Mrs. Phebe Hearst is in patt available for the expenses of advanced students elected fellows by the regents.

Barmard's discovery of a fifth satellite of Jupiter with the 30-inch refractor has been refermed to elsewhere.

Liben: Folie.-This observatory is attanthed to the Royal Observatory at Brussels, and its observations are pmblished in the Brussels volumes. Much exrelfont theoretial work has been done by ll de Ball while awaiting repains to the meridian circle.

Laverpool: Phmure--Time service, chronometers, meteorolosioal observations. The S-inch equatorial has heen nsed in the systematic observation of eomets.

Lund: Folke Eugste\%m.-Work on zone +35 to +40 .
MCCORMCK: Stome--Prof. Stone has published a continmation of the Bonn Durchmustermag, upon whirh he has been elngerd for a number of years.

Madras: Smith.-Mr. C. Michie Smith, since the death of Mr. Pogson, has been chiefly engaged in pushing forward the pmblimation of observations of earliel years. Observations other than those required for the efficient maintenance of the time service have been entirely suborlinated to the work of publication. Two volumes of the valuable Madrus Mevidime Cirde Olservations have been issmed.

Melbourne: Elfery.-Meridian direle work has been rontinned. The photographir teleseope was monnted in Janmary, 1891, and considmable progress has been made towards the photographic catalogne. Meteorological and magnetic observations, time service, and chonometer rathg have been kipt up, but the observatory has been serionsty crippled by the reduction of its appropriations, neressitating the retirement of two assistants.

Malan: schiuparlli.-Measurements of donble stars; preparations for a catalogue of 1,100 stars, zone +20 to +60 observed from 1800 to 187:. Longiturle work, time service, and magnetic observathons.

Mississippi Universitiv: Fultono-Umler date of July $6 ; 1891$, it Was reported (Sid. Mess.. No. 97) that a "twin equatorial" (a 15-inch visual telescope and a ! !-inch photographic telescope side by side on the same mounting) was under construction by Grubb.

 Somat liosa, 15,000 feet above sea level, comsistime of a worden hut 10 be :30 lexe.
 monnted in mlat, 18: Observations of emmets and of satmon with the

Nital. - Ohservations of the Moons prsition and of Mars.
O'(yalla: Konkoly.—Observations of sma soots, Wawings of Jupiter: : faw suertroseppio observations and some photographic experi ments. Mncla time has heen spent in the reorganzation of the Govermment Meterologitall burean.
 by photography the parallax of abont 30 stam chiefly of the secome magnitude has been completed and the results published. Much time has beren spent in the preparation of the new instrments to be weed on the intermational chart of the hearens, and a considerathr momber of phates eomprised in the zome assigned to ()xforl have bern rompheted. Experimental work has also been done for the committee in charge of the international chart.

A convenient onservatory las been erected fontiguons to the main buidmeg for the exchsive use of miversity students。 This observatory isturnished with two small transit circles, three toleseopes, one of which is a reflector of 15 inches aperture, and subsidiary apparatus.

Palas: Tisseramd.-In the report for 1 s:a the director stated that the (iamber einele had been appled to the investigation of the latitude and the question of its variation: observations to determine the constant of abermation were rompleterl, and lesides the usiall planetany and eometary observations, a comsiderable momber of measmements of domble stats and micrometria measures of mebula wore madr.

Fhotographic: work woun the great ehart and mpon the moon has bern "ontimed, and the mewly organizel depantment of spectroseopy has obtained interesting results moder M. Desdanders.
 director, an acoome of gratifying progress in the photogaphie and spertroseopie work, and with the equatorial coude. A 6 blarean des Mestmes des (lichés da ('ataloge" has been organized, with Mhe. Klomuke at jts head.

 tion has been eontinued, and many of the results have been phblished. Or. Sehemer has worked mon stelan speetra and the sperdra of sobar

 series of photometric: observations of the planets. In. Lolise and Irof:

Sporer have been engaged in photographic and visual observations of the sim.

Prague: Sufarik.-Variable stams.
PRAGUE (University) : Weinct:-Drawings of the moon. Determination of latitute, observations of Jupiter's satellites, time service, magnetie and meteorological observations.

Providence (R. I.).-See Latd.
Radcliffe (Oxforl) : Ntone. Work on the genaral satalogue of 6,350 stars for 1890 ; meridian observations of the sun and moon. Ob). servations of comets, domble stars, amo orcultations. Meteorology.

Rome.-The first fascioule of the publications of the new Vatioan observatory contains the interesting Papal Brief fommeng the observatory, an historical introdurtion, and two papers on astrouomical photography, to whirh the observatory is to be for the present devoted.

Rousdon (Lyme Regis) : Pek- Variable stars; time service.
San Diego (Cal.)-Mrs, Proctor, widow of the late R. A. Proctor: proposes to erect an observatory at San Diego as a memorial to her husband; an 18 -inch object glass has heen ordered.

San Fernando: Vimiegra.-Capt. d. Viniegra has been apmointed director, to snceeed Capt. Pujazon.

Sumtu (Beloit, Wis.): Bacon.-Sum-spot observations, etre
Stonyhurst: Sidyreares.-Photography of the solar spectrm and of stellar spectra; drawings of sum spots and measures of the ehromosp here and prominences. A new 15 -inch refactor has been purehased with the fund rased to the memory of the late Father Pery.

Strasburg: Becker.-The meridian circle has been used in observing the zone - $\because \circ$ to $-6 \circ$, and also the sun, moou, and planets. Some defects in the comstruction of the altazimuth were remedied and the ustrument was used in a careful series of olservations for the determination of the variation of latitude, beginning in May, 1891, and ending in March, 1892.

Sydney.-Transiteirele work, observations of domble stars and of eomets; photographic work for the international chart, photographs of eomets and of Mars. Weather-chart sorvice.

Temple (Rugby): Iomble stars; moblar photography.
Toulouse: Bigourden.-Wron an areoment of the history of the observatory by M. Bigomrdan it appears that it was originaily estab. lished in 1729 on one of the towers of the rampart of the town. Garipry mande some observations there, lout afterwards ereded am observatory on his own honse and supersmed it ly a larger and mone commodions one in 1770 . Darquier assisted him for a time, but afterwards erected an observatory of his own. Vidal had commenced his astronomical work at the observatory of Garipuy, which, however, became the property of the states of Languedoe after the death of the foumder in 1752 . Tidal retired in 180 , and, alter several attempts to improve the observatory, it was decirled in 1840 to erect a new one at the ex-
tremity of the town. The mildings were eommencerl the following
 strmental equipment. (iaripuy"subservatory was then abmadomed.
 observatory in romertion with lanrence [biversity at Appletom. W"is., was equipped at the opening of the college year of ls!e-"!?: 'Tha ont tit consists of a 10 iuch Clark eqnatorial, 4 -incla meridian rimele, meantime and sidereal \cdot locks, ehonometer, and rhomograpla. A local time service has beed established.

I Noted States Naval Observatory: Mrénir.-At the time of the
 were not rady for orropancy. The manal rontine ohservations have been somewhat intermpted by preparations mande for the removal of the instrments the the site, mbantage boing takon of the intere ruption of observations to adrane the reductions of previons years.

Prof. Asaph Hall was retired by law from active serviee as atall officer of the Navy oll October 15, 18.91.
 tions of Noval Aurigir (1892).

Upsala: Jumím.-Variablestars; stellar photography. A new pho tographe wetactor of 33 centimeters (18 inches) ohjective has been muter comstruttion, and has meeessitated some alterations in the buikling. Time service.

VAssar: Miss Whitury.-sum-spot observations, observations of combts. erte.
 momoted and msad log stellar photography. Some photographs of
 the relative alberdo of the planet and his moons.
 tions. and the phenomena of Jupiteres satellites.
 momber of new variable stans have been diseovered. Weteorological ohservations.

YABE-1)r. Elkin's heliommere work comstitntes the rhief astro-
 paralla ves of the first magnitude state of the motherothemisphere was completed. Observations have also been made of compalison stats for Victoria, and the comphtations on the Iris series in lssis have been carried forward elactly by Miss Palmer. (bhervations of romets and asterods were matd by Mr. Chase with the simely leed equatorial.
 series of measmes on the satellites of dupitar for the determitation of their obhits, and the mass of the phatere A Ater the eompletion of

the then'y of a sensible orbital motion of the bright component, and the theoretical parallax, suggested by Mr. Chandler.

Yerkes (Thiversity of Chicago): Halc.-Through the munificence of Mr. Charles J. Yerkes, of Chicago, the University of Chicago is to have an astronomical observatory of the first class. No fefinite limit has been assigned to the expenditure contemplated, lont it is intimated that the equipment shall be equal to any in existence. The principal instrument will be a 40 -inch refuctor, the disks for which were made some years since for the T'niversity of Sonthern California.

The remainder of the equipment is still undetermined, but it will probably inclute a 16 -inch refractor, 12 -inch "twin "equatorial with visual and photographic objectives, 6 -inch meridian circle, and 20-inch siderostat.

Züricur: R. Wolf.-Sun->pot observations: observations for determining the variation of latitule: time service.

As'TRONOMIGAL INNTRUMENTS.

Brasherr-Mastings objectives-Three large object glasses recantly made by hashara are of more than ordinary interest, as they have been ground by l'rof. Hastings' formula. They are the 16 -inch of the Guorlsell Ohservatory, the 12.2 of the Latd Observatory, and the 12 -inch of the Kenwood Plysical Observatosy. The erown glass was obtained from Mantois, of laris, and the tlint from to optical works at Jena, Cermany.

A new instrmment has been devised by A. Beck, called a "Nadirlustrument," for the determination of time and latitude by olservation of the transits of stars over a circle whose pole is the zenith. The instrument is adjusted for a circle of 60° zenith distance.

To amateurs a series of articles on the " Adjustment of a small Equatorial," in the Journal of the British Astronomical Association (Febmary, 1892), by Mr. Mannder, will undonbtedly prove of interest and value.

MINCDLLANEいUs.

Prizes.-The Latande prize of the l'aris Academy for 1891 was awarled to M. (i. Bigomrdan for the work he has mulertaken and partly carcied ont, of micrometrically measuring all the known nehnlee, abont six thonsand in mmber, observable at Paris; this will he a finst step to obtaining some knowlerge of their proper motions, and nltimately, perhaps, of their distances from the sum. No memoir was presented to the deatemy on the sperial subject proposed for the bamosean prize, "To perfect the theory of the inequalities of long periods camsed by the planets in the motion of the mom." It was, therefore proposed again for 1892 , and its value fixed at 4,000 frames. Prizes were, howerer, adjulged, fon their planetary and cometary inves,

 prize is awaded ammally for the first seron seats atore its fomblation (1857), and beromes biemoial in lis?

 eries. experially the diseovery of the fifth satolle of olupiter, and t Prot. Tax Wolf for his work in astronomical photography a reperially in the diseovery of astmoids. The Damoisean prize to MD. landan and Leveat; the Val\% prize to M. Puiseanx for his work on tha theory of astronomical instrmmentsand the comstant of aberrations the banssom brize to M. Tacchini for his work on the solat spectrm.

The Imomblar C'omet Medals of the A stromomical Soeriety of the I'encifie:The following amended mbes for the hestowal of the modal took

I. A medal af honze is establisheal as a perpetatal fommation to be quen for the dis.ovary of eomets, as follows:

The medal is to hear on the obverse side the effigy of a bright comet
 CHFA" aromml the border. and on the reverer the inseription, "Thas

 (ovele of 1 Comex ax - (the date)."

It is to be muldristool that this medal is intemed sololy as a mone nition of merit, and not as a rewand.

1I. The medal will he givat the arthal diseoverem of ally mose peeterl amet.
III. The diseoverey is to make his diseorery known in the menal Wily, and, in mrler to simplify the work of the emmmittere which, in

 to the Dibertor al the lidek Obsematery. which shomblatate the exater time of the disererey. the perition of the romet. the direetton ot tit
 the ohjeret.

 be addressel to " Astrohomer, san Fiancisen."

 soms. members of the Astronomical sociaty of the Paritic. wha are to bo ammally appointed by the Board of Directors. The deedsions of this committere are to be final men all points rebating to the awand of the medal. The committere will print an ammal statement of its merations juthe fuhblations of the survety.
II. Mis. $114=17$

Under ordinary riremstances the comet medal will be a warded within two months after the date of the disenvery. In cases of doubt a longer period may elapse. The mertal will not be awarded (untess moder the most exceptional cirmustances) fir the discovery of a comet mitilenongh observations are secured (by the discoverer or by others) to permit the calcolation and verification of its onbit.
V. This medal is to be a perpetnal fombation from and after Jamary 1, 1590 .
The fonth award of the Domone medal was made to Dr. R. Spitaler, assistant in the Imperial Observatory of Tienna, for his discovery of a comet "in the moming hours" of November 16, 1890. This was the first comet discovered by 1)r. Spitaler.

The fifth award was made to Prof. T. Kona, adjunct astronomer in the Royal Observatory of Palermo, for his diseovery of a comet at $9^{\mathrm{h}} 31^{\mathrm{m}}$, Greenwich mean time, November 15, 1890 . Also, his first discovery of a comet.

The sixth awad was made to Mr. E. E. Barnard. astronomer of the Lick Observatory, for his diseovery of a comet at 16 hours, Greenwich mean time, on March 29 , 1891. This was the fitteenth eomet discorered ly Mr. Barmard.

The seventh award was also made to Mr. Bamard for a comet discovered at $0^{\text {h }} 35^{2 m}$, Greenwich mean time, on October $3,1891$.

The eigth a ward was made to Dr. Jewis Swift for his discovery of an mexpected comet on Marel 6,189 . .

The ninth award was made to Mr. Wr. F. Deming, of Bristol, England, for his comet of March 18, 1892.

The tenth award to Mr. W. R. Brooks, of the Smith Observatory, Geneva, New York, for at comet on Angust $28,1892$.

The elerenth award was made to Mr. E. E. Barnard for his discons ery by photograplyy of an mespected comet on October $1 \leadsto .159 \%$, at Mount Hamilton.

The twelfth awand was made to Mr. Edwin Holnes, of Lomdon, Eng. land, for his comet of November of, 1 s: 3 .

The thirteenth award to Mr. W. R. Brooks for his comet on Novembew 1! , 18:9.

The Sotom prize.-Once in seven years the Acton prize of $\mathfrak{L l 0 0}$ is awarded to the person whose scientifie writings have been most serviceable to the cause of natural religion. The last prize was adjudged to Prof. G. Stokes, of Cambridge University. The recipient in $189:$ was Miss Agnes Clerke, author of the "History of Astronomy in the Nineteenth Century;" of the "System of the Stars;" and of "Studies in Homer."

The Bruce found.-The fund of sif,000 plated by Miss Brice in Prof. Pickering's hands to be used in aid of astronomical work, has been applied as follows: To Prof. Newcomb, for a discussion of the contart observations of Venus during the transits of 1874 and 185°; Dry I lass.
mann, printing observatims of memem and of variabe stars; Astronomische Gesellischatt, comstruction of tables for the computation of the absolute priturbations of the asterods by (iydsus methem; International (ieorletio Commision, dispatelo of a party to the simulwich lslands for at study of the rariations of tatitnde; Als: II. W. 'Tumer,
 reduction of merdian observations of strus stars : Prof. ll. A. Ronland, identitiation of metals in the solar spertrman: Dr. L. Struse. redurtion of the ocentations whemed during the extipse of Jannary $28,188 \%$.

It may mot be ont of place hem to mote that a kegary of tow,000 franes (800,000) has been lett liy an old lady of fant the thestitute of Fiance as a meward for the !ersom of any hationality who shall, within the next ten years, suceed in communicating with the inhahitants of some other celestial bomy. Apropos of this legacy, Flammarion has written an interesting article in Lidstromomie as to the posibility of ome cer haing able to acomplish commmication with our neighbors.

The Danish Academy of Soberees and Letters has anarded at geld medal to Baron E. yon Ilamdt, of Tmspurk, for his memoil on a

 ber, the sidereel Mossenger, which has been emited loy Prot: II. W:

 to what is mow kown as astrophysios. Prof. Payme contimes as
 The bibligerapher will note that, though the jommal has : mew mane,
 sronger: thas the initial mmbor of Astromom and Astrophesics is "Number 101." forming pat of "Volmene xa."

It is stated that there are to berereded in berlin there handred "T rania pillans." These pillans will be ahoment feet high, made of (ast iron, and will cald contain a clock, motcorological instrmments, Weather chants, astromomical and seographimal ammmedments, amb ako, as in the streets of Paix, a plan of the mighboming streets in enbaged form the emble stangers to timd their way. The instruments are 10 be regenlated from the observatory:

 works. It combans all the stans visible to the nakem reve (tinst to sixth
 tion, together with a seleotion of the most imerestimg domble stams, vartables, nebulic, clusters, elte.

Mnch interesting light has been thrown of late on Pabylonian as tronomy by Fathers Epping and Strassmaier. A series of lunar and planetary observations has recently been found in the cunciform tablets of the British Musemm, and among others an observation of a lnar eclipse, one of the nine used by Ptolemy in his Almagest. Another work of the same anthors shows that the Babylonians were able to predict the rising and setting of the moon, and the hour and magnitude of an eclipse.

Mr. A. M. W. Wowning, smperintendent of the computations at the Royal Observatory, Greenwich, was appointed to succeed Dr. Mind, whoretired from the position of smperintendent of the British Nantical Almanac office on January 1, 1892.

The Astronomische (iesellsehaft held its fonteenth biemial meeting at Munich Augnst $5-7$, under the presidency of M. Gyldén. The society numbers 318 members.

A new astronomical society.-An association was formed in Rerlin, in 1S91, called the "Union of Friends of Astronomy and Cosmical Physics," for the purpose of secming co-operation in the study of these sciences in the countries of central Enrope. The strength of the new society is perbaps best indicated by the names of its officers, Prof. Lelmann-Filhés being president, and ITerm Färster, M. W. Meyer, I'lassmann, Jesse, Weinstein, and Reimann the presidents of its sis sections.

The question of the ownership of an aerolite has been refered for settlement to the comrts, and the decision reached is of some interest. On May 2, 1890, an aerolite weighing 66 pounds fell on the land of John Goddard, in Winnehago County, Iowa. It was Ing up by Peter Hoagland, carried to his hotse, and sold for \$105. Goddard claimed it as it had fallen on his land, while Moagland clamed it as he discovered it and as it fell from heaven. In the suit that resulted the court held that the stone berame part of the soil on which it fell, and that Hoagland ham no right to remove it. The defense clamed that whatever was movable and found on the surface of the earth unclained by any owner was supposed to be abandoned by the proprietor.

NECROLOOV OF ANTHONOMERS, 1891 .9.3.

 ayy - 18:
 Heidellorg, Ingust 20, 1s: 11 。
 port, Inecember 30, 1891.
 Mareh $21,1 \times!1$.
 1: 41 .
Grant (hombrt). Born at trantown-on-sprey, June 17, 1sll; died at (isantown, (Setober $2 f, 1 \times!2$.

 at Wissons, June 2! ! , 18!
 June 23, 1891.
 $30,1892$.
 May 1. 18:9!,

ASTRONOMICAL BIBLIOGRAPIIY FOR 1891 AND 1892.

The following bibliography or index catalogne is arranged upon the plan adopted in the review of astronomy for 1886 ，thas making this series of indexes complete from that year to 1892 ，except for the year 1890，an index for which was published in the Sidereal Messenger for 1891 （vol．10，pl．St，354）．

The principal books，memoirs，and jommal articles pmblished in 1891 and 1892 that have come moder the compilers notive are here included， and there are also a few titles that belong to earlier years but were not fombl in time to insert in previous lists．References to series of observations，preliminary orbits of comets and asteroids，reviews，rete．， are onitted，and to condense it into reasonable limits the biblograplay has not ben made exhanstive even to the extent of printing all titles that were originally eollerted．

The subjert headings are in alphabetical order，with a subarrange－ ment by anthors．The referencen to perionlicals are by volume and page sepalated by a colon；thas：Olasry．15：173－89 indicates volume 15， pages 173 to 189 ，of The Observutory．

The following is a list of the principal periodicals examined：
American Jommal of Science，vols．141－144．
Astronomical Jourual，Nos．238－283．
Astronomische Nachrichten，Nos．3010－3139．
L＇Astronomie，vols． 10 and 11.
Astronomy and Astrophysies，vol．11．
Ifulletin Astronomicןue，vols．\＆九 and ！？
Comptes Rendus，vols． $112,113,114$, 115．
Jomrnal of the British Astronomieal Association．
Monthly Notices of the Royal Astronomi‘al Suciety，vols．in，No．3，to vol，52，No． 9 ．
The Observatory，vols．11， 15.
Publications of the Astronomical Society of the Parific．Nos． 13 to 26.
Sidereal Messenger，vol． 10.
Vierteljahrsschrift der Astronomischeu Gesellschaft，26．－27．Jahrg．

ARHREVIATIONA．

> 11. F. = nem. Folge.
> u. s. = new stries.
> Not. $=$ Notices
> Ohsry. = Observatory.
> $\mathrm{p}=\mathrm{pagr}$ 。
> $\mathrm{pl} .=\mathrm{plates}$.
> portr. = portraits.
> $p \mathrm{t} .=$ part.
> r. = reale.
> Rev. - Reviow.
> s . Esrries.
> se. = science, scientific.
> vol. - volume.

Abastuman Observatory.

Aberration (('onstant of) .

 $\because 3 \mathrm{~B}$ - 18. 1801.

 mination of the aberation, taking into aceoment the possible viriathility of

Adams (.John ('onch). [1819-: $1 \times$. $]$
 : $\quad 7: 168-71$. 15!1?

 $91.1 \times!2.1$ lortr.

Alabama University Observatory.

Algol. Šer Variablenstars.
Altazimuth.

Asteroia 8.

Asteroid 80.

 Siplulo. Astron. Nalehr, 1:31:153. 1892.

Asteroid 143.

 1: 11 .

Asteroids.

 Ito. st. Potrrsh, Ixt?
 $1 \times!2.2$

——Similarity of certain orhits. I'uh. Astron. Soe. I'acitic, 3: 3\%. 1801.
 Nachr., 130: 15: 180

 129: 338-12. 1892.

Asteroids of 1890.

 Vrtljaclı1: d. astron. (iesellach, 26: 59-1;i). 1897.

Asteroids of 2891.

Lemmañ (P.) Kusammenstalning der Planeten-Entareknugen im Iahre 1891. Trtljschr. (1. astron. (iesellsch, 27:52-9. 18:12.

Astrology.

Daubrés (A.) Lastrologio et les matanx. L'Astron., 10:363-7:3. 1891.

Astronomers.

Markwick (E. E.) Evolntion of an amatem astronomer. j. Brit. Astron. Assn., 2: 496-504. 1892.

Astronomical Society of the Pacific.

Holinen (E. S.) Address of the retiring president... Mar. 2x, 1891. Juh. Astron. Soc. Facitic, 3: 103-10. 1891.
Prelison (W. M.) Adtress of the retiring president... Mar. 26, 1892. Pub. Astron. Noc. Parific, 4:51-X. 18:2.2.

Astronomy.

Ball (R.S.) In Ntary Realms. $10+371 \mathrm{p}$. il sro. London, 1892.
——. Star-Land. Beiner talks with young people about the wonders of the heavens. $8+3761 \% 12110$.
 London, 1891.
Clerke (A. Al.) System of the stars. Rer. by Hale (6. E.). Pub. Astron. Sor, of the Pacific, 3: 180-94. 1891.
 tomblon, 1891.
Gore (J. E.) Star groups: astadent's gnide tothe constelations. 8ro. Maps. London, 1891.
Langley (S. l'.) The new antronomy. New ed. 8ro. lioston. 1891.
Markwack (E. E.) Nakerleey antronomy. J. Brit. Astron. Assh., 1: 188-94. is? 1.
Wambex (tI. W.) Recreations in astronomy with directions for practical rxperiments in telescopic work.
 1. $16+71$ ¹. il. ぶo. Ziirich, 1891.

Jof Na (C. A.) tessoms in astronomy, incluling l'ranography, $10+35 \times \mathrm{p}$. il. Sro. Boston, 1891.

Astronomy (bibliography of).
('opebanb (R.) Gatalogne of the Craw ford library of the Royal olservatory, Edinhurgh. 197 p . Ito. Edinh. 1890.
Won GEaderix (O.) Catalogne of the library of the Astronomical Soriety of the Parific and of the Alexamber Montgomery Library. Pob. Astron. Foc. Pacific, 3: 303-32. 1×91.
Tatlock (.f.) Index to "Copernieus." 'frams. N. Y. Aearl. Ae., 10: s7-102. 1891.

