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ABSTRACT

The importance of mathematical models as tools in

decision making has motivated increased interest in that

theory and its implementation. This paper describes funda-

mental techniques of linear programming which have been

combined to offer a microcomputer based optimization

package. The package is machine portable and will accept

input from files created by other programs. Thus the

package affords the opportunity to build a mathematical

programming system based on its ability to solve bounded

variable linear sub-problems. Written in JRT PASCAL 3.0

and implemented on a portable, 8-bit microcomputer (KAYPRO-

II) , this package places the fundamental tool of optimiza-

tion in the office, classroom and home.
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I. INTRODUCTION

In the past 35 years, thousands of papers have been

published dealing with decision theory and optimization.

In the development of that theory, the study of solutions

to systems of linear inequalities has played a large role.

The importance of mathematical models as tools in decision-

making has motivated increased interest in that theory

and its implementation.

Linear programming is the minimization of a linear

function subject to linear inequality constraints [Ref. 1]

.

The techniques applied to this area of optimization are

rooted in the theory of solutions to systems of linear inequali-

ties and the mathematics of linear equation theory. Appli-

cations of this theory provide insight into the problem of

minimizing a convex function whose variables must satisfy a

system of convex inequality constraints. The applications

also provide a framework for extending problems in mathe-

matical statistics and a foundation upon which are built

modern algorithms for the solution of optimization problems

whose variables are integer valued (integer programming)

or whose constraints are non-linear (non- linear programming)

.

Due to this wide range of applications, the availability of

efficient implementations of linear programming algorithms

has become important. Routines to solve a wide variety of





problems have been developed for use on mainframe computers.

Many competitive businesses and industries routinely rely

on such programs to assist in day-to-day corporate decision

making. These systems tend to be expensive to operate due

to overhead costs associated with the operation of large-

scale computer hardware and the training of operators of

time-share systems.

The microcomputer is fast becoming a viable alternative

to time-share mainframes as a source of computational power

for small businesses and individuals. Rapid advances in

computer technology, especially in micro-electronics, have

made possible the routine use of many of the basic, theoreti-

cal algorithms which were previously viewed as too complex

and inefficient. The incorporation of these advances into

the manufacture of "micros" and the development of micro-

computer-based programming languages responsive to user

needs have only recently allowed for implementation of

fundamental optimization tools on the relatively inexpensive

microcomputer. Obvious trade-offs arise in the comparison

of "micros" to mainframes. While the speed at which large

computers accomplish computational results is surely their

greatest asset, so are size and the costs of hardware and

software their greatest liabilities. On the other hand,

the relatively inexpensive one-time purchase price of

the microcomputer and its associated software must be

somewhat offset by its slower computational speed and smaller

memory size.

10





Another disadvantage of the microcomputer is that effi-

cient, "user- friendly" optimization systems are not cur-

rently available for the microcomputer environment. This

is possibly due, in part, to the intense effort required to

develop sophisticated microcomputer software in this severely

restricted environment. While a few basic implementations

of linear programming optimization theory are beginning to

appear, no reference to any work of consequence has been

found in the literature. Further, it is not clear that the

advantages of the microcomputer have been fully exploited

in those few systems currently being released. In fact it

is apparent that so-called microcomputer based systems are

usually weaker versions of systems designed and implemented

for mainframes from simple textbook descriptions and modi-

fied for use on a microcomputer; the elementary theory

incorporated limits problem size and solution efficiency

due to insensitivity to the strengths and weaknesses of the

target computer. Few of the sophisticated features of widely

available commercial, mainframe optimization systems have

been transferred to "micros".

The following is an attempt to amalgamate current

technology and fundamental theory regarding linear pro-

gramming and to create an easy-to-use, interactive computer

program with wide applicability on current state-of-the-art

microcomputers. The system described is designed for a most

restrictive "eight-bit" microcomputer in the hope that

11





upward compatability with larger machines and new-generation

computers will allow more advanced capabilities as technology

admits in the future. The algorithms described and imple-

mented range in complexity from simple algebraic manipula-

tion, as in the simplex pivot, to the more involved technique

of the preassigned pivot procedure initially developed by

Hellerman and Rarick [Ref . 2] . Subtle modifications have

been made to many of the basic algorithms to allow implemen-

tation on the microcomputer. Other algorithms have been

embedded in the code and are activated where required, e.g.,

a new modification of Bland's first rule for the avoidance

of cycling in the presence of degeneracy [Ref. 3] . In the

section dealing with the use of the program, the input and

output routines are discussed.

The package employs a reasonable number of "large-

scale" optimization features, including sparce problem repre-

sentation and product form inverse. The limits on the size

of problems that these programs can cope with is principally

dependent on the size and bit density of the off-line stor-

age available and the size of internal random access memory

(RAM) . Numerous vectors are implemented whose dimensions

are problem dependent and allocated at run-time, providing

true dynamic dimensioning. "In core, out of core" operation

maximizes RAM utilization in a fashion reminiscent of second

generation mainframe computers two decades old.

JRT Pascal version 3.0 is used to implement the theory

discussed in this thesis. The program modules are compiled

12





on the KAYPRO II, eight-bit microcomputer. The associated

algorithm is designed based on speed (number of calcula-

tions required) , overhead required, available programming

language constructs, and simplicity of theory; usually in

that order.

