
Bourne Shell Scripting/Print Version
From Wikibooks, the open-content textbooks collection

Hi there! Welcome to this Wikibook on the wonderful world of the Bourne Shell!

This book will cover the practical aspects of using and interacting with the Bourne Shell, the
root of all shells in use in the Unix world. That includes interacting with the shell on a
day-to-day basis for the purposes of operating the computer in normal tasks, as well as
grouping together commands in files (scripts) which can be run over and over again. Since
it's not practical to talk about the Bourne Shell in complete isolation, this will also mean
some short jaunts into the wondrous world of Unix; not far, just enough to understand what
is going on and be able to make full use of the shell's very wide capabilities.

There are also some things this book won't do for you. This book is not an in-depth tutorial
on any kind of programming theory -- you won't learn the finer points of program construction
and derivation or the mathematical backings of program development here. This book also
won't teach you about Linux or any other type of Unix or Unix itself or any other operating
system any more than is necessary to teach you how to use the shell. Nothing to be found
here about Apache, joe, vi, or any other specific program. Nor will we cover firewalls and
networking.

We will cover the Bourne Shell, beginning with the basic functionality and capabilities as they
existed in the initial release, through to the added functionality specified by the international
POSIX standard POSIX 1003.1 for this shell. We will have to give you some programming
knowledge, but we hope that everyone will readily understand the few simple concepts we
explain.

Having said that, the authors hope you will find this book a valuable resource for learning to
use the shell and for using the shell on a regular basis. And that you might even have some
fun along the way.

Authors

BenTels, started the book1.
Kernigh, added Substitution and Loops chapters2.
Quick reference was originally by Greg Goebel and was from http://www.vectorsite.net
/tsshell.html (was public domain licensed) and was partly wikified by unforgettableid.

3.

Other and anonymous contributors4.

External References

IEEE Std 1003.1, 2004 Edition (http://www.unix.org/version3/online.html) - The 2004
Edition of IEEE/POSIX standard 1003.1 (one-time rgistration required).
An Introduction to the Unix Shell (http://steve-parker.org/sh/bourne.shtml) - HTML format
republication of Steve Bourne's original tutorial for the Bourne Shell.
UNIX Shell Script Tutorials & Reference (http://www.injunea.demon.co.uk/pages
/page201.htm)
Beginner

BASH Programming - Introduction HOWTO (http://tldp.org/HOWTO/Bash-
Prog-Intro-HOWTO.html)
Linux Shell Scripting Tutorial - A Beginners handbook (http://bash.cyberciti.biz
/guide/Main_Page)

Advanced scripting guide
Advanced Bash-Scripting Guide (http://tldp.org/LDP/abs/html/index.html)

Print
UNIX IN A NUTSHELL: A Desktop Quick Reference for System V & Solaris 2.0

(2nd edition)
Daniel Gilly et al.
August 1994
ISBN 1-56592-001-5

Comparing Shells
Almost all books like this one have a section on (or very similar to) "why you should use the
shell/program flavor/language/etc. discussed in this book and not any of the others that
perform the same tasks in a slightly different way". It seems to be pretty well mandatory.

However, this book will not do that. We'll talk a bit about "why Bourne Shell" of course. But
you'll soon see that doesn't preclude other shells at all. And there's no good reason not to
use another shell either, as we will explain a little further down.

Bourne shell and other Unix command shells

There are many Unix command shells available today. Bourne Shell is just one drop in a
very large ocean. How do all these shells relate? Do they do the same things? Is one better
than the other? Let's take a look at what makes a shell and what that means for all the
different shells out there.

How it all got started...

The Unix operating system has had a unique outlook on the world and the correct way of
doing things ever since it was created back in the 1970s. One of the things that sets Unix
apart from most other operating systems is that it has always been an OS whose primary
focus was on what we call power users nowadays: people who want to squeeze every drop
out of their system and know how. People who don't sit around and dream of what could

have been, but crank up the compiler and start coding. Unix was meant to be programmed
on. Unix is nothing if not a platform that you have to program on to use it. Unix doesn't have a
user's interface -- Unix has a stable OS kernel and a C library. If you're not trying to do actual
hard-core programming but rather are trying to do day-to-day tasks (or even just want to put a
little program together quickly), pure Unix is a tremendous pain in the backside.

In other words, it was clear from the start that a tool would be needed that would allow a user
to make use of the functions offered him by the coding library and kernel without actually
doing serious programming work. A tool in other words that could pass small commands on
to the lower-level system quickly and easily. Without the need for a compiler or other fancy
editor, but with the ability to tap into the enormous power of the underlying system. Stephen
Bourne set himself to the task and came up with what he called a shell: a small, on-the-fly
compiler that could take one command at a time, translate it into the sequence of bits
understood by the machine and have that command carried out. We tend to call such a
program an interpreter nowadays, but back then shell seemed a better word (since it was a
shell over the underlying system for the user). Stephen's shell was small, slim, fast, a bit
unwieldy at times and it oozed raw power that is still the envy of many an operating system's
command-line interface. Since it was designed by Stephen Bourne, this shell is called the
Bourne Shell. Its executable was called simply sh and use of this shell in scripting is still so
ubiquitous that there isn't a Unix-based system on this earth that doesn't offer a shell whose
executable can be reached under the name sh.

...And how it ended up

Of course, everyone's a critic. The Bourne Shell saw tremendous use (indeed, it still does)
and as a result, it became the de facto standard among Unix shells. But all sorts of people
almost immediately (as well as with use) wanted new features in the shell, or a more
familiar way of expressing commands, or something else. Many people built new shells that
they felt continued where Bourne Shell ended. Some were completely compatible with
Bourne Shell, others were less so. Some became famous, others flopped. But pretty much
all of them look fondly upon Bourne Shell, the shell they call "Dad..."

A number of these shells can be run in sh-like mode, to more closely emulate that very first
sh, though most people tend just to run their shells in the default mode, which provides
more power than the minimum sh.

It's Bourne Shell, but not as we know it....

So there are a lot of shells around but you can find Bourne Shell everywhere, right? Good old
sh, just sitting there faithfully until the end of time....

Well, no, not really. Most of the sh exectuables out there nowadays aren't really the Bourne
Shell anymore. Through a bit of Unix magic called a link (which allows one file to
masquerade as another) the sh executable you find on any Unix system is likely actually to
be one of the shells that is based on the Bourne shell. One of the most frequently used
shells nowadays (with the ascent of free and open-source operating systems like Linux and

FreeBSD) is a heavily extended form of the Bourne Shell produced by the Free Software
Foundation, called Bash. Bash hasn't forgotten its roots, though: it stands for the Bourne
Again SHell.

Another example of a descendant shell standing in for its ancestor is the Korn Shell (ksh).
Also an extension shell, it is completely compatible with sh -- it simply adds some features.
Much the same is true for zsh.

Finally, a slightly different category is formed by the C Shell (csh) and its descendant tcsh.
These shells do break compatibility to some extent, using different syntax for many
commands. Systems that use these shells as standard shells often provide a real Bourne
Shell executable to run generic Bourne Shell scripts.

Having read the above, you will understand why this book doesn't have to convince you to
use Bourne Shell instead of any other shell: in most cases, there's no noticeable difference.
Bourne Shell and its legacy have become so ingrained in the heart and soul of the Unix
environment that you are using Bourne Shell when you are using practically any shell
available to you.

Why Bourne Shell

So only one real question remains: now that you find yourself on your own, cozy slice of a
Unix system, with your own shell and all its capabilities, is there any real reason to use
Bourne Shell rather than using the whole range of your shells capabilities?

Well, it depends. Probably, there isn't. For the most part of course, you are using Bourne
Shell by using the whole potential of your shell -- your shell is probably that similar to the
Bourne Shell. But there is one thing you might want to keep in mind: someday, you might
want to write a script that you might want to pass around to other people. Of course you can
write your script using the full range of options that your shell offers you; but then it might not
work on another machine with another shell. This is where the role of Bourne Shell as the
Latin of Unix command shells comes in -- and also where it is useful to know how to write
scripts targeted specifically at the Bourne Shell. If you write your scripts for the Bourne Shell
and nothing but the Bourne Shell, chances are far better than equal that your script will run
straight out of the mail attachment (don't tell me you're still using boxes to ship things --
come on, get with the program) on any command shell out there.

Running Commands
Before we can start any kind of examination of the abilities of the Bourne Shell and how you
can tap into its power, we have to cover some basic ground first: we have to discuss how to
enter commands into the shell for execution by that shell.

The easy way: the interactive session

Taking another look at what you've probably already seen

If you have access to a Unix-based machine (or an emulator on another operating system),
you've probably been using the Bourne Shell -- or one of its descendants -- already, possibly
without realising. Surprise: you've been doing shell scripting for a while already!

In your Unix environment, go to a terminal; either a textual logon terminal, or a terminal-
in-a-window if you're using the X Window System (look for something called xterm or rxvt or
just terminal, if you have actually not ever done this yet). You'll probably end up looking at a
screen looking something like this:

Ben_Tels:Local_Machine:~>_

or

The admin says: everybody, STOP TRYING TO CRASH THE SYSTEM
Have a lot of fun!
bzt:Another_Machine:~>_

or even something as simple as

$_

That's it. That's your shell: your direct access to everything the system has to offer.

Using the shell in interactive mode

Specifically, the program you accessed a moment ago is your shell, running in interactive
mode: the shell is running in such a way that it displays a prompt and a cursor (the little,
blinking line) and is waiting for you to enter a command for it to execute. You execute
commands in interactive mode by typing them in, followed by a press of the Enter key. The
shell then translates your command to something the operating system understands and
passes off control to the operating system so that it can actually carry out the task you have
sent it. You'll notice that your cursor will disappear momentarily while the command is being
carried out, and you cannot type anymore (at this point, the Bourne Shell program is no
longer in control of your terminal -- the other program that you started by executing your
command is). At some point the operating system will be finished working on your
command and the shell will bring up a new prompt and the cursor as well and will then start
waiting again for you to enter another command. Give it a try: type the command

ls enter

After a short time, you'll see a list of files in the working directory (the directory that your shell
considers the "current" directory), a new prompt and the cursor.

This is the simplest way of executing shell commands: typing them in one at a time and
waiting for each to complete in order. The shell is used in this way very often, both to execute
commands that belong to the Bourne Shell programming language and simply to start
running other programs (like the ls program from the example above).

A useful tidbit

Before we move on, we'll mention two useful key combinations when using the shell: the
command to interrupt running programs and shell commands and the command to quit the
shell (although, why you would ever want to stop using the shell is beyond me....).

To interrupt a running program or shell command, hit the Control and C keys at the same
time. We'll get back to what this does exactly in a later chapter, but for now just remember
this is the way to interrupt things.

To quit the shell session, hit Control+d. This key combination produces the Unix end-of-file
character -- we'll talk more later about why this also terminates your shell session. Some
modern shells have disabled the use of Control+d in favor of the "exit" command (shame on
them). If you're using such a shell, just type the word "exit" (like with any other command) and
press Enter (from here on in, I'll leave the "Enter" out of examples).

The only slightly less easy way: the script

As we saw in the last section, you can very easily execute shell commands for all purposes
by starting an interactive shell session and typing your commands in at the prompt.
However, sometimes you have a set of commands that you have to repeat regularly, even at
different times and in different shell sessions. Of course, in the programming-centric
environment of a Unix system, you can write a program to get the same result (in the C
language for instance). But wouldn't it be a lot easier to have the convenience of the shell for
this same task? Wouldn't it be more convenient to have a way to replay a set of commands?
And to be able to compose that set as easily as you can write the single commands that you
type into the shell's interactive sessions?

The shell script

Fortunately, there is such a way: the Bourne Shell's non-interactive mode. In this mode, the
shell doesn't have a prompt or wait for your commands. Instead, the shell reads commands
from a text file (which tells the shell what to do, kind of like an actor gets commands from a
script -- hence, shell script). This file contains a sequence of commands, just as you would
enter them into the interactive session at the prompt. The file is read by the shell from top to
bottom and commands are executed in that order.

A shell script is very easy to write; you can use any text-editor you like (or even any
wordprocessor or other editor, as long as you remember to save your script in plain text
format). You write commands just as you would in the interactive shell. And you can run your
script the moment you have saved it; no need to compile it or anything.

Running a shell script

To run a shell script (to have the shell read it and execute all the commands in the script),
you enter a command at an interactive shell prompt as you would when doing anything else
(if you're using a graphical user interface, you can probably also execute your scripts with a
click of the mouse). In this case, the program you want to start is the shell program itself. For
instance, to run a script called MyScript, you'd enter this command in the interactive shell
(assuming the script is in your working directory):

Running a script
sh MyScript

Starting the shell program from inside the shell program may sound weird at first, but it
makes perfect sense if you think about it. After all, you're typing commands in an interactive
mode shell session. To run a script, you want to start a shell in non-interactive mode. That's
what's happening in the above command. You'll note that the Bourne Shell executable takes
a single parameter in the example above: the name of the script to execute.

If you happen to be using a POSIX 1003.1-compliant shell, you can also execute a single
command in this new, non-interactive session. You have to use the -c command-line switch
to tell the shell you're passing in a command instead of the name of a script:

Running a command in a new shell
sh -c ls

We'll get to why you would want to do this (rather than simply enter your command directly
into the interactive shell) a little further down.

There is also another way to run a script from the interactive shell: you type the execute
command (a single period) followed by the name of the script:

Sourcing a script
. MyScript

The difference between that and using the sh command is that the sh command starts a
new process and the execute command does not. We'll look into this (and its importance) in

the next section. By the way, this notation with the period is commonly referred to as sourcing
a script.

Running a shell script the other way

There is also another way to execute a shell script, by making more direct use of a feature of
the Unix operating system: the executable mode.

In Unix, each and every file has three different permissions (read, write and execute) that can
be set for three different entities: the user who owns the file, the group that the file belongs to
and "the world" (everybody else). Give the command

ls -l

in the interactive shell to see the permissions for all files in the working directory (the column
with up to nine letters, r, w and x for read write and execute, the first three for the user, the
middle ones for the group, the right ones for the world). Whenever one of those entities has
the "execute" permission, that entity can simply run the file as a program. To make your
scripts executable by everybody, use the command

chmod +x scriptname

as in

Making MyScript executable
chmod +x MyScript

You can then execute the script with a simple command like so (assuming it is in a directory
that is in your PATH, the directories that the shell looks in for programs when you don't tell it
exactly where to find the program):

Running a command in a new shell
MyScript

If this fails then the current directory is probably not in your PATH. You can force the execution
of the script using

Making the shell look for your script in the current directory
./MyScript

At this command, the operating system examines the file, places it in memory and allows it
to run like any other program. Of course, not every file makes sense as a program; a binary
file is not necessarily a set of commands that the computer will recognize and a text file
cannot be read by a computer at all. So to make our scripts run like this, we have to do
something extra.

As we mentioned before, the Unix operating system starts by examining the program. If the
program is a text file rather than a binary one (and cannot simply be executed), the operating
system expects the first line of the file to name the interpreter that the operating system
should start to interpret the rest of the file. The line the Unix operating system expects to find
looks like this:

#!full path and name of interpreter

In our case, the following line should work pretty much everywhere:

#!/bin/sh

The Bourne Shell executable, to be found in the bin directory, which is right under the top of
the filesystem tree. For example:

Bourne shell script with an explicit interpreter

 Code:

#!/bin/sh
echo Hello World!

 Output:

Hello World!

Executing shell scripts like this has several advantages. First it's less cumbersome than the
other notations (it requires less typing). Second, it's an extra safety if you're going to pass
your scripts around to others. Instead of relying on them to have the right shell, you can
simply specify which shell they should use. If Bourne Shell is enough, that's what you ask
for. If you asolutely need ksh or bash, you specify that instead (mind you, it's not foolproof —
other people can ignore your interpreter specification by running your script with one of the
other commands that we discussed above, even if the script probably won't work if they do
that).

Just as a sidenote, Unix doesn't limit this trick to shell scripts. Any script interpreter that

expects its scripts to be plain-text can be specified in this way. You can use this same trick to
make directly executable Perl scripts or Python, Ruby, etc. scripts as well as Bourne Shell
scripts.

A little bit about Unix and multiprocessing

Why you want to know about multiprocessing

While this is not directly a book about Unix, there are some aspects of the Unix operating
system that we must cover to fully understand why the Bourne Shell works the way it does
from time to time.

One of the most important aspects of the Unix operating system – in fact, the main aspect
that sets it apart from all other main-stream operating systems – is that the Unix Operating
System is and always has been a multi-user, multi-processing operating system (this in
contrast with other operating systems like MacOS and Microsoft's DOS/Windows operating
systems). The Unix OS was always meant to run machines that would be used
simultaneously by several users, who would all want to run at least one but possibly several
programs at the same time. The ability of an operating system to divide the time of a
machine's processor among several programs so that it seems to the user that they are all
running at the same time is called multiprocessing. The Unix Operating System was
designed from the core up with this possibility in mind and it has an effect on the way your
shell sessions behave.

Whenever you start a new process (by running a program, for instance) on your Unix
machine, the operating system provides that process with its very own operating
environment. That environment includes some memory for the process to play in and it can
also include certain predefined settings for all processes. Whenever you run the shell
program, it is running in its own environment.

Whenever you start a new process from another process (for instance by issuing a
command to your shell program in interactive mode), the new process becomes what is
called a child process of the first process (the ls program runs as a child process of your
shell, for instance). This is where it becomes important to know about multiprocessing and
process interaction: a child process always starts with a copy of the environment of the
parent process. This means two things:

a child process can never make changes to the operating environment of its parent -- it
only has access to a copy of that environment

1.

if you actually do want to make changes in the environment of your shell (or specifically
want to avoid it), you have to know when a command runs as a child process and when
it runs within your current shell; you might otherwise pick a variant that has the opposite
effect of that which you want

2.

What does what

We have seen several ways of running a shell command or script. With respect to
multiprocessing, they run in the following way:

Way of running Runs as

Interactive mode command
current environment for a shell

command [1])
child process for a new program

Shell non-interactive mode child process

Dot-notation run command (. MyScript) current environment

Through Unix executable permission with
interpreter selection

child process

A useful thing to know: background processes

With the above, it may seem like multiprocessing is just a pain when doing shell scripting.
But if that were so, we wouldn't have multiprocessing -- Unix doesn't tend to keep things that
aren't useful. Multiprocessing is a valuable tool in interacting with the rest of the system and
one that you can use to work more efficiently. There are many books available on the
benefits of multiprocessing in program development, but from the point of view of the Bourne
Shell user and scripter the main one is the ability to hand off control of a process to the
operating system and still keep on working while that child process is running. The way to do
this is to run your process as a background process.