Winlock (W. (C.) Brief bibliography of astromomical literatme for the year 1890, Jamary to June. Nid. Mess., 10:83-4. 1861.
———. Briof bihliography of astronomical literature for the year 1890 , July to lecember. Sid. Mess., 10:356-6\%. 1891.

Astronomy (History of).
 11: 280-304. 1892.
Chambers ((b. F.) History of astronomy. vid. Dess. 10: fist-6\%. 1891.

Astronomy（llis（ory of－Cminmed．

 Literatur． 30 p． 1 pl．
Astronomy（I＇ractic：al）．
 18！12．
Astronomy（l＇rogress of）．
Asmbonomy in 18！ 0 ．Nid．Masc．10：13：3－6．1x！ 1 ．
 1×0－8．18：
Notes on some points commecten with the progrese of astronomy during the past year［1890］．Month．Nol．，$\overline{7} 1: 237-260$ ．18： 1 ．
So＇ten on some points commected with the progress of atronomy daring the past frar［1891］．Month．Not．52：270－301．18：92．
REbont of the eomaril on the progres of astronomy dmong the yan ernding

Repost of the comeril on the progress of astronomy dming the year emblagy

Astronomy（＇lheoretical）．
 Wilster，18：リ．

Whtan（．J．（＇．）Theoretical astromomy．Emata by W．W．（＇ampherl．Pab．

Atmosphere．

se also licefraction．

Aurora．

——Solar comona；an instance ot the Nowtonian pormatiaf finnetion in the ease of repulsion．Am．J．A‘．，J12：1－11．1太心！1．

Azimuth．

Jacoby（H．）Detrmmination of azimmth hy rlomgations of Pobaris．Month．

Baltimore Astronomical Society．

［Organization．］Astron．and Astrophys．，11：7x．t．Is！！2．
Binary stars．Né，also，butbles sTidls．

 froe．loy．lyish Amal．，v．I，No．I．

Also Rempint．

Binary stars-C'ontinued.
Movek (W. H. S.) Spectra of binary stars. Astrom and Antrophys., 11:326. 1892.
l’akerinc: (E. (.) Close linary stars. Sitl. Mess., 10:5. 1891.
 1891.

Voriel (11. C.) Beobachtungen der anf spectrographischem Wrege anfefundenen Binairen systeme β Antigae mol ζ Ursa majoris anf den Potsiamer Olservatorium. Astrom. Nachr., 126: 26:-72. 1891.
Brïnnow (Franz Fricilrich Emst) [18:1-91].
Kneqer (A.) Todes-Anzeige. Astron. Nachr., 128: 205-8. 1891.
For Bioyraufy, ste also, Pub. Astron Soc. Pacitic, 3:367. 1892r Also, Month. Not., 52: 230 1892.

For Portrate, see P'ub. Astron. Sioc. Pacitic, 3 .

Calendar.

Flamarion (C.) Curiosités in calendrier. il. L'Astron., 11: 20-5. 1892. McFabland (R. W.) a perpetual calemar. Sid. Mess., 10: 129-31. 1×91.
Servier (-.) Calmbrier perpétnel. L'Astron., 11: 260-5. 1892.
Camphansen (Gottfriw Ludolph) [1803-'60].
Vogel (H. C.) Todes-Anzeige. Astron. Nachr., 126:3!3. 1×91.

Capodimonte Observatory.

Angelitti (F.) Nnova deteminazione della latitmline del li. Osservatorio di Capodimonte. Astron. Narlir., 130: 42!-31. 1892.

Carleton College Observatory.

Payne (W. W.) [leseription of the observatory and instruments.] il. Pub. Astrom. Soc. Pacitic, 3: 85-7. 1891.

Chamberlin Observatory.

[Descriftion.] Sicl. Mess., 10: 400. 1k91.

Chronology.

LyNn (W. T.) Ancient chronology and eclipses. Astron. Jonr., 11: 13, 82. 1891. Stockwell (J. N.) Eelipses and chromology. Astron. Jonr., 11:57-9. 1891.
——. Rectification of chromology by means of ancient eclipses. Astron. Jour., 10: 185; 11:5,28. 1891.
——. Supplement to recent contributions to chromology and exlipses. Astron. Jour., 12: 121-5. 189\%.

Chronometers.

Lerschere (A. O.) Thermometrie chronometer of the Liek thameratory. Pub. Astron. Sor. Pacitie, 3: 177-80. 1891.

Circle divisions.

Brovs (H.) T'ntersmehng riner Wanschalf'sehen Theinng. Astrom. Nachr., 130: 17-42. 1892.
Clark (George Bassett) [1827-'91].
Brasilear (.J. A.) [Biographical sketeh.] Astrom. amd Astrophys., 11:367-72. 1892.

For Portrait, wee Ibid.

Collimation.

UpDegraff (M.) Method for determining the collimation of the portable transit instrament. Astron. Jonr., 10: 169. 1891.

Collimators.

Turner (1f. II.) Obsorvations for romedtene of the collimators throngh the cube of the transit eircle, (ircenwich. . . Month Not., 52: 146-53. 1891.

Colored stars.

Franks (W.S.) and others. Determiuationorstar colors. J. Irit. Astron. Assu, 1: 301-4. 1×91.

Colored stars-('ontinuled.
LevaNber (F. W.) betommination of that eolorn of atain. d. Brif. Astron. Assu., 1: 195-7. 1s.91.

Comet Brorsen.

 Pub. d.k. Sternw in Kifl. 7.

Conet Encke.

 (6) pr. Ito. Sit. Pétersh. 18!2.

Comet Temple-Swift

Comet 1402

Comet $\mathbf{} \mathbf{6 8 9}$.

[atmascmek (.J.) [Bahn lor] ('ometem des dahers 168!. Astron. Nachr., 129: $3 \times 3-8.1 \times 12$.

Comet 1840 I.

 131 : 299-60. 1842.

Comet 1840 IV.
 18:1.

Comet 1857 III.

Könla (R.) Bestimmmang der bahm des (ometen 1857 IIR. Astron. Nachr., 128: 38テ-92. 1891.

Comet 1867 I.

Comet 1873 VII.

 liull. Astron., x: $2 t-18.18!1$.

Comet 1881 VIII.

Comet 1882 II.

 p. Ito. Kiel, 1891. I'ıl. I Kielstmort. (i.

Comet 1885 III.

 1×92.

Comet 1886 IV.

 Nachır:, 12x: 297-:06). 1891.
Comet 1887 III.
 Nachro, 128: 161-70. 18:41.

Comet 1887 IV.

Comet 1887 IV-Conlimmod.
 Jonr., 1U: 14i6. 1s:1.

Comet 1889 V.

('mandmek (N. ('.) befinitive ofbits of the eompaniont of romet 1889 V . Astron. dour., 10: 15:3-tio. 1891.
Poor (C. L.) Action of Jupiter . . Astront. Jomr., 11: : 0 (1891.

Comet 1890 II.

Comet 1890 IV

Barnari (E. E.) Strampe astromomical eoineidence. Nid. Mesn., 10: 18. 1891.

Comet 1890 VII

'Tennant (.J. F.) Orhit of Spitaler's comet. Mumth Nut., 52: :29. 1891.

Comet 1892 I.

Barnalif (E. E.) (Hservations amd photographes . . Astron and Astrophys. 11:386-8. 1892.

Comets.
BanNakD (F. F.) ('lassitication of the periodic comets ly their physical aprearamere. Astron, Jour., 11: 46. 1891.
 dor Cometen-Melligkeiten" Astron. Nachr., 1BI: 75. 1892.
Coakley ((i. W.) 'Tidal theory of the foms of comets. Astrom. and Astrophys., 11: 177-89. 1892.
Detcinithem (F.) Photometrie der Cometen. Astron. Nachr., 131:369. 1892.
——. Voramshererhmmg der Cometen-Helligkeiten. Astron. Nachr., 131: 33-42. 1892.

HEß: (N.) Ehektro-statische liypothese her Cometensehweife. Astron. Nachor, 129:34ス-52. 1N(12.
Hoberncurk (.J.) Beohachtumg mad die berechmang yon Cometen-Ifelligkeitem. Astron. Nachr., 131: $239-16.1892$.
Kiame (II. J.) Théories des quelres combtaires. Astron. Nochr., 126: 281-93. 1891.

Kleiber (.l.) Gesammtzahl der Cometen im Sommensystem. Astron. Nachr., 130: 121-5. 1892.
KRUE: der Some nathen Plansien. Astron. Nachr., T29: bi, -74. 1892.
Mosch (IT, II. S.) Comets and the walaxy. . lirit. Astron. Assu., 2: 2I2-6. 1×92.
NEWTON (1I. A.) (Apture of comets by planets, experially their eapture by Jupiter. Am. J. Ac. 112: 18:3, 482. 1891. Alse Reprint.
——. C'apture of eomets by planets. Astron. Jonr., 11: 73-5. 1891.
Rev. hy Lehmma-Filhés (R.) Vrtljseltr. A Astron. (fersellsch., 27: 180-6, 1892.

 $8: 225-51.1891$. See ulson, Ibi九. 147, 191.
Wolv (21.) Noti\% iiber photographirte Meteoriten umd Cometen. Astron. Nachr., 129: 101. 18!

Comecs and meteors.

Monck (W.II.N.) Purther mote on eomets and meteors, Astron. and Astrophys.. 11:27.4-80. 5892.

Comets of 1890.

Krerta (II.) Zasammenstellmg der Cometen-Erscheiningen des dahros 1890. Vrtljschr. d. astrou. Gesellsch., 26: 65-81. 1N91.

Comets of 1890-('ontimutl.

[List with elements.] Istmon. Innm:, 10:176. $18: 11$.

Comets of 1891.

Kmbutz (1I.) Znsammeustrlhmig der Cometem-Erschommanen dan dahres 1891. Yrtljiselor. d. astron. (iesellseh., 27: 60-9, 1842.
[List of comets of 1891.] Month. Not., 52: 271-1. 1892.
[LIST with clements.] Astrom. Jonr., 11: 168. 18!2.

Comets of 1892.

Camplele (IV^{2}. WV.) Comets of $18: 2$ amd their spectra. Pub. Astron. Soc. Pacific, 4: 24×-50. 1892.
Comets (Orbits of.)
Krevtz (II.) Bericht iiher (ometen. Vrtjschr. d. astron. (ieseldsh., 26: 306-8. 1891.

Scielmof (L.) sim les gramdes perturbations des combtres priodighes. Ball. astron., $8: 147,191.1891$.
Weass (E.) Jerechnmis ainer Kometenhahn mit barioksichtigmon von (iliedarn höherer Ordmug. Sitamgsher. d. k. Akad. d. Wessenseh. Wian. math. naturw, cl. 100: 1132-50 (Alth 2 a).
Coördinates (Transformation of).
Franke (d. H.) Transformation rechtwinklig-spharishus (geodiatischer)

Necken (K.) Transformation sphairischer ('ooblinaten. Astron. Nachar., 130: 49-54. 1892.

Corona.

 Obsry., 14: 50-2. 1891.
——Period of the rotation of the smen bear the prows as derived from the

——. Law of the sular "oroma. Pah. Astrom. Foc. Pacitic, 3: 31-9. 1891.

 Astron. Soc. l'arifir, $8: 10 \%-6 \pm .1891$.

 theory of the morona. P'uh. Astron. Sow. Paritic. :3: 70-3. 1s?
Cosmogony.

SEE (I'. J. . J.) Origin of the stellat systems. Nid. Ness., 10: 17:1-87. 1N:1.
Crowborough Observatory.

Defective illumination.

Domes.

 wich. il. Month. Not.. 51: I3月-8. Iא:

Double stars.

Double stars-Continued.

——. Invisible donhle stars. il. Month. Not., | i $: ~ 388-9 \% . ~$ |
| :---: | 891.

——. Motion of 20 Thraconis. il. Montl. Not., 51: 159. 1891.
——. Motion of ± 2525. Month. Not., 52: 97-100. 1891.
——. Note on . . $\Sigma 186$. Nid. Mess., 10: 72. 18!11.
——. Orbit of $O \geq 269$. Obsry., $14: 263$. 1891.
——. Orbit of к Pegasi (β 989). Month. Not., 51: 313-6. 1891.
——. Orbit of β Delphini. Sid. Mess., 10: 215. 1891.
——. Orbit of $0 \leq 285$. Sid. Mess., 10: 273-5. 1891.
——. Proper motion of $\Sigma \mathbf{\Sigma}$ 1321. Sitl. Mess., 10: 168-71. 1891.
Comstock (fx. (..) [Bumham's method of observing double stars. Sid. Mess., 10: 276-9. 1891.
(iflesenap (S.) Bahn des Doppelsterns 3 xxis. Astron. Nachr., 130:409. $18!2$.
——. Baln des Doppelsterns \& Sextantis. Astron. Nachr., 130: 411-5. 1892.
——. Bestimmmng der Bahn des Doppelsterus Q Ursa Majoris. Astron.
Narhr., 130:415-22.
——. Orhit of 9 Arons, β 101. Month. Not. 5n. : 546. 1892.
——. Orbit of the donble star k Pegasi, A. C. Month, Not., 52:548. 1892.
——. Orbit of $\mathbf{\Sigma}$ 186. Astron. Jomr., 11: 41, 71. 1891.
——. Orbit of β 612. Astron, and Astrophys, 11:46. 1892.

——. Orbit of γ Coronat Anstralis. Monfli. Not., 52: 503. 1892.
——. Orbit of γ Centauri. Montlı. Not., 52: 505. 1892.
——. Ohbit of 37 Pegasi ($\Sigma 2912$). Astron. Nachr., 131: 137. 1892.
—— Orbit of Σ^{2525}. Month. Not.. 53: 41.1892.
IIAlL (A.) Notes on donble stars. Astron. Jour., 12: 4, 33. 1892.
——. Relative motion of 61 ('reni. Astron. Jomr., $11: 140$. 1892.
LeAvexwortix (F. P.) Personal error in obsrrations of position angle. Sid. Mess., 10: 116-9. 1891.
LEWH (T.) Orbit of 36 Andromerle (≤ 73). Nonth. Not., 51: 462-6. 1891.
Prekerinci (E. C.) Discovery of doublestars by moans of their spectra. Astron. Narlır., 127: 155. 1891.
Powell (E. B.) Noteon the orbit of a Centami. Month. Not..52:506-8. 1892.
SEE (T'. J. J.) Origin of the stellar systems. Ohsry., 1f: 115-22. 1891.
——. Great excentricitios of the stellar orbits. Obsry., 14:92-5. 1891.
Sellors (R. P.) Orbit of γ Coronie Australis. Month. Not., 53: 45-7. 1892.
Togel (II. C.) Remarks on Mr. Fowler's note on the duplieity of a Lyrae. Month. Not., 51: 104-8. 1× 101.
——. Periorle von a Virginis. Astron. Nachr., 127: 25.). 1891.
Double stars (0hbits of).
Rambatr (A. A.) Determination of donble-star orbits fromspectroscopic observations of the velocity in the line of sight. Month. Not., 51:316-30. 1891.
——. Geometrical metloul of funting the most frobable apparme whit of a donblestar: I p., 2 pl., \&ro. Dublin 1891. Repr. from Proc. Roy. Soc. Dubl.

Earth.

Corne (A.) Roscarches on the mean density of the earth. Nonth. Nut.. 51: 446. 1891.

Flamarmon (6.) Comment arrivera la fin dn mondo. LiAstron., $11: 416,457$. 1892.

Hanpt (P.) Momentanbewogmagen der Erdaxe. Astron. naclir., 129: 249-58. 1892.

Earth (Orbit of).
Hall (A.), jr. Secular perturbations of the earth produced by the action of Mars. Astron. Jour., 11: 2ั-8. 1891.
Inves (R. T. A.) Secular perturbations of the rarth's orbit by Mars. Month. Not., 52: 80, 479. 1891.

Eclipse of the Sun，1889．Jan． 1

REPOAT of the ohserations made by the Wathington miversity ecripse party

 Willows．Cal．Bl p．il．Ito．（＇ambridge，Lxa？．Amm．Jarv．Coll．Obary， 1．29，No． 1.
Eclipse of the Sun，1893，April 15－16．
 11：151－7．1Nぱ。

Eclipses．
 tron．，11：161－71．1א92．．

Eclipses of the IMoon．

 Ahh：mdl．（1．math．－phys．El．1．k．siteh．Gesellsch．d．Wisseln．，17：309－5．53． 1×91 ．

Eclipses of the Sun．
 metrignement．il．Bull．Astron．，！：233，こと6．1892．
Electrical illumination．
 Instrumente．Astron．Nachr．，130：11．Asyz．

Errors．

 107：305－15．1א！ 31.
Veldadna（W．）Thenrie der beohathtungsfehler．Istron．Nachr．，131：1－16． 189%.

Flexure．

de Gasparis（．Imilmale）［1819－＇42．］

For Portrat．see Vrlljschr，d．astron．Gesellsch．， 26.
Gegenschein．
 fomr．，11：13．18：11．

Goodsell Observatory．

Grant（lolsert）［1x11－2 2 ］．

Gravity．

Haivard College Observatory.

Experition to the Sonthern bemisphere. Pub. Aston. Soc. Pacitic, $3: 128.1891$.
Fheming (M.) Flarard College Observatory astronomiral expedition to Peru. Pul). Astron. Sor. Pacitie, 4: 58-62.

Pickering (E. C.) A largo southern telescope. Astron. and Astrophys., 11: 783-5. 1892.
——. [Suggesting subscription for] a large sonthern teleseope. 3p. 4 to. Cambridge, 1892.
Pickerinct (IV. II.) Monntainstation . . . [at Arequipa, Peru]. il. Astron. and Astrophys. 11:353-62. 1892.
von Haynald (Ludwig) [$1 \times 16-91$.
Fínyi (J.) Todesanzeige. Astron. Narhr., 128: 15. 1891.

Heliometer.

Gill. (D.) Rednction of distances from heliometer olnservations. il. Astron. Nachr., 131: 185-92. 1892.
Lorentzen (G.) Thtersuchnig der Scalen cines Heliometers. Astron. Nathr., $131: 217-38.1892$.
SCuUn (W.) Systematische Correctionen von Histanzmessungen am Heliometer. Astrou. Nachr., 131: 381. 1892.

Interpolation.

Fmscimaf (J.) Gemanigkeit interpolirter Zahlen. Astron. Nachr., 130: 123. 1892.

Ramat (R.) Etudes sur les formules d'interpolation. Bull. Astrou., 8: 273, 325, 376, 425. [891.

Jupiter.

Bannarn (E. E.) Observations of the panet dupiter and his satellites during 1890 with the 12 inch equatorial of the liek Observatory. Month. Not., $51: 543-5.518$.
-_—. Observations of the spots and markings . . . Month. Not., 52: 7-16. 1891.

Clerke (A. M.) Jupiter and his system. 41 1. Sro. London, 1892.
Elave (T. G.) Recent disturbance in the northern hemisphere of dupiter Obsry., 15: 109-12. 1892.
Flamalifon (C.) Découvertes róeentessur Jupiter. il. L'Astron., 11:81-93. 1892.

Homben (L. S.) amd (Aampbell, (W. W.) Negatives of Jupiter made with the

Kabler (J. E.) Red spot on Jnpiter. J. Brit. Astron. Assn., 1: 435. 1891.
LaNDHRER (.J. J.) Les dimensions et la latitudr jovicentrique de la taclae ronge de Jupiter. Bull. Astron., 9: 246-8. 1842.
Levbau (s.) Determination de la masse de Mars et dr la dupiter par les observations méridienmes de Vesta. C'ompt. Rend. 112: $832-5.1891$.
Phassmax (.l.) Wer l'laut Jupiter. Darstellung der wichtigsten beobachtmasergehnisse mud lirklirnngsversuche. 116 1. il. Köln 1892.
Seatir (IV.) Intersmelnmg iber die Figur des Planeten dupiter. Astron. Nitchir., 129: 10-14. 1892.
Whbiams (A. S.) Notes of a preliminary examination of photographs . . . taken at the Liek observatory in 1891. il. Pub. Astron. Sore. Pacifie, 4: 166-76. 18:2.
——. Outburst of spots in the morthern hemisphere of Jupiter. Obsry., 14: 361. 1891.
——. Led spot on Jupiter. J. Brit. Astron. Assn., 1:436. 1891.

Jupiter- Continurd.
——. Reduction of measmes of the photograplas . . . takno at the lick (Bhservatory in 1x90. il. Month. Not., $51: 102$. isell.

Jupiter (Orbit of) .

 Astron. Jour., 11: 49-51. JR91.
Jupiter (心atcllitas of $)$.

——. Note on the period and distance of the fifth satellite of Jupiter. Month.

 1×12.

 $37-9.18 \div 2$.

Karlsıuhe Observatory.

Kenwood Observatory.

——. [Deseription.] il. Nid. Mess.. 10: : 2, 1-3. is!

Kepler's problem.
 126: 2×11 1×91.

Ladd Observatory.

 $18: 1$.
Lamp (Johames Christian). [1:.7T-'91].

Latitude.

II, Mis. 111 - 15

Latitude (Variation of).
d'Abbadie (A.) Flnetuation des latitudes terrestres. Bull. Astron., 9: 8! -102. 1892.

Albrecht (T.) Provisorische Resultata der beobachtungsreihen in Berlin. Potsdam nul Prag. Astron. Nithr., 126: 145-5̌. 1×91.
——. Resultate der fortgesetzten Beobachtungsteiken in Berlin und Prag. Astron. Nachr., 12x: 129-36. 1891.
——. Resultate der Beobachtungseilien in Berlin, Prag, Strassburg und Honolnln betreffend die Veranderlinheit der Pollöhe. il. Astron. Nachr., 131: 169. 18:12.
Bakherzen (H. G. van Je Sande). Variations of latitnde dedneed from the ohservations of Polaris made at Greenwich. 1851-1889. il. Month. Not., 51 : $286-506.1891$.
Brendel (1.) Einfluss von Dolschwanknngen ant dic geographische Lage der Erdorte. Astron. Nachr., 131:59. 189ㄹ.
Chanioler (S. ('.) Variation of latitule. Astron. Jour., 11: 59, 6ñ, 75, X3; 1太91; 12:17, 57, 65, 97. 1892.
——. Supposed secular variation of latitueles. Astron. bour., $11: 107-4.1892$.
——. Note on secular variation of latitude. Astron. Jomr., $11: 1: \%$. $1 \times 9 \%$.
——. On the Washington prime-vertical observations. Astron. Jomr., 11:174. 1892.

Comstock ($(\mathrm{i} .(\mathrm{C}$.$) Relation of the periodid ame secular variations of the lati-$ tude. Astron. Juur., $11: 92,116.1 \times 92$.
——. Serular variation of latitudes. Astron. Joun., 12: : 24.1892. , $1 / 80$ Am. J. Sc., 142: 470-82. 1892.
——. Variations of latitnde observed at the Wiashhum Observatory. Astron. Nachr., 127:97-104. 1891.
 128:213-8. 1891.
F'lammarfon (C'.) V゙ariabilité des latiturles. LiAstron., 10: 139-i.s. is91.
 11:129, $137.18!2$.
Helmert (F. R.) Erkliamig der beobachtetan lireitenimulemugen. Astron. Nachr., 126: 217-24. 1×91.
 278.1891.
 JACOBY (H.) (derman ramiation of latitule work. Astron. and Astrophys., 11:471-7. 18!12.
Kostansky (S.) Variations de la latitule do Poulkovo en 1891-1892. Astron-

Lasur (.J.) Niveanschwanknngen ter Oceanb als eine mögliche Ursache der Veranderlichkeit der Polhähe. Astron. Narhr., 126: 2e3-6. 18:1.
Matscrise (A.) Rosultateder fortgesetaten Buliner Reobachtungsreihebetr. die Verainerlichkrit der Polhöhe. Astron. Natelır.. 127:37. 1×:11.
—— Eregehnisse der Expertition nach Honolnh zur Untrisuchung dor Pothühen:inderung. Astron. Nachur., 131 : 297-30ㄹ.2. 1892.
Newronds (S.) byummics of the earth's rotation with respert to the periortie variations of latiturle. Month. Not., 52 : :33i-41. 1892.
-. Law and the perion of the variation of terrestrial latitudes. Astron. Nachr., 130: 1-6. 18:12.
-. Periodic variation ol latitude and the ohservations witli the Washington

—. Remarks on Mr. : hamblers law of variation of terestrial latiturles. Astron. Jour.. 12: 19. 18!2?.

