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The growth of bacterial biofilms on implanted medical devices
causes harmful infections and device failure. Biofilm
development initiates when bacteria attach to and sense a
surface. For the common nosocomial pathogen Pseudomonas
aeruginosa and many others, the transition to the biofilm
phenotype is controlled by the intracellular signal and
second messenger cyclic-di-GMP (c-di-GMP). It is not known
how biomedical materials might be adjusted to impede
c-di-GMP signalling, and there are few extant methods for
conducting such studies. Here, we develop such a method.
We allowed P. aeruginosa to attach to the surfaces of
poly(ethylene glycol) diacrylate (PEGDA) hydrogels. These
bacteria contained a plasmid for a green fluorescent protein
(GFP) reporter for c-di-GMP. We used laser-scanning confocal
microscopy to measure the dynamics of the GFP reporter for
3 h, beginning 1 h after introducing bacteria to the hydrogel.
We controlled for the effects of changes in bacterial
metabolism using a promoterless plasmid for GFP, and for the
effects of light passing through different hydrogels being
differently attenuated by using fluorescent plastic beads as
‘standard candles’ for calibration. We demonstrate that this
method can measure statistically significant differences in c-di-
GMP signalling associated with different PEGDA gel types
and with the surface-exposed protein PilY1.
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1. Introduction

In most natural, non-laboratory settings, bacteria live as part of biofilms, complex interacting
communities often associated with surfaces [1–3]. Robust biofilms can form on a wide range of
materials, are difficult to eliminate once formed, and resist both antibiotics and the immune system
[4,5]. As a result, biofilms are a large and growing problem in the healthcare industry, estimated to be
found in 80% of all microbial infections [6–8]. Biofilms can grow on many types of medical devices,
from catheters to implants [9–12]. These complications are common; previous work has shown the
infection rate of urinary catheters to be 26.6–35% and that of orthopaedic implants to be 5–40% [6].
Given the difficulty of eliminating biofilms once they are formed, the most common approach to
dealing with biofilms on medical devices is to remove the device, with consequent increased risk and
suffering to the patient, and increased cost to the patient and the healthcare system at large [13]. It
would be better to have medical devices that resist the formation of biofilms in the first place.

To this end, coatings have been developed that hinder biofilm growth by killing bacteria (these are
antimicrobial surfaces) or by resisting the attachment of bacteria (these are antifouling surfaces). The
antimicrobial properties of surfaces are a result of either directly incorporating antibiotics into a
coating or using a metal such as silver [12]. Antifouling coatings are made of materials, ranging from
hydrogels to ceramics, that prevent attachment via specially chosen surface properties such as
hydrophilicity, topology and interfacial energy [14–16]. Although antifouling coatings are effective in
slowing bacterial colonization of the surface, their effectiveness is limited since they only target the
attachment stage of biofilm development (in contrast, coatings can release antimicrobial agents across
a range of timescales could that include biofilm maturation).

Bacteria havemultiple, redundantmechanisms for attachment; moreover, conditioning of the surface, by
both bacteria-produced materials and host materials, can reduce or eliminate their attachment-preventing
properties over time. A hitherto-unexplored alternative is to target the biological signalling that controls
biofilm development by controlling gene expression. Such an approach might be less susceptible to
thwarting by redundant attachment mechanisms and surface conditioning. Furthermore, targeting the
signalling necessary for biofilm development should also have the potential to be combined with
antifouling or bactericidal materials, to achieve a multi-pronged approach to hindering biofilm
development. However, to accomplish this, it is first necessary to establish methods that allow quantitative
comparison of the effects of different biomedical materials on bacterial signalling and its dynamics.

Pseudomonas aeruginosa is an opportunistic pathogen that is responsible for many nosocomial infections,
in large part due to its ability to form biofilms [17]. To form biofilms, planktonic P. aeruginosa attach to a
surface and increase their intracellular concentration of the second messenger cyclic-di-GMP (c-di-GMP)
[18–20]. C-di-GMP is the best-studied of the cyclic dinucleotide signalling molecules and the most
widespread among bacterial species [21]. C-di-GMP coordinates both flagella- and pilus-driven motility
(and can, in turn, be impacted by active motility elements such as flagellar stators [22] and a pilus motor
[23]), virulence and progression through the cell cycle, as well as biofilm formation and the production
and secretion of proteins and polysaccharides such as biofilm matrix materials [21,24]. C-di-GMP has
also been associated with promoting antibiotic tolerance [25–27]. C-di-GMP controls the expression of
many genes involved in biofilm formation; high intracellular levels of c-di-GMP are necessary for the
shift from the non-biofilm, planktonic state to the biofilm state [28].

