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ABSTRACT 
 

 
Many improvements have been made in the design and manufacture of high 

efficiency solar cells.  The need to understand the behavior of these new types of solar 

cells is crucial to the procurement of future space systems, both commercial and military. 

This thesis studies the results of irradiating three commonly used solar cells with 30 MeV 

electrons using the Naval Postgraduate School Linear Accelerator. A comparison of the 

performance characteristics of the three cells is made using commonly accepted 

parameters and notes the differences in trends and failure modes. Additionally, the affect 

of current annealing is investigated.   
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I. INTRODUCTION 

 Today, the demand for space enabled products and services are greater than ever. 

Advances in technology have spurred major improvements in spacecraft capability since 

the days of Sputnik and Vanguard. This in turn has spurred the need to provide more 

power to feed the ever-growing requirements of today's satellites.  

 

 Bell labs first introduced photovoltaic (PV) devices in the 1950's. PV devices 

enable spacecraft to operate for extended periods by harnessing light energy and turning 

it into electrical power for the spacecraft. However, although the light energy is 

essentially free, the cost of conversion is high. Early PV devices had efficiency levels on 

the order of one to two percent. Even good silicon cells in the 1960's were only 10% 

efficient. As spacecraft power requirements rose through the years, solar cell designers 

have had to investigate ways to improve the efficiency of PV devices.  

 

 One of the problems facing PV device designers was the damage to the cells due 

to various forms of radiation exposure while on orbit. A good silicon cell design could 

yield roughly 15% efficiency, but after a few years (depending on the orbit), the 

efficiency could drop to as little as 8-10%. The need to understand the radiation 

environment and it's effect on the materials used in PV devices was crucial if power was 

not to be the limiting factor of space based capabilities.  

 

 Silicon solar cells were the dominant PV device until the 1980's when GaAs 

arrived on the scene. The properties of GaAs make it inherently radiation hardened 

(compared to Silicon), and the electrical characteristics promote better power conversion 

(approximately 17%). However, as good an advancement in design as GaAs was, it was 

obvious that further advancements would be needed in order to meet not only the power 

requirements, but the size, weight, and mission duration requirements of future space 

missions. 
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 Recent PV designs take advantage of the fact that different materials with 

different bandgap energies can harness more of the Sun's energy spectrum and thus 

increase efficiency. These PV devices, called multi-junction cells, essentially stack 

material in decreasing order of bandgap energy, absorbing high frequency light in the top 

layers and allowing lower frequencies to filter below to be utilized by the next material. 

This has led to cell efficiencies as high as 30% in some applications.  

 

 Notable increases in the performance of multi-junction cells have come about by 

raising the number of effective layers and using more efficient material. One such cell is 

the Spectrolab GaInP2/GaAs/Ge solar cell. Improvements in cell technology allow this 

PV device to boast an impressive 24% efficiency. Cells such as these are paving the way 

to lighter weight solar panels because the cells themselves have become thinner. 

Additionally, the higher efficiency means fewer cells are required to create the same 

amount of power. 

 

 There has been extensive research over the years on the effects of radiation on 

solar cells. However, as cell technology advances to keep up with the rapidly increasing 

power requirements, less is becoming known about the actual failure modes and damage 

mechanisms affecting solar cells currently being used.  

 

 This study provides the reader a comparative analysis of the effects of radiation 

on three different types of solar cells. Silicon and Gallium Arsenide are well established 

and much is known about them as "common knowledge" in the space industry.  They 

provide familiarity and a well-established behavior, which is useful in comparing the 

behavior of the multi-junction cell to. 

  

Additional research time is devoted to investigating the potential benefit of 

current annealing in these cells. This is accomplished by the measuring the I-V curves of 

the irradiated cells multiple times at each fluence level. This will allow a measurement of 

 2



the I-V curve after exposure to radiation followed by the annealing effect due to the short 

circuit current. 

 

 Chapter II of this thesis provides a background of the space radiation 

environment. A discussion of semi-conductor physics is provided in Chapter III. Chapter 

IV contains a discussion of basic solar cells. The radiation source used in this experiment, 

the Naval Postgraduate School LINAC, is discussed in chapter V. Chapter VI describes 

the experiment, including the procedure and the equipment. Finally, Chapter VII 

discusses the conclusions and recommendations. 
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II. SPACE RADIATION AND ITS EFFECTS 

A.  INTRODUCTION 

The space radiation environment is harsh and diverse. Its effects vary depending 

on parameters such as altitude and solar cycle. An understanding of the environment and 

its effects is essential to maximizing the lifetime of the spacecraft, more specifically the 

solar arrays. 

There are many types of radiation having varying effects on spacecraft. Of these, 

there are two general categories of radiation: particles and electromagnetic waves (or 

photons). An understanding of the interactions and damage mechanisms of the various 

types is crucial to the design of spacecraft with long mission duration requirements. 

The photon is used to describe the particle characteristics of an electromagnetic 

wave. They exist in discrete quanta of energy given by the equation e = hν, where e is the 

energy of the photon, h is Planck’s constant and ν is the frequency. High energy photons, 

such as gamma rays and x-rays are of a particular concern because of their interactions 

with materials used in solar cell fabrication. 

Charged particles such as protons, electrons, alpha and beta particles, and other 

heavy ions are also a concern in space. These particles can interact kinetically and 

electro-statically with materials causing defects, which damage and degrade solar arrays. 

B. TYPES AND SOURCES OF RADIATION 

The radiation found in space can be categorized into three general types: Cosmic 

Rays, Solar Plasma, and radiation trapped in the earth’s geo-magnetic field (also known 

as the Van-Allen belts). Depending on the orbital regime of the mission, the spacecraft 

will be exposed to some or all of these types. Solar cell design must incorporate an 

understanding of the potential sources in the operating regime of the spacecraft and the 

damage mechanisms caused by each.  
 5



1.  Cosmic Rays 

High energy particles of low density (approximately 4 particles per cm3) are 

dispersed somewhat isotropically throughout the galaxy. The primary component is 

energetic Hydrogen nuclei (protons) having energies ranging up to 1010 eV. Although the 

expected annual dose is a mere 1-2 Rad/year, the energies that these events occur at is 

sufficient to cause a phenomenon known as a Single Event Upset (SEU) [Ref. 2 pg. 213]. 

The SEU phenomenon is caused when a high energy particle or ray passes near a 

p-n junction. Due to the energy involved, currents proportional to the dose rate is 

generated at the junction. In electronic devices, SEU’s cause events such as bit flips and 

latchups. The concern for solar cells is the introduction of interstitial defects, which will 

be discussed later in this chapter [Ref. 2 pg. 213]. 

2. The Solar Plasma and the Solar Wind 

Solar plasma is a uniformly distributed mix of high energy electrons and protons 

originating from the sun. Due to the high temperature of the corona, solar protons and 

electrons gain enough velocity to escape the Sun’s gravitational attraction. The solar 

wind that results emanates from the Sun omni-directionally and impacts the earth on the 

daylight side, streaming behind it in an elongated pattern. Figure 1 illustrates the pattern 

of the solar wind around the earth. 

 

Figure 1.   The Solar Wind. [From: Ref. 1 pg. 5.1] 
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The Earth’s geomagnetic field (see Figure 2) acts as an obstacle to the solar wind. 

The plasma from the solar wind shapes what is known as the Magnetosphere, an area 

around the earth which is itself filled with plasma that originates from the Earth’s upper 

atmosphere [Ref. 2 pg. 60].  

 

Figure 2.   The Magnetosphere. [From: Ref. 1 pg. 5.5] 
 

3. Van Allen Belts 

Inside the Magnetosphere is a region known as the Plasmasphere, which contains 

many trapped protons, electrons and some heavy, low energy ions. The magnetic lines of 

force, interacting within this plasma create what are known as the Van Allen radiation 

belts. Although the Van Allen belts are not a source of radiation per se, the charged 

particles that reside within the belts do warrant an understanding due to the frequent 

traversals made by the spacecraft in that orbital regime. 

As charged particles approach the Magnetosphere, they are altered in trajectory to 

follow the magnetic lines of force. Particles lacking sufficient energy to break free from 

that force become trapped and bounce between two reflection or “mirror” points (mirror 

 7



points occur at regions of maximum field strength in a given path).  These trapped 

particles form what are known as the Van Allen belts (see Figure 3). 