Wide-spectrum stress testing of the package has not

been performed due to time constraints.

13





II. PROBLEM REPRESENTATION

In this chapter we define a canonical problem format

(LPC) and the terms to be used throughout the development

of the algorithm. We then show that, given any problem formu-

lation, (LPF) , an equivalent, canonical form may be achieved

through the application of simple transformations and/or

the introduction of additional logical variables such that

a solution to (LPF) can always be constructed from an

equivalent solution to (LPC)

.

Any linear program is formulated as follows:

(LPF) minimize (or maximize) ex

subject to linear equality or inequality

constraints with variables,

x. non-negative,

x. non-positive, or

x. unrestricted in sign ("free")

A. CANONICAL FORM

The algorithm developed in this thesis is designed to

provide optimal solutions to linear programming problems

stated in the following "canonical" form (assuming an opti-

mal solution exists)

:

14





(LPC) minimize ex ("objective function")

subject to

Ax = b, ("constraints")

<_ x <_ UB, (UB are "upper bounds")

b
2l ; ("non-negative right

hand side")

where x is an n-dimensional column vector, c is an n-

dimensional row vector, A is an m x n matrix of technologi-

cal coefficients with n >_ m, and b is an m-dimensional

column vector. All (LPF) forms may be converted to the

(LPC) form as described in the following sections.

B. BASIS DEFINITION

A basis, denoted by B, is any set of m linearly

independent columns of A. An initial basis, B~ , is the

first basis considered in the iterative solution of (LPC)

.

It will be convenient to construct an initial basis, during

the process of transforming (LPF) to (LPC) , such that

this initial basis consists of unit vectors, i.e., B = I.

In so doing, the inverse of the initial basis, B~ , is

identically I and its "product- form " , the implicit repre-

sentation of B
n as the product of elementary transforma-

tion matrices, is trivial.

15





C. MAXIMUM VS. MINIMUM

Suppose that the problem (LPF) is stated as:

maximize ex

s .t

.

canonical form (LPC) constraints.

Since (LPC) requires formulation as a minimization

it will be necessary to transform the objective function,

maximize ex. The resulting, equivalent minimization

function is:

minimize (-c)x; we redefine c accordingly in (LPC)

Similarly, for each b. < we can perform a transforma-

tion to replace with b. > as follows:

i. multiply row i by -1.

ii. replace the right hand side element so that

b. *- -b..
l l

D. SLACK LOGICAL VARIABLES

We must be concerned with transforming inequality

constraints to the canonical form. Consider the (LPF)

problem with the "ith" constraint of the following form

a.,x, + a.~x + . . . + a . x < b.
ii 1 i2 2 in n — l

16





To convert this problem to canonical (LPC) form we

rewrite the constraint as follows:

a.,x, + a.~x_ + ... + a. x +s. = b., s. > 0,ll 1 i2 2 in n l l l —

where the non-negative variable, s., introduced is referred

to as a "slack variable", or "logical plus type". Note

that if some x satisfies the (LPF) constraint, it also

satisfies the (LPC) constraint and vice versa. The slack

variable simply takes on the value required to maintain

the equality in (LPC)

.

E. SURPLUS LOGICAL VARIABLES

Suppose that the ith constraint from (LPC) is of the

form:

a.,x, + a.~x~ + ... + a. x > b., b. > 0,
ll 1 i2 2 in n — l l

then

a.,x, + a.~x~ + ... + a. x - w. = b., w. >
ll 1 i2 2 in n l i i —

The w. variable appended here is called a "surplus

variable" or "logical minus type" and again, any x satis-

fies the (LPF) form if and only if it satisfies the (LPC)

form. Here w. takes on the value required to maintain

the equality.

17





F. ARTIFICIAL VARIABLES

Considering the introduction of the variable, w, into

(LPC) for the previous case, we find that its coefficients

form the negative of the i-th unit vector. We would prefer

to have available an initial basis composed exclusively

of positive unit vectors. By construction we will add a

second, non-negative variable to the previous equation as

follows

:

a.,x. + a.~x~ + ... + a. x - w. + z. = b., z. > 0.
ll 1 i2 2 in n l i l i —

The variable introduced is called an artificial varia-

ble. Note that z. > in (LPC) implies that the i-th

constraint in (LPF) is not satisfied. However, if a solu-

tion to the new problem can be found such that z .
= , then

the solution to the new problem will be consistent with

the solution to (LPF)

.

By similar convention we introduce an artificial varia-

ble into equality constraints of (LPF) to produce an initial

identity basis for (LPC) . Note that the values of artificial

variables in (LPC) gauge the magnitudes of respective con-

straint violations in (LPF)

.

G. VARIABLE BOUNDS

Variable bounds are elementary constraints of the form

LB . < x . < UB .

3 - D - :

18





Frequently, such constraints are present in (LPF) and can

be expressed as variable bounds in (LPC) . Variable bounds

are accommodated with great efficiency in the bounded

variable simplex method, but they must be identified

explicitly prior to the solution.