Running a process as a background process means telling the operating system that you
want to start a process, but that it should not attach itself to any of the interactive devices
(keyboard, screen, etc.) that its parent process is using. And more than that, it also tells the
operating system that the request to start this child process should return immediately and
that the parent process should then be allowed to continue working without having to wait for
its child process to end.

This sounds complicated, but you have to keep in mind that this ability is completely
ingrained in the Unix operating system and that the Bourne Shell was intended as an easy
interface to the power of Unix. In other words: the Bourne Shell includes the ability to start a
child process as a simple command of its own. Let's demonstrate how to do this and how
useful the ability is at the same time, with an example. Give the following (rather pointless
but still time consuming) command at the prompt:

N=0 && while [$N -lt 10000]; do date >> scriptout; N=`expr $N + 1`; done

We'll get into what this says in later chapters; for now, it's enough to know that this command
asks the system for the date and time and writes the result to a file named "scriptout". Since
it then repeats this process 10000 times, it may take a little time to complete.

Now give the following command:

N=0 && while [$N -lt 10000]; do date >> scriptout; N=`expr $N + 1`; done&

You'll notice that you can immediately resume using the shell (if you don't see this
happening, hit Control+C and check that you have the extra ampersand at the end). After a
while the background process will be finished and the scriptout file will contain another
10000 time reads.

The way to start a background process in Bourne Shell is to append an ampersand (&) to
your command.

Remarks

^ Actually, you can force a child process here as well -- we'll see how when we talk about
command grouping

Environment
No program is an island unto itself. Not even the Bourne Shell. Each program executes
within an environment, a system of resources that controls how the program executes and
what external connections the program has and can make. And in which the program can
itself make changes.

In this module we discuss the environment, the habitat in which each program and
command lives and executes. We look at what the environment consists of, where it comes
from and where it's going... And we discuss the most important mechanism that the shell
has for passing data around: the environment variab le.

The Environments

When discussing a Unix shell, you often come across the term "environment". This term is
used to describe the context in which a program executes and is usually meant to mean a
set of "environment variables" (we'll get to those shortly). But in fact there are two different
terms that are somehow a program's environment and which often get mixed up together in
"environment". The simpler one of these really is the collection of environment variables and
actually is called the "environment". The second is a much wider collection of resources that
influence the execution of a program and is called the command execution environment.

The command execution environment

Each running program, either started directly by the user from the shell or indirectly by
another process, operates within a collection of global resources called its command
execution environment (CEE).

A program's CEE contains important information such as the source and destination of data
upon which the program can operate (also known as the standard input, standard output
and standard error handles). In addition, variables are defined that list the identity and home
directory of the user or process that started the program, the hostname of the machine and
the kind of terminal used to start the program. There are other variables too, but that's just
some of the main ones. The environment also provides working space for the program, as
well as a simple way of communicating with other, future programs, that will be run in the
same environment.

The complete list of resources included in the shell's CEE is:

Open files held in the parent process that started the shell. These files are inherited.
This list of files includes the files accessed through redirection (such as standard
input, output and error files).
The current working directory: the "current" directory of the shell.
The file creation mode:The default set of file permissions set when a new file is
created.
The active traps.
Shell parameters and variables set during the call to the shell or inherited from the
parent process.
Shell functions inherited from the parent process.
Shell options set by set or shopts, or as command line options to the shell executable.
Shell aliases (if available in your shell).
The process id of the shell and of some processes started by the parent process.

Whenever the shell executes a command that starts a child process, that command is
executed it its own CEE. This CEE inherits a copy of part of the CEE of its parent, but not the
entire parent CEE. The inherited copy includes:

Open files.
The working directory.
The file creation mode mask.
Any shell variables and functions that are marked to be exported to child processes.
Traps set by the shell.

The 'set' command

The 'set' command allows you to set or disable a number of options that are part of the CEE
and influence the behavior of the shell. To set an option, set is called with a command line
argument of '-' followed by one or more flags. To disable the option, set is called with '+' and
then the same flag. You probably won't use these options very often; the most common use
of 'set' is the call without any arguments, which produces a list of all defines names in the
environment (variables and functions). Here are some of the options you might get some

use out of:

+/-a
When set, automatically mark all newly created or redefined variables for export.

+/-f
When set, ignore filename metacharacters.

+/-n
When set, only read commands but do not execute them.

+/-v
When set, causes the shell to print commands as they are read from input (verbose
debugging flag).

+/-x
When set, causes the shell to print commands as they will be executed (debugging
flag).

Again, you'll probably mostly use set without arguments, to inspect the list of defined
variables.

The environment and environment variables

Part of the CEE is something that is simply called the environment. The environment is a
collection of name/value pairs called environment variab les. These variables technically
also contain the shell functions, but we'll discuss those in a separate module.

An environment variable is a piece of labelled storage in the environment, where you can
store anything you like as long as it fits. These spaces are called variables because you can
vary what you put in them. All you need to know is the name (the label) that you used for
storing the content. The Bourne shell also makes use of these "environment variables". You
can make scripts that examine these variables, and those scripts can make decisions
based on the values stored in the variables.

An environment variable is a name/value pair of the form

name=variable

which is also the way of creating a variable. There are several ways of using a variable which
we will discuss in the module on substitution, but for now we will limit ourselves to the
simple way: if you prepend a variable name with a $-character, the shell will substitute the
value for the variable. So, for example:

Simple use of a variable

 Code:

$ VAR=Hello
$ echo $VAR

 Output:

Hello

As you can see from the example above, an environment variable is sort of like a bulletin
board: anybody can post any kind of value there for everybody to read (as long as they have
access to the board). And whatever is posted there can be interpreted by any reader in
whatever way they like. This makes the environment variable a very general mechanism for
passing data along from one place to another. And as a result environment variables are
used for all sorts of things. For instance, for setting global parameters that a program can
use in its execution. Or for setting a value from one shell script to be picked up by another.
There are even a number of environment variables that the shell itself uses in its
configuration. Some typical examples:

IFS
This variable lists the characters that the shell considers to be whitespace characters.

PATH
This variable is interpreted as a list of directories (separated by colons on a Unix
system). Whenever you type the name of an executable for the shell to execute but do
not include the full path of that executable, the shell will look in all of these directories in
order to find the executable.

PS1
This variable lists a set of codes. These codes instruct your shell about what the
command-line prompt in the interactive shell should look like.

PWD
The value of this variable is always the path of the working directory.

The absolute beauty of environment variables, as mentioned above, is that they just contain
random strings of characters without an immediate meaning. The meaning of any variable is
to be interpreted by whatever program or process reads the variable. So a variable can hold
literally any kind of information and be used practically anywhere. For instance, consider the
following example:

Environment variables are more flexible than you thought...
$ echo $CMD

$ CMD=ls
$ echo $CMD
ls
$ $CMD
bin booktemp Documents Mail mbox public_html sent

There's nothing wrong with setting a variable to the name of an executable, then executing

that executable by calling the variable as a command.

Different kinds of environment variables

Although you use all environment variables the same way, there are a couple of different
kinds of variables. In this section we discuss the differences between them and their uses.

Named variables

The simplest and most straightforward environment variable is the named variable. We saw
it earlier: it's just a name with a value, which can be retrieved by prepending a '$' to the name.
You create and define a named variable in one go, by typing the name, an equals sign and
then something that results in a string of characters.

Earlier we saw the following, simple example:

Assigning a simple value to a variable
$ VAR=Hello

This just assigns a simple value. Once a variable has been defined, we can also redefine it:

Assigning a simple value to a variable
$ VAR=Goodbye

We aren't limited to straightforward strings either. We can just as easily assign the value of
one variable to another:

Assigning a simple value to a variable
$ VAR=$PATH

We can even go all-out and combine several commands to come up with a value:

Assigning a combined value to a variable
$ PS1= "`whoami`@`hostname -s` `pwd` \$ "

In this case, we're taking the output of the three commands 'whoami', 'hostname', and 'pwd',
then we add the '$' symbol, and some spacing and other formatting just to pad things out a
bit. Whew. All that, just in one piece of labeled space. As you can see environment variables
can hold quite a bit, including the output of entire commands.

There are usually lots of named variables defined in your environment, even if you are not
aware of them. Try the 'set' command and have a look.

Positional variables

Most of the environment variables in the shell are named variables, but there are also a
couple of "special" variables. Variables that you don't set, but whose values are automatically
arranged and maintained by the shell. Variables which exist to help you out, to discover
information about the shell or from the environment.

The most common of these are the positional or argument variables. Any command you
execute in the shell (in interactive mode or in a script) can have command-line arguments.
Even if the command doesn't actually use them, they can still be there. You pass
command-line arguments to a command simply by typing them after the command, like so:

command arg0 arg1 ...

This is allowed for any command. Even your own shell scripts. But say that you do this
(create a shell script, then execute it with arguments); how do you access the command-line
arguments from your script? This is where the positional variables come in. When the shell
executes a command, it automatically assigns any command-line arguments, in order, to a
set of positional variables. And these variables have numbers for names: 1 through 9,
accessed through $1 through $9. Well, actually zero though nine; $0 is the name of the
command that was executed. For example, consider a script like this:

WithArgs.sh: A script that uses command-line arguments
#!/bin/sh

echo $0
echo $1
echo $2

And a call to this script like this:

Calling the script

 Code:

$ WithArgs.sh Hello World

 Output:

WithArgs.sh

Hello

World

As you can see, the shell automatically assigned the values 'Hello' and 'World' to $1 and $2
(okay, technically to the variables called 1 and 2, but it's less confusing in written text to call
them $1 and $2). What happens if we call this script with more than two arguments?

Calling the script with more arguments

 Code:

$ WithArgs.sh Hello World Mouse Cheese

 Output:

WithArgs.sh
Hello
World

Did the mouse eat the cheese?

This is no problem whatsoever — the extra arguments get assigned to $3 and $4. But we
didn't use those variables in the script, so those command-line arguments are ignored.
What about the opposite case (too few arguments)?

Calling the script with too few arguments...

 Code:

$ WithArgs.sh Hello

 Output:

WithArgs.sh
Hello

Again, no problem. When the script accesses $2, the shell simply substitutes the value of $2
for $2. That value is nothing in this case, so we print exactly that. In this case it's not a
problem, but if your script has mandatory arguments you should check whether or not they
are actually there.

What about if we want 'Hello' and 'World' to be treated as one command-line argument to be
passed to the script? I.e. 'Hello World' rather than 'Hello' and 'World'? We'll get deeply into
that when we start talking about quoting, but for now just surround the words with single
quotes:

Calling the script with multi-word arguments

 Code:

$ WithArgs.sh 'Hello World' 'Mouse Cheese'

 Output:

WithArgs.sh
Hello World
Mouse Cheese

There are the mouse and the cheese!

Shifting

So what happens if you have more than nine command line arguments? Then your script is
too complicated. No, but seriously: then you have a little problem. It's allowed to pass more
than nine arguments, but there are only nine positional variables (in Bourne Shell at least).
To deal with this situation the shell includes the shift command:

shift [n]

*Where n is optional and a positive integer (default 1)

Shift causes the positional arguments to shift left. That is, the the value of $1 becomes the
old value of $2, the value of $2 becomes the old value of $3 and so on. Using shift, you can
access all the command-line arguments (even if there are more than nine). The optional
integer argument to shift is the number of positions to shift (so you can shift as many
positions in one go as you like). There are a couple of things to keep in mind though:

No matter how often you shift, $0 always remains the original command.
If you shift n positions, n must be lower than the number of arguments. If n is greater
than the number of arguments, no shifting occurs.
If you shift n positions, the first n arguments are lost. So make sure you have them
stored elsewhere or you don't need them anymore!
You cannot shift back to the right.

In the module on Control flow we'll see how you can go through all the arguments without
knowing exactly how many there are.

Other, special variables

In addition to the positional variables the Bourne Shell includes a number of other, special
variables with special information about the shell. You'll probably not use these as often, but
it's good to know they're there. These variables are

$#
The number of command-line arguments to the current command (changes after a
use of the shift command!).

$-
The shell options currently in effect (see the 'set' command).

$?
The exit status of the last command executed (0 if it succeeded, non-zero if there was
an error).

$$
The process id of the current process.

$!
The process id of the last background command.

$*
All the command-line arguments. When quoted, expands to all command-line
arguments as a single word (i.e. "$*" = "S1 $2 $3 ...").

$@
All the command-line arguments. When quoted, expands to all command-line
arguments quoted individually (i.e. "$@" = "S1" "$2" "$3" ...).

Exporting variables to a subprocess

We've mentioned it a couple of times before: Unix is a multi-user, multiprocessing operating
system. And that fact is very much supported by the Bourne Shell, which allows you to start
up new processes right from inside a running shell. In fact, you can even run multiple
processes simultaneously next to eachother (but we'll get to that a little later). Here's a
simple example of starting a subprocess:

Starting a new shell from the shell
$ sh

We've also talked about the Command Execution Environment and the Environment (the
latter being a collection of variables). These environments can affect how programs run, so
it's very important that they cannot inadvertently affect one another. After all, you wouldn't want
the screen in your shell to go blue with yellow letters simply because somebody started
Midnight Commander in another process, right?

One of the things that the shell does to avoid processes inadvertently affecting one another,
is environment separation. Basically this means that whenever a new (sub)process is
started, it has its own CEE and environment. Of course it would be damned inconvenient if
the environment of a subprocess of your shell were completely empty; your subprocess
wouldn't have a PATH variable or the settings you chose for the format of your prompt. On the
other hand there is usually a good reason NOT to have certain variables in the environment
of your subprocess, and it usually has something to do with not handing off too much
environment data to a process if it doesn't need that data. This was particularly true when
running copies of MS-DOS and versions of DOS under Windows. You only HAD a limited
amount of environment space, so you had to use it carefully, or ask for more space on
startup. These days in a UNIX environment the space issues aren't the same, but if all your
existing variables ended up in the environment of your subprocess you might still adversely
affect the running of the program that you started in that subprocess (there's really
something to be said for keeping your environment lean and clean in the case of
subprocesses).

The compromise between the two extremes that Stephen Bourne and others came up with
is this: a subprocess has an environment which contains copies of the variables in the
environment of its parent process — but only those variables that are marked to be exported
(i.e. copied to subprocesses). In other words, you can have any variable copied into the
environment of your subprocesses, but you have to let the shell know that's what you want
first. Here's an example of the distinction:

Exported and non-exported variables
$ echo $PATH
/usr/local/bin:/usr/bin:/bin
$ VAR=value
$ echo $VAR
value
$ sh
$ echo $PATH
/usr/local/bin:/usr/bin:/bin
$ echo $VAR

$

In the example above, the PATH variable (which is marked for export by default) gets copied
into the environment of the shell that is started within the shell. But the VAR variable is not
marked for export, so the environment of the second shell doesn't get a copy.

In order to mark a variable for export you use the export command, like so:

export VAR0 [VAR1 VAR2 ...]

As you can see, you can export as many variables as you like in one go. You can also issue
the export command without any arguments, which will print a list of variables in the
environment marked for export. Here's an example of exporting a variable:

Exporting a variable
$ VAR=value
$ echo $VAR
value
$ sh
$ echo $VAR

$ exit #Quitting the inner shell
$ export VAR #This is back in the outer shell
$ sh
$ echo $VAR
value

More modern shells like Korn Shell and Bash have more extended forms of export. A
common extension is to allow for definition and export of a variable in one single command.
Another is to allow you to remove the export marking from a variable. However, Bourne Shell
only supports exporting as explained above.

Your profile

In the previous sections we've discussed the runtime environment of every program and
command you run using the shell. We've talked about the command execution environment
and at some length about the piece of it simply called "the environment", which contains
environment variables. We've seen that you can define your own variables and that the
system usually already has quite a lot of variables to start out with.

Here's a question about those variables that the system starts out with: where do they come
from? Do they descend like manna from heaven? And on a related note: what do you do if
you want to create some variables automatically every time your shell starts? Or run a
program every time you log in?

Those readers who have done some digging around on other operating systems will know
what I'm getting at: there's usually some way of having a set of commands executed every
time you log in (or every time the system starts at least). In MS-DOS for instance there is a
file called autoexec.bat, which is executed every time the system boots. In older versions of
MS-Windows there was system.ini. The Bourne Shell has something similar: a file in every
user's home directory called .profile. The $HOME/.profile (HOME is a default variable whose
value is your home directory) file is a shell script like any other, which is executed

automatically right after you login to a new shell session. You can edit the script to have it
execute any login-commands that you like.

Each specific Unix system has its own default implementation of the .profile script (including
none — it's allowed not to have a .profile script). But all of them start with some variation of
this:

A basic (but typical) $HOME/.profile
#!/bin/sh

if [-f /etc/profile]; then
 . /etc/profile
fi
PS1= "`whoami`@`hostname -s` `pwd` \$ "
export PS1

This .profile might surprise you a bit: where are all those variables that get set? Most of the
variables that get set for you on a typical Unix system, also get set for all other users. In order
to make that possible and easily maintainable, the common solution is to have each
$HOME/.profile script start by executing another shell script: /etc/profile. This script is a
systemwide script whose contents are maintained by the system administrator (the user
who logs in with username root). This script sets all sorts of variables and calls scripts that
set even more variables and generally does everything that is necessary to provide each
user with a comfortable working environment.

As you can see from the example above, you can add any personal configuration you want or
need to the .profile script in your directory. The call to execute the system profile script
doesn't have to be first, but you probably don't want to remove it altogether.

Multitasking and job control

With the arrival of fast computers, CPUs that can switch between multiple tasks in a very
small amount of time, CPUs that can actually do multiple things at the same time and
networks of multiple CPUs, having the computer perform multiple tasks at the same time
has become common. Fast task switching provides the illusion that the computer really is
running multiple tasks simultaneously, making it possible to effectively serve multiple users
at once. And the ability to switch to a new CPU task while an old task is waiting for a
peripheral device makes CPU use vastly more efficient.

In order to make use of multitasking abilities as a user, you need a command environment
that supports multitasking. For example, the ability to set one program to a task, then move
on and start a new program while the old one is still running. This kind of ability allows you
as a user to do multiple things at once on the same machine, as long as those programs do
not interfere. Of course, you cannot always treat each program as a "fire and forget" affair;
you might have to input a password, or the program might be finished and want to tell you its

results. A multitasking environment must allow you to switch between the multiple programs
you have running and allow those programs to send you some sort of message if your
attention is needed.