Poly(ethylene glycol) diacrylate (PEGDA) hydrogels are used in studies probing bacterial attachment
and in many biomedical applications [29–32]. PEGDA hydrogels are biocompatible and have been used
as three-dimensional constructs for tissue engineering [33,34] and matrices for controlled release of drugs
[35,36]. In addition to tunable matrix stiffness, the transparency of PEGDA hydrogels facilitates the
confocal fluorescence imaging for the quantification of adhered bacterial cells. This optical property
makes PEGDA an ideal test material for a pilot study to develop a method for measuring the effects
of real-world biomedical materials on c-di-GMP signalling by P. aeruginosa.

It is well established that P. aeruginosa cells increase intracellular levels of c-di-GMP after attaching to
rigid solids such as glass, which has an elastic modulus of about approximately 20 GPa [23,37,38]. Very
little is known about how c-di-GMP signalling is impacted by substrate mechanics [38]. It is well known
that cells from higher eukaryotes sense and respond to the mechanics of their substrate [39–41]. Indeed, a
large body of research has studied mechanotransduction in higher eukaryotes [42–44]. However, very
little is known about prokaryotic mechanosensing in any context, including that of biofilm formation.
We have shown that mechanical shear can act as a cue for surface attachment and result in increased
levels of c-di-GMP [23]. More recently, others have shown that bacteria can sense and respond to the
intensity of flow of the liquid medium that surrounds them [45]. This suggests the possibility that
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bacteria could respond to other mechanical cues from their environment, such as the mechanics of the

substrate to which they attach.
By modulating the macromer molecular weight and concentration or introducing cross-linker molecules,

researchers have fabricated PEGDA hydrogels with varied cross-link densities [36,46,47]. This provides
control over the hydrogel mechanical properties, such as compressive modulus. Browning et al. [46]
reported this compositional control of PEGDA hydrogel stiffness with a compressive modulus range from
50 to 2500 kPa. Previous researchers have found that fewer bacteria adhere to soft PEGDA hydrogels than
to stiff PEGDA hydrogels [29,48]. C-di-GMP upregulates the production of extracellular polysaccharides,
which promote bacterial adhesion to surfaces, and downregulates motility, which promotes detachment
from surfaces [49–54]. Thus, if softer PEGDA hydrogels might be associated with lower c-di-GMP
signalling than are stiffer PEGDA hydrogels, this would be expected to lead to lower adhesion. Therefore,
in the course of demonstrating an approach to measuring the effects of a biomedical material on c-di-GMP
signalling, we will also evaluate the degree to which this signalling correlates with substrate mechanics.

In an extension of the technique we used previously [23], we use quantitative confocal microscopy to
measure changes in the intensity of a green fluorescent protein (GFP) reporter for cdrA, which has
previously been verified as a reporter for c-di-GMP [55]. In our previous work, the only substrates used
were glass coverslips. In this work, we use different types of hydrogel substrate, and therefore we present a
calibration that allows us to account for optical attenuation caused by the different types of substrate.
Measurements were done every 30 min beginning 60 min after surface attachment and lasting until 240 min
after surface attachment. We compare signalling timecourses for bacteria attached to a stiff PEGDA
hydrogel, with elastic modulus 4000 kPa, with those for bacteria attached to a soft PEGDA hydrogel, with
elastic modulus 50 kPa. The membrane protein PilY1 has been implicated as a possible mechanosensor, so
we also compare signalling timecourses for wild-type (WT) and cells lacking PilY1 (ΔpilY1).

