[283]

XIX. Defcription of a fimple Micrometer for meafuring fmall Angles with the Telefcope. By Mr. Tiberius Cavallo, F. R.S.

Read June 2, 179 1.

THE various telefcopical micrometers, or machines which have been conftructed for the meafurement of fmall angles, may be divided into two claffes; namely, thofe which have not, and thofe which have, fome movement amongft their parts. The micrometers of the former fort confift moftly of fine wires, or hairs, varioufly difpofed, and fituated within the telefcope, juft where the image of the object is formed. In order to determine an angle with thofe micrometers, a good deal of calculation is generally required. The micrometers of the other fort, of which there is a great variety; fome being made with moveable parallel wires, others with prifms, others again with a combination of lenfes, and fo on; are more or lefs fubject to feveral inconveniences, the principal of which are the following. ift, Their motions generally depend upon the action of a fcrew, and of courfe the imperfections of its threads, and the greater or lefs quantity of loft motion, which is obfervable in moving a fcrew, efpecially when fmall, occafion a confiderable error in the menfuration of angles. 2dly, Their complication and bulk renders them difficultly applicable to a variety of telefcopes, efpecially to the Pp ${ }^{2}$
pocket
pocket ones. $\hat{3} \mathrm{dly}$, They do not meafure the angle without fome lofs of time, which is neceffary to turn the fcrew, or to move fome other mechanifm. 4thly, and laftly, They are confiderably expenfive, fo that fome of them coft even more than a tolerably good telefcope.

After having had long in view the conftruction of a micrometer, which might be in part at leaft, if not intirely, free from all thofe objections; and, after various attempts, I at laft fucceeded with a fimple contrivance, which, after repeated trials, has been found to anfwer the defired end, not only from my own experience, but from that alfo of feveral friends, to whom it has been communicated.

This micrometer, in fhort, confifts of a thin and narrow flip of mother of pearl finely divided, and fituated in the focus of the eye-glafs of a telefcope, juft where the image of the object is formed. It is immaterial whether the telefcope be a refractor or a reflector, provided the eye glafs be a convex lens, and not a concave one, as in the Galilean conftruction.

The fimpleft way of fixing it is to ftick it upon the diaphragm, which generally ftands within the tube, and in the focus of the eye-glafs. When thus fixed, if you look through the eye-glafs, the divifions of the micrometrical fcale will appear very diftinct, unlefs the diaphragm is not exactly in the focus; in which cafe the micrometrical fcale muft be placed exaatly in the focus of the eye-glafs, either by purhing the diaphragm backwards or forwards, when that is practicable; or elfe the fcale may be eafily removed from one or the other furface of the diaphragm by the interpofition of a circular piece of paper or card, or by a bit of wax. This conftruction is fully fufficient when the telefcope is always to be ufed by the fame perfon; but when different perfons are to ufe it, then
the diaphragm, which fupports the micrometer, muft be conftructed fo as to be eafily moved backwards or forwards, though that motion needs not be greater than about a tenth or an eighth of an inch. This is neceffary, becaufe the diftance of the focus of the fame lens appears different to the eyes of different perfons, and therefore, whoever is going to ufe the telefcope for the menfuration of any angle, muft firf of all unfcrew the tube, which contains the eye-glais and micrometer, from the reft of the telefcope, and, looking through the eyeglafs, muft place the micrometer where the divifions of it may appear quite diftinct to his eye.

In cafe that any perfon fhould not like to fee always the micrometer in the field of the telefcope, then the micrometrical fcale, inftead of being fixed to the diaphragm, may be fitted to a circular perforated plate of brafs, wood, or even paper, which may be occafionally placed upon the faid diaphragm.

I have made feveral experiments to determine the moft ufeful fubftance for this micrometer. Glafs, which I had fuccefsfully applied for a fimilar purpofe to the compound microfcope, feemed at firft to be the moft promifing ; but it was at laft rejected after feveral trials: for the divifions upon it generally are either too fine to be perceived, or too rough; and though with proper care and attention the divifions may be proportioned to the fight, yet the thicknefs of the glafs itfelf obfructs in fome meafure the diftinct view of the object. Ivory, horn, and wood, were found ufelefs for the conftruction of this micrometer, on account of their bending, fwelling, and contracting very eafily; whereas mother of pearl is a very fteady fubftance, the divifions upon it may be marked
very eafily, and, when it is made as thin as common writing paper, it has a very ufeful degree of tranfparency.