 

Figure 3.   Trapped particles reflecting between two mirror points.  
 [From: Ref. 2 pg. 100] 

 

In 1961, McIlwain introduced a coordinate system which utilizes the magnetic 

field B, and the adiabatic invariant I, to describe the physical situation of trapped charged 

particles [Ref. 2 pg. 104]. I is the length of the field line between the reflection points of 

the trapped particles. The parameter L is used here as a distance which is convertible to 

earth Radii by R = L cos2 Λ, where R is the earth’s radius (6378 km), L is the McIlwain 

distance, and Λ is the magnetic latitude [Ref. 1 pg. 5-3].  Figure 4 shows the McIlwain 

coordinate system.  
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Figure 4.   The McIlwain Coordinate System. [From: Ref. 1 pg. 5.5] 

 

Particle distribution in the Plasmasphere varies depending on altitude. 

Intermediate energy protons exist within L = 4, peaking at approximately 2L. The higher 

energy protons tend to migrate closer to the earth peaking at about 1.5 Re. Lower energy 

protons migrate and disperse all the way to geo-synchronous orbit. As L increases, the 

proton energy spectrum generally lowers [Ref. 1 pg. 5-6]. 

Electrons extend to the outer boundary of the Magnetosphere (approximately 8-10 

Re, depending upon solar conditions) but concentrate in two areas. The first, in a zone 

ranging between 1.2-2.8 L and peaks at about 1.4 L.  The second or outer extends 

between 3-11 L and peaks anywhere between 4-5 L. The flux in these two regions is 

approximately 107 e/cm2-s at energy levels on the order of 250 KeV. Figure 5 shows the 

distribution of charged particles in the Magnetosphere [Ref.1 pg. 5-6 to 5-7]. 

 9



 

Figure 5.   Charged particle distribution in the Magnetosphere. [From: Ref. 26 pg. 20] 

 

C. INTERACTIONS 

1. Wave (Photon) Effects 

Photons, such as Gamma and X-rays, can interact with matter in three ways: the 

photoelectric effect, Compton’s Scattering, and pair production.  

a.  Photoelectric Effect 

Consider a light source of frequency f, incident upon a clean, smooth 

metal surface. Using Einstein’s equation, the maximum energy that electrons have that 

are emitted from that surface is: 

E  =  eVo = ½ mv2 = hν-Φo            (2.1) 

 10

Where Vo is the stopping potential, m is the electron mass, and Φo is the 

work energy required to remove the electron from the surface of the metal. Analysis of 



the above equation reveals that an incoming photon must have energy greater than the 

work function in order for photoelectric effect to occur. If this is not the case, the incident 

energy is simply converted to heat via kinetic energy transfer [Ref. 4 pg. 107-108] [Ref. 5 

pg. 66] 

 

Figure 6.   Photoelectric Effect.  [From: Ref.  5 pg. 66] 
 

b. Compton’s Scattering 

When a photon with energy hν and momentum p collides with an electron, 

the photon scatters at an angle θ with respect to the initial trajectory. Part of the photon’s 

energy is imparted to the electron that recoils and scatters at an angle φ with respect to the 

photons initial path [Ref. 5 pg. 115-116]. The collision results in an energy transfer which 

lowers the frequency of the photon by: 

λ1 - λ2 = h/mc (1-cosθ)            (2.2) 

Where λ1 and λ2 represent the wavelengths of the photon before and after 

the collision. The change in electron energy is given as: 

E - Eo = (Eo
2 + pe

2c2)1/2 – mc2            (2.3) 

Figure 7 illustrates the effect of Compton’s Scattering. 
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Figure 7.   Compton's Scattering.  [From: Ref. 4 pg. 116] 
 

 
c. Pair Production 

When high energy photons pass in close proximity to atomic nuclei, a 

recoil reaction results with the emission of either an electron-positron pair or a triplet 

(includes an additional electron) and the annihilation of the incident photon. The life of 

the positron is short, as it will soon find an electron to recombine with. This 

recombination creates at least two, sometimes three gamma rays (at least two in order to 

conserve momentum). 

Determination of which of the three aforementioned effects will occur is a 

function of incident photon energy. Assuming a range of photon energies incident on a 

piece of silicon, the following distribution from Table 1 holds true: [Ref. 6 pg. 922] 
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< 50 keV Photoelectric effect 

50 keV – 20 MeV Compton’s Scattering 

> 20 MeV Pair production 

 
Table 1.   Energy levels associated with the wave effects. 

 
 

2. Charged Particle effects: 

The effect that charged particles have on matter is somewhat different than those 

caused by photons described above. There are three general types of material interactions 

caused by charged particles. They are: Inelastic collisions with bound atomic electrons 

and both elastic and inelastic collisions with atomic nuclei [Ref. 1 pg. 3-1]. 

a. Inelastic Collisions with Bound Atomic Electrons 

Energetic charged particles that interact with a material have a higher 

likelihood of interacting with an electron in the orbit of an atom than just the nucleus of 

the atom itself. As the charged particle moves through the material, it undergoes 

collisions with these electrons, transferring kinetic energy and leaving the electrons in an 

excited or possibly a free state. The end state of the electron is determined by factors such 

as the energy of the incident particle, the collision vector and the orbit of the electron. 

Excited electrons will return to their normal state after emission of a photon equivalent to 

the amount of energy lost in going back to the stable state. Ionized (free) electrons will 

eventually combine with a positively charged ion.  

b. Elastic Collisions with Atomic Nuclei 

Coulombic reactions caused by energetic charged particles interacting 

with atomic nuclei can cause Rutherford Scattering (see Figure 8). Provided that the 

incident particle does not have sufficient energy to penetrate the nucleus, the nucleus will 

scatter particles at an angle θ from the incident vector. Depending on the energy of the 

incident particle as well as the mass and bonding strength of the nucleus, a displacement 

(or a series of displacements) may result. 
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Figure 8.   Rutherford Scattering. [From: Ref. 25 pg. 139] 
 
c. Inelastic Collisions with Atomic Nuclei 

Charged particles having sufficient energy and trajectory to overcome the 

repulsive electrostatic force of the nucleus can collide directly with it, leaving it in an 

excited state. The excited nucleus thus emits energetic nucleons and recoils, displacing it 

from its lattice site. 

D. DAMAGE MECHANISMS  

The discussion of the above interactions is necessary to understand their 

characteristics and to further categorize their effects. There are two categories of damage 

that concerns the degradation of solar arrays: Ionization and displacement damage. 

1. Ionization 

Ionization involves the removal of an electron from an atom or molecule in a 

given material. A measure of the intensity of ionizing radiation is the roentgen. The 

radiation intensity required to produce a charge of 2.58 x 10-4 coulomb/kg of air is one 

roentgen [Ref. 2 pg. 197]. 
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Absorbed dose is defined as the absorbed energy per unit mass in a given 

material. The generally accepted unit of measure is the rad. One rad is equivalent to 100 

ergs/gm or 0.01 joules/kg. By utilizing absorbed dose, radiation exposures of different 

types can be used to understand the overall effect on the material of interest due to 

protons, electrons and gamma rays [Ref. 2 pg. 197]. 

Solar arrays undergo various ionization related effects when exposed to a 

radiation source. One important effect is the darkening of array coverglasses. If an 

ionizing event excites an electron to the conduction band, it becomes trapped in an 

impurity atom and can remain stable indefinitely [Ref. 7]. 

Ionizations in pure silicon cause electrons of the valence band to excite to the 

conduction band, thus creating electron-hole pairs. These high energy particles require 

roughly three times the energy of an optical photon to create an equivalent pair. This 

means more heat losses in the material and lower efficiency. 

2. Atomic Displacement 

High energy protons and electrons lose much of their energy through collisions 

with atomic electrons. For a given material, the stopping distance is a function of incident 

particle energy (for energies ranging between 0.1-10 MeV). However, the dominant 

mechanism for solar cell degradation is the displacement of the target material within the 

lattice structure itself [Ref. 8 pg. 40]. 

Interstitials are semi-stable defects that are formed after the chain reaction of 

atomic collisions caused by high energy particles. Essentially they are defects in the 

lattice structure, which affect the valence electrons in the region. Vacancies are the voids 

left after an atom is moved from its lattice site. In general, these defects create additional 

energy states in the energy gap and lower the overall charge carrier lifetime by 

phenomena such as Frenkel Pairs (Figure 9) and recombination centers [Ref. 9 pg. 157].  
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Figure 9.   Frenkel Pairs. [From: Ref. 27 pg. 181] 
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III. SEMICONDUCTOR THEORY 

In order to discuss the effects of radiation on solar cells, an understanding of 

semiconductor physics is required. Included is a background discussion of intrinsic and 

extrinsic material properties, p-n junctions, and basic diode characteristics. 