We find that that P. aeruginosa cells have a faster, stronger c-di-GMP signalling response subsequent to
the attachment on a stiff PEGDA hydrogel than they do subsequent to the attachment on a soft PEGDA
hydrogel. Furthermore, the differentiation between surfaces is affected by the presence of PilY1; ΔpilY1
bacteria have different c-di-GMP signalling dynamics following surface attachment than do WT.
2. Experimental
2.1. Materials
Poly(ethylene glycol) (PEG, 2 kDa (Mn = 1917) and 10 kDa (Mn= 12 157)), acryloyl chloride, triethylamine,
potassium bicarbonate, sodium sulfate and Irgacure 2959 were purchased from Sigma-Aldrich (St Louis,
MO). Dichloromethane and deuterated chloroform with 0.03 vol% TMS were purchased from VWR
Chemicals (Radnor, PA). Diethyl ether and Dulbecco’s phosphate buffered saline were purchased from
Fisher Scientific (Hampton, NH). SecureSeal Imaging Spacers were purchased from Grace Bio-Labs (Bend,
OR). All reagents were used as received unless specified otherwise.

2.2. Bacteria
We used WT P. aeruginosa strain PAO1 and the mutant ΔpilY1, also in the PAO1 background, in our
experiments [56]. PAO1 is a widely used laboratory strain. The ΔpilY1 strain does not make the envelope
protein PilY1. To study intracellular c-di-GMP levels, both strains were transformed with the reporter
plasmid pCdrA::gfp. In this plasmid, the expression of GFP is under the control of the promoter for the
gene cdrA. This gene is transcriptionally controlled by c-di-GMP and therefore increased c-di-GMP
results in an increase in fluorescence intensity [55]. Both WT and ΔpilY1 PAO1 were also transformed
with the plasmid pMH487 instead of the reporter plasmid. The plasmid pMH487 contains a
promotorless GFP gene and thereby provides a control measurement of background metabolic activity.

2.3. Bacterial growth and media
We grew all bacterial strains as previously described [23]. In brief, we first streaked frozen stocks onto plates
made of LB agar (5 g of yeast extract, 10 g of tryptone, 10 g of sodium chloride and 15 g of agar, all from
Sigma-Aldrich, per litre of deionized water) supplemented with the antibiotic gentamicin (gentamicin
sulfate, Sigma-Aldrich) at 60 µg ml−1 for the purpose of plasmid selection. After streaking, the plates
were incubated at 37°C for 20 h. Subsequently, we picked a single colony and used it to inoculate 5 ml of
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LBmedia (5 g of yeast extract, 10 g of tryptone and 10 g of sodium chloride, all from Sigma-Aldrich, per litre

of deionized water) supplemented with gentamicin at 60 µg ml−1. The resulting culture was then shaken in
an orbital shaker (Labnet Orbit 1000) operating at 235 r.p.m. for a period of 16–18 h. We diluted 40 µl of the
overnight culture into 5 ml of fresh LB media and these bacteria were then used in our experiments.

2.4. Synthesis of poly(ethylene glycol) diacrylate
PEGDA was synthesized according to previously established protocols [46,57]. In brief, dry PEG (1 mol,
2 or 10 kDa) was dissolved in anhydrous dichloromethane (0.1M) under nitrogen atmosphere.
Triethylamine (2 mol) and acryloyl chloride (4 mol) were added to the solution successively in a
dropwise manner. The PEG solution was cooled in an ice bath prior to dropwise addition. The
reaction was stirred for 24 h at room temperature, then washed with 2M potassium bicarbonate
(8 mol) and dried with anhydrous sodium sulfate. The product was precipitated in cold diethyl ether,
filtered and dried at atmospheric pressure for 24 h and under vacuum briefly. The synthesis was
confirmed with proton nuclear magnetic resonance (1H–NMR). Spectra were recorded on a Varian
MR400 400 MHz spectrometer using a TMS/solvent signal as an internal reference (electronic
supplementary material, figure S1). Polymers with the conversion of hydroxyl to acrylate end groups
greater than 90% were used in this investigation. 1H–NMR (CDCl3): 3.6 ppm (m, –OCH2CH2–),
4.3 ppm (t, –CH2OCO–), 5.8 and 6.4 ppm (dd, –CH=CH2), and 6.1 ppm (dd, –CH=CH2).

