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Deep-UV light detection has important application in

surveillance and homeland security regions. CH3NH3PbX3

(X ¼ Cl, Br, I) materials have outstanding optical absorption

and electronic transport properties suitable for obtaining

excellent deep-UV photoresponse. In this work, we have

grown high-quality CH3NH3PbX3 (X ¼ Cl, Br, I) bulk crystals

and used them to fabricate photodetectors. We found that

they all have high-sensitive and fast-speed response to 255 nm

deep-UV light. Their responsivities are 10–103 times higher

than MgZnO and Ga2O3 detectors, and their response speeds

are 103 times faster than Ga2O3 and ZnO detectors. These

results indicate a new promising route for deep-UV detection.
1. Introduction
The increasingly irreplaceable application of deep-ultraviolet

(deep-UV: 200–280 nm) technology (imagery, warning and

secure communication) in surveillance, homeland security and

civil regions, makes the high-sensitive and fast-speed deep-UV

detectors being urgently demanded [1–5]. Compared to

cumbersome vacuum phototube detectors, semiconductor ones

are lightweight, robust and have low operating voltage [6,7].

There are generally two detection strategies for semiconductor-

based deep-UV detectors. One approach is to use wide bandgap

semiconductors such as AlGaN, MgZnO, Ga2O3 or diamond

[8–12]. However, the high-temperature and complex growth

condition make it difficult to obtain high-quality materials, and

thus the performance of the fabricated detectors are always far

from expected [13]; another alternative approach is employing

narrow band-gap Si diode detectors equipped with UV-pass
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Figure 1. Schematic representation of powder synthesis and single crystals growth of CH3NH3PbX3 (X ¼ Cl, Br, I). CH3NH3PbX3

powders are synthesized through reaction between Pb(Ac)2, CH3NH2 and HX aqueous solution. CH3NH3PbCl3/Br3 crystals are
grown by cooling the saturated precursor solution from 908C to 258C. CH3NH3PbI3 crystals are grown from the saturated
solution of CH3NH3PbI3 powder in g-butyrolactone (GBL) by gradually heating (from 258C to 808C) due to its negative
solubility temperature coefficient.
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filters [14,15]. However, the deep-UV detection of Si diode is still barely satisfactory, as the large

absorption of deep-UV light of Si makes it difficult for the photo-generated carrier to reach the

depletion layer. Therefore, it is still urgently needed to explore new semiconductor materials which

have both facile growth method and excellent deep-UV response performance.

Recently, organic–inorganic perovskite CH3NH3PbX3 (X ¼ Cl, Br, I) have attracted intensive

attention in solar cells, luminescence, photodetection etc. [16–19]. High-crystalline quality

CH3NH3PbX3 crystals can be easily grown using simple low-temperature (less than 1008C) solution

method [20–22]. And they have large absorption coefficient of approximately 105 cm21 in deep-UV

spectral range [17,23,24], high carrier mobility even exceeds 100 cm2 V21 s21) [25] and long carrier

transport length up to hundreds of micrometres [18,26], which make them promising for showing

high-sensitive and fast-speed deep-UV response performance. Several studies have reported the

photodetection properties of CH3NH3PbX3 [19,27,28], which generally concern visible light or

radiation detection. Special comprehensive research on their deep-UV detection performance has not

been reported. As mentioned above, narrow band-gap semiconductor also has application possibilities

in deep-UV detection with the aid of UV-pass filters. Therefore, studies on deep-UV detection

performance of CH3NH3PbX3 have practical significance.

In this work, we have grown high-quality bulk CH3NH3PbX3 crystals and used them to fabricate

photodetectors. The deep-UV detection performance of CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3

were comprehensively studied. Under illumination of 1.5 mW cm22 255 nm light and 5 V bias,

CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3 respectively show responsivities of approximately 450,

