

Quadratic Recurrence

Recurrence means repeating itself continuously,
Any recurrence associated with quadratic equation
(Preferable with real solution) is known as quadratic Recurrence.

For example consider

$$
\begin{aligned}
X & =3 \\
X^{2} & =3 X \quad \text { (multiply both sides by } X)
\end{aligned}
$$

Taking square root of both side

$$
\begin{equation*}
X=\sqrt{3(X)} \tag{1}
\end{equation*}
$$

Replace (X) by (1)

$$
X=\sqrt{3 \sqrt{3(X)}}
$$

Again replace (X) by (1)

$$
X=\sqrt{3 \sqrt{3 \sqrt{3(X)}}}
$$

Continue this process until X is eliminated from right Side.

Now we have learnt about recurrence lets
Discuss what is golden ratio?
Consider human arm.
Measure length of arm
Now measure length from knee to tail of fingers .This is longer part of arm

Interesting fact
Golden ratio $=\underline{\text { length }}$ of human arm Longer part of arm
Its exact value is 1.618033-----
For example
Length of my arm is 27.5 inch (approximately)
Length of longer part of my arm is about
17 inch and their ratio is
$\underline{27.5}=1.61764---$
17
Which is very close to 1.618 -----

Mathematically the positive solution of quadratic equation;

$$
\mathrm{X}^{2}=\mathrm{X}+1 \ldots . . . \text { (2) }
$$

Is golden ratio
Now we discover a non-periodic continued of (GR)

Multiply (2) by X

$$
\mathrm{X}\left(\mathrm{X}^{2}\right)=\mathrm{X}(\mathrm{X}+1)
$$

Or

$$
X^{3}=X^{2}+X
$$

$$
X^{3}=(X+1)+X \quad \text { using }(2)
$$

$$
\mathrm{X}^{3}=2 \mathrm{X}+1 \text {............ (3) }
$$

$$
\begin{aligned}
& \text { Again multiply (3) by } X \\
& X\left(X^{3}\right)=X(2 X+1) \\
& X^{4}=2 X^{2}+X \\
& X^{4}=2 X+2+X \quad \text { using }(2) \\
& X^{4}=3 X+2 \ldots \ldots \ldots \ldots .(4)
\end{aligned}
$$

Lastly multiply (4) by X

$$
X\left(X^{4}\right)=X(3 X+2)
$$

$$
X^{5}=3 X^{2}+2 X
$$

$$
X^{5}=3 X+3+2 X \quad \text { using }(2)
$$

$$
X^{5}=5 X+3 \ldots(5)
$$

Continue the process for next power of X Now by (2)

$$
\mathrm{X}^{2}=\mathrm{X}+1
$$

Take $\sqrt[2]{ }$ of both side

$$
\begin{aligned}
& X=\sqrt[2]{1+(X)} \\
& X=\sqrt[2]{1+\sqrt[3]{\left(X^{3}\right)}} \quad \text { rewriting } \\
& X=\sqrt[2]{1+\sqrt[3]{1+2(\mathrm{X})}} \quad \text { using (3) }
\end{aligned}
$$

$$
X=\sqrt[2]{1+\sqrt[3]{1+2 \sqrt[4]{\left(X^{4}\right)}}} \quad \text { rewriting }
$$

$$
X=\sqrt[2]{1+\sqrt[3]{1+2 \sqrt[4]{2+3 X}}}
$$

$X=\sqrt[2]{1+\sqrt[3]{1+2 \sqrt[4]{2+3\left(\sqrt[5]{X^{5}}\right)}}}$ continuing
$X=\sqrt[2]{1+\sqrt[3]{1+2 \sqrt[4]{2+3 \sqrt[5]{3+5 X}}}}$

We can trace the next pattern of this sequence

Sequence is
$(1,1),(1,1+1),(2,2+1),(3,3+2)$
And so on

Now after $(3,5)$ it will be $(5,5+3)=(5,8)$
$X^{6}=8 \mathrm{X}+5$ by tracing

further continue

This Beautiful sequence is embedded in human arm
God is the creator and how brilliant he creates...
Written by : Mathemadict