2.5. Hydrogel fabrication and characterization
Hydrogels were prepared by first dissolving PEGDA in deionized water at a concentration of 10 wt%
10 kDa PEGDA or 50 wt% 2 kDa PEGDA. A photoinitiator solution (Irgacure 2959, 10 wt% in 70%
ethanol) was then added at 1 vol% of the precursor solution. Imaging specimens were prepared by
pipetting 4 µl of the PEGDA solution into curing moulds. The mould consists of an imaging spacer liner
(Grace Bio-Labs SecureSeal Imaging Spacers) placed on a coverslip and sealed against a glass plate.
Hydrogels were cross-linked by a 12min exposure to long-wave UV light (Ultraviolet Products High-
Performance UV Transilluminator, 365 nm, 4 mW cm−2, Analytik Jena). The imaging spacers used each
had a single well of diameter 13 mm and the liner, which was used as the mould for casting PEGDA
gels, has a thickness of about 0.05 mm (Grace Bio-Labs, personal communication). Thus, the pre-swelling
thickness of PEGDA gels used for imaging was about 0.03 mm. The adhesive spacers themselves were
attached to the coverslip to enclose the gel after it was cast; these spacers have a thickness of 0.12 mm.
Gels were then swollen to their equilibrium height by adding liquid medium. At the start of each
imaging session, the microscope objective was first focused on the coverslip bottom and then focused on
the bacteria on the top of the gel. The height difference between these positions, read off the control
software, gave an approximatemeasurement of gel thickness. Gels ranged from 0.1 to 0.13 mm in thickness.

Specimens for swelling ratio and modulus characterization were prepared by pipetting the precursor
solution between glass plates spaced 1.5 mm apart and exposed to UV light 6 min on each side.
Hydrogels for imaging were soaked in Dulbecco’s phosphate buffered saline for 20 h prior to imaging.

2.5.1. Hydrogel swelling ratio

Hydrogel specimens (T = 1.5 mm, D = 8 mm, n = 3) were punched with an 8 mm biopsy punch (Integra
Miltex) after cross-linking and swelled in deionized water for 3 h to reach equilibrium swelling.
Specimens were weighed to obtain the equilibrium swelling mass (Ws), then dried under vacuum at
room temperature for 24 h and weighed again to determine the dry mass (Wd). The equilibrium
volumetric swelling ratio, Q, was calculated from the equilibrium mass swelling ratio

Q ¼ Ws

Wd

Average values with standard deviation are reported.

2.5.2. Gel mesh size

We estimated the mesh size of our gels using a previously described method, as follows [58]. As
expected, the stiff hydrogels displayed a much lower equilibrium swelling ratio (2.44 ± 0.05 standard
deviation) than the soft hydrogels (18.7 ± 0.37 standard deviation).
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The average molecular weight between adjacent cross-links was then estimated from the equilibrium

swelling ratio using the Peppas–Merrill model [59]

1
Mc

¼ 2
Mn

� (�v=V1)[ln(1� v2,s)þ v2,s þ X1v22,s]

v2,r (v2,s=v
1=3
2,r )�

1
2
(v2,s=v2,r)

� � , ð2:1Þ

where Mn is the average molecular weight of the hydrogel macromers, Mc is the average molecular
weight between two adjacent cross-links, v2,s is the polymer volume fraction in the swollen state, X1 is
the Flory–Huggins polymer–solvent interaction parameter, �v is the specific volume of PEGDA in its
amorphous state, V1 is the molar volume of the solvent and v2,r is the polymer fraction in the hydrogel.

Given this information, we then calculated the mesh size of our hydrogels using the formulae

j ¼ (r20)
1=2v�1=3

2,s ð2:2Þ
and

r20 ¼ l2 2
Mc

Mr

� �
Cn, ð2:3Þ

where r20 is the root mean square end-to-end distance of the polymer in its free state, l is the carbon–
carbon bond length, Cn is the rigidity factor of polymer andMr is the molecular weight of repeating units.

The estimated mesh size of our soft (approx. 50 kPa) hydrogel was 8.3 nm and the estimated mesh
size of our stiff (approx. 4000 kPa) hydrogel was 0.9 nm.

2.5.3. Hydrogel compressive modulus

Hydrogel specimens (T = 1.5 mm, D = 8 mm, n = 6) were punched from the hydrogel slab for each tested
formulation after reaching equilibrium swelling. Unconstrained compression tests were run at room
temperature using a dynamic mechanical analyser (RSA 3, TA Instruments) equipped with a parallel-
plate compression clamp. A dynamic strain sweep was used to determine the linear viscoelastic range
for each formulation. Subsequently, a strain in the upper portion of the linear viscoelastic range was
used in a constant-strain frequency sweep (0.79–79 Hz). The storage modulus was recorded at 1.25 Hz
for each hydrogel and reported as the compressive modulus for each composition. Mean values with
their standard errors are reported.