300 and 120 mA W21, and rise time of 15, 2.5 and 2 ms. These results manifest that CH3NH3PbX3 are

promising candidates for deep-UV detection.
2. Material and methods
CH3NH3PbX3 powders were synthesized from halogen acid aqueous solution using the method

illustrated in figure 1. Firstly, 5 g lead(II) acetate trihydrate (AR) was dissolved in 20 ml HCl/HBr/HI

acid solution in a 50 ml flask under rigorous stirring. Then PbCl2/PbBr2/PbI2 powders are generated

in the flask. Secondly, 10 ml methylamine (40% wt/wt aq. sol.) was added to the above blend

solution and CH3NH3PbX3 powders precipitated. It should be noted that the addition of methylamine

should be drop by drop under rigorous stirring because the reaction is violently exothermic. Once the

CH3NH3PbCl3/Br3 powder was obtained, keeping the blend solution at 908C and under rigorous

stirring for 24 h until the powder was fully dissolved. Then stopping stirring and absorbing the

supernatant liquid and placed them into a 20 ml serum bottle. Then slowly cooling this saturated

precursor solution to room temperature, 1–3 mm3 CH3NH3PbCl3/Br3 crystals were obtained. Yellow

needle-like CH3NH3PbI3
. nH2O crystals are formed when CH3NH3PbI3 encounters water below 508

[29]. Thus, CH3NH3PbI3 single crystals were grown from organic solvent g-butyrolactone using

inverse temperature crystallization (ITC) method due to its negative solubility temperature coefficient.
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Figure 2. (a) Powder X-ray diffraction (XRD) patterns of the three crystals. CH3NH3PbCl3 and CH3NH3PbBr3 both belong to cubic
phases, and CH3NH3PbI3 belongs to tetragonal phase. (b) The dependence of absorption of CH3NH3PbX3 on the photon energy. (c)
Photoluminescence spectra of CH3NH3PbX3 crystals excited by 325 nm laser. For clarity, the photoluminescence intensity of
CH3NH3PbCl3 was multiplied by 10 times.
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By fully dissolving the CH3NH3PbI3 powder in g-butyrolactone (approx. 0.3 g ml21) and slowly heating

the solution from room temperature to 808C with a rate of approximately 58C h21, 5 mm3 CH3NH3PbI3

crystals can be obtained.

Au films were deposited on the crystal surface as electrodes by thermal evaporation. The photo-

response performance was measured using self-built system with 255 nm LED as light source.
3. Results and discussion
The powder XRD patterns of CH3NH3PbX3 crystals are shown in figure 2a, which agree well with

previously reported results [18,20,21]. The residual weak peaks denoted by stars in the pattern of

CH3NH3PbCl3 come from PbCl2. XRD patterns of CH3NH3PbCl3 and CH3NH3PbBr3 are very close

because they both belong to cubic system (space group of Pm-3m) with different lattice constants of

5.67 Å for CH3NH3PbCl3 and 5.92 Å for CH3NH3PbBr3. CH3NH3PbI3 belongs to tetragonal phase

(space group I4/m) with lattice constants of a ¼ b ¼ 8.83 Å and c ¼ 12.69 Å. Their different crystal

structures resulted from the different ion radius of Cl (1.81 Å), Br (1.96 Å) and I (2.2 Å). The large ion

radius of I makes CH3NH3PbI3 distort from cubic to tetragonal phase.

Furthermore, detailed optical properties of CH3NH3PbX3 crystals were also studied comprehensively.

Steady state UV-Vis diffuse reflection spectra of CH3NH3PbX3 powder were collected. According to

Kubelka–Munk function, the dependence of (F(R1)hv)2 on photon energy is given in figure 2b. As

can be seen, sharp band edges are clearly observed, indicating the direct bandgaps of CH3NH3PbX3.

Relying on estimation from Tauc/Davis–Mott model [30,31], through extrapolating the linear range of
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(F(R1)hv)2 to photon energy (hv) intercept, the bandgaps of CH3NH3PbCl3, CH3NH3PbBr3 and

CH3NH3PbI3 are estimated to be 2.95, 2.28 and 1.52 eV, respectively. The gradual lowering of

CH3NH3PbX3 bandgap with halogen changing from Cl to Br to I is mainly ascribed to the lowering

valence band maximum formed by halogen orbitals from 3p to 4p to 5p [32]. Room temperature

photoluminescence spectra of CH3NH3PbX3 single crystals are displayed in figure 2c, and the strong

band–band emission indicates the high crystalline quality of CH3NH3PbX3 single crystals.

