

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

Entomologi for Beginems

FOR THE USE OF

YOUNG FOLK心, FRLIT-GROUERS, FARMER心, AYD (1 MINEVERS

HY

 Zonology," "Guich to the sit ly of Inse ts.". etc.

FLOREAT ENTOMOLOGAI
-Darwis, Life and Letters, I. 45i

NEW YORK

Copyright, 1888,
HX
Henry Holt \& Co.

「 1) TIIE

MBCmory

(1F
JOHN L. L, ('UNTE, M.I).,
The Lauding Entomologist of Imerine.

 BEGINNEKS 1N゙ THAT

SCHENCL.

PREFACE.

Is preparing this litthe lowk ther aim has heen to mater it
 in the stady will timd in it cophons dimertions for conlleding

 -tuly, as well as gituce the litorature antaininer the do-
 melogrists may fiml unefnt hint-. the mode of thene who

 than hats yet hoen tobs in this commtry

 refered to dwerptive works :and report for fallow informat

 furions inserts and the mat ural and antitional meat - of choch -
 this topite it is hoped that the lome will. Wth ll - copla
 a text-book in agricultural sabools amd onfle- .

As a tirst look in contomolowy it is al-o do-ishel to lue an
 sects."

The classification presented is in accordance with recent studies and the couriction that certain of the lower so-called "orders" of insects, such ats the "Orthoptera." "P Pendoneuroptera," are heterogeneous, unnatural groups. which for the sake of clearness and truth to nature should be broken up into distinct orders. The class of insects, therefore, is divided into sistecu orders insteat of eight, as may be seen in tabular form on p. 56. and the msual succession of orders has been reversed, the book beginning with the lowest, the wingless insects, and ending with the highest, the Iymenoptera. This order agrees with the probable mode of evolution of the clas.. and with the geological succession of insects, so far as we know it: insects like cockroaches, grasshoppers, ete. being the first to appear. those with a metamorphosis, as neuropteris, bectles, flies, moths, ants, and bees, succeeding them.

In 1863 the anthor proposed al new classification of insects, placing the Ifmenoptera at the head of the insect-series. the Coleoptera haring, becanse, perhaps, from being the farorites of collectors, been assigned this position. Since that time it has been gratifying to see that, at the present time, not only in the L'nited States, but in England and on the Continent, the Hymenoptera hy general consent crown the summit of the tree of insect life.

The present scheme of classification was in part worked out by the author (contrary to his eally convictions or prejudices) and published in 18s:3, when ten orders instead of eight were adopted; while it was remarked that the three groups (i.e., white ants, ete., the may-flies, and the dragonflies) composing the " Pseudonemroptera" might hereafter be regarded as entitled to the rank of orders. It should also be lorne in mind that some of the leading entomolocrists, as Westwood and others, had for many years regarded the ear-wigr, the caddis-flies, the Thripidx, and the fleas as representing listinct orders. While we were considering it a debatable question whether these important types had not been unwarrantably "lumped" with the older Linnean

 Har－onfors．Y

So progressive a science as Zoology, and especially its subdivision entomology, is in a transitory state, especially systematic entomology. We cannot, like the Chinese, actually worship Linnens, our zoological Confucius; we cannot pay too great deference to any system. Our ideas of classification must change with our increasing knowledge. With the evolution theory as a useful instrument of research, our systems of classification representing what we suppose to be the phylogeny of the class, we have a philosophical basis, a working theory, which will throw light on dark places, and solve many a knotty point. It is for this reason that we need to study the embryology and life-history of insects, supplementing these with anatomical investigations, besides carrying on the work of collecting, describing. and thus enlarging our knowledge of the distribution of insects in space and time.
'The author gratefully acknowledges kind aid received from several eminent naturalists in revising the portions dealing with subjects of which they have a special knowledge. Dr. P. R. Uhler has read the origimal Ms. and proof of the pages treating of the Hemiptera: Mr. Samuel Henshaw the same of the Colcoptera; and Dr. S. W. Williston the pages devoted to the Diptera; while Professor Farlow of Harvard University has kindly read the proof of the section on Diseases of Insects due to Animal and Vegetalile Germs; Mr. N. N. Mason of Providence, R. I., has also read the proof of Chapter VIII., and made some valuable suggestions.

Besides a number of cuts purchased of Prof. C. V. Riley, which are acknowledged in the text, Figs. $8 \tau, 88$, and 89 are taken from Darwin's Descent of Man (D. Appleton \& Co., New York); for electrotypes of sereral figures, from his work on butterflies, I am indebted to S. H. Scudder, Esr.; Fig. 238 was lomed by Prof. J. A. Lintner: Fiig. 186 by the U. S. Agricultural Department; and of Fig. $S 3$ the anthor was allowed the use by the Secretary of the Smithsonian Institution. A number of electrotypes from Judeich
 of the V＇iemati ןubli－hur．
 larged：in stme of them ：lime ly the side ind ator－the longth of the sucinem from which the tigute was drawne

Pontmanet，R．1．，Jome ej， 1 Res．

TABLE OF CONTENTS.

CHAPTER I.
THE STRUCTC゙RE OF IMSECTS.
PACE 1-3!
External unutomy,
External unutomy, ~ ~
Abdomen,
Abdomen, 2 2
'Theras.
'Theras. 4 4 4
Ilend,
Ilend, ${ }_{\sim}^{6}$ ${ }_{\sim}^{6}$
Tutermet reantomy,
Tutermet reantomy, ; ;

 9 9

('rop,

('rop,
!)
!)
!)
Stomath amd gastrice recoat.
Stomath amd gastrice recoat. 1 1
Urimmry lubes,
Urimmry lubes, 11 11
Intestine
Intestine 11 11 11
Digestion,
Digestion, 11 11 11
Nervons sivelem,
Nervons sivelem, $1: 3$ $1: 3$ $1: 3$ 17 17
Hor insects walk anel fly,
Hor insects walk anel fly, 19 19
How insures breathe.
How insures breathe. $\because 1$ $\because 1$: :
The olfactory orgatis amb sense of smell,
The olfactory orgatis amb sense of smell, 26 26
The grastatory organs and sens
The ems and sense of hearing, 27 27 27
Sommds produced by insects, 30 30
'Iactile organs,
'Iactile organs, 31 31
CHAPTER II.
GROWTH AND METAMOLPHUELS OF INSECTS. 32-53
Eyg-producing organs, $3:$
The ovaries, 31
The ovipositor, 31
PAGE
The testes, 34
The egg, 3.4
Growth of the insect within the egg, $3 \overline{5}$
The egg-cutter, 38
Metamorphosis of insects-the lerva, 38
Number of larval moults, 39
The pupa, 40
The imago, 41
Purthenogenesis, 41
Broods or generations of insects, 42
Contugious diserses of insects due to unimal anel vegetable germis, 42
The thestruction of insect pests by means of insect fungi, 45
Unusual increase in the number of insects, 48
Influence of changes of temperature on insect life, 49
Periodicity in insect-life, 52
Number of species of insects, 52
CHAPTER III.
CLASSIFICATION OF INSECTS. 54-177
Symopsis of the orders of insects, 54
Tabular view of the orders of insects, 56
Order I. Thysanura, 56
Order II. Dermaptera, 58
Order III. Orfhoptera, 59
Order IV. Platyptera, 63
Order V. Ditonata, 68
Order VI. Plertopterre, r1
Order VII. Thysumoptera, 73
Order VIII. IIcmipterer, 74
Order IX. Newroptera, 84
Order X. Mecaptera, 88
Order XI. Trichoptera, 90
Order XII. Coleoptera, 91
Orrer XIII. Siphonaptera, 115
Order XIV. Diptera, 117
Order XV. Lepidoptera, 137
Order XVI. IIymenoptera, 161

CHIPTEK IV．

L．A．L
 17c 1ヵ4
Leaf－rollers， 179
Gall－makers， 141
Leaf－miners， 1～？
Case－worms， 15：3
Nests of ants， $1-3$
Nests of wasim， 14．
Nests of bees， 14゙！
（＇HAP＇TER V．

Eronomic Éntomolog！！， 1－！
 1：14
Injuring wheat， 1：11
Injuring corns． $1!2$
lujuring the cotton phant， ：1111
lujurins the putato． ？11？
Injuring the（：abbarac，rauli－h，cte． $\because 15$
Injuring the lenp－bine． 214
Injuring the grape vince． $\because 1!1$
In juring fruit－trees， $\because 11$
Insects be neficinl to ugrienlture＇， $\because 17$
Insectivorous inserts， $\because 11$
Ireventive alud direct retmedies aguinat the attuchs of insects， $\because 21$
Insecticides， $\because \because!$
Miscellaneous remedies， さいる

CHAPTER VI．

DINECTIONS FOR COLLECTIVG，PNESFRFING，AND REWWWけ WSECTS ここ！これ4
Where to look for insicts， $\because: 1$
（＇ollecting appretatus． こり
Killing inse cts for the cutrinel． ！．！
I＇inning insects， 2：？
Presertative fuluds， $2: 31$
Irepatring insects for the cobbinet， $3:-4$
Insect cobinet， 2）
Iransportation of insecto， 2411
PAGE
Preservation of larva, 240
Rearing aquatic larve, 242
Rearing insects in general, 243
Sugaring for moths, 246
Trups for moths, 246
Rearing caterpillars, 247
IIbernutiny larve, 252
Mronagement of pupe, 202
Pairing or mating Lepidoptera in captivity, 253
Treatment of the eggs, 254
Collecting and rearing Micro-lepidoptera, 254
Preserving micro-larve in aleohol, 266
Preserving larvae dry, 267
Bleuching the vings for the study of the venation, 268
Mounting the wings of Micro-lepidopterre, 269
Mounting the wings of Macro-lepidoptera, 269
To remore grease, 270
Collecting and Preserving Coleoptera, 271
Rearing tiger- and ground-beetles, 276
Rearing of burying-beetles, 278
Rearing cood-boring lurve, Longicorns, etc. 278
Rearing of burk- and bast-boring beetles, 279
Rearing larve of clung-beetles, $2 \pi 9$
Cleansing greasy beetles, 280
To woush oll, soiled specimens, 280
Collecting and Preserving Hemiptera, 280
Examining live Aphides, 281
Preservation of Orthoptera, 282
Preservation of Dragun-Flies, May-Flies, Caddis-Flies, ETC., 282
Collecting and Rearing Diptera, 284
Collection and Preservation of Mrmenoptera, 287

CHAPTER VII.

MODE OF DISSECTING INSECTS. 289-293
The external anatomy, 289
The internal anutomy, 289
Dissection of Aphiules, 292

（HAP＇lER VIII

PAGE

Fixution of the listedengicul cleme hts， 295
Dr legelrution． 29.5
Fintrethling，stathing，amel culting， $2!14$
Jonhting wetions． $3(6)$
Tor rember small illsects or letron tronsappetrent， 301
Monnting iranspzero nt aquatic insecta， 341
Trunsmisxion，proscrection，unel moenting Aphliches anel similur insects． 303
 30%
Methed of prepering mimute entemestroter，mites，spieke iss，ctul insects， 305
 307
killing und presercen！！insects， 307
Blenchin！fluid for inserts． ；）
 ：ば
Mumutireg inserio in lulaman erithunt prownere 305
 30
Mounting minuble insects and ameri in belastm． 803
S＇ectione of the Urwin，． 3111
 311
Steking vections through and blethting the celes of itwerts．． 311
 314
 31.
Sections of the oripmexter or ating． 315
Mounting the gizzorels of insucte． 316
I＇repherution of the intestime of＇insects， $: 316$
I＇reperation of inscil spuitecles． 317
Monmting of ticlekerp． 31%
Mrounting legn．ete．．of insucts， 31と
Mounting the skin of coterpilters． 3し
Dissection und prepurution of the sperethettie filuthe hlas， 315
Metiny vections af egg． $31!1$
［＇repering cimbryos of inmels． i： 1
Eubfice stutly of eqgs，und hutekning for cutting，cf： （32）
Mounting itry the sggs of insects， ：i23
Brepuring fire glies，the．， $32: 3$
Mounting dry the appendatges uf insecte for pinni y in＂h，＝slicet． 3：3
Monnting the＂scuc＂of＂the Tintlerectinides， $3:-4$PAGE:
THE ENTOMOLOGIST'S LIBRARY. 326-335
Bibliographical vorks on Entomology, 326
Entomological Periodicals, 327
General Entomology, 328
External Anatomy and Morphology, 329
Internal Anatomy and Histology, 329
(a) The nervous system, 330
(b) Organs of special sense and their physiology, 330
(c) Organs of circulation and respiration, 331
(d) Organs of digestion, 331
(e) Organs of locomotion and their physiology, 332
(f) Organs of reproduction, ovipositor, etc 339
Smbryology of Insects 332
Phylogeny or Origin of Insects, 333
Inscets and the Fertilization of Plants, 333
Geographical Distribution, 333
Fossil Insccts, 334
Economic Entomology, 334
Glossary 337
Index, 355

ENTOMOLOGY.

CHAPTER I.

TIIE STREC'TCIL OF IVEECTS.

When we comsikue that the dasiof in-at-ahome comprias ahome fome fifthe of the amimal hingridme and that the te

 examine it for lamself. By so domer he will leary mom in

 to peint out those organs and their detads whicha might be orrolooked.

We will suppose that the berinuer has a common redleared locenst or grasthoper in his homd: amb in order to readily examine it he should be provided with al (dablerton or any other lens, and at stand to hohl it when both hamds are needed to disseet the spedmens a pair of - armer iron foreeps, and at medle mounted in a pine hathat is the whith to seplatate the legs amd month-parts. Inire 4 ons for collecting and disserting insects will be foninl in the sivth chapter. Meanwhile we may swy that any loy or girl can catch a grasshopper, and after it is camght it may he killent
without its suffering any pain, by throwing it into a bottle containing cotton saturated with etlier. It may when dead be taken out of the collecting-bottle and dried. It is most convenient to pin it. This may be done by thrusting a slender insect-pin throngh the collar. For class use it is better to preserve a lot of grasshoppers in alcohol; before using them they can be soaked in water to take out the alcoholic odor, and can then be easily handled without being pinned, and the wings unfolded or the month-parts and legs moved withont their breaking off.

External Anatomy.-On making a superficial examination of the locust (Culoptenus femur-rubrum), or the Rocky Mountain locust ((C. spretus), its body will be seen to consist of an external crmst, or thick, hard integument, protecting the soft parts or viscera within. This integument is at intervals segmented or jointed, the segments more or less like rings, which, in turn, are sublivided into pieces. These segments are most simple and easily comprehended in the abdomen or hind-body, which is composed of ten of them. The body consiats of seventeen of these segments, varionsly modified and more or less imperfect and difficult to make out, especially at each extremity of the bodyi.e., in the head and at the end of the abdomen. These serenteen segments, moreorer, are grouped into three regions, four composing the head, three the thorax, and ten the hind-body, or abdomen. On examining the abdomen, it will be found that the rings are quite perfect; and that each segment may be divided into an upper (tergal), a lateral (pleural), and an under (sternal) portion, or are (Fig. 1, A). These parts are respectively called tergite, pleurite, and sternite; while the upper region of the body is called the tergum, the lateral the pleurum, and the ventral or under portion the stermum.

As these parts are less complicated in the abdomen, we will first study this region of the body, and then examine the more complex thorax and head. The abdomen is a little over half as long as the body, the tergum extending far
down on the side and wereriter inte the planemen whont
 of spiracles, which will be noticed fartheron. 'Thersternum

Fig. 1.-External anatomy of Calontenus sprefus, the had and ihorax disjointed-Kins-der del.
forms the ventral side of the abdomen, and meets the pleurum on the side of the body.

In the fomale (Fig. 1, B) the abdomen tapers somewhat toward the end of the body, to which are appended the two pairs of stout, hooked spines, forming the ovipositor (Fig. $1, B, r, r^{\prime}$). The anus is situated above the upper and larger pair, and the external opening of the oviduct is situated between the smaller and lower pair of spines; it is bounded on the ventral side by a movable, triangular acute flap, the egg-guide (Fig. 1, B, e g, and Fig. 4).

The thorax, as seen in Fig. 1, consists of three segments, called the prothorax, mesothorax, and metathorax, or fore, middle, and hind thoracic rings. They each bear a pair of legs, and the two hinder each a pair of wings. The upper portion (tergum) of the middle and hind segments, owing to the presence of wings and the necessity of freedom of movement to the muscles of flight, is divided or differentiated into two pieces, the scutum and scutellum* (Fig. 1), the former the larger, extending across the back; the scutellum being a smaller, central, shield-like piece. The protergum, or what is usually in the books called the prothorax, represents either the scutum or both scutum and scutellum, the two not being differentiated.
'The fore wings are long and narrow, and thicker than the hinder, which are broad, thin, and membranous, and most active in flight, being folded up like a fan when at rest and tucked away out of sight under the fore wings, which act as wing-covers.

Turning now to the side of the body under the insertion of the wings (Fig. 2), we see that the side of each of the middle and hind thoracic rings is composed of two pieces, the anterior, episternum, resting on the stermum, with the epimerum behind it; these picces are vertically high and.

[^0]
narrow, and to them the leg is inserted by three pieces, called respectively coxa, trochantine, and trochanter (see Fig. 2), the latter forming a true joint of the leg.

The legs consist of five well-marked joints, the femur (thigh), tibia (shank), and tarsus (foot), the latter consisting in the locust of three joints, the third bearing two large claws with a pad between them. The hind legs, especially the femur and tibia, are very large, adapted for hopping.

The sternum is broad and large in the middle and hind thorax, but small and obscurely limited in the prothorax, with a large conical projection between the legs.

The head in the adult locust is mainly composed of a single picce called the epicranium (Figs. 2 and 3, E), which carries the compound eyes, ocelli, or simple eyes (Fig. 3,

Fig.3.-Front view of the head of C.spre$t u s$. E, epicranium; C, elypens; L, labrum; o o, ocelli; e eye; a, antema; $m d$, mandible; $m x$, portion of maxilla uncovered by the labrum; p, maxillary palpus; p', Kingsley del. 0), and antennæ. While there are in reality four primary segments in the head of all winged insects, corresponding to the four pairs of appendages in the head, the posterior three segments, after early embryonic life in the locust, become obsolete, and are mainly represented by their appendages and by small portions to which the appendages are attached. The epicranium represents the antennal segment, and mostly corresponds to the tergum of the segment. The antennæ, or feelers, are inserted in front of the eyes, and between them is the anterior ocellus, or simple eye, while the two posterior ocelli are situated above the insertion of the anteunæ. In front of the epicranium is the clypeus (Fig. 3), a piece nearly twice as broad as long. To the clypens is attached a loose flap, which covers the jaws when they are at rest. 'I'his is the upper lip or lubrum (Fig. 3). There are three pairs of mouth-appendages: first, the true jaws or mandibles (Fig. 1), which are single-jointed, and are broad, short, solid, with a toothed cutting and griuding
edgre : adapted for biting. 'I'he mamlihles are atuated on eath side of the month-ngerning. Bethime the mandilhes are the maxilla (Figs. I), which are divided into three hose the inner armen with teeth ore spines, the mithle lohe wnarmed and spatulat-athed, while the whter forms at tive jointed feeler called the muriller! palpus. 'The maxilla are arecsory jaws, and prohalbly serve to hold amd arrange the food to be gromat hy the trme jaws. 'flex flour of the month is formed hy the lebiom (Figs. 1 and \because), which in reality is comprosed of the two second maxilher sudered together in the middle, the wo hallees being datwn separately in frig. 1.

Writhin the month, and situated upon the lahium, is the tongre (lingutu), which is a large, mombanmons, party hollow expansion of the hase of the lahmom: it is some what priform, slightly keeled above, and awored with tine. stiff hatrs, which, when magnitied, ate sern to he lomge rongh, chitimons spims, with one or two slight peimt or tubrels
 food in the month, athd are apparently, of the same strme ture as the teeth in the eroll. 'Tlan hace of the tomerne is
 to the wnllet). there being on the flone of the month, lathed the tongres. (Wo wbligue slight ridges, cosered with stite. golden hairs, like thuse on the tongute.

The stmbent may soparate the bocly, after being handemed in ateohol, into the parts represented hy Fige 1. ate indieated by the table on the following gave. and neatl! grm them in their proper order upon a card with liguid grtue or mucilage

Internal Anatomy.-The internal amatomy maty he - twded by remoring the dorsal wath of the body, and alow hy hatening the insoet seremal days in aldohol and couther it in two longitudinally by asharp salale

The a'sopluyes (F゚ig. to w) is short am? anvol. contimnous with the roof of the mometh. 'There are -abeal hongitudinal irregular folds on the fmer surface. It terminates
 asophageal granglion. the emd being indieated hy sural

TABULAR VIEW OF THE EXTERNAL PARTS OF AN INSECTS BODY.

Head (composed of 4 segments).
 Thorax (composed of 3 segments).
1st segment: Prothorax........... $\left\{\begin{array}{l}\text { Pronotum. } \\ \text { Proplenrum, with a spiracle. } \\ \text { Prosternum. } \\ \text { Fore legs. }\end{array}\right.$
 Mesopleurum $\left\{\begin{array}{l}\text { Episternum. } \\ \text { Epimerum. } \\ \text { Spiracle. }\end{array}\right.$ Fore wings. Middle legs.
Sd segment: Metathorax......... $\left\{\begin{array}{l}\text { Mesonotum }\left\{\begin{array}{l}\text { Præscutum. } \\ \text { Scutum. } \\ \text { Scutelhm. } \\ \text { Postscutellum. }\end{array}\right. \\ \text { Hind wings. } \\ \text { Hind legs. }\end{array}\right.$

Abdomen (composed of 10 and in some insects 11 segments).
Segments or uromeres........... $\left\{\begin{array}{l}\text { Tergite. } \\ \text { Pleurite. } \\ \text { Sternite or Urosternite. } \\ \text { Ovipositor. }\end{array}\right.$

Anal stylets, cered or cercopoda (1 pair)-8 pairs of spiracles.
 the reerurgitatan of the foud. 'The two *ilivar! erhan connsist each of a bunch of follicles. empt!ing hy a contmon hart into the floor of the mouth.
'The (1senplatges is sureeceded by the erop' (implurio). It
 ing ont of the heat. and at the proint of tiret wapancion or enlarement there berins a cirenker on oblique sarisul folds. armerl with a single on two alternating rows of simple -pinelike teeth. Just after the arop leawe the hatal. the follds
 formed of group) of from there to six teeth, which puint backward so ats to pmsh the fored into the stomateh. It is
 originates.

The proventriculus is rear small in the locen-t. an-ily oterlonked in dissectien, while in the green gracherpere it is
 the erop of the erieket shows that there are six larre irrewular teeth armed with spines amel hairs (Fies i). It forma neek or constriction between the crop and trae - tomath. It may be stadied by laying the alimentary canal unen with a pair of tine semisens, and is then seen to be armed woth six flat fohls, suddenly terminating posteriomly. Where the trine stomateh (chyle-stomach. rentriculus) herrins. 'Thes chyle-stomath is about one half ats thick at the erop. When the latter is distemeded with fuot, and is of mearly the stme diameter thronghout, being moch paler tham the reddian (ery, and of a thesh-otoler.

From the anterion end arise six laree pomber calted gu*tric cerct. which are dilatations of the trme dhy --tonathels. and probably serve to present a larere surface from which the chyle may eseapee into the body-eavity and mis with the blood, there being in insects no laceteal veronlo wo lymphate sy:stem.

The stomach ends at the posterior colde wf the fometh abdominal segment in a slight constriction, at which print

Tr. A.-Internal anatomy of Crloptenus femur-rubrum. at, antenna and nerve leading to it from the "brain" or supra-cesophageal ganglion sp, oc, ocelli, anterior and vertical ones, with ocellar nerves leading to them from the "brain:" α, esophagus; m, mouth; $l b$, clearly shown in the engraving): sm symathetic or vagus nerve, starting from to the mandibles, maxilæ, and labium respectively (not with another in the engraving): sm, sympathetic or vagus nerve, starting from a gauglion resting above the cesophagus, and connecting the engraver); $n v$, nervons cord and ganglia: ov, ovary; , surinary tubes; site of opening of the oviduct (the left oviduct cut away); 1-10, abdomiual segments. The other organs labelled in full.- Drawn from his

 tuberese that thore are ahont one hambed amb tift！loner， fine tulees in all．
＇The intestine（iletum）lies in the fifth amd sixth alhominal sicgments．
behind the intostine is the rolon．Which is smaller tham the intestine proper，amd makes a partial twist．The colom suldonly expands into the rectum，with six harse rectul glames on the antside．held in phate by six manalan hamb： attached anturionly to the himber end of the eolon．＇The reetum turns mp townel its emb．and the rent is situsterd just brlow the supratianal 1late．

Having haspibed the diges tive canal of the lomerot．with whieh that of the heethe（Fig． 6）：and the tly（F゙ig．i）maty be compatere．We maty state in a summary wey the functions of the different dixisioms of the trate．＇The fome allem be－ ing cont up be the jaws is acted upon while in the crop ly the salivary tuid，which is alk：t－ line and persersices the prop－ erty，as in vertehnates，of rapidly trall－forming the

Fic： 5 －Tramesenee smeten of thentry wentriculns of civallus comores if

 －Mfer Mmot atarchy elements of the food into soluhle and ：acimilable gherese．＇The digestive atton carried on in the rap）（mente－ ries）then．in a rewretable－fenting iname the the lox－llot．

 getic presure by the walls of the＂mp．wheh make furi－ staltic contractions．filters aradually throurg the－hart．small proventriculus．direeted by the furrow：and chitinous
projections lining it. The apparatus of teeth does not triturate the food, which has been sufficiently comminuted by the jaws. This is proved by the fact, says Plateau, that the parcels of food are of the same form and size as those in the crop, before passing through the proventriculus. The six large lateral pouches (cæca) emptying into the commencement of the stomach (ventriculus) are true glands,

Fig. 6.-Digestive canal of a Carabid beetle. b, œesophagus; c, crop; d, proventriculus; f, chyle-stomach; g, posterior division of the stomach: i, the two pairs of urinary tubes; h, intestine; k, rectum; l, anal glands.-After Dufour, from Judeich and Nitsche.
which secrete an alkaline fluid, probably aiding in digestion. In the stomach (ventriculus) the portion of the food which has resisted the action of the crop is smbmitted to the action of a neutral or alkaline liquid, never acid, secreted by special local glands or by the lining epithelium. In the ileum and colon active absorption of the liquid portion of the food takes place, and the intestine proper (ileum and colon) is thus the seat of the secondary digestive phenomena. The reaction of the secretion is neutral or alkaline. The rectum is the stercoral reservoir. It may be empty or full of liquids, but never contains any gas. The liquid products secreted by the urinary tubes are here accumulated, and in certain circumstances here deposit the calculi or crystals of oxalic, uric, or phosphatic acid. Insects, says Platean, have no special vessel to carry off the chyle, such as the lacteals or lymphaties of vertebrates; the products of digestion-viz., salts in solution, peptones, sugar in solution, and emnlsionized greasy matters-pass through the fine coatings of the
 with the courrent of Dhond which [ato along the vent ral and lateral parts of the boely.

Into the plonie end of the stomatele empty the urimary
 organs are exelasively depuratory and urinary, relieving the body of the waste produrets. The liquid which they seorete contains mea (\%), uric aciel, and urate's in abmalanco. hippuric aced $\left({ }^{5}\right)$. chloride of sodium, phorephates. cearbonate of lime, oxalate of lime in quantity, lencine, and condorins matters.

The nervous system of the locust, ats of other insecte consists of a series of nerse-centres, or gomylin. Whicha are conn-

 and Nitsche.
nected he two cords (commisures). the two corde in certain parts of the body in some inserets mited inte one. 'Ilame are in the lerenst ten grmglia, two in the heal. them in the thorax. and tive in the ablomen. 'The tiret imerlion is rather larger than the others, and is callend the. . hata."

 eyes, and from the front arise the three of alar tidment whichare sent to the three weelli (ドis. \& .) . Foron innmediately in fromt. low down. :rise the dntemal more (Fig. 4, ut).
 implies. lies muler the exsphagus at the bate of the heat.
under a bridge of chitine (the tentorium) and directly behind the tongue. It is connected with the supra-esophageal

granglion by two commisurts pasing up ach sible of the wesophagus. From the under side of the infma-1"uphatreal

 gamgia: the dotteal limes passing thronfo homols zons gimgha.-Firubl Ju deieh and Sitselse.

Fig, 10.-Supra-osophageal ganglion and visceral wir sy yatherie nervins

 nervons system: r^{\prime}, its roots arising from the sulra om latesal gimglinn: s. paired inerve with its ganglionic enlargements. s s .- lther Brandt, from Gegenbaur.
ganglion arise three pairs of nerves, which are distributed to the mandibles, maxillæ, and labium. The mandibular nerves project forward and arise from the anterior part of the ganglion, near the origin of the supra-œsophageal commis-

Fig. 11. - A Carabus beetle in the act of watking or ruming. Three legs (L_{1}, $\left.R_{2}, L_{3}\right)$ are directed forward, while the others $\left(R_{1}, L_{2}, R_{3}\right)$, which are directed backward toward the tail, have ended their activity: a $b, c d$, and $e f$ are curves described by the end of the tibiæ and passing back to the end of the hody; $b h, d i$, and $f g$ are curves described by the same legs during their passive change of position.-After Graber.
sures, while the maxillary and labial nerves are directed downward into those organs.

The sympathetie ganglia are three in number; one sitnuated just behind the supra-œesophageal ganglion (Fig. 8,

 bitckward to thse ent of the provelutriculles．I pais of
 anterion sympathotic sianglion，and another pair pass down－ Wiald to it rommd white body，whose nillme is maknown （Fig．s，＂）．

How Insects Walk and Fly．－In w：alking，the locust， beetle，or，in linct，inly inseret， raisus and puts down itssix loges altermately，as maty be sern by observing the movernents of al hereth（Fijer．11）．Is Cirlet staltess all instut＇s lexs move amording to the following formula：

With the clans：on their fore lers ther pull themselves for－ walde the midule leges seeme to supprort and steally the bonly， alse pushing it somewhat：while the hind lews in many heretes plesh the boely forwirel．＊ While the structure of the limb of a vertehrate and inseret is not homologrons．yet the merhanism of functions of the parts are in the matin the sume ats inulieated in Figs． $1:$ to 1.5.
＇Lhe footprints of inswets arm

Fio i：－Secetion if th fore log of a

 extensior，b ，thexir，of the fentur： o．femur；If，fleati fo farals，k ． claw；109x，s．extens r．L．flexur．of the femoro－ribial joito buth en－ larged．－Ifter liraber．
sometimes left in fine wet sand on the banks of streams or by the seaside.

In Fig. 16 the black dots are made by the fore, the clear

Fig. 13.-Diagram of the knee-joint of a vertebrate (A) and an insect's limb (B). a, upper, b, lower, shank, united at A by a capsular joint, at B by a folding joint; d, extensor or lifting muscle; d^{1}, flexor or lowering mnscle of the lower joint. The dotted line indicates in A the contour of the leg.-After Graber.
circle by the middle, and the black dashes by the hind legs (Graber).

The wings are developed as folds of the integument, and

Fig. 14.-Cross-section through the thorax of a butterly. a b, muscles for raising, $c d$, for drawing downwatd and inward, the legs; d, entothorax arising from the sternum, k, st; $n g$, wing-vein; g, fulcrum, or turningpoint; $c h$, muscles for lowering, $b f$, for raising, the wing; $i k$ and $m n$, museles for lowering, l op, for raising, the dorsal plates.

Fig. 15. - Diagram of muscles of an insect's leg. Besides the muscles at the insertion of the limb for raising and lowering it, in the trochanter ($t r$) is a muscle for rotating the leg; i, for stretching the tibia (fib); \quad, flexor of tibia; o, flexor of the tarsus; m. retractor of the tarsus and claws (cl).-After Graber:
 being the＂romales．＂＇Thereare in the winge of most inmets six math reins－i．a．．the erntal，the subnestal． merlian，submedian，internal．athd amal．＇Thes are hollow and nemally contain an air－tube． and a herve often actompanies the trathera in the principal veins．＇The artermal blowd form the heart（ass wen in the cockromel hy Mose－ ley）flows directly into the costal．suberostal． median，and submedian veins：lere it is in gate alebited，and returns to the heirt from the hinder edge of the wings through the hinder smaller branches and the main trumk： of the internal and anal veins．So that the
 of flight．For the lattor purpar，the prin－ （ijal reins ate statand ne：ar the front mide of the winge calle．el ther rester，and thas the wing is strengethencel where the most stmin comes during the heating of the air in flight．

Fir：in Fimit． （tw 1 kin！Siem
 Situral $\mathrm{Na} / \mathrm{s}^{-}$－ After（irsaber．
＇The wing of an insect in making the strokes durine llight deseriles at figure s in the atit．A flye wing mater $3: 30$ rewolutions in a seomd．exeroting thorefore bite simple oseillations．

How Insects Breathe．－Insects broathe by means of a complicated system of air－tulses ramifing thromothom the
 ing－holes（stigmuter），in the sides of the benty．There arre

 the membatme commerting the prothoma amb me－athoms．
 eathed prothomas）．＇The seoond spirate is ：thated on the posterion edge of the mesuthoms．＇There：are coghtablominal spitacles，the tirst one sitnated just in fromt of the athetory sate or tempanum，amb the remaining seven ate shatl opern－ ings along the side of the abdomen（Fig．？＇）．From these
spiracles air-tubes pass into the interior, sending branches into every part and appendage of the body, including the antennæ, mouth-parts, and wings. There is thus an intricate system of air-tubes, the finer branches of which end in cells, throngh whose walls the air passes out and mixes with the blood. Noreover, certain tracheæ expand into large airsacs, of which there are in the locust nearly fifty in the head; while there are a few, but large, sacs in the thorax and hind body which, when filled with air, serve to lighten the body by increasing its bulk.

Fig. 17. $-A$, thoracic stigma of the house-fly: $S b$, valve which closes the opening. B, C, diagrammatic figures of the interval apparatus which closes the trachea, in the stag-beetle: B, the trachea open; in C_{1} closed: $S t$, the stigma, with its grated lips: $C t$, cuticula of the body-walls; Vk, closing-pouch; Vbü, closing-bow; Vba, closing-band; M, occlusor muscle.-From Judeich and Nitsche, after Landois.

Fig. 17 represents at B and C the elastic "bow," " band," and muscle, satd by Landois to act in closing the trachea, so that pressure may be exerted upon the air within by the muscles of the abdomen. It should be borne in mind that insects breathe by the abdomen and not the thorax.

By holding the red-legged locust in the hand one may observe the mode of breathing. During this act the portion of the side of the body between the stigmata and the pleurum contracts and expands; the contraction of this region causes the spiracles to open. The general movement is caused by the sternal, moving much more decidedly than the tergal, portion of the abdomen. When the pleural portion of the abdomen is forced out. the soft pleural membranous region under the fore and hind wings contracts, as
 bise of the himel lest. Whan the torernm of dor-al frortons

 co-ondimated with the contrantions of the platmom, hat as al rule it is. 'There were sixtr-tive eontractions in a minute in a lexent which hat been hed between the tingers about ten minntes. It was motiond that when the ablemen expanded, the air-siace in the tiret alnhominal ring "ontranted. 'The air pases into the spimates during the expansion of the aboloment. In most inseets, silys llatean, only the expirattory movement is artive: inspiation is pasiace, and edienter hy the chasticity of the lexty-walls.*

It is evident that the emormons phwers of diarlat pussesied
 in the air. are dur to the prearne of these air-anco which
 the body, withont remering it heavier. Other inserts whth
 air-silcs, but they are less numerous. It will be - - ent that. once having taken flight, the lon'ust can home itaclf mp in the air, constantly filling and redilling its intemal home or balloons with litale mascular exerton, atml thas he hemen along by favomble winds to its destanation. It is evident that the process of respiration san he best carried ont in chate, smms weathere amd that when the smots sots, of the weather is clomdy and damp, its perore of thirht are lese ancel, owing to the diminished prowe of rephation.
 the atetions of inserets, from the fate that it forat for de to alpreciate their instimets and gemeral intellige me. 'That they have smbient intellectual powers 10 and e them to
 insects differ motheh in intedligencer and anto in the dewree of perfection of the organs of sense. The inteltige nee of in-

[^1]sects depends, of course, largely on the development of the organs of special sense, especially those of sight and smell.

There are in nearly all insects two kinds of eyes, the simple and the compound. Of the simple eyes there are usually three, arranged, as in locusts, bees, etc., in a triangle on the top of the head. There is a single pair of compound eyes. The simple eye, or ocellus, consists of a single smooth, shining, eonvex area, ealled the cornea or facet, while in the compound eyes there are many facets, which can be seen

Fig. 18.-Longitudinal section of the faceted eye of a moth. f, the rod-like ending of the optic nerve fibres; k. crystalline lens; $s m$, optic nerve; $t r$, trachea lost in fine fibrilise; $i, c h$, retina-After Leydig, from Graber.
with a hand-lens. The compound eyes, which are usually round and very prominent, differ much in size and the number of facets, the latter varying from fifty, as in the ant, to sereral, even twenty, thousand, as in certain beetles.
The structure even of the simple eye is too complicated for description here, but the essential parts are: the cornea,

 tho（on＇meal lanc atot－lihe am watman！ ghlas：lens to monden－r the light．on form an image of a moring bonty，rither of Whith，as the cato maty be fatls upor the cone behime the leats．＇This cante hats been fonme by Jr．I＇atten to be rich in extremely tine mere－threals．the emde of cone of the tilnes which mite to form the optie nerve．It is thus highly semsitive． The ervetalline come then，as l＇atten ub－ serves，is that part which is semsitiou to

 the emts al the conte amt their－talk e of
 thinks．all that part of the eve ly ine low－
 nerrer is of llas．e－prectall！in the com－ prond eye．in claborating and emmbining the semsations formed in the conse．Now the compernud ele is simply．so to spatk． at comprand simple eye：not．ass misil to he thomerht，at collontion of simpleryes jointal tugether．The compumad werns ont of，or is＂datimentiated＂from，at simple ＂re：it is，as l＇attell ：ays：＂：morlitiol weellus：＂：and this observer condelade：that

Fia 10－nifferent firsin of comprotiol パー－1，a 118 （1＇s rrhanoris）：is． Whterlew：C．drome．
 Judelel daid Nitsche．

 ＂pon the erystalline cones．＂（If eomese as with ns，the effect upon the insert ：mind is that uf sereme a surle object．
 show quite decidedly that these ereaturn－$: 11$ don hate more than distingush light from dankness：they du wat make ont the form of objects，thongh some eatn peratie the more
obvious movements of bodies. On spiders, which do not possess compound eyes, Plateau has experimented, and he quite fully proves that in general they are near-sighted, only perceiving at a distance the displacement of large bodies; while the hunting spiders (Attidæ and Lycasidæ) are probably the only kinds which see the movements of small bodies, and that only at a distance of between 2 and 20 centimeters (. 80 to 8 inches); white the distance at which their prey is seen well enough to be captured is from 1 to 2 ceutimeters (. 40 to .80 inch); and he adds, even at this distance spiders camnot see distinctly, because they often miss grasping their booty.

It is so with all larve, grubs, and caterpillars, as well as such perfect inscets as do not have compound eyes; they can only tell daylight from darkness, and indistinctly see moving objects near at hand.

Even insects with compound eyes have a less perfect vision than formerly supposed. Both Exner* and Plateun have discarded the mosaic theory of vision, and the latter claims that inseets, such as flies and bees, see the outline of objects indistinctly, and only when in motion. Platean experimented in the following way: In a darkened room, with two differently shaped but nearly equal light-openings, one square and open, the other subdivided into a number of small holes, and therefore of more difficult egress, he observed the choices of opening made by insects flying from the other end of the room. Careful practical provisions were made to eliminate error; the light-intensity of the two openings was as far as possible erqualized or else noted, and no trees or other external objects were in view. The room was not darkened beyond the limit at which ordinary type ceases to be readable, otherwise the insects refused to fly (it is well known that during the passage of a thick cloud insects usually cease to fly). These observations were made on

[^2]inseets both with and withont ofedi. in addition to the combpound eves, athl with the simare results.

 insects with connombll eyes don but motio. differonces in form of openings in a half-tarkened romm, lut fly with equal readiuses to the apparently eaty and apparently difticult way of eseape: that they are attrateded the the me intemely lightemed oproning. of to one with :pparently greater surfare: hence he cobledndes that the er enmot distinguish the form of objects, at heast unly to at rery slight extent, thongh they readily pereeixe ohjeets in motion.

It is well known that honer-bees on leasing their hives fly about as if making out the form of whjects near their home, and, after thes taking in the lambmarks, (an after at few flights make a bereline from at distance to their hives. While this world serm opposed the thesult of Plateans: experiments, it maty be mide that a rive mear-sighted man ean find his way home: objects ewen prowemd very imbistinctly serving to grnide him. Inserts also without dombt distinguish the difference in color of oljeete: it is well knewn that butterfles will descend from a position high in the air. mistaking white bits of paper for white flowers; while. as we have ohsorved. white hatterfles (leeris) prefere white flowers, atol vedlow hutterfles (Colias) appear to alight on yellow flowers in preferenee to white ones.

Until further experiments are matle it sems probalile. then, that all inserts do mot hate atele sight. that they sere
 fles and other predamons, swiftly tlying inserts, sumb as eertain thes. watses and hees, which have very latge momded eyes-inserts are guded mainly rather by the semse of smedl than that of sight.

Some insects can only deteet light from darkness: while. to go to the other extreme. a few may see \cdot with elearmess and precision, by means of inverted images. eithor a landsape or small neighboring objects." Wre may ald with

Patten: "The difference in vision is dne more to the powers of association than to variation in the structure of the eye" ("E Eyes of Mollusks and Arthropoda," Naples, p. 699).

It is now generally agreed that the olfactory organs are situated in the antennæ. 'This has been experimentally proved. When the antennæ of insects which show a decided dislike to strong or disagreeable smells, such as the odor of carbolic acid, oil of turpentine, or vinegar, are removed, the actions of the insects operated upon slow that they are not affected by such smells; insects fond of decaying flesh do not run or fly toward it when deprived of their antennæ, nor are they, after losing their feelers, able to go to their mates. As Forel says, in many insects which are guided by sight, sueh as dragon-flies and cicadæ, thee antennæ are minnte, rudimentary, and do not have the sense of smell, though the cicada may be guided by the sense of hearing.

The organs of smell, according to Hauser, consist, in in-sects,-i.e., all Orthoptera, I'sendoneuroptera (i.e., white ants, Perlæ, Psoci, dragon- and may-flies), Diptera, and Hymenoptera, also in most Lepidoptera, Neuroptera, and Coleoptera, -

1. Of a thick nerve arising from the brain which is sent into the antennæ.
2. Of a sensitive apparatus at the end, consisting of staff-like cells, which are modified hypodermis cells, with which the fibres of the nerves connect.
3. Of a supporting and accessory apparatus, consisting of pits, or peg- or tooth-like projections filled with a serons fluid, and whieh may be regarded as invaginations and outgrowths of the epidermis. These appear as microscopic pits and tecth, usually situated at or near the end of the antennæ. The number of thesc olfactory pits and projections is sometimes enormons. In the European cockchafer: (Melolontha valgaris) 39.000 oceur in the leaves of the male antennæ, and about 35,000 in those of the female (Fig. 20). In Vespa crabro each joint of the antenna (flagellum) possesses between 1300 and 1400 pits, nearly 60 teeth, and
abont io tatile hatrs: on the tomathal joint therr art more thath $\because(1)$ werth. $=0$ that rach antemat hats hetwreth

Fig. Bi, -Orgals of am, 11 in Mefolontha. n, olfactory or antemal nerve: sc, gan-

Nimilar pits owem in the longe jointed amal stylete of the

Platean, ats well as Will and Formel deny that the paly lave the sobso of taste. lont mantain that they are simply orgaths of totheh: Fow appears to lave experimontally proved this be cutting wil the pallpi of wasles anl :mts. and feeding them with meal with which quinine atme morphine had beon mixed. Whieh they still rejected. thongh they would eat pure, matuluterated meal. Vet in the end of the palai of Perla we have found a semser-pit (Fix. $\because 1$, r).
little is postively known of the merans of hate. lout the researehes of F. Will show that wates amd her-are provided either with mierosoble pitsor goblet-likn prajertions on the lase of the ligula (which torms the emet of the under lip). as well ats on the under side of the maxillar. The gustatory
nerve ends on the surface, and is thus accessible to direct chemical stimulation, while the parts can be washed with the saliva. The supply of hooks and bristles on the skin partly retains the saliva for cleansing purposes, and partly defends the delicate ending of the nerves. All these pits and goblets are situated where they come in direct contact with the food. Forel, lasing his opinions on the observations of different anatomists as well as his own, thinks that the organs of taste occur in the proboscis of flies; in the maxillæ, and in the end of the tongue, of ants; and in the palate or epipharynx of bees and beetles.

While most insects appear to be deaf, certain organs which are generally considered to be ears are well developed in the locust. and we think that the sense of hearing must be present, not only from the fact that a loud alarum with kettles and pans affects them, but because the movements of persons walking through the grass invariably disturb them. Besides this, they produce a fiddling or stridulating sound by rubbing their hind legs against their folded wingcovers, and this noise is a sexual somd, evidently heard and appreciated by individuals of the other sex. Any insect which produces a sound must be supposed to have ears to hear the sound produced by others of its species.

The ears (or auditory sacs) of the locust* are situated, one on each side, on the basal joint of the abdomen, just behind the first abdominal spiracle (Fig. :2.2). The apparatus consists of a tense membrane, the tympamm, surrounded by a horny ring (Fig. 2. 2). "On the internal surface of this membrane are two horny processes $(0, u)$, to which is attached

[^3]
 resicle is in comertime whan anditory nerve（n）which

 tympanmm：$T h$ ，its border；o ，u，two horn－like processes：h．fearshajed vesiche：n ，auditory nerse；g^{\prime} ，termimal gan ylion；st stigma：m ．oneminke and m^{\prime} closing．moscle of the same：M，Rensor musele of the tympanam metn－ brane．－After Graber．

Fit？．：3，－I，fore tib：̊ of a European grasilopper（Meconema containing th．．
 matic cross－section throush the thbias and ear of the enme．T．iytupanmm： Ct，cuticula；C．M．hypodermis：A．the atalitory or－ay ant ontige wht the
 ing to them；Hst．the auditory rod conmecting with the ganglon－erells－Af：er Graber，from Judeich and Nitsche．
arises from the third thoracic ganglion, forms a ganglion ($g a$ a) upon the tympanmm, and terminates in the immediate neighborhood of the labyrinth by a collection of cuneiform, staff-like bodies, with rery finely-pointed extremities (primitive nerve-fibres?), which are surrounded by loosely aggre-

Fig. 24.-Musical apparatus of cricket. a, a, tracheal tube; b, rasp or ridge bearing vibratory flanges; d, resonant surface, with ridges.
gated ganglionic globules" (Siebold's "Anatomy of the Invertebrates"). In the green grasshoppers, katydids, and their allies, the ears are situated on the fore legs (tibia), where these organs can be found after a carefnl search (Fig. 23).

Having ears to hear, locusts, grasshoppers, katydids, and crickets are also very musical. One maly sometimes see the red-legged locust standing on the ground and rnbbing one leg against the folded wing, and a shrill chirruping noise may be heard. The noise is made by a row of dull spines on the inside of the femmr, forming a rude file which rasps the wing. Certain grasshoppers, as the katydid and the crickets (Figs. 24, 25), have on the muter side of the uppermost of the
 fore wings a sort of file which rubs over a resonant surface, Fig. 19 after N. B. Pierce.
like a drum's head. 'The file may be likened to the bow, and

 betome tediuss and disigreeable. This makes little diferenere for insect-mmsio is all-impurtant. It is the erichet's
 safe in saying the hreed womld soon run ont. lueather they would mot otherwise reatily mate.
laseds also have the serece of tomeh highly developed; its sat is in the humerons hairs and hristes which elothe the

'The hairs of inseds form an intereting shlagee for miero
 are sern in the smaller catcopillarso and the larerer makent kimes. in which the hairs are mimate amd very shender:
 barbed: in certain cattopillars. an thase of the mata, io. atml the native silh-wom moths. the hair: are - pita-like, with sharp spinules. amt are poisomoms. havinis at their bate at

 The hatis sumetimes beromb that and henat ats the seakes of moths amel hatertlies, as well as wertain thes and heethe.

[^4]
CHAPTER II.

GROWTH AND METAMORPHOSIS OF INSECTS.

Insects are of distinet sexes, and besides males and females the social species, such as ants, wasps, and bees, are largely represented by workers, which are mndeveloped females, not being normally capable of laying eggs.

Insects differ sexually in that the female often appears to have one abdominal segment less (one disappearing during the semi-pupa state, when the ovipositor is formed). They are also larger (except in the stag-beetles, some dragon-flies, and certain bees), fuller, and duller-colored than the males; while the latter often differ in sculpture and ornamentation and are more active than the females. Certain female moths are wingless,* the organs of locomotion as well as of smeli (antennæ) and sight being better developed in the male than in the female. The females of some water-beetles (Dytiscus) have deeply-grooved elytra, or, as in Acilius sulcatus, they are thickly set with hairs.

Egg-producing Organs.-With some notable exceptions (i.e., cases of parthenogenesis), all insects derelop from eggs, which are formed in delicate tulues situated in the abdomen, as in Fig. 4, ov. In the locust the ovaries consist of two sets of about twenty long tubes, within which the eggs may

[^5] in two main tubes whith mitu tu form the shere orndurt (or.t) Which lies on the thoor of the alolomene Shase

A

Fig. ab.-Anthophorabiar retusa. A. male; B, female-- Ifter Sewport.
the operning of the oriduet is the sebibie grand and its duret.
 is, as in many other insects, ponred ont as the eqers pass wht

of the oridnet. thas sumombing them with a tomeh coat (compare Fig. ? こ)

The external parts consist of the ovipositor (Fig. 1, B), which is formed of two pairs of spines (rlabdites) adapted for boring into the earth; and of the egg-guide (Fig. 4, eg), a triangular flap guarding the under side of the opening of the oviduct.

The eggs are fertilized while in the oviduct during pairing. The sperm-cells are secreted in little glands in the

Fig. 28.-Male glands of a Bark-beetle. sl, vas deferens; $h \mathrm{o}$, testis; bl, sperm-sac; $a g$, ductus ejaculatorius.-From Graber.

Fig. 29.- t, testis; v, vas deferens; g, seminal vesicle of Acheta campestris.From Gegenbaur.
male called testes, which form a single mass of tubular glands, resting in the upper side of the third, fourth, and fifth segments of the hind body. Figs. 28 and 29 represent these structures in other insects.

The Egg.-In shape the eggs of insects are usually cither more or less spherical or oval. The shell which envelops them is called the chorion. It is dense and brittle, and often covered by a delicate mosaic-work of more or less regular facets. In those of many moths the surface is finely granulated, while in those of most butterflies the surface is beautifully ornamented with ribs and furrows.

In some eggs there are radiating appendages at one end, as in those of Nepa (Fig. 30, 0), which surround the micropyle; this being a microscopic opening through which a. spermatic particle enters to fertilize the egg.

The mosquito lays its slender cylindrical eggs glued together in a boat-shaped mass, which floats on the surface of pools or cisterns; the Copris beetle, or " tumble-bug,"
places its cegy in the centre of a ball of dung, which it rolls away to a secure phate; the flesh-fly wipmeste on frosh or

 d, usual simpe of thense of bark-berer. ete : e, Detohmelia; f. Chiromomus: g.
 n, Pentatoma; Xepa; l, Pieris cratagi; q, bed bug; r, lonse, fastened to a hair: s, Hypultram atotor, bot-hy.-From Jubeich and Nitsche.
putrin meat, and mothe and butterflies lay thair egge on the leaves or stems of the fool-phant, where the eaterpilher. upen its axit from the earg, shall remtly find an ample supply of food.

No collection of insents is complete withont peemems of the eqges neatly grmmed on at card and pimned next th the insect.

Growth of the Insect within the Egg.-'Thererm or

Fig. 31- Section of Sphinx embryo. the germ inmersed in the yolk. s, serons membrane: am, manion: h. outer, m, inner, gemm-iayer.

Fic. 32 - Embryon of sphinx mucl whre Bitranced.

 sticma anel begiming of a trachea $d ; d$ a glani. -Thisund Figs. ©3and 34after Kowalevsky
reung insect before hatehing is called the conhern and the study of the growth or development of the cmbreo is called Einbryoluyy.

There is a remarkable uniformity in the mode of derelopment of the winged insects. In general, after fertilization of the egg, a few cells appear at one end of the egg; these multiply, forming a single layer around the egg, this layer constituting the blastoderm. This layer thickens on one side of the egg, forming a whitish patch called the primitive streak or band. The blastoderm moults, sloughing off an outer layer of cells, a new layer forming beneath; the

Fig. 33.-Primitive band or germ of a Splinx moth, with the segments indicated, and their rudimentary appendages. c, upper lip; at, antenne; md, mandibles: $m x, m x$, first and second maxillæ; $l, l^{\prime}, l^{\prime \prime}$, legs; al, abdominal legs.

Fig. 34.-Embryo of a Water-beetle (Hydrophilus). E, egg: K, head: ol. upper lip; m, month: an, antenne: k_{1}, mandibles; k_{2}, k_{3}, maxiliæ; B, thorax; b_{1}, b_{2}, b_{3}. legs; $h_{1}-h_{10}$. ten pairs of rudimentary abdoninal legs, of which all except k_{1} disappear before the insect hatches: a, anus.-After Kowalersky.
skin thus thrown off is called the serous membrane; the second germ-layer (ectoderm) then arises, and a second membrane (called amnion. but not homologous with that of vertebrates) peels off from the primitive hand just as the appendages are budding out, so that the borly and appendages of the embryo insect are encased in the amnion as the hand and fingers are encased by a glove. As seen in the
 the mader shle of the primitise haml.and ant hate. jown-

 assume the form aeen in the larra, and just before the

Fig. 35. - Profile riew of embryo Homey-bere. lethering as in $\mathrm{Fi}_{\mathrm{g}} 31$. liM. intrume enal: Ulf. brais II. digestise camal: sch, the orepthames: st. stigmatal openings of flat eracheal syatem: h, heart. After Bliitschli.

Fis. $3 \mathrm{H}^{\prime}$ - Fmbry of the Lawe am, serou- ment irane: f atmon: us. nnternis. He felenl Atter Mel. niknu.
insect hatehes the last steps in the chabumat on of the larval form are taken.

As to the tevelopment of the intermal ormal - the nervons Srstem first originates: the alimentary eamal f- the formed: and at about this time the stigmata amd air-tules arise as
invaginations of the onter germ-layer. The development of the salivary glands precedes that of the urinary tubes; which, with the genital glands, are originally offshoots of the primitive digestive tract. Finally the heart is formed.

When the insect hatches, it either cuts its way through the egg-shell by a temporary egg-cutter, as in the flea; or the expansion of the head and thorax and the convulsive movements of the body, as in the grasshopper, burst the shell asunder. 'The serous membrane is left in the shell, but in the case of grasshoppers the larva on hatching is still enveloped in the amnion. This is soon cast as a thin pellicle.

Metamorphosis of Insects-The Larva.-The life of the insect may be divided into four stages, represented by the egg, the larva, the pupa, and the imago or adult. The change from the egg to the adult is called a metamorphosis. The larva (Latin larra, a mask) was so called because it was thought to mask the form of the perfect insect. The larva of a moth or butterfly is called a caterpillar; that of a beetle, a grub; and that of a fly, a maggot. The larve of other gronps have no distinctive common names.

The principal change from the larval to the adult locust or grasshopper is the acquisition of wings. In such insects, then, as the Orthoptera and Hemiplera, in which the adults differ from the newly hatched larramanly in the possession of wings, metamorphosis is said to be incomplete. Its development is direct. In the beetle, fly, butterfly, or bee, the metamorphosis is complete ; the caterpillar, for example, is a biting insect, is voracions, and leads a different life from the quiescent, sleeping pupu, or chrysalis, which takes no food; on the other hand, the imago, or butterfly, has mandibles, which are rudimentary and incapable of biting, while the maxilla, or "tongne," whieh was rudimentary in the caterpillar, becomes now greatly developed; and the butterfly takes liquid food and but little of it, while its surroundings and mode of life are entirely changed with its acquisition of wings. Thus the butterfly leads three different
 at these three period- and with ad diferent cat romment.
 of the skin lueing eatot off at cach monk. 'Tha skin oprols on the batek behtud the heat, the cotterpillat drawing itarlf out of the rent. In the ehathere from the eaterpillare the the (harsialis, there are remarkible tramsformations in the mascles, the newors. digestive and eimonlatory sistem, indueing at change of fam, extermal and intomal, chameterizing the different stages in the metamorphesis.

While the chathges in form are comparatively suden in
 How granlual they are maty be sen by a stady of the metamorphesis of a bee. In the not of the !amhle or honerlere the gonner may be fonmel in all stiges. from the eger to
 It is diftientt ter indicate whon the chrasalis statere begrins athe the larrat state emes. fot the metamerphasis is mone complete-that is. the adolt hee is mere malike the larsat than in any othere insixt.

The better way ter moderstand how an insed thansforms is to rear at moth or hattortly, a tly, amd a bee or salw-lly from the larva, closely warving eath chather By thas wherring the tramsformations of moths. fles. atml beethe. the popular epinion that the smaller thies atm mothe atre the
 winged inserts being alndts. and fully mature.

[^6]The Pupa.-A few days (usually from one to three) before assuming the pupa or chrysalis state, the caterpillar becomes restless, stops eating. deserts its food, wander's about, and if it is a spimer, such as the silk-worm or certain other moths, spins a silken cocoon; or if a borer, makes one of earth or chips, and then prepares for the change to the pupa state.

Cocoons are nsually oval, and either compaet and thick, or loose and open like network. In the course of one summer the begimer can collect a large number, and realize how varied in form and structure they are. They are usually spun out of a silken thread. The silky material is formed in the silk gland:, two long tubes which lie on the under side of the body of the caterpillar and open into the under lip by a common duct; the little projection or papilla ont of which the silk passes is called the spinmeret. The silk is fluid before it is forced ont, bat becomes threadlike on exposure to the air.

Before changing, the body of the caterpillar becomes shorter and thicker, and remains so for one or several days; that of the saw-fly remains in this state through the winter. During this period, ealled the semipupal stage, the pupa develops, its skin separating from that of the larva.

It should be borne in mind that the skin is composed of

Fig. 37. - Cross section through the cuticula, C, and hypodermis, M. The setæ or hairs, H, are articulated at C with the cuticula: $H Z$, cell. The poison-glands at the base of the bristles of some insects resemble these.-From Judeich and Nitsche. two layers; the under one formed of cells and called the hypodermis (Fig. 3i), which sccretes the hard, chitinons, structureless outer layer or crust. The hypodermis of the growing pupa tends more and more to assume the shape of the pupa, and the muscles and other organs within change their shape, mutil finally the old larral skin ruptures along the back, and the pupa slips out of the rent.

The pupae of different intrat saty ervaty in form．Th the inserets with ath incomplete metamorphomis the pulat only diflers from the lansa in hatsing patl－hhar ruldument？

 Ineleent，some aththots with genol reasoll aplly the torm
 flies．datorn－thies．© ete：this term embancing what is menall！ called the larval amblumal states of thase insercts，as durine these periods they are aretire and take foot．

The Imago．－＇This is the final me alult state．when the wing are developed amt the insert is aldo to fly about
 lattertlies，watis or hers．have completed their tran－format

 during the winter the serebes in mos rasse is repmernted

 cesperially moths，the pupat hibernates to disithes the imater
 the wintor，although there are some well－hり （o）this law．

 kept a virgin buttertly for two years in his hot－man．＇The pupal state of mothe and haterthes may low eratit pros longed ly keeping the elnysillids on iere．

Parthenogenesis．－Besides the nommal mode of dewhnt－ ment．certain inseets，ats the phant－fonse（ 1 ／hfil），the hark－ lonse（（＇nceus），the homer－bee the lolistes wath．the curant silw－fly（Jematus），the gall－flies．and a few other－pre－
duce young from unfertilized eggs. Certain moths, as the silk-worm moth (Bomby. mori) and others, have been known to lay unfertilized eggs from which caterpillars have hatched.

The most surprising case is that of the larva of a dipterous gall-fly (Miastor), which brings forth numbers of young maggots like itself, the eggs developing in the ovaries of this precocions maggot. The pupa of another fly (Chironomus) lays eggs from which the maggots hatch.
'This anomalous mode of reproduction is called parthenogenesis, and fundamentally is only a modification of the mode of producing young by budding which is universal in plants, and is not umusual among the lower brimehes of the animal kingdom. The object or design in nature, at least in the case of the plant-lice and bark-lice, as well as the gall-flies, is the production of large numbers of individuals by which the perpetuity of the species is maintained.

Broods or Generations of Insects. - Most insects live one year; hatching from the egg early in the summer, they pass throngh the larval state, and early in the autumn become pupæ, to appear as imagines for a few days or weeks in the succeeding summer. Many moths and butterflies, however, are double-brooded, and some have even three broods. Papilio ajax has in West Virginia four and sometimes five generations a year. 'There are other insects, such as certain kinds of flies, bngs, beetles, etc., which keep up a constant and irregular succession of broods. On the other hand, the serenteen-year Cicada has a generation only once in seventeen years.

Cold retards the development of insects, while warmth stimulates it; and insects which are as a rule single-brooded may be artificially forced into having a second brood during the same season.

Contagious Diseases of Insects due to Animal and Vegetable Germs.*-While many insects, especially the white

[^7]ants and woul-cating himls, arre infoted by hosts of apparently hambers mirrowenpic paratiles. both animal amd veretable, there are certain suecies which give rive to grane eontagions disatises. 'Ihongh most of these minnte paratsites are regetable, the common silk-wom is in Europe infested hy what balbiani regards ats an amimal. It is a ver! minute parasitio Ambeba-like form (called Mirorasporidinm bumblycis), belongingr, acending to Balbiani, to a erom] catled sporozos, and allied to the parosperms marring in fishes, etc., and to the (irequrimas. The dievase produced by this orgamism is called fullime. its symptoms being the appearance of black spectis on the skin amd internal organs. while the blool is filled with the spores of the parasite. 'This discase, however, is in this combtry pratically muknown, and Forbes believes that it probathly camot be artificially cultivated or propagated in inseets related to the silk-worm.

Of the regetahle disedse-grerms, the most simple and minnte are the Bateleria, Batrilli, and Maroconed. the diseates they prodnce being callad • batworial," 'The most destructive of these to the silk-worm is varions! calle l thacherié muludhe dex morts-blanes. muluctie des morts-gluts. The germ of this discelse, which is ealled Mirrocorcles lomul!!eis by Cohn

(Fig. 3s), is. like its allies, amoner the smallest orramisms kinown; it is a microserpie. wal mas: of pontoplanm, and maltiplies very mpidy bey selfelivision, the new imdis iduals often forming chatins. In this way a few wemme introtuced into an insect will multiply with inmense rapidit! tinall! disorganizing the blood amd tisemes and catnsinf maph deeay

 kimble:" the works of (?natre fare and lateur on t!e -ilk-worm disease: and Balbiani's "Leçons sur le-spurvzatire, " Paris, liset.
and death. It is very contagious, being transmitted to healthy larvæ by the infection of their food either with fresh excrement or with the dust of infected silk-worm nurseries of the previous year. Forbes has studied the flacherie of the caterpillars of Pieris rapee and of Datunce ministra, and has shown that the spontaneous disease due to a species of micrococcus " may be unquestionably conveyed to other lepidopterons species, and even to the white grubs;" he has also seen wide-spread epidemics of flacherie in the caterpillars of Pieris rapu, of Pyrameis carclui, and of Nephelodes violens, and has met with it here and there in numbers of other caterpillars and hymenopterous larvæ, as well as the chinch-bug; while from the researches of Cheshire and Cheyne "foul-brood" in bees is now known to be produced by Bacillus alvei.

The disease known as " muscardine," often causing widespread destruction to both larval and adult insects, is cansed by fungi, or moulds, which are often visible to the naked eye. They are species of Botrytis, Isaria, Cordyceps, Empusa, Entomophthora, etc. The spores of these moulds enter the bodies of their hosts through the spiracles, being inhaled, not penetrating throngh the month; their spores also germinate on the surface of the body, sending slender threads through the skin into the body; these threads separate into small single cells (cylindrical "conidia"), which, growing and dividing again and again, derive their nonrishment from the blood and tissues, the victim dying a slow death, after which the body becomes filled with the mycelial threads, which finally, as in certain species of Isaria and Cordyceps, send up long filaments, more or less clubshaped, when they are called "catcrpillar fungi," A large proportion of the flies and other insects in different stages found in autumn dead and stiff on fences, weeds, trces, and within honses, are victims of Entomophthoræ.

De Bary sars: Should we carefully look in the leaves and moss on the ground in forests in the wet portions of the year, we should be astonished at the number of insects
 The commonest example is the monld ($/$:'If/usis menor.

 Nitsche.

Coln, Fig. Bat). Wheh destross the common lume-tly at the beginning of alutumn.

The Destruction of Insect Pests by means of Insect Fungi. IVhen insects so multiply and abound in grate 1 umbers ats to become overerowded. epidemies are liahle to arine and cary them ofl in great mumbers. These insect plarghe are
apparently due in some cases to bacteria, in others to the larger fungi. Forbes states that epidemics due to the latter have been noticed among grasshoppers (Edipoda and Pezotcttix); among various noctuid larvæ-especially Agrotis segetum in Europe, and some American cut-

Fig. 40.-Entomophthora radicans Brefeld. A, caterpillar of Pieris brassicce killed by it: a, the hyphe growing out from it; B. the same at a later stage; c, cross-section through 13-all the soft parts of the caterpillar are replaced by mycelinm threads; D. fruit-hyphe; c, the spores: E. single spores; (r, a piece of the skin, with spores, a. germinating and growing out at $c ; H$, isolated mycelinm branches free swimming in the caterpillar's blood; J, branched $m y$ celial thread; h, resting-spores hearing mycelial threads, a, filled with protoplasm: at a^{\prime} empty; at is beginning to develop; b^{\prime}, ripe resting-spores; L, ripe resting-spores with a thick skin and fat-drops within.-After Brefeld, from Judeích and Nitscle.
worms; among the two European cablage-worms (Pieris rapee and P. brassica) ; among varions flies, the common house-fly, blow-flies, Syrphidæ, Culex, and even larval Chironomus; and, finally, among Coccidr and Aphides (A. corni and A. rumicis). According to Dr. Bail, in the
forests of i'omerania and lowern the caterpillars have lucer killed by limpuen unlica in such ytantitio- as to have

 Brefeld cultivatend them in sterilized veal sump, and previotisly he experimemed with the eonidiat of lintmmenthtimon
 pillars. with the result that al speedil! died of the funerus dise:ase resulting. But the most hopeful result-. Fourbes thinks, from the artificial cultivation of rereetable insecticides will attend the wee of the mascardine fungi (Botryts. Isaria. and (ordyreps). sine their spores and conidia ${ }^{\circ}$ have germinated freely again and again in sweetened water. in sterilized beer-mash. in solntions of gelatine and of anm, and ma!! ewengrow to some extent in pure water. In these the Butrytis stage arises. and may fom its spherical comidia in vat ahmmbance: amd these have been med with jerfect sumeres for the infection of healthy insects in areat Variety."
'The question has been askenl: ('ammet we proparate the Lacterial insect-diseases and utilize them ass destructise agents agranst insect-pests: Metschmikoti hats shresented the feasibility of the enltivation of insect-haterial. and the application of the enltivated fungus in quantity to placeinfested hy these inserts: and several years previously the famous experimenter. Pastenr, reemmented to the Ferench Phylloxera Commission to find a means of de:troving the Phylloxera by inoculation with a mioposeopic fungre. babbiani finds that certain bacilli when inombated in the hood of other insects kill them. leath follows in from twelve to forte-eight homrs, acending to exteral twimerat ture. the nomber and origin of spores, amd the size age. and susceptibility of the subject. They die with all of the symptoms which eharacterize fluchrio in silk-worms.
'The practieal diflienlty in experiments in this direction appears to be that, though the air is more of lese filled with floating disease-germs, insects like other amimals, and man
himself when healthy and living under favorable conditions, resist their attacks. Even if one or a few individuals were inoculated, the disease might not spread. When, however, insects are superabundant and crowded, and the conditions favorable to any disease arise, the timely inoculation of even a few individuals might result in the destruction of immense numbers of insect-pests. Future experiments in this direction may give a new phase to economic entomology.

Unusual Increase in the Number of Insects.-It is frequently noticed that certain insects abound in profusion which are ordinarily rare or not common. This is due, as we shall see farther on, either to favorable weather or to the absence of their parasites. 'Thus canker-worms, the Hessian fly, the chinch-bug, the cotton-worm, as well as the Rocky Mountain and other locusts, may in certain yeurs become vastly more numerous, and consequently more destructive, than in others. If all the eggs laid by insects came to maturity, the earth would be overwhelmed with them, and every green thing would be devoured. In what a ratio insects might increase, were it not for these natural checks, may be seen by the following statements.

Tomicus typographus in 1874, in the Bohemian forests, had three broods. Judeich assumes that in the middle of April the female laid in its maternal gallery 90 eggs; and he therefore reckons that early in June at least 30 individuals became capable of reproduction. Each of these 30 females again lays in the maternal gallery 90 eggs, produeing also in all 2700 individuals ; and by the beginning of August of the third brood again, only a third part of them being femsles, these wonld gniw 900 maternal galleries and lay in them 8100 eggs. Haring reached this number again, the next spring a third would be ready for oviposition, so that there wonld be of the first brood in April already $\gtrsim \%, 000$ descendants of the single female which flew about the preceding April, and which would be now capable of laying $2,430,000$ eggs.
" In Krmmand in the Buhemian forests. hate leeen
 beetles in these forests from lsill 6 lisio. in at pertion of
 (.Jnleich and Nitsehe).

Influence of Changes of Temperature on Insect-life.Perhaps changes of tempurature and unfaverable seatums have, next to the increasing romperition or struggle for existence amomig inseets, and the attacks of paratites, the greatest effect in maintaining the balane of mature and preventing the undue increase of destructive insects. Dr. Shaner gites an acoont of an ephemic among the ehinchbugs in illinois. which " wats at its maximum during the moist warm weather that followed the cold rains of June atal the first part of July. Sisi,." Mr. ('. 'Thumas chams that the high temperature of lisit. Rait, and 1sit. together with the dimini-hed ramfall. furni-hes the key to the camse of the vast increase of chimeh-bugs during these Years. * Wet weather is laworable and dry weather is unfarorable to the incerase of the cotton-wormi. In times of dronght the erors dry and fail to hateh, the woms are enfedbed, "web up" prematurely. and die in attempting to transform into the chrysalis state, and when they sumeed the ehrysalides decay. "Nonrishment and feemodity being correlated, it is more thath probable that the moths, poorly nourished, will hay fewer eggs moder such circomstances. All the eflects deseribed are intensitied and heeome most marked during extreme dronght. so fhat frequenty at the end of a dry spell. such as is not inferpuent in duly and carly Angust, not a worm cam be fomme I rainy seatom, following such a spell, will produce a most noticcable change." \dagger

The Hessian fly thourishes best in seasons when the chinch-bug Howrishes least. 'The hot. dry smmer of Insi

[^8]caused the pupa-cases or flaxseed to dry up, and even destroyed the parasites.*

The canker-worm, tent caterpillar, and most larvæ abound less after wet and cool springs. The spring of 1885 was unusually cold, rainy, and backward, and we noticed that as the result the lack of caterpillars and other forest-insects, as compared with the season of 1884, was very marked; late in the summer and early in autumn there was a remarkable scarcity of caterpillars on oaks, maples, poplars, etc., while they were very abundant during the previous autumn.