As a further simplification, the lower variable bounds

may be changed to be zero by the simple transformation

(change of origin)

:

(LPC) «- (LPF)

x. «- x .
- LB .

3 3 3

The resulting variables in (LPC) have

< x . < MUB . = UB .
- LB .

.

- 3 - 3 3 3

Recovery of the final solution to (LPF) from a solution to

(LPC) is immediate by reversing the transformation:

(LPF) « (LPC)

x . «• x . + LB .

3 3 3

H. VARIABLES WITH UNRESTRICTED SIGN

An easy technique available to deal with "free", or

"unrestricted variables" replaces the free variable with

19





the difference of two non-negative surrogates, x. = u. - v..HDD
Although this technique introduces an additional variable,

the overhead cost is only the duplication of the coefficients

of x to create the additional variable, and a final trans-

formation to recover the resulting value of x
.

, which is

relatively inexpensive. Storage overhead for the new

variable is of little consequence due to the use of the

"out-of-core" storage of non-zero problem elements.

All complications in (LPF) may now be handled by standard

elementary problem transformations to produce (LPC) . Thus

x may be unrestricted in sign, and arbitrary inequality

constraints can be accommodated so that any formulation may

be easily modified to produce (LPC)

.

20





III. ALGORITHM SELECTION

Once the problem formulation has been transformed to

canonical form (LPC) , an algorithm must be developed, or

adapted, that provides the technique required to solve

the (LPC) problem. This algorithm must be both efficient,

and sympathetic to the eccentricities of the small computer.

In keeping with common practice on microcomputers, we adopt

a straightforward, elementary textbook approach to the

mathematical justification of our simplex algorithm. The

implementation is necessarily more sophisticated. The

general algorithm that will be discussed here is the two-

phase, revised simplex method (simplex method using multi-

pliers) [Ref . 1] . Specifically, the non-zero elements of

the product form of the inverse and all non-zero problem

elements will be stored in two random access diskette files

and will be read into internal memory only when required.

The associated reinversion technique used is the preassigned

pivot procedure [Ref. 2]. Each section of the algorithm

will be discussed in this chapter. The next chapter will

be devoted to the associated implementation.

A. A GENERAL SIMPLEX TECHNIQUE

Assuming that the problem statement has been transformed

to the form of (LPC) , we may proceed as follows:

21





1. Rewrite (LPC) in Terms of Basic Solution

At any iteration; let B be a set of m linearly

independent columns of A which leads to the column parti-

tion of (LPC)

:

min ex

subject to Ax = b => [B|N] x

= BX
B

+ N^ = b .

The variables X^ are called basic (or dependent)

with coefficients B, and the variables X. T are referred to

as non-basic (or independent) variables with coefficients

N. It will be convenient to index columns of B and the

basic variables X_ by the row to column mapping j . (for

row i, the associated basic column and variable is j.).

2

.

Basic Solution

A basic solution at any iteration consists of the

values of X„ and X^. The value of each of the XN variables

is, by convention, a constant equal to zero or the asso-

ciated upper bound. For illustration, we will assume all

non-basic variables are at zero.

The values of the basic variables X are defined by
a

the problem statement (LPC) as follows:

Since BX„ + NX^ = b
B

-1, „-l,
B

-1,

B

then X = B b - B NX
N

and X^ = =^> X„ =

22





The value of the objective function is defined:

ex = c
B
X
B

+ cnXn

= C
B
B
"
lb + C

N
X
N

and again

=z> ex = c_B~ b
B

3. Priceout

The purpose of the "priceout step" is to identify

a non-basic variable for which the rate of improvement in

the value of the objective function is favorable.

Consider:

ox = c
B
X
B + c

N
X
N

= cB (B
_1

b - B^NXj,) + C
N
X
N

= c
B
B
_1

b + (o
N

- e^rhnx^

= c B
-1

b + rX
N .

-1
Note that c_B b is the current value of the obj ec-

tive function given X^ = and (c - cRB~ N) is the vector

of reduced costs, r, which indicates how much the objective

function changes as X changes , This vector, r, will be

23





searched to determine which variable, x , will enter the
q

basis. The subscript, q, indexes the column chosen.

If no favorable price is found in this search, an

optimal solution is declared for the current objective.

4 . Ratio Test

The "ratio test" insures that the subsequent solu-

tion will continue to satisfy all variable bounds. The

ratio test searches for the first variable to reach one of

its bounds as x increases in magnitude. If basic variable

x. is the variable which first reaches a bound, or UB . ,

in terms of the incoming variable x , then x. leaves the
q D ±

basis and x enters. Otherwise, x reaches its own opposite
4 Si

bound before any basic variable does, and x will not enterx
q

the basis.

Let Y = {y. .} represent the updated values of the

elements of the matrix A, with Y. denoting column j, such

that:

Y. = B
_1

A. "updated column",

Y
Q

= B^b "right hand side" .

and recall that the basic variables are determined by

X„ = B
_1

b - B
_1
NX„

B N

= B
_1

b - B
_1
A„x^
q q

= Y_ - Y x = XR (x )

q q o q

24





Then the variable which exits the basis is determined by:

MIN a) UB , upper bound on entering variable

b) min y

.

n/y . , y . >

c) minCy.^-UB. )/ y. , UB . finite and2 1 2 - lcf "l •

l -1
•'l

y. < 0.T iq

Let p be the index of the constraint in which

the "winning" ratio is found so that p = $ in case a)

,

and x. is the leaving variable in cases b) or c) . If

p = $ and UB = «>, then the problem is unbounded: no

variable reaches a finite bound as x increases and the
q

value of the objective function increases without limit.