Latitude（ ${ }^{\prime}$ ：ariation of $)$－（＇ontimutr）．

 Astron．Nachr．，12！：320－31．1892．
 tmanen im ersten Vertical．Astron．Nachr．1：30：215－5．．．18：2．

Lenses．
 11：だぶーが，18！2．
Honnes（E．S．）Whodismoverithr optiral proproties of lenses？P＇nb．Astrom． Soc．，Pacitic．3：13：3－10．1N：91．

Levels．

Lick Observatory．

Hobodes（E．S．）Note on the early history of the Liek（omervatory．il．Pub． Astron．Soc．，Parilic． $4: 1 ; 31-0(1.1892$.
－The great telescope；its aceomplishments for meieme duriner the pant year．il．San Juse Daily Meronry，Jan ．1，18！2．．
Ansid（M．W．）The Lick astronomical department of the Voiversige of（tali－ forma．22 p，il．Evo．Sin Francisoo，1892．liepr，from：Oerlamt Month．． Nov．，184．．．

Light．

 1 mem．）．1s：1］．

Lunar theory

 motion．Nonth．Not．，ジョ：71－80．1x！1．
——．Vote ont the lanar theory．Month．Not．， 52 ：fos．1atre．

 18： 2.
 Istron，！：：他1－71．18！！－

 ．Jour．，10：11． $18!11$.

 5：3：11－16．18：！

Mars.

Barsariy (E. E.) [Remarks on ohservations of 18:2 at the Liek Ohservatory.] il. Astron. alld Astrophys., $11: 680-1$. 1892.
Comstock (f. (i.) Observations . . . at the Washburn Observatory. Astron. athd Astrophysis., 11: 679. 1892.
Flammarion (C.) [Dessins dre] la plamete Mars. I'Astron., 11:321-31. 1892.
——. La planete Mars et ses conditions dºbbitabilitó: symberse généale de tontes les olosmations. to il. Paris, 1892.
——. Nonvelles olservations sur Mars. il. LiAstron., 10: 162-70. 1891.
——. Nouvelles observations sur la planote Mars. il. L'Astron., 11: 367, 141. 1892.
——. Ketour de la plane Mars. il. L'Astron.. 11: 201. 288. 1802.
——. Saisons sur laplanete Mars. il. L'Astron., 10: 32;-42. 1891.
——. Variations certaines ohservés sur la planets Mars. il. L'Astrom. 10: $88-102.1891$.
Holime (E. S.) Note on the Mt. Hamilton observations. . . June-Ang., 1892, il. Astron. and Astrophys., 11 : 663-8. 18!2.
Perbotin (J.) Ohservations de la planite Mars. Compt. Reut., 115: :379-81. 1892.
l'tikeriva; (W. H.) [Changes on] Mats. il. Astron. and Astrophys. 11: 668-75. 1892.
——. ('olors exhihited hy the planet Dlars. Astron. and Astrophys., 11: 419, 545. 1892.
——. [אmmmary of ohservatoms at Arequipa, 1892.] Astron. amd Astrophys., 11: 84! - 52. 18! 2.
Schambrat (.J. M.) l'reliminary bote on the ohservations of the surface features... during the opposition of ix92. 1'ulo. Astron. Soc., l'arifir, 1: 196-8. 1892.

STone, (E. . J.) [אolar parallax from meridian ohservations of Mars, 1892.] Month Not., 52: 538-41. 1812.
Tenby (F.) Physical observations of Mars. Astron, and Astrophys., 11: 478-80. 1892. 555-8.

Wilmon (1I. C.) Observations . . . at Goodsell Observatory. il. Astron. and Astrophys., $11: 684,1892$.
Wishicents (W. F.) Physiche Beobachtungen des Mars während devopposition, 1890. il. Astron. Nachir., $\subseteq 97: 161-8.1891$.

Youna (C. A.) Observations . . . at . . . I'rinceton. Astron. and Istrophys., 11: 675-8. 1892.
Mars (Diameter of).
Tisserann (F.) Sur Ie diametre de Mars. Bull. Astron.. 9: 417-2!. 1892.
Mars (Wrbit of).
Von Habridl (E.) Note sur trois inégalites a lomge période du monvement tle Mars. Bull. Astron., 9: 109-17. 1892.

Mars (Satellites of).
Copelani) (R.) l'retenderl early discorery of a satellite of Mars. Month Not., 52: 493. 184\%.
Mechanics (Celestial).
Lemmans-Fhbifs (R.) Zwei f'ille des Vielkïperpoblems. Astrom. Nathr., 127: 137-44. 1891.
Poncaré (II.) Móthoules nonvelles de la mécinique coblestr. 2 vol. 8vo. Paris, 159%.
——. Developpement apmochs de la foncion perturhatrier. Compt. Remd.. 112: 26!-73. 18!1.
 1. 4 (\%. Minchen, 1×12.

Mechanics (Celestial)-Contimurl.

 1:30: 376-90. 1802.
Mercury.
 8vo. [l'ar. 1892?]
Mercury (lianctrr of).
 Nachr., 1:27: 157-62. 1891.
Mercury (Orhit of ${ }^{\text {) }}$.

Meridian eirele observations.
Safporn (T. 11.) How to make grod meridian oloservations. Ninl. Mrss., 10: 11:3,209, 101. 1891.

Meridian marks.

 18! 11.

Meridian (\mathbf{l} 'rime).

Meteors.

 1 191.
Conkley (9 . W.) Jrobable orimin of metentites. Astron. And Astrophys, 11 : 72:3-63. 1892.
Dencinis (W. F.) Deteor radiants. Sid. Ness., 10: 23t. 15.t1.
——. Ilysical natnre of shonting atars and arolitos. Aspon, ant Astrophys, 11: fis1. 1892.
KLEnBRE (J.) Displacement of the apparent radiant points of metenr showers due to the attraction, rotation and orbital motion of the earth. Nonth Not., 52: :31-51. 18!
——. Opredelemije orbit meteomyeh potokof. [On the determination wionhits

Rer. by, Harzer (P.) Vetljsibhd. Astron. Gesellseht. 20: 193-219. 1891.

—— Orbits of metrons. Nill. mess., 10:328-31. $1 \times!1$.
——. Ruliant points of meteor Nhowers. Pub. Astron. Sor.. P'acilic, 1: 217-2 1s:2.
 VoN Nimas (G.) Perilueldistanzen mul andere Balmelemente jener Metroriten
 77 p . Svo. 1×91.

Micrometers.

 s: 97-101. $1 \times!11$.

 Nathr., 12! : : 211.1892.
 127: 26.5-70. 1×91.

Micrometers-Continned.
 Messumgen. Astron. Nachr., 128: 315-58, 1891.

Milky Way.

Bonndeker (O.) The Milky Way from the morth pole to 10 of sonth der lina tion . . . folio. London, 1892.

Lep: J. Brit. Astron. Assn. 2: 200. 1893
Martu (A.) Galactic longitudes and latitndes of the brighter stars in a zone "1 the heaven, containing the Milky W゙ay. Month. Not., 53: 71-109. 1892.

Mirrors.

Common (A. A.) Nilvering ghass mirmors. Astron. and Astrophys., 11: 852-9. 189:2.
Watgil (W. R.) Dewing of mirrors. .I. Brit. Astrom. Lssu., 2: 130. 1891.

Mont Blanc Observatory.

Jansisen (J.) [Note sur Fobservatoire de Mont Blane.] ('mmpt. Rend.. 113: 17! 5, 571. 1891; 111: 195. 1892: 115: 414-9. 18:42.

Moon. (Nee also Lamar thenry.)
Bombmeker (0.) Lmmar radaut heat measmed at Birr C'astleobservatory daring the total eclipse of Jamary $28,1888.32 \mathrm{p}$. il . 4 to. Dnblin, 1891.

Repr. from Traus. Roy. Dubl. Soc. 2. s. 4: 481-51:.
Elger (T. G.) Lumar work for amatoms. Puh. Astron. Not. Jacitic, 3: 162-72. 18:11.
—. The lunar walled-plain l'tolpmans. il. . Brit. Astron. Assn., 1: 30513. 1891.

H[OLDEN] (E.S.) Examination of the Lick Observatory negatives of the moon.

- Jhotographs of the moon marle with the great telescope at the Lick ob-

——. The lunar crater (operniens. il. l'nb. Astron. Noc. l'acific, 1: 114-20. 1892.

Mantu (A.) List of published lunar sketches and photographs arranged aceording to the sun's position. Month. Not., 51: 161-76. 1891.
PEAI, (S. E.) Comparative selenology. J. Brit. Astron. Ass'n., 1: 244-9. 1891.
Prokbrina (W. H.) Are there at present active volramoes on the moon. il. Ohsry., 15: 250-4. 1802.
——. Investigation of the systems of bright streaks visible upon the finfl moon. Astron. Nathr., 130: 225. 1892.

Lmar atmosphere and the rerent occultation of Jupiter. il. Astron. and Astrophys, 11: 778-82. 1892.
Sprague (R.) Notes on the Lick Ohservatory lunar photographs. Obsry., 15: 2.)4-6. 1892.
Very (F. W.) Prize essay on the distribution of the moon's heat and its variation with the phase. 45 p. [11 pl.] 4to. The Hagne, 1801.
WEnNE (L.) Enlarged drawings from lunar photographs taken at the liek Observatory. il. l'nb. Astron. Soc: Paeific, 3: 333-45. 1×91.
——. Nene Rille und nemer Krater entderkt anf deu Mondphotographien der Lick Sternwarte. Astron. Nachr., 128: 139-12. 1891.
——. Photographische Futleckung eines Mondkraters in Mare Nubium, und optischer Nachweis desselben. Astron. Nachr., 131: 159. 1892.
—..-. Photographic discovery of a new rrater. Pub. Astron. Sor. Pacific, t : 177-9. 1892.
Young (C. A.) Index map of the moon. il. Pub. Astron. Soc. Pacitic, $3: 20$. 1891.

Nadirinstrument.

Beck (A.) Nenes Instrmmont zur \%ait-bud lohhaihenhestimmmeng. il. Astron.

Nebula in Andromeda.

Nebula in Lyra.

 $2 \because(18!2$.

Nebula in Orion.

Ambronn (L.) Ammessung des Traperas im oriommebel. Astron. Nachr., 130 : 97-112. 1×92.
 Repr. from: Overland Month. Apr., 1ste.
 Not., $\overline{1} 1: 412$.

Nebulæ.

 153-8. 1N93.
Barnamd (E. E.) Two probably variable nebular, Intron. Nachr., 1:30: 7. 18:92.
 Rere: Astron. Jomar., 11: 125. 1892.
——. Sur mon héblease variable. ('ompt. Rend.. 112: 171-4. 18: 1 .
Bremanat (S. W.) Measnres of planctary nelmbar with the Bb-inch equatorial of the Lick Ohservatory. Month. Not., 52: 31-\$16. 1891.
——. Observations of nehulat with the 30-inch ... Month Not., it2:40-61. 1892.

——. Finposed variahb nebular. Astron. Nachr., 130: 231. 1xtre.
 5.) : 100-3. 1891.
 I. Brit. Astron. Assn., 1: 25:2,1. 297. 1א91.

Nebulze (('atalogrtes of) .
 ('ompt. Remul., 112:617, 703, x18. 1xill.
 Astron. Nathr., 129 : 361. 18:12.

INebulze (Motions ol') in the line of sight.
 1×!11.

Nebulae (Spertra of).
Hate ((r. F.) Researches on the mignesia thating in commection with the spe:trat of the nebulat. Sid. Mess.. 10: 2. 3 - 30.1×91.

——. Chiof lime in tho spectrmon of the nebular. Proe. Roy. soc., 19: 399-10; 1891. Also. lieprint.

Nebular hypothesis.
Keelaia (J. E.) [Lecture on] the mebular hypothesis. il. Astron. and Astrophys. 11: 567. 76x. [89\%.

Nebuiar hypothesis－Continued．
 1×92.

Neptune．

Holman（E．S．）Hivtorical noterelating to the seard for the planet Neptme in England in 1815－6．l’ub．Astron．Soc．Pacitic，f：르． 1892.

Normal equations．

 Nova Aurigæ， 1×12.
 1：231－47．1892．
——．Recent olnservations．Astron．and Astrophys．，11：755－9． 1×92.
——Spectrmm ．．in Fel）．and Mar．，1x，il．il．Astron．and Astrophys．，11： 799－811．1892．
——．［Observationssept．x to（ot．13．1892．］Astron，and Astrophys．， $11: 800$ ． $18(2)$.
——．［Motion in the line of sight．］Astron．and Astrophys．，11：881．1892．
Clerke（A．M．）The new star in Auriga．Astron．and Astrophys．，11：50t－13． 1s：12．From：Contemp．Res．Apr．， 1892.
——．Nova Amige and its shgestions．Onsry．，15：286－9．1892．
——．Nova Amiga．Ohsry．，15：33t－9．1892．
COpblaNi（R．）［Discoveryand spectrmm．］Astron．and Astrophys．， $11: 593-602$. 1892.

Craw（H．）Visiblespectrmon of the newstar in Amiga．Astron．and Astrophys．， 11：231－3．1892．
Espin（T．R．）Apectoseopicobservations and light enrve ．．．I．Brit．Astron． Assil．，2：328－32． 1892.
Holdme（E．A．）The new star of 1×9. ．il．Calitomian．11．Mag．，1：104－9． ［Apr．］ 1892.
Ilragins（W．）Apectrum of Nova Aurigas．il．Astron．and Astroplys．，11： 571－8＇1． 1892.
Hequms（W．），Lockive（J．N．），and others．The new star in Auriga．Obsry．， 15：136－43．189…

——．The new stal in Auriga．i1．Asiron．and Astrophys．，11：228－31． 1892.
S＇HAEBERLE（J．M．）Theoretical photographie magnitudes．Astron．Jonr．， 12：：36－9．1892．
 $3!3-106.1842$.
——［Results of ohservations］on the new stan in the coustellation Andiga． Astron，and Asirophys．，11：！04－17．1892．
 604－7．18：\％．
 18！2．
Votiel（H．（．）Motion of Nova Amriga in the lime of sight．Astron．and Astrophys．， $11: 391-3.1892$.
Volvg（ ${ }^{\circ}$ ．A．）and Resen（T．）Obsmeations ．．．at Princetom．Astron．and Astrophys．，11：〔x！－91．1892．

Nova of 1006.

Schönfeli（E．）Nemen Stem von 1006．Astron，Nachr．，1ご：153． 1891.
Nutation．
Folie（F．）Formules correctes de lat motation initiale．Astron．Nach．，128： 6－12． 1891.
Herz（N．）Zu dem Anfsatze rles Herrn Folie．Astrou．Nachr．，128：47． 1891.

Object（alasses．

 il．No，York，1s？1．
sprya（E．I．）Vote on some photomedre experimentstommeded with the appli－

Observatories．

 1891．
 26：8：3－16！．1＊： 1 ．
 27：7－3－166．1N！！
 14：152．188，221．18011．
 Nathr．，129：！ 18.129.
 18912.

Optics．

Rer．bug（rew（H．）Pul，Antron．Sow．Pacitic．4：31．I89？．

Orbits．

 129：49． 1892.
——．Weiterts Amentmmen des（ibhbs＇sehen Jrincips．Astron．Narhr．，128： 3ッ1ース．18： 1.
Rabay（R．）Romamplos relatives a lathorie des orbites．Romll．Astrom．， 9 ：

 bei der bahmbestimmong vines von einem homogernen iphäroid angezogenen

Parallax（がい1ヶ）．

 18：11．
 ington．18： 1 ．

W゙abhington ohservations，1845 apu．3．

Parallax（Stellar）．
Boss（L．）Bestimmung von Parallaxen durch Registrir－Beohachtungen an Meri－ tliankreise von Dr．J．C．Kapteyn．Pıb．Astron．Soc．Pacitic，3：84i－53． 1891.
Hall．（A．）［Method of reduction．］Astron．Jour．，11：7．1891．
Kapteyn（J．C．）Bestimmmug von Parallaxen durel Registrir－Beobachtumgen am Meridiankreise． 128 p．4to．Haag． 1891.

Rev．Astron．Jour．，11：8． 1891.
Kbenber（．J．）Dittlere Entfermung derjenigen sterne deren eigene Bewegrmg im Visionsralins bekannt ist．Astron．Nachr．，127：209－12． 1891.
Leavenwortu（F．P．）larallax of δ Herenlis from observations mate by Dem－ bowski．Astron．Jour．，11：169－72．1892．
—．Proper motion ant parallax of δ Equmlei．Astron．Jour．12：41． 1892.
Pritchalin（C．）I＇arallan of β Aurigir．Month．Not．，51：310． 1×91.
——．Parallax ot is Aurigie．Astron．Nachr．，127：201－8． 1891.
心保R（W．）lestimmong der Parallaxe von β Orionis．Astron．Naehr．127： 147． 1891.

Paris Observatory．

Bassot（－．）and Defforges（－．）Détermination récente de la longitude Paris－Greenwich．Nonth．Not．51：407－13． 1891.
Deslandres（II．）Transformation du grand téleseope．．．pourl＇étude des vitesses radiales des astrés．Résultats obtemus．Compt．Rend．，115：783－6． 1892.
liappokt ammel ．．． 1890.32 p．4to．Paris， 1891.
Rapport ammel．．．1891．39 p． 4 to．Paris， 1892.
Tunner（H．H．）Note on the recent determination of the longitude of Paris． Month．Not．，51：15．5－63． 1891.
——．Recent determination of the longitme laris－（treenwich：reply to Col． Bassot anl（＇ommandant leftorges．Month．Not．，51：413－4． 1891.

Pendulum．

Mendenhalh（＇T＇．（＇．）I＇se of a fiee bemhlum as a time stamdard．Am．j．Se．， 143 ：85－90． 1892.
Von Reberr－Pascuwitz（E．）Horizontalpendel－Beobachtungen in Wilhelms－ haven，Potsdam，und Puerto Orotava auf＇eaeriffa．Astrom．Nachr．，130： 193－216．18：12．

Personal equation．

（＇uristie（W）．II．M．）Prelimininy note on the rhange of personal mpation with stellar magniture in transits observed with the transit rirele．．．Fireen－ wieh．Mouth．Not．51：455－8． 1891.
Gonnessiat（F．）Quelques remaripues à propos des reeherches expérimentales sur l＇équation personnelle．Bull．Astron．，！！：37t－9．1892．
——．Sur l＇équation personnelle tans les observations de passages．Compt． Rewrl．，112：207－9． 1891.

Stroobant（ $\left.l^{\prime}.\right)$ Recherches expórimentales sur l＇équation persomelle dans les observations de passages．il．Bull．Astrom，9：116－60． 1892. See，also，Compt． Rend．，113：457－60． 1891.
－．Nonvelles recherches experimentales sur l＇équation personmelle dans les observations de passage．Compt．Rend．，115：1246－50．18！！．

Perturbations．

de Ball（L．）Bemerkung iber die Differential Quotienten der stirnugsfunc－ tion．Astron．Nachr．，128：107． 1891.
－．Bemerkung iibrrdic Coeffieienten einer Reibeder Störnngstheorie．Astron． Nachr．，128：339－42． 1891.
Láska（W．）Berechnung der absoluten Störungeu． 7 p．スro．Prag， 1891.
Masal（II．）Fommeln mud Tafeln zur Bereelnung der absoluten Stornngen der Planeten． 31 p．Ito．Stockholm［1891］．

Perturbations．－（ontimud．
 （＇ompt．liembl．111：111－1．1s：92．
 128：！！！108．18：91．
 （12）． $1 \times!11$ ．

Photochronograph．

HADEN（．J．（i．）bhotochronograph atmewandt allf boppelstrmmessmagen．

Photographic Congress，Paris．

Rérans da comité internatomal permanent ponf levérotion de la carte pho－
 $18!11$.

Photography（Asironomical）．
 Mrss．，19：381－5． 1×91.

 18：5．0．
 18： 1.
HalkNes（W．）Astrobomical photography with commoreial lemses．Astron． alld Astrophys， $11: 611-8$ ．1x！2．
śCHAEbBRLE（J．M．）Preliminary note on trarestrial atmoshheria alsorption of

Photogxaphy（Stellar－

——．Notes on the preparations for the work of the astop－photopraplate chater at ．．Greenwich．Month．Not．$亠 1:$ ：2Tx－xif．180）I．
 Nachr．，107：36\％．N：N．

．Tacobr（11．）Ruduction of astromomical photographia masimes．Astron．dour．， 10：129－31．1891．
LoEWY（M．）Détemmination des condommos rignatoriales dis centros dow

 taincel by photomraphy in the oxtord lonversity Observatory．Momth．Not．， Б1：130－5．1801．
RaF～（．I．K．）Catalogne of latherfimd＇s photographar phates of the sum，the mon and the stars．\＆p．太vo．［N゙ゃw Vork．1891．］
frpor．from：Ann．N．Y．Arall，se．，b．

Photograpliy (Stellar)-('ontinned.
-. l'reliminary notice of the reduction of lintherfurd's star-plates. Obsry., 15: 49-55. 1892.
Wellman (V.) Hiilfsmittel zur Lrkemmong von Bewegmogserscheinmgen auf Photographien des Steruhinumels. Astron. Nachr., 131: 31. 1892.
Wolf (M.) Photographische Messung der Stermhelligkeiten im stemhanfen. G. C., 4410. Astron. Naehr., 126: 297-310. 1891.

Photometer.

Whbon (W. E.) New photographie photometer for determinng star manitudes. Month. Not., 52: 153-\%. 1891.

Photometry.

Absey (W. de W.) Estimation of star magnitudes by extinction with the werlge. Nonth. Not., 52: 426-9. 1892.
Gone (J. E.) Intensity of the images of stars as affected ly wire-ganze sermens placed before ohject glasses. Obscy. 15: 106-8. 1892.
Scheinle (J.) Photographisch-photometrische Untersuchungen. Astron. Nachr., 128: 113-22. 1891.

Planets.

 testament :sstronomiqur. L'Astron., 10:282-7. 1891.
Planets (Fignte of.)
 [11,]. 11. (1.]

Repr. from: Amu. de lobs. de Paris Mom, 19, 1891. [?]

Pleiades.

Barxarn (E. E.) Nehnlosities of the pleiades, and on an Merope memba. il. Astron. Nathl., 126: 293. 1891.
Jacoby (H.) The Rntherfird photographic measmres of the gronp of the Pleiades. Aun. N. Y. Ac:ad. Se., 6: 237-330. 1892. Also Reprint.

Rev. by Scheiner (J). Vrtljwhr. A. Astron. Gesellsch.. 27: 206-13. 1892.
Pritchard (C.) Newly diseovered Merope nehula. Astron. Nachf.. 126: 397. 1891.

Rogers (W. A.) Division erors of the gradnated seale used in the Rutherfurd photographic measmpes of the Pleiarles. Astron. Jour., 12: 129-33. 1*92.
Pogson (Norman Robert). [1829-91.]
For Biography, see Month. Not., 52: 235-8. 1892.

Potsdam Observatory.

Leuschnen (A. O.) [Deswiption of haldings and instruments.] I'nb. Astron. soc. Pacitie, 4 : 40-5. 1892.

Precession.

Krattz (H.) Hiilfsgrössen zur Berrehmmg der I'raecession nach struve fior melnere öfters vorkommende Epochen. Istron. Nachr., 12x: 250. 1891.
Precession (Constant of ${ }^{\prime}$).
Ristenpart (F.) I'ntershchmmen ibher die ('onstante der I'raecession und die Bewegmog der Some im Fixsternsysteme. Veroffentl. d. grossherzog. Ntrmort Karlssulte, 1: 197-288. 1892.

Procyon.

Struve (L.) Vnregelmaissige Eigenhewegnng von Iroçon nach. O. Ntruse's Mikrometermossminen. Astron. Nachr., 130: 177-86. 1N:I?.
Prominences (Nolar).
Eversinel (J.) jr. Distribution of the solar prominences of 1891. J. Brit. Astron. Assin., 2:174-7. 1892.
Fénif (J.) Eine :m 3 Oct., 1892, heobarlitete grosse Protuberanz. il. Astron. Nachr., 131: 213. 1892.

Prominences（Nol：n）－Contimmed．

 10：20．9－154．18：11．
 Stron．Nachro，1ご：10！．Js

 11：（i） 2 ． 1×10.
 18：11．

 2！！

Proper motions．

Boscert（．I．）Détermination des momvoments propres des étoiles dal ratalagme

 1892.

