Mathematik für Anwender II

Vorlesung 43

Lineare Differentialgleichungssysteme mit konstanten Koeffizienten - Lösungsverfahren

Es sei eine homogene lineare Differentialgleichung mit konstanten Koeffizienten gegeben, d.h.

$$v' = Mv$$

mit einer konstanten Matrix

$$M = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \text{ mit } a_{ij} \in \mathbb{K}.$$

Wir lassen hier also auch den Fall zu, dass die Einträge komplexe Zahlen sind. Beim Auffinden der Lösungen zu einer reellen Matrix ist es nämlich hilfreich, die reellen Zahlen als komplexe Zahlen aufzufassen, um dort Umformungen durchzuführen, die im Reellen nicht möglich sind. Die Lösungen werden aber nach wie vor auf reellen Intervallen definiert sein. Wir erwähnen einige Rechenregeln für differenzierbare Abbildungen

$$f: I \longrightarrow \mathbb{C}^n$$
.

(I ist ein reelles Intervall oder eine offene Teilmenge von \mathbb{C}) die bei der Berechnung von Differentialgleichungen zum Zuge kommen. Zunächst lässt sich die reelle Exponentialfunktion e^x (unter Verwendung der Exponentialreihe) zu einer Funktion

$$\mathbb{C} \longrightarrow \mathbb{C}, z \longmapsto e^z.$$

ausdehnen. Diese ist komplex-differenzierbar, und zwar ist die Ableitung wieder die Exponentialfunktion selbst. Für eine komplexe Zahl u gilt $(e^{uz})' = ue^{uz}$. Zwischen der komplexen Exponentialfunktion und den trigonometrischen Funktionen besteht der Zusammenhang (die Eulersche Formel)

$$e^{it} = \cos t + i \sin t$$

(wobei t reell oder komplex sein kann).

Ausgeschrieben liegt also das Differentialgleichungssystem

$$\begin{pmatrix} v_1' \\ \vdots \\ v_n' \end{pmatrix} = \begin{pmatrix} a_{11}v_1 + \dots + a_{1n}v_n \\ \vdots \\ a_{n1}v_1 + \dots + a_{nn}v_n \end{pmatrix}$$

vor. Solche Systeme lassen sich mit Hilfe der linearen Algebra auf eine Folge von inhomogenen linearen gewöhnlichen Differentialgleichungen in einer Variablen zurückführen und damit sukzessive lösen. Das folgende einfache Lemma gibt bereits einen deutlichen Hinweis dadrauf, dass lineare Eigenschaften der Matrix M eng mit den Lösungen des Differentialgleichungssystems zusammenhängen.

Lemma 43.1. Es sei

$$v' = Mv$$

 $mit \ M \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ eine lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten und es sei $u \in \mathbb{K}^n$ ein Eigenvektor zu M zum Eigenwert $\lambda \in \mathbb{K}$. Dann ist die Abbildung

$$v: \mathbb{R} \longrightarrow \mathbb{K}^n, t \longmapsto ce^{\lambda t}u = c \begin{pmatrix} e^{\lambda t}u_1 \\ \vdots \\ e^{\lambda t}u_n \end{pmatrix},$$

 $(c \in \mathbb{K})$ eine Lösung dieses Differentialgleichungssystems.

Beweis. Dies folgt direkt aus

$$v'(t) = \begin{pmatrix} ce^{\lambda t}u_1 \\ \vdots \\ ce^{\lambda t}u_n \end{pmatrix}'$$

$$= \begin{pmatrix} (ce^{\lambda t}u_1)' \\ \vdots \\ (ce^{\lambda t}u_n)' \end{pmatrix}$$

$$= \begin{pmatrix} \lambda ce^{\lambda t}u_1 \\ \vdots \\ \lambda ce^{\lambda t}u_n \end{pmatrix}$$

$$= \lambda ce^{\lambda t} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$

$$= M \begin{pmatrix} ce^{\lambda t} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$

$$= M \begin{pmatrix} ce^{\lambda t}u_1 \\ \vdots \\ ce^{\lambda t}u_n \end{pmatrix}.$$

Definition 43.2. Es sei

$$v' = Mv$$

mit $M \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ eine lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten. Dann nennt man das charakteristische Polynom

$$\chi_M = \det(tE_n - M)$$

auch das charakteristische Polynom der Differentialgleichung.