2.6. Laser-scanning confocal fluorescence microscopy
For all experiments, we used an Olympus FV1000 motorized inverted IX81 microscope suite, with
instrument computer running FV10-ASW v. 4.2b software, to image attached bacteria using laser-
scanning confocal microscopy. To prepare the bacteria, we first diluted 40 µl of an overnight culture into
5 ml of fresh LB media containing gentamicin. We then placed an imaging spacer (Grace Bio-Labs
SecureSeal Imaging Spacers) on both the microscope slide and coverslip around the PEGDA hydrogel.
Twenty-five microlitres of the bacterial dilution was inoculated onto the PEGDA hydrogel substrate on a
glass coverslip and sealed to a microscope slide. The slide was then placed on the microscope stage and
bacteria were allowed to adhere to the hydrogel for an hour prior to imaging. During this hour 10–15
locations containing adhered bacteria were identified for subsequent time-series imaging. Imaging was
done using a 60x oil-immersion objective, a 488 nm laser with a 405/488 excitation filter and an emission
filter of 505/605. For each day’s worth of experiments, 10–15 sites were imaged every 30 min for a total
of 3 h. This timescale was chosen because not long after 240 min post-attachment the local bacterial
density can be too high to allow single-cell brightness to be confidently measured; this time-span is
comparable to that covered in related prior work [23,60]. This process was repeated on three different
days for each condition. To image each site a confocal z-stack was taken with a depth of 6 µm and an
inter-slice size of 750 nm. At each site on each day, roughly 40–90 bacterial cells were imaged at each
initial time point and roughly 80–160 bacterial cells were imaged at each final time point.

2.7. Accounting for fluorescence attenuation
To account for the attenuation of exciting and emitted light passing through different hydrogels, we used
green fluorescent beads (Dragon Green, Bangs Laboratories, Inc.) that are similar in both their excitation
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and emission spectra to GFP-expressing bacteria, thus acting as a model for how the GFP excitation and

emission light is affected by passing through the hydrogel. All beads were imaged using the same laser,
but different intensity, photomultiplier and image acquisition settings; these were different settings to
ensure the beads were not overexposed in our images. These measurements were done on three
different days, with different gel preparations on each day. The numbers of beads measured on each
day were: 995, 1769 and 1407 beads on the soft gels, and 262, 1752 and 1285 beads on the stiff gels.
Similar attenuation factors were measured for each day.

2.8. Image processing and analysis
We used the Fiji distribution of ImageJ software (v. 1.52) for image processing [61]. Each z-stack
was projected to create both a maximum intensity projection and an average intensity projection on the
x–y plane. The locations of single cells were determined on the average intensity projections to exclude
cells that were not attached and only present in a single frame of the z-stack [61]. The mean fluorescence
intensities of individual cells were then determined using the maximum intensity projections.

2.9. Statistics
Data acquired from image processing and analysis were then analysed in R (v. 3.6.1) to obtain our plots
and statistical significance values. We used the Kolmogorov–Smirnov (KS) significance test for
comparing two distributions and used a p-value threshold of 0.05 to determine significance.
 3
3. Results and discussion
3.1. Hydrogel mechanics
Themechanics of PEGDAhydrogels were tuned by changing themolecularweight of the PEGDAused and
PEGDA concentration in the precursor solution [46]. Specifically, we made stiff hydrogels from 50 wt%
2 kDa PEGDA and we made soft hydrogels from 10 wt% 10 kDa PEGDA. These combinations of
PEGDA molecular weight and cross-linker concentration were chosen to maximize the mechanical
differences between the two gels. We determined the compressive moduli of these two hydrogels using a
dynamic mechanical analyser. Representative stress–strain curves for each type of gel are shown in
figure 1. The stiff hydrogel had a compressive modulus of 3600 ± 560 kPa, and the soft hydrogel had a
compressive modulus of 44 ± 0.375 kPa, showing a difference of two orders of magnitude (figure 2).

3.2. Accounting for the effects of optical attenuation and changes in bacterial metabolism
We used P. aeruginosa cells containing the plasmid pCdrA: GFP, which is a verified reporter for c-di-GMP
[55], to monitor the dynamics of intracellular c-di-GMP for bacteria attached to a hydrogel substrate
[18,37,49,50,62]. Data were collected by imaging cells with a laser-scanning confocal microscope at
30min intervals (figure 3a–c; electronic supplementary material figures S2 and S3).