Tab. VIII. fig. I. exhibits this micrometer fcale, but fhews it four times larger than the real fize of one, which I have adapted to a three-feet achromatic telefcope, that magnifies about 84 times. It is fomething lefs than the ?4th part of an inch broad; its thicknefs is equal to that of common writing paper; and the length of it is determined by the aperture of the diaphragm, which limits the field of the telefcope. The divifions upon it are the 200dths of an inch, which reach from one edge of the fcale to about the middle of it, excepting every fifth and tenth divifion, which are longer. The divided edge of it paffes through the center of the field of view, though this is not a neceffary precaution in the conftruction of this micrometer. Two divifions of the above defcribed fcale in my telefcope are very nearly equal to one minute; and as a quarter of one of thofe divifions may be very well diftinguifhed by eftimation, therefore an angle of one-eighth part of a minute, or of $7^{\prime \prime} \frac{I}{2}$, may be meafured with it.

When a telefcope maguifies more, the divifions of the micrometer muft be more minute; and I find, that when the focus of the eye-glafs of the telefcope is fhorter than half an inch, the micrometer may be divided with the 500 dths of an inch; by means of which, and the telefcope magnifying about 200 times, one may eafily and accurately meafure an angle fmaller than half a fecond.

On the other hand, when the telefcope does not magnify above 30 times, the divifions need not be fo minute: for inftance, in one of Dollond's pocket telefcopes, which when drawn out for ufe, is about i4 inches long, a micrometer with
the hundredths of an inch is quite fufficient, and one of its divifions is equal to little lefs than three minutes, fo that an angle of a minute may be meafured by it.

In looking through a telefcope, furnifhed with fuch a micrometer, the field of view appears divided by the micrometer fcale, the breadth of which occupies about one-feventh part of the aperture, and as the fcale is femitranfparent, that part of the object, which happens to be behind it, may be difcerned fufficiently well to afcertain the divifion, and even the quarter of a divifion, with which its borders coincide. Fig. 2. fhews the appearance of the field of my telefcope with the micrometer, when directed to the title page of the Philofophical Tranfactions, wherein one may obferve that the thicknefs of the letter C is equal to three-fourths of a divifion, the diameter of the O is equal to three divifions, and fo on.

At firft view one is apt to imagine that it is difficult to count the divifions which may happen to cover or to meafure an object; but upon trial it will be found, that this is readily performed; and even people, who have never been ufed to obferve with the telefcope, foon learn to meafure very quickly and accurately with this micrometer; for, fince every fifth and tenth divifion is longer than the reft, one foon acquires the habit of faying five, ten, fifteen, and then, by adding the other divifions lefs than five, completes the reckoning. Even with a telefcope, which has no ftand, if the object end of it be refted againft a fteady place, and the other end be held by the hand near the eye of the obferver, an object may be meafured with accuracy fufficient for feveral purpofes, as for the eftimation of fmall diftances, for determining the height of a houfe, \&cc.

After having conftructed and adapted this micrometer to the telefcope, it is then neceffary to afcertain the value of the divifions. It is hardly neceffary to mention in this place, that though thofe divifions meafure the chords of the angles, and not the angles or arches themfelves, and the chords are not as the arches, yet it has been fhewn by all the trigonometrical writers, that in fmall angles the chords, arches, fines, and tangents, follow the fame proportion fo very nearly, that the very minute difference may be fafely neglected: fo that if one divifion of this micrometer is equal to one minute, we may fafely conclude, that two divifions are equal to two minutes, three divifions to three minutes, and fo on. There are various methods of afcertaining the value of the divifions of fuch a micrometer, they being the very fame that are ufed for afcertaining the value of the divifions in other micrometers. Such are the paffage of an equatorial ftar over a certain number of divifions in a certain time, the meafuring of the diameter of the fun, by computation from the focal diftance of the object, and other lenfes of the telefcope, the laft of which, however, is fubject to feveral inaccuracies; but as they are well known to affronomical perfons, and have been defcribed in many books, need not be farther noticed in this Paper. However, for the fake of workmen and other perfons not converfant in aftronomy, I fhall defcribe an eafy and accurate method of afcertaining the value of the divifions of the micrometer.