Die Nullstellen des charakteristischen Polynoms sind nach Satz 28.2 Eigenwerte von M und liefern somit nach Lemma 43.1 Lösungen des Differentialgleichungssystems.

Bemerkung 43.3. Es sei

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0$$

eine lineare gewöhnliche Differentialgleichung höherer Ordnung mit konstanten Koeffizienten und es sei

$$v' = Mv$$

das zugehörige System von linearen Differentialgleichungen mit konstanten Koeffizienten, also mit der Matrix

$$M = \begin{pmatrix} 0 & 1 & 0 & \dots & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & 1 & 0 \\ 0 & 0 & \dots & \dots & 0 & 1 \\ -a_0 & -a_1 & \dots & \dots & -a_{n-2} & -a_{n-1} \end{pmatrix}.$$

Das zu dieser Matrix gehörige charakteristische Polynom ist nach Aufgabe 28.6 gleich

$$X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0$$
.

D.h. man kann dieses Polynom direkt aus der eingangs gegebenen Differentialgleichung höherer Ordnung ablesen.

BEISPIEL 43.4. Zu einer linearen gewöhnlichen Differentialgleichung zweiter Ordnung mit konstanten Koeffizienten

$$y'' + a_1 y' + a_0 y = 0$$

ist das charakteristische Polynom gleich

$$t^2 + a_1 t + a_0$$
.

Dessen Nullstellen sind einfach zu bestimmen, es ist

$$t_{1,2} = -\frac{a_1}{2} \pm \sqrt{\frac{a_1^2}{4} - a_0}.$$

Nun untersuchen wir systematisch, wie man Differentialgleichungssysteme mit konstanten Koeffizienten löst.

Lemma 43.5. Es sei

$$v' = Mv$$

 $mit \ M \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ eine lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten, es sei $B \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ eine invertierbare Matrix und es sei

$$N = BMB^{-1}.$$

Dann ist

$$v: \mathbb{R} \longrightarrow \mathbb{K}^n, t \longmapsto v(t),$$

genau dann eine Lösung von v' = Mv, wenn w = Bv eine Lösung der Differentialgleichung w' = Nw ist.

Beweis. Dies folgt aus Lemma 42.1, wir geben noch einen zweiten Beweis. Es sei vorausgesetzt, dass

$$v' = Mv$$

ist. Dann gelten für w = Bv mit $B = (b_{ij})_{ij}$ die Gleichungen

$$w'(t) = \begin{pmatrix} w'_1(t) \\ \vdots \\ w'_n(t) \end{pmatrix}$$

$$= \begin{pmatrix} (b_{11}v_1(t) + \dots + b_{1n}v_n(t))' \\ \vdots \\ (b_{n1}v_1(t) + \dots + b_{nn}v_n(t))' \end{pmatrix}$$

$$= \begin{pmatrix} b_{11}v'_1(t) + \dots + b_{1n}v'_n(t) \\ \vdots \\ b_{n1}v'_1(t) + \dots + b_{nn}v'_n(t) \end{pmatrix}$$

$$= B\begin{pmatrix} v'_1(t) \\ \vdots \\ v'_n(t) \end{pmatrix}$$

$$= BM\begin{pmatrix} v_1(t) \\ \vdots \\ v_n(t) \end{pmatrix}$$

$$= BMB^{-1}\begin{pmatrix} w_1(t) \\ \vdots \\ w_n(t) \end{pmatrix},$$

so dass w die Differentialgleichung

$$w' = Nw$$

löst. Die inverse Transformation zeigt, dass zu einer Lösung von w' = Nw die Abbildung $B^{-1}w$ eine Lösung für v' = Mv ist.

$$v' = Mv$$

 $mit\ M \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ ein homogenes lineares gewöhnliches Differentialgleichungssystem mit konstanten Koeffizienten. Dann gibt es eine invertierbare $Matrix\ B \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ derart, dass das äquivalente Differentialgleichungssystem

$$w' = Nw \ mit \ N = BMB^{-1}$$

obere Dreiecksgestalt besitzt, also von der Form

$$\begin{pmatrix} w_1' \\ w_2' \\ \vdots \\ w_{n-1}' \\ w_n' \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ 0 & c_{22} & \cdots & c_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & c_{nn} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_{n-1} \\ w_n \end{pmatrix}$$

(mit $c_{ij} \in \mathbb{C}$) ist. Dieses System lässt sich sukzessive von unten nach oben mit dem Lösungsverfahren für inhomogene lineare Differentialgleichungen in einer Variablen lösen. Wenn zusätzlich Anfangsbedingungen $v_i(t_0) = a_i$ für $i = 1, \ldots, n$ gegeben sind, so ist die Lösung eindeutig.

