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In this paper, we will discuss the interface be-
tween expert systems and laboratory robotics. We
will use examples from our recent research to illus-
trate how we are building an effective interface
and indicate where we think this research will lead.

What are expert systems? As an operational defi-
nition we will adopt the following:

Expert Systems are a sub-specialty in artificial
intelligence (AI). The term is generally under-
stood to mean a ‘“knowledge-based” or
“knowledge-driven” system designed to repre-
sent and apply factual knowledge in specific,
very limited areas of expertise.

In the early sixties, Al researchers attempted to
simulate the complicated process of thinking by
finding general methods for solving broad classes
of problems. This proved too difficult and such at-
tempts failed. In the early seventies the problem
was reformulated to include careful attention to
data structures but the emphasis was still on gen-
eral knowledge. Progress was still limited. In the
late seventies the problem was further refined to
focus almost completely on the knowledge repre-
sentation. The goal was to make intelligent pro-
grams by providing them with high quality,
domain-specific knowledge about some limited
problem area. This strategy is much like that used
by a human expert and gives rise to the term “ex-
pert system.”

What domains are appropriate for expert system
work? First and foremost, for the present state of
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expert systems technology the problem domain
must be of limited scope. A majority of the people
within the application field must agree that real ex-
perts do exist. The problem must be knowledge,
not data, intensive. A problem is knowledge inten-
sive if there is substantial variability in people’s
ability to solve it. The problem must not require
information from visual input. Multiple answers
from the same input data can be handied but with
limited success. Perhaps the best test of all for a
potential candidate for expert system work is the
so-called “telephone test.” If you have a problem
and you are confident that if you called some
known expert in the field, he or she could solve the
problem for you in 30 minutes or less over the
phone, then the problem is likely to be amenable to
an expert system solution,

How do expert systems compare with human ex-
perts? The popular press has tended to be wildly
optimistic about the present state of expert systems
development. While many useful expert systems
are available, they apply to very limited problem
domains. In such domains expert systems can
quickly provide answers that are consistent and ob-
Jjective. Expert systems can capture human exper-
tise and make it permanent, widely available and
easily portable. However, current expert systems
lack the creativity and adaptability expected of a
human expert.

How do expert systems work? Regardless of the
details of the implementation, an expert system is a
program driven by an inference engine towards a
specific goal. It is, in the limit, a remarkably simple
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process involving a cleverly ordered series of “if
tests,” A potential difficulty is, when the problem
gets large and consequently the number of rule
structures in the data base increases, an expert sys-
tem can become difficult to modify, hard to debug
and slow to execute,

Expert Systems for Data Management

Chemists, particularly analytical chemists, have
historically been very concerned with the storage
and retrieval of information. Spectral libraries are a
common example. There is presently much interest
in the potential of so-called “‘smart data bases™ [1].
The fundamental idea is that a data base is repre-
sented as a collection of executable statements
rather than facts.

The smart data base concept is a subtle strategy
that can be illusirated with a trivial example in-
volving the periodic table. The entries of the data
base all conform to the PROLOG predicate
ATOMIC and become executable statements; as
such they are no longer passive facts. The PRO-
LOG definitions and data base entries for a small
part of this periodic table are shown in figure 1. In
this example, apart from the definitions, there are
no program statements other than the data base. A
compelling advantage is that all of the features of
the Al language used (in this case PROLOG) are
available to form queries and the inference engine
interrogates the file auntomatically. This is illus-
trated in figure 2.

Methods Development Using Expert Sys-
tems and Robotics

A central theme in our research for the past sev-
eral years has been the idea of the Analytical Direc-
tor. Laboratory robots can carry out simple
repetitive tasks, following an invariant set of rules.
However, when a robot becomes a mechanical ex-
tension of a control program that has logic capabil-
ity the whole becomes greater than the sum of the
parts, The Analytical Director project is an expert
system driven robot that combines knowledge
about analytical chemistry with laboratory
robotics. The system is presently capable, in a lim-
ited way, of designing procedures for analysis, test-
ing and modifying such procedures, and finally
archiving the modified procedure for future refer-
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ence. The flexible library facilities of the Analytical
Director are possible because of the “smart data”
capabilities inherent in the logic based program-
ming langunages.

The current implementation of the Arnalytical Di-
rector is a Zymark robot running under control of
the ARTS [2] software system, an expert system
driven robotics language. The control computer is
a simple PC. .

To demonstrate an application of the Analptical
Director, the development of a complexometric ti-
tration procedure [3] is shown as a flow chart in
figure 3.