5 . Reflection

We have assumed for convenience that 2L, = 0,

Suppose that x . is bounded so that <_ x . UB . , and that

at some point x. leaves the basis at its upper bound, UB . .

Then to preserve X^ E and avoid complication in the logic

required to handle this new type of variable, we "reflect"

the variable x .

.

]

The variable x. is replaced by UB .
- x . . We will

3 3 3

record this replacement as a status of the variable x .

(noting that another reflection of x. restores its initial

status) , and take care to modify the right hand side with

the constants A.UB. and treat column j as if its sign
3 3

were reversed.

25





6 . Update

For cases a) and c) of the ratio test, a reflection

is required in the update. For case a) , no further work

need be done as x remains non-basic and B is unchanged.

Otherwise, in cases b) and c) , the variable x enters the
q

basis and x. leaves the basis. In these cases, an elemen-

tary transformation matrix E. must be formed such that

E,B, = Bk+1 / w^ere Bk+1 ""* s ttie inverse °f the new basis

with x e x and x. e X . In this way a "pivot" is per-
3
P

formed about the element y . with:
pq

1

1

m

1

where v. = -y . /y , i ^ p and v = 1/y
pq

B. TWO PHASE SIMPLEX

If the initial basis includes artificial variables,

the initial basic solution may be infeasible. The values

of these variables must be reduced to zero to obtain a

feasible basic solution, if one exists. Phase I of the

two-phase simplex method accomplishes this task. If

Phase I produces a feasible solution, the original (LPC)

26





objective function is restored and Phase II is begun. Phase

II improves a basic feasible solution to optimality.

The first step in Phase I is to introduce a special

objective function. This vector contains a zero for each

non-artificial variable and positive unity as a penalty for

each artificial variable in the initial basis, so that

the objective function is of the form:

Phase I objective:

MIN (sum of the artificial variables)

.

The simplex technique is then applied until the priceout

step produces no favorable (incoming) variable. At this

point an optimal solution to the Phase I problem is obtained.

If the optimal value of the Phase I objective function is

zero, the artificial variables all have zero value and the

associated basis provides a feasible solution to the

original problem (although not necessarily optimal for (LPC)

)

If, on the other hand, the final value of the objective

function is positive then not all of the artificial varia-

bles have a value of zero. Thus a feasible solution to

(LPC) does not exist, and hence none exists for (LPF)

.

During Phase I, an artificial variable, once removed

from the basis, is never allowed to re-enter. When (LPC)

contains redundant constraints, artificial variables may,

with value zero, remain as part of the basic set of variables

27





at the end of Phase I [Ref. 1, p. 103]. It is necessary

that their values in Phase II never exceed zero. This is

accomplished by eliminating all non-basic variables whose

reduced costs, r., at the end of Phase I are greater than
3

*

zero, for if one of these variables were introduced into

the basis during Phase II, the value of some basic artificial

variable would increase and the solution would again become

infeasible. Once this task is completed we are guaranteed

that if artificial variables form part of the basic set of

variables in the various iterations of Phase II, their

values will never exceed zero. (See proof; [Ref. 1, p. 103].)

Also, during Phase II, an artificial variable is never

allowed to re-enter the basis.

C. A BOUNDED VARIABLE SIMPLEX TECHNIQUE

1. Transformation of Variables

A "bounded-variable" problem may include non-zero

lower bounds on values of variables. Since the algorithm

adopted assumes all lower bounds are zero, a transformation

of variables must be carried out prior to the simplex

routine:

x . = x .
- LB

.

3 3 3

and requires the following additional bookkeeping:

a. For all variables with non-zero lower bounds, LB,

modify the upper bound, UB , such that the modified

upper bound MUB = UB - LB.

28





b. Modify all right hand side values such that

b! = b. - I a. .
* LB. , for all i.

1 1 h in i
3

J J

A retransformation will be required to express the

solution in terms of the original problem statement. Let

b' represent the right hand side value of the transformed

problem at completion of the simplex algorithm, and x. repre-

sent the value of the j-th transformed variable. Then

the transformations required to arrive at the solution to

the original problem statement are as follows:

If x . is non-basic then x. = LB

.

or (MUB . + LB .

)

3 . : D D :

dependent on whether the variable x. is at its lower or

upper bound.

If x . is basic then the following cases apply:

CASE (LPF) bounds (LPC) transformation

0<x.<°° x.=x.- 3 : :

All logical variables are bounded this way

-oo < X . < X . = -X .

:
-

d :

x. is a free variable x. = u. -v.
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a < x . < b- ]
-

and x. is not reflected

or x . is reflected
3

x . = x . + LB .

3 3 3

x . = MUB . + LB .
- x

.

3 3 3 3

a < x . < °o

- :
x . = x . + LB .

