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Abstract

Explaining the processes underlying the emergence of monument construction is a major

theme in contemporary anthropological archaeology, and recent studies have employed

spatially-explicit modeling to explain these patterns. Rapa Nui (Easter Island, Chile) is

famous for its elaborate ritual architecture, particularly numerous monumental platforms

(ahu) and statuary (moai). To date, however, we lack explicit modeling to explain spatial and

temporal aspects of monument construction. Here, we use spatially-explicit point-process

modeling to explore the potential relations between ahu construction locations and subsis-

tence resources, namely, rock mulch agricultural gardens, marine resources, and freshwa-

ter sources—the three most critical resources on Rapa Nui. Through these analyses, we

demonstrate the central importance of coastal freshwater seeps for precontact populations.

Our results suggest that ahu locations are most parsimoniously explained by distance from

freshwater sources, in particular coastal seeps, with important implications for community

formation and inter-community competition in precontact times.

Introduction

Explaining the temporal and spatial patterns of monument construction as they relate to social

complexity is a ‘grand challenge’ for contemporary archaeology [1–3]. Despite considerable

research on this subject, formal analyses of the role that environmental factors play in the

emergence of monument construction have been largely underdeveloped. Recent studies,

however, have begun to employ spatially explicit modeling to explore how distributions of

resources relate to monuments (e.g., [1,4–6]). These studies provide key insights into the

degree to which ecological constraints shape the location and function of monuments in past

societies.

Rapa Nui (Easter Island, Chile, Fig 1) provides one of the most dramatic cases of prehistoric

monument construction where, in a span of only about 500 years, from the 13th century AD to
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European contact in AD 1722 and into historic times, the islanders (Rapanui) constructed

over 300 megalithic platforms (ahu) and nearly 1000 multi-ton anthropomorphic statues

(moai) [7–11]. The achievements of the Rapanui are even more impressive when one considers

the island’s ecological marginality, including low and unpredictable rainfall, nutrient-poor

soils, lack of large coral reefs or abundant sources of surface freshwater [12]. The island’s ecol-

ogy greatly constrained the range of options available for subsistence to the island’s inhabitants

[8,13], and many consider these environmental constraints to be a key factor in the emergence

of monuments on Rapa Nui, such as their role as adaptive responses to environmental uncer-

tainty (e.g., [14,15]) or as territorial signals of control over limited resources (e.g., [8,16–20]).

The relationship between the island’s subsistence resources and temporal and spatial pat-

terns of monument construction, however, remain largely untested, which represents a signifi-

cant limitation in our understanding of Rapa Nui’s history. Yet, like other oceanic islands,

Rapa Nui can offer a model system for understanding human-environment interactions,

including the ecological factors underlying monument construction [17,21–23]. Accordingly,

the current work is concerned with beginning to test the hypothesis that Rapa Nui’s monu-

mental architecture served as territorial signals of control over subsistence resources. As a

starting point for evaluating this hypothesis, we quantitatively model how the spatial distribu-

tion of ahu is explained by different resources thought to be the focus of competition in pre-

contact times. Tests are conducted through spatially-explicit modeling of the relations

between ahu and the three critical subsistence resources on Rapa Nui: rock mulch agricultural

gardens, marine resource locations, and freshwater sources. The expectation is that if Rapa

Nui’s monuments were built, in part, to signal territorial resource control, then there should

be a spatial association between ahu and the resources they are signaling control over [17]. In

our work, we follow an information criteria model-selection approach using point-process

models [24–27]. Our analyses combine existing data for the coverage of agricultural fields [28],

marine resource locations, and include data from our ongoing study of the island’s freshwater

sources [29,30]. For the purposes of this study, we restrict our spatial analysis of ahu to the

eastern portion of the island where we have near-complete coverage documenting the distribu-

tion of these three resources.

The results of our point-process modeling indicate that the spatial locations of ahu are most

parsimoniously explained by proximity to freshwater sources. Our findings offer an explana-

tion for the primarily coastal distribution of these monuments as well as for ahu found inland.

These results provide key information on the conditions that contributed to the unprece-

dented investments in monument construction on Rapa Nui.

Background to Rapa Nui and its monuments

Rapa Nui environment

Rapa Nui is a small (164 km2), isolated island in the southeastern Pacific that is about 3500 km

from South America and nearly 2000 km from the nearest inhabited island (Fig 1). The island

is volcanic in origin with three main shield volcanoes (Rano Kau, Terevaka, and Poike) and a

number of smaller scoria and cinder cones [31]. With Terevaka at just over 500 meters above

sea-level (MASL), the island is relatively low-lying and lacks incised valleys common on other

Pacific islands. Rapa Nui’s climate is seasonal and windy, given its subtropical latitude, and it

receives relatively low and unpredictable annual rainfall ranging from ca. 600–2000 mm/year

[13,32]. While paleoecological studies demonstrate a once extensive palm forest (e.g., [33–36]),

over the period of human occupation the island lost its forest with the combined effects of

human land-clearing for cultivation and the invasive commensal Pacific rat (Rattus exulans)
[37–40]. Compared to elsewhere in Polynesia, Rapa Nui’s soils are excessively-drained,
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leached, and poor in available nutrients [13,41,42]. Although there are freshwater lakes within

the volcanic craters, given the very porous nature of the underlying substrate [43], the island

lacks other sources of surface freshwater, such as permanent streams, common on other

islands. As it rises steeply from the ocean floor, Rapa Nui also has a relatively impoverished

marine environment and lacks large coral reefs or a lagoon [44]. These environmental charac-

teristics imposed considerable constraints on the subsistence options available to precontact

inhabitants.

Rapa Nui’s monuments

The inherent environmental constraints make the achievements of human populations who

persisted on this small island for more than 500 years all the more remarkable. Not only did

Rapanui people manage to live successfully in a small, resource-poor, and isolated location,

they collectively manufactured nearly one thousand massive stone statues (moai) and more

than 300 megalithic platforms (ahu).