——— l＇roper motion of ll I！

 16ifi－71．Ix：11．

Porter（J．（x．）（atalognte of shars with proper motion of lall a secomb and

Refraction．

 ．lour．10：17\％． 1891.
 1ス！！ 1.
 Hres．Astron．Ionr．，12：51．18：2．
 1arimig，18：12．
 Jomr．，10：11：3，1心：
 1が！2。

Refraction-('outinued.
Rambact (A.A.) Corrections tor refraction tommantes of strliar photographs. Astron. Nachr., 131: 6\%-74. 1892.
seeliger (H.) Notiziaber diestrahlembrechung in der Atmosphare. Sitzmorsb. 1. K. Bayer. Akad. d. Wessenseh. 21: 239-46, 1891.

Rev. by Safarik (A.) Vetljsehr il. Astrom. Gesellseh., 27: 238-43. 1892.
——. Extinction des lichtes in der Atmosphaire. Sitzungsh. Math.-Phys. (1]. d. k. hayer. akad. d. Wissensch., 21: 239, 247. 1891.

Rutherfurd (Lewis Morris). [1816-92.]
Rees (J. K.) [Biographical sketch.] Astron. aurl Astrophys., 11: 689-97. 1892.

For Portrait, sce Ibid.
For Biography ser also Astron. Jomr., 12:32. 1842.

Saturn.

Barnard (E. E.) Transparency of the rape rine. . . . Antron, and Astrophys., 11: 119-23. 1892.
Denving (W. F.) [Drawings of Satmrn. il. Obsry, 14: 36ii-70. 1891.
Flammarion (C.) Disparition apparente des ameans de Naturur. il. L'Astrou., $10: 121-39.1891$.
Freman (A.) Illmmation of Satnm's rimgs during smmise; and on recent observations of their reappearamee. Month. Not., 52: 494-9. 1892.
Holden (E.S.) Observations and drawing's of Naturn, $1 \times 79-1889$. il. l'ub. Astron. Soc. Parific, 3: 11-14. 1891.
Pickering (W. H.) The plamet Satmrin and its satelliter. Astron. and Astrophys., 11:649-52. 1832.
'Trouvelot (E. L.) Phenomeha observed . . . in 1877-"7x. Sid. Mess., 10: 74, 119, 171. 1891.
Wiblams (A.S.) Romently diseovered spots mintmm. il. Astrom. Nachr.. 128: 33-8. 1*91.

Saturn (Natellites of).

Hali, (A.) Orbit of Iapetus. Astron. Jour. II: 97-10ㄹ. 1892.
Naparik (A.) Durchmesser des Naturnsatelliten Titan. Astron. Niachro, 127: 36\%. 1891.

Sayre Observatory.

Scheiner (Christoph).
von Braunaťhl (A.) ('hristoph seheiner als Mathematiker. l'hysiker und Astronom., $\mathfrak{6}+92 \mathrm{p}$. *vo. Bamberg, 1891 .

Schönfeld (Eduard). [1828-6! 1.$]$
Kroteger: (A.) Todes-Ahzoige. Vitljsclar. d. Astrou. (iesellnch.. 26: 172-x5. Also, Astron. Nachr., 127: 151. 1891. Also, 1rensl.: P'ub. Astron Noc, D'acifie.

 Gesellsch., "仿.

For Biography see Vrtlischr. 1. Astron. Irwehselh. 26: 2 . 1891.
Fior Portrait sce Ibind.
Seydler (Angust.) [18t!-'! ! .]

Sirius.

Sec, also, Listron., 11 : 410.1.

Sirius-C'ontinned.
 1891.
(iore (J. E.) [haherent light of the companion of sirins. d. Inft. Istron. Ass1., 1:3i8. 1891.
 1891.

SEE (T. J. J.) History of the color of Sirins. Astron. allul Astrophys., 11:

Sky Glows.

 den Nachtwolken. Astron. Nachr., 130: 425-30. 1892.
--. Request for ohservations of night chonds. Antron, and Astrophys, 11: xi9-63. 1842.

Smithsonian Astrophysical Observatory.

[Description of the building and instrmments] Sinl. Mess., 10: :271-3, 1N91.
[Instmuments, and work proposed.] Obsry... 11: 2.24. 1e:91.
Lavgley ($九$. P.) [Estahished as a department of the smithomian dustitntion.] Astron. Nachr., 197: 319. 1×91.

Solar System.

Solar System (Motion of $)^{\text {) }}$
 1892.
 1892. Also, Astrom. Jour., 12: 91. 1892.

 Karlsuhe.. 4: 197-2x8. 1×2.

Spectra (Ntellar).
Eimp (T. E.) [list of] stams with remarkable spectra. Astrom. Nambe, 126: 3 3 1-6. 1891.
——. List of stars wihh remarkable opectrah. Astron. Nadhr, 129: : 297-302. 1×512.

Mosek (IV. H. S.) Spectra and proper motions of stars. J. lirit. Astron. Assm.. $2: 410-3$. 1×92.
——. 'pectra and propur motions of stars. Astron and Astrophys., 11 : $38: 1-90$. 1×12.
 128 : 377.1891.

Spectroheliograph.

 il. Astron. and Astrophys., 11: $11 \bar{i}-17$. 1s 92.

Spectroscope.

 line of sight. Astrom, and Astrophys.. 11:31:-2\%. 18:

Spectroscope－Continned．
Keelen（．J．E．）Elementary principles governing the cfindency of spectroscopes for astronomical purposes．Sid．Mess．，10：433－53． 1×91.
—— The modern spectroscope 2：the star spectrosope of the Liek Observa－ tory．il．Astron．and Astrophys．，11：110－4．1892．Also，Reprint．
Newall（H．F．）Diagran useful as a guide in adjusting a diffraction grating spectroseope．il．Month Not．，52：510－12． 1822.
Foung（C．A．）New spectroscope of the Halsted observatory．il．Astron and Astropliys．， $11: 292-6$ 1892．

Spectroscopy．

Spectrum analysis．

Hugains（W．）on spectroscopic astronomy．3it p．Xvo．London，18：11．Repr． from：Brit．Assn．Adv．Sr． 61 （meeting）：3－37．18：91．
SCheriner（J．）Die Spectralanalyse ter Gestirur．x＋47p．九ro．Leiprig， $\mathbf{1 8 9 0}$ ． Rev．by Elert（H．）Vrtljschr．A，Astrom．Gesellsch．，27：22－36．1492．
——．Berichtigungen zu＂Die Spectralamalyse der ferstirne．＂Astron．Nachir．， 129：157．1892．
Spectrum（Solar）．
Abnfy（W．de W．）limit of visibility of the different rays of the mpetrum． Also Astron．aud Astrophys．，11：296－305．1892，

Repr．from：Proc．Roy．Sor．49：509－18． 1891.
Cortie（A．L．）Fome recent stmdies on the solar spectrma．Astron，amd Astro－ phys．，11：393－407．18：2．

Star－Cataiogues．

 ptoiles．．．par M．J．Bossert．Vrtljschr，1！．Astron，（iesellsch， 11 ：2．55－70．1892．
 lichen ITimmel．Vrtljschr．I．Astron．Gesellsch．，こ̈6：284－301．1891．
Berichte iiber die Benbachtngg ler Sterne bis zur nemente Grösse zwischemo

Caralog der Astronomischen Gesellschaft．Erste Abth．，is．Stiick Zone＋50」 his＋5．Catalugue of 8,627 stars ．．．from observations ．．．at the Astronomi－ （all Onsmatory of Harvard College．．． 1870 to 1884 by W．A．Rogers． $39+176$ p．4to．Leipzig， 1892.

Downing（A．M．W．）Apparent places of close polar stars．Month Not．， a_{2} ： 378－8．5． 1892.
Eastan（．l．R．）The ceglected field of fmadamental astromomy．I＇ror．Am． Assn．Adr．Sce，11：17－32 1892．Also Reprint．

 tmonen am Pulkowaer Meridiankreise．．．1874－1880．22＋142 f．4to．St． Petersb．，1891．（Sup．II anc．Obsns．Jo Poulkova．）
Scurn（W．）Nitru－（＇atalog enthaltend 6900 Sterü̈rter fiir 1860．0．Nach den von klinkerfines in den balmen，1858－6i3 angestellton Zonenbeobarhtungen abgeleitet， $2 x+77$ p．．1pl．4tw．（Gïttingen，1892．（Astron．Mitth，Stermw．）

Star－Charts．

Star－Clusters．

 8ro．Leipric，I＊91．
 11：80． 1891.

Star－Clusters．（outimurd．

 1to．（＇hristinia，18！！

Star－Pjaces（holuction of ）

Stars．
L． il．Sion．landon， 1×11 ．

Stars（Motion of in the line of sixht．

 （1．Jnme，1s！1．）

 Potsdam．Bet．7，Th． 1 （No．2－7）． $1+16 i f$ p．to．

 sight．Momth Not．，「こ：天 1が…

Strassburg Observatory．

Hobsex（E．S．）［Description of the buikling and instrmments．｜il．Fab．

Sun．
 \therefore ：17シーラ．1×！ 11.

 111：30゙メーsi，18！ 11.

心！！－
 11：611－：3．18：

11．\is． $114-49$

Sun-f'ontinned.

- Rerherches sur l'atmospheresolaire. ('ompt. Remb. 114:1406. 1892.

Harzer (P .) Rotationsbewegung der somm. Astrom. Nachr.. 127: 17-34. 1891.
Kenze (.J. H.) Speculations, solar heat, gravitation,and shn spots. 2d ed. $[5+75 \mathrm{p}$.$] 8vo. Chicago, 1891.$
Marmere (E. W.) Solarartivity in 1890. J. Brit. Astrom. Assu., 1: 321-6.). $18: 91$.
Sidinentes (W.) solar disturbances of July, 1aty and the aceompanying magnetic storms. Astron. and Astrophys., $11: \times 17-9.1 \times 92$.
Trouvblow (E. l..) Phénomè luminenx extraodinaire observé sur le soleil. Compt. Rend. 112:1419-21. 1s91. Jlso, Reprint.
 Hecke. Astron. Nachr., 127: 233-52. 1*91.
Wonfer (A.) Compters rendus des travans du . . . R. Wolf dans la domaine de la physiqne solaire. Areh. d. sic. Physe et. Nat. Geneva, Dec., 18? 1.

Rec. Astron. Jour., 11: 120. 1892.

Sm-dials.

(echladme (C'. E.) ('adrans solatres portatits. il. L'Astron., 11:383-9. 1892.
Sun (Diancter of $)$.
Acwars (A.) Somendurdmesser und der Venushurchmesser nach den Beobachtungen an den Heliometern der dentschen Vems-Expeditionen. Astron. Nachr., 128: 361-76. 1891.
Sun (Rotation of).
Dover (N. C.) Redherches sur la rotation dusoleil. is p. 4to. Tpsal, 1891. Rer. by Scheiner (J.) Vrtlisidur. A. Astron. Gexellsch., 27:36-51. 1s92.

Sun spots.

Brown (E.) Note on the reent large gromp of smanots. il. .1. Brit. Astron. Assh. ン2: 210. 1892.
[Cumetie (IW. II. M.)] On the latse sum spot of Lsti, Frbl. 5 -18. and the assocated maguctic distmrlance. Nonth. Not., 52: 354-7. 1892.
Contar (A. L.) Large sulu-spot group of Ang. 28-Oct. A, 1891. Ohsry., if: 363-6. 1891.
——. Spectra of sun spots hetween 13 and 1). . Brit. Aistron. Assu., 1: 175-84. 1891.
——. Notes on the spertra . . Astrom. and Astrophys., 11: 587-93
Crew (11.) Speetrim of the large sm-spot group of Febrary, 1892. il. Astron. and Astroplys., 11: 308-10. 1892.
Fenvi (.J.) Phenomena observed on the great spot-gronp of Fehnary, 1892. il. Astron. and Astrophys., $11: 430-3$. 18: 2 .
Ilale ((f. E.) Spectroscopic ohservations of the great smb-spot group of Fehruary, 18:!2. il. Astron, and Astrophys., 11:310-4. 18:2.
Lavimbere (.I. J.) Musme des coordunnées háliographiques des tar hes solaters.

Marsmer (E. W.) Earlise appeazances of the great spot-gronp of Fohruary, 18:2. J. Brit. Astron. Assm. 2: 3is6-9. 1892.
—. Note on the history of the great smon of laty, Februar. Month. Not., 2: $181-93.1892$.
Perkiš (T.) Monkified method nf using Thomson's disks. il. J. Brit. Astron. Assin, 1: (142-5. $18: 1$.
Scumola. (A.) Bornier minimm des taches solaires. Lidstron., 10: 383-91, 409. 1891.
 tache. LAAstron., 10: 107. 1×91. .17so: Compt, Rend., 113:137. 1N:91.

- Fall of a solar prominence into the opening of a spot. Astron. and Astrophys., 11: 124. 1892.

Swathmore College Observatory.

Tables.

 physical tahles.) ('ity of W゙anhingon, pmbished hy the smithomian Fhstitu-

Telegrams.

Exabisil center for the distribution wh astrombal tregrams. Month. Not. 5:

Telescope.

Kivitily (W. H.) some trlescopes in the l'nited States. Sicl. Mess.. 10: 343-! 18:11.
 Assil.. 2: 219-2.2. 1×92.

Vaflance: (l.) Form of alt-azimmth momating for trleroopes. il. J. lirit. Astrun. Assu., 2: :335-41. 1842.
Telescopes (Retlecting).

祘: 19-22. 1N! !
 1×92.
 Mess.. 10: ant. 1 : 11.

Three Bodies (l'roblem of).

 1N22.
 . . (:ompt. Roml. 111: 1:3:1-11. 1s:91.

 1305-4. 1892.

Tides.

Time (1)-termination of).
 momg. Astron. Nachro, 130): X1 ! ! ti. 18!!2.

Time（Determination of ）－（ontimmed．
 1891.

Heonick（J．＇T．）Irohable error of the rlock eorrection when both the clork rate and the instrmmental constants are fomml by a least squares solntion of a

Time（Injersal）．

Tisserand（Filix）．
For Eiographysur LAstron．，11：34．Inter
For Portiait see ibinl．：3：5

Transit Instrument．

－Henz（N．）Theorie rines mit rinem Vertablkreise versehenen l＇assare－Insum－ mentes im ersten Virtirale．Is p．Ito．Wien，is：

Transit Observations．

 soldsehen Verfahsen．Astron．Nallht．，127：1＊5－90． 1891.
 Month．Not．，סי丷：111－7．Nat1．
 Astron，Narlir．，128：：37！－x゙2．18：！1．

Trans－Neptumian Planet．

Unites States Naval Observatory

 sess．S．$x=1$ ．lece 11，1x：1．

——．Proposed reform in the management of the new Naval observators．A statement in respect to the l^{\prime} ．S．Naval Observatory and its orquization． 68 p．Evo．Albany，18：1．
 P ．大ivo．［11．1\％］12．t2．
 3：74．18：11

Uranus．

Variable Stars．

 Astron．Nachr．，130：：367．18：2．．

——．Periorl of（thionis．Astron．Jotir．．10：13？．18：91．
 Astron．Nilchr．．129：：31：3－2！．18：9．
——．Chefeanse of the amomalies in the light variations of Y＇roui．Astron． Jomi．，10：1，13．18！？
（ionee（J．E．）Feriod of U Wrionis．Astron．Jonr．，10：174．1891．
－Probable distance of Algol，J，Brit，Astrou．Assu．，2：143．1892．

Variable Stars－－（＇mutimled．
 1，$!11$.
 15：
 79．［x：11．

Vatican Observatory．

 1to．Romati．1s！！
 ：31：！－！ $1 \times!1$.
Vemus．

 1゚2．Lx：
Venus（lliameter al）．

Vemus（Rotation ol＇）．
 20131－x．1א！1］．

 1rom．11．Frathe， 3 Feh，1ste．

Venus（Tramsity of）

Washburn Obseıvatory．

 ii，pt．4．）

West Point Observatory．

 273． 1 バ！

Yale University Observatory.

Report . . 1891-92. 26 pr. 8vo. [11. p., n. d.]

Yerkes Observatory.

Hale (G. E.) [Equipment of the Yerkes Observatory of the luiversity of Chicago. Astron and Astrophys., 11:790-3. 189\%.

Zenith Telescope.

Jacobr (H.) Calculation of star places for zenith-teleseope observations. Trans. N. Y. Acad. Sc., 10: 86, 1891.
—. Calenlation of stal places for zenith-telescope ohservations. Astron. Jomr. 10:172. 1891.
--. Table for weighting zenith-teleseope observations. Astron. jome., 11:142. 1892.

Zodiac.

Brown (R.).jr. Remarks on the Emphratean astronomical names of the signs of the zodiac. Proc. Soc, Biblical Archeol. 13: - $46-71.1891$.

INDEX．

I．1：3：
Whoott．1hr．W．L．，collaction made hy 1）
 $\therefore 1$
pottery rollortion of Mmsemm，increase in 22，！：
 － 4
Acatemic pmbleations reariver 7.5
Acressions to Zoülogical l＇ark 11．70．7；
 113．，
Acemment of progress in astromomy が1
Acknow ledgment due exthange agrats （it
Aconchy added to Kö̈lowical l＇ark 7：3
Arting matniger of tha Zoulogiatal lark，report of $1: 1$
Acts of t＇moressappointhent of ragents，
improvemut of smithsonian grommes． xls
making appropriations． xlv，xlvi，xlıii，xlviii
relative to（＇olmahian Historical Kxamsition at Mandid ，luiii

relativero Wrorld＇s（＇olnmbian Expoxitan l iii
Shlitional（＇marexsional appropriation tor Zälogitall lark 70
Additions to the rollwetions of the Zä̈logical l＇ark 15
library 75
Ahelaide，somfle Australia，rxelange aqeney in 13,1
Ahministration of Institution，resolution lyg Board of Regents relatice to．．xviii．six Z̈secretary＇s report on
\％ä̈lugicall l＇ark．diftonlties cnennontreal in $2: 1$
 513
Advisery commottere on llaterkins fomd 20
 11
 （ii）， 1.5
A monti frresental to Kälogital I＇ark 71.73
Agricultmal lorvartment，wehanges of （2）
to hr ancessible to scirntilir invostimators x小ii
Alurn，diont．（i．l＇．presemted eimamon bear 71
Air，themprate of the paper hy l．P．Montlamel 347
Ageriat，exelantge agemey in 15
 5
Slleghamy Commty，Va，arehamblogical explomation of －1）
 61
Alligator Xissisoippionsis added to Zö̈lugiáal l’ark 73
Alligators presebtod to Zoülogical l＇ark 72． $7: 3$
Almeition，（＇onsul d＇，grants fee fereght tif
Alves machlis ahlat to Zovilogrical l＇ark 73
I'ag.
 513
American aboriginal pottery collertion, incrase in 23, 2:3
antelope added to Zoölogical Jark 7 7
hadger addeal to Koülogical Jark 73
beavor presented to Zö̈logical lark 71, $7:$
hison added to Kö̈lowical Park 73
Board of ('ommiswioners for Foreign Xiswoms wrant fee tremght (i)
('olonization suriety wrant free fiedoht (i)
Fphemeris, exehanges at (6)
Imlians, pictme writing of, baper on 5
magpie presented to Zoölogical l'ark 72,73
Oriental society, room granted for mectine 16, 17
otter added to Zänlograd latk 73
Ammalsen, Consul, grants free treight 6.
Anaconda added to \%oilogival lark $7: 3$
Anatomy, comparative, collertion of Musemm, increase in $2 \because, 23$
Ancirnt works in Ohio, resurvey of 49, 50, इ1
ropper mines of Inle liovale, examination of 50
Anchor Steamship (ompans grant free freight fis
Ancoistrodon contortris adrad to Zoilogioal lark 73
piscivorns adrled to Zoölogiral latik 73
Aulerson, ('apt. (f. S., presented erizzly bear 71
Angell, llon. James li, acts of, as regent x, xiv
Angora goat adderl to Zoülogical l'ark $7: 3$
Anmal rollertion of Musemu, increase in 23.23
honses in Zouilowival Park
prolucts, rollection of Jlnsemm, inctease in $\because 1$, $\because 2$
Animals added to Koülogical lark 73
fron lellowstone l'ark for Zä̈logieal l'ark 30, 31
in Koïlogical l'ark 70
presented to the Koalogical Park, list of 70.71, 72
reembly extinct, paper bey Freatrick A. Lneas s1
Annmal innease of the National Mnsemm 21, 2••••3
repont of the Sacretary accepted by board of Regonts xvi
board of liegents i
Burean of Ethnology $\because 7$
publicetion of 5
Anteater added to Zaïlowical l'ark 7.3
Antelope added to Koülogical Park 73
Antomia, Maria, on Cinatuso language :3
Anthopology, bihlography of, in 18: 2 , hy (). T. Mason 490
collection of Masemm, inerease in 23, 23
of the lrain, papre hy 1 . Kerfont Shato 54.5
prosress of, in IN: R, remet on, hy (. 'T. Mason 165
Antilocapra amerieana added to Zoölowieal P'ark $7:$
Antiguties colledtion of Xhemm, incerase in 22,23
Appendix to the soretary's report 49
Appointment of regents xir, !
Appointment of suitable persoms to art in the absener of the fecretary and Assistant Secretary xix
Aphopriations, Congressional ants providing xlv, xlyi, xlyii, xlvii
disbursmment oft j
for intemational exchanges xxiii, ㄷ, 13, 14, 60,61National Muspunxxii, xnvii, xxix, xxx, xxxi, xxxii,xxxiii, xaxiv, sxxv, xxxvi, xxxvii, xxxviii, sxxix, 7