To make things a little more tangible think of something like downloading files. Usually,
while you're downloading files, you want to do other stuff as well — otherwise you're going to
be sitting at the keyboard twiddling your thumbs a really long time when you want to
download a whole CD worth of data. So, you start up your file downloader and feed it a list of
files you want to grab. Once you've entered them, you can then tell it "Go!" and it will start off
by downloading the first file and continue until it finishes the last one, or until there's a
problem. The smarter ones will even try to work through common problems themselves,
such as files not being available. Once it starts you get the standard shell prompt back,
letting you know that you can start another program.

If you want to see how far the file downloader has gotten, simply checking the files in your
system against what you have on your list will tell you. But another way to notify you is via the
environment. The environment can include the files that you work with, and this can help
provide information about the progress of currently running programs like that file
downloader. Did it download all the files? If you check the status file, you'll see that it's
downloaded 65% of the files and is just working on the last three now.

Other examples of programs that don't need their hand held are programs that play music.
Quite often, once you start a program that plays music tracks, you don't WANT to tell the
program "Okay, now play the next track". It should be able to do that for itself, given a list of
songs to play. In fact, it should not even have to hold on to the monitor; it should allow you to
start running other software right after you hit the "play" button.

In this section we will explore multitasking support within the Unix shell. We will look at
enabling support, at working with multiple tasks and at the utilities that a shell has available
to help you.

Some terminology

Before we discuss the mechanics of multitasking in the shell, let's cover some terminology.
This will help us discuss the subject clearly and you'll also know what is meant when you
run across these terms elsewhere.

First of all, when we start a program running on a system in a process of its own, that
process with that one running instance of the program is called a job . You'll also come
across terms like process, task, instance or similar. But the term used in Unix shells is job.
Second, the ability of the shell to influence and use multitasking (starting jobs and so on) is
referred to as job control.

Job
A process that is executing an instance of a computer program.

Job control
The ability to selectively stop (suspend) the execution of jobs and continue (resume)

their execution at a later point.

Note that these terms are used this way for Unix shells. Other circumstances and other
contexts might allow for different definitions. Here are some more terms you'll come across:

Job ID
An ID (usually an integer) that uniquely identifies a job. Can be used to refer to jobs for
different tools and commands.

Process ID (or PID)
An ID (usually an integer) that uniquely identifies a process. Can be used to refer to
processes for different tools and commands. Not the same as a Job ID.

Foreground job (or foreground process)
A job that has access to the terminal (i.e. can read from the keyboard and write to the
monitor).

Background job (or background process)
A job that does not have access to the terminal (i.e. cannot read from the keyboard or
write to the monitor).

Stop (or suspend)
Stop the execution of a job and return terminal control to the shell. A stopped job is not
a terminated job.

Terminate
Unload a program from memory and destroy the job that was running the program.

Job control in the shell: what does it mean?

A jobs is a program you start within the shell. By default a new job will suspend the shell and
take control over the input and output: every stroke you type at the keyboard will go to the job,
as will every mouse movement. Nothing but the job will be able to write to the monitor. This
is what we call a foreground job: it's in the foreground, clearly visible to you as a user and
obscuring all other jobs in the system from view.

But sometimes that way of working is very clumsy and irritating. What if you start a
long-running job that doesn't need your input (like a backup of your harddrive)? If this is a
foreground process you have to wait until it's done before you can do anything else. In this
situation you'd much rather start the program as a background process: a process that is
running, but that doesn't listen to the input devices and doesn't write to the monitor. Unix
supports them and the shell (with job control) allows you to start any job as a background
job.

But what about a middle ground? Like that file downloader? You have to start it, log into a
remote server, pick your files and start the download. Only after all that does it make sense
for the job to be in the background. But how do you accomplish that if you've already started
the program as a foreground job? Or how about this: you're busily writing a document in your
favorite editor and you just want to step out to check your mail for a moment. Do you have to
shut down the editor for that? And then, after you're done with your mail, restart it, re-open
your file and find where you'd left off? That's inconvenient. No, a much better idea in both
cases is simply to suspend the program: just stop it from running any further and return to

the shell. Once you're back in the shell, you can start another program (mail) and then
resume the suspended program (editor) when you're done with that — and return to the
program exactly where you left it. Conversely, you can also decide to let the suspended
process (downloader) continue running, but now in the background.

When we talk about job control in the shell, we are talking about the abilities described
above: to start programs in the background, to suspend running programs and to resume
suspended programs, either in the foreground or in the background.

Enabling job control

In order to do all the things we talked about in the previous section, you need two things:

An operating system that supports job control.
A shell that supports job control and has job control enabled.

Unix systems support multitasking and job control. Unix was designed from the ground up to
support multitasking. If you come across a person claiming to be a Unix vendor but whose
software doesn't support job control, call him a fraud. Then throw his install CDs away. Then
throw him away.

Of course you've already guessed what comes next, right? I'm going to tell you Bourne Shell
supports job control. And that you can rely on the same mechanisms to work in all
compatible shells. Guess what: you're not correct. The original Bourne Shell has no job
control support; it was a single-tasking shell. There was an extended version of the Bourne
Shell though, called jsh (guess what the 'j' stands for...) which had job control support. To
have job control in the original Bourne Shell, you had to start this extended shell in interactive
mode like this:

jsh -i

Within that shell you had the job control tools we will discuss in the following sections.

Pretty much every other shell written since incorporated job control straight into the basic
shell and the POSIX 1003 standard has standardized the job control utilities. So you can
pretty much rely on job control being available nowadays and usually also enabled by default
in interactive mode (some older shells like Korn shell had support but required you to
enable that support specifically). But just in case, remember that you might have to do some
extra stuff on your system to use job control. There is one gotcha though: in shell scripts, you
usually include an interpreter hint that calls for a Bourne Shell (i.e. #!/bin/sh). Since the
original Bourne Shell doesn't have job control, several modern shells turn off job control by
default in non-interactive mode as a compatibility feature.

Creating a job and moving it around

We've already talked at length about how to create a foreground job: type a command or

executable name at the prompt, hit enter, there's your job. Been there, done that, bought the
T-shirt.

We've also already mentioned how to start a background job: by adding an ampersand at the
end of the command.

Creating a background job
$ ls * > /dev/null &
[1] 4808
$

But that suddenly looks different that when we issued commands previously; there's a "[1]"
and some number there. The "[1]" is the job ID and the number is the process ID. We can
use these numbers to refer to the process and the job that we just created, which is useful
for using tools that work with jobs. When the task finishes, you will receive a notice similar to
the following:

Job done
[1]+ Done ls * > /dev/null &

One of the tools that you use to manage jobs is the 'fg' command. This command takes a
background job and places it in the foreground. For instance, consider a background job that
actually takes some time to complete:

A heftier job
 while [$CNT -lt 200000] do echo $CNT >> outp.txt; CNT=`expr $CNT + 1`; done &

We haven't gotten into flow control yet, but this writes 200,000 integers to a file and takes
some time. It also runs in the background. Say that we start this job:

Starting the job
$ CNT=0
$ while [$CNT -lt 200000] do echo $CNT >> outp.txt; CNT=`expr $CNT + 1`; done &
[1] 11246

The job is given job ID 1 and process ID 11246. Let's move the process to the foreground:

Moving the job to the front

$ fg %1
while [$CNT -lt 200000] do
 echo $CNT >> outp.txt; CNT=`expr $CNT + 1`;
done

The job is now running in the foreground, as you can tell from the fact that we are not
returned a prompt. Now type the CTRL+Z keyboard combination:

Stopping the job
'CTRL+Z'
[1]+ Stopped while [$CNT -lt 200000] do
 echo $CNT >> outp.txt; CNT=`expr $CNT + 1`;
done
$

Did you notice the shell reports the job as stopped? Try using the 'cat' command to inspect
the outp.txt file. Try it a couple of times; the contents won't change. The job is not a
background job; it's not running at all! The job is suspended. Many programs recognize the
CTRL+Z combination to suspend. And even those that don't usually have some way of
suspending themselves.

Moving to the background and stopping in the background

Once a job is suspended, you can resume it either in the foreground or the background. To
resume in the foreground you use the 'fg' command discussed earlier. You use 'bg' for the
background:

bg jobId

To resume our long-lasting job that writes numbers, we do the following:

Resuming the job in the background
$ bg %1
[1]+ while [$CNT -lt 200000] do
 echo $CNT >> outp.txt; CNT=`expr $CNT + 1`;
done &
$

The output indicates that the job is running again. In the background this time, since we are
also returned a prompt.

Can we also stop a process in the background? Sure, we can move it to the foreground and
hit 'CTRL+Z'. But can we also do it directly? Well, there is no utility or command to do it.

Mostly, you wouldn't want to do it — the whole point of putting it in the background was to let it
run without bothering anybody or requiring attention. But if you really want to, you can do it like
this:

kill -SIGSTOP jobId

or

kill -SIGSTOP processId

We'll get back to what this does exactly later, when we talk about signals.

Job control tools and job status

We mentioned before that the POSIX 1003.1 standard has standardized a number of the job
control tools that were included for job control in the jsh shell and its successors. We've
already looked at a couple of these tools; in this section we will cover the complete list.

The standard list of job control tools consists of the following:

bg
Moves a job to the background.

fg
Moves a job to the foreground.

jobs
Lists the active jobs.

kill
Terminate a job or send a signal to a process.

CTRL+C
Terminate a job (same as 'kill' using the SIGTERM signal).

CRTL+Z
Suspend a foreground job.

wait
Wait for background jobs to terminate.

All of these commands can take a job specification as an argument. A job specification
starts with a percent sign and can be any of the following:

%n
A job ID (n is number).

%s
The job whose command-line started with the string s.

%?s
The jobs whose command-lines contained the string s.

%%
The current job (i.e. the most recent one that you managed using job control).

%+
The current job (i.e. the most recent one that you managed using job control).

%-
The previous job.

We've already looked at 'bg', 'fg', and CTRL+Z and we'll cover 'kill' in a later section. That
leaves us with 'jobs' and 'wait'. Let's start with the simplest one:

wait [job spec] ...

*Where job spec is a spec ification as l isted above.

'Wait' is what you call a synchronization mechanism : it causes the invoking process to
suspend until all background jobs terminate. Or, if you include one or more job
specifications, until the jobs you list have terminated. You use 'wait' if you have fired off
multiple jobs (simply to make use of a system's parallel processing capabilities) and you
cannot proceed safely until they're all done.

The 'wait' command is used in quite advanced scripting. In other words, you might not use it
all that often. Here's a command that you probably will use regularly though:

jobs [-lnprs] [job spec] ...

*Where

-l l ists the process IDs as well as normal output

-n l imits the output to information about jobs whose status has changed since the last status report

-p l ists only the process ID of the jobs' process group leader

-r l imits output to data on running jobs

-s l imits output to data on stopped jobs

job spec is a spec ification as l isted above

The jobs command reports information and status about active jobs (don't confuse active
with running!). It is important to remember though, that this command reports on jobs and
not processes. Since a job is local to a shell, the 'jobs' command cannot see across shells.
The 'jobs' command is a primary source of information on jobs that you can apply job control
to; for starters, you'll use this command to retrieve job IDs if you don't remember them. For
example, consider the following:

Using 'jobs' to report on jobs

 Code:

$ CNT0=0
$ while [$CNT0 -lt 200000]; do echo $CNT0 >> outtemp0.txt; CNT0=$(expr $CNT0 + 1); done&
[1] 26859
$ CNT1=0
$ while [$CNT1 -lt 200000]; do echo $CNT1 >> outtemp1.txt; CNT1=$(expr $CNT1 + 1); done&
[2] 31331
$ jobs

 Output:

[1]- Running while [$CNT0 -lt 200000]; do
 echo $CNT0 >> outtemp0.txt; CNT0=$(expr $CNT0 + 1);
done &
[2]+ Running while [$CNT1 -lt 200000]; do
 echo $CNT1 >> outtemp1.txt; CNT1=$(expr $CNT1 + 1);
done &

The 'jobs' command reports the state of active commands, including the command line
and job IDs. It also indicated the current job (with a +) and the last job (with a -).

Speaking of state (which is reported by the 'jobs' command), this is a good time to talk about
the different states we have. Jobs can be in any of several states, sometimes even in more
than one state at the same time. The 'jobs' command reports on state directly after the job id
and order. We recognize the following states:

Running
This is where the job is doing what it's supposed to do. You probably don't need to
interrupt it unless you really want to give the program your personal attention (for
example, to stop the program, or to find out how far through a file download has
proceeded). You'll generally find that anything in the foreground that's not waiting for
your attention is in this state, unless it's been put to sleep.

Sleeping
When programs need to retrieve input that's not yet available, there is no need for them
to continue using CPU resources. As such, they will enter a sleep mode until another
batch of input arrives. You will see more sleeping processes, since they are not as
likely to be processing data at an exact moment of time.

Stopped
The stopped state indicates that the program was stopped by the operating system.
This usually occurs when the user suspends a background job (e.g. pressing CTRL-Z)
or if it receives SIGSTOP. At that point, the job cannot actively consume CPU resources
and aside from still being loaded in memory, won't impact the rest of the system. It will
resume at the point where it left off once it receives the SIGCONT signal or is otherwise
resumed from the shell. The difference between sleeping and stopped is that "sleep"
is a form of waiting until a planned event happens, whereas "stop" can be
user-initiated and indefinite.

Zombie

A zombie process appears if the parent's program terminated before the child could
provide its return value to the parent. These processes will get cleaned up by the init
process but sometimes a reboot will be required to get rid of them.

Other job control related tools

In the last section we discussed the standard facilities that are available for job control in the
Unix shell. However, there are also a number of non-standard tools that you might come
across. And even though the focus of this book is Bourne Shell scripting (particularly as the
lingua franca of Unix shell scripting) these tools are so common that we would be remiss if
we did not at least mention them.

Shell commands you might come across

In addition to the tools previously discussed, there are two shell commands that are quite
common: 'stop' and 'suspend'.

stop job ID

The 'stop' command is a command that occurs in the shells of many System V-compatible
Unix systems. It is used to suspend background processes — in other words, it is the
equivalent of 'CTRL+Z' for background processes. It usually takes a job ID, like most of these
commands. On systems that do not have a 'stop' command, you should be able to stop
background processes by using the 'kill' command to send a SIGSTOP signal to the
background process.

suspend job ID
suspend [-f]

The other command you might come across is the the 'suspend' command. The 'suspend'
command is a little tricky though, since it doesn't always mean the same thing on all
systems and all shells. There are two variations known to the authors at this time, both of
which are shown above. The first, obvious one takes a job ID argument and suspends the
indicated job; really it's just the same as 'CTRL+Z'.

The second variant of 'suspend' doesn't take a job ID at all, which is because it doesn't
suspend any random job. Rather, it suspends the execution of the shell in which the
command was issued. In this variant the -f argument indicates the shell should be
suspended even if it is a login shell. To resume the shell execution, send it a SIGCONT
signal using the 'kill' command.

The process snapshot utility

The last tool we will discuss is the process snapshot utility, 'ps'. This utility is not a shell tool

at all, but it occurs in some variant on pretty much every system and you will want to use it
often. Possibly more often even than the 'jobs' tool.

The 'ps' utility is meant to report on running processes in the system. Processes, not jobs —
meaning it can see across shell instances. Here's an example of the 'ps' utility:

Using the 'ps' utility

 Code:

$ ps x

 Output:

PID TTY STAT TIME COMMAND
32094 tty5 R 3:37:21 /bin/sh
37759 tty5 S 0:00:00 /bin/ps

Typical output, including process state.

Typical process output includes the process ID, the ID of the terminal the process is
connected to (or running on), the CPU time the process has taken and the command issued
to start the process. Possibly you also get a process state. The process state is indicated by
a letter code, but by-and-large the same states are reported as for job reports: Running,
Sleeping, sTopped and Zombie. Different 'ps' implementations may use different or more
codes though.

The main problem with writing about 'ps' is that it is not exactly standardized, so there are
different command-line option sets available. You'll have to check the documentation on your
system for specific details. Some options are quite common though, so we will list them
here:

-a
List all processes except group leader processes.

-d
List all processes except session leaders.

-e
List all processes, without taking into account user id and other access limits.

-f
Produce a full listing as output (i.e. all reporting options).

-g list
Limit output to processes whose group leader process IDs are mentioned in list.

-l
Produce a long listing.

-p list
Limit output to processes whose process IDs are mentioned in list.

-s list
Limit output to processes whose session leader process IDs are mentioned in list.

-t list
Limit output to processes running on terminals mentioned in list.

-u list
Limit output to processes owned by user accounts mentioned in list.

The 'ps' tool is useful for monitoring jobs across shell instances and for discovering process
IDs for signal transmission.

Variable Expansion
In the Environment module we introduced the idea of an environment variable as a general
way of storing small pieces of data. In this module we take an in-depth look at using those
variables: 'variable expansion', 'parameter substitution' or just 'substitution'.

Substitution

The reason that using a variable is called substitution is that the shell literally replaces each
reference to any variable with its value. This is done while evaluating the command-line,
which means that the variable substitution is made before the command is actually
executed.

The simplest way of using a variable is the way we've already seen, prepending the variable
name with a '$'. So for instance:

Simple use of a variable

 Code:

$ USER=JoeSixpack
$ echo $USER

 Output:

JoeSixpack

The value JoeSixpack is substituted for $USER before the echo command is executed.

Of course, once the substitution is made the result is still just the text that was in the

variable. The interpretation of that text is still done by whatever program is run. So for
example:

Variables do not make magic

 Code:

$ USER=JoeSixpack
$ ls $USER

 Output:

ls: cannot access JoeSixpack: No such file or directory

Just because the text came from a variable, doesn't mean the file exists.

Basic variable expansion is already quite flexible. You can use it as described above, but you
can also use variables to create longer strings. For instance, if you want to set the log
directory for an application to the "log" directory in your home directory, you might fill in the
setting like this:

$HOME/log

And if you're going to use that setting more often, you might want to create your own variable
like this:

LOGDIR=$HOME/log

And, of course, if you want specific subdirectories for logs for different programs, then the
logs for the Wyxliz application go into directory

$LOGDIR/Wyxliz/

Substitution forms

The Bourne Shell has a number of different syntaxes for variable substitution, each with its
own meaning and use. In this section we examine these syntaxes.

Basic variable substitution

We've already talked at length about basic variable substitution: you define a variable, stick a
'$' in front of it, the shell substitutes the value for the variable. By now you're probably bored of
hearing about it.