Mark upon a wall, or other place, the length of fix inches, which may be done by making two dots or lines fix inches afunder, or by fixing a fix-inch ruler upon a thand; then place the telefcope before it fo that the ruler or fix-inch length may be at right angles with the direction of the telefcope, and juft 57 feet $3^{\frac{1}{2}}$ inches diftant from the object-glafs of the telefcope: this done, look through the telefcope at the ruler or other extenfion
extention of fix inches, and obferve how many divifions of the micrometer are equal to it, and that fame number of divifions is equal to half a degree, or 30^{\prime}; and this is all that needs be done for the required determination; the reafon of which is, becaufe an extenfion of fix inches fubtends an angle of 30^{\prime} at the diftance of 57 feet $3^{\frac{1}{2}}$ inches, as may be eafily calculated by the rules of plane trigonometry.

In one of Dollond's 14 -inch pocket telefcopes, if the divifions of the micrometer be the hundredths of an inch, $1 \frac{1}{2}$ of thofe divifions will be found equal to 30^{\prime}, or 23 to a degree.

When this value has been once afcertained, any other atigle meafured by any other number of divifions is determined by the rule of three. Thus, fuppofe that the diameter of the fun, feen through the fame telefcope, be found equal to is divifions, fay as $11^{\frac{1}{2}}$ divifions are to 3° minutes, fo are 12 divifions to $\left(\frac{12^{\prime} \times 30^{\prime}}{11,5}\right) 31^{1^{\prime}}, 3$, which is the required diameter of the fun.

Notwithftanding the facility of this calculation, a fale may be made anfwering to the divifions of a micrometer, which will fhew the angle correfponding to any number of divifions to mere infpection. 'Ihus, for the above-mentioned fmall telefcope the feale is reprefented in fig. 3. AB is a line drawn at pleafure; it is then divided into 23 equal parts, and thofe divifions, which reprefent the divifions of the micrometer that are equal to one degree, are marked on one fide of it. The line then is divided again into 60 equal parts, which are marked on the other fide of it; and thefe divifions reprefent the minutes which correfpond to the divifions of the micrometer: thus the figure fhews, that fix divifions of the micrometer are equal to $15 \frac{1}{2}$ minutes, in $\frac{1}{6}$ divifions are nearly equal to 29 Vol. LXXXI. Q Q minutes,
minutes, \&c. What has been faid of minutes may be faid of feconds alfo, when the fale is to be applied to a large telefcope.

Thus far this micrometer, and its general ufe, have been fufficiently defrribed, and mathematical perfons may eatily apply it to the various purpofes to which micrometers have been found fubfervient. But as the fimplicity, cheapnefs, and at the fame time the accuracy of this contrivance, may render the ufe of it much more general than that of any other micrometer; and I may venture to fay, that it will be found very ufeful in the army, and amongt fea-faring people, for the determination of diftances, heights, ixc.; I thall therefore fubjoin fome practical rules to render this micrometer ufeful to perfons unacquainted with trigonometry and the ufe of logarithms. - Problem I. The angle, not exceeding one degree, which is fubtended by an extention of one foot being given, to find its diftance from the place of obfervation.
N. B. This extenfion of one foot, or any other which may be mentioned hereafter, mult be perpendicular to the direction of the telefcope through which it is obferved. The diftances are reckoned from the object-glafs of the telefcope, and the anfwers obtained by the rules of this problem, though not exactly true, are however fo little different from the truth, that the difference feldom amounts to more than two or three inches, which may be fafely neglected.

Rule 1. If the angle be expreffed in minutes, fay, as the given angle is to 60 , fo is 687,55 to a fourth proportional; which gives the anfwer in inches.
2. If the angle be exprefled in feconds, fay, as the given angle is to 3600 , fo is 687,55 to a fourth proportional, which expreffies the anfwer in inches.
3. If the angle be expreffed in minutes and feconds, turn it all into feconds, and proceed as above.

Example. At what diftance is a globe of one foot in diameter when it fubtends an angle of two feconds?
$2: 3600:: 687,55: \frac{3600 \times 687,55}{2}=1237590$ inches, or $103132 \frac{1}{2}$ feet, which is the anfwer required.

This calculation may be fhortened; for fince two of the three proportionals are fixed, their produt in the firft cafe is 41253 , and in the other two cafes is 2475180 ; fo that in the firft cafe, viz, when the angle is expreffed in minutes, you need only divide 41253 by the given angle; and in the other two cafes, viz. when the angle is expreffed in feconds, divide 2475^{180} by the given angle, and the quotient in either cafe is the anfwer in inches.