Luminescence peak positions show a gradual red-shift from 405 nm for CH3NH3PbCl3 to 545 nm for

CH3NH3PbBr3 to 787 nm for CH3NH3PbI3, which are ascribed to their different bandgaps. Compared

to previously reported CH3NH3PbCl3 which has no emission at room temperature [24], the observed

emission in our CH3NH3PbCl3 crystal indicates its high crystalline quality. The luminescence intensity

of CH3NH3PbBr3 and CH3NH3PbI3 are even 102 times higher than that of CH3NH3PbCl3 under the

same measurement condition, which are attributed to their different band structures, exciton energies

and carrier lifetimes.

To estimate the trap densities of the three CH3NH3PbX3 crystals, we fabricated sandwich-type

devices by depositing two Au electrodes on the top and bottom faces of the crystals. Their I–V plots

of them under dark condition are shown in figure 3a–c. As seen from figure 3a, the dark current of

CH3NH3PbCl3 shows linear dependence on voltage (I/ V ) under low voltage, which belongs to

ohmic region. When voltage is larger than 10.3 V, charge carriers start to occupy the trap states and

the current rises sharply with increasing voltage (I/ Vn, n . 3), which is trap-filled region. Similarly,

CH3NH3PbBr3 and CH3NH3PbI3 both have such transition at about 3.9 V and 5.5 V, respectively.

According to the space-charge-limited current (SCLC) model [20,21], the transition voltage (VTFL)
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from ohmic to trap-filled region is proportional to traps density (ntraps) and the square of electrode gap

(L) as described by the relation:

ntraps ¼
2110VTFL

eL2
ð3:1Þ

dielectric constant 1(CH3NH3PbCl3) ¼ 23.9, 1(CH3NH3PbBr3) ¼ 25.5, 1(CH3NH3PbI3) ¼ 28.8 [33], 10

denotes vacuum permittivity dielectric constant 8.85 � 1012C V21 m21), L is electrode gap (equal to the

crystal thickness, 0.8 mm for CH3NH3PbCl3, 1 mm for CH3NH3PbBr3 and 3 mm for CH3NH3PbI3)

and e is the elementary charge e ¼ 1.6 � 10219 C. According to the formula (3.1), we find that ntraps

(CH3NH3PbCl3) is estimated to be approximately 8.4 � 1010 cm23, ntraps (CH3NH3PbBr3) is around

approximately 2.1 � 109 cm23, and ntraps (CH3NH3PbI3) is about approximately 3.2 � 109 cm23.

To obtain high performance detector, carrier recombination should be decreased to the largest extent.

CH3NH3PbX3 have been demonstrated to have large absorption coefficient of approximately 105 cm21

for deep-UV light [23], it is estimated that penetration depth of incident deep-UV photons is only

about hundreds of nanometres. Thus, the materials for fabricating detectors should be as thin as

possible on the premise of completely absorbing the incident light. The schematic diagram of the

detectors is shown in figure 3d. The Au electrodes are connected to the outer circuit (source meter)

using a four-probe station equipped with a microscope.

The I–V plots of CH3NH3PbX3 detectors under illumination of 5.3 mW cm22 255 nm light and dark

condition are given in figure 3e, and the enlarged plots of I–V curves under dark condition are shown in

figure 3f. As seen from figure 3f, under 5 V bias, the dark currents are approximately 3 nA for

CH3NH3PbCl3, approximately 0.8 nA CH3NH3PbBr3 and approximately 0.6 nA for CH3NH3PbI3.

When the voltage is smaller than 2.5 V, the dark current of CH3NH3PbBr3 is smaller than that of

CH3NH3PbI3; when the bias is larger than 2.5 V, the result reverses. As seen from figure 3e, the

photocurrents show gradual decrease with halogen varying from Cl to Br to I. For CH3NH3PbCl3 and

