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Baryon clustering at the critical line and near the hypothetical critical point in heavy-ion collisions
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We study clustering of baryons at the freeze-out point of relativistic heavy-ion collisions. Using a Walecka-
Serot model for the nucleon-nucleon (NN) interaction we analyze how the modified critical σ mode—
responsible for the NN attraction—allows for clustering of nucleons when the system is close to a possible
critical point of QCD. We investigate clusters of few nucleons, and also the internal cluster configuration when
the system is long lived. For realistic heavy-ion collisions we study to what extent light clusters, such as 4He, can
be formed in several fm/c, and perform the statistical analysis of proton cumulants and higher-order moments
(skewness and kurtosis) for collisions at the beam energy scan of the Relativistic Heavy-Ion Collider.

DOI: 10.1103/PhysRevC.100.024903

I. INTRODUCTION

We start by contrasting known facts about high- and low-
energy heavy-ion collisions, after which we will define the
phenomena to be discussed in this work.

By high-energy collisions we mean those at the Relativistic
Heavy-Ion Collider (RHIC) full energy

√
sNN ≈ 200 GeV and

at the Large Hadron Collider (LHC)
√

sNN ≈ 2–8 TeV. In
these cases the particle yields are very accurately described
by the so-called “resonance gas model,” assuming that all
interactions between hadrons can be effectively treated as an
ideal gas of all known resonances, as suggested by the Beth-
Uhlenbeck formula. As shown, e.g., in Ref. [1], the yields per
degree of freedom are on the same thermal exponent, from the
lightest species—pions, kaons, etc.—up to the baryons, hyper-
ons, and their antiparticles, all the way up to light nuclei such
as 4He. This trend is observed to hold over about nine decades.
The lesson is that, at chemical freeze-out temperatures
Tch � 150 MeV and at near-zero baryonic chemical potential
μB � 0, the fireball is very well thermally equilibrated. Such
high degree of equilibration undoubtedly is related with ki-
netic properties of the strongly coupled quark-gluon plasma
(QGP), preceding the freeze-out stage of these collisions.

At low nonrelativistic collision energies,
√

sNN < 1 GeV,
creating nuclear matter with temperatures T � 10 MeV, one
observes the so-called “multifragmentation” phenomena, pro-
duction of a large variety of heavy fragments of colliding
nuclei, with wide powerlike distributions. It is attributed to
a nearby presence of a critical point, separating liquid nuclear
matter from a gaslike phase. For a review see, e.g., [2]. The
production of various nuclear fragments is not in equilibrium,
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and is very sensitive to the relation between the temperature
and time available for cluster formation. Those are also asso-
ciated with rapidities close to those of the beams. This regime
can be compared to that in atomic physics studying various
out-of-equilibrium situations, for example “snow production”
machines, operating in between water and ice phases.

Our paper focuses on an entirely different range of col-
lision energies and rapidities. While they are called “low”
compared to typical collider regimes, they are still related with
much higher temperatures. The lowest one, corresponding to
“kinetic freeze-out”, is still Tf ∼ 100 MeV. In this case no
heavy fragments can be observed. What we call “clusters” in
this work are different from heavy fragments in the previous
sense. See Table I for a summary of the terminology in this
paper. Clusters are the statistical correlation/association of N
nucleons appearing at the freeze-out stage of the collision.
Its energy has a large uncertainty (proportional to Tf ) and
with overwhelming probability they decay into N unbound
nucleons at the post-freeze-out stage. Experimental evidence
for cluster formation comes from the observed multiplicity
distribution in certain detector acceptance (to be discussed
below), or in production of N = 2, 3 nuclei d and t .

Heavy-ion collisions at intermediate energies have been
studied in the 1980s, both at CERN Super Proton Synchrotron
and the Brookhaven National Laboratory Alternating Gradi-
ent Synchrotron, but not in sufficient detail. Many models
predict that baryon-rich matter will also have the first-order
transition line, ending in a certain critical point. Its search
using enhanced fluctuations was proposed in Refs. [3,4]. The
beam energy scan (BES) towards the lowest energies possible
at RHIC is currently under way. Significant modification of
the baryon number distributions, such as its large kurtosis, is
indeed observed at the low energy end [5], perhaps indicating
out-of equilibrium fluctuations related with criticality. Using
the STAR detector at RHIC in a fixed-target mode is in the
plans.

The topic of this paper is the baryon clustering phe-
nomenon happening at the so-called freeze-out stages of
heavy-ion collisions, in this intermediate baryon-rich domain.
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TABLE I. Terminology for different aggregations of nucleons used in this paper. We only address the formation of clusters (prenuclei) in
this work.

Configuration Temperature Atomic number Distribution Dispersion in energy

Heavy fragments T < 10 MeV Z � 1 powerlike no
Clusters (or prenuclei) Tf ∼ 100–150 MeV Z � 1 thermal + nonequilibrium

(due to modified NN potential)
yes (�E ∼ Tf )

Light nuclei (d, t, 4He . . .) observed at T � Tf Z � 1 thermal + nonequilibrium? no

We will show how a relatively small modification of nuclear
forces at distances r = 1–2 fm can dramatically change the
binding of baryonic clusters, as well as the kinetics of their
production.

The paper is structured as follows. We start in Sec. II
with the motivation for the modified internucleon potential,
and present several versions of it—increasingly closer to the
critical region—to be used in the following sections. To get
some intuition on how these potentials affect the structure of
nuclear matter, we present preliminary studies of how such
modifications change the binding of clusters in Sec. III, using
two opposite limits: the uncorrelated Gaussian-shape mean-
field clusters, and fully correlated clusters forming classical
shapes. Before describing our main body of simulations, we
classify the observables to be used in Sec. IV. The bulk of
our studies introduced in Sec. V is done with a classical
dynamical approach, a molecular dynamics (MD) code com-
plemented by Langevin (L) forces representing the effects of
the mesonic heat bath. We proceed from a small number of
nucleons and finite clusters in Sec. V, to rather large ones,
with N ∼ 100 particles in Sec. VI. In Sec. VII we present our
main results in connection with the experimental conditions
of the BES program at RHIC. On one hand we focus on
the generated correlations among nucleons, and calculate
the proton cumulants, as well as the scaled skewness and
kurtosis of the distribution. Then, we study how strong corre-
lations lead to the clustering of nucleons to form “prenuclei,”
and extract the number of “pre-4He” in the same simula-
tions. Finally, in Sec. VIII we summarize and present our
conclusions.

The remainder of this Introduction contains a summary of
the ideas motivating this work.

One important notion is the very high sensitivity of the
dynamical clustering to the details of the internucleon effec-
tive potential. Since the time of Yukawa’s suggestion, nuclear
forces are traditionally described in terms of certain meson
exchanges. Furthermore, as all nuclear physicists know, any
model of nuclear forces needs special tuning, needed to repro-
duce two delicate phenomena: (i) strong cancellation between
repulsion and attraction in the mean potential energy; and
(ii) partial cancellation of the remainder in the mean potential
energy by quantum kinetic energy. The final result should
be that neutron systems, and in fact many species of light
nuclei, are not bound. Even infinite nuclear matter, with an
equal number of protons and neutrons (and Coulomb effects
switched off) is only slightly bound.

Because of these cancellations, a small modification of the
internucleon potential can induce quite significant changes
in binding, even up to an order of magnitude. This is of

crucial importance, because the temperatures of the hadronic
phase we discuss range from the critical temperature Tc ≈
120–155 MeV down to the kinetic freeze-out temperature of
baryons Tkin ≈ 80–100 MeV. Such temperatures may appear
large compared to the usual nuclear potential depth ∼50 MeV
and binding per nucleon ∼10 MeV. And yet, even with
such conditions we do find significant clusters of trapped
baryons. We therefore suggest to look not only at higher-
order moments of the net-baryon distribution, but also out-
of-equilibrium production of light nuclei.

Why do we think that internucleon effective potentials
might be modified in the conditions discussed, from well-
known forces in cold nuclear matter?

One generic reason—suggested many times before—is
that in the baryon-rich end of the phase diagram certain
modification of meson masses and couplings should be much
larger than in the (well studied) small-μB meson-dominated
regime. In the spirit of the resonance gas model, one may
argue that there are many more baryonic resonances than
mesonic ones. Studies of dilepton spectral density [6] and
related ρ-meson modifications [7] have indeed shown such
baryonic dominance. It is furthermore quite reasonable to
think that what happens with ρ should happen with other wide
resonances, the σ in particular.

Another generic reason, emphasized in Ref. [3] and also
widely known, is the possible existence of the (hypothetical)
QCD critical point, as the endpoint of the first-order phase
transition line. On general theoretical grounds we know that
second-order phase transitions have massless modes, which
lead to the phenomenon of critical opalescence at scales much
larger than the microscopic scales of matter. If exchanges of
such long-range critical modes do appear in the internucleon
potential—even with relatively small coupling—we will find a
significant enhancement of both the binding of certain nuclear
clusters, and the kinetic clustering rates.

Finally, as multiple studies on the kinetics near the phase
transitions indicate, the so-called “critical slowing down”
phenomenon prevents complete equilibration, and opens the
door to multiple out-of-equilibrium scenarios, some with
significant cluster production.

II. FREEZE-OUT CONDITIONS AND MODIFIED
BARYON POTENTIALS

We already mentioned the resonance gas model, which is
very successful for predicting hadronic yields for high-energy
heavy-ion collisions. It is based on the standard statistical
expression for the equilibrium particle densities at number of
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baryons of type i,

Ni = γiVtot

∫
d3 p

(2π )3

1

exp[(mi − μ̄ + p2/2mi )/Tch] + 1
, (1)

where γi,Vtot, Tch are the statistical weight, total effective vol-
ume of the chemical freeze-out surface, and the corresponding
chemical freeze-out temperature. We put a bar on the chemical
potential indicating that we include the mean value of the
interbaryon potential in it, μ̄ = μ − V̄ .

There are certain important distinctions between high-
energy collisions and the conditions we are going to
study. First of all, in the former case μB ≈ 0 and
baryons/antibaryons are both very much suppressed by the
Boltzmann factor, since mi/Tch ∼ 10. Second, at Tch ≈ Tc ≈
155 MeV, excitation of baryonic resonances N∗,�∗ and their
strange counterparts is very significant. For example, the
population of the S = 3/2, I = 3/2 � resonance, relative to
that of the nucleon, is about 4 exp [(m� − mN )/Tch] ≈ 0.7.
On the other hand, in the time between the chemical and
kinetic freeze-out, with Tkin ≈ 80–100 MeV, most of them
decay into a baryon and one (or more) mesons, providing large
“feed-down corrections” to nucleon yields.

For the conditions of the BES, on the other hand, the
chemical potential is in the range μ̄ = 500–700 MeV, and the
Boltzmann factors exp[−(mi − μ̄)/Tch] are not so punishingly
small. Furthermore, the number of antibaryons is negligible,
and we will not discuss them in the following. The chemical
freeze-out temperature is lower, and thus a fraction of excited
baryonic resonances is much smaller. In the following we
will (maybe crudely) ignore their existence and feeddown.
We thus normalize our calculations to the total final nucleon
number observed experimentally. Another way to explain this
approach is to realize that in the Serot-Walecka model we
will use, the baryonic states have the same effective potentials
as the nucleons. This is so because the effective Lagrangian
does not depend on isospin. Then, the time evolution of any
baryon follows the same MD + L equation independently of
its nature as long as an average baryon mass is employed in
the calculation.

Let us finally comment on the distinctions between our
molecular dynamics computations and those for low-energy
heavy-ion collisions. If the temperature T ∼ 10 MeV, the
thermal kinetic energy is comparable with the Fermi energy
of matter at nuclear densities, and therefore quantum effects
play a significant role and need to be taken care of, by some
kind of approximation. The freeze-out temperatures we deal
with are significantly higher; many states are excited and the
role of Fermi repulsion is significantly reduced.