But we've not talked about one situation that you might run into with basic variable
substitution. Consider the following:

Adding some text to a variable's value

 Code:

$ ANIMAL=duck
$ echo One $ANIMAL, two $ANIMALs

 Output:

One duck, two

Uhhh.... we're missing something...

So what went wrong here? Well, obviously the shell substituted nothing for the ANIMAL
variable, but why? Because with the extra 's' the shell thought we were asking for the
non-existent ANIMALs variable. But what gives there? We've used variables in the middle of
strings before (as in '/home/ANIMAL/logs'). But an 's' is not a '/': an 's' can be a valid part of a
variable name, so the shell cannot tell the difference. In cases where you explicitly have to
separate the variable from other text, you can use braces:

Adding some text to a variable's value, take II

 Code:

$ ANIMAL=duck
$ echo One $ANIMAL, two ${ANIMAL}s

 Output:

One duck, two ducks

That's better!

Both cases (with and without the braces) count as basic variable substitution and the rules
are exactly the same. Just remember not to leave any spaces between the braces and the
variable name.

Substitution with a default value

Since a variable can be empty, you'll often write code in your scripts to check that mandatory
variables actually have a value. But in the case of optional variables it is usually more
convenient not to check, but to use a default value for the case that a variable is not defined.
This case is actually so common that the Bourne Shell defines a special syntax for it: the

dash. Since a dash can mean other things to the shell as well, you have to combine it with
braces — the final result looks like this:

${varname[:]-default}

*Where varname is the name of the variable

and default is the value used if varname is not defined

Again, don't leave any spaces between the braces and the rest of the text. The way to use
this syntax is as follows:

Default values

 Code:

$ THIS_ONE_SET=Hello
$ echo $THIS_ONE_SET ${THIS_ONE_NOT:-World}

 Output:

Hello World

Compare that to this:

Default not needed

 Code:

$ TEXT=aaaaaahhhhhhhh
$ echo Say ${TEXT:-bbbbbbbbbb}

 Output:

Say aaaaaahhhhhhhh

Interestingly, the colon is optional; so ${VAR:-default} has the same result as ${VAR-default}.

Substitution with default assignment

As an extension to default values, there's a syntax that not only supplies a default value but

assigns it to the unset variable at the same time. It looks like this:

${varname[:]=default}

*Where varname is the name of the variable

and default is the value used and assigned i f varname is not defined

As usual, avoid spaces in between the braces. Here's an example that demonstrates how
this syntax works:

Default value assignment
$ echo $NEWVAR

$ echo ${NEWVAR:=newval}
newval
$ echo $NEWVAR
newval

As with the default value syntax, the colon is optional.

Substitution for actual value

This substitution is sort of a quick test to see if a variable is defined (and that's usually what
it's used for). It's sort of the reverse of the default value syntax and looks like this:

${varname[:]+substitute}

*Where varname is the name of the variable

and substitute is the value used if varname is defined

This syntax returns the substitute value if the variable is defined. That sounds counterintuitive
at first, especially if you ask what is returned if the variable is not defined — and learn that
the value is nothing. Here's an example:

Actual value substitution
$ echo ${NEWVAR:+newval}

$ NEWVAR=oldval
$ echo ${NEWVAR:+newval}
newval

So what could possibly be the use of this notation? Well, it's used often in scripts that have to

check whether lots of variables are set or not. In this case the fact that a variable has a value
means that a certain option has been activated, so you're interested in knowing that the
variable has a value, not what that value is. It looks sort of like this (pseudocode, this won't
actually work in the shell):

Default value assignment

if ${SPECIFIC_OPTION_VAR:+optionset} == optionset then ...

Of course, in this notation the colon is optional as well.

Substitution with value check

This final syntax is sort of a debug check to check whether or not a variable is set. It looks
like this:

${varname[:]?message}

*Where varname is the name of the variable

and message is the printed if varname is not defined

With this syntax, if the variable is defined everything is okay. Otherwise, the message is
printed and the command or script exits with a non-zero exit status. Or, if there is no
message, the text "parameter null or not set" is printed. As usual the colon is optional and
you may not have a space between the colon and the variable name.

You can use this syntax to check that the mandatory variables for your scripts have been set
and to print an error message if they are not.

Default value assignment
$ echo ${SOMEVAR:?has not been set}
-sh: SOMEVAR: has not been set
$ echo ${SOMEVAR:?}
-sh: SOMEVAR: parameter null or not set

Control flow
So far we've talked about basics and theory. We've covered the different shells available and
how to get shell scripts running in the Bourne Shell. We've talked about the Unix environment
and we've seen that you have variables that control the environment and that you can use to

store values for your own use. What we haven't done yet, though, is actually done anything.
We haven't made the system act, jump through hoops, fetch the newspaper or do the
dishes.

In this chapter it's time to get serious. In this chapter we talk programming — how to write
programs that make decisions and execute commands. In this chapter we talk about control
flow and command execution.

Control Flow

What is the difference between a program launcher and a command shell? Why is Bourne
Shell a tool that has commanded power and respect the world over for decades and not just
a stupid little tool you use to start real programs? Because Bourne Shell is not just an
environment that launches programs: Bourne Shell is a fully programmable environment
with the power of a full programming language at its command. We've already seen in
Environment that Bourne Shell has variables in memory. But Bourne Shell can do more than
that: it can make decisions and repeat commands. Like any real programming language,
Bourne Shell has control flow, the ability to steer the computer.

Test: evaluating conditions

Before we can make decisions in shell scripts, we need a way of evaluating conditions. We
have to be able to check the state of certain affairs so that we can base our decisions on
what we find.

Strangely enough the actual shell doesn't include any mechanism for this. There is a tool for
exactly this purpose called test (and it was literally created for use in shell scripts), but
nevertheless it is not strictly part of the shell. The 'test' tool evaluates conditions and returns
either true or false, depending on what it finds. It returns these values in the form of an exit
status (in the $? shell variable): a zero for true and something else for false. The general
form of the test command is

test condition

as in

A test for string equality
test "Hello World" = "Hello World"

This test for the equality of two strings returns an exit status of zero. There is also a
shorthand notation for 'test' which is usually more readable in scripts, namely angle
brackets:

[condition]

Note the spaces between the brackets and the actual condition – don't forget them in your
own scripts. The equivalent of the example above in shorthand is

A shorter test for string equality
["Hello World" = "Hello World"]

'Test' can evaluate a number of different kinds of conditions, to fit with the different kinds of
tests that you're like to want to carry out in a shell script. Most specific shells have added on
to the basic set of available conditions, but Bourne Shell recognizes the following:

File conditions

-b file
file exists and is a block special file

-c file
file exists and is a character special file

-d file
file exists and is a directory

-f file
file exists and is a regular data file

-g file
file exists and has its set-group-id bit set

-k file
file exists and has its sticky bit set

-p file
file exists and is a named pipe

-r file
file exists and is readable

-s file
file exists and its size is greater than zero

-t [n]
The open file descriptor with number n is a terminal device; n is optional, default 1

-u file
file exists and has its set-user-id bit set

-w file
file exists and is writable

-x file
file exists and is executable

String conditions

-n s

s has non-zero length
-z s

s has zero length
s0 = s1

s0 and s1 are identical
s0 != s1

s0 and s1 are different
s

s is not null (often used to check that an environment variable has a value)

Integer conditions

n0 -eq n1
n0 is equal to n1

n0 -ge n1
n0 is greater than or equal to n1

n0 -gt n1
n0 is strictly greater than n1

n0 -le n1
n0 is less than or equal to n1

n0 -lt n1
n0 is strictly less than n1

n0 -ne n1
n0 is not equal to n1

Finally, conditions can be combined and grouped:

\(B\)
Parentheses are used for grouping conditions (don't forget the backslashes). A
grouped condition (B) is true if B is true.

! B
Negation; is true if B is false.

B0 -a B1
And; is true if B0 and B1 are both true.

B0 -o B1
Or; is true if either B0 or B1 is true.

Conditional execution

Okay, so now we know how to evaluate some conditions. Let's see how make use of this
ability to do some programming.

All programming languages need two things: a form of decision making or conditional
execution and a form of repetition or looping. We'll get to looping later, for now let's
concentrate on conditional execution. Bourne Shell supports two forms of conditional
execution, the if-statement and the case-statement.

The if-statement is the most general of the two. It's general form is

if command-list
then command-list
elif command-list
then command-list
...
else command-list
fi

This command is to be interpreted as follows:

The command list following the if is executed.1.
If the last command returns a status zero, the command list following the first then is
executed and the statement terminates after completion of the last command in this
list.

2.

If the last command returns a non-zero status, the command list following the first elif
(if there is one) is executed.

3.

If the last command returns a status zero, the command list following the next then is
executed and the statement terminates after completion of the last command in this
list.

4.

If the last command returns a non-zero status, the command list following the next elif
(if there is one) is executed and so on.

5.

If no command list following the if or an elif terminates in a zero status, the command
list following the else (if there is one) is executed.

6.

The statement terminates. If the statement terminated without an error, the return
status is zero.

7.

It is interesting to note that the if-statement allows command lists everywhere, including in
places where conditions are evaluated. This means that you can execute as many
compound commands as you like before reaching a decision point. The only command that
affects the outcome of the decision is the last one executed in the list.

In most cases though, for the sake of readability and maintainability, you will want to limit
yourself to one command for a condition. In most cases this command will be a use of the
'test' tool.

Example of a simple if statement

 Code:

if [1 -gt 0]
then
 echo YES
fi

 Output:

YES

Example of an if statement with an else clause

 Code:

if [1 -le 0]
then
 echo YES
else
 echo NO
fi

 Output:

NO

Example of a full if statement with an else clause and two elifs

 Code:

rank=captain

if [$rank = "colonel"]
then
 echo Hannibal Smith
elif [$rank = "captain"]
then
 echo Howling Mad Murdock
elif [$rank = "lieutenant"]
then
 echo Templeton Peck
else
 echo B.A. Baracus
fi

 Output:

Howling Mad Murdock

The case-statement is sort of a special form of the if-statement, specialized in the kind of
test demonstrated in the last example: taking a value and comparing it to a fixed set of

expected values or patterns. The case statement is used very frequently to evaluate
command line arguments to scripts. For example, if you write a script that uses switches to
identify command line arguments, you know that there are only a limited number of legal
switches. The case-statement is an elegant alternative to a potentially messy if-statement in
such a case.

The general form of the case statement is

case value in
pattern0) command-list-0 ;;
pattern1) command-list-1 ;;
...
esac

The value can be any value, including an environment variable. Each pattern is a regular
expression and the command list executed is the one for the first pattern that matches the
value (so make sure you don't have overlapping patterns). Each command list must end with
a double semicolon. The return status is zero if the statement terminates without syntax
errors.

The last 'if'-example revisited

 Code:

rank=captain

case $rank in
 colonel) echo Hannibal Smith;;
 captain) echo Howling Mad Murdock;;
 lieutenant) echo Templeton Peck;;
 sergeant) echo B.A. Baracus;;
 *) echo OOPS;;
esac

 Output:

Howling Mad Murdock

If v ersus case: what is the difference?

So what exactly is the difference between the if- and case-statements? And what is the point
of having two statements that are so similar? Well, the technical difference is this: the
case-statement works off of data available to the shell (like an environment variable),
whereas the if-statement works off the exit status of a program or command. Since fixed
values and environment variables depend on the shell but the exit status is a concept

general to the Unix system, this means that the if-statement is more general than the
case-statement.

Let's look at a slightly larger example, just to put the two together and compare:

#!/bin/sh

if [$2]
then
 sentence="$1 is a"
else
 echo Not enough command line arguments! >&2
 exit 1
fi

case $2 in
 fruit|veg*) sentence="$sentence vegetarian!";;
 meat) sentence="$sentence meat eater!";;
 *) sentence="${sentence}n omnivore!";;
esac

echo $sentence

Note that this is a shell script and that it uses positional variables to capture command-line
arguments. The script starts with an if-statement to check that we have the right number of
arguments – note the use of 'test' to see if the value of variable $2 is not null and the exit
status of 'test' to determine how the if-statement proceeds. If there are enough arguments,
we assume the first argument is a name and start building the sentence that is the result of
our script. Otherwise we write an error message (to stderr, the place to write errors; read all
about it in Files and streams) and exit the script with a non-zero return value. Note that this
else statement has a command list with more than one command in it.

Assuming we got through the if-statement without trouble, we get to the case-statement.
Here we check the value of variable $2, which should be a food preference. If that value is
either fruit or something starting with veg, we add a claim to the script result that some
person is a vegetarian. If the value was exactly meat, the person is a meat eater. Anything
else, he is an omnivore. Note that in that last case pattern clause we have to use curly
braces in the variable substitution; that's because we want to add a letter n directly onto the
existing value of sentence, without a space in between.

Let's put the script in a file called 'preferences.sh' and look at the effect of some calls of this
script:

Calling the script with different effects

$ sh preferences.sh
Not enough command line arguments!
$sh preferences.sh Joe
Not enough command line arguments!
$sh preferences.sh Joe fruit
Joe is a vegetarian!
$sh preferences.sh Joe veg
Joe is a vegetarian!
$sh preferences.sh Joe vegetables
Joe is a vegetarian!
$sh preferences.sh Joe meat
Joe is a meat eater!
sh preferences.sh Joe meat potatoes
Joe is a meat eater!
sh preferences.sh Joe potatoes
Joe is an omnivore!

Repetition

In addition to conditional execution mechanisms every programming language needs a
means of repetition, repeated execution of a set of commands. The Bourne Shell has
several mechanisms for exactly that: the while-statement, the until-statement and the
for-statement.

The while loop

The while-statement is the simplest and most straightforward form of repetition statement in
Bourne shell. It is also the most general. Its general form is this:

while command-list1
do command-list2
done

The while-statement is interpreted as follows:

Execute the commands in command list 1.1.
If the exit status of the last command is non-zero, the statement terminates.2.
Otherwise execute the commands in command list 2 and go back to step 1.3.
If the statement does not contain a syntax error and it ever terminates, it terminates with
exit status zero.

4.

Much like the if-statement, you can use a full command list to control the while-statement
and only the last command in that list actually controls the statement. But in reality you will
probably want to limit yourself to one command and, as with the if-statement, you will usually
use the 'test' program for that command.

A while loop that prints all the values between 0 and 10

 Code:

counter=0

while [$counter -lt 10]
do
 echo $counter
 counter=`expr $counter + 1`
done

 Output:

0
1
2
3
4
5
6
7
8
9

Note the use of command substitution to increase the value of the counter variable.

The while-statement is commonly used to deal with situations where a script can have an
indeterminate number of command-line arguments, by using the shift command and the
special '$#' variable that indicates the number of command-line arguments:

Printing all the command-line arguments
#!/bin/sh

while [$# -gt 0]
do
 echo $1
 shift
done

The until loop

The until-statement is also a repetition statement, but it is sort of the semantic opposite of
the while-statement. The general form of the until-statement is

until command-list1
do command-list2
done

The interpretation of this statement is almost the same as that of the while-statement. The
only difference is that the commands in command list 2 are executed as long as the last
command of command list 1 returns a non-zero status. Or, to put it more simply: command
list 2 is executed as long as the condition of the loop is not met.

Whereas while-statements are mostly used to establish some effect ("repeat until done"),
until-statements are more commonly used to poll for the existence of some condition or to
wait until some condition is met. For instance, assume some process is running that will
write 10000 lines to a certain file. The following until-statement waits for the file to have
grown to 10000 lines:

Waiting for myfile.txt to grow to 10000 lines
until [$lines -eq 10000]
do
 lines=`wc -l dates | awk '{print $1}'`
 sleep 5
done

The for loop

In the section on Control flow, we discussed that the difference between if and case was
that the first depended on command exit statuses whereas the second was closely linked to
data available in the shell. That kind of pairing also exists for repetition statements: while
and until use command exit statuses and for uses data explicitly available in the shell.

The for-statement loops over a fixed, finite set of values. Its general form is

for name in w1 w2 ...
do command-list
done

This statement executes the command list for each value named after the 'in'. Within the
command list, the "current" value wi is available through the variable name. The value list
must be separated from the 'do' by a semicolon or a newline. And the command list must be
separated from the 'done' by a semicolon or a newline. So, for example:

A for loop that prints some values

 Code:

for myval in Abel Bertha Charlie Delta Easy Fox Gumbo Henry India
do
 echo $myval Company
done

 Output:

Abel Company
Bertha Company
Charlie Company
Delta Company
Easy Company
Fox Company
Gumbo Company
Henry Company
India Company

The for statement is used a lot to loop over command line arguments. For that reason the
shell even has a shorthand notation for this use: if you leave off the 'in' and the values part,
the command assumes $* as the list of values. For example:

Using for to loop over command line arguments

 Code:

#!/bin/sh

for arg
do
 echo $arg
done

 Output:

$ sh loop_args.sh A B C D

A
B
C
D

This use of for is commonly combined with case to handle command line switches.

Command execution

In the last section on Control Flow we discussed the major programming constructs and
control flow statements offered by the Bourne Shell. However, there are lots of other syntactic
constructs in the shell that allow you to control the way commands are executed and to
embed commands in other commands. In this section we discuss some of the more
important ones.

Command joining

Earlier, we looked at the if-statement as a method of conditional execution. In addition to this
expansive statement the Bourne Shell also offers a method of directly linking two commands
together and making the execution of one of them conditional on the outcome (the exit
status) of the other. This is useful for making quick, inline decisions on command execution.
But you probably wouldn't want to use these constructs in a shell script or for longer
command sequences, because they aren't the most readable.

You can join commands together using the && and || operators. These operators (which you
might recognize as borrowed from the C programming language) are short circuiting
operators: they make the execution of the second command dependent on the exit status of
the first and so can allow you to avoid unnecessary command executions.

The && operator joins two commands together and only executes the second if the exit
status of the first is zero (i.e. the first command "succeeds"). Consider the following
example:

Attempt to create a file and delete it again if the creation succeeds
echo Hello World > tempfile.txt && rm tempfile.txt

In this example the deletion would be pointless if the file creation fails (because the file
system is read-only, say). Using the && operator prevents the deletion from being attempted
if the file creation fails. A similar – and possibly more useful – example is this:

Check if a file exists and make a backup copy if it does
test -f my_important_file && cp my_important_file backup

In contrast to the && operator, the || operator executes the second command only if the exit
status of the first command is not zero (i.e. it fails). Consider the following example:

Make sure we do not overwrite a file; create a new file only if it doesn't exist yet
test -f my_file || echo Hello World > my_file

For both these operators the exit status of the joined commands is the exit status of the last
command that actually got executed.