I＇1020．
North Americ：an \cdot（hmolows
ざざsmithsonian haihlan ropais
 x liiiv1．vli
 $x \times i$
 7）
Aquila（blurysatos aldeal to Zöibogiral b＇ark $7:$
Aratabhoes，visiterl hys．Moome？ 「こ
 5
tipld work uf the Bureat of Ethmolog $1!$
Arelarology of tide－w：tter resion，paper on \％：
Atric tox added to Zö̈losical［ark ？：
Aretomys monax alded to Zobïlogieal l’ark 7：
 15.5
（x）hange transmission to （bit．is
Arizoma，arehacolosiataterploration of 51）
collerfion mate in 11）
grays sunimed presental to Zoiologival Pari 71， 73
Valley of Rio Verale，aboriminall fematns in，paper on － 4
Armadillos presentol to Zö̈logial l’ark 71． 73
Arkatsas，movarnlite quarries in，examination of 50）
Army Medical libuar？books deposited jn 74
 $6:$
 xl－ii
 2！．2・ロ，23
Asia，collertions matre in 11
Asphdonerdes feroxs addod to Zoïlogical P＇ork $7: 3$
Ssigmment of fooms tor scipotita work 16
Assistance qiven to insostigators 7
 $x \cdot$
 7
 713
 10，
Astro－physisal allsproatory，acts al（＇ongress relaliva to 小ii
（omgressional appropriations for ©
dotals of expentitume low lii
a－tinates lor 1x！ ii
exeltanges ot （i2）
 xil
Serretarys ruport on x
A sumcion，latacuay，extlathge ageney in （i．）
Athapaseath latumages，biblingraphical work on ： $1 ;$
 （1．）
 61
Anstria，＂xthance ageney in 1i．
 （ii）． 6 in
Ava ar：atame：added to \％aïlagioal I：ark 73
1：．
 71
 で
 が
Badger athted to Zoülogical l＇ark 73
r'age.
Bailey, ll. B., de Co., grant free freight 61
Baird, Prof., slatue of, bill for, failed to pass 16
Baker, Frank, acting manager of Zoülogical Park 73
Bald eagle presented to Zö̈logical l'ark 71.73
Baltazzi, Consul, grants free freight B1
Baltimore and Ohio Railroad Company, appropriation for, on acconnt of exchanges xlv
Banded rattlesnake added to Zoülogical Park 73
Barbour, Capt. H. S., presented golden eaglt 71
Barnes, Miss Edith A., presented prairie dog 71
Barred owl presented to Zoölogical lark 71. 73
Barrigudo adrled to Zoallogical Park 73
Bartleman, Mon. R. M.. presented agonti 71
armadillo 71
percary 71
South Ameriean deer 71
Bascaninm tagelliforme, adted to Zoblogical Park. 73
ronstrictor, adled to Zö̈logical Park 73
Basel, University of, sent publications 75
Bath Connty, Va.. arehanogieal exploration of 50)
Batrachian collection of Mnseum, inerease in 22.23
Batrachians added to Zoölogical lark 73
Bavaria, Government transmissions to 68
Bear, escape of, from Zoülogical Park 70
dens and yards in Zoiblorieal lark, illustration of 41
den, improvements to, abondomed for lack of fimds 31
fards in Zö̈logical Park, cost of 39
Bears added to Zoäloginal Park 73
presented to Zoölogical Park 71, 73
Beaver presented to Zoölogical Park 71, 73
Belgimm, exrlange ageney in 6.)
transmission to 60, 68
Bell, Dr. Alexander Graham, donation by 4
rxplained hey the secretary xvi
Brll, 1. T., presented great homed owl $7:$
Rerpurst of Nimm Habel xxii1, 4
James Hamilton. xxiii. 1
J. H. Kidder xxiii, 1
James smithson, amount of xxiii, 1
Bem, Switzerland, "xehange turncy in © 6
University of, sent pablications. $\%$
Bihlograplog of the Algempuin languages, by J. C. Pilling "心
anthropology in 1892, compiled hy O. T. Masom 190
astronomy in 1891 amd 1892 , by W ('. Winlock 711
Billings, lry. John s.. : member or the attisory committee on the llodkins finnd. $\because 0$
on American inventions in medioino, shrgery, pte 61:i
Bills and resolutions by Congress (see (ongressional acts, ete.) (i)
Biloxi, Engrlish Dietionaty, work on $\therefore 2 \pi$
tribe. visited by Rev. d. Wwell Dorsey -
Biad collection ol Masemm, increase in $\because 2.23$
lirds in Zoölogioal Park 70
migration of, report on, by , J, A. I'almer 37%
birds' esg collestion of Mnsem, increase in. 2,23
Bishop, W. L., presented barred owl 71
1：12．
Kivan athend（1）\％orij］ $7:$
 7：
lonnsr in \％oülogical l＇ark，iHnstration ot 11
black bralr prosented to Kö̈lowical l’ak 71． 73
shake pressentud to Zö̈lowinall＇irk 72，73
Boan alded tor \％oïlowicall l＇arli 73
 73
 7！，7：
 （i）
louaril ot lieqents，athanal leport of i
 xi
mertings ol＇ x．i
surratily s rapurt to．1

alplobpriation for Koblowical lork xii
Boegeliol\％，（i．．presented sparrow hawk 71
 （i．）
Bolivia．＂Xelathere agerter in （i．）
trinns！nisxions to biti，bis
 $!$
lBonn，livirrsity ot，sint pulnliontions π
 （i） 1
Bos ineliens inlduel to Korilogio：al l＇irli 73
liostons．Mass．，exthallere agoney in （i6）
 （i）
bontetonrt C＇onnts．Via．．arehiewlowical exploration ot 51）
 fil
 577
 $5!5$
13raxil，rxtliallere agenty in． （i．）
（＊） （iti，bis
Breckinridgr，Joms．W．©．P．，alpointod rotyout \because
かくり心 ot，ans rewerlt ．．．
 sviii
 16！．TH
completion at bis
Brake pior in Zoülogical lark，ranalt $6!$
Pridges in Zö̈hgiral Park．const of $\because: 1$
brilton．L．H．，presented copperneal 7．
 （it）
 （ii）
British colonies．＂xelange agery in （i．）
trallimixsions in biti，（is
tilliani，wxelange agrency in ほ，
 （i．）
 （i）
Romase，wollection of，Musemu increase in 21.29
Brasats ex．hange traty，partially exernted 14
Rubo virginianms added to Zoülogial lank 73
burnes Aymer，exthange agery in （ii）
（iovermmant frallsmissions to （i）
Building．Smithsonian，whails of expenditnows al．sti．xlii repair．（6，mpressional appopriation for xl，xli，xlii
Page
Bulatings，estimatos for 1×4. 5
of National Muselum，details of expernlitures for xxs，xxxy，xlii
in Zö̈logical l＇ark，cost oi 43
of Kö̈logical l＇ark．（＇ongressional appropriation for 5． 29,30
astimates for $1 \times!3$ 6
serretarys report on 6
Bullay，N．J．，gratuts free treight 64
Lullatins of National Masem 27
the Burean of Ethnology 57
Burean of Eduration to be areessible to serntifie investigators xlvii
exchanges of $6=$
Lthmology，exrhanges of 62
to be arcessible to seientifu insestigators xlvii
report of director 2x． 19
Secretarys report oll $2 \overline{2}$
International Exrhanges，report ot＂hrator 51
correspomelen 61
＊x．hange of ntheinl locmments 61
rxehanges of （i2
rexpenses 6
rereipits 60
dishumsements （i0）
reticiency of service 62
list of shipping agents （i）
list of distributing agents （i．）
tabular statement of work 59.16
transmissions （in，6i7，lix
Winlock，W．C．，cmrator is
Medicinp ant surger－exthanges ot 6：
Narigation，exchanges of 62
（rotnance，exchanges of 6
Statistics，exehanges of （i）
steam engincering，exchanges of 6：
the Mint，exclianges of 62
Bureans，fepayment by，on arcomit of exchanges 18.130 .61
Burgess，II．E．，employés of，presented great hormed owl 7：
Burial momuls，aucient．in Ohio，paper on，by R．J．Thompson 571
Buten horealis added to Zoölogical Park 73
Butlor．Dr．T．E．，presuluth hawk 71
Butler，W．（＇．．prestnted emmassow 72
Buttrowoth．Hon．Benjanin，expination of term as regent \because
letter to，relative to money alvalaced for ex－ ＂hanges 15
1世息・ハ！ xi
（．
C＇achina ceremonials of Zañi lndiams 55
（＇alonkia monml．examination ot 51
C＇aiman presented to Zoühogical Park 72， 73
（＇aim，Egypt，exelange ageney in 65
Coblderon，l＇onsul－（ieneral Climato，grants free freight 61
Caldo，（＇onsul A．G．．grants firee freight 64
C＇allwell，s．D．，presented opessmm 71
Califormia，ethmological reseatreles in $5 \cdots$
Call，R．（＇．，preserned pigeon hawk 71
Cammonn. R. W'., d ('o., wrants fire firtight
Tace(i)
('anata, (6ovirmment transmissioms to is
('anis lattrans ablerl to \%ö̈loníall l'ark 7:;
C:ape ('olons, tx change amenty in (i.)
transmissions for lith. (i)
 (i.)
 $7:$
(:apoon colle i
('aphrlain monkey perented to \%aïhuinal lark 71. $7: 3$
('alphana adted to Zailogical l'ank i:
 (i)
('ariame virginianms added to \%ö̈locrical) l'ark 73
Casa Graude, min of, restomation of -
ruins repatred hy ('ormos Mimalebat' : 1
 5! 160
 iis
 63. 5
Catlin gallery rollection of Mastman. incrane in 21. 2:3
 $7: 3$
 $\therefore 0$
 73
 73
 $7: 3$
 \therefore
 ッ!. 23
 $6:$
 7:
 73
 xvi
('langes in loard of litegents \because
('hats received by the libran 15. 71
 $7: 3$
 7
 $\because 1,2: 3$
 71
roati-mmmeli 71
11wtlo 7
 \therefore
Chesaluake liay, shell drposits of examanation of $1!1$
('heromes, visited hy Xlr. Hooms 플
 11
Chalr, exthangeaderncy in (i.)
(ramsmix-ions to (ith, (is
('hilliealle work, Olio, restrocy of 1!1. 20
(hina, colleqtions mate in 10)
"xchathge atrono in (i.)
1anasmissions to (iti, tix
('humokan biblingraphly, work on in
('rax alowtor alded 10 \%ö̈lowical l'ark 7i
Christiania, Norway, exchange aweney in (in)
Thiversity of. sent publeations I.
('lurysemys pictat aded to \%oïlogical l’ark 7:3
('lorvathrix scimens added (o \%ö̈logical l'ark 73
Clanck-nuolly added to Zoülogical I'ark 73
Page.
Churfuisto: exchange ageney in 65
Cimanmon bear preselited to Koölogianl l'ark 71.73
Cirens hulsonins anded to Zoölogical Park 73
Clark, E. l., presenterl marsh hawk 71
 20
Clerical force of National Masemn 25
work in Exchange Burean 63
Coassus arlded to Zoälogiral Park 73
Coast and Ceorletio surver, exchanges of 62
to be arcessible to seientific investigators xlvii
Coati-mmodi presented to Koülogical Park 71.73
Crelogenys paca aded to Kö̈logical Park 73
Codices, sthdy of, by Cyms Thomas 51
Coin collection in Musenm, increase in 21,22
Colapter amratns added to Zoölogical l'ark 73
Coleman, C. B., presented marsh hawk 71
Collections of the Zoölogical Park, additions to 45
policy of Govermment with reference to 16
preservation of. Congressional appopriation for 5
estimates for 1893 6
Colombia, axelange aqenry in 6
trallsmissions to 66, 68
Columbian Exposition, collections made for $51,52,53,54,55$
tor, made by ofticers of Burean of Ethnology 27, 28
Museum exhibit fur 27
Historical Exposition at Madrid, Congressional act relative to xlviii
Commission of Fish and Fisheries, exchanges of 62
('onmissioner of l'atents, exchanges of. 62
Weights and Measures, exchanges of 62
Committee aprointed on matters relating to the Hodgkins fnnd $\mathfrak{2} 0$
Compagnie Génórale Transatlantique grant free freight 64
Comparative amatomy collections of Musemm, increase in 22, 23
Compensations paid for exclanges 61
Completion ot loridge in Zorlogical Park 69
Comptrollor of the C'mrency, exchanges of 62
Comat, levi]... paper on primitive mmber systems 583
Condition of exhibition halls of National Mnsenm 24
smithsonian fumd xxiii
Congress asked to refind money advanced for exelanges 14, 15
exclangers of 62
letter to, accompanying ammal report for $18: 2$ iii
('ongrossional acts and resolutions relative to-Astro-physical Ohservatoryxlvii
Burean of Ethoology xlvii
C'olnmbian Historical Exposition at Madrid xlviii
International exchanges xly
Xational Museun. xlvi
National Zö̈logical l'ark xlvii
smithsumian Institution x / y
World's Colmmhinn Exhibition at Chicago. xlviii
Congressional appropriations for-
Burean of Ethoology. (See North Ameriman Ethmology).
Astro-plasical (hbservatoryxlvii
Colmmbian Historical Exposition at Mallial xlviii
（＇ongrescinnal ablowpiations for－ Page．
International exrhanges

National Korïowiral l＇ark xiii．xai．גxwiii，xxvix，kl，xlii，xlrii，
Norfl Dmorican lithnomes ．．．xッ．xォvi．．lii．xlvii．
lorkins rollewion 11
Miserllantons expenses $x \mathrm{x}$
太mithcomian Institution xl，xli．xlii，xly
 Nliiii
（ongressional appropriations，hishorscments of ax，xxvi，xxuii．xxvii

 6
（＇ongressional afprophiation for exrlanges of xly
 ence to screntitie forllaetions 16
tor printine anmal reports． ii
 $6!$
Construction of animal homs＇s in Zä̈logical l＇ark 6：7）
（＇ontents of ammal report tor 1 sis －
（＇ontinental prohloms of geology，hy f．k．（iilbert 113
Contimation of researehes among North Amerieqn Jmians 27
 si）
secretary＊sppord $\quad 11$ ［11． 11
 57
 （i．）

Kが－appointatent of as rewant小ir．2
Member of the Exantive（＇ommatres x
Presinted raport of Exurntive Committer Ni

 x
 and Ixsistant Eromptar xix
\ator－physical（）hervalory x－i
insomo anel expenelitures of the Institution N
whituar of the late（emeral Moigs xiv
（apperheat preswed to Zouilogical l＇ark 72． 73
 动
 17.5
Comespandence of Exalang＂lBarean （i）
（＇orrespondents of Exelange Iburean 13．5！3．60
 72
（＇urtis，li．J．，墨rants fienght （i）
（＇orvons americamms adeled to Zoulogical l＇ark 78
（ onsta Riva，exehange agence in （is）
transmissions t口 （initis
 T）
I＇oyotrs presental to Zö̈lowical P＇ark 71． 73
（＇oyprl salled to Zö̈logia：al f：ark 73
（＇rane prestuted to \％oïlowie：al fark 72． 73
Cranfore，I）．N．，prescutal hlues and yellow macaw 72
Paga
Creek rucabulary, work on jt
Crisp. Hon. ("harles F°. lefter to. tramsmitting ammall report for La:口 iii
(rocker. 1)r. M. M., presented tiger rattlesnitha 72
chnck molly lizard 72
 7
('rotalus admantens added to Zoüloginal l'ark $7: 3$
Crotalns horridus added to Koülogical Parls 73
Crow presented to Zöilogidal Park 72
Crow atency, Montana, eollections made at 51
Crystallization, paper by (t . 1). Liveing 263
Crystals, rejurenescence of, praper by Prof. John W'. Judil $\because 81$
Cnba, exclange awery in (i.)
transmissions to (ifi. 16
C"ultivation ot' Zö̈logical Park, cost of 39
Cumard Royal Mail Steamship Company wrant free freight (i)
Cullom, Hon. Nhellos II.. regent xi
on arcepptance of Hodgkins donation xii
©'nlascow presenteal to Zoülegical Park 7273
Cuman of Exchanges, report of $5!$
Cumatorships in National Mnsemm 2.1
Current expenses of Zoological Park, defiemey : 33
Comis. (r. E., prepared Smithsonian tables for publieation 12
Cushing. Frank li, appointed ethnologist of the Burean of Ethmogr 55
:arharologiral work of 51
rontribution on Zuñi myths 55
arsmized fouthwestern armanological exploration 5
(y yomys ladovicianus added to Zoölogical Park 73
I.
 57
Dall, Willian H. : member of the toderkins fims commatter 20
 33
Janeras to Zoölogimal Parls from freshets :31. 32
Daniels, 1r. Z. T., presented king snake 72
Dasyprocta aromely added to Zoblogical lark 73
agondi added to Zoïlogical Park 73
Davis, J. J.., presemtod red-taliled hawk 71
Weane, Capt. (i. ('.. presented coyote 71
Deer presented to Zoülougical ط'ark 71, 73
Death of resents \because
 289
Detirioncy apropriat ions for Zö̈logical l'ark 32. 33
ben Helder, lholland, exhamge agency in 6i
Jemmark. exelamge awency in 65
transmissions to 0,6,5\%
lensity of oxtren amil hydrognong determinations of 7
bepartaent of A gricultme exchanges of 6는
to be arcessible to scientitic invostigators xlvii
the Interior, exchanges of 62
Tustice, exchanges of 62
Lahor, exchanges of 62
Nate, exchanges of. 62
W':n, exchanges ot 62
Uepartments, repayments by, on accont of exchanges $13,60,61$

INDEX．

1．al
Deposits in Treasmry，armonnl of 4
fronll sallige，allomall of 1
 $6: 9$
Diato．＇is pumetatus alded to Koblogical P＇ark $7: ;$
 7ニ，7：
 $7:$
 7.
 73
 －！！
 1：3， 511
bircetor of the linrean of Ethmolory．report of $1!!$
rolimed to hy Newndat －
attion work af 513
bishmasement of appropriations muler the smilhsunam hastintion mato by W．WV．K゙arr xliii
 ．
 LB．（i）
Dischatree of elowtiaty，paper hy ．J．J．Thomson －2！！
 5.
 74
 25
Hocmmelnts，oftiofitl，ex．lather of 1：3，（i1．62
bomestir animals，collection of in Masermm，inctrase in ？1．：？
individuals in＂orveponmlane with exchange lurvan 1：3， $2!, 130$
park：tes sent hy exchange bureatl 1：3，59．（3t）
suctotios in correxpmolme with exchange bureat 1：3，53，60
1口opat．Iniverity of．sent pablieations． 7．）
Jorse？lier．d．One de，dietionaries in preparation by （3．）
edited lankota－Fnglish dictionary 57
fielal statios of ${ }^{\circ}$ 5
oftice work of 5.5
palar wh the（＂rsihat latnguage 5T
patere on thanhas and l＇onkis letters 54
 $7:$
 ：39
 （1；
transmins－ions tor 13is
 $7:$
 tion for 亏
 1
 21．‘’：
$1 亡$
 $71.7:$
 17%
 bir
tratamissions： 10 （iit． 1 ix
 2．2 ！－：
 （i．）
t1：ansmis－ionsín liti．lis
 （i2
 （i三．（i：）
11．Mis．114——en
Page.
Egybt, exchange agency in i
transmissions to 66,$6 ;$
Eighth ammal report of the Burean of Dinnology in hands of printer $\because 7$
ELection of members of Execntive Committee Nii
Electric light in National Musemm 26
plant in Musemm, estimates for 1893 6
Electricity, discharge of, paper by J. J. Thomson $29!$
Elephants in Zoälogical l'ark, coudition of 70
Eleventh ammal report of Burean of Ethology, realy for printer 27
Elk house in Zö̈logical I'ark, illustration of 4
Elkins, Itom. Stephen B., member er officio of the Establishment ix
Elliott, Miss Ressie, presented raceoon 71
Empire of the air, paper by L. P. Momilard $3: 7$
Employes of exchange burem, efticiency of 63
Endownent for seientific researeh and publication, paper hy Addison Brown 6:1
Enginering collection of Maseum, incrase in 21.22
Engincer lurean, exchanges of 62
English-Klamath dictionary, hy A. S. Gatschet 57
Entomological C'ommission, exchauges of 62
Ephemeris, exchanges of 6
Erlangen, L'niversity of, sent publicatioms 75
Espriella, Consul Justra R. de la, grants tree treight 64
Lstimates for Congressional ippropriations 5
exchange service 11
Estimated expeuse of exchange service 14, 61
Ethological researches, (ongressional appropriations for 5, 26, 27
Ethonogic researches anong the North American lndians 19
Ethology collertion of Musemm, increase in 29, 23
Burean of exelnanges of 12
report of director 28, 19
serretarys report on $\because 7$
North American, estimates for 1593 5
Enuede's murimus added to Zö̈logica! Park 73
Eut:ruia sirtalis alded to Zö̈logieal l'ark 73
Evolntion and horedity, present problems in ; papr hy Hemry Fairfield Osbom 313
Ewing, l'rot. J. A., on molecutar progress in magnetic indurtion 25.5
Excavation of pond in Zö̈logical l'ark 70
Exchange buran, report of curator 59
Correspourlence 61
Exrlatuge of official docnments 61
Expenses 6
Etticieney of service (2)
lishorsements 60
List of distributing agents (6.)
list of shipping agents (it
T'alular statement of work 5!), 60
Tramsmissions (i6, 67,68
Winlock, W. (.., curator 68
Exchange of official tocmments 13. 61,62
service. Secretary's report on 13
treaty of Bunsmels 11
Exchanges, Congressional appropriations for 61
estimates for 18:!:) 5
money advanced for, by Institution 14,15
Jiaw．
 xviempowrorel to appoint stitalnle persons fornt in theabsenco of thw Serortary and Assistant Sereetaryxix
 ，liii，\％
report acepptad lyy board of lionents ※vi
 xxiii
National Jnsemm．．．．svii，xdviii，xxix，xxx，xxsi，xxxii，xxsiif，xxxiv，xxxy，xxxyi，xxxvii，xxyviii，sxxix
National Kaiilosiral l＇ark xxxviii
Nostli American Ethomos xxyi
Smithsonian bmilulinir repail ．s xl，xli
condition of the finnel xxiij
expemelitures for the year xxiii，xxiv＊
inconne available for ensmingrear．．．sli，xlii，xliif
receiphts for tlo year xxii，x天iv
sales and ropasiments xxiv
Fxhibit of work of Amprican artirlos，room assirned for 17
Kxhibition lalle ot National Nuselum，comdition of 24
Fir officion members of the Vitalblishment ix
Expenditnes，dotailed statement of，for－ intermational exchanges ．גxy， 13,60
sxyvi，xsxvii，xxxviii，sxxix
Sorth American Ethmology ．xxvi，xxxvii
smithsonian building repairs xl，xli
Experiments in aïrolynamics，by S．P．Langley 11,80
Explorations in Mongolia and＇Thibet，lyy W．WT．Rockhill 6.9
Sucretary＇s ruport on 10
H 。
Fairfax（＇omsty，Va．，ancient sorapstond ghanies in 49
F＂aloo éolombarinis arleled to Koölogiral I＇ark 78
sparverius aclded to Zoiloriceal l＇ark 73
lelis loo adrled to／aölogical l＇ark 73
Folis jarvialis added to Koilorical Pirk 73
 73
Fiold w ork of tha Burean of Vithanlowg $4!1$
F̌inanmes，Exerotivo Committere＇s report ont xxiii
F゙inablers．Freretary゚s report on 3,5
licyuest of James Hamilton 4
Ferplest of 大iomon Hilucl 1
Be＇fltest af Jammestuilhson 4
（＇mo！ressional alynopriations－
Istro－phşicial Obvervatary 5， 6
Fthoulonicall researchos 5
 \％
Nifionatl Mas•11m 5． 6
Zaiilowical l＇ark 5,$1 ;$
 1
 4
 Vi． 1
Ilorlerkioss limel 3， 4
lesifluary leaturyot smitucon 4
l'age
Firepooting of Smithsonian boilding eontimed 7
Finla collertion of llasemu, increase in 23. 28
Fish ('ommission, exchanges of 62
to be acressible toscirntific investinators xlvii
Fisheries collertion of Mnsuem, increase in $\because 1.29$
Flint frarries, Ohio, visit to $4!$
Flint qnarry in Indian 'Territory, examination of' 50
Floming for Mnsemm holling, Congressional appropriation for 5.27
Florio-Rubattino Line, grant free freight 6.1
Fligel, H. Felix, ackuowledgnent due 61
Flying squirrel presented to \%ö̈logical l’ark 71. 73
Ton Kawe vocabnlary, work on 56
Foorls collextion of Mhsemm, increase in 21,2 2
Fureign exchange transmissions. 66.67
inclividuals in correspontence with Exchange Burean 13. 59. 60
societies in correspondence with Exchange Burean $13,59,60$
Forget, A. grants free freight 64
Footways in Zö̈logical Park, construction of 70
Fossils, collection of, in Musemm, increase in 22, 23
Fossil plants, collection of Jnsemm, increase in 24. 23
Foster. Hon. Charles, member ex ofirio of the Establishment ix
Foster, llon. John \mathbb{W}^{*}. member ex officio of the Establishment ix
Fowkr, (ierard, arehaological tield work of 19.50
othice work of 55
Fox. (inorgr, presenterl red fox 71
Foxes added to Zoölogical Park 73
Foxas presented to Zö̈logical Park 71, 73
France, exthallge ageney in 65
transmissions to (66. 16
Free freight granterl bey shipping agents 11, 64
employed in exchange transmissions 13. 14. 63
Freiburg. I"niversity of, sent puhlieations 75
Freight paid on exchanges 61
Freshets embangering Zoülogical Park 81.82
Fuller. Hom. Melville W., chancellor of the Institution. x.xiv. xxi
member ex officio of the listablishment ix
Funch, Lalye dio. grant fire freight 64
Funds, permanemf, of the lustitution 4
Furniture and fixtures, (ongressional appropriation for 5
of National Whsemm, dotails of expenditnes for xxxv,
xxxvi, xxxvii, xlii
Musemm, estimates for $18: 9$ 6
(:
Game. A. T.. presented horned thal 72
fiamnet, Mro, added to Zoülogical P'ak 73
direrted resurvey of : mofent work in Ohio 51
(abrlening in Zoälogicall lark, cost ot 39
Ciarter suakes adrled to Koilogeal l'ark 73
faspons theory of solntion, deductions form, papry hy O. Masson 289
fiatsehet, Allaret … firld situlies oft. 53
Kilamatla dicotionary 57
attice work of 56
 111
1：154．
 が，
 \therefore ㅇ；
 （i．）
plan ol the Käluwic：al l＇ink 10
shlijects of the ：anmalal report iv
 （i）
 111
 1：3：；
 N1）
 （i2）
to bre areresibhotosejentitir inverimationt Nliii