Different hydrogel substrates could cause different attenuation both of the light used for fluorescence
excitation and of the fluorescently emitted GFP light. Therefore, we measured the intensities of
fluorescent plastic beads on the two types of hydrogel substrates. These fluorescent beads have both
excitation and emission spectra similar to those of GFP-expressing bacteria. Thus, the beads acted as a
model for how the GFP excitation and emission light was affected by passing through the hydrogel.
We found that the beads were brighter when imaged on the stiff hydrogels, 50 wt% 2 kDa PEGDA,
than when imaged on the soft hydrogels, 10 wt% 10 kDa PEGDA, (figure 3d ). We then calculated an
attenuation factor of 0.662 from the ratio of the mean value of the two populations (beads on soft
hydrogels to beads on stiff hydrogels). This factor, when applied to all of the fluorescence intensity
values of the beads on the 50 wt% 2 kDa PEGDA hydrogels, collapsed the average fluorescence
intensity to 79.6 arb. units. This is the same average fluorescence intensity value for beads on the
10 wt% 10 kDa PEGDA hydrogels (figure 3d inset). This attenuation factor was applied to raw
fluorescence data for both reporter and control strains of P. aeruginosa. Control strains contained the
promoterless GFP plasmid pMH487.

To control for differences in the baseline metabolism of bacteria across different substrates, we then
subtracted the attenuation-corrected average fluorescence intensity of control bacteria at each time point
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from the measured intensities of reporter bacteria on the same type of gel. This removed fluorescence
resulting from the metabolism of these cells and leaves only the fluorescence associated with
intracellular c-di-GMP levels (figure 3e). This approach is rooted in that used for the original
development and validation of the reporter plasmid, and its subsequent use [49,55,63,64]. We used a
similar approach in our prior work on bacterial mechanosensing [23].

3.3. Substrates of different stiffnesses are associated with statistically significant differences in
c-di-GMP signalling patterns

We used the KS significance test for comparing two distributions to compare brightness distributions
of populations of bacterial cells on soft (approx. 50 kPa) and stiff (approx. 4000 kPa) hydrogels at the
same time point after attachment and to compare brightness distributions on the same type of
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hydrogel at later time points with the first-measured brightness distribution [65]. For this, we
used attenuation- and metabolism-corrected brightness distributions. In every case, the p-value from
the KS test was well below 0.01. This shows that populations on stiff and on soft hydrogel substrates
had statistically significant differences throughout the 3 h after attachment to the substrate.
Populations on both types of hydrogels differed in their brightness distributions from the initially
measured distribution to a statistically significant level throughout the time-window of observation.
From 60 to 120 min after attachment, the average brightness and the increase in fluorescence was
greater for bacteria on the stiff hydrogel (figure 4a). However, by 150 min after attachment, bacterial
populations on the soft hydrogel reached higher brightness levels than those on the stiff hydrogel
(figure 4a).