Nucleons under freeze-out conditions populate a nonde-
generate classical gas. In this case the number density per
internal degree of freedom nDOF should be small compared
to the “quantum density,”

nqu =
(

mT

2π h̄2

)3/2

. (2)

Inserting the nucleon mass and temperatures in question,
one finds that nqu(T = 150 MeV) = 0.44 fm−3. Nucleons
have (2S + 1)(2I + 1) = 4 internal degrees of freedom, so

at nuclear matter density nDOF = n0/4 = 0.04 fm−3, which
is indeed smaller than the nqu value above. Note that when
the temperature is an order of magnitude smaller—as is the
case in lower collision energies related to multifragmentation
studies—nqu is reduced by a factor 30, and the regime is
reversed, nqu < nDOF, and matter is thus a degenerate Fermi
gas. Nevertheless, we will study some effective quantum
corrections in Appendix E.

Let us now proceed to the discussion of in-matter forces
between the baryons, starting with the so called “mass shifts”
issue, which is somewhat controversial. On one hand, a
significant part of the nucleon mass is believed to be due
to “constituent quark masses” induced by chiral symmetry
breaking. If so, in view that the freeze-out is not far from
the restoration line of the chiral symmetry, it was predicted
by many phenomenological and theoretical models that there
should be a significant downward shift of such contributions
to the effective quark mass. On the other hand, as we men-
tioned already, the successful thermodynamical description
of the particle yields at chemical freeze-out uses the reso-
nance gas model without any modifications of the particle
masses.

Furthermore, the range of the internucleon potentials is
defined by masses of the corresponding mesons. For one
of them, the vector meson ρ, we have direct access to its
spectral density via the dilepton production, and its signif-
icant widening has indeed been observed [6]. For the ω

meson no changes are observed, which is expected, since
due to its longer lifetime most of them decay outside of the
fireball. The σ meson, wide even in vacuum [8], is often
represented as a correlated ππ pair, and is perhaps getting
even wider in matter. The effective potential, convoluting
Yukawa potential with its spectral density (cf. Appendix B), is
expected to become longer range or even infinite range at the
critical point.

Unfortunately, lattice QCD at the moment can only ex-
trapolate to μB/T < 2 or so, which is far from the regime
we are interested in. Some hints can perhaps be gained from
the lattice study by the Graz group [9], which performed
restoration of chiral symmetry “by surgery” i.e., simply re-
moving the lowest Dirac eigenstates from the hadronic mass
evaluation. What is observed is that the chiral partners (such as
the nucleon P = +1 and N∗ P = −1, ρ and a1, etc.) modify
their masses in the opposite directions, meeting somewhere
in between. Perhaps such effects cancel each other in the
calculations of the total baryon and meson yields. If so,
note that the chiral partner of the σ is the pion. Moving
towards it means reducing its mass, maybe to a half of it,
or even all the way to zero (close to the second-order phase
transition).

Completing the motivation, we now explain the reader
the simplified form of nuclear forces we will be using. It
follows from the popular relativistic model by Serot and
Walecka [10]. One important simplifying characteristic is that
it only includes the isoscalar mesons, scalar σ and vector ω,
so there is no difference between the interaction of protons
and neutrons. We will also ignore electromagnetism, as the
clusters studied are not so large as to make it important.
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FIG. 1. Phenomenological nucleon-nucleon potentials. Solid
line: Serot-Walecka potential (4) with parameters in (5). Dotted line:
Same as before but with the repulsive strength increased by a factor
1.4. Dashed line: Bonn NN potential [11] in 1S0 channel, taken from
[12].

The Lagrangian density of their model is

L = 1
2

(
∂μφ∂μφ − m2

σφ2) − 1
4 FμνFμν + 1

2 m2
ωVμV μ

+ ψ̄[γμ(i∂μ − gωV μ) − (mN − gσφ)]ψ, (3)

where the Abelian field strength of the vector field Fμν ≡
∂μVν − ∂νVμ is the same as in electrodynamics. There are thus
three fields, Dirac nucleons ψ , vector ω mesons Vμ, and scalar
σ mesons φ, interacting with each other in a relativistically
invariant way. Their masses are considered to be an input.
For definiteness we use mσ = 500 MeV, mω = 782 MeV, and
mN = 938 MeV.

The resulting static potential between nucleons is

VA(r) = − g2
σ

4πr
e−mσ r + g2

ω

4πr
e−mωr, (4)

where the coupling values selected by Serot and Walecka [10]
are

g2
σ = 267.1

(
m2

σ

m2
N

)
, g2

ω = 195.9

(
m2

ω

m2
N

)
. (5)

The ω coupling is stronger, thus dominating at small dis-
tances. Note further that these two terms nearly cancel each
other, leaving us with a relatively shallow potential, |VA| <

100 MeV ∼mN/10; see Figs. 1 and 25. It is also important
to notice that the couplings are selected not to fit the binary
scattering phase shifts and deuteron binding, as done for all
other phenomenological potentials, but from the fit to nuclear
matter in the mean-field approximation. The details of that are
further delegated to Sec. III C.

For our studies of the baryonic clustering in this work we
will use the Serot-Walecka model in four different versions of
the mesonic masses:

FIG. 2. V (r)r3 (MeV fm3) vs r (fm) for the four models used in
this work. The original Walecka potential with increased repulsion
(potential A′) is shown by the black solid line, the versions B1 and
B2 correspond to the dashed brown and dotted blue dashed lines,
respectively. The version C potential, with x = 0.1 is represented by
the red dash-dotted line.

(A) The unmodified Walecka potential (4) with the pa-
rameters computed at mean field quoted in (5).

(A′) Walecka potential with increased repulsion g2
ω →

1.4g2
ω to make it closer to the phenomenological

Bonn potential.
(B1) One in which the σ mass squared decreases

“halfway” (that is m2
σ → m2

σ /2), presumed to hold
at the critical line for μB < μc. The “minimal modi-
fication” version changes the coupling as well, g2

s →
g2

s/2, keeping the mean potential energy constant.
(B2) This version is the same as (B1) except that the scalar

coupling is not modified. The mean potential from σ

thus is a factor 2 larger than in (B1).
(C) An admixture of the (B2) potential with the one with

very light critical mode σ , m2
σ → m2

σ /6 (denoted as
Vcrit),

VC (r; x) = (1 − x)VB2(r) + xVcrit(r). (6)

In Fig. 2 we show the corresponding potentials, multiplied
for convenience by r3 (note that 4πr3/3 times the density
of other baryons tell us effectively how many “partners” a
given baryon has). As one can see, these four models show
progressively increasing depth and range of the attractive
potential.

III. PRELIMINARY STUDIES OF CLUSTER BINDING

Before we discuss our dynamical out-of-equilibrium stud-
ies of multibaryon systems, it is instructive to report some
simplified approaches. We considered either N = 4–13 nu-
cleons, or clusters of certain fixed size, and use all versions
of the modified potentials described above. In Sec. III A we
consider a limit in which there are no correlations between
locations of the nucleons, so that the N-body distribution is
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simply factorizable into a product

n(�r1, �r2, . . . , �rN ) =
∏

i

n(�ri), (7)

with the same Gaussian-like spatial distribution. In Sec. III B
we turn to the opposite limit, in which the nucleons are set
to specific locations, defined by symmetry considerations,
which in turn depend on the particle number, and study the
dependence of the total energy on the scale parameter. Finally,
in Sec. III C we calculate properties of self-consistent mean-
field clusters, formed of only bound nucleons.

A. Clusters made of uncorrelated nucleons

In this section we illustrate the effect of the different po-
tentials defined above in a simple mean-field (no correlations)
model. Let us consider a Gaussian-shaped cluster, with the
nuclear matter density n0 = 0.16 fm−3 at its core,

n(r) = n0 exp

(
− r2

2R2

)
, (8)

and the r.m.s. size R = 2 fm. The integral N = ∫
d3r n(r) ≈

20, so this is a crude model of a medium-size nucleus.
Using the Thomas-Fermi expression for local Fermi mo-

mentum with γ degrees of freedom pF (r) = [6π2n(r)/γ ]1/3

one can calculate the kinetic energy per nucleon. For γ = 4 it
is

K

N
= 1

N

∫
d3r

3

5

pF (r)2

2mN
n(r) ≈ 10.2 MeV, (9)

independent or R. For pure neutron matter with γ = 2 we get
K/N ≈ 16.2 MeV.

Now, ignoring pair correlations n(�r1, �r2) → n(�r1)n(�r2)
(mean-field approximation), one can calculate the potential
energy

P = 1

2

∫
d3r1d3r2 n(r1)V (�r1 − �r2)n(r2), (10)

corresponding to forces defined in the preceding section. The
results are P = −15.1, 3.7, 6.7, −52.5, and −70.9 MeV per
nucleon, for models A, A′, B1, B2, and C, respectively. In
Fig. 3 we summarize our results for the total energy per
nucleon, for the different potentials used in this work. We
also consider different r.m.s. of the nuclear density, with a
total number of nucleons of 2.5 (circles), 8.5 (squares), and
20 (triangles).

The total energy per nucleon (K + P)/N for the Walecka
model A (whose parameters are chosen at mean field) is
∼−5 MeV for nuclear matter (p, n equal mixture), and
+1 MeV for pure neutrons.

The model A′ is chosen to be much more shallow than the
previous Walecka potential, and it is not able to bind this kind
of clusters in the mean-field approximation. Similarly, the
potential B1 has a comparable effect, with a total energy per
nucleon of several dozens of MeV. However models B2 and
C lead to a large binding. As we will detail later, the addition
of binary correlation function can increase this binding even
more. The main lesson from this initial calculation is that
significant binding (non-negligible compared to temperatures

FIG. 3. The total energy per nucleon in MeV/nucleon, for all
versions of the binary potentials and the number of nucleons
N = 2.5, 8.5, 20; corresponding to Gaussian density with r.m.s. radii
R = 1, 1.5, 2 fm, respectively.

of T ≈ 100 MeV) can be produced at mean field only for
significantly modified potentials (models B2 and C). We study
now the effect of correlations in such systems.

B. Clusters made of strongly correlated nucleons

For vanishingly small temperatures and small values of the
particle number N , the geometry of the classical lowest energy
states is suggested by symmetry. In this section we present
some expectations as functions of N . Later, we will study not
only the near-freeze-out T ∼ 100 MeV cases, but also cool
the systems down to T ≈ 1 MeV and even T ≈ 10−3 MeV
and test that the symmetric configurations considered in this
section are indeed obtained from the MD + L simulations.

For definiteness, the potential used in this section is V (r) =
VA′ (r), which is enough to bind the nucleons when no thermal
effects are accounted for (T = 0).

The smallest number of particles we consider is 4, N = 4,
which form a tetrahedron. As it is known from studies of few-
body nuclei, such correlation between four nucleons is indeed
rather strong inside the 4He, and persists in “alpha-particle nu-
clei” such as 12C, 16O. All six pair distances between the four
nucleons are in this case the same, denoted by a. For a general
N , a is defined as the minimum distance between 2 nucleons
in equilibrium—which is not necessarily the minimum of the
internucleon potential. The energy per nucleon 〈V 〉N in this
simplest case is just

〈V 〉4 = 3
2V (a). (11)

The octahedron has N = 6 particles and 15 pairs: 12 of
them of distance a and 3 of distance

√
2a. The energy per

nucleon is in this case

〈V 〉6 = 2V (a) + 1
2V (

√
2a). (12)
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FIG. 4. The potential energy per particle 〈V 〉N (MeV/nucleon)
as a function of distance r (fm) for four clusters: N = 4 tetrahedron
(the upper thin solid line), N = 6 octahedron (the dashed line),
N = 8 cube (the dotted line), and N = 12 + 1 icosahedron + one
particle (the lower dot-dashed line). This calculation is done with
the Walecka potential VA′ .