While a precise overall chronology for Rapa Nui’s monuments has not been fully estab-

lished, radiocarbon dating indicates that construction of the island’s megalithic platforms,

known collectively as ahu, likely began shortly after colonization in the 13th century and inten-

sified over time [7,45–49]. Ahu represent a derived form of ritual architecture found elsewhere

in East Polynesia [10,50–52], though both the quantity and magnitude of investment on Rapa

Nui are distinct. While many moai (ca. 400) remain at the statue quarry at Rano Raraku,

Fig 1. Rapa Nui. (Top left) Rapa Nui in East Polynesia, (top right) locations of image-ahu on Rapa Nui, and (bottom) Ahu Tongariki with moai (Photo by R.J.

DiNapoli).

https://doi.org/10.1371/journal.pone.0210409.g001
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hundreds of moai, weighing several tons each, were transported along statue roads and erected

upon ahu [53–55]. In addition, many moai were also adorned with large red-scoria ‘hats’ called

pukao [56,57]. Rectangular platform ahu with a dressed-stone sea-wall, and which often sup-

port one or more moai, are referred to as “image-ahu” [10]. Image-ahu are precontact features,

whereas other ahu forms, such as semi-pyramidal ahu, ahu po‘e po‘e, and ahu avanga are con-

sidered largely post-contact in age [10]. Here, we focus our discussion and analyses on the dis-

tribution of image-ahu (Fig 1).

Image-ahu were the focal points of Rapa Nui’s precontact communities [10,47,58]. Overall,

the Rapanui settlement pattern is characterized by relatively dispersed communities distrib-

uted along the coastline as redundant sets of domestic features ca. 100–200 m inland from ahu
[19,59,60]. While image-ahu have a primarily coastal distribution and, based on limited histor-

ical accounts, were community gathering locations for ritual activity, explanations for why

they occur in their specific locations or additional social roles these monuments may have

served remain largely unanswered.

Many have debated whether ahu served as territorial displays of control or hereditary own-

ership over the island’s limited subsistence resources (e.g., [11,19,20,52,58,61–65]), and while

there is general agreement that competition and territoriality were centered around limited

and predictable resources (see [66]), there is disagreement over which resources were most

critical. Van Tilburg [11] has argued that, “the archaeological evidence illustrates clearly that

the control of subsistence production in agriculture and marine resources was intimately and

strongly linked to the typical Polynesian scheme of hereditary land use rights. . .The need con-

stantly to restate that ownership, generation after generation and in the context of a growing

population and a changing natural environment, seems to have been one of the driving forces

of ahu construction, although other social and religious motivations obviously existed.” Simi-

larly, Kirch [18] has argued that image-ahu, “are found at the best embayments around the

island,” which served as a means of, “visually ‘controlling’ access to the limited marine

resources.” Others (e.g., [8,17,19]) suggest that freshwater would have been a significant criti-

cal limited resource and the focus of intense competition, whereby ahu served as costly signals

of community competitive ability. In addition, many assume that surplus sweet potato yields

from lithic mulch gardens would have been necessary to support ahu construction and moai
transport and that monuments served to broadcast elite control of these resources (e.g.,

[20,67–70]). Stevenson and colleagues [67–70] have consistently argued for an association

between ahu and rock mulch gardens, that the development of intensified agriculture closely

tracks the tempo of monument construction, and that “[t]hese repeated associations indicate

that ranked persons were most likely ritually involved with agricultural production and used

the position to manage the field systems under their authority” [67]. To date, however, rigor-

ous tests of these hypotheses are lacking, as are any attempts to construct formal models of ahu
spatial patterns (but see Beardsley [71] for exploratory analyses). If image-ahu served as terri-

torial markers of control over subsistence resources, as a majority of archaeologists who have

worked on the island suggest, then the empirical expectation is a spatial association between

ahu and the resources for which they mark control.

Subsistence resources

Access to raw materials for architectural construction and tools seems to be unrelated to

image-ahu locations. Obsidian used for cutting and scraping tools known as mata‘a [72–75]

was derived from several discrete locations near their source volcanic vents away from ahu
activity [76,77]. Basalt, on the other hand, which was used to create adzes and other tools, had

many sources around the island, but there is no clear pattern suggesting localized control
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[78,79]. Stone for large moai and red scoria for pukao come primarily from single quarries at

Rano Raraku and Puna Pau (respectively), and there do not appear to have been limits to the

access of these materials by any particular group (e.g., [80–82]). Thus, on Rapa Nui there are

three broad classes of resources to consider that might potentially relate to the choices made

for constructing image-ahu: locations suitable for agriculture, sources of marine food, and

freshwater.

Agriculture. Like Polynesians across the Pacific, the precontact Rapanui were agricultur-

alists, although, overall, Rapa Nui’s growing conditions are considered marginal when com-

pared to elsewhere [13,42]. A substantial fraction of subsistence, however, depended upon

agricultural crops that included sweet potato (Ipomoea batatas), yams (Dioscorea alata), dry-

land taro (Colocasia esculenta), bananas (Musa sp.), sugar cane (Saccharum officianarum), and

other cultigens. Of these, plant microfossil analyses of soils and human dental calculus indicate

that sweet potato was the primary plant food source [37,83,84]. The island’s cool climate and

lack of streams or incised valleys meant that irrigated taro cultivation common elsewhere in

Polynesia was not possible [85]. Instead, sweet potato, along with yams and dryland taro, were

grown in lithic mulch gardens. In these gardens, a collection of basalt pebbles, cobbles, and

boulders were placed on the ground to add nutrients, trap moisture, protect plants from wind,

and stabilize temperature [28,41,42,67,69,86,87]. Apart from Poike and Rano Kau, mulch gar-

dens are found across the island [28]. Cultivation also took place within small, circular-walled

garden enclosures (manavai) that are thought to have been used primarily for taller cultigens

such as bananas or sugarcane [67,68]. Manavai were likely of secondary importance to mulch

gardens [19,88,89]. Terrestrial protein was available from domesticated chickens (Gallus gal-
lus), rats (Rattus exulans), and potentially birds [90–92].