3 3 3

-°° < x . < a
:
- x. = - (x . + LB .

)

3 3 3

2. The Algorithm

The bounded variable simplex algorithm implemented

is as follows [Ref. 4, p. 51].

STEP 1: (PRICEOUT) Determine the non-basic variable,

x , for which
q

MIN (r = c - cDB"
1
Nrr/ r < 0) .

q q B lN(
3 q

If no such variable exists, stop; the current

solution is optimal .

STEP 2: (RATIO TEST) Evaluate the three numbers asso-

ciated with variable x chosen in Step 1.

a. UB (this bound may be infinite)

b

.

min y

.

n/y . , y . >J i0/J iq' ^lq

c. min (v.. - UB . ) /y . , y. < , UB . finite

l 1
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where UB. is the upper bound associated with the variable
-'i

that is basic for constraint i. Note that if the upper

bounds are infinite and there are no tests of type b then

the ratio test may fail. In this case the solution to the

problem is unbounded in terms of the incoming variable.

STEP 3: (UPDATE) Depending on which item in Step 2 is

smallest, update as follows:

a. Reflect x . The variable x goes to its opposite
q q * **

bound. Subtract UB times column q from the right

hand side. Multiply column q by -1 and change the

sign of the indicator vector element e to show that
q

x has been reflected (changed to its opposite bound)

No pivot is required.

b. Let p be the minimizing index in (b) of Step 2.

Then the p-th basic variable returns to its old

bound. Pivot on the element in row p and column q.

c. Let p be the minimizing index in (c) of Step 2.

Then the p-th basic variable goes to its opposite

bound. Reflect x. . Subtract UB . from y ~ , where
1 i

-1 pOJ
P

J
P *

UB . is the upper bound associated with the variable

that is basic for row p; reverse the signs of y .

PD
P

and e. (to show the reflection) and pivot on the

element in row p and column q.

RETURN TO STEP 1.
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D. REVISED SIMPLEX—PRODUCT FORM OF THE INVERSE

1. Advantages

Due to the limited random access memory (RAM) available

on the eight-bit microcomputer, tableau (matrix) simplex

methods limit problem size. In order to solve "large"

problems involving several hundred variables and constraints,

we must store some of the data "off-line". This is done

by reading and writing data to non-volatile memory diskettes.

COMPLETE TABLEAU REPRESENTATION

B

Y =

N

B N

C
N " C

B
B
"
1n

basic non-basic
variables variables

B^b

= B
B
"lb

right hand
side

= {^ii^iO }

Figure 1

.

The simplex method using multipliers (DANTZIG) or

the revised simplex method with product-form inverse affords

the following computational advantages while providing the

necessary intermediate data that can be efficiently read

from and written to diskette data files (see [Ref. 1, p.

210]) .
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a. Less data is recorded from one iteration to the next,

which permits more significant figures to be carried

or a larger problem to be solved within the limited

memory of the microcomputer.

b. Where the original data has a high percentage of

zero coefficients, there are fewer multiplications.

In the standard simplex method, each iteration re-

quires the recording of at least (m+1) (n+1) entries.

Here, however, by use of cumulative multiplications,

the amount of recorded information is reduced to

2m+l entries.

c. High speed core (RAM) storage requirements are

reduced.

2 . Elementary Matrices

Consider the tableau represented in Figure 1, and

suppose Y is transformed by a pivot operation where the

pivot column is:

Y = (y n /y-> /...,y_ )
T with pivot element y .

q Jr lq /Jr 2q -'mq i
r J pq

The result of the transformation is the matrix, EY,

where E is the elementary matrix:

33





1 • • * v
l

• • •

1 • • • V
2

• •

v

m

where v . = -y . /y , i 7* p and v = 1/y
pq

Now, since the elementary matrix, E, is determined

entirely by the elements of the pivot column, the remainder

comprising the identity matrix, all that must be stored is

the pivot row index number and the associated column vector

At any intermediate iteration, k, the product of these ele-

mentary matrices represents the inverse of the basis:

B
-1

E
k

E
k-1

•l-j i _ ^ ••• *-» "i j-j
-i f'2 "1

where E, is the elementary matrix corresponding to the

k-th pivot operation.

Now we will augment the algorithm previously stated.

1. Since the basic solution X = B~ b = (E, (E,_, ( . . .E,b) ) ) ,

we can maintain X current at each iteration by
a

simply multiplying (on the left) by the new elementary

matrix for that iteration. This information is used

in Step 2 and is represented by Y
Q

.

2. Calculating current relative costs, r = c - cB
B N

can be represented by
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r = c
N

- AN ,

where

A = c_.B ("simplex multipliers")
a

= (((WVi 1 ••• E
i

)

3. Once the pivot column is chosen, the current values

of the elements of that column are required for Step

2. Calculate:

Y
q = (E

k
(Ek-l '•• (ElV '

E. DEGENERACY AND CYCLING

Degeneracy is encountered when one or more of the

elements of the current solution (right hand side), B~ b,

become zero. Thus it is possible that more than one basis

has the same coordinates, X. When degenerate solutions

occur, we can no longer argue that the simplex procedure

will necessarily terminate in a finite number of iterations,

as is true in the non-degenerate case [Ref. 1, p. 100],

because the value of the objective function will change by

an amount equal to zero and it is conceivable that the same

set of basic variables may recur. If we were to continue,

with the same selection of x and x. for each iteration as
q : p

before, the same set of basic variables could recur after
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k iterations, and again after 2k iterations, etc., indefintely

This recurrence of the same basis is called "cycling",

[Ref . 6, pp. 68-69] . We choose to proceed with an algorithm

that does not allow cycling.