An English entomologist, C. G. Barrett, in an excellent article on the influence of adrerse or favorable climatic changes on insect-life, states that in the south of England, after an unusually cold winter, with no thaws, moths became unusually abundant for several following seasons. As he remarks: "I think there can be no doubt that in the case of those insects whose mode of life includes the capacity for hibernation, their constitution is greatly strengthened, and their chance of arriving at maturity increased, if the cold of winter is sufficiently severe to induce complete torpidity, undisturbed by warm and spring-like weather at unseasonable times, and this may account for the vast increase in numbers in species which hibernate in the egg state; it also probably has a strengthening effect on those which pass the winter as small social larvæ under a silken tent on the ground, or which, like Noctuæ, hibernate in the larval state on the ground or among dead leaves, and are tempted out to feed by every warm and genial evening.
"On the other hand, there can be no donbt that mild winters act directly to cause the destruction of both hibernating larvæ and pupæ, in two ways. One is by encourags ing the growth of monld, which we know attacks them as soon as, from excess of rain or humidity, they become

[^9]siekly: the wher by permitting the ewntimed activity of pretaceons ereathres.

- 'Thes are very monerons. Moles comtime at work in mild winters, instatel of burying themseloes deep in the gromme :and mice are constant? active. 'These small mammalia destroy great mombers of Lepitopteroms pupar. amt they aborand in this district, as also do birds during the winter in an extromdinary dearee. As soon as serere cold sets in to the north and east, the hirds come down in swarms to the open fields and sheltered hillsides of this district, and it is hardly necessary to point them out as most imhstrions and persevering destroyers of lavere. Predaceons heethes and earwigs are gencrally on the atert all throngh very milel winters: and atthongh they probably do not eat moch at that time. aml, inteet, are not very Pentilul in lembrokeshire. they must destroy many larvae and fuper hating little else to subsist upon. but I heliwe that the mischef dome by all these adden? together does not equal that thone by the Oniser." *

In his work on bark-beetles Viehhatf tepl- me that the chief factors in the growth of these insects are goml weat her atal suflicient food. Anmintermped dry and heme hot, summer checks the growth of the larvae, and retarts their speedy development, amd more often pretents a repetition of the broots than an mintermpted wet and cold spring and smmmer. Hence on aecomot of the great heat amd drought mang trees survive which otherwise wonld be ingured by the later broods of bark-beetles. The most farorable conditions for the inerease of hark-beethes are donbtless a warm dally spring, a warm summer with frepuent bains. and a loner mild antumn.

It is well understood in central Emrope that great mumbers of may-beetles die dmring a cold wet Jats. After an exeeptionally watm and dry summer and antumm we mayo

[^10]expect invasions of the northern army-worm (Leucania unipunctu).

Periodicity in Insect-life.-As there may be a succession of seasons favorable to the development of insect-life, so there may be a corresponding increase in the numbers of insects, until they abound to excess. In this way periodical invasions of locusts happen the world over. A number of successive favorable seasons may result in a greater number of eggs of Lencania hatching, and the caterpillars nearly all arriving at maturity, none dying from bad weather, they abound in extraordinary numbers, and in great armies march through grass-lands and wheat-ficlds in what seem to us countless numbers. We thus realize how many vicissitudes await the caterpillars in ordinary seasous, and how few pairs survive. Another striking case is that of the spruce-bud Tortrix (T. fumifer(tn(c), which for a number of years destroyed the spruce and firs on the coast of Maine, this species being rare and seldom captured either in the larva or imago stage in other years.

Number of Species of Insects.-The insects number about four-fifths of the animal kingdom, since it is estimated that there are not less than from 200,000 to 250,000 species in public and private collections. The Coleoptera are the most numerous, there being 100,000 species known, 90,000 species at least existing in museums; of Hymenoptera and Lepidoptera as well as Diptera there are not less than 25,000 species of each order; of Hemiptera about 27,000 species exist in museums, and Uhler supposes that the entire number is nearly 50,000 ; the species of the smaller orders would easily carry the total number of known species up to 200,000 . As recently remarked by Dr. Sharp, probably only from a fourth to a tenth of the existing species of insects are known; and as McLachlan has stated, it is not improbable that the number of species of insects now living on the earth's surface will be found to be about $1,000,000$.

The number of described species of American insects
north of Mexien lats been statcel by Mr．J．A．íintner（1haif）to be as fullows：
sucims
IIymenoptura 41.50
 500
 3lst－adilitons since makin！e about．．． Tincide（Chambers＇s List，1sis，not in－ chatal in Groters Lisu $790-40.5$
 S．
 4．51：3
IKemiptera：Homoptera（lhare estimate） $1 \geqslant 0(1)$
Heturoptera（Chler＇s（＇heck 」ist，1＊Nit）．．． 14゙い—きから
（1rthoptera（scomdder＇s extimate）． 4.511
All other orders，not（＇stimated；perhaps． 114%
Tutal 25，111

CEdiporle xanthoptera

CHAPTER III.

CLASSIFICATION OF INSECTS.

Having examined the locust with the aid of the foregoing description, the student should make his studies comparative by carefully examining a cricket and a green grasshopper. Then he might turn to the following descriptions of examples or types of the order of white ants, dragon-flies, hugs, beetles, flies, moths, bees, etc., and as the result of his work he will be able to grasp the fact that the species of insects, as a rule, have bodies composed of seventeen segments, which are arranged in three regions, viz., a head, thorax, and hind body or abdomen; that the thorax bears two pairs of wings, and three pairs of jointed or segmented legs; that they breathe by internal air-tubes opening externally by spiracles, and that in growing they either derelop directly, or undergo a complete metamorphosis.

The class of insects is divided or classified into orders, families, genera, and species, and the study of the classification of insects is called Systematic Entomology. The class, as regards existing forms, is divided into sixteen orders, as follows, begimning with the lowest or wingless order, Thysanura, and ending with the highest or most complicated group, the Hymenoptera.

CLASS INSECTA.

Jointed animals with a distinct heud, thorux, and abdomen; three pairs of legs, and usually two pairs of vings; breathing by trachea; usually with a metamorphosis, viz., a larval, pupal, and udult stage.

Series I. Ametabola, or with an incomplete metamorphosis.
Order 1. Thysanura.-Wingless, minute, with a spring, or abdomen ending in a pair of caudal stylets; usually no compound cyes; no metamorphosis. (Examples: Podura, (ampodea, Scolopendrella, Lepisma.)

Order 2. Dermaptera.-Body flat; the abdomen ending in a forceps; fore wings small, elytra-like; lind wings ample, folded under the first pair. (Forficula.)

 Pancus, white aluts)
()reler i. Odonata- l'wothoras small, felmainder of the thoras

 (Aerion, Lilnollula.)
(1rder ti. Plectoptera. - Month-park mearly whenlete: winge arfveined, hinder fair small, sometime wating. almbmen ruding in
 the sides of the himd beoly. (Ephaneria.

Oriber i. Thysanoptera - Mouth-patis forminer a huort conical sucker; palpi procobt; wing- marmon, but veined, frinered; foel bulhous at the emb, without claws. (lhotig)
 :horan wshally larere; fore wince wfon thithoned at base; pillat

Order 11. Trichoptera - Winge and lmely lihe thuse of Tincid moths; mambibles ohmolete in the intaro. Latrit u-mally mytatic,

Orfer 12. Coleoptera, - Fowrewing- thick, emsheathing the hombr

 Harpallus. ("ivindela.)

 moutis-parts. (1'ul.x.)

 P'ipilio.)

 ablominal segment of the larva being tram-formed to the thoran in
 1(hnemmon, sphex, Vépis. Ipis.)

Tabular View of the Orders of Insecta.

Order I. Thysanura* (Spring-tails and Bristle-tails). The Thysanura are very primitive forms, are all wingless, with usually simple eyes, and undergo no metamorphosis. They usually live in damp places under stones,

* Selected Works.

Gervais, P., in Walckenaer, "Hist. Nat. des Insectes Aptères," iii. $3 \pi 7$ (1844).
Haliday, A. H. Iapyx, a new genus of insects, ete. (Trans. Linn. Soc., London, xxiv., 1864).
Lubbock, J. Monograph of the Collembola and Thysanura (Roy. Soc., London, 1873).
Meinert, F. Campodere, a fanily of Thysanura (Naturhist. Tidsskrift, Copenhagen, 1865) (Swedish and Latin).
Nicolet, H. Recherches sur les Podurelles (Neuchatel, 1842).
Packard, A. S Bristle-tails and Spring-tails (Amer. Nat., v., 1871), and "Our Common Insects" (1873).

- Synopsis of the Thysanura of Essex County, Mass. (5ith Rep. Pealb. Acad Sc.. Salem, 1si2).
Tullberg, J. F. Swedish Poduridx (Stockholm, 18\%2).
- Collembola boreali (Roy. Swedish Acad., Stockholm, 1876).
ote．，thongh the bristle－tails prefer warm and dry＝＝1mations．

 the end of the bals．Whith on bemer reteacel throws the insect high in the air．The higher member：of the order．as Campulea amd sempunadrellas，are momectiner links between the true insects and the eentigede－（．Myrin－ poelu）．In many Poulurids the tracheav are waminge．

N゙uh－order 1．Collembola．－The spring－taile are degraded forms，with the month－parts quite malimentary ：and re－ tracted within the heal．only the ends projectinge．What correspond to the anal stylets of（＇amperleal aml Leplisma are in the Podmrick mited at the hata anti bent under the hime hody to form the spring．Which is hede in phace ly a hook or temurnlum：on the muler side of the himd hend is
 sess this singular aldaratus，the gromp is named from it （oblembolu，which means to throw ont a sucker，so as to adhere to surfaces．Their badie are concred with seales．
＇These spring－tails oceme arerywhere mader hase the bark of trees，etco．and larely live except in moist wr shathed plates．Where their earge are deposited．The show－flo a （Acharules micionla）is sometimes seen in great numbers leajing on snow．＇Thes shombld be preserved in rials of alcohol，amd can be collected by placing an ether bial orer them and allowing the ereatures to spring into it，or the finger wet with the salisal cim be lighty laid on them，when they ean be transferred to a vial of adoohol．＇They ean also be mommted in balsim on grats slides．

Eub－arder \because Symphyla，－I remarkahly（and wite trpe． having the head of a（＇impodea．While the aldomen ha－ a pair of hers to each joint，like the centipertu．

Fan：ily Scolopendrellide with the chamacho of the－uhterder Siolepatrellw inm ：culath Newport．

Sub-order 3. Cinura.-Here belong the bristle-tails, the
 hind body being long, and with small, rudimentary processes corresponding to the abdominal feet of Scolopendrella.

Family Campodidæ.-With long, slender bodies and long, delicate caudal stylets. Campodea staphylinus Westw.

Family Iapygidæ.-Like Campodea, hut the body ending in a pair of forceps. Iapyx subterraneus Pack.

Family Lepismatidæ. - Body flattened, covered with scales, with five caudal stylets, three of which are very long. Sometimes injurious to papers and books. Lepisma saccharina Liun., L. domestica Pack. has injured books in the library of Wellesley College. L. 4 -seriata Pack. (Fig. 42). In Machilis the eyes are large and compound. Fig. 43.-Lepisma 4-seriata. Machilis variabilis Say.

Order II. Dermaptera* (Earwigs).

This small group comprises the earwigs, which are nocturnal insects very rare in this country, except in the Southern States, but common in Europe. Usually placed among the Orthoptera, the earwigs have certain important characters which forbid our placing them in that order. The fore wings are very small and short, like the elytra of the rove-bectles, while the large, broad, transparent, hinder wings are folded under the anterior pair, the process of folding being aided by the large forceps at the end of the body; the latter is long and narrow and much flattened.

Fig. 43.-Forficula croceipennis.

Family Forficulidæ.-Borly long, Forficula; bndy short, Labia.

* Selected Woris.

Dufour, L. Reeherches anatomiques sur les Labidoures or Perceoreilles (Ann. des Sc. Nat., xiii.). 1828.
Meinert, F. Anatomia Forficularum. Copenhagen, 1863.
Packard, A S (External Anatomy, in third report U. S. Ent. Commis. sion, 1883, p. 304, Pls. XXIII, XXIV).
Scudder, S. H. Notes on Forticulariie, with list of described species (Proc. Bost. Soc. Nat. Hist., xviii., 1876).

（＇rickets．etr．）．

by momeans do all the membere of thic gromp．an the name of the order would imply．have statight fore wing－ but in the lonenst and grassoppers they are genorally namons．staight．and thicker than the himder pair． serving as wing－emers to protect the hinder，thinner ones． The antemate may be very long，while the promotum is almost insariahly home and large，flattened wr compresed and moving freely on the rest of the thorax，whish is cens－ ered hy the wings when folded．The himd wings are much larger than the front ones，and have nomerons longitudinal and eross veins，while the oripositor，when present，varies much in shape and size：and the number of tarsal joints varies from two to five．

Fig． 44 illn－trates the incomplete metamorphasis of the （emmon red－legred luenst：it represent：the freshly－latehed larva，which monlts once before it－wings begin to hud ont．at：at ：3h：this stage（3h）may be called the torst pupal

Glover，T．Illu－tmations of Forih American Entomsology．（）rhopteri （4to， 13 pls．Washington，18゙っ．．）
Riley，Packard，and Thomas．First，Second，and Third Reports U．S Sntomological Commission， $1 \times ン$ にど
Saussure，H．de stuties of the Orthopter：a of Mexieo and Control Americ：（l＇aris，1sio－i4）．（In Froucli）
Scudder，S．H．Materials for a Monograph of the N．A．（Irthoptera （Jour Busl．Sur ，vii，1Ni？）．
－－Catalogue of North American Orthoptera（shillronitu Mise．

－Revision of the Male Crickets（Mem，Peabond！dead．，No． 1. Salem，18（6））．
Serville，A．Nitural Mistory of the（）rbluptera（＊uik il lzuthon）．（1 vol．，Svo．J＇aris．1s3！）（In French．）
 Gryllina（ete．）of the four parts of the world \because whe．flo，io pls． Amsterelam，1815）．（In Freneh．）
Thomas，C．Synopsis of Acrididæ of North America，Final Rejerl ［．S．Geon．Surv．，vel．v．too．Winhingtom，1sin．
Walker，F ．Complete catalogne of bermaptera sialtatoria（ 4 vols． ：und suppl．Svo．London，1こ69－71）．

 fimal imago stare is remehed, it maty he satid to hate three pupal stares. Il hen we compare the fro-hly-hatehed larwa with the alult. We see that the only impertant ditierence is the presence of wing :

There is no ereat change such ats marks the life-history of a butterty. Perhaps it is hy reason of their inmomplete metamorphosis, the general miformity of their hathits, and their living on venetahle foom, that Orthopterat are not momerons in specees compared with the heetles and higher orders.

The locusts lay their egrgs in packets in the eround (Fig. 4is). With its wipmsitor. Which is made up of

 mass. All maturat size.-After Rilly.
three pairs of short spimes the two onter pairs rery larere and stont. the locnst thrnsts its hind hody deep into the earth and deposits a packet of egers.

Many dancers attend the life of these insens. Ton owercome or to aroid them, many of them, as cratan hatt yidels. the leaf-insects, and the stick-insects. miniu leaves and sticks. so that insectivoroms himets are deceinel ly the m.

Loensts are also attacked hy parasite-: lith le red mites stick to their boties: hair-worms, and espectially the mag-
got of the flesh-fly, infest them, and thus thousands of them are swept away. All this is of use, however, for were it not for the kindly aid thus rendered, the earth would be each year overrun with locusts.

The males of many Orthoptera, as the crickets, green grasshoppers, katydids, etc., and locusts, produce lond, shrill sounds, by which they attract the females; but in the European Ephippigera, one of the Locustidæ, the female is provided with well-developed rocal organs. They stridnlate in three ways-i.e., first, by rubbing the base of one wing-cover on the other (crickets and green grasshoppers); second, by rubbing the inner surface of the hind legs against the outer surface of the front wings (some locusts); third, by rubbing together the upper surface of the front edge of the hind wings and the under surface of the wingcovers during flight (some locusts).

Fig. 46.-Croton bug, Ectobia germonict. Natural size.

Family Blattarix.-Body flattened, oval, with a broad pronotum; fore wings broad oval; antenne long and filiform. Blatta orientalis Linn., and Periplaneta americana (Linn.). While troublesome from eating clothing, ete., and mischicvous in bakeries and storehouses, they are serviceable in clearing houses and ships of bedbugs. The cegs are laid in a beanshaped capsule (oötheca), which is divided into two compartments, each containing about thirty eggs. Our native species, Plutamodes pensylvanica (De Geer), lives under stones. All are nocturnal in their habits. The metamorphosis of B. orientalis is said to require four years.

Family Mantidæ.-Fore legs adapted for seizing their prey, which

Fig. 47.-Mantis carolina, soothsayer. Natural size. consists of other insects. Eggs laid in large bunches on various plants.

Family Phasmide－The walking tiek of equetrean roproumeal by our liaph remurn ficurat me sity，which rememble wig atre very slember，with mete or hen fombieal bentio－ and loner less；their winge art bither wamt－ ing of rudinemary，or it developed．Arik ingle leaf－like，as in the leaf insect（Fig．4s， ih，汭lum vicitioliun Limn．）．

Family Acrydide－Loernste hase short antemate，and the bexly in laterally com－ prowed：the ears are at the hase of the hind herly，while the ovipositor is short Wili－
 amel C＇，fimur－ruhrum．

Family Locustidæ．－Bonly（ompresenl； bit the antemat very long and ：lemeter， white the ovipo－itor is very lirere ant sabre－
 shaperl．Some forms，is Cemthophilu－，are Fig．fo－raf－insert．Plyt－ wingless．The large greed grachoppers lum．Half tatwat ize． represent this gromp，of which the katydial and its allice＇lhomerop－
 Iy remomble leaves．
Family Gryllidx．－In the ervickets the horly is comewhat thatemed vertically，or it may he more or les－colimitrieal，ame the abkemen
 Burm．，hurrows in muitt tarth．The tree richet（iEtanthus wires x Serville）make a homd slather noine by rubheng the urper on the unter winds，and injures rapherry－buhe and other shrubs he lay ius its egge in the twigs．

Olinelk I\：Platyptera＊（Hhito Ants．etc．）．

＇This group womprises the birel－liee I＇smejtae stome－flies （Perlidar），and the white ants．In all exoept the Peocidae

> * Skhecter) W゙いにK心.
> Platyptera in themertl.

Fiagen，H．A．Syopmis of the Nourpheratof North Ameriancmith． lust．1N（il）．
Packard，A．S．（External anatomy，in third repurt l＇．S Lint．Com－

a．Mallophaga．

Denny，H．Monographis Anopluroram Britannixe Lataht．1－li？）．
 Zoul．．xlii．1585，530）．Ibstract lye（i．Mechothe in Amer．Nat．， 15：36， $34(0)$ ．
Melnikow，N．Beitraige zur Embryonalentwicklunz der Insekten （Arehiv f．Naturg．，xxxv．．1ヶ69）．
the body is flattened, and the head extended horizontally. The pronotum is large, broad, and more or less square; the

Nitsch, C. L. Die Familien und Gattungen der Thierinsekten (Germar's Mag. d. Eut., iii., 1812).

- Insecta epizoa (Leipzig, 1874. Edited by Giebel).

Packard, A. S. On the systematic position of the Mallophaga (Proc. Amer. Phil. Soc., xxiv., 1887, p. 264).
Piaget. Les Pédiculines (Leyden, 1880).

b. Perlidæ (Plecoptera).

Gerstaecker, A. Ueber das Vorkommen von Tracheenkiemen bei ausgebildeten Insekten (Zeits. f. Wissen. Zool., xxiv., 18i4).
Hagen. H. A. Syuopsis of N. A. Neuroptera.
Newport, G. On the anatomy and attinities of Pteronarcys regalis (Trans. Lirin. Soc., Loudon, xx., 1851).
Packard, A. S. (External anatomy of Pteronareys, in third report U. S. Ent. Commission, 1883, p. 322, Pls. XI, XLIV, LVII).

Pictet, F. Histoire naturelle, etc., des insectes Neuropteres: Part I., Perlides; Part II., Ephémérines. (Genève, 1841-45. With colored plates.)

c. Psocidæ (Corrodentia in part).

Burgess, E. The anatomy of the head, and the structure of the maxilla, in the Psocide (Proc. Bost. Soc. Nat. Hist., xix., 1878, 291).

Hagen, H. A. Synopsis of N. A. Neuroptera.
—Beitraige zur Monographie der Psociden (Stettin Ent. Zeit., 188:).
Nitzsch, C. L Ueber die Eingeweide der Bücherlaus, Psocus pulsatorius (Germar's Mang. d. Ent., iv., 276).
Packard, A. S. (External anatomy of Psocus, in third report U. S. Ent. Commission, 1883, 1. 325, Pls. XXXIX, XLIII).

d. Embidæ.

Hagen, H. A. Monograph of the Embidina (Canadian Ent, xvii., 1885).

Westwood, J. O. Characters of Embia, a gemus of insects allied to the white ants (Trans. Linn. Soc., xvii., 369).
See also the writings of McLachlin, Wood-Mason, etc.
e. Termitidæ (Corrodentice in part).
Hagen. H. A. Monographic der Termiten (Linnæa Entomolog., x., xii., and xiv.).

Müler, F. Beitrigge zur Kenntuiss der Termiten (Jena. Nat. Zeitsch., vii., 1873).
Packard, A. S. (External anatomy, in third report U. S. Ent. Commission, 1883, p. 326 , Pls. XXXIX-NLII).
Smeathman, \mathbf{H}. Some account of the Termites, which are found in Africa and other hot climates (Phil. Trans., lxxi., 1781. London).

 ments in the ablemen. 'ille moler reedires it: nambe from the fact that the wings are mamally laid that npon the barek when the insuet is at met.
'I'le bird-lice (Mallophagia), thomgh usually asociated with the true lice (which are wingless parasitic Hemiptera). in reality sum to be degraded. wingles Platypterat, and in

Fig. 19- Termes flumpe's, white ant. ", lam:d, b, winzel mate: : worker: d,

the shape of the body amd month-parts are mome nearly allisel to the family Powerler, which inclume: the weathtick, than any other gronp of inserts: heme wer remarl these parasites as forming a suborder of the freat ertulp. Wll the insente of this onder have sumbermarkah prealianities. 'The stone-flies or Perlider, which as harn we in the water and breathe by external tutts of gills ervowner on the under side of the thorax. in some cases, as in the -pectios of Pteronareys retain them in the winged statie.
'The white ants top the Platypterous series; they live, like ants, in stumps and fallen trees, and do mnch harm, especially in the tropics, by undermining the sills of houses, and destroying furniture, books, etc. Their colonies are very large and populous.

In our Termes fluvipes there are, besides males and females, workers and soldiers; the workers being white, small, ant-like, and wingless, with small round heads, while the soldiers have large square heads, with long jaws; the pupæ are active. In Brazil a species of white ant is differentiated into six different sets of individuals: viz., winged and wingless females; winged and wingless males; workers and soldiers. A wingless male and femate may, on the death of a normal winged male and female, replace them in the colony. A male or king was found by Müller living with thirty-one complemental females.

Sub-order 1. Mallophaga.-The bird-lice live usnally as
 Fig. 50.-Gonincotes of domestic sitic on dogs; Goliocotes burnettii Pack. fowl. parasites under the feathers of birds, eating the feathers; but the species of two genera (Trichodectes and Gyropus) live on mammals, eating the young hairs, and sometimes clots of blood. They differ from lice in having jaws adapted for biting. They can be mounted in balsam as transparent cojects for the microscope.

Family Philopteridæ.-With filamentons 3- or 5- jointed antenne, but no palps. Trichodectes conis De Geer, paraon the domestic fowl.

Family Liotheidæ.-With club-shaped 4 -jointed antennæ and palps. Gyropus porcelli Shrank, on the porpoise; G. oxalis, on the Guinea pig; in the U. S., Menopon pullidum Nitsch, on fowls.

Sub-order 2. Corrodentia.-This gromp includes the normal, winged forms.
 long and thread like, ablomen emding in two lugg styleto; wings

Fig. 51.-A Perlld (Nemoura), a, pupa (ņ̧mph) and imago.
with tamserere veiss, alld folded that on the bate. The larvae and

 I'te romareys requlis N゙'s mian.

Family Psocide.-small inverts, with shom aslindrical hodius, at small prothorax, and a swollenclypers, recenthliter Aphides: wings small, dedlexed, with fow wins: livinge on lichens, ete., and on the mader side of
 5?). The book-louse. Atropos fulsutorius (Limm.), is wingless; it is sommetmes called the "death-

F16. 52.-Circilus.

Fig - H - - 1tiopms t bwit thas

Watcll" or "death-tick," from beint erronemm-ly : wh lumake a ticking noise like the Anobium beetle It is comann in |xaks. and is injurions to cabinet sperimens of smatl moth- that ther delicate insects.

Family Embidæ-Bonly long. flat, amd narrow ; wits with few veins. Eimbus sucigni W゙esw.. Vieypt, mone in the (-

Fsmily Termitidæ.-The white athts in smme fetmires clavely resemble the cockroaches, but they are smaller, with tarrow or hodies
and wings, the latter being thin and finely net-veined alike in both pairs; antennæ short, 18-20-jointed. Ťermes flavipes Kollar (Fig. 49), Massachusetts southward.

Order V. Odonata* (Dragon-flies).

In the dragon-flies the head is large, the eyes in the typical forms enormous, while the antennæ are minnte, like short bristles, the sense of sight predominating over that of smell, and the jaws are large and strong, these insects being carnivorous, greedily suapping up flying insects, such as mosquitoes, small flies, etc., which they probably perceive

Fig. 54.-A dragon-fly, Diplax berenice. Male; natural size.
at a much greater distance than can most other insects. The thorax is large, round, and differs from that of other insects in the great development of the side pieces (espe-

* Selected Works.

Cabot, L. The immature state of the Odonata (Mem. Mus. Comp. Zool., i., 18i2).
Gerstaecker, A. Zur Morphologie der Orthoptera amphibiotica (Berlin, 18i3).
Hagen, H. A. Synopsis of the Neuroptera of North America.

- Synopsic of the Odonata of America (Proe. Bost. Soc. Nat. Hist., xviii., 1875).
- Monograph of the earlier stages of the Odonata (Trans. Amer. Eut. Soc., xii., 249. 1885)
Packard, A. S. Embryologieal studies on Diplax [Æschna ?], Perithemis, etc. (Mem. Peab. Acatd. Sc., 1871).
Viallanes, H . Le ganglion optique de la Libellule (※schna). (Ann. Sc. Nat. Zool., 1884.)
Also the writings of Charpentier, De Selys-Longchamps, Hagen, McLachlan, Pictet, Rambur, Scudder, and Walker.

 pair of clappers in the mate．＇The wings ：are later demonly net－remed，the limber pair being often a little larger than the front pair．
 ＂Er es in jolly－like maser on the surface of ponds，or＇，ats in Agron．they crawl heep in the water alone r the stems of submerged plants， and with their sword－like uripusitor cut irisher into the stalk in which they insert their urges．
＇The larva of the dratenn－fly conceals its powerful jaws for it is very do－ structive to the smaller ventures about it．by its amorous labium or under lip．＇Ihs forms at broad smooth mask covering the hewer part of the face：it is armed at the local－prone－ shaped extremity with two share mos－ able hooks．allotted for soling anal retaining its pres．It breathes by mb－ mating Water through the rent into

Fou：© N E sebum larva （Hybupls．Natural mex． the intestine whir near the end is lined with folds of membrane rich in tracheae．Wy which the air is extracted
 from the water atm mixes with the blood：the folds ：are alton－ 1 arranged that the water than intendment en b he
 which the insert is embdert propelled were the bottom．＇The at tome to the intestine is pottered by tram three
 open and shat at will．The larval of levin and its allie have three external brand．lealflike tracheae er ils－situated at the end（in the laver of Finplay the git－are attar bed to the sides）of the body．Sale dragon－tlice are sometimes
sensibly larger, and never smaller, than the females, and do not generally pair with the females, until a week or fortnight after emerging from the pupa, and until they have assumed their proper masculine colors (Darwin's Descent of Man, i. 33\%).

The larræ are interesting creatures to keep alive in aquaria, where their transformations can be watched, especially if collected in the spring. Little is known regarding their habits, and any one who can spend the necessary time and patience in rearing them, so as to trace up the different stiges from the larva to the dragon-fly, and describe and accurately figure them, will do good service to science. When about to cast its skin, a rent opens along the back of the thorax, and the insect having fastened its claws into some object at the bottom of the pool, it gradually works its ways out of the larva skin. When about to change to the adult fly, the pupa climbs up some plant to near the surface of the water, its back then yawns apart, and from the rent the dragon-fly slowly emerges. For an hour or more it remains torpid and listless, with its flabby, soft wings remaining motionless. 'The fluids leave the surface, the wings expand, the skin hardens and dries, the colors appear', and the dragon-fly rises into the air. The colors of dragon-flies are very striking, consisting of rich green, blue, yellow, rermilion and metallic tints, and the sexes differ in color. Certain dragon-flies appear to be attracted by particular colors, as the blue males of an Agrion were seen to settle in numbers on the blne float of a fishing-line. The males, in several genera, when they first emerge from the pupa are colored exactly like the females; but in a short time they assume a conspicuous milky-blue tint, owing to the exudation of a kind of oil, soluble in ether and alcohol. Certain species of Neurothemis are dimorphic, some females having their wings netted as msmal, while others have them richly netted as in the males of the same species. In several species of Agrion a certain number of individuals are of an orange color. (Darwin's Descent of Man, i. 352.)

Fumily Libellulidx－＇inlopterys upicalin Burm dorion corte

 their own wat wer perolial inserto．and cathmot be placed in ally of the where establisheal orders．Wn have therefore proposed the name Plectopitero for the gromp． in allusion to the fine，gillazy network of their wings．

The adult May－flies arre chamaterizat hy the rery rudimentary condition of the motuth－parts．In examining the under side of the head there is a hollow．with omly sigght rudiments of the mandibles，matillar． and labiom．As these insects live but a few hours，mbly long enomgh to provile for the eontinnance of the specters they mend to take no food．he？lee the mouth－pats are


```
* S&L&:(terl \いいにK
```

Eaton，A．E．A revisional monograph of recent Ephemeride or May－

Lubbock．J．Developmonl of（＇henon dimidnitan Trans．Limn．

Pacisard，A．S．（External anatomug．in lhirl repent－Entomonot．

Swammerdam，J．Ephumeme Viba（Amstorilam，lliai
Vagssière，A Reelorehes sur lorranization de larve do－Vphe mérines（．Inn．Sc，Nitt，Niii．，18゙？）．

The thorax is also peculiar in being globular, the prothorax is small and collar-like, while the mesothorax is very large, and the metathorax rery small. The wings are fincly net-reined, and the hinder pair are very small, sometimes wauting. The abdomen is very long and slender, ending in three long, jointed stylets, while in addition there are in the males beneath the stylets two pairs of jointed claspers, a feature peculiar to these insects. Moreover, as in the Dermaptera, the genital openings of both sexes are donble; in all other insects there is but a single opening.

But if the May-fly takes no food, it is quite otherwise with the larra and pupal. Fig. 5%, a, represents the larva or nymph of Palingenia: its body is long and slender, with long slender antennæ, while the jaws are very large, the creature being voracions and feeding on other insects. Along the sides of the hind body are either leaf-like or bushy tracheary gills, and the body ends in long hairy bristles.

The larve are said to live two or three years, residing in burrows in the mod, under stones, or among grass and weeds, where they may be taken with the water-net in great abundance, and are beantiful objects for the aquarium. Some of the group, if not all, differ from other insects in moulting so many times; thus Chloëon easts its skin twenty-one times before it assumes the imago state. In another respect the May-flies are peculiar: after transforming from the nymph, the winged insect. called the subimago, takes a short flight, and then casts another skin before assuming the final, imago, stitte.

May-flies often appear in immense numbers, and filling into the water become stranded in windrows along the borders of lakes. The perfect insects should be preserved in alcohol for study, and described when alive if possible, as the body shrirels up and the colors fade when pinned.

Family Ephemeridæ. Characters of the order. Potamantlus marginutus Žett. (Fig. 5i), Palingeniu bilineata Say (Fig. 5i, a, nymph).

（）hいい I \} 1 \mathrm { l } ．Thysanoptera．＊

 the head rals in at shom bazak．yet there inserets differ from the hare in having maxillar bearing $\because-3-$ gointed pathi，while the lathial pal piatur prosent， and，thomerh very short，ate emmberd of foom two to three joints．＇The order derives its natmo from the long deliente fringe on its longe natmone and often reinhess wingis．ln some speetrs the wings are wanting，at least in the malles．＇The abmomen． in certatin specters mbla in the mates ley a dember joint，and in the femalese ly at t－valved lomere．Strathes．
 e！lindric．romme at ame eml and crownel with at kheb at the other．＇The latra and perpas are hath antion and in the mother slugrgish pupa the antemate are thrmed hate on the head，while the limbes amd wints ate anclesed in at thin timy mombrathe：the feet and in hulbon－enlargenment．
 the gronf be Burmeister．
＇The wheat＇Theips．Limuthrips cereutimm Halstay，is in－
 onion－phants．＇These inserte injure plath by puncturin！ and killing the latives：all the speres ane minnte and little is huown of them in the L nited stater．
Family Thripide．Charachers of the order：given abome．

＊ぶELE（T1：1）いたいにな。

Haliday，A．H．In epitome of the Britivh eremera in it oreler Thy．

Order VIII. Hemiptera* (Bugs, Plant-lice, etc.).

While the preceding groups are of limited extent as regards number of species, the one now before us is very rich in this respect. We are now to take into account insects which
 gain their livelihood by piercing and sucking the sap of plants or the blood of other insects; and the change in the jaws by which a sucking beak is formed is very curious.

One can obtain an excellent idea of what a bug is by dissecting a common squash-bug (Fig. 59). With a lens fixed on a stand, and a Frg. 59.-Squash- needle mounted in a handle, the student can, bug. Nat. size. after a few trials, dissect the head from the body, cxamine the beak, the wings; separate the thorax

> * Selected Woris.

Amyot, C., and Serville, A. Hemiptères (Paris, 1843).
Buckton, G. B. Monograph of the British Aphides (Ray Society. i., ii. London, 18i6- 99).

Comstock, J. H. Report of U. S. Entomologist (Dept. Agr.) for 1879-1881 (Washington, 1880-82).
Douglas and Scott. British Hemiptera. I. Heteroptera. (Ray Society. London, 1865.)
Fieber, F. X. European Hemiptera (Vienna, 1861.) (In German.)
Geise, 0. Mundtheile der Rhymehoten (Archiv f. Naturg., xlix., 315. 1883).

Glover, T. Manuscript Notes: Hemiptera (Wishington, 1876).
Oestlund, 0. W. Synopsis of the Λ phidide of Minnesota (St. Paul, 1887).

Riley and Monell. Notes on Aphidre of the U. S. (Bull. U. S. Geol. Surv., v. Washington, 1879.)
Thomas, C. Monograph of the Plant-lice (Sth Report State Entomologist of 111., 1879).
Uhler, P. R. Monographs of Cydnidie and Salda [cte.]. (Bull. U. S. Geol. Surv., iii., $18 \div 1$).

- Check-list of the Hemiptera-Heteroptera of North America (Brooklyn, 1886).
Walker, F. Catalogne of Hemiptera-Heteroptera in British Museum (8 vols. and suppl. 186i-i4).
Witlaczil, E. Die Anatomic der Psylliden (Zeits. f. Wissensch. Zool., Bd. xlii. Wien, 1885).
- Zur Morphologie und Anatomic der Cocciden (Zeits. f. Wissensch. Zool. Wien, 1885).
Also the writings of Ashmead, Comstock, Forbes, Lamdois, Le Baron, Monell, Osborn, Riley, Say, Thomas, etc.

 meta-thorax: j, k, I, mater sidle of the pro, imesto, at it me thorax: or
 side. view of abdomen; spp', sp', six pairs of spiracles (To face p is),
into its separate segments, dissect the hind body or abrlomen from the thorax, and study these parts with the aid of Fig. 60, always remembering to compare each part with its corre-

Fig. 61. - Head of bed-bug, showing the structure of the beak. lab, the four-jointed labium, which contains the bristle-like mandibles ($m d$) and maxillæ ($m x$), whose bases are shown by the dotted lines in the head; lbr, labrum; ant, antenna. sponding part in the grasshopper. It will be seen that the lug has, besides a pair of compound eyes, two simple eyes behind; and that it takes its food by suction, plunging its long slender beak into the stems of plants or into the flesh of its victim. 'This beak is the distinctive mark of the bugs, which thus differ from other inscets in their manner of taking their food. It is formed of the long, slender, needle-like mandibles and maxillæ, which are united so as to form a hollow sucking-tube. The tube thus formed is ensheathed by the under lip (lubium), which is long, hollow, and composed of four joints. Above, the sucking-tube is protected by the labrum (Figs. 61 and 62, $76 r$). Another distinguishing mark is that bugs have no palpi, either maxiliary or labial.

There are cotimated to be nearly 10,000 species of bugs in North America, all having a beak; and through their different kinds of food and habits there is a chance for the individuals of each species to get a living.

The bugs also differ from other insects, and somewhat anticipate the beetles, in the large broad prothorax, and in the fore wings, which are thickened at the base so as to protect the thin under pair. Since the basal half of the fore wings is thus thickened, the bugs are called Hemiptera, from hemi, half, and pteron, wing.

Like the grasshopper, the bugs have an incomplete meta-
morphosis. Fife (i:3 represint- the tath-formation- of the chinch-bug, the yomg hating nu wings. After reathing

Fig. ce.-Longitudinal section of bug's head. lbr, labrum; lh, labinm: mel. mandible: mx. maxilla; so, salivary ghand the arrows pointing outward show the conrse of the salivary duct hato the month; the inward pmom, arrows indleate the throat and the direction taken by the final in passing to the stomach ; l, i, x, muscless whith elevate the roof of the mouth.-After Graber.
the stage e, the winge: appeare as in the stages ffand !/ 'This bug fone immense harm to farmers by sucking the stip of wheat and eorn.

Certain species of Hemipterat are apterons: the soxes

Fig. 63.-The Chinch-hug and its early sfages. a, h. egas: c, : haral stams, f.g. pupar: i, beak: d, tarsus of larsa: j, tarsins of perfect huz log of disto.
 joints of their antemad and in their tarsi: whbe the femalles are generally larger and more robnst than the males. hint they do not commonly differ much in color. (larwin's Lescent of Man, i. 339.)

Althongh the Hemiptera are not so numerous in species as the Coleoptera, Diptera, or Hymenoptera, they possibly outnumber the Lepidoptera. Uhler states that about $2 \pi, 000$ species occur in museums, and that the ee are probably not less than 50,000 species now existing. The known forms are distributed in very nearly the following proportions: South America, 10,000; North America, 5000; Central America and the West Indies, 2000; Europe, 3000; Asia and its islands, 3000; Africa and its islands, 3000 ; and Australia, New Zealand, and the Philippines, about 1000 species.

Şub-orler 1. Pediculina.-The parasitic Hemiptera or lice are wingless and have a beak-like sucker, which is soft and retractile, with two protrusible chitinous bristles. The feet are adapted for clinging to hairs, as they are hooked, while the body is soft, and the thoracic segments are not divided into separate pieces, as in other Hemiptera and nearly all other insects. The eggs, called "nits" (Fig. 30, r), are oval and attached to hairs. All the species live on mammals, none on birds.

Though evidently allied to the wingless Cimex, and forming a gromp standing near it, we have, as a matter of convenience, to place them at the bottom of the entire order in a sub-order by themselves, interpolating the Homoptera between them and the Heteropterous Hemiptera, to which they more nearly belong. Parasitism has so degraded them that the marks of relationship to their true ancestors have been efficed. The lice may be said to be a downward-bent twig of the Heteropterons branch, while the Homoptera form the highest branch of the ordinal tree.

Family Pediculidæ.-Pediculus cupitis De Geer, the head-louse of man; P. restimenti Burm. (larger aud paler); Phthirius pubis (Linn.), the crab-louse.

Sub-order ‥ Homoptera.-In Hemiptera of this group the wings are somewhat opaque throughout, or transparent, and lie roof-like over the body. The head is large, and the beak appears to arise between the fore legs. Many of the
 many (except the phant and bark liee) hatee an oripe-itor. for inserting egre in the twig- of plants. Many peries seerote, in muncorns grands in the skin, a white wasy pewder which covers the borly.

We have always regarded, amd still regart, the typical Homoptera, such as ('icada, as a more highly specializenl insect than any of the Heteropterons Hemiptera: hut in treating of them in the pages of a book. and in deferemee to the views of 1 Eemipterists, we interpolate the sub-order between the Pediculina and Ifeteroptera.

Family Coccidæ - The lark-lice or seale insecte are so called from the hablitiond shape of the females, which are winglese, with bertios
 of trees or stems atad leaves of phants, ditawing in the ald, and when

Firs. Gi-Cochimenl insect, matre: female, natural sizan nent enlarged.

Very mamerous do much larm in the plamt or trex On the wher
 and lake no fooch. 'The females laty their evere hemesth the and of their bexties. Whate the ware are eromerally fertized, in verobe wf
 males. Enlike the fomales, the males madergo at metmorphovis, the larvae spinning a coerom; the pupar remainine the re in withont mos ing

 which, when dry, are a valuable artiole of morehat at -

 as to kill young trees; ormene are injumel by U. diarii l'ack..

 adonidum Limn), which also ocems in gardens. in an lavimium
 numerabilis (Rathron) injures the linden and of fo m phe.

Family Aleyrodidæ.-Wings rounded, rather broad and white; larvee scale-like and fixed to leaves; beak 2-jointed. Aleyrodes cormi Hald.

Family Aphidæ. -The Aphides or plant-lice abound to an enormous extent; nearly every plant has one or more species peculiar to it, and the individuals are often to be numbered by millions; while a thousand species are already known. The males and femates are usually winged; in rare cases are the males wingless, but the females are not seldom without wings, while the asexual individuals are wingless. They are all small insects, hoth sexes with a 3 -jointed heak; the wings have few veins; the body is flask-shaped, and in the species of Aphis and Lachnus near the end of the abdomen are two tubes for the exit of a sweet fluid called "honey-dew," which is lapped up by the ants seen frequenting a colony of these insects. Aphides are usually green, with a soft powdery bloom on the skin.

The Aphides or plant-lice abound by reason of their wonderful fertility, the young being brought forth alive. There are as many as

Fig. 66.-Apple Aphis. Natural size and enlarged.
nine or ten generations; a single Aphis becoming the parent in one summer of millions of children and grandchildren. Though they are devoured in enormous numbers hy other inseets and by birds, still hosts are left to prey on our fruit-trees. succulent regetables, and household plants. Thus, these weak, defenceless creatures owe their success in life to their unusual powers of reprotliction, the young budding forth within the parent, as the polyp sends forth bud after bud which eventually become jelly-fish. The last brood of Aphides lay eggs in the autumn and then die.

Sexual forms (at time of birth already mature, wingless, and without a proboscis) sometimes occur in the spring, as in the European Pemphigus terebinthi (Derbès). Chermes and Phylloxera give birth in place of viviparous generations to a special egg-laying female, which also produces eggs, from which arise individuals which reproduce parthenogenetically. In Phyilnnera quereus, besides the two generations, there is another generation which appears in autumn, and consists of very small males and fem:les (without a suctorial proboscis or alimentary canal). These amimals arise from two kinds of eggs which are laid in the roots. The female after pairing lays only a single egg. It is the same with the Phylloxera of the vine (Claus). Of the latter there are two forms, one living in galls on the leaves, and the other forming small swellings on the roots. The root-form is either wingless or winged, the latter very rare. The leaf-form is said to be always wingless.

Family Psyllide－Thase leaf hoppers mommot live in all stares on the under surface of hatio，unne of them formine sall－．＇T hes

Fig．67．－Ysyllu tripunctute．－After Riley．
are generally conical，with a broad head，with long．10）－jointed an－ teana and short lares，the hinder mes adapmen fur－prinering ；the

 the back：e，eggs；d ，gasbes wate for them in a twig ．Ill a＇＇ $1^{\prime \prime}$ it nalmral size，－After Riley．
wings are thickened, folded roof-like over the body, while the young are often covered with a white cottony mass. Paylle pyri Schmidt injures the pear-tree; and P. tripunctuta Fitch is common on pinetrees.

Family Membracidæ.-Head broad, prothorax very large and of varied form, being arehed, compressed, hump-backed, conical, etc., in different species, and often with spines and projections. Membracis folitte (Linn.); Telamone monticola (Fabr.).

Family Cicadidæ. -The Cicads are among the largest of insects. and besides their broad heads, prominent eyes, and well-developed ovipositor, have, in the males, a musical apparatus at the base of the abdomen, by which they produce a loud, shrill, piercing noise. The family also comprises the longest-lived of all insects, the 17 year Cicada ($C .17$-decim Linn.) requiring seventeen years to attain its growth. A single brood appears only once in seventeen years in the same given region, while there are three broods which appear once in thirteen years.

Family Fulgoridæ.-Antennæ with only three joints; the forehead or vertex enormously enlarged. Laternarit phosphorea (Linn.), Surinam and Brazil; Fulgora candelariu (Linn.), the lantern-tly of China, are both among the largest of insects. Native forms of much smaller size are Otiocerus coquebertio Kirby and Delphax arvensis Fitch.

Family Cercopidæ.-A large group of insects of medium or small size, living in grass and on leaves; with a large broad thorax. "Frog's spittle" insect, Ptyelus lineatus (Linn.).

Fig. 69.-Ptyelus lineatus. Spittle insect, a, larva, enlarged; b, its natural size; above it the mass of froth or "spittle."
Family Jassidæ.-Slenderer insects than the Cercopidæ, and with longer hind legs, but like them living in grass and trees. Erythroneura vitis (Harris), Diedrocephala mollipes (Say).

Sub-order 3. Heteroptera.-The wings are in the true bugs laid flat on the back, those of the fore pair thickened on the basal half or two-thirds (hemelytra); the prothorax is large and broad. Many species give out an offensive smell, due to a secretion emitted from a gland situated
in the meso- or metathoras, amd, if in the latter phare. opening between the himd leys. Min! are wingles. and in some species the femalas are wingles. 'Therletintion of the families, and their armarement, are taken from l'. It. ['hler"s adeonnt of the Hemipterat in \cdots The Rtamdard Natural History:"

Family Corisidx.- Iqnatic insents, with hrome heade, flattened bodies, and swimming feet, the beak paciner themerhat litte hole

Fumily Notonectidæ.-Boat-whiped, aquatio form- differing from all other Hemiptera by swimming on their back-. Nöntectot undulata say.
Family Nepidx - Flat-hodied :unatic insecte, the benly ending in two long respiratory tubes. Vompona and, as in Belontoma grisen (say), destructive to tiohes :mad tadpules from its laree size and powerful beak.
Fanily: Naucoridæ.-Flat-hendind, wal, without candal lubes. Pe foromis femmenten Pal. Bealus.
 und streams, with the hind hementapheil for rumiug. Pinkguthex oculetues Fabr.

 with the head free. Silden wigunetël liberin.

Fumily Hydrobatidx -The wather-hatmen have lone limbs, where-like bodics and row the malla-on the -arface of the water. (ierrix Hygrotrechno memigis Say; Mfobuthe Fin , ${ }^{2}$.

Family Veliidæ-Body short and deep, with short lecse Rhugorelint obewl ['hler.

Fumily Hydrometridx.-Dull hrown insects of linear shape, with long legs litted for walking on the surface of pools and brouks. Hydrome tra linetid s:y.

Family Emesidx.-Budy extremely slemder, with thread-like middle and hind legs, hut with pinous, raptorial fore lears. Eimesuldongpex De Cicer.

Family Reduvidæ - bonly thick. with short cosie, the fore leese set far back. Conortions sumgmisurgis Lece:. : large red-spotted bug, which intlicts a severe puncture. Milytas cinctux Fiabr.

Fimmily Nabidæ. - body obloner. with
 beak. Viuhis finsen stein; Cormuns fertes Limn.

Family Aradidx.-Boly very dlat, dead-leaf-hrown (h) Are Aradus crematux Say.

Family Phymatidx.-Body thicker; fore legs rapterinl. I'hymatu eresut Herr-s.ch.

Family Tingitidx.-Small, very flat bugs living on leave. Cory

Fig. $\boldsymbol{\text { ra.-Bed-bug. }}$
thuca ciliata (Say), common on oak-leaves. Tingis clavate Stal.

Family Cimicidæ.-Body broad and flat, species sometimes wingless. Cimex lectularia Linn., bedbug.

Family Capsidæ.-Body oval; antennæ threadlike, long, and 4 -jointed; the end of the thick part of the hemelytra triangular, and incised outside. Pecilucapsus lineatus (Fabr.).
than in the Capsidæ. Dysidercus suturellus Herr-Sch., cotton-stainer.
Family Lygæidæ.-Body ovatc or oblong; head with a pair of distinct ocelli between the eyes; mostly red and black or black and yellow insects. Lygreus fusciatus Dallas, Blissus leucopterus (Say), chinch-bug.

Family Berytidæ.-Body very slender, with pointed head; and thread-like antennæ, clubbed at tip. Neiles spinosus Say.

Family Coreidæ.-Body oblong-ovate; antennæ 4-jointed; basal joint of the beak usually the longest. Anasa

Fig. 73.-Podisus spinosus. a, beak. Natural size. - After Riley. tristis (De Geer), squash-bug.

Family Pentatomidæ.-Scutellum large, triangular; head mostly quadrangular; antennæ 5 -jointed.

Family Cydnidæ-Oval, highly-polished, jetblack insects, having flat heads with the edge turned up, and the legs very spinous. Pangaus bilineatus Say.

Family Corimelænidæ.-Body hemispherical, black; legs spinous, fitted for digging. Corimeluna atra (Am. and Serv.).
Family Scutelleridæ-Body tortoise-shaped, the scutcllum covering nearly the whole upper surface of the abdomen. Pachycoris torridus Scop. Fla., Mex.
Fanily Arthropteridæ.-Body wide and flat, black, highly polished. Coptosoma globus (Fabr.). Eur.
Order IX. Neuroptera* (Ant-lions, Aphis-lions, Lacewinged Flies, etc.).
These are net-veined insects, with a metamorphosis, but

> * Selected Works.

Brauer, F. Beitrige zur Kenntniss der Verwandlung der Ncuropteren (Verh. Zool. bot. Ges., Wien, iv., v.).

Ueber die Verwandlung des Bittacus italicus und hagenï (Verh. Zool. bot. Ges., Wien, 1871).
Hagen, H. Synopsis of the Neuroptera of North America (1861. Smithsonian Institution).
Haldeman, S. S., and J. Leidy. History and transformations of Corydalis cornutus (Mem. Amer. Acad. Arts and Sc., iv.. 1848).
Packard, A. S. (External anatomy, in third report U. S. Ent. Comm. 1883, 335, Pls. L1-LYIII, LXIV)
Also the writings of Erichson, Fitch, McLachlan, Pictet, Ramhur, Riley, Schneider, and Westwood.
they also difler in important respects from net-reined interts without a complete metamorphosis. The head is lorizontal and somewhat fattemed; the bedy is thatemod or cylindricat. The mometh-parts are free, alapted for biting, and the mandibles well developed. The ligula difters from that of the other net-veined insects in being entire form-

Figs. it, ìj.-Larva and pupa (b) of Corytalis cormutus. Natural ize.
ing a large, broat, Alat, rommed lobe. 'Thu pothorax is large, broad, and square, and the meanhomas amd metathorax are nearly of the same size. While the wines correspond in being all of the same size: they ane not - docidedly net-reined as in the Orthoptera. J'latyptera. Whomata, and Ilectoptera, the costal space being wide, while the trans-
verse veinlets are few and far apart compared with those of the dragon- and may-flies, or the Orthoptera. Only Raphidia has an ovipositor, and there are no caudal stylets.

Fig. r6.- Imago of Corydalis cornutus; male. Natural size.
The Neuroptera have a complete metamorphosis, the pupa being quite unlike the larva, and quiescent, being often protected by a cocoon. The shape of the larva is peculiar, the body being broad, somewhat flattened, with large jaws, and of rather a primitive form, compared with those of the following orders.

Family Sialide.-linhly somenhat thitemed, of hand rate wheth;

 folded, while the tani are o-jointed.
 witgs expand is inelhes. The jathe of the mate are emormom-ly matered, heing mearly :an ind longr, mol can staredy he wed for taking forme. Its larvin lives moder stone in homase and is ased for hatit under the natme of "helligrammite." In thentioden pectinicornis
 of laphidin, which have a very long marow prothoras, inhabit the Paritic roant.

Family Hemerobidx- The body is slemder, cylindrical, with large net-verined wings, the hinder ones with mo athal spate. The harve are pecturar in having hare sitkle-shaped mandibles which have a groove hencath, in whith the masilla slide back and forth; with these they cam pierce the bodies of small insects and suck their

bood, without moving the mandibles on whel the vintim is im.
 Aphis-lions, mad destroy great mumbers of those pests. The am lion is the larva of Mymeleon. It makes a pit in fine and, lying at the

Fig. is.- Myrmeleon, and a, its larva, the ant-lion.
bottom with its jaws wide open, ready to seize smy lne hlese insect which may fall in. Mantispla (Fige. i9. Sil) is mom in wrthy from the strange habits of its larra, which passes hlorongh 1 wo stafers, he
first of the normal form of the order, when it lives in the coconns of spiders; before the first moult it loses the use of its feet, and begins

Fig. 79.-Mantispa interrupta Say; and side view of the same without wings. Natural size.-Emerton del.
Fig. 80.-Freshly-hatched larva of Mantispa styriaca, enlarged.
Fig. 80a.-Larva of the same, but older, before the first mouit. Enlarged.After Brauer.
to change its form, until when fully grown it is cylindrical, with small feet and a small round head, much as in caterpillars.

Order X. Mecaptera* (Scorpion-flies).

We have given this name to the Panorpidæ, which have features separating them from the true Neuroptera. The front of the head is greatly elongated into a sort of beak, the clypeus being very long, and the minute mandibles are situated at the end of the snout. The prothorax is very small; and in the shape of the thorax as a whole, and in

> * Selected Works.

Brauer, F. See Neuroptera.
Hagen, H. A. Synopsis of N. A. Neuroptera.
Packard, A. S. (External anatomy, in third report U. S. Entom. Commission, 1883, 342, Pl. LIX, LN).
Westwood, J. O. Monograph of the genus Panorpa (Trans. Ent. Soc. London, iv., 1846).
the form of the side and hreast piene (fhenrites and sternites), we have a striking apmonimation tothe moths. The abdomen is long and shomer, comperel of ten semments. and in the male embing in a large furceps. The lar a is caterpillar-like, the hand small, the feet short imm small, and there are eight pairs of abdominal feet. while the bods is adorned with button-like, bristle bearing warts or spines. The metamorphoses are complete. the pupa being somewhat like those of the lowest moths, the limbs heing free.
Family Panorpidx. With the characters of the order. In Panorpa the body of the male emds in a foremps. It has been known to attack tishes, piewene their exes with its beak le larval bores an inelh decp into mose-owered suil. The shor, 4 joimed thoracie fect resemble those of eaterpillars; but the most striking point of resemblater to the hater is seen in the cion pairs of atheminal feet. Not mily the form of the bedy and lege, bat also the arrancement and shape of the butm-like, bristh-hearine warts on the berly retall the

 The larva is somew hat like that of Pamorpa. hut is adurned with

Fig. st- Pannrpa or Senrpion-fle, and larva.

 feet While the lepidophera ase supposed to have oricineted from the same ancestors as the Trichophera, it is a simitiean fant that the
 each ahdominal serment. This sngerests that the Laphoptera may
 should be remarked that the mothe themselver more tosty resemble the cadilis-ties. A very rare and singular form is M/roge fuker Newman, the mate ahdomen hearing a large forecte The female Rores is wingless: in the male the wings are radmentary. B. nioriundus Fitels has only heen collected in the whter-time on show. The species are brasy brown, brassy back. or det b hronze green.

Order XI. Trichoptera* (Culdis-flies).

The eaddis-flies bear a still closer resemblance to the smaller moths than Pamorpa, thongh the larva are less like caterpillars than those of the Mecaptera. The caddis-flies have a small, romnded head which in its general structure, though presenting some notable differences, closely resembles that of the smaller moths, even to the obsolete mandibles, these insects taking no solid food in the imago state. Hagen states that in Plectrotarsus gravenhorstii the proboseis is greatly developed, and in certain other genera is longer than the head and fitted to probe flowers. (In the Cstropsidce the maxille and labimm become aborted dur-

Fig. 82.-Caddis-fly (enlarged and natural size) and case-worm, a, case.
ing the pupa state.) The thorax is throughont mueh like that of the smaller moths, the prothorax being small and collar-like; the metanotum formed on the lepidopterous

* Selected Works.

Hagen, F. A. Synopsis of N. A. Neuroptera.
McLachlan, R. A monographic revision and synopsis of the Trichoptera of the European fauna (London, 1874-1880)
Muller, F. Ueber die von den Trichopterenlarven der Provinz Santa Catharina verfertigten Gehtiuse (Zeits. f. Tissen. Zool., xxxv., 1880).
Packard, A. S (Extcrnal anatomy, in third report U. S. Eut. Comm., 1883, 344, Pls. LIX, LXI).

 malls the shapu of that of nowths．Marmone，the boly and wings．ustally hairy，are sumetime cotered with－cal a－：athl the venation is sumewhat ats in moth－

The transformations ate mueh as in those of the lower moths，though in the prest the limhe are free anot andered to the brely as in moths．＇fle larsar，which breathe by means of thread－like trateleal gills．construct cease of bits of stieks，or grains of sind．which they drate ower the bot－ tom of＇puict pools：they live both on decaying leaves and small insects，witter－fleals．cte．When about to pupate they close the mouth of the calec with al grating．ar，an in Helieo－ plyche，with a demse silken lid having as single slit．atd in some instances spin at slight，thin，silken rowem，within which the pupat state is pat－ate．＇I＇he femalae lats here egers in Chmps coverel with jelly on stones and leates at the water＂s －dige．

Super family Phryganidx．－This ereat gromp in dividedls Me．Latch－ lam into seven fanilies，chiefly acentine to the－iructure of the max．

 the others the eases are free，and carriet alom the the inmate．In the Mhyurophitidh the pupa is anchered in asperial cocern．＂（MeLath－ him．）

Omber MII．Coleoptera＊（líthes）．

Although so numarous in speobes，upwards of loo．0（0）
＊sidecten Wonks．
Dejean et Aubé．Spricies générale de Coniophtes（Gi yols．．Son．Paris， 1世，
Gemminger and Harold．Catalogue of all deveribet（offorera with symonymal（12 vols．Munich．1sti－iti．Iant．
Henshaw，S．List of the Coleoptera of North America．Iosi．Syphle． ment，pp．8．1がi

The entomolorical writinge of John L．LeCioth（ambridge， 18981.

The entomological wrilines of George 1t．It re Cambridte． 18：9）．
Horn，G．H．Revivion of North American Tatelrianile Trams． Am Phil．Soce， 15.50 ．
 （Continue i on next page．
existing in museums, the beetles are so different from all other insects that, with the exception, perhaps, of the two families Stylopidce and Platypsyllidee, no one would confound them with the members of any other order. Beetles differ from other insects in the nature of the fore wings, which are usually thick and solid, generally without distinct reins, and serve as sheaths (elytra) to protect that part of the body situated behind the prothorax, which is large, broad, and moves freely on the rest of the thorax; while the mouth-parts are free and adapted for biting.

In order to learn the names of the different parts, the beginner should have specimens of a ground-beetle and of a may-beetle, and compare them with Figs. 83 and 84. This will save pages of dry description. How the antemme vary in form in different beetles may be seen by reference to Fig. 85, while Fig. 86 represents the different forms of eyes. The jaws vary much in shape, while perhaps the extreme of variation in the maxillæ is seen in many species of Nemognatha, in which the outer lobe is generally prolonged into

Horn, G. H. Descriptive catalogue of species of Nebria and Pelophila (Trans. Am. Ent. Soc., ii., 18ז0).

- Synopsis of Malachidæ of U. S. (Trans. Am. Ent. Soc., iv., 1872).
——Brenthide of U. S. (Trans Am. Ent. Snc., ir., 18i2).
- Revision of species of Lebia (Trans. Am. Ent. Soc., iv., 1872).
- A monograph of the species of Chrysobothris inhabiting the United States (Trans. Am. Ent. Soc , xiii., 1886).
- A monograph of the Aphodiini inhabiting the United States (Trans. Am. Ent. Soc., xiv., 1887).
Lacordaire, J. T., et Chapuis. Genera des Coléoptères (i.-vii. Paris, 1854).
LeConte, J. L., and G. H. Horn. The Rhychophora of America north of Mexico (Proc. Am. Phil. Soc., 18i6).

Classification of the Coleoptera of North America (Smithsonian Inst., 1883).
Schaupp, F. G. Synopsis of the Cicindelidæ of the U. S. (Bull. Ent. Soc., Brooklyin, vi , 1884. Five plates ; every species with a colored figure, on four plates.)
Stal, C. Monograph of Americau Chrysomelidie (Upsala, 1862-5).
Also articles by Austin, Blanchard, Casey, Fitch, Fuchs, Harris, Hubbard, Matthews, Melsheimer, Randall, Say, Schwarz, J. B. Smith, Ulke, Ziegler, Zimmermann, and others in Trans. Am. Ent. Soc.
Phil.; Bull. Brooklyn Ent. Soc.; Entomologica Americana; Can. Entomologist, etc.

 (lible: C, labrmm: l) ligun: fo. paraghestr: fr lahial falus. (i. mavila

 metasternal epistermum: 1\%. Imetaiternal epimernm: ! . If the ved sile of olytrum: 11. nmbulatorial setae: 15, treehanters: if piorir ionar: 1%.

 large coxal plates, 17 © o. : inder sile of prothorax of Rhynehophorns, showing the closure of ine coxal carities hy the enimera.-After Leconte and Horm.

Fig. 84--Extemal anatomy of May-beetle. Lachnosterna fusca. a, upper side of head; epic, epicranium: $c l$. clypens; b, under side: m, meutum; $s m$, submentum; lab, labium; md, mandible: c, pronotum; d, mesonotum; e, metanotum; f, pro-, g. meso-, h, meta-pleurum; i, pro- j, weso-, k, meta-pleurum: l, dorsal, m, rentral, n, side, view of abdomen: $1-\tilde{\pi}$, seven basal abdominal segments; $p s c^{\prime \prime}$, post-scutellum; other letters as in Fig. 60. (To face page 95.)

 ly in shape，and the tarsi vary from tire the nermal man－

 After léconte．
ber，to four and three joints，and ammetime fo two or ond and may cran oxeasionally be wamtiner

The larva of a heethe ceperishl！than like the ！mon！may－ beetle，is called a grobs．＇The metamorphon－is in beethes ＂b
d
c
d ？
j

 1－rom Jeidetel and Nische．
perfect．＇These larvar which walk freedy abome ater their
 long：while those which hare into fonit－om itm whal hate
 as in the larver of weerils．ete．．they are herrem．

The pupar of beetles are usually whitsho amh late froce

if wood-horers, live in rude cocoons of fine chips and dust, united by silken threads or a glatinons matter. Some Coccinellæ and Anthrenus transform within the old larval skin. In most Coleopterous pupæ, the antemer lie on eath

Fig. 87.-Onthophagus rangifer. A, male; B, female.-From Darwin.
side of the clypens, and the mandibles, maxillæ, and palpi appear as elongated tubercles. The wings are small and laid upon the posterior thighs, thus exposing the meso- ind

Fig. 88.-Chalcosoma athrs. Upime figure male, reduced; lower figure female, natural size, -From Darwin.
metathorax to view. The tarsal joints lie parallel on each side of the middle line of the body, and in those pnpæ which transform in the soil the abdomen ends in a pair of horny hooks, which aid the pupa in reaching the surface.
 linids，（＇anthon，wte．FVig．הi）are monmented with homs，whioh exist omly ats ruliments of arro wholly wathting in the other sex： in the mate Lu＊ann：（V゙gr．110）the mamblhes atre of great size（eomb－ pare also ドigs sis and s9）．［1arwin remarks that heotles belonging to many and widely distinct families possess stridulating orvalle：（＇er－ tain musieal weverils can he heard at a distance of sererat feret or even yards：the alphathe varyine much in presition on tha henly，but m：a－ ally consisting of a masp or sit of ribs．amb a smaprer：in matn！lon－ gieorns the ratep is ont the ment thomex，which is rubhed aminst the prothomix：but the alparatus：dous not differ moll acerding to sex． （1）：arwin．）

Proterted from harm by their hard shell－like skin and their thick wing－covers，and living，as s．mbs． ats pupar，and as bertles．quite dif－ ferent lives，it would be hated to ex－ terminate thom．Myriad as are theor forms，wery serest has slight－ Iy different hahits amd surmomel－ ings from its allies，and thats fills：a niche in the inseet－wold which it alone esoll oeropes．Ame it is this womberful power of adaptation to ehamges in cireumstances．as well as their solid skins and complete

Fion－ 1 ，，anditis anvo． tii Felucel l｜InT IEture makle，wher t＇ante fomsle．－ After Jormal metamorphosis．which hats emabled the great hecter arder of over 100,000 kinds to become so abundant and prominemt
a gromp. They are preyed upon at different times of life by different enemies. Worms, parasitic mites, and birds and beasts constantly make war upon them, but these enemies only confine their numbers within healthy limits; so that, after all the imroads made upon them, there is still food enongh and room enongh for each species to exist in its own beetle-fashion in its own little beetle-world.

The Coleoptera have been divided by LeConte into two great groups or sub-orders, viz.: the Rhynchophora or weevils, in which the head is beaked and the palpi are short and rigid, while the labrum is usmally absent,* besides other less apparent characters; and the gemine Coleoptera.

The gennine Coleoptera, again, are divided by the number of joints in their tarsi as follows:

1. Hind tarsi with the same number of joints at least as the others (except in a few Clavicorns). . Isomera.
2. Front and middle tarsi 5-, hind tarsi 4-jointed. Heteromera.
'The Isomera are divided by LeConte and Horn into five series, perhaps super-families:
A. Fourth and fifth tarsal joints not connate:

First three ventral segments connate: first divided by the hind coxal carities so that the sides are separated from the very small medial part. Anerfaga. First rentral segment visible for its entire breadth (except in Rhyssodidæ):
Antennæ clavate or eapitate, very rarely sermate. (Layicornia.
Antennæ serrate, very rarely clavate or capitate. Serricornia.
Antennæ with a lamellate clul), the opposing surfaces with a very delicate semsitive strmeture ; legs fossorial.......... Lamellicornia.
B. Fourth and filth tarsal joints anchylosed: the former very small; antennæ filiform, rarely serrate, or feebly thickened externally. P'i Ptopuaga.

[^11]
Suberider 1. Rhynchophora.

Beginniner with the lowest family ann? emding with the

 apparent; peridimm survomed at the edere by the elym; phise
 edensive one. They burver sometmes by thatad mader the

 gatlery ; the female in this single gallery hays her erers in helders an guite regular intervals alonge rath side; the larva, on hatrhing, mine in atirertion at right angles to the original sallery In suma cinces the mine rismblin a himets track, the gallerite matiatines from an sing poims. The larvat are
 terehrons (1liv.. Tomirus pimi Sis! Iryorntesulfither. 'The mast injurions species to the surnce are Xyblemers.

Fio. Mo. - Drquentes affalur. a, hara; b, pima calutus (Kimm), X. xylogntoph ins siy), mad X'yloterns bivitutns (lirlo.

Fanily Calandride, - Beali newer narownd behind the eyes;

Fia. 91 -Calmadra mryad, c, rice weevil: a, larva; b, pula. e. लrain meerit.
antenur geniculate; labrum wanting; last spiracle not visible. Rlyncoplorus palmarum Linn. Here belong the rice, Culundra oryze (Linn.), and grain weevils, C. granarius (Linn.); the latter so great a pest in granaries, the larva devouring the inside of the hull.

Fig. 92.-Northern Brenthian. α, larva; b. pupa; c, beetle, female; d, head of male; e, fourth antennal joint; $g-l$, parts of larval head; f, leg.-After Riley.

Family Brenthidæ.-Head differing as to sex; narrowed behind; antenne not geniculate; prothorax very long. The female of the northern Brenthian, Eupsatis minuta (Drury), bores a hole in the bark of the oak, pushing an egg into the hole; the males are very pugnacious (Fig. 92).

Fig. 93.-Hazel-nut weevil.

Fig. 94.- White-pine weevil. a, larva; b, pupa.

Family Curculionidæ.-Mandibles with 10 apical scar; beak variable in form and length; antenne usnally geniculate. These weevils form a family exceediugly numerous in species, which bore in the bark of trees, in nuts, secels, ete. Buteninus nusicus Say (Fig. 93); Pissodes strobi Peck (Fig. 94); Conotrachelus nenuphar Herist, the plum weevil.

Family Otiorhynchidæ.-Mandibles with a deciduous piece leaving

Fig. 95.-Otinrhynchus sulcutus.

I'anil! Byrsopide - Tirri - ther: f rever
 ligragmegen cirimblus Vol-

F:amily Rhynchitidæ- Beah -lemler, mon-

 liviner on chltivatud and wihl rover.

Family Rhinomaceridæ.-Labrum diotinct; beak as loug as the prothuras. I:hinomucer clungitus beec.

suborder \because Coleoptera genuina.
 \therefore ction Heteromera.

angular head, and live within the abdomen of bees and wasps, though certain foreign genera are parasites in ants and Homopteril. The female is viviparous, giving birth to hundreds of very minute young, which are of very primitive form, with bulbous feet, the slender, hairy body ending in two long styles, and the intestine ending as a closed sack. Stylops childreni Gray; Xenos peckiii Kirby lives in a common wasp (Polistes metricus Say).

Family Rhipiphoridæ.-Tarsi with claws (those of Stylopids being clawless), elytra rarely covering the abdomen, as wide as the prothorax in front, usually narrowed behind, sometimes (Mrodites) very small; rarely (Rhipidius) wanting in the female, in which case the wings are also wanting, and the body is larviform. Rlipidius pectinicornis is parasitic in Europe in Ectobia germanica. This form is a counecting link between Stylopids and other beetles. Metacus paradoxus Linn. is a parasite in the nests of wasps (Vespa).

Fig. 98.-a, freshly-hatched larva of Meloë, first or Campodea-form stage ; b, second or carabidoid stage; c, coarctate, footless larva, third stage; d, pupa; e, imago, male.

Family Meloidæ.-Prothorax narrower at base than the elytra, which are variable in form, in Meloe very short and pointed; claws eleft or toothed; front of head vertical. Larva primitive, Campodeaform, certain species parasitic on bees; they mostly undergo a hypermetamorphosis, there being three larval stages (Fig. 98, al, b, c).

The blister-beetle or Spanish tly, Cantheris resicutoria Linn., is represented in the United States by the species of Macrobasis and Epieauta (Fig. 99, E. cinerea Forst.), which, with Horia, pass throngh a hypermetamorphosis in general like that of Meloes, the oil beetle (Meloë ungusticollis Say).