Command grouping

You can join multiple commands into one command list by joining them using the ; operator,
like so:

Create a directory and change into it all in one go
mkdir newdir;cd newdir

There is no conditional execution here; all commands are executed, even if one of them fails.

When joining commands into a command list, you can group the commands together for
clarity and some special handling. There are two ways of grouping commands: using curly
braces and using parentheses.

Grouping using curly braces is just for clarity; it doesn't add any semantics to joining using
semicolons. The only differences between with braces and without are that if you use braces
you must insert an extra semicolon after your command list and you have to remember to put
spaces between the braces and your command list or the shell won't understand what you
mean. Here's an example:

Create a directory and change into it all in one go, grouped with curly braces
{ mkdir newdir;cd newdir; }

The parentheses are far more interesting. When you group a command list with
parentheses, it is executed... in a separate process. This means that whatever you do in the
command list doesn't affect the environment in which you gave the command. Consider the
example above again, with braces and parentheses:

Create a directory and change into it all in one go, grouped with curly braces

 Code:

/home$ { mkdir newdir;cd newdir; }

 Output:

/home/newdir$

Note that your working directory has changed

Create a directory and change into it all in one go, grouped with parentheses

 Code:

/home$ (mkdir newdir;cd newdir)

 Output:

/home$

Note that your working directory is still the same — but the new directory has been created

Here's another one:

Creating shell variables in the current and in a new environment

 Code:

$ VAR0=A
$ (VAR1=B)
$ echo \"$VAR0\" \"$VAR1\"

 Output:

"A" ""

VAR1 was created in a separate process with its own environment, so it doesn't exist in the
original environment

Command subsitution

In the chapter on Environment we talked about variable substitution. The Bourne Shell also
supports command substitution. This is sort of like variable substitution, but instead of a
variable being replaced by its value a command is replaced by its output. We saw an
example of this earlier when discussing the while-statement, where we assigned the
outcome of an arithmetic expression evaluation to an environment variable.

Command substitution is accomplished using either of two notations. The original Bourne
Shell used grave accents (`command`), which is still generally supported by most shells.
Later on the POSIX 1003.1 standard added the $(command) notation. Consider the
following examples:

Making a daily backup (old-skool)
cp myfile backup/myfile-`date`

Making a daily backup (POSIX 1003.1)
cp myfile backup/myfile-$(date)

Regular expressions and metacharacters

Usually, in the day-to-day tasks that you do with your shell, you will want to be explicit and
exact about which files you want to operate on. After all, you want to delete a specific file and
not a random one. And you want to send your network communications to the network device
file and not to the keyboard.

But there are times, especially in scripting, when you will want to be able to operate on more
than one file at a time. For instance, if you have written a script that makes a regular backup
of all the files in your home directory whose names end in ".dat". If there are a lot of those
files, or there are more being made each day with new names each time, then you do not
want to have to name all those files explicitly in your backup script.

We have also seen another example of not wanting to be too explicit: in the section on the
case-statement, there is an example where we claim that somebody is a vegetarian if he
likes fruit or anything starting with "veg". We could have included all sorts of options there
and been explicit (although there are an infinite number of words you can make that start
with "veg"). But we used a pattern instead and saved ourselves a lot of time.

For exactly these cases the shell supports a (limited) form of regular expressions: patterns
that allow you to say something like "I mean every string, every sequence of characters, that
looks sort of like this". The shell allows you to use these regular expressions anywhere
(although they don't always make sense — for example, it makes no sense to use a regular
expression to say where you want to copy a file). That means in shell scripts, in the
interactive shell, as part of the case-statement, to select files, general strings, anything.

In order to create regular expressions you use one or more metacharacters. Metacharacters
are characters that have special meaning to the shell and are automatically recognized as
part of regular expressions. The Bourne shell recognizes the following metacharacters:

*
Matches any string.

?
Matches any single character.

[characters]
Matches any character enclosed in the angle brackets.

[!characters]
Matches any character not enclosed in the angle brackets.

pat0|pat1
Matches any string that matches pat0 or pat1 (only in case-statement patterns!)

Here are some examples of how you might use regular expressions in the shell:

List all files whose names end in ".dat"
ls *.dat

List all files whose names are "file-" followed by two characters followed by ".txt"
ls file-??.txt

Make a backup copy of all text files, with a datestamp
for i in `ls *.txt`; do cp $i backup/$i-`date +%Y%m%d`; done

List all files in the directories Backup0 and Backup1
ls Backup[01]

List all files in the other backup directories
ls Backup[!01]

Execute all shell scripts whose names start with "myscript" and end in ".sh"
myscript*.sh

Regular expressions and hidden files

When selecting files, the metacharacters match all files except files whose names start with
a period ("."). Files that start with a period are either special files or are assumed to be
configuration files. For that reason these files are semi-protected, in the sense that you
cannot just pick them up with the metacharacters. In order to include these files when
selecting with regular expressions, you must include the leading period explicitly. For
example:

Lising all files whose names start with a period

 Code:

/home$ ls .*

 Output:

.

..

.profile

The period files in a home directory

The example above shows a listing of period files. In this example the listing includes
'.profile', which is the user configuration file for the Bourne Shell. It also includes the special
directories '.' (which means "the current directory") and '..' (which is the parent directory of the
current directory). You can address these special directories like any other. So for instance

ls .

is the same semantically as just 'ls ' and

cd ..

changes your working directory to the parent directory of the directory that was your working
directory before.

Quoting

When you introduce special characters like the metacharacters discussed in the previous
section, you automatically get into situations when you really don't want those special
characters evaluated. For example, assume that you have a file whose name includes an
asterisk ('*'). How would you address that file? For example:

Metacharacters in file names can cause problems

 Code:

echo Test0 > asterisk*.file
echo Test1 > asteriskSTAR.file
cat asterisk*.file

 Output:

Test0

Test1

Oops; that clearly wasn't the idea...

Clearly what is needed is a way of temporarily turning metacharacters off. The Bourne Shell
built-in quoting mechanisms do exactly that. In fact, they do a lot more than that. For instance,
if you have a file name with spaces in it (so that the shell cannot tell the different words in the
file name belong together) the quoting mechanisms will help you deal with that problem as
well.

There are three quoting mechanisms in the Bourne Shell:

\
backslash, for single character quoting.

''
single quotes, to quote entire strings.

""
double quotes, to quote entire strings but still allow for some special characters.

The simplest of these is the backslash, which quotes the character that immediately follows
it. So, for example:

Echo with an asterisk

 Code:

echo *

 Output:

asterisk*.file asterisking.file backup biep.txt BLAAT.txt conditional1.sh condit
ional1.sh~ conditional.sh conditional.sh~ dates error_test.sh error_test.sh~ fil
e with spaces.txt looping0.sh looping1.sh out_nok out_ok preferences.sh pre
ferences.sh~ test.txt

Echoing an asterisk

 Code:

echo *

 Output:

*

So the backslash basically disables special character interpretation for the duration of one
character. Interestingly, the newline character is also considered a special character in this
context, so you can use the backslash to split commands to the interpreter over multiple
lines. Like so:

A multiline command

 Code:

echo This is a \
>very long command!

 Output:

This is a very long command!

Note: you don't have to type the >; the shell puts it in as a hint that you're continuing on a
new line.

The backslash escape also works for file names with spaces:

Difficult file to list...

 Code:

ls file with spaces.txt

 Output:

ls: cannot access file: No such file or directory
ls: cannot access with: No such file or directory
ls: cannot access spaces.txt: No such file or directory

Listing the file using escapes

 Code:

ls file\ with\ spaces.txt

 Output:

file with spaces.txt

But what if you want to pass a backslash to the shell? Well, think about it. Backslash
disables interpretation of one character, so if you want to use a backslash for anything else...
then '\\' will do it!

So we've seen that a backslash allows you to disable special character interpretation for a
single character by quoting it. But what if you want to quote a lot of special characters all at
once? As you've seen above with the filename with spaces, you can quote each special
character separately, but that gets to be a drag really quickly. Usually it's quicker, easier and
less error-prone simply to quote an entire string of characters in one go. To do exactly that
you use single quotes. Two single quotes quote the entire string they surround, disabling
interpretation of all special characters in that string — with the exception of the single quote
(so that you can stop quoting as well). For example:

Quoting to use lots of asterisks

 Code:

echo '*******'

 Output:

So let's try something. Let's assume that for some strange reason we would like to print
three asterisks ("***"), then a space, then the current working directory, a space and three
more asterisks. We know we can disable metacharater interpretation with single quotes so
this should be no biggy, right? And to make life easy, the built-in command 'pwd' prints the
working directory, so this is really easy:

Printing the working directory with decorations

 Code:

echo '*** `pwd` ***'

 Output:

*** `pwd` ***

Uh... wait... that's not right...

So what went wrong? Well, the single quotes disable interpretation of all special characters.
So the grave accents we used for the command substitution didn't work! Can we make it
work a different way? Like by using the Path of Working Directory environmentvariable
($PWD)? Nope, the $-character won't work either.

This is a typical Goldilocks problem. We want to quote some special characters, but not all.
We could use backslashes, but that doesn't do enough to be convenient (it's too cold). We
can use single quotes, but that kills too many special characters (it's too hot). What we need
is quoting that's juuuust riiiiight. More to the point, what we want (and more often than you
think) is to disable all special character interpretation except variable and command
substitution. Because this is a common desire the shell supports it through a separate
quoting mechanism: the double quote. The double quote disables all special character
interpretation except the grave accent (command substitution), the $ (variable substitution)
and the double quote (so you can stop quoting). So the solution to our problem above is:

Printing the working directory with decorations, take II

 Code:

echo "*** `pwd` ***"

 Output:

*** /home/user/examples ***

By the way, we actually cheated a little bit above for educational purposes (hey, you try
coming up with these examples); we could also have solved the problem like this:

Printing the working directory with decorations, alternative

 Code:

echo '***' `pwd` '***'

 Output:

*** /home/user/examples ***

Files and streams

The Unix world: one file after another

When you think of a computer and everything that goes with it, you usually come up with a
mental list of all sorts of different things:

The computer itself
The monitor
The keyboard
The mouse
Your hard drive with your files and directories on it
The network connection leading to the Internet
The printer
The DVD player
et cetera

Here's a surprise for you: Unix doesn't have any of these things. Well, almost. Unix certainly
has files. Unix has endless reams of files. And since Unix has files, it also has a concept of
"between files" (think of it this way: if your universe consists only of boxes, you automatically
know about spaces where there are no boxes as well). But Unix knows nothing else than
that. Everything in the whole (Unix) universe is a file.

Everything is a file. Even things that are really weird things to think of as files, are files. Your
(data) files are files. Your directories are files. Your hard drive is a file. Your keyboard,
monitor and printer are files. Yes, really: your keyboard is a read-only file of infinite size. Your
monitor and printer are infinitely sized write-only files. Your network connection is a
read/write file.

At this point you're probably asking: Why? Why would the designers of the Unix system have
come up with this madness? Why is everything a file? The answer is: because if everything
is a file, you can treat everything like a file. Or, put a different way, you can treat everything in
the Unix world the same way. And, as we will see shortly, that means you can also combine
virtually everything using file operations.

Before we move on, here's an extra level of weirdness for you: everything in Unix is a file.

Including the processes that run programs. Effectively this means that running programs are
also files. Including the interactive shell session that you've been running to practice
scripting in. Yes, really, that text screen with the blinking cursor is also a file. And we can
prove it too. You might recall that in the chapter on Running Commands we mentioned you
can exit the shell using the Ctrl+d key combination. Because that combination produces the
Unix character for... that's right, end-of-file!

Streams: what goes between files

As we mentioned in the previous section, everything in Unix is a file -- except that which sits
between files. Between files Unix defines a mechanism that allows data to move, bit by bit,
from one file to another: the stream. A stream is literally what it sounds like: a little river of
bits pouring from one file into another. Although actually a bridge would probably have been
a better name because unlike a stream (which is a constant flow of water) the flow of bits
between files need not be constant, or even used at all.

The standard streams

Within the Unix world it is a general convention that each file is connected to at least three
streams (that's because that turned out to be the most useful number for those files that are
processes, or running programs). There can be more and in fact each file can cause itself to
be connected to any number of streams (a program can print and open a network
connection, for instance). But there are three basic streams available to all files, even though
they may not always be useful or used. These streams are called the "standard" streams:

Standard in (stdin)
the standard stream for input into a file.

Standard out (stdout)
the standard stream for output out of a file.

Standard error (stderr)
the standard stream for error output from a file.

As you can probably tell, these streams are very geared towards those files that are actually
processes of the system. In fact many programming languages (like C, C++, Java and
Pascal) use exactly these conventions for their standard I/O operations. And since the Unix
operating system family includes them in the core of the system definition, these streams
are also central to the Bourne Shell.

Getting hold of the standard streams in your scripts

So now we know that there's a general mechanism for basic input and output in Unix; but
how do you get hold of these streams in a script? What do you have to do to hook your script
up to the standard out, or read from the standard in? Well, the happy answer is: nothing.
Your scripts are automatically connected to the standard in, out and error stream of the
process that is running them. When you read input, it automatically comes from the standard

in. Your output goes straight to the standard out. And program errors go right to the standard
error. In fact you've already used these streams: every example so far that has printed
anything has done so to the standard output stream of your script.

And what about the shell in interactive mode? Does that use those standard streams as
well? Yes, it does. In interactive mode, the standard in stream is connected to the keyboard
file. And the standard output and standard error are connected to the monitor file.

Okay... But what good is it?

This discussion on files and streams has been very interesting so far and a nice insight into
the depths of Unix. But what good does it do you to know all this? Ah, glad you asked!

The Bourne Shell has some built-in features that allow you to do neat tricks involving files
and their streams. You see, files don't just have streams -- you can also cross-connect the
streams of two files. At the end of the previous section we said that the standard input of the
interactive session is connected to the keyboard file. In fact it is connected to the standard
output stream of the keyboard file. And the standard output and error of the interactive
session are connected to the standard input of the monitor file. So you can connect the
streams of the interactive session to the streams of devices.

But wait. Do you remember the remark above that the point of Unix considering everything to
be a file was that everything gets treated like a file? This is why that was important: you can
connect a stream from any file to a stream of any other file. You can connect your interactive
shell session to the printer or the network rather than to the monitor (or in addition to the
monitor) using streams. You can run a program and have its output go directly to the printer
by reconnecting the standard output stream of the program. You can connect the standard
output stream of one program directly to the standard input stream of another program and
make chains of programs. And the Bourne Shell makes it really simple to do all that.

Do you suddenly feel like you've stuck your fingers in the electrical socket? That's the feeling
of the raw power of the shell flowing through your body....

Redirecting: using streams in the shell

As explained in the previous section, the shell process is connected by standard streams to
(by default) the keyboard and the monitor. But very often you will want to change this linking.
Connecting a file to a stream is a very common operation, so would expect it to be called
something like "connecting" or "linking". But since the Bourne Shell has default connections
and everything you do is always a change in the default connections, connecting a file to a
(different) stream using the shell is actually called redirecting.

There are several operators built in to the Bourne Shell that relate to redirecting. The most
basic and general one is the pipe operator, which we will examine in some detail further on.
The others are related to redirecting to file.

Redirecting to file

As we explained (or rather: hinted at) in the previous section, one of the enormously powerful
features of the Bourne Shell on top of a Unix operating system is the ability to chain
programs together. Execute a program, have it produce output, then automatically send that
output to another program as input. The possible combinations are endless, as is the power
of what you can achieve.

One of the most common places where you might want to send a program's output is to a
file in the file system. And this time by file we mean a regular, classic data file and not a Unix
"everything is a file including your hardware" file. In order to achieve this you can imagine that
we can use the chaining mechanism described above: let a program generate output
through the standard output stream, then connect that stream (i.e. redirect the output) to the
standard input stream of a program that creates a data file in the file system. And this would
absolutely work. However, redirecting to a data file is such a common operation that you
don't need a separate end-of-chain program for it. Redirecting to file is built straight into the
Bourne Shell, through the following operators:

process > data file
redirect the output of process to the data file; create the file if necessary, overwrite its
existing contents otherwise.

process >> data file
redirect the output of process to the data file; create the file if necessary, append to its
existing contents otherwise.

process < data file
read the contents of the data file and redirect that contents to process as input.

Redirecting output

Let's take a closer look at these operators through some examples. Take the simple Bourne
shell script below called 'hello.sh':

A simple shell script that generates some output
#!/bin/sh
echo Hello

This code may be run in any of the ways described in the chapter Running Commands.
When we run the script, it simply outputs the string "Hello" to the screen and then returns us
to our prompt. But let's say we want to redirect the output to a file instead. We can use the
redirect operators to do that easily:

Redirecting the output to a data file

$ hello.sh > myfile.txt
$

This time, we don't see the string 'Hello' on the screen. Where's it gone? Well, exactly where
we wanted it to: into the (new) data file called 'myfile.txt'. Let's examine this file using the 'cat'
command:

Examining the results of redirecting some output
$ cat myfile.txt
Hello
$

Let's run the program again, this time using the '>>' operator instead, and then examine
'myfile.txt' again using the 'cat' command:

Redirecting using the append redirect
$ hello.sh >> myfile.txt
$ cat myfile.txt
Hello
Hello
$

You can see that 'myfile.txt' now consists of two lines — the output has been added to the
end of the file (or concatenated); this is due to the use of the '>>' operator. If we run the script
again, this time with the single greater-than operator, we get:

Redirecting using the overwrite redirect
$ hello.sh > myfile.txt
$ cat myfile.txt
Hello
$

Just one 'Hello' again, because the '>' will always overwrite the contents of an existing file if
there is one.

Redirecting input

Okay, so it's clear we can redirect output to a data file. But what about reading from a data
file? That's also pretty common. The Bourne Shell helps us here as well: the entire process
of reading a file and pumping its data into a stream is captured by the '<' operator.

By default 'stdin' is fed from your keyboard; run the 'cat' command without any arguments and
it will just sit there, waiting for you type something:

cat ???
$ cat

I can type all day here, and I never seem to get my prompt back from

this stupid machine.

I have even pressed RETURN a few times !!!

.....etc....etc

In fact 'cat' will sit there all day until you type a 'Ctrl+D' (the 'End of File Character' or 'EOF' for
short). To redirect our standard input from somewhere else use the '<' (less-than operator):

Redirecting into the standard input
$ cat < myfile.txt
Hello
$

So 'cat' will now read from the text file 'myfile.txt'; the 'EOF' character is also generated at the
end of file, so 'cat' will exit as before.