Marine resources. The relative importance of marine resources in the precontact Rapanui

diet has been the subject of some debate. The first detailed ethnographies conducted in the

early 20th century (e.g., [82,93,94]) suggested that marine resources were a relatively unimpor-

tant dietary component at this time, though Métraux [94] suggested that fishing was more

important in precontact times. These ethnographies documented a range of near-shore tech-

niques used to target several eel and fish species, including netting, snaring, and hook and line

fishing with stone, bone, and wooden fishhooks. These different kinds of fishhooks, netting

needles, and stone net-sinkers are also found in archaeological contexts (e.g., [95,96]). Due to

the paucity and small size of marine shell on Rapa Nui, shell fishhooks are unknown [95].

Near-shore foraging for invertebrates, such as octopus, crabs, lobsters, and urchins, was also

practiced, though these were possibly of lower importance [95,97].

The available zooarchaeological data for Rapa Nui marine resource use are limited but also

suggest the importance of near-shore fishing in the precontact times. Ayres [90,98] excavated

several deposits on the north and south coasts and found that fish and shellfish remains com-

prised a relatively low percentage (< 30%) of the overall food remains and suggested a greater

importance of near-shore fish taxa. Ayres [98] also found slight geographic differences in fish

remains, with a higher proportion on the north coast, though these were balanced by a larger

proportion of invertebrate remains on the south coast. However, a later analysis of additional

remains from these sites found a much higher percentage (~85%) of fish remains and less geo-

graphic differences between the north and south coast [90]. Similarly, Rorrer [91] excavated

two cave sites on the southwest coast which yielded abundant fish remains and small amounts

of marine shell, with the assemblage being predominantly comprised of snapper, wrasse, and

moray eel. Steadman et al.’s [92] excavations at Anakena beach also yielded an assemblage of

fish and dolphin remains that were more or less evenly distributed through the deposit. While

some have suggested that the presence of dolphin in these deposits implies that the Rapanui

fished in the open ocean (e.g., [99,100]), it is more likely that dolphins were hunted in the
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shallows of Anakena bay as was done on other Polynesian islands [101]. Similar results from

Anakena excavations are reported by Martinsson-Wallin and Crockford [102] and Hunt [38],

though with a much higher abundance of fish remains. Apart from Steadman et al.’s [92] large

assemblage of dolphin remains, these studies indicate the importance of nearshore taxa in pre-

contact times. It should be noted that many of these studies used relatively large mesh screens

( inch) during excavation (though Steadman et al. [92] subsampled material and screened with

1/16th inch mesh for one square of their 1×4 m unit), thus potentially biasing our knowledge

about marine resources against smaller fish and shell remains [103]. In sum, these studies all

indicate the importance of nearshore taxa in precontact times.

Relative to terrestrial resources, marine resources were once thought to make only a small

contribution to subsistence [104–106]. A recent reanalysis of the stable isotope evidence [107],

however, indicates that marine resources composed at least 50% of dietary protein. In conjunc-

tion with the zooarchaeological evidence, these findings demonstrate that marine resources

played a significant role in the Rapanui diet. Thus, while Rapa Nui’s marine resources are lim-

ited when compared to other Polynesian islands, they nonetheless comprised an important

part of the precontact subsistence system. In addition, recent surveys of Rapa Nui’s marine

ecosystem indicate that overall fish biomass is relatively high (e.g., [44]). Rapa Nui’s relatively

marginal marine environment, however, restricted opportunities for prehistoric populations

to intensify reef foraging (especially for shellfish), a practice important elsewhere in Polynesia

(e.g., [108,109]).

Freshwater. Freshwater is a limited resource of critical importance that is infrequently

discussed for Rapa Nui. As noted above, the island receives a moderate amount of rainfall but

also experiences frequent droughts and, due to soil and bedrock permeability, has no perma-

nent streams. The highly permeable bedrock allows water to rapidly transfer to the island’s

unconfined aquifers, and the water table is generally only a few MASL near the coast [43]. Her-

rera and Custodio [43] have suggested that groundwater may be perched on less permeable

geologic features inland, but except where a few springs occur, the island’s geology makes

inland groundwater inaccessible without the aid of modern drilling equipment. While there

are a few isolated instances of landforms that give the impression of once being fluvial ravines

[96,110], these are likely volcanic features such as collapsed lava tubes [111].

Freshwater is also available in the island’s many lava tubes, found mainly on the western

end of the island, where groundwater and rainwater can collect [43,82,96,112]. The only large

perennial bodies of freshwater are lakes and springs resting atop impermeable portions of vol-

canic cores in Rano Kau, Rano Raraku, and Rano Aroi. However, there is a curious lack of evi-

dence for these lakes being primary water sources in either pre- or post-contact times (e.g.,

[82,94];cf. [113,114]), likely due to their inaccessibility or distance from the majority of habita-

tion areas. The highly permeable substrate and absence of perched aquifers led to the primary

challenges faced by the Rapanui in procuring freshwater.

Early European visitors were quick to note the scarcity and brackish quality of freshwater

on Rapa Nui, and their reports also provide key insights into the primary sources of freshwater.

At first European contact in 1722, Bouman, a captain in Roggeveen’s Dutch expedition, noted

that the Rapanui had “calabashes [i.e., gourds, Lagenaria sp.] in which they kept water which I

tasted and found to be quite brackish.” [115]. Later visitors also describe the use of gourds for

water storage and transport (e.g., [116,117]). Due to its ability to retain considerable moisture,

sugarcane was also possibly used as a water source [116,118]. However, the historical accounts

of sugarcane use are contradicted by the relatively low abundance of their phytoliths in human

dental calculus [119]. Most observations point to the importance of freshwater from coastal

areas. Cook, for example, noted that the islanders drank coastal water, commenting that the

water given to them by the Rapanui was “brackish and stinking” which was only “rendered
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acceptable by the extremity of their thirst” and later saying that they were even given “real salt

water” and that the Rapanui “drank pretty plentifully” from the sea [120]. From these descrip-

tions, it is likely that Cook experienced the Rapanui using coastal groundwater discharge

(CGD) whereby groundwater seeps up in many locations along the island’s coastline. There

are several additional European accounts of the Rapanui drinking seawater (e.g.,

[116,118,121]), though, as pointed out by Routledge [82], these were almost certainly observa-

tions of the use of CGD as freshwater sources. These European accounts indicate that CGD

was an important freshwater source for the Rapanui [29].