Family Pyrochroidæ - Antemat often ramose; hind covae large and prominent; claws simple; head horizontal; elytra wider than abdomen, rounded at tip). Pyrochrou flabellatt Fabr.; Dendroides cunadensis Latr.
 thabellate. Fioturus unchora IItntz.

Fig. 99.-Epicauta cinerea. a, end of second larval stage: c, d, enarulate larva of E. cithtu; ℓ, f, pupa of E. cinerea.-After Riley.
Family Mordellidæ.-Antemse tiliform ; himl cosie laminiform: prothomix mach narrowed in fromt; elyta a:nrowed behind. Mordella s-pmetuta Fahr.

Frmily Cephaloidx. - Hewd prolenged belind and gradually narrewed. Ciphulenm lepherrien New man.

Fimily Edemeride. Midule cosie very prominent Vircerdes melunura Lillis.).

Family Pythide. Antem:e frew; theran mot martined; diak mot impreatid at hare. I'ythe niger kirbs.

Framily Melandryide - Intemme froe; thoran marrineal at -iduc:

 ophentux (Lewe).

Family Lagridx.-P'enultimate joint of tara spmes honeath. Arthromacre thets say

Fanily Othniidæ.-Ventral segments tive, free; anterior ente small. Othnius nmbrosus le".

Fimily Cistelidx - Tansal clan- pertinate. Ciatelu meroersin
Family Fgalitide - Ventral segmente six, the hat (wo donely united, ine tron two comate. Figiotites delition Mam.

E'nmily Teneorionide - Tarsal clans simple; io ventral berments,

 always bonger than the seromb; wings often watiote This very

 Blans, Elemdes, Lpis, cte.

Suction Isomera.
 Phytophaga.

This group is litticult to defme. but all agree in ferding on vegetable matter.

Family Bruchide. -These beetles are "(bhy atme ther with the submentum distinctly pedunculate;" from of head probugred into as
broad square beak; antenna inserted in front of the eyes, variable in length, serrate or pectinate; tibial spurs distinct or obsolete. The lave live in the seeds of leguminous plants. Bruchus pisi (Linn.) infests peas, and B. obsoletes Say is the bean weevil.

Family Chrysomelidæ. - The leaf beetles have the antenna of modaerate length or short, not inserted upon frontal prominences; front small, oblique, sometimes (Hispini, Cassidini) inflexed; pronotum most frequently margined; tibial spurs usually wanting. This family includes the Colorado potato beetle and other species, which are injurious to garden vegetables. The potato beetle (Doryphoru 10-

Fig. 100.-Turnip flea-beetle. a, larva; b, pupa.
lineate Say) finishes its transformations within a month after hatching from the yellow eggs which are laid on the under side of the potato leaves. In the Central States there are three broods, each of which pupate usually under ground, the first two broods remaining in the soil for ten or twelve days, while the third brood remain under ground through the winter, the beetles appearing late the next spring.

The flea-beetles (Haltica) are little dark jumping beetles which eat tender and young beets, cucumbers, turnips, etc. (Fig 100). The

Fig. 102.-Apple-tree borer. a, larva: b, pupa; c, beetle.-After Riley.
squash beetle (Diubrotica vittutu Fabre.) appears on squash and cucumher vines as soon as they are up, eating the young leaves. The elmleaf beetle (Guleruct xanthomelom Shr.) has of late years caused the leaves of that tree to wither and die, destroying the tree in towns
and cities. There are in all from that (t) 10 that - gev ies of thi family.

Frmity Cerambycide - The lonericorn- are renominal in their

 larve of this famils, callay beres The betti- hamatho are

Fig 1013 Larva of Ifonohammus confissor. ©, top: b. sile veew, watural size: 1t, 11pher. itmet, site of the themt, e'th-

Fin ins-line i=ter in its coll itl a 1 et= in 1 aund flatk larged: $e_{,}$s le, f, umber side, of pupa.

 hickory, ette, then guaw ing through the hark blaw. ©) that the batule afterwards becomes broken oft be the win?

Pine-trees are infested by the borer or larva of Monohammus confusor Kirby, which tunnels the tree, and injures the lumber made from it; the grub makes a creaking noise which may be heard some distance from the tree in which it is at work. One of these beetles is linown to have issued from the pine wood of a bureau wherein it must have lived fully fifteen years. The female lays her eggs in curvilinear gashes in the bark in August, and the larva is two years in attaining its full size.

Living, healthy sugar-maples are gradnally killed by the attacks of a beautiful yellow-banded brown beetle (Plagionotus speciosus Say)

Fig. 106.-Male.

Fig. 105. - Common hickory borer. a, larva: b, pupa. which deposits its eggs in gashes in the bark, the eggs being laid late in July and in August. The hickory borer (Fig. 105) and a very closely allied species which destroys the locust-tree in the Northern States, are among the most injurious beetles of this family.

The sub-family Prionince contains almost the largest beetles known; among them is Orthosoma brunneum (De Geer). The species of Mallodon occur in the Southern and Western States, and M.melanopus Hald. bores in the roots of the young live-oak, dwarfing the tree.

Family Spondylidæ.-Tarsi not widened, and with no brush of hairs beneath. Picrantra brunnea Fahr.

Lamellicornia.

The beetles of this well-circumscribed group all agree in having the antennæ ending in a club composed of three, sometimes as many as seven, leaves or lamella, while the body is usually short and thick.

Family Scarabæidx.-Antennal lamelle capable of being closely shut into a compact club. This group embraces the largest Coleoptera and the most bulky of all insects, viz., the gigantic Goliath and Hercules beetles. Their larve are soft-skinned, thick-borlied, with rather long legs, and 4-jointed antenure; they live on roots, ete., and often trausform in underground

Fig. 107. - The lesser Prionus. Natural size.-After Riley. cells; the beetles devomr leaves and the pollen of flowers. There are nearly 7000 species. The Cetonise comprise very large and beantiful beelles; then comes our Southern Dymuxtrs tityus Linn., an allied species in South America being D. hereules Linn. These are suc-

Fta. 108.-Metamurphosis of the Mas beetle. *. grah ur larva: 1. pupa: 3. 4.

very common species: its larva devours the ronte of grotes, wimetimes injuring lawne, also the roots of sedling trees in plantations. . Nlied

Fio. 109.-Goldsmith beetle and larra. Natural size-

 saceral Scarabans of Eeyptian inseriptions.

Fambly Lucanidre - (lub) namally met thatemed, have fot capable of
 Fabr. weens in all its stages in decelyed hart-womi stamp- in foring.

Fig. 110.-Lucanus dama. Fig.111.-Larva and cocoon. Natural size. Serricornia.
In this group the antenmæ are usually serrate.
Family Sphindidæ. - Tarsi heteromerous, living in dry fungi. Sphindus americanus Lec.

Family Cioidæ.-Tarsi 4-jointed; antennæ clavate or flabellate. Cis fuscipes Mellie.

Family Lymexylidæ. Frout coxæ conical, prominent; tarsi slender. Lymexyion sericeum Harris.
Family Cupesidæ. Head narrowed behind; eyes smooth. Cupes capita ${ }^{+}$a Fabr.
Family Ptinidæ.-Head not narrowed behind; eyes granulated; mesothoracic epimera not reaching the coxe; antenne with usually $9-11$ joints, variable in form. Beetles mostly of small size, often living in partly decayed vegetable matter. Ptinus fur Linn, sometimes attacks museum collections. Anobium is the death-tick, and its ally, Sitodrepu prenicea Fabr., has proved at times to be a museum pest.

Family Cleridæ.-Antennæ inserted at the sides of the front, usual

Fig. 112.-Trichodes upierius.
ly 11 -jointed, rarely clubbed; tarsi 5 jointed, with membranous lobes beneath the four basal joints. The beetles of beautiful colors, occurring on plants or trunks of trecs; the larve live under bark and are carnivorous, and those of Trichodes (Fig. 112) infest nests of bees in Europe. A few (Corynetes, Necrobia) live on (lead animal matter. Trichodes muttallii Kirly.

Family Malachidæ.- Ventral segments 5 or 6 ; antemme inserted gencrally before the eyes Body with lateral, distensible vesicles. Mulachius ancus (Linn.).
 rarely pectinate or thateltate，inverted on the from，shan rather thin ；

Fig．113．－Photuris phralis，tirm－4y．Nalurat size．It，larva；b，pupa；f．head； e ，unter side of a larval segment．－After kitey．
found on plants．While the Phengodini are phoshorescent，the tribe Lamplyrini embanes the tire－flice，which have phos phoresecnt organs at the end of the abdement．In the specties of Pheturix leothsexes are winged，hut in Lamp pyrix 1he femalk，called slow－wome，are tarsatike amb wine less．The larea are wften carnivorons，livine on－mails， Worms，ete．The temale of Ihengoter ：mblarhipis are not candy diangrabable from the larvar，and are phos phoreswit（Pier 114）．

Family Buprestidx．－Skin very thick and solid；antemne serrate：tarei with nembramens folnes as in the（＇le ridar． Larvae with a laree，hroad prothomic serment，bedy bu－ himb shemer，celindrabll：living under hark．This gromp is mumerns in specis，about ？ate being known．They usally have metallic reflections and often rich colors：bit are very injurions to frnit and shade trese（bines，onks． etc．）．（＇herysubuthrix fimemeta Olix．is a common and de－ structive specise；in bicera the tipe of the elytra separate． （＇hntequmere rirginiensis Drury hores into the trumk of pines．Meltnuphila drummenidi（Kirhy）

Fanily Throscida．－Resombling the next family：hot with the prothorx tixed an an to be enabled to leap．＇lir ene cus constrictor Say．

Fic． 111 － Femal． （or larnas of 1 Hen－ gordes．

Fig．115．－（hrysobuthris fems reta and larva．

Fig．11t－Driam on is Melampna．

Family Elateride．－Prothorax loosely articulated，the prostermm prolonged behind，forming a sharp spine which mone in a cavity in the mesosternum，so as to suddenly throw the lectle in the wif
if placed on its back. The group of snapping-beetles is very extensive, over 3000 species being recorled; the larve are called wire-worms from their hard, slender cylindrical bodies, and are known to live two years before transforming; they are mostly berbivorous, a few larva, however, devouring the eggs of locusts. Here belongs the fire-fly of the West Indies, Pyrophorus noctilucus Linn. (Fig. 117).

Family Rhipiceridæ.-Antennæ serrate in the female, frequently flabellate in the males; onychium large and hairy. Sandulus petrophya Knoch.

Family Dascyllidæ.-Head not constricted behind ; eyes granulated ; mesothoracic epimera reaching the coxæ. Larvæ more or less aquatic. Prionocyphon discoideus Say.

Clavicornia.

In this group the antennæ are clubshaped, while the tarsi vary in having from 1 to 5 joints.

Fig. 117.-Fire-fly. Natural size.

Family Heteroceridæ.-Antennæ short, irregular; legs fossorial. Heterocerus pallidus Say.

Family Parnidæ.-Aquatic beetles, with a retractile head; last joint of tarsi long, claws large. Larre aquatic, hemispherical: that of Psephenus lecontei Lec. lives under stones in rapid streams; the pupa is formed under the larval skin which protects the insect beneath like the scale of a Coccus.

Family Georyssidæ.-Small, rounded, convex beetles, which cover themselves with mud; coxie contiguous; prosternum semi-membranous. Georyssus musillus Lec.

Family Byrrhidæ. -Pill beetles; head usually retracted under the prothorax; body oval or rounded and very conrex; legs retractile. Byrrhus ameri-

Fig. 118.-Larva of Psephenus lecontei. cunus Lec.

Family Derodontidæ.-Anterior coxæ conical, transverse. Derodontus maculatus (Mels.).

Family Trogositidæ. - Antennte straight; tarsi

Fig. 119.-Ips fasci. atus. a, larva. slender first joint short; living under bark or in fungi, while certain species are injurious to grain. Trogositu virexcens Fabr.

Family Nitidulidæ.-Antenur straight; tarsi more or less dilated, tirst joint not short. Larva living usually in decaying matter. Nitidulu bipustulata Linn., Ips fasciutus Linn.

Family Histeridæ.-Body oblong and flat, or round, oval, globose, or cylindrical ; antenne geniculate; tibia usually all dilated. The species are scavengers, living under bark of trees, in excrements, and in carcasses. Hister interruptus Beanv.

Fig．1：20．－Larva uf His ter merdurtus．

a

Fig．1：1．－Museum pe： 1 ．и，pupa：b，lam：a．
 riat Linn．is the carpet beetle，introntuct from Finmue．

Fumily Mycetophagidx．－1moly thatomod：luad frec．Living on fuseri and umber bark．Mycetopluynapmuctutus 玉：

 C．．ltiral－1／：

Fimily Cryptophagidx－Prothorax ne：arly or tuite ：w ith ak fhe
 Melsh．

Family Cucujidx．－Bonly very that and lone：alnh men with in
 me＇twis lime bre⿻儿口 in bran，rioe，aml whe：t．
 noerk；living under hark．Rhasumes cxarntus 111.

 foseorial．Living under the bark of trees，in fom ri．it in the earth． Colydium lineolds suy．

Family Erotylidæ.-Tarsi more or less dilated and spongy beneath. Erotylus; Ducne 4-maculatu (Say).
Family Endomychidæ. Tarsi 4 -jointed, or, from the atrophy of the thirl joint, apparently 3-jointed; claws simple. Endomychus biguttatus Say.
Family Coccinellidæ. - Hemispherical beetles with the head deeply immersed in the prothorax; tarsi with the second joint dilated; claws appendiculate or toothed, sometimes simple; larve of great benefit to agriculture from devouring Aphides. When about to pupate, the larva attaches itself by the end of the body to a leaf, and either throws off the larva skin, which remains around its tail, or the cast skin is retamed, loosely folded about the pupa as a rude sort of cocoon. Caccinella nocem-notata Herbst (Fig. 123);
Fig. 124.-Larva of
"Lady-bird." Psyllobort 20-muculatu Say (Fig. 124).
Family Corylophidæ.-lVings fringed with long hairs; a loose antemal club. Corylophus trancutus Lee.

Family Phalacridæ.-Body oval, convex; scutellum larger than usual. Photacrus ocalis Lee.

Family Scaphididæ.-Body oval, convex; elytra broadly trumcate behind; tarsi long and slender. Senphidium quadriguttatum Say.

Family Sphæriidæ.-Wings friuged with long lairs; abdomen with 3 ventral segments. Spharius politus Horn.

Family Hydroscaphidæ.-Antemme short, not verticillate, abdomen prolonged. IIydroscaphu nattms Lec.

Family Trichopterygidæ.-Anteunæ slender, verticillate; abdomen not prolonged; the smallest beetles known. Trichoptery.x aspera Haldeman.

Family Staphylinidæ.-Elytra very short; abdomen entirely corneous, with 7 or 8 visible segments. The rove-beetles, recognized by their narrow, long bodies and upturned abdomens, are often minute, living under stones, in ma-nure-heaps, fungi, moss, and in ant-hills. Stuphylinus culpinus Nordm.

Family Pselaphidæ.-Very small; head and prothoras narower tham the elytra and abdomen, the latter obtuse at tip. Iselaphus erichsonii Lec.

Family Scydmænidæ-Differing from Pselaphids by the long elytra. Srydmanus mariue Lec.

Family Silphidx.-The burying beetles have the antemise clubbed, sometimes nearly filiform; larve broad, sides of body serrated. Necrophorus americamus Oliv., Silpha lapponica Herbst, S. surinamensis Fabr. Adelops hirtus Tellk. is a blind cavebectle.

Fig 125.-Platypsylla of the beaver. - After Le Conte.

Family Leptinidæ.-Eyes absent or imperfect. Leptinus testaceus Müll. is parasitic on mice, etc.; Leptinillus valiths Horn on the beaver.

Fommily Platypsyllidx.--l bonly flat, like at anchroneh; ex. aml
 and mblt shges, a pansife of the hemser.

Fimnily Hydrophilide.-Budy ublung, wal, conven, of hemi-pheri-

Fis. 126. - Hydrobhilus; its egzease and larsa, Satural size.
cal; palpi oflen very home; moslly aguatie; larse carnivorons, Hydrophilus trathguturis say; Aphatidinm sourabnoides 1 limn.).

Adephaga.

'This grolly has been alreaty briefly detimed on p. !s. 'I'he water and wrombl heetles are nsually anminombs hoth in the lat val and ahblt stalores. though maty ate phytublatous.

Family Gyrinidx - Bedy oval; anhemar irregular, very shert: exes divided se that they aprear as fonir. The whirligig beelles are seen in aroups Frating and cireling on the surface of ponds and streams, and when tanthe give out a diswgreathe milky thud. crypinus txarentia Aubé.

Family Dytiscidæ.-Like ('amhids, except in thase characters which atapt and larva of nou ther apecies
them for an acuatic life; body oval, broad, and flattened; legs flattened, oar-like, and fringed. The larve are called water-tigers from their fierce habits and long, slender jaws; when about to pupate they leave the water, and form a round cell in the bank. Dytiscus fasciventris Say; Acilius mediatus Say.

Family Haliplidx.-Antenuæ 10 -jointed; small yellowish waterbeetles, spotted with black. Huliplus fusciatus Aubé.

Fig. 129.-Dytiscus marginalis, from Europe. A, male, with smooth elytra and fore tarsi expanded into suckers; B, female.
Family Amphizoidæ.-Aquatic beetles of singular structure, with the legs adapted for walking. Amphizoa insolens Lec.

Family Carabidæ. - The

Fig. 130,-Harpalus caliginosus, natural size; larva of undetermined species, enlarged 3 times. erpillars. Platynus cupripenne Say; Brachinus fumans Fabr.
Family Cicindelidæ.-Antenne on the front above the base of the mandibles; ligula small; female abdomen with 6 , male with 7 , seg ments.

Fig．131．－$l_{1 / 1}$ tymus cupri． pentre．

Fig．1：32．－Cialosemer calidum．Natural size．

Fia．133．－（＇aciulela hirti－ collis．Larva of an un－

thegh．＇Their lirvie bore into sand，propping themselves up in their holes hy twodorsal homked projections onthe ninth sexment．（er－ Iain sunth Imariean forms climb troes like atmes．whith they resern－ ble．（＂icindele culturris siny，（＇．herticellins sity．

Athongh the fleas resemble fios in their lamal state atal in the monle of dexelopment of the embero，yet the alults are now thonght to present sturh a combination of vhatan－ ters as to throw tham ont of the great arter of lipurat． where they hare been allowed to rematin hy maty anh hors．t

* SELEETED W゙いにKs.

Karsten，H．Beitrig zur Kemmtniss des daynehoprion pencrams． Istit．
Krnepelin，K．Ueber die systematische Stellung der Puliciden（11：1，1－

 ！N（it．）

 Taschenberg， 0 ．Hic Flöhe（H：alle，Isciu）．

 philis，Simulium，Chironemus，cte．

Besides being wingless, the antennæ are 3-14 jointed, lodged in a cavity behind the eyes; their mandibles are long with serrate edges; the maxillæ are short, the palps being 4 -jointed, and the labial palps are also 4 -jointed. The labrum is distinct, but there is no hypopharynx. The body is ovate and much compressed; there are only two simple eyes, no compound or faceted eyes. The edges of the head and prothorax are armed with stout spines directed backwards, and the entire form of the body and arrangement of parts are in adaptation to the peculiar mode of life of these insects, which live under or among the hairs of man and certain mammals and the feathers of certain birds.

The cat-flea lays eight or ten eggs, which fall on the floor

Fig. 134,-Dog or cat flea (Pulex can is). a, maxillary palpi; b, maxillæ (should be longer and pointed); c, labial palpi; d, mandibles. Larva of the cat-flea: a, antenna; b, end of the body.
and there hateh, the larva living in the dust and dirt on the floor, and feeding on it. In about twelve days after hatehing the larve spin a silken cocoon, the pupa being inactive, and remaining in this state from eleven to sixteen days.

A serious tarment of sandy, hot regions in the tropies is the jigger, chigoe, chique, or pique, Surcopsylla penetrans, which during the dry season bores into the toes of natives, especially under the nails, cansing a distressing sore.

Family Pulicidx.-With the characters of the order. Pulex irritans Linu., the human tlea; l^{\prime}. cemis Dugès, the flea of the dog and cat.

Fig．135，－Jizyer－llea．a．female distended with eags．
Bouche kills elaitkons in Plorida，puncturing expecially the huads of very young，downy individuals．

Ulidik llV．Diptera＊（Flirs）．

A！y ：

```
＊Sillet tron Wobsに
```


Brauer，F Monoyraphie des Oestriden Wiitl．1 ti．3．

 of dipterons larva，and list of all work－and artiolereforine to

Dimmock，G．The anatomy of the mouth parts and of the sucking ap－ paratus of some Diptera（Bu－tun，1じく1）．
Loow，H．，and Osten Sacken，C．R von．Monograph of the Diptera of North

Hammond，Arthur W_{n} the thoras of the blow fly（Musen romiturtu）． Limu sur．Journ．Zonlorv，vol．av，\＆ig．

Kraepelin，K Zur Anatomie und Physiologie des Rüssels von Musca

Lowne，B F．The antomy and plysionory ot the Blow thy if ave mmitertial Lombon，15i川）．

 にば心うこ．
Meinert．F．Trophi Dipterorum（Copenlmaren，I－N1 lu In：mish． with alsitrat in Latin．）
－Sur les larses enéphales des Dipteres（Copenha getl．1swi）．（In Danish，will Frencla résumé．）
（Continued on next page．）
its having but a single pair of wings; the hinder pair being rudimentary, and forming the balancers or halteres. In many flies the antennw are short and 3 -jointed, the last joint being furnished with a bristle, which in the house-fly and its allies is feathery; or, as in the mosquito and its allies, the antennæ are long and many-jointed.

Examining the house-fly as a type of Diptera in general,

Fig. 136.- A, front, and B, side, view of head of house-fly. oc, simple, and e, compound, eye; ant, antemna; mxp, maxillary palpi; l, tongue; lab, labellum. Magnified. we notice that the 3 -jointed amtennæ, when not extended, lie in a carity in the face. The mandibles and maxillæ, so well developed in the mosquito and other piercing or biting flies, are aborted, though the maxillary palpi are present (Fig. 136, $m x p$; Fig. 13\%, p). On the other hand, the under lip, or so-called proboscis. ends in two flaps (labella), adapted for lapping liquid food. The structure of the proboseis is very curious. When the fly settles upon a lump of sugar or other sweet object, or even upon the back of our hand

Menzbier, M. A. Ueber das Kopfiskelet und die Mundwerkzeuge der Zweifïgler (Bull. Soc. imp. Natur. Moscou, 1880).
Osten Sacken, C. R. von. Catalogue of the described Diptera of North America (second edition. Washington, Smithsonian Inst., 18\%8). Also numerous papers and monographs published by Smithsonian Inst., Am. Ent. Soc., ete.
Scheiner, J. R. Fauna Austriaca. Fliegen. (i, ii. Wien, 1862-64.)
Walker, F. List of the Diptera in the collection of the British Museum (7 parts, 12 mo . 1848-5.5).
Wiedemann, C. R. W. Ausscreuropaische zweillïgelige Insekten (2 vols. Hamm, 1828-30).
Williston, S. W. Synopsis of the North American Syrphidæ (Bull. 31, U. S. Nat. Mus. Washington, 1886).
_- Dipterological notes and descriptions (Trans. Am. Ent. Soc., xiii., 1886).

- On the N. Am. Asilidæe (Trans. Am. Ent. Soc., xi., xii., 1884-5). Also articles by Bergenstamm and Loew, Bigot, Braner, Burgess, Fitch, Gerstacker, Leach, McCloskie, Riley, Say, Shimer, Walsh, Westwood, and Williston.
 exteuds it，and the broml hnoh－like emb disides intu two

Fig．13n．－Head and proboscis of the how－fty．e．eye：c，epicranimm；bp，basi－ probuscis：p ，maxillary palpus：pr．chitinons ridges uniting with the rudimen－ tars maxilla；$l p$ ，lower labial plate；mp，medi－，$d p$ ，disti－probuscis．－After Kraepelin．
 broad sucker－like surface，with which the fly lips up

 crum；m，mentum．Magniblel．－After Me（＇loskie．
liquid swects，or any matter which seems groed to the dys： mintl．

The two flaps at the ent of the probescis are supported uron a framework of strong but delicate ronks which act as at set of springs to open and shat the broad hape．The in－ side of this broad．fleshy expansion is rongh．The a rasp． and，as Newport states，＂is easily empluyed by the insect
in scraping or tearing delicate surfaces. It is by means of this curions structure that the busy house-fly occasions much mischief to the covers of our books, by scraping off the albuminous polish, and leaving tracings of its depreda-

Fig. 139.-Side view of a labellum. ca. chitinous arch supporting the false tracheæ ($p t$).-After Kraepelin.
tions in the soiled and spotted appearance which it occasions on them.

The thorax is somewhat rounded, and though composed of three rings, yet these are so consolidated that it is at first hard to identify them. The prothorax is rudimentary, the

Fig. 140.-Thorax of the house-fly. prn, pronotum; prsc, piæscutunz; $s c^{\prime}$ mesoscutum; sct', mesoseutellim; $p s t^{\prime}$, postscutellum; al, insertion of tegula, extending to the insertion of the wings, which have been removed; msphr, mesophragma: h, balancer (halter); pt, patagia; mtn. metanotum; epis, epis', epis", episternum of pro-, meso- and meta-thorax; epm', epmi", meso- and meta-epimerum; $s t^{\prime}$, st $t^{\prime \prime}$, meso- and meta-steruum; $c x^{\prime}, c x^{\prime \prime}, c x^{\prime \prime \prime}$, coxæ; $t r^{\prime}$, $t r^{\prime \prime}, t r^{\prime \prime \prime}$, trochanters of the three pairs of legs; $s p^{\prime}, s p^{\prime \prime}, s p^{\prime \prime \prime}, s p^{\prime \prime \prime \prime}, s p^{\prime \prime \prime \prime \prime}$, first to fifth spiracles; $t g^{\prime}, t g^{\prime \prime}$, tergites of first and second abdominal segments: $u^{\prime}, u^{\prime \prime}$, urites.
thorax being almost wholly formed of the middle ring (mesothorax). The latter consists of three large upper
pieces．the prosertum，sutum，ame the triatratar or

 （metathorax）is hut partly formed，and ammot be seren from
 alla berad eovering sables umber the bate of the tran wimes．
 garent，amd strengrthened expecially along the fiont edge by shader，hollow rods called veins．＇There aresix principal reins，some of which are hamehed．and they are in most cates commeded hy a few aros－spins．The wings move with great swifthess．The housi－fly，when hedd captive moves its wings 330 times a seromb，and the tip of the wing de－ seribes a figures $S_{\text {in the air．}}$

The ham of the tly is it voies．There are there differ－ ent tones in the fly ${ }^{\circ}$ ham．While tlying the tone is rela－

Fig．141．－Hind boly or abdomen of house tly，a ，dorsal，b ，ventral，c ，side， view；sp＇sp，the four pairs of abdommal spiracles．Mafoithed．
fively low：when the wings are held so as to prevent their vibrating．the tone is higher．and a higher one still when the fly is hede so as to prevent all motion of the external parts．The latere tone is the true roiee of the tly，ame is prodeded by the spirates or breathing－holes of the thomas． Thus．the hamming sombl is not produced he the motions of the wings alone．The hind hodre（Fig． $1+11$－bromd and somewhat conical in shapes and there abe seen to be only four strments when seen from above or below：Int in the living fly three more maty be detected．which con be thrmet
out of the body like the joints of a telescope, and form a sort of egg-layer (ovipositor). Flies have no sting, though certain kinds can bite and stab with their mouth-parts.

The legs are long and slender, and, like the body, they are covered with fine but stiff bristles. There are five toejoints, the last one with two claws. Beneath the claws is a cushion divided into two lobes or divisions, and armed with hairs, which are tubular, and seerete a sticky fluid, which aids the fly in walking upside-down on glass windows or the ceiling of a room.

House-flies are attracted to horse-manure, in which the young live in great numbers. On placing a fly in a glass

Fig 142. - The early stages of the common house fly. A, dorsal, and B, side, view of the larva; a, air-tubes: sp, spiracle. C, the spiracle, enlarged. F, head of the same larva, enlarged: bl, labrum (?); md. mandibles; mx, maxillæ; $a t$, antennæ. E, a terminal spiracle, much enlarged. D, puparium; sp, spiracle. All the figures much enlarged.
bottle, she laid, between 6 P.M., August 12th, and 8 o'clock the next morning, 120 eggs, depositing them in stacks or piles.

The egg is long and slender, cylindrical, and .04 to .05 of an inch long and abont one fourth as thick. In twentyfour hours after it is deposited the larva or maggot hatches, and is as represented in Fig. 142, A. It is a footless, smooth, round, white worm, with the merest rudiments of

 a day later. 'Thse macrout thes shets its skin twice, :and
 lasts three or four days.

When abont to transform into a pupa or chrysilis, the body contratets into at harel-shaped form, ats seen in Fig. $14 \because$, I): its skin turns brown and hard, forming : (ania (allend muperium) within which the larvar changes to a chrysalis. Romaining in this stagre for about a week (tive to seven days), the fly is formed, amb. pushing ofl une end of its pmpa-case walks nervonsly about, until its soft, bigge wings expland and beeome dry. when it takes to thight. It thas lives a forthight before alopuring wings, and, as atly, may live a fow werks. fertals until frost: but in a few Cates may bates the winter within the hourn。 on in protereted plates ontside and appene ant of domes in the epring.

There are probably 10.0610 specese of the ordere of llipetera in the United States ahne hat to atwereportion of them the precoding desoription will in gemeral apply. Hemere, hy sturlying thomghly ond fly, we ath ohtain a grood idea of the eremeral structure of all.

In certain flime (Blapharoceridar) there are two kinds of females-one kind with muth-parts adspted for piereing the skin of animals and sucking their bomel. and the other with mouth-parts like those of the male. tha maxilla heing absent. In the femates of othere thes which suek hamed. the mathes fered on homer.

In the flies, whose mouth-parts vary a-tonishingly in structure. so that some atre piereers amb hiter- ame whers suckers and laprors. there is also a grata baroty of larval forms. difterent modes of metamorphosis, and anacepuenty great powers of adaptation to dilloment stations in fie. 1 fow spectes live in the sea, many in fresh water. and many. as the 'Tachina, are parasites in the bodies of coterpillars and other insects. 'There is everwhere a wemderful har-
mony between the different kinds and their surroundings, and thus the order is rich in species and individuals.

Darwin says that the sexes of Diptera differ little in color; the greatest rlifference being in some species of Bibio, in which the males are blackish or quite black, and the females obscure brownish orange. In Elaphomyia of New Guinea the males are horned.

Dr. Williston writes us, however, that there are, upon the whole, more sexnal differences, aside from those in the genitalia, among the Diptera than in any other order. In the majority of species one finds but little difficulty in distingnishing the sexes by secondary characters. In a large proportion, also, there are minor colorational differences. Secondary sexual characters occur with extreme rarity in the female, and in the male are chiefly confined to the head and legs.

Sub-order 1. Pupipara.-'These are mostly wingless, degraded forms, which are born as pupæ from the body of the parent, the egg and larval state having been passed within the oviduct. The wingless species are remarkally spiderlike, the names bat-ticks and bird-ticks implying a resemblance to the ticks.

Family Braulina.-Wingless, cyeless, minute insects with a large head. 'The Bee-louse, Broula cact Nitzsch.

Fig. 143.-Bee-louse; a, its puparium.
Family Nycteribidæ.-The bat-ticks are spider-like, eycless, or with four ocelli; with a small head. They live on the fruit-bats. Nycteribia westwoodii Guerin (Fig. 144). None exceed two lines in length.

Fig. 14. - l3at liek.

Fic. 115. - Sheep-tick and puparium.
 sherep). The hotsc-tick (Ilipgolmaved equinu Linu.) is winged, wibls larign claws.
 to this sublivision of thes from the fact that the perfect thes escalue from the pupa-case thromgh a cirenlar writice. 'The word " macrent" is experoially applicable to the larvie of this group, since they are womm like. whitish, withont at definite heal. and are footless. Wlien about to pupate their bodies shrink into a barrel-shaped form, and the skin. insteal of being cast off. forms a dense cate for the protere tion of the soft-lendied, white pupa within.
'The types uit the sub-order are sueh insects as the homser
 short atnd thick. the abolomen conical and eomposed of from tive to eight sergments.

The arranerement of the fimblies heme abopted is that
 fecond edition. Lsis). While the charaterers of the families are taken from lanw s . Monographes of the liptoria of North Ameriea," l'art I.. though ilw ortar of shoresoion has heen reversel. the emmeration heminmine with the iowest and emding with the highest family. ('ertain of the smaller, mnimportant families are mentinmed only hy name.

Family Phoridæ.-Antennæ 1-jointed, with a long bristle; femora flattened. Phora incrassata Meigen, of Europe, lives in hives on decaying bee-larræ, and different species feed on both living and dead insects, and sometimes decaying vegetable matter.

Fig. 146.-Phora incrassata. a, larva; b, pupa-case.
Family Asteidæ.-Front bristly above. Asteiu tenuis Walker.
Family Phytomyzidæ.-Front bristly. Phytomyza clematidis Loew.
Family Agromyzidæ.-Front with strong bristles; middle tibie with a terminal spur. Agromyze coronatu Loew.

Fimily Oscinidx.-Front without bristles, the crown having only a few short ones; border of the mouth without vibrisse, which, however, are represented sometimes by a small hair on each side. Middle tibie with small spurs; all the tibie withont an erect bristle on the outer side before the tip. Costa of the wings withont bristles. The auxiliary vein is completely wanting; the anterior of the two small basal cells is united with the discal cell, the posterior one is totally wanting. The species of Chlorops are injurions to cereals, the maggots living in the stalk. Meromyza americana Fitch.
Family Drosophilidæ.-Front with bristles above; face with distinct sub-antennal furrows; at the border of the mouth there is a feeble, frequently rather indistinct small vibrissa. Middle tibies with very feeble spurs; on the outer side of the tibie there is either a rery small or no erect bristle before the tip. Wings without bristles on

Fig. 147.-Apple-worm and its fly.
the costa; the first longitudinal vein is exceedingly abbreviated; of the auxiliary vein there is only a rudiment: the discal cell is usually, but not in all genera, minted with the foremost of the two small hasal cells. Claws and pulvilli very small. The larva of an undetermined species of Drosophila (Fir. 14̃) injures stored apples, while Drosophita ampelophita Loew infests piekled fruit.

Family Geomyzidæ.-Tibrisse distinct. Düstutu pulchra Loow.

 opening of the month large; probose is thickerned, with a swollen

Fia. 148.-A, inrva of Fiphatra californica: a, doreal, b, under, r_{0} vide. view of

clan. Venation of the wings intomplete: the ansiliary vein distinet only at its hase; the foremost of the two small bacil enlls remited with the discal eedl. Miblle thhite with surs. 'The sin-

Fig. 149.- Piophilit cuse i, parent of the cheeve mat- 1.
 Gutephitat l'ack. lives in the brine of the Eiplit! Salt Works,

Illinois; E. californica Pack. in Clear Lake, Cal.; while E. gracilis is abundant in Great Salt Lake, Utah. The larvae and pupa-eases of E. californica, which inhabits Mono Lake, are eaten in large quantities by the Indians.

Famidy Diopsidæ.-Eyes sitnated on long laterai projections. Sphyiracephata brevicornis say.

Family Piophilidæ.-Front with some small bristles above only; clypeus rudimentary, legs rather stont. Piophite cusei Linn.

Family Sepsidæ.-Head romnded; front bristly; border of the month more or less hairy, the foremost hair often imitating a vibrissal; clypeus rudimentary; proboscis short; palpi exceedingly small or wanting Abdomen tapering towards the base. Middle tibiee with distinct spurs; claws and pulvilli small; venation of the wings complete; the auxiliary vein distinctly separated from the first longitudinal vein; the two posterior basal cells rather large. Sepsis similis Macquat.

Family Opomyzidæ. - Opomyza signicosta Walk.
Family Heteroneuridæ.-Front with long bristles; clypeus not developed; palpi broad and proportionately large; legs slender. Heteroneura abimuma Meigen.

Fanily Phycodromidæ. - Thorax and abdomen flat. Calopa frigida Fallen. Europe and North America.

Family Sapromyzidæ.-Venation complete; anxiliary vein of the usual structure, frequently very near the tirst longitudinal vein; costa of the wings withont bristles or a marginal spine; longitudinal veins without peculiar hairs; posterior basal cells small. Front with a single row of bristles on each side; no vibrisse on the border of the mouth; elypeus rather rudimentary. Only the middle tibia

Fig. 150.-Lonchæa. a, larva; b, pupa-case.
have terminal spurs; all the tilize with a small erect bristle on the outer side before the end. Ovipositor of the female not horny. Supromyza vulgaris Fiteh.

Family Lonchæidx.-Like the Sapromyzide, but the female has a horny, 3 -jointed ovipositor. The species bore in the bark of willows, etc. Lonchure politu Say.

Family Trypetidæ.-Venation complete; the end of the auxiliary vein runs steeply to the border of the wing and becomes obsolete; first longitudinal vein alwas with bristles, the third frequently, the fifth sometimes; two posterior basal cells rather large, the hindmost
 hristhes，one of which i－cimated more ：above ：the in fromt，the other

 of the duter side before the lip．Owipustor homy，consinting of

 Europe and North Amerion．

Family Ortalidx．－Vamtion of the wings（enmplete；andiliary voin
 of the wing in the nsmbl wat，meler an acont anter，and remaining

 ward ont frequenty prolonged in an ：loble angle．Front with Iristles on the upper part onl！：mo vibrissie at the horder of the

 tibiae wish an＂reet hrivtle un the exterior side hefore the tip． Uvipusitor of the famske rather hathated amd hornty comsi－ting of
 teleconpe，and embling in at simple point．I＇yrgnte unduta Wied．， Tritures the．re Wied．

Fin 151．－Tritoret flext，onion tly，and magent

Family Psilida．Buly shomber：faco recedinge mombly smatl．

Fimily Sciomyzida－F゙ront with lwo hristla，unc hohind the othere wh the sille Infore the vertical bristles；midule folite with a
 Emope sml North Americas．

Fanily Helomyzidx．－Front bristly on the upper half ont，all the tihise spurred．He hemyza＂pionlix locew．

Fimily Cordyluridx．－Vination of the wings comple deoth pus． terior basal cells of considerahle size anxiliary vein w，｜－paraned from the dirst longitudinal vian，which is hare．Entire ide of the
front bristly; anterior border of the month with strong, usually numerons vibrisse. Tibie with spurs. Sentophaga stercorarik Linn.

Family Anthomyidæ. - Thorax with a complete transverse suture. Fourth longitudinal vein staight or nearly so, hence the iirst pos-

Fig. 152.-Onion fly. a, larva, natural size; b, the same, enlarged.
terior cell is fully open. Tegule rather well developed. Phorbia ceparum. Meig. (Fig. 152). Homalomyit scalaris (Fabr., Fig. 153) is the privy-fly; the maggots of this and I. cunicularis are sometimes diseharged from the human intestines and urethra.

Family Muscidæ.-Bristle of the antenne entirely plumose

Fig. 153.-IIomalomyia scriluris (?). a, larva, natural "ize; b, enlarged.-After Curtis.
red fluctuating tumors; its magot is calted the "serew-worm;" in one case 300 of these maggots were found in or dropped from one man's nose or masal cavities, where it had destroyed the soft parts, causing death. L. cessur Limn., the blue-bottle tly; Calliphora erytheocephula Meig., the meat-fly; Stomorys culcitrans Linn. has a long, slender, hard proboscis; it breeds in or about stables, and bites horses and human beings.

Funily Sarcophagide．－Brithe of the antmm中 phanow or hairy，

Fig．151．－Sarcophugu saitaceniap．c．Hy：a， larra：b ．puynerestie；d, g ，heal；；e ，end of hody；f spiracte of larva；i ，aiteuma：h ， foot of hy：－After liley． with thr ap＂a bure．F゙irst

 le farte；kers emtht．Sir－ cerphotge carmatiat Linnt．，the thoh－11y of Emmpe，is black， with the therax－treaked with erasy，mat the ahtoment checkered with whitish；it is viviparoms，the eq口es leiner hatched before they are ladid．心．serraceuin Riley：

Family Tachinidæ．－Bristle of the antemat lare or with a very short puhescence；thorax short；tirnt pusterior erll chosed or only slightly opencd；le es short．Larvie barasitic in caterpillars

Fig．155．－Tachina fly，and larra．
and other insects，liviner wh the fat mal juice of their loo－t；many injuriose（：atherpillars heing devorome by thene useful thes．
 in haviner the briste of the amtemat either puhevent or phamome：
 unt ois s：！

Family Estride．－Intenma inserted in rommdel fitc：the midelle

 The stmmer in twmors on the lateks of cattle．qutil in July ihy fall to the gromat；they remain in the pupa（an－：
 month－herek to the wath＇s of the homecis stometh．

Fomily Pipunculidx．－sumbll the with the he at at entirelyoc－ cupied by the exes；face very narrow．Pipument a

Family Conopide．－Wasp－like．with a long abdomen，cye broadly separated；proboscis much prolonged；third joint of the antonie
with an apical style or a thick dorsal bristle; parasitic in the abdomen of wasps and bees. Conops tibialis Say.

Family Syrphidæ. - A spurious longitudinal vein between the third

Fig. 156.
Fig. 156.-Bot-fly of the ox. a, larva.
a

Fig. 157. and fourth longitudinal veins; first posterior cell closed; no depression in the face for the antennæ. Often wasp- or bee-like in shape

Fig. 158.

Fig. 159.

Fig. 158.-Rat-tailed pupa-case of Eristalis.
Fig. 159.-Merodon posticuta. a, its pupa-case.
Fig. 160.-Syrphus (Itesograpta) politus, and Aphis-maggot, natural size.
and coloration (Williston). The larva of many species devour Aphides, etc., and may be observed among their colonies. The larva of Eristalis, which lives in stagnant, brackish, or excrementitious water, breathes by a long caudal filament.

Sub-order 3. Orthorhapha.-In this group the pupa is usually free, not coarctate, and escapes from the larval skin
 rent between the serenth and wishth aholonimal -urnments. The following lamiles, to and inchading the Xyhuharider. helong to seretion 1. Firachyorow. in which the antemnate are shont and 3 -jointed:

Framily Lonchopteridx. - Winus with the thre hasal cellenf monher

Fimily Dolichopodidæ. -First hasal cedl rather whot, the sewnd mited with the diseal erell, the thime smalt; ansihary vein ruminer inte the time lomsitudinat vein; third lomgitudinal vin simple, the
 metrieal, bemt under the abdomen; equpulimm small, membramaceons, linear. Gemerally memallic grent, brivk, small, realew fice whish deworr other insect. Dolichopme cupminns Wiend.

Family Empide-Boely rather lomer hend romuthel, the eves in the males temehing sach other athore; third juint of amteme -imple, with a terminal style, or a herminal or forsal hriathe. These tlice are voracions, allackine other thes. Empan armipa Len-w.
 mecting abowe; thorax and ablomen moh intlited; tecola valted,

 kiettii (). sarken.

Family Scenopinidx.-Thece hasal cells wery latse; third juint of
 slender; oremring under carpets, and probably fording on carpetmothe and Proceitis.

Pamily Therevidx.-Differing from Asilidee in the lahatha being not horny, but ale-hy; antemat shot, withaterminal sule of varia-
 with the argmemts in most of them comstricted, the borly aprearing
 bireps Lonw.

Fumily Bombylidx. -Three basal ceals of the wine mund pros. longed, with nenally four posterion tells, athe the thind joint of the
 of the seceies densely hairy. They are mostly we in ift on the wing, offon howering inotionilese in ibe air, and lha darting an: as -quek as a thon. The larse of Bembline ate parastice on lous-: thuse of Systachers areus 0 . sarken and Aphentrentes ows W. Sackon

 prohemecis. Which it ustes to sump the nectar form the thener of

 from oher larva, the sixhh io twelfoh segment- hinz ach proviled with a puir of hooks, and they are supposed to athach hemselves to
a large beetle (Rhizotrogus), on which secondary hosts they are apparently parasitic.

Family Midasidæ.-Antennae club-shaped, the third joint composed of several distinct joints. Midas claratus Drury.

Family Asilidæ.-The robber-flies are large inseets, one species being two inches long; third joint of antenuæ simple; with or without bristle or style; and the under lip horny; they are the most satvage and rapacions of all Hies, their beak being well developed. Promachus fitchiii O. Sacken was once observed to destroy one hundred and forty-one honey-bees in a day; Laphrial resembles humble-bees. Asilus nover-scotice Maeq.; Erax bustardï̈ Maeq. (Fig. 161, b, pupa).

Family Leptidæ.-Antenne with the third joint simple, with a simple or thickened styliform bristle; three membranous pads below the claws. Leptis allicornis Say.

Family Tabanidæ. -Third joint of the antennæ annulate, and always without style or bristle; eyes large; tegulæ large. The females of the horse-Hies alone bite, the jaws and maxillæ being awl-like, rendering the bite painful. Tabamus lineola Fabr., Chrysops niger Maeq.

Family Acanthomeridæ.-Very large flies,

Fig. 162. - Larva of Stratiomyia. with mouth-parts consisting, even in the males, of four bristles. Acanthomera bellardï Bigot.

Family Stratiomyidæ.-Third antennal joint annulated; costal vein only reaching the middle of the wing; tibix not spurred. The larve live in water, earth, or decaying wood. Fig. 162 represents a larva found living in abundance in the alkaline waters of Clear Lake, Cal. Stratiomyia picipes Locw, Sargus decorus Say.

Family Cœnomyidæ.-Canomyin pallida Say.
Family Xylophagidæ.-Third antennal joint annulated; costal vein encompassing the whole wing. Jylophagus rufipes Loew.

The succeeding families belong to Section 2, Nematocera, in which the antennæ are long and many-jointed.

Family Rhyphidx.-Three ocelli; wings with a perfect discal cell. Rhyphus alternatus Say.

Family Di-idæ.-Dixu clarata Loew.
Family Tipulidæ.-Ño ocelli; legs very long. The crane-tlies form an extensive group whose larve live in soil, mould, fungi, and sometimes in the water; they are represented hy Trichocera regelutionis Linn., Tipill trivittutu Say, ete.

Family Psychodidæ.-Body with long coarse hairs; wings very short and broad. Very small flies seen flying and leaping on windows, ete. Psychodes alternuta Say.

Family Orphnephilidie.- Irphur phitu fovere il Ruthe.

 topugen is the midere, the " Simulinm turirnme of llaris. Tanypms

 parts very home and hender. and hithls hew hened, white the mandi-

 duet leading from the poisonegiands on the pothoma. The wings

 clypeus-After Dimmock.
are fringed, and the weins covered with seales. The larme are agmatic, breathing by a respatary tube (c) at the (ond of the budy

 horizontal misition. E'nler cillaths Fabr.

Family Blepharoceridx.-Bendy lony and slomber, like al large mosquito in gemeral appeatance; winge broad, but mahod. The larvar are of remarkable shape, amo at tirst do mot berk like thene of at the sine the bedy is divided into sid divisions some hat libe :m An Ihe. or water she hug. The athere to smoth row - in - wift -treams b, sia suekers arransed in: a tine aloner the moder side of the bemb. and beathe by tive pairs of tilamental gills. The pupate that hes

 weme is native to this comntry, and Pattostenue torremina Mriller to Bmizi.

Fimily Bibionidx. -Prothomax much developat: "ne- "ithout a
 lawns from feeding on the romts of grasw. Bibion of y

Family Simulide.-Beryy short and hick; head hemt under the
large humped thorax; the mouth-parts, jaws, etc., well developed, the fly giving sometimes a sharp

Fig. 164.-Black fly and larva. bite, but often leaviug behind a clot of blood without giving pain. The larvæ live in rumning streams, and when about to transform make conical ponch-like cases attached to eel-grass, etc., wherein they pupate. The black fly (Simulium molestum Harris) abounds in the Northern States, and probably extends to the aretic regions. The southern buffalo-gnat (S. pecuarum Riley) and the turkey-gnat (S. meridionale), owing to their severe bite and the great multitudes of the females, oecasionally, along the Mississippi River from St. Louis to the mouth of the Red River, kill mules, liorses, cattle, sheep, hogs, dogs, cats, setting turkeysand hens, while three cases of death to human bcings are recorded.
Family Mycetophilidæ.-The fun-gus-guats have a rather slender body, with long legsand coxæ, while the wings have but few veins and no discal cein. Sciura mali (Fitch) lives in apples; the larva of another species of Sciara, called the

Fig. 165.-Mycetobia sordida. a, larva; b, pupa.

Fig. 166.-Hessian Hy a, larva; b, pupa.Aftel Fitch.
"army-worm," living under the bark of trees, will, when about to pupate, form processions four or five inches wide and ten or twelve
 bark of chm－1tece．

 tumbr＂ithin which the margent，often pink in color，live．The

 bery to dirin prematherely ret．

Oliner I I＇．Lepidoptera＊（Moths aml liutterflios）．

＇The begimere in the study of inserts，after dissecting a

```
* Silmeten W゙ombs.
```

Abbot，J．and J．E．Smith．The natural history of the rarer lepidop． terous insects of Georgia（i．．ii，Lomlon，1：9）．Fol．Many plates）．

Breitenbach，W．Der schmetterlingertisel（＇The butterly＇s tongue）．

Burgess，E．Contributions to the atomy of the milk weed matere

Chambers，V．T．Index of described Tineina of North America 1 Bulletin Hayden＇s surve，1sio）．Also other papers in same Bulletin；（＇m． Fint．，etc：
Clemens，B．Symopis of North American Sohingilie（fourn．Acal． Nat．＇Le．，lhil．，ir．，1539）．
－Tineina of North America．Edited by Stamon．（Svo，lomdon， 159．I coblection of all his papers on the subject．）Also papers

Cramer，P．Papiltons exotigues（ 4 rols．，too，the plates．Amsterdam， 1～世（1－91）．
Edwards，H Pacitic comst Lepidoptera（i．－xxx．Proc．Cal．Acad． Ac．， $1 \mathrm{sin}: 3$ is）．
－Cataloge of U ．s．deseribed kppopterons larva of North Americ：（Bull．Eint．Div．Dept．Ag，Whahington，18ss）．Also numeron－papers in Papilio，i．－iii．：Ent．Amer．，etr．
Edwards，W．H．Butterflies of North America（i．－iii．many ן． Phila．，1stís－1がが，
Fernald，C．H．A synonymical catalogue of the described Tortricide of
 papers in（＇int．Bint．．Amer．Nat．
French．G．H．The Butterflies of the Eastern United States llhiladel－ phim，1－vil）．
Grote，A．R．An illustrated essey on the Nownide of Nurth Ameriat （Landon，18se）．See alon mumerons－hort papere in Tran－Amer．
 nadian Entomologist．ette．，1etiz－1ssi（eommining derephtions of aboul 1000 specties）．
locust, could not do better than to examine a common
Grote, A. R. New check-list of North American Moths (1882).
Guénée, A. Spécies générales des Lépidoptères (Noctuidæ, Ph:lienidæ, and Pyralidæ). (Suite ì Buffon. 8vo. Paris, 1852-57).
Herrich-Schäffer, G. Lepidoptera exotica nova (Regensburg, 1850-58).
Hübner, J. Sammlung exotischer Schmetterlinge (5 vols., 4to, plates. Angsburg, 1806).
Kirby, F. Symonymic catalogue of diurnal Lepidoptera (of the world), with suppl. (London, 1871-ĩ).
Lederer, J. Versuch die emropaeischen Lepidopteren in mögliehst natürliche Reihenfolge zu stellen (Verh. Zool. bot. Ges. Wien, 1852-58).

- Die Noctuinen Europas (TVien, 185\%).

Lintner, J. A. Entomological contributions (i.-iv. Albany, 1872-ז9).
Morris, J. G. Synopsis of Lepidoptera of North America, Part I. (all published). (Smithsonian Mise. Coll., iv., 1862.)
Packard, A. S. Notes on Zygæenide (Proc. Essex Inst., iv., 1864).

- Synopsis of the Bombycidæ of the United States (Proc. Ent. Soc., Phila., 1864).
- Monograph of the Phalænidæ of the United States (Hayden's U. S. Geolog. Survey). (4to, 13 plates. Washington, 1876.)
Scudder, S. K Synonymic list of North American bntterflies (Bulletin Buffalo Soc. Sc., 18i5- 6). Also numerous other papers in Proc. and Mem. Bost. Soc. Nat. Hist., 1860-88.
- Butterflies: their structure, changes, and life-histories (New York, 1881).
- The Butterfies of the Eastern United States and Canada, with special reference to New England (4to, many plates. 1888-).
Smith, J. B. Synopsis of the genera of the Noctuide of North America (Bull. Brooklyn Ent. Soe.. 1882-83).
Stainton, H. T. The natural history of the Tineina (i.-xiii. 8vo, with many plates. London, 1855-73).
Staudinger, 0. Catalog der Lepidopteren des europaeischen Faunengebiets (Dresden, 1871).
Stoll, Casper. Supplement to Cramer's Papillons exotiques (4to. Amsterdam, 1;87-91).
Strecker, H Lepidoptera, indigenous and exotic (Reading, Pa., 1872).
Stretch, R. H. Illustrations of Zygænidæ and Bombycidæ (8vo, plates. San Francisco, 1874).
Walker, F. List of the specimens of lepidopterous insects in the British Museum (London, 1848-6i).
Walsingham, Thomas, Lord. Illustrations of typical specimens of Lepidoptera Heterocera of the British Muscum. Pi. IV., N. A. Tortricide. (London, 1879.)
- Pterophoride of California and Oregon (London, 1880).

Walter, A. Palpus maxiliaris Lepidopterorm (Jen. Zeits. f. Naturwissens., Bd. xviii. N. F., xi. Bd. Jena, 1884).

- Beitrige zur Morphologie der Schmetterlinge (Jen. Zeits. f. Naturwissens., Bd. xviii. N. F., xi. Bd. Jena, 1885).
Weismann, A. Studies in the theory of Descent. Translated by R Meldola. (London, 1881. Plates.)

 leefore pupating：I）．pupa or chrysalls Naturat－gh
 sur．，landon，1ごら）．

Zeller，P．C．（immributions 10 a knowleigr of North Imeric：an
 mumatots wher papers in lsis，and publientions of－ and Viemas sociclics．
Also articlew ly ．．G．Buther．Comstock，II．Einanla，Marric，
 W：alsh，and others．
butterfly and watch its transformations from the caterpillar to the winged state.

We will select for stndy one of our largest and most common butterflies, the yellow and black swallow-tail (Pipilio Turnus) (Fig. 167). It may be found flying abont lilacs, etc., from the first of June until midsnmmer.

We shall see in this, as in most butterflies, how lirge the wings are in proportion to the body, and that they are so thickly covered with microscopic scales as to be oparue, while the body is also covered with fine slender seales like hairs. We shall see, also, that the form of the body is more or less spindle-shaped, well adapted for flying mapidly through the air. The head is small, not wider than the mid body, while the hind body is narrower than the mid body and tapers to a rounded point.

Now, looking at the head, which in front and above is thickly covered with hairs, we notice the

Fig. 169. - Side view of head of a butterfly (Eudamus Tityrus) showing antenna and tongue. large componnd eyes, and that from between them arise the antennæ. These are rery slender, and end in a knob. There is in many butterflies a naked space on the under side of the knob, in which are minute pits, which are probably organs of smell. There is but a single pair of month-feelers (palpi) in the butterflies, though two pairs exist in many moths. 'These are the palpi of the under lip, which are held up in front of the face. Between them is the tongne, which is a long slender black tube, which at rest is coiled up like a watch-spring between the feelers. If one will watch a butterfly at a flower, it may be seen unrolling its tongue in order to probe the bottom of the corolla.

The tongue is the only means by which the butterfly can obtain food. It sips or sucks up the nectar of flowers, or drinks water, imbibing it through this tube. The jaws are absent, except in the Tincils, where they are, however,
 only lives long chongh to lay its ereses, when it dies.

By looking at sur speeimen after the seales have been rubbed ofl the head, which may be done by a stumpy hair-

Fig. 169.-Butterfly's head, denuded of seales.-After Burgess.
pencil, it will appear somewhat as in Fig. 169 of the Arehippus hattertly. This represents a front view of the heal: ", "tre the antemax; ", the eres; il is the front or elypeus, and 76 indicates the upper lip, and med the supposed jatws; the is the tongrac. cut off to show the tube fin the middle. How the latter works ean be seen by looking at

Fig. 1\%0. section throngh the tongue of a butterlly.- Ifter burgess.
Fig. 170, which represents a cross-view of that of the Danatis buttertly. The maxilla in some mothe shel as the great. green, tailed Lima moth, are short and st parate. like
a pair of blades. Now the tongue or proboscis of the butterfly is formed by the union of these two blade-like maxillæ; and they are so closely united together as to form a hollow tube or proboscis (c), through which the nectar is

Fig. 171.-Fore and hind wings of a butterfly, showing the venation. a, costal vein; b, subcostal; $b^{1}, b^{2}, b^{9}, b^{4}, b^{5}$, the five subcostal reinlets; c, the independent vein (it is sometimes a branch of the subcostal and sometimes of the median vein); d, median rein; $d^{1}, d^{2}, d^{3}, d^{4}$, the four median veinlets; e, submedian vein; f, intermal vein; h, interno-median veinlet, rarely fond; \dot{b} and d are situated in the "discal cell." Lettering the same in both wings.
sucked with the aid of the pharyngeal sac, which serves as a pumping organ to suck the liquid food through the proboscis, and force it backwards into the digestive canal.

The wings of butterflies are beautifully painted and ornamented. If, however, we examine the scales separately under the microscope, we shall see that they are colorless. The variety of color on the different spots and bands is due to the arrangement of the scales, i.e., to the interference of the rays of light passing through them.

In the butterfly, as in the house-fly, it will be seen that the front edge of the fore wings is strengihened by two
veins, one of which hat three hran hes rmming parallel with the edge. As the weight or pressure of the air while making the stroke is borne chictly by the front of the wing, it needs these rods to stremuthen it.

The sales of a butterfly's wing differ much in shape on different parts of the body: On the wing of the Cecropion moth the hairs of the boty and base of the wing are seen to pass into broad scales, represented in Fig. 1i\%. They

a
Fig. 1\%is. Arrathement of the seales on amoth's wing. a, some enlarget.
are attached to the wing and lati partially ower one another like the tiles on a ront, being insertal in irregular rows.*

The caterpillar or larsa of the Turnus butterfly may be found on the apple or hirch and other trees. In .hnly the buttertly lays a nearly round egg (Fig. 16i. . 1) upon the leaf, and by the end of smmmer one may tind the groat green worm in the same place. 'I'he body is romml. fat, and smooth; there are twelve segment- hehind the head. From the top of the serment next to the head ic projecterl.

[^12]when the caterpillar is disturbed, a singular V-shaped

FIG. 173. $-a$, egg of Pieris oleracea; b, Colias philodice; c, Vanessa atalanta. - After Scudder. yellow organ, which sends out a disagreeable smell, and is thonght to be repugnant to birds, ichneumon insects, etc. On each side of the third segment is a large eye-like spot, peculiar to this species. There are along the body nine pairs of spiracles, one on the segment next to the head, and eight pairs on the fourth to eleventh segments, or what correspond to the first eight abdominal segments of the butterfly, the latter having, however, but seven pairs of spiracles on the hind body.

The caterpillar's eyes are minute, simple eyelets, three or four on each side of the head, and only useful, probably, in distinguishing day from night. This is usefnl information, considered from a caterpillar's standpoint, as most of them hide by day and feed by night. That caterpillars are very hearty eaters goes withont saying. They perform prodigies of gastronomic skill. Did all the caterpillars which are born into the world survive the various ills and enemies they are heirs to, not a green thing would be left on the face of the earth. The locust's mission would be ended. It appears that when there are several broods of caterpillars, those of the later broods are hardier than those of the first generation.

The jaws of the caterpillar are large, black, horny appendages, and are toothed on the cutting edge, so as to pass through a leaf somewhat like a circular saw (Fig. $1 \% 4, m(l)$.

The silk is spun through the tongue-like projection of the under

Fig. 17t.-Mouth-parts of caterpillar. a, antenne: the ocelli placed outside; $l b$, labrum; Im, labium; $m x$, maxilla.After Burgess. lip (Fig. $1 \% 4, s$). It is secreted in two long sacs within
the body. 'The thind is dratwn sut hy the two fore fent which are ther-jointed amb end in a simerle chaw. 'Tlar lews.
 not jointed, and emb in a crown of howhe which corve outward, enabling the "aterpillar to firmly graser the entife of the leaf or twig of its food-plant.

Most calterpillars are more or less hairy or spiny rendering them, when expecially so, disarterable to birds: besides this, they are bright-colored. su that birds rearlily rece ognize them and wiste motime ober them. but search for the common greed smooth-bodied ones, which are howerer, so dithent of detection by the birds that plenty are left to beeome mothe or butterllies. ('ertain catcrpillars, as the eurrant-worm, thongh smonth-bolied, are brightly spoted: these howerer, the bials timd. have a disatrexalble tate The bright colors are thots danoro-signals. hungre out to warn the bide.

We will now supphec that the caterpillar has erot its growth, and is ahom to change to al chrysalis. When fully ferl the eaterpillar stops catines. amd in at dey or two throws ott the caterpillar's skin and becomes at plat on chrysalis. The latter word is derived from the (ireek. meaning enden. in allusion to the geblen spots which adorn the charysalde of some butterflies. Onr 'Imrnns catterpillar, before fupution. as tho act of bexoming a pupa may be falled, becomes short and thick, with the head drawn in. It spins an open-work platform of silk on the under site of a leaf: its tail is firmly anchored in the mass of silk by eertan hooks at the emt. and me:mwhile it throms aromm its hody near the leat a
 not bright-colored. but allied in color to a dry leaf or piece of wood, so ats to he easily oworlonked hy birds. Itere it remains through the winter until fhe end of the -necedting May or firs of June, when the buttertly within, wheh hats been growing rapidly during the preeceling warm dats. by its convulsive strugeges bursts the pural skin on the back, foreing the eovering of the head amd month-parts atwe, and

Fig. 175.-Transformations of Danuis archippus. A, egg, enlarged; B, larva; C, a, b, c, semi-pupal stages; D, pupa.-After Riley. ${ }^{\text {g6, }}$ (To face page 14\%.)

draws itself out of the rent. It stands on its feet for a few minutes, while its wings expand, and then takes flight and sails gracefully through the air on its broad wings.

Figs. 175 and 176 illustrate the metamorphosis of the Dancis archippus from the egg to the butterfly. The student should try to repeat Riley's ob-ervations on the way in which the chrysalis suspends itself by the minnte curved hooks of the abdominal spine or cremaster. When about to transform, the caterpillar stops eating and contracts in length, also becoming thicker. It then spins a little tuft of silk to the under side of whatever object it may select, and entangles the hooks of its hind legs in the silk, as at C, a. It then casts its skin, pressing it back to the end of the body as at b. Quoting Riley's exact words: "The supple and contractile joints of the abdomen are made to subserve the purpose of legs, and by suddenly grasping the shrunken larval skin between the folds of two of these joints as with a pair of pincers, the chrysalis disengages the tip of its body, and hangs for a moment suspended as at c. Then with a few earnest, vigorous, jerking movements it succeeds in sticking the horny point of its tail into the silk, and firmly fastening it by means of a rasp of minute claws with which that point is furnished."

In most Lepidoptera the males emerge and fly about for some time before the females. Darwin infers that the adult males of most Lepidoptera gencrally exceed the females in number, "whatever the proportion may be at their first emergence from the egg" (Descent of Man, i. 305).

The "assembling" of moths is a curions fact. If a virgin silk-worm moth be exposed in a cage, great numbers of males will collect about the box. It is so with some beetles, as the Priomus brenicornis and probably other longicorns.

The wings of the two sexes of Lepidoptera often differ in venation, and usually in outline; while the males of certain South American butterflies have tufts of hair on the edges of the wings, and horny excrescences on the disks of the hinder pair. The males of certain butterflies
are in parts cluthed with peconliar hatiss, callen culturamia (Fig. Lis). F'ritz Müller hats shown that the mates of certain butterdies are rembered attanetive th the other sex by secteting odorous oils of the ether series.

Certain hair-lihe scales on some buttertlies give ofll an otors. in P'iris mupi like that of eitrons. while I ', rupue is slightly olorous; and Miiller has observed in the male of Jhelnnis biblis three different odors in different parts of the body. The females of Callidryas have in the ent of the body highly odorous glands. while the males give off a musk-like odor from the same parts.

Fig. 17-sternt-ithits of moths. 1. foneorctia

Fic. 1iヶ.- 1 , scent conles or ambroconia: b, "rilanary scate of Lo catta himter. (l) Ilighly magrutied After scombler.

Peonliar white or orange-colored, hairy thead-like processes have been found protwding from namone apenines wear the end of the hind boty of certain motho (Fiz. $1: \%$). whicll give ont, acording to Mr. I. B. Fmith. "in intense odor, somewhat like the smell of latudamm."

While there is great miformity in the shape of the body of butterlies and moths, their hahits are. with in narrow limits, quite diverse some fly by day. uther-at dusk. others by night. The great nimber of specere of which there are estimated to be 55.000 , is undonbte lly due to the rariety in the food-plants on which the caterpillars feed. Nearly if not every species of plant atfords room and board
for one or more species of caterpillar. The oak nourishes in this country alone about 200 species; nearly 100 different kinds feed on evergreen trees, eating the buds and leaves, boring in the branches, and, in short, attacking the tree in a variety of ways, so that there is a place and abundance of food for each kind of caterpillar. In their chrysalis state they are comparatively safe from harm. Nature has thus favored the Lepidoptera above all other insects except the flies, beetles, and Hymenoptera. From their number and variety, their beanty of color, attractiveness of form, and the ease with which they can be collected and their caterpillars reared, the butterflies and moths are the favorites of entomologists.

The larger moths and the butterflies are for convenience called Macrolepidoptera, and the species of the lower families, from the Pterophoridæ to the Pyralidæ, are called Microlepidoptera.
Family Pterophoridæ.-The plume-winged moths are recognized by

Fig. 179, - Grape Pterophorus. a, larva; b, pupa; d, moth. their fissured and plume like wings; the body is unusually slender, with long antennæ and legs. The larvæ are spindle-shaped, rather hairy; the hairs are often hollow and secrete a viscid fluid which exudes in a dew-like drop from the end. They spin no cocoon, but, fastening themselves within a curled leaf by their tail, shed their larval skin and appear in the chrysalis state. Pterophorus periscelidactylus Fitch abounds on the grape-vine, eating the young leaves and fruit-buds.

Family Tineidæ. - This great group (which is perhaps rather a super-family with several families included in it) is characterized by the slender body, long, narrow, often pointed wings of both pairs, with long fringes, by their usually minute size, and their rich, often metallic markings. Those with broad, blunt wings, like Tortricids, may be distinguished by the long, slender, pointed labial palpi. It is difficult to give the family characters of the larva; usually slender and slightly spindle-shaped, it is almost impossible to separate them

 the stems or roots of ploms, a fers prextuce galls, while mamy live in folded leaves of herto and trees.

Fig. 180.-Wings and hemal of a Thetid: Mat rachedra.

Fig. 181.-The Angoumois grain moth and larva.

The gemus liptientu contains the smalle kithewn moths. The Angommis grain moth (Fir. As) cats the interine of whent-grains in gramaries; it is srayish ydlow, with two ur three darker spots on the fore wints. Timcie peilioldte Limn, the clothes moth (Fis. $1 \times 2)$, as a caterpillar make's a case of woolly fibres, an lis a miversal pest. So also is Titnen teppetarlte Limn., which is black on the basal half of the fore wiurs, but white on the onter half: destroys woollens. Tinme bivelliella is a pale yellow odire moth, with a reddish- Fig. 183.-Clothes moth a. larma : b. its ochre hend; ite caterpilhas

a makes no ease, though lestructive to worllens. fur, dried insects, cte.

Fimily Tortricide - The leaf-rolling moths are rathor -tom bextied, with wide, oblong winge, the costal edige of the fore "inm luine often simons; the antemse are simple, or fincly ciliated, and wiry rarely pectinated: the palpi are curved up arainst the front of the heat. or extended forwarde, and are sometimes two or three times as lone as the heode the hemd athere is rough with ereet seales, while the winn are often crosed with irrewalar lines of tufte, and the re is: moticeable thft at the end of the aldomen. The lere are of m dimm size and length, and in a few species the himd thise are demaly chothed with hair like seales, while in some cases the males hate it lung tuft of hairs lying in a groove alone the incide of the hind time (Fernald).

The caterpillars are called leaf roiters from their cummon hathit of folding or rolling over a portion and lining the inturior with silt;
others feed on buds, or live in seeds and fruits, or bore in the stems of plants.

The spruce-bud Tortrix (T. fumiferana Clemens), usually rare, at

Fig. 183.-Grain Tinea, with larva and pupa. Natural size and enlarged.

Fig. 184.-a. head and palpi; b, fore wing; c, hind wing, of CEnectra xanthoides.
times has defoliated spruce and firs over extensive tracts on the coast of
 Maine; the moth lays about thirty eggs which are flat, scale like, slightly convex above, with a thin shell; the worm feeds on the buds and terminal shoots in June. Our most common leaf-roller is C'acacia rosaceana Harris, whose green larver, with a black head and prothoracic shield, fold the leaves of the apple, plimm, cherry, rose, and other plants. The cranberry worm (RhopoFig. 185.- c moth of cranberry- bota vacciniuna Pack.) often injures worm (a); b, pupa.
the cranberry plants. The strawberry leaf-roller, Phoxopteris fragarice (Walsh and Riley), folds the leaves.
Family Pyralidæ. - The moths of this group have slender bodies and legs, the fore wings are usually narrow, the hinder pair broad and somewhat pointed at the apex; the palpi are often held straight out, and are usually long and slender. The larve are casily confounded with the leaf-rollers, hut are usually more or less striped, those of the Plycids being often brownish. There are three subfamilies, viz., the Crambinue, Phycince, and Pyraline.

The species of Crambus are often very destructive to grass. The larva of C. vulgivagellus Clemens (Fig. 186), which ravaged the pastures and meadows of New York in 1881, is pale purple green, with a black head: it forms a silken tube near the roots of grass, and pupates in thin, sliglt cocoons just under the surface of the ground. To this group belongs the bee-moth (Galleria melonella). Among Phycine, the currant and gooseberry fruit-worm (Dakruma convolutella Hübner) is noteworthy. Of the Pyralinæ, Asopia farinalis Harris in the larval stage feecls on meal, ete.; other typical forms are the species of Botys, while aquatic larve, living in cases, are species of Hydrocampa, Cataclysta, and Paraponyx.

Fia. 1sbi.-Vagabond Crambus. a, larva; b, tube: c, enenon in the gronnd; d, f, moth; e, wing of a lighter specimen-alt natural size; g, egg, enlarged.
 spath-worms, ure at once koown hy their lowning gatit, due to the afisence of the two front patis of abdominas less so that in walking the buty is arobed upWatds: when motionkes they resumble (wigs amt stems of the trews they inhabit. The moths hatwe sember hodies and very loromd wings, with hsually: pertinated antemate: the patir are short amd shonder. amd lhe tomertur short sul weak. W゙lon a'mat (1) pulatte, the caterpillats oflon spin :lll ugen loose

 encoun, hatt whore the inseret hobernates in the pupa state, as the canker-worm, it harics itself in the grommet; few hang naked amd suspended by the tail.