 （i．）
 （15．）
 194．1is
 1%
（ilost thacro．report ons．in propal：ation 5
stully $\quad 1$ l＇．$^{\text {s．}}$ \therefore
 7
invorsligations ot＇ 3
 ．x．xi，xiv，xsi
 NVii
 7.5
（iilbrit，（i．K，on eontinentit problems of arolowg $16 ; 3$
Iiill，do Linncoy WV，wtiaw work of \square
（ioat akladed to Kö̈lowinal Park $7: 3$
 71． $7:$
（inode，fi．Brown，Lxsistant sormotary ol the Instifntion ix
rhaiman of the Hoderkins limd committee $\because 1$
（iopler ardrad to Zoiologieal l＇ark ？：
 tions in Renssia $\therefore 1,8:$
（iattingen，l＂iversily ol＇，sent pulolit：ations 7.7
Govermmont lii
 （i）
tu：allshlissions （i）
（iovernumentill exelunges，ox！（rut wl $[: 3,11,(i],(i)$
（iladiner lolan for Kö̈logical l＇ark 70
 Kin
 示．． 10
（if：plite arfs rollertion of Mnsenm，inforase in $21, \cdots$
 ＊I
 （i．）！
 71． $7:$
 （i．）
†ransmiscionls to ti6．1is
（ireat lon＇med owl presenfed to \％oiilowic：al l＇irk $7 \because, 73$
 1］
 （i．）
frallsmissions（os （i－．lix
（ifiswold］，latia，Hresented alliorator 7：
（iri\％\％ly lear escaped lrona \％oriblowiral I＇ark ：i：3
prasemforl to Zoülowiáal l＇ark 71． $7:$
（ijonnal rattlesnake presenteal to Koailorical l＇itlk 73， 73
Page.
Growth of exchange service $13,59,60$
National Musenm 21, 24, 23
Grus mexicana afled to Zoülogical Park 73
Guadeloupe, exchange agency in 6.)
(iman presented to Zoölogieal Park 7:
Gnara alha adted to Zölogical Park 73
rubrat added to Zoülogical Park 73
Guatusil language, material collected for 53
Gnatemala, exphange agency in. 65
transmissions to 67, 68
Guine pig added to Kö̈logical l'ark 73
(inms, collertion of, in Mnsemm. increase in 21, 23
II.
Habana, Cuba, exchange agency in 65
Habel leephest, amomet of 4
added to Smitherm fund xxiii
Hagne, Armohd, on the geologiaal history of the Yellowstone National Park. 133
paper on somping gerser 153
Haiti, oxchange arency in 63
transmissions to 67, 68
llates, Henry, paper on prehistoric New Mexican pottery 535
Haliedens lencoephalns added to Zoölogical Park 78
Halle, I'niversity of sent pmblications 7\%
Hallock, Mr. William, appointed smior assistant iu Astro-physical Observatory 9
resignation of 10
Hambmrg American Packet Company grant lier freight 61
llamilton bequast, amomet of d, xxiii
Hamilton James, bequest of. added io Smithson fund xxiii
Hapale jaceloms added to Zö̈logical Park 73
Harrison, Hon. Benjanin, nember ex officio of the establishment ix
Harrison, President, presented opossmm 71
Hastings, C.S.. paper on the history of the telescope 15
Hawks presented to Zölogical Park 71. 73
Hayes, C. S., presented black bear 71
Huating ant lighting of National Musenm 26
('ongressional appropriation for 5, 24
Wetails of expenditures for xxxii, xxyis, xxxii, xxyviii. xli
estimates for 1×9 ? 6
Heidelberg, University of, sent puhlications 75
Helsingfors, University of, sent pmblications 7.
Ilthenway Archaological Exploration, organized by F. H. Cushing 5:
Henderson, Jlon. Joln B., ippointed regent 2
arts of, ats regent x, xiv, xvi, xix
member of Executive Commitfee x
elected member of Execntive Committer. xvi
Henterson of Brothers grant fro freight (i)
Hendrickson, Mrs., presentod eapurhin monkry 71
Hensel, bruekmann if Lorbacher grant free froight. 6
Henslatw, 11. Wr, general tield station of 5
ofther work of 53
paper on tribat symonomy 53
prepared exhibit for Columbian Exposition 53
Heredity, evolution and present problems in, paper by Henry Fatirtield Osborn 813
Hovon presented to Zä̈losit：al｜lank
 $\because 1: 3$ $7 \because 7: 3$1’．．．．．
Heleodon platyrhimus，added to Zoölogical l＇alk
73
73
Hewitt，J．M．W．，aftioe work of $5 \cdot$
Hieroglyphic＂harater of Dla！atoduces diseovery of kuy fo $\therefore 1$
Highland（＇ombty，Va．，atehandosival exploration al． ：11
Jill，Jrof． f ．T．．presented ammallo． 71
Hillors，I．K．，bhotographia work of $\therefore 7$
Historic relies colla＋tion of Masemm，inceraso in 21，9．9
village sites examincal by limeat of Ethoology \｛！
History of the Telescole，he Jrof．（＇．心．Hasting （1．）
Hobart，Tasmania，exchathere asency in （6is）
Halere．ド．Wै $5:$
 xviii
 Asii
 ，i．sii
Hodglint git，serretarys report ou $\therefore 17$
＂foulats issumed 15．1！
advixary commottee appointerl $\because 1$
 oner 云油
field studies ot $\therefore 1, \because$
sure ial agent for the World＇s Commbian lixposition ！1
 72． 7
 1！日，\％
witice work of \％3
papre orn polter and sholl work ii：
texill labrios \％：
Hombluma，rexhange agemy in （i）
transmissionlsto 1i．7． 1 is
 （i．）
Honolnln，Hawaii．exrhange ravenry in （i．）
Hormed toal presented to Korilogical l＇ank ㅍ． $7: 3$
Homse of liepresentative．cxalanges of 10
 $1: 1$
Howlott．IV．W．．presented opersmans 71
Hmotry，＂xehange agentey in 6．：
framsmissions to tib，tis
 品
Hutchins，lwof．C．C．ateknowledghent of vahathle assistance． $!$
llydrochatros c：aphatio added to Kö̈hogical P＇ark $7:$
Hydromern，demsity of，determinalion af 7
 （iv
I．
Whis presented to Kooiogical Park 7こ， 73
lothand，exelange agency in （6）
lllimuis monmls，ex：manation of t° 就
fllostrations，list of viii
propated by liarean of lithmofogy 57
Hoportations lọ Naselat，tomgressional appropriations for $\bar{\square}$
estimaters for 18：13 i
 ㄷ． $2 \cdot 3$
 33：3：
Paw.
 (i
Inaleqnatey of appropriations made for Zoühogical Pats :3)
lnadecrary of watch force in Zoïlogital Park (i!)
Inclosntes in Zö̈logical Park, cost of 1.3
Income avalablo for enshing year xli, xlii, xliii
lurrease of exchange servica 13. .0. 190
in wehange shipments 83
exchange work 18,$13 ;$
of the library by exchanges 15, 74
the lilnary, soretary plan for 15
Tulex Merliens, exehanges of $6 \cdot$
luidian Affairs, office of. exchanges of (i)
 (.).
lingnistie fimilies of America, paper om, by J. W. Powell 01
remains on tha I plee Iellowstone, paper ly fol. W゙. S. lirackett 57
Territory, flint fuary in, examination of b)
Indiana, ancient works in, survey of :1
Intians, American, picture writing of, papor on $5:$
North Amencan, resuarches among. 27
hadividuals in comespondence with Exehange lincean 13, 5:4, 60), 61
Induction, magnetir, moleenlar progres in, paper hy d. A. Ewing 2.
Intlux of visitors to Zoölogiand Park : 2
Injuy to the Zoülogivad Park by rain stomes 1:1)
Imman steamship company grant fire freight 64
hasect collertion of Mhsemm, increase in $2 \cdot 23$
handiagent cherical forve in Exehange Burean 63
Intrerior bapartment, appropriation to for exchanges xlvi
"xrhanges of (i2
Intemational exehanges, arts amd resohntions of Congress relative to xlv, xlvi
('ongressional acts making appropriations x1, xlvi
appropriation for xxiii, 5 xxiii, 5
letails of expenditures xxv. xlii
estimates for 1893 $\overline{5}$
exchange of official doemments $13,61,62$
report of curator. 59
-orrespontence 61
disbursement. 60
(xpenses (6)
list of distribnting agents (i.)
list of shipping agents 6-1
olicial docmments 61
tahbular statement of work 59), 611
transmissions 66. 17. 18
Winlock, W. C., rurator is
Intermarional exchange service, secretary's rebort on $1: 3$
Harmtion, the burth of, by (1. T. Mason 80:"
faventors, the, of the telegraph and telephome, b:aper by Thomats firay ($3: 34$
Investigators, assistame given to 7
Irogurian latsulages, work on in
lste lionale, ancient copper mines of, examination of 50
Haly, exthange ngentey in 6.
tathsmixaions to 67, 68
． 1.
1：
 7：
 ： 1
 （6．）
transmisvinnsto． （i．）lis
 （i．）
Jon：V Iniversity oft，sent publications 7．
 \because
Jotnstom，Jr．W＇illian l＇．．atts of ：As racent 71
 xi
Jomeg．l＇．La．．colleretions mate ly 16
 2 1
 H2
に．
 tu1iont xliii
Kishmir，collewtions mande in 111
 7.1
 ：i2
 $\therefore 1$
Kidder berphost，amomet ot．
employmunt of．©xplained hy the servolar $\therefore \mathrm{i}$
Kiel，L＂nirorsity of，sent publeations is
Kiewitt，\iss Margaret，presented raceonn il
 7ッ．7：
 ii；
Kiow：collwetion at the World＇s I＇air π
Kiow a Jndians，sturly of －
 5
 $\therefore 17$
 －
I．．
Labor lhepartment，＂x－hanges of fi2
Lacmmptr，Lat．，visit to \therefore
 7：
 ：H
 （i）
 ix
 11
 iii
 ：A． $3!1$
In l＇resident of semater relation fo appropriations for Kö̈logiral l＇al ：3i，：3it
 l＇irk ：31．：in
 1
 $\therefore 1$
 $1: 3,8!181$
 til
Lee，R，M．，Jumented rosote 71
J"as.
Laipold, R. T.. presented smapping tarth 7
Leipxig, ex.lange asinney in (6)
I'niversity oí, scut publications 75
Length, stambard of, determination of 7
Lepus cunienlns adhed to Koülogical Park 73
Latter of serpetary to Fon. Benjamin Butterworth relative to money advameal for exchanges 1.5
to Congress submitting annmal report for 18.2 iii
to I'resident of the senafo relative to appropriations for Zaülogieal Park 36, 37
to Dun. Leland stanford relative to new masenm buidding (i
to Serretary of Treasmy on mrgent meds of Zoülogical l'ark 34, 35
tramsmittomes estimates tom Köilogical !'ark :3x, 39
Letter ralative to new Musemm building 6
Letters received ly Exchange IBmeath 74, 80
written lọ Exahange l’urean 5! 6, 60
Libbey. l'rof. William, jr., assisted in editing smithsonian tablas 12
Liheria, ex"hame agemey in (4.)
tramsmissions to (i7, 18~
Libararian, report of 7.
Libuat? , incorase of, secertary"s plan for (i)
seeretary's report on 15
of Congress, exehangess of (3)
appropriadion tor, wh arobunt of "xeltanges xlv
fo be areresshbe to sefortife burestigatoms xhii
Lick Ohservatory, grant to, for contimance of experiments 7
Licking ('omnty, Whio, speat Hint ghandex in. visit fo. $4!$
Light-llonse Board, exrhanges of (i)
Lima, lerm, exblange asemey in (i.)
Lines of development ot Koülogical Park 69
Lingnistic: families oí Amerira, paper on, ly J. W. Powell
Lion added to Kö̈logical l'ark 73
Liumids ant gases, paper loy VI. Rams:zy 303
Lisbom, Portngal, ex"hange ageney in 65
List of ancessions to the Natomal Masemm 8
Koiblogical lark 73
animals presenteri to the Köilogical lark 70. 71. 72
ex"hange agencits 65
illnstrations viii
shipping agents granting free freight 14.61
Lithology collection oi Mnsemm, increase in 22.23
Little Falls, Mimu., 'flarart\% ohjaets from 50
Liveing, (i. D.. paper on crystallization 269
Living inimals collection of Mnsemm, increaso in 22.23
Lizard presemted to Koölogical Park 72
Lizards added to Koülogiral lark 73
Lom trhilit of works of Amerisan intists, rooms granted for 17
Lodge, Hon. Hemy (ahot, reappointed regent xiv, 2
acts of, as regent, xi
London, England, exchange agency in 65
Lomvan, University of, sent publications 75
Lomar photography, comtimante of exproments 7
photographs, Neeretary's report on 11
Lomb, L'miversity of, sent publications 75
1：には＂
Latron eamarlemsis arloled to \％oühoric：al l＇ark $7:$
1．5nX rufus adsled to Zoölogra＇al l＇ark $7:$
 7．）
11.
Mederorge，W．WI．．presented marsh haw 71
Macaw presented to Zö̈logical l＇ark $7.3,7$
Dadeina，exelatnge acoery in 13．）
 $\therefore 1$
Matrisl，spain，exelange aqenty in （it）
 2．5
Magpia presental to \％ö̈logicall latk $\because \because, 73$
 7
 （i）
Maintratare of Zoühogaral l＇ark 2
（＇ongressional appopriation fors \therefore.
 ？2． 3,3
mitmates for 1×0 ： f；
Mallory．（＇ol．（iamirk，wibur work ol ＂：
 5．
Malta，rxalathge ageney in 6i5
Mammals conllaction wf Maselma，intratare in ッ，？！
in Kö̈logical Park 70
Man，alvent oft，in Amerita，hy A．de Guatmetign inl：
the ascenf of，paper on，ley V＇raml，Bakel N゚ーズ！
Managre，acting，of the Koiilogrical l＇ark，report of （i）！
Nanila，Jhilipspme Islamds，exchaner agemey in （9．）
Manter（＇onsul José，srant fere froisht $1 ; 1$
 $7: 3$
Marburg，l niversity of，sent publications 75
Marine llospital service，cx－langes of （i）

Marmoset athled lo Zö̈logiáal lark $7:$
Mar＞l hawk presenferl to Zoriological I＇ark 71， $7: ;$
Marylam，anciont soapstome quarries in，examination of $1!1$
arelarolonical field work in $1!$
 163
biblograply of aththopology in $1 \times$ ar $1!11$
sat the birth of invontion （0）： 3
Masson，Prot．Orme，on foductons from gamons theory of solntions ＂2s！
Materia medie：collections of Dlasemm，intrease in
Mattpanment，village site olf，examination of ！！
Manritins，exchange agelrey its （i），
Maxiteld，D）．H．，presentod Viremiad dere 11
 ． 1
sturdy ol＇，ly（＇yrus＇lhomats 51
Maras，br．Edgar A．，collerlioms matle by 141
Medal rotlection of Mnsemm，incrase in $\because 1,2:$
Merdeal dissertations tramshermed to the library ot the surgeon firnaral of tha Arme 71
 iili；
thureat of，exchanges of $6 \cdot$
 it1，$\because 2, \therefore$
 ：－$\because 4$
「：aye
「：aye
Mertimgs al the board of hegents xi，xil，xxi，1， 2
Megascops asio added to Kölogiral Jark 73
Meigs，lirn．M．I＇．，death of 2
death of，mmomberd to loard of Regent－ xiv
memorial rerord af xiv，xy
nerrology of 1.1
artsof，as regent xi，xiv
resohtion to Board of largents ratative to xis
Melhomme．Victoria，exchango agency in （iii
Meldola，Raphat，paper on the photographia image 81． $8: ;$
Hembers ix officio of the Fstablishment ix
of Board of Regents 2
Memorial record of Gen．M．C．Merigs 入ir，x
Menomonee Indians，Grand Medicine Nomety of，patper on 55
Medicine Society，stmely of 51，ジ・
Mephitis mephitica added to Zoülogical lark 73
Hervill，（ieorge l＇．hamblook of geology 81，$\times 2$
Mesozoic fossils eoblertion of Musenm，increase in 22， $2: 3$
Messialı of the Jintes，portrait of （2）
Metallmgy collection of Musemm，increase in 29.2
Meteorolagiral work of the smithsonian Institution 84
Mothod of eonducting exchange service （i）
Moxiro，exchavge agency in （ii）
transmis．ions to 67，68
Mirhelson，Prof，A．A．，iurestigations of 7
aid extemeded to． 7
Midweiwin or（irand Medicine Rociety of（1jibwas，paper on （2． $5, \ldots$
Migration of birts，report on．by J．A．Palmer ：3\％
Miller＇，Ilon．William II．H．．member ex officio of the Establishment ix
Mindeleff，（G\＆mos，archerologital field work of （19． 20
paper on aboriginal remans in the valley of the Rio Verde． Arizona $\therefore 1$
repairing roins of Casa dimade 5
Mineral collection of Mnsemm，incrase in 22.23
Minnesota，athoological objects collected in iI
red pipestome quarry in，examination of 51）
Nint，Burean of，exchanges of （i2）
Mincellameons Collections published in 1892 81
Secretary＇s report on 11
Discellanoons abjects reported on hy Secretary ： Assigmment oi rooms． 16
Horlgkins＇s donation 17
l＇erkins＇s collection of copprer innplements $1 / i$
statue of Prof．Baird 16
Statue of Roliert llale Owem $11 i$
Stereotwpe plates $11 ;$
＇Tomb，ot＇Smithson 16
Lse of Government collections 16
Missomi，cave in，examination of＇ 50
Mitawit or Gramd Medicine Nocinty of Menomonee lndians，paper on 品
Morcasin presentod to Zö̈lowical l＇ark 72.73
Mortels of purblos sput to spain i）
Hodern pottery ablaction of musemm，inerease in $21,2!$
1: ! : ••
Molevalar progress in magntir induetion, paper ly Irot. J. A. Fiwing 2.5
 -ッ, 2!
 14. 1.
 (i.)?
 71.7:
 $\% 1$
 (i.)
 11
 16i
 1!
 (i.)
Donhey, James, tipld work of 51
paper on the sated formulas of the ('heroknes 57
frep:rax exhibit for ('olmmbian Fixposilion 5.)
Nowar adelad to Koülogical l'ark 73
 7
 re:ppeinted regent хіч, 를
presented hill for a stathe of l'rot. Baind 16
re:apmintedrement xis
Mortalits in Zaibowial lame mand he insumicient quaters 70
Nortom, Hon, La, i l'. latter to, on apropriations for Zoülogial Park :3, :37
 iii
member ex onticio of the Vistablishment ix
arts of, as regeut NXi
Wonillaml, L. L'.. parne on the "Empire of the Air $: 3: 97$
Yomats, anciont burial, in Ohio, papreom, by R. J. Thompsin $\pi 1$
 (i.)
Nmmms Cave clif ruin, model ot, sent to Spain i.t
 6it
Wmaloch, John, resigum position as librarian 1.5
Whs rattus adted to Korilogical l'ark 7%
Masiral instrmment collortion, increas. in $\because 1.2 \cdot$
Xlakrat added to \%ö̈logiral J'ark 73
 7:
 7:
 1
Mytholog of Zani Intians, investisution of :1
N.
 $\because 3$
narica alderl for Woälogical loark 73
 (i3)
 xlvi
('ongressional appronniation for xxvii, xxiii,
details of expendinure: xxvii, sxviii, xxix, sxs, sxxi, xxxii,6
 (i)
แ.W Inlilding rantiral lon i)
r-porl fin $\mid x \times 4$ x:
 20
Page.
National Musemm, heeretary's report om growth of 2I. 22, 23
condition of the exhilition halls 24
'mratorships 24
clerical force 25
distribution of sperimens 2.5
pulliations 26
visiturs 26
heating alul lighting 26
Wordds Cohmbian Expmsition 27
to be accessible to seientitic investigators xlvii
National Zoölogical Park. (Né Zö̈logiçal Park.)
Nantical Ahmane, exchanges of 62
Naval arditecture collestion of Musemm, incrase in 21,22
Naval (hnspratory, appopriation to, for exchanges xlvi
to he accessible to serentific investigators xlvii
Navigation, Hurem of, exchanges of fi2
Navarro, ('onsul J. N., grants free freight 64
Navigazione tiencrale Italiant grant free treight 6
Namy Department, exchangets of 62
Nelmaska, ethnolngical work in 52
Necrology 45
M. C. Meigs 45
N. Porter 46
Nethertands, "xohang ageney in 65
tramsmissions to 1i7. 68
Nethemands American Stom Narigation Company grant free freight 64
Nowark work, Ohio, resurvey of. 49.50.51
New huilding for National Musem, Congressional resolntion for 7
New Caledonia, "xchange thency in 65
New fommelland. rxphange ageney in (i.)
New Mexiro, collertions made in 10
atimological researehes in $5 \cdot$
New Mexican pottery, prebistoric, paper on, hy Hemy Hales 53.
New fonth Wales, uxchange ageney in 6
transmissions to 15. 68
New York and Brazil Mail Stramship Company grant free freight 61
Mexico Steamship, ('ompany grant free freight 64
New Zealand, exchange agrucy iu. 65
transmissions to 67, 68
Niearagn:i, exchange agency in 65
tramsmissions to. (ī, 65
Niohndson, A. M.. presented white ibis. 72
Ninth ammal report of the Burean of Ethnology in hands of printer 27
Night horon presental to \%oallogial lark 72.73
North American Ethologs, ats and resolutions of Congress relafive to xlvii
Congressionalappropriations tor xxvi, xlii
fletails of expenditures xxri, xxvii, xlii
estimatos for 189% 5
Contributions to, volmmes II, V1, and VII 57
North American hadians, ethologic researches among the 49
portraits of, collection of. 57
researches among 27
North fiermam Lhoyd grants free freight 64
Norway, exhmpe ageney in 6
Pagn
Norway，transmissiuns 10 6i7．68
 「1
Nomber systems，pribitive，paper ob，by l．ovil．Conant
 78
 $7:$
（）．
 161
 （1）
Xasal，exchatmen of （i2）
（）hyere wí Natimal Zoülogical Park －
Wralot allad to Zaïlonieal Poark $7: 3$
Orlriols
（＇o．erant lioe freight i：1
Oftace of＇hiel of Fheinerrs，＂x户hanges of 1i2
lulian dflairs，rxelanges at 13：
Naval Intolligenco，exclablese of （iv
Whice work of burean of fithmologes． 53
（ ）thererss of the lastitution ix
 1．）， 131,1 i2
 571
great diat ylatriem in，visit to． 49
Wik，edlleetion of，ill Mnsellln，increase in 21.23
 \％
 ©1
 70
 动， 7
（）mathas，stmoly af な
（Hperalinos of the libaty 71
National \％aiilngioal l＇ark 131
＂phibolas getulus athed tor the Kaiological Park $7: 3$
 71． $7: 3$
 （i2
1 ．S．Nary，Avelanges of （i2）
 2－9，23
 N2
Whorn．Wenry Fairleld，on present problems in evohtion and hermity ：113
beloulogy rollection of Masemm，increase in $29,2: 3$
1）tawa，exelathge ageney in （i5）
Gosormment transunissions to 68
（Hfer ：aldeal to Kaïlogieal Park 73
Gwen，llon．Robrat Dals，stathe of，hill for，［alled to pras 16
 71．72， 73
＂xyent，drasity of，determination of 7
$1{ }^{3}$
 6.1
I：Ackages of rxahange，disposition of fis， 63
 13．11．151．1i2 by Fxelante Burean 13，21， 130
 175
Painted torte added to zouilogical l＇ark 7：
 $\because 1,23$
 ㄹ．．
Page.
 375
 1.7. 71
 (5.)
Ratilowal ('onryant, wrant free tomight lif
 7,
 $\because 1.2$
J'aper an picture writing al' American lnetiaus :1:
Papers descoibing the conlleetions of the National Mmselm (3)
Jillignta, exrlange ngency in (i.)
lar:umaribo, lonteh finianal, excluange agence in 6.5
 65
J'aroot presenterl foroölogical l'ark 7- 7.3
 xIvi
exclanges of (i.)
Pataxunt Rjv゙r, anmient villac゙e site alonge, examinod $1!1$
l'anneriotr, sir dnlian, presentet alligator 7.
Pala illmadillo adthet to Komlowical lark i.:
Percary jreselleal to Koinlowical I'ark 71.7%
Pendulnm olsseveations, continmation of 16
J'musylvania, Vork ('onnty, Indian hunting groinnt in, ralics wfo. 5.5
 16
l'rmmanent funds of the Institntion I
Jerry , Va \& (o. grant tiee fieight 64
l'ru, wachange agensy in 6.5
transmissions to 18. 1 is
Philippine Iskmets, exehange agency in (6)
J'etersen, 1l., presented swift fox 71
J'telps Brothers © (\quad o. gratut free freight 6if
 \therefore.
l'lıTHOsomat doughasii, adder to Zoölogical l'ark $7: 3$
 $21,2:$
grology collection of Jluspmm, increase in 24,23
 7
Jie: prical lumlsonia adrled to Koälogical J'ark $7: 3$
 5.3
Pigeon hawk premented foraijlogical l'ark 71. 73
 $5 x$
bibliogriaplyy work at 16, 57
 64
l'ine lifler Resiolvation, rollerotion mate at 5
l'ioneex Lise grant fixe treisht 13.1
l'jpestone draryy, "ximmination ot 50
Pintes. investigation mate amomo the "\%
Dlan ol the Kon]ogical Pakk 40
Polar bear addeet to the /oölowical I'ark 73
Polychrns marmoratus arleleal to Zö̈logical lark 73
lolyelerns added to Koiilogical Patk 73
]'olybuesia, exrlannge ayeney in 65
tlansmissions to 67, 6s
1'olymesian Bow. by E. Trexear 194
l'omares, C'onsml Mariano, grants fiee tiveight 6.4
lomil for aymatic amimals contemplated in Koülowical l'ark 711
I'ous in Zoölowiral l'ark, wst wí 3:)
Joneelain collection of Musemm, increast in $\because 1,2 \cdot($
Poreupine added to \%oölogisal Park
1:are 7:Porl an Priace, Ilaiti, exchange aqency in
16
Porter, Itr. Noah, death of \because
nerology of 16
resigned from Boarl of liegents 2
Port Lonis, Manritius, exchange ageney in 6.1
Portraits of North Ameriean Indians, eollection of 5
Portural, exchange agency in (6)
transmissions to 67. 68
Post-Otice Department. exchanges of (6)
Postage, Congressional appropriation for 万
for National Museum, Melits of expenditures for xxxiv, xlii
Mnseum, estimates for $189 \%^{\circ}$ (i)
exehange service 61
Potomac, Chesapeake region, areheological exploration of 5,1
Potomar River, slell deposits of, examination of $1!$
Pottery collection of Mrisenm, increase in. 21.23
of the American aborigines, paper on 53
prehistorie New Mexican, paper om, by Henry Hales. 73.)
Powell, J. W., diretor Burean of Ethmology 27, 58
office work of 53
paper on Indian linguistie familien of Amrricat 57
report on Burean of Etlmology 2x. 19
Powhatan languages, work on 51
P'airie dog preseuted to Zoälogieal Park. 71. 73
Prelistoric anthropolngy collection of Musenm, increase in 2.2. 23)
New Mexican Pottery, paper ly Ilenry Itales. 533)
works east of the Rocky Mountains, paper on $53,51,58$
Present problems in evolution and heredity, paper hy ILenry Fairtield Osborn 313
Presentations to the Zoölogiral park $70.71,72$
Preservation of collections, Congressional appropriation for 5
details of expenditures for...xxvii, xxxi, xxsv, xxxvi, xliiestimates for 18936
Primitive mmmer systems, paper on, by levi L. Conant $58: 3$
Printing of ammal report, Congressional resolution for ii
for Museun, Congressional appropriation for 5
paid for ou accomet of exchanges. 61
and himling, for Mnselum, wimates for $18!3$ (i)
Problams, continental, of geology, by 心. K. Gilbert 16i3
present, incolution and heredity, paper hy llenry labfield osborn. :31:
Proceedings of the lioarl of Regents, jomrnal of xi
National Muserm 27
Proryon lotor alderl to Zö̈logical I'ark. 73
 iliis
 (ix)
molerolar, in magnetir induction, paper ly . I. A. Viwing 20.7
Prossia, foneroment exchanges for (ix
Prablic Printer, ‘- (;2)
Publications for the year $1 \mathrm{R}^{\prime} \mathrm{E}$ 2. 81)
(ontributions to Kinowledge 11,80
Limar photographes 11
Wiserellaneons ('ollections 11.80
śmithsonian tables $1 \because$
Anmial reports. $11,8 \div$
II. Mis. 11 ! ———ilPage.
lublirations, serretary's report on 10
issned by the Bureau of Ethnology during the war 57
of National Masemm 27, 82
received hy the library 15. 74, $7:$
Prurchases hy Mnsenn, ('ongressional appropriations for 5
(2.
Quarries, anciont, examination! ot 19.50
Quatrefages, (omand de, on the alvent of man in America 513
Qucensland, exthange agency in 66
transmissions to 67, 68
Quito. Ernalor, exchange ageney in 65
R.
Rabbit added to Zoülogical Jenk 79
Raccoons added to Koülogical Park 71.73
Rainstorms disastrous to Zoölngical Park 69
Ramsay, Prof. William, on snggestions regarding solntions 299
praper on lirnids and gases 303
Rappahannock Talley, arehaological exploration of 49
Rat presenter to Zoölogical l'irk 71, 73
Rattlesnakes added to Zoölogieal Park 71, 73
Re-appointment uf regents \because
Recapitnlation of exchauge work $6 \times$
Recent plant collection of Mnsenm, increase in 22, 23
Receipts on account ot exchanges 13,60
for the year xxiii, xxiv
Records in exchange harean 63
Red fox presented to Zoälogical l'ark 71, 73
Red pipestone 'fuarre, examination of 50
Lied Star Line grant free freight 64
Redtailed hawk presenterl to Zö̈logical l’ark 71, 73
Rednetions in appropriations for Zoölogical Park 29
Rednction of Koülogical I'ark force, damages occasioned by :3:
Regents of the Institution ix, x
appointment of xiv
Compressional resolntions appointing xly
(sef loard of liegents.)2
losses lyy death 2
meetings of 1. 2
members of \because
resolutions by x, xi, xii, xiii, xiv, xvi, xvii, xix, xlv, xlvi, 3.37
La-inshusement to Smithsonian Institntion, dedicioncy alpuropriation for $3:$
liejusenescomeof (rystals, paper ly Prof. John W. Judd. 281
leplics of an fulian honting gromnd in York Connty, Pis, paper loy A. Warner. 55
litlision of Zani Indians, investigation of 51
Remains, ahoriginal, in the vailey of the Rio Verde. Arizona, paper on 54
hadian on the ITber lellowstone, paper hy Col. W. N. Brackett 577
of Ámithson, romoval of, consiblered hy Board of Regents xvii
Removal of the remains of S'mithson, ronsidered by Board of Regents xvii
Re-pasments on stceonnt of exchanges $13,60,61$
to Institution, amomnts tlerised from xxiy
$1: 1: 10$
Jifport，：Hmbal，of foard wt liewrnts i
 15：）
－Hraton of r－シrlailler 2．！
dirertor of the linta：n of Fithmolows －2
 sniii
 sxiii
 sxvii．
xxvii，xxix，xxs，xメxi，xxxii，xxsiii，