Archaeologically, evidence for freshwater management occurs mostly in the form of fea-

tures known as taheta and puna. Puna, sometimes referred to as ‘wells,’ are stone paved and

sometimes walled features occurring along the coast that served to trap CGD [93,94]. Métraux

[94] recognized the important function of puna, noting these features “impounded rain water

and perhaps some fresh water springs”, and that the “ruins of ancient settlements are always

thick around water holes” [94]. In his early ethnographic and archaeological surveys, Englert

[93] also noted the co-occurrence of water sources with both ahu and settlements.

In addition to the use of puna, the Rapanui also made freshwater features known as taheta.

Taheta are small (i.e., <1 m wide) and shallow rainwater basins carved into basalt bedrock,

which, being dependent on rainfall, provided opportunistic and temporary sources of freshwa-

ter [111]. These features can be found scattered throughout the island, though they appear to

be more abundant in inland areas and on the northwest coast [59,119,122]. Freshwater dia-

toms extracted from the dental calculus of precontact human remains [119] suggest that popu-

lations relied on features like taheta that would have been habitat for phytoplankton. Many of

the diatoms identified in the skeletal remains prefer brackish water [123], indicating the

islanders also used other kinds of standing pools located at or near the coast, such as brackish

water at locations of CGD or puna. In addition to taheta and puna, Vogt and colleagues

[124,125] have identified a unique water basin and possible dam feature at the inland site of

Ava Ranga Uka A Toroke Hau. In sum, while Rapa Nui lacks many obvious sources of fresh-

water, the geology of the island, the distribution of archaeological material, and ethnohistorical

accounts suggest a heavy reliance on water from coastal areas, in particular CGD, which was at

times impounded through the use of puna.

Below, we present a series of spatially-explicit models designed to assess the degree to

which image-ahu spatial locations are explained by the presence of rock mulch gardens,

marine resource locations, and/or freshwater sources to test competing hypotheses about

whether monument construction on Rapa Nui is related to subsistence resource constraints.

Materials and methods

Archaeological and environmental data

To compare the spatial distribution of ahu to subsistence resource locations requires compre-

hensive spatial coverage of these variables, and we therefore restrict the current analysis to an

eastern region of Rapa Nui (Fig 2) where we have data on monuments, agricultural plots,

marine resource locations, and freshwater sources. Research permits for our study were pro-

vided by Comunidad Indı́gena Polinésica Ma‘u Henua, the Easter Island Development Com-

mission (CODEIPA), the Chilean Consejo de Monumentos Nacionales, and National Forestry

Corporation (CONAF). The 93 image-ahu and their locations derive from the comprehensive

ahu survey conducted by Martisson-Wallin [10]. We determined ahu locations by georeferen-

cing Martinsson-Wallin’s [10] maps and subsequently correcting their locations during field

surveys using a Trimble Geo 7x GPS unit and with Google Earth imagery (Fig 2A).
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Fig 2. Archaeological and environmental data used in our analyses. (A) locations of image-ahu, (B) locations of freshwater sources, (C) marine resource locations,

(D) minimal rock mulch classification, (E) medial rock mulch classification, (F) maximal rock mulch classification.

https://doi.org/10.1371/journal.pone.0210409.g002
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Our analyses of agricultural resources focus on the relationship between image-ahu and

rock mulch gardens, rather than other features like manavai or agricultural productivity mod-

els (e.g., [59,126]), as these features represent known locations of the most intensified agricul-

tural production. The locations of rock mulch gardens derive from the results of Ladefoged

et al. [28], who produced remote-sensing-based documentation of the distribution of mulch

gardens across the island. Ladefoged et al. [28] produced three products from their analyses:

minimal, medial, and maximal mulch classifications. We analyzed each of these three mulch

classifications. To facilitate the distance-based analyses outlined below, we transformed the

rock mulch dataset. First, we converted the data into a binary raster with areas of rock

mulch = 1 and non-mulch areas = 0. Next, we created a mulch density estimate by calculating

the mean occurrence of rock mulch within a circular neighborhood of 100 m around each cell,

and this result was reclassified into a new binary raster with 1 = the upper 90% (Fig 2D–2F).

This process filtered out potential noise in Ladefoged et al.’s [28] rock mulch model that would

come from small areas being incorrectly classified as mulch or small isolated areas unlikely to

be important resource locations, based on previous hypotheses that only the largest intensified

field systems were associated with construction of image-ahu (e.g., [67–69]). We then created

a distance map for rock mulch, i.e., a raster layer where each cell value is equal to its Euclidean

distance from rock mulch gardens.

As discussed above, Rapa Nui lacks large coral reefs and has a relatively homogenous rocky

marine environment. Given these characteristics of the island’s marine ecology and archaeo-

logical evidence for the importance of near-shore taxa, the most suitable locations for marine

resource procurement would have simply been areas with easy coastal access. Using NASA’s

Shuttle Radar Topography Mission (SRTM) 30 m digital elevation model (DEM), we defined

marine resource locations as areas <10 MASL (Fig 2C). This choice of 10 MASL is somewhat

arbitrary, but captures the locations of low-elevation embayments, which would have provided

the best access points for near-shore fishing and other forms of marine foraging [18,127]. To

explore the sensitivity of our modeling to this<10 MASL cutoff, we also perform these analy-

ses using a<5 MASL threshold (S8 File). As for the rock mulch data, we created a Euclidean

distance map with cells equal to distance from marine resource locations.

Our freshwater data derive from previous studies (e.g., [43,123,128]) and our ongoing

pedestrian and geochemical surveys [29,30] designed to locate precontact freshwater sources,

such as lakes, springs, ponds, caves with seeping groundwater, puna, and coastal seeps (Fig

2B). We do not consider taheta in our analysis for the same reason we filtered out smaller

areas of rock mulch. Specifically, taheta would have provided only small and temporary

sources of freshwater and thus would have been unlikely sources of competition [29]. Com-

plete survey data on taheta are also presently unavailable. Coastal seeps, or coastal groundwa-

ter discharge (CGD), locations were identified using EXTECH EC170 salinity meters, which

measure the concentration of dissolved ions in coastal water expressed in parts per thousand

(ppt). Salinity measurements were taken every 10 m along the coastline within our survey area

(Fig 2B) and within one hour of low-tide when CGD is at its maximum. Coastal seeps were

defined as locations where the salinity of coastal water was substantially less than the average

salinity of seawater (ca. 35 ppt), in this case 28 ppt or less. This value represents a 20% reduc-

tion in salinity and therefore signals areas of substantial CGD that could be used as freshwater

sources (further details in [29]). In limited locations we also identified CGD using a Solonist

Levelogger conductivity meter based on differences in conductivity between freshwater and

seawater [129]. Rapa Nui seawater has a mean conductivity value of 55 millisiemens (mS), so

any location with a conductivity <50 mS was classified as a high concentration of CGD [130].