Fig. 128,-spring canker-worm. a, mate moth: b, winglese fellyhe. atmral size; b, egs: a, larra: c, sille, it, wn, of a semblent.-Af er liley
The pupse tre rather smooth and sleuder, either pale brown and
spotted, or mahogany brown. The more destructive forms are the spring canker-worm, Anisopteryx vernata, in which the females are wingless, and lay their eggs in patches on the bark, the worms appearing when the trees leaf out. In cities the caterpillars of Eudalimiu subsignaria Hübner defoliates elms and other shade-trees.

Fanily Noctuidæ. -The owlet moths number upwards of 1500 species in this country, many of which are destructive to crops. The noctuids in general differ from other moths in their thick bodies, the thorax often being erested, by their stout palpi, and the usually simple antennæ, though these are in some cases pectinated. The fore wings are rather narrow, with usually a dot and reniform spot in the middle of the wing, while the hind wings are large. They mostly fly by night. The caterpillars are usually smooth, without hairs or spines, the body tapering towards each end, and more or less striped; the number of feet is usually sixteen, except the lower genera with broad wings, such as Catocala, which are semiloopers, having but

Fig. 189.-Hop-snout moth, $H y$ pena humuli. Natural size. fourteen feet. The pupe are usually subterranean.

The lower forms, called Deltoids, have very long palps, and the larve are slender, glassy green, and fall wriggling to the ground when disturbed. Such is Iypenu humuli Harris. The species of Catocala have very broad fore wings and often bright red hind wings, the caterpillars living on trees. The great Erebus odora Drury, which expands five inches, and the great

Fig. 190.-Army worm and moth. a, male moth: b, abdomen of female-nat. size; c, eye; d, base of male antenna; e, base of female antenna, enlarged.
(Leucania unipuncta Haw., Fig. 190). Universal pests are the cutworms, which like most of the other larve of the group feed by night, hiding by day. Their eggs are laid near the roots of grass, and the

 ususilly short and thick. The ormon is divilend intor n mamber of sub-families, rerareled hy some stuthors as families.

 cherry trecs.

The C'ratocumpimare represented hy Anisota kemturia (Abhot-

 (lirurs'); the Memilencini hy If milenta muin and IIyje rehiria io Fothr.; while the gi:nts of the fanily helong to the Athere, whicle embrace the Americansilk-Worm, the callerpillar of Teleapolyphemus (Cramer); Ac-

Fio. 191.-The Chiusse sitk-worm. b, cocoon: a, moth, Nuturll:
 (I)rury. The limbmeinare represented by the (hfo - h-worm.

 by the Notodontians (Milerlontes), of which Echizurlanion ors Ahhot
and Abbot) and Notodonta stragula Grote, as well as Nerice bidentata Walk. (Fig. 192), and Edema albifrons Abbot-Smith, are examples.

Fig. 192.-Nerice bidentata. Nat. size. Fig. 193.-Edema albifrons. Nat. size.
These are succeeded by the Cochlidie, of which Limucodes scapha Harris is the most familiar form. This group is followed by the

Psychinar, represented by the basket-worms, Thyridopteryx ephemerceformis Steph., Psyche confeterata Grote, and Plateceticus gloverï.

Fig. 196. - Hyphantria cunea. a, dark larva, seen from side; b, light larva from above; c, dark larva from above; d, pupa from below; e, pupa from side; f, moth.
The Dasychirex (Liparinæ) are represented by Orgyia leucostigma (Abbot Smith) or tussock-caterpillar, so destructive to shade-trees.

The Arctioue are a large group, the species of Arctia being nu-
 reirginica (Fabr.) amd the fall welb-wom, Ilyphentrint chuad Drury, Fig. 196). The last sub-family is the Lithosin, in which the body is

Fig. 197.-Lithosia bicolor. Nall size.

Fig. 194.- U'tetheisa bellu. Nat. size
slight, not very hairy, sud the antemme not peetimated. Lithoxem hie coter Grote (Fig. 197) and C"telheian belle (Limn., Fig. 19ヶ) are typical forms.

Yamily Zygænidx. - The beantiful moths of his group are recornized be the pertinated antmase, their nsally rather narmw wings, rombled at the apex, the Aretian-like vemation, and by their hatry caterpillar-, whith trameform in comons of silk or mostly hair. It
 in thi cemmery by the spefic of Proeris, itarrisina, cte., ar well as Lycomerphet jhemes Wrury, and the dilducopint, exemplitied by f'icouchat virginita (harp.

Family Agaristidx.-Fomemy asenciated with the preweding family, the sperien of this gromp dither in having simple amtenner. a sub-eotat eall, and the eaterpillars are maked, more or less humped ou the eighthatodominal st rimelt, and dunot pin a silk conom. The types are Eudryms gretla Fi:ar., EX. unio IIn̈bn., and . Ilypria s-maculatu (Fahr.).

Family Castniadæ. - The sperias are tropural, monty very Jityer mothe "ith simple anfemma thickement tonards the emd, ath the hod marrow hofowen the ever the seates are in ('n-tuia harger than in any wher Lepidopterat): the harve are

Fio. 199--. Itypia of grape ar larva, ${ }^{2}$. suld of a segment, enlarzind - After Rifey nasen, buring in the stems of orchids, ete \quad is in the two foregoing familios the mothe stre day-

 mates of whith have : vitreons spot on the fore "ines. makes a whazing mose like the hamming of at top.

Family Hepialide. - These are plain, umornamented hrown moths, Whose smentia are short, and either simphe or al artate: the tongue is "amting. the dypens short, and the harsat are berers. Hepmetus mavelintis Pack, weors in the Northenstern Statec.

Family Cossidx-Large moths with the antenua well peetinated;
a sub-costal cell, and a strong vein dividing the discal cell longitudinally into two cells; larve boring in solid wood. Prionoxystus robinite Peek. is the oak and locust tree-borer.

Family Thyrididæ.-Small, richly colored moths with simple antennæ, the wings small, the hinder ones more or less angular; the discal cell of the fore wings open. Thyris maculata Harris, T. lugubris Boisd.

Family Sesiidæ,-Small moths with brilliant colors, long, narrow, more or less transparent fore and hind wings, and thickened antenne; larve boring in the stems of shrubs and trunks of trees. Sesic pyri (Harris); Melittia ceto Westw., the squash-vine borer.

Family Sphingidæ.-The hawk-moths are large insects with thick bodies, spindle-shaped antennæ, thick palpi; usually a very long tongue; the fore wings are rather narrow, the apex sharp, and they have a small, short discal cell. Caterpillars with a smooth or granulated skin, and a hump or horn on the eighth abdominal segment; usually pupating in the earth, the pupa often with the tongue-case large and free. In Hemaris the body is bright-colored, and the wings transparent in the middle (II. thysbe Fabr.). The larva of Thyreus abbotic has a disk-like hump instead of a horn. In Smerinthus the tongue is short and weak; S. exacatus Ab. and Sm. In Cherocampa and its allies (Cherocampince) the thorax is not tufted, and the outer edge of the wings is more or less hollowed out; in the Sphingime the thorax is tufted; the tongue long and the outer edge of the wings convex; Sphinx celeus Hïbner is the potato or tomato worm, and S. curoline Linn., the tobacco worm of the Southern States. The larve of Ellema have no horn; Ellema harrisizi Clemens.

The butterflies appear to form a super-family, the Rhopalocera, and are divided into four families. They differ from moths in their club-shaped antenna: in the wings being elevated when at rest, and their peculiar renation; the lack of a bristle connecting the two wings; and from their day-flying habits are called dimmal Lepidoptera. 'The larvæ vary greatly in form and ormamentation, but with rare exceptions (a very few Hesperians) they are not borers, and none of them spin a perfect cocoon, the chrysalis either being fixed by the tail head-upwards and held in place by a silken thread passing around the body, or it hangs suspended by the tail; others (Rurales) generally fasten themselves longitudinally upon the leaf or stem of a plant, while the Hesperidæ lie inside of a rolled leaf, with silken threads around the body.*

[^13]

Family Hesperidæ.-Head very wide between the eyes; antennæ ending in a hook; hind tibiæ usually with two pairs of spurs. Larva
 naked, with a large head, rarely boring in plants, usually living in a rolled-up leaf; pupa secured by many threads, or enclosed in a slight, imperfeet cocoon. The Hesperids commect the true buttertlies with the moths, Meguthymus yucce Boisd. and LeConte boring in the roots of Yueca, and bearing a supericial resemblance to the Castniidæ, being more moth-iike than any other buttertly, while the species of Synemon, with their bright colors and club-shaped antennæ, simulate the Hesperids. Examples of the family are Hesperia tessellata Scudd., Nisomiudes brizo Bois. and Lec., Eudumus bathyllus (Abbot and Smith), and Thymele proteus (Linn.).

Family Papilionidæ.-Wing-cells (at least, of the hind wings) closed; hind tibie with one pair of spurs; a leaf-like appendage to the fore tibie, as in moths and Hesperids. Larva with al retractile scent-organ on the segment next to the head. Pupa fastened in an upright position by the tail and a girdle across the middle. Pieris rapce Linn., the imported cabbage buttertly, and P. oleracea Harris, as well as Colias philodice Godart, represent the sub-family Pierince, while Parnassius and Papilio turnus Linn. represent the sub-family Paplioninte.

Family Rurales.-Six perfect legs in the females, four in the males. This group is subdivided into two sub-families, the first of which is the Lycenince, in which the fore tarsi lack the tarsal claws, but are densely spined beneath. Wing-cells (except in Eumæus) not closed by perfect veins. Larva oval and thattened, head small, and the feet very small. Pupa short, obtuse at each end, smooth, fastened by the tail and a girdle. Lycana pseudargiolus Boisduval and LeConte; Chrysophunus thoe Bois. and Lec. In the sub-family

Fig. 202.-Melitcea phaton (under surface on right side); a, pupa, enlarged. Erycininc, the legs are as in Lycænine, the fore tarsi consisting of only one or two joints, and being spineless. Larva either not spined, or with bristles and hairs; pupa either with a girdle (Erycina), or fastened rigidly by the tail without a girdle (Stalachtis), or, as in Libythea, suspended freely by the tail.

Family Nymphalidx.-Fore legs imperfect in both sexes; in the female wanting the tarsal claws; in the male the fore tarsi are aborted, consisting of one or two joints. Discal cell usually open.
 peoded frety by the tail. stom, wher smoeth and romeded, or muruher in outline This is hy far the haren erroup of buthertione Alferonia feromial Limu., a Brazilian limterily, alan an inhabitant of Hexito, moording th Jarwin makes a clicking ammed while on the wing. Jhone remill (Limm.) inhahits Florida, the (bulf al:thes, and
 Argymis (ex. A. upherlite Fabr.) are notable for the siluery yots

Fig. :ill3. Polygentin moduce Natural size.
Under surface ow dght she.

 लutural size.
on the mader side of the hind wines. Allied to them are the specties
 Polygonial (l '. progne ('ramer) the outer celece of the winge are noteded. The highest of the butherthes appeat to be the speries of Heticonia, of C'reromis (f': whope Fahr.), ant the interesting aretieand alpine gronas (Eneis (0. semuded say).
 mons. Ints, IV (nspis. (and Bees).
In order to pereme the distinctive feature of this exten-

> * shecorin Womks.

Aaron, S F. The North Amerie:n Chrysidide (Trans, Amer. Ent. suc., 15: 5).
Blake, C. A. Monograzh of the Mutillider of North Ameriea Tram:

Cheshire, F. R bees and lecekemping. I. Scientitic (Amatomy of the homey leer). (lamelon, lisit:
Cresson, E.T. Synopsis of the Hymenoptera of America, north ol

Yorel, A. Les Fommis de la suisse (hemera, 1-ith

—— 1 enertic syopsis of the hymenopterous family Proctorupida (Trams. Amer. Ent. Soc., viii., 1ss(i).
Lepelletier, St. Fargean et Brulle. Histoire maturdhes des idsectes

Lubbock, J. Ants, Bees, and Wasps (New Iork, 1s*?).
(Continued on next page.)
sive order one should examine a honey-bee. Those that we see in our gardens are the workers; the males, or drones, and the females, or queens, are rarely seen out of the hive.

In the first place, see how well-proportioned are the three regions of the body; the head is large in proportion to the

Fic. 205.-Head of a worker hive-bee. A, front, and B, side view; oc, simple, e, compound, eyes; epic, epicranium; $c l$, clypeus: lbr, labrum; $m d$, mandible; $m x$, maxilla; l, lingua or tongue; $l p$, labial palpi. Magnified. thorax, which is nearly spherical; and the hind body, which has six visible segments, is short, conical, and attached by a slender waist to the chest. The three regions are more equally developed than in any other order of insects. Moreover, Hymenoptera differ from all other insects in the thorax (in all except the Tenthredinidæ), consisting of four segments. the first abdominal during pupation being transferred to the thorax.
McCook, H. C. The natural history of the agricultural ant of Texas (Plilad., 1879).

The honey-ants of the Garden of the Gods, and the occident ants of the American plains (Plilad., 1882). Also papers on other ants (Trans. Amer. Ent. Soc., 1876, and Proc. Acad. Nat. Sc., Phila., 1877-84).
Mayr, G. Formicina Anstriaca; Die Formiciden der Verein. Staaten in Nordamerika, 1886; and others papers in Verh. Zool. Bot. Ges, Wien, 1855-86.
Moggridge, J. T. Harvesting ants and trap-door spiders (London, 1873-74).
Packard, A. S. Revision of the fossorial Hymenoptera of N. A. (Proc. Ent. Soc., Phila., 1865-7).

- Humble-vees of New England and their parasites (Proc. Essex Inst., iv., 1864).
Saussure, H de. Studies of the family Vespidæ (3 vols., 8vo, 75 pls. Geneva, 1852-58).

Synopsis of American solitary Wasps (Smithsonian Misc. Coll., Washington, 1875).
Smith, F. Catalogue of Hymenoptera in British Museum (7 parts. London, 1853-59). (See also other papers in Trans. Ent. Soc., London, 1853-59.)
Also the papers of Ashmead, Bassett (on Cynipidx), Norton (on saw-flies), Patton, Riley, Say, and Walsh (on Cynipidæ, etc.).
 componme eves are sern to be bery latere whate the throue
 the head. 'The antemate are fonder, and ellowed on bent at the end of the long serond foint. 'The large elypels is suceecded in front by the shart, mosable upler lip (labrim).
'The mouth-parts are rather complicated, and it is their complexity or high dearee of spectalization which for the most part gives the bee and others of its order their superior fosition orer other insects.
'The jaws are rather larere and eross eatel othere in front. athd are muchas in beetles and gratshoppers, being adapted

 are long and slember, amd, with the molar lip. lant master the head. They ©onsist of there juint: the lat forminge : long flat blate. From the seond joint arises at minnte two-jointed forler (falpuc).
'The mater lipe is, lowerer. the mest perentiarly moditiod. It comsists of three parts: the two onter forming the feelers. and emblag in three small juints. While the midhle divisun

 button: extemding this into flowers. the hee erather: the neetar. 'flar month-pates are thas as set uf complicated tools. - the jaws for hiting amd for new as tronels in making
 flowers, amd the tongme asort of writhinge hairy rot. for gathering the swe lipuid seroeted at the hettem of flowers.
 with wo seales. 'They are formed of a chatr me mbathe. henere the name of the order to which the here bernere i.e. Hymenterter. of membrane-winged. 'The vatu are few, irregular, inelosing a few eells. The himeler par of wings is lese than half as large as the front pair.
'The legs are not very long. but very hatry and the hinder ones have thattened shamks, while the tirst toe-joint
is very broad and flat, with the inner surface covered with dense stiff hairs, upon which the pollen of flowers is stuck, or piled up, so as to form a yellow heap which is borne to the hive.

The sting, if examined by the microscope, is seen to be formed of three pairs of sharp narrow blades, of which the innermost pair is barbed at the end. The sting corresponds to the egg-layer or ovipositor of the grasshopper, or of the ichneumon-fly.

In their mouth-parts Hymenoptera are wonderfully specialized; they can bite, pierce, cut, suck, or lap. They are swift on the wing; their habits are related to their

Fig. 206.-Digestive canal of the honey-bee. a, salivary glands; b, œesophagus; c. stomach; d, the numerous urinary tubes opening into the intestine, $e ; f$, rectum; g, rectal glands. - After Dufour.
great range of station. Their metamorphosis is the most complete of all insects, the young wasps and bees being footless and fed by the parents. From these and other causes the order hats flourished to a wonderful degree.

In this order, says Darwin, "slight differences in color, according to sex, are common, but conspicuous differences are rare except in the family of bees." In the Ichneumonidæ the males are almost always lighter colored than the females; while in the Tenthredinidæ the males are generally darker than the females. In Tremex columba the female is much brighter colored than the male. In the ants the males of several species are black, the females being testaceous. The sexes of bees often differ in color, the males generally being
the brightest, anm in homhus:aml Apathos Lhey :He much
 of Xylocopat. Whild the femates are hlach, the mates are bright yellow. ((xesent of Man, i. :3.t.)
 the ovipmsitor is momal. Weing adapted for boringe or so monlitiel as fo formataw-likerplyaratus: whike the - fouleutu, incloding the ants, watis. and hees. hate a true sting.*

Family Tenthredinidx.-Abhomen sesile, not harrowed at the base; evipusitur saw-like; anterior tibie with two apical spurs; the

Fig. ©0:- The lareh saw-fy, natural size and enlargen, with the lareth wern of ditrorent ages, natural size- गlis: T.. Sullvan i.l
head is shont and tamsversely ohbonge with shorl. fo dhowed,

[^14]closely resemble caterpillars, having from six to eight pairs of
 abdominal legs (in Lyda there are no abdominal legs, but a pair of singular, jointed terminal appendages); they are usually of some shade of green, and usually moult four times. Most of the larvae secrete silk and spin a dense, tough

Fig. 208.-Pear slugworm (et enlarged), and its saw-fly. cocoon within which the half-formed pupa resides through the winter, finishing its change into the pupa state in the spring. With its sawlike ovipositor the saw-fly punctures twigs and leaves; as in the case of the larch saw-fly (Nematus erichsonii Hartig), the two sets of serrated blades of the ovipositor are thrust obliquely into the shoot by a sawing movement; the lower set of blades is most active, sliding in and out alternately, the general motion of each set of blades being like that of a back-saw. The species of Lophyrus have pectinated auteunæ, and are destructive to coniferous trees.

The pear slug-worm (Selandria cerasi Peck) and the currant saw-fly (Nematus rentricosus Klug) deposit their eggs in rows on the minder side of the leaves, and there are successive broods of worms thronghout the summer, the females of this species being agamous. The largest of our saw-flies is Cimbex americana Leach, whose antenne are knobbed at the end; while its larva as it lies coiled up on a leaf resembles a helix shell.
Family Uroceridæ.-The species differ from those of the preceding family in the long, large, exserted borer, adapted for boring into solid wood, and in the fore tibix having but one apical spur. The larve are called horu-tails, and bore in pine or lard-wood trees; they are without abdominal feet, and when about to transform spin thin silken cocoons. The species of Cephus bore in the stems of wheat, etc., while Tremex columba Linu. infests elm, maple, and other shade trees, making large, smooth romd holes in the tree.
Family Cynipidæ.-The gall-flies are all of small size, the head generally small and transverse, with slender, straight, $12-16$-jointed antemne; the thorax is usually thick, oval, with a large scutellum, and the wings (sometimes wanting) are withont a complete costal vein and stigma, and there are few veins; the abdomen is short, generally oval, more or less compressed, rarely knifeshaped; the second or third segment is the largest, while the ovipositor is spiral and concealed within two sheaths. The larva is a short, thick, tleshy, footless grub; and those of many species transform within their galls, or enter the earth to pupate.

The egrg is deposited in leaves or branches, especially of the oak, rose, vaccinium. etc. Its presence, with poss-

Fig. 209.Horntail: larva of Tremex co lumba. Nat. size.

 within which the larvathathe and lives liarlis speries of tly producess a perouliar gall, which is chatate toristic of that :perits. (reat mambers of female grall-blice are aramons, i.c., are prodused frotu unfertilized crexs, the re being
 cus-ucirntata (I. sitrk.., which proulumen a latree gall in the attomm, in the epringe of the year succerdiner has curge which producer galls diselosing it dimorphic form.

Fig. 210.-Gall-tly of oak.
 fira hy diten Sitcken. The athman hoond of thin Cymijs comsints entirely of agmons femalas, while the spring bremd com-ist of louth males and fomales; there is thas an alternation of gernerations, and this is the case in matuy species. lasonce ciace the two erenerations belong to what were wirimally dearibeol u- - parate frem rat. 'Thas Adler observed that the Entopean - litroberux lenlirulurix prodnces gill- of a cortain form on the ubter surface of oak-leaves, the talls
 It then deposic its refer ons the biod- if the mak, which promhere

 and the Nempotern- eromeration comsish of fomalos aloner, while the spatherasters are of hoth sumes

The gall-tlies fall into wo sections, the first runtainiths the true

Fia. 211.-Erania lariguta, nale. anil min

 tides, which are parasitic. In the sub-family Fizatiat the ablomen is elungrate-ovate, compresed, with the apox num or leas puinted.

Family Evaniidæ.-These are insect-parasites, and are characterized by the abdomen being attached to the disk or near the base of the metathorax, and not at the apex as is the case in the other families. The abdomen is petiolate and more or less compressed. Exaniu levigata Olivier is parasitic in the eggs of the cockroach (Periplaneta). Fonus jaculutor Linn. in Emrope lays its eggs in the larve of Crabronidæ.

Family Trigonalidæ. -Costal and sub-costal veins separate and distinet, the costal cell being present. Abdomen sub-sessile, short, ovate. Trigonalys.

Family Ichneumonidæ.-In this great family the costal and subcostal veins are confluent, the costal cell therefore absent, while the first sub-marginal and first dis-

Fig. 212.-Rhyssa. Nat. size. Fig. 213.-Ophion macrurum. Nat. size.
On hatching, the larva, which is a soft, tleshy, footless grub, bores into the body-cavity of its host, and lying there absorbs the blood flowing around it, and thus weakens the caterpillar, so that it dies, or the insect does not live beyond the pupa state. Typical genera are Ichneumon, Ophion, Cryptus, Pimpla, etc.

Family Stephanidæ.-In this very small group the head is globose, the vertex tuberculate and rugose; the costal and sub-costal veins spparate and distinet, the costal cell being present. Stephanus cinctipes.
 the lehnemmerthe it sisht re-
 wemte? remirre olt vein of the fore winge, and hy han ing the tirat cult. marginal wellighmally, th math mo: alway- oparmed from the lirst diandal cell, atm, with the eactption of ohe onth-femily, the Aphidinar, be the nom-xivene of a rata artientation lwewen the socond and third ableminal we. ments" (resemen. In their hahits and eneral aphearauce they to not dilfer from ordinary lethemmonids, thonght, as a rule. uf smaller size. The group is represented by liraton and Mierogatar; the sperine of the hatter -pin their alimitial comon either withia the berlies of caterpillar- of fantem them in a thick mone to the ex. werior. The - preir of Alhidinare pratatite in - thide.

Family Chalcidide -The fore winta are if arly viallo: the pow heriar matrin of the prothuras mon rembing the ternle: white the owipositor isulte from lefore the end of the ablomen. The (hat). cids are rentrally minnte: many of them of heantiful hathe- of ateen, nith metallic rethetime. A gemelly propurtion of them are

Fic. 214 Prasita of the calongeo
 larva; di, [14. a.

 thein are: the prothoras ate bl- to the he ghle isthl

 parasit, i
 domen. The winco are alon almad wimic. and in the minuter form- thy are hathe ir themen wh

 i- hut mhe-ninctichlo if:m inchl=

 - enter. P'eminas polycerutor lorury:

Family Chrysididæ.-In the species of this interesting group, there

Fig. 216.-Pelecinus, male and female. Natural size.
are only from three to five complete abdominal segments, the remainder forming a telescopic, retractile

Fig. 217.-Chrysis hilaris. tube, containing a sting-like ovipositor.

The Chrysis tlies are blue, green, and ruby-red, with rich metallic reflections. The females, cuckoo-like, lay their eggs in the already provisioned nests usually of solitury wasps and bees, the larve eating the food stored up, causing starvation and death to the young of their hosts. Typical genera are Cleptes, Elampus, Hedychrum, Chrysis and Parnopes.
The ants, formerly all included in the old family Formicidæ, are now regarded as forming a section or super-family Heterogyna, which is characterized by the petiole of the abdomen having one or more scales or nodes; while the antennæ are elbowed. Ants live in societies consisting, besides males and females, of workers. 'There are five families, characterized as follows:

Family Formicidæ. -In this (and the three following families) the petiole has but a single joint; the abdomen proper (not including the petiole) is not constricted between the first and second segments, while the mandibles are inserted wide apart. The clypeus is always distinct and often very large; the frontal crest is more or less long, not surrounding the insertion of the antenme, and the petiole is almost always sumounted by an erect seale. Most of our ants belong to this group; their larve usually spin a thin but tough cocoon. Ants are fossorial, digging mines ind gatleries underground, or excavating them in old stumps and trees. A complicated society or nest of ants is called it "formicarime" the work of which is carried on by the wingless individuals, called workers.

Certain ants enslave other species; have herds of cattle, the aphides; tumel broad rivers, lay up seeds for use in the wintertime, are patterns of industry, and exhibit a readiness in overcoming extraordinary emergencies which shows that they have sufticient
reasoning pawers to meet the adgeneme of their life; their ordi mary atis heing instinctive, viz., the resulte of inheritel habit

F'rmily Odontomachidx - Mandihes very long und suddenly re-

Fimmily Dorylde.-Ant with a very small or evon indistinct

Fig. sis.-Ficiton mexicana; worker-major: a, front view of heas
Mypens; fromtal crest very short; petiole depresed, momiform thepresented hy a single genns, habidns, of which only the maken are knewn; and they are suppesed to be the mate- of beftem

Fomily Poneride.-Ahdomen proper constrieded hetween the tirst athed recond serments. Pomera.

Fimily Myrmicide. - In the stingine ants the periole antive of IWO joints. Myrmict melenta siy is fomm all wer the word, wher

 large head-are called worker-majors or soldiers, and the - maller ants worker-minors.

The erours of Fowsores, or fossorial Hymemptenat eonsisting of the sumb-and wood-wasps, etc.. is hiviled into at mumber of families, some of which maye yet hatcel. 'The petiole is simple. i.e. not formed into seales or modes: the ee are no workers, though the females of the Matillidie are
always wingless. The legs of the females are adapted for burrowing, and not fitted for collecting pollen.

Fig. 219.-Eciton mexicana; worker-minor.
Family Mutillidæ.-Females wingless; in this as also in the three following families the prothorax is produced behind, so that the hinder angles reach the tegulie. The intermediate tibie have two apical spurs. In this group, as well as in the Scoliidie, the first ventral segmeut of the abdomen is distinctly separated from the second by a more or less deep constriction. The Mutillids are usually scarlet, or scarlet and black, and the body is more or less hirsute; they sting

Fig. 220.-Mutilla, female.

Fig. 221.-Myrmosa, male and wingless female. badly, and store their burrows in the sand with flies and other insects. Mutille ferrugate Fabr. (Fig. 2N0); Myrmosa unicolor Say (Fig. 221).

Family Scoliidæ.-The females are always winged, and the middle tibie have but one apical spur. The head is broad in front, the eyes indented, while the femate antenna differ from those of the males in being short, thick, thd ellowed. The species of Scolia are black banded with yellow, and live as parasites in the grubs of beetles. Tiphia inornatu Say is a common black speeies. .

 are short，and hereven imbentel The yreate anter the burran－of
 hosts．Arpmg murtinii smith

 while the eyes are not indented．These ative，batak wask store

Fro．＇ren－Pompilus formosis，the Tarantma－killer．Natural siza．
their hurrons，made in the samd，with spilers（be of the largeet sperics is Pomprime formosu．sily：
 domen，the petiole slender，eglimbital，smomb；tharellmm semerer an the end；middle thibe with two apheal spurs．Thes rap bidy dier in
 pillars，grassheppers，or spiders，wheh they stiner betwen the joint－ of the ir bedy，paralyzang them so that they live on mat the ir own
 with grashoppors．The suecies of Proppons are caldel＂mbl－ dambers，＂as they bital their cells of dabs of mad wom the whe of houses，me

Family Larride．－Wiaps of this erciup have the mamblas moteded on the ontsife near the hase；the lathom is comeath 1．the abtumen is oval conical．They burrow in sand－bank，provisoning their
cells with locusts, grasshoppers, etc. Larrada semirufa Cresson preys on young locusts.

Family Bembecidæ. -The labrum in this family is disíinct, exserted, and sometimes long and beak-like. Stizus speciosus Say

Fig. 223.-Sand-wasp, Sphex ichneumonea. Natural size.
preys on the Cicada; the species of Bembex seize flies, bearing them to their nests; our common species is Bembex fasciata Fabr.

Family Nyssonidæ. - Labrum short, either not or searcely exserted. Nysson lateralis Say; Gorytes flucicornis Harris. These sand-wasps prey on tlies, Tettigonix, etc.
Family Philanthidx-In these wasps the prothorax is very short, transverse, not extending back to the tegule; the fore wings have

Fig. 224.-Larrada grasping a young locust, and about to sting it.
three complete sub-marginal cells, and the abdomen is eithcr sessile or sub-sessile. Philanthus vertilabris Say; Cerceris deserta Say; These wasps provision their nests with the gitubs of weevils and Buprestids, and adult beetles, as well as honey-bees.

 hrobd, eyes indemted; und the tirat abl-marginal sell receise at re-

Fomily Pemphredonidx. - W゙onl wa-に, in which the amterior wins have two complete submatemal celle; prothona shert, tratwere; metathoran hom, rombled pentembly; dyens mot carinate or leak-like. Stignens fratermux suy mine the stems of the Sy ringa;

Fumily Crabronidx. - These wom waps are easily recornized by their cubical hats; short and wide elypens; and by having but one shbmarginal and wo diseoulal cells. The hathts of the serete are extremely interesting. Codso sex-mbenktux say mines derasing wood, and ('. singularis smith bores in phats. In the male of Thyreophe the fore lere have shidd tike expmsiom- whethare either striped or dotted with blach. Lihopnelum pedicellatum Patck. bures intu the stems of the rowe, Coreorms, spitata, etc:

The section or super-fatmily /hplophergun. E"ore-ponding to the Vespulae of eaty athlows. comprises the trae watpe. in which the wings when ant rest are fohbed lengthwise. The prothorax reathe batek the the be of the wing: the eves are

Family Eumenidx. - In this and the mex lamily the ant mut ate tiliform. Niblle thine with one sur at apex: tarat dath- ane penthed: solitars; no workers. The solitary wathe are repromed
 structe a romed cell of pellets of mon, ather as it cherry, which it
 preve on small eaterpilatrs. which it etores in romed maderels.

Fimmily Vespide - In the oncial or batuer wanc, the repuhlice is a
mamerote obe, there being many workers. They all have two spurs :ll the emb of the midalle tibite. I: lixtes cmevionnus Fahr and wher speries buidel nests comsithag of tow cells in one row, attached month downward to hashes. The spectice of lespe buik several tiers of cells, armaned mouh downwatel, and embeloped ly a wall of several thicknesso of paper. Our commoner speciscare lesper ateme rie labr. amb a larger species, the

 white ficed wasp, ferpme mevertate linn. The for ite foum the colony, and raise a beren of workers, whioh (arls in the sumamer aseit the queen in completing the uest.

The bees, formerly included in the family Apidæ, belong to the section Anthophila, which is divided into two families. In all bees the basal joint of the hind tarsi is (ex-

Fig 226.-Nest of Andrena. g. level of ground; a, first made cell, containing a pupa; b, l. larve; e, pollen-mass with an egg laid on it; f, polleamass freshly deposited by the bee. Natural size.-After Emerton. cept in the parasitic species of Nomada, etc.) broad and flat, generally bristly, and adapted for carrying pollen.

Family Andrenidx.-Solitary bees with the labium flattened, shorter than the mentum. Hulictus parallelus Say excavates in fields nests like those of Andrena ricinct Smith (Fig. 226).

Family Apidæ.-In the social bees, where there are, as in Bombus and Apis, numerous workers, the labium is slender, not flattened, and is longer than the mentum; the basal joints of the labial palpi are longer than the others.

The queen humble-bee hibernates, and in the spring founds her colony ly laying up pellets of pollen in some subterranean mousenest or in a stump, and the young, hatching, gradually eat the pollen, and when it is exhansted and they are fully fed they spin an oval cylindrical cocoon. The first brood are workers, the second males and females. The partly hexagonal cells of the stingless bees of the tropies (Melipona) are built of wax or clay, while the hexagonal cells of the boney-bee are made by the bees from wax secreted by minute snbcutancous glands in the abdomen. Though the cells are hexagonal, they are not built with mathematical exactitule, the sides not always being of the same length and thickLess.

The cells made for the young or larval drones of the honey-bee are larger than those of the workers, and the single queen-cell is large and irregularly slipper-shaped. Drone-egss are supposed by Dzierzon and Siebold not to be fertilized, while the queen-bee is the only
 have bean knewn to frameform into charm-1ness. On the othar hand, worker-bees may in rate case hy drome erges.

The egeg from which the qued develope is like that of :t worker, the difference ariving in larval life, owing to athenge of teatment
 being different from that provided for the worker. The tire or old quent, when the poputation of the hive hemmes exerecter, leaves the hive to establith a new colong. 'Thisis calleed "swarming." The quet-n is very fertile, having the power of hying betwern 2000 and bouncges a day, or "two eggs pre minute for werks in sucecoion." (heshire states that the larva lecels four days, moulting probably six times; and timally, when it sops eating, lines its cell with a siken cocom, though before this com be spme a cower or "sealing" is put owe the eedl by the workers, there being minute ornangs in the cower for the passinge of air into the cell. I strong colony or "sume" maty comtan as many ats 12,000 larvar, ail of whicla are fed ly the mures of workers with pollen mod homer. In ibout a fortuight from the time of sabling, the bee bitec throngh the sealing, and twonte-for home after (lying and preming itsedf, enters upen the daties of the late.

[^15]

Wiasp hauging by one foot, aud eating a fly.-After Eme:toz. 12

CIIAPTER IV.

INSECT-ARCHITECTURE.

MaNy young naturalists are deterred from studying insects by the lack of books enabling them to readily identify the species they collect; but if handicapped in this direction, they can nevertheless observe the curious habits of insects, and form most interesting collections of their cocoons, nests, and various contrivances for concealment from their enemies.

Man's earliest, most primitive attempts at arehitecture were undonbtedly in the direction of obtaining shelter from too great heat or cold, from rain and snow, and from hostile beasts and more hostile men. For the same reason insects make shelters of various sorts, both for their eggs, their young, and themselves. More unconseious (and often, perhaps, semi-conseious) ingenuity is expended by insects, especially the social kinds, than by any of the higher animals, not eren excepting the birds. We know that fishes in rare instances build rude nests, and show some slight degree of eare for their progeny; squirrels and mice faintly imitate birds in nest-building: but where even among birds do we find nests so complex and cunningly contrived as those of ants, paper-wasps, and social bees? Do we really know that birds and beasts, the domesticated speeies excepted, are, as regards architectural skill and general reasoning power, any higher in the intellectual scale than the social insects, with their different kinds of individuals assigned to this or that duty, their laborers and soldiers, and, in the ease of ants, their system of slave-labor, their herds of mileh-cows (the Aphides), and genius for housekeeping, nursing, and civic police duties? But not content

 ing with the mow compler.

 tom of the pool or stream it inhabits. such habits whe

Fil :2ri- Oatk leal rolled sidewise.

Fig. wish-Oak-leaf rolled at the whd.
acqumed and tramsmitted would lead a wood-cating on latighawing insect to sive its life hy hurowing intorme mining keaves or bark, or exen rolling were the edere of al latiand hidher muter it: and such inserts alter at mumber of gent erations. meeting with suceses in the strugre for "\i-t-
 mays sostro them. of masoms. eapernters. :med hillore
 are amoner ditforent onders of insexte. We mas perhaps regated this as the readiest aml most simpla ith thont of forming as shelter. Amoner the caterpillare of the- -mallere mothe there are multitudes which roll up perame of the keaf. whole leaves, or eren bind several form - bewther with silken cords. How this is done mas be seen hy

Figs. 22i-230, taken from the work of Reaumur ; but any one can find similar examples, as we have done, on our
 own oaks and willows. By watching the little worm with a lens, one can realize how deftly the unconscions mechanic begins to turn over the point of a leaf, holding it in place by firstattaching a single silken strand to a fixed point so as to give the first turn, and then gradually and with a good deal of pains hauling the rolled portion over, and attaching new strands until finally a well-shaped roll is made in which the insect can safely reside during its caterpillar existence. In a single season an industrious collector could make a most interesting collection of tents and rolls formed by caterpillarsand what a zest would it give to his Fig. 209.-Sorrel-leaf cut walks!
by a caterpillar.
Another order of rolls are those made by the leaf-rolling weevils, whose very long snouts have short jaws at the end, to aid in the work; thongh, judging by the readiness with which they use their feet, there seems to be some intelligence lodged in those appendages. The singular thimble-like rolls of Attelabus r hois may be found in June and July on the alder. When about to lay her eggs, the female begins to eat a slit near the base of the leaf, on each side of the midrib and at right angles to it, so that the leaf may be folded together. Before beginning to roll up the leaf she gnaws the stem nearly off, so that, after the roll is made and has dried for perhaps a day, it is easily detached by the wind and falls to the ground. 'Then folding the leaf, she tightly rolls it up, neatly tucking in the ends, until a compact, cylindrical, solid mass of vegetation is formed. Before the leaf is entirely rolled, she deposits a single egg, rarely two, in the
midde, next to the midrib. Where it lies lomsely in a little cavity. While all this is groing on hom consort stands near
 again resmming her work. There rolls remain on the
 amal days. hut prohably
 drop liy the time the lara escapes from the erge: amd it seems probable that the gind uses the roll for a shelter until it matures and is realdy to chter on its transformations to a beetle. Another species foumd on the aak dows not derote the whole leaf to as single roll, for three

Fia. 230.-A, whllow-leaves rolled by a caterpillar: B, willow-leatece rolled, shen in section.
or four small rolls may be found on one leaf.
The gall-makers are not the species of Cynips alone. hat also certaing gats and Aphides, inchuding the Ihylhaxem, which inhalhit shelters. due to the morhid erowsth and multiplication of rells on the leaves and twigs, of roots as the
case may be, stung by the parent, whose instincts are exercised in selecting the proper plant, and portion of plant, to sting. Although the gall-flies are not the direct architects of the galls, no collection of insect-products would be complete without a series of galls, of which there are so many kinds.

Intermediate between leaf and wood miners, and caseworms, are certain Pyralid moths which not only crumple and roll up the leaves of plants, but piece out their mines by tubular additions to the openings, which form cases in which the caterpillar securely hides. As examples are Acrobasis juglandis and Phycita nebulo. Another Pyralid (Phycis rubrifasciella) mines the buds and recently expanded 'young leaves of the pig-hickory, and also bores into the base of the leaf-stalks. It also builds out the mouth of its mine, adding a tube formed of grains of its excrement, in which it lives and finally

Fig. 231. - Case of the basket-worm. - After Harris. transforms.

Besides mining leaves, which is one of the liumblest kinds of architectural effort, certain Tineid moths construct flat, oval, or cylindrical silk-lined sacks or cases in which they live, and which, like Diogenes and his tub, they carry about with them. The clothes-moth in its larral stage constructs the too-familiar cases of felting, formed of closely-woven bits of woollen and lined with silk. A whole group of sackbearers (Psychids), small and large, build
spindle-shaped sacks covered with bits of leares and twigs, which are so arranged as to resemble basket-work. One of
 Beetle-grubs rarely comstriet such casen. hut the little Chamys is a gemuine sack-hearer, ats is another leaf-eater, Cisscinopler"e deminicum.

All the Cablis-Hies are sack-bearers in the ir larval state. and the larvar ate from this habit called caseworms. The wom apparently buidds them by adding grain after grain of coarse sand to the month of the tube. lining the interior with silk; if there is moss at hand, hits are fastened to the exterior, or large pieces of leaves. Fig. $23: 3.4$, represents

Fig. :33.- Different forms of cases of caddis-llies.
the case of the European Plory!unen! !mmilis; hit we hate a similar one. formed by cutting a leaf into a broad ribbonlike strip and then rolling it into a tabe come are like
 heen mistaken by shell-collectors for a fresh-water shat (Valvata).

As arehiteets ants are preminent, and they evinee their skill in eonstruction not hy momus alome. lome alo by diguing deep wells and tumelling bood rivers ats well as in laying out rods above and below gromme

While our mative species are not known to form elaborate nests, a greenish ant in Indial (U:'ophl? nl?, wamentlincr) is
said to form a nest, sometimes a foot in diameter, by drawing living leaves together without detaching them from the branch, and uniting them with a fine white web. We wonder at the instinct of the tailor-bird, but there are thousands of species of insects which show as much intelligence in sewing together their shelters. Another Indian ant makes a small nest, about half an inch or more in diameter, of some paper-like material, which it fixes on a leaf. In Brazil certain ants construct large nests, called " negro-heads," which resemble wasp-nests, being attached like them to the branches of trees, though on remoring the outer wraps they are found to differ in having no regular cells, but consist of intricate curved galleries leading into the interior chambers and passages.

But it is in the nests of wasps and bees that we have constructions which attest the highest degree of architectural skill known in the animal creation, those of man alone excepted. It is to be observed, however, that here, as elsewhere, Nature does not make a leap. She does not present us at the outset with fully developed paper-wasps' nests and colonies, or the highly complicated nest and colony of the honey-bee. These were, without much doubt, gradual developments, the results of many failures and successes of which we have no record. There is a long series of wasps, for example, whose nests show different degrees of complexity, which gradually lead up to the nest of the paper-wasp with its numerous cells arranged in several stories, and all walled in by papery layers.

We have first simple holes excavated in the sand by the Sphex ichneumneat (Fig. 223). We have noticed a company of nearly a dozen of these large reddish wasps, whose bodies are covered by a rich golden pubescence. Each one for itself-for in these solitary wasps there is no combined action--began to dig its hole in a gravelly walk, remoring the little stones and coarse grains of sand with its jaws; as the hole deepened it loosened the earth with its jaws, and threw it out of the hole both with its jaws and fore
feet, amd when the same ancomulated on it to he in it = way it would retreat hackuard- and push the dirt still farther back from the mouth of its eell with its hind lears. In this way, working literally with tooth amb matl. it dug a =haft five or six inthes deede, and then flew atway after eratse hoppers to store it. finally filling the momth so that no di-. tinct traces of its work wonld remain.

A reected step upward is the home of the mud-dauber. 'This watep moistens the dirt with its saliva, forming pellets of mud, which it plasters on walls or rafters, storing the cell with spiders. etc. In our (o)mmon yellow-leqged moldamber (P^{\prime} len) built of loug prollets of mal placed in two rows and diverging from the middle.

1. $\because 6$ mu1 dan!ecr.

The wonl-waspe exalvate their hamome in the bollow

 as possible: seme species aroing su fir, or rather dniner oo little, as to refit old maik-holes for their nesting purpocer.

Goming to the trme sultary waspe we find spertes of Fery different nest-buikling labhits. While me kind of Gdynems hailds soparate cells of mud. placiner them in oak-galls or indeserted nests of the tent-atherpillar. :mother builits sereral cells together umber a ammon covering of samly mod fastened to a stark of grass. Whre of an arehitectural etfon is seen in the flask-shaperd colls of mut which Fiumenes fratornu builds. attabhing sencrab of the in in a row to a hameh, filling the interiors with litale ath millars.

Uf a more adsaneed order is the nest of larial. Which slows that eath cell is built intepententy in recular hexagons: sometimes the cells are arranged in tro or three rows: while in the nest of our Polistes anm:orle. often to be fonmel attached to bushes the cells are combled together in one plate or story. But in a delicate rea of at sonth

American wasp (Mischocyttarus), which is suspended by a long pedicel, the cells, few as they are, are arranged in two stories. The transition from this form to the nests of Vespa and allied forms, which are covered in with walls of paper with a single entrance, is not great. The paperwasps begin to boild in early summer, and we could then begin to form a series of nests in different stages of construction which would be very instructive.

From among the bees there can be selected a series, showing that at the outset bees began, so to speak, in an uncertain and tentative way to build their homes. Without much doubt the solitary bees preceded in geological history the social species, though at present the geologieal record is a blank, for species of Andrena. Xylocopa, Bombus, and Apis oceur in amber and other Miocene deposits, and we know as yet nothing of the geological succession of bees, none being found in the Eocene Tertiary.

As with the wasps, we may begin our review of the evidences of the nesting skill of bees by first considering those that simply tunnel the soil, as Andrena, which makes its nests in pastures, consisting of a straight tubular well or shaft, from which diverge short passages leading into the brood-chambers (Fig. 2:6).

Certain other bees excavate tunnels or refit the hollows of elder and other pithy shrubs. The species of Osmia, little green and blue bees, build oval cells of mud, placing them in different situations, either under stones or in partly decaying trees. Osmia simillima, one of our commonest species, is shrewd enongh to arail itself of the empty galls of a Cynips common on the oak, placing them in a row on the vaulted arch of this large oak-apple.

A step higher brings us to the leaf-cutter bees (Megachile), which cut out circular pieces of rose-leaves, a single bee sometimes building thirty cells, using during the process as many as a thousand pieces. With the pieces thus obtained she lines tubular hollows in trees, etc., and
stores in eath cell a matss of pollen, on which an erg is placed, for the foon of the yomug grub.

Corpenter-bees are well named, as with their strong jatws

Fin. 235.- Leaf-entter bee and nest.
they bore perfeetly regular holes in pine boards, as straight as if made with an anger. The tumel is sometimes made from 1: to 18 inches in length, and about half an inch in diameter, so as to readily admit the bee. 'The industrious little carpenter, working as rapidly as she cam. wawates her holes (in pine wood) at the rate of alont a cuarter of an inch a day: Mr. Angus says: " If I mistakn mot, it takes her about two lays to make her own length at the first start: lout this being across the grain of the woml may not be so easily done as the remainder, which rume parallel with it. She always follows the grain of the wood. with the exception of the entrance. which is about her own length."

Passing over the humble-bees, which are not skilful architects, we come to the workers in wax, such as the stingless bees of the tropics (Trigona and Melipona), and the hive-bee, our only domestic insect. The cells of Melipona are hexagonal, but the honey-cells are irregular and larger in size. The cells of an Australian Trigona are arranged in combs similar to those of the common wasp. Hence these bees are a connecting link between the solitary bees and the honey-bee, whose claborate style of architec ture has been so often recounted.*

[^16]

Argynnis aphrodite; under side shown on right.

CHAP'TER Y.

INSEC'TS INJURIOC゙S AND BENEFl(MAL TO AGRICLLTCRE

Economic Extonology relates to those insects which prey on our crops: it comprises a study of their habits. classifieation, and the rementies against their attacks: it also includes a study of inseet-parasites of the domest in animals. of man himself, as well as homedhold pests. In short, this hameh of applied science treats of the habits and best mems of destroying any insert which is in thy way injurions to human interests. 'To suceen well in this applied science one mast be a close. patient ohserver and of a paractical turn of mind.

The number of injurions inseets in the L'nited states is large and inereasing. Owing to the destructivenes of introduced species.* the large areals deroted to spemisl erops. and other canses, erops in this country seem firr mone liable to insect-depredations tham in the Old Work. and the evil is perhaps especially felt in the more recently settleal portions of the country.

Prof. I. A. Lintner, the State Entomologist of New Youk. in his first report remarks: "There is powably not a simgle

[^17]crop cultivated which the infesting insects do not diminish by at least one-tenth-an amount of injury which would hardly be noticed. They often injure crops to the extent of one-fourth or one-half, and occasionally entirely destroy them, as during the ravages of the wheat-midge in this State in 1854-185\%. One of our ex-Gorernors, in his agricultural addresses, has frequently urged that insect-depredations upon crops of one-fourth or one-half their value should be regardel as a direct tax of twenty-five per cent or fifty per cent levied upon their full value, and collected, perhaps, year after year, without a show of resistance; but which each farmer could, and therefore should, resist, and thereby relieve himself from at least a portion of the burden."

The following estimates of the losses incurred by the people of the United States will cause one to realize how large a sum, much of which by proper care and foresight could be saved, is annually wasted. The agricultural products of the United States are said to amount annually to $\$ 2,500,000,000$; of this amount we probably annually lose by the attacks of insects not far from one-twenticth, or $\$ 100,000,000$. The losses from the ravages of the locust in the border or Western States in $18 \% 4$ were estimated at $\$ 45,000,000$; those occasioned by the chinch- bug in Illinois in 1864 amounted to over $\$ 83,000,000$, and in Missouri in $18 \% 4$ to $\$ 19,000,000$. The average annual loss to the cottonraising States from the cotton-worm from 1860 to $18 \% 4$ was estimated as about $\$ 15,000,000$.

While it is estimated that each species of plant on the average supports three or four species of insects, very many plants, especially those in general cultivation, afford subsistence to many more; for many species which now attack garden regetables or fruits. before the settlement of this country lised on plants of different species, but now concentrate their attention on one. Thus the Colorado potato-beetle in its native state lived on a species of Solannm; and most if not all the other species now injurious to the
potato，before its intronduction lisem on other phants．The insects of the alphe and other froit tree hefore thowe trees were introndered into Ameriea lived on certan fore－t－trees． such as the oak．clm，ash，mountain－ash，wihl chores，pop－ lar，willow，etc．

Oar foresterees are also peeuliarly liable to depredations from inspets，certain suecies of which attack the roots． others the bark，whers the wool，many the leates，and a few the fruit or muts．Thus the mak harbors between fise or six hmmedred speries the hicknry atlords mantenamee to one hundred and forty recorded species，the hirehto wer one handred species，the maple to eighty－fise．the prplar to seventy－two．while the pine vields food to wrer a han－ dred ditierent kinds．

Wre will now rery briefly notice the mose common amd formidable pests uf some of our coltivated plant：．referring the realer for further information to the list of works and reports on economic entomologe at the end of this book．

Insects Injurious to Field and Garden Crops．

Injuring Wheat．

The Joint－worm（Istsomut lenelli llarris）．-1 minute． footless．yellowish－white maggot ofterr forms blister－lihe swellings betwern the second and third joints of the stalh． immediately abowe the lower joint in the sheathing hase of the leaf：remaning throngh the winter in the stable staw，or harvested grain，amd chanering into a small． slender，hatek，fonr－winged insect．which deperite its crove it the stalks of young wheat late in May amin Inne．

This is one of the Chaleididat and，malike the majority of the family．lives on phants．When wheat or hatey is from dight to ten inebes high its growth be amo－dolenly checked：the lower leaves turn vellow，amel the talks be－ eome bent．If the butts of the straw are 1 ow examined． they will be foum to be irregularly swollen amel diecolored between the second and third joints，and，insead of being
hollow, are rendered solid, hard, and brittle, so that the straw above the diseased part is impoverished and seldom produces any grain. .
Remedy.-Buru the stubble in the autumu or early spring for several years in succession.

Fig. 236.-The joint-worm fiy. a, c, e, female; b, d, f, male.-After Riley.
The Hessian Fly (Cecillomyia destructor Say). -Two or three small, reddish-white maggots embedded in the crown of the roots or just above the lower joint cause the stalks and leaves of wheat to wither and die; the maggots harden, turn brown, then resemble flaxseed, and finally change into little black midges with smoky wings, which lay from twenty to thirty eggs in a crease in the leaf of the young plant.
There are two broods of the fly, the first laying their eggs on the leaves of the young wheat from early in April till the end of May, the time rarying with the latitude and weather; the second brood appearing during August and the early part of September, and laying about thirty eggs. on the leares of the young winter wheat.

The eggs hatch in about four: days after they are laid. Several of the maggots or larre make their way down to the

Shathing hase of the leat, ath remain betwern the hate of
 swell amt the plant te torn yellow amd die. Diy the ant of November, ar fom thirty to forty daly altor the what is somb, they asimme the e thasied" state, and mas, on removing the lower leases be lown at lithe brown, wald cylindrianl, smooth buties, a little smather than grains of rice. 'They momain in the wheat until during warm weather: in April the larva atpudly fansforms into the pupa within its flaxsed skin, the fly emerging from the flaseed case abont the end of Aprit. 'The eggs latid hy this lirst or spring brood of flies som hateds: the secomd brood of materots live but a few werks, the flaxseed stath is soon mudergone. and
 some "ase there may be two antuma botods. the earlier Ahernat hoond giving rise to a third set of fles in replo tember.)

Theme are several destrutive ichmemon patasite of the Messian fly, whose combined attake are supposal at times
 these, the most imprortant is the (haleid fone-winged il?.
 larged). which infests the flaxseed: and the ergepatai-itn. Plentygaster hervickii Pack.

 wheaterop may in mos wase be sated It should he remembered that the firat bood should be thas ciremonemed or demenged in order that a scoul, or sprine, brood may not appear.

If the whem be only partially atlected, is may the -ated loy fertizore and care lal chationtion; or a hally datared tith of winter when may the he recuperated in the sprins.
 ter wheat in November and early berember, mas cance maty for the
 mily have hearly the same efled.
sow hardy virieties. The [nderhill Mediteramen what, and especially the hataster variety, wheld tillers vigombes thenth be sown in prefermen to the slighter, less vigorne himd in a reation mach infested by the thy. The early (Aucust) =own wheat might be Wiehl; the late sown, Lameaster of Clawson.
(If special remedies, the use of lime, eom, or salt may he recom mended, also raking off the subble; but too chase chiting of the

Fig. 237.-The Hessian fly and its transformations.
A healthystalk of wheat on the left, the one on the right dwarfed and the lower leaves beginning to wither and turn yellow; the stem swollen at three places, near the gromd where the flaxseed (h) are situated, between the stem and sheathing-base of the leaf, a, egg of the Hessian fly (greatly enlarged, as are all the figures excrpt e and $h) ; b$, the larva, enlarged, the line by the side, in this and other figures, showing the natural length; c, the flaxseed, puparium, or pupa-case: d, the pupa or clrysalis; e, the Hessian fly, natural size, laying its eggs in the creases of the leaf; f, female Hessian tir, much enlarged: g, male Hessian fyy, much enlarged; h, flaxseed between the leares and stalk; i, chalcid parasite of the Hessian fly, male. enlarged. - Fig. b drawn by Mr. Riley; Fig. d by Mr. Burgess; Figs. a, c, and i, by the author; h, g, f, drawn on wood by L. Trouvelot.
(To face page 195.)

Wheal and burniner the stuh. he are of doubiful use, as this destroys the usiful parat sites as woil as the dies.

The Wheat-midge ($/$) iplosis tritici Kirly).Thais spereme injures the head. Suremal minute orangererel matrgots, an -ighth of atn inch longe. crowding aromad the kernels of wheat, camse them to shrivel and dry when ripe. The maggots descomd into the groumd :mbl *pin minutecosombs. from which in the following Junc cmerere hright 1) ratye-whored milgers. This insert is firr less common and destruetive tham the Hescim fly.

REMENy. - Plough deep nifter harvest, and hurn the "stremings" "after threshing.

Chinch - bug (Rlis:us fomonterus sily). - This boge while joumg. sucks t?e reots of wheat :and corn, attorwarels infesting it grat numbers the statks and leares. pmontoring thom with its heak. It alpuatrs early ind Junc. :mbl there is is summer allul an antumb browl. the adnts hibernating in the stmbhle.

 of males: e. of feman alowsitor, wots istwo sliding tol or- to hatal appendases for glalme the - - が, : h. laryar on a kernel: i, the lave of riciel: i^{\prime}. the
 wilh its anfemma ex elamt: k, anterior. l, posterior, end.- After kiteh.

Remedies.-Burn the stubble, old straw, and corn-stalks among weeds in fence-corners in the early spring. Sow small grain early in the spring; fall ploughing and the use of the roller upon land that is loose and friable are recommended. Where irrigation is practised, fields may be flooded for several days in succession, and thus the insects driven off or drowned. A kerosene emulsion, sprayed with the force-pump and cyclone nozzle, will destroy immense numbers; and deep furrows, with a \log drawn through them to grind the soil into dust, will also prove uscful in arresting their progress.

Grain Aphis (Aphis avence Fabr.).-

 Multitudes of dark plant-lice, clustering on the heads of wheat in August; in

Fig. 239.-Chinch-bug. certain years blacken the fields of grain, and by sucking the kernels cause them to shrink in size and to diminish in weight.

The Northern Army-worm (Leucania unipuncta Ha-worth).-This caterpillar periodically ravages wheat and other grain fields in the Middle and Northern States, marching through them in great armies. The

Fig. 240.-Northern army-worm. a, moth, with details.-After Riley.
hibermates in the chrysalis state, laying its eggs in April and May, but later northward. The eggs hatch, the young appearing eight or ten days after, and the worms are most
destroctive in at wet summer sumenting a dry one at the time when the what is in the mith．＇Ther atorpillar state
 nattes．
＇The eaterpular is an inch amd a half loner：the head is coweren by a motwork of conilnont epots．and alomer the midalle of the fiere run two lines disereriner at carh emd．I light－enlosed wased line just above the legr－is－neweded liy a dark onte．then a light whe edged with two thread－lines： while the upper part of the benly is dark．with an inter－ rupted white threal rmming along the middle of the bick． ＇Ihe moth is rusty，grayish－hommo shrinkled with blatek sparks：and the speries is called maipumetw from the single white di－alal dot of the fore wings．

The Wheat－head Army－worm（Lenruniunlritine ）．－＇Thi－ caterpillar injures the heals of wheat，ryar and hatule berine ning at the base．sometimes at the contre of the eatr．smen times hollowing ont the soft grains．beaning mothing hat the shell and the ehatf．＇Ihe eaterpillate is like the forerumer
 dark hrown lines．＇The insere is common from Matne to

 prancturing amd thas exhamstine the juix－of it hemels． and rendering them duartish and shenthe Snother kind common on wheat in Xew Vork，in dunt，iv the threes

Other wheat－insectsare certain speciesuf（1－ini－．Charops．
and Meromyza, which injure the stalks and leaves. The roots are eaten by the white grub, wire-worms, etc., while stored grain is destroyed by the caterpillar of the Angoumois moth (Gelechia revealella), by the grain weevil (Sitophilus granarius), and by the grain Sylvanus (S. surinamensis).

Injuring Corn.

Cut-worms (Agrotis suffiusa D. \& S. and other species). -Not corn alone, but other cereals, the grasses, and most garden vegetables are indiscriminately attacked by different species of caterpillars of Agrotis and allied genera, which are called cut-worms from their habit of ghawing or cutting off the leaves or heads of young succulent plants as they are coming up out of the ground. They are thick, with a distinct horny scale (prothoracic plate or shield) on the segment next to the head, and are usually marked with shining and warty, or smooth, spots of the same general color as the rest of the body, and are usually Iongitudinally striped. They are to be seen early in spring hiding under sticks, boards, and stones, having hibernated in this state. They

Fig. :41.-Cut-worm and its moth.-After Rileg.
feed by night, hiding in the daytime, and the chrysalids are situated under ground. They transform into moths, sometimes called dart-moths, which may be known by their crested thorax and ciliated or (rarely) pectinated antennæ, while the fore wings are rather narrow, nsually with a dark dot near the middle of the wing, and just beyond a reniform or kidney-shaped mark; there is usually a basal, median black streak. The moths appear in midsummer, and lay their eggs near the roots of grasses; these hatch in the
antumn. Lhe warms living on the ront: ant sprout-, if herbaceots phant:- and wh the approteh of winter dowendinge below the match of tront.

 attachs, eear h bambl he made for them hy digering up the aril

 they maty be deareyed by the whatesate hy dropheng between the rows of the crepse be protertal, at nighifall, halls or man- of fresh-cut erase, clower, or thmip-leaves whe h have been sprinhled with the Paris. ereen or London-purple solution.

Wire-worms-Einting the roots of rorn. Wheat. grans.

 (S.ee family Elut rider. 1. 10!!.)
 turnip, or apple in the lede, and eamining the mader sides every marning.

Fig. PR.-Wireworm.

Fig. 243.-(iorn mager is bras: h. pupa-c:aw. ifter R. !
 corn after it is phanted. a magreot which ommetmes ahemble so as to nearly rum entire corn-fidels.

The Corn-weevil (Sphenophorus zece Walsh).-Puncturing large holes in young corn near the base of the stalk, before it has spindled, and sometimes destroying whole fields of young corn, a rather large black weevil, nearly half an inch long.

The Spindle-worm (Achatodes zere Harris). - Boring in the stalk before the corn spindles, causing the leaves to wither, a caterpillar an inch long, smooth and naked, with the head and last segment black. When the leaves begin to wither, cut open the stalk and remove the worm.

The Stalk-borer (Gortynu nitela Guenée).-Boring in the stalks of corn, potato, tomato, etc., a caterpillar of a pale livid hue, with light stripes along the body; also sometimes boring into the cob of growing Indian corn.

This worm also hores in dahlia and aster stalks, and may be cut out with a penknife, and the split in the stalk will heal by being elosed with a piece of thread.

Besides these pests, corn is often attacked by the chinchbug, and sometimes by the boll-worm, as well as the caterpillars of the Io and Arge moths.

Injuring the Cotton-plant.

The Cotton Army-worm (Aleliat argillacet Hübner). This caterpillar often feeds in vast numbers on the leaves of the cotton-plant. It has a looping gait; is slightly hairy,

FIG. 244. - Cotton-worm ; egg and moth. portion of the cotton belt." The moth, he adds, hiber-
mates prineipally muder the shelter of ramk wire-orata in the more heavily timbered fertionso of the sonthe and hearin-
 when this is only an insh or two high. The lowatites

 states. It is inferred that from this rewion the mothe emigrate east and morth, laying theire ergs later than the wriginal
 reently hatched worms of diflerent sizes were fonme late in Mareh on ratoon cotton in southem feomerial and Floridat. and in late seatoms from the midelle of April to the midelde of May. thongh they do mot attract the attemtion of phanters matil the middle or last of Jame. In midammer the ferimi from hatehing to the time whent the meth lats lee eren is
 that time may beropuiend. 'There are the in the mothern

 ammal gemerations. 'The first ereneration is anly lonsol. but in Texals. silys Riley. . The thirl gemeration of worms may berome. under fisering comditions. not only widespead but
 that they aequire the migratinger hathit. 'This gemeration appears in suth 'Le exts during the lather part of 'lune. and in sunth Alabamat and (icorrial somewhat lator." and this is the tirst hoosl which attracts ermeral attemames. When
 the moths. driven by need of food for their pras ble amd

 ats far moth ats Bustam, Butfild, and liaceine. If is. It the same time these borthern sperimens ane su for hat at they are silppered to have been bred on some unk wow burtherin food-plant. 'This point is not rett settled.

The earliest worms are contined to the low lamde and to
luxuriant plants; severe rains destroy them, as do late cold rains, while frequent summer rains favor their development, and hot, dry weather is destructive to them.

The natural enemies of the cotton-worm are mumerous; birds, toarls, lizards, and certain kinds of ants prey on them, besides ground-beetles, bugs, and a number of species of ichneumons, including an egg-parasite (Triehogramma).

Remedies. - While many moths can be destroyed by lights, the universal remedies by which great numbers of the worms are destroyed are Paris green, petrolenm emulsious, and Persi:m insect-powder; and among devices for applying the liquid insecticides the centrifugal or cyclone spraying-nozzle is the most efficacions.

The dry preparation is one pound of the green to from 20 to 35 pounds of cheap flour, or, instead of flour, hand plaster (gypsum) or cotton-seed menl. The best preparation of Paris green consists of 1 pound to 40 gallons of water. London purple may be applied dry, using 2 pounds to 18 of flour, etc.; or wet, one half a pound to 50 or 55 gallons of water.

A tine spray of kerosene oil applied to the leaves will kill all the worms in a remarkably short time; but as petroleum in any form injures the plaut, the oil must be so diluted as to injure only the worm and not affect the plant. Prof. Barnard suggested the use of milk as a dilnent, and tinally an emulsion was perfected by Mr. Hubbard for ormage insects, which is now in general nse. Cotton-sced emulsions are less efficacious than those made with petroleum.

Another important insecticide for field use against the cotton-worm is pyrethrum or Persian insect-powder, applied by a bellows, or in water solution, the powder heing simply stirred up in water (200 grains to 2 gallous of water), applied by means of a fountain-pump or an atomizer. The inventions for applying insecticides, both dry and wet, are very fully described and illustrated in Riley's report on the cotton-worm, forming the fourth report of the U. S. Entomological Commission.

Injuring the Potato.

The Colorado Potato-beetle (Leptinutarsa 10-lineata Say). -Devouring the leaves. a largre, thick-bodied, reddishorange grub, with black spots on the sides, changing usually under ground into a large hemispherieal yellow beetle, about half an inch long, with ten wide blaek stripes on the haek; three broods of the grub appearing in one season. Originally an inhabitant of Coloralo, this destructive beetle is a constant plague all over the Northern and Middle
 Seotia．

 preparation of arsenic，it js letter forphly，with at sprat iner mate hine or watering pot，a lignis peparation，i．e．，：mixture of lani－mben
 Piris grecth should te u－al wilh eatution，as it has beed kifown to puisom cows and hors＇s．

 damage to pertatuleaves in certain yeats．＇The hhoh hitem－
 totally black，amb is a litthe smallow thath the gras－metion （1）．cimeret）．which is ath－otered on the heme ine pro－
 beethe（ $1:$ rittuter）is longer ：mil shomerer than the whers mamed，and is chay－veltow with six hach hometminal stripes．＇The remedies recommembed for the Colorablu beetle will destroy these and all other inset－fouding on potato－le：？

The Flea-beetle (Hultica cucumeris Harris).-Eating
 holes in the leaves of this and other garden vegetables, especially the cabbage, sometimes riddling them when young and cansing them to turn rustcolor, minnte blackish beetles, which on being disFig. 2f...- turbed leap off like fleas. Watering the leaves beetle. with a solution of lime, or sprinkling them with wood-ashes, drives them away.

The Striped Garden-tug (Lyyus linenlaris Beanvois). Puncturing and poisoning the leaves of the potato and all sorts of garden vegetables, cansing them to wither and turn black, a medinm-sized bng with a yellowish head and a 5-lined thorax.

Remedies.-Sprinkle the leaves with alkaline solutions, such as strong soapsuds, or decoctions of tobacco and of walnut leaves, or dust the leaves with air-slaked lime or sulphur.

A

B
Fig. 24i.-European cabbage-butterfly. A, male; B, female; a, larva; b, pupa. After Riley.

Besides the foregoing insects, potato-plants are often attacked by the great Sphinx or horned caterpillar, the grubs of the golden-helmet beetle (Cassida aurichalce(t),

Whiln the stalks are sumetimes tummblent hy the ernh of a wervil (lamialius trinututus say), as well as the cattrpillaur of Givilynu niteler.

Injuring the Cabbage, Radish, ete.
The European Cabbage-butterfly (I'iris rupe sichrank).
 heathe in all directions. a gremp. velsety caterpillar with a yellowish stripe along the hatck and side, and tuming into a white batterfly with forr (make) or six (femake) somspinenous hack spots. There are two broods of womes the insect wintering as a \cdot hrysalis. It is held in cheek by a C'haleid parasite (Pleromulus pulutum Limm.).

Remembs. - Destroy the buttertlies hy capuriug them with a handnet; trap the chayalits by placing insards bighty rased from the gromed, under which the cateppillars may pupate; ako sift ower the cahbage-heads apower compend of enie pat of prothrum dibued

 solution of one pronel of whateoil uap , liseotsed in abeme sis gallonof water, or strong tar-water.

The Cabbage Plusia (Plusiu (irussicer Lialey). - In Augru-t and Soptember. grawing large, imequlan holes in the leatres: atather latre. pala-wrent caterpillar. markel with still paler. more "patue limes, allul wilh Hase pairs ut ahduminal foet, beinge a semiloopry. amo changing to at grayishbrown moth. Whosu wings are adormed with a distinet siluer mark of interrogation. 'The moth lays her enges singry

y

h or in smatl elusters on either side of the leaf. ator foung worms feoding first on the ontside leaves. afterwam b boring a short distance into the heads. There are four hoots a
year, and both chrysalids and moths hibernate. Apply remedies like those suggested for the cabbage-butterfly.

The Harlequin Cabbage-bug (Murgantia histrionica Hahm).-Destroying, in the Southern States, by its punctures, cabbages, turnips, radishes, mustard, etc.; a black and orange-colored bug. The rery young, as well as the old, combine to destroy the plant, which wilts as if poisoned.

Besides those already mentioned, cablages are more or less injured by the web-moth (Plucella rylostella Linn.), the zebra caterpillar (Mamestra picta Harris), the cabbage Aphis, the cabbage-meevil (Otiorhynchus picipes Fabr.), etc. All can best be destroyed by the use of py-
 rethrum.

The Radish-fly (Anthomyia radicum Bouché). - The chief pest of radishes is a small white maggot which attacks young plants raised in old soil. It changes to a pupa within a barrel-shaped pupacase, from which emerges
 -After Curtis. about half as large as, the honse-fly. The best preventives are early sowing in a light

Fig. 250.- Pen-weevil, natural size and enlarged; b. pea containing a weevil. new soil, and the annual rotation of crops; also the application of hot water, salt, and lime.

The Pea-weevil (Bruchus pixi Limu.). -The only serious pest of peas is the weevil, which spends its whole life in the pea, except when the plant is in flower.
Remedies.-As a preventive against wormy seed-peas, they should be kept sealed up in tin cans over one year liefore planting; or soak the peas in boiling water for a few minutes before planting. Worm-

Eaten proms may he deteeted hy pheing the whole fan in water,

 phile of carlmu in at fosed visurl.

 Wervils; it is, howerer. at more formidable fret than that of the pe:\%.
 rines are oftern killed by゙ a horer in the stalk, athort. thiok caterpillar, whitish, with a dark head and hormy pateh just behind it. It changere to it heintilal, natrow-wine arathyeroolored moth spottod with hlack: 'Ihe berer lives in the vinw antil the emel of seplember. amel ? pates cither in the vime al
 in the erromble : hermer if all the vincs are collereter
 and burned in the antmome there will be has homers tho following scatson. Vinos planted late ane less injumed thatn cinly onces.

The Striped Squash-beetle (liuluruticu vittutu liiln..). -

 whoso latra is a lonies semder ermb. which lome - in the roots in Jome allal dnly. The reres atre doperited wit the reot. at

grown in abont a montl after the egg is laid; it remains in the pupa state about two weeks, and the beetle probably lives several days before oripositing, so that one generation is in existence about two months, and there are two or three generations in a summer. The beetle must hibernate, as it appears very early in the spring.

Remedres.-Sifting the ieaves with powdered oyster-shell lime or gypsam, hellebore or pyrethrum, is worth trying as a remedy, while covering the young vines with cotton or a high frame covered with tine muslin is the usual preventive.

fig. 253 - Squash- cessive broods appear during the summer. It bug. Natural size. can be controlled by hand-picking.
Another species sometimes injurious to squash-vines is the squash "lady-bird" (Epilachmu boreatis Thumberg), Whose lanva is a yellowish grub with long branched spines, arranged in rows of six on each segment. except the first thoracie, which has only four. The beetle is like a large Coceinella, and is yellowish, with seven large black spots on each wing-cover. The pickle-worm (Placellura niti(hulis Cramer) bores cylindrical holes in cucumbers and melons as well as squashes. It is a pale greenish-yellow caterpillar, with a pale reddish head. It spins a slight white cocoon, from which the moth issues eight or ten days afterwards.