Other researchers have previously shown that P. aeruginosa populations are heterogeneous in
their response to surface attachment [66]. In short, they found that, upon attachment to a surface,
one subpopulation of cells would robustly increase its intracellular c-di-GMP concentration and begin
biofilm formation, while another subpopulation would retain low c-di-GMP levels and engage in more
surface motility. To examine how heterogeneous response might interplay with substrate stiffness, we
measured the skewness and kurtosis of all attenuation- and metabolism-corrected brightness
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Figure 4. Comparison between distributions of fluorescence intensities of PA01 WT cells on the 4000 kPa (stiff ) PEGDA gel and the
50 kPa (soft) PEGDA gel. p-values are obtained from the Kolmogorov–Smirnov test. (a) Average fluorescence intensities of all single
cells attached to both the soft and stiff gel for 3 h. We see that the bacteria attached to the stiff gel reach their peak fluorescence
earlier at 120 min in comparison to 150 min for bacteria attached to the soft gel. (b) Skewness of fluorescence intensity distributions
at every time point. In both conditions, we see distributions that are skewed right. (c) Kurtosis of fluorescence intensity distributions
at every time point. The kurtosis value is higher on the soft gel than on the stiff gel. This signifies a higher presence of extreme data
points or outliers. Each data point shows the mean value of three independent biological replicates (N = 3), with error bars the
standard error of the mean.
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distributions—skewness to determine asymmetry and kurtosis to determine the preponderance of outliers
[67]. The skewness values wemeasuredwere all positive, in agreement with our observation that measured
distributions had a ‘tail’ on the right (brighter) side of the mean; differences in the size of the skewness
measure differences in how much of the distributions is found on the right (brighter) side of the mean.
Kurtosis measures how much a distribution lies in the tail(s), and high kurtosis values correspond to
‘heavy’ tails, or having more of the distribution farther from the mean. We found that, for all time
points, the skewness and kurtosis were higher for populations attached to the softer hydrogel than for
those attached to the stiffer hydrogel (figure 4b,c). This showed that attachment to the softer gel was
associated with more outliers and therefore, a more distinct subpopulation of ‘strong responders’ as
measured by the brightness of the GFP reporter which we use as our proxy measure for c-di-GMP
concentration. This does not indicate that the population on the soft gel has a stronger overall response
to surface attachment, as shown by the average values in figure 4a; rather, it indicates that a smaller
fraction of the population responds strongly to attaching to a soft gel than responds strongly to attaching
to a stiff gel. By contrast, attachment to the stiff gel was associated with fewer ‘strong responder’ outliers
and therefore a higher proportion of the population responding with increased c-di-GMP concentration.
These results suggested that substrate mechanics might impact the development of heterogeneity in
populations of surface-attached bacteria.
3.4. Loss of the membrane protein PilY1 impacts the timescale of surface sensing
We and others have found that the envelope protein PilY1 is required for P. aeruginosa to increase c-di-
GMP levels following attachment to a rigid surface and also strongly impacts other surface-associated
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behaviours; these findings suggest that PilY1 could act as a mechanosensor to transduce the mechanical
signal(s) resulting from surface attachment [23,37,60,62,68]. Here, we used the bacterial strain Δpily1,
which does not make PilY1, to demonstrate the utility of our method for probing the importance of
this envelope protein for the differential response to the two PEGDA hydrogel stiffnesses, using the
same experimental and analytical procedure described above for WT (figure 5; electronic
supplementary material, figures S4 and S5).

Similarly to the case for the WT cells, the KS test comparing brightness distributions of
populations of reporter Δpily1 bacteria on the two hydrogel types with each other gave p-values
well below 0.01 at every time point. This indicates that there were statistically significant
differences between the populations on the two gels at every time point. Also similarly to the
case for the WT, the KS test comparing the brightness distributions of ΔpilY1 populations at 60 min
to those at subsequent time points gave p-values well below 0.01 in all cases but one. This indicates
that there were statistically significant changes in the populations’ brightness distributions after the
60min measurement. The one exception was for bacteria attached to the stiff hydrogel at 240 min—
the KS test comparing this to the 60min case gave a p-value of slightly less than 0.4, indicating
no statistically significant difference. Similar to our findings for WT, we found that the average
brightness of ΔpilY1 bacteria on the stiffer hydrogel was higher than that on the softer hydrogel,
with statistical significance at every time point (figure 6a). However, the timescale of c-di-GMP
increase was different in WT and ΔpilY1 populations. WT increased brightness on the stiff hydrogel
over the initial 60 min of observation and peaked at 120 min after attachment (figure 4a).
By contrast, ΔpilY1 cells on the stiff hydrogel did not increase their fluorescence in the initial
30 min of observation and peaked at 150 min after attachment (figure 6a). However, the 30 min
differences were also the time-resolution of our measurements, cautioning against over-interpretation
of this finding.
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royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:201453
11
3.5. Loss of the membrane protein PilY1 increases heterogeneity in c-di-GMP signalling on
both soft and stiff substrates

In Δpily1 populations, as for WT, the kurtosis and skewness of the brightness distributions is highest
in cells attached to the soft hydrogel (figure 6b,c). Both kurtosis and skewness are higher for
ΔpilY1 populations at both initial and final time points (figure 6b,c) than for WT at the same times
(figure 4b,c); differences are shown in electronic supplementary material, figure S6. These data
demonstrate that the c-di-GMP response of Δpily1 to surface attachment is more heavily impacted by
outliers consisting of ‘strong responders’ than is the WT response. This result aligns with our and
others’ previous findings that PilY1 is used to regulate the response of P. aeruginosa to mechanical
inputs and that PilY1 is important for signalling associated with surface sensing, including but not
limited to c-di-GMP signalling [23,37,60,69].
3.6. Potential role of gel mesh size
However, it is possible that the ΔpilY1 bacterial cells are differentiating between our two substrates not
based on mechanical cues, but on another feature of our substrates. We speculate the mesh size of our
two substrates could be affecting our measurements of surface response in addition to their
stiffnesses. We believe this could be affecting out results as a higher mesh size would allow faster
diffusion of nutrients and therefore a more nutrient-rich environment.