While we have not yet resolved the question of potential temporal variability in discharge

rates, given Rapa Nui’s hydrogeology, the spatial locations of these water sources have likely
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remained stable over the time period of human occupation [29,43]. These freshwater data

were transformed into a Euclidean distance map where cell values equal distance from fresh-

water sources.

Point process modeling

Two fundamental concepts in spatial analysis are the first- and second-order properties of

point patterns [25,131]. The first-order property of a point pattern is its intensity, defined as

the number of points per unit area of the study region. The intensity is usually described as

being homogeneous (i.e., expected number of points the same across the study area) or inho-

mogeneous (i.e., spatially varying intensity) [24]. The second-order property is the interaction

among points, such as clustering (resulting from an attraction process) or dispersion (resulting

from some kind of repulsion/spacing). In general, a major goal of point-pattern analysis is to

account for what, if any, independent variables explain the intensity of the point pattern and

whether aspects of the spatial pattern are accounted for by clustering/dispersion among points.

These two properties are analytically important to distinguish, as aspects of first-order inten-

sity may be conflated for second-order interaction, such as a set of points appearing clustered

simply due to their tendency to be in one part of a study area. On Rapa Nui, for example, one

might assume that the tendency for ahu to be dispersed along the coastline is related to settle-

ment spacing (second-order property), though this distribution may be sufficiently accounted

for by a dependent relationship with coastal resources (inhomogeneous first-order intensity).

It is also possible that ahu spatial patterns are explained by both first- and second-order prop-

erties. Below, we apply a series of formal techniques for modeling these two properties in an

effort to better understand which properties and variables best explain the spatially varying

intensity of image-ahu.

To test whether geographic patterns of ahu construction are explained by resource avail-

ability, we evaluate the following hypotheses related to the spatial dependence of ahu on dis-

tance from subsistence resources locations: (1) image-ahu have a homogeneous or

inhomogeneous random spatial distribution (null hypothesis), (2) image-ahu have an inhomo-

geneous spatial distribution which is simply explained by distance from the coastline; image-

ahu have an inhomogeneous spatial distribution that is best explained by (3) distance from

rock mulch gardens; (4) distance from marine resource locations; (5) distance from freshwater

sources; or (6) the spatial distribution of image-ahu is explained by some combination of these

variables.

We assess hypothesis 1 using homogeneous and inhomogeneous forms of Besag’s L-func-

tion [132,133]. The homogeneous L-function simply tests for deviations from complete spatial

randomness (CSR) in the form of clustering or dispersion in a point-pattern at different spatial

scales, whereas the inhomogeneous L-function tests for clustering or dispersion relative to the

inhomogeneous intensity of the underlying point-pattern. For example, ahu may appear clus-

tered simply because they are predominantly coastal in their distribution, though once we

account for this spatial inhomogeneity they may be neither clustered nor dispersed. We assess

the statistical significance of these tests using Monte Carlo simulation envelopes of CSR. Areas

of the empirical function falling outside this envelope indicate significant departures from

CSR, with areas above the envelope indicating clustering and below the envelope indicating

dispersion. Here, we use 39 simulations of CSR, which is equivalent to testing at the p = 0.05

level.

To test hypotheses 2 through 6, we first explore potential relationships between ahu and

distance from subsistence resource locations using spatial Kolmogorov-Smirnov (SKS) tests

[134]. The SKS test works by comparing the spatial empirical cumulative distribution function
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(CDF) to the expected CDF under the null hypothesis of CSR and thus provides an indication

of whether the spatial distribution of a point-pattern is non-randomly patterned according to

an underlying spatial covariate. We perform this SKS test for ahu spatial relationships with dis-

tance from marine resource locations, freshwater sources, and Ladefoged et al.’s [28] three

rock mulch classifications. The alternative hypothesis is that the CDF for ahu lies above that

expected under CSR, i.e., that ahu are closer to these resource locations than is expected for a

random spatial pattern. The SKS test, however, is merely an exploratory tool to help guide the

choice of spatial covariates to use in more formal models, and here those spatial covariates for

which ahu are non-randomly constructed near are further evaluated using point-process

modeling.

Point-process models (PPM) are a wide class of spatially explicit models that facilitate for-

mal analysis of the relationship between point-patterns and a range of spatial covariates [24].

PPM works by fitting a spatial intensity function to the intensity of an empirical point pattern

and finding the values of the predictor variables (i.e., parameters) that best fit the data [24].

The technique is similar to geographically weighted regression or maximum entropy modeling

but has a number of strengths [24], such as its ability to simultaneously model both first-order

(i.e., homogeneity/inhomogeneity) and second-order (i.e., clustering/dispersion) properties in

the underlying point-pattern and how these properties may be dependent upon a set of under-

lying spatial covariates [25,26]. PPM is therefore well-suited to the objectives of this study.

Rather than simply evaluate the likelihood of different models or test for significant effects

of different spatial covariates, PPMs allow for the use of formal model-selection tools based on

information criteria. Tools like the Akaike Information Criterion (AIC; [135]) or Bayesian

Information Criterion (BIC; [136]) allow for the formal comparison of competing potential

models about the formation of archaeological patterns. These tools are based on a principle of

parsimony, which penalizes models for additional parameters, so the model chosen as ‘best’ is

the one that explains the most variability in the underlying data in the simplest way. This parsi-

mony criterion is beneficial, because more complex models often will have higher likelihoods

simply because of additional parameters, though they may be overfit [26]. The use of informa-

tion criteria therefore allows us to evaluate the tradeoff between model complexity and likeli-

hood in selecting the best model. One convention is to choose the model which has the

smallest change in information criterion score (e.g., ΔAIC or ΔBIC) and the highest weight,

which provides a measure of the relative strength of different candidate models [26,137].