A.  PROPERTIES 

A semiconductor is a material having physical and electrical properties that lie 

between those of metals and dielectrics. The atomic structure of a semiconductor is such 

that it will attempt to fill its outermost shell in order to reach a stable energy state. This is 

accomplished through ionic and covalent bonding with neighboring atoms. 

Most atoms are electrically neutral, however some atoms will sacrifice one or 

more valence electrons in order to gain stability. When this occurs, the electrostatic 

attraction between the cation (positively charged ion) and anion (negatively charged ion) 

create an ionic bond. This kind of bonding typically occurs in atoms that are on opposite 

ends of the periodic table. Metals tend to lose electrons and non-metals tend to gain them. 

Semiconductors made of a single element or of materials with similar 

electronegativities tend to create covalent bonds. Covalent bonding is the sharing of one 

or more electrons between atoms in order to fill their outermost shells. Materials such as 

silicon, which is neither metal nor a non-metal, share electrons with neighboring atoms to 

satisfy the valence electron populations of the bonded atoms. Although both parties share 

the electrons, the stability is increased and the atoms form a crystal lattice to allow a 

central atom to share with four neighboring atoms. 

Group III-V materials such as InP have ionic bonds, but due to the small 

difference in electronegativity they are weaker than those of metals and non-metals [Ref. 

10 pg. 10]. Typically, Group III-V compounds form a structure known as a Zincblende as 

shown in Figure 10. 

 17



 

Figure 10.   Diamond and Zincblende structure. [From: Ref. 10 pg. 10] 

 

B.  INTRINSIC AND EXTRINSIC MATERIAL  

When a semiconductor contains no impurities, it is considered intrinsic [Ref. 1 pg. 

1-7]. The primary charge carriers are supplied due to thermal excitation of the valence 

electrons to the conduction band. The electron hole pair concentration in intrinsic silicon 

is given as [Ref. 3 pg. 13]: 

nopo = ni
2 = 3.62 x 1031 T3 e(-Eg/kT)  

=   2.2 x 1020 cm-6 @ T = 300 K                (3.1) 

 

Where   

no = the equilibrium concentrations of conduction electrons / cm3 

Po = the equilibrium concentration of holes 

ni = the intrinsic carrier concentration 

EG = bandgap energy (1.11 eV in Si @ 300 K) 

T = temperature (Kelvin) 

k = Boltzman constant (8.6171 x 10 -5 eV / K) 
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If impurities from columns III and V of the periodic table are present in the 

semiconductor, thermal ionizations provide donor carriers to the surrounding material in 

the lattice. Column III elements thermally ionize by accepting ionized electrons from the 

valence band, resulting in a negatively charged acceptor impurity and a hole in the 

valence band.  When elements from column V ionize, the result is an electron in the 

conduction band and a positively charged donor in the lattice. The energies required to 

cause these ionizations is on the order of 0.05 eV. This implies that ionization of the 

impurity donors is reached at approximately 300 K. Therefore it is assumed that the 

column III and V impurities are completely ionized at room temperature [Ref 1 pg. 1-7]. 

Doping is the process by which impurities are added to an intrinsic 

semiconductor. A significant quantity of electrons or holes are added by doping the 

material, causing it to have an equilibrium charge concentration of electrons or holes 

which greatly exceeds that of intrinsic material. In p-type material, excess holes are 

added by doping intrinsic material with a column III element. Conversely, adding 

elements from column V creates n-type material.  Material doped in such a manner is 

referred to as extrinsic. The relationship of thermal equilibrium applies to extrinsic 

material as well as intrinsic. Therefore, the product of the conduction electron and hole 

population must equal a constant [Ref. 3 pg. 14]. 

Although the number of dopant atoms added to a given material is small, the 

percent change is significant. Consider intrinsic silicon, which has a charge carrier 

concentration of one electron per 1012 Si atoms. If a dopant material is added such that 

one electron per 107 atoms is added, that is an increase in charge carrier concentration of 

105  [Ref. 3 pg. 8]. A notional depiction of the crystal structures of intrinsic and extrinsic 

material is given in Figure 11. 
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Figure 11.   Intrinsic and extrinsic crystal structure. [From: Ref: 3 pg. 8] 

 

C. BAND GAP ENERGY  

In 1913, Bohr developed the quantum model of the atom. Although the Bohr 

model has been replaced as more accurate models have been developed, it does provide a 

basic understanding into atomic structure. 

There are four assumptions to Bohr’s model: 1) The atom is held together by 

Coulombic forces; 2) electrons have elliptical orbits; 3) electron angular momentum 

exists in discrete quantum values; and 4) electrons emit and absorb energy in discrete 

quanta between energy levels [Ref. 2 pg. 5]. 

The energy of the electron must have sufficient kinetic energy to overcome the 

coulombic force that binds it to the atom. That coulombic force varies inversely with the 

electron radius. If the atomic number Z defines the number of protons in the nucleus, then 

the coulombic force of attraction can be found by [Ref. 2 pg. 7]: 
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U = q1q2/4πεor = -Ze2/4πεor            (3.2) 

The kinetic energy required to overcome the coulombic force is: 

T = ½ mv2 = ½ Ze2/4πεor            (3.3)  

E = U + T  where E is the energy, U is the coulombic energy and T is the kinetic energy. 

Then the total energy is given as 

E = U+T = -1/2 Ze2/4πεor            (3.4) 

Therefore, if we know the radius of the orbit, the energy of the electron is well defined 

[Ref. 2 pg. 8].  

In a crystalline structure, the electron energy is more complex because the atoms 

in neighboring lattice sites affect it. However, the electrons still occupy discrete and 

predictable energy states. For electrons in the outer shell of a semiconductor, there are 

two states. Valence level electrons in the ground state are considered to be in the valence 

band, while excited electrons are in the conduction band [Ref 11 pg. 813]. 

This concept of band gap energy plays a key role in fundamental solar cell 

operation and design. Because electrons have quantized energy levels determined by their 

orbit and surrounding atoms in the lattice, materials and dopants are carefully managed to 

take advantage of the full spectrum. Energy band diagrams like the one in Figure 12 show 

the two states of the electron and the region between known as the band gap.  
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Figure 12.   Energy band diagrams for intrinsic, n-type and p-type material.            
[From: Ref. 29 pg. 10] 

 

D.  CARRIER TRANSPORT 

Two means of carrier transport or “current” occur in semiconductors. Charged 

carriers drift in the material driven by the changes in electric field. In n-type material, the 

drift current is described by [Ref. 12 pg. 15-17]: 

Jn = q n µn E          (3.5) 

Such that: 
   
Jn = electron density (amperes / cm2) 
q  = electron charge (coulomb) 
n  = electron concentration (cm-3) 
µn = electron mobility (cm2/volt sec) 
E = electric field (volts/cm) 
 

The other mechanism of charge transport in a semiconductor is diffusion. 

Diffusion current is created due to charged carrier concentration gradients. For holes, the 

current is given by the following: 

Jp = -q Dp dp/dx             (3.6) 

Where: 

Jp = hole current density (A/cm2) 
Dp = hole diffusion constant (cm2/sec) 
dp/dx = hole concentration gradient 
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An expression for the carrier transport can be obtained by adding the drift and diffusion 

currents. For the case of holes, the expression is given as: 

 

Jp = q (p µp E – Dp dp/dx)            (3.7) 

 

E. THE P-N JUNCTION  

1. Creation of the P-N Junction 

Discussion to this point has focused on semiconductor materials and their 

properties. However, there is little practical application without a means to realize the 

potential from the production of the charge carriers. Like a battery, a potential must exist 

in order to have a current flow. For a solar cell, the p-n junction in the mechanism by 

which this is achieved. 

As the name implies, the p-n junction is formed by joining p-type material which 

has excess holes with n-type material which has excess electrons. When this union is 

made, a transient exchange of the excess carriers takes place due to the large charge 

carrier concentration gradient on both sides of the junction. The electrons migrate from 

the n-material to the p-side and combine with the excess holes. As this diffusion 

progresses an electric field develops which creates a drift current that opposes the 

diffusion current [Ref. 13 pg. 138-139]. 

As the excess electrons leave the n-region, they leave behind positively charged 

dopant ions. Likewise the holes in the p-region are depleted and leave negatively charged 

dopant ions. Eventually, an equilibrium condition is formed such that there is a depleted 

n-region that has a positive charge and a p-region that has a negative charge, and the net 

drift and diffusion current is zero. This region as a whole is known as the depletion 

region Figure 13 depicts the p-n junction.  
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Figure 13.   The p-n junction. [From: Ref. 3 pg. 14] 
 

2. P-N Junction Behavior 

The p-n junction is the fundamental component of solid-state devices, including 

solar cells. The diode is merely a p-n junction with terminals attached. Behavior of the p-

n junction varies depending on the conditions of bias placed upon it. First a look at the 

diode under reverse bias conditions as in Figure 14. 