Problem II. The angle, not exceeding one degree, which is fubtended by any known extenfion, being given, to find its diftance from the place of obfervation.

Rule. Proceed as if the extenfion were of one foot by Problem I. and call the anfwer B; then, if the extenfion in queftion be expreffed in inches, fay, as 12 inches are to that extenfion, fo is B to a fourth proportional, which is the anfwer in inches; but if the extenfion in queftion be expreffed in feet, then you need only multiply it by B, and the product is the anfwer in inches.

Example. At what diftance is a man, fix feet high, when he appears to fubtend an angle of $30^{\prime \prime}$.

By Problem I. if the man were one foot high, the diftance would be 82506 inches; but as he is fix feet high, therefore multiply 82506 by 6 , and the product gives the required diftance, which is 495036 inches, or 41253 feet.

For greater conveniency, efpecially in travelling, or in fuch circumftances in which one has not the opportunity of making even the eafy calculations required in thofe problems, I have calculated the following two tables; the firft of which hews the diftance anfwering to any angle from one minute to one degree, which is fubtended by an extenfion of one foot; and the fecond table fhews the diftance anfwering to any angle from one minute to one degree, which is fubtended by a man, the height of which has been called an extenfion of fix feet; becaufe, at a mean, fuch is the height of a man when dreffed with hat and thoes on. Thefe tables may be tranfcribed on a card, and may be had always ready with a pocket telefcope furnifhed with a micrometer. Their ufe is evidently to afcertain diftances without any calculation; and they are calculated only to minutes, becaufe with a pocket telefcope and micrometer it is not poffible to meafure an angle more accurately than to a minute.

Thus, if one wants to meafure the extenfion of a ftreet, let a foot ruler be placed at the end of the ftreet; meafure the angular appearance of it, which fuppofe to be 36^{\prime}, and in the table you will have the required diftance againft 36^{\prime}, which is $95^{\frac{1}{2}}$ feet. Thus alfo a man, who appears to be 49^{\prime} high, is at the diftance of 421 feet.

T. CAVALLO.

Wells-ftreet,

Angles fubtended by an extenfion of one foot at different diftances.

Angles.	Diftances in feet.	Angles.	Diftances in feet.
Min. 1	3437,7	Min. 31	110,9
2	1718,9	32	107,4
3	1145,9	33	104,2
4	859,4	34	101,1
5	687,5	35	98,2
6	572,9	36	95,5
7	491,1	37	92,9
8	429,7	38	90,4
9	382,0	39	88,1
10	343,7	40	85,9
11	312,5	41	83,8
12	286,5	42	81,8
13	264,4	43	79,9
14	245,5	44	78,1
15	229,2	45	76,4
16	214,8	46	74,7
17	202,2	47	73,1
18	191,0	48	71,6
19	180,9	49	70,1
20	171,8	50	68,7
21	162,7	51	67,4
22	156,2	52	66,1
23	149,4	53	64,8
24	143,2	54	63,6
25	137,5	55	62,5
26	132,2	56	61,4
27	127,3	57	60,3
28	122,7	58	59,2
29	118,5	59	58,2
30	114,6	60	57,3

Angles fubtended by an extenfion of fix feet at different diftances.

Angles.	Diftances in feet.	Angles.	Diftances in feet.
Min. I	20626,8	Min. 3^{1}	665,4
2	10313.	32 3	644,5
3	6875,4	33	625.
4	5156,5	34	606,6
5	4125,2	35	589,3
6	3437,7	36	572,9
7	2946,6	37	557,5
8	2578,2 22018	3^{8}	542,8
9	2291,8	39	528,9
10	2062,6	40	515,6
11	1875,2	41	503,
12	1718,8	42	$4.91,1$
13	1586,7	43	479,7
14	1473, ${ }^{\text {1 }}$	44	468,8
15	$1375 \cdot$	45	458,4
16	1289, I	46	448,4
17	- 2123,3	47	438,9
18	1145,9	48	429,7
19	1085,6	49	42 I .
20	1031,4	50	412,5
21	982,2	51	404,4
22	937,6	52	396, 7
23	896,8	53	389,2
24	859,4	54	381 ,9
25	825.		
26	793,3	56	368,3
27 28	763,9 736,6	57	361,9
29	711,3	59	355,6 349,6
30	687,5	60	343,7