To address this, we estimated the mesh size of our gels as described in the Experimental section.
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The estimated mesh size of our soft (approx. 50 kPa) hydrogel was 8.3 nm and the estimated mesh

size of our stiff (approx. 4000 kPa) hydrogel was 0.9 nm, both well below the approximately 1 µm
bacterial size. These are comparable to the mesh sizes previously measured for comparable PEGDA
gels [46,47,70]. Given this information, we then sought to understand how a different mesh size will
impact the diffusion of particles and nutrients through the gel. Work done by others has shown that
in PEG hydrogels as the mesh size decreases so does the diffusion of particles. Specifically, diffusion
and mesh size are related by the equation below [71].

Ds

D0
¼ exp �p(rh þ rf)

2

(jþ 2rf)
2

 !
, ð3:1Þ

where D0 is the diffusion coefficient of the particular solute in PBS alone, Ds is the diffusion coefficient,
rh is the solute hydrodynamic radius, rf is the polymer fibre radius and ξ is the mesh size of the
hydrogel. From this equation, we can see that as mesh size increase so does the diffusivity of a
given material. Therefore, given that both hydrogels are made with similar polymers, we expect that
diffusion of nutrients and growth substrates would be faster through the softer hydrogel with a
larger mesh size than through the stiffer hydrogel. Thus, bacteria on the softer hydrogel could have
access to a larger effective volume of growth substrate than will bacteria on the stiffer hydrogel, which
could impact both metabolism and c-di-GMP signalling. Furthermore, the impact of mesh size on
access to growth substrate and therefore on metabolism might be a reason that WT bacteria become
brighter on the soft gel than on the hard gel between approximately 140 and approximately 200 min
(figure 4a). We will investigate the effect of mesh size on bacterial response to attachment further in
later work.

3.7. Possible effects of gel heterogeneity
Figure 3d shows brightness distributions for fluorescent beads that are both asymmetric and do not
perfectly collapse onto each other when scaled. The causes for these phenomena, which may suggest
a limit to the method we present here, are not known. The asymmetric distribution probably
corresponds to an asymmetric distribution of bead brightnesses, and perhaps also is impacted by lensing
or attenuation artefacts caused by internal heterogeneities in the gel substrates. The differences in the
distribution shapes, shown by the collapse not resulting in a perfect match, probably arise from such
heterogeneity-caused optical artefacts. The asymmetries and shape differences seen for beads are
much smaller than the ones we measure for bacterial populations on the same gels, so the overall
conclusions of this work and the method shown here are not affected. However, future work using
higher-resolution, more fine-grained signalling measurements may need to account for internal
heterogeneities in gel substrates.
4. Summary and conclusion
We have demonstrated that quantitative confocal microscopy and image analysis, combined with
calibration for both optical attenuation and bacterial metabolism, can measure statistically significant
differences in the production of CdrA, which can act as a proxy measure for c-di-GMP. As proof-of-
concept for using this technique on real pathogens attached to a real-world biomedical material, we
have found that P. aeruginosa WT PAO1 responded more quickly, and with more strong responders,
when they attached to a stiff PEGDA hydrogel surface than when they attach to a soft PEGDA
hydrogel surface. C-di-GMP is a second messenger that controls the transition from a planktonic to a
biofilm state, so this may indicate that we should expect different dynamics of biofilm development
on gels with different mechanics. We will examine this in future work.

Finally, we saw that the discriminatory response to PEGDA hydrogels of different compressive
modulus, by different levels and timescales of c-di-GMP upregulation, was altered when the envelope
protein PilY1 was lost. This suggested a role for this protein in the preferential rapid response to a stiffer
surface. This is plausible given previous work showing that PilY1 contains a domain homologous to the
von Willenbrand factor, a domain present in eukaryotic mechanosensing proteins [62].
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