Beweis. Aufgrund von Satz 28.16 ist die Matrix M trigonalisierbar, d.h. es gibt eine invertierbare Matrix $B \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ derart, dass

$$N = BMB^{-1}$$

obere Dreiecksgestalt besitzt. Das lineare Differentialgleichungssystem w' = Nw besitzt also die angegebene Gestalt, und es ist wegen Lemma 43.5 äquivalent zum ursprünglichen System. Die letzte Zeile des neuen Systems, also

$$w_n' = c_{nn}w_n,$$

ist eine lineare Differentialgleichung in einer Variablen, ihre Lösungen sind $w_n(t)=ae^{c_{nn}t}$. Die zweitletzte Zeile ist

$$w'_{n-1} = c_{n-1} n_{n-1} w_{n-1} + c_{n-1} w_n,$$

worin man die Lösung für w_n einsetzen kann. Dann erhält man eine inhomogene lineare gewöhnliche Differentialgleichung in der einen Variablen w_{n-1} , die man mit dem angegebenen Lösungsverfahren lösen kann. Für die drittletzte Zeile sind dann w_{n-1} und w_n schon bekannt und dies führt wieder zu einer inhomogenen linearen Differentialgleichung für w_{n-2} . So erhält man sukzessive eine Gesamtlösung (w_1, \ldots, w_n) . Eine Anfangsbedingung für v' = Mv übersetzt sich direkt in eine Anfangsbedingung für w' = Nw. In dem soeben beschriebenen Lösungsverfahren gibt es dann jeweils eine Anfangsbedingung für die inhomogenen Differentialgleichungen, so dass die Lösungen jeweils eindeutig sind.

Bemerkung 43.7. Es sei

$$v' = Mv$$

mit $M \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ eine lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten und es sei

$$z: \mathbb{R} \longrightarrow \mathbb{C}^n$$

eine komplexwertige Lösung dieser Differentialgleichung. Wir schreiben

$$z(t) = u(t) + iv(t),$$

wobei u,v differenzierbare Kurven im \mathbb{R}^n sind, und die Real- bzw. Imaginärteil der Funktion heißen. Es sei

$$\overline{z}(t) = u(t) - iv(t)$$

die konjugiert-komplexe Funktion zu z. Dann ist wegen

$$M\overline{z(t)} = \overline{M}\overline{z(t)} = \overline{z'(t)} = \overline{z}'(t)$$

auch \overline{z} eine Lösungsfunktion. Wegen

$$u(t) = \frac{z(t) + \overline{z}(t)}{2}$$
 und $v(t) = \frac{z(t) - \overline{z}(t)}{2i}$

sind auch Real- und Imaginärteil von z Lösungsfunktionen (und zwar reellwertige).

Satz 43.8. Es sei

$$v' = Mv$$

 $mit M \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ eine lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten mit der Anfangsbedingung $v(t_0) = u \in \mathbb{R}^n$, $t_0 \in \mathbb{R}$. Dann gibt es genau eine auf \mathbb{R} definierte Lösung

$$v: \mathbb{R} \longrightarrow \mathbb{R}^n$$

für dieses Anfangswertproblem.