National Koijlowieal I＇ark xxyviii
North Ammriaran Ethombogy ANVi
smitlswnian lmilalins．reprais xl．． 1 li
condition of tho finnd xxiii
＂xpermitures tor the ye：r sxiii，xxiv
incomme：avilalofr for ensuing year xli，slii，xliii
rereiple for 1 ha your x viii，xsiv
 xベッ
lilmarian 71
 16．5
astrollobly 6 N_{1}
the seeretary 1，x_{3}
Ippemilix to $1!1$
BnIt：an wi Ethmology \because
miscellalloons ol，jects 1ii， 17
National गlısemul $\because 0$
Nitiomal Kä゙lowical l＇ark 38
Sercology 1.5
thes smithsonian Institution 1
 375

Reptiles in Kö̈lorical］lirk 71
 7：？
lieseanchos connlucter］by Institntion 7．
Istro－physical Observalory ふ
by l＇rof＂．1．1．Michelsom 7
いy I＇rol．1\％．W．Nomber 7
by I）r．Wolcott（ilibs 7
luna photorlajns loy I，ick floservialory 7
 $\overline{7}$
 1Resolntions hy Rosmat of Rewronts rulative to－
 ant secretaly ，ix．：
appronniation ol＇sulthaonian incomme Nvi
 x Xi
 N．
Horlykins elonation si，xii
Nationalal Kaïloriral l＇ark ， 37
 心i
 －vii
 x
 institations of leatraing ：14i
Resulntions．（bere（omgressional reablations．）
rase.
Resources of Zö̈logical l'ark are insutticient 70
Restoration of the ruin of C'asa Grande 28
Resurves of ancient works in Ohio. 19, 50, 51
Renleanx, F., paper on techmology and civilization 82, 83
Reykjavik, lceland, exchange agency in (i.)
Rhode River, archeology of, studied by W. H. Holmes 19
Riclmond, C. WF., collections made hy 10
Riges, Stephen Return, Dakota-English Dictionary hy 57
Rio Janeiro, exchange agency in 65
Rio Verte, Arizona, arrheologieal exploration of 50
valley of, aboriginal remains in, paper on 54
Roads in Zoïlogieal Park 69
are too narrow 69, 70
cost of 39
Rork, A. M.. presented suapping thrtle 72
Roeklill, W. Woodville, explorations in Mongolia and Thihet 659
Rome, ltaly, exchange agency in 65
Romeyr. Cipt. Henry, presented black suake 72
gronnd rattlesnake 72
log-nosed snalke 72
king snake 72
watermoceasin 72
whip suake 72
Rooms for scientifie work, assignment of 16
occupied by exchange force are required for library 14
Rommania, exchange ageney in 66
transmissions to 67. 68
Royal Danish consul grants free freight 64
Rubert, J. A., presented woorlehnck 71
Ruin of ('asa Grande, restoration of 28
repaired by Cosmos Mindeleff 54
Ruiz, Consul L., grants free freight 64
Russia, exchange agency in 66
transmissions to 67, 68
Sacred formulas of the Cherokres, paper on 57
Saers, Ralpli, presented flying squirrel 71
Salaries paid on accombt of exelanges 61
Sale of bonds, amounts received from 4
Sale list of publications of the Smithsonian Institution 82
Sale of publications, ete., amome derived from xxiy
Salishan bibliography, work on 56
Sin Domingo, exchange transmissions to 67, 68
Sin Jose, Costa Rica, exchange agency in 6:
Sin Salvador, exchange agency in 66
transmission to 67,68
Sandhill crane presented to Zoiblogical Park. 72,73
Santiago, Chile, exchange ageney in (is)
Sapajons added to Zölogical Park 73
Samders, E. A., assistant in Astro-physical Ohservatory 10
Sanromalis ater added to Zoölogical Park 73
Savings, amonnt of 4
Saxony, Government exchange for 68
I＇ga．
scantiness of resourers of Zoälowical Park 70
B－hmidt．E．S．，presented Ambrican eagle 72
schmmaeher，A．，dio．，grant tree freight （it
s‘iuropterus volurella added to Zoölogical l＇ark 78
Soroech owl presented to Zö̈logical Park 72， $7: 3$
Soudder，N．P．acting lihrarian 79
Secretary explains to Board of Regents the natmo of the proposed llorlykins slonation xi
employment of Kidder hequest am Bell domation xvi
letter of，transmitting ammal report to Congress iii
relative new Mnsenm bnilding 6
to Seeretary of Treasmry on urgent needs of the Koölogi－ ral I：ark 31,3
transmitting estimates for Zoïlogiral Park ； 3 ， 39
plan for in＇rease of the library，result of 15． 71
presented ammal report to Board of Regents xvi
remarks to Board of Reqents on eomblition of Zö̈logiral l＇ark xvii
report for $18: 2$ 1
report，appendix to 49
Senate，exelianges of 62
Servia，exehange ageney in 66
transmissious to 137,18
Serviees of engineers of Zölogical Park，cost of $3!$
Seventr anmal report of the Binean of Ethology 27.27
Sewerage in Zoulogical Park，cost of ${ }^{*}$ $3!$
Shanghai，China，exchange ageney in ［i．
shawano，vocabulary，work on 5
shell deposits of lower lotomac，examination of 49
shell－work of the American aborimines，paper on \％，
Shenandoah Valley，archarologidal exploration ol 50
Shippung asents granting free froight，list of 14． 64
Shoemaker，C．W．，translation by 37.
Nhute，1．Kerfoot，paper on the anthropology of the brain 29：
Simonds，Hon．William E．，member ex officio of the Establishment ix
Simpson，（i．W．．presented marsh hawk 71
Nignal Office，exthanges of 62
skunk added to Zoölogical l＇ark 78
Slow freight cuployed in exehange transuissions 63
suapping turtles presented to Zö̈logical l＇ark 72， 73
shakes added to Zö̈logiral l＇ark 73
presented to Zö̈logical l＇ark 7ッ，汸
Smithson beq口est，comlition of ．
remains of，removal of，considered by lowat of legents xvii
tomb of，conditions ot xvii
preservation of 16
Suithsonian bmilding，details of expenditur for xl，xli，xlii
repais，Congressionat appropriation for xl，xli，xlii
Contributions to Knowledge for the year 80
find condition ot ， xxiii
expenses on aceount ol explanges 13．11，131
tronnds，carrof，Congressional appropriation for xly
hatermational exphange servire，servetarys report on $1: 3$
Miserllanmous Collections for the yar 81
tables，publication of ${ }^{+}$ 12
rage.
Smithsonian [nstitution, condition of fous xxiii
Congressional acts and resolntions relative to......xles, xlvi, xlvii, xlviii
exchanges of 62
expenditures for the year xxiii, xxiy
incono a vailable for ensuing year xli, xlii, xliii
meteorological work of 89
rearipts for the rear xxii, xxiy
report of Secretary 1
Arlministration 2
Astro-physical OJsematory 8
Board of Regents 1
Bnildings 6
Establishment 1
Explorations. 10
Finamees 8
Internationad exrlanges 1"
Lihrary 15
Publications 10
Researeh 7
Sales and reparmonts xxiy
Soaping geysers, paper on, ly Arnold Hague $15:$
Soapstone quarries, ancient, examination of $4!$
Societies in correspondence with Exchange Burean $13,54,60,61$
Sociology of Zuñi Indians, investigation of 51
Soft-shell twrtle presented to Zoölogical Park 72, $7:$
Solutions, gaseons theory of, derluctions from, paper by O. Masson "8:
snggestions regarding. paper by Prof. William Ramsay 29.
Gouth American batrachians added to Zoölogical Park 73
deer presented to Zoölogieal l’ark 71
lizard added to Koälogical Park 73
Sonth Anstralia, exchauge agency in 66
transmissions to 67, 68
Fonth Rirer, arehatology of, studied by W. II. IIolmes 19
Sonthwestern areharologieal exploration organized by Frank II. Cushing 55
Spain, exchange agency in 66
transmissions to 67, 6x
Sparrow hawk presented to Zoölogical Park 71, 73
spanlding, Hon. O. L., letter transmitting estimates for Zoiilogical Park $3 \times$
Special meeting of the Board of Regents xxi
Specimens, distrihntion ot 26
Spermophilus tribecim-lineatus added to Zö̈logieal l'urk 73
Squirrel presented to Zoölogieal Park 71, 78
St. Helena, exchange agency in 65
St. Jolms, Newfomndland, exchange agency in 65
St. Petersburg, Rassia, exchange agency in 66
Stabler, J. P., presinted black snake 72
Stanforl, Hon. Leland, letter to, relative to new Musenm bmilding 6
Starin, llon. J. H., presented zebn 71
State institutions, repayment by, on accomit of exchanges 13, 60, 61
Statement, tabnlar, of the increase of the Mnsenm collections 21, 22, 23
exchange work 59. 60
State Department, appropriation to for Colmmhian llistorioal Exposition at Madrid xlviii
rage．
 澏
stathonery for exclamge servior （i1
Statistical burean，exehanges of （i）
Stathe of l＇rof．liaird，bill for，failed topass 16
statue for Robert Dale Owor，hill for，fitiled to pass 1 i
Status of themind porblam，paper ly Lestor F＇．Wame （i）：；
Steam linginmaing，lumean of，exehanges of （5）
Steamship companies granting fire diwight 11.11.
Stearns，］r．R．E．（＇．，pressmated homed toad ご
sterret lifos．presented alligatom Tシ
Stereotype plates，systematio arrangement of 16
 51
Sturensom，Mrs．，office work of 5
Stewart．（＇onsul Alexamblar，grants fre fireight 61
Stuckholm．Swetlen，exclange agemey in tit；
Stone Combty，Mo．，cavein，examination of 5！
Stome implements of tide－water region，paper on \％
Slassburg，Thiversity of．sent publications 7.
subjects treated of in ammal report for 18.2 iv゙
 7
SHggestions regarding solntions，paper by I＇rof．William Ramsay $2!3!$
sula cassalla，alded to Koïlogical Park $7:$
Storber，Thaddons，presented Virginia deer 71
 ti？
libarar．booksaleposited in 74
surgeon－faneral，1．A．Nary，wehanges of 6
Sbluey，Now Sonth Wales，rxchange agency in （6）
Syntheres prehonsils，added to Zoïlogical l＇ark 73
Syruimm mehnlosnm，athled to Koïlogical l＇ark $7:$
System arlopted in exclamue servion til
Systematir Work of Bamean of Ethmology 27
s゙wmlen．exchange agreney in $16 i$
transmissions to $1: 7.1$ 每
Switt tox，presented to \％öblowital Park 71，7：
switzerland，exchange agency in 64
tramsmissions to 1i7． 1 ix
＇I＇

＊xehange work －1！（6）
T＂asmania，explange agemey in （if）
（r：ansmissions lo 177．18
 $7:$
 $7:$
Taylor，Wim．．pessented armadillo 71
Toutep presented tor Zoölogical l＇irk 71， $3: 3$
Tromerigalpa，Jombums，exchange agencer in （i．）
＇leregraph and telephome，the inventors of，p：1per by Thomas tiras $6: 3$
＇Toleseope history ol＇，biper hy（＇．S．Lastings． ！ 1.
 27
 $\because 1$ ．$\because \because$
fabrios．paper on 53
＇Fhalassiaretos maritimus added fo Žaishonionl I＇ark 7：
＂The Establishment，＂members of I
I'age.
Tibert, collections made in 10
explorations in, by W. Woodville Rockhill 659

field work of 0,51
office work of 53
study of Maya codices 5
Thomas, J. R., presented black bear 71
Thompson, Russell J., paper on aboriginal burial monnds in Seneca C'omety, Ohio 571
Thomson, J. J., paper on discluarge of electricity 229
Tiger rattlesuake presented to Zoölogical Park 72, 7:
Tokyo, Japan, exchange agency in 6.)
Tomb of Smithson, condition of xvii
preservation of 16
Toriello, C'onsul Enrique, grants free freight 64
Toronto, Goverument trausmissions to 68
Tracy, Hon. Benjamin F', member ex officio of the Estahlishment is
Transmission of exchanges 11, 63
Transmissions of Government exchanges 68
exchanges received from abroad 63
to foreign countries 66, 67
Transportation charges on exchanges $13,60,61$
collection of Musemu, increase in 21. 22
Troasury Department, appropriation for, on account of exchanges xly
to, for World's Columbian Exposition at Chicago xlviii
letter to Congress transmitting estimates for Zoïlogical Park 38
exchanges of 62
Tree poreupine added to Kö̈logical Park 73
Tregear, E., on the Polynesian bow 199
Tribal synomony, paper ou, in preparation 53
Tiibingen, University of, sent publications 7.
Turkestan, collections made in 10
Turkey, exchange agency in 66
transmissions to (67, 68
'Turtles presented to Zö̈logical Park 72, 73
Thscarora dictionary, work on 56
Twelfth annual report of Burean of Ethnology ready for printer 27
U.
Universal standard of length, determination of T
Universities scuding their publications 75
Upper Yellowstone, Intian remains on, paper on, by W. S. Brackett 577
Ursas americanns ardded to Koölogieal lark 73
Urugnay, exrhauge agency in 66
transmissions to 67, 68
Ursus horribilis added to Zoölogical Park 73
U. S. Agricultmal experiment station, Nebraska, presenterl Amcrican beaver 71
U. S. Coast Survey continnes pendnlum observations in Smithsonian builling. 16
exthanges of 6
U. S. Entomological Commission, exchtuges of 62
U. S. Fish Commission, exchanges of 62
presented specimens 10
I'age.
U. S. (ieographical survey, exchanges ot 62
U. S. Geologital surver, exthanges oft. 62
1^{*}. S. National Musemm, exehanges of 62
I. S. Naval Observatory, exthanges ot 62
U. S. Patent Office, exchanges of 62
1°. S. senate, exclanges of 62
I*. N. Nigmal Oftire, exchamges ot 62
1°. s. Treasury Department, exelanges of 62
1°. S. Weather burean, exchanges of 62
Utrecht, University of, sent publieations 75
V.
Yanderburg (ounty, Indiana, ancicut works in, survey of 51
Van den Toorn, W. Fl., grants free freight 64
Yenezucla, exchange agency in 66
transmissions to (i7, 68
Vertohrate fossils in Musenm, increase in eollection of 2!2.23
Vietoria, exchange ageney in 66
transmissions to 1i7. $6 \times$
Viema, Thiversity of, sent publications 75
Virginia, ancient soapstone quaries in, examination of 1!
archwological field work in 49
deer presented to Zö̈logieal Park 71. 73
langnages, work on $51 i$
Visiters to the National Musemm 26
Zoölogical Park. :32. 69
Folandt, W. H., presented Arizona gray squirrel 71
Volmmes received by the library 15,71
Voorhees, Hon. D., presented hill for a statue of Hom. Robert laile Owen. 16
Vonchers examined he Executive Committee 5
Vulpes, fulous, lagopus, velox and virginimus added to Zoülogieal l'ark 73
W.
Wadsworth, P. L. O., assistant in Astro-physical Observatory 10
W:akashan bibliography, work on. $5 i$
Walks in Zö̈logioal Park, cost of 39
Wallii puchlo, model of, sent tospain 51
Wamamaker, Ifon. John. member ex officio of the Establishment ix
 5.5.)
War Department, appropriation to, for care of suithsonian gromms xly
exch:nges of (3
Ward, Prof. II. R., presented rawcoon 71
Watch fore in Zoülogical l'ark is inadergate (i)
Watclmen in Zoülogical l'ark, duties of 32
Water mocrasin presented to Zanlogical Park 72.73
surpl! in Zoölogical fark, cost of $3!$
Weather burean, exchanges of (i2)
Weeden, L. B'., presented blark suake 72
Whight of packages reenived by Exchange burean 13, 59, 60
Welles, Eusign Ruger, jr., presented paca 71
(:ay゙11:1) 72
boa 72
asonti 71
terees 71
litgr
Wellime, Ir. James (., acts of, as regent x, xi, xxi
chairmant of Execntive Committee. x
motion hy, regarding acceptance of Hodgkins donation xi
with reforence to acceptance of Hotgkins clonation xii
Wrllington, New Kankind, exchange agency in 6.5
Wesley, William, sisu, arlinowledgment dur 61
West Africa, axelange transmissions to 67, 68
West River, arehirology of, studied by W. H. Holmes 49
Whecler, Hon. Joseph, acts of, as regent x, xiv, xyi, xviii, xxi
re-approinted regent xir, !
remarks on contition of Zoülogical l'ark xriii
introluced resolntion relative to appropriations for Zoïlorgical Park xxi
Wheeler, Mrs., presented (row 72
Whip smake presented to Zoölogical J'ark 72. 73
White, IIon. Andrew D., regent iv
White Cross Line rrants free freight 64
White Larth leservation, oljects eollected a \dagger 51
White ibis presented to Zoölogical lark 72.73
White rabbit added to Zoölogical Park 73
White rat presented to Zö̈logical Park 71, 7 :
Wichita language, study of 53
Williams, Mrs., presented green parrot 72
Wiilliams. S. C., presented alligator 72
Wilson, W. E., presented alligator 72
Wiulock, William C., bibliograply of astronomy 743
curator of exchanges 68
a member of the Hodgkins furd committee 20
report on progress in astronomy in $1 \times 91,1892$ 15×1
Winnebagos, study of 52
Winter quarters for animals in Zöilogical lark 70
Wourlehnck presented to Zoiilogical Park 71, 73
Woodpecker presented to Zö̈logical l'ark 72, 73
Work done in the Zö̈lowical l'irk 39
Work in the Zaölogical Park for next fiscal year 4
Work of Exchange lBuran. $13,59,60$
explained 63
Work performed in the Zoölogical I'ark 64
Working force of Exelsumge Burean 63
World's C'olumbian Exposition, collections for, male hy ofticers of limean of Ethuology 27,28
at Chicago, Congressional act relative to xlviii
ethnologieal conlections marle for5l, $52,53,51,55$
Musennexhibit for $\because 7$
Wright, F. W., survey of ancient works 51
Wright, Peter, di sous, errant fier freight 64
Wiirtemberg, (${ }^{\text {Wormment }}$ "xchanges for 68
Wiinzburg, University of, sent publications 7.
I.
Yellowstone National lark, grelogical history of by Armoll lagu- 13%
Indian remains on, paper on, hy W. S. Hackett 575
7.
Zahlor. ('. ('.. preserted white rat 71
Zaht prosented to Zoülogical l'ark 71. 7:
Zoölugical l'arla, acreess tor 11
atets and resolutions of congress relative to xlvii, xlviii
additions to colle erions. xxxvii, xlii. 1.
Huildings, secretary's repert on 7
romblition of, disenssed hy Roard of Regrentsxvii, xviii. גi,
Congressional appropriations for............29, 强, :3, 85, 36, 37, :38, 39
danages orcasioned by molue redurtion of forer 3:;
dangers from freshet :31
detietiency alpopriation :3
estimates fin 1893 G
general phan of 10)
inadeguacy of appropriation 3if)
influx of visitors $: 3$
maintenance of ${ }^{\text {m }}$. $2 N$
ohjert of $\because x$
plans of buildings 11, 12, 1:3, 11
report of Secretary \because
resolutions ly Board of Regents relative to xiii. xxi
special meeting board of R"gents relative to xxi
work tone $3: 1$
work for next tiscal year 11
(Dee Nationai Zorilogical l'ark.)
Znñi Iudians, enstoms, inverstigation of i!
myths, contrihutions to, hy F゙. II. Cushing :
preblo of, morlol of, sent to spain $\therefore 1$
Ziirirh. L"niversity of, sent publications 75

[^0]: * Note. - The payments of salaries for parts of months in dannary, Mareh, daly, Angnst, Octoher, and doermber ane mate on the lasis of : $: 1$ days, and for the other months (extept February) at 30 days.