Pivot selection rules exist which ensure completion

of the simplex method within a finite number of iterations.

The rule referred to by Bland as "a simple finite pivoting

rule" [Ref. 3] is stated as follows:

1. Among all candidates to enter the basis, select the

variable x having the lowest index, i.e., pivot on

the column q determined by:

^Oq * *in{y
oj : Y0j < °> •

2. Among all candidates to leave the basis, select the

variable x. having the lowest index, i.e., pivot in

the row p determined by:

ys0 Yi0
p = minis: y > and = min{ : y. > 0}} .r J sq y y. J iq^

* sq J lq ^

Since we have added a second possible pivot option in

the bounded variable simplex method, we must modify this

last statement as follows:

y. _-UB.
. , ^s0 .

(

yi0 , n _^ 3i
p = minis: = mini; : y. > 0, :

v V • lg V •J sq J iq M J iq

y ia < o,

UB . finite
H
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Note that in either case the row, p, contains the

first occurrence of the minimum positive ratio.

It has been shown on small test problems that imple-

mentation of Bland's rule may cause a significant increase

in the number of iterations required to complete the

problem [Ref . 7] . Current research by Brown and Dewald

[Ref . 8] , suggests a hybrid rule that restricts the pricing

rule only when the current solution is degenerate. Looking

again at Step 1 of this rule we will expand the procedure

as follows:

a. Define a permutation set of the column indices:

K = {k, , . . . , k.,..., k }, with a partition after k .

1 j n r s

b. Assign the partition boundary s = 0.

c. If the minimum positive ratio encountered in Step 2

of the previous pivot is non-zero, indicating that

the current solution is non-degenerate, set s =

and select the variable x by the original most
q

negative rule.

d. If the minimum positive ratio encountered in the

previous step equals zero then the current solution

is degenerate. Select x by Bland's rule #1 such

that:

* 1. If s = then q = k . where j is minimized:
J

MIN{j: yQk
< 0, j = l,...,n} .

3
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* 2. If s ?* then select x such that q = k. where
q 3

j is minimized:

MIN{j: y0k
< 0, j = l,...,s) ,

3

or, if no such q exists, then select q such

that

yQ
= MIN{y

ok : yQk
< 0, j = s+l,...,n} .

3 3

e. Once the incoming variable has been chosen then if the

"winning" index, j > s interchange k. and k ,, . and
3 s+1

assign s «* s+1.

What we have constructed is an ordering of the columns

of the tableau such that Bland's rule is followed, but its

pricing restriction is applied only when absolutely neces-

sary. In this way "most negative pricing" is allowed

whenever possible. Now we must reconstruct Bland's proof

that the simplex method under this rule cannot cycle, hence

is finite.

PROOF:

1. Since the simplex method cannot cycle as long as the

minimum positive ratio > 0, then monotonicity of the

objective function value implies that the simplex

method terminates after finitely many pivots examine

a finite number of ordered bases.
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2. If the minimum positive ratio = 0, Bland's rule is

used until:

* i. the minimum positive ratio > 0.

* ii. optimality is verified.

* iii. primal unboundedness is discovered.

By Bland's rule this will occur in a finite number of pivots.

3. Once the pivot is completed for some ratio greater

than zero, the simplex method can not revisit any

previous basis. The algorithm has moved to a new

basis corresponding to an improved value of the

objective function.

4. Therefore, the monotonicity of the objective function

value implies that the algorithm terminates in finitely

many pivots.

F. REINVERSION

A characteristic of the product-form inverse algorithm

is that with each pivot an increasing amount of work must

be done in order to apply the elementary transformations.

The addition of each elementary transformation vector in-

creases the number of multiplications in the next iteration

by as much as twice the number of constraints in the problem.

At some point it becomes more efficient to replace the list

of vectors, commonly referred to as (ETA), with a smaller

set representing the same basis.

It is convenient to again transform the right hand side

b 1 at this point to accommodate reflections of variables

with upper bounds as follows:
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For each reflected variable x.:
1

bV = b! -
I a.. * MUB , for all i,

J
J J

where a. . are the original non-zero problem elements.

Hellerman and Rarrick [Ref . 2] , present a statement of

the reinversion problem as follows:

Given— a set of basic variables

Find— a set of transformation vectors (ETA) which

imply the inverse of the basis in such as way as to:

* a. minimize the number of non-zero elements in

ETA and

* b. minimize the work done in forming the ETA.

This is, of course, extremely expensive to do optimally.