The next cluster to consider, of N = 8 particles, is the
hexahedron (or cube). It has 12 distances a, 12 distances

√
2a,

and four distances
√

3a, 28 in total,

〈V 〉8h = 3
2V (a) + 3

2V (
√

2a) + 1
2V (

√
3a). (13)

The largest particular cluster we discuss is the icosahedron
with 12 vertices, to which we added one particle at the center,
making N = 13. It has 78 distances: 12 distances at a, 30

distances at
√

2 − 2/
√

5a, 30 at
√

2 + 2/
√

5a, and 6 at 2a,

〈V 〉12+1 = 12
13V (a) + 30

13V (
√

2 − 2/
√

5a)

+ 30
13V (

√
2 + 2/

√
5a) + 6

13V (2a). (14)

The energy per particle 〈V 〉N (r) for all four clusters, as a
function of the distance r, is shown in Fig. 4. One can see
that augmenting N this potential energy increases, eventually
exceeding the range of temperatures in the problem T =
(100–150) MeV by a significant factor (even assuming that
the potential is not modified by the temperature). Previous
experience of working with strongly coupled Coulomb plas-
mas, see Ref. [13] and references therein, tells us that for
such range of 〈V 〉N/T the factorized mean-field theory is
completely inadequate, and the correlations are significant. At
the same time, this range of the ratio is also too small to cause
solidification of the system, keeping the system in the strongly
correlated but still liquid phase.

The value of the minimal distance between two nucleons
in equilibrium was denoted by a, and it can be obtained by
minimizing the potential energy per particle in Fig. 4 for each
N . For future reference, we summarize these distances and
the corresponding potential energy in Table II. Notice that a

TABLE II. Minimal distance between nucleons and potential
energy per nucleon for several configurations with N nucleons.

N Polyhedron a (fm) 〈V 〉N (MeV/nucleon)

4 tetrahedron 0.8727 −62.47
6 octahedron 0.8481 −95.78
8h hexahedron (cube) 0.7761 −112.70
8s square antiprism 0.8096 −117.03
12 + 1 icosahedron +1 0.7816 −177.32

coincides with the minimum of the potential VA′ (r) only for
the case N = 4.

Finally note that suggested by a totally different mini-
mization problem (Thomson problem in electrostatics [14]),
we have tried a different configuration for N = 8, the square
antiprism, whose energy per particle is denoted as 〈V 〉8s. We
indeed find a lower potential energy than the cubic configu-
ration, providing an example where the expectation based on
symmetry (coming in this case from the Platonic solids) does
not provide the optimal configuration. We will come back to
these geometries when applying our MD + L simulations to
cold systems.

C. Mean-field baryon clusters at freeze-out

Before we study the clustering phenomenon dynamically,
it is important to see what kind of clusters can in principle be
self-consistent, in analogy to globular clusters in galaxies.

Let us assume homogeneous matter at rest, with certain
mean density (1) and the mean potential V̄ , and on top of
it a cluster, as a deviation from the mean. It is cause by a
deviation of the mean potential δV (r) = V (r) − V̄ . In thermal
equilibrium it will add an extra density of baryons,

δni(r) = γi

∫
d3 p

(2π )3

⎡
⎣ 1

exp
(mi−μ̄+ p2

2m +δV (r)
Tch

) + 1

− 1

exp
(mi−μ̄+ p2

2m
Tch

) + 1

⎤
⎦. (15)

Furthermore, following the setting of the globular clusters
in the galaxies described in Appendix D, we will consider
times at which all unbound particles have already left the
cluster, and in the phase space integral we include only bound
particles. This means in the momentum integral we only
integrate over the region where

p2

2m
+ δV (r) < 0. (16)

To make a cluster self-consistent, this extra potential δV (x)
should be created by the extra density itself. We write this
condition in the integral form

δV (�r1) =
∫

d3r2V (�r1 − �r2)δni(�r2), (17)
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TABLE III. The parameters of the self-consistent clusters for
various input potentials, all with the same r.m.s. radius R = 2.2 fm.
N is the integrated number of baryons in the cluster, 〈V 〉/N and
V (r = 0) are the mean potential per baryon, and the potential depth
at the center.

Potential N 〈V 〉/N (MeV) V (r = 0) (MeV)

A 25.4 −180 −295
B2 10.5 −113 −207
C 7.8 −119 −187

equivalent to the Poisson Eq. (D8) for the Newtonian potential
in Appendix D. The two equations (15) and (17) together
make a system of equations which needs to be solved.

One simplification is to ignore +1 in (15), that is to proceed
from Fermi to Boltzmann statistics. Note further that when
δV/T is small, one can expand the bracket to the first order
in it, and then take the momentum integral using the binding
condition (16). The resulting contribution is δn ∼ δV 5/2. The
exact integral without expansion can also be done analytically,
leading to the following function of z ≡ δV/T , given with its
(rather well convergent) series:

N (z) = ez Erf(
√

z) − 2
√

z(3 + 2z)

3
√

π

+ 8z5/2

15
√

π

(
1 + 2z

7
+ 4z2

63
+ 8z3

693
+ 16z4

9009
+ · · ·

)
(18)

[see also Eq. (D7)].
In practice we adopt the following procedure: start with a

certain ansatz for δV (r), e.g., Gaussian with two parameters,
the amplitude and the radius. Then, via the N (z) function,
calculate numerically the right-hand side of Eq. (17), and
tune the parameters to minimize the difference between the
left-hand side, the obtained δV , and the input one. Of course,
inside a given variational ansatz one cannot get a very good
match of the shape, but the overall difference was kept at a
reasonable level, of the order of 15–20%.

We found it instructive to keep the radius of the cluster
fixed, say r.m.s. radius R = 2.2 fm, and modify only the
potential depth. For different potentials defined above, we
find the best depth of the potential: the resulting number of
nucleons in the cluster and the mean potential per nucleon in
it; see Table III. One can see that while the original Walecka
potential requires a quite deep potential and a large number
of baryons, the modified potentials B2,C expected near the
critical point can, due to its longer range, bind a smaller
number of nucleons.

IV. OBSERVABLES

In this section we include some generic discussion of the
observables involved.

The thermodynamical susceptibilities in equilibrium—
derivatives of log Z over various chemical potentials of three

light quarks—are usually recombined into

c(NB, NQ, NS ) = ∂NB+NQ+NS

∂NBμB∂NQμQ∂NS μS
(log Z ). (19)

We would call those global observables, because they corre-
spond to mean correlation functions of fully integrated quark
densities. Many of these quantities, up to N = NB + NQ +
Ns = 6, are currently calculated on the lattice; see Ref. [15].
For their comparison to the heavy-ion data on event-by-event
fluctuations see, e.g., Ref. [16].

At the opposite end are what we will call local observables,
related to unintegrated local densities, for example, bilocal
distribution function n(�r1, �r2), which is usually defined in
a “uncorrelated plus a correlation” form. In homogeneous
matter it is defined as

〈n(�r1, �r2)〉 = 〈n(�r1)〉〈n(�r2)〉 + C2(�r1 − �r2). (20)

Similar definitions can be given for the N-point correlators.
Obviously, the local observables include the full information
about the correlations in the system. However, for N > 2
they are multidimensional functions, which is difficult to
work with. Say, for N = 4 and homogeneous matter, there
are six relative distances, and it is not practical to calculate
six-dimensional histograms.

Furthermore, as we will see, in bound clusters there are
strong velocity-position correlations, so that in the classical
approaches we adopt below one has to work with the phase
space distributions, e.g. six-dimensional one body distribution
f (�r, �v). Their local-in-phase-space correlators obviously are
even of higher dimensions.

As a result, one needs to invent/use certain observables
in between global and local ones. Experimentalists naturally
use what we would call semiglobal observables, in which an
integral is done over the detector acceptance. For example, it
can be a certain range of longitudinal rapidities y ∈ [−Y,Y ]
and transverse momenta p⊥ ∈ [p⊥,min, p⊥,max]. Typically, the
included kinematic range is comparable to the excluded one,
colloquially known as 50-50 percent setting, maximizing the
fluctuations. One can measure distributions in the number
of net protons P(Np), or electric net charge P(Q), or net
strangeness P(S), deduce the corresponding moments, cumu-
lants, etc., or correlations between these charges.

As will be discussed later, for the net-proton case, the
kinematical cuts imposed in experimental analyses reduce
the measured multiplicities by a factor around 5–15% of the
total multiplicity (not really following 50-50 setting). Such a
reduced multiplicity allows us to reach Poissonian fluctuations
of protons and antiprotons, thus observing, for high energies,
the Skellam expectations.

Another natural set of observables, which we would call
semilocal ones, are those in which the densities (in coordinate
space or the phase space) are integrated, but over the same
small volume V ,

C(V, N ) =
∫

V

N∏
i

d3ri 〈n(�r1) . . . n(�rN )〉 (21)
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(or analogous small region in the phase space). In studies of
clustering we will do, the effect is of course maximal when V
is of the order of the volume of the clusters produced.

The last set of observables can in fact be directly observed
in experiment, via physical clusters in the final state. One well
known indicator of the baryon clustering is the deuterium d
production. The so-called coalescence models assume that d
yield is proportional to∫

d3r1d3r2d3 p1d3 p2Wd (�r1 − �r2, �p1 − �p2)〈 f (�r1, �r2, �p1, �p2)〉,

where Wd is the so-called Wigner function related to the
deuteron wave function. In this case the microscopic volume
V is that of the deuterons or other light nuclei, such as
t, 3He, 4He (and hypernuclei, and their antiparticles), cur-
rently observed.

With out-of-equilibrium production of 4He in mind, we
will use below a four-particle observable, a normalized sum
of six interparticle distances.

V. MODEL: MOLECULAR DYNAMICS + LANGEVIN
SIMULATIONS

For the rest of the results in this paper we will use
molecular dynamics (MD) simulations to study the agglom-
eration of nucleons and the time scales required for cluster
formation. Previous applications of MD in nuclear matter
to study clustering can be seen in Refs. [17,18]. We start
by testing our code checking total energy and momentum
conservation for finite systems, and then proceed to relatively
large number of particles. These are contained in a cubic box
with periodic boundary conditions and “reflections” on all
sides, simulating infinite homogeneous matter. We reproduced
a number of correlation functions for gas, liquid, and solid
argon in a comparable regime; see Appendix C. We also apply
the same approach to a (modified) Walecka potential to access
the average properties of cold nuclear matter, introducing
an effective quantum localization potential; see Appendix E.
We relegate that study to an Appendix because it turns out
not to be important for systems at temperatures around the
freeze-out one.

Furthermore, we modify the MD code for a nuclear system
at fixed temperature, using Langevin dynamics. The corre-
sponding stochastic forces can be thought of as interactions
of ambient heat bath made of multiple mesons (pions, kaons,
etc.).

Presenting the results, we begin with systems with a small
number of nucleons, starting with N = 4. Using different tem-
peratures, we check that they group into an average tetrahedral
shape minimizing their energy per nucleon by sitting at mutual
distances close to the minimum of the potential. Then, we
will consider a larger number of nucleons and analyze their
clustering rate. We will study the nuclear density profile of
these clusters and their higher-order correlation functions.

A. Setting

A system with a small number of nucleons is useful to
check and validate our MD + L code. Equilibrium configu-

rations can be easily found for such systems. In finite systems
we find no extra complications due to periodic boundary
conditions, such as breaking of the periodicity of the pairwise
potential. Nevertheless, to avoid the particles escaping from
the region of interest we sometimes implement a confining
potential,

Uc(|�x|) = VW S (|�x|) − VW S (0), (22)

which is written in terms of the Woods-Saxon potential,

VW S (|�x|) = − V0

1 + exp
( |�x|−R

a

) , (23)

where V0 is the strength of the potential, R is the radius of
the volume, and a is the skin depth. Such potential does not
appreciably modify the dynamics in the region |�x| � 0.