Beweis. Aufgrund von Satz 43.6 gibt es eine eindeutige komplexwertige Lösung

$$v: \mathbb{R} \longrightarrow \mathbb{C}^n$$

für dieses Differentialgleichungssystem. Da eine reellwertige Lösung insbesondere eine komplexwertige Lösung ist, liegt Eindeutigkeit vor. Der Realteil der komplexen Lösung, also

Re
$$(v): \mathbb{R} \longrightarrow \mathbb{R}^n, t \longmapsto \operatorname{Re}(v(t)),$$

ist ebenfalls eine Lösung dieses Systems. Wegen der Eindeutigkeit muss v = Re (v) sein. \square

Korollar 43.9. Es sei

$$v' = Mv$$

 $mit \ M \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ ein homogenes lineares gewöhnliches Differentialgleichungssystem mit konstanten Koeffizienten. Dann ist die Menge der Lösungen

$$\varphi\colon \mathbb{R} \longrightarrow \mathbb{K}^n$$

 $ein\ n$ -dimensionaler \mathbb{K} -Vektorraum.

Beweis. Dass der Lösungsraum ein K-Vektorraum ist, kann man direkt nachrechnen. Aufgrund von Satz 43.6 bzw. Satz 43.8 gibt es zu jedem Vektor

$$w \in \mathbb{K}^n$$

genau eine Lösung

$$\varphi\colon \mathbb{R} \longrightarrow \mathbb{K}^n$$

mit

$$\varphi(0) = w.$$

Die Zuordnung, die eine Lösung φ der Differentialgleichung auf den Ortspunkt $\varphi(0)$ abbildet, ist linear, so dass eine lineare Isomorphie zwischen dem Lösungsraum und \mathbb{K}^n vorliegt.

Definition 43.10. Es sei

$$v' = Mv$$

mit $M \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ ein homogenes lineares gewöhnliches Differentialgleichungssystem mit konstanten Koeffizienten. Dann heißt eine Basis des Lösungsraumes ein Fundamentalsystem von Lösungen dieses Systems.

Korollar 43.11. Es sei

$$v' = Mv$$

 $mit M \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ eine lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten. Die Matrix M sei diagonalisierbar mit den linear unabhängigen Eigenvektoren u_1, \ldots, u_n . Dann ist der Lösungsraum der Differentialgleichung gleich

$$\left\{c_1 e^{\lambda_1 t} \cdot u_1 + \dots + c_n e^{\lambda_n t} \cdot u_n \mid c_i \in \mathbb{K}\right\},\,$$

wobei λ_i der Eigenwert zu u_i ist.

Beweis. Dies folgt direkt aus Lemma 43.1 und aus Korollar 43.9.

Beispiel 43.12. Wir betrachten das lineare Differentialgleichungssystem

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}' = \begin{pmatrix} \lambda & \gamma \\ 0 & \mu \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}.$$

Für

$$v_2(t) = 0$$

(also die konstante Nullfunktion in der zweiten Komponente) ergibt sich aus der ersten Zeile (bis auf skalare Vielfache) sofort $v_1 = e^{\lambda t}$, was insgesamt der Lösung (der ersten Fundamentallösung)

$$\begin{pmatrix} e^{\lambda t} \\ 0 \end{pmatrix}$$

zum Eigenvektor $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ gemäß Lemma 43.1 entspricht.

Sei nun $v_2 \neq 0$. Dann führt die zweite Zeile zu $v_2 = e^{\mu t}$, was wir Satz 43.6 entsprechend zu einer Gesamtlösung fortsetzen. Die erste Zeile lautet somit

$$v_1' = \lambda v_1 + \gamma e^{\mu t}.$$

Die Lösung der zugehörigen homogenen Gleichung ist $c \cdot e^{\lambda t}$, so dass sich mit der Variation der Konstanten der Ansatz $v_1(t) = c(t) \cdot e^{\lambda t}$ mit

$$c'(t) = \gamma \cdot e^{\mu t} \cdot e^{-\lambda t} = \gamma \cdot e^{(\mu - \lambda)t}$$

ergibt.

Bei $\mu = \lambda$ ergibt sich $c(t) = \gamma t$ und damit die zweite Fundamentallösung

$$v(t) = \begin{pmatrix} \gamma t e^{\lambda t} \\ e^{\lambda t} \end{pmatrix}.$$

Bei $\gamma \neq 0$ gehört diese zweite Lösung nicht zu einem Eigenvektor.