Under reverse bias conditions a current is flowing from n to p. Let this current I, 

be less than the drift current Is. As electrons flow from n to p, positive ions are formed in 

the n region widening the n-side depletion zone. A similar event occurs in the p-side of 

the depletion region. This raises the potential difference at the barrier and results in a 

lower diffusion current Id. An equilibrium will be reached when the diffusion current 

lowers to the point where I = Is-Id. This results in a potential difference across the diode 

Vr  [Ref. 3 pg. 15]. 

 

 

 24



 

 

 

 

 

 

Figure 14.   The p-n junction under reverse bias conditions. [From Ref. 3 pg. 15] 

 

Let the current I increase such that I > Is as in Figure 15. The depletion region 

continues to widen. This occurs until the barrier voltage is so high that Id = 0. When the 

barrier voltage increases to the diode breakdown voltage, an exponential increase (nearly 

instantaneous) in I occurs and the diode acts much like a short circuit. There are two 

types of breakdown that occur in diodes under reverse bias conditions: Zener and 

Avalanche [Ref. 3 pg. 16]. 
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Figure 15.   The p-n junction in the breakdown region. [From: Ref. 3 pg. 16] 
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Zener breakdown results from the increasing electric field in the depletion region. 

This electric field becomes strong enough to break the covalent bonds and results in the 

generation of electron-hole pairs. Carriers are generated in this fashion in large numbers 

until only the external circuit limits the current. While Zener breakdown is a field effect, 

Avalanche current is a kinetic energy phenomenon. The minority carriers that cross the 

depletion region gain significant kinetic energy as the field increases to drive them. This 

kinetic energy is transferred to other atoms through collisions. Depending upon the initial 

energy and angle of the collision, electron-hole pairs can be generated in the target atoms. 

These additional carriers gain energy and undergo the same process, thus increasing the 

current to short circuit conditions. The types of breakdown and the voltage ranges in 

which they occur are listed in Table 2. 

 

Diode Voltage Effect 

Vz< 5V Zener Effect 

5 < Vz < 7 Zener or Avalanche 

Vz > 7 Avalanche 

 
Table 2.   Effect of diode voltage on breakdown mechanism. 

 

The diode behaves quite differently under forward bias conditions. Let a current I, 

flow from p to n as in Figure 16. This current adds to the existing majority carrier 

concentration on both sides of the junction, some of which combine with the charged ions 

left behind at the creation of the junction. This reduces the width of the depletion region 

and barrier voltage across the junction until Is-Id = I at equilibrium. As holes are injected 

into the n-region, the minority carrier concentration is increased above the thermal 

equilibrium level. Because the junction potential is lowered, more electrons now have 

enough energy to overcome the potential hill and diffuse to the p side. The compliment is 

true for holes from p to n [Ref. 3 pg. 17]. 
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Figure 16.   The p-n junction under forward bias conditions. [From: Ref. 3 pg. 17] 
 

The behavior of diode current is shown graphically in Figure 17. Mathematically, 

it is written as: 

 

I = |Igen| (eqV/kT – 1)             (3.8) 

Where:    

Igen = generated current in the transition region 

q = charge of the carrier 

V = applied voltage 

k = Boltzman’s constant 

T = temperature (K) 

 
Figure 17.   Diode characteristic curve. [From: Ref. 16 pg. 33] 
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3. Charge Carrier Lifetime  

The notion of charge carrier lifetime is the following. Suppose that an event 

occurs such that an electron hole pair is produced. This pair causes the equilibrium 

balance of carriers to be upset, and with no load on the p-n junction, will eventually 

return to that equilibrium through a natural decay function. Under thermal equilibrium 

conditions, the generation and recombination rates are equal. For a normal diode, this is 

relatively uneventful. However for a solar cell, the fate of these carriers is directly related 

to the cells performance characteristics. 

Unlike typical diodes, the solar cell uses incident light to create these carriers, 

which in turn drive a load attached to the cell. The problem is getting the particles to 

“live” long enough so that they can get to the terminals of the cell and produce a current 

in a load. The road to freedom for the pair is perilous and many of the carriers are lost to 

recombination processes along the way. Analysis of these processes and how to mitigate 

them is important in order to design solar cells that can meet the performance 

characteristics desired on today’s high powered spacecraft. 

The charge carrier lifetime is defined as “the average time that carriers exist from 

generation to recombination” [Ref. 14 pg. 105]. Quantitatively, the carrier lifetimes for 

electrons and holes can be expressed as: 

τe = 1/σnNt   τp = 1/σpNt              (3.9) 

Where σn, σp are the absorption crossections for electron and hole capture. The distinction 

between minority and majority carrier lifetimes is dependent upon whether n or p-type 

material is being referenced [Ref. 15 pg. 36-37]. 

Depending upon the material used, there are two different modes of 

recombination. Materials in which the electron-hole pair can recombine with a zero 

change in momentum are considered direct materials. Materials that require a change in 

the momentum of the electron in order to transition from the conduction to the valence 
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band are called indirect materials. Gallium Arsenide and Silicon are examples of direct 

and indirect materials respectively. 

Recombinations occur by various means. First, an electron can simply transition 

from the conduction to the valence band, yielding a photon with an energy hν equal to the 

change in energy state [Ref. 16 pg. 18-22]. This is the result seen when lasing or 

energizing an LED. Second, an electron may transfer its energy kinetically to another 

electron. This is known as Auger recombination. Third, an electron can give up its energy 

by emission of a phonon. A phonon is a mechanical vibration of the crystal lattice in 

discrete quanta. 

Recombination events in indirect materials occur predominately at recombination 

centers created by impurities or radiation damage to lattice sites. The recombination site 

provides a conduit for the momentum change in indirect material. At equilibrium, these 

recombination centers or “traps” are filled, occupying an energy level between the 

conduction and valence bands. As electrons fall from this energy state Er, to the valence 

band, they leave behind a hole, which then traps an electron from the conduction band. 

These transitions do not meet quanta criteria for generation of photons, rather they yield 

phonons to the lattice structure generating heat. Although the recombination center 

returns to its equilibrium state, the cost to the cell is the loss of an electron-hole pair, 

resulting in lower cell efficiency [Ref. 13 pg. 104-105]. Figure 18 illustrates the capture 

process. 
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Figure 18.   The capture process of an electron-hole pair at a radiation induced 

recombination energy level. [From: Ref. 16 pg. 21] 

 

The minority carrier lifetime depends upon several factors. In direct bandgap 

material, minority carrier lifetime tends to be short: on the order of 10-9 to 10-7 sec. 

Intuitively, the zero momentum change makes the transition from the conduction to the 

valence band more probable. In indirect material, carrier lifetimes are longer: on the order 

of 10-7 to 10-3 sec. This is why silicon is such a popular choice for solar cell material. 

However, the introduction of impurities creates more “traps” resulting in the loss of 

electron-hole pairs. For this reason, the purity of indirect band-gap material must be 

strictly controlled to prevent creation of recombination centers [Ref. 17 pg. 58-59]. 
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IV. SOLAR CELLS 

Solar cells have become the primary source of power for earth orbiting spacecraft 

since their introduction by Bell labs in the early 1950’s. Technological advances in 

materials and design have raised the operating efficiency of these devices from four 

percent to as high as thirty percent today. As spacecraft become larger, more complex, 

and longer lived, the solar cells have had to follow suit. However, some unique problems 

exist for the solar cell that can become a single limiting factor in the mission lifetime of 

the spacecraft, specifically the degradation of solar cells in the radiation environment. 

This chapter provides a brief overview of solar cell design and operating parameters to 

provide the reader with an understanding of the tools used to analyze solar cell 

performance. 