Injuring the Hop-vine.

The Hop Aphis. -This plant-lonse is a great pest of the hop, as it clusters in immense numbers on the branches and leaves, and is rery difficult to extirpate. Prof. Riley
has discovered that, like the Vimene:an lop-lomere it lays its egres at the approach of eold weather on trees near the bines.

The Hop-worm (H!!fentu lumuli 11 arris). - In June, and

Fig. 25.-Hop-worm, !uph, und moth; all matural size.
again in July and Anenst. Hopheaters are devormed by artive, slender, grass-green caterpillars, with hut four pairs of abelominal lears.

Rempanes.-Haml-piding and vigomusly shaking the vines wice a day, as well als spraying the vines with whale-oil somp, are adrisalue.

Injuring the Grape-vine.

 hatehed larva; c. egg: d, section of the leaf-gall ciomfaimat le tacla; e
 i, antemma j (wo jointed tarsus.-After laley.
far the most destructive inseet of the vine is this A phid. It exists in two forms, one raising irregula galls un the
leares and the other forming small swellings on the rootlets. The root-form is both wingless and winged, the latter

Fig. 256.-The Phylloxera, root-form: a, healthy root; b, one in which the lice are working, their punctures causing the swellings; c, a root deserted by them, the rootlets beginning to decay; $d, d . d, d$, lice of natural size on the larger roots; e, pupa of the female, g--After Riley.
very rare; the leaf-form is said to be always wingless. The chief injury is done to the roots, which die under the attacks of this minute, insidious foe.

All direct applications of chemicals, and the remoral and burning of the bark of the vines, nsually result in failure to kill the few winter eggs to be fomd; Riley maintaining that the normal mode of hibernation of the species is as a
 the insere (ath continme proparatines mater gromme for at least four years without the having of fortilizat cores.

REmentr--In Frane and Sombern Europe prevemive weders,

 in dealing with his pos. The samm, howerer, atys Riler, in which

 winterger and the atplarance of the winged females, i.e., during May and June.

Other inserets oceationally injuring the vine are the larvat
 and flower-hads expand, catts them, in erertain years maturially kesiming the erol. Varions athere caterpillars, ats the

 also the treatericket), aldat rertain leaf-haretles. do mote or less ham. while the frut is at times infested bea leaf-rollore
 the little white matront of : chaleid (lsusomure ritis), which canses the fruit to shrivel. without matnring.

Injuring Fruit-trees.

Of inserts injuriner fruits. Mr. J. A. Iintner estimates that there are in the I nited states at least lone) -preveres of these ? lo are known to live at the expense of the apple-tree
 pests, reforing the reader for farther information to Mr. $\mathbb{I V}^{\circ}$. Sinmaler's excellent book. \cdot Insects Injurions to Eruits."
 heetle (loig. lo?) tlies about the wreharl in Mat at il . Imme in Misonni and lhinois. hat in July in Nan Enctand. and the fomale lays its erges in washes in the tath. The lava or grub upon hatehing bores upwate in tho wood. Where it lives within a few days of thee year- Enlarging its burow, it transforms in a cell lined with , info. situatem

Fig. 25\%.-The Vine-dresser, with the chrysalis in its cocoon; and the moth. After Riley.
(To face page 213.)
eight to ten inthes fom ite hirth-plane. It is noterinns: that thin buter will hill both old amb yountr living trees.

 romaded by hared paper to prevent the fomate bectle lag ing har ("gys.

The Codding-moth (C'urpocil)sicu pumonellu l.inns.).——rsides the canker-worm and tent-"aterpilhar, which are locally. destractive. the miversal peet of the apple-orelatrd throwithout the C'nited states. from Maine to ('aliformian is this inseet. In the Northem States the meth fles in May, laying its eugrs in the calyx after the blossoms fall, and in a few

 its hemd; f, y, moth; i, coeom,-Ifter kiley.
days the larva hateles. burnowing into the core. When in three weeks it becomes of full size. beine a pall whitioh caterpillar mearly an inch in leneth. Is the rewte uf its work. the apple prematurely falls to the ermat. when the wom deserts it. It then usually creeps the trunk of
the tree, spins a thick eccoon in crevices in the bark, and in a few days a second brood of the moths appears; but most of the caterpillars hibernate in their cocoons.

Remedies.-The obvious preventive remedy is to gather the windfalls each day as soon as they fall and feed them to the hogs, while fowl should be allowed to run in the orchard. The best direct remedy is to bind bands of hay or straw around the tree from July to the last of September, replacing them every few days by fresh ones, the old ones being burnt, so as to kill the eaterpillars or chrysalids hiding beneath the bands.

Prof. Forbes, as the result of numerous experiments, finds that by once or twiee spraying with Paris greeu, in early spring, before the young apples liad drooped upon their stems, there was a saving of about 75 per cent of the apples exposed to injury by the coddlingmoth. It should be added that spraying with this poison after the apples have begun to hang downward, is unquestionably daugerous.

Another general pest, often destroying young orchards or separate trees, is the apple bark-louse, while stored apples are destroyed by the maggots of flies (p. 126).

The Plum-weevil (Conotrachelus nemuphar Herbst).-
 This weevil has well-nigh exterminated the plum in the Eastern States, and its attacks far outweigh in importance those of all other plum insects. It resembles a dried bud; when the fruit is set it stings the green plums, making with its beak a curved incision in which a single egg is deposited. The Fig. 259.- Plum-weevil. a, larva; b, presence of the grub callses
nupa; c. beetle, enlarged; d, naturai size, puncturing a plum. the fruit to prematurely drop with the larva within. The latter, maturing, leaves the plum, burrows into the ground, and during the last of summer becomes a beetle.

Remedies.-As a remedy the trees shonld be frequently shaken or jarred, and the weevils, falling into a sheet placed beneath the tree, should be collected and burnt. Forbes finds that about half the damage done by weevils may be prevented by spraying the trees with Paris green early in the season, while the fruit is small.

The Peach-tree Borer (Simminn crilinsu Say). This
 trees. It late its cogs in the bark name the gromd, amd the worm on hate hing attacks the living tres. bering into the bark and sap-wow of the roots, or trunk, causing the

a

a, male; b, female.
gum to exude so that its presence may be easily noticed. When the caterpillar is one vatu ole it makes a cocoon made the bark of the trunk or at the laborer routs of the tree. ITo prevent its attacks heap the earth high aromas the trunk, or wrap tared paper aroma the lower part of

Fig. :61.-1, eggs of the currant saw fly deposited along the midribs: :2 and 3. the holes bored by the young worms
the true: when the worm is fairly at work. cut it out, applying wax oi clay to the womble.

Fig. 262.-Currant-worm. a, enlarged.

Fig. 263.-Saw-fly or adult currant-worm. a, male; b, female.
(To face page 217.)

The Currant-worm (Nimulus ventriorevs Klug).-This

 since the voracions have appear in smocesisn hrome. 'the femalde, without having paterd with the mate., Alepreite here whitish exlindriak earess ahong the under side of the midribs. In four days the worms hatch, and oficht dats altar berome fully fed. hmow into the grommer remaining in the pupastate about a fortnight.

Raments:- Powdered bellehore or perthrm mixed with fouror five times its bulk of cheap thour will, if constathly applied, sate the crop.

Insects Beneficial to Agriculture.

In a great varioty of wats certain insecte are lelpful to man, athd are esperially eflicacions wither in ensuring his erops or in destroying those insects which would otherwise devour them.

Fertilizers of Fruit-trees - 1 very important part in the production of abmadant crops of fruit is plated hy bees and other honer- or neetar-witherers. and pollen-fording inserts. It is now generally acknowledged that hees esperially the honer-hee ate as " mariage-priests" in the fertilization of flowers, convering pollen from thower to flower, and thas ersuring the "setting" of the firnit. Orehards in which becehives are plased hear heavier crops tham thase mot thas fiwored. bees are in Europe protitably intredmeed into peath-homses in order to cflece the pollination of the llowers. Many waspes as well as hatertlies and mothes sperite of pallen-eating beetles. Thaips, amd other insects. hy nmomscionsly hearing pollen from distant flowers. perant tom close in-ind-in hreeding. Indeed. as (indthe satil. Howers and inseds were made for each other.* Mamy phats would

[^18]not bear seeds did not insects fertilize them. Insects are in the first place attracted to flowers by their sweet scent and bright colors, and it is claimed that the lines and circles on the corolla of certain flowers guide them to the nectary; though we do not see why the scent is not in the main sufficient for this purpose. According to Sir John Lubbock, "The visits of insects are of great importance to plants in transferring the pollen from the stamens to the pistil. In many plants the stamens and pistil are situated in separate flowers: and even in those cases where they are contained in the same flower, self-fertilization is often rendered difficult or impossible; sometimes by the relative position of the stamens and pistil, sometimes by their not coming to maturity at the same time. Under these circumstances the transference of the pollen from the stamens to the pistil is effected in various ways. In some species the pollen is carried by the action of the wind; in some few cases, by birds; but in the majority, this important object is secured by the visits of insects, and the whole organization of such flowers is adapted to this purpose." (1. c. 2.)

Hermann Müller believed that the peculiarities which distinguish bees and most Lepidoptera, i.e., their mouth-parts and, in the case of bees, their legs, have been gradually produced in past ages by their visits to flowers.

Insects also are useful as pruners, cheeking the too-rapid growth of leaves and shoots, the result being the formation of a greater amount of sceds or fruit. Unfortunately this process in most cases exceeds healthy limits, and the plant, being almost wholly defoliated, is weakened or killed.

Parasitic Insects (Ichucumons and Tachince). -While insectivorous birds accomplish much towards reducing the

[^19]mumbers wf injurions invots, they whon an likel :18 not mat

 Prototrupider, amd the diptemons family Tanhmidar.

An ichmemmon-fly lats its creve either on the ontside of the eaterpillar or lexers umber its skin, insortine an eerer within the body: Mr. Ponltom hats earefully watehed a l'aniscons oripusiting on a catorpillar. It laid fourteen ergs, firmly attaching them to its shin, most of them in the sutures between the serments, and on the sides of the body: An exeess of egres are laid, since some do not develop: for if all satse ont larve, none could arrive at maturity within the berly of the future hos. The ichmenmon lays at smaller number of eress on small caterpillats than on lange omes, and fer in all cass's hay mone than can develors.
'The larva of the ichnewmon mon hatohing works its way into the interior o! its hos. Here it does not injure the mascles, nerves or the vital parts of the caterpillar, but apmarently simply lies motionless in the body-ätrity, ahsorbiug the blood of its host.

Many idhermons are pulyhatens. i.e. liva on inseets of widely different speces belonging to different orders: others contme their attateks to a simgle spectis. C'entain chal"its ane secondary bamsites. living in the larvar of thase pamasitic in aterpillars. ete. Anst ichnommons: hatre but a single semedation: a few ate domble-brooded. In dormany

 two hoonde of the hoste, there is as a mond hat a state hoorl of ielmemons. Liatzohorg mded fomm that artain behnemons parasitue on saw-fly larve imatated the bahit of the latter of living more than a year. i.e. they dad mot develop matil the greater mumber of saw-fles had sand from the belated cocoons. On the other hamd, I'tormedius pupurum
undergoes in Europe an extraordinarily rapid growth; it stings early in June the chrysalids of Vunessa polychloros, and by the middle of July the adults appear. Teleas ovulorum requires only from four to six weeks to develop; it, however, flies somewhat later, so as to find the young silk caterpillars on which to lay its eggs.

Ichnemmons rarely develop within adult insects, but certain Braconids infest Coccinellæ. The small Chalcids (Pteromali) mostly inhabit the tender pupæ of bark-boring beetles and leaf-rollers. Among the smaller ichneumons several females usually inhabit a single host, while from 600 to 700 individuals of Pteromalus puparum may inhabit a single chrysalid.

Most. ichneumons develop within their hosts, but many species of Chalcids live on the outside and suck the blood of their victims. Certain ichneumon larvæ living within their host undergo the most remarkable change as respects their mouth-parts. In the larva of Microgaster globatus (according to Judeich and Nitsche) there are in the early stages only the wart-like rudimentary sucking month-parts, but after the last moult they acquire ordinary biting mandibles, with which they can gnaw through the skin of their host.

The young of the Tachina-flies are true footless maggots, and take their liquid food by suction through the mouth, the mouth-parts being very rudimentary. Tachina (Senometopia) militaris has been observed by Riley to lay from one to six eggs on the skin of the army-worm, "fastening them by an insoluble cement on the upper surface of the two or three first rings of the body." 'The young maggots on hatching penetrate within the body of the caterpillar, and, lying among the internal organs, absorb the blood of their unwilling host, cansing it to finally weaken and die. Usually but a single maggot lives in its host. Many grasshoppers as well as caterpillars are destroyed by them.

Insectivorous Insects.-'There are very many carnivorons kinds which devour insects entire. Such are the ground-
beetles, water-heotles, ther larsar of 'Jomehrimids and of lady-beethes (('oxecincllat). and those of the lace-winged thess (Chryonpa) whioh prey on Aphides, thomerh the magernts of
 Aphis-destroyers.

Preventive and Direct Remedies Against the Attacks of Insects.

In applying any remedies aganst moxions insedes it is of prime importance to become thoronghly acenainted with the halits and tramsormations of the pests with which we have to contemk. It should be loorne in mind that inserts during their transformations lead diferent lives. and that prantically a caterpillar is a different animal lrom the chassalis or the butterdly, with entirely different habits :ad sumomadingrs: and so on thronghout the other orders of insects.

Vnder the head of genetal or preventive remedies may be ennmerated :

High culture, with the nse of phenty of manures and fortilizers.

Rotation of crops, and carly or late sowing.
hasing eropst on last for two vears, such as peas amb beams. to ghatrd agumst weovils.

The breeding of insect-parasites.
Burning grass and stubble for eertain insects injuring field-(ropss.

Removal of dead trees or stumps near orchards or in forests.

Among direet remedies. besides hand-pieking is the wie of the following insectiodes:

Paris green and bondon purple.
Kerrosene emmlsions.
Prethrum or l'ersian insect-powher.
Bisulphide of earbon for the erape-root Ihytheme
Carbolie-acid soap: whale-nil satul.
Ammonia or chloroform for insect-bites.

Sulphur for mites; borax for cockroaches.

Ointments and carbolic soap for lice.
Salt, hot water, ashes, dust, soot.
Various devices and machines for applying powders or liquid preparations.

Paris Green and London Purple.-These arsenical preparations may be used dry when mixed with cheap flour in the proportion of 1 to 2.) parts, or wet mixed in the proportion of $\frac{1}{2}$ to 1 pound of the powder with 40 gallons of water. The London purple is the weaker of the two powders; but is often preferred to Paris green from its cheapness, and because it is more easily diffused, and can be seen more distiuctly on the leaves, though its effects may not be observed until two or three days after being applied.
Petroleum Emulsions.-Dilute 1 quart of kerosene oil and 12 fluid ounces of condeused milk with 36 ounces of water. This is emulsionized by violeut churning, a. q before being used may be diluted from 12 to 20 times with wal Equal parts of kerosene and condeused milk may also be thon. ghly mixed or churned together, and then diluted al libitum with water.

Pyrethrum or Persian Insect-powder. - This powder is deadly to most insects, but harmless to plants and human beings, cattle, or horses. It may be applied (1) as a dry powder; (2) as a fume, being thrown on the stove or ou a red-hot shovel or piece of sheet-iron; (3) as an alcoholic extract, diluted; (4) by simply stirring the powder in water; and (5) as a tea or decoction. As a powder it may be mixed with from 10 to 20 times its bulk of wood-ashes or flour, but before use should remain for twenty-four hours with the diluent in an air tight vessel. (Riley.) One experimenter dilutes the dry powder with only four or tive times its bulk of flour in apply ing to cabbages to kill cabbage-worms

Spraying-machines. -Numerous inventions for applying these preparations on an extensive scale are described in the reports and bulletins of the Entomologist of the Department of Agriculture at Washington; among the most efticacious being spray nozzles* of different kinds, being modifications of the old-fashioned sprinklers

* The eddy or cyclone nozzle consists of a small circular chamber with two that sides, one of them screwed on so as to be readily removed. Its priucipal feature consists in the inlet through which the liquid is forced, being bored tangentially through its wall, so as to cause a rapid whirling or centrifugal motion of the liquid, which issues in a funci-shaped spray through a central outlet in the adjustable cap. The breadth or height, fineness or coarseness of the spray depends ou certain details in the proportions of the parts, and especially of the central outlet. The nozzle was invented by Dr. W. S. Barnard. In applying the fluid to trees, an ordinary barrel is used as a reservoir, in which is inserted a force-pump with automatic stirrer. A long rubber hose extends from the pump, and is attached to the spraying apparatus. (Riley.)

 the thmer, inllammation will rexult.

Fhep bons maty be moned from the motrils before they have

 coal-tar has bern recommendect, and salt-trongh are - meand with

 the latir removes the exys. This ne od be done only during the time when the thers are about. (Riles.)

Miscellaneous Remedies -The elothes-moth is cotcminatod from

 come; bint they may be kep muder bo at erat atent bironine the

 or any oil or grease; liee on chickens may be dimini-hed by white. wathing the cond, fumbating it with sulphar or wahing. with kerosenc: codkrachess sucembt to equal parts of powdered haras and sugar plated in their way. The bites of mombitere, etines of
 beestiners with wet mand applied to the womd: white the hite - of
 stimmants, sheh atmmonia taken in regeated dome internalls, besides hrandy or whiskey, to supgere the shatem motil the petion recovers from the shock.

Chrysophanus thoe, right side as seen beneatb

CHAPTER VI.

DIRECTIONS FOR COLLECTING, PRESERVING, AND REARING INSECTS.

Where to Look for Insects.-In collecting, whenever the two sexes are found united they should be pinned upon the same pin, the male being placed above. When we take one sex alone, we may feel sure that the other is somewhere in the vicinity; perhaps while one is flying about so as to be easily captured, the other is hidden under some leaf, or resting on the trunk of some tree near by, which must be examined and every bush in the vicinity vigorously beaten by the net. Many species rare in most places have a metropolis where they occur in great abundance. During seasons when his favorites are especially abundant the collector should lay up a store against years of scarcity.

At no time of the year need the entomologist rest from his labors. In the winter, under the bark of trees and in moss he can find many species, or detect their eggs on trees, etc., which he can mark for observation in the spring when they hatch ont.

He need not relax his endeavors day or night. Mothing is night employment. Skunks and toads entomologize at night. Early in the morning, at sumise, when the dew is still on the leaves. insects are sluggish and easily taken with the hand; species fly then that hide themselves by day, while at night many caterpillars leave their retreats to come out and feed, when the lantern can be used with success in searching for them.

Wollaston (Entomologist's Ammal, 1865) states that sandy districts, especially towards the coast, are at all times preferable to clayey ones, but the intermediate soils, such as the loamy soil of swamps and marshes, are more productive. Near the sea, insects occur most abundantly beneath

 we have fomm on the stmmit of Nf. Wialoinerton and in Labrador, mat has to lic down and look carefolly amoner the short herhate atm in the mose for Colenterat.

The most alvantigreons places for colleeting are gardens and farms, the borelers of womds, and the banks of streams and ponds. The deep, dense forests, and open, treeless tracts are less prolitie in inseet life. In winter and early spring the moss on the trunks of trees. when cardfully shaten over at newspaper or white eloth, reveals many heetles and llymenoptera. In the late summer and antumn, toadstools and varions fungi and rotern fruits attract many insects: and in early spring. whon the salp, is rumning. We hate taken ratre insents from the stump of freshly ent ham-wood treses. Winlaton says: • l ead animak, patiatly dried homes as well at the skins of moles and other vermin which are ordinarily humer up, in tields. are magnifoent trap)s for ('oleopteras and if ans of these be plated around orchards and inclosures nowe at home, and he examined every moming, varions species of Vithlult. Silphiher. and other insects of similar habits, are certain to be entied and eaptured.

- I'laks and chippings of wood may be likewise omplofed ats suceresful agent: in alluring a vatit momber of speries which might otherwise escape onr notice: :mat if these be
 ant then with as little violence as posible man! inserts will be fonnd adhering beneath them. expectally atter dewy nithets and in showery weather. Nor mast we omit to mere the impertance of examining the maler sibles of : t ne in the vicinity of ants nests, in which position. during the spring and summer months, many of the rares of onr native Coleoptera may be oceasionally procured." Kurementitious matter always eontains many interestine forms in rarions stages of growth.
'The trunks of fallen and decaying trees offer a rieh
harvest for many wood-boring larvæ, especially the Longicorn beetles; and weevils can be found in the spring, in all stages. Numerous carnivorons colcopterous and dipterous larvæ dwell within them, and other larviæ which eat the dust made by the borers. The inside of pithy plants like the elder, raspberry, blackberry, and syringa, is inhabited by many of the wild bees, Osmia, Ceratina, and the woodwasps, Crabro, Stigmus, ete., the habits of which, with those of their Chalcid and Ichneumon parasites, offer endless amusement and material for study.

Ponds and streams shelter a vast throng of insects, and should be diligently dredged with the water-net, and stones and pebbles should be overturned for aquatic beetles, Hemiptera, and Dipterous larve.

The various sorts of galls should be collected in spring and antumn and placed in vials or boxes, where their in-

F1G. :264.-Collecting-net. habitants may be reared, and the rafters of out-houses, stone-walls, etc., should be carefully searched for the nests of mud-wasps.

Collecting Apparatus.-First in importance is the net (Fig. 264). This is made by attaching a ring of brass wire to a liandle made to slide on a pole six feet long. The net may be a foot in diameter, and the bag itself made of muslin or mosquito-netting (the finer, lighter, and more durable the better), and should be about twenty inches deep. It should be sewed to a narrow border of cloth placed around the wire. A light net like this can be rapidly turned upon the insect with one hand. The insect is captured by a dexterous twist which also throws the bottom over the mouth of the net.
'The insect shonld be temporarily held between the thumb and forefinger of the hand at liberty, and then pinned throngh the thorax while in the net. The net we use has a folding frame of stout brass wire, one side solderer to a
 end of the tube: it is simple and nerful in trabellimer. The pin can be drawn thromgh the me-hes upen operning the net. The beatine-met shonld be made mach stonter. with a shallower choth har and attatehed to at shorter stick.* It is wed for heating trees, bushes amb herbage for heethes and Hemiphera and varions larvae. Its thorough use we would recommemd in the low sewetation on monntains and in mealows: The weter-net may be either folmad or of the shape indieated in F「ig. शin. 'Ihe ring shonh be made of hats: and the shallow met of grase-cloth or Fig ext-Water nel. coarse millinet. It is nised for collecting arynatic insects. Mr. selmelter rexmmends for collecting smatl waterbeetles, ete., at met mate of ordinary matin. with a bettom of the finest hatas wire-elnth, the meshes of which dow mot exeed $\frac{1}{2} \mathrm{~mm}$. the water will reatily pare throngla this net, while the smallest insects will be retainet. Herr leensehmidt sugrests in . Emtomolowische Xathrichten" a net constructed entirely of woren wire hat this wond be chmsy to carry abont. amd schmelters net is preterable.

Varions sorts of formps are indispensable for handliner inserts. Small, delicate. narmorblated forergs. with tine sharp puints, such as ate used by jewellers. and mate either of sted or hasso are excellent for hambling minnte perj-
 renient. Far pinning inseets inta boses the forceph

[^20]should be stout, the blades blunt and curved at the end so that the insects can be pinned withont slanting the forceps much. The ends need to be broad and fincly indented by lines so as to hold the pin firmly. With a little practice the forceps soon take the place of the fingers. Some persons use the ordinary form of pliers with curved handles, but they should be long and slender. A spring set in to separate the handles when not grasped by the hand is a great convenience.

Various pill-boxes, vials, and bottles must always be taken, some containing alcohol or whiskey. Many collectors use a wide-mouthed bottle, containing a sponge saturated with ether, chloroform, or benzine, or bruised laurel-leaves, the latter being pounded with a hammer and then cut with scissors into small pieces, which give out exhalations of prussic acid strong enough to kill most small insects.

Besides these the collector needs a small box lined with corn-pith or cork, and small enough to slip into the coatpocket; or a larger box carried by a strap. Most moths and small flies can be pinned alive without being pinched (which injures their shape and rubs off the scales and hairs), and then killed by pouring a little benziue into the bottom of the box.

Killing Insects for the Cabinet.-Care in killing affects very sensibly the looks of the cabinet. If hastily killed and distorted by being pinched, with the scales rubbed off and otherwise mangled, the value of such a specimen is diminished either for study or the neat appearance of the collection.

Besides the vapor of ether, chloroform, and benzine, the fumes of sulphur readily kill insects. Large specimens may be killed by inserting a pin dipped in a strong solution of oxalic acid. An excellent collecting-bottle is made by putting into a wide-mouthed bottle two or three small pieces of cyanide of potassium, which may be corered with cotton, about half-filling the bottle. The cotton may be
covered with paper lighty attanched tothe irlasiand piereend with pin-holes; this keeps the inserts from beiner lost in the bottle. This is exeellent for small tlies and motlos, ate the month of the hatte ran be plated oser the inseet while at rest: the insect tlies up into the hottle and is immediately suffocated. A butte well prepared will. atoondinge to Laboulbine. last several monthes ofen a year. amd is vastly singerion to the old meams of using ether or chloroform. I He states: "The inconvenience of taking small inseds from a net is well known as the most valuable ones manally escape: but by plateing the emal of the net, fille with insects, in a wide-monthed bottle. and putting in the cork for a few minutes, they will be suffocated." For Diptera, loew reeommends moistening the bottom of the collecting box with erensote. Mr. J. A. Jackion recommends the use of al glass frut-jar, one in which the eover serews down upon a rubber cushion or packing. Put a bunch of eotton in the botom. retaining it in its face by pressing down upon it a cirentar piece of pastebormat, made to fit tightly in the jar, except that two or three notehes should be left in the edge for the chloroform torm thengh to the eotton. 'The bottle is now realy for nse: an insent dropped into it will die almost instanty. (C'an. Ent. xix. 119.) A morphine hottle prepared in the stme way will dow for mieros. Ether may be used in the same way, as we are arenstomed to do, but chloroform is generally preferred. Powf. E. IV'. ('laypole (Camadian Entomolorist, xix. 1:36) kills Lepidoptera, ete. with benzine or gataline. the latter only costing fourteen eents a gallon. With most mothe it eamses instant death, and can be permed on the beries of large silk-worm mothes such as Cecopia, withomt injuring the scales or hairs. He carries it in an sume phatharing
 outer end of which is eapped with a small India-rubber eapsule: the whole may be bought at a drug-atore for a few cents. umber the name of a dropping-tube. Than the tube is always full of liquid ready to be squirted ont on an iu-
sect in the net, or even at rest in the open air, and the specimen is at once ready to be pinned and spread. A chloroform bottle with a brush securely inserted in the cork is often convenient for small moths.

Pinning Insects.-The pin should be inscrted through the thorax of most insects. The Coleoptera, however, should be pinned through the right wing-cover (Fig. 266); many Hemiptera are best pinned through the scutellum. The specimens should all be pinned at an equal height, so that about one-fourth of the pin should project above the insect.
The best pins are those made in Germany, and are advertised for sale in American entomological journals. For very minute insects very small pins are made. They may be used to impale minute insects upon,

Fig. 266.-Mode of pinning a beetle. and then stuck through a bit of cork, or pith, through which a large, long pin may be thrust. Then the specimen is kept out of the reach of devouring insects. Still smaller pins are made by cutting off bits of very fine silvered wire of the right length, which may be thrust by the forceps into a piece of pith, after the insects have been impaled upon them.

Small insects, especially bcetles, may be mounted on cards or pieces of mica through which the pin may be thrust. The Freuch use small oblong bits of mica, with the posterior half covered with green paper on which the number may be placed. The insects may be gummed on the clear part, the two sexes together. The under side can be seen through the thin mica.

Others prefer triangular picces of card, across the end of which the insect may be gummed, so that nearly the whole under side is risible.

Mr. Wollaston adrocates gumming small Coleoptera upon cards. Instead of cutting the picces of card first, he gums them promiscuously upon a sheet of card-board. "Having
grammed thickly a space on !our card-board enfual to, at least, the entire specimen when expanded. plane the heethe upon it, drag ont the limbe with a pin, and. leaving it toder. go on with the mext whe that presents itself. As the cart has to be colt afterwards aroumel porme insert (-0 as to shit it), there is no adsamtate in gmmange it precicely struight upon your fioune. -t homerl it is trine that at certain amonnt of care in this respeet lesens your after-lathor of anttine ofl very materially: When yon fiame has been filled, and your are tesirous of separating the sueceies. cut ont the insects with finely-pointed seissors."

For mending broken insects. i.o. g gumming on legs ant antenne which hate fallen off. inspisated ox-gall. suftemed with a little water, is the best gum.

For gumming insects upon carle. Ir. Ẅollaston reenmmends a crim " emmposed of threr parts of trasteanth to one of Arahie. both in fewder: to he mixed in water containing a grain of corrosive sublimate. withont which it will not keep, mutil of a comsistency just thick emomghto run. As the gmm is of all extremely abserthent nature. nearly a fortnight is reguired before it can lee properly made. 'The best phan is to keep adding a little water. and stirring it every few days, until it is of the proper consisteney. It is alvisable to dissolse the grain of cormase sublimate in the water which is pumed firs/ upon the erm.

Preservative Fluids. - The best for (ommon use is allenhol. at first dilated with as much water: or weak whisker. at aleohol of full strength is too strong for caterpillars. etco. since it shrivels them up). 'The spirits hould afterwards he changed for alcohel of full strength fer permanem preservation. Glyereme is excellent for proverine the colors of caterpillars, thongh the intermal part- - Cocos somewhat, and the specimen is apt to fall to piem- on being romghly hamelled.

Laboulbene recommends. for the prearmation of insects in a fresh state. plunging them in a preverative flud consisting of alcohol with an excess of arrelic acid in frag-
ments. or the common white arsenic of commerce. A pint and a half of alcohol will take about fourteen grains (troy) of arsenic. The living insect, put into this preparation, absorbs about $\frac{{ }^{3}}{1000}$ of its own weight. When soaked in this liquor and dried, it will be safe from the ravages of moths, Anthrenus or Dermestes. This liquid will not change the colors of blue, green, or red beetles if dried after soaking from twelve to twenty-four hours. Hemiptera and Orthoptera can be treated in the same way.

A stay of a month in this arseniated alcohol mineralizes the insect, so that it appears very hard, and, after drying, becomes glazed with a white deposit which can, however, be washed off with alcohol. In this state the specimens become too hard for dissection and study, but will do for cabinet specimens designed for permanent exhibition.

Another preparation recommended by Laboulbène is alcohol containing a variable quantity of corrosive sublimate, but the latter lias to be weighed, as the alcohol eraporates easily, the liquor becoming stronger as it gets older. The strongest solution is one part of corrosive sublimate to one hundred of alcohol; the weakest and best is one-tenth of a part of corrosive sublimate to one hundred parts of alcohol. Insects need not remain in this solution more than two hours before drying. Both of these preparations are very poisonous and should be handled with care. The lastnamed solution preserves specimens from mould, which will attack pinned insects during damp summers.

A very strong brine will preserve insects until a better liquor can be procured. Professor A. E. Verrill recommends two simple and cheap solutions for preserving, among other specimens, the larre of insects "with their natural color and form remarkably perfeet." The first consists of two and a half pounds of common salt and four ounces of nitre dissolved in a gallon of water and filtered. Specimens should be prepared for permanent preservation in this solution by being previonsly immersed in a solution
consisting of a chart of the first ahbtion and 1 wo ounce of arseniate of potan and a sallon of water．

D．II．Trois＊gite the following formula for freereminer ratropillars．

When the lignid is cold add 50 grains of carbolie acid． Let the lignid stand five or six days and then fitter．It is clamed that by means of this tlaid the colors of cater－ pillars can be preserved perfectly，even when exposed to a strong lichlit．

The nests．conoths．and chrysalides of insects may be preserved from injur！from oher invects by hing sathed in the aseniated alowhol，or dippet into bemzine or a sola－ tion of ambolir aciol or creossute．

1）r．I．L．La（＇onte hats pmblishert in the＂Ameriant Naturalist．＂iii．p．30\％．some bew direntions fur the pres－ orvation of insects which will aph！y to beetes as well as ot her insects．．Surgical at has given to us an instrument by Which a guïsonoms liguid can be rapidly and most cefectively applied tu the entire surface of large numbers of specimens as they stand in the cabinet boxes，withont the tronble of moring them．I refer to the－atomizer．
－Gpinions may vary as to the nature of the liquisl poi－ son to the used，hat after several trials 1 hathe fonnd the following formula to be quite sati－factor？：it prombers not
 While the extor is gute atronge anel pereistent ef ateh to destroy any larsad r erfers that may be already in th fas：－ satmmeal alcoholice solution of atremions acid．＂A lit thad （omeses strehnine．Awelve grains：crotal lizel arbulic atiol，one drachm：mineral naphthat（or heay to 1 tine）and

[^21]strong alcohol, enough to make one quart. I have not stated the quantity of naphtha, since there are some varieties of light petroleum in commerce which dissolve in alcohol only to a slight extent. These should not be used. The heavier oils which mix indefinitely with alcohol are the proper ones, and for the two pints of mixture ten to twelve fluid onnces of the naphtha will be sufficient. Care should be taken to test the naphtha on a piece of paper. If it leaves a greasy stain which does not disappear after a few hours, it is not suitable for this purpose.
"The best form of atomizer is the long, plated, reversible tube; it should be worked with a gum-elastic pipe having two bulbs, to secure uniformity in the current. The atomizing glass tubes and the bottle, which usually accompany the apparatus, are unnecessary; a common narrowneeked iwo-ounce bottle will serve perfectly to hold the fluid."

Preparing Insects for the Cabinet.—Dried insects may be moistened by laying them for twelre or twenty-four hours in a box containing a layer of wet sand, covered with one thickness of soft paper. Their wings can then be easily spread. Setting-bourds for spreading the wings of insects may be made by sawing deep grooves in a thick board, and placing a strip of pith or cork at the bottom. The groove may be deep enongh to allow a quarter of the length of the pin to project above the insect. The setting-board usually consists of thin parallel strips of board, leaving a groove between them wide enongh to receive the body of the insect, at the bottom of which a strip of cork or pith should be glued. The ends of the strips shonld be nailed on to a stonter strip of wood, raising the surface of the settingboard an inch and a half, so that the pins ean stick through without touching. Several setting-boards can be made to form shelves in a frame covered with wire gauze, so that the specimens may be preserved from dust and destructive insects, while the air may at the same time have constant access to them. The surface of the board should incline
a little towarks the erroove for the reereption of the insect, as the wings oftell gather a litale moisture, reliax and fall down after the insect is dried. "For the proper settine of insects with hroad and flattened wings. such as butiortlies and moths, a sproaling board or stretuher is neacesary. One that is simple and answers every purpose is shown at Fig. alia. It may be mate of two pieces of thin white-wood or pine board, fastemed together by braces. especially at the ends, and left wide enough apart to anmit the bodies of the insects to be spreat: strips of cork or pith, in which to fasten the pins, may then be tateked or glued below so as to cower the intervening spare. The braces mast be derpe enotern

F1G: 2: to prevent the pins from tomehing ant thing on which the stretheremathe latid: amd, hy attaching a rime of loop to one of them. the streteher may he hang arsinet at wall, wht of the waty. For ordinary-sized secimenti I new buate : feet long. :3 inches wille, and $\frac{1}{3}$ inch thick, with throw hrace (one in the midale and one at cath end) $\frac{1}{2}$ inclues derp at the ends, but narrowing from dach end $t, 1 \frac{1}{6}$ inches at the middle. This slight rising fiom the midule is to enunteract the tembeney of the wings. however well dried, to drop a little after the inseet is placed in the eabinet. 'The wines
 until dre." (liley.) others use strips of sitt, smooth cloth.

Moths of medinm size should remain two on then dats on the setting-hamb, while the largerthick-houlind-phinges and Bombyedar require a wew to dry. The wir ese ean be arranged by means of a needle stuck int a hamdle of wood. 'They should be set horizomally, amb the front margin of the fore wings drawn a litule forward of a
line perpendicular to the body, so as to free the inner margin of the hind wings from the body, that their form

Fig. 268.-Mode of setting with card-braces the wings of a butterfly or moth. may be distinctly seen. When thus arranged, they can be coufinerd by fine threads drawn over the wings, by pieces of card pimed to the board as indicated in Fig. 268, or, as we prefer, by square picces of glass laid upon them.
After the insects have been thoroughly dried they should not be placed in the cabinet until after haring been in quarantine to sce that no eggs of Dermestes or Anthrenus, etc., have been deposited on them.
For preserving dried insects in the cabinet Laboulbène recommends placing a rare insect (if a beetle or any other hard insect) in water for an hour nutil the tissues are softened. If soiled, an insect can be cleansed under water with a fine hair-pencil, then submit it to a bath of arseniated alcohol with corrosive sublimate. If the insect becomes prune-colored, it should be washed in pure alcohol several

Fig. 269.-Ptinus fur. a larva.
times. This method will do for the rarest insects; the more common ones can be softened on wet sand, and then the immersion in the arseniated alcohol suffices. After an
immersion of fron at ytarter of an hour to ath hour, ancentlinge to the sizn of the insect, the pin is ment atiected by the cormsibe suhbinate. hut it is better to maphethe inseret pevions to immersion, and then pin it when ahoset dry.

For comaner inseds ether or benzan is excellent. applied with a hatis-pencil; thongh are shonhed be taken it using these substanees, which are very inflammable.

After the specimems are phaced in the cabinet. Elsey should be further protected from destructive insects hy plateing in the drawers or boxes pieces of camphor wrapled in paper perforated hy pin holess of bottles contaiaing sponges satturated with benzine on oil of satsatfats. The collection should be carefully examined every month: the presence of inseds can be detected by the dust beneath them. Where a collodion is much infested with deetruetive insedts.* benzine shand he pured inte the bottom of the box of drawer, when the fanes amb eontate of the benzine with their berlies will kill them. 'The specimens themselves shmold not be somked in the hemzine if pessible, as it renders them brittle.t

[^22]Insect-cabinet.-For permanent exhibition, a cabinet of shallow drawers, protected by doors, is most useful. A drawer may be eighteen by twenty inches square, and two inches deep in the clear, and provided with a tight glass cover.

For a permanent cabinet, says Mr. S. H. Scudder, nothing can excel the drawers made after the Deyrolle model, now in use by the Boston Society of Natural History. "I have tried them for six years, and find them entirely pest-proof. They are made with a cover of glass set in a frame which is grooved along the lower edge and thus fits tightly into a narrow strip of zine set edgewise into a corresponding groove in the drawer; the grooves beyond the point of intersection of two sides are filled with a bit of wood firmly glued in place; it is hardly necessary to say that the sides of the drawer and the frame of the cover should be made of hard wood; soft wood would not retain the zinc

Fig. aro. - Model of the Deyrolle insect-drawer, side view of front end, with the cover raised. D, bottom of drawer; C, cover of same, raised a little; f, front piece, with moulding (m) and handle (h) glned to bottom piece; sa, sash; sl, slit in cover, into which the zinc strip (z) fits; $s l^{\prime}$, slit in hottom, into which it is fastened; g, bevelled groove, to allow the finger to raise the cover; $H v$, hind view of one end of the bottom to show the insertion of the bottom (b); $R c$, reverse of one corner of cover to show the grooves filled beyond their junction. All the figures half size.
strip; the zinc shonld be perfectly straight, and the ends well matched; if this be done, nothing can enter the box
examination, tight boxes, and a free use of chloroform or bisulphide of carbon" (Proc. Ent. Soc. Washington, i. 115).
when it is chosed. A smilar low with : wershan rablot is
 bat it cammot prssibly low sol tight, and requines howhis an the sides to keep the coner down: it has the :llumtanes of greater cheatpuess, as it can be mande of soft woot, but is at the same time clumsior. My own drawers are made of cherry sides, amd have also at fatse front attached to them, furmished with mouldinges and handles so as to present a not inclegant :lpeenamere: and, exelusive of the cork with witeh they are lined, cost s.?. (6.) each: they measme inside 18 条 inches long, 14 inches wide, and 17 inches derpp, mot including the cork lining."

In the drawers in use ly the U. S. Entomologist at the Department of A erivalture there are on the sides withing deep grooves kept constantly tilled with maphthalinue.

For constant mse haxes mate of thin, well-semsomed wood.* with tight-ftting coners atre imlispensable. For Coleoptera. Dr. Leconte recomments that they be twelve hy nine inches (inside meaturement). Fion the larger laphlepterat a little larger hos is proferable. Others profer lexas matle in the form of books. which may be put alway like homk on the shelves of the eabmet. themert the enver of the box is apt to be in the way.

The boxes and drawers shombl be lined with cork ent into thin slips for sules: such slips come from the conkconter about twelve by four inches symare and ato cighth of an inclo thick.

Other suhstitutes are the pith of various phants. ©epecially of corn: "pita" and palm wool: and " momborms felt" is used, beinge cont to the the bottom of the hox.

Leconterecommembs that." for the purpere of distinguishing speedmens liom different regions: little diske of variont? colored patper be nsed: they are easily make ha a small

[^23]punch, and should be kept in wooden pill-boxes ready for use; at the same time a key to the colors, slowing the regions embraced by each, should be made on the fly-leaf of the catalogue of the collection." He also strongly recommends that the "specimens should all be pinned at the same height, since the ease of recognizing species allied in characters is greatly increased by having them on the same level."

He also states that "it is better, even when numbers with reference to a catalogue are employed, that the name of each species shonld be written on a label attached to the first speeimen. 'Ihus the eye is familiarized with the association of the species and its name, memory is aided, and greater power given of identifying species when the cabinet is not at hand." For indicating the sexes the astronomical sign of (Mars) is used for the male, and o (Venus) for the female, and P for the worker.

For exhibiting alcoholic specimens of insects in different stages, and preventing their remaining at the bottom of bottles on the shelves, Prof. Moebius places the specimens in a glass tube filled with alcohol and having a stopper of cotton-wool. He then puts the insects according to their age, eggs or larve lowest, in a stoppered upright bottle filled with alcohol, in the middle of which is a cylindrical glass which presses the glass tube against the side of the upright vessel (Zool. Anzeiger, vi., 1883, 5:-3).

Transportation of Insects. - While travelling, all hardbodied insects, comprising many IImenoptera, the Coleoptera, Hemiptera, and many Neuroptera, should be thrown, with their larra, etc., into bottles and vials filled with strong alcohol, with rubber stoppers. When the bottle is filled new liquor shonld be poured in, and the old may be sared for collecting purposes; in this way the specimens will not soften and can be preserved indefinitely, and the colors do not, in most cases, change. LeConte states that "if the bottles are in danger of being broken, the speeimens, after remaining for a day or two in alcohol, may be

 sects may be well presomed hy phatior them in signare piecers of paterer folded into at trianghar form with the ederes overlippling. l'ut up thus. multitules can le packed aw:y in tin boxes, and will bean traneportation 10 any distanme. In tropical climates. chests lined with tin shonld be mande to contan the insect-hoxes. which can thas be preserved agranst the ravages of white ants, cete.

In sembing lise lave by mat, they should he inclosed in little tin hoxes: and in sending dry sueximens. the hox shonhe le light and strongs and direetions given at the prot-otlioe to stanp the hax lightly. In sembling hoxes liy experes. they should be rarefolly backed in a later hox haring an interspace of two inchess. which e:th loe tilled in tight! with

 consist of parchanent. With the lowality. dateonf capture atme name of colleretor written in ink. A temproary lahel of tirm paper, with the locality, ete.. written with a pemeil, will last for several years.

Preservation of Larvæ.- Alcoholic specimens of insects. in atl stages of growth, are very useful. Few colleetions contain akeoholie speeimens of the adnlt inseet. 'This is a mistake. Many of the most important characters are elfoced during the drying process, amd for pimperse of general study alewholi sperimens. even of hees. Leplotoptora, liptera, and dragon-flies, are very neecesary.
 of alcohos with ruhber corks.* 'Ther should tir-t he put

[^24]into whiskey, and then into aleohol. If placed in the latter first, they shrivel and become distorted. Mr. E. Burgess preserves eaterpillars with the colors unchanged, by immersing them in boiling water thirty or forty seeonds, and then placing them in equal parts of alcohol and water. It is well to collect larva and pupæ indiscriminately, even if we do not know their adult forms; we can approximate to them, and in some cases tell very exactly what they must be.

Rearing Aquatic Larve.

Many insects pass their early stages in brooks or ponds. They ean be dredged with the water-net, and reared in pans or jars of water in which a few water-eresses, mosses, or other aquatic plants may be kept to oxydize the water and keep it pure. In this way the larvæ or nymphs of Perlidæ, may-flies, dragon-flies, eaddis-flies, aquatie beetles, Diptera, and moths may be reared with more or less sneeess. By collecting such larve in March, April, and May, a good many speeies may be brought to maturity within a few weeks' time.

Any glass jar, or even a deep earthen pan, may suffice for an aquarium, in place of more elaborate glass and iron struetures.

Mr. Lagger has invented an aquarium which he finds very convenient for rearing aquatie insects; it consists of a tin box one foot square in front and about three inches thick, with a glass front. Over this glass front slips a round-oval picture-frame. If the inside is painted and filled with water, the whole looks like a suspended picture of rather unusual thickness. Several such aquaria can be grouped together like so many pictnres. If conneeted by siphons earefully graded, a constant flow of water ean be obtained, whieh prodnces the necessary eurrent and sup-

[^25]
 vonionce．＇Iher athlition wh some witter－phatsts aldhe arveatly
 Wishington，i．：3．．）

Rearing Insects in General．

More aftention has been paid hy ontomolerists to reatimer ＂aterpillatrs thath the yomer of athy othere orters of insects． and the following remarks apply more particularly to them． but reey munh the same methonls may he pursud in rear－ ing the larve of Nempopteras，bettes．Alies amd Dymen－ optera．Subtertateath larvid have tor be kept in moist（anth．
 lanve mast be supplied with thes．＇The laver of hatere

 shond then be reared in mombers．In hantiner fin e：ther

 best surobmens of moths and haterflies are ohtamed hy rearing them from the eges，on from the latra or prata．In

[^26]confinement the food should be kept fresh, and the box well ventilated. 'Tumblers covered with ganze, pasteboard boxes pierced with holes and fitted with glass in the covers, or large glass jars, are very convenient to use as cages. The bottom of such vessels may be covered with moist sand, in which the food-plant of the larra may be stuck and kept fresh for several days. Larger and more airy boxes, a foot square, with the sides of gamze, and fitted with a door through which a bottle of water may be introduced, serve well. 'Tlre following extract from Riley's "Fifth Ammal Report on the Injurions Insects of Missouri" illustrates his style of vivarium:
"For larger insects I use a breeding-cage or virarium of my own devising, and which answers the purpose admirably. It is represented in Fig. 2\%1, and comprises three distinct parts: 1st, the bottom board (a), consisting of a square piece of inch-thick walnut with a rectangular zinc pan (ff), four inches deep, fastened to it, above, and with two crosspieces ($g \mathrm{~g}$) below, to prevent cracking or warping, facilitate lifting, and allow the air to pass underneath the cage. 2d, a box (b), with three glass sides and a glass door in front, to fit over the zinc pan. 3d, a cap (c), which fits closely on to the box, and has a top of fine wire ganze. To the centre of the zinc pan is soldered a zinc tube (d) just large enough to contain an ordinary quinine bottle. The zinc pan is filled with clean sifted carth or sand (e), and the quinine bottle is for the reception of the food-plant. The cage admits of abundant light and air, and also of the easy removal of the excrement and frass which fall to the ground; while the insects in transforming enter the ground or attach themselves to the sides or the cap, according to their habits. The most conrenient dimensions I find to be twelve inches square and cighteen inches high: the cap and the door fit closely by means of rabbets, and the former has

[^27]a depth of about fome inchese to atmit of the lareme (a)coun being spum in it without tomehing the boa on which it rests.

Fig. 2is.-Breeding-enge.

The zine pan might be made six of wight inehes deepe and the lower half filled with silnd. 6 as to kerp the whole moist for a greater length of time.

- I dozen steh rages will furnish room for the ammal breeding of a great mumber of spectos. as aseral hating different halits aml appearmee and whoh there is 100 danger of confombling may be simmitaments fed in the same eage. I number each of the three parts of eath eage. to prevent misplacement amd to fiveilitate reforence: and aside from the notes made in the note-bouk. it will aid the
memory and expedite matters to keep a short open record of the species contained -in each cage, by means of slips of paper pasted on to the glass door. As fist as the different specimens complete their transformations and are taken from the cage the notes may be altered or erased, or the slips wetted and removed entirely. To prevent possible confounding of the different species which enter the ground, it is well, from time to time, to sift the earth, separate the pupæ and place them in what I call imago cages, used for this purpose alone and not for feeding. Here they may be arranged, with reference to their exact whereabouts."

The object is to keep the food-plant fresh, the air cool, the larva out of the sun, and in fact everything in such a state of equilibrimm that the larva will not feel the change of circumstances when kept in confinement.

Sugaring for Moths. - We may set bait or "sugar" for moths, smearing the mixture of sugar and vinegar on the bark of a tree, and visiting the spot by night with the lantern and net. A mixture of cheap brown sugar mixed with a little hot water and beer, or one of some beer and molasses in equal parts, flavored with a little rum or brandy, may be applied with a paint-brush before dusk to stumps, trunks of trees, or fences; some prefer to liwy it on in long and narrow streaks rather than in broad patches. With a dark-lantern hanging from astrap around the waist, the collector may risit the trees several times during an evening, especially a warm, damp, foggy, still night.

Mr. O. S. Westeott adrises the night collector to have two wide-monthed bottles, each with a chloroform sponge tacked on the bottom of the cork; also two cyanide of potassium bottles, to which the temporarily anasthetized moths may be tiansferred (Can. Ent., viii. 12).

Traps for Moths, etc.-L'aking advantage of moths flying to liglits,* many can be collected about gas or electric lights.

[^28]

 lamps where than lighte are sitnateri. A light traty may he made by a lantern combland with a reflector. smanended ont of doors: muler the lantern a fumed several inches larere thatn the lantern matrereh down into at box or bottle containine the fumes of whatorm or ehere or henzine. or. if the lantern is nsed for beetles. inter a hotele filled with dilute aleohol.

It should be borme in mind. as Wr. 'Thaxter observes. that Noctuids always fly agranst the wind. and wnkess the light is so plated that they eath fly thes to get to it. ones suceses will le slight.

We will now deswibe the methods of rearing and preserving insects of ditferent orders.

Rearing Caterpillars.

The best specimens of moths and hattertlies are ohtained ly rearing them from the ereg. or from the larvat or prabat. besides merely breeding caterpillars in order to prosure grome sperimens for the eabinet. the mothern stadent of contomology who dexies to trace the remealogr of Lefindop-
 and the other early stages with the finll-grown larva, so as to obtain al complete life-histars. with comped illatations.
 in breeding amd wereribing caterpillars. In conlfinement the food shomld be kept fresh, and the herediner cater or hox well rentilated. 'Tamblers covered with gatuze patceboard boxes piered with holes and fitted with grlase in the cowers. or larege grass jars-hut better still, tin bove of different sizes. in which the food remains fresh for - evolal dat--are very convenient to me as eages. The butwon of anch vessels may be covered with moist sind. in which the food-
plant of the larva may be stuck and kept fresh for several days. In rearing from the egg, says Scudder, the greatest difficulty is during early life; young caterpillars must have the freshest and tenderest food and not too much confinement. With all precautions many will be lost, for they are so small that it is difficult to keep track of them, and some are very prone to wander when their food does not suit them. They are best reared in some open vessel covered with gauze, with the growing plant, placed in the light, but not in the sun. Most caterpillars change to pupe in the autumn; and those which transform in the earth should be covered with earth, kept damp by wet moss, and placed in the cellar until the following summer. The collector in seeking for larve should carry a good number of pill-boxes, and especially a close tin box, in which the leaves may be kept fresh for a long time. The different forms and markings of caterpillars should be noted, and they should be drawn carefully together with a leaf of the food-plant, and the drawings and pupa skins, and perfect insect, be numbered to correspond. Descriptions of caterpillars cannot be too carefully made, or too long. The relative size of the head, its ormanentation, the stripes and spots of the body, and the position and number of tubercles, and the hairs, or fascicles of hairs, or spines and spinules, which arise from them, should be noted, besides the gencral form of the body. The lines along the body are called clorsal if in the middle of the back; subdorsal if upon one side; lateral and ventral when on the sides and under surface; or stigmatal if including the stigmata or breathing-pores, which are generally parti-colored. Indeed, the whole biography of an insect should be ascertained by the observer; the points to be noied are:

1. Date when and how the eggs are laid; and number, size, and marking of the eggs.
2. Date of hatching, the appearance, food-plant of larva, and number of days between each monlting; the changes
 at the first monlting. with drawings illustratire of the: :
 Whether a day or night ferder: the ichnemmon parasitus. athe their mento of attack. Fiperimens of larya in the difforent moultings should be peremed in aldentol. 'The :1]paramee of the latrar when full-ferl, the date. mumbre uf days hefore pmatug. the formation and beserpetion of the cocoon, the daration of larve in the coceson hefore pupation,

 should all be stodiad and moted.
\therefore. Wite of prpation: Alesoription of the pupat or chasialis: duation of the pulat statco habits. ato: therether with al-
 should be locked for lato in the summer. an in the fall :and

 and stones, and these of borers under the hark of decenting trees.s.)
3. Date when the insert eseapers from the pupta, :unt method of escepre: duation of life of the inaten: and the number of broods in a season.

Drawing Caterpillars. - After some pactice aby one can
 a caterpillatr. amd after a little experiemee evern al aketch in water-colors. Datwing in nattural history is all-impertant to the hegimere it twans the eve to oheerve elasedy and grood skethes of the ealy stages of insents ate copecially nereded in this comatry. Virions cameras hate heen contrined to emable the artist to get a corree omtle of ohecere. while for that. mieroseopie objeets the nee of the cameral lueda is invaluable: after a few trials it can be ued both for drawing outlines and filling in detals. In this-w:y the larve of the Miero-lepidoptera momented on arlats sheles maty de dr:เพา.

Managing Caterpillars in Confinement.-They may be enclosod in ganze bags tied over the smaller branches of the food-tree, yet they have to be watched; they need attention after heary showers or storms; and some will eat their way through just before pupation. For caterpillars in confinement air and light are nccessary, though many do weli bred in small tin boxes without ventilation. The boxes should be cleaned every day; removing the castings and bits of leaves, as well as sick or dead larvæ. If any contagions disease appears, all the sick caterpillars should be burnt and the box cleansed with dilute carbolic-acid water. The food should be renewed every day, and if possible put into a bottle of water closed with cotton to prevent caterpillars from falling in. Too much food in a small jar or box fouls the air and hastens its own decay. After beginning to feed larvæ with one kind of food-plant, it is dangerous to change it for another; hence they should be fed on the kind of plants on which they are first found.

Dr. Knaggs has, in the "Entomologist's Monthly Magazine," given some directions for managing caterpillars. Very young caterpillars, which will not eat the food provided, and become restless, should be reared in air-tight jam-pots, the tops of which are covered with green glass to darken the interior of the vessel. When small larva hide themselves by mining, entering buds, and spinning together leaves, they should have as small a quantity of food as possible. In changing larve from one plant to a fresh one, a slight jar or puff of breath will dislodge them, and they can be transferred to the jam-pot; or the glass cylinder, covered at one end with muslin, can be turned muslin end downwards for them to crawl upon. The duplicate breeding-cage, pot or tube, should be "swectened" by a free current of fresh dry air and then stocked with fresh food.

Dr. Knaggs advises that " hiding-places" or bits of chips, etc., be provided for such Noctuid larra as naturally lie concealed, such as Orthosia, Xinthia, Noctua, etc., 's while
for Agrotis amt a fex others a comsiderable depth of tine

" Larvar. Which in natme hihncmate must aithere bee stimmlated ly wamoth amd frow fool to foed up momaturally fast. or clae thomsh the winter mast bre axpeed to out-down temperature." Hihemating. hairy larva must be kejt dry during winter. For surh harva as beerin to eat lefore the tress are leaved out, the leaves of eromerens
 moseses. On the other hand, Mr. Wr. II. Eillwards has ferd belated larve of l'upiliog c'resphontes on driad beases of prickly ash, softemed in water. $H_{\text {a a }}$ also fod amother hedated let with leaves of the hopretree which hat heen gathered for two years. 'These he sabked overnight, labl hetween blot-ting-papere and the lavar ate them readily. Larve from other comatrise may la fed in the some mamer. the foodplants being sent hy mail. Mr. (iferme derobines what hee ealls his "larvarimm, vi\%. a very large bux, sal three feet. square amt about the s:ane in depth. filled partly with mould corered "ith moss." 'l'lue edere of the lap of this box must he smouthly shaved to suit the liel. which is like the frame of at sate. the shate lowing knerked out. 'This is then covered with gatuz. In a hox of this size small brameles may le held in bottles of water. amd fwo or thres dozan larva saliny homsed. If plamed in a cond rome what folonty of ar. they will grow almost as later as if in fresdom. Mr. Gibson strongly rexommends that duriner the winter all "alges contaning larve be placed in front of at window faring the east or mortheast. so that the immatus may be kept aceol ats posilhle.

When the moth is farly ont of the pupta as mantar ly Mr. Sanborn. their wings often fail to properl! (yamel an

[^29]account of the want of moisture, " the insect being unable to expand its wings in a heated, dry room. He has avoided this difficulty liy placing the insect just emerged, or about to come forth, beneath a bell-glass, within which he had placed moistened pieces of bibulous paper."

By taking adrantage of the habit of many tree-feeding caterpillars of changing to pupæ (pupating) in the soil close to the trunk of the tree, many rare moths can with little tronble be raised from the chrysalides thus found. As the Rev. Joseph Greene ("The Insect-hunter's Companion," London, 1Si0) advises, the dirt around the trunk should be dug up with a trowel, and carefully examined for chrysalides. He adds that "pupa may be found almost anywhere and everywhere, under moss on large stones and boulders, in the decayed stumps of old trees, behind the loose bark on palings, between dead leaves, under moss on banks, etc., etc."

Hibernating Larvæ.-These are very apt to die when artificially hibernated. If kept too dry they die from lack of moisture; if kept too moist they are apt to be attacked by fungi. The effort shonld be to keep them at a temperature as steady as possible and below the freezing point. If placed in a cellar with the window open, or among leaves out of doors in a box protected from rain and snow, in conditions as nearly as possible to nature, they may be in many cases successfully carried orer through the winter.

Management of Pupæ. - Mr. S. Lowell Elliott, who has been remarkably successful in rearing butterflies and moths, breeding them by the hundreds and even thousands, has a pupa-box of the following description: It is about 20x16 inches, and 8 inches deep, with a bottom of coarse wire cloth placed about inches from the bottom, so that the box can be set over a flat earthen pan of water; it is divided by thin wooden partitions into four compartments, the bottom of each of which is covered with a thiek layer of baked Sphagnum moss which has been pulled into fine bits. The pupæ are laid on this floor of moss, and corered over
with a thick layer of mos- prepared in the same manner ats that bemeath. 'The Box is covered by at glates plate hept in plate by propertions from the siles. I Mring the winter the fatl of water mat bx dispensen with, athd the box put into a collan-room with the window bartly aren, so that the fred
 in such a sithatiolt whtsile of the homse that the bex will
 too damp. We have fommet that surh a box, with water in course of eraporation mater it. is Ly far the best phace to kerp pupe both in summer and winter.

When the moths emerge, they are transemed by Mr. Elliott to another box (or mather a series of them, for keeping mumerons specimens at the same time). with a grass top, and a stiek introlnech on which the moth may hang suspembed by its feat until the wings are fully expamed and the body sulliciently driod: they ate then transferred to the prisoniner-hox, and the insect is tinally set, hefore a wing has flutterent.

Pairing or Mating Lepidoptera in Captivity. - " It is common emongh," says Mr. W. IV. Edwards, " for certain Shhinges and bamberide to mate in hoxes and immerdiately after leaving the pupae. 'Ihhis may happen when the egess are mature at the birth of the inseet. With many speetes of hattertlies the egres do not mature for seroral days after leaving the ehrysilis, as is the ease with the large Argymide: hut with otheres as I'herindes thetos, n!!rteix and m!!!ime. they are mature from the start. I have not expermented in this direction. but from what Miss F. L. Morton, of Newhuryh. \therefore. V.. tells me. it may be possihbe to induee butterflies of some verio- 10 mate and so to ubtaln egres. for the erges are lath sert shatly aftere eopulation, as 1 hate sereral times whated. Mia Morten hand by mistake plased a male siltores doy. umder a bag of netting ongrase. Three days later -he imtrodnecal a temate. Which we to that time was suppored to be the second female. Almost immediately the pair mated, and
a few hours later eggs were laid. In attempting to get eggs in this manner, it would be best that a male caught in the field should be introduced to a female just from the chrysalis, for in the field it is these last which are sought by the males. Almost always, when a pair of butterflies in copulation are taken, the male will be found worn or broken, while the female is uninjured in wing and therefore must have lately left the chrysalis" (Can. Entomologist, xviii. 17).

Mr. S. Lowell Elliott very successfully mates Bombyces, etc., by placing the sexes in a gauze mating-bag suspended in a room through which passes a current of air from out of-doors.

Mr. Edwards also covers a branch of the food-plant with a bag of fine netting, placing the female within, so that she can move freely about; she should have plenty of light, though not exposed to the direct rays of the sum. If the plant is a small one it may be covered with a headless keg, covered at one end with ganze.
Treatment of the Eggs. - They should be kept in a not too dry or overheated atmosphere, and should be so placed that at its birth, without effort, the larva at once finds fresh food. *

Collecting and Rearing Micro-lepidoptera. - For collecting and preserving these minnte and delicate moths, which are called by collectors Micro-lepidoptera, especial instructions are necessary. When the moth is taken in the net, it can be blown ly the breath into the bottom. "Then by elevating the hand throngh the ring, or on a level with it, a common eupping-glass of about two inches in diameter, or a winc-glass carried in the poeket, is placed on top of the left hand over the constrieted portion, the grasp relaxed, and the insect permitted to escape through the opening into its interior. 'The glass is then closed below by the left hand on the outside of the net, and may

[^30]We transformed the the top of the collenting-tox. when it can be quietad by (Chtaroform." (Clements.) Or the mothsmay
 into a latrex los lillend with fumes of "ther or bemzine or eyamide of putasium. la pimehing any moths om tho thorsa, as is sometimes done, the form of that remion is inbariably distorted. amd many of the stales remored. In searehing for Micoos we must look carefully on the le side of trees, fences, hederes. and molulations in the iremme, for they arod the wind. Indeed, we ath take adsamtage of this habit of many Mioros, and by blowing vigorously on the trunks of trees start the moth ofl intu the net so plateed as to intereept it. 'This method is most proxhetise. ('. (i. B:arett states. in the \cdot Vatomologist: Month] Magrame." while al stend! wind is howing.
'The latwe bary exossively in the momber of lears sixteen

 thongh the legs are but poorly daveloped. they mumbic eighteen : on the othere hand. the lavie of : fex wif the
 footless.

In sereking for the larvar. Wranst remember that most of them are leaf-miners and their burnows ate deteretel by the waved, brown, withered lines on the surface of leases and their fross. or exmement. thrown ont at whe ched. Some are fomm betweon mited kates, of which the upper is emmbled. Others roustrmet fortable eases which they
 in the stoms of grases. of in fungi, toatstonls. amt in the pith of emmant or rasplerry lomshes. Mos are ent tory a foll gregurions. I bush stripped of its leaves aml conered with
 pillar). will withess the work of a 'Tortrix or 'Tin ofl. linds of molded herbs suffer from their attank-。 - whe the the heads of eompesite flowers which are dran the ther and consumed by the larvae.

After some practice in rearing larva it will be fonnd easier and more profitable to search for the leaf-miners, and rear the perfect, fresh, and uninjured moths from them. In this way many species never found in the perfect state can be secured.*

In raising Micro larva it is essential that the leaf in which they mine be preserved fresh for a long time. Thus a glass jar, tumbler, or jam-pot, the top of which has been gromed to receive an air-tight glass eover, and the bottom covered with moist white sand, will keep a leaf fresh for a week, and thus a larva in the summer will have to be fed but two or three times before it changes ; and the moth can be seen through the glass without taking off the eover ; or a glass cylinder can be phaced over a plant inserted in wet sand, having the top covered with ganze. Dr. H. G. Knaggs, in treating of the management of caterpillars in breeding-boxes, enumerates the diseases, besides muscardine and cholerine (and we might add pebrine), to whieh they are subject. Among direct injuries are wounds and bruises, which may be productive of deformities in the future imago ; the stings of ichnemmon flies, whose eggs taid either upon or in the body may be erushed with finely pointed scissors or pliers; frost-lites; and suffocation, chiefly from drowning. If the caterpillar has not been more than ten or twelve hours in the water, it may be reeovered by being dried on a piece of blotting-paper and exposed to the sun. Larrae may also starve to death, even when food is abundant, from loss of appetite, or improper ventilation, light, ete.; or they may eat too much, become dropsical and die. Caterpillar's undonbtedly suffer from a

[^31]contagions: disease anakems to low feom. Many diw while moulting, "anemally the lar in of hattorties. fohinges, and bomberds: whers are sarried off he diarrhas. which is gellemally allawl hy impoper fieding on tor juicy or relaxing food, when wak leates on dry stuntel foliage should be given them. Tow relieve constipution they shomld he fed with letture and other natural pursatives: and lastly, they may be attacked ly fungi, especially, hesides thene previously mentioned, as species of (idimm. Such patients should be put in direct sminght or dry enrents of air. (Eutomologist's Monthly Magazine, Jume. 1stis.) The pupatasily dry up; they should be kept moist. in tubee of glass clased at either end, through which the meth call bee seen when diseloserel.

In setting Miero-lepidoptera: " If the insect is rery, smath I hold it by its lege between the thumband finger of the left hamed, whilet I puesee it with the gin hedd hetween the thamb and finger of the right hand: if the insert is not very small I hee at romgh surfate, as a pisce of botting-paper or piece of cloth, for it to lie mpon :and prowem its alipping about, and then cantionsly insert the peint of the pin in the middle of the thoma, at mearly ans pesthe in a wertan direction. As som as the pin is fairly throngh the meset, remove it to a solt piece of conk, and, he pressing it in. push the inseet as far upthe pin as is repuired.

- For setting the insects 1 find mothing answes as wedl as a piece of wht cork, papered with smonth papher, athed wath greneres ent to admit the hodies. The winge are phand in the required poeition ly the setting-ncedte and are then retained in their place by a wedgeshaped, thin paper brace placed wer them till a oquare hate of omenth card-hard is plated orer the cmds of the wing-." (atainton.) A small equare of glase (an also be lait on the wings to kerp themexpunded, and thus sere the sume purpese as the paper hatees.

Limarns tirst set the example of having the eperitie mames of the Tortricids end in ana, and of the T'imede in llu; and
at the present day the rule is generally followed by entomologists, who have also given the same terminations to the names of the smaller species of Pyralides, such as Pempelia, Crambus, and allied genera.

We may also add Lord Walsingham's directions for collecting Micro-lepidoptera, published in the " American Naturalist" (vol. vi., No. 5):
"I go out with a coat provided with large pockets inside and out, containing an assortment of pill-boxes (renerally of three sizes, glass-bottomed pill-boxes preferred), a bag slung over my shoulder, and a net. Unless searching for particular day-liying species, I prefer the last three hours before dark. As the sun goes down, many species move which do not stir at other times. I watch the tops of the grass, the stems of the flowers, the twigs of the trees; I disturb leaves and low-growing plants with a short switch, and secure each litthe moth that moves, taking each out of the net in a separate pill-box, selected according to the size of the insect, as he runs up the net to escape. Transferring the full boxes to the bag, I continue the process until moths cease flying or night sets in. Many species can be taked with a lamp after dark.
"Returning to camp, I put a few drops of liquid ammonia on a small piece of sponge and place it in a tin canister with such of the boxes as do not contain the smallest species, and put these and the remainder away until morning in a cool place. In the morning I prepare for work hy getting out a pair of scissors, a pair of forceps, my drying-box containing setting-boards, a sheet of white paper, and some pins.
"First, I cut two or three narrow picees of paper from three to six lines wide, or rather wider, according to the size of the largest and smallest specimens I have to set. I then double each of these strips and eut it up into braces by a number of oblique cuts. Now I turn out the contents of the canister and damp the sponge with a few drops of fresh ammonia, refilling with boxes containing live insects. Those which have been taken out will be found to be all dead and in a beantifully relaxed condition for setting. Had the smallest specimens been placed in the canister overnight, there would have been some fear of their drying up, owing to the small amount of moisture in their bodies.
"If the weather is very hot there is some danger of killed insects becoming stiff while others are being set, in which case it is better to pin at ouce into a damp cork box all that have been taked out of
 one hy one as 1 set thom.
"Thking the lid oft : bex, ams tahing the box hetween the tinger and thamb of the risht hamd, 1 whll out the insent on the top of the boft thumb, sulperting it with the top of the fort tinger atat at manipulating it as to bring the hat gemating towarl- my right hambund the thoms uppromon. Now I take n pin in the right hand, and rating the tirst joint of the midtle limere of the right arganst the pros. jertine print of the midhe finger of the left hat to atomat matertiness, I pin the insect whigucly through the thickest part of the timens so that the head of the pin leans very slighty formand wer the heal of the insect. After pasing the pin far emongh thengh to bring about one-fonath of an inch out below, * I pin the insent into the middle of the erowere of a setting-board so that the whe of the groued will just suppert the amber siles of the wings elose up to the body when they are ration upen it. The board shanad be wherm of sumbla size as will promit of the extension of the wings maty to
 litue forwate. The wines shmblat now raised iuto the pestion in
 to remowe my sonles from the arface or vilis wf the winge. Einh
 buth, the brates being pimed at the thick (and, an that the hasd of the pin shans away from the peint of the brate: this cans- the

 the whes, hat hraces shouk lie that, exereising an ceren presure at :all prints of their surface The fore wings -hmblat one slichty forwack so that line drawn from the pront of one to the pian of the wher will just miss the hewd and palpi. 'The hime wine- hembed

[^32]ing pins, and rearranging wings and legs, is sure to remove a certain number of scales and spoil the appearance of the insect, besides utterly destroying its value. I raise each of the fore wings with a pin, and fix the pin against the inner margin so as to keep them in position while I apply the braces. Half the battle is really in the pinning. When an insect is pinned through the exact centre of the thorax, with the pin properly sloped forward, the body appears to fall naturally into its position on the setting-board, and the muscles of the wings, being left free, are easily directed and secured: but if the pin is not put exactly in the middle, it interferes with the play of the wings. Legs must be placed close against the body or they will project and interfere with the set of the wings. Practice, care, and a steady hand will succeed. When all the insects that have been killed are set, the contents of the canister will be found again ready, twenty minutes being amply sufficient to expose to the fumes of ammonia. Very bright green or pale pink insects should be killed by some other process, say chloroform, as ammonia will affect their colors.
"Insects should be left on the setting boards a full week to dry ; then the braces may be carefully removed and they may be transferred to the store-box.
"Having given some account of the process each insect goes through, I will say a word as to the apparatus required.
" First as to nets. The simplest net is a strong, circular iron wire hoop with a bag of book-muslin attached, fastened into a light deal or other handle.
"I use a small poeket net about nine inches in diameter, made to fold up, with a jointed wire frame and a screw to fit into a brass socket in a short canc-handle. To counteract the strain of the net upon so slight a frame the three wire joints are made flat, the two side joints flattened across the strain, the upper one the reverse way ; but to prevent this upper joint from coming into play when the net is fixed, the upper part of the screw which holds the frame to the handle is welded square and fits a corresponding square socket in the other end of the wire frame, holding all tight when screwed down. A small green silk or other net can be slipped on or off this frame as required.
"An umbrella net with stout steel rim and canvas edging is useful for sweeping tall grass and herbage, or to beat bramches into, by which means many small and beautiful species of retired habits may be obtained.
"I use pill-boxes with glasslonttoms, which can be obtained of various sizes. They are convenient in admitting of the examination of each specimen, so rare species can be especially searched for, and damaged ones permitted to escape; but they are expensive, and for ordinary

"setting-tumats cam be bught ready-made of the -mallont size They are made by eluing astrip of thick cork on a hion slip of deal; the cork mast be thick chongh to cmable a groove to be ent into it.
 sulticient depth fer the pin to hold tirmly without reathing the dat. The cork on cench side of the growe should be smowthed wif with a gentle eurve, so that the wings dry in a grond position. The deal backing projects beyond the cork son as to slate into at growe if refuired, and it is conveniemt th have a deal cophoard of deyme-hases with hamdle at top and perforated zine derer, having groovers on "alk side into which the setting-hands can be slid. Bath batal shomblat le papered with thin white pater.
" At the legriming of a samom setting-hards may he wanthed or brushed over with advamtage with al wah sohtion of oxide of aine; it tills up old pinhohe amd makes them lemk chem.
 murh more casy to sel, and retain their pesition hethe when dry.
 from thuthering ; if glase bodes, ketp them ator in the dark.
"Many species when first taken will fluther in the hoacs and injure themselves ; for these it is well when collectine to cury a small phial of chloreform and at zine collecting-bex, cork-lined. into whith gon
 them fresh. Touching a pill-hex with a finger monstened with chaner form will kill the inseet inside. Toomuch chhoroform is apt to still n the nerves of the wings and interfere with setting.
 obtainable may be added to a wolletion, mat the hatite of others in the larsa state may be stadied with mush interes. For this purpone a few widemonthed slass bothes should be whtamed with corb to tit. so that the smatl haves ean be pared in them with frowh fond amb the food kept fresh lie caclusion of air. If mould homblaplatir. the
 wise a tavelling collector to attempt this metheot, althoten I have adoped if whth some shecess; hut in a stationary eamp it is mot interesting and companatively casy.
"Cork-lined store-boses are of comse requind into which to remove the insects whensuthicienty dried on the mottirestards. Theme. as well ats the pins and setting-harads with dryinさ (anco th hold them,
and the net frames of the folding and umbrella patterns, will be best obtained from some dealer in such things.
"To pack Micro-lepidoptera for travelling, pin them firmly close together into a cork-lined box, so that each specimen just gently holds down the body of the one above it. This cannot be done with very minute species. Put your box into another larger box, and let the outer one be sufficiently large to leave a good clear six inches all around the inner one. Pack this intervening space with hay, not crammed too tight ; it will act as a spring and reduce the effect of shaking; the whole parcel should be made thoroughly secure against damp."