Note that we previously used 'cat' in this format:

$ cat myfile.txt

Which is functionally identical to

$ cat < myfile.txt

However, these are two fundamentally different mechanisms: one uses an argument to the
command, the other is more general and redirects 'stdin' – which is what we're concerned
with here. It's more convenient to use 'cat' with a filename as argument, which is why the
inventors of 'cat' put this in. However, not all programs and scripts are going to take
arguments so this is just an easy example.

Combining file redirects

It's possible to redirect 'stdin' and 'stdout' in one line:

Redirecting input to and output from cat at the same time
$ cat < myfile.txt > mynewfile.txt

The command above will copy the contents of 'myfile.txt' to 'mynewfile.txt' (and will overwrite
any previous contents of 'mynewfile.txt'). Once again this is just a convenient example as we
normally would have achieved this effect using 'cp myfile.txt mynewfile.txt'.

Redirecting standard error (and other streams)

So far we have looked at redirecting the "normal" standard streams associated with files, i.e.
the files that you use if everything goes correctly and as planned. But what about that other
stream? The one meant for errors? How do we go about redirecting that? For example, if we
wanted to redirect error data into a log file.

As an example, consider the ls command. If you run the command 'ls myfile.txt', it simply lists
the filename 'myfile.txt' &ndash if that file exists. If the file 'myfile.txt' does NOT exist, 'ls' will
return an error to the 'stderr' stream, which by default in Bourne Shell is also connected to
your monitor.

So, lets run 'ls' a couple of times, first on a file which does exist and then on one that doesn't:

Listing an existing file

 Code:

$ ls myfile.txt

 Output:

myfile.txt $

and then:

Listing a non-existent file

 Code:

$ ls nosuchfile.txt

 Output:

ls: no such file or directory
$

And again, this time with 'stdout' redirected only:

Trying to redirect...

 Code:

$ ls nosuchfile.txt > logfile.txt

 Output:

ls: no such file or directory
$

We still see the error message; 'logfile.txt' will be created but will be empty. This is because
we have now redirected the stdout stream, while the error message was written to the error
stream. So how do we tell the shell that we want to redirect the error stream?

In order to understand the answer, we have to cover a little more theory about Unix files and
streams. You see, deep down the reason that we can redirect stdin and stdout with simple
operators is that redirecting those streams is so common that the shell lets us use a
shorthand notation for those streams. But actually, to be completely correct, we should have
told the shell in every case which stream we wanted to redirect. In general you see, the shell
cannot know: there could be tons of streams connected to any file. And in order to
distinguish one from the other each stream connected to a file has a number associated
with it: by convention 0 is the standard in, 1 is the standard out, 2 is standard error and any
other streams have numbers counting on from there. To redirect any particular stream you
prepend the redirect operator with the stream number (called the file descriptor. So to
redirect the error message in our example, we prepend the redirect operator with a 2, for the
stderr stream:

Redirecting the stderr stream

 Code:

$ ls nosuchfile.txt 2> logfile.txt

 Output:

$

No output to the screen, but if we examine 'logfile.txt':

Checking the logfile

 Code:

$ cat logfile.txt

 Output:

ls: no such file or directory
$

As we mentioned before, the operator without a number is a shorthand notation. In other
words, this:

$ cat < inputfile.txt > outputfile.txt

is actually short for

$ cat 0< inputfile.txt 1> outputfile.txt

We can also redirect both 'stdout' and 'stderr' independently like this:

$ ls nosuchfile.txt > stdio.txt 2>logfile.txt
$

'stdio.txt' will be blank , 'logfile.txt' will contain the error as before.

If we want to redirect stdout and stderr to the same file, we can use the file descriptor as
well:

$ ls nosuchfile.txt > alloutput.txt 2>&1

Here '2>&1' means something like 'redirect stderr to the same file stdout has been
redirected to'. Be careful with the ordering! If you do it this way:

$ ls nosuchfile.txt 2>&1 > alloutput.txt

you will redirect stderr to the file that stdout points to, then send stdout somewhere else —
and both streams will end up being redirected to different locations.

Special files

We said earlier that the redirect operators discussed so far all redirect to data files. While
this is technically true, Unix magic still means that there's more to it than just that. You see,
the Unix file system tends to contain a number of special files called "devices", by convention
collected in the /dev directory. These device files include the files that represent your hard
drive, DVD player, USB stick and so on. They also include some special files, like /dev/null
(also known as the bit bucket; anything you write to this file is discarded). You can redirect to
device files as well as to regular data files. Be careful here; you really don't want to redirect
raw text data to the boot sector of your hard drive (and you can!). But if you know what you're
doing, you can use the device files by redirecting to them (this is how DVDs are burned in
Linux, for instance).

As an example of how you might actually use a device file, in the 'Solaris' flavour of Unix the
loudspeaker and its microphone can be accessed by the file '/dev/audio'. So:

cat /tmp/audio.au > /dev/audio

Will play a sound, whereas:

cat < /dev/audio > /tmp/mysound.au

Will record a sound.(you will need to CTRL-C this to finish...)

This is fun:

cat < /dev/audio > /dev/audio

Now wave the microphone around whilst shouting - Jimmy Hendrix style feedback. Great
stuff. You will probably need to be logged in as 'root' to try this by the way.

Some redirect warnings

The astute reader will have noticed one or two things in the discussion above. First of all, a
file can have more than just the standard streams associated with it. Is it legal to redirect
those? Is it even possib le? The answer is, technically, yes. You can redirect stream 4 or 5 of
a file (if they exist). Don't try it though. If there's more than a few streams in any direction, you
won't know which stream you're redirecting. Plus, if a program needs more than the

standard streams it's a good bet that program also needs its extra streams going to a
specific location.

Second, you might have noticed that file descriptor 0 is, by convention, the standard input
stream. Does that mean you can redirect a program's standard input away from the
program? Could you do the following?

$ cat 0> somewhere_else

The answer is, yes you can. And yes, things will break if you do.

Pipes, Tees and Named Pipes

So, after all this talk about redirecting to file, we finally get to it: general redirecting by cross-
connecting streams. The most general form of redirecting and the most powerful one to
boot. It's called a pipe and is performed using the pipe operator '|'. Pipes allow you to join
two processes together through a "pipeline", which directly connects the stdout of one file to
the stdin of another.

As an example let's consider the 'grep' command which returns a matching string, given a
keyword and some text to search. And let's also use the ps command, which lists running
processes on the machine. If you give the command

$ ps -eaf

it will generally list pagefuls of running processes on your machine, which you would have to
sift through manually to find what you want. Let's say you are looking for a process which you
know contains the word 'oracle'; use the output of 'ps' to pipe into grep, which will only return
the matching lines:

$ ps -eaf | grep oracle

Now you will only get back the lines you need. What happens if there's still loads of these ?
No problem, pipe the output to the command 'more' (or 'pg'), which will pause your screen if
it fills up:

$ ps -ef | grep oracle | more

What about if you want to kill all those processes? You need the 'kill' program, plus the
process number for each process (the second column returned by the ps command). Easy:

$ ps -ef | grep oracle | awk '{print $2}' | xargs kill -9

In this command, 'ps' lists the processes and 'grep' narrows the results down to oracle. The
'awk' tool pulls out the second column of each line. And 'xargs' feeds each line, one at a time,
to 'kill' as a command line argument.

Pipes can be used to link as many programs as you wish within reasonable limits (and we
don't know what these limits are!)

Don't forget you can still use the redirectors in combination:

$ ps -ef | grep oracle > /tmp/myprocesses.txt

There is another useful mechanism that can be used with pipes: the 'tee'. To understand
tee, imagine a pipe shaped like a 'T' - one input, two outputs:

$ ps -ef | grep oracle | tee /tmp/myprocesses.txt

The 'tee' will copy whatever is given to its stdin and redirect this to the argument given (a file);
it will also then send a further copy to its stdout - which means you can effectively intercept
the pipe, take a copy at this stage, and carry on piping up other commands; useful maybe for
outputting to a logfile, and copying to the screen.

A note on piped commands: piped processes run in parallel on the Unix environment.
Sometimes one process will be blocked, waiting for input from another process. But each
process in a pipeline is, in principle, running simultaneously with all the others.

Named pipes

There is a variation on the in-line pipe which we have been discussing called the 'named
pipe'. A named pipe is actually a file with its own 'stdin' and 'stdout' - which you attach
processes to. This is useful for allowing programs to talk to each other, especially when you
don't know exactly when one program will try and talk to the other (waiting for a backup to
finish etc) and when you don't want to write a complicated network-based listener or do a
clumsy polling loop.

To create a 'named pipe', you use the 'mkfifo' command (fifo=first in, first out; so data is read
out in the same order as it is written into).

$ mkfifo mypipe
$

This creates a named pipe called 'mypipe'; next we can start using it.

This test is best run with two terminals logged in:

1. From 'terminal a'

$ cat < mypipe

The 'cat' will sit there waiting for an input.

2. From 'terminal b'

$ cat myfile.txt > mypipe
 $

This should finish immediately. Flick back to 'terminal a'; this will now have read from the
pipe and received an 'EOF', and you will see the data on the screen; the command will have
finished, and you are back at the command prompt.

Now try the other way round:

1. From terminal 'b'

$ cat myfile.txt > mypipe

This will now sit there, as there isn't another process on the other end to 'drain' the pipe - it's
blocked.

2. From terminal 'a'

$ cat < mypipe

As before, both processes will now finish, the output showing on terminal 'a'.

Here documents

So far we have looked at redirecting from and to data files and cross-connecting data
streams. All of these shell mechanisms are based on having a "physical" source for data —
a process or a data file. Sometimes though, you want to feed some data into a target without
having a source for it. In these cases you can use an "on the fly" document called a here
document. A here document means that you open a virtual text document (in memory), type
into it as usual, close it and then treat it like any normal file.

Creating a here document is done using a variation on the input redirect operator: the '<<'
operator. Like the input redirect operator, the here document operator takes an argument.
For the input redirect operator this operand is the name of the file to be streamed in. For the
here document operator it is the string that will terminate the here document. So using the
here document operator looks like this:

target << terminator string
here document contents
terminator string

For example:

Using a here document

 Code:

cat << %%
> This is a test.
> This test uses a here document.
> Hello world.
> This here document will end upon the occurrence of the string "%%" on a separate line.
> So this document is still open now.
> But now it will end....
> %%

 Output:

This is a test.
This test uses a here document.
Hello world.
This here document will end upon the occurrence of the string "%%" on a separate line.
So this document is still open now.
But now it will end....

When using here documents in combination with variable or command substitution, it is
important to realize that substitutions are carried out before the here document is passed
on. So for example:

Using a here document with substitutions

 Code:

$ COMMAND=cat
$ PARAM='Hello World!!'
$ $COMMAND <<%
> `echo $PARAM`
> %

 Output:

Hello World!!

Modularization
If you've ever done any programming in a different environment than the shell, you're
probably familiar with the following scenario: you're writing your program, happily typing away
at the keyboard, until you notice that

you have to repeat some code you typed earlier because your program has to perform
exactly the same actions in two different locations; or
your program is just too long to understand anymore.

In other words, you've reached the point where it becomes necessary to divide your program
up into modules that can be run as separate subprograms and called as often as you like.
Working in the Bourne Shell is no different than working in any other language in this
respect. Sooner or later you're going to find yourself writing a shell script that's just too long
to be practical anymore. And the time will have come to divide your script up into modules.

Named functions

Of course, the easy and obvious way to divide a script into modules is just to create a couple
of different shell scripts — just a few separate text files with executable permissions. But
using separate files isn't always the most practical solution either. Spreading your script over
multiple files can make it hard to maintain. Especially if you end up with shell scripts that
aren't really meaningful unless they are called specifically from one other, particular shell
script.

Especially for this situation the Bourne Shell includes the concept of a named function: the
possibility to associate a name with a command list and execute the command list by using
the name as a command. This is what it looks like:

name () command group

*Where name is a text string

and command group is any grouped command l ist (either with curly braces or parentheses)

This functionality is available throughout the shell and is useful in several situations. First of
all, you can use it to break a long shell script up into multiple modules. But second, you can
use it to define your own little macros in your own environment that you don't want to create a
full script for. Many modern shells include a built-in command for this called alias, but

old-fashioned shells like the original Bourne Shell did not; you can use named functions to
accomplish the same result.

Creating a named function

Functions with a simple command group

Let's start off simply by creating a function that prints "Hello World!!". And let's call it "hw". This
is what it looks like:

Hello world as a named function
hw() {
> echo 'Hello World!!';
>}

We can use exactly the same code in a shell script or in the interactive shell — the example
above is from the interactive shell. There are several things to notice about this example.
First of all, we didn't need a separate keyword to define a function, just the parentheses did
it. To the shell, function definitions are like extended variable definitions. They're part of the
environment; you set them just by defining a name and a meaning.

The second thing to note is that, once you're past the parentheses, all the normal rules hold
for the command group. In our case we used a command group with braces, so we needed
the semicolon after the echo command. The string we want to print contains exclamation
points, so we have to quote it (as usual). And we were allowed to break the command group
across multiple lines, even in interactive mode, just like normal.

Here's how you use the new function:

Calling our function

 Code:

$ hw

 Output:

Hello World!!

Functions that execute in a separate process

The definition of a function takes a command group. Any command group. Including the
command group with parentheses rather than braces. So if we want, we can define a
function that runs as a subprocess in its own environment as well. Here's hello world again,
in a subprocess:

Hello world as a named function
hw() (echo 'Hello World!!')

It's all on one line this time to keep it short, but the same rules apply as before. And of
course the same environment rules apply as well, so any variables defined in the function
will not be available anymore once the function ends.

Functions with parameters

If you've done any programming in a different programming language you know that the most
useful functions are those that take parameters. In other words, ones that don't always rigidly
do the same thing but can be influenced by values passed in when the function is called. So
here's an interesting question: can we pass parameters to a function? Can we create a
definition like

functionWithParams (ARG0, ARG1) { do something with ARG0 and ARG1 }

And then make a call like 'functionWithParams(Hello, World)'? Well, the answer is simple:
no. The parenthese are just there as a flag for the shell to let it know that the previous name
is the name of a function rather than a variable and there is no room for parameters.

Or actually, it's more a case of the above being the simple answer rather than the answer
being simple. You see, when you execute a function you are executing a command. To the
shell there's really very little difference between executing a named function and executing
'ls'. It's a command like any other. And it may not be able to have parameters, but like any
other command it can certainly have command line arguments. So we may not be able to
define a function with parameters like above, but we can certainly do this:

Functions with command-line arguments

 Code:

$ repeatOne () { echo $1; }
$ repeatOne 'Hello World!'

 Output:

Hello World!

And you can use any other variable from the environment as well. Of course, that's a nice
trick for when you're calling a function from the command line in the interactive shell. But
what about in a shell script? The positional variables for command-line arguments are
already taken by the arguments to the shell script, right? Ah, but wait! Each command
executed in the shell (no matter how it was executed) has its own set of command-line
arguments! So thereś no interference and you can use the same mechanism. For example,
if we define a script like this:

function.sh: A function in a shell script
#!/bin/sh

myFunction() {
 echo $1
}

echo $1
myFunction
myFunction "Hello World"
echo $1

Then it executes exactly the way we want:

Executing the function.sh script

 Code:

$. function.sh 'Goodbye World!!'

 Output:

Goodbye World!

Hello World

Goodbye World!

Functions in the environment

We've mentioned it before, but let's delve a little deeper into it now: what are functions
exactly? We've hinted that they're an alias for a command list or a macro and that they're part

of the environment. But what is a function exactly?

A function, as far as the shell is concerned, is just a very verbose variable definition. And
that's really all it is: a name (a text string) that is associated with a value (some more text)
and can be replaced by that value when the name is used. Just like a shell variable. And we
can prove it too: just define a function in the interactive shell, then give the 'set' command (to
list all the variable definitions in your current environment). Your function will be in the list.

Because functions are really a special kind of shell variable definition, they behave exactly
the same way "normal" variables do:

Functions are defined by listing their name, a definition operator and then the value of
the function. Functions use a different definition operator though: '()' instead of '='. This
tells the shell to add some special considerations to the function (like not needing the
'$' character when using the function).
Functions are part of the environment. That means that when commands are issued
from the shell, functions are also copied into the copy of the environment that is given
to the issued command.
Functions can also be passed to new subprocesses if they are marked for export,
using the 'export' command. Some shells will require a special command-line
argument to 'export' for functions (bash, for instance, requires you to do an 'export -f' to
export functions).
You can drop function definitions by using the 'unset' command.

Of course, when you use them functions behave just like commands (they are expanded into
a command list, after all). We've already seen that you can use command-line arguments
with functions and the positional variables to match. But you can also redirect input and
output to and from commands and pipe commands together as well.

Debugging and signal handling
In the previous sections we've told you all about the Bourne Shell and how to write scripts
using the shell's language. We've been careful to include all the details we could think of so
you will be able to write the best scripts you can. But no matter how carefully you've paid
attention and no matter how carefully you write your scripts, the time will come to pass when
something you've written simply will not work — no matter how sure you are it should. So
how do you proceed from here?

In this module we cover the tools the Bourne Shell provides to deal with the unexpected.
Unexpected behavior of your script (for which you must debug the script) and unexpected
behavior around your script (caused by signals being delivered to your script by the operating
system).

Debugging Flags

So here you are, in the middle of the night having just finished a long and complicated shell
script, just poured your heart and soul into it for three days straight while living on nothing but
coffee, cola and pizza... and it just won't work. Somewhere in there is a bug that is just
eluding you. Something is going wrong, some unexpected behavior has popped up or
something else is driving you crazy. So how are you going to debug this script? Sure, you
can pump it full of 'echo' commands and debug that way, but isn't there an easier way?

Generally speaking the most insightful way to debug any program is to follow the execution
of the program along statement by statement to see what the program is doing exactly. The
most advanced form of this (offered by modern IDEs) allows you to trace into a program by
stopping the execution at a certain point and examining its internal state. The Bourne Shell
is, unfortunately, not that advanced. But it does offer the next best thing: command tracing.
The shell can print each and every command as it is being executed.

The tracing functionality (there are two of them) is activated using either the 'set' command or
by passing parameters directly to the shell executable when it is called. In either case you
can use the -x parameter, the -v parameter or both.

-v
Turns on verbose mode; each command is printed by the shell as it is read.

-x
This turns on command tracing; every command is printed by the shell as it is
executed.