[^1]: 1 Assistant sermary of the suthomian lastitntion. in

[^2]: ：Hil．12

[^3]:

 \dagger See Plate 1.

[^4]:

[^5]: *Smithsonian Institntion. Directions for Meteorological Observations, intended for the first class of obsevers. Washington (ity, 1850 . Reprinted with additions in Ammal Report for 18.\% and again as at part of the smithsonian Miscellaneons Collections in 1870.

[^6]: *Schott, C. A.: Basce chart of the U'nited states. I)isenssion of C'aswell's meteorological observations at l'rovideucr, R. I.; Cleaveland's meteorolowical observations at Brmonsek, Me.; Hayes's physical observations in the Aretic seas; Hihdreth and Wood's meteorological observations at Marietta, Ohio; Ǩanés astronomical observations in the Arctic Seas; Kane's manetic observations in the Arctic scas; Kane's meteorological observations in the Aretic seas; Kane's physical oloservations in the Aretic Seas: Kane's tidal observations in the Aretic Seas; MeClintork's meteorological observations in the Aretic Seas; Smith's metcorologeal observations made near W'ashington, Ark.; Tables, distribntion, and variation of atmospheric temperature: Tables of rain and snow in the United States.
 tCoffin. J. H. : Orbit and phenomena of metrorie fire ball; Psyehrometrical tables; Storms of 1859; Winds of the glole; Winds of the northerm hemisphere.

[^7]: * Address delivered at the dedicationt of the (ioodsell Ohservatory wif ('arleton

 t C'arleton ('ollege.

[^8]: * Presidential Address before the British Association for the Advancement of
 115. 3-2 6 .)

[^9]: An adtress at a sperial session of the Amoriean lnstitnte of Mininy Linginerrs, at Mammoth Hot Fprings, Wyoming, on the borices of the National Park, Jul!. 1887. (From Trums. Im. Inst. Mining Eingineers.)

[^10]: ＊Pesidential adress bofore the（icological sociely of America ；delisered brome ber 30，1892．（From the Bulletin（ieoloy．soco of Am．，vol．IN，1＇l．179－190．）

[^11]: * John Murray: "On the height of the land and the depth of the ocean." Scottish Geographical Mag., vol. Iv, 1888, p. 1.

[^12]:

[^13]: *Dir Kıpferzeit in Enropa und ihr Verhailtnisis zur ('ultur der Judomermanem. 11 ien, $1 \times \times 6$.

[^14]: * A piece of this ropper gave, on analysis: Copper, $98 \cdot 46$ per cent; sulphur, 0.09 per cent; slag, 0.44 per cent, while a copper tool fomd in the workings gave copper, 97.78 per cent; nickel, 0.88 jer went: iron, a traco; lead, o.0.5 per cent; sulphur, 0.24 per cent; slag, $0 \cdot 07$ per cent.
 + By North America is ment only the non-Spanish portion of the country:
 \ddagger Orichalcum in plerisque loris se cidisse apud incolas pradicat.

[^15]:

[^16]: *Smithsonion ('ontributions, vol. XIII, 186'2.

[^17]: *Wilson; I'rohistoric Man, vol. I, p. 27-

[^18]: * Indians who lived in Virginia, near the Nonth ('arolina line.

[^19]: "Report of the Geologiral survey of North Carolina, vol. i, 1875, 1. 300.

[^20]: *From The Jonernal of the Polynesian Society (Wellington, New Zealand), for April, 1892; Yol. I, pp. 56-59.

[^21]: * In the Aucklond Wefly News of Annil 16, 1892, is an account of an old PakehaMaori named John Harmon, who came to New Zealand a child in 1s\% , and is now dead. "He told a tale of a bat lle hetween the Ngati-whatua aud the Ngati-maru in the Thames Valley which was fonght ont with bows and arrows." it would perhaps be well if some member of this Society resident among either of these tribes wonld make inquiries among the old wen as to what circumstance gave rise to llarmon's story.
 tOn the other hand, 1 do not know of any list of weapons or legend of monsterkilling which includes the kotahe as atwean. Set I am informed by Mr. Percy Smith that not only was he shown an old rnined pu which was conquered hy spears or darts thrown more than a quarter of a mile by means of the "whip," but that he k nows that they were in use at least two hundred years ago.

[^22]: *On page 61 of Mr. Codrington's "Malanesian langnages" appears a note by Mr. Fison as to the Tongans haviag got the word fone with the bow fiont Fiji. No anthority is greater with regard to Melanesian speech than is the opinion of Mr. Fison, but I brlieve in this matter that he had been misled hy his native informant. In the first plate, the bow hat bern in mee long hefore the lifetine of the native in question began, and this makes the etymology of the name leyond his knowledge except as a gness ; and, in the second, the wide distribntion of the word among Polynexians makes it probable that the 'Tongans nsed the same word as the rest of their nation, and did not need to borrow from Fiji.

[^23]: XLIV, ple. 12-11, whl 31-3\%.

[^24]: 336 , and 15 - 461 .

[^25]: * Ahstract of a Priday wening diseomse delivered at the lioyal Institution on

[^26]: *Encycloperlia Lirit., Ninth Ed., 1877, art., " ('onstitution of' Jomlies," vol. Vi, p.

[^27]: *The Friday evening discoursm, delivered at the Royal Institntion on Jamary 30 , 1891. (From Nature, May 28, 1891; vol، xıv, 1p. 83-86.)

[^28]:

 sik," 1888 , Bri. r, p.:312.

[^29]:

 1]. Mis. $111-1!$

[^30]: - In order to save space. only the upper portion of the cnrve is here represented. as it shows all that is essential to the argment. Of the twelve exprimental points one appears to be somewhat misplaced; but this does not affect that part of the curve shown in the figure.

[^31]:

[^32]: * Lecture delivered at the Loyal Institution, on Fridas, May s. (From Visture,

[^33]: *'The Cartwright Lectures for 18:2: slelivered before Almman of the ('ollegr of

[^34]: 1884, vol. xvill. p. 1.
 \dagger The remakable skulls and skeletons which have recently been discovered at Apy remove all doubts as to the normal, i.e., racial character of the famous Néanderthal skull, which were entertained by Quatrefages and others. Ser Fraipont and Lohest, Archives de liologie, 1887, 1. 697.
 \ddagger 'This is an epidermal or twitehing musele in the quadrupeds.

[^35]: * For recent gencral articles, see Blanchard, "L'Atavisme chez l'Homme," Rer. de Anthrop., 1885, p. 425 ; and Baker, "The Ascent of Man," Proceedings of the American Association for the Adrancement of scicnce, 1890. Also, Smithsomian Report for 1890, p. 447.
 † Journal of Anatomy and I'hysiology, 1889, p. 617.

[^36]: * lon'mal of Anatom! and I'lysiolo!!!, 1886, p. 636.
 + Ibid., 1s90, 1r. 117.
 \ddagger Ibid, 1887, p. 473 .
 § Morph. Jalurl., 1siti.
 \|.Jowrual of A Automy and I'liysioloyy, 1891. 1. 520.
 - Ilicl., 18:10, 1. 127.

[^37]: * In the elephant and rhinoceros.
 t Morph. Juhrb., Bd. V1, 1. 5is.
 \ddagger Anencephaly, it shonld be said, is frepuently associated with numerous reversions.

[^38]:

 §.Jorratel of the futhromological Instilute. 1880,
 || Ifontal Anutoin!: p. 116.

[^39]: * Dental Anatomy,]. 116.
 + This tooth has bean fomb in keveral other macrodont tribes (Australians, Tasmanians, Neo-Caledonians), Fontan.
 \ddagger Odontologische Forschungetw, p. 268. This rudiment is fonnd between the first and second normsal premolars.

 IS British and Foreign Medico Chirurgical Revieu, 1stis.
 \|. Towral of Anatomy and L'hysology, 1887. 1. ©.,
 T Banue believes that the missing incisor is the primitise merlian one, whale Turner believes it is the secoud. The fossil record supports Windle.

[^40]: Cer lilamehard, op, cit.. p. 15t.

 \ddagger Aun. Id la Nore de Méd. de lietud, tsess.

[^41]: * Sie Humboldt, 18:0; also Nalure, 1, iso, p. :301.
 \dagger Journal of the Anthropological Institute. 1א80. p. Hiti.
 \$1 Darwin: Descent of Man, μ. 12.

[^42]: *Nur lis Anomulics Musculaires, p. Ebt.
 †.Journal of Auatom! and Physiology, 1890,]). TE.
 † Or extensor ossis metacenpi pollicis. Ser 'Testnt, p. ins.
 ji Quain describes serenty anomalons maseles (Amt., vol. 1.). Testut deseribes at still larger number.

[^43]: * Sier les Anomalies Mnxruluires, 1) 760 .
 †. Journal of Anctom!y aud I'hysiolog!y, 1sisl, p. 巳15.

[^44]:

[^45]: *See Essays upon Heredity and Kindred Biological l’oblems, 1889. Trans.

[^46]:

[^47]: * The Latr of Heredity, 18x:3.
 tsm l'arthenomenesis. in his Anatom! of Fotebrates.
 \ddagger Gencrelle Morphologic. vol. 11, 1. 170.
 ! \%ool. Inz., vol. 1ג, 1'. Livi.

[^48]: * Op, cit., p. 129.

[^49]: Itescral of Man, p. 32.

 §The Muybridge Work at the University ol Pemmsly:miat lhilalelphia, 1888 .

[^50]: See especially the papers of Ryder, Cope, and the writer, "Evolntion of Mammalian Molars to and from the Tritulercular Type," American Naturalist, 1889.

[^51]:

[^52]: *Journal of Anatomy and I'hysiology, 1888, 1. 595.

[^53]:
 funs. IK?
 1k:ms., in press.

[^54]: * Nee Ray Lankester', Nuture, July 15, 1876.
 \dagger Principles of liology, vol. i., p. 256.

 § Veber d. Gedäshluiss als cin eullgemeine Function d. orgunischen Materie. Viemna, 1870.
 || See also Thomson, op. cit.. p. 102.

 9) Berthold: stadien iiber Irotoplasma-Mehumili. Leipsic, 18xti.
[^55]: * "Lelner den Transforminmus," Arair f. Anthropologir, 1stic. P. 1.
 \dagger Bialogical Wemors, p. 43ะ.

[^56]: * Comples-Rendus. Mareh 13, 188:. These experiments have been confirmed by Obersteiner.
 tsee the cases eited by Ribot, and Darwin: Animals ared Ilants Cuder Domesticafion, vol. 1, p. 437 .

[^57]:
 11, Mis. 114——:

[^58]: "Sce Huxley, Article "Evolution," Enc. Britannica, vol. vin, p. 746.

[^59]: *See also the introduction of Wermamn's last essay, "Amphimixis."

[^60]:
 149-517. See also Hartog, Quart. Jour, Microscop. Seience, December, 1891.

[^61]: See Geddes and Thomson: The Exolution of Sex, 1891; also, Diising: Die ReguJievug des Geschlechtsvalualtuisses bei d. Vermelnong der Menschen, Jiere mud Pilanzen, Jen. Zit. fo Natur., Bal. 17, 1884.

 + On the Number of Polar Botlies an 1 their signiticance in Heredity, 1887.
 \ddagger Ei und Samenbilaaig bei Nem..toden, Archir. f. Mikr. Anat., Bd. 26, 1890.

[^62]:

[^63]:

[^64]: 1×91.
 \dagger Whan in the fall of lasio. the Ihmmarian committer for tho Remond International

 (t) phace my suall abilitios all the diopsal ol the eommittere

 pesent roport than the person making it. When herentures howera, to apmen

[^65]: * This is done with all resseration, for there are sill sablated phees in the work where the above views, fommery subseribed by the athor named, are still held.

[^66]: T＇almチ́＂，15：ィージゥ。

[^67]:

[^68]:

[^69]: （ \quad（1）

[^70]: Two Biloxi tales, J. Owen Dorsey.
 Relation of the tales of Inele Remms to the animal stories of other comatries, Atolph Gerber.

 Survival of fire sacrifice among the Intians of Maine, Miss A. L. Alger.
 Folklore of the Azorian Colonies, H. R. Lang.
 A modern oraele and its prototypes. H. Carrington Bolton.
 Tales of the Mbenakis, A. R. Tisdale.
 Chippewa tale of the ent of Hiawatha, H. H. Kither.
 Pawnee mythologs, (i. R. Grinnell.

[^71]: *See printed catalogue, and science, N. Y., xix., 225.

[^72]: Presidential address delivered before the bighth laternational (ongress of
 Internat.. Pr. 13-iñ.

[^73]: " This deseription well illastrates the detriment and sometimes imperabole damage to science arising from ill-informed opening of monnds. A momel once disturbed is valueless to stience. Its evidence as tuthe life history of its comstructors is destroyeth. Cirenlar 49, issued by the Smithsonian Institntion, No. 730, explains this and contains drections for monnd and cave explorations.

[^74]:

[^75]: * Tylor: Primitire Culture: vol. 1. p. 213.

[^76]:

 + Dechamp's L'Anthropologie, 1s量, p, 318.
 \ddagger Tylor Primitior Culture, vol. ı, נ. 2t3.

 || lamholtz. C'., Pinlletin de lit Mocité d'Anthropologie de I'aris.

 †t Wैeiner, Peron rl Polivir, p. 5tio.
 $\ddagger \ddagger$ Miillrs, crmulriss der śm., B. IV., Jhteilmgg 1, multu lorn.
 fis Voyage de In líricur des Imazons, p. Wit.

[^77]: * Miiller, (irundriss der s゙pr., 1. I., 1 Abt., P. 389.
 + op. (it., 1. 11.
 $\ddagger(1)^{\prime}$. Cill., 1 . 89 .

[^78]: * Chase, Iroc. Ime. Ihil. Sorc.. 1Nfin, p. 2:3.
 \dagger Pers. Narrative, vol. v, p. 160ं.

[^79]: *Encyclopadia Metropolitana, article "Arithmetic."

[^80]: * Letourneaux, Bull. Sor. Anthropol., Paris, 1886, p. 91.
 + Trumbull, J. H., Proc. Am. Antq. soc. 1875, 1, 76.
 \ddagger Marre, A. De l'arithmetique dans l'archipel Indith, 1. 7.
 § Trumbull. J. H., Trans. Am. Phil. Ass'n, 1874, p. 46.
 $\|$ Marre. A., op. cit.. p. $7 . \quad{ }^{* *}$ Dic s'pacheershiedenheit, p. 30.
 tr Nemmayer, opr. cit. B. 11, p. 229.

[^81]: *Stanley, Through the loark Contiment, 11, p. 486.
 \dagger Op. cit. 11, 1. 492.
 t† Geschichte der Mathematil, 1. 20.

[^82]: A saturday lecture delivered in the lecture-hall of the 1 . S. National Musemm, under the amspices of the Anthroplogical sorfoty of W:abington.

[^83]: * An address on the areasion of the centemaial reblhation of the organization of the U.S. Patent Onice: delivered in Washington. Procedings umd Addreases, 1891, 1'1. 403-412.

[^84]: * We ought to remember, howerer, that an invention is not always a thing; but that it may he any series of actions comblug towand some new ent. We shonld keep in mind, also, that all our aetivities involve materials and their fualities; hmman, animal, and physical forces: tools and machines; processes, and prodnets; and that iuvention may take pince in any or all of these.

[^85]: *In a Natnrday lecture delivered in the National Mnseum, March 18, 1882, the anthor songht to eombine the result of Morgan's enlture stages, being seven, with the work of Klemm, Tylor, Lanc Fox, and spencer, who had treated separate arts from an evolntionary or, 1 should say. an inventional motive. This any one may repeat for himself by ruling a broad sheet of paper into cight colums. At the top of the several colmme write the words of Morsan, or, better, the firstoseven Roman nmmerals. In the lines down the left-hand margin write any words yon choose to examine, say musir or zetpons. The seven stages of music or of weapons would appear loy reading across the sheet from beft to right. Care shomld be taken not to confonm the speeies of the same thonght, for example, bruising, piereing, or slashing weapons; or string musir, with reed music or horn music, A table made thus for all activities would be an index of all cnltnre in all time.

[^86]: ＊An address on the oreasion of the rentemaial relebration of the organization of
 1P．413－4：2．

[^87]: * For these figures, and other data used in this paper I am indebted to my friend Mr. II. H. Bates, Examiner in Chief, in the Patent Officr.
 tione the Lemet, Ortobers, 1889 , ן. 683.

[^88]: * British Medicul Jommal, July : , 1s80, vol. if, p. 24.
 \dagger Congressional cilobe, Mareh :3. 1849, p. 697.

[^89]: *Address at the tirst joint meeting of the sedentitic Alliance of New Vork. November 15, 1892. (P'muphlet liport, pp. 18-11.)

[^90]: * See Iroc. American Issociation I. S. 1891, voh. xL, P. 419-451.
 + Report Harrard Col., 1891, ए. 182.
 \ddagger In his address before the American Association for the Advancement of Science, in 1891, President ['rescott, referring to this general subject, said:
 "To murture investigation in science is the largest opportunity before the American people. Research, systematic and wisely directed, roguires good organization and strong support, the support of many powers. It must have the support of ahle and persistent men. It needs the eonfrence of workers, and the dissemination of knowledge in societies like this. It wants the interest and the comblence of the public. It asks and will alway̧s obtain the eonstant, helptul use of the press. It requires distinet provision in colleges, and in the institntions of higher edncation. It onght to be sustained expressly by the covermment, both in the several States and muder the United states, and sustained on loroml and permanent fondations. Still, it needs private henefactions. Research is the gowth of years. Let it he the demand of all, and let this eall find ntterance everywhere."-Proceedings Am. Assoc.,1891, vol. Xi, 1. 440.

[^91]: * Lieport Harwad Col., 1891, 1. Y2.

[^92]: * Jature, May T, 1891 ; vol. xtiv, 1, 17.

[^93]: ＊！＇rocredings，18！11，vol．1．，1．235．
 t Report，18xs，p． 13.

 § Keport，1891，Jp．Jxxxvi tor．Tif．
 §Bibliothecu Fotunira．

[^94]: * Proceedings, 1891 , vol. 1., 1. 242.
 + Report, 1890, 1. 90.

[^95]: *Pres. Lovering's Address, I'roccedings, vol. xxiv, p. 380 .
 \dagger Proceedings, vol. xxiv, p. 14.

[^96]:

[^97]: "Since the above was written ath addional million of dollars has been given by Mr. John II. Rockefeller to the University of (hicago, making **, 600,000 giveu by him alone to that institution within less than three rears, a munifieence hitherto unexampled in private endowments, some portions of which, it is hoped, will be available for the maintenance of original scientific research.

[^98]: ＊An adelress on the ocrasion of the（＇ondemmial celehmalion of ale organization of
 1891，111．1デラ－19ヶ．）

[^99]:

[^100]:

[^101]: * Sre his Book of Ser Marco Polo, こd idit., $1,277$.
 †D Halde, "Ibescription de l'Empirede la Chine," av, 103. The Mongen name of this town is Koko hutun, or "Blum town." Chinese listories of the serenth century mention it under the name of Tung-shon Chiang.

[^102]: * Huc, "Souvenirs d'un vogage damns la Tartarie et le 'Thibet," (12mo. edit.) i, 164.
 \dagger Huc's Tchagan Kouren, se op. cit., $1,215$.
 \ddagger Timkowski,"Voy, a Peking," $11,265,267$, sajs this range is called Khadjar Khosho (Khajar hoslos), or Onghin oola.

[^103]: * (0). cit., 11, 379. See also Dn Halde, op, cit., IV, 375, where we lairn that blie tirst Elent prince of Alashan hat only the rank of Beileh and was named Baturn Ts:onam. A Beileh is a prince of the third order, a Wime the second, and a choin Wang of the first.
 +This eity is called Irge hotun hy tho Mongols, and is tho Irghai of Mohammerlan writers and the Egrigaia of Mareo Polo.
 \ddagger This range is ealled Hsi shan by the Chinese. hnt on onf mapls it is msually designated hy the name of Alashan Momatains.

[^104]: * See G. Carter Stent, "Chinese and English Vocabulary," p. 714.

[^105]: * See "The land of the lamas," p. 11-58.
 t The principal branch of this people forms now one of the Turkoman tribes unfler linssian rule residing arouml old Sarakhs. It numbers ahout 5,000 families. "The three nations of the Salars are maned Valawach, Githara, and kiarawan. They have an evil reputation even among Turkomans, and are said to be generally hated." See Lient. A. C. Yate, Travels with the Afghan boundary eommission. p. $301-302$. See also on the Chineso Salar. Rob. B. Shaw, Jomrn. Roy. As. Soc., new ser, x, p. 30-5-316 and lewiker, Bull. Suc. d'Auth. tle P'uris, 3e serie, x, 206-210.

[^106]: * In the narrative of the journey of Benedict Goës (1603-1607) it is said that the Mohammedans at Su Chou (northwest Kan-su) were shut up every night within the walls of their own city. which was distinct from that inhabited by the Chinese. See H. Yule's Cathay and the Way Thither, p. 582.

[^107]: * Sed his River of Golden sind: "The marrative of a journey through China and oastern Tibet to Burmah," '2 vols. 8 von., 1880.

[^108]: * Panaka (i.e., P'a, Chinese " eight," Na, patronymic, and k'a or chia (Chinese) "family" or "clan"). They also call themselves Panakasnm; the last word, meaning in Thibetan "three," is added on account of three great divisions of these clans at the present time. The Arik (about 10,000 families), the Konsa (2,000 families), the Bumtok (2,000 families), are the largest of these tribes living north and west of the lake; the priucipal tribes of the Panaka south of the lake are the Chamri, the Tubehia, and the Wutushiu.
 +See "Land of the Lamas," 1.73 , et passim.

[^109]: * See "Laud of the Lamas," p. 159. Douglas Forsyth, Journal Roy. Geo. Soc., xlvir, p. 6, says: "There are numbers of eneampments and settlements on the bauks of the marshy lakes and their connecting channels; perhaps there are as many as a thonsand honses or camps. These are inhabited by families who emigrated there about one hundred and sixty sears ago. They are looked upon with contempt by true believers as only half Mnsselmans. The aborigines are deseribed as very wild people-hlack men with long, matted hair, who shun the society of mankind and wear clothes made of the bark of a tree. The stuff is called "luff," and is the filser" of a plant called "toka chigha," which grows plentifnlly all over the saudy wastes bordering on the marshes of Lop." Wild men are said to live on the lower Tsangpo, in Tibet. The Mongol Lama Sherab jyats'o says that in Pemakoichhen (north of Hira Ledam) the Lh'opa "kill the mother of the bride in performing their marriage ceremony when they do not find any wild men, and eat her flesh." See Report on the Explorations in *ikkim, Bhntan, and Tibet, from 1856 to 1886, p. 7 ; also pp. 50 and 52.

[^110]: * The first meeting of the committec, for organization, etc., was held at the time of the Congress in April 1887, the second meeting or the first regnlar meeting for discussions, in September, 1889 (not 1890 , as stated by a misprint in the review of Astronomy for 1889-90).