To accomplish this task, we built a series of inhomogeneous Poisson PPMs that model the

log-linear relationship between an empirical point pattern and different spatial covariates, in

this case how the spatial trends in ahu construction are predicted by subsistence resource loca-

tions. Our initial model simply considers the inhomogeneous relationship between ahu loca-

tions and their distance from the coastline, i.e., based on the possibility that ahu are not related

to subsistence resources but simply occur in coastal areas (hypothesis 2). We then built addi-

tional models which consider the spatial dependence of ahu on distance from different combi-

nations of subsistence resource locations (hypotheses 3–6). Following the suggestion of Kuha

[138], we then use both ΔAIC and ΔBIC to formally compare these models, for when used in

tandem these two information criteria can be powerful tools for selecting the best-fitting

model.

Once the best-fitting model was selected, we evaluated the fit between the model and the

data using a number of techniques. First, we used the residual L-function, which compares

whether the L-functions of simulated realizations from the best-fitting model are statistically

indistinguishable from the L-function of the empirical point-pattern [24]. Regions of the

empirical function falling outside the envelope of the L-function for the model indicate a poor

fit between the model and the data. For example, if the L-function of the empirical pattern falls
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above the envelope for the model, then the empirical pattern is likely more clustered than was

accounted for in the model. We also assessed the fit between the L-function of a PPM and

empirical point-pattern by implementing the maximum absolute deviation (MAD) and Dig-

gle-Cressie-Loosmore-Ford (DCLF) tests using 39 Monte Carlo simulated realizations of the

model [139]. For these latter two tests, high p-values indicate good fit between the model and

data while low p-values suggest significant deviations between them. In the event of poor fit,

the models can be re-parameterized to include second-order properties such as clustering or

dispersion. We also present visualizations of simulated realizations of the best-fitting PPM

using the Metropolis-Hasting algorithm [140]. We performed our analyses with R [141], using

the spatstat package for PPM [24] and the MuMIn package for multi-model selection [142].

All data (S1–S6 Files) and R code (S7 and S8 Files) necessary for running these analyses are

available in supplementary files.

Results

Fig 3 shows the results of the homogeneous and inhomogeneous L-function, which tests for

deviations from CSR in the ahu point pattern. In the figure, the black line is the empirical L-

function for ahu, the red line is the expectation under CSR, and the grey regions are the

p = 0.05 significance envelopes. Fig 3A shows that when compared to CSR ahu appear highly

clustered at nearly all spatial scales, though when accounting for the spatial inhomogeneity of

ahu (Fig 3B) they are neither clustered nor dispersed, except for dispersion at distances greater

than ca. 1500 m. As expected, these results indicate that ahu have an inhomogeneous spatial

distribution but little evidence for clustering or dispersion at distances less than 1500 m. Next,

we model whether this inhomogeneous spatial distribution is explained by one or more envi-

ronmental variables.

Fig 4 shows the results of the SKS tests on the relationship between ahu and marine

resource locations, freshwater sources, and rock mulch gardens. The results indicate that ahu

Fig 3. Test of hypothesis 1. (A): L-function of ahu compared to 39 simulated realizations of CSR; (B): inhomogeneous L-function of ahu
compared to 39 simulated realizations of CSR. Y-axes are the values of the L-functions at separation distances (r) in meters (x-axes). Results

indicate that image-ahu have an inhomogeneous intensity lacking second-order properties, though there is some evidence for dispersion at

distances>1500 m. Black lines are the empirical L-functions, red dashed lines are the theoretical expectations under the null model, and the

grey-shaded region is the envelope of 39 Monte Carlo simulations of the null model.

https://doi.org/10.1371/journal.pone.0210409.g003
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Fig 4. Spatial Kolmogorov-Smirnov (SKS) tests. SKS tests for the relationship between image-ahu (black squares) and distance (m) from subsistence resource

locations (choropleth maps). Observed distribution (black lines) is compared to the expected distribution under CSR (dashed red lines) with the alternative hypothesis
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are not significantly closer to the minimal rock mulch classification than expected under CSR

(D+ = 0.083, p = 0.26); however, there is a significant spatial association for both the medial

(D+ = 0.20, p = 0.0004) and maximal classifications (D+ = 0.24, p< 0.0001) from Ladefoged

et al. [28]. Ahu are significantly closer to both marine resource locations (D+ = 0.65,

p< 0.0001) and freshwater sources (D+ = 0.59, p-value < 0.0001) than expected under CSR.

Based on these findings we then formally explored the relationship between ahu and marine

resource locations, freshwater sources, the maximal rock mulch classification, and the coast-

line using PPM and multi-model selection. We also applied the same PPM procedure using

the medial rock mulch classification and a<5 MASL threshold for marine resource locations

and obtained similar results (see S8 File).

Table 1 shows the different candidate models with their ΔAIC, ΔBIC, and weights. Both

model selection tools indicate that ahu spatial patterns are poorly explained by just distance

from the coastline, suggesting that some additional spatial covariate is needed to explain the

distribution of ahu. Both AIC and BIC indicate that ahu locations are best explained by an

additive model with the combined effects of distance from the coastline and distance from

freshwater sources (model 5) with a ΔBIC of 0 and a BIC weight of 0.675 and a ΔAIC of 0 and

an AIC weight of 0.35.

Table 2 shows the covariate estimates, standard errors, 95% confidence intervals, and Z val-

ues for the best fitting model 5. Negative values of the covariate estimates indicate that ahu
intensity decreases with distance from the coast and freshwater sources, i.e., the inhomoge-

neous intensity of image-ahu is greatest near these resources. Fig 5 graphically displays the

inverse relationship between the effect of distance from water sources on the intensity of ahu.