A. SOLAR ENERGY 

The sun generates energy by the fusion of Hydrogen into Helium at the rate 

approximately 6 x 1011 kg of Hydrogen/sec. The resulting temperature at the surface of 

the sun is approximately 5800 K [Ref. 2 pg. 55]. The energy that reaches the earth has a 

spectrum that resembles the diagram of Figure 19.  This diagram depicts the spectrum of 

solar energy at the distance of one astronomical unit or AU (assuming no atmospheric 

interference) superimposed over a black body. The AU is the mean distance from the 

earth to the sun and is measured as 1.49598 x 108 km. Notice that the solar spectrum 

closely resembles that of a black body. The black body curve proves useful because 

power flux from a black body depends only upon the surface temperature. The total 

calculated power output of the sun is 3.86 x 1026 Watts. Of this, the power at 1 AU is 

1370 W/m2. 
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Figure 19.   Spectral Irradiance and 5800K Blackbody curves. [From: Ref. 18 pg. 10] 

 

B. BASIC OPERATION  

Consider a thinly constructed p-n junction as discussed in the previous chapter 

Allow a solar spectrum to fall incident on its surface. Due to the photonic effects 

described earlier in chapter one, numerous electron hole pairs are developed. The electric 

field created by the formation of the p-n junction helps to separate and collect the 

electrons and holes such that they can be used to drive current into a load. Recall that 

without the electric field, the electrons and holes would simply recombine as the 

semiconductor returns to thermal equilibrium [Ref. 1 pg. 1-1]. 

The solar cell p-n junction is very thin and flat with contacts on the front and back 

of the cell. This facilitates good light penetration as well as lessening the distance 
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necessary for minority carriers to travel before reaching the contacts of the cell. A grid is 

placed on the sunlit side of the cell to both allow the passage of light and to collect 

carriers for transport to the load. Figure 20 shows the basic anatomy of a solar cell.  

 

Figure 20.   The basic solar cell. [From: Ref. 3 pg. 15a] 

 

As mentioned before, the solar cell produces electron hole pairs due to the 

incident photon flux on its surface. The number of pairs produced depends upon the 

spectrum of incident light and the material of the solar cell. In silicon for example, blue 

spectrum light (0.35µ) will travel roughly 0.2 microns before being completely absorbed 

(99%). Light from the peak of the solar spectrum (0.46µ) travels 2 microns into the 

material. And light that we see as red (0.95µ) travels up to 200 microns before being 

absorbed [Ref. 1 pg. 1-1] 

It can be seen then that the distribution of carriers generated is not uniform 

through the slice. Solar cell designs must take advantage of this in order to place contacts 

and junctions at the proper depths in order to prevent excessive recombination losses. 

Figure 21 illustrates the carrier production through the cell cross section. 
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Figure 21.   Plot of carrier concentration versus cell depth for an illuminated cell. [From: 
Ref. 1 pg. 1.2] 

 

C. PARAMETERS 

It would be difficult to look inside and probe around a solar cell to measure 

specific things such as electron hole pair production or electric field width and intensity. 

However, the cell behaves in a predictable and consistent manner such that one can 

deduce the cells performance by observing some well defined and common output 

parameters. There are three parameters that describe the solar cells operating 

performance: Open circuit voltage; short circuit current; and maximum power out [Ref. 

18 pg. 10-12]. 

The open circuit voltage (Voc) is the voltage generated by a single cell given a 

standard incident light source (typically AM0) under no load conditions. The short circuit 

current is the current passing through the cell under AM0 conditions with a zero ohm 

load. The maximum power point is the point such that the product of cell current and 

voltage is a maximum under AM0 conditions. These parameters are obtained by 

generating a current-voltage (I-V) curve as shown in Figure 22.  

 34



 

 

 

t 
 Curren
 

 

 Voltage

Figure 22.   I-V curve with performance parameters. [From: Ref. 18 pg. 11] 

 

From this I-V curve, a snapshot of the overall performance of the cell can be 

obtained. Additionally, other parameters that are artifacts of these performance 

parameters are the fill factor (FF) and cell efficiency (η). The fill factor is a measure of 

how much of a voltage drop occurs due to internal resistance as the current increases. 

Cells with a low fill factor have very rounded I-V curves and are an indication of 

significant losses in the cell design. The fill factor is the ratio of the max power Pmax to 

the product of Voc and Isc. 

FF = 100 x (Pmax / (Voc x Isc))           (4.1) 

Cell efficiency measures the ratio of input power to the cell generated power. This 

is accomplished by comparing the max output power of the cell to the power flux density 

incident on the cell as follows: 

η = (Pin/Pout) x 100             (4.2) 
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D. RADIATION EFFECTS ON OUTPUT PARAMETERS  

The output parameters of solar cells mentioned above are used as a benchmark to 

determine the performance level of the cell. When these parameters begin to deviate from 

the norm in some manner, it is an indication of material degradation. Testing of solar 

cells under varied environments have yielded noticeable and repeatable trends in the data 

over time. The radiation environment is no exception. 

In chapter one the effects of radiation were discussed with respect to damage to 

the lattice structure of semiconductors. Furthermore, the effect of that damage on carrier 

lifetime was earlier in this chapter. Going one step further, this section will discuss the 

effect of radiation damage to the output parameters and how it occurs. 

1. Open Circuit Voltage Voc 

As previously mentioned, there is a noticeable decrease in minority carrier 

lifetime (τ) as a function of radiation dose. This in turn has a direct effect on Voc. The 

radiation flux creates an increase in generation current in the depletion region of the 

junction. This increase in charge carriers in the depletion region lowers the number of 

fixed charge carriers as recombinations occur. The result is a lower electrostatic potential 

at the barrier. 

Charge “traps” also lower Voc. Recombination centers created by radiation 

damage can trap and release charges from the conduction band to an intermediate band 

associated with the trap. When a transitional energy is added to the trap, the trap can 

release the carrier back to the conduction band. As the number of these traps increases, 

the number of trapped charges increases, thus lowering the number of charge carriers in 

the cell at a given time. This lowers the current in the cell, resulting in a lower Voc. 

2. Short Circuit Current Isc 

The potential created by the p-n junction accelerates photo-generated minority 

carriers across the depletion region, adding to the cell current. Charge carrier lifetime 
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must be sufficient such that these carriers are not absorbed before being swept across the 

junction. Radiation induced defects create damage in the cell which create recombination 

centers and change the overall bandgap energy of the cell. This results in a lower carrier 

concentration and thus a lower Isc. 

3. Maximum Power Pmax 

The lower Voc and Isc in a radiation damaged cell dictate that Pmax must also be 

lower. Recombination current outside the depletion region reduces the minority carrier 

concentration. This has the effect of lowering the short circuit current as well as the 

current for all potential values across the cell. The additional generation current inside the 

depletion region lowers the overall potential of the depletion region, thus lowering Voc as 

well as the voltages for all currents [Ref. 12 pg. 47-50]. 

E. MULTI-JUNCTION CELLS 

From the very beginning of the space program, spacecraft have grown in size and 

power requirements. Due to factors such as available space and launch costs, it is not 

feasible to simply put more and more solar cells on the vehicle. Solar cell technology has 

grown to meet the power requirements and weight budgets of spacecraft by delving into 

new materials and designs. 

As discussed in chapter two, semiconductors have different bandgap energies and 

recombination characteristics. Previously, a discussion of silicon solar cells revealed that 

for a 200 micron slice, the high energy visible light (up to 0.95µ) is stopped within the 

first two microns of thickness. If materials of proper thickness and bandgap energies are 

stacked atop each other in the right order, the spectrum can be more effectively utilized 

(see Figure 23).  
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Figure 23.   Notional depiction of multi-junction spectral utility. [After: Ref. 27 pg. 37] 

 

Multi-junction solar cells utilize semiconductors with bandgap energies that span 

the AM0 spectrum. These cells consist of several p-n junctions stacked in the order of 

their respective bandgap energies. Large gap cells are placed at the top, while the lower 

gap cells are sequentially placed beneath. The large bandgap cells absorb the high 

frequency (Blue) light and allow the lower frequency light to pass through to the 

materials that more effectively utilize that part of the spectrum. Of the various designs of 

multi-junction cells, the monolithic multi-junction (or tandem) cell is the preferred 

design. 

Just as different materials have varying band gap energies, they also have 

different current densities. The implication of this is that the layers cannot be connected 

in parallel. This adds a dimension of difficulty to creating the multi-junction cell. Ideally, 

all of the cells should stack neatly, yield identical currents and be joined in series so that 

the voltage of the cell is the sum of the individual cell layers. 

 38



Monolithic tandem cells are grown in layers with a single growth run connected 

by a highly doped p-n junction called a tunnel junction. A tunnel junction connects the 

different band gap layers in a series configuration. This facilitates a cell with a constant 

current in the layers and the voltages are additive. 

The properties of a tunnel junction facilitate electro-optical coupling of the 

different layers, yet produce no carriers. Carrier production would be counter-productive 

to the cell as a whole. Because of the high doping levels, the potential barrier width is 

very thin, on the order of 100 angstroms.  