Debugging

Let's consider the following script:

divider.sh: Script with a potential error
#!/bin/sh

DIVISOR=${1:-0}
echo $DIVISOR
expr 12 / $DIVISOR

Let's execute this script and not pass in a command-line argument (so we use the default
value 0 for the DIVISOR variable):

Running the script

 Code:

$ sh divider.sh

 Output:

0
expr: division by zero

Of course it's not too hard to figure out what went wrong in this case, but let's take a closer
look anyway. Let's see what the shell executed, using the -x parameter:

Running the script with tracing on

 Code:

$ sh -x divider.sh

 Output:

+ DIVISOR=0

+ echo 0
0
+ expr 12 / 0

expr: division by zero

So indeed, clearly the shell tried to have a division by zero evaluated. Just in case we're
confused about where the zero came from, let's see which commands the shell actually
read:

Running the script in verbose mode

 Code:

$ sh -v divider.sh

 Output:

#!/bin/sh

DIVISOR=${1:-0}

echo $DIVISOR
0
expr 12 / $DIVISOR

expr: division by zero

So obviously, the script read a command with a variable substitution that didn't work out very
well. If we combine these two parameters the resulting output tells the whole, sad story:

Running the script with maximum debugging

 Code:

$ sh -xv divider.sh

 Output:

#!/bin/sh

DIVISOR=${1:-0}
+ DIVISOR=0
echo $DIVISOR
+ echo 0
0
expr 12 / $DIVISOR
+ expr 12 / 0

expr: division by zero

There is another parameter that you can use to debug your script, the -n parameter. This
causes the shell to read the commands but not execute them. You can use this parameter to
do a syntax checking run of your script.

Places to put your parameters

As you saw in the previous section, we used the shell parameters by passing them in as
command-line parameters to the shell executable. But couldn't we have put the parameters
inside the script itself? After all, there is an interpreter hint in there... And surely enough, we
can do exactly that. Let's modify the script a little and try it.

The same script, but now with parameters to the interpreter hint

#!/bin/sh -xv

DIVISOR=${1:-0}
echo $DIVISOR
expr 12 / $DIVISOR

Running the script

 Code:

$ chmod +x divider.sh
$./divider.sh

 Output:

#!/bin/sh

DIVISOR=${1:-0}
+ DIVISOR=0
echo $DIVISOR
+ echo 0
0
expr 12 / $DIVISOR
+ expr 12 / 0
expr: division by zero

Works like a charm!

So there's no problem there. But there is a little gotcha. Let's try running the script again:

Running the script again

 Code:

$ sh divider.sh

 Output:

0

expr: division by zero

Where did the debugging go?

So what happened to the debugging that time? Well, you have remember that the interpreter
hint is used when you try to execute the script as an executable in its own right. But in the last
example, we weren't doing that. In the last example we called the shell ourselves and
passed it the script as a parameter. So the shell executed without any debugging activated. It
would have worked if we'd done a "sh -xv divider.sh" though.

What about sourcing the script (i.e. using the dot notation)?

Running the script again

 Code:

$. divider.sh

 Output:

0

expr: division by zero

No debugging there either...

This time the script was executed by the same shell process that is running the interactive
shell for us. And the same principle applies: no debugging there either. Because the
interactive shell was not started with debugging flags. But we can fix that as well; this is
where the 'set' command comes in:

Running the script again

 Code:

$ set -xv
$. divider.sh

 Output:

. divider.sh

+ . divider.sh
#!/bin/sh -vx

DIVISOR=${1:-0}
++ DIVISOR=0
echo $DIVISOR
++ echo 0
0
expr 12 / $DIVISOR
++ expr 12 / 0
expr: division by zero

And there we are, full tracing.

And now we have debugging active in the interactive shell and we get a full trace of the script.
In fact, we even get a trace of the interactive shell calling the script! But now what happens if
we start a new shell process with debugging on in the interactive shell? Does it carry over?

Running the script again

 Code:

$ sh divider.sh

 Output:

sh divider.sh

+ sh divider.sh
0
expr: division by zero

Not quite...

Well, we certainly get a trace of the script being called, but no trace of the script itself. The
moral of the story is: when debugging, make sure you know which shell you're activating the
trace in.

By the way, to turn tracing in the interactive shell off again you can either do a 'set +xv' or
simply a 'set -'.

Breaking out of a script

When writing or debugging a shell script it is sometimes useful to exit out (to stop the
execution of the script) at certain points. You use the 'exit' built-in command to do this. The
command looks simply like this:

exit [n]

* Where n (optional) is the exit status of the script.

If you leave off the optional exit status, the exit status of he script will be the exit status of the
last command that executed before the call to 'exit'.

For example:

Exiting from a script
#!/bin/sh -x
echo hello
exit 1

If you run this script and then test the output status, you will see (using the "$?" built-in
variable):

Checking the exit status

 Code:

echo $?

 Output:

1

There's one thing to look out for when using 'exit': 'exit' actually terminates the executing
process. So if you're executing an executable script with an interpreter hint or have called the
shell explicitly and passed in your script as an argument that is fine. But if you've sourced the
script (used the dot-notation), then your script is being run by the process running your
interactive shell. So you may inadvertently terminate your shell session and log yourself out
by using the 'exit' command!

There's a variation on 'exit' meant specifically for blocks of code that are not processes of
their own. This is the 'return' command, which is very similar to the 'exit' command:

return [n]

* Where n (optional) is the exit status of the block.

Return has exactly the same semantics as 'exit', but is primarily intended for use in shell
functions (it makes a function return without terminating the script). Here's an example:

exit_and_return.sh: A script with a function and an explicit return
#!/bin/sh

sayHello() {
 echo 'Hi there!!'
 return 2
}

echo 'Hello World!!'
sayHello
echo $?
echo 'Goodbye!!'
exit

If we run this script, we see the following:

Running the script

 Code:

./exit_and_return.sh

 Output:

Hello World!!

Hi there!!
2

Goodbye!!

The function returned with a testable exit status of 2. The overall exit status of the script is
zero though, since the last command executed by the script ('echo Goodbye!!') exited without
errors.

You can also use a 'return' statement to exit a shell script that you executed by sourcing it
(the script will be run by the process that runs the interactive shell, so that's not a

subprocess). But it's usually not a good idea, since this will limit your script to being
sourced: if you try to run it any other way, the fact that you used a 'return' statement alone will
cause an error.

Signal trapping

A syntax, command error or call to 'exit' is not the only thing that can stop your script from
executing. The process that runs your script might also suddenly receive a signal from the
operating system. Signals are a simple form of event notification: think of a signal as a little
light suddenly popping on in your room, to let you know that somebody outside the room
wants your attention. Only it's not just one light. The Unix system usually allows for lots of
different signals so it's more like having a wall full of little lamps, each of which could
suddenly start blinking.

On a single-process operating system like MS-DOS, life was simple. The environment was
single-process, meaning your code (once running) had complete machine control. Any
signal arriving was always a hardware interrupt (e.g. the computer signalling that the floppy
disk was ready to read) and you could safely ignore all those signals if you didn't need
external hardware; either it was some device event you weren't interested in, or something
was really wrong — in which case the computer was crashing anyway and there was
nothing you could do.

On a Unix system, life is not so easy. On Unix signals can come from all over the place
(including other programs). And you never have complete control of the system either. A
signal may be a hardware interrupt, or another program signalling, or the user who got fed
up with waiting, logged in to a second shell session and is now ordering your process to
die. On the bright side, life is still not too complicated. Most Unix systems (and certainly the
Bourne Shell) come with default handling for most signals. Usually you can still safely ignore
signals and let the shell or the OS deal with them. In fact, if the signal in question is number
9 (loosely translated: KILL!! KILL!! DIE!! DIE, RIGHT NOW!!), you probably should ignore it and
let the OS kill your process.

But sometimes you just have to do your own signal handling. That might be because you've
been working with files and want to do some cleanup before your process dies. Or because
the signal is part of your multi-process program design (e.g. listening for signal 16, which is
"user-defined signal 1"). Which is why the Bourne Shell gives us the 'trap' command.

Trap

The trap command is actually quite simple (especially if you've ever done event-driven
programming of any kind). Essentially the trap command says "if one of the following signals
is received by this process, do this". It looks like this:

trap [command string] signal0 [signal1] ...

*Where command string is a string containing the commands to execute if a signal is trapped

and signaln is a signal to be trapped.

For example, to trap user-defined signal 1 (commonly referred to as SIGUSR1) and print
"Hello World" whenever it comes along, you would do this:

Trapping SIGUSR1
$ trap "echo Hello World" 16

Most Unix systems also allow you to use symbolic names (we'll get back to these a little
later). So you can probably also do this:

Trapping SIGUSR1 (little easier)
$ trap "echo Hello World" SIGUSR1

And if you can do that, you can usually also do this:

Trapping SIGUSR1 (even easier)
$ trap "echo Hello World" USR1

The command string passed to 'trap' is a string that contains a command list. It's not treated
as a command list though; it's just a string and it isn't interpreted until a signal is caught. The
command string can be any of the following:

A string
A string containing a command list. Any and all commands are allowed and you can
use multiple commands separated by semicolons as well (i.e. a command list).

''
The empty string. Actually this is the same as the previous case, since this is the empty
command string. This causes the shell to execute nothing when a signal is trapped —
in other words, to ignore the signal.

Nothing, the null string. This resets the signal handling to the default signal action
(which is usually "kill process").

Following the command list you can list as many signals as you want to be associated with
that command list. The traps that you set up in this manner are valid for every command that
follows the 'trap' command.

Right about now it's probably a good idea to look at an example to clear things up a bit. You

can use 'trap' anywhere (as usual) including the interactive shell. But most of the time you
will want to introduce traps into a script rather than into your interactive shell process. Let's
create a simple script that uses the 'trap' command:

A simple signal trap
#!/bin/sh

trap 'echo Hello World' SIGUSR1

while [1 -gt 0]
do
 echo Running....
 sleep 5
done

This script in and of itself is an endless loop, which prints "Running..." and then sleeps for
five seconds. But we've added a 'trap' command (before the loop, otherwise the trap would
never be executed and it wouldn't affect the loop) that prints "Hello World" whenever the
process receives the SIGUSR1 signal. So let's start the process by running the script:

Infinite loop...

 Code:

$./trap_signal.sh

 Output:

Running....
Running....
Running....
Running....
Running....
Running....
...

This could get boring after a while....

To spring the trap, we must send the running process a signal. To do that, log into a new
shell session and use a process tool (like 'ps') to find the correct process id (PID):

Finding the process ID

 Code:

$ ps -ef | grep signal

 Output:

bzt 10865 7067 0 15:08 pts/0 00:00:00 /bin/sh ./trap_signal.sh

bzt 10808 10415 0 15:12 pts/1 00:00:00 fgrep signal

Our PID is 10865

Now, to send a signal to that process, we use the 'kill' command which is built into the
Bourne Shell:

kill [-signal] ID [ID] ...

*Where -signal is the signal to send (optional; default is 15, or SIGTERM)

and ID are the PIDs of the processes to send the signal to (at least one of them)

As the name suggests, 'kill' was actually intended to kill processes (this fits with the default
signal being SIGTERM and the default signal handler being terminate). But in fact what it
does is nothing more than send a signal to a process. So for example, we can send a
SIGUSR1 to our process like this:

Let's trip the trap...

 Code:

kill -SIGUSR1 10865

 Output:

...
Running....
Running....
Running....
Running....
Running....
Hello World
Running....
Running....
...

You might notice that there's a short pause before "Hello World!" appears; it won't happen
until the running 'sleep' command is done. But after that, there it is. But you might be a little
surprised: the signal didn't kill the process. That's because 'trap' completely replaces the
signal handler with the commands you set up. And an 'echo Hello World' alone won't kill a
process... The lesson here is a simple one: if you want your signal trap to terminate your
process, make sure you include an 'exit' command.

Between having multiple commands in your command list and potentially trapping lots of
signals, you might be worried that a 'trap' statement can become messy. Fortunately, you
can also use shell functions as commands in a 'trap'. The following example illustates that
and the difference between an exiting event handler and a non-exiting event handler:

A trap with a shell function as a handler
#!/bin/sh

exit_with_grace() {
 echo Goodbye World
 exit
}

trap "exit_with_grace" USR1 TERM QUIT
trap "echo Hello World" USR2

while [1 -gt 0]
do
 echo Running....
 sleep 5
done

System signals

Here's the official definition of a signal from the POSIX-1003 2001 edition standard:

A mechanism by which a process or thread may be notified of, or affected by, an event occurring in the
Examples of such events include hardware exceptions and specific actions by processes. The term signal

In other words, a signal is some sort of short message that is send from one process
(possible a system process) to another. But what does that mean exactly? What does a
signal look like? The definition given above is kind of vague...

If you have any feel for what happens in computing when you give a vague definition, you
already know the answer to the questions above: every Unix flavor that wa developed came
up with its own definition of "signal". They pretty much all settled on a message that consists
of an integer (because that's simple), but not exactly the same list everywhere. Then there
was some standardization and Unix systems organized themselves into the System V and

BSD flavors and at last everybody agreed on the following definition:

The system signals are the signals listed in /usr/include/sys/signal.h .

God, that's helpful...

Since then a lot has happened, including the definition of the POSIX-1003 standard. This
standard, which standardizes most of the Unix interfaces (including the shell in part 1
(1003.1)) finally came up with a standard list of symbolic signal names and default handlers.
So usually, nowadays, you can make use of that list and expect your script to work on most
systems. Just be aware that it's not completely fool-proof...

POSIX-1003 defines the signals listed in the table below. The values given are the typical
numeric values, but they aren't mandatory and you shouldn't rely on them (but then again,
you use symbolic values in order not to use actual values).

POSIX system signals

Signal Default action Description
Typical
value(s)

SIGABRT Abort with core dump
Abort process and generate a core
dump

6

SIGALRM Terminate Alarm clock. 14

SIGBUS Abort with core dump
Access to an undefined portion of a
memory object.

7, 10

SIGCHLD Ignore Child process terminated, stopped 20, 17, 18

SIGCONT
Continue process (if
stopped)

Continue executing, if stopped. 19,18,25

SIGFPE Abort with core dump Erroneous arithmetic operation. 8

SIGHUP Terminate Hangup. 1

SIGILL Abort with core dump Illegal instruction. 4

SIGINT Terminate Terminal interrupt signal. 2

SIGKILL Terminate Kill (cannot be caught or ignored). 9

SIGPIPE Terminate
Write on a pipe with no one to read it
(i.e. broken pipe).

13

SIGQUIT Terminate Terminal quit signal. 3

SIGSEGV Abort with core dump Invalid memory reference. 11

SIGSTOP Stop process
Stop executing (cannot be caught or
ignored).

17,19,23

SIGTERM Terminate Termination signal. 15

SIGTSTP Stop process Terminal stop signal. 18,20,24

SIGTTIN Stop process Background process attempting read. 21,21,26

SIGTTOU Stop process Background process attempting write. 22,22,27

SIGUSR1 Terminate User-defined signal 1. 30,10,16

SIGUSR2 Terminate User-defined signal 2. 31,12,17

SIGPOLL Terminate Pollable event. -

SIGPROF Terminate Profiling timer expired. 27,27,29

SIGSYS Abort with core dump Bad system call. 12

SIGTRAP Abort with core dump Trace/breakpoint trap 5

SIGURG Ignore
High bandwidth data is available at a
socket.

16,23,21

SIGVTALRM Terminate Virtual timer expired. 26,28

SIGXCPU Abort with core dump CPU time limit exceeded. 24,30

SIGXFSZ Abort with core dump File size limit exceeded. 25,31

Earlier on we talked about job control and suspending and resuming jobs. Job suspension
and resuming is actually completely based on sending signals to processes, so you can in
fact control job stopping and starting completely using 'kill' and the signal list. To suspend a
process, send it the SIGSTOP signal. To resume, send it the SIGCONT signal.

Err... ERR?

If you go online and read about 'trap', you might come across another kind of "signal" which
is called ERR. It's used with 'trap' the same way regular signals are, but it isn't really a signal
at all. It's used to trap command errors (i.e. non-zero exit statuses), like this:

Error trapping

 Code:

$ trap 'echo HELLO WORLD' ERR
$ expr 1 / 0

 Output:

expr: division by zero

HELLO WORLD

The non-zero exit status was trapped as though it was a signal.

So why didn we cover this "signal" earlier, when we were discussing 'trap'? Well, we saved it
until the discussion on system and non-system signals for a reason: ERR isn't standard at
all. It was added by the Korn Shell to make life easier, but not adopted by the POSIX standard
and it certainly isn't part of the original Bourne Shell. So if you use it, remember that your
script may not be portable anymore.

Cookbook

 Post a new Cookbook entry
(http://en.wikibooks.org

/w/index.php?title=Bourne_Shell_Scripting

/Print_Version&action=edit§ion=new)
If you use the title box, then you do not need to put a title in the body.

Branch on extensions

When writing a bash script which should do different things based on the the extension of a
file, the following pattern is helpful.

 #filepath should be set to the name(with optional path) of the file in question
 ext=${filepath##*.}
 if [["$ext" == txt]] ; then
 #do something with text files
 fi

(Source: slike.com Bash FAQ (http://www.splike.com/howtos
/bash_faq.html#Get+a+file%27s+basename%2C+dirname%2C+extension%2C+etc%3F)).

Rename several files

This recipe shows how to rename several files following a pattern.

In this example, the user has huge collection of screenshots. This user wants to rename the
files using a Bourne-compatible shell. Here is an "ls" at the shell prompt to show you the
filenames. The goal is to rename images like "snapshot1.png" to "nethack-kernigh-
22oct2005-01.png".

$ ls
snapshot1.png snapshot25.png snapshot40.png snapshot56.png snapshot71.png
snapshot10.png snapshot26.png snapshot41.png snapshot57.png snapshot72.png
snapshot11.png snapshot27.png snapshot42.png snapshot58.png snapshot73.png
snapshot12.png snapshot28.png snapshot43.png snapshot59.png snapshot74.png
snapshot13.png snapshot29.png snapshot44.png snapshot6.png snapshot75.png
snapshot14.png snapshot3.png snapshot45.png snapshot60.png snapshot76.png
snapshot15.png snapshot30.png snapshot46.png snapshot61.png snapshot77.png
snapshot16.png snapshot31.png snapshot47.png snapshot62.png snapshot78.png
snapshot17.png snapshot32.png snapshot48.png snapshot63.png snapshot79.png
snapshot18.png snapshot33.png snapshot49.png snapshot64.png snapshot8.png
snapshot19.png snapshot34.png snapshot5.png snapshot65.png snapshot80.png
snapshot2.png snapshot35.png snapshot50.png snapshot66.png snapshot81.png
snapshot20.png snapshot36.png snapshot51.png snapshot67.png snapshot82.png
snapshot21.png snapshot37.png snapshot52.png snapshot68.png snapshot83.png
snapshot22.png snapshot38.png snapshot53.png snapshot69.png snapshot9.png
snapshot23.png snapshot39.png snapshot54.png snapshot7.png
snapshot24.png snapshot4.png snapshot55.png snapshot70.png

First, to add a "0" (zero) before snapshots 1 through 9, write a for loop (in effect, a short shell
script).