In collecting Tortricids, Prof. C. H. Fernald, the best anthority on this family, does not use the cyanide bottle, as a roll over the bottom destroys the thoracic tufts, etc., but he puts the moths alive into pill-boxes. They can then be taken home and killed in the cyanide bottle or with chloroform. In pinning, the moth should not be tonched with the thumb and finger, but should be handled with a pair of fine forceps, laid upon a piece of pith held between the thumb and finger, and the pin passed through the thorax so as not to injure the thoracic tuft. He prefers for the larger species japanned pins, and for the smaller ones silver wire, inserted in one end of a neatly-cut piece of fungus, through the other end of which a large pin may be thrust. (Can. Ent. x. 82.)

The following excellent directions for rearing the larve of Tortricidæ, by Charles G. Barrett, are copied from the "Entomologist's Monthly Magazine," Jan., 1883:
"There is no great difficulty in rearing the leaf-rolling species of the genera Tortrix, Lozotenia, and part of Pœcilochroma (of Wilkinson's 'Tortrices' and Stainton's 'Manual '), nor those which draw together leaves either flatly or by folding or spiuning several together, such as Peronea and its allies, Phloodes, Poedisca, Coceyx, ete., because they mostly feed on the comparatively dry and firm leaves of trees or bushes, and are in consequence but little subject to the amoyance of mouldy food. All that is necessary is to put the rolled, twisted, or joined leaves containing the larve into large tins or gallipots, closely tied down and covered with glass, and to open them daily for ventilation, supplying fresh food when necessary. Particular care, however, must
be taken mover to intronhe any forel is a ditur state, from cither din
 spin up amoner their form plant, athl chatre in many ca- in atome

 down. This is alse the case with the curions balls of somer hamble

"In the cases of the very mamerons -pectics which feed in the shomes of shrubs and low plante, cating (ant the yourg laves, such as the larger speries of Anthesia, Hypermectia, Brachetemia, l'ardia, Spilonota, Hedya, Steganoptycha, part- of Paramena, Sematia, amb

 domicile with frase, tins or gralliphts may he used and covered with
 state of the weather or the condition of the feomb lat -homs of कीftkeavel low groming phate, and home which, as in the cate of ei\%. at

 a genal deal of capheration, and if dry mos is introlumed it will alta ahsort some of the superthons moviture, or that whan was hat either completely or entially wer these aton, to hoch the feal from withering, lint it must be ferguntly removed and the foent stirest up and examined and provelted from bexmine mothe of rothe. The
 flower-pike as well as yomy shows, and are theretore still mone liahle to injury from mond or decay but of ath the how plam fo it er the most dittiond lye far to rear are the semphite it is hartly posible to kepp the solid compreite flowers in wheh S. pertern a and A. ieterinue feed from becoming monkly, and the larsa do fo: will
 infested thowers with others in those humedne, so that : ir ato zot rem il

 condition is as nothing compared to the ditlicutt! "f ho ins the barse in any sort of continement. They sem beyonf ne- 1 , impationt of
 air, or change of comblion in the feond, la erin thenaler romed the

tightly tied down they force their way under the string, perfectly indifferent to a squeezing that, while in operation, completely flattens them; and if the string is too tight, they will force their way between the covering and the pot, or into the smallest fold, and there die, after reducing themselves to the thickness of brown paper. To frustrate their efforts the covering must be of strong calico or cloth, and must be tied down with thin string, which must be wound five or six times round the pot and strained tight at each round, and the covering material then pulled tight. No larva can then force its way under the string, and they cannot easily get between the calico and the pot; but, to completely prevent this, the best plan appears to be to rub a little lard or other form of grease round the edge of the pot. This they detest, and will not willingly touch, and it does seem to circumvent them. If by these devices the larve can be compelled to remain in the pot, they will spin up among the food plant or in the moss; but so much sulkiness remains in their disposition that the moths, on emerging, will often remain among the rabbish at the bottom until spoiled. The best plan is to examine the food and pick out the pupx, which do well if placed on soft material in a chip or card box. If however, when full-fed, the larvec are allowed to force their way with difficulty out of the pot, they appear quite satisfied, and will spin up in the first available place; so that I have obtained numerous pupe by simply laying a squeezed-up piece of gauze or leno, or even some dry moss, loosely on the top of the pot.
"There are a very few leaf-feeders, such as Stigmonota veirana and S. nitidana, which hibernate in a cocoon between the leaves on which they have fed. These give little trouble, and only require to be kept cool.
"The species of the genus Retinia, which feed in fir-shoots, are tolerably easy to rear if the shoots are not allowed to get to dry, as they do not readily become mouldy, and the larvae will move freely to fresh shoots. A common flower-pot covered with glass is the best for them.
" Some of the species of Anchylopera, which feed on the leaves of slrubs and make themseives domiciles in which to pass the winter, are rather difficult to rear, and must have winter exposure, but those which feed in early spring on clover, etc., are easily managed.
"Except the Sciaphile, no Tortrix larve are so hard to rear as the various groups of seed-feeders. There certainly are exceptions, such as Antithesia gentianana and marginana, Asthenia strobilella, and Eupacilia roseana, which obligingly remain in their respective seedheads all the winter, requiring only to be kept cool and not too dry, and not even needing to be wintered out of loors. The feeders on Papilionaceous seeds, such as Stigmonota orobana and dorsana, after
 calion, and may als, be wintered indows. But it is quite ctherwice with the gencral (athperia, Emblopia Carperapsa, and partan Grapholitha, sematia, Eupureilia, re: Most of thee feed tap with very graterapidis, Lecoming full fell almon before the pare it monda have ecased to diy-saly, within a month or six weth- of the time of the eerer being laid-and remain for nine or aten months in eocemon the harva satic, in most case laving the ir fors and epiming up amone debris, or under stomes, or other suitable phaces. Davine to arramee for so lones a repose, it is matural that they should wish to choose a suitable and comfortable spot, hat some sem muncessarily fastidions. All that I have reorded of the restless, obsinate, ame subcidal fembencies of Sciaphila larvae applies equally to these. They must le tied down in thewerpots tishty, and the covering material strained, as already suggested-not omitting to grease fle edge-and when the tind that they camot really escape they may gemerally be tompted to spin up ley the intrenduction of pietes of rothen womed, eork, bollow sticks, folded papar or rate or the stoms of their fond-plats. Sometimes nothing will give satisfation; and the larvar, after sulking for wertis, will actually dry up and die without ony matherial alleration in the ir
 die in this way after leavine their forel-the weds of the erolden rent. (Bn the approath of winter, the pots contanime larsat of any of the we groups must - the hole in the lxittom leeing tint stoppedt, so is to exclude insect foes, but allow dranage-be placel in the open air, exposed to the intheness of any weather that may emme. It in well to look at them oreasionally, lest the covering ge*s rotten amb broken, or the pot is rolled over by some active cat: but, making allowante for aceitents, larve kept in this maner out of derers until the evel of April, or even into May, will generally produce a fair proportion of imothe.

- The internal, stem, and root-feeling species require very various treatment. The suevent stems in which the I/ahmetr prine ipally feel require to lue kept alive in moist carth matil the harsare are full feol: and cane must afterwards he taken that the stem- do not ferment from lying tex close together, or dry up before the me the cmerese The species, suth as Gropholithen pupilima and the Wi mommphe. which feed in the stems of harder plams, alse thrive bett r if the roote are kept in moist earth: and this prectution must, of conray, ixe taken with the rout ferling Euchromis. Orthotamia, and Xantho setite. Most of these species are hest collectest in the -pring, as the larver are slow feders, and not easily discoverable umtil whembly well grown. Most of them turn to pupa in the stems, thengh (if. pupillanaz
follows the custom of its allies in wandering away and spinning up elsewhere.
"The larvæ of Antithesia fuliganu, A. nigricostana, and several of the Eupœeiliæ and Argyrolepiæ, which feed in the soft stems of lowgrowing plants, must be collected in the autumn before the dead stems are broken and scattered by the winter storms. The stems must be kept fresh in moist earth until they naturally die down, by which time the larve have generally spun up, and the stems may then be kept in pots, jars, or even bottles, eare being taken that they do not get either mouldy or too dry, and will do as well in a cool room as out of doors."

Preserving Micro-larvæ in Alcohol.-Dr. H. Dewitz mounts the larve and pupæ of Micro-lepidoptera, and also the early stages of other small insects, in the following way: The insects are put into a bottle with 95 per cent alcohol. Many larve turn black in alcohol, but boiling them in alcohol in a test-tube will bleach them. They may then be finally placed in glass tubes as small and thin as possible, varying from 0.003 to 0.006 metre in diameter, according to the size of the insects. About 0.07 metre's length of a tube is melted over a spirit-lamp, and the tube filled threequarters full with 95 per cent alcohol, the insects placed within, and the contents of the tube heated at the end still open, and then elosed by being pulled out with another pisce of glass tulbing. After the glass has been held a few minntes in the hand until it is slightly cooled off, the end closed last is once more held over the lamp, so that the points may be melted together, and this end of the glass may be finished. During the whole time from the
 Fig. 2\%e.-Method of preserving minute larve, upper end: for if the tube is etc.-After Dewitz. complete cooling of the glass, it should he held obliquely in the hand, so that the alcohol may not wet the too full, it is diffieult to melt closure of the tube until the it, as the steam quickly expanding breaks througl the softened mass of glass. The tube may be monnted by boring a hole through a cork stopper of the same diameter as the glass. The stopper is cut into the shape of a cube, a strong insect-pin put through it, and the glass tube inserted into the hole. It can then he pinned in the insect box or drawer, near the imago, so that the free end of the glass may toweh the bottom, while the other end stands up somewhat; while to keep the tube in place the free end resting on the bottom may be fastened with two strong insect-pins. The specimens thus put up can be easily examined with a lens, and if they need to be taken out for closer exami-

Preserving Larvæ Dry.-S gomb methoul uf provivint larvae dry, alopted at Wreaden, is to sifueze ont the intestines throngla a bole made near the anal extremita of the larva, then to insert a fine stran, after which it maly bent in at glas vase, which is placed in at tin vessel and held over a lamp: the larval shin is blewn white suspenterl ower the lamp, by which the skin dries faster. It may he done with a small tube or bow-pipe fixed at the end of a barder. held ander the arm or between the hnees, so as to leare the hands at liberty: amb the straw which is insorted into the bouly of the larva may he fisturned hy a cros-pin sturk throngh the skin, amd thess retatmed in itc proner pusition thronghont the process of hlowing.* M. I'. Chrition. of lamis. Who has had wite experienoe in proparing caterpillars. writes me describing his methoul of emptiner lawa as follows: It is smifiofent to mate with the point of at pair of
 between the last pair of legs: then to exteme the eat rplat
 the fluide of the larva; then to press the caterpillare. herin-

[^33]ning at the head, by means of a little glass roller, or even a pencil or pen-handle; then, by rolling the caterpillar's body, all the contents may be pressed out; this process may be aided by drawing ont the parts with fine pincers. He also suggests that the empty skins of larvæ, if piaced in alcohol of a strength of 48°, may be sent by mail from one country to another, or preserved for a few weeks and then blown. Blown specimens need only to be protected from the attacks of museum-pests and from dampness. Small larvæ, such as those of the Micros, may be put alive into a hot bottle, baked until they swell to the proper extent and dry, when they can be pinned with all their contents inside.

Bleaching the Wings for the Study of the Venation.--In order to study the venation of the wings of butterflies and the larger moths, we usually remove the scales with a stiff camel's-hair brush, and then the venation can be drawn under a $2 \frac{1}{2}$ - or 4 -inch objective with the aid of the camera lucida, and an exact sketch be made. Others prefer to "bleach" the wings by caustic alkaline solutions. Dr. Dimmock, however, suggests a modification of the chlorine bleaching process, commonly employed in cotton bleacheries. After soaking the wings for a few moments in pure alcohol, in order to dissolve the oily matter in them, they can be removed to a solution of common bleaching-powder, which is sold as "chloride of lime," but which is really a mixture of calcic hypochlorite, calcic chloride, and calcic hydrate. Ten parts of water dissolve the first two compounds, leaving nearly all the third suspended in the solution, which should be made with cold water, filtered, and kept in a tightly-corked bottle till required for use. After the color has sufficiently disappeared from the wings, they should be transferred to a wash composed of one part of strong hydrochloric acid to ten parts of water. The wings may then be gummed on cards, or upon glass by the proper transfers through alcohol and chloroform to Canada balsam.

A solution of sodic hypochlorite, known as eau de La-
berratue, or a sulution of potassic hyochlorite. known as ean de dererlle, emahles one to dispernse with the wash of dilnte acid. . 'There bleathing processes preserve the most delieate wings mbrokens and when the peceimens are of rate speedes, rubbed wing can be nsed, the absence of the sates not being evident after bleathing" (l'ayrhe. i. !1:). Legs and other parts of inseets may be treated in the same wat.

Mr. Chambers suggests (C'an. Ent. viii. 39), for Mieros. placing the wing upon a glass microscope-slide in from one to three or four drops of a strong solntion of potash. and after putting a cover-ghass over the wing. holding the slide over a flame until it begins to bill. removing it at the first sign of ebullition, when the wing will be found to be demaded; it mat then be drawn with the eamera, and afterwads monnted for permanent preservation.

Mounting the Wings of Microlepidoptera-l'rof. C. H. Fernald momes the wings of Mierolephdoptera in cold glycerine: after having been bleached by limmock: method (which, for bleaching, is to be recommembed), the wings are transferred to the slide direet from the water in which they are washed, then allowed on dry (sometimes hastemed by holding the slide over the flame of al lamp): and, when quite dry, a drop of erlyeerine is to be added. amd the eos er at once put on. When the glyeerine has penetrated arommd the elges so as to completely satmate portions of the wing. the scales at once become tramsarent, and the strmetme is clearly apparent.

By holding the slide ore⿻ the lamp till challition takes place. the gryeerine will be fomd to replace the air moler the concare portions of the wings. withont ant injury 10 the structure: and even in those refractory ("-t : where the glyeerime has: heen allowed to hoil for a considerathle length of time, no injury was found to be done to the wint-mem-

Mounting the Wings of Macro lepidoptera. - Dr. If bewin of Berlin removes the colors and sestes, for the purpues of stodying the renation, by means of ann de Jabelle, chang oft both wines on one
side close to the body and placing them in the fluid. It is well to soak them beforehand in alcohol, as saturation by the ear de Javelle will then take place mueh more quickly. Then as soon as the wings lose their color, so that the venation is plainly perceived, they are soaked in water for an hour. A glass slide is then pushed under the wings and they are lifted out of the water. This is done so as to make the upper and lower wings lie close together in the middle of the slide, which is then dried. The bases of large wings can be fastened with a drop of warm liquid solution of isinglass. After the wings are entirely dry, a thin rectangular piece of glass, somewhat larger than the extent of the wings, is placed over them. According to the thickness of the wings, very slender strips of cardboard or pasteboard may be so glued to the slide as to make a square frame, thus forming a cell to hold the wings.

He imbeds small wings in Cauada balsam, by dropping the balsam on the wings and covering them with a thin glass, such as is used by microscopists. The slide thus prepared should lie borizontally for a few months, and then be preserved in a box made to bold sucb slides, those made for holding ordinary microscopic slides serving for the preparations of wings of Lepidoptera of medium size. (Entomologische Nachrichten, 1887, pp. 164, 165.)

To Remove Grease.-Mr. Henry Edwards removes grease from moths and butterflies by submerging them in a ressel of ether for twelve homs; then taking the insect ont and draining off the ether, he places the butterfly on plaster-ofParis powder for twelve hours, after which time the powder is blown off and the insect is reset.

Mr. Ph. Fischer places greasy specimens in a fluid composed of one part of ether to two of the strongest alcohol, leaving them therein for about twenty-four hours. After being taken ont and dried, they are spread. Where only the wings are oily, the specimen is put on the spreading-board, under side up, without fastening it in any way, and the purest spirits of turpentine poured on it to fully soak the wings, after which finely-powdered pipe-clay is strewn thickly over the affected parts, and this left to dry. Shonld the clay, after becoming dry. be yellow, the oil is not all out of the wings, and the process must be repeated. To remove the clay, hold the specimen on the upper part of the pin, and give the pin a little jerk near the point, and the clay,
beiner brittle，will easily fall ofl：after it is all removel，the specemen may be brusherl with at time amelo－－hair hrush nutil elean．Speedmens trated in there way：will never again become wily．（C＇an．Ent．．xviii．is．）

Collecting and Preserving Coleoptera．

Beethes shonld be pimend for the calhinet throngh the
 of sitnation ：on phants．in deromporing animal and rewo－ table matter．in mushrooms．under hark of trees．mater stones especially in moist and shady sithations：mant are found ereeping om the gromme．In desert and other arid spots in western Amerima．Some are attrantod hy cambles at

 simm in plate of the aldohod in the bottle，other insoct－maty

 over a fummel and daphed a few times．cansing the botle to rom ont and drop into the month of the findme ：mat thenee inte the bettle：while others（in all part－of the combtry）fly attively on heing appoabled and light asain on the gromme a few paces ofl．
 latere umblers of small grommb－beotes．hy fumitare water wer the small holes in the samd amd on the phat arowitar at the edger of the watere this callo－them tor rat ont of

 the plants．ther rest hide maler the small－two－obl 11 ．．

 their larvae and pupar．

Burying－beetles may be attrateded by placines－mall pieces
of meat under stones, boards, etc.; this is a more pleasant way of collecting them than by turning over carrion. Mr. Schaupp also collects coprophagous beetles (Hister, Aphodius, and Staphylinids) by shovelling the dung of cows, horses, sheep, etc., into a pail of water ; the dung sinks, and in a few moments the insects living in it rise to the surface and are easily captured.

An excellent trap for small Silphids, Catops, Colon, etc., is made by putting a rabbit's foot or any similar object in an ale bottle, and burying it up to the month in earth. These small nocturnal species will, in the pursuit of the odor-giving food, fall into the bottle, from which they can not escape (LeConte). I'his is also an indispensable method to follow in collecting care-beetles.
" Many peculiar species, not found in other situations, live under material cast up by the ocean ; others are found along the shores of lakes and rivers; many also are found living in the water." (LeConte.)

Mr. Edward Newman says that "moss is a great resort of beetles in the winter ; whenever you have the opportunity, go into the thickest woods, and pulling up the moss by handfuls cram it into a canras bag, which you have taken with you for this especial object. Then on a winter's day, when nothing tempts you abroad, shake out your moss, bit by bit, on a white eloth, and you will soon possess yourself of wonders."
"A large number of species are very minute, and are usually found in abundance ; these should not be neglected, as to scientific men they possess quite as much interest as the larger species. The speeimens should be thrown into strong alcohol ; if this cannot be procured, common whiskey will answer very well, but must, when the specimens are numerous, be replaced by fresh liquor. The smaller specimens should be kept in a separate bottle. When the bottle is full, the liquor should be poured off and replaced by fresh alcohol or whiskey, and elosely corked. If there is much danger of breaking in transportation, the specimens,
 Ary partiallỵ．hut mot on as to beentme brittle ：and thent packed in small patethatard buxero takinge catro lyy shatinge the box well before linally elosing it．th park the specimens so chocely that they ramot he broken by moving alome： the box male then he clowed by patimg a small strip of
 written on the top！。＂（leedonte．）
$W^{\circ} \mathrm{e}$ eoper from a chapter on ablleding（onlenptera，hy
 ion＂（Lomdone 1Ain），an acrount of Mr．（＇roteh＇s phan of killing and preserving beetles，of ejpedial nse while on at long jumber．
－The following mellord has now leets in wee some time and bence has beon fairly telell formantage are very grem，an that 1 make new apoley for introducine it to the motice of gour remders．The tires
 used it with me in spain，sume years ago，with great suctess．The specimens may be collected in two whys，aceording to the ize and the conveniente of the collector．The first and lu－t way，for smath species，is be puttur them into a bontle containing athomt half no inch of dey pinc－sawdust，in which has been perionsly phaced a small piece of cyande of potascium ahom as bir as a pat：they will then die instantly：Larger species and small quecies which do not tly read－ ily may be put into spirite in the ordinary way，but the stuphylimider and othere gemerally open their wings in this process．The sibwdust shond be pinc－wend and sifted free from chips on the one hand and from dust un the wher．wa to to of an miform size．For storing the species thas collected，a few tin caniters will he fomm most con
 and so on atternately th the top．The sawdut used in the tius themblet he damped（mot iretted）with a mixthre of spirit and cherentmith part of carholic acid，which will effectually perent manhl or mits： and will bring the－pecimen home perfectly frestand than small species，or specimens from a particular locality，shomblat io wrapped in a piece of rar or tisule－paper，with a little sawdu－and the name of the locality：The specimens collected in spirits should ter remeved as soon as posible（in a few days at farthert），amat ram－firent to saw dust．When the tins are full，some more spirit and carlolic ached should be poured in and the top soldered down：thes will then keep
for two years at least. The adrantages of this method are manifest, especially in the absence of any danger of breakage or leakage; and it is more than probable that a similar plan might be employed with reptiles, fishes, etc., but for these chloride of zinc suggests itself as the agent most likely to be of service. As the insects do not become rotten by the above process, it is sometimes not so easy to set their legs in the peculiar manner in voguc in this country, but they will have as a set-off the advantage of being thoroughly fit for study. When by any chance spirit cannot be obtained, they will keep perfectly in dry sawdust, if the speeimens are dried in the air for a few hours first; all that is necessary afterwards being to relax them in the sawdust instead of removiug them from it. Jars or wide-monthed pickle-bottles may of course be used instcad of tins, and are more air-tight, but liable to break."
" That eminent and most excellent entomologist, Mr. E. W. Janson, indorses Mr. Crotch's recommendation, and adds a few hints on the subject of collecting beetles abroad, as follows :
"، The sawdust plan, now almost universally adopted by ccllectors, I can recommend both on account of its simplicity and efficiency. The sawdust should be that of some white or yellow wood without coloring matter-pine is perhaps the best; it should be sifted over fine muslin, and the dust and minute particles rejected. In collecting, wide-mouthed bottles should be used; these should be about one fourth filled with dry sawdust, adding beneath a piece of eyanide of potassium of the size of a large pea or haricot bean. On reaching home after collecting, the contents of the collecting bottles should be sbaken out on a large sheet of paper, and the insects transferred to the stockbottle or jar, and the eyanide and sawdust returned to the collectingbottles for future use. Any description of wide-mouthed bottles, such as piekle-jars, may be used as stock-bottles; they should, however, have tightly-fitting corks or rungs. Before putting the insects collected into the stock-bottle, throw into it sawdust a quarter of an inel in thickness, slightly damped, not moistened, with a mixture made of alcohol (metlylated spirit will answer admirably; brandy or stroug whiskey, if unsweetened, will suffice, but sweetened gin and rum must be avoided), or, still better, benzine or benzoline, and carbolic or phenic acid. These should be mixed in the proportions of nineteen parts of alcohol or benzine and one part of carbolic acid. On the sawdust dampel with this mixture place a layer of insects; over them a second stratum of damped siwdust, then a second layer of insects, and so on alternately until the stock-bottle or jar is filled; take care that it is always kept well elosed. When it is filled it may be packed with any other objeets in sawdust, hay, moss, or any other elastic substance, and forwarded to its destination.'"

Sperial attention should be givere to the wond on of the
 der the hark of trons．in nuts，eter，and in fresh－water pools．

I reanly methorl wf collecting beretles．case．．in ：atumm， winter，or early sprine，is to sift the lawes collected in hol－ kows in the ermme amd menr the mere of woods．Mr．II． s．⿰⿻木口⿱⺈贝： foot in diameter，to which a hatr of coans mmelin of abont the sume hererth is sewed．the bottom of whith is formed of a piere of brass－wire eloth about 10 imelese in diameter．
 done wer at sher of white ma－lin mexpers better．by plateing the siowe in al hat l！feet in hongh．fitatemed to ： riner of the size of that of the siell．＇Lhe sifted mattore whll fall into the water hare and＂ath he examined at unces con－ venience：＊

 ing off the dead hataches of trees in spmins atherize
 piling up these materials in an（mopty room whth the dome allad windows tightly（lowal．the latter best mate of wire Eereen，at as to almit of a free eirenkation of air．－li a
 ！atre hox commerted with a small once of which severet sille should be mate of grlas：will answer．＇Ther ismectio aftor bating makle their way out of the wood daring epring alat stmmere，will low attracted by the light to ther wistons of the rewn or inte the smaller lax，and there he c：atly（at tured．＂（Bull．Rowshlyn Eont．Sioc．，i．：33．）

A writer in＂The Entomologist＂（Lomblom）finds that

 knife．lifted erontly，and then inverted ：mhl shaten over

[^34]paper." This work can be done in the autumn and early spring, as the tufts are favorite lifbernating places, Staphylinidæ most commonly taking refuge in them.

Beetles may be kept soft and flexible so as to be sent through the mail in boxes withont being pinned and without danger of breaking, by being prepared in the following manner, as recommended by Mr. J. B. Smith. They should be soaked for a week or more in a fluid composed of 100 grams of alum, 25 of salt, 12 of saltpetre, 60 of potash, and 10 of white arsenic dissolved in 3000 grams of boiling water. This solution should be filtered, and when cold add to every ten parts, four of glycerine and one of methyl alcohol. (Psyche, iv. 140.)

Rearing Tiger and Ground Beetles.-Mr. F. G. Schanpp, who had good success in raising tiger and ground beetles from the larva, pursued the following method: For Cicindelæ he made a box of wood ($2 \times 1 \frac{1}{2} \times 1$ foot), with openings covered by glass and woven wire, such as is used for fine screens, and filled it with sand half a foot deep, making here and there a few miniature hills, and in the middle of the box a valley, in which he placed a flat tin pan filled with water, while at the two sides he placed pieces of turf to represent a meadow. He fed the larsæ with different kinds of soft grubs, such as those of small Chrysomelids (Criocerus asparagi and Diabrotica, ete.), and kept the Cieindela beetles for over two months, when they mated and dug holes in the sand; in spech a box the eggs may be laid and the larve reared. For raising beetles from the eggs he also used boxes of zinc, the two longer sides and the cover of glass, the two smaller sides of wire cloth.* He succeeded in obtaining larve from Cucujus clavipes. He fed the beetles and larve with sugar-water, with which he soaked small thin pieces of wood. The species of Cyehrus were fed on snails, but they also readily feed on the soft

[^35] are fed with reat, and it is very interesting to lork at the twelve C'arabue: limbutus (oix males amd six fomales) while devouring the meat. teimber and lifting it, all stamding aromed it like the members of a poultr!-yard aromed a trourd.."* He bred /hicelus dilututus from the larve by placing them in a hottle half tilled with dry earth, wettheg it dally with three or fonr drome of water.

All the materials put in the cagr, viz., sand, carth, rottern wood. moss, ete., should be baked or passed through it bath of boiling water to destroy any inseret-life (eggs or minute larvar) that might be present, and thes lead to mistakes or result in injury to the ereatures being bred. When a sufficient number of "args are laid in the breeding-box the beetkes should be remosed. 'The beretles. while in confinement. should he kept during the day in a dark. cool plater, thd their ease should he phaced during night hefore
 'The larve of the latter must he reared simgly, at the wtherwise womld destrov one amother. Also coner the box with tin eloth and plawe it in al dark closet on large hox. (18 (Wer flies and iehnemmons will destroy them. 'The larvat feed for four or live weeks, while the pluse rectuire for their development about ten days. 'The best fowd for ('ixindelat larver is heheaded wood-horing gruhs, which will mot hite. Alf remmants of food should he carefully remosed from the breeding-hox, as any dectying matter is hamful. 'The earth shombl he moistemed only onee or twio at week.

In rasing Cambids. paree centh in the catge in which the young may harow for protection from wath wher. I few days after matine the males shomld be remmed. :mblat fow day: later still the females should be put in another dage

[^36]as they will eat their own offspring, thus differing from dung-beetles and carrion-beetles (Necrophori), which take great care of their young. By using very black earth for the cages, the eggs and young larro may be more easily detected. As a matter of course, as soon as the larra are a few days old, each one should be placed in a separate box. Clusters of eggs found under stones, boards, and leares may be also taken home and placed in boxes.

Rearing of Burying-beetles (Necrophorus and Silpha).These are easy to raise. In a soap-box half filled with loose, moist earth place pieces of poor meat and a dozen specimens of Necrophorus and Silpha. Cover the box with fine wire cloth, and place it out of the way till the worst smell is over; it should be kept in the dark to prevent flies from depositing their eggs therein. In two weeks there will be plenty of larræ; soon after the pupæ, and in two weeks more the beetles may be found. The pupæ are apt to be infested, by small parasites which hide beneath the antennæ and legs; to remove them, says Schaupp, take a rery fine hair-pencil, dip the point into benzine and touch the parasite, which will become dizzy and can be easily removed.

As the larre of Silphæ are very voracions and camnibalistic, as soon as they are obtained they should be separated as early as possible, placed singly in a separate small box and fed with small pieces of fresh meat, sufficient for one day's rations. On feeding them the following day, the remnants of the former repast should be remored.

Rearing Wood-boring Larvæ, Longicorns, etc.--For the most part, says Schaupp, Lamellicornia, Longicornia, Elateridæ, Buprestidæ, and Curculionidæ are comparatively easy to raise, but care has to be taken that only specimens of the same species are confined in the same box. Large boxes should be used, so that large pieces of sood containing the larve may be placed in them. These may be treated as follows : Take a piece of wood four culbic inches in size ; split it in two, and make on the inside a cavity just large enongh to receive the grub and allow it to easily move in it, then fasten

 the central e:avity by tilling the bole with a phar. Mr. Siewers raised the larve of horers in tin or glase on wet hasd-wod on puplar satwlust : he kept them for six or eight months. changing the sawdust onere a month.

Certain larsar, exerally those of lamellioorns amd kilaterider, belore tramsiomation enter the earth. Fow surh species place some earth in the lox. hat not hefore the larve show a decibed wish to go there bey quickly boring holes straght downsarels: for the earth in contact with the monst wod rapidly forms a deadly fingus. Of course the earth for the breeding-boses most he thomonghly baked. so as to destroy all insede ate. destructive to the helphess soft-skinned pupe : the larve and gupe should also be kept in darkness.

Rearing of Bark and Bast-horing Beetles.-such insects. esperially Longienons. linprestids. Senlytida. etco. may be reared by cutting out with the satw and hathot pienes of the infested tree, with the hatk on, abont six inches spuare and one inch thick. The eastingsand sawdnst, together with the larvar. should be placed maler the hark. Several pieces of bark tied together with the hast-sidhes upposite will sometimes answer the purpose but the better way is to leave the larve in the wond until they are nearly fullgrown; then, in general, the transformations are completed in about two weeks

Rearing Larvæ of Dung-beetles. - These maly be tahen home with a bart of the earth abowe whico they live and patt of the nearly dried and inodorons cow-droppings under which they hide. . But here the greatest eare hats to be taken not to owerlook the very numerons small \& taphylinide and carabidons larve that live with-ar mather on-those scarabeidous larva." *

[^37]Cleansing Greasy Beetles.-To clean greasy beetles, etc., dip them for a half to a whole minute in spirits of ammonia (liquor ammoniæ), and wash them in water (the hotter the better). A longer stay in ammonia and a careful washing dissolves the verdigris on pins (John Hamilton). Others soak them in benzine, but they should not be left too long in it, as they thereby become very brittle. Dubois removes verdigris from insect-pins by immersing them in benzine for several hours. Primrose-beetles are the only ones that the benzine bath can alter.

To Wash Old, Soiled Specimens.-Place the specimens in a tin kettle three quarters filled with moist sand, to soften them; small species should remain therein overnight, larger ones for twenty-four hours; then wash them with cold water, using a small stiff paint-brush, and if not sufficiently clean apply soap, rubbing with the brush and then washing them with cold water. On species of Trox, Lachnosterna, etc., covered with a layer of mud on the wings, the soap should be allowed to remain for a few hours, and then washed off with cold water (Bull. Brooklyn Ent. Soc., vi. 24).

Colliecting and Preserving Hemiptera.

This group of insects has been much neglected, though no group will yield more novel discoveries than this. By sweeping grass and herbage, as for bectles, in the latter part of summer, large numbers occur which can best be obtained in this way. Hibernating species are found under leaves in hard-wood forests, and can be obtained by sifting the leaves. The large carnivorous kinds are sometimes found on bushes with caterpillars transfixed on their beak. Aquatic species shonld be taken out with the water-net by thrusting it suddenly under surface-swimming species, or by pushing it among submerged grass or weeds where the smaller forms may be lurking; several kinds occur under submerged logs, sticks, etc.

The soft-berliend specese of Sphis ar phant-lice shombl be premerved in aldohol, glyerime or ('analdat balsam. 'Jhey should be canefully watched for their parasites, and ("an be easily kept in shember ghatss vials, thromgh which they can be oheremed.

All the bugs shomid be pinned throngh the distinet triangular sentellnm, sitnated
 in the middle at the base of the wings Fha, \&n3-methot of (Fig. ai3). The small, hard species of pinning a bug. leaf-hoppers should be pinned throngh the right wingcover. Varions quadrupeds shoukd be earefnlly examined for lice, whieh may be preserved in alcohol, or mounted on slides for the microscope.

Examining Live Aphides-Mr. II J. Slack says that when we want live aphides to examine under the mieroseope in a vigorons comdition, We mas handle them with extreme gentkenese, or their soft and delf fate hodies will he injured and the creature killed. Their slighmess of structure is, howerer, acempanied with great endurance of comditions that would be quickle fatal to many vomer orgmioms. Nox insects would the rapidly killed by immersion in paralline oits hut young and vigorons aphites will often live for some time, and weasionally for hours, in this thad, such as is bum in lamps. If wo or three of the insects are very carefnlly placed in a litale cork cedt,* ifled with paratline eil, and covered with thin glase, they are in a handy condition for cxamination. The result of momerons experimems made with the hest Ameriean petrolem oil, commonly called (rystal oil in the lamp shops, is that the smvivals are very meertain, hat sulliciently frequent for the proees to the well worth treing. They keep pretty quiet in the thid, and it emahles higher powers to be used with convenience. A $\frac{d}{}$ inch objective, magnify ing about 100 linear, with a full-wizel instrmment, is very handy. The illumination should be varied; hut one of the hest witg is to wee leoth an achero matie condenser and a lieherkuh, or little silver reflector, at the end of the olyjective. The largest hole mad central stop of the comenemer will give a time dark ground illumination. Whem usel in combination with the lieherknhm, it lights up the inside of the ohject. while the less transarent park receive retheted rays from the sitwo surface. The student will time a great many cases in which this monde of treat ing at refrative and retlective ohjeet produces the bea rands. The eyes of the Aphis, seen in this way, are like half mullerriecs, and the little eye profecting from the corner of the larger eroup is well dis-

* A vial-cork $\$$ inch in diameter cut across so as to make a disk T_{1}^{1} inel thick, with an ohlong hole in the centre, and grmmed on a slide. The gum is not dissolved by parattine oil.
played. Where the view of the compound cyes is a full-face one, the darker pigment is seen so strengly that its true position is concealed. A profile view shows the little lenses to be clear, like glass, and the pigment to be behind them. (Knowledge, iii. (1883) p. 24b.)

Preservation of Orthoptera.

Orthoptera can be easily preserved in strong alcohol, and may afterwards be taken out and pinned and set at leisure. If preserved dry they can be killed with cyanide of potassium, or ether, without losing their colors, as they would do after remaining long in alcohol. They should be pinned throngh a little triangular spot between the bases of the elytra, or fore wings, when the wings can be spread to advantage. They are also often pinned through the right wing, as in Coleoptera. In pinning these insects for transportation, care should be taken to put in additional pins, crossing each other on each side of the abdomen, and in like manner to steady the hind legs, which are very apt to fall off if too much jarred.

Preservation of Dragon-flies, May-flies, Caddis-flies, Stone-flies, ETC.

These net-veined insects of different orders, the young of which frequently live in fresh-water ponds and streams, should be pinned through the centre of the thorax; the smaller and more delicate kinds immediately on capture should be pinned in the collecting-box.

As regards the preservation of the dragon-flies, Mr. Uhler states that " the large, brilliant green dragon-flies (Cordulina), as well as the yellow, brown-striped Gomphina, having the eyes wide apart, will furnish new species in almost all parts of the country. In order to preserve specimens in the neatest manner it is well to slip them immediately when calught into paper bags of suitable size, first taking eare to lay back the wings so that they will be applied together, to prevent mutilation. These paper bags
may be phacel hosely in a box cariad for the purpuse．The specimens ean thas be taken ont at leisure hilled by aphlying
 zine to the under sille of the herly，and then spread on the setting－bostrd．In most speries the eolors chathere after death，hence it is important tomake short deseriptions of the colors before killing the sperimens．＂＇The smaller．more slender．and delicate Neuroptera should be pinned direetly in the collecting－hox．Many species are canght hy a light in the night－time，such as Polystmehotis melulusus aml the caddis－llies（Semromin semifusciutu，etc．）：aud al brirht light placed in（dampsituations by streams．ete．，will attract large numhers．the smaller species．like moths，being at－ tracted a erreat distance by light．Other species of this gromp，so mmaroms in the Northern states，are fomm in great numbers thating on lakes and punds．Feor the proper stmely of the gremera of these inseets，and oftern of the speeles，they shombl be collected in ateohol，sn as to be stmdied in a flexihle statc．

The aquatic harve amd pupae cam be reared in atpuaria in jars and tumblers．aking eare that the weaker species are separated from those more powerful and bleodthirst！．＇1hee little Entomostraca，or water－fleas，serve as form for the smabler species．With care many speces can he reared in this way：and so little is known of their thensformations that figmes and descriptions womld be of great value．＇The intoresting amd varied habits of the different families ean also easily he noted．

Freparation of May－flies（Ephemeræ）．－The wings of dried specimens，say：Rev．A．E．Baton，in his monoritaph of the
 pletely shrivelled up，When such is the eate reecurse may be had to the following method of prestrive them for examination：＇The wing detached from the epeemen is first of all thated upon scalding water，and induced to expand as fully as possible whilst it is floather．It is next
taken up upon paper or a strip of glass and transferred to cold water, and then spread out to dry upon paper or glass. If upon paper, the wing can presently be separated therefrom by bending the paper away from it, and it can either be mounted permanently as an object for the microscope, or be placed temporarily for examination within a compresscell, care being taken to flatten it out by only vertical and gentle pressure. If the result be then unsatisfactory, the whole process can be repeated.

Collecting and Rearing Diptera.

For collecting flies, Dr. Williston states that June in New England is the best season, so that April in the cotton States, May. in the Middle and Southern-Central States, would be the best time for those regions. In May and the early part of June, beating will give excellent results. A little later, patches of blackberry, wild cherry, dogwood, Canada thistle (Cirsium), or other melliferons blossoms, will afford desirable specimens. "It is better to let specimens come to the collector than to go hastily about looking for them. I have spent six hours about a patch of Cormus paniculata not ten metres in diameter, and been amply repaid. But few specimens are found in shady woods; those few are to be sought for there. The favorite places for Tabanidæ, as indeed for most flies, are on the borders of woods, open glades, meadow-lands, etc."

Dr. Williston advises the use of cyamide bottles of the following description, as specimens collected in ordinary cyanide bottles are worthless for scientific purposes. "I select," he says, "several one- or two-ounce wide-mouthed bottles of the same form, and carefully line the bottom and sides with a good quality of blotting-paper. Good, firm corks are selected which are interchangeable in the different bottles: in one of these corks a small hole is made, in which it is better to fit a small metallic ferule; a strip
of blotting-paper is then eoiled within this cavity, thel it is over this that a lew drops of a solution of eyande of potash is poured." *

It is neleses to collert flies in a bare bottle; the inserets soon exhate moisture suthiefent torm them. 'The blottingpraper prevents this, and the cork cala readily be remowed from one bottle and put into another when a sullicient quantity of thes is collected.t Moisture of any kiml injures flies.

- In the eartier part of the season many rare specimens of Diptera may be obtaned by beating. For this purpose 1 employ a rather heavier net wire. to which a pointed net of cheese-cloth is attathed. On such oceasims it is necessury to carry with one a larger bottle with a little cottonwool in the botton for chlorotorm, and a vial of the latter in the pocket to be pured into the larger bottle. By thrusting the end of the net, with its contents, for a few seconds into the elhlornform hottle, whe can then remose the specimens undisturted. Mik advises that minute dies shonded be preserved alive in small bottles filled with paper elippings, through the cork of which a small grats tube is thäust nearly to the bottle. For a collectiner-net. after many experiments and failures. I have fombl most serviceable a simple, rather light, brass wire. soldered together tu form a ring about $2 s$ cm. ($10-11$ inches) in diameter. :and firmly attached to a light handle about one metre lons. The net is made of rery eoarse bobhimet litee the most servieeable and, in the end. the eheapest material. The net should be readily himdled with one himd.
- Speedmens shomld not be allowed to remain osernight unpinned. The large specimens may be pinned thronerth

[^38]the thoras, preferably with japanned iron pins.* They should be placed on the pin only low enough so that the head may be grasped with the thumb and forefinger without danger to the specimen. The wings should never be spread. Spreading not only renders the specimens more difficult to study, but it spoils the natural appearance of the insects, and is a positive injury to them for the cabinet. All that is necessary is to push aside the wings so that they will not conceal the abdomen. Minute specimens should be pinned with fine iron wire from the under side, and then pimed upon small strips of thin cork, the upper surface of which has been covered with white paper, and throngh the other end of which a pin is thrust. Small specimens should never be glued to bits of cardboard, as is commonly done with Coleoptera. Ouly one specimen should be placed on the piece of cork.
"The greatest enemy to dipterological collections is dust: insects can be guarded against, but it is difficult to exclude dust,"unless tight cases are used. Dampness and mildew do often much mischief.
"A good dipterological specimen must be unrubbed, unmoistened, not dusty nor greasy, and with the wings unspread. It is quite as easy to collect grood specimens as poor ones. and much more satisfactory." (Psyche, iv. 138.)

Dr. Williston writes me that for the collection of Bom-- bylidæ and similar hairy flies "my present custom is to pin the fly while in the net, without directly touching it, and then to remove it, and either kill it in the cyanide bottlef or with a match, then pinning it in a box. The specific characters of many Bombylids are in the hairs, which are rery easily rubbed off. It is almost impossible to collect them in a bottle and get good specimens."

In an elaborate paiper J. Mik, the Austrian dipterist,

[^39] must wot be pinmed in the midhle domenl line of the thomad amed that they shoulel mot be hilleal with ale hol．whale hillinge

Very small biptera shomhl not be hilled whern they（atn－ not be immediately pimmed：two much material slomhl mot be colleremd in the net at one time：and hairy Ilios shonld not be taken in the hamd to pin．but hamded with time for－
 should he used for pimbing instead of commom insot－pins or silver wire（whids enatain coprex and are therefore liable to cerrede）：wire should he wed for all thes umber

－ lation．If ynantities of swampromat and mose with detaying matter are kept in hoxes and jarso multituche of small dhes
 spectes can be treatem as Miopo－lepiloptera，and wath－in－
 hollow trees，stems of phants and toalstonl－．contatin numer－ ous larver or maggots，which mast be helg in datap beaces．

Collection and Preservation of Hymenoptera．

These inserts are exeerelinely albmiant，and expecial at－ twations shmald he patel to rollocting the smaller spere ． ＇Ihey shondel he pimed through the thama．high wh the pin，and these that are not hatry（onleneted in ：landme．In fitet，ase much depents on the stady of the eufter part－of the month－itprendages．specimens of eath smext－－lat at

[^40]possible should be placed in alcohol, as it is difficult, if not impossible, to examine the under lip, etc., in dried specimens. The hairy species of bees should be pinned while in the net. The minute ichneumon flies should be gummed like small beetles upon cards, or preserved in small pill-boxes. The nests of bees, wasps, and ants, and the young in the different stages of development, should be collected, and the latter placed at first in weak and afterwards in strong alcohol.

CHADTER V'H.

The External Anatomy.-V'or this purpere altolonli.
 alcohol centses the mustere to so contrant that the joints of

 maty provent contraction. With at lans mannten! in a

 pendages shombl be earefully cleamed aml then sothed in
 the parts transparent. It shombl be bome in mime that the

 of Lepidopter:i.

The Internal Anatomy, - The diseetion of the internal organs of inserts is exceedingly dithentt and niwe work. requiring delicaty of manipulation and witiong pationee.

The prince of entomotomists was Straus-Turckheim. Professor Agassiz once told us that it was Straus's habit, before beginning his day's work, to eat a light breakfast and alstain from coffee, so that his hands should not shake. Strans's great work on the anatomy of the cockchafer and his "Traité pratique et théorique d’anatomie comparative" are models of what such work is and how it shonld be done. The indispensable instruments for entomotomy are a flat tin dish, with braces soldered within near the bottom to hold down a piece of thin cork, to which the insect may be pinned,* or a flat glass or porcelain dish, in which melted wax has been poured; for microscopic dissection a large glass cell a fourth of an inch thick, in which melted wax has been poured. Other tools are delicate forceps, scissors, straight and curved (also delicate spring-scissors, being a pair of scissors attached to a long handle, with one blade moving on a spring, we find rery useful); needles of different sizes monnted in handles, some of them ground to a knifeelge, and fine narrow sealpels and eve-knives; also an in-jecting-syringe, with fine points of different sizes, and pipettes; though an ordinary hypordermie syringe will answer. The begimer should select for his first attempt at insect anatomy the dissection of a large locust, such as Acrydium americumum or Edipoda carolina, or a katydid, with the aid of the description of the internal anatomy of Caloptenus on pp . $7-1 \%$. By carefully cutting along

[^41]
 leave the inner ednular layer (hyombermi-) untornched: this should then he ratad. dinelasing the helicate tubular elorsal vesad or heart. lindow it lies the alimentary canal. whioh

 lise lancely on the floor of the hody: but in cmeler to work wat the gamglia in the head. it is better at first. With it sharp, thin seal perl, to cut a well-hardemed locerst in two longitudinally, the section passing themorh the brain amb

 We casily makn, and when floated out in at shallow patn of Water and examined with a Comblington lens attanderd to the
 put atway in a wite-monthed bothe for futme whervations.

Mr. Frank Clushire hats in his work on the homer here
 order to dis-a the salivary glames of a worker-hece. he atcpited the following method:
 ing it upwards, behind the from wall of the head, the dather wat be.

 Ferms are to be investigated, we mast procod :a- follow- Partls all
 "ith me hed hee or parathen was. When whed, with athen wire medt at lithe hath in the centre of the wasen surface and then intert the

 Now, with a medle kinfe made by heating al a - medle, heatiag it that, and afterwards sharpening bpon a hane and inserting into a wooden hamile) cut earefully round the compound eye, and lift it
off. Curiously folded, and passing round the optic ganglion, we have a long whitish body, which a facetious friend compared to ropes of onions. It is one side of the system No. 1 of Siebold (Fig. 16). Behind this, and extending from the top of the head downwards, we find packed inimitably a second gland system (No. 2), consisting of many pouches, joined by cavals to a commou duct, which may be followed until it is discovered to enter another duct (b, Fig. 16), rumning backwards and forwards in the body. Tracing this channel towards the thorax, we see it enter the neck, and immediately after bifurcate or fork (c, Fig. 16). Following the line of one of the two ducts, we come upon a reservoir (sc), leading backwards to another gland system (No. 3), of singular structure, with two lobes, lying in the front of the thorax on each side of the body. The position of all these systems is well seen in Plate I. The operation here described is not likely to be accomplished with one bee, and I spent many days, and spoilt many specimens, before getting the glands in their entirety, with their connections; but I have good reason for supposing that these successful dissections are unique." (pp. i4-i6.)

Cheshire also examines the "stomach-mouth," as seen throurh the transparent walls of the houey-sac, in the following way: "The asophagus, honey-sac, and chyle-stomach should be removel together (from a recently killed hee), and placed on a glass slip, the microscope stage being made horizontal. No cover-glass should be used, but sufficient very weak salt and water added. The whole object will exhibit, for at least fifteeu minutes, muscular contractions of a most instructive kind, while the gaping and snapping of the stomach-mouth, and the passing onwards of food, is often noticed. If the bee operated upon has just previously been fed with honey stained with some aniline dye, the effect is enhanced. By closing the œsophagus I have frequently succeeded in getting not only food, but eveu bubbles of air, gulped down into the chyle-stomach, and, by carefully pressing upon the stomach-mouth with the side of a needle, the lips may be forced open, and food passed on into the stomach beyond." (Bees and Bee-keeping, p. 66.)

Dissection of Aphides.-G. B. Buckton says that "in the dissection of Aphides much assistance may be often got by a selection of liquils. Some of these are best suited for the purpose of hardening the tissues, so that they may bear separation and tearing asunder without their destruction. Others are used for coloring the transparent organs, so as to make them more visible. These organs of Aphides are so delicate that pure water will in a great measure destroy then. In such cases a weak solution of common salt, or very dilute glycerine, or sugar and water, or albumen and water, all of which should nearly approach the density of the juices of the insect, will be found a considerable help.
" Some Aphides are so large, so full of liquid, and so charged with oil-globules that some treatment is necessary to reduce their bulk, and to allow of a sufficiently thin stratum of balsam for mounting.
"In such cases the Aphides may be placed in spirits of turpentine, and just raised to the boiling-point in a small test-tube. After soaking in the turpentine for a few hours, all the oil-glubules will be
removed, amb the inset hy this tratmont will hase hecome transparemt, and the anturom- part- will mot then ehill the hatame.

 or the alhminnus furtions will lue amanated and become tor "раны".

 nitric: suril.
"The action of ortinaty ether upen Aphides is not wall umber
 liguid. At the same time a consideralike etream of air-hubhacen-
 to the suppaition that muth of this air mast he in sume state of sohtion in the hodr-juices.
"Ther ration of weak potash has heal hefure moted. As a rule,

 vere markelly the violet dere matural th the Aphits. In other

 and mmmoni:a al whene out this color:

 dre. Thme the serminal am! mont vitalls mented urgme re jote
 the protions in promes of exphation and dreat abont it the
 *ightly alkaline ly nomonia, and tinged with a lithe carmine of
 vellow and rembers them tough. Folutions of manic acid alow maty

 :and lemble rmas.
"For hatelline ppecimens, paste will he fonnd much more witherent
 well-charel hothe, if a little agmens whation of corroxise sublimate

CHAPTER VIII.

CUTTING AND MOUNTING MICROSCOPIC SECTIONS, AND MOUNTING INSECTS WHOLE.

After becoming familiar from careful dissections with the gross or general anatomy of insects, and having perceived the relations of the various viscera to one another and to the walls of the body, the student is prepared to appreciate serial microseopical sections of insects, or of selected portions of their bodies. These can be made by the aid of the microtome, and an insect whose integument is not too thick can with this instrument be cut from head to tail into several hundreds of slices from $\frac{1}{1000}$ to $\frac{1}{5000}$ of an inch in thickness. In this way the histology or fune anatomy of the hypodermis, and the epidermal glands of the nervous ganglia, alimentary canal, the crop with its teeth, the stomach and intestine, etc., can be examined.

The following directions, which apply to soft organs, or portions of them, of animals in general, have been taken from Lee's "Microtomist's Vade Mecum," * while extracts from other authors, relating to special points, are added.

In order to prepare sections of entire insects, or of separate organs, the insect to be studied should be first carefully killed, and the tissues " fixed," then stained, finally washed out or dehydrated with alcolıol, and sections cut with the microtome and mounted in balsam or glycerine jelly.

In general, larve and other soft-hodied insects shonld be killed by being thrown into weak or 50 per cent alcohol, so that the body or the separate soft parts will not contract

[^42]

 should be agratu planed in frestabenhol, in rowny vials mot too elosely erowded, and shomble rest an a mass of cotton so as not to lie direetly on the lwetom of the bottle.

Fixation of the Histological Elements.-'T'wo things, says Lee are implied by the word "dixing:" first, the rapid killing of the elrment. so that it may mot have time to change the form it had during life, but is dixed in death in the attitude it uomally had during life: and second, the hareteming of it to such a degree as maty enable it to resist withwht further changer of form the action of the reagents with Which it maty subsergently he treaterd.
'Ihe most combenient fixing agents are piuro-sulphuric
 suhbimate. After treating the strueture with ome of these. it shonld be washed on ats tormowe from the tisules all
 aciul, or as shlation into whel chromic aled or a chromato ('nters, has been head for tiving the washing maty be dome with water"; hat if pierie aled has been meed, the wathing should be dome with aleohol.

Dehydration.- Is sume ats the fixing agent is remoned, the water of the tissmes mast be removed: this is dome by blaring the ohject gradually in alcohol, at tirst in so per cont alcohal for twas homrs, it per eent fors six twenty-fonr hours. Ell per eent several homs. ! in per cent two or there homs, amb absolnte atcohol time enomish for complete situration.

For inserts, experially, Mityers thuil seme preforable. IIC prepures it at follows: distilled water follobl-.. sulpharie aded ? roks. pierie acid. as much as will diwolve: tilter. As this flad does not ditfuse very rapilly throngh thiok chitin, Mayer directs that insects shombl he "perned with selisors, and the body-eavity at oned filleal with the solution by means of a pipette. A large quantity of the solution
should be employed in all cases, and it should be changed as often as any cloudiness arises in it. Washing-out is done with roper cent alcohol, and warm alcohol extracts the acid much more quickly than cold.

Embedding, Staining, and Cutting.-The water having been completely removed, the object is placed in good chloroform for a few minutes until saturated. The chloroform, adds Lee, is now to be gradually saturated with paraffine. "This is done by placing it, with the object, on a water-bath, heating it to the melting-point of the paraffine employed, and dropping into it from time to time small pieces of paraffine. When it is seen that no more bubbles are given off from the object the addition of paraffine may cease, as that is a sign that the paraffine solution has entirely taken the place of the chloroform in the object. This displacement having been gradual, the risk of shrinkage of the tissues is reduced to a minimum. The heating is then continued (at the melting-point of the pure paraffine) until the whole of the chloroform has been driven off. which may be conveniently tested by the smell." 'The object is then embedded in the desired position, and sections cut with the microtome.

The sections, cut dry, are mounted in series on a glass slide. To fix collodion sections in serial order, preparatory to mounting, Minot advises their arrangement on the slide in 95 per cent alcohol. Then the alcohol is poured off, and a drop of alcoholic shellac placed on each section (just enough to cover the section completely). The slide is next placed in the oven of a water-bath at 40° for a few minntes (5-10), until dry. The sections are then ready for clarifying in clove-oil, and mounting in balsam.

Another and perhaps better collodion fixative is that tried by Schïllibanm, whose solution is prepared by dissolving one part collorlion in three or four parts clove oil, which is applied to the slide by means of a fine brush at the time of using. The sections having heen arranged, the slide is warmed for a few minutes (5-10) in the oven of
a watrebath, in order to evaporate the elose ail. Thbe seetions maty next be freed from the embednling mot-s and colored atoweding to desire (iage reowmmende that the conlodion and chowe oil be applied rebarately.* "'Ther patallime is bow rembered and the artions are

 to hold as shate is tillud with the followines reagents. athl armang in the following order: 'I'ur]entine (or nathetha):
 alcoholir borax-sarmine: :0 per eent alcoholatoilulated with
 hatinge heen wamed the the meltagr-juint of the paratline. is phanged into the turpentine which remoses the parathine: then passed thromgh the tubes with the sucore-ive alowhouls into the stain, from whieh it is hronght into the sum-
 stall alld dehylrate the aretions. Xothing more now re-
 zolor turpentime amd toadd ('analda hal-am amd at coverimer gliss."

When the objects are small and sumberently permeable. the seetions ember stained on the slide. \cdot lat this catse the object after hasing been fixed and washed ont is taken Whale still on its way throngh the lower aleohnols (it shomh not be allowed to proned to the higher ermes of aleohol before staminge and passed through a bath of alcobolic homaxemrmine (or other alcohole stam) of abllicent duration. then denydrated with suceessive alenhols. passed thourh chhoroform into paratline and cht :LF above described." \dagger

[^43]For staining, alcoholic cochineal (Mayer's formula) is recommended for insects on account of its high penetrating power, since the chitinous skin of insects is bat slightly permeable by aqueous solutions of carmine.

To embed an object, as a small insect, or portion of an insect, make a little tray, box, or thimble out of paper, which can be filled with melted paraffine, the paper being removed before cutting; the cast thus made can be inserted directly in the jaws of a Thoma microtome. or cemented to a piece of cork which is held by them. Besides paraffine, wax and oil and naphthaline serve as embedding-masses. A bit of soft tissue, says Prudden, may be embedded in a mixture of equal parts of white wax and paraffine melted together, with the addition of a sufficient quantity of olive-oil to give the mass the proper consistence for cutting when cold.

Celloidin is also recommended for use as an embedding material. It may be obtained of dealers in micro-supplies. It is sold in the form of plates and shreds (the shreds being more convenient for use) put up in ounce packages. A saturated solution of celloidin is made in a mixture of equal parts of sulphuric ether and alcohol (97 per cent). This requires about twenty-four hours with occasional agitation.

If the object to be cut is loose in structure or porous, it should be transferred from strong alcohol to a mixture of equal parts of alcohol and sulphuric ether and allowed to remain for a short time, and then placed in a small quantity of the celloidin solution and allowed to remain until the celloidin has thoronghly penetrated the object. If the piece is small, a drop of the celloidin solution may be placed on one comer of a slightly greasy glass slide, and the object set up in it with the face to be cut placed next the glass. More of the solntion is dropped on to the object until it is covered by a lump or pile of the celloidin; when it has set sufficiently to allow it to be handled without displacement, immerse the slide with its little pile of celloidin
 enongh to cout．chaturiner the alcollol if me．．．．ary
 the well of the microtome：＂ith the ohjuet hathginer in the Well，and till the well even th the surface with the paratline
 slite call be casil？removed with as sliding motion which leaves the surfine io be eat patalle to the surfare of the mierotome．
（＇ut away the embediling masco of paratione in such a man－ ner that the front and bask sides shall beparalled and lande enongh to suppori the wheet to he colt，amt then slice with a razor or the knife of the miorotome．＇The parallel edere of the first seetion atheres the the entre of the shereerting

 ＇The ：uprothous patatlise can be remoned with warm thr－ ［emtime：and the turnenthe with alcohel if it is desirable tustain the acedtuns ont the slite．

If the pieee to be andiomal i－latere affer tremtime with the solution of rellowin it can be mombedder in at＝mall folded paper box．as direeted for embedtiner in paratime．

 clearing nil of hergamot，wil of samblal．wit of ortamm．

1）r．L．I ane ${ }^{\circ}$ mixame for emberding is the following：

 （ilyeerinc．．．．．．．．．．．．．．．．．．．．．．．． 1 ｜ 1 bitl．

 and afterwath straised．After cotoring the animat prep amation it is well washed with water and then－itmerged in the celatine at a temperature of not mow flan li巳 F．

[^44]At this temperature the preparation remains until it is completely saturated with the gelatine (from 1 to 3 days), and is then taken out. A piece of hollow pith or several pieces side by side are cut flat upon one sile and the preparation laid upon it or them, the gelatine being dropped upon the latter so as to cover the preparation and fix it to the pith. After cooling for a few minutes the whole is placed in absolute alcohol, where it is to remain for a few days, the longer the better, and it is then ready for the mierotome. The microtome having been filled with melted wax, the preparation is immersed in it. After cooling, the wax is cut away so that the knife does not come in contact with it in cutting. Before making each section a drop of oil of cloves is applied to the preparation and the subsequent cut is ready for the slide. Mount using dammar or balsam in benzole, or, better, clear balsam.

Mounting Sections.-The process of mounting is simple. After the slices are arranged on the glass slide, a little balsam or glycerine jelly is placed on the objects, the slide being held over the flame of a candle so as to slightly heat it and drive off the fluids as well as to liquefy the balsam or jelly, and then a thin cover-glass is placed over the object, and a covering of Brunswiek black varnish placed with a brush around the edge of the cover-glass, to prevent the penetration of air or leakage of the fluid within, and allowed to dry for a day or two before being userd.

Dr. Kingsley states that one great difficulty in rapidly mounting in glycerine is in fastening the cover-glass firmly. "Various modes of procedure have been deseribed, possibly the best the writer has seen in print being that which employs paraffine. A still better method is to use a very small amount of glycerine, so little in fact that when the cover is applied the margin of the glycerine does not reach the elge of the glass. Then, with a fine brush. balsam or dammar dissolved in benzol is allowed to run in under the edge of the cover-glass, and after becoming hard the
 any desirel manner." (brience liecord, ii.. las:i, 1i.)

To Render Small Insects or Larvæ Transparent, - While some dipterens and hymenopterous lavae are natmally transparent, the nervoms system e:m be morecelatily brenght ont by the nse of acertic aded. which (atn he drent)ed on the object while in the ammalenle or live bux or on the glass slide.

Glyerine or glyecrine jelly is an exeellent article for rembering the benty transarent, and can be used in observing living Aphites and similar insects, as it renders the chatmos integmment more transparent.

Dr. Loose has foumd that a solution of somic hypochborite
 eliborite (foll de dumpla) is a fine sulvent for rhitin in making micromeopical preparations. "The liglial. as
 and lardest chitinoms parts of inseres in athot time. first making them grlas-like, transparent. and entirely colorles. If the liguid is dilated with six or sesen times its volume of water, and the chitinoms parts, wither fresh or after they have been hardened, are put in it lar twaty- fome homs. on eren longer ancording to size. the chitin will he altered. althongh not moticoallly externally: it loses much of its original hrittemess, amd abowe all things is mome permeable to staining solutions. 'The whects require for complete staming erventer or less time areording to size but the coloration is heantiful and distinet with either aldonhatio or aquens staning reagents. In omr institute P'edientidar amd Mallophtye have heren prepured hy this methoul which show. hesides their transparencer. (enmplete amd chear colora-
 make the ergs of insets more transparent.

Momnting Transparent Aquatic Insects.- Mr. (1. Ingger deseribes a new method of preserving and momnting transparent aquatic inseets for the microsonpe. For wharring them while alive a common life-eell is all that is regniret.
but for permanent preservation he mounts them in a neat and very useful cell devised by Dr. T. Taylor, which is easily made of common beeswax, and can quickly be built up to any desired height. "To make the cell harder, and to raise the melting-point, a slight amount of powdered resin is added. Both materials are heated together in a small poreelain dish, so as to thoronghly combine them into a homogeneous mass. If required for use, the dish is simply heated, and the cell is made in the usual way upon a turntable. Since both turn-table and slide are colder than the wax, the cell becomes visible at once, and, by repeated applications with the brush, it ean be made of any required depth. If too high, or if too sloping towards the centre, the wax can be readily removed upon the turn-table by the application of a knife; a groove for the reception of the cover-glass is also very readily made. The cell is now ready for most purposes, and is an excellent one for mounting with glyeerine jelly and Canada balsam. If another ma-terial-oil, for instance-is to be used whieh would dissolve the wax, the inside of the cell should first be coated with any of the usual varnishes, such as Brunswick black. The same varnish should also be used from the outside to seal the completed and filled cell. I have fonnd such cells of great utility in enclosing aquatic larve. To do so satisfactorily, I make with a knife a shallow eut across the cell, and fill the latter with water in which the larra to be preserved has been placed. By gently pressing down with a cover-glass, I can secure the still living specimen in any desired position. Now I remove with a piece of blottingpaper a very small quantity of the water through one of the ents previously male, and allow at the other cut the pyroligneons acid to enter. As soon as this acid has reached the larva, this dies at once in the position occupied at the time. The cell is now sealed in the nsual way; but previous to doing so the sides of the two cuts are pressed together.
"Specimens thus treated remain unchanged for a long
time: for how lomer I dow hot how as yot hot pmailly for an indelinite times if not expered to the -matierhe.
 lavee can be combined the staining of thent at the same
 nsed, which are soluhle in water. One part of the colore. dissolved in 200 parts of di-tilled water, is mixeld with son parts of the rectilied perolignewns ated. 'The monlus oprerendi is the same. In the course of several hours the ohject has become miformly stanemb and an be sealed after the addition of another drop of the awid. If stamed two dark, a corrent of the dilated atid will son remedy

Transmissicn, Preservation, and Mounting of Aphides and Similar

 ardinary quille -topped hy phe of who or pellot- of latwid. The substance of the quill is sutheitmt? promto th form mithen on the ome hamd and at rapid evaperation on the whe for the wat

 thronglt the post

 how-pipe

 sprend out their limba naturally, with a view to (-at Thes mas

 wamed, a small disk of elear mica, is hat wer the irecets, and the a
one or more drops of the fluid balsam are delivered from a glass rod at one of the sides of these covers. The balsam runs slowly under by capillarity, and it drives all the air before it, the suall weight of the cover assisting it to spread, until the whole area is filled. No pressure is to be used, or the clastic bodies of the Aphides will change shape; and besides this, the juices will be forced through the cornicles and pores. If the balsam is thick, a very gentle heat, hardly exceeding that of the cheek, may be applied, but as a rule the temperature of a room is better than that which exceeds it. The insects die immediately if they are cut off from air, and in almost every case their position will be good for examination. To spread the wings of a small insect, the above-mentioned small dots may be spread in a row. The belly of the specimen is applied to the middle spot, and by a bristle one wing may he applied to the dot on the one side, and the other wing to the third dot. The cover is then placed as before, and when the balsam runs in it will not disturb the position of the spread wings.
"It will be noticed that very soon after live insects have been mounted in a resinous substance that will not mix with water, a white cloudiness forms around each specimen. This is caused by the watery juices of the insect, which 'chill' the medium and make it opaque.
"This cloudiness, however, entirely disappears after perhaps a month, the moisture being carried slowly onwards. The same is to be said of stray air-bubbles. The oxygen of the air unites with the balsam, and thus hardens it; but what combination is effected with the nitrogen is not so clear. However, air-bubbles in balsam disappear in time, provided the former is not in too hard a condition.
"In cases where the ahove small pressure is undesirable, small circles, cut by round punches of different sizes out of very thin sheet lead, will be found more convenient to insert between the glass slip and its cover than circles of eard, which are sometimes recommended. The thin sheet lead from the Chinese tea-chests is very suitable for punching, and as it is not porous like card it yields no air-bubbles by leat.
"D. Von Schlechtendal * has deseribed a method by which it would appear that all the characters of form and color (?) may be preserved in Aphides and other insects. The metlood consists of a rapid death and drying of the insect by means of a current of heated air. The Aphis, previously attached to some suitable support, is suddenly and momentarily subjected to the heat of a spirit or other flame, by which it is immediately killed and camsed to retain its natural posi-

[^45]
 hot, wr Aried on a cisel of |:

 Mayor, am! Ruslow

"A more complete history of the promess than the forequing was Hiven by Mr Domerlas in 1sis.

 their cost is quite trithing.

Thomas W. Starr's Method of Preparing and Mounting, with Pressure, Insects Entire as Transparent Objects.*- . Iftrlot ir

[^46]place it under a tumbler with a few drops of ether. When dead wet it with alcohol and place it in 'liquor potasse,' U. S. P., and let it soak until the skin is soft, and until on slight pressure the contents of the intestine can be pressed out through the natural or, if necessary, an artificial opening. This is best done under water in a white plate.

When this is effected the object is to be cleaned. Have a camel'shair brush in each hand; with one hold the object, and with the other brush every part of the insect on both sides, float it on to a glass slide, and dispose each part in a natural position, either creeping or flying. Cover this with another glass slip of the same size and press gently together, using only sufficient force to make it as thin as possible without crushing or destroying it. Confine the glasses with the insect between them with a fine brass wire, and place them in clean water to remain 24 or 36 hours; this will give the insect a position which is not easily changed, and it is therefore proper that the position be such as you desire when the insect is tinished. Remove the wire and open the glasses carefully under water and float the insect off, give it another brushing, and let it remain a few hours to remove the potassa. Transfer to a small but suitable vessel containing the strongest alcohol that can be obtained, pursuing the same course as with the water, placing the specimen between glass slips tied together, and let it remain about 24 hours.

Transfer to a vessel containing spirits of turpentine; it is to remain in this, kept between the glasses, until all the water is removed. While in the spirits of turpentine, the insect is to be released several times, and the moisture removed from the glasses, and the insect again confined. When no moisture is seen to surround the insect, heat the glass slips containing the insect over a spirit-lamp until the contained turpentine nearly boils, when, if any moisture is present, it will show its presence when the glasses are cold.