The temperature of the system is fixed by the light degrees
of freedom (pions and kaons), which we encode in the nucleon
Langevin dynamics. Therefore, we introduce a stochastic
force to the nucleons as well as a drag force proportional and
opposed to the nucleon momentum,

d�xi

dt
= �pi

mN
,

d �pi

dt
= −�∇Uc(|xi|) −

∑
j �=i

∂V (|�xi − �x j |)
∂�xi

− λ �pi + �ξi,

(24)

where λ is the drag coefficient and �ξ is the random noise
following a white Gaussian distribution,

〈�ξi(t )〉 = 0, (25)〈
ξ a

i (t )ξ b
j (t ′)

〉 = 2T λmNδabδi jδ(t − t ′), (26)

with a, b = 1, 2, 3 and we made use of the fluctuation-
dissipation theorem to relate the drag coefficient with the
variance of the fluctuation noise. A reasonable value for λ is
taken from the baryon diffusion coefficient

λ = T

mN DB
, (27)

where the latter is extracted from URASiMA simulations
for similar conditions of density and temperature as those
used here for the hadronic evolution until freeze-out [19],
which is found to be around DB � 0.5 fm. Incidentally this
number is not too far from the often quoted estimate using
strongly coupled QGP from holography [20] DB � (2πT )−1

for temperatures around Tch = 120 MeV.
The final value used in our simulations will be λ =

0.256 fm−1. The precise number is not important as long as
it allows for a rapid thermalization of the system.

B. Few-nucleon configurations

It is instructive to remind the different distribution of dis-
tances for the first Platonic polyhedra discussed in Sec. III B.
We summarize them in Table IV.

1. N = 4: Tetrahedron

We first apply this MD scheme to a system of N = 4
particles and V (xi j ) = VA(xi j ), i.e., the unmodified Walecka
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TABLE IV. Summary of the distances of edges of some polyhe-
dra. a denotes the length of the minimal edge. Included for complete-
ness the cube configuration does not appear as an equilibrium config-

uration, rather the square antiprism. We denote φ± ≡
√

2 ± 2/
√

5.

N Polyhedron Distances of edges Proportion

4 tetrahedron a 6
6 octahedron a, a

√
2 12:3

8h hexahedron (cube) a, a
√

2, a
√

3 12:12:4

8s square antiprism a, a
√

2, a
√

1 + √
2 16:4:8

13 icosahedron+1 a, aφ−, aφ+, 2a 12:30:30:6

potential. We first run a simulation at very low temperatures
T = 10−3 MeV to match the analysis in Sec. III B. The initial
sampling of velocities is done at higher temperatures so that
the particles are given some time to acquire their equilibrium
configuration. The evolution of the potential, kinetic, and total
energies is seen in the top panel of Fig. 5. While the kinetic
energy is negligible, the potential energy per nucleon takes the
equilibrium value 〈V 〉N = −62.47 MeV (as predicted from
Table II).

FIG. 5. Top: Kinetic (black), potential (blue), and total (red)
energies per nucleon (in MeV) for N = 4 calculation vs time (fm)
at T = 10−3 MeV. Bottom: Snapshot of the coordinate configuration
at some time after equilibration.

FIG. 6. Top: Histogram of the distance between nucleon pairs for
N = 4 simulation at T = 10−3 MeV. Bottom: Cumulative distribu-
tion function.

It is easy to see that the geometrical configuration is the
expected tetrahedron shape (Fig. 5, bottom), whose center
of mass is evolving with time but the relative distances are
preserved. We perform a (time) distribution of the distances
between pairs of nucleons in the top panel of Fig. 6. The
probability distribution function (PDF) shows a single peak
at 0.873 fm, which is the expected value quoted in Table II,
and corresponds to the minimum of the Walecka potential
VA. The cumulative distribution function (CDF) jumps from
0 to 1 precisely at this distance (bottom panel of the same
figure). These distribution functions—not particularly infor-
mative in this case—will become useful for the cases with
larger N .

An increase of the temperature produces a broadening of
the PDF (although the tetrahedral shape is still preserved for
small T ). We present the same distributions for T = 10 MeV
in Fig. 7. The kinetic thermal energy is the responsible of mak-
ing the average distances increase with temperature (in this
case the average distance is computed as 1.03 fm), eventually
preventing any kind of clustering among nucleons when the
temperature dominates over the attractive NN potential.

We remark that at temperatures of T = 120 MeV we ob-
tain no bound system for N = 4 with the original Walecka
potential VA. The clustering of four nucleons (and the eventual
formation of 4He) via strong NN correlations requires a
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FIG. 7. Top panel: Histogram of the distance between nucleon
pairs for N = 4 simulation at T = 10 MeV. Bottom: Cumulative
distribution function.

deeper potential for the freeze-out temperatures of baryon-rich
HICs.

2. N = 6: Octahedron

The case with N = 6 nucleons is still relatively simple to
predict that the octahedron configuration will be the equilib-
rium shape. For T = 10−3 MeV a fast equilibration is reached
(see top panel of Fig. 8), sitting until t = 50 fm in a metastable
minimum of the potential (until the last particle is finally cap-
tured by the cluster). The final potential energy per nucleon is
equal to 〈V 〉N = −95.78 MeV, in agreement with Table II. A
snapshot of the spatial configuration is presented in the lower
panel of Fig. 8.

The distribution function of mutual distances is presented
in the top panel of Fig. 9. It is possible to verify that the
geometry is consistent with the expectations of an octahedron.
This polyhedron has two different sets of relative distances,
one at some distance a and another at

√
2a with relative

strength 12 to 3. This is precisely what we observe in the
histogram, where the ratio between the area under the peaks is
exactly 4. This can alternatively be checked in the cumulative
distribution function of the bottom panel of the same figure.
The steps in this function are located at 0.848 and 1.199 fm,
which correspond to the two distances between nucleons in
the octahedron configuration. The minimum distance coin-

FIG. 8. Top: Kinetic (black), potential (blue), and total (red)
energies per nucleon (in MeV) for N = 6 calculation vs time (fm)
at T = 10−3 MeV. Bottom: Snapshot of the coordinate configuration
at some time after equilibration.

cides with the expectations in Table II, and the second one
is a factor

√
2 larger.

In Fig. 10 we can observe how already at T = 1 MeV
the two peaks are smeared out due to the thermal motion of
the nucleons. Nevertheless, it is still possible to identify the
octahedron configuration.

3. N = 8

For N = 8 we notice that the naive expectation of a cubic
geometry was already ruled out in Sec. III B in favor of a
square antiprism configuration. The later configuration has a
lower potential energy for N = 8 nucleons. The distribution
of mutual distances is rather different from the cubic configu-
ration case as seen in Table IV.

A calculation at finite temperature T = 1 MeV seems to
be roughly consistent with this expectation. The PDF shown
in Fig. 11 is clearly inconsistent with a cubic configuration
after comparing to the numbers in Table IV. To test the
square antiprism configuration we run a calculation at T =
10−3 MeV. The resulting PDF shown in Fig. 12 shows that
this distribution is much richer and not consistent with this
geometry. The potential energy per particle at T = 10−3 MeV
is 〈V 〉N = −119.45 MeV, also not consistent with either cube
of square antiprism (see Table II). We were not able to identify
the precise geometrical shape (shown in the bottom panel of
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FIG. 9. Top: Histogram of the distance between nucleon pairs for
N = 6 simulation at T = 10−3 MeV. Bottom: Cumulative distribu-
tion function.

Fig. 12), but we have classified seven different distances with
relative weights 2:4:1:2:1:2:2.

4. N = 12 + 1: Icosahedron + 1

We conclude the study of small clusters by considering
N = 12 + 1 nucleons at T = 10−3 MeV, where the expected
configuration is an icosahedron plus one nucleon at the center.
It is easy to see by naked eye that the geometrical configura-
tion resembles this expectation. In the top panel of Fig. 13
we present a snapshot of the spatial configuration at some
time after equilibration. In the middle panel we also present
the distribution of (78) mutual distances. We observe four
different sets of distances, and with a relative weight (see
cumulative distribution function in the middle of the same fig-
ure) in excellent agreement with the expectations of Table IV.
Finally, the minimum distance (position of the first peak of the
distribution) is 0.782 fm, and the potential energy per nucleon
obtained is 〈V 〉N = −177.32 MeV, both in agreement with the
values in Table II.

C. Clustering at freeze-out temperatures

In this section we describe simulations following the
scheme presented in the previous section (MD + Langevin

FIG. 10. Top: Histogram of the distance between nucleon pairs
for N = 6 simulation at T = 1 MeV. Bottom: Cumulative distribu-
tion function.

with modified Walecka potentials). The number of nucleons
is larg, N = 128, and the temperature is fixed at the typical
freeze-out temperatures Tkin = 120 MeV [21].

FIG. 11. Top panel: Histogram of the distance between nucleon
pairs for N = 8 simulation at T = 1 MeV. This configuration is
apparently signaling a square antiprism shape, when comparing the
distribution with the ideal distribution in Table IV.
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FIG. 12. Top: Histogram of the distances between nucleon pairs
for N = 8 simulation at T = 10−3 MeV. Bottom: Spatial configura-
tion of the N = 8 nucleons after equilibration.

In this section we use the potential VA to see how a deep
potential can bind nucleons and eventually produce a large
cluster. In this example we look for a clear example of such a
cluster, and to apply various systematic procedures to analyze
its internal structure. The initial state and a configuration after
its equilibration are shown in Fig. 14. The initial geometry is
spherical with a density of n = 0.16 fm−3.

When equilibrium is reached we obtain a big cluster which
includes all N = 128 particles. In Fig. 15 we show the time
evolution of the kinetic, potential, and total energies (top)
as well as the temperature evolution (bottom). We observe
that the total energy of the system is dominated by large
negative potential energy, so to see one cluster structure is not
surprising. The temperature at equilibrium (plateau formed
after t ∼ 50 fm in the bottom panel) fluctuates around the
value Tkin = 120 MeV. The sudden kicks in temperature and
the steps in energies occur when one more particle is captured
by the cluster, and falls to the deep potential well.

Following the mean-field approach and the King’s solution
a decreasing distribution of particles is expected as a func-
tion of the radial distance. We want to analyze the internal
arrangement of nucleons in this cluster by finding the radial
distribution of nucleons starting at r = 0 (defined as the

FIG. 13. Top: Spatial configuration of N = 13 nucleons at T =
10−3 MeV at some arbitrary time after equilibration. Middle: His-
togram of the distances between nucleon pairs for the same simula-
tion. Bottom: Cumulative distribution function.

centroid of the cluster). As the centroid evolves in time, we
monitor its position at each time step, and perform the radial
distribution of the nucleons. To have independent events in
the distribution, and to avoid spurious correlations we choose
time steps well separated to perform the average. We measure
the number of nucleons per unit volume/radial distance, and
plot it versus the distance from the centroid.
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FIG. 14. Configuration of N = 128 nucleons in coordinate space
at initial time t = 0 fm/c (top) and at some arbitrary time after full
equilibration t > 250 fm/c (bottom).

The distributions dN/dV and dN/dr are represented in
Fig. 16 showing a nonmonotonous structure suggesting a
shell-like organization with accumulations of nucleons every
0.3 fm in the radial direction.

For clarity, let us note that this study is only done for
investigative purposes. The time scales considered in the
plot above, up to t ∼ 300 fm/c, are much longer than those
available in heavy-ion collisions, t ∼ 10 fm/c. Furthermore,
this analysis was done in static, rather than exploding, heat
bath. So, by no means do we suggest that such heavy clusters
are actually produced in experiment. At best we hope to find
evidence of the very beginning of the clustering process.

VI. BARYONIC CLUSTERS NEAR THE
CHIRAL TRANSITION

In this study we continue the study of big cluster formation
and their time scales as the clustering process becomes more
and more important. This will happen when the original

FIG. 15. Top: Kinetic (black dots), potential (blue diamonds),
and total energies (red squares) as a function of time for a configu-
ration of N = 128 nucleons using the Walecka potential VA. Bottom:
Temperature as a function of time for the same simulation.

parameters of the Walecka potential are modified as a con-
sequence of the changes in the properties of the σ mode.