Fig 6 shows the result of the residual L-function test, which serves as a form of model vali-

dation. The results indicate no significant deviations between model 5 and the data. To further

validate the model, we also used a MAD and DLCF test [139]. The results of these tests indicate

being that ahu are nearer to these resources than random. Results suggest ahu are significantly clustered near freshwater sources (D+ = 0.59, p<0.0001), marine resource

locations (D+ = 0.65, p<0.0001), and the maximal rock mulch garden classification (D+ = 0.24, p<0.0001). Results for minimal and medial mulch classifications can be

found in S8 File.

https://doi.org/10.1371/journal.pone.0210409.g004

Table 1. Point-process model selection for the relationship between ahu and subsistence resources. Smaller change in information criteria score (ΔBIC and ΔAIC)

and higher weight indicate best-fitting model.

Model Covariates df ΔBIC ΔAIC BIC weight AIC weight
1 coastline 2 49.61 52.14 0 0

2 freshwater 2 54.62 57.16 0 0

3 marine resources 2 61.36 63.89 0 0

4 rock mulch 2 231.19 233.72 0 0

5 coastline + freshwater 3 0 0 0.675 0.350

6 coastline + marine resources 3 51.91 51.91 0 0

7 coastline + rock mulch 3 35.28 35.28 0 0

8 freshwater + marine resources 3 5.51 5.51 0.043 0.022

9 freshwater + rock mulch 3 58.94 58.94 0 0

10 marine resources + rock mulch 3 50.51 50.51 0 0

11 freshwater + marine resources + rock mulch 4 10.02 7.49 0.005 0.008

12 Coastline + freshwater + marine resources 4 2.66 0.13 0.178 0.328

13 Coastline + freshwater + rock mulch 4 4.36 1.83 0.076 0.140

14 Coastline + marine resources + rock mulch 4 34.88 32.34 0 0

15 Coastline + freshwater + marine resources + rock mulch 5 6.75 1.68 0.023 0.151

https://doi.org/10.1371/journal.pone.0210409.t001
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that model 5 is a good fit to the data (MAD = 171.91, p = 0.22; U = 41528000, p = 0.18). This

finding indicates that the inhomogeneous spatial intensity of image-ahu is sufficiently

explained by the model 5 covariates and that no second-order interaction parameters (e.g.,

Table 2. Covariates for best-fitting model 5. Negative covariate estimates indicate that ahu intensity decreases with distance from the coast and freshwater sources.

Covariate Estimate Standard error 95% Confidence interval, low 95% Confidence interval, high Z-test Z-value

(Intercept) -11.2 0.16 -11.6 -0.1 <0.0001 -70.06

Distance from coastline -0.001 0.0003 -0.002 -0.0007 <0.0001 -4.7

Distance from water -0.003 0.0004 -0.003 -0.002 <0.0001 -5.9

https://doi.org/10.1371/journal.pone.0210409.t002

Fig 5. Effect of distance from freshwater sources on the spatial intensity of image-ahu. Ahu spatial intensity declines with distance from freshwater sources. Grey-

shaded region represents the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0210409.g005
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clustering/dispersion) are warranted, thus pointing to the significance of freshwater sources

and their association with ahu locations.

Our final step in model validation is to visually compare simulated realizations of the best-

fitting model 5 against the empirical point pattern using the Metropolis-Hasting algorithm

[140]. Fig 7 shows 20 simulated realizations of the best-fitting model. The results show that the

model produces point patterns that are primarily coastal in distribution but with a few scat-

tered points inland, similar to the empirical distribution of image-ahu (Fig 2A).

Discussion

Our results indicate that the image-ahu point-pattern exhibits neither clustered nor dispersed

second-order properties but that their inhomogeneous coastal distribution is sufficiently

explained by a dependent relationship with some subsistence resources, though not others.

Our findings do not support the claims that ahu are related to competition over or monitoring

of agricultural resources, at least in the sense that the distribution of image-ahu are not

explained by the locations of rock mulch gardens, which were the source of intensified sweet

potato production (e.g., [67–70]). While the construction of Rapa Nui’s monuments may be

coeval with the establishment of rock mulch field systems, image-ahu do not appear to be built

in locations to mark control or territoriality over these resources. This result is supported by

other evidence indicating a lack of control over other resources, in particular fine-grained

basalt, moai tuff, and red scoria (e.g., [78,79];cf. [77]).

While our exploratory SKS analyses suggest a strong and significant spatial association

between ahu and marine resource locations, our PPM and multi-model selection suggests this

variable is not particularly meaningful. It is likely that marine resource locations appear

Fig 6. Residual L-function for best-fitting model. Red dashed line is the theoretical L-function of the model, grey

shaded region represents the upper and lower bounds of 39 Monte Carlo simulated realizations of the model

(p = 0.05), and the black line is the L-function for ahu. Y-axis is the value of the L-function at distances (r) in meters (x-

axis) Results indicate no significant deviation between model 5 and the data.

https://doi.org/10.1371/journal.pone.0210409.g006
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correlated with image-ahu due to their geographic proximity to the more meaningful explana-

tory variables (coastline, freshwater). That is, because marine resource and freshwater loca-

tions tend to occur in similar locations, significance tests show that ahu are significantly

related to both. It is in this kind of situation where multi-model selection is useful. Based sim-

ply on summary statistics and significance tests, image-ahu appear to be located near prime

marine resource access points; however, marine resource locations are not necessary to explain

the spatial patterns of ahu. These results highlight the strengths of formal model selection over

the more common method of significance testing in archaeological analyses (e.g.,

[26,143,144]). Significantly, our results offer little support to recent claims that ahu were pref-

erentially built at locations that mark control over marine resource locations (e.g., [18]). As

emerging lines of evidence indicate that marine resources were likely not as limited in the past

as once thought (e.g., [107]), they may not have been the focus of inter-community resource

competition.

Our multi-model selection indicates that, in addition to their primarily coastal distribution,

image-ahu spatial patterns are most parsimoniously explained by an inhomogeneous Poisson

PPM that models the spatial trend using distance from freshwater sources. Our multiple

model validation procedures show that, when accounting for these covariates, no second-

order properties are needed to explain the spatial intensity of image-ahu. Overall, simulated

realizations of the model (Fig 7) produce patterns that are remarkably similar to the empirical

Fig 7. Simulated realizations of the best-fitting model. 20 simulated realizations of the best-fitting model 5 incorporating distance from the coastline and distance

from freshwater sources.

https://doi.org/10.1371/journal.pone.0210409.g007
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ahu pattern, with most points occurring near the coast but with a few scattered inland. This

suggests that our model 5, which incorporates distance from the coastline and freshwater

sources, captures the underlying spatial patterns of ahu well.