If free from moisture it is ready for mounting. Float it onto a suitable slide from the turpentine, drop a sufticient quantity of balsam upon it, examine and see that no foreign substances are present, heat the cover slightly, and apply in the usual way. After a day or two heat the slide moderately and press out the surplus balsam, and place a small weight upon the cover while drying. After the lapse of a suitable time, remove the surplus balsam and clean the slide.

In all the operations the utmost cleanliness is essential. The liquids used should be frequently filtered and kept from dust, and a large share of patience will be found necessary.

After sufficient time has been given to allow the balsam to harden so that the cleaning will not displace the cover, remove the surplus
from around the cover glaws with a warm hnife, amb blan moista a
 ammonia, and a slight rubbing will tean the slide with very lithe danger.

After removing the sumerthous halsma amd elemine the slite, finish by spinning a ring aronul the cover with the cement mate from the following formula:

$$
\begin{aligned}
& \text { Gum mastic.................................... . .i. } \\
& \text { (hama halsam, evaporated to drymes....... fis " } \\
& \text { Chloroform.. " } \\
& \text { Spirits turpentine........ } 100 \text {." } \\
& \text { Mix and dissolve. }
\end{aligned}
$$

Method of Preparing Minute Entomostraca, Mites, Spiders, Insects,
 osmic acid to the water, when they fall bo the bettom they are to be taken up and phaced in alcothol of san per cemt, from whith they are to be tramsfored to akeohen of 50 per went, then to cerhineal

 alcolon. Then a small quamity of oil of chove is paracel intw the alcohol, and at the lime of juncture of the two hizuids the - yectimens become permeated with the oil. They are then whe tran-fored th clear oil of choves, ame timally whon perfectly chear monmed in (:anada bakam, or embedded in paralline and cut into sections. By this method specimens can be obtained with absolutely no shrinking of the protoplasm." (NI. M. Hartog, Jomm. Rogal Dioroseopmal Society; London.)

Carbolic Acid in Balsam Mounting.-Put the living insett intn cartohle arcit:* this in a few minutest clears the whient, rembering it transparent and apparemty wholly destitute of vace an, hat whibiting cieat! the sextal organs. Drain oft the superthom-a at and mome without pressure in moderately thick halswn. The atid dus mot Farden the object, lut it remains perfectly theatbe. for a bome time.
 Mier. Noc., 1Es1, 1:39.)
 Mr. Vorcess method stated abowe, amd desertibe 1f-own mode of procedure. "Place adrep of the [arbolic] and pure ers-allized

[^47]with just sufficient water added to keep it fluid) on a slide, and drop into it the living insect; it will be seen to struggle for a second or two, then the limbs, wings, and tongue become extended; it then becomes beautifully clear and transparent. The acid slould now be drained away, a drop of balsam put on, the cover applied. . . ." (North. Microscopist, ii., 188:, 227.)
Bleaching Fluid for Insects.-W. Sargent recommends the following: Hydrochloric acid, 10 drops; chlorate of potash, $\frac{1}{2}$ dr.; water, 1 oz . Soak the insect in it for a day or two, then wash well. (Journ. R. Micr. Soc., 1883, 151.)

To Clear Objects for Balsam Mounting.-Dr. J. J. Masou nses a mixture of carbolic acid, one part, and oil of turpentine, four parts, mixed. When the object is perfectly clear, drain off the supertluous mixture and mount in balsam.

Mounting Insects in Balsam without Pressure.-Mr. H. Chadwick gives the following directions:

Preparution.-I. Soak the specimens in liquor potasse until they are transparent. Wasl well in distilled water, using a pipette and camel-hair pencil. Transfer to 50 per cent spirit, then to a small quantity of pure spirit in a watch-glass or soaking-bottle, and allow them to macerate. By this method the formation of air-bubbles in the interior of the specimens may generally be avoided.
II. Wash well in distilled water. Soak in pure spirit or alcohol for some days. Trausfer to carbolic acid until sufficiently trausparent. Then transfer to oil of cloves, but many persons do not consider this necessary. This method should be used in all cases where the integument is too opaque to allow light to pass through it before treatment, and it is especially useful in the study of the muscles.

Mounting.-Take a clean 3×1 slip, having a sunken cell in its centre. Just iuside the edge of the cell, equidistant from each other, cement three white glass beads with hardened balsam. Put it small quantity of soft halsam in the centre of the cell, and gently warm it over a spirit-lamp. 'Take the object, a wasp's or blow-fly's head, for example, and place it upon the previonsly warmed balsam, arranging it in the required position. Now take a clean cover-glass, the diameter of which should be a little less than that of the cell, and holding it between the points of a pair of forceps, place a large drop of balsam in its centre, and allow it to fall upon the object. The edge of the cover should rest upon the three heads. If the quantity of balsam under the cover-glass is not sufticient to fill up the whole of the space between it and the slide, a little more inust be allowed to run in, and if the object has become displaced, it nay be rearranged by means of a fine blunt needle, introduced beneath the cover-glass.

 thons pertion to loe removed satily．Sulticiont batsan thend be

 disturbing the coner－glan．comstitutes the chicf adsantate of uning
 mast he regulated he the thicknese of the whiget．Pure halsam in collapsible thes is to be stronst recommemded，on aceomb of the nicety with which the quatity of halsam requited for momuting ： slide（an be regulated．＇The nerk of the tube should he wijed with a clean cloth mexisteme with hemphe before the wer w－tal is re－ placed，in order to prowern the perihitity of a lithe halsam harden

Preparing and Mounting Dissections of the Λ ppendages，etc－A．（＇．

 quired for mombing）；then arain saked in water；then phated in strons alcohol for athert time；then wamed be weat－of oil of

Mounting Minute Insects and Acari in Balsam．－Mr．A．1）．Michacl
 water or spirit．Itard inserds and Aravi are hat killed in hon water． which cames that to wand their late，hat wator rather ingurs

 chmically and he wahing in spirit．Place the whot of at eram stip and armage it with the hair．leave it in spirit for to．
 not to dry the wiget，whith shabld newer be allow do to dry frem the first proces to the final momting．Davine drain it or the－pirit， drop on the object a litte ail of cleves，which is bether then turpen－ tine；slighty warm the slide and put on a htite coterglase which must be supperted so as heo to tomel the olijet：have it matil tharomehly soaked．If necessary，remove to a clean slip for the final mount．It may be necessary to arrange the object more tham
once. Drain off the oil of cloves and put on a small quantity of Canada balsam, or preferably balsam and benzole. Arrange the creature on the centre of the slide. Let the balsam harden a little, then the object will not tloat off, as happens sometines when a quantity of balsam is used at once. Lower the cover stmight down ou the object; do not try to drive out a wave of balsam as is recommended in the text-books. It is better not to put enough balsam at first to fill the space under the cover, as the balsam supports the cover if it does not reach the edge; but if the balsam reaches the edge of the cover it is apt to draw down the coverand crush delicate objects. A few pieces of thin glass to support the cover are a great protection to the object, or better still, a few tiny glass beads. Finish the slide with a ring, Bell's cement or something of the kind, but that must not be done unless the cover be supported in some way. (Journ. Quek. Micr. Club, i. (1883), pp. 241-2.)

Sections of the Brain.-In studying the brain of insects it is better to begin with that of some of the lower forms, such as the cockroach or locust, as they are on a simpler plau than that of ants, wasps, and bees. In the sections of the brain, made by Mr. N. N. Masou in 1879, it was thought better to cut the entire head so that the muscles and integument should support the soft parts within, including the brain. The head therefore was ent with the microtome into sections from $\frac{1}{50}$ to $\frac{1}{1000}$ inch in thickness, after having previonsly been hardened in absolute alcohol for two days or more, and then kept in melted paraftine for one or two or more days. It was then embedded in a preparatiou of parafline, sweet oil and wax, or, iu some cases, in soap. After the sections were cut they were stained with picrocarmine, or with osmic acid and picrocamine. Finally, the slices were mounted in glycerine jelly for study under the microscope. The sections were iu most eases frontul ones, namely, cut transversely from the front of the head or brain backwards, while a few were longitudinal (vertical or sugittal) ones, viz., ent parallel to the median line of the body.
M. H. Viallanes, in his work on the brain of the locust (Edipoda and Caloptenus), published in 188\%, deseribes his method as follows: He separates the head from the living amimal, then with the seissors removes the labrum and mouth-parts and all of the integument behind the compound eyes. He then removes the muscles of the mandibles, the trachere and fatty masses, in order to expose the posterior aspect of the brain.

He then plunges the head thus prepared in a vessel coutaining the following solution: Distilled water, 100 ; osmic acid, 0.02 ; acetic acid, 0.50 . At the end of a few minutes the brain is of a consistence sufticient to allow the dissection to be finished without fear of

 then somked several hours in distilled whtor, hat mos he dixed hy

 nated throughe.ut lheir centire mase with wminms.
 lours in carmine und alam decidedly acodulated with acotic acid.

On luens taken out of this stain atad wathed, the bran is drhydrated, embedeled in paraline, and cut into evetions a $\frac{1}{0}$ mon. in thickness, and mommed arerially. Besides fromtal, lateral, and sigital, whliphe sections were made.

Nignor (i. ('nceato, in peparing the brain of Orthoptera, snips off the head of the insect with in pair of sciscors, and pins it on cork. Thus fised, the head is immersed in 0.05 per cent Nitll solution. Then, with the adi of weisours athe foreels, the chitinums sheath and the ege: are removed from the smpra-(1-aphage all gathglion, and the sperimen removed to a watch-rlass full of salt solution, wherein the tratehe: and museles are removed. Dfter at short thme the whece is placel for forty-virht homes in Flemming's misture, mad then, lasving been well washed. the rest of the muveles and the fat are removed from the ramelion $I t$ is next put in 36 per cent -pirit, sud gralually hardencel. After dehydration is ícombedded in paranline. The sections were dised down hy Mayer's mathod, and stancel with a sthorated watery solution of acod fuctsin. The tiattive used was Rabl's solntion (chmono-formic acid mud batimmm chleride).

Preparing the Sympathetic Nervous System of the Cockroach - Dr. M. Köstler pursincel the fullowing mode in examining that of Peripheneth orientetlix: - The fresh parts of the inseet to be examined were hedd over osmice neid for two or three minuter walled, and transferved to weak aleobol. They were then stained with pieru-carmine for twonty-fomr lomm heneath the bell-j:ar of :m atir-jbimp, and wero found to be perfectly hardemed. When all trace of aleohnd had been removed by washing they were placed in tilt rad white of eges. At the end of about two hours the albomen was contzulated, tiret by weak amd then by absolnte alcohol, warmed to fo ('., so as to bring about as ceren a coagulation as posible. The oliject can then be treated in the nsual way with oil of cloves, embedded in parathene, and cut with a microtome. (Zeits. fïr Wisict. Zoolegie, xגsis.

Making Sections through and Bleaching the Eres of Insects.-1)r. S. J. Hickson's method is as follows: "For mahing scetions through the eye of Mused romitorit I have found it best to disect away the
posterior wall of the cranium of the fresh insect and then to expose it to the fumes of 1 per cent osmic acid solution for forty minutes, then to wash in 60 per cent spirit for a few minutes, and finally to harden in absolute alcohol. Crania thus prepared may be cut into fine sections by the automatic microtome, and stained in hematoxylin or borax-carmine. With most insects, however, I have found it inpossible to use this microtome, owing to the harduess of the chitin of the cramium and of the mouth-appendages. In such eases I have used a Jung's microtome, with the razor set so as to give a long sweep at each stroke, and the sections carefully removed from the razor, and mounted one by one.
"I have tried varions methods for depigmenting the eyes, such as bleaching-powder, nitric acid, chlorine, etc., but the best is that of exposing the sections when cut to the action of nitrons fumes. This is done in the following manner: The sections are fixed in position on the slide by Mayer's albumin and glyeerine solution, and when the paraftine has been removed by turpentine and the turpentine driven off by absolute alcohol, the slide is inverted over a capsule containing 90 per cent spirit, to which a few drops of strong nitric acid have been added.* Copious nitrons fumes are given off and the pigment dissolves. The action can be stopped at any moment by washing with neutral spirit, and when the washing is complete the sections can be stained in hæmatoxylin or any other solution.
"For teasing the best solution is chloral hydrate. I leave the eye or optic tract in 5 per cent solution of chloral hydrate for twentyfour hours, and then tease with needles and monnt in glycerine. In some cases I have made very satisfactory preparations by fixing the teased tissues to the slide with albumen and glycerine solution and then washing with spirit and staining in the ordinary way, or staining after depigmenting with nitrons fumes.
"I have tried various kinds of hamatoxylin stains, but the solution which gives the best results, and is in every way the most satisfactory, is one which I have made by following Mitchell's instructions, with a few additional precantions. I will describe here the mode in which I now make hamatoxylin stain: Take 56 grams of the logwood extract and thoronghly pound it in a mortar. Then place it on a filter, and pour about a litre and a half of ordinary tapwater through it. The filtrate may be thrown away and the residue

[^48]allowed to dry: In the mean time perpare a vilution of alan as follows: Take eng gratio of alum, and sfter it han betol thoronghy
 this whtation able strong potanh until a precigitate io formed, which will not disolse ngon atirring and standing.
"Pour the ahme solation thas made on to the hamatoxyin residue, and allow it to macerate for three or four day in at warm rom. Then filter the hamatovylin solution into a hombe provided with a closely-litting stopere, and add to it to ee of pmore glyerine and 100 ofe of an per cent spirit. (The residue med mot be thrown away, for it can he materated arain with alum solution for at week or more, and agood strong main ohtained ats before) When the solmion is thus made it shonid be wedl shaken and allowed to stand for some weke before being used. This solution of hatmatoxylin impores considerably with age. The oldest I have was made ahout twetw mombta ago, and is ber far beat.
"The ham:atoxplin stain proxuced ly this reeipe possesses se veral
 adminably; nuclei stain dexply, cell protoplam fainty: it seme to last a long time withont showing signs of fading, and, as it penctrates well, it is very uspful for staining in bulk."

 reve of insects, is an follows:

The eyes were hadend by means of Perenyi's that, followed by aloohol of increasing strength, it powess which worhs woll with abmost all Arthrogrod tissues. lumot instances, they wem stamed entire with Grenachers almo-rarmine, though in some intances Kleinenberes hamatoxylin or Genather's brax-carmine were employed In the later sages, where the depmestion of pigement in the eye interfered with a dear vision of all the smeture cometreal, the following eomese wats adopted: The eres were setioned as ustat, the sections leing fastened to the slide with Maycr's altmmen tix ative. After wetting the paralline and allowing the swtions-to drop into the adtesive mixture, the embedding material was diwnleal in forpentine, and this in turn was washed aw:y with atoobllas in r cent). The sections were then eovered with a misture of ental parto of nitrie acid and 9.5 per cent aleohol, whith wats allowed to rematim until the pigment was remewed, -a proees repuiring from ten to fiftern minutes. The slide wat next wathed with drane aleohol, and the sections stained decply with Kleinenberesthematoylin, and

* Journal of Morjholegy, Boston, 158i. 49.
the excess then removed with acid alcohol in the usual manner. The sectious were then mounted in balsam.

In order to demonstrate the presence of the corneal hypodermis in the facetted Arthropod eve, and the connection of the so called "rhabdom" with the crystalline cone-cells, Mr. Patten says it is necessary to resort to maceration. In most cases it is hardly possible to determine the important points by means of sections alone.

The ommateum of fresh eres, treated for twenty-four hours or more with weak sulphuric or chromic acid, or in Mïller's fluid, may be easily removed, leaving the corneal facets with the anderlying hypodermis uninjured. Surface views of the cornea prepared in this way show the number and arrangement of the corneal cells on each facet. In macerating the cells of the ommateum it is not possible to give any definite directions, for the results rary greatly with different eyes, and i_{t} is also necessary to modify the treatment according to the special point to be determined. It is as essential to isolate the individual cells as it is to study cross and longitudinal sections of the pigmented eyes. In determining the number and arrangement of the cells and the distribution of the pigment, the latter method is indispensable; it should not be replaced by the study of depigmented sections, which should be resorted to in special cases only.

In fixing the tissues of the eye, it is not sufficient to place the detached head in the hardening fluid; antennæ and mouth-parts should be cut off as close to the eye as possible, in order to allow free and immediate access of the fluids to the eye. When it is possible to do so with safety, the bead should be cut open, and all unnecessary tissue and hard parts remored. With abundant material, oue often finds individuals in which it is possible to separate, uninjured, the hardened tissues of the eye from the cuticula. This is, of course, a great adrantage in cutting sections. The presence of a hard cuticula is often a serious difficulty in sectioning the eyes of Arthropods. This difficulty can be diminished comewhat by the use of the hardest paraftine, and by placing the broad surface of the cuticula at right angles to the edge of the knife wheu sectioning. Ribbon-sections cannot be made with rery hard paraftine, but it is often necessary to sacrifice this adrantage in order to obtain rery good sections. (Roy. Mic. Journ., Aug. 188\%.)

Expanding and Mounting the Tongue of the House- and Blow-fly.C. M. Vorce remarks that if the head of a living tly be cut off, the tongue will usually retract; pressure on the head will expand the tongue, but unless it be secured by some means before the pressure on the head is released, it is apt to wholls or partly retract again. "If only the tip is wanted, it in easily secured by placing the serered head on a clean slip and pressing with a needle till the tonguc is fully
expambed, when atrop of turputine i- applic 1 , a coner latid on the tengue, and a clip applied hefore the prowne is remonel from the
 for an inch or as, and hodinge the -plit onem lay a knift hanle, pare

 will fully divend the tengere. Now dip the hat thel fonere in turpentine, and leave it immersed for a few days, when it will he found well ileamed, still perfectis distumberd, and cem the relaseal from the stick or cut from the head without danger of it coliapsing. Momented in a cell in halsam, it is atruly heantitul object." (Amer. Month. Mier. Journ., 1ss. 12.)
A. L. Woxdward immeres the living 11 y in alcohol, "and with perfectly satisfactory results. At the moment of death the tomene is forcibly protruded to its entire length. Exen the short probocis of the house fly is satisfactorily dieplayel." (Amer. Month. Mier. Journ., 18゙3, 2: 2:)

Mr. H. sharp memuts the hothe of the prohbere of the blow-fly, without presure, in :s shation of hiniokite of neremer in one of

 besces of hew tlics montent in hatsim, with and whom pre-ure. but there is nothing to lee seen of the membene in any of them; a can just sere it in a glyecrine mome, now that I know whot to low for: lat the glyectine does mot make it visible like the merenr! solution."

Microscopic Sections of the Proboscis of Flies, Bugs, and Bees.-The excellent work dome by limmerk on the month-parts of the mompite and other tlies, he Kiracerelin on those of the tly, then, and ll mipterat.
 whether the peedutandee of the tly: babella are hollow or mot. Dimmock fed the tly with a mixture of sugarand gam arabic, colored with carmine, then plumere it sudenty into strons ateohnd to tix the colored solution in its mouth-parts. Mr. (Thesitere, lufere cutting sections of the bees and other honey-feraline invets, recommemb that the insert to be operated mon should he keph fatiter for som time, and then fed on honey mixal with ereatine imprenitul with some highly colored dye: the insect should be immedi why decapitated, and the head rapilly cooled and then embedded in a 1 wime and the section cot be means of the mierntome. The metuth-pasenge is then easily seen from the presence of the dye.

Sections of the Ovipositor or Sting-Acrending to Vr. J. W. llyath, the insedt or organ is placed in alleohol until it is thoroughly permeated, and then removed to a clear alcolohlie solution of shellace, in
which it may remain for a day or two. Fit a cylinder of soft wood into the well of the secion-cutter; split this eylinder through the middle, and cut a groove in one or both of the half eylinders sulticiently large to admit the object without pressure; put the two pieces together with plenty of thick shellae, and tie them with a thread. When the shellac is quite hard, which will be the case in a day or two, place the cylinder in the section-cutter, and, after soaking the wood with warm water, sections the 万ob of an inch in thickness, or less, maty rearlily he made.

Should the shellac prove so opaque as to interfere with a proper examination, a drop of borax solution will immediately remove this ditliculty. (Amer. Month. Micr. Journ., i. (1880) p. 8.)

Mounting Gizzards of Insects.-Dr. T. J. Sturt kills the specimen with a drop of benzine, cuts of the extreme end of the hind hooly, removes the head, cuts ofl the whole intestine, and puts it in an 1 oz . vial with five or ten drops of liguid potash. After it has stood about half an hour, partly fill with water and shake it well to tletach the muscular coat and trachee' then slit it up, wash, and adjuat on a slide. Drain away any moisture, apply a drop of carbolic acid, and put on the thin glass. After a few minutes this will absorb all moisture and remder it cuite transparent. If it does not, put a drop of acid at the edge and tilt the slide to drive off the first acid; then put a little balsam on the edge, tilt the slide, warming it to render the batsam more limpid, and it will gradually take the place of the acid, the lines of demareation between the two being distinctly visible. (English Mechanic, 1882, 282.)

Preparation of the Intestine of Insects.-According to Dr. J. Frenzel, chromie acid is not suitable for the examination of the intestine of Arthropoda. A mixture of nitric acide and an alcoholic sublimate solution gave satisfactory results. The strength of the alcohol and the amonnt of sublimate in solution do not appear to mater. The author used 80 per cent. alcolsol with sublimate half saturated. No particular cantion is necessary as to the amonnt of acid; a drop ton much or $t o n$ little doing no damage. 'To the above solation a drop of concentrated sulphuric acid is added to revery one or two cuhic centimetres. The presence of this acid induces a quicker penetration of the preservative tluid into the tissues, and hinders the formation of insoluble mereurial componds. The more acid the solution and the smaller the piece of tissue the shorter the time it is left in the thuisl. For pieces about the size of a peat, tive to ten minutes are qquite sutlicient. After bardening in sublimate, alcohol is advantagcous. The issue is washed and left in 99 per cent alcohol. (Arehiv für Micr. Anal., 1885, 229.)

Preparation of Insect Spiracles "- Nr. Fr. Hi, mill momark that in

 Where is romm, iasert a small stick of wift wown haturem to a hat
 ting. All the motting shombl he dome on the hawer side, so that a matrin is heft on the uprer part, which am the trimand catily after
 sed ith this that for a comple of home will deame all the risempa Now hohd the part down with a soltemed atick, which hor this purpese is far sumeror to memmine medtes, and with a cameldair pencil remowe the viseral and tramser the whenet to ratu water, remmenge

 they show we? well themeh the skin (or, after ment of the siovera

 have of the hapidphera shew heat when moment on the side In preparing thew, hold the larva mulder water with the pointel with.

 show time. Lamsa will stad consile rable presume in cleminge hat
 ared with hatir. It is beat formanemer with the largest hertan or
 be opemed atous the bate to give the lignow free anoms.
 slowl on tike chituons parse of inseds, hat wey promples ons the

Mounting of Trachere- Mr. F'. 'I' It:alemend diand ont the suft

[^49]ganglia, and the brain are in this way finely shown, the brain revealing the very abundant ramifications of the trachere, especially the immense parallel branches situated between the rods of the eyes. (Psyche, iv. 253.)

Mounting Legs, etc., of Insects.-Mr. R. A. R. Bennett, in regard to this topic, which will also apply to large antenne, palpi, etc., remarks: The chief difficulty is the appearance of air-bubbles in the object after it has been mounted. To avoid this, there is a little dodge not mentioned in most books. When the leg is taken out of the turpentine, instead of placing it at once on the slide, boil it for a few moments in some balsam, kept for the purpose in another tube. While it is being boiled the air will escape, and the balsam will take its place. There will therefore be not nearly so much chance of airbubbles arising when the oljject is mounted. Of course this would be rather rough treatment for some objects; but with the legs of insects (especially such as Dytiscus marginalis) it generally answers admirably, and saves a vast deal of trouble. (English Mechanic, 1883, 253.)

Mounting the Skin of Caterpillars.-E. E. Jackson soaks the specimen in acetic acid for ten days, then opens the body carefully with scissors from anus to mouth, and washes it in water. He then soaks it in weak, afterwards in strong, alcohol, following with oil of cloves, turpentine, and balsam. (The Mieroscope, 1884, 133.)

Dissection and Preparation of the Spermatic Filaments.-F. R. Cheshire proceeds in the following manner: "Secure a drone (not newly hatched) as he is perambulating the combs, open the body, remove the vesicula, break one end, and, with the forceps, apply for a moment the ruptured part to the surface of some glass covers upon which a small quantity of water has heen placed (one resicula will give a supply for a dozen slides); leave to dry, keeping from dust; warm in the flame of a spirit-lamp to set the albumen, pour on each three or four drops of watery solution of Spiller's purple, and after tive minutes wash, dry, and mount in Camada balsam. For critical examination with high powers, spermatozo: shouk be mounted in glycerinc. If staining be desired, a mimute quantity of the purple added to the glyecrine will accomplish it, as in a few weeks the sper matozoa will have absorbed every trace of the dye. ("Bees and Bee keeping," 201.)

Prof. v. la Valette St. George recommends, for the examination of the spermatic elements of the small cockroach (Blatta germanice, or (roton iagg) a dluid which unites the properties of not being harmful to eells and that of staining certain cell-parts deeply. This is iodized serum, rubbed in with dahlia tad filtered. The ammiotic fluid can thus be replaced by another indiferent fluid. Dilution of pure nuclear-staining media with iodized serum did not give favorable

 sky's mothend. he placed, whom alise. for at som time in mearly hailine
 stained in pictocarmine or in hat matonylin, and embedded for ent
 'Trichophera in cold water, baiwing the lemperature bery erveratly to
 20 per exilt alcohol, which was ineressed hy 10 per cent onew or twice a day until reathing full stmenth (and per cent). They were tained with Kildinemberg's hamatoxylin and a in preme colation of cenchineal, and cmbedded in parallime after la ine claritiod in benzole for thirte mimites.

 His treatment.

Eergs grudually hardened in alcohol and then con :amb - ained on the

 cut by hand, the eges having been, after being hathend, ombedded in parathine and cut with a razor.

Dr. F. Sululnan * in the examiation of the crese of inactas.

 chorion is perforated with at the newille, but the mita fore in to bee
 from one to three days (antorking to size) in prith pee at ahmo

[^50]$55^{\circ} \mathrm{C}$. The embelding mass is rapidly cooled. The sections are stuck on with a thin layer of Mayer's fluid. The author states that fresh albumen mass stains less easily than the older. The stains used were Grenacher's borax-earmine, Weigert and Ranvier's picrocarmine, and Flemming's hiematoxylis. The author recommeuds doukle staining with pierocarmine and hematoxylin; weak staining first with picrocarmine and afterwards with the logwood. The dye is then extracted with acidulated alcohol until a red hue appears; the sections are then transferred to ammoniacal alcohol until the blue color reappears. In order to obtain various shades of color the author advises to stain about $\frac{3}{4}$ of the sections (sic) with picroctrmine, and then to draw out the slides from the fluid so that the upper part is more deeply stained than the lower. The slide is then turned round and the process reversed with hæmatoxylin. Afterwards absolute alcohol, bergamot oil, xylol balsan, Flemming's chrom-osmium-acetic acid, and saframin staining give good results. Fixation with 3 per cent nitric acid produced vacuoles in the yolk, and was, therefore, of but little use.

Dr. H. Henking,* in his investigations into the development of the Phalangida, adopted various methods of preparing the ova; the animals were sometimes killed with boiling water, and left in it for some time for the albumen to coagulate; they were then hardened in successive strengths of alcohol up to 80 per cent. The ova were never placed direct in alcohol, in consequence of the shrinking cansed by such a process. Other specimens were killed with ether, the back laid open, and the animals placed in Flemming's chrom-osmic-acetic acid or in Kleinenberg's picrosulphuric aeid for some hours before removal to alcohol. Eggs that had been deposited were treated with hot water, and with Flemming's fluid, as well as with hot and cold chromic acid, pierosulpburie acid, ete. The best staining reagents were found to be Grenacher's borax-carmine, Hamanu's neutral acetic acid carmine, and eosin-hematoxylin. Before embedding, the eggs on being taken from absolnte alcoliol were placed in a mixture of bergamot oil and absolute alcohol, then in pure bergamot oil, and then in at warmed solution of paraftine in bergamot oil, and finally in quite pure paratline. By the aid of Spengel's microtome sections from $\frac{1}{80}$ to $\frac{1}{150} \mathrm{~mm}$. thick were prepared.

Dr. F. Blochmann fixes the ovaries of ants and wasps with picric acid or sublimate, staining them on the slide with picrocarmine or borax-carmine. For examiniug the elements of the yolk, donble-

[^51]
 ().t. 18ボ, 841.)

Herr .J. Nushanm thinks that ome methent of prevronton atan
 diflerent results. He treated fresh refers with lileinenheres or Perenyits flaid, or tremted them a few secomels with low water and then with biehromate of potanh. The cases in either c:ar- were
 toto hy hamatoxylin, horax-armine, or red magrabla ; the latter qator
 hours, ind very intensely, thongh sometines very maformly.*

Preparing Embryos of Insects. - In a paper wis the cmbryonic development of the Bombyedie, Jor. S. Selvatioo deseribes the methorls he has made nse of both for the preparation of entire em-

 shedt, in the :ane of Bombye, withom di-wmbins the matorlying

 a hateder shell bat atre larger, athe a razor wan employeal hy the mulhor.
'They are then hardened hy leaving them for twetre hour in as OO2 per cent solution of chromic atid, amb for twelve lomers more
 removed by comploging the foreeps or colting it romme with a rams.

The entire contents haing heen remeverd, the eger is freed from
 alcobol heing renewed matil it is no longer colored ! flow.

For staming, the egge is phaced in pierocanmine fur twenty four hours amd washed ia 30 per cent alcohol to remowe the pierie acid.
 until sections are reduired.

Previons to coutting sections the erges should he plated it aboulute
 bergamot. Inry and embed in a minate of 4 bart of - prmateti and 1 of eacao butter, to which is added. acourdiner to the temperature, some drops of eastor-oil. The kaife should be motetened with

[^52]olive-oil, and each section washed with a mixture of 4 parts of oil of turpentine and 1 of creosote to dissolve the embedding substance surrounding the section. Mount in Canada balsam.

To preserve the embryo entire, the shell is to be removed as above described, after coagulation. The egg is then placed in a dron of water on the stage, and with a low power the embryo is extracted from the vitellus. It is cleaned as much as possible, so that no portion of the vitellus adheres to it, and mounted in glycerinated gelatine, previously colored with methyl-green. By this method the embryo takes from the gelatine an excess of color, and is thus stained after the preparation is made. If it is colored first and then placed in colorless gelatine it will always lose color (sometimes completely) if the gelatine is only a little greater in volume than the embryo. (Journ. de Microgr., vi. (1882) pp. 220-1.)
Surface Study of Eggs, and Hardening for Cutting, etc.-MIr. W. A. Locy* adopts, for studying the eggs of spiders while alive, the long-used method of immersion in oil, which should be perfectly clear aud odorless. The external features can be studied to better advantage by monnting the eggs in alcohol after they have been freed from the chorion and stained. Another valuable method for surface study consists in clearing the already stained egg in cloveoil. The thickness of the blastoderm is most easily determined in this way.

The best method of hardening preparatory to sectioning is that of heating the water to about $80^{\circ} \mathrm{C}$., aud then, after cooling slowly, treating with the usual grades of alcohol. Good results are obtained with Perenyi's fluid, which renders the yolk less brittle. Osmic acid does not penetrate the chorion, and chromic acid or acid alcohol are not easily soaked out on account of the thickness of the chorion.

Borax-carmine is, on the whole, the best staining tluid. It is difficult to make the dye penctrate the chorion, and, after hatehing, the cuticula forms a similar obstacle. This difticulty may be overcome by prolonged immersion in the staining tluid. In some cases seventy-two hours were required to obtain a sufticient depth of color. In order to avoid maceration, which would result from so long-coutinued immersion in a weak alcoholic dye, the staining process may be interrupted at the end of every twenty-four hours by transferring to 70 per cent alcohol for in hour or more.

After most methods of hardeuing the yolk becomes very britfle, and the sections crumble. This diticulty may be overcome by collodionizing the cut surface before making each section, in the manner described by Dr. Mark. \dagger

Mounting Dry the Eggs of Insects - Accorrlintr 10 l)immonk, wra

 slides. 'Thus mombled, abd vesked will hlath law or other moans,

 in phace of cork; the latter, however, is lighter than paper, is more comenient for piming, and c:an be rasily ent intor rimg of dillerent sizes witha cork-borer such an is weal in chanical labaratories. If circular cower-glasses nre used, the eedls cun be beatly sealed on at turn-ahke for proparing mierosoope-slides. (l’ayrle, iv. 1:33.)

Preparing Fireflies, etc.-IV invertigalte the seat of waidation which produces the light in Luciente itulion. I)r. ('. Emery killed the livine amimal in a solution of asmice acol, whicll stain the laminous phates of the still living and lighteleveloniner aninal- hrown. The
 time in water, the developherat of fangi in which is prevented by

 bifureation. Another methorl of prow itation consi-s in injectings corresibe suhlimste solntion into the animal, abd sulseryne treat-
 stract in Jonth. Roy. Micr. Sor., Isぐ, Fi3B.

Mounting the Appendages of Insects for Pinning in the Cabinet--
 24) satys: " 'The habit of many has becol after examining the part- of

 latter bad been my practice, bus slides necommbate and are ineons. venient to liecp. A sulstitute a kowwledire uf which l wwe ow Jr. !lorn answers admiably for all purpuses mol in perfoctly -imple. A loole, round or mplare, is punched or cont out of a pice of liment hoard of any desired size: a cover-glass (lase the - buate is fa-tomed on one side wer the aperture hy a thin eirele of she late: hhin forme a shallow cell in which the part to be ceamined is plact. at drop of Cansalahaleint joput on it, and the whele is coveral ly anosher cover-

[^53]glass. Your preparation is thus effectually preserved, and you can put a pin through the end of the card and put it in your cabinet next the insect the object is intended to illustrate. You can put half a dozen cards on a single pin, and the space thus occupied is very small, while the preparation is as convenient for examination as though mounted on a glass slide."

Mounting the "Saw" of the Tenthredinidæ.-Mr. P. Cameron describes his method of mounting and preserving the "saw" of the Tenthredinide for microscopical examination, a method which can be applied to microscopical mountug generally.

With fresh specimens the saws can be extracted by pressing the abdomen, when they will be protruded and readily extracted. With old specimens it can be done equally well by placing the insect in a relaxing-dish, or, more promptly, by steeping it in water for a day, when it can be taken out in the same way as with fresh insects, the only difticulty being experienced with insects full of eggs. For their better examination the four pieces composing the ovipositor proper should be separated; after which they must be steeped in turpentine for a day or two so as to get rid of air. This is best done by enclosing them in a small folded piece of paper; and, if they be properly labelled, many different preparations can be placed in the turpentine-bottle together. Next take a sheet of fine Bristol board, and cut it up into pieces, say 12 lines by 9 lines, and punch at one end a round or square hole, four or tive lines across. On the lower side of this fasten, by means of Canada balsam dissolved in benzine, a cover-glass. Wheu this has dried fill up half the cell thus formed with the same composition, spreading it as evenly as possible, and in it arrange your preparation. Put it aside for some hours in a place where no dust will fall on it, then fill the cell with enough balsam to run over the edge of the cell, place a cover-glass over it, and press it down. All that now requires to be done is to allow the preparation to dry, taking special care to keep it flat, to label it, and stick a pin through the card, by means of which it is fixed in the cabinet alongside the insect from which the part was taken. To examine it under the microscope, all that is necessary to do is to place an ordinary glass slide across the stage, and put the card on it, in doing which it is not necessary to take the pin out of it if a short pin be used.

The great advantage of this plan for entomological purposes is that it does not necessitate the formation of two distinct collections, which must be the case if dissections are mounted on glass slides, which cannot of course be placed alongside the insect. Besides that, it is cheaper, more expeditious, and safer; for the cards are so light that no injury comes to them from falling, or getting loose in the box. If desired,

 The anthor wimally prepares twe of thate dozem of the cards with
 ohject of hetting the di-semtins hamen in the well, hatf tilted with halsm, is that turee or four mparate parto may be armaged in the most suitahn way in the sume erell withom fear of their he iner di-ar ranged or injures when the top cover-glase is put on, while beth might hapera if the while opration was performed at onere

For the examination of the saws, a quater-incla objentive i- the best: the teedr, in some canes are so time that they are apt to be werJooked if lower pewers are used. (Trams. Entomol. Sue. Lemd., 1881, 11. 576-7.)

THE ENTOMOLOGIST'S LIBRARY.

When we reflect that perhaps upwards of 175,000 to 200,000 species of insects have been described, and the habits and histories of some of them noted in articles and memoirs scattered through numerous journals, proceedings, and transactions of learned societies, we can get some idea of the vast extent of entomological literature. We can only draw attention to the most indispensable articles, memoirs, and complete works, without which no one can do good general work in entomology. Those who desire to confine their attention to special orders should look to the lists of publications already given under such groups. The titles of works indispensable to the student are printed in heary-faced type.

Bibliographical Works on Entomology.

Agassiz, L. Bibliographia Zoölogǐe et Geologie. Edited by H. E. Strickland. i.-iv. Ray Society, London, 1848-54.

- Nomenclator Zoölogicus. Soloduri. 1842-47.
—— Index Universalis. Soloduri. $4^{\circ}, 1846 ; 8^{\circ}, 1848$.
Carus, J. V., and W. Engelmann. Bibliotheea historico-naturalis. 1846-60. i., ii. Leipzig, 1861.
Carus, J. V., and P. Mayer. Zoölogischer Jahresbericht für 18\%91888.

Dimmock, G. The entomological writings of Samuel Hubbard Scudder. Cambridge, 1879.
Engelman, W. Bibliotheea historico-naturalis. 1;60-1846. i. Leipzig, 1846.
Hagen, H. A. Bibliotheca entomologica. [Up to 1862.] i., ii. Leipzig, 1862-63.
Henshaw, S.* The entomological writings of Alpheus Spring Packard. U. S. Department of Ag. Div. Ent. Bull. 16, 1887.
Marschall, A. D. Nomenclator Zoölogicus. Wien, 1873. (A contir-uation of Agassiz' Nomenclator.)
Packard, A. S. Record of Americin Entomology for 1868-73. Salem, Mass.

[^54]Scudder，S．H．Nomomelutur Zuälurious．Part I．Supllmmotal

 （＇ambrilere．Las！
 i．－i ii
Archir für Naturgeschichte．Contains annual report－wn the progress of Eitumolory from 1－30 to liss．
Rowal Suciety，Lomdon．Catalogue of Scientific Papers．S ruls． 4° ．

Zoological Record for 186488 ．Londun， $1865-88$.

Entomological Periodicals．

American Entomologist．i．， 1868 ；ii．，18i0；iii．，1850．St．Lonis mal New York．
Amurican Ninturalist．Salem，Bontun，and Philadedphia，18Gi－E8．
Amals of the Lexcemm of Natumal llistory of New York 18゚ンt－76． Since lsit continued as Amals of the New lork deademy of Sibences．
Annales de la Société entomologique Belge．Brucils，1אラT－84．
Annales de la Société entomologique de France．l’aric，上がっだと。
 tinucd ：s

 Florence．
Canadian Entomologist．i．－xx． 1868 －Le London，Canada，
Entomologica Americana i．－iii．1syinis Bronklyn，N．Y．
Entomologiselae Nathrichten．i．－xiv．Inin－ss．Berlin．

Entomologist＇s Mombly Magarane i．－xaiv．le6t－se Lombon．
Jonmall of the Ae：aftury of Natural Seiences．I＇hiladelphia， 1s17－sv．
Procecelings of the Academy of Niatural Sciences．Plaladelphia． 1841－88．
Journal of the lboten Suciety of Nintural Itintory．i－vii．1834－fi3．

Linnæa entomologica．Entomologivehe Verein．Jorlin，In ti－nt．

Proceedings of the Entomological Society of Philadelphis．i．－vi． 1861－6\％．
Transactions of the American Entomological Socicty．Philadelphis． i．－aiv．186亿－ミ゙ゥ．
Psyche．i．－v．18it－ss Cambridge．Mass．
Transuctions of the American Jlifucophical Socicty．New Series． 1s1s－ss．Alan Proceedings．i－－xvir．1－f1）－い．
Transactions of the Entomological Society of Londor．EPY－8．
Wiener Entomologische Monstsachrift．i．－viii．15．ji－64．
Zcitschrift d．Entomologische Verein．Berlin，15J゙ーズ．
Zeitung d．Entomologische Verein．Stettin，1810－だ。

General Entomology.

The works of Herbst, Lieuwonhoek, Malphighi, Meckel, Merian, Ramdohr, Swammerdam, Serres, and Suckow.
Buffon. Suites ì Buffor et Nouvelles suites à Buffín. Formant avec les (Euvres de cet auteur un Cours complèt d'Histoire Naturelle. Paris, Dufart, 1798-1807. Paris, Roret, 1834-1864. 8vo. (Insectes, Crustacés, Arachides, etc., par Amyot, Audinet-Serville, Boisduval, Gervais, Guénée, Lacordaire, Latreille, Lepeletier de St. Fargeau, Macquart, Milne-Edwards, Rambur, et Walkenaer.)
Burmeister, H. Manual of Entomology. Translated by W. E. Shuckard. London, 8vo. 1836.
Burmeister, Hermann. Zoologischer Hand Atlas. Berlin, 1836-43. Fol., 41 plates.
Claus, C. Elementary Text-book of Zoology. Translated and edited by Sedgwick and Heathcote. Vol. i London, 1884.
Cuvier, G. Le Règne animal distribué d'après son Organisation. Nouvelle édition, accompagnée de planches gravées, représentant les types de tous les Genres, ete., publiée par un réunion de Disciples de G. Cuvier. Paris, 1849. 8vo. (Insectes, Arachnides, Crustacés par Audouin, Blanchard, Doyère, Milne Edwards et Dugés.) 4 vols. texte et 4 vols. atlas.
Drury, Drew. Illustrations of Natural History, etc. London, 177082. 4to, 3 vols. (ed. Westwoud, 1837.)

Fabricius, Joh. Christ. Systema Entomologiæ. 1775.
-Genera Insectorum. 1 \%77.
——Species Insectorum. i.-ii. 1781.

- Mantissa Iusectorum, i.-ii. 1787.
——Entomologia Systematica. i.-iv. 1792-94.
Geer, Carl de. Mémoires pour servir à l'Histoire des Insectes. 1752-r8. i.-vii. 4to.
Gerstaecker, A. Arthropoden, in Peters and Carus' Handbuch der Zoologie. Leipzig, 1863.
Godman, F. Ducane, and Salvin, O. Biologia Centrali-Americana. London, 1877-88.
Graber, V. Die Insekten. Parts I., II. Munich, 187%.
Griffith, E. The Animal Kingdom, described and arranged in conformity with its organization. London, 1824-33. 8vo. Class Insecta. 2 vols. 1833.
Guérin-Ménerille, F. E. Iconographie du Règne Animal de G. Cuvier, ou représentation d'après nature de l'une des espèces les plus remarquable et souvent non encore figurées de chaque genre d'animaux. Vols. 6 et 7: Annélides, Crustacés, Arachnides, et Insectes. Paris, 18:9-44.
Kirby, W., and W. Spence. An Introduction to Entomology ; or, Elements of the Natural Ilistory of Insects. 4 vols. 8 vo. 1828. Seventh edition (comprising vols. 3 and 4 of the early editions). Loudon, 1856. Post 8 ro.
Kirby, W. Fauna boreali-Americana, etc. Norwich, 1837. 4to.
Latreille, Pierre André. Précis des caractères générique des Insectes. 1796. 8vo.

Genera Crustaceorum et Insectorum. 4 vols. 8vo. 1806-09.

Latreille，Pierre André．（＇mnsidimation quimínlon sur l＇i）rare naturel
 at des Insectes．
—— lusects in（＇uvier＇s lierne animat．Svo． 1810.
——Famillen maturelle sha lie gne animal．Evo．I－25．
－C＇ours d＇Entomulngit．sto． 1 s3l．

MacLeay，W．S．Horst Entomonheitac．i．，ii．Lomel n， 1×19.
Miall，L．C．，and A．Denny The strueture and Life－history of the （ouckroath．Landon，Jasti．
Newport，G．Article Insecta．（C＇yelopatelia of Anatony and Plysion． ury．Louclon，1839．）
Packard，A．S．Guide to Study of Insects．9th edition．Nerf lork， 18s．
Palisot de Beauvais，A J．Insectes reencillis en Afrique at en Amé
 et dans les Elats l̈nis，pendant les amoús licg－9\％．Fol．，with 90 plates．Paris，18いった？l．
Réaumur，Réné Ant．de．Mémoires pour servir à l＇Histoire des Insectes． P＇aris，1734－12．i－vii flo．
Roesel，Aug．Joh．Der monatlich herausgegeben Insekten－Belustigung．

Savigny，G．C de．Description de l＇Eifyte，Histuire naturelle．
 Paris，1802－2s．Daplication sommatire des phanches，par d．V． Audouin，Paris， 1 Not 6 ．Fol．
Saussare，H ．de．Spicilegria Entomologian（ienivensia．I Grenre Hemimurus．Geneve， 1579.
Say，T．American Entomology．i，－iii．Philadelphia，1831－25 こs．
－－Complete Writings on the Entomology of North America，cdited by J．L．Léconte，M．1）．2vols．Sro．C＇ulured plate＇s．Niw lork， 18.59.

Westwood，J．O．An Introduction to the Modern Classification of Insects．¿2 vols．Sro．Londen，1®39－f 0 ．

External Anatomy and Morphology．

Audouin，J．V．Recherches anatomiques snr le Thorax des Animanr articules et celui des Insectes hexapodes en particulier．（Anmule＇s d．

Huxley，T．H．The anatomy of the invertebrated animals． 150%.
Leuckart，R Veber die Morphologie und die Virwandtichaffover－ hiiltnise der wirhellosen Thiere．Bramsehweig，1s4．so．
Saviguy，J．C．Vémoires sur les Animand sans Vibibre－I．Darie． 1）excription et（＇lassitication des Animatux invertibri－thartienlés． 1．Finscienle＇＇Théorie des Organe de la Bouche des Crustacés ét des Inscetes．Paris， 1816.

Internal Anatomy and Histology．

Dafour，L．Rechere hes anatomipues et physiologiques sur les Hemip tères（1833）；les（）rthopteres，les Iiymenoptere e et les Neurnpteres （1841）；et les Dipteres（ISit）．（Mém．de l＇Institut，iv．vii．xi．Alot numbreus unemoirs in Am，des Sci．Nat．）

Leydig, F. Traité d'Histologie. Paris, 1866.
Lyonet, P. Traité anatomique de la Chenille, ete. La Haye, 1762.

- Anatomie de differentes espèces d'insectes. (Mém. du Museum, xviii.-xx. Paris, 18:9-32.)

Minot, C. S. Histology of the locust. Sccond Rep. U. S. Ent. Commission. 1880.
Siebold, C. Th. von. Anatomy of the Iuvertebrata. Boston, 1854.
Strauss Durckheim, H. Considérations générales sur l'Anatomie comparée des Animaux articulés, auxquelles on a joint l'Anatomie descriptive du Melolontha vulgaris. Paris, 1828. 4to, 10 pl .
Viallanes, M. H. Recherches sur l'histologie des insectes. Paris, 188%.

a. The Nervous System.

Blanchard, E. Recherches anatomiques et zoölogiques sur le Système nervenx des Animaux sans vertèbres Du système nerveux des Insectes. (Annal. d. scienc. natur., 3. sér. v., 18ł6, p. 273-379.)

- Du Systeme nerveux chez les Invertébrés dans ses rapports avec la Classification de ces Animaus. Paris, 1849. Svo.
Flogel, J. H. L. Bau des Gehirns der verschiedenen Insektenordnungen. (Zeits. f. Wissen. Zool., xxx. Supp, 1878.)
Leydig, F. Vom Bau des thierischen Körpers. 1864.
——Tafeln zur vergl. Anatomic. 1864.
- Untersuchungen zur Anat, und Histologie der Thiere. 1883. Also numerons works and articles in Müller's Archiv., Zeits. für wissen. Zoologie, Nova Acta, etc.
Liénard, V. Reeherches sur le Système Narveux des Arthropodes. Bruxelles, 1880.
Michels, H. Nervensystem von Oryctes nasicornis im Larven-, Puppenund Käferzustande. (Zeits. f. Wissen. Zool., xxxiv., 1881.)
Newport, G. On the nervons system of the Sphinx ligustri Linn., and on the changes which it undergoes during a part of the metamorphoses of the insect. (Philosoph. Transact., 1832, p. 383-398, and 1834, p 389-423.)
- On the structure, relations, and development of the nervous and circulatory systems, and on the existence of a complete circulation of the blood in vessels, in Myriapodin and Macrourous Arachnida. (Philosoph. Transact., 1843, p. 243-302.)
Newton, E. T. On the brain of the cockroach. (Quart. Journ. Micr. Sci., 1879.)
Viallanes, H. Le cerveau de la guêpe. (Vespat. Aun. Sc. Nat. Zool., 1887.)
-Le cerveau du criquet. (EEdipoda and Caloptenus. Ann. Sc. Nat. Zool., 1887.)

b. Organs of Special Sense and their Physiology.

Carrière, J. Die Schorgau der Thiere. München u. Leipzig, 1885.
Exner, S. Ueber das Sehen von Bewegungen und die Theorie des zusimmengesetzten Auges. Wien, $18 \% 5$.

- Die Frage von der Functionsweise des Facettenauges. (Biol. Centralb., i., 1881-2.)

Graber，V．Die tympanalen Sinnesapparate der Orthopteren．Werhs． dkal．Wien，dadi．，1sits
Grenacher，H．Untersuchungen ueber das Sckorgan der Arthropoden． （iottingern，1si！
Hause，G．Physiologische und histiologische Untersuchungen ueber das

Kraepelin，K．Ueber die Geruchsorgane der Gliederthiere．Hambury，

 wissem，Zoolugic，axav．，万0．5，Esi．）
Landois，H．Die＇Ton－mitl stimmapparate der Hosecten．Letpzig． 1867.

Patten，W．Eyes of Molluscs and Arthropods．Niples．（Alsistact in Journ．Morph．1．（ĩ，vol．i．．No．1．）Buston， 188 ．
Plateau，F．Recherches expérimentales sur la vision chez les Insectes．

Will，F．Das Geschmacksorgan der Insekten．（\％aits．f．wincll． Zonlogie，188．\％．）
Alsu the 1 ritinss of Bonsdorf，Burmeister，Erichson，Forel，Gazag． naire，Graber，Hicks，Huber，Kiinckel，Lchrman，Leydig，Lubbock，New－ port，Perris，Pierret，Plateau，Siebold，Voges，：ull Wolff．

c．Organs of Circnlation and Respiration．

Chun，C．Rectal Hrasen hei den Inselifen．（Alht．A．Fonkentherg． N゙aturf．（ふ心．，x．，18゙も。）
Graber，V．Ueber den propulsatorischon Apmamat der lnekten．

 18s3．）
Lubbock，J．J）istribution of trachate in insects．（Trans．Limn．Aoce． xxiii．，18（0）．）
 emme．Bruxelles． 1 siso．
Packard，A S．（1n the mature and wirin of the solealled＂spiral thread＂of fatche＂e（Amer．Nill．，NA．，fise 1ssi）
Palıén，J．A．Zur Morphologie des Tracheensystem lajpir．1s：7．
Plateau，F．Recherches experimentales sur les mouvements respiratoires

Rathke，M．H．Untersuchungen uber den Athmungsprozess der In－

Verloren，MC．Mémuire sar la coireulation dans les innectes．（Abad． Roy：（he Belgipue，aix．，1stz．）

d．Organs of Digestion．

De Bellesme，Jousset．Recherehes expérincutales sur lat figestion des Insectes．laris， 18 T5．

Plateau, F. Recherches sur les phénomènes de la digestion chez les insectes. Bruxelles, 1874.

e. Organs of Locomotion and their Physiology.

Carlet, G. Sur la locomotion des insectes et des Arachnides. Compt. Rendus., lxxxix., 1879.
Dahl, F. Beitrige zur Kenntniss des Baues und der Funktionen der Insektenbeine. Berlin, 1884.
Dewitz, H. Ueber die Fortbewegung der Thicre an senkrechten glatten Flächen vermittels eines Secretes. (Zool. Anzeiger, 1884, 400; 1885, 157.)
Lendenfeld, R. von. Der Flug der Libellen. (Akad. d. Wissensch., lxxxiii., 1881.)

Marey, E. J. Animal Mechanism. New York, 18i9. (Flight of Insects.)
Plateau, F. Articles on the relative and absolute muscular force, in Bull. Acad. Roy. de Belgique, 1865-8.4.

f. Organs of Reproduction, Ovipositor, etc.

Brandt, A. Ueber das Ei u. seine Bildungsstitte. Leipzig, 1878.
Iewitz, H. Bau u. Eutwicklung d. Stachels, etc. (Zeit. f. Wissen. Zonl., xxv., 1875; xxviii., 187\%.)
Kraepelin, K. Untersuchungen ueber d. Ban, Mechanismus u. d. Entwicklung des Stachels d. bienartigen Thiere. Zeits. f. Wissen. Zool., xxiii., 1873.)
Lacaze-Duthiers, H. Recherches sur l'armure génitale femelle des Insectes. Plates. 8vo. Paris, 1853.
Packard, A. S. On the structure of the ovipositor and homologous parts in the male insect. (Proc. Boston Soc. Nat. Hist., xi., 1868.)
Palmén, J. A Ueber parige Ausführungsgiange der Geschlechtsorgane bei Insckten. Helsingfors, 1884.

Embryology of Insects.

Ayers, H. On the development of Ecanthus niveus and its parasite Teleas. (Mem. Bost. Soc. Nat. Hist., 1884.)
Balfour, F. M. A treatise on comparative embryology. i., ii. London, 1880-81.
Brandt, A. Beiträge zur Entwickelungsgeschichte der Libelluliden und Hemipteren, etc. St. Petersburg, 1868.
Hatschek, ö. Beiträge zur Entwickelnngsgeschichte der Lepidopteren. Jeua, 1877.
Kowalevsky, A. Embryologische Studien an Würmen und Arthropoden. St. Petersburg, 1871.
Patten, W. The development of Phryganids. (Quart. Journ. Micr. Sci., xxiv., 1884.)
Weismann, A. Ueber die Entstchung des vollendeten Insekts in Larve und Puppe. Ein Beitrag zur Metamorphose der Insekten. Frankfurt a. Main, 1863. 4to.

Weismann，A．Die Entwickelung der Dipteren im Ei，nach Beobach－ tangen an Chironomus，Musca vomitoria und Pulex canis．Zo it selrift für＂iswenc．Zanlegie，viii ．11．111－304

 sume，siv．，p．1～i 3：
 （iliederthiere．Heft 1．Jie Entwithehme do lhyganiden Eice Borlin，1sit．
Ala，mensuirs by Bobretzky，Brandt，Bruce，Butschli，Claus，Dewitz， Ganin，Grimm，Hertwig，Korotneff，Leuckart，Ludwig，Metschnikoff， Melnikow，Nusbaum，Packard，Paiten，Tichomiroff，Wagner，ant Zacha－ rias．

Phylogeny or Origin of Insects．

Brauer，F．Betrachtmern ueher dic Verwandlung der Inackten im

Lubbock，J．（Wn the origin and melanmphase of Inects．Lomdon，

Packard，A S．Hints on the anceltrs of intecti－（Chapher aiii．of

——R－view of Mayers article．（Amer．Aat．．A．，bisc．1－ib．）
 Commi－sion，29．う－3（4，1s－3．）

Insects and the Fertilization of Plants．

Darwin，C．On the various contrivances he which litilikh and

－Lnimals amd phate maler domentication．i．，if．1etio． Diflerent forma if thencrs．18：
Lubjock，J．Briti－l wild dowers in relation to inacts．Lomdm， 147．．．
Mulier，H．Apenhlumen，ihre Befruehtume durch Inachten und

－Fertilization of Flowers．Engli－h＇Trandation．Lomedon．

Geographical Distribution．

 of North Amoricas．Smithomian Contrihutions， 1 －5：
Packard，A．S．（He the Geographical Di－tribution of the Monthe of

The gengraphical diatribution of the Phatatat of the L．E． （pp， $56 \overline{-}-594$ of Monogr．of Geometrid Moth－，1－i6）

Some characteristies of the central zoï－renerapheal province of the L゙．S．（Amer．Nith．．1sis．）Alon see zoeiterencruphical map of N．A．in $3 d$ liep．U．S．Entomological Commiown， $1 \leq 83$.

Scudder, S. H. Distribution of insects in New Hampshire. 1874. (Also see Buttertlies of New England: 1888.)
Speyer, Ad. and Aug. Die geographische Verbreitung der Schmetterlinge Deutschlands und der Schweiz. Leipzig, 18 i 8.
Wallace, A. R. The Geographical Distribution of Animals. i., ii. London, 1876.

- Island Life. London, 1880.

Fossil Insects.

Brauer, F. Ansichten neber die palæozoischen Insekten und deren Deutung. Vienna, 1886.
Brongniart, C. Les Insectes fossiles des Terrains primaires. Ronen, 1885. 5 plates.
— The fossil insects of the primary group of rocks. Translated by M. Stirrup. Salford, 1885. (No plates.)
Dohrn, A. Eugereon. Mayer's Palæontograph. xiii., 1866; xvi., 1869.

Scudder, S. H. Systematische Uebersicht der fossilen Myriopoden, Arachnoiden und Insekten. (Zittel's Handbuch der Palieontologie.) München u. Leipzig, 1885.

- Systematic Review of our Present Knowledge of Fossil Insects, etc. Washington, 1886.
Also papers by Scudder in Bull. Hayden's U. S. Geol. Survey, 1868-82, Mem Bost. Soc. Nat. Hist. 1866-85; A. Dohrn, Germar, Hagen, Heer, von Heyden, Oustalet, etc.

Economic Entomology.

Boisduval, J. A. Essai sur l'Eutomologie horticole. Paris, 1867.
Comstock, J. H. Report of the Entomologist, U. S. Dept. Ag., for 1879 and 1880. Washington.

- Report upon Cotton Insects. Washington, 1879.

Curtis, John. Farm Insects; being the Natural History and Economy of the Insects injurious to the Field Crops of Great Britain and Ireland. 1860.
Glover, T. Report of the U. S. Entomologist, 1863-77. Washington. —— Mauscript notes from my journal. Diptera. 18:4.
—— "

Fitch, A. Reports 1-14 on the noxious, beneficial, and other inseets of New York. 1856-70.
Forbes, S. A. Reports and bulletins as Director of Illinois Lab. Nat. Hist, and afterwards as State Entomologist of Illinois, 1876-88.
Harris, T. W. Treatise on the insects of Massachusetts injurious to Vegetation. Boston, 1882.
Hubbard, H. G. Insects affecting the Orange. U. S. Dept. Ag. 1885.
Judeich u. Nitzsche. Lehrbuch der mitteleuropaischen Forstinsektenkunde. Wien, 1885.
Le Baron, W. Reports 1-4 on the noxious insects of Illinois. 1871-4.

Lintner, J. A. First :mmathl repert on the injuri ms and wler in

 18713.

—— Leport (.) of Ľ. A. Ent. ('omms) on forest- and shatc-tree inscets. W:ashington, 1siv.

 Berlin. si.
_- Die Waldverderbniss oder dauernder Schade, welcher durch Insektenfrass, etc., an lebenden Waldbaumen entsteht. i.-ii. IE6it-6S. berlin. Many colorad platers. 4.
Riley, C. V. Reports 1-9 on the noxious, beneficial, and other insects of Missouri. 1sis!-7.

Fourth Report of U. S. Eut. Commission on the Cotton-worm. 1881.
——Report of the U. S. Entomologist for 1879-88. . Wisu mmmornu: uther works and articles.

- Lipports $1-5$ on the hoxions and henchedisl inverts of Illinois. 187\%-81.
With works or paperaloy Ashmead, Barnard, Bethune, Cook. Fletcher, Forbes, French, Garman, Hagen, Harrington, Hind, Howard, Kellicott, Osborn, Peck, Rathvon, Reed, Saunders, Treat, Trimble, Walsh, Weed, aud vthers.

(GLONは,

Ab-bomen (Latt. abelo, to hide, to conccal). The thirel or himbermost division of the body; the hind body.
Ab-ER BANT. Dipmoting from the regular or normal type.

- -bant Eis. Obablete or atrophicel.

 atre alsamt or rudimulatry.
 longed puint.
 ollt; guther, mariage; gellexis, birth). leproduction without frrtilization loy the male.
Ar'v-La. The memhramous thap on the base of the wing itself of thess.
A-ME-T A Bo-1,14 ((ir. u, withomt: m. tubote, (hangere). lieferrings to inserts ame oblocr animals which do not madergo at meetamerphosis.
ANA, ANoist: The himber and inner corner of a wing.
A-Nill, (6) (Cir, amalogia, propertions). The relation between organs which difler in strueture, hut have a similar function; as the wings of insects and birds.
 or rmaning into eateh other like vilus.
 atudrox, man: honis, dust). small scaldes of barion- hatpes perenliar to mamy malle lutter Hics.
As Nr-bate Whan a beg ar antemas is surrombled hy marrow rintr- of at ditheremt ionlor. I. TV: (t ist Til.. Pertathing to the - the wing athel the mertua, in dragon-llic.
 the spate immediately before the origin of the winte.

 ing all forma of secomelary artual diversity

 relating (o) the print farthefrom the iacertion
Aldatistoms. (1) wf the lomertudinal win- of the aper of the wins in dratron-1lice.
A-101)-EME: An inwardly direeted proct 10 which a muscle is attarhed.
Aro-Duts. Foutles.

Ap-pen-dic'u-late. Where the joints of the antenne have articulated appendages.
Ap'te-rous (Gr. a, without; pteron, wing). Destitute of wings.
A-rach'ni-da(Gr. arachne, a spider). The class of Arthropods, embracing the spiders, scorpions, and mites.
A-réo-lat or A-re'o-let. One of the little spaces into which the wing is divided by the veins or venules.
A're-o-late. Furnished with small areas; like a network.
A-ris'ta. In Diptera a slender bristle situated upon the upper border of the third joint, microscopically jointed near its base. (Williston.)
A-mis'tate. Furnished with a hair, or arista.
A-rólit-A. A plantula or climbing cushion; one of the lobes of the pulvillus.
An'тimo-mere. (Gr. arthron, a joint; meros, a part or segment). A segment or ring of the body of an Arthropod; somite.
Ar-Thirof'o-dA (Gr. arthron, joint; pous, podos, foot). That branch or sub-kingdom embracing the Crustacea, Podostomata(Merostomataand Trilobita), Araclmida, Myriopoda, and Insecta.
A-sex'u-al. Applied to animals, espeeially insects, in which the ovaries or reproductive organs are imperfectly developed; and which produce eggs or young by budding.

At'ro-phied. Wasted away, wanting, obsolete, aborted.
Au-re'li-A. Old term for the pupa of an insect.
Be-no'po-d. The thoracic legs of insects.
Be'no-some. The thorax of insects.
Bi'fid. Divided into two parts; forked.
Blas'to-derm (blastos, a bud or sprout; derma, skin). The outer layer of the germ-cells of the embryo.
Bra-chif'ce-ra (Gr. bruchus, short; keras, horn). Applicable to those Diptera orthorhapha, having short, 3 -jointed antenne.
Bran'cin-A. A gill or respiratory organ of aquatic animals. Bran'cuital. Relating to the gills or branchie.
Bue'cal. Relating to the mouthcavity; or rarely to the cheeks.
Bulílate. Blistered.
Bur'sa. A wing-pouch in the hind wings of males of certain caddis-flies, and in connection with a stalked pencil of hairs.
Cal'ca-ra-ted, Armed with spurs.
Cal-los'i ty. A thickened spot; a small knob.
Ca-lyp'tisa-ta (Gr. kaluptra, a covering). Those flies (Muscide) which have tegulæ or membranous scales above the halteres.
Ca-nal-ic'u-late. Channelled; excavated lougitudinally.
('an'els-hates ('rosed ly line going at right mgere to atoh other; latticed.
Cas'thes. The chitimmen projection dividing the double cyes of certain hedtes (Atenchus, Geotrupes, (iyrinus).
(A Pr-TATE. Ending in a knoh).
 club)-shaped antenne.
C.abdo(Lat, carlo, a hinge). The basal joint of the maxila, sup porting the stipes.
('A-misas An clevated kecllike sharp ridge.
('an pres. The pterontigm: of dragon tlies.
Cab'tectee Lat. curunculu, dim of conro, tl(:-11). A makid, suff, theshy excrese now or protuber ance.
 spur). Whe of the spines on sul insert's foot.
Cedidiaf: A lithe area on the wing surrombded by veins.
Cespande Relantion the cephatum or head.
Ce-rimacombire A cophalic segment of :m Athroperd.
('e-rual.ostome: The lued of in: ects, Arachnidathel Myriopoda.
 pous, perkes. fornt). The latsi pair of jointed athominal appemdage of insects; the "rerei."
Chefr. The space, in Diptera, between the lower border of the eve and the oral margin, merging into the face in fromt, and limited by the occipital margin hehind. (Willistou.)
(ins.1.1. The turminn pmotion of a limb with a metvable lateral part, like the clan of at rati; as in the cloclate maxila of the scorpion.
('ulas (lir. chiton, at tumic). The subciane which forms less thath one half by weight of the illegmanent of insectand diftering from horn in being insoluble in boiling liquor putasie.
Cintisuts. Composed of chitin; chitinous color is amberyellow.
(110 bi-n. The shatlof the erg.
(110ss:atis. The pupa of Le piduptera.
('uvis: (lir. cluntes, juice). The milky ilnid re-ultime from the attion of the digntive tluid=on the foose of chyme.
 acid, partly thid or partly dige wed ford, produced hy the action of the samric juice on the forul.
CHITATE: Prinqud.
(11. 1-1 M (f) cillin). Mierosengie tilamemts attached to eedls, usually within the body, and movintr hually rhy hmially:

Clarolal. The terminal divi sion of the ant mat the same as, flage llum.
Co-mic tite Contracted: applicable to the pupa-case or puparium of liptera.

Ce'cal. Ending blindly or in a cul-de-sac.
Ce'cum. A blind sac; usually applied to one or more appendages of the digestive canal.
Col'Lo-phore. The sucker-like organ extended from the under side of the abdomen of Podurans.
Com-mis'sure. The nerves connecting two ganglia.
Com-press'ed. Flattened laterally.
Con-col'o-rous. Of the same color as another part.
Con'dyle. In insects, a process at the base of the mandible, by which the latter is articulated to the lower end of the epicranium.
Con'flu-ent. Flowing or growing together.
Con'nate. United; not separated by an articulated suture; also applies to the union of the elytra where the hind wings are absent.
Cor'bel. A more or less oval space at the distal end of the tibia in beetles, and surrounded by a fringe of short minute bristles.
Cor-bic'u-la. The pollen-basket; formed by the hollow outer surface of the hind tibia of bees, with hairs on the side and some bent over to keep the loatd of pollen in place.
Cor'date. Heart-shaped.
Co-ri-a'ce-ous. Leathery.
Cor'ne-ous. Horny, chitinous.

Cor'ni-cle. The pair of tubes on the end of the abdomen of Aphides. (Siphunculus.)
Cor'ti-cal. Relating to the cortex or inner skin; external, as opposed to medullary.
Cos'tal (Lat. costa, a rib). Relating to the ribs.
Cre'nate. Scalloped, with rounded teeth.
Crib'ri-form (Lat. cribrum, a

- sieve; forma, form). With perforations like those of a sieve.
Crop. A partial dilatation of the gullet or œsophagus, the ingluvies; in many insects the fore stomach or proventriculus.
Cu'pre-ous. Coppery in color.
Cu'ti-cle. The outermost layer of the integument.
Cre'mas-ter. The stout spine at the end of the pupæ of Lepidoptera.
Crura (Lat. crus, a leg). A prop.
Cten'i-di-dm (Gr. ktenion, a comb). Comb-like structures situated on various parts of inseets, especially fleas, Nyeteribia, ete.
Cub'r-tus. The vein just behind the radius, or median, in dragon flies, etc.
Cul-tel'lus. One of the bladelike mandibles of flies.
Cul'tri-form. Shaped like a pruning-knife.
Cu'ne-I-Form. Wedge-shaped.
Cu-pu'li-form. Like a cupule; Lat. cupula, a little tub.

De.convors. Relating to parta which fall oll or are shed during life, at the gills of the frug. atc.
DEN Tate Forniabluithteth.

 watd, or thathened from above downwat.
 skin; pteron, wing). The enrwigs.
Der-Toma-het. The third pair of hend appendages of Myriopoda.
1)1-chop TIC. Scparation of the eyes by the from in all females and sume males of rertain Diptera (llduphilns, etco).
 cialization or setting apart of special organs for sue iat worh. as the sperialization of the hame of man as compared witht the fore font of other mammals; alow applied to the apecial development during (:mbrymic life of parts alapted for peeuliar or special functions.
1)hime. A finger or toe.
1)t-Go al: - -Tl-31. The phwer of producing two broods in a seasoll.
It-ant ED. Widemed, expmaded. DI-min 1-ITE: Half romul.
DIGeroots. (bir. dis. two: oikos. honse). With distinet sexes.
Difteren (Gra, dis, two; pleron. wing). Two-winged tlies; an order of iusects.
1)N (ol Dat. Relatines to the dith or midellet discal
HA: Tat. Aplliad to the farther emil of : juint.
 apart.
 from :a verel or from the alimentary camal.

1) (1.as M-FORM. Hatchet-hap) ed.
bonsixa. In liphera, the whole Bן品er surface of the thoms. limited lat ar- y the dorso. plumatur moteriorly hy the selutellian ind anteriorly ber he neck.
bete. A tube or pastare ush. ally kealiner from aland.
 wh) Tlueprocolof asting the shin; mumbtins.

 ridge or print in the liend ar wher part- of certain a mherons used in breakiug ppen the cegr shell, in hatching.
E-I.A TEAK. The -prine or forked " tail " of Penlurats.
E-1.8 Then (ir. Autren, al shath). The fore wing of luetles. surving to coner of the athe the hind wins.
E. MA: 6.-MTE. With ath ubthec incision.
 side of the j nuthas in He-

Embini-a. The term or voung animal hefor laving the erge or body of the pareat.

Em-pod't-dm. The spurious claw (pseudonychia) situated between the two normal claws; e.g., Lucanus.

En'te-ron (Gr. enteron). A general term applied to the digestive canal as a whole.
En-tire'. With a simple, not indented, edge.
Ep'i-Lobe. In Carabidæ, a lateral appendage of the lobes of the mentum.
Epi-phar'ynx. The soft fold or projection within the mouth situated under the labrum.
E-piph'y-sis. In Lepidoptera, a stout spur on the fore tibia. Any projecting process.
E-pi-plu'ra. The portion of the elytron of a beetle bordering the inner edge of the inflexed portion of the elytron. (Le Conte.)
E-pis'to-ma. That part of the face of flies situated between the front and the labrum; the clypeus.
E-ru'ca. Caterpillar.
Ex-cis'ed. Cut off.
Ex-CURV'ed. Curved outwards.
Ex'pla-nate. Spread or flattened out.
Ex-sert'ed. Protruded, thrust out; opposed to enclosed.
Ex-u'vi-dM. The cast skin of insects; exuriate, to east the skin; to moult.
Fa'cr-es. The face, in Diptera. Fal'cate. Sickle-shaped.
Far'it-nose. Mealy.
Fas'ci-A. A stripe broader than a line.