The tunnel junction is a product of quantum physics and cannot exist in the 

classical sense. In the classical sense, the barrier formed by the electric field would be 

sufficient to prevent the particle from passing through. However, given a very thin 

potential barrier, there exists a level of uncertainty about the position of an electron near 

that barrier. For tunneling to occur, three conditions must exist: 1) there are occupied 

energy states on the same side from which the electron tunnels; 2) an unoccupied energy 

state on the opposite side exists; 3) the junction has a low potential barrier and 

sufficiently narrow width to allow a finite tunneling probability; and 4) momentum is 

conserved [Ref. 19 pg. 517-518].  

When reverse biased, the current increases exponentially. However when forward 

biased, the current rises to a local maximum, drops to a local minimum, and then rises 

exponentially with increasing voltage. There are three current components in the tunnel 

junction that cause this characteristic output: Band to band tunneling, thermal current, 

and excess current. Figure 24 illustrates the I-V curve of a tunnel junction. 
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Figure 24.   Tunnel junction I-V curve (left) and the current components that make up 
the I-V curve (right). [From: Ref. 16. pg. 53] 

 

F. ANATOMY OF A MULTI JUNCTION SOLAR CELL 

In the previous sections, the properties and characteristics of solar cell materials 

have been introduced. This section describes a typical multi-junction solar cell to provide 

the reader with an overall understanding of how the individual components function as a 

unit [Ref. 16 pg. 62-65]. As a reference, typical materials used are listed in Table 3. 

 

Material Lattice Constant Bandgap 

Ge 5.66 .66 

GaAs 5.65 1.42 

GaInP 5.65 1.9 

AlGaAs 5.66 1.99 

AlInP 5.66 2.23 

 
 

Table 3.   Lattice and Bandgap properties of the Spectrolab Triple-Junction cell 
materials. 
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As with most semiconductors, the material is grown in a bottom-up fashion. To 

start, a p-doped substrate is laid out on the back contact of the cell. This is used as a base 

to provide structural integrity to the device. In this case Germanium (Ge) is used because 

the crystal lattice is nearly identical in geometry to that of GaAs, yet stronger and cheaper 

to make. To finish this junction, the n-doped Ge layer is grown. 

On top of this first diode, a window made of a material such as AlGaAs is grown. 

This allows a physical and electrical bond between the different materials. The window is 

very thin (approximately 25 nm) and does not contribute electron-hole pairs to the cell. 

The selected window material must have sufficiently large bandgap energy such that it 

does not interfere with the photons meant for the material below it. To provide a 

connection between the different active sections of the cell, a tunnel junction is grown 

atop the window. 

Just above the tunnel junction, a back surface field (BSF) window is grown. The 

BSF provides an electric field near the bottom of the cell that essentially “pushes” 

minority carriers that would naturally migrate to the back surface, toward the junction. 

The result is a window that acts as a mirror for photo-generated carriers which aids in 

maximizing the efficiency of the cell [Ref. 1 pg. 1-34]. 

On the top of the BSF, the middle junction is grown from a material such as 

GaAs. By design, the bandgap energy of GaAs (1.42 eV) is higher than that of the 

materials below to allow unusable photons to filter through to the materials below, which 

can utilize them. A window of yet higher bandgap energy is grown on top of the GaAs 

layers, topped by another tunnel junction and window. 

The top cell material is grown from GaInP and has the highest bandgap energy 

(1.9 eV) of the active materials in the cell. In perspective, all light with wavelengths 

greater than 650 nm can pass through this first junction. Most of the high-energy photons 

are utilized in this first layer. 
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The top of the cell consists of a window, topped by an anti-reflective coating 

(AR) and then finished by the cap and top contact. The AR coating is designed to reduce 

the reflection of light in the spectrum that the cell operates.  For light having a 

wavelength range of 0.9µ ≤ λ ≤ 0.4µ, approximately 98% of the incident light is absorbed 

[Ref. 20 pg. 203]. Topping the AR coating is the cap. This material draws carriers toward 

the surface contact and acts as a thermal barrier during the bonding process to prevent 

damage to the rest of the cell.  Figure 25 shows a sketch of the constructed cell. 

 

 

 

Figure 25.   Cross-section of a triple junction cell. [From: Ref 16 pg. 64] 
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V. THE NAVAL POSTGRADUATE SCHOOL LINEAR 

ACCELERATOR 

The Naval Postgraduate School (NPS) Linear Accelerator (LINAC) was used to 

provide the high-energy electron fluence required for this experiment. Built in 1965 

based upon a design used at Stanford University, the NPS LINAC has been a key enabler 

for research in the field of space radiation effects as well as many other applications. 

A. BASIC OPERATION 

The purpose of the LINAC is to take relatively low energy electrons from an 

electron gun, accelerate them, and then focus them on a target of the users choosing at the 

appropriate energy and flux. The electron gun is a cathodic grid, which generates electron 

beam pulses at around 80 keV and then injects them into a waveguide. From there, three 

accelerator sections powered by 22 MW Klystron amplifiers accelerate the electrons. The 

number of Klystron amplifiers used controls electron energy. Each amplifier provides 

acceleration to the electrons that yields 30 MeV of energy. After the electrons are 

accelerated to the desired energy level, they are steered and collimated using two 

quadrapole magnets to form a beam on target between 4mm to 5 cm in diameter [Ref. 22 

pg. 11-24] [Ref. 23 pg. 42-43]. Figure 26 depicts a basic layout of the LINAC.  
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Figure 26.   The Naval Postgraduate School LINAC. [From: Ref. 27 pg. 15] 

 

B. BEAM FORMATION AND TRANSMISSION 

As the name implies, the LINAC accelerates particles (electrons) in a straight line. 

The 80 keV electrons leave the gun as a series of pulses having a relatively uniform and 

steady peak amplitude and short rise and fall times. The traveling wave generated by the 

Klystron amplifiers is traveling down each accelerator section at the speed of light. Due 

to the differential velocity, some of the electrons can be lost. To maximize the electron 

beam, a means of concentrating the electrons in a suitable phase for travel down the wave 

is necessary. The pre-buncher assembly seen in Figure 27 accomplishes this. The pre-

buncher delays electrons that arrive too early for the wave and “pushes” along those that 

are straggling, effectively minimizing the destructive interference of the two waves. 

 44



 

Figure 27.   Beam injection system and pre-buncher assembly. [From Ref. 27 pg. 18] 

 

C. BEAM STEERING AND FOCUSING 

As the beam exits the LINAC, it passes through a deflection system consisting of a 

collimator, a series of steering magnets, and a spectral filter. First the beam passes 

through the collimator to reduce the divergence. It then passes through the first steering 

magnet and then the spectral filter. This allows the ability to select the desired energy 

electrons that were separated by the magnetic field of the first deflection magnet. After 

passing through the second deflection magnet, the beam is focused and placed on the 

desired target by the quadrapole magnets (see Figures 28 and 29).  
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Figure 28.   Deflection System. [From: Ref. 26 pg. 21] 
 
 

 

Figure 29.   Quadrapole Magnets. 
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D. BEAM FLUENCE MEASUREMENT 

As seen in Figure 30, the beam passes through a Secondary Emission Monitor 

(SEM) just prior to the target. The SEM measures the fluence of the beam passing 

through it by placing a charge on a capacitor connected in parallel with it. The voltage of 

the capacitor is measured by a fluttering reed voltmeter and the integrated charge is then 

converted to fluence. Since the fluence is proportional to the total number of electrons 

collected by the SEM, the fluence is then proportional to the charge on the capacitor. The 

charge of the capacitor is given as Q = C V, where Q is the total charge of the capacitor, 

C is the capacitance in Farads, and V is the capacitor voltage. 

 

Figure 30.   Secondary Emission Monitor and Cell Target Stand.  
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However, because the foils of the SEM are thin, the probability of electron 

interaction is relatively low. To effectively utilize the SEM as a tool to measure fluence, a 

measure of the efficiency of the SEM in interacting with the electron beam was 

established. In principal, this was simple. The efficiency of the SEM is simply the ratio of 

the SEM fluence to the total fluence. The only thing required was to accurately measure 

the beam fluence under the conditions needed for the experiment. 

E. CALIBRATION PROCEDURE 

A calibration procedure was derived by Don Snyder to accomplish this. The 

LINAC was operated at the desired energy of 30 MeV with the beam passing through the 

SEM and terminating into a device known as a Faraday Cup (Figure 31). The Faraday 

Cup is a device that is designed to stop electrons of the desired energy (different Faraday 

Cups are used for different energies), and like the SEM provides a charge transfer to a 

capacitor. Properly positioned, the Faraday Cup is assumed to be 100% efficient in 

stopping electrons. 