We will compare the potentials VB1, VB2, VC , each one
thought to be acting closer and closer to the chiral transition.

A. Formation of clusters

All simulations begin with randomly placed nucleons.
Naturally the cluster formation starts with small clusters,
which then assemble into larger and larger ones. We decided
to follow the process by defining variables in which one
can separate clustered and nonclustered baryons in the most
direct way, and then histogram the distributions at different
times.

We performed a number of such studies, demonstrating
here one example for a four-particle variable. The variable S
(from sum) is defined as the normalized sum of all mutual
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FIG. 16. Density of nucleons per unit volume (top) and per
unit distance (bottom) inside a cluster of N = 128 nucleons after
equilibration.

distances between particles in the system,

S = 1

Nd

Nd∑
i = 1
j > i

|�xi j |, (28)

where i, j = 1, . . . , N run over all nucleons, �xi j is the vector
joining pairs, and Nd = N (N − 1)/2 is the number of mutual
distances between different nucleons.

As one can see from an example shown in Fig. 17 (note
the scales), for potentials A, B1, B2 we observe that the en-
tropy wins over the energy. With time the distribution slowly
becomes wider due to the diffusion of baryons.

In contrast to that, the potential C with longer-range at-
traction shows the opposite trend, the potential wins over the
entropy, leading to a rather robust clustering. An example
of the time evolution for the C(x = 1) potential is shown
in Fig. 18. The clear separation of the distribution into two
peak structure, in this one particular event, corresponds to a
formation of two clusters (in this event, those have sizes of 9
and 22, with only one particle evaporating out). The first peak
corresponds to intracluster distances in both clusters, whereas
the second peaks reflect intercluster distances.

B. Time scales

We consider a system of N = 128 nucleons at temperature
T = 80 MeV, with an initial nuclear density n = 0.13 fm−3

FIG. 17. Distribution over variable S Eq. (28), for time equal
t = 0 (a) and 4 fm/c (b). The calculation is done for N = 32 particles
and the VA′ (r) potential.

and finite size. In Fig. 19 we show the time dependence of
the energies per particle (top) and the temperature (bottom).
After a fast thermal equilibration the temperature is approxi-
mately constant, while the total energy is not conserved in the
evolution as dissipation occurs due to the drag force.

The potential VB1 is able to produce full clustering after
long times. From the example in Fig. 19, the full equilibration
time is of the order of ∼800 fm/c, and clustering has taken
place. Individual particles can escape the cluster thanks to
their kinetic energy, however, we avoid the loss of particles
with the external trapped potential in Eq. (22).

We can define an equilibration time by noticing that the
total energy has an approximate exponential decay exp (− t

teq
).

We obtain teq = 187 fm in this particular example.
Although the VB1 is enough to form a big cluster in several

hundreds fm/c, these scales are totally irrelevant for HICs. A
slightly critical potential VB2 produces the clustering in a much
faster way, ∼40 fm/c. We present the time dependence of the
energies and temperature in Fig. 20.

In this case, the exponential decay is much less evident.
We find an initial regime of ∼10 fm/c where the energy is
approximately constant. Between 10 and 17 fm we find a good
exponential decay with an equilibration time of teq = 3 fm/c.
After this transient exponential decay the relaxation is much
softer, reaching equilibration in around 40 fm/c. The time
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FIG. 18. Distribution over variable S Eq. (28), for time equal
t = 0, 1, 2, 4 fm/c, in panels (a)–(d), respectively. The calculation
is done for N = 32 particles and the VC (r; x) potential with x = 1.

scales for the clustering with this potential are much closer
to those in heavy-ion collision, so it seems reasonable to
consider this mechanism as potentially important close to the
critical point (where the equilibration time is even reduced
using a deeper potential like VC).

FIG. 19. Top: Kinetic (black dots), potential (blue diamonds),
and total energies (red squares) as a function of time for a con-
figuration of N = 128 nucleons using the potential VB1. Bottom:
Temperature as a function of time for the same simulation.

Nevertheless, it seems clear that the time for full clustering
is still large to take place completely in heavy-ion collisions.
We only hope to have a potential effect close to the critical
point where the signatures of initial clustering might certainly
occur (perhaps clusters of few nucleons as 4He). Starting from
a system away from the critical point, we will calibrate our
model with noncritical potential VA to experimental data at en-
ergies where Poissonian fluctuations are observed. Then, we
will modify our potential to increase criticality and compute
observables like higher-order moments of the (net-)proton
distribution.

VII. RESULTS: CORRELATION AND CLUSTERING
AT BES CONDITIONS

In this section we apply our model to heavy-ion collisions
at the BES conditions. Due to the practical limitation of our
model, we will not perform a full comparison to experimental
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FIG. 20. Top: Kinetic (black dots), potential (blue diamonds),
and total energies (red squares) as a function of time for a con-
figuration of N = 128 nucleons using the potential VB1. Bottom:
Temperature as a function of time for the same simulation.

data. Rather than providing a complete quantitative answer—
for what one would need a more sophisticated dynamical
code—we content ourselves to show that the obtained effect
(using the closest conditions to experiment we are able to im-
plement) is consistent with what is observed in the laboratory.

At beam collision energies above
√

sNN = 19.6 GeV,
STAR data have shown a very approximate Skellam distri-
bution for net protons [5,22], consistent with thermal equi-
librium fluctuations. Therefore, we will choose the energy√

sNN = 19.6 GeV as our baseline, where thermal effects
dominate over the interaction potential.

For collisions at this energy (and lower) we can safely
neglect antiprotons. In Table V we show the ratio of pro-
tons/antiprotons in the kinematic cut |y| < 0.5, 0.4 < p⊥ <

0.8 GeV/c for the most central collisions at the different
energies considered in this work. Data are adapted from
Ref. [22].

TABLE V. Proton-to-antiproton ratio for |y| < 0.5 and 0.4 <

p⊥ < 0.8 GeV/c at centrality bin 0–5% for collision energies√
sNN � 19.6 GeV. Adapted from Ref. [22].

√
sNN (GeV) 7.7 11.5 19.6

Proton/antiproton 114.4 ± 0.6 30.64 ± 0.07 9.89 ± 0.01

In our own simulations, Poisson statistics is achieved when
measuring the distribution of protons in a subvolume or the
order of few percent of the initial volume. This is consistent
with the fact that the experimental net-proton distribution in
the mentioned pT cut is 5% of the total net-proton multiplicity
[23]. In that case the protons follows very closely the Poisson
expectations.

Coming back to our code, our first task is to achieve a
similar particle distribution in such a noncritical scenario,
where Poissonian fluctuations dominate. We identify the po-
tential VA′ , i.e., the Walecka potential with additional repulsion
(and no critical enhancement), with the scenario at

√
sNN =

19.6 GeV.
The parameters are chosen as follows. The kinetic freeze-

out temperature for these collision energies is roughly Tkin =
120 MeV. Our code will simulate a few Fermi/c between
hadronization and freeze-out, so we have set a constant
temperature to T = 150 MeV. We have observed that the
calculation is not very sensitive to a change of temperature
around this value.

The baryon density at freeze-out is close to nkin ∼
0.12 fm−3, but at earlier stages it can take a few times this
value [24]. We will use a value of n = 0.3 fm−3. We run our
MD + L code for a time of �t = 5 fm/c, corresponding to an
approximate time between hadronization and kinetic freeze-
out. While this time could be safely extended, perhaps up to a
factor 2, we prefer to be conservative not to overestimate the
effect of clustering (as seen in previous sections).

One does not know how many protons (on average) the
physical system contains in the full volume. What one does
know is the average number of protons in a certain kinematic
cut. Therefore, one should fix the total number of protons N
in the simulation in such a way that this average is achieved.
For numerical convenience we simply use a reduced number
of protons N = 32 and then scale up the different cumulants
as suggested in Ref. [25] to be able to compare with the
experimental one. It is important to note that the scaled
skewness Sσ and kurtosis κσ 2 do not depend on the volume,
so we can directly compute them without the need of any
multiplicative factor. However, to be able to compare the
cumulants themselves it is mandatory to select the appropriate
number of protons in the system.

The number of events for each energy (or NN potential)
is Nev = 105. This number is of the same order of the experi-
mental number of events for the largest centrality bin. While
one is not required to implement the same number of events as
in experiment (as long as it is large enough to provide accurate
results), we opt to do this to perform an additional check when
comparing the magnitude of the statistical uncertainties with
the experimental ones.
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TABLE VI. Parameters used in the simulations of protons for ki-
netic freeze-out conditions of STAR collisions at

√
sNN � 19.6 GeV.

Respectively: temperature, nucleon density, number of nucleons,
number of events, drag coefficient, and time duration.

T n N Nev λ �t

150 MeV 0.3 fm−3 32 105 0.256 fm−1 5 fm/c

As explained in Sec. V the value of the dissipative force λ

is taken from the results of Ref. [19].
We summarize the parameters used in this section in our

MD + L simulations in Table VI. For the aim of isolating the
effect of the NN potential, these parameters will be kept fixed
for all potentials (all collision energies). We checked that from
the thermal fits of the different energies, these parameters
do not vary too much (the most sensible parameter is the
baryochemical potential).

The calculation is performed in a nonexpanding medium,
i.e., without radial flow implemented. This is convenient
for the use of nonrelativistic dynamics at all times. A final
boost in rapidity and transverse momentum will take care of
the mapping of the particles into the appropriate kinematic
domain, consistent with experiment. We will address this step
later.

The initial conditions of the simulations are in order. Due
to the longitudinal expansion of the fireball, the geometry
is approximately cylindrical. We initialize a volume with

a height of h = 8 fm and a radius of R =
√

N
nhπ

[24]. The
nucleons are initialized randomly in coordinate space. From
the statistical thermal model we know that a thermal distribu-
tion in equilibrium is a good approximation, at least for the
noncritical regime. Therefore we will initialize the momenta
according to a Boltzmann distribution at a temperature T .

We now describe the outcome of this simulation with VA′

and how we implement the effects of the expansion to match
the measured distributions. For the noncritical potential, colli-
sions with light particles (through the stochastic forces) are
dominant, and the system maintains equilibrium. After the
simulations we obtain Gaussian distributions for rapidity and
transverse momentum, expected for a nonrelativistic gas in
equilibrium. Moreover, the width of the Gaussian are perfectly
consistent with the temperature used.

Because of this the rapidity distribution,

dN

dy
∝ e−y2mN /2T , (29)

is relatively narrow around y = 0, and it provides a large
fraction of protons at midrapidity. This is not consistent with
experiment, where one expects ∼10% of particles at midra-
pidity |y| < 0.1, and the distribution should be almost uniform
between the limiting rapidities. As already stated, the reason
for this discrepancy is that our simulation does not account for
the longitudinal expansion of the system. To account for the
fireball expansion, we perform a final mapping of the (y, p⊥)
variables to mimic the experimental distributions.

We transform the Gaussian y distribution into a uniform
distribution, which should be much closer to reality. The

FIG. 21. Transverse momentum distribution for protons in a low-
energy heavy-ion collision. The data correspond to the STAR results
at

√
sNN = 19.6 GeV for collisions in the 0–5% centrality class at

midrapidity |y| < 0.1. The band is our result from 105 simulations
using the noncritical VA′ potential after the mapping of the kinematic
variables y, p⊥ to account for the fireball expansion.

transformation is given by

y → y′ = ymin + ymax − ymin

2
Erfc

(
−y

√
mN

2T

)
, (30)

with the limiting beam rapidities ymin and ymax. The distribu-
tion of y′ is U (ymin, ymax).

The experimental p⊥ distribution of net protons is well
fitted to a double exponential [21]. We have found that for
the considered kinematic cut a Gaussian form is already very
accurate to describe the data, but with a broader width than the
one we obtain. Therefore, by simply rescaling the transverse
momenta of our particles by a factor of 1.7 we can match the
experimental distribution with reasonable accuracy.