CH3NH3PbBr3, photocurrents approach saturation with increasing voltage, which is attributed to

phonon scattering on photo-generated carriers. Under high voltage, carriers are scattered heavily by

phonons, thus the dependence of carrier drift velocity on voltage deviates from linear relation and

approaches saturation, which leads to current saturation. While the photocurrent of CH3NH3PbI3 does

not show obvious saturation within the measured voltage range, indicating that CH3NH3PbI3 has a

higher saturation voltage than CH3NH3PbCl3 and CH3NH3PbBr3, which can be ascribed to their

different intrinsic carrier concentration and phonon energy. Figure 3g displays the photo/dark current

ratios of CH3NH3PbX3 detectors under increasing voltage, the maximum photo/dark current ratios

are nearly 900 for CH3NH3PbCl3, 320 for CH3NH3PbBr3 and 190 for CH3NH3PbI3. The responsivity is

defined as R ¼ I/AP, where I represents the photocurrent, P is the incident light power, and A is the

absorption area of device [34–37]. Illuminated under 255 nm light with power intensity of

5.3 mW cm22, the responsivity versus voltage is shown in figure 3h. At 5 V voltage, the responsivities

are 210 mA W21 for CH3NH3PbCl3, 190 mA W21 for CH3NH3PbBr3 and 40 mA W21 for CH3NH3PbI3.

Responsivities under illumination with increasing powder intensity given in figure 3i show a gradual

decreasing trend, indicating that the detectors operate on photoconductive effect of CH3NH3PbX3

elaborated as follows. Once the incident photons are absorbed, excitons are generated inside the

perovskite crystals. Under the applied voltage, these excitons were dissociated to be free electrons and

holes and transported to the external circuit; finally the photocurrent is measured. Under higher

power intensity light illumination, the effective traps are filled, leading to the decrease of

photoconductive gain and thus responsivity also decreases [38]. As seen from figure 3i, under

illumination of 1.5 mW cm22 255 nm light, the responsivities are 450 mA W21 for CH3NH3PbCl3,

300 mA W21 for CH3NH3PbBr3, and 120 mA W21 for CH3NH3PbI3, respectively. As summarized in

table 1, these results are 101–103 times larger than previously reported wide bandgap semiconductors

based deep-UV detectors such as AlxGa12xN (34 mA W21) [8], MgxZn12xO (0.1 mA W21) [9], LaAlO3

(72 mA W21) [43], Ga2O3 (0.32 mA W21) [39], SrRuO3/BaTiO3/ZnO [40], ZnO-Ga2O3 (9.7 mA W21)

[41] and MgZnO (0.16 mA W21) [42]. As another determinant of detector performance, external

quantum efficiency (EQE) is defined as the number of generated electrons per incident photon. EQE

equals to Rhc/el, where h is the Planck’s constant, c is the velocity of light, and l is the wavelength of

incident light [34,44]. Illuminated under 255 nm light with power intensity of 5.23 mW cm22, EQE is

219% for CH3NH3PbCl3, 146% for CH3NH3PbBr3 and 58% for CH3NH3PbI3, respectively. When

illuminated under 1.5 mW cm22 light, the EQE is 102%, 93% and 19%, respectively.

Compared to CH3NH3PbBr3 and CH3NH3PbI3, CH3NH3PbCl3 shows higher responsivity and EQE.

For photoconductive detector, trap states inside the photosensitive materials will capture the photo-



Table 1 Comparison of the responsivity of different semiconductor materials to deep-UV light.

material light (nm) bias (V) R (mA W21) EQE (%)

CH3NH3PbCl3 255 5 450 219

CH3NH3PbBr3 255 5 300 146

CH3NH3PbI3 255 5 120 58

AlxGa12xN [8] 267 20 34 16

MgxZn12xO [9] 250 10 0.1 0.05

Ga2O3 [39] 185 10 0.3 0.2

SrRuO3/BaTiO3/ZnO [40] 260 6 71.2 34

ZnO-Ga2O3 [41] 251 0 9.7 —

MgZnO [42] 250 0 0.16 —
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generated electrons (holes) and carrier lifetime of holes (electrons) will be elongated and hence

responsivity is improved [38]. Simultaneously, the captured carriers also slow the response speed,

meaning that responsivity increase is always accompanied by response speed decrease.