 

Figure 31.   30 MeV Faraday Cup. 
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The SEM efficiency is then found by taking the ratio of the SEM voltage to the 

Faraday Cup voltage. Numerous runs are conducted to account for thermal variations and 

electrical transients. After several runs, the SEM efficiency was found to be 

approximately 7%. A short calibration run was conducted prior to irradiating the solar 

cells yielding the same result. Figures 32 and 33 show the arrangement for the 

experiment. 

 

Figure 32.   Beam path from SEM to the Faraday Cup. 

 49



 
 

Figure 33.   Top view of beam path. SEM at top, Faraday Cup at bottom. 
 

The desired units for describing the dose absorbed by solar cells in space is in 

terms of electrons/cm2. Thus in order to take measurements at known radiation doses, a 

conversion was required to relate SEM voltage output to electrons passing through the 

target. The beam fluence Φ in units of electrons/cm2 is found using the following 

relationship: 

 

Φ (e-/cm2) = C V/(0.07q A)            (5.1) 

 
Where: 
 
C = Capacitance in Farads 
V = Capacitor Voltage 
q = electron charge (coulombs) 
A = area of the beam (cm2) 
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VI. EXPERIMENT 

A. INTRODUCTION 

This experiment will provide the data necessary for a comparative analysis of 

radiation effects on three types of solar cells. The cells tested are Silicon, Gallium 

Arsenide, and Multi-Junction (GaInP2/GaAs/Ge). To collect the data required for the 

analysis, electrical characteristics of the cells are measured before irradiation and after 

each decade of dose up to 1016 electrons/cm2. 

The fundamental building block of the data for this experiment is the I-V curve. 

These curves provide all of the parameters (either directly of indirectly) to determine the 

performance of the solar cell. The following discussion describes the equipment and 

method used to obtain the I-V curves used in this experiment. 

B. RADIOLOGICAL SAFETY 

Exposure to ionizing radiation is a serious matter and must be dealt with 

appropriately to prevent serious injury. The hazards posed by this experiment were 

greatly mitigated by following basic radiological handling principles such as ALARA 

(minimize exposure to levels As Low As Reasonably Achievable) and the concept of 

time/distance/shielding. A professional radiation technician supervised all runs conducted 

using the LINAC. During the runs, he made continuous radiation surveys to ensure that 

gamma and neutron radiation levels were well within safe limits. The effective use of 

shielding materials such as lead and poly blocks ensured that no streaming radiation 

sources emanated from the LINAC. Additionally, radiation surveys were conducted at the 

completion of each run around the test device and on the solar cells to ensure no radiation 

hazards were present. Free release of the cells for transport was allowed only after the 

cells showed no signs of activation. Pocket dosimeters and LiF film badges were worn by 

all personnel involved in the experiment to monitor any dose absorbed. At no time did 
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anyone working in or around the LINAC receive exposure to ionizing radiation above the 

established limits. 

C. SOLAR SIMULATOR AND TEST EQUIPMENT 

As discussed in Chapter III, the effects of solar cell degradation is determined by 

analysis of well known output parameters when placed under test. The equipment used to 

obtain these parameters for this experiment consists of a SS 1000 solar simulator, a 

programmable power supply, a thermostatically controlled cooling system, and a PC 

running LABVIEW software. 

The SS-1000 solar simulator (Figure 34) at NPS had been recently modified with 

a 1500 watt Xenon bulb. This differs from the 1000-watt bulb in previous experiments. 

The spectral characteristics are nearly identical to the 1000-watt bulb, however the 

intensity and uniformity of the footprint is much improved. 

 

Figure 34.   SS-1000 Solar simulator in operation. 
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With proper calibration, the SS-1000 provides a very close approximation to the 

actual solar power intensity at AM0. To accomplish this, the beam uniformity and 

intensity are adjusted by means of three adjustments in the x-y-z axes of the mirror inside 

the simulator (see Figure 35). 

To ensure a uniform intensity across the testing surface, a test cell attached to the 

programmable power supply is biased with 4V and allowed to pass current under short 

circuit conditions. By moving the cell and observing the current changes in the footprint 

of the lamp, the x and y adjusting screws were manipulated to obtain a homogeneous 

intensity level in the area that the cell was to be placed. Manipulation of the z-axis 

provided changes in intensity to provide the proper short circuit current as measured by 

the manufacturer. Once set, the x and y-axes were stable, however manipulation of the   

z-axis would be required periodically to account for fluctuations in lamp temperature and 

atmospheric changes. Additionally, because each type of cell has different spectral 

characteristics, the AM0 Isc was adjusted using the z-axis setting on a cell by cell basis to 

provide uniformity of the results with known data when available. 

 

Figure 35.   X-Y-Z focal plane adjustment settings on the SS-1000 solar simulator. 
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Because solar cells have a positive temperature coefficient, it is important to 

maintain cell temperature constant. A system is required to ensure constant temperature 

during each phase of the test as well as consistent for all of the phases. A dual bath 

cooling system with a thermocouple attached to the testing block was used for this 

purpose. The first bath provides a relatively large constant temperature sink used to take 

away the waste heat. Since this bath is large, it remains at a constant temperature for any 

transient that the test equipment can generate. The second bath has the fine temperature 

control that regulates flow of the water to maintain a temperature of 26 Celsius by 

thermocouple.   

A brass test block specifically designed for experiments such as this was used to 

provide a stable platform, electrical connections, and temperature control. The block has 

spring-loaded fingers, which gently rest on top of the cell. These fingers and the block 

ground are electrically connected to the HP 6626A power supply. The connections are 

interchangeable to allow easy configuration change for p-n or n-p connection. A cooling 

tube passes through the block for the cooling system and the thermocouple is directly 

attached to the block. Additionally, a vacuum pump is connected to the block. The 

vacuum holds the cell firmly to the block through a small hole located directly under the 

cell under test. Figure 36 shows the test block. 
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Figure 36.   Test block showing electrical contacts, cooling connections and thermocouple 
attachment. 

To obtain the I-V curve, a voltage source, current sink, and a means of sweeping 

the voltage is needed. This is accomplished using the HP 6626A programmable power 

supply and a computer running LABVIEW software. The HP 6626 power supply has four 

channels, two of which were used in this procedure. Channel one provides a constant 4V 

bias to drive current through the cell under test. The Labview software to sweep the 

voltage providing the I-V curve controls channel two. The sweep starts at 4 Volts to 

simulate short circuit current and increments at .05 V steps until open circuit conditions 

are met. This is determined by the user and is set at the bandgap energy of the device 

under test. The software then records the current from the power supply at each voltage 

increment and the data is recorded in text tab delimited form for import to a Microsoft 

Excel spreadsheet. Figure 37 shows the LABVIEW interface. 
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Figure 37.   Capture of LABVIEW program used to obtain the I-V curves. 

 

D. PROCEDURE 

The solar cells for this experiment were chosen based upon I-V curves to ensure 

the cells under test would behave in a predictable manner and that there were no pre-

existing flaws in the I-V curves which might skew the experiment. Five each of Si, GaAs, 

and triple-junction cells were selected as candidates for use. Although not all five were 

irradiated, it was necessary to have cells ready in case of breakage or other calamity that 

might delay the experiment. The BOL data for the test cells is listed in Table 4. 
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Cell Voc Isc Pmax  FF Efficiency 

Si02 .5548 37.64 15.933 .7630 14% 

GaAs22 .9974 27.22 20.883 .7727 17% 

Mj08 2.5254 15.39 32.41 .8338 24% 

 
Table 4.   BOL data for test cells. 

The original test plan called for irradiation of an expendable silicon cell to allow 

for time to gain proficiency in the process, providing a dry run so to speak. This proved 

valuable and prevented many errors that would have likely occurred in the actual 

experiment. Lessons learned in handling of the cells, placement of the beam, and reading 

the I-V curves were applied to subsequent runs and greatly improved the process. During 

this run, beam position was recorded by a frame grabber to show the gaussian distribution 

of the beam on target. This ensured that the beam was properly focused on the target and 

the distribution was uniform. Additionally, a video monitor imaged the beam and a 

marker was used to note the beam location on a phosphor target. This allowed ease of 

positioning the cell in the center of the beam without re-imaging the beam each run. 

During the calibration runs conducted earlier, the electron fluence for each run 

was correlated to a voltage output from the SEM. Table 5 shows the voltage/fluence 

relationship. 