To compare the final distribution in p⊥ with the experi-
mental one, one needs to find the overall normalization of the
distribution (due to our use of N = 32). In this respect we
multiply our p⊥ distribution by a factor 6.6, which will be
justified below.

The resulting distribution is shown in Fig. 21 compared to
the proton distribution measured experimentally. The reason-
able agreement allows us to move on to more local observ-
ables.

We proceed to analyze the proton distributions by perform-
ing the two kinematical cuts considered in the literature. In
what follows we will denote cut 1 as the one with rapid-
ity |y| < 0.5 and transverse momentum 0.5 GeV/c < p⊥ <

0.8 GeV/c, whereas cut 2 extends the p⊥ coverage up to
2 GeV/c, thanks to the time of flight detector for the particle
identification [5].

We summarize our results for the proton cumulants in
Fig. 22 compared to experimental data for the two cuts. In our
simulation we perform the analyses with Nev = 105 events.
The statistical uncertainty comes from the Delta theorem, as
explained in Ref. [26]. As mentioned before, we need to fix the
overall normalization from our N = 32 to match the absolute
number of protons observed in experiment. To do this we
choose the average number of protons C1 in cut 1 and scale up
our value of C1 to match the experimental result. The factor is
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FIG. 22. Mean and central moments for proton distribution (C2

is the variance) for two different kinematic cuts at kinetic freeze-out
conditions of STAR collisions at

√
sNN � 19.6 GeV. Our simulation

results have been scaled by a constant factor 6.6, which is fixed by
matching the experimental value of C1 in cut 1 [upper left point in
(a)]. Experimental data for cut 1 (a) is taken from [22] and for cut 2
(b) from [5].

found to be 6.6. Then, all the other cumulants (up to fourth
order) are scaled up by the same amount [27]. This is the
factor that we used to compare our p⊥ distribution with the
experimental one in Fig. 21.

We observe that despite our simple model, we can match in
a good degree of accuracy the cumulants for proton number in
both kinematical cuts for

√
sNN � 19.6 GeV. We can say that

the noncritical scenario is reasonably under control.

A. Proton skewness and kurtosis at freeze-out

After fixing the parameters, the overall multiplicity nor-
malization, and the (y, p⊥) mapping to account for the fireball
expansion, we are ready to present our results for the higher-
order moments of the proton distribution. We will show our
results as functions of the NN potential. No other simulation
parameter is changed in what follows.

By computing ratios of the obtained cumulants, one can
access the scaled skewness Sσ = C3/C2 and kurtosis κσ 2 =
C4/C2 for protons. We will compare our outcome with the
experimental net-proton skewness and kurtosis. As indicated
before, cf. Table V, one should bear in mind a systematic
uncertainty due to the absence of antiparticles in our model,

representing roughly a 10% of systematic error at
√

sNN =
19.6 GeV (becoming much smaller for lower energies).

We perform a total of Nev = 105 events for each of the
nuclear potentials at our disposal. Each of them encodes
the modification of the NN interaction due to the closer
presence of the QCD critical point. Starting from our baseline
at

√
sNN = 19.6 GeV with the noncritical potential VA′ , a

decrease of the collision energy is associated to an increase
of the internucleon attraction. We will subsequently apply
the potentials VA′ , VB1, VB2, and VC (x) with x = 0.1, 0.5, 1.
Notice that a precise matching between the experimental
collision energy and the particular NN potential is not pos-
sible without extra modeling. Therefore we cannot directly
compare our results with real data, but nevertheless one can
observe the qualitative effect on the skewness and kurtosis
after increasing the criticality in our model.

In Fig. 23 we our present our results for Sσ and κσ 2.
From top to bottom we show the theoretical skewness as a
function of the NN potential, the experimental skewness as a
function of the collision energy, and the same dependencies
for the kurtosis, respectively. In all cases we consider both
cut 1 and cut 2. As mentioned, a direct comparison is not
possible due to the difficulty of matching a given potential
to a precise collision energy. However, we base our study
on the idea that lowering the collision energy from high
energies should necessarily approach the expanding system
to the critical region, until some particular value of

√
sNN . In

our setup this is achieved by increasing the attraction of the
NN potential towards a more critical one.

One important result is that the observed increase of the
kurtosis is consistent with the early clustering phenomena
close to the critical point. The onset of strong NN correlations
directly translates into an increase of higher moments. Addi-
tional sources of proton fluctuations have not been considered
here. While they can further increase the fluctuations to the
level of the experimental measurements, we conclude that
the effect of correlations should become an important, if not
the dominant, signal.

B. Light prenuclei clusters at freeze-out

In previous sections we have observed that relatively deep
nuclear potentials induce nuclear clustering if the system is
able to survive for a large amount of time. In this respect, we
do not find realistic to search for heavy-fragment production
due to critical dynamics, as the required time for their forma-
tion is much longer than the typical hadronic stage.

However, within several Fermi/c there is still room for
clustering of a few nucleons. In fact, such a mechanism seems
to be required, according to Ref. [28], to explain the STAR ex-
perimental data. In that reference, the third- and fourth-order
cumulants cannot be explained by a model by only nucleon
stopping and baryon global conservation. The conclusion of
[28] is that some sort of clustering is needed to describe
the data. In this work we provide a natural mechanism for
clustering if the NN interaction becomes attractive enough
close to the critical point.

While for the calculation of the higher-order moments of
the proton distribution we have included the contribution of all
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FIG. 23. Scaled skewness (a),(b) and kurtosis (c),(d) as a func-
tion of the potential used and from experimental data [5,22] from
STAR Collaboration.

protons—within the corresponding kinematic cuts—we will
now extract the nuclear clusters which may give rise to light
nuclei at post-freeze-out stages. We will also denote these
clusters as “prenuclei” and they are products of the nucleon

FIG. 24. Multiplicity of pre-4He (isolated clusters of four nu-
cleons at freeze-out) per event as a function of the NN potential
(attraction between NN increases from right to left).

coalescence at freeze-out. If such prenuclei are able to survive
as bound objects until the final stage of the fireball at very low
temperatures, then they will form states like 3H, 3He, 4He...,
resulting in an excess of light nuclei over the expected thermal
production.

For definiteness let us focus on 4He, which has a binding
energy of 28.3 MeV [29]. Freeze-out temperatures are larger
than this energy, but the modification of the nuclear potential
can provide extra binding to it. We will look for candidates
of 4He nuclei at the final time of our simulation, and search
for four nucleons close in phase space at the moment of the
freeze-out. If a pair of nucleons are separated by a large
distance in the phase space, then they are assumed to not
belong to the same cluster. We run our code using several
versions of the NN potentials and identify configurations of
four nucleons, or “pre-4He.” We apply the following criteria:

(1) We only search clusters of four nucleons. If any nu-
cleon also belongs to a different cluster, the whole set
is ruled out (as the nucleons belong to bigger nuclei).

(2) The relative position between pairs of nucleons should
be small. The rms of 4He is 1.67 fm, and the rms for
proton is 0.87 fm. Assuming a tetrahedron configura-
tion (see Sec. V), one obtains that the distance between
the center of two nucleons should be 1.69 fm. Giving
some freedom to this value due to the thermal motion
(deformation of the tetrahedron), we assign a maximal
distance of �r = 2 fm.

(3) The momenta should also be similar. Taking a typical
thermal momentum for 4He of

√
mT = 0.77 GeV, this

gives a momentum of 0.11 GeV to each of the Carte-
sian components of each individual nucleon. We im-
pose the condition that any component of the relative
momentum cannot be larger than �p = 0.22 GeV.

These two numbers satisfy �p�r = O(1), so this choice
seems natural.

In Fig. 24 we present the number of clusters of four nu-
cleons (pre-4He) per event (we use Nev = 105 events for each
NN potential). Similarly to the calculation of the moments of
the proton distribution, we associate the noncritical potential
VA′ to the experimental collision energy of

√
sNN = 19.6 GeV.
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Then, using this potential in our MD + Langevin code with
N = 32 nucleons, we count the number of such clusters
defined by the previous criteria. Notice that in the results of
that figure we have not applied the overall scaling factor to
the final multiplicity.

The results illustrate the effect of larger clustering forma-
tion with the NN potential used. Going from right to left in
Fig. 24 we find that the number of pre-4He increases with
the attraction of the nuclear potential. Surprisingly, the most
attractive potential VC presents a decrease of the number of
clusters. The explanation is that the large attraction binds the
nucleon into bigger clusters, i.e., it is more difficult to find
four nucleons isolated from the rest.

In spite of the qualitative study we can check that the
numbers are not unrealistic. Remember that the VA′ potential
is identified with the collision energy of

√
sNN = 19.6 GeV.

The multiplicity of 4He has not been measured at this energy
by STAR. However, other light nuclei have been measured
by the NA49 experiment [30]. For a close energy of

√
sNN =

17.3 GeV (Ebeam = 158A GeV) we know from Ref. [30] that
after increasing the mass number in one unit (from A = 1 to
A = 2, and from A = 2 to to A = 3), the dN/dy at midrapidity
decreases a factor of 100. Assuming that this scaling holds
up to A = 4 we then expect one nucleus of 4He for each 106

nucleons. Applying the same ratio to our simulation, we have
that in Nev = 105 events with N = 32 nucleons we should
expect a total of three nuclei of 4He. For the VA′ potential we
have numerically obtained 11 pre-4He.

Despite the number of simplifications made in our study,
this number seems reasonable due to the fact that only a frac-
tion of prenuclei at freeze-out will eventually populate light
nuclei. Our four-nucleon clusters might not necessarily be-
come 4He at the end of the evolution. Assuming a rather sharp
freeze-out process, one needs to project the Wigner function
of these prenuclei configurations to the actual wave function
of 4He. This study—which would give a more precise predic-
tion for the produced light nuclei—is left for a future work,
and here we restrict ourselves to show the increase of nonequi-
librium clusters due to the reduction of the σ mass close to Tc.

VIII. SUMMARY AND OUTLOOK

In this work we have studied baryonic clustering at the
freeze-out conditions corresponding to baryon-rich heavy-ion
collisions. More specifically, we have observed that both the
clustering rate and the properties of the resulting clusters are
very sensitive to the magnitude of the effective internucleon
potential, and suggest that detailed studies of the baryon
distributions will be able to fix such potentials, and ultimately
tell us whether the QCD critical point exists or not.

In Sec. II we have defined a set of internucleon effective po-
tentials, which are modifications of the Walecka-Serot model,
some with the addition of a long-range component related
to massless critical mode at the (hypothetical) critical point.
Then in Sec. III we performed some initial studies of baryonic
clusters which these potentials can support. The main tool
we used is classical molecular dynamics, complemented by
a Langevin stochastic force accounting for the mesonic heat
bath. For the case of infinite cold nuclear matter, an additional

repulsive potential modeling quantum Fermi effects has been
used in Appendix E.

If the matter is not exploding and the system evolves
long enough, we do observe that the initial stage, with ran-
dom baryon positions, is always clustering in one or a few
large clusters. If the time is not so long, corresponding to
�t ∼ 5 fm/c available for the hadronic phase of heavy-ion
collisions, the degree of clustering is very strongly dependent
on the version of the potential used. Our main result is thus
the high sensitivity of this phenomenon to the internucleon
potential.

We also tried to imitate an experimental fireball, mapping
it to an expanding system. We also impose similar cuts to
the experimental acceptance of STAR papers, and calculated
the baryon number distribution. We do observe an increase
of kurtosis, by about a factor of 3, from the original Walecka
potential to our most attractive version. While in this paper we
cannot directly compare our results to the STAR BES data, we
do focus on one important finding: a growth of the kurtosis of
the proton distribution near midrapidity, at the lowest collision
energies [5].