Bei $\mu \neq \lambda$ ergibt sich $c(t)=\frac{\gamma}{\mu-\lambda}e^{(\mu-\lambda)t}$ und damit die zweite Fundamentallösung

$$v(t) = \begin{pmatrix} \frac{\gamma}{\mu - \lambda} e^{\mu t} \\ e^{\mu t} \end{pmatrix} = e^{\mu t} \begin{pmatrix} \frac{\gamma}{\mu - \lambda} \\ 1 \end{pmatrix}.$$

Dies ist wieder eine Lösung, die zu einem Eigenvektor gehört.

Das folgende Beispiel knüpft an Beispiel 41.2 an.

BEISPIEL 43.13. Wir betrachten die Bewegung eines Punktes auf der Geraden, wobei die Lage des Punktes proportional zur auf ihn wirkenden Kraft (bzw. Beschleunigung) in Richtung des Nullpunkts sein soll. Wenn der Punkt sich in \mathbb{R}_+ befindet und sich in die positive Richtung bewegt, so wirkt diese Kraft bremsend, wenn er sich in die negative Richtung bewegt, so wirkt die Kraft beschleunigend. Mit der Proportionalitätskonstante 1 gelangt man zur linearen Differentialgleichung (zweiter Ordnung)

$$y'' = -y,$$

die diesen Bewegungsvorgang beschreibt. Als Anfangsbedingung wählen wir y(0) = 0 und y'(0) = v, zum Zeitpunkt 0 soll die Bewegung also durch den Nullpunkt gehen und dort die Geschwindigkeit v besitzen. Man kann sofort die Lösung

$$y(t) = v \cdot \sin t$$

angeben. Wir werden diese Lösung mit den Lösungsmethoden für lineare Differentialgleichungen herleiten. Die Differentialgleichung führt zum linearen Differentialgleichungssystem

$$\begin{pmatrix} y_0' \\ y_1' \end{pmatrix} = \begin{pmatrix} y_1 \\ -y_0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}.$$

Das charakteristische Polynom ist

$$x^{2} + 1 = (x - i)(x + i),$$

und Eigenvektoren sind $\begin{pmatrix} 1 \\ i \end{pmatrix}$ (zum Eigenwert i) und $\begin{pmatrix} 1 \\ -i \end{pmatrix}$ (zum Eigenwert –i). Die allgemeine komplexe Lösung ist also nach Korollar 43.11 gleich

$$\begin{pmatrix} y_0(t) \\ y_1(t) \end{pmatrix} = c_1 e^{it} \begin{pmatrix} 1 \\ i \end{pmatrix} + c_2 e^{-it} \begin{pmatrix} 1 \\ -i \end{pmatrix},$$

wobei letztlich nur der Realteil der ersten Zeile interessiert. Die Anfangsbedingung führt zu

$$c_1 + c_2 = 0$$
 und $c_1 i - c_2 i = v$.

Also ist $c_2 = -c_1$ und $c_1 = \frac{v}{2i}$. Daher ist die Lösung

$$\frac{v}{2i}e^{it} - \frac{v}{2i}e^{-it} = v \cdot \sin t$$

nach Bemerkung 43.7.

Mit den linearen Methoden kann man auch die folgende Aussage beweisen.

Satz 43.14. *Es sei*

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0$$

eine lineare gewöhnliche Differentialgleichung höherer Ordnung mit konstanten Koeffizienten und das charakteristische Polynom zerfalle in Linearfaktoren,

$$P = X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0}$$

= $(X - \lambda_{1})^{\nu_{1}} \dots (X - \lambda_{k})^{\nu_{k}},$

wobei die λ_i verschieden seien. Dann bilden die Funktionen

$$t^j e^{\lambda_i t}, i = 1, \dots, k, j = 0, \dots, \nu_i - 1,$$

ein Fundamentalsystem für diese Differentialgleichung.

Abbildungsverzeichnis

Erläuterung: Die in diesem Text verwendeten Bilder stammen aus	
Commons (also von http://commons.wikimedia.org) und haben eine	
Lizenz, die die Verwendung hier erlaubt. Die Bilder werden mit ihren	
Dateinamen auf Commons angeführt zusammen mit ihrem Autor	
bzw. Hochlader und der Lizenz.	11
Lizenzerklärung: Diese Seite wurde von Holger Brenner alias	
Bocardodarapti auf der deutschsprachigen Wikiversity erstellt und	
unter die Lizenz CC-by-sa 3.0 gestellt.	11