Starting with Markowitz's observations [Ref. 9] on

minimizing the number of non-zero elements when forming

the ETA vectors, Hellerman and Rarrick develop a fast and

efficient heuristic algorithm called the "preassigned pivot

procedure". This development shows that if the rows and

columns of the basis matrix can be re-ordered so that a

pivot sequence can be assigned progressing down the diagonal

of the transformed matrix M, where M is lower triangular

with non-zero diagonal elements, then no additional non-

zero elements are generated in the ETA representation.
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PREASSIGNED PIVOT MATRIX REPRESENTATION

B

A

C

E \.D

Figure 2

.

In general, the lower triangular form cannot be achieved

but only approximated. Some of the columns of M will have

non-zero elements above the diagonal. These columns are

called "spike columns". In fact at some point in the

process there will usually remain a set of spike columns

called the "bump" so that the matrix can be represented as

shown in Figure 2.

In Sections A and E we have found pivots on the main

diagonal and all other non-zero elements are below the

diagonal. Section B has all elements equal to zero.

Section C is the bump.

Note that Sections A and E have zero multipliers as we

proceed down the diagonal. The major problem, then, is

the build-up of non-zero elements in Sections C and D. This

41





build-up can be minimized by breaking Sections C and D

into two or more bumps so that the non-zero build-up occurs

only in the smaller bumps. The process of selection of

each spike in the preassignment procedure is to choose the

next pivot column so that:

a. when its effect is removed from the row counts

(number of non-zero elements in each row not already

assigned to the pivot sequence) , it will create a

maximum number of row counts of unity or, at least,

as many small row counts become smaller as is

possible, and

b. the chosen column can be pivoted as soon as possible

(thereby being updated by the smallest subset of ETA)

.

The concept of a tally function is used in the algorithm

to effect the above goals. The function is defined by:

t, (n) = the number of non-zeros that column n has in

rows whose row count is less than or equal to k, for

all n {all columns not already assigned a position

in the column pivot sequence or designated as a

spike column}. The (k,n) combination giving the

maximum t, (n) selects the pivot column.

Two other considerations are also mentioned in connection

with the preassigned pivot procedure [Ref. 2]. If during

the scan of column counts, a column with a count of zero is

found, then a singularity exists in the current basis. The

column should be dropped from the basis. Similarly, when
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scanning the row counts, if a row count of zero is found

in an unassigned row, then the associated constraint is

redundant and could be removed from the problem or repre-

sented by a basic artificial with value zero. The other

consideration is that in computer implementations, if the

updated pivot element becomes too small (machine zero) to

be used for a pivot then it is necessary to find an alter-

nate pivot element. This can be done, in theory, by a

proper choice of an alternate spike pivot column [Ref. 2]

(a "spike swap") . Another method is to use Gaussian partial

pivoting, find another row in the current column having a

favorable pivot element and continue. This may

lead to a compromise of our original goals and

introduce additional spikes. A third alternative is to

replace the current basic column with a logical variable

(unit vector) column having unity in the pivot row. Note

that this technique may introduce an infeasibility in which

case a post-reinversion return to Phase I will be required.

The initial implementation of this system will include all

three options. Although the "spike swap" technique seems

to be the preferred procedure it requires updating of

multiple columns. For this reason the partial pivot proce-

dure is tried first followed by the spike swap if no non-

zero elements are found. When both of these techniques

fail, the unit vector insertion is used as a last resort.
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IV. IMPLEMENTATION

The implementation uses a KAYPRO II, 8-bit microcomputer

with 64K random access memory and two single-sided, double

density 5-1/4 inch floppy diskette drives. Approximately

57K of this memory is available for program loading and

storage of variables. The diskette drives are used for

subroutine storage as well as off-line storage of the

problem files and the product-form representation of B

The remaining 7K of internal memory is utilized by the

operating system. The language in which the code is written

is a "semi-standard" version of Pascal. The programming

package, JRT PASCAL version 3.0, is very nearly a complete

version of Pascal as initially designed by Wirth (e.g.,

[Ref. 10]). The JRT version has numerous extensions that

make file handling on the microcomputer relatively simple.

The major disadvantage of this language package [Ref. 11] is

that the code is never completely compiled and, therefore,

requires a resident "exec" driver which interprets the semi-

compiled code. This exec occupies 24K of the usable memory

and executes less efficiently than completely compiled object

code. An additional disadvantage of this language-machine

combination is that the KAYPRO II, without an available

modification, has a Z-80 processor that runs at a speed of

only 2.5 MHz. This relatively slow processor speed has an
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obvious effect on solution times, and motivates the developer

to organize programs in small, easily compiled externally

linked Pascal procedures.

A. DATA STRUCTURES

The data structures used in this implementation are

quite simple. They consist of a number of one-dimensional

vectors of dynamic length, and data files which are recorded

on non-volatile memory diskettes. The size of the vectors

is determined by the number of variables and constraints of

the problem. The size of the data files is dependent on

the number of non-zero problem elements and the number of

iterations (pivots) performed. To illustrate the structure

a listing of arrays and variables follows:

Major data types: Listed in Pascal format for con-

venience, the data types defined as records consist of

two-dimensional arrays of elements that may be accessed

with a single "read" statement. This Pascal convention

is of great value when reading from and writing to

off-line files.