Our main qualitative conclusion is that while the evolution
time available is insufficient to produce fully developed “nu-
cleosynthesis” with heavy fragments, one definitely should
find the baryon distribution in the final state far from thermal
equilibrium. Indeed, the confidence in this statement is also
provided by similar studies in atomic systems and globular
clustering in galaxies (briefly outlined in the corresponding
Appendixes). We therefore suggest to look at possible devia-
tions from thermal equilibrium in the yields of light nuclei,
such as d, t, 3He, 4He. A related study in this direction is
shown in Refs. [31,32].

Although the specific critical enhancement of the multipar-
ticle fluctuations remains the major goal of this program, one
needs to also study other phenomena which can lead to those.
In this paper we focused on the clustering of baryons due to
their attractive interaction. As we detailed above, significant
clustering should in fact occur due to the usual nuclear forces.
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APPENDIX A: MEAN-FIELD APPROACH TO
THE SEROT-WALECKA MODEL

In this Appendix we remind the reader of a simplified form
of nuclear forces, following a model by Serot and Walecka
[10]. One important simplifying characteristic is that it only
includes the isoscalar mesons: scalar σ and vector ω, so there
is no difference between coupling to protons and neutrons.

Its Lagrangian density is shown in Eq. (3), and the internu-
cleon potential is written in Eq. (4), which we reproduce here
again for convenience,

ṼA(r) = − g2
σ

4πr
e−mσ r + g2

ω

4πr
e−mωr, (A1)
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FIG. 25. Solid line: Serot-Walecka potential as given in Eq. (4).
Dot-dashed line: Attractive part of the potential given by the first
term in Eq. (4). Dashed line: Repulsive contribution of the potential
described by the second term of Eq. (4).

with parameters in (5) chosen by mean-field calculations.
In Fig. 25 we illustrate the partial cancellation of the

attractive and repulsive terms of this potential.
Considering the case of infinite homogeneous matter of

density n and ignoring correlations between the nucleons, one
gets the mean potential energy

〈V 〉 = n

2

(
− g2

σ

m2
σ

+ g2
ω

m2
ω

)
. (A2)

If matter is cold, T = 0, the baryons are in a form of degener-
ate Fermi gas of quasiparticles with dispersion relation

Ek = k + gωV0 +
√

k2 + M2∗ , M∗ = mN − gσ φ0. (A3)

Note that if one expands the square root, the leading term
of the mean potential gωV0 − gσ φ0 will be the same as the one
from the usual nonrelativistic theory, but the kinetic energy
term would be k2/2M∗ rather than k2/2mN . The total energy
of the gas is

Em f a = g2
ω

2m2
ω

n2
B + m2

σ

2gs
(mN − M∗)2

+ γ

(2π )2

∫ kF

d3k
√

k2 + M2∗ , (A4)

where the statistical weight γ = 4 for symmetric nuclear mat-
ter, and 2 for neutron matter in neutron stars. Two densities,
the vector and scalar, can now be written as integrals over the
Fermi sphere,

nB = γ

(2π )2

∫ kF

d3k, (A5)

ns = γ

(2π )2

∫ kF

d3k
M∗√

k2 + M2∗
. (A6)

Note that the latter has scalar mass M∗ in the numerator
and the energy in the denominator, which is needed because
Lorentz invariant integration measure is d3k/Ek .

At this stage all is fixed except the scalar mean field (or
alternatively M∗): this is a parameter of the homogeneous-
field trial function, which, as any variational parameter, should
be found from minimization of the ground state energy. This
leads to the following equation:

M∗ = M − g2
σ

m2
σ

γ

(2π )2

∫ kF

d3k
M∗√

k2 + M2∗
, (A7)

for M∗ to be solved numerically. As shown in the original
work [10], such a mean-field result can be fitted to reproduce
the nuclear matter density and nuclear binding.

For finite spherical nuclei the procedure includes the solu-
tion of the mesonic equations of motion,(

∂μ∂μ + m2
σ

)
φ = gσ ψ̄ψ,

∂μFμν + m2
ωV ν = gωψ̄γ νψ, (A8)

supplemented by Thomas-Fermi-like treatment of baryons.
For heavy nuclei the results are rather good.

While this model is only a stripped-down version of nu-
clear forces and the mean field is only the first of various
approximations used for nuclear matter description, we will
use it below due to its simplicity. In particular, this model only
includes isoscalar exchanges, which means that pp and pn
forces are the same. As a result, the only place where isospin
matters is in the quantum kinetic energy, since it depends on
the number of species. We are however fully aware of the fact
that Walecka model parameters are only good for mean-field
treatment, and the resulting forces do not describe elastic NN
scatterings or the deuteron binding. To improve on this it is
possible to increasing the repulsion, via higher ω coupling
g2

ω → 1.4g2
ω, so that the resulting potential gets very similar

to the Bonn potential [11] (see the right panel of Fig. 1). This
is what we will call “modified Walecka potential,” which will
be used in this work, denoted by VA′ .

APPENDIX B: σ-MESON DEPENDENCE OF THE NN
POTENTIAL FROM THE FUNCTIONAL

RENORMALIZATION GROUP

In Sec. II we have analyzed the modification of the attrac-
tive part of the NN potential due to the σ mass modification.
In this work we have not dealt with the precise dependence of
this mass with the temperature/density. This would imply an
additional uncertainty dependent on the model used, e.g., lin-
ear sigma model, quark-meson model, Nambu-Jona–Lasinio
model, etc. On the other hand a more rigorous treatment
would involve the modification of the whole spectral function
of this state.

In this Appendix we will illustrate how these two issues can
be addressed using results of the σ -meson properties in the
Nf = 2 quark-meson model, approached by the application of
the functional renormalization group (FRG) [33,34].

The version of the quark-meson model presented in [33,34]
contains quarks, antiquarks, pion, and σ degrees of freedom.
After the evolution of the FRG equations one is able to obtain
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the medium-modified properties of these states in the infrared
limit. In particular, the spectral function of the σ meson can
be obtained at different temperatures and chemical potentials.

In Ref. [33] the critical point of the quark-meson model
is located around T � 10 MeV, which seems to be quite low
from the phenomenological point of view (this critical temper-
ature is supposed to increase when extending the calculation
to Nf = 3 flavors and after introducing the effects of the
Polyakov loop potential). Therefore, we will consider two
cases: at T = μ = 0 where the σ screening mass is very close
to our vacuum mass mσ � 500 MeV for the potential VA′ , and
T = 150 MeV where the σ screening mass drops to values
around mσ � 280 MeV.

The attractive part of the static NN potential is computed
as a Fourier transform of the σ -meson exchange diagram,

Vσ (r) = g2
σ

∫ ∞

−∞
dt

∫ ∞

−∞

d4 p

(2π )4
eip·x DR

σ (p0, p), (B1)

where p · x ≡ p0t − p · r, and the σ retarded propagator is
used in the Lehmann representation to account for the com-
plete spectral function ρσ (ω, p),

DR
σ (p0, p) = −

∫ ∞

−∞
dω

ρσ (ω, p)

ω − p0 − iε
. (B2)

The data from Ref. [34] are given between ω ∈
(−1, 1) GeV and p ∈ (−1, 1) GeV. For the case at T = μ =
0 MeV the σ -mass pole lies away from the real energy axis
(i.e., its real part is above the π -π unitary threshold). There-
fore, the mass appears in the spectral function as a broad
pole, which can be numerically integrated in energy and
momentum. However, at T = 150 MeV, μ = 0 MeV the σ

mass goes down below the unitary threshold and the pole is
located on the real axis. In such a case the mass appears in
the spectral function as a Dirac delta, which we need to add
by hand to the spectral function as the discretized data cannot
capture it. Following the conventions in [34] we add to the
ρσ (ω, p) a term like

Z−1sgn(ω)δ
(
ω2 − p2 − m2

σ

)
, (B3)

where mσ is the pole mass of the σ and Z−1 is the pole
weighting factor (we refer to [34] to see how to compute these
from the spectral function).

In Fig. 26 we compare the results coming from the Fourier
transform of the spectral function of the σ meson, and the
simple potential as given in our Eq. (4) with 40% extra
repulsion by the ω meson (VA′). Even at the quantitative level
the two sets of potentials look similar. The main difference of
the σ potential occurs at small distances, but in this limit the
full potential is dominated by the ω repulsion. In the results
using the σ spectral function we observe some spurious oscil-
lations around zero, which are nothing but the Gibbs effect
coming from the inverse Fourier transform of the spectral
function performed within a compact support of energy and
momentum.

FIG. 26. Solid line: Modified Serot-Walecka potential VA′ with
the form of Eq. (4) and our vacuum parameters. The σ mass
is mσ = 500 MeV. Short-dashed line: Result coming from the ρ

spectral function in vacuum taken from [34]. The σ screening mass
in vacuum is mσ = 500 MeV. Long-dashed line: Modified Serot-
Walecka potential VA′ with a σ mass of 285 MeV, keeping the rest
of the parameters as in vacuum. Dotted line: Potential after using
the spectral function at T = 150 MeV, μ = 0 from [34]. The σ

screening mass for this temperature is mσ = 285 MeV.

APPENDIX C: KINETICS AND CLUSTERING
IN ATOMIC SYSTEMS

The simplest atomic systems are those of the noble gases,
with spherical atoms and forces depending solely on dis-
tances. For a large enough atomic weight, one can neglect
quantum effects. For all these reasons, the object of choice is
argon, with its A = 40 (for the most abundant argon isotope)
being ten times heavier than 4He. By tradition, theoretical
studies of it use the simple potential

V (r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
. (C1)

Its minimum is at V (21/6σ ) = −ε. Following one of the
classic MD simulations from the 1960s [35], one can use
parameter values σ = 3.4 Å, ε = 120 K.

The shapes of this potential and that of the nuclear forces
(Walecka model) are compared in Fig. 27. It shows that
Lennard-Jones potential is much more narrow. The ratio of
the potential to the temperature is similar to the problem we
study, provided the temperature of argon is T ∼ 100 K.

The work [35] focused on one temperature T = 94 K and
one density ρ = 1.37 g/cm3, which is well in the liquid
phase. We minimally modify our MD (without Langevin
dynamics) to run an isocanonical simulation (by rescaling
of instantaneous temperature). We use N = 108 and similar
conditions with a reduced temperature of T ∗ = T/ε = 0.783
and a reduced density of n∗ = N/V σ 3 = 0.814. The radial
two-body correlation function g(r) is shown in the upper
panel of Fig. 28, presenting several peaks, indicating strong
correlations between the atoms at particular distances.

Increasing the density, one crosses the phase transition to
a solidlike phase. A new simulation with n∗ = 1.1 gives the
radial distribution function in the lower panel of Fig. 28.
The amount of very pronounced peaks is a signature of the
solid (crystalline) structure of the system. In this case the
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FIG. 27. Similarly normalized Lennard-Jones (black solid) and
Walecka (blue dashed) potentials.

distribution of peaks can be identified with a face-centered-
cubic distribution (which is the configuration used to initialize
our simulation).

The standard MD simulation, unlike Monte Carlo ones,
have not just static (fixed time) but also the time-dependent
information, such as velocity-velocity and other correlation
functions, Using standard Green-Kubo formulas one can cal-
culate diffusion constant, viscosity, etc. We however would
not go into vast literature on the kinetic properties, except
to note that liquid argon, like other liquids, has a second-
order critical point, and studies of the singularities of kinetic
coefficients there remain to be better understood.

Finally, we would like to mention instead a particular
large-scale MD simulation [36], using as many as a billion
atoms, and focusing on transition from homogeneous particle
distributions to liquid phase, at supersaturated conditions. As
is well known, the process can be divided into two stages:
(i) creation of critical clusters, with i∗ particles in them;
and (ii) their subsequent linear growth as a function of time
with a certain rate. The large scale of the simulation had
allowed one to cover a range of temperatures and densities,
in which the clustering rates change over many decades, and
cluster sizes grow to well over 100 particles. However, what
is most important is that in all cases the critical clusters are
relatively small, ranging from i∗ ∼ 12 to about 100 atoms.
Therefore, the classical theory of nucleation—treating these
clusters as macroscopic drops with a surface and volume free
energies—needs to be corrected. After the actual energies of
these clusters are used, the corrected theory was shown to
work well. Equilibrium configuration of small and medium
size clusters in Lennard-Jones interaction has been studied,
e.g., in [37].