Fluence Associated SEM voltage 
1 x 1011 7 mV 

1 x 1012 70 mV 

1 x 1013 700 mV 

1 x 1014 7 V 

1 x 1015 70 V 

1 x 1016 700 V 

 
Table 5.   Target Fluence / Voltage conversion. 
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The general procedure was straightforward. First, irradiate a candidate cell with 

the LINAC energy set at 30 MeV to a dose of 1 x 1011 electrons. Once achieved, the 

LINAC RF power would be removed to stop the injection of electrons, allowing the 

machine to remain in standby. After observing proper radiological safety precautions, the 

cell was removed and transported to the solar simulator. The cell would then be placed on 

the test block, illuminated and allowed to reach thermal equilibrium. Once equilibrium 

was established, the I-V curve was run three times. (The three runs were used to establish 

if there were any annealing effects occurring from the I-V curves.) Once the curves were 

recorded and saved, the cell was removed from the simulator and the process was 

repeated for the next desired fluence level. A slight modification to the procedure was 

made after analyzing the results of Si02. It was decided that the starting fluence should be 

raised to 1 x 1012 vice 1 x 1011 electrons. The reason for this was to save time and to 

minimize the risk of damage to the cells due to handling. 

E. TEST RESULTS 

Three cells were successfully irradiated and tested. The silicon test cell Si02 was 

irradiated from 1 x 1011 to 1 x 1015 electrons. Cells GaAs22 (Gallium Arsenide test cell) 

and Mj08 (multi-junction test cell) were irradiated from a fluence of 1 x 1012 to 1 x 1016 

electrons. All tests were conducted at 30 MeV electron energy. The I-V curves taken of 

the test cells are indicative of those taken after irradiation with a 1 MeV source, however 

the extent of the damage seems greater. This is attributed to the higher energy electrons 

used in this experiment. 

The silicon cell showed a small annealing effect after running multiple I-V curves 

at each fluence level, but that effect seemed to diminish after 1x1014 electrons. The GaAs 

cell did show some annealing as well, but the effects were not as prominent. The 

annealing effects from the tests were not evident in the multi-junction cell. It is believed 

that the reason for this is that the multi-junction cells seemed better hardened to the 

radiation. Since the damage was so minimal at doses below 1 x 1015 electrons, there was 
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no annealing to be seen, and the mechanism affected by the current annealing was 

masked by other damage not repairable by current annealing at higher doses.  

A comparison of the three cells shows that the Si cell was most vulnerable to the 

radiation damage, followed by the GaAs and multi-junction cell respectively. The data 

for the three cells is located in Appendix A. 

 59



 

 

 

 

 

 

 

 
THIS PAGE INTENTIONALLY LEFT BLANK 

 60



VII. CONCLUSIONS 

In this experiment, three solar cells of different construction were irradiated with 

30 MeV electrons to incremental fluence levels up to 1 x 1016 electrons. The purpose of 

this was to analyze their performance characteristics and conduct a comparative analysis. 

Additionally, the I-V curves were run several times on each cell after each exposure to 

determine if any annealing effects were observable. 

Figure 39 is a composite plot of the three test cell efficiencies as a function of 

electron fluence. In general, the silicon cell displayed the greatest sensitivity to the effects 

of radiation damage. This was expected since GaAs and multi-junction cells are naturally 

more radiation hardened due to their absorption cross-sections and lattice structure 

properties. Unlike the GaAs and multi-junction cells, cell efficiency dropped earlier in the 

radiation process. This is evident in the I-V curve composite diagrams for the three cells 

also. Efficiencies in the GaAs and multi-junction cells appear unchanged until nearly 

1x1013 electrons. However it appears that after that point, the multi-junction cell drops 

faster in efficiency than does the GaAs. Perhaps it is attributable to the Germanium 

substrate of the multi-junction cell. This may be a point worthy of further research.  
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Figure 38.   Cell efficiency plot versus 30 MeV electron fluence for all three test cells. 
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The Fill Factor (FF) of the curves provides an indication of the performance of the 

cells at each stage of irradiation. As discussed in chapter three, FF compares the 

performance of the cell by measuring the ratio of actual area under the I-V curve with 

that of one made curve with a rectangle made from the Voc and Isc parameters. 

Comparison of the fill factor degradation with respect to irradiation showed that the 

silicon cell Si02 was less affected than the Gallium Arsenide and multi-junction cells. 

The multi-junction cell FF suffered most. The results show that the cells were affected by 

different damage mechanisms or combination of mechanisms. The fact that the silicon 

cell was least affected is partly due to the fact that the FF of silicon is not as good as that 

of GaAs and the triple junction cell to begin with. The interesting thing that the data 

provides is that there is a noticeable degradation in the other cells. This is an important 

design consideration and has a significant impact on the mean mission duration of 

spacecraft utilizing these solar cells. Further research is recommended to investigate the 

actual damage mechanisms involved and ways to mitigate them. 

Comparison of the short circuit current (Isc) of the three cells yielded an 

interesting result (see Figure 39). The GaAs and triple-junction cells had relatively 

constant Isc until about 1x1014 electrons. However, the Isc in silicon dropped nearly 

linearly throughout the exposures. This comparison effectively shows the utility of the 

GaAs and triple junction cell from the power budget standpoint. Due to the rapid and 

nearly continuous failure of the silicon cell current, a significantly larger silicon cell must 

be used to ensure power requirements are met at the mid life point of the spacecraft, let 

alone EOL requirements. The near constant Isc of the GaAs and triple-junction cells help 

to even out the cell efficiency for the life of the spacecraft out to 1x1014 electrons.  
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Figure 39.   Short circuit current (Isc) plot versus 30 MeV electron fluence for all three 
test cells. 

 

The radiation effect on open circuit voltage (Figure 40) followed a predictable 

behavior and yielded little meaningful information. However, it is worthy of note that 

unlike the case of Isc where the GaAs cell had the larger degradation, the triple junction 

cell had the greatest change in Voc. This again touches on the fact that the damage 

mechanism is different for each cell.  
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Figure 40.   Open circuit voltage (Voc) plot versus 30 MeV electron fluence for all three 
test cells. 

  

Comparison of the maximum power point (Pmax) shows that the triple junction 

cell had the greatest change in performance due to irradiation closely followed by the 

GaAs cell. This was counter-intuitive after looking at the Isc values, which showed the 

GaAs cell having the greater current degradation, and the Voc data did not seem to 

provide much insight or predictive value. The key to the Pmax value is in the Vmax 

value. The comparison of Vmax across the three cells shows that the triple junction cell 

Vmax falls faster than does the GaAs cell as evidenced by the convergent curves. 

Additionally, the triple junction Vmax has twice the magnitude of the GaAs voltage, thus 

it dominates the behavior greatly. Figure 41 contains the composite plots of Pmax, Imax, 

and Vmax as a function of electron fluence. 
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Figure 41.   Composite diagrams of Pmax, Vmax and Imax for all three test cells. 
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  The I-V curves for each cell were run three times at each fluence increment to 

determine if any current annealing effects were noticed. A parameter called the current 

performance ratio (1-[Isc1/Isc2]) was defined in order to measure the increase in current 

from the annealing effect. The current annealing in the silicon cell was most noticeable. 

At a fluence of 1x1011 electrons, annealing from running the I-V curve yielded an 

increase of 3.1 percent in Isc. At 1x1012 electrons, the gain in Isc due to annealing was 

5.4 percent. A further gain of 6.7 percent was noticed at a fluence of 1x1013 electrons. 

After this amount of irradiation, the annealing gain in Isc degraded and was less than 1% 

at 1x1015 electrons. These results are promising. The actual gain in Isc was not as 

significant as the ease in which it was done. If solar cells can be run at Isc for short 

periods on orbit, a small but ongoing annealing process may in fact increase the life of 

current spacecraft utilizing silicon solar cells. Plots of the Current Performance Ratios as 

a function of cell voltage are contained in Figure 42.  
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Current Performance Ratio for 1x1013 electron fluence
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Figure 42.   Current Performance Ratios of cell Si02  

 

The scope of this thesis was to conduct a surface level comparison of the effects 

of radiation on three different types of solar cells. The data and analysis has provided 

motivation for further research in several areas brought to light by this study. It is highly 

recommended that further research be conducted in the areas mentioned previously. 

Particular attention should be given to the benefits of current annealing as seen in this 

study.  
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 APPENDIX A 

PLOTS OF SI02, GaAs22, AND MJ08 CELL PARAMETERS 
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Mj08 Composite IV Curve 
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