Faun'a. An assemblage of animals peopling any given region or country.
FA-vose'. Pitted, scrobiculate. Fe-nes'trat-ed. Marked with transpareut spots surrounded by a darker color, like windowpanes.
Fer-ru'gi-nous. Rust-colored. Fil-i-form. Thread-like.
Fin'bri-ate. Fringed.
Fis-sip'a-rous (Lat. fissus, cleft; pario, to bring forth). Applied to a form of asexual generation where the parent splits into two parts, each part becoming a new individual.
Fla-gel'lum. The terminal division of the antenna, in wasps, bees, etc.
Fla-ves'cent. Somewhat yellow.
Flex'u-ous. Almost zigzag.
Fo-li-A'ce-ous. Leaf-like.
Fo-ra'men. An opening; a perforation.
Fon'cr-pat-ed. Forceps-like.
Forinl-cate. Concave within and conrex without.
Fo've-A. A rounded cavity.
Fov'e-o-late. Covered superficially with cavities like a honeycomb.
Free. Unrestrained in articulated movement; not soldered at the points of contact.
Fren'u-lum. Diminutive of frenum, a bridle, or band. The same as frenum; or, in Cieadæ, the triangular lateral piece ou the mesonotum which conneets with the trochlea.

Fre: Nom. A lunate or triangnlar portion at the inner and hinder bane of the wing, in Trichoptera and Dilonatas.
Freext. The fore face bemmed ly the vertex, cyes, and oftom benath by the epintomat or clypells.
Fut, 'R's. 'The chitinizd walls of the pharym.
Fetanderots. of the color of dark smuke.
Frob-vora Ne-ots. Brazen, with a tinge of brownish-yellow.
Frestocs. Tawny, color of the common deer.
Fr-xi cuas A smalleord; aslember stalk. That part of certainamternnee betwern the acture and elnbs.
Firecat en, Forked.
 dish brown.
Fencots. Dark browne ap. proaching black.
Fusi-Fism. Shaped like a spindle ; p.g., the antemate of the sphinges.
Gation. The middle division of the maxilla, sithated between the lacinia and palpiger.
G.ang mane (ir. gutylion, a swelling or limp). A (entre of the nervous system, consisting of nerve-cedls and tibres.
Gem'r-xite. Arraged in pairs; twin.
Gkm-mir a-sors (Gr.gemma,had: $p^{\text {xatio. }}$, to bring forth). Applied to a form of aseanal fromemation where new individuals arise as buds from the bolly of the parent
(i). A. ('hecek.
 Bent whruply like a kuee or chsow ; thowed.
(ill Bon :. Intlatiod. swollent.
GLabmen - Sumoth; opprowd th hatiry; downs. villens.
(ibasd. A cellular sace which serteres, i.e. almates, certain comstituents of the blowd. The liver is a erland recreting bile; the kidueys excrete urine.
Glad cote. Bhuish greenorgray.
Glob-bose: Globular, spherical.
Gsitul tre A jaw or jaw like "ppendare. 'The ghathites are the momblatirts.
 male; "pwhilyais, process). Two paira of clongateif procesem in the ow kivallo ari-ine from the sthand inh abduminal ringe. (laxleg. 'Thes appar to be the equivalemes of the rhatatites compuring the wipusitor of wher inserts.
 tion: peris, perlow, foont. The moditicel tirst pair of aludominal appembare of the male lob. ster, shrimp, :mal arats.
1land-tat. The plate ar region anl insect inhatrit-
Ha, TEMAK (lir. / illeres. proiers). Bataners - the radiment. ary hime "ingz of Diph ra.
Has ates. Fimminued with hooks.
Ham tode. I linh howk.
Hastate llalberd-haped.
 a problese in at as to take ferod by suction.

Hem-e-ly'tra. Applied to the partly thickened fore wings of Hemiptera.
He-mip'te-ra (Gr. hemi, half; pteron, wing). An order of insects with the fore wings partly opaque, which are eatled hemelytra.
Her-maph ro-dite (Gr. Hermes, Mercury; Aphrodite, Venus). Any animal having the organs of both sexes, usually the ovary and testes, combined in the same individual.
Het-e-róce-ra (Gr. heteros, different; keras, horn). The moths, in which the antenne are of different shapes, as distinguished from those of buttertlies.
Het-e-rog'a-my. Parthenogenesis ; applied to those cases in which two sexnal generations or a sexual and parthenogenetic generation alternate.
Het-e-ro-gy'na (Gr. heteros, different; gune, woman). The ants; referring to the different kinds of individuals of ants, $i . e$., the females and workers, as distinguished from the males.
Hex-ap'o dous. Provided with six feet.
Hi-ber-nac'u-lum. A tent made out of a leaf in which the larva hides or hibernates.
Hir-sute'. Clothed with stiff hairs.
Hol-or'tic. Contiguity of the eyes in the male Hy, between
the vertex and the antennæ. (Williston.)
Ho-mol'o-gy (Gr. homologia, agreement). Implies identity in structure between organs which may have different uses; as the fin of a whale, and the foot of a dog, or a bird's wing. Homology implies blood-relationship, i.e., a community of origin between parts which may have distinct uses.
II u'ae-ral. Relating to the humerus.
Hu'me-rus. The anterior superior angle of the thorax in Diptera.
Hy'a-line. Transparent. $^{\prime}$
Hy'da-tid. The bladder-worm, or the cystic stage of a tapeworm.
Hy-men-op'te-ra (Gr. humen, hymen, or membrane; pteron, wing). An order of insects with two pairs of membranons wings.
Hyp'o-derm. The cellular layer which secretes the chitinons cuticula.
Hy-po-glotitis. A piece situated between the meutum and labium in Clavicorn aud Serricorn beetles.
Hy-pon'e-RA (Gr. hupo, under; meron, part). The inflexed sides of the elytra of beetles. (Casey.)
Hy-po-pilar'ynx. The lingua; Huxley restricts it to the base of the lingua.
Hy-po-pygidum. The male sexual organs and terminal seg-
ments of the alulomen in lip)tert.
 Jiptera.
Im A-tio. 'The finsa, or fourth, winged mul alult sate of insucts.
 rating the swaments
 sumewhat swollern.

In-Féscat-m, Darkened, with a blackish tinge.
IN-
1N-STITI-A. A striti of eytual bremelth thronghomt.
 stopperl.
 spirally:
 kled with atoms.
La-con 1-a (Late lacinia, a lapput). The tirst or innermost division of the maxilla.
La-CNE 1 -ATE. ('ut into sharp lohes; jarged; teothed, as on the inner edge of the lacinia.

Las I-NA. A plat or shect-like piece.
Lakva (Lat. larma, a mask). The sereond stare of the inseret: a caterpillar, grols, or magerot.
LAli vi-fobm. Larva-shaped.
La-TE-LITHOTs. lirick color, inclining towards yellow.
Leg, FAhse. One of the abloms. inal legs of a caterpillar.
Levi-gate. With a smothls. somewhat shining surface.

LLE, I'LATE: SIray shaped.
LIM BATE. When : di-h iv surroumded by n marerin of a dif. feremt eolor.
LaNE.ate. Like: line, or thread. like.
l.s. に.-1T-1.I. Provided with line like marks.
Lans. The suhmentum; -mall corneotrs corth uphon which the base of the probersis is seated. (sily.)
L.U MEN. The cayity of an organ.
 wre or spot.
Mac-1w-Cll.\& T.\&: Bristles, or large stifl setar, on the thems and legre, hever on the hatal, of certain Dipters (V) c.te.). (Willintom.)

Ma-1,1 II Mー. The fourth amd tifth pairs of ho:al apuctulages of chilopud My riopruls.
 phatgein, to cat). The hird lice, as sub-orter of liatyptera.
М.a Dl-blat (Lat. matulo, (1) (lowe). The tirst pair of month. appemdages.
Msi-dis t axti.. I'roviled wish matuelibles.
Ilali (ils AT-1:D. Gurroumded lyy an elevated en att masted ma: gin.
 the dimin of añ! The ser ond sum thed phir of menth. :fyendry: the secomel pair being unit, 1 :and ncushly called the bhin'.
Me-cap TE-Na (Gr. mecan, long:
pteron, wing). The order of insects represented by Panorpa.
Mel-an-ism' (Gr. melas, black). Where an insect is abnormally or unusually dark.
Mem-bra-na'ce-ous. Thin; skinny; semi-transparent like parchment.
Men'tum (Lat., the chin). The basal piece or sclerite of the labium or sccond maxillie of insects. Sulmentum is the posterior division of the mentum.
Mes-en'te-ron. The mid-gut or stomach.
Me-ta-mere'. The same as somites or arthromeres.
Mo-nil't-Form. Like a string of beads.
Mon-ce'ci-ous (Gr. monos, single; oikos, house). With both kinds of sexual glands, ctc., existing in the same individnal.
Mu'cro-nate. Ending suddenly in a sharp point.
Mu'tic. Unarmed.
Myr-1-op'o-dA (Gr. murios, thonsand; pous, podos, foot). The class of Tracheates comprising the Millipedes and Centipedes.
Mrs'tax. In certain Dipteral, a patch of bristles or hairs, immediately above the mouth, on the lower part of the hypostoma, below the vibrissie. (Say.)
Ne-pirid't-A (Gr. nephres, kidney). The segmental organs of worms, etc.

Nev-ra'tion. Sometimes used for the venation or system of veins of the wing.
Ned-Rof'te-ra (Gr. neuron, nerve; pteron, wing). The order of net-veined insects with a complete metamorphosis.
Nid•A-MEn'tal. Referring to a nest, or egg-sac.
Node. A knot; a knob; nodiform, node-shaped.
No'dus. A stout, oblique, short vein in the Odonata, at the place where the anterior margin of the wings is somewhat drawn in.
Nimpi. Usually used as an equivalent of pupa; but in insects with an incomplete metanorphosis applied to the whole period from hatching to the complete winged stage; as in may-flies, Orthoptera, ete.
Ob-cord'ate. Inversely heartshapect.
Ob-o'vate. Inversely ovate; the smaller end turned towards the base.
On'so-inete. Indistinct; almost lost to view; disused; rudimentary.
Ob'tect-fid. Covered; concealed.
O'cime-ors. Of a more or less deep ochre color.
O do's.a. Applied to the peculiar mouth-parts of Odonata (dragou-flies) by Fabricius, on account of the long teeth on the labium, etc.
O'do-NA-TA (Gr. odous, odontos,
teeth). (Derivalion ebararThe dragun-slics.
 phagein, to eat). 'The errllet.
 rich dark erreen.
ON-TUGE-NY (lir. ant antes, being: gelue, birth). 'The development of the imbividual, :a distinguishet from that of the splecies.
O-nichira (Gr. anax. natil, claw). A small, more or leas retrictile bristle in the feet of bect?es; the empeodinm of thes; psemdonychimm.
 cquivalent to the labrumepiphargux, the lather beinger composed of the labram above and epipharyan belew (l)ime mosek.)
() Bish. Related to the mouth.
 the eye.
() 18-THO日TE-1: (Cir. orthox, stratiglat; pleron, wingr). The order of insects with staight marrow fore wings, as the grashoppers.
() s-m.A.TE: 1:1-A (ir. osmetos, that ean be smedt. The V'-stapeal retractile scentortrans of the larval l'apilio.
()sti-I. The slit-like opemines of the he:art.
 (11uxley.)
()- Vir - - boot - Lat orman an exys: patrio, I bring forth). Applied to animals bringine forth erge instead of living, active young.
 l:! iur.
 rase jano, 1 place. An urgan
 sting, by whith rere are de-

 brate :ttateled the that parent, and (o)
 ate etrer ricus, alive: Jutrie, I bring forth). Appled to sucth amimal- as retain the ir egre in the bowly until they are hatched.
 Hon- development in larval in-- eet-
 r.te.. the palpal supurt: the mumbrate :u whith the labint palpi are att:u hed. at d whith
 sion of these or_moll- lot fre miwill. whenthry are tive I (ILorn)
Pr-1'II. B. A minute aft pros. joction.
 eath - ille of the li ruha.
 side piece - in luat
 peron, wing 1.akel pince of the meo all mevtheras un e:arh will of the - wht llim
 ontur. वlath, atil. One or mare brivlle. the Appematare of the myvelimn or fand m! ehinm.

thenos, virgin; genesis, generation). Reproduction by direct growth of germs from the egg, without iertilization by male germs or spermatozoa, as in the aphis, gall-insects, tluke-worm, etc.
Pa-ta'gi-dx (Gr. patageion, a stripe or border to a dress). The shoulder tippets; loose pieces of the mesothorax, on each side of the mesoscutum.
Pe-dun'cu-late. Situated ou a peduncle, or stalk.
Pel'li-cle. A thin skin, i.e., the subimaginal skiu shed by the May-fly.
Per-is-to'mi-um. The border of the mouth, or oral margin, in Diptera.
Per-i-treme'. The piece enclosing the spiracle.
Per-i-vis'ce-ital. (Gr. peri, around; Lat. viscerre, the internal organs, especially of the abdominal cavity). The bodycavity, containing the alimentary canal with its out growths.
Pet'i-o-lat ed. Stalked.
Pet't-ole. A stalk.
Pila-bin'ge-al. Rehating to the pharynx.
Pilariynx (Gr. pharugx). The back part of the mouth aud upper part of the throat.
Pify-log'e-ny (Gr. phulon, stem; gene, birth). The development by evolution of the members of a genus, family, order, class, or the animal kingtom as a whole.
Piny-saf'o-da (Gr. phusa, bel-
lows; pous, foot). A synonym of the Thysanoptera.
Phy-toph'a-gocs. Eating plants. Pi'ce-ous. Pitchy; the color of pitch; shining reddish black.
Plce. Hair; often hair arranged somewhat in rows.
Pi-liffererous. Pilose, or bearing hairs.
Pílose. Clothed with pile, or dense short down.
Plan'ta. Strictly the sole or under side of the foot; according to Cheshire, the first tirsal joint of bees.
Plantu-la. One of the soles or climbing cushions of the foot; also one lobe of the divided pulvillus.
Pla-typ'te-ra (Gr. platus, flat; pteron, wine). The order of insects represented by the birdlice, white ants, Psocidae and Perlida.
Plec'rum. The side of the thorax; pleurites, the pieces into which the pleurum is divided.
Plex us (Lat, a knot). Applied to a knot-like mass of nerves or blood-ressels.
Podícal Plates. The two pieces on cach side of the vent; thought by Huxley to be rudiments of an eleventh abdominal ring; united they form the tergite of a rudimentary eleventh alodominal ring.
Pol'm-nose. Dusted over with a fine powder.
Pol-y-ax'mhy. Where a female insect mates with more than one male.

Pa-Liga-ms Whereamale insoce mate - with mate than ond funtale.
 of producing several brood a semoun.
Phe:oliad. In fromt of the mouth.
Pat ma-mis. The fure wints of Lepidoprera.
Pbo-busuls. The mouth parts adanted for sucking.
Procese 1 projection; used chictly in wteolory.
Pace-To D.r. © (M. 'The primitive hind Emt, or rectum.
 longred.
 the ubduminal lezo of at cate P pillar.
 sermeth or tergite in froms of the pyordinm, semetimeleflespenal hy the elyera, in betles.
 ance of mates earlier in the season than femals
 of month: alymotatio of Myri-

Promorisu cir. protes, tirst: plasmad. (romi plawn, 1 menhl). The altomomens. Hementary matter forming cells and the bedy-subinamee of Protesed.
Plons l-m w. (Lat. proximus, wext). The fixed end of a limb, bone. or appendare; that neares the borly: epposed to distat, the farther ent.
Pre i nose IIoary; frosted.
 rimu- or thiral claw, (Tulas dimu.
 chaw likn, chntinnor, eylindrie: chammbinthe labedla of errain thes, the embof which projeet bey.ond the edger of the thethy th: away the subtance on whith the tly feeck. (1) immonk.)
PTER-1) fons TIC: Referring to the wimge.
Pr-bim-cint. (conted with bery fithe hatir-

 ions. Tlue pad hetwan the क्य, lation the fert. When disithd iututworr there lohes.
 ouly rallod a pulsillus.

 punctate
Prid latt at toll the thime
 stare of inserts.

1't-rtans. Theset of hecom ing al pira
 terminal ahk ent tat - glocm of
 sal cermeill lo: "y and dy the etrera: more an for atroliea bhe to thithotathmial ate. ment of trimetho.
Ro-mat 1t. Radicle: the hand juint of the athtoma, attarhert to the hemb.
Radi-l-, The vain just lehind
the subcostal vein, the median vein of Lepidoptera.
Rap-to'ri-al. Adapted for seizing prey.
Re-cli'vate. Curved in a convex, then in a concave, line.
Re curv-ed. Curved backwards.
Ren't-form. Kidney-shaped.
Re-Pand'. Wavy; with alternate segments of circles and intervening angles.
Re-tic'u-lat-ed. Marked like network.
Re-trorse'. (Sinuate) pointing backwards; (serrate) inversely serrated.
Re-tuse'. Ending in an obtuse sinus or brotd, shallow notch.
Rev-olute. Rolled backwards.
Rhab'dites. The blade-like elements of the sting and ovipositor of insects.
Rho-pa-lo'ce-ra (Gr. rhopalon, a club; keras, horn). Those Lepidoptera with club-shaped antenne, i.e., the buttertlies.
Ri-mose'. Full of cracks.
Rin'gents. Gaping.
Ros'trum. A beak.
Ru-fes'cent. Somewhat reddish.
Ru'fous. Reddish.
Ru-gose'. Wrinkled.
Run'ci-nate. Notched; cut into several transverse, acute seg. ments which point backwards. (Say.)
Sac'cate. Gibbous, or inflated towards one end.
Sag'tt-tal. Equivalent to longitudinal.
San-guin'e-ous. Blood red.

Sca'brous. Rough like a file, with small raised dots.
Scal'Lop-ed. Edge marked by rounded hollows without intervening angles.
Scal-pel'lus. One of the lancetlike maxillæ of tlies.
Scape. The basal joint of certain antenne (LeConte); usually applied to the three basal joints, as in Hymenoptera, etc.; by some authors the second antennal joint.
Scap'U-la. The shoulder-tippets, patagia, or tegulæ, in Lepidoptera.
Sclérite. A single portion of an insect's skin or integument, separated by suture from the adjoining parts; the scutum, scutellum, or sternum is a sclerite.
Sco'pa. The stout bristles on the hind tibise of bees, aiding in forming the corbicula.
Scor'u-la. The bristles covering the inside of the plantæ, especially of the hind feet; scopa of Schrank. (Say.)
Scro-bic'u-late. Pitted; having the surface covered with hollows; favose.
Scute. Applied to the dorsal pieces in Myriopods.
Se-bif'ic. Oily; sebaceous.
Sec'ond-a-ries. The hind wings of Lepidoptera.
Sec'roks. Longitudinal veins in Odonata which strike the principal veins at an angle, and usually reach the apex or hind margin of the wing.
 dolabriform.
Sip twa. A partition

 ally from the prex mee of mi mute, demse hair-
SER-R Tren. Like the tecth of asw.
Srsisue. Maving no stalk.
Se-pa ceoces (Lath, seth, a bristle). Bristle-dike.
Sb-Tose Bristly: sutums.
SIN U'ATED. Simous, wimling; with the edperesemped out.
Somatse. Relating to the bedy:
Somites. A segmemt of a ary mented amimal, sum as a womb.
Sparemate Bathe-forr. or spoon :shaperd
Sमenmethect. The sile or reserwir in the female containing the spermatio particles.
sumanér Full of spines; spin 0115
Splat-cta: (hat spiro, 1 hreathe). 'The breathing-hole, or lateral oprening into the tracheas.
Sle mots. Aphend somedimes to the clawless, rudimentary feet of the Nymphalid huttertlies.
Sorams. 'The small smate abowe the halteres of Muscids; teguta.
Soquan rad. A very small, corneots, contavoronvex stale, covering the hase of the fure wings in some inserts. (say.)
 ing of rough seakes spreading every way. (Say.)
 nathe for themax.
Gra, mi. 1 ghimeke, or brath ing herle; stigmutul, rehating to the stigma.
SHIG MI-TA (fir. Niymue, a mark). A symym of ypiracles.
Stipes. The aromd division of the masills, artioulated to the coted, and haring the two lobers and palpi.
STR PI-TATE Supported on a pediele
Stomerns: tw. The primitive month and abiphagus of the ambryo of Worms and Arthropoxla.
 : 1 wist; pteren, winge). I group of heetles whone minute fromt wings appear as if 1 wisted.
sman atio. Wifla more or leas paralle] furrow: growse, or Weprowed lime: chamelhed.
STratis. A small, ,hort, linear. framevere line
STB GiATE With strigat.
sios. Fomewhat; apponimate (0) preficel to man? terms in deseriptive emtomologe:
 lonhad or airval.
 dented, but fresularly ar
Sils-man (io) lat lats thes, the pemoltimate -tate in thome whicha mont once afteracyuiring their witis. Proimago (Lubluock!
Stro-sticimital, Applied to a line in caterpillars situaterd just
under the row of stigmata or spiracles.
Su'bu-late. Awl-shaped.
Suc-cinc'ti (Lat. succinctus, bound round). Those chrysalids of butterflies which are held in place by a silken cord passing around the body.
Suc-to'ri-AL. Adapted for sucking.
Sul'cate. With groove-like excavations.
Sus-pen'si (Lat. suspensus, suspended). Those buttertlies whose chrysalids are suspended by the tail, i.e., cremaster, head downward.
Su'ture. A seam or impressed line between the bones of the skull, or parts of the crust of au Arthropod.
Su-tu'ri-form. Suture-shaped; a suturiform articulation is where a slight suture is visible, as sometimes two abdominal segments in Ichneumons are soldered together without a trace of a suture between them.
Tac'tile. Relating to the sense of touch.
Tw-nid'i-um. The baud or chitinous fibre forming a part of the so-called "spiral thread" of the trachere of insects.
Taw'ny. Fulvous; a pale, dirty yellow.
Teg'men (Lat. tego, to cover). Formerly applied to the fore wings of Orthoptera, Cicada, ete.; a wing-cover.
Teg'u-la. The broad covering scale under the base of the
wing in Diptera; some authors call it squama; in Lepidoptera, the shoulder-tippets, or patagium.
Tel'son (Gr. telson, from telos, end). The rudimentary terminal segment of the abdomen of Arthropods, especially Crustacea.
Ten'e-ral (Lat. tener, tender). A state of the May-Hy after exclusion from the pupa, in which it has not fully completed its coloring, clothing, ete.; the subimago.
Ten-tac'e-lum (Lat. tento, I touch). A feeler or tentacle.
Ten-to'ri um. A chitinous framework within the head, upon which the brain rests, the œsophagus passing upwards between its auterior crura or props.
Te-rete'. Nearly cylindrical.
Ter'gum (Lat. back). The dorsal region of Arthropods.
Tes'sel-late. Spotted like a cheeker-board.
Tes-ta'ce-ous. Dull red; brick color.
Tho'rax (Gr., thorar, a breast. plate). The middle region of the body in insects and some erustacea.
Thy-san-u'ra. (Gr. thusamoi, fringes; oura, tail). The lowest order of insects.
To-men-tose'. Covered with fine matted hairs.
To-rose'. Protuberant; swelling into knobs or tuiserosities.

Trosiciles-A (Gir. Pruchine, thee rough wind pige). 'The reapiratery tube in vertehrates; the air-tube of trachata insecto.
This comorostots. Dividing bye theres.
Thoteramote Embing in threr peints.
 thes or clans.

'Tretan-sev-Tlish. Whare three broods oceur in a semam.
'TBE-2teran'. Having three more or less long tmgles; threecomerel); triquetrots.
Tro-cons tros (ir. trechanter, the hatl on the femmer). In inseets, the suatl, shart joint hetwen the eosa and femur.
 preatelt on the outer silde of, and sumetimes movable on, the coxal.
T:ux'll te:- The thickened base of the hind wings, in (icaba and Trichoptem.
Fiteorm. Ohe term for the month-parts taken coblectively.
 docked.
 tuberelles.
['s (I-xite. Honked at the end.
 chaw). A (law at the end of a foot.
U-mo-miks (Gr. ouros, tail ; meros, a part). Alyy of the abdominal segments of th Arthropod.
U-liol u-D.l (Gr. ouros, tail; pous,
pendus fornt. Any of the als. dominal fert of Arthromela.
('-Ra)-atmul. (Cir. oures, tail; merox, :a part). Ther abshmon of Arthopuch
 mater piewe of the urnmeren or

V.sbowie. A mall valve-like preets.
VEan. Applied to tha rila or "nervares" of the wing of insects; the brathences of the seins are called conules.
Viencon. I hrowl prowest the imner enel of the fore tilitit of bees.
Vos A-Tmes: The symem of wins of the wing -
Vian tens. The whole muler sumface of the : indemero.
Vís traw.. Apliad tothe under side of the athboment or of the boly of insertehrabs.

Siar-mer-s.amp. With thick $=1$ tufts of pamallel hairs
 watt-like prominences.
Vers tex. (rown of the hatad.
Verr-Ti-ch, Late. lemeal in whirls.
Ves b-cle (Latt rewiva a hadder). A little sate, Wahtra oreat
 bristles or hatif- - math in mertain Diptom lactect the me tax athel the atheme.
Vir, bust: (1) What with soft. rather leng Intars.
Visce-1h.a L, h. risus. The in ternal organ of the body.

Vit'tate (Lat. vitta, a stripe). plied to animals which bring Striped.
Vi-vip'a-rous (Lat. vivus, alive; forth their young alive. Xr-Lopha-gous. Eating wood.

INDEX．

Ac：mthomera bedlardii， 133
Achatodes zetc，こ2to
Achorutes nivicola，it
Acridiider， 63
Armerra bimaculata， 133
Acmbata， 16.5
Adrlops hirtus，112
Adephaga， 118
Legralites delitis，10：3
Sischna heres，il
Agaristidar， 1.54
Ageronial ferenta， 161
Agromyza coromata，1206
Agrotis sulfusit，194
Air－silcs，20
Alctia mrgillacea，154，2n0
Aleyroules corni，so

Ameriman silk－worm，195
Amphizoa insolens， 11 －4
Ampulex silirica， 1 is
Antist tristis，s4，208
Andrema， 1 es vicina， 1 1；
Angomanis moth， $1: 1$
Animpterat vo mat：a，liot
Anisetas semateria，15．5
Auherophayan ochacems， 111
Anthicidse，10：
Anthomy ia radiem，：06
\％（ミッ， 199
Anthomẏ̉die， 130
Anthophila， 16

Anthremus scrophanarie， 111
Anthribus cornutus， 99
Ants，1i0， 183
Apatela，155
Aphaniphera，115
Aphides，live，＂ammining，פ心1
disseting，we：
preservatiou of， 303
Aphillins， 169
Abhis，so
nvenis，19\％
grain，1！＂；

Apidle， $12 i$
Apis mellitioza．1：4
Apple－trew hemer．211
Armlun remathes： 3
Areti：I， $1 . \mathrm{Ek}$
Argymis：：phtrodite：16t，1－s
Army－worn，1．5t
（心どiara），1：：
northern．1：ns
Whent lual， 1 ！？

Arthropterid．e．－：
Asilidar，1：3i
Asilus mex：－ontic．13：3

Asemblitionof meths， 1.14
Asteia Hemul－，1：ti
Jtta， 1 il
Attachs， 15.5

Attelabus rhois, 101, 180
Balaninus nasicus, 100
Baridius trinotatus, 205
Bark-borer, 99
Basket-worm, 156
Bean weevil, 206, 207
Bee, carpenter, 185
leaf-cutter, 186
honey, 162, 176
embryo of, 37
louse, 124
moth, 152
Beetle, 91
blistering, 203
Hlea, 204
helmet, 204
snapping, 109
Beetles, collecting, 271
rearing, 276
Belostoma grisea, 83
Bembex faseiata, 174
Bibio albipeunis, 135
Bird-lice, 66
Bittacus, 89
Blaps, 103
Blatta orientalis, 62
Blepharocera fasciata, 135
Blissus leucopterus, 84, 195
Blister-beetle, 102
Bombus, 176
Bombycidæ, 155
Bombylius, 133
Bombyx mori, 42, 43, 155
Borers, 105
Boreus, 89
Bots, remedies against, 223
Botys, 152
Brachycera, 133
Bracon, 169
Braconidx, 169
Brain, 13, 310

Braula cœea, 124
Braulina, 124
Breathe, how insects, 19, 20
Brenthidæ, 100
Bristle-tails, 56
Broods, several, 42
Bruchidæ, 103
Bruchus fabæ, 207
obsoletus, 104
pisi, 104, 206
Bug, 74
chinch, 77
garden, 204
mealy, 79
squash, 74-76
Buprestidæ, 109
Butterflies, 158
metamorphosis of, 145, 148
scales of, 142, 143
Butterfly, 137
Byrrhus americanus, 110
Byrsopidæ, 101
Cabbage bug, 206
Plusia, 205
Cabbage, insects injurious to, 205
Cacœcia rosaceana, 152
Caddis-Hy, 90, 108
Cxcilius, 67
Calandra grauarius, 100
oryze, 100
Calliphora erythrocephala, 130
Callosamia promethea, 155
Calobatal antennipennis, 129
Calopteuus femur-rubrum, 2,63 spretus, 2, 63
Calopteryx apicalis, 71
C'alosoma calidum, 114
Campodea staphylinus, 58
Camponotus, 171
Cauker-worm, 153
（＇untharis vesicatoria， 10 ）：
（＇unsidie＇，s．t
（＇arabidice， 114
（＂arablss scrratus， 114

（＇iscc－worma，！1，18：
（＇nstmia licus， 15%
Constniadie， 150

（＇atcrpillar， 143
Caterpillars，blowing，20\％
preserving small，in allooliol，：3tj
rearing，21\％
Citocula，15）
（＇ecidomy ia Mestructor，1！）？
Irusumbariat，183

（＇ephatoon lopeurides，IU：3
（＇oploms，lat；
（＇cramhỵidle，10：
（＇0：10pegon，13．）
（＇oreeris desirt：1，1i－1
（ercopidie，s̃
（＇erevonis alope， 1 151
（＇harocemanat，lis
（＇hafer，rows，lot
（＇hale iddida＇，16：9
（＇latlecis，lit！）
（＇halowhorat virciniensis， 109
（＇hathotsumat atlas，！et
（＇hatuliodes pectiniowrois，st

（＇hisur， 116
（＇hinch bug，19．）
Chigue， 116
（＇hiromomms，4：
nivorimndus， 133
Chlamys plicata．1s3
（＇hlorops． 126
Chrysalis，38，145
Chrysididax， $1: 0$
（Harysis．170
（＇hrs soloollaris fomorata，109
（＇hrsermatlidat，10．1
（ hryserpion si

（＇hagmp）s niger．l： 4

（＇icimelelat hirtieollis， 115
valgaris， $11 . \%$
（＇iemolilieler， 114
（＇imlex ：mberictus，Jobs
（imex leetularins， Bi
（inumat，is
（is fuceipes， 108
（istelat wrieral， 111 各
（ itheromia rewalis，1．5．5
（＇laricornia， 110
（＇loples，17）
（＇leridse， 10 s

（＇lothes motlı， 151
（ $1 \leq$ リールs， 6
Correinclla movern－nontata，11？
（ （xerus，7！
（＇ochiuc：al， 79
（＇uckroatch，li＝， 311
org：us of－mull in．：？
Corlalling monh，21．3
C＇olopar frigid：a，I：s
（＇oruony iar pallisla，1：34
（ coleopters．！11．ins
（ollecting．：こl
Colenthrips 1 rif．a iblal．1：9\％
（oblists philodios，drat
Collembela，六

（＇olvolium lince la， 111
（onopidic．131
（onops lihi lis，13：
（＇onorhinu－inn zuisugu－，83
Conotrachelus nemuphar，1（11），214
Coptosoma glolums，E4

Cordyluridæ, 129
Coreidæ, 84
Corimelæna atra, 84
Corisa interrupta, 83
Corisidæ, 83
Corn maggot, 199 . weevil, 200
Corrodentia, 66
Corydalis cornutus, 87
Corylophus truncatus, 112
Cossidse, 157
Costa, 19
Cotalpa lanigera, 107
Cotton army-worm, 200
Coxa, 6
Crabro sex-maculatus, 175
singularis, 175
Crambus vulgivagellus, 152, 153
Cranberry worm, 152
Cricket, musical organ of, 30
Crop, 9
Cryptophagidæ, 111
Cryptus, 168
Ctenucha virginica, 157
Cucujidæ, 111
Culex ciliatus, 185
Cupes capitata, 108
Curculionidæ, 100
Currant-worm, 217
Cut-worm, 198
Cyclorhapha, 125
Cynipidæ, 166
Cynips quercus aciculata, 166
spongitica, 166
Cyrtidx, 133
Dactylopius adonidum, 79
Dacne 4-maculata, 112
Dakruma convolutella, 152
Dascyllidæ, 110
Death tick, 67
watch, 67

Delphax arvensis, 82
Deltoids, 154
Dendroctonus terebrans, 99
Dendroides canadensis, 102
Dermaptera, 58, 54
Dermestes lardarius, 111
Dermestidæ, 111
Derodontus maeulatus, 110
Dexia analis, 131
Diabrotica vittata, 207
Diapheromera femoratum, 63
Diastata pulchra, 126
Diedrocephala mollipes, 82
Digestion, 11
Digestive canal, 11
Dione vanillæ, 161
Diopsidæ, 128
Diplax berenice, 68
Diplopteryga, 175
Diplosis tritici. 137, 195
Diptera, 55, 117, 285
Diseases of insects, 42
Dixa clavata, 134
Dolichopus cuprinus, 133
Dor bug, 107
Dorylidæ, $1: 1$
Doryphora 10-lincata, 104
Dragon-flics, 68, 282
Drosophila ampelophila, 126
Dryocotes affaber, 99
Dynastes tityus, 106
Dysdercus suturellus, 84
Dytiscidæ, 113
Dytiscus fasciventris, 113
Eacles imperialis, 155
Ear, 28
Eciton, 171
Egg, 32, 34, 35
burster, 38
guide, 4, 34
sections of, 319

Elampus, 1:1)
Ehateridice los
Ellema harrisii, 1.58
Emhias savigni, bit
Embryoluy, 3;
Emesat lomyipuc, ,
Emphamipuct, 13
E.mpusa mulian, 17

Emkmberhide, 11:
Endomychms bigntatne, 112
Emtimus imperialic, 101
Entomology, exomomic, 1×9
Eutiomophthomatadicans, 17
Ephemera, il
Ephydra californica. 12\%
gracilis, 1 ?
halophila, 1?:
Ephianta cincrea, 10: 20:3 |entylvanic:a, ? 2n: vittatit, 10:i, "1n:3
Eytictalimu, li
Epitachat borcalis, 30s
Epimerum, 4
Epistermme. 4
Eran hastardii, 134
Eremm-ndura, 1.it
Eirotidia, 11?
Erycina, 1 (i)
Eivh ronemat ritis, 8 ?
Embalimia subnirmaria, 154

Eudryas grata, 1 万n
แиі", $1: \%$
Fumbles fraterna, 1in, 185
Eurucnidit, 1ion
Euncilis minuta, 100
Eurytoma hordei, 169
Brania la rigata, 168
Evaniida, 168
Everyx myron, 211, 212
Eyes, Id, 311

Fecmar, is
Fortiliation of flowers by iurects, 2li
Pizitima, 16ia
Fife 11!, 110
Flu, lierice, 4:
Flea, 115
betile, 10.1
show, is
Fly, datarm, tis
homsec, 114, 31.1
May, il
silw, 16 k
Fomman jaculatur, 16is

Porticula, is
Formica, $1: 1$
Fommi idac. 1:1
fionl hrowd. II
Progr-pitile, se

Fimgri, incert, t?
Galcruca atmelumelana, 1 (4)

(B alleria melomedla, $1 . \mathrm{N}$
(iall-1!, $42.16 i n$
(banglia, $1:$
Ga*icopacha, 15
G:armhilus cupui, $1: 31$
Gommetridat 1 is
Goomyzilite, 13t
(6)

Gorrysider. 110

Gerric remion - 3 ,
(i):amb, Matal, 11

- ivary, 9
- hitic, 33

Gouiocote - Mrmettii, Gib

Gortyna nitela, 200
Gorytes Havicornis, 174
Grape, insects injurious to, 209
phylloxera, 209
Grasshopper, red-legged, 1
Grease, to remove, 270
Grub, white, 198
Gryllide, 63
Gryllotalpa borealis, 63
Gyriuus borealis, 113
Gyropus ovalis, 66
porcelli, 66
Hairs, 31
Haltica cucumeris, 204
Halictus parallelus, 176
Haliplus fasciatus, 114
Halobates whellerstorfii, 83
Harpalus caliginosus, 93
Hecatesia, 157
Hedychrum, 170
Heliconia, 161
Helicopsyche, 183
Heliothis armigera, 154
Helomyza apicalis, 129
Hemaris thysbe, 158
Hemerobidx, 87
Hemilenca maia, 155
Hemiptera, 55, ${ }^{\text {it }}$ collecting, as0
Hepialidæ, 157
Hepialus mustelinus, 157
Hesperia tessellata, 160
Неsperidæ, 160
Hessian fly, 192
Heteroccridæ, 110
Heterocerus pallidus, 110
Heterogyna, $1 ; 0$
Heteromera, 101
Heteronewa albimana, 128
Heteroptera, 82
Hippobosca equinal, 125

Hirmoneura obscura, 133
Hister interruptus, 110
Homalomyia cunicularis, 130
scalaris, 123
Homoptera, 79
Honey bec, 176, 291
Hop aphis, 208
worm, 209
Horn-tails, 166
Humble-bee, 176
Hydrobatide, 83
Hydrocampa, 152
Hydrometra liucata, 83
Hydrophilus, embryo of, 26
Hydrophilus triangularis, 113
Hydroscapha natans, 112
Ilymenoptera, 55, 161, 288
Hypena humuli, 154, :209
Hyperchiria io, 155
Hyphantria cuneal, 157
Hypoderma bovis, 131
Hypodermis, 40
Hyporhagus opaculus, 103
Ibalia, 167
Ichncumon, 168, 218
Ichneumonidæ, 168
Imago, 41
Ingluvies, 9
Inquilines, 16π
Insects, anatomy of, external, 1,8 internal, 7
as architects, 178
beneficial, 217
cabinet for, 238
collecting, 224
dissection of, 289
how they breatbe, 19
fly, 19,21
hear, $\imath 8$
see, 24
smell, 26

Jusects，how they tinte， 97
1，mell， 31
walk， 18
increase in mumbers of， s
insertivorons，200
metamorphowis of，治
monnting，394
naturalizen，1s：
momber of speciok of，52
mulers of，st
parasitic， 218
perionlicity in appearance of， 5 ？
pinuing，2：30
sumses of，：1
sections of， 296

lutestinc． 11
1 1．s fasci：alus， 111
Fantros．10：3
Isosinumal homdi， 19
vitis，：Oll
．fupx subterrmens， 58
Jasid：
Jigget． 116
Juint－worm， 191
Lahbin，is
1．abidus， $1: 1$
lahbimm．i
Lahrime， 6
Lathonedes，15\％
Cambunctornal fusca， 91
lath inswer．89）
Latriida． 103
Lamellicornia， 10 i
Lampyris， 109
Lamprider， 109
Laphria， 134
Latrel s：1w－1ly， 166

Lamrala：：cmirufn， 174
Larva．B4
Laniat klatiii，1：3

Laternariat phophorea，ど
Leaf－rutter lace，Iの
1．af miners， $1: 5$ rollers， 129
l．emmimm heveridum，iv
Legse 17
Lepidoptera，55，1：3i momuting，369 rearing，：2lo wings of，bleach－ ing．3ls
Lacpions domemtica，is 4．serial：is， swocharina，is
Laptinillus valislus． 112

Lepticalhicornia，13！

Libntlula mimatulata，il
Liloythea，left
limambes，lite
Limmblaps mealium，is
Lingua，í
Lithusial hirolor， 1.2 i
Lohersiat houmata，ご1
Lonenst．Eam off，刃心

$$
\text { rexticrath, 1, 5!, } 133
$$

Rowky Vomentait，bil， 03
Loncmatidir，ti：3
Lomelia：a pulit： $1: 3$

Lophyru－． 1 ith
Lonse，is
b：rk，$i 9$
bec．1：4
bird， 64

Louse, book, 67
plant, 80
Lucanidæ, 107
Lucanus dama, 107
Lucilia cæsar, 130
macellaria, 130
Lycænidæ, 160
Lycomorpha pholns, 157
Lygæidæ, 84,
Lygæus fasciatus, 84.
Lygus lincolaris, 204
Lymexylon sericeum, 108
Machilis varialilis, 58
Macrobasis, 102 cinerea, 203
Macrodactylus sulspinosus, 107
Macrolepidoptera, 150
Malachius ænens, 108
Mallodon melanopus, 106
Mallophaga, 65, 66
Mandible, 7
Mauna insect, 79
Mantis carolina, 62
Mantispa interrupta, 87
Masaridæ, 175
Maxilla, 7
May beetle, 94, 107
May-11y, 71, 283
Meal worm, 103
Mecaptera, 55, 88
Megathymus yuccæ, 160
Megistorhynchus longirostris, 133
Melandrya striata, 103
Melanophila drummondi, 109
Melipona, 176, 188
Melitica phaeton, 161
Melittia ceto, 158
cucurbitæ, 207
Mellinus bimaculatus, 175
Meloé angusticollis, 102

Meloidx, 102
Melophagus ovinus, 125
Membracis foliata, 82
Menopon pallidum, 66
Meromyza americana, 126
Merope tuber, 89
Metabola, 55
Metamorphosis, 38
Mctœcus paradoxus, 102
Miastor, 42
Micrococcus bombycis, 43
Microgaster, 169, 219, 220
Microlepidoptera, 150
packing, 26:
rearing, 254
Micropezide, 129
Micropyle, 34
Microsporidium bombycis, 43
Midas clavatus, 134
Midge, 135
Milyas cinctus, 83
Mimesa cressonii, 175
Monohammus confusor, 106
Monommidx, 103
Morilella 8-punctata, 103
Mosquito, 135
Moth, bee, 152
Moths, small, packing, 262 wings of, bleaching, 268
Moulting, 39
Moults, number of, in caterpillars, 39
Murgantia histrionica, 206
Musea domestica, 130
Mascardine, 44
Muscidx, 130
Mutilla ferrugata, 172
Mycetobia sordida, 13 i
Mycetophagus punctatus, 111
Mycetophilidie, 136
Mymar, 169
Myodites, 102

Myrmerencytus， $1: 1$
Myrmiea mole－1a， 171
Myrmosa micolor， 1 T2
Dytilaspis citrimala，is
ylorerii，：9
pontormin， 9
Nillix forus，s：
Naterdes melanura， 1013
Nimucoridis，sis
Necrophorns Americamis，1！e
Neides spinmins，st
Nematocera， 134
Ňmaths wichanii， 166 ventrionns，166，：317
Nemestrinider， $1: 3$
Nepuidir，s：3
Neptioula．1：5！
Nimotr syotion， 1 \％

Numptera，8．5，st
X
Nimmiade hriな， 160
Nit，is
Nitidula hipustulata， 110
Now mid？：1－1
Nolodonti：ns．10．i
Nomone ta mululiata，s：
Notovis mulhora，10：3

Nymph，is
Ňmphalidar． 165
Xisom lateralis． $1: 4$
Ohmata，is． 68
Odontomachidid． 171
Odomomathans． $1: 1$
Oklors of insects， 149
Olynerns althphaleratus．1：5
（Emanthos nivelus，bis
（Eocophylla smamadina， 183
（Edemeridie， 103

1andifalmide I，16！
（だ）11－2に，
（だがない，1：3）

Mfactury urgma，st

＂phime，1ti－

（Irgial，1．9j

（1rtalide，12！！
（1）thorhayhat．18：
Wrinid．．126
（1－mi：a－inillinal，にい

＂marir．沈
いいうい1．．．．：

P：aliner mita biline：at：，is
P：altofl mat lorroutima．1：－

Prapilio：aias，f？

Parandma brumba thi
P：arapory 1 ， 15
laris greati：：
l’：rn：1いins．（in
Parnidar． 1111

J：athungravi． 41

Peach－met Mrer， 31.5

Pear slug-worm, 166
Pebrine, 43
Pediculina, 78
Pediculus capitis, 78 pubis, 78 vestimenti, 78
Pelccinidæ, 169
Pelccinus polycerator, 169
Pelidnota punctata, 107
Pelocoris femorata, 83
Pelopreus tlavipes, 173, 185
Pemphredonide, 175
Pentatomidæ, 84
Periodicity in insect-life, 52
Perla abnormis, 67
Pests, insect, destruction of by fungi, 45
of museums, 237
Petroleum emulsions, 2.2
Phacellura nitidalis, 208
Phreneus carnifex, 107
Phalacrus ovalis, 112
Phalenidee, 153
Phancroptera curvicauda, 63
Phasmide, 63
Pheidole, 171
Phengodes, 109
Philanthus vertilalris, 1 it
Phora incrassata, 120
Phorbia ceparum, 130
Phoridx, 126
Photuris pyralis, 109
Phoxopteris fragarix, 152
Phryganea, 183
Phryganidx, 91
Phycinæ, 15:
Phycis rubrifasciella, 182
Phycodromidæ, 128
Phyllium siccifolium, 63
Phylloxcra quercus, 80
vastatrix, 209
Phymata crosa, 83

Phytomyza clematidis, 126
Phytophaga, 103
Pickle-worm, 208
Pieris oleracea, 160
rapıe, 160, 205
Pimpla, 168
Piophila casci, 128
Pipunculus cingulatus, 131
Pique, 116
Pissodes strobi, 100
Plagionotus speciosus, 106
Platygaster, 169 herrickii, 193
Platymodes pensylvanica, 62
Platynus cupripenne, 114,115
Platypeza anthrax, 131
Platypsylla castoris, 113
Platyptera, 63, 55
Platypteryx arcuata, 155
Platyssimia cecropia, 155
Plectoptera, 71, 55
Plectrotarsus, 90
Pleurite, 2
Plum weevil, 214
Plusia brassice, 205
Precilacapsus lineatus, 84
Poduridie, 5 \%
Pogonomymex, 171
Polistes, 185
Polyergus, 171
Polygonia prognc, 161
Pompilus formosus, 173
Ponera, 171
Potamanthus marginatus, 72
Potalo beetle, 104
insects injurious to. 202
Prionocyphon discoideus, 110
Prionoxystus robinixe, 158
Proctotrupidex, 169
Promachus fitchii, 134
Proventriculns, 9
Psclaphidæ, 112

Pselaphus urichsmii，112
Premides， $16 i a$
Psen houcopmes．1in
Psephemins lemonti， 110
Psila hicolor，1：？
Psoms nowar seotize，fir
Psycheloclia，1s：3
Pischoules altornatia， 134
P＇sylla 1ripumetala， 81
Psylnhora き（）－maculata，11？
P＇teratomus patnani， 163
1＇teromalus puparum，169，20．5， 219
Pternmates：regalis， 67
Parophoritat， $1: 0$
Phemphoms periwedidactyos， 150
Pinms fur，lox
1^{\prime} yodus lincatus， se 2
Pulex canio， 116
irritalls． 116
Pulvinaria inmumerahilis，\％！
l＇una，fo
Popic，mamarement of，足量

Pирірана，1：4
Pymaldic，102
Pymainer，15？
1＇yrgoma mulata，109

Pyrachroilac．10？
Pyrophorus moctilucus， 110
P？mberidar，s．
1＇y tho nigere，10：3
Radish Hy，：M6
Rearing beethes，：ain inswey，こ！ 13
Reduviid：，sis
Remerlice dqumal inserts，2e1
Rhagovelia obeceit，s：
Khinopris camalienlata， $1: 3$

Rhipricriche， 1111

Thipiphoridit，1世2
Rhim，mator－homsatは， 101

Rhopalum prdion latum，18．5
Rhopetmba vacerinians． 150

Rhyneoghorus palamam， 1 （6）

Rhy－a， 16 k
Rhysumlew exaratus， 111
Rumalは， 160
Sack－hemer，18：3
Salda－ichmom tii，© ：
Simblalue petrophy： 1111
Samin：a evituosh，：1．5

Supromy／a bulcariv．13
－u！！el mattuii．17：
Sarrophasa（armaio．1：31
arr：u＊nis．1：3

Sargus datoms．1：4
Sall 119，16ti， 82.1
sicalco．：31
Scaphillum quadrigutatum 11：
Sumamodar．1mi

Sompronider，1：\％：
Scem1－valı＜ 1 1！
Achiznra uniow－：
Sciarat mali，1：n

＊owli：1 1：

Sonlymiata as
sourchlerials．\＆
scutilum，t
Schtum． 1

Seydmæuus marix, 112
Semiotella destructor, 169, 193
Sepsis similis, 128
Serricornia, 108
Sesia pyri, 158
Sesiidae, 158
Sexual differences in insects, 32
Sialide, 87
Silk, 144
Silk-worm, 42
American, 155
Chinese, 155
Silpha lapponica, 112
Silphidæ, 112
Simulita, 135
Simulium meridionale, 135
molestum, 135
pecuarum, 136
Siphonaptera, 55, 115
Sitodrepa panicea, 108
Slug-worm, 166
Smell, organs and sense of, 26
Smerinthus excecatus, 158
Smynthurus elegans, 57
Suapping beetles, 109
Sounds made by inseets, 30
Spanish Hy, 102
Spathegaster baccarum, 167
Spherius politus, 112
Sphenophorus zee, 200
Sphex ichneumone:i, 173, 184
Sphindus americanus, 108
Sphinx carolina, 158
celeus, 158
embryology of, 36
Sphyracephata brevicomis, 128
Spilosoma virginica, 156
Spindle-worm, 200
Spiracle, 19, 316
Spraying machines, 222
Spring-tails, 56
Squash beetle, 207

Squash borer, 207
bug, 208
lady-bircl, 208
pickle-worm, 208
Stalachtis, 160
Stalk-borer, 200, 205
Staphylinidæ, 112
Staphylinus valpinus, 112
Stephanidæ, 168
Stephanus cinctipes, 168
Sternite, 2
Stigmata, 19
Stigmus fraternus, 175
Sting, bee's, 164, 315
Stizus speciosus, 174
Stomach, 9
Stomoxys calcitrans, 130
Stratomyia picipes, 134
Strepsiptera, 101
Stylops childreni, 101
Subimago, ${ }^{7} 2$
Sugaring, 246
Sylvanus surinamensis, 111
Symphyla, 5\%
Symemon sophia, 15%
Syrphidæe, 132
Syrphus politus, 132
Systochus oreas, 133
Tabanus lineola, 184
Tachina, 131, 218, 220
'Tachinide, 131
Tactile sense, 31
Tanypus annulatus, 135
Tapinoma, 171
Taste, organs and sense of, 27
T'elea polyphemus, 155
'Teleas, 169
Temperature, influence of chan-
ges of, on insects, 49
Tenelbrio molitor, 103
Tenebrionidæ, 103

T'enthertinides, 16.5
Terebramtia, 16i5
Tersile: 2
Torma lavipe, li.j fis
Tintc, 3.4
'T hemevernus hame ralia, 101
Thert val alhict
Thrips-triatur, 233 , 192
Threncels comstrictur, 109
Thymele protens, 16 in
Thysani:a agrippina, 154
'Thyternus, 1i.5
Thymern abootio, 15s
'Thyrididar, 15s
Thyris luguluris, 158 maculata, lis
Thysampteri, 5 , is
Thy:mmara, ist, 56
Thibis, t
'linuber beetle, 99
'Tinea biselliella, 1:51
gramella, 1.51
pellioledla, 1,51
t:1uctzella, 1.51
Thineids, 150
Thegis clavata, 84
'Tiphia inormata, 102
Tipula trivitata, 134
Tipulidex, 1:4
Tomi"ns pini, 99
Tomicus typegraphas, ts
Tomocerac plambers. 57
Tortricidat. 1.51
collerting, 262 rearing, 202
Tortrix fumiferana, 152
Tound, semse of, 31
Trachen, 19, 30, 31;
Traps for beetles, Diz moths, 246
Tremex columba, 166
Trichocera regelationis, 134

Trichomentes omis tif
Trichonlos nutallii. 10 s
Trichelptera ins, !
Trich purys a-pera, 11:
Trifonla, 1 -
Trigamalid.a, Jis
Trimotill, la-
'Tritova thas. $1: 9$
Troer hatstine. ©

'Trsumatarantutice, 1:9
V'inary tubes, 11, 13
Uroct rider, Bit
Litelh ixa bella, 150

Verins of the wins, 19
Vcliidte, 3
Ventricular, 9
Vmuls, 19
Veppartuarin, 17. maculat:a, 1i.9
Vepida, 12.;
Vincolrwor r, :11. :12

wood, 1it
Weather, inthatae of chanco of, on inscote, $4!$
Weevil, 99
Whent, inselt- in jurious to. 191
mider. 19 :
thrip. 191
Ẅire worm, 149
Workers, 3?
Nenow pul汸, I 2
Nylebari- 39

Nylotern-4
Z:arhip' - 1"9
Zygutat. 1.5:
Zygenid 150

DR. A. S. PMCK.IRI'S WORLS

ZOOLOGY. (Advanced Course.)

For Students athe licnetal Kentern 185. S. S. Pachirlo, M.I).,

 Sulics)

 four years, abs bebteve that to be the only Anerican work suitable for colleges
 U'slatal L'nizority:-l'ackard's Zoology is the lirst thoroughty reliable text on this science published in our country: It is clearly written amd leamifully printed.

ZOOLOGY. (Briefer Course.)

Fully illustrated. 12mo. (American Science Series.) 33\& pp.
 Colles, :-While 1 strongly insist that students shoukl study animats from animats themselies-at point strong!y urged ly l'rot l'ahomet in his preface-1 also recogrize the necessity of a reliable tex-lam as a guile. As sult a guike, and cosering the eromad th dex. I homas it wathing betcer than L'wh.tat's.

 dogmatic statements, knowing they come from at matict, omb int if in a mere compiler. 4. The are frosh; fossils are gowl in then phan lut a fossil text-book in science is a fram on youth.

ZOOLOGY. (Elementary Course.)

First Lessons in Zoulogr. Fully illustrated. 12 mon . (American Scionce Series.) 2yo pr
 -It has leen used in the elementary clases in this Cuiversity since its appearamee, with mast gratifying results. It is succinct, chear, irourate, helpint, suggentive
 most elelightsul litele book. The languase in it is simple, and when technical great pains has been taken to explain the meaning of such plarases. Dr. Dackand has wisely taken common ohjects with which ta illistrate it-hense objects that we know the most about, and thase about which we wouk gladly know more.
 gressive teacher who has been interested in the teathing of sciences in the lower grates of our echools has been painfully awate of the complete absence of looks on zoology suited to the pupils in those srades. Packard's First besons in Zoblegre is a sucessful attempt to meet that want.

From Leroy R. Halsev, Superintendent of Schools, Battle Creck, Mich. :- The book is an excellent one. I was pleased with the first examination of it, and find that it works well in the class-room. It is, for our own school purposes, the best text-book on the subject with which I am acquainted.

From M. A. B. Kelly, Superintendent of Model Department, Albany (N. Y.) Normal School:-Dr. Packard seems to possess a special tact for presenting scientific truths in a concise and attractive form. The First Lessons, though decidedly elementary, are encouragingly progressive. The illustrations are ample, and include subjects for study which may be secured by the student with littie or no difficulty. I am satisfied, from what I have noticed, that it is just what we need for beginners in zoology.

From Thomas Newlin, Superintendent of Spiccland (Ind.) Academy and late Professor of Biology in Haverford College:-It contains what every boy and girl should know, and what the schools are prepared to teach.

From A. L. Lane, Teacher in Cobum Clussical Institute, Me.:-A most admirable work. Constructed on the very logical method of proceeding from the simplest to the highest,-from the amœba to man,it gives very clear and accurate descriptions of typical forms, and thereby furnishes a broad foundation for subsequent study.

GUIDE TO THE STUDY OF INSECTS.

and a Treatise on those Injurious and Beneficial to Crops. For the use of Colleges, Farm-Schools, and Agriculturists. With fifteen plates and six hundred and seventy wood-cuts. Svo. 715 pp .
From Professor L. Agassiz:-I hold that your work ought, in con nection with Harris's "Treatise on Insects Injurious to Vegetation," to which it is, as it were, the key, to be introduced in all our agricultural colleges, as the best text-book of that kind now extant.

From The Nation:-In typography and illustrations the part before us leaves nothing to be desired, while the author's style is very perspicuous. We hope the work will be used as intended, in colleges and farm-schools and by agriculturists.

From Nature, London:-The most recent memoits connected with these subjects have been made use of by the author; and this part of his work is certainly the best manual of entomology which the English reader can at present obtain.

From the New York Tribune:-As a practical treatise on American entomology, with references especially to the insects injurious or beneficial to crops, it stands almost alone, and reflects the highest credit upon American scholarship, patience, and scientific skill.

OUTLINES OF COMPARATIVE EMBRY-
 OLOGY; or, Life Histories of Animals, including Man Copiously

 illustrated. Svo.From Prof. E. S. Morse, in Popular Science Monthly:-Altogether it forms one of the most valuable works of science yet published in this country, and it is safe to say that no working naturalist can do without it.

> HENRY HOLT \& CO., PUblishers, NEW YORK.

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

QL
463
P115
1888
C. 1

BMED

[^0]: * There are in many insects, as in many Lepidoptera, Hymenoptera, and Neuroptera, four tergal picces-i.e., prescutum, scutum, seutellum, and postscutellum, the first and fourth pieces being usually very small and often obsolete.

[^1]: * Sce Miall and Denny's " The Cockroach," p. 16i3.

[^2]: * Exner finds that the focus of a corneal lens in the compound eye of Hydrophilus is about 3 mm . away, and some distance behind the cye. (Miall and Denny's "The Cockroach," p. 105, note.)

[^3]: * Forel, however (" Recueil Zoologique Suisse," 1887), denies that these tympanic organs are necessarily cars, and thinks that all insects are deaf, with no special orgens of hearing, but that sonnds are heard by their tactile orgaus, just as deaf-mutes perceive at a distance the rumbliug of a earriage. But he appears to overlook the fact that many Crustacea, and all shrimps and crabs, as well as many mollusks, have organs of hearing. The German anatomist Will believes that insects hear only the stridulation of their own speeies. Lubbock thinks that bees and ants are not deaf, but hear sounds so shrill as to be beyond our hearing.

[^4]:

 the aperture When in thic positiont it shathl he hlowhod hehime with cotton wool slightly wetted. Thre cone can thente ernmomed

[^5]: * The only partial exception to the rule that the females are wingless while the males are winged is the male of two chaleids (Westwood's Class. Insects, ii. 160). This fact was quoted by Darwin (Descent of Man, i. 264). Darwin seems not to have been aware that Newport figured these insects (Trans. Linn. Snc., xxi., Tab). VIII. p. 4) as Anthophorabia fusciata Newport and A. retusa Newport. The males also are without compound eyes, only a simple eye being present in place of each compound one (Fig. 26).

[^6]:

 sure that sin is the momber for ame amel nite for whers, :s in the

 times, amd he thinks that this speede viates in the thamer wf monls with the latitule or leverlity. Tilea polypikemus moult- four times. as does Athens uttes bred in Enelamd (Pys-/he, iii. 1:1-1:4). Wellins records a variable momber of monds (there to five in larvic of orgyia
 p. ©

[^7]: * For the latest résumé of this subject see S. A. Forbes's article "On the Present State of our Knowledge concerning Contagious

[^8]: * Imer. E'ntomologist, iii. : 21.
 \dagger Riley, in Fourth Report L. S. Entomologicai (ommis-ion, \&

[^9]: * C. V. Riley, Amer. Nat., Nev. 1881, 916.

[^10]: * Psyche, iv. 83; abstract from Ent. Month. Mrag., Juuc, 1kis, 1.

[^11]: *In the Anthribidie and Rhinomaceride the labrum is present and the palpi are not rigid.

[^12]: * According to Dr. Royston-Pigentt, the foot-stalk or pultel of a seale consists of two membranes united to form at mbe which ather up and distributes the nourihing thid :moner the striathons or rita of the scate. The scale has been resolved into an surise of lamiont ribe. connceted hy irregular cross hars: each rib, divplarine dwah he hack margins, and the eross bars oftem beaded. The saile if 1. pill plema make adminable tests for the highes powers of the min - 10 .

 In the sentes of worpho cyprix " the erose-ber -tructure 1 liw all these azare blues, is most delicate, and produces erlorion- ath r." Pat ilio treitus " is worth close investigation for reticulate (1 ra" Mieroscopical Alvances, axrii.; Englifh Mechanic, Nor. 11. 128.)

[^13]: * The definitions of the five families of butterflies are in part eopied from H. W. Bates's "Lepidoptera of the Amazon Valley" (Trans. Linn. Soc., London, 1862).

[^14]: * In preparine the synopses of the eharacters of the i-milies, the

 is not improbable that some of the ". familie's" are merely sub-families, as for example in the ants and wasps.

[^15]: * (heshire says: "The seretion, commonly, though, as I bolet, (rromemsly, called resal jelly, is added unstintingly th the ems." The tirst brood ford " is a highly nitroxemons tinne-former, derived from pollen by digetion, ame having apparembs amgnlar powir in developing the gencrative faculdy for I tind drome larvar reerive much more of it than these of wirkers, to whom any acedemtal excerse possibly gives the power of owipotitne, nes we tind it in the abmomal fertile worker." He thinks ahen that the guede, if not always, at least during the time of eqgenying, is fed he the worters from the secretion of the chyle-glamd (No. 1, wita probalte additions from some of the other three, there heine fonr kints of arland, in all, in the head and thomax. (Chenheres Bers amd Beckeepinge, l. .e..)

[^16]: * See, for an account of the cells of the honey-bee, the latest and best work on the honey-bee, "Cheshire's Bees and Bee-keeping" (2 vols., with numerous excellent illustrations; London, L. Upcott Gill, 1886-\%); for essays on the cells of bees, and the mathematical principles and theory of construction, the writings of Maraldi, Réaumur, Huber, J. Wyman (Proc. Amer. Acad. Arts and Sciences, vii., 1866), S. Haughton, G. R. Waterhouse, F. Smith, Tegetmeier, Darwin, and the author's "Guide to the Study of Insects."

[^17]: * The most obmoxious insects hrourght acridentall! from Vurone

 grain Aphis, athd streral wher speceres of plath-lier, the whllins-

 also some of our cht-worms appear to have been introd fed from Europe.

 On the other hand, we lave umwitingly econ be Firepe the grape

[^18]: * "For it is not leo much to say that if, on the one land, thowers are in many eases necessury to the existence of instr- insects, on the other himd, are still more indispenseble to the val? exisedece if

[^19]: flowers:-that, if insects have been in many eases modified and adapted with a view to obtain honey and pollen from flowers, flowers in their turn owe their scentand color, their honey, and even their distinctive forms, to the action of insects. There has thus been an interaction of insects upon flowers, and of flowers upon insects, resulting in the gradual moditication of both." (Lubbock's "British Wild Flowers considered in relation to Insects.")

[^20]: * S夭lameller Has ame mate of at stong wire rine of from une pote
 the same deplh, timaly tixed to the eme of a mich alwett the th tree feet lougr. In another form which is much med " the rins on- - - if

 tight! on He emd of an ordinary walking eane. In ! - llate tackle

 with a folding frame in Can. Enm., x. $6^{\circ} ?$.

[^21]: ＊A lite is 33 st thind ounces or a little less than qu Ensli－h quart； a gramme is 15.4 ate grains．

[^22]: * The comman mustmon peste are Inthenus ravins, A. menstornm,

 theromathy di-inteded; for permathent nee maphthatine centes are coldective Naphlatine comes, white not killing the harae repel
 drawers. Mr Bohwarg adverates the nise of " whate cartom," which
 cemse: peomed whelesthe :and which in much pure than the maphthatime conce now in the market Whan broken op it to mall

 3 paric of erwate or ertule carbolic and and 1 part wit of pans royal. applided to the sams, growes, andeders of hax- of dram ors in keep
 earthon, which both serves to check the dowepmath of the reges and
 that the only chances of safey from infection consia in constam

[^23]: * Bass-wood, or that of the poplar, Bulp-1ree, or even mahogany, is better than pine, as the resin in the latter semde off exhatations which eventually combine with the fat of the specimens exelosed in the bor and remer them greasy (P syche, i. 6.-4).

[^24]: * Alhough rubber stoppers are more expension the the lew eork stoppers, the are more durable, and prevent wapmation wally Pr-ller: in corking, rias an insedt-pin down be the cork, whe wins it in remain in for a while, thas allowing the air to eseape and paventing the

[^25]: strong compression of the alcohol, which tends to force the cork out. See Dr. Hagen on the use of rubber stoppers, Can. Ent., xviii. p. 1,

[^26]:

 leates of willows，maleas，amd other phants．Is a rile a buth rily or
 titst egre or larval we more mimately examine cald shruth，fir they are
 it is met ditlicult to follow the path of the patem for y its ati－tanee： mad st the timling of one cerer motms almos－urely the timling of more．＂（t 1）．Mukt（Bull．Browklyn Eint．Sixe．．ii．i：

 The same is ther ease with the vairch for rate of th ither our best breders of rarities sarch patiently by emonine of othe leaf after amother for them．For wamt of time and especially when the bamehes

[^27]: into the outspread umbrella; this method is suecessful for fir, spruee, and pine trees, as well as forest trees in general.

[^28]: * It is a curious fact that in general the males alone are attracted to light; the same is probably true of beetles, at least the June beetle.

[^29]:

 others, mand have clean litere in wheh to hide for the? feed only at night, and lie conecaled mader bark, in erevices, and among grass roots and leaves during the day.

[^30]: * Hulst and Thalenloorst in Bulletin Brooklyn Ent. Soc., ii. 63; other hints are taken, sometimes rerbatim, from this article.

[^31]: * "In general, it may be said, the mines of the leaf-miners are characteristic of the genus to which the larva may belong. A single mine once identified enables the collector to pronounce on the genus of all the species he may find thereafter. This, added to the ease with which the larva are collected, and the little subsequent care required to bring them to matmity, except to keep the leaves in a fresh and healthy state, makes the study of this group, in every respect, pleasant and satisfactory to the entomologist." (Clemens.)

[^32]: * The Vereli-h mote of piming low down on at tomp pin preants

 project below the bedy.-1. A. P.

[^33]:
 its form. His mitherl is deserited and the apmatas timent in the. Bulletin of the Brooklyn Fontemolegical soriols, i. at. See shon

 Ahould supplement the blow ones for in many catupillars, thablly

 inserte the point of a timely drawnont rlase tulde till it of es the velt two or there millimetres, then moures the inte-tin, of the with a thread, and makes the jumeture air-tight with a lith whothen. Ihe then tills the larva with air, and lets it dry fer frebethe to six days. The alvantages elamed for this proces ate that on he is rempiriel. and that one has greater facilities for givine the hematatural pori-
 Bull. Brooklyu Ent. Soc., vii. 93.

[^34]: ＊Bull．Browklyn Ent．Suc．，i．1i．

[^35]: * He also used empty tomato or fruit cans, with the upper edge cut smooth and covered by fine wire cloth, fastened by a cord or tin ring.

[^36]: * Bubletin of the Brooklyn Entomological Eocity, i. 2. Mr. Schatpe shegest that to procure food for earnisorom larvat a piece of meat be left for a while in the eage, with thesthties deprived of their wings ; these will hay cers, and the mageote will at once hateh and serve as food for the larval beetles.

[^37]: * F. G. Schaupp in Bulletin Brooklyn Ent. Soc., iv. 1-19.

[^38]: * Dr. Williston writes me: "I notice that a qrond many collectors now use such a butle for all kimds of incerts."
 f "If one," stys Dr. Williston in a letter, "is so -ituathl that he camot carry a bix to pin specimens in, he shoula put कothon-wol or paper cliphuse rice paper in his cyande lxhte to prowe the shaking atiout of plose specimens."

[^39]: * Dr. Williston writes nie that he does not like japanned pins so much as formerly, as they bend so easily.
 \dagger Dr. Williston prefers 1-oz. cyanide bottles.

[^40]: ＊Dr Williston tells me that＂Prof．Mik advine ordinary－ulphur－ matches to kill specmens，and the prowes has sonk herit，thour？I think it is inferier to a limet eramide bottle．Ife u－an eval tin hex． in which there is beft an opening between the onpheinz cher－that will almis a mathe．The the is put in the bex，the mond truck ame in serted till the sulphar is consumed，then withiram a and the cover fully closed till the ty is dean．＂

[^41]: * "In dissecting insects and other small forms one occasionally experiences considerable difliculty in fastening the object in the dis-secting-pan. Pins are inconvenient as they are in the way, and besides they frequently injure portions of the specimen. These difticulties may, however, he avoided by partially imbedding the object in wax or paratline, which, however, should not extend above the middle line of the body. The paratline and the embedeled object may then be readily fastened in the dissecting-tank, or, when it is necessary to stop operations, the paraftine and object may be placed in alcohol. (J. S. Kingsley in Science Record, il. S6.) Prof. C. H. Stowell uses an cmpty blacking-box, filled to the depth of about $\frac{1}{8}$ inch with melted beeswax, in which while melted a grasshopper, etc., is placed in the desired position, and the whole left to cool, when hard water is poured in and the dissection begun. (The Microscope, iv., 1881, 2\%.)

[^42]: * A. B. Lee's "Microtomist's Vade Mecum" (London, 1885). See also Whitman's excellent "Methods in Microscopical Anatomy and Embryology" (Boston, 1885), Prudden's "Histology," and especially Stöhr's "Lehrbuch der Histologie."

[^43]: * See Whitman : Methols of Researeh in Mierone pheal Inatomy and Embryolury, Plo. 121, 12:
 tlf the wheek have already beem soaked in wowenil, or other essential oil, for the purpose of ilaringe they mather he embedded direct from the chovenil, or this mis he remosed hy means of chleroform, which is the better practice (Lee).

[^44]: ＊（ontributcal by N゙．N．Maton．K゙ッ．

[^45]: * Entomol. Nachrichten, iv. p. 122.

[^46]: hy N. N. Masou. Eser.

[^47]: * Liquetied erystals.-N. N. M.
 t fome insects should remain for a day or more-N. N. M.

[^48]: * Prof. Grenacher, according to Carriire, besides one with nitric acid, employed the following mixture: Glyecrine, 1 part; alcohol (80 per cent), 2 parts; and hydrochloric acid, $2-3$ per cent. The preparation remains in this mixture until the pigment changes color and becomes diffuse. (Amer. Naturalist, 1886, 89.)

[^49]:

[^50]: Soc., Ipril, 1sai.

[^51]: * Zeitschrift für. wiss. Zool., xlv. (188i) pp. 88-90; Jouru. Roy. Micr. Soc., August, 1887.

[^52]: * Arch. Zool. Expér., 18S7, 124; Journ. Roy. Hicr. Soc., 1ssi, 841.

[^53]:
 t The halsam will be clouded by the moistum contained in the appendages motess it has been materated in atcobobl amd oil of turpentine, or has nudergone a long maceration in oil of turpentine.

[^54]: * For Bibliographies of Drs. LeConte and Horn see under Coleoptera.