A successful complexometric titration requires
that the conditions be adjusted so as to insure a
conditional stability constant of about 1x10°.
Choices to be made include the pH, the titrant, the
masking agent or agents used and the method of
endpoint detection. A vast literature exists on com-
plexometric titrations, Some of this information is
part of the knowledge base used by the ARTS sys-
tem. The system not only starts with a knowledge
base, but can continually update that knowledge
base using results of experiments. The user is given
the opportunity to specify some or all of the
parameters that he/she wishes. The system will not
override user input even though it may be wrong,
The system will fill in missing user input from its
knowledge base. The success or failure of a deter-
mination is stored by the system for future use.

Experimental results for the triplicate determina-
tion of Ni** by complexomerric titration are shown
in table 1 and compared with results obtained with
manual titrations.

Table 1. Comparison of expert system and human counterpart,
Results for the titration of a Ni* solution using 0.1004M EDTA
without an indicator. Absorbance data were collected at 480 nm

Expert system Human
Trial 1 3.1006 0.0981
Trial 2 Q.1004 0.0931
Trizl 3 0.1007 (.0983
Average 0.1005, 0.0981,
Standard
deviation 0.00015 0.0001,
%Standard
deviation 0.15 0.12
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Building Expert Systems from Chemical
Data

One of the most difficult problems with expert
system work is creating an efficient knowledge
base. When the knowledge base gets large, it be-
comes imperative to create the most efficient possi-
ble production rules. The knowledge base used by
an expert system can be most efficiently structured
as a set of rules that describe the minimal decision
tree spanning the data. The root node of this tree
is the attribute of the data that minimizes the num-
ber of branches from the root. Each branch from
the root node contains a different value of the root
attribute and creates second level nodes. These sec-
ond level nodes may be branched further using at-
tributes different from the previous attributes used
to split the data. The class attributes and values will
occupy terminal nodes in the decision iree. If more
than one attribute is used to describe the data, the
decision tree will not be unique. As the number of
attributes required to describe the data increases,
the number of possible decision trees increases
combinatorially.

For this task we have implemented the ID3 (iter-
ative dichotomizer 3) algorithm [4-6], originally
developed for organizing and optimizing chess
end-game strategies.

The ID3 algorithm is based on information the-
ory and uses the entropy of classification. The en-
tropy of classification is a measure of the entropy
resulting from classifying an object in a particular
class. The algorithm will first determine the at-
tribute to use for the root node of the tree so that
the number of branches from the root node are
minimum. Each branch from the root node repre-
sents a unique value of the root attribute. The al-
gorithm is then applied recursively to all the
second level nodes, and all subsequent nodes
spawned by each of the second level nodes.

‘We have implemented the ID3 algorithm (7) in
PROLOG so that it accepts classification data and
determines an efficient set of rules spanning the
data. The program will then produce a file of rules
that can be used directly by an expert system as an
efficiently ordered knowledge base.

A simple example of how this works uses the
infrared data in table 2. These data are applied to
identifying substituted benzenes from their infrared
absorption spectra.

There is enough information in the first two
bands to answer the question. There is no informa-
tion in the last two bands relevant to this question.

Table 2, Infrared data for some substituted benzenes

Compound Degree IR ranges in cm™!
name of 650— 700— 750— 800— 850—
substitution 699 749 799 849 8§99
toluene MONO s S W w w
m-xylene META S W S w W
o-xylene ORTHO w s S w w
p-xylene PARA W w s w w

* S=strong; W =weak.

From these data, the algorithm outputs the infor-
mation tree shown in figure 4. Not shown is the set
of syntactically correct PROLOG production rules
generated by the program that span the tree in fig-
ure 4,

Conclusion

The purpose of this research is the combination
of logic programming with laboratory robotics.
The goal of this research is the creation of the Ana-
Iytical Director, an intelligent laboratory robotics
system that will be able to develop, test and modify
laboratory procedures without human supervision.
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/*PROLOG data base example*/
domains

name,symbl = symbol

number = integer
weight = real
predicates

atomic({name,symbl,number,weight)
clauses .
atomic{"Hydregen","H",1,1.008}.
atomic{“Helium","He",2,4.003).
atomic("Lithium","Li",3,6.941).
atemic("Beryllium","Be",4,9.012),
atomic{"Boron","B",5,10.81}.

Figure 1, PROLOG data base example.
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Goal: atomic(Name,Symbol,Number,HWeight), Number>1,Weight<10
Name=Helium, SymbolaHe, Number=2, Weight=4.0023
Name=Lithium, Symbol=Li, Number=3, Welight=6.941
NameaBeryllium, Symbol=Be, Number=4, Weight=9.012
3 Solutions

Goal: atomic(Name,"B",Rumber,Weight)

Name=Boron, Number=5, Weight=10.81

1 Solution

Goal: atomic(Name,Symbol,5,HWeight)

Name=Boron, Symbol=B, Welght=1¢.81

1 Solutien

Figure 2, PROLOG data base interrogation examples.
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Figure 3. Complexometric titrations under expert system con-
trol.
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Figure 4. Decision tree generated from data in table 2.
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