From analysis on the dark current of three sandwich-type CH3NH3PbX3 devices using SCLC model,

it is suggested that CH3NH3PbCl3 has higher density of trap states than that of CH3NH3PbBr3 and

CH3NH3PbI3. If the higher density of trap states of CH3NH3PbCl3 leads to the higher responsivity, it

will also induce the slower response speed of CH3NH3PbCl3 detectors. To verify this point, analysis

on response speed will be given as follows.

To measure response speed of the photodetectors, time-dependent response of CH3NH3PbX3

photodetectors under modulated illumination were measured as shown in figure 4a–c, showing

good repeatability of our detectors. Photo-switching response under different voltage is given in

figure 4d– f. The estimated rise/decay time versus voltage is displayed in figure 4g,h, respectively. As

voltage increases, response time decreases originally and saturates finally. As we known, the response

time t is decided by the carrier lifetime. As we mentioned above, the three detectors operate on

photoconductivity mechanism, in which the trap states elongate the carrier lifetime. Thus, we

speculate that the increased voltage weakens the trapping time of trap states on holes (electrons),

which means that the carrier lifetimes are relatively decreased and then the response speed is

decreased. As seen from table 2, the response times of CH3NH3PbX3 detectors are 101–103 times

shorter than previously reported SrRuO3/BaTiO3/ZnO (7.1 s, 2.3 s) [40], b-Ga2O3 (3.33 s, 0.4 s) [45]

and NaTaO3 (50 ms) [46].

Among the three perovskite detectors, CH3NH3PbCl3 detector has the slowest response speed with

rise time and rise time of 31 ms and 15 ms, respectively, which are 10 times longer than that of

CH3NH3PbBr3 and CH3NH3PbI3 detectors, which have rise/decay time of about 2 ms. The slower

response speed of CH3NH3PbCl3 detector can be attributed to the higher density of trap states in

CH3NH3PbCl3 single crystals. This point is consistent with previous analysis on the responsivities.

Present research on CH3NH3PbX3 mainly focuses on polycrystalline-film-based solar cells, while their

potential for deep-UV detection is not developed although they have outstanding optoelectronic

properties suitable for deep-UV detection. Herein, we firstly give comprehensive studies on deep-UV

detection performance of CH3NH3PbX3 (X ¼ Cl, Br, I) single crystals.

To reveal the decisive role of intrinsic optoelectronic properties of perovskite on detector

performance, high quality bulk crystals are used to fabricate planar-type MSM detectors, which

operate on photoconductivity of CH3NH3PbX3. For such photoconductive detectors, there generally

exists persistent photoconductivity mechanism. Trap states capture photo-generated carriers, and

persistent photoconductivity (PPC) is formed, leading to an increased responsivity, simultaneously;

the response speed is slowed.

From previous analysis on the dark current of the detectors shown in figure 3a–c, it is concluded that

CH3NH3PbCl3 has highest density of traps among the three crystals. Therefore, according to the PPC

mechanism, CH3NH3PbCl3 detector theoretically has the largest responsivity and slowest response

speed, which is consistent with the measured results summarized in tables 1 and 2. CH3NH3PbBr3

and CH3NH3PbI3 crystals with low density of trap states have high responsivities and ultra-fast

response speed, which seems more suitable for application in fast speed deep-UV detection.
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Table 2 Comparison of response speed to deep-UV from several different semiconductors.

materials light (nm) bias (V) rise time decay time

CH3NH3PbCl3 255 10 15 ms 31 ms

CH3NH3PbBr3 255 10 2.5 ms 2.5 ms

CH3NH3PbI3 255 10 2 ms 2 ms

SrRuO3/BaTiO3/ZnO [40] 260 6 7.1 s 2.3 s

b-Ga2O3 [45] 236 20 3.33 s 0.4 s

NaTaO3 [46] 280 5 50 ms 50 ms
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4. Conclusion
In summary, we have grown millimetre-sized CH3NH3PbX3 (X ¼ Cl, Br and I) bulk single crystals and

used them to fabricate photodetectors. Benefiting from the excellent optoelectronic properties and high

crystalline quality of CH3NH3PbX3 crystals, the detectors have low dark current, high photo/dark

current ratio, sensitive and fast response speed to 255 nm deep-UV light. These excellent response

performances make CH3NH3PbX3 materials promising candidates for deep-UV detection.
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