APPENDIX D: GLOBULAR CLUSTERS IN GALAXIES

Gravity is the simplest attractive interaction, and the stars
in the galaxy—which can be well approximated by struc-
tureless point masses—are the simplest classical objects one

FIG. 28. Two-body correlation function for argon from MD
simulations with N = 108 particles. (a) T ∗ = T/ε = 0.783, n∗ =
N/V σ 3 = 0.814 (liquid phase). (b) T ∗ = 0.783, n∗ = 1.1 (solid
phase).

can think of. Galaxies themselves and the globular clusters
are products of instabilities induced by long-range attractive
interaction, and all of them appear from the homogeneous
cosmological plasma at a certain temperature.

We will not be discussing here those instabilities and
complicated paths which lead to globular cluster formation,
focusing at the classical theory of quasistationary clusters.
Since this field belongs to astronomy and is rather far from nu-
clear physics, we include in this summary its main elements.

Globular clusters are approximately spherically symmetric
bound states of many stars. Their typical number N varies
from 103 to 106, which is much smaller than that in the whole
galaxies ∼1011. For definiteness, we will mention numbers
for N = 105. The clusters are believed to possess black holes
at their centers, intermediate in mass between those due to a
star collapse and those at the centers of the galaxies. In any
case, their masses are way too small to play any role in what
follows.

The main parameters of the clusters can be inferred from
their size, ∼10 pc, and the typical velocity, v ≈ 10 km/s,
resulting in the smallest of relevant time scales, the crossing
time,

tcrossing = r

v
∼ 106 yr. (D1)
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Scattering leads to equilibration of the system, relaxing it
to certain virial equilibrium in which we see the observed
clusters. The relaxation time of a cluster is

trelaxation ∼ 109 yr. (D2)

This equilibrium is however a quasiequilibrium, since colli-
sions make a small fraction of the stars venture above the
escape velocity and leave the cluster. The largest time scale
is called the “evaporation time” (assuming cluster is not
surrounded by any matter) which is

tevaporation ∼ 1010 yr. (D3)

It qualitatively coincides with the age of observed clusters and
the lifetime of the Universe.

Considering an object with a unit mass, we define its
energy by

ε = −v2

2
− �(r) + �0. (D4)

Note the minus signs compared to the usual definition: so
positive ε corresponds to binding. The gravitational potential
at distance r from the center �(r) is, as usual, defined up
to a constant, which we will select later. Note that ε = 0
defines the (coordinate dependent) escape velocity ve =√−2�(r) + 2�0.

Step 1 is to satisfy the stationary Boltzmann equation for
the star distribution function f (�x, �v). Setting ∂ f /∂t = 0 and
neglecting the collision term, one has

(�v · �∇x ) f − ( �∇x�) · ∂ f

∂�v = 0. (D5)

This however is achieved rather easily, for any distribution of
the form f (ε(�x, �v)).

Step 2 is the selection of a particular distribution of such
kind. We will discuss the so-called King distribution, in which
f = 0 for negative ε values (that is, the cluster has no unbound
stars), and for positive ε it is

fK (ε) = const (2πσ 2)−3/2[eε/σ 2 − 1], (D6)

which is a shifted Maxwell-Boltzmann distribution with tem-
perature T = σ 2.

Step 3 is a calculation of the corresponding density of stars,
which includes the integration over the velocity. Note that it is
limited by the escape velocity defined via the potential, so the
density obtained is the function of the potential ψ = � − �0,

ρK (ψ ) = const

(2πσ 2)3/2

∫ √
2ψ

0
(e(ψ−v2/2)/σ 2 − 1)d3v

= − 4

3
√

π

√
ψ

σ

(
ψ

σ 2
+ 3

2

)
+ eψ/σ 2

Erf

(√
ψ

σ

)
.

(D7)

This complicated function is plotted in Fig. 29, and one can
see that it is a monotonously rising one.

FIG. 29. The function ρK (ψ/σ 2) defined in Eq. (D7) is shown by
the black solid line, together with its asymptotic form at small values
of the argument 0.30(ψ/σ 2)5/2, shown by the blue dashed line.

The density is the source of the potential itself, so now
we come across the main dynamical equation to be solved,
the Poisson equation for the potential. In case of spherical
symmetry it is

1

r2

d

dr

(
r2 dψ

dr

)
+ 4πGNρK [ψ (r)] = 0, (D8)

which can be solved numerically starting from the center.
The value ψ (0) is the single input parameter, the derivative
needs to be vanishing at the center ψ ′(0) = 0. The solution
can be followed until the point where ψ = 0: and as is clear
from the expression above for the density, at that point the
density vanished as well since the integration region till the
escape velocity shrinks to zero. An example of the resulting
potential after solving (D8) is shown in Fig. 30. Substituting
the resulting ψ (r) into the universal ρ(ψ ) one finally obtains
the spatial distribution of the stars in the cluster.

APPENDIX E: COLD NUCLEAR MATTER
AND QUANTUM FERMI REPULSION

To account for quantum repulsion in the simulations, the
simplest thing one can do is add the Fermi energy, evaluated
in the spirit of the Thomas-Fermi approach from the density
profile, to the classical kinetic and potential energy.

FIG. 30. The solution of the Poisson equation with the source
ρK (ψ ), ψ (r) vs r at GN × const = 1, σ = 1, and ψ (0) = 10.
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A full account for both quantum and thermal fluctuations
can be done in approaches called “quantum open systems”;
see, e.g., Ref. [38] for its application to motion and heavy
quarks and quarkonia, as well as general references.

Strictly speaking, a complete account for quantum effects
would require going from classical molecular dynamics to
full path integrals. As is well known, while for distinguish-
able particles and bosons it can be considered to be just
a technical complication, for fermions the amplitude needs
to be antisymmetrized, which brings in the notorious sign
problem. The effective Fermi repulsion, acting as a kind of
repulsive potential, generates correlations between particles
which depend strongly on their mutual distance.

In the 1980s Zhirov and one of us studied paths of fermions
moving in one dimension. This case is special because one can
always enumerate fermions along the line, and thus pretend
that the “exchange” never happens. For a small time step ta
the one-particle amplitude is

U (x f , xi, ta) ∼ exp

[
−m(x f − xi )2

2ta
− taV

(
x f + xi

2

)]
,

(E1)

and for two particles it can be written as

U
(
x f

1 , xi
1, ta

)
U

(
x f

2 , xi
2, ta

) − U
(
x f

1 , xi
2, ta

)
U

(
x f

2 , xi
1, ta

)
≈ U

(
x f

1 , xi
1, ta

)
U

(
x f

2 , xi
2, ta

)
exp[−taVPauli], (E2)

with the “Pauli potential” defined as

VPauli = − 1

ta
ln

[
1 − exp

(
−m

(
x f

1 − x f
2

)(
xi

1 − xi
2

)
ta

)]
.

(E3)

Note that when two particles get close, the exponent becomes
close to 1, the argument of the log near zero, and the potential
gets very high. So, a node of the amplitude can be viewed
as a repulsive potential. This is going in the right direction:
indeed, fermions must have a larger energy than distinguish-
able particles in the same setting. If particles never jump over
the note-generated barrier, their order along the line remains
preserved, and if the Pauli potential is included, the simulation

FIG. 31. Kinetic (black circles), total (red squares), and potential
(blue triangles) energies per nucleon vs time in the infinite matter
calculation. In addition to the Walecka VA′ we implement the local-
ization potential in Eq. (E4) with a = 0.75 fm3.

can be done by traditional Monte Carlo. We checked it for
several (n = 3–5) particles put in a harmonic potential: for
distinguishable particles the ground state energy is h̄ω(1/2 +
1/2 + · · · ) but for fermions it should be h̄ω(1/2 + 3/2 +
5/2 + · · · ) since each must be put into the next available level.
So, our algorithm with this “Pauli potential” worked correctly.
The work was concluded in Ref. [39]. A description of the
method and its usage is in Ref. [40], in which many tests have
been successfully performed.

The next step forward, allowing to use this idea in any
dimension, was made by Ceperley [41]. It has been applied to
fermionic problems, including liquid 3He. The main idea can
be explained if one considers various paths of one fermion,
keeping all other fermion paths frozen. The one-dimensional
node of the amplitude gets promoted to a “nodal surface,”
which surrounds each fermion, keeping it inside a “nodal
cell.” Paths which are not allowed to leave the nodal cell are
called “restricted”: the sum over the restricted paths obviously
has no sign change.

FIG. 32. Initial configuration (top) of nucleons in coordinate
space and configuration at an arbitrary time after equilibration
(bottom).
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The nodal surface model corresponds to a certain constant
potential well with the location of the wall depending on those
of other particles. The radius of this surface can be tuned to
reproduce the Fermi energy of an ideal gas.

Instead of a sharp wall we decided to include a more
smooth localization potential, of the form

Vloc(xi j ) = a
h̄2

mN x5
i j

, (E4)

where the exponent is chosen rather arbitrary as long as Pauli
repulsion at short distances is achieved.

To normalize this effective potential we attempted to sim-
ulate properties of cold homogeneous nuclear matter by our
molecular dynamics scheme,

d�xi

dt
= �pi

mN
,

(E5)
d �pi

dt
= −

∑
j �=i

∂V (|�xi − �x j |)
∂�xi

,

where V represents the pairwise potential, the sum of the
localization potential plus one among the different possibil-
ities described in the main text. We use the Walecka potential
VA′ (r) with increased repulsion, which is closer to the NN
phenomenological potentials for nuclear matter. To simulate
an infinite system we work on a cubic box with periodic
boundary conditions. In such a box the particle density is
fixed to the nuclear density at saturation n0 = 0.16 fm−3 with
N = 64 the total number of nucleons. To account for the
interactions of the particles in the box and those outside, we
use the method of images, where in the sum of Eq. (E5) we
consider the contributions from all j particles within a number

of copies of the box in each spatial direction (positive and
negative). The number of images (or copies of the elementary
box) per each direction is set to 2.

After a transient regime, the MD simulation reaches an
equilibrium state with constant potential and kinetic ener-
gies [with statistical fluctuations of O(1/

√
N )]. For infinite

nuclear matter at saturation an average Fermi momentum of
pF ∼ 260 MeV translates into a kinetic energy per nucleon
of K/N ≈ 25 MeV. Lacking of quantum dynamics in the
classical MD we achieve this value of K/N by forcing a
isokinetic simulation by rescaling the velocity of each particle
by

√
K/Kinst, where Kinst is the instantaneous value of the

kinetic energy at a given time step.
The expected energy per nucleon at saturation E/N =

−16 MeV provides the additional constraint that helps us to
fix the remaining parameter of the simulation, the strength
of the localization potential, to a = 0.75 fm3. The resulting
energies versus time are given in Fig. 31. After the equili-
bration time (∼100 fm/c) we can measure the average total
energy (binding energy) per nucleon. We obtain −16.6 MeV,
a fair value for our illustrative purposes. For dedicated compu-
tations a more precise value of a can be extracted, using more
nucleons in the simulation in order to reduce the statistical
fluctuations of E/N (going as 1/

√
N).

We find a rather homogeneous system at equilibrium with
evidence of a slight grouping of nucleons. In the upper panel
of Fig. 32 we show the initial configuration of nucleons at
random positions in a volume of (7.37 fm)3. In the lower
panel we show the spatial configuration of the nucleon for an
arbitrary time well after the equilibration time.

Quantum effects via localization potential—important for a
T � 0 calculation—will be absent around the freeze-out tem-
peratures, where kinetic energy is expected to be dominated
by thermal fluctuations.
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