Use ? which is a filename pattern for a single character. Using it, I can match
snapshots 1 through 9 but miss 10 through 83 by saying snapshot?.png.
Use ${parameter#pattern} to substitute the value of parameter with the pattern removed
from the beginning. This is to get rid of "snapshot" so I can put in "snapshot0".
Before actually running the loop, insert an "echo" to test that the commands will be
correct.

$ for i in snapshot?.png; do echo mv "$i" "snapshot0${i#snapshot}"; done
mv snapshot1.png snapshot01.png
mv snapshot2.png snapshot02.png
mv snapshot3.png snapshot03.png
mv snapshot4.png snapshot04.png
mv snapshot5.png snapshot05.png
mv snapshot6.png snapshot06.png
mv snapshot7.png snapshot07.png
mv snapshot8.png snapshot08.png
mv snapshot9.png snapshot09.png

That seems good, so run it by removing the "echo".

$ for i in snapshot?.png; do mv "$i" "snapshot0${i#snapshot}"; done

An ls confirms that this was effective.

Now change prefix "snapshot" to "nethack-kernigh-22oct2005-". Run a loop similar to the
previous one:

$ for i in snapshot*.png; do
> mv "$i" "nethack-kernigh-22oct2005-${i#snapshot}"
> done

This saves the user from typing 83 "mv" commands.

Long command line options

The builtin getopts does not support long options so the external getopt is required. (On some
systems, getopt also does not support long options, so the next example will not work.)

eval set -- $(getopt -l install-opts: "" "$@")
while true; do
 case "$1" in
 --install-opts)
 INSTALL_OPTS=$2
 shift 2
 ;;
 --)
 shift
 break
 ;;
 esac
done

echo $INSTALL_OPTS

The call to getopt quotes and reorders the command line arguments found in $@. set then
makes replaces $@ with the output from getopt

Another example of getopt use can also be found in the Advanced Bash Script Guide
(http://www.tldp.org/LDP/abs/html/extmisc.html#EX33A)

Process certain files through xargs

In this recipe, we want to process a large list of files, but we must run one command for
each file. In this example, we want to convert the sampling rates of some sound files to
44100 hertz. The command is sox file.ogg -r 44100 conv/file.ogg, which converts file.ogg
to a new file conv/file.ogg. We also want to skip files that are already 44100 hertz.

First, we need the sampling rates of our files. One way is to use the file command:

$ file *.ogg
audio_on.ogg: Ogg data, Vorbis audio, mono, 44100 Hz, ~80000 bps
beep_1.ogg: Ogg data, Vorbis audio, stereo, 44100 Hz, ~193603 bps
cannon_1.ogg: Ogg data, Vorbis audio, mono, 48000 Hz, ~96000 bps
...

(The files in this example are from Secret Maryo Chronicles (http://www.secretmaryo.org/) .)
We can use grep -v to filter out all lines that contain '44100 Hz':

$ file *.ogg | grep -v '44100 Hz'
cannon_1.ogg: Ogg data, Vorbis audio, mono, 48000 Hz, ~96000 bps
...
jump_small.ogg: Ogg data, Vorbis audio, mono, 8000 Hz, ~22400 bps
live_up.ogg: Ogg data, Vorbis audio, mono, 22050 Hz, ~40222 bps
...

We finished with "grep" and "file", so now we want to remove the other info and leave only the
filenames to pass to "sox". We use the text utility cut. The option -d: divides each line into
fields at the colon; -f1 selects the first field.

$ file *.ogg | grep -v '44100 Hz' | cut -d: -f1
cannon_1.ogg
...
jump_small.ogg
live_up.ogg
...

We can use another pipe to supply the filenames on the standard input, but "sox" expects
them as arguments. We use xargs, which will run a command repeatedly using arguments
from the standard input. The -n1 option specifies one argument per command. For example,
we can run echo sox repeatedly:

$ file *.ogg | grep -v '44100 Hz' | cut -d: -f1 | xargs -n1 echo sox
sox cannon_1.ogg
...
sox itembox_set.ogg
sox jump_small.ogg
...

However, these commands are wrong. The full command for cannon_1.ogg, for example, is
sox cannon_1.ogg -r 44100 conv/cannon_1.ogg. "xargs" will insert incoming data into
placeholders indicated by "{}". We use this strategy in our pipeline. If we have doubt, then first
we can build a test pipeline with "echo":

$ file *.ogg | grep -v '44100 Hz' | cut -d: -f1 | \
> xargs -i 'echo sox {} -r 44100 conv/{}'
sox cannon_1.ogg -r 44100 conv/cannon_1.ogg
...
sox itembox_set.ogg -r 44100 conv/itembox_set.ogg
sox jump_small.ogg -r 44100 conv/jump_small.ogg
...

It worked, so let us remove the "echo" and run the "sox" commands:

$ mkdir conv
$ file *.ogg | grep -v '44100 Hz' | cut -d: -f1 | \
> xargs -i 'sox {} -r 44100 conv/{}'

After a wait, the converted files appear in the conv subdirectory. The above three lines alone
did the entire conversion.

Simple playlist frontend for GStreamer

If you have GStreamer, the command gst-launch filesrc location=filename ! decodebin !
audioconvert ! esdsink will play a sound or music file of any format for which you have a
GStreamer plugin. This script will play through a list of files, optionally looping through them.
(Replace "esdsink" with your favorite sink.)

#!/bin/sh
loop=false
if test x"$1" == x-l; then
 loop=true
 shift
fi

while true; do
 for i in "$@"; do
 if test -f "$i"; then
 echo "${0##*/}: playing $i" > /dev/stderr
 gst-launch filesrc location="$i" ! decodebin ! audioconvert ! esdsink
 else
 echo "${0##*/}: not a file: $i" > /dev/stderr
 fi
 done
 if $loop; then true; else break; fi
done

This script demonstrates some common Bourne shell tactics:

"loop" is a boolean variable. It works because its values "true" and "false" are both Unix
commands (and sometimes shell builtins), thus you can use them as conditions in if
and while statements.
The shell builtin "shift" removes $1 from the argument list, thus shifting $2 to $1, $3 to
$2, and so forward. This script uses it to process an "-l" option.
The substitution ${0##*/} gives everything in $0 after the last slash, thus "playlist", not
"/home/musicfan/bin/playlist".

Quick Reference
This final section provides a fast lookup reference for the materials in this document. It is a
collection of thumbnail examples and rules that will be cryptic if you haven't read through the
text.

Useful commands

Command Effect

cat Lists a file or files sequentially.

cd Change directories.

chmod ugo+rwx Set read, write and execute permissions for user, group and others.

chmod a-rwx Remove read, write and execute permissions from all.

chmod 755 Set user write and universal read-execute permissions

chmod 644 set user write and universal read permissions.

cp Copy files.

expr 2 + 2 Add 2 + 2.

fgrep Search for string match.

grep Search for string pattern matches.

grep -v Search for no match.

grep -n List line numbers of matches.

grep -i Ignore case.

grep -l Only list file names for a match.

head -n5 source.txt List first 5 lines.

less View a text file one screen at a time; can scroll both ways.

ll Give a listing of files with file details.

ls Give a simple listing of files.

mkdir Make a directory.

more Displays a file a screenfull at a time.

mv Move or rename files.

paste f1 f2 Paste files by columns.

pg Variant on "more".

pwd Print working directory.

rm Remove files.

rm -r Remove entire directory subtree.

rmdir Remove an empty directory.

sed 's/txt/TXT/g' Scan and replace text.

sed 's/txt/d' Scan and delete text.

sed '/txt/q' Scan and then quit.

sort Sort input.

sort +1 Skip first field in sorting.

sort -n Sort numbers.

sort -r Sort in reverse order.

sort -u Eliminate redundant lines in output.

tail -5 source.txt List last 5 lines.

tail +5 source.txt List all lines after line 5.

tr '[A-Z]' '[a-z]' Translate to lowercase.

tr '[a-z]' '[A-Z]' Translate to uppercase.

tr -d '_' Delete underscores.

uniq Find unique lines.

wc Word count (characters, words, lines).

wc -w Word count only.

wc -l Line count.

Elementary shell capabilities

Command Effect

shvar="Test 1" Initialize a shell variable.

echo $shvar Display a shell variable.

export shvar Allow subshells to use shell variable.

mv $f ${f}2 Append "2" to file name in shell variable.

$1, $2, $3, ... Command-line arguments.

$0 Shell-program name.

$# Number of arguments.

$* Complete argument list (all in one string).

$@ Complete argument list (string for every argument).

$? Exit status of the last command executed.

shift 2 Shift argument variables by 2.

read v Read input into variable "v".

. mycmds Execute commands in file.

IF statement

The if statement executes the command between if and then. If the command returns not 0
then the commands between then and else are executed - otherwise the command between
else and fi.

 if test "${1}" = "red" ; then
 echo "Illegal code."
 elif test "${1}" = "blue" ; then
 echo "Illegal code."
 else
 echo "Access granted."
 fi

 if ["$1" = "red"]
 then
 echo "Illegal code."
 elif ["$1" = "blue"]
 then
 echo "Illegal code."
 else
 echo "Access granted."
 fi

Test Syntax Variations

Most test commands can be written using more then one syntax. Mastering and consistently
using one form may be a programming best-practice, and may be a more efficient use of
overall time.

String Tests

String Tests are performed by the test command. See help test for more details. To make
scripts look more like other programming languages the synonym [...] was defined which
does exactly the same as test.

Command Effect

test "$shvar" = "red"

["$shvar" = "red"]
String comparison, true if match.

test "$shvar" != "red"

["$shvar" != "red"]
String comparison, true if no match.

test -z "${shvar}"

test "$shvar" = ""
["$shvar" = ""]

True if null variable.

test -n "${shvar}"

test "$shvar" != ""
[-n "$shvar"]
["$shvar" != ""]

True if not null variable.

Arithmetic tests

simple arithmetics can be performed with the test for more complex arithmetics the let
command exists. See help let for more details. Note that for let command variables don't
need to be prefixed with '$' and the statement need to be one argument, use '...' when
there are spaces inside the argument. Like with test a synonym - ((...)) - was defined to
make shell scripts look more like ordinary programs.

Command Effect

test "$nval" -eq 0

let 'nval == 0'
["$nval" -eq 0]
((nval == 0))

Integer test; true if equal to 0.

test "$nval" -ge 0

let 'nval >= 0'
["$nval" -ge 0]
((nval >= 0))

Integer test; true if greater than or equal to 0.

test "$nval" -gt 0

let 'nval > 0'
["$nval" -gt 0]
((nval > 0))

Integer test; true if greater than 0.

test "$nval" -le 0

let 'nval <= 0' Integer test; true if less than or equal to 0.

["$nval" -le 0]
((nval <= 0))

test "$nval" -lt 0

let 'nval < 0'
["$nval" -lt 0]
((nval < 0))

Integer test; true if less than to 0.

test "$nval" -ne 0

let 'nval != 0'
["$nval" -ne 0]
((nval != 0))

Integer test; true if not equal to 0.

let 'y + y > 100'

((y + y >= 100))
Integer test; true when

File tests

Command Effect

test -d tmp

[-d tmp]
True if "tmp" is a directory.

test -f tmp

[-f tmp]
True if "tmp" is an ordinary file.

test -r tmp

[-r tmp]
True if "tmp" can be read.

test -s tmp

[-s tmp]
True if "tmp" is nonzero length.

test -w tmp
True if "tmp" can be written.

[-w tmp]

test -x tmp

[-x tmp]
True if "tmp" is executable.

Boolean tests

Boolean arithmetic is performed by a set of operators. It is important to note then the
operators execute programs and compare the result codes. Because boolean operators are
often combined with test command a unifications was created in the form of [[...]].

Command Effect

test -d /tmp && test -r /tmp

[[-d /tmp && -r /tmp]]
True if "/tmp" is a directory and can be read.

test -r /tmp || test -w /tmp

[[-r /tmp || -w /tmp]]
True if "tmp" can be be read or written.

test ! -x /tmp

[[! -x /tmp]]
True if the file is not executable

CASE statement

 case "$1"
 in
 "red") echo "Illegal code."
 exit;;
 "blue") echo "Illegal code."
 exit;;
 "x"|"y") echo "Illegal code."
 exit;;
 *) echo "Access granted.";;
 esac

Loop statements

 for nvar in 1 2 3 4 5
 do
 echo $nvar
 done

 for file # Cycle through command-line arguments.
 do
 echo $file
 done

 while ["$n" != "Joe"] # Or: until ["$n" = "Joe"]
 do
 echo "What's your name?"
 read n
 echo $n
 done

There are "break" and "continue" commands that allow you to exit or skip to the end of loops
as the need arises.

Instead of [] we can use test. [] requires space after and before the brackets and there
should be spaces between arguments.

Credit

This content was originally from http://www.vectorsite.net/tsshell.html and was originally in
the public domain.

Appendix A: Command Reference
The Bourne Shell offers a large number of built-in commands that you can use in your shell
scripts. The following table gives an overview:

Bourne Shell command reference

Command Description

: A null command that returns a 0 (true) exit value.

. file
Execute. The commands in the specified file are read and executed by the
shell. Commonly referred to as sourcing a file.

#
Ignore all the text until the end of the line. Used to create comments in
shell scripts.

#!shell
Interpreter hint. Indicates to the OS which interpreter to use to execute a
script.

bg [job] ...
Run the specified jobs (or the current job if no arguments are given) in the
background.

break [n]
Break out of a loop. If a number argument is specified, break out of n
levels of loops.

case See Bourne Shell Scripting/Control flow

cd [directory] Switch to the specified directory (default $HOME).

continue [n]
Skip the remaining commands in a loop and continue the loop at the next
interation. If an integer argument is specified, skip n loops.

echo string Write string to the standard output.

eval string ...
Concatenate all the arguments with spaces. Then re-parse and execute
the command.

exec
[command arg
...]

Execute command in the current process.

exit [exitstatus]
Terminate the shell process. If exitstatus is given it is used as the exit
status of the shell; otherwise the exit status of the last completed
command is used.

export name ...
Mark the named variables or functions for export to child process
environments.

fg [job] Move the specified job (or the current job if not specified) to the foreground.

for See Bourne Shell Scripting/Control flow.

hash -rv
command ...

The shell maintains a hash table which remembers the locations of
commands. With no arguments whatsoever, the hash command prints out
the contents of this table. Entries which have not been looked at since the
last cd command are marked with an asterisk; it is possible for these
entries to be invalid.

With arguments, the hash command removes the specified commands
from the hash table (unless they are functions) and then locates them. The
-r option causes the hash command to delete all the entries in the hash
table except for functions.

if See Bourne Shell Scripting/Control flow.

jobs
This command lists out all the background processes which are children
of the current shell process.

-signal] PID ...

Send signal to the jobs listed by ID. If no signal is specified, send
SIGTERM.

If the -l option is used, lists all the signal names defined on the system.

newgrp [group]
Temporarily move your user to a new group. If no group is listed, move
back to your user's default group.

pwd Print the working directory.

read variable
[...]

Read a line from the input and assign each individual word to a listed
variable (in order). Any leftover words are assigned to the last variable.

readonly name
...

Make the listed variables read-only.

return [n]
Return from a shell function. If an integer argument is specified it will be
the exit status of the function.

set [{ -options |
+options | -- }]
arg ...

The set command performs three different functions.

With no arguments, it lists the values of all shell variables.

If options are given, it sets the specified option flags or clears them.

The third use of the set command is to set the values of the shell's
positional parameters to the specified args. To change the positional
parameters without changing any options, use “--” as the first argument to
set. If no args are present, the set command will clear all the positional
parameters (equivalent to executing “shift $#”.)

shift [n] Shift the positional parameters n times.

test See Bourne Shell Scripting/Control flow.

trap [action]
signal ...

Cause the shell to parse and execute action when any of the specified
signals are received.

type [name ...]
Show whether a command is a UNIX command, a shell built-in command
or a shell function.

ulimit Report on or set resource limits.

umask [mask]
Set the value of umask (the mask for the default file permissions not
assigned to newly created files). If the argument is omitted, the umask
value is printed.

unset name ... Drop the definition of the given names in the shell.

wait [job]
Wait for the specified job to complete and return the exit status of the last
process in the job. If the argument is omitted, wait for all jobs to complete
and the return an exit status of zero.

while See Bourne Shell Scripting/Control flow.

Appendix B: Environment reference

In the section on the environment we discussed the concept of environment variables. We
also mentioned that there are usually a large number of environment variables that are
created centrally in /etc/profile. There are a number of these that have a predefined meaning
in the Bourne Shell. They are not set automatically, mind, but they have meaning when they
are set.

On most systems there are far more predefined variables than we list here. And some of
these will mean something to your shell (most shells have more options than the Bourne
Shell). Check your shell's documentation for a listing. The ones below are meaningful to the
Bourne Shell and are usually also recognized by other shells.

Bourne Shell environment variables

Variable Meanings

HOME
The user's home directory. Set automatically at login from the user's login
directory in the password file

PATH The default search path for executables.

CDPATH The search path used with the cd builtin, to allow for shortcuts.

LANG The directory for internationalization files, used by localizable programs.

MAIL The name of a mail file, that will be checked for the arrival of new mail.

MAILCHECK The frequency in seconds that the shell checks for the arrival of mail.

MAILPATH
A colon “:” separated list of file names, for the shell to check for incoming
mail.

PS1
The control string for your prompt, which defaults to “$ ”, unless you are the
superuser, in which case it defaults to “# ”.

PS2
The control string for your secondary prompt, which defaults to “> ”. The
secondary prompt is what you see when you break a command over more
than one line.

PS4
The character string you see before the output of an execution trace (set -x);
defaults to “+ ”.

IFS
Input Field Separators. Basically the characters the shell considers to be
whitespace. Normally set to 〈space〉, 〈tab〉, and 〈newline〉.

TERM The terminal type, for use by the shell.

Retrieved from "http://en.wikibooks.org/wiki/Bourne_Shell_Scripting/Print_Version"

This page was last modified on 4 May 2010, at 13:25.
Text is available under the Creative Commons Attribution/Share-Alike License;
additional terms may apply. See Terms of Use for details.