This result is significant, as it likely explains the previously unresolved issue of why Rapa

Nui’s monuments occur primarily along the coast–one the most abundant sources of freshwa-

ter, coastal seeps, occurs primarily in coastal locations. The fact that our model 5 is a much bet-

ter fit than the simpler model 1, which only includes distance from the coastline, offers

compelling support for the claim that ahu are related to freshwater locations.

While one might argue that these results are unsurprising given that human settlements

tend to be associated with freshwater sources, this would not account for important character-

istics of the settlement pattern on Rapa Nui, which, like elsewhere in Polynesia (e.g., [14,145]),

is characterized by ritual architecture being spatially distinct from domestic settlement clus-

ters. Specifically, areas of domestic activity are slightly disassociated from ahu and tend to

occur 100–200 m inland [19,59,60]. While these separation distances between domestic and

ritual activity are not great in an absolute sense, what is notable is here is the non-random rela-

tive patterning in the topology of domestic features and monument locations. For example,

Morrison [59] found that clustered sets of co-occurring domestic activity areas were spatially

segregated from the locations of ahu. However, at larger spatial scales, groups of these redun-

dant sets of domestic features, while located further inland, are generally clustered around one

or more ahu. In other words, while ahu were indeed the focal points for the settlement pattern,

they are spatially offset from them, and directly adjacent to freshwater sources. These patterns

suggest a link between freshwater locations and the factors underlying the emergence of ritual

monument construction on the Rapa Nui landscape.

One interpretation of these results is that ahu were preferentially built near freshwater

sources to demarcate community access/control over these resources. This interpretation

draws on the logic of costly signaling theory, whereby Rapa Nui’s monuments are hypothe-

sized to serve as conspicuous displays of community access/control over the island’s limited

subsistence resources. Recently, such a costly signaling model for ahu has been proposed (e.g.,

[8,12,16,17]), which predicts that, if Rapa Nui’s monuments did serve a costly signaling func-

tion, then there should be a spatial association between them and the underlying quality they

are potentially signaling, such as the limited and vitally important, freshwater resources. These

predictions are quantitatively supported by our present results. Such an interpretation is not

unique. McCoy [19], who conducted the first large-scale settlement pattern analysis on Rapa

Nui, suggested that warfare in precontact times would have likely been over freshwater. It is

interesting to note that McCoy [19] also suggested a signaling function for ahu and argued

that, “[e]laboration of. . .ahu. . .would, from present knowledge, provide a rough index of suc-

cess in competition between lineages. . .based ultimately on the free time that could be allotted

to such non-vital activities.” Several emerging and independent lines of evidence show that

there is little empirical support for violent warfare, including little evidence for the production

of lethal weapons [75,146], limited instances of lethal skeletal trauma [147], and a lack of forti-

fications [17,148–150]. Given this lack of evidence for warfare, it is possible that inter-commu-

nity competition took the form of territorial displays, or costly signals, through the

construction of monumental architecture directly adjacent to the island’s limited freshwater

locations. However, additional formal analyses to specifically test these ideas are needed to

evaluate this scenario.

One limitation of our analysis is the lack of explicit spatio-temporal analyses of ahu. Unfor-

tunately, such a comprehensive temporal analysis is not possible at this time given the overall

lack of secure and high precision radiocarbon dates for Rapa Nui [9,46]. We can say, however,

that the construction of ahu likely began shortly following colonization and within ca. 500
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years they numbered in the many hundreds. Temporal changes in the island’s environment

and resources have been the subject of intensive research and prolonged debate. Regarding

changes in freshwater availability, several researchers have suggested that the loss of the

island’s palm forest severely degraded the amount of available surface freshwater (e.g.,

[92,110,114,124,151]); however, little in the way of hydrologic rationale nor data have been

presented to suggest this would be the case. Lake-core sediment data suggest a possible pro-

longed period of drought from the 16th to 18th centuries (e.g., [33,152]) that would have

reduced available freshwater from precipitation. These potential climatic and landscape

changes would have only increased the vital importance of freshwater coastal seeps. Given the

island’s hydrogeology, the locations of these freshwater sources (and also marine resource

locations) have likely remained stable over time, and as many have argued, the growth of the

island’s lithic mulch field systems is coeval with the construction of monumental architecture

(e.g., [67,69,70]). Therefore, we see our spatial analyses as an investigation of the processes that

led to the formation of Rapa Nui’s monumental landscape–a spatial pattern which appears

best explained by the location of freshwater sources. However, an extension of our analysis to

the western portion of Rapa Nui, once freshwater data from that region become available, will

be necessary to more fully explore these spatial patterns of monument construction.

Conclusions

The contrast between Rapa Nui’s marginal environment and the degree of investment in mon-

umental architecture has puzzled researchers since first European contact. The long held

orthodox view assumed that the island must have supported a larger and more complex society

under more prosperous environmental conditions that then ‘collapsed’ following a self-

imposed ‘ecocide’ [100]. In recent years, nearly every major component of this narrative has

been shown to lack empirical sufficiency (e.g., [12,46,78,150]). A key finding is that the con-

struction and transport of the island’s moai and pukao (red scoria ‘hats’) required neither large

numbers of individuals nor trees [54,57]. The implications of this are far-reaching, particularly

in that they question the common assumptions that monument construction necessarily

involved complex social organization and labor management or that it necessarily led to envi-

ronmental degradation (e.g., deforestation, erosion, etc.). Major unresolved issues, however,

concern the labor invested and choices made in constructing ahu, in particular why ahu (and

the moai and pukao upon them) were built where they were and how monument construction

might relate to territorial signaling of control over subsistence resource availability. Here, we

have presented a series of formal models which indicate that if Rapa Nui’s monuments did

indeed serve a territorial display function (in addition to their well-known ritual roles), then

their patterns are best explained by the availability of the island’s limited freshwater.
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