* real

* integer

* boolean

* matrix = record

a: real; non-zero problem element

iar : integer; row index of the problem

element
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* etavec = record

etas: real; non-zero elementary matrix

element

ieta: integer; row index of the elementary

matrix element.

* ranges = record

lb, mub: real; lower bound for variable

modified upper bound

(UB - LB) for variable)

.

Array variables:

* bounds: array of type = ranges; variable bounds.

* c: array of reals; initial cost coefficients.

* e: array of integers; status of variables,

basis or non-basic, or removed from consideration

in the problem. Reflections are indicated by the

sign of the element, negative indicating a

reflected variable.

* jbasic: array of integers; variable basic for the

each constraint .

* ka: array of integers; random record number of

first element of each column. The random record

number is the location key into a random access

diskette file and indicates the logical record

number at which to enter.

* ke: array of integers; random record number of

first eta element in the eta vector for each pivot
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* kj : array of integers; row number for each

pivot.

* xb: array of reals; current right hand side,

b-V
* tc: array of reals; current column of the tableau,

* tl: array of reals; current simplex multipliers,

* rside; array of reals; initial [untransformedj

right hand side, b.

* unitvec: array of integers; index of original logical

column for row i

.

* cycle: array of integers; hybrid Bland's rule

vector for pricing with degeneracy

.

File variables: (dimensioned 2 by the number of file

elements)

* eta: type etavec

a B inverse matrix element

from etavec data type

.

* ele: type matrix

a problem matrix element

from matrix data type .

B . INPUT

Input to the problem solver is accomplished through the

use of three subroutines. These include an interactive

session, "TYPEPROB", during which prompts are given regarding
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required data input procedures and options; a module,

"MODPROB", which transforms the formulation into canonical

form and sets certain vector parameters, and a "READPROB"

subroutine which creates the final formatting of the problem

Initial problem input may also be created using any

simple word processor and the first subroutine, "TYPEPROB",

may be omitted by menu selection. The format required for

the file is illustrated in Appendix A.

The problem data used in the example throughout this

chapter is taken from the bounded variable example of

Luenberger [Ref. 4], page 52. This problem statement is

included in Appendix A.

1. TYPEPROB

This subroutine is designed to create a diskette

text file of the problem formulation. An interactive, -menu

driven series of prompts is used to explain the input re-

quirements and options of the input system. Appendix B

displays a sample input session.

Upon answering the first question posed by the pro-

gram with (1) , to input a new problem, the user will be

asked to specify a problem name. This name must be EXACTLY

eight characters long. In the current implementation this

is a file-naming restriction.

The prompt will then present a series of text pages.

Appendix B illustrates these pages. When the user completes

his responses to these questions, a series of requests will

be presented as follows:
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INPUT NUMBER OF CONSTRAINT ROWS
Do not count the objective function.

The user inputs the integer representation of the

number of constraint rows of the problem formulation.

INPUT NUMBER OF VARIABLES
Do not count logical variables.

DO NOT count the right hand side as a column.

At this point more instructions will be given on

the proper procedure for input of integer and real data

types. Then, the columns will be accepted from the user,

one column at a time. The variable associated with the

column will first be named. This name may contain up to

5 alpha-numeric characters. The next question posed will

be a multiple-choice menu of variable bounds for the current

variable. The choices are:

(1) <_ VAR < infinity

(2) -infinity < VAR <

(3) VARIABLE IS UNRESTRICTED (free)

(4) a <_ VAR <_ b

(5) a <_ VAR < infinity

(6) -infinity < VAR b.

Simply choose the appropriate category for the

current variable. If the variable is bounded, then the
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next entries will be the lower bound entry, and/or upper

bound entry as appropriate.

At this time the following "heading" will be pre-

sented on the screen.

ROW# / VALUE // OPTIONAL ROW # / VALUE
Negative row to end column.

The user is to input the INTEGER row number followed

by the REAL value of the NON-ZERO element in the specified

column and row. An additional row number and value is

allowed as long as the column number does not change. ALL

ROWS OF THE CURRENT COLUMN MUST BE INPUT AT THIS POINT.

This includes the objective coefficient for this column as

well as the coefficients of the column's constraint elements,

Additionally, more than one objective coefficient may be

entered at this time. This is to allow for maximum and

minimum problems to be entered using the same constraints

but different objective functions.

When a -1 is entered in the next row entry position,

the column will be terminated and the next column will be

presented. When all variable columns have been entered

the format of the entries will be changed to outline the

input required for the right hand side entries. This format

will be:

For RHS #1, ROW # 1

ENTER G L or E
FOR >= <=

FOLLOWED BY:
<SPACE>, value of RHS, <RETURN> .

.
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This prompt will be presented for each row. The

next prompt will then ask if another RHS column is to be

entered. Thus, multiple right hand side columns are accommo-

dated. In this way multiple problems using the same matrix,

A, do not need to be re-entered for each objective and

right hand side that might apply. When no more right hand

side columns are required the subroutine will terminate and

the program will request information concerning the objec-

tive function and right hand side to be considered for the

imminent solution.

The file that results from this subroutine is stored

on the diskette in the form shown in Appendix A. The name

of the file is B: probname .TMP, where "probname" is the eight

character name entered by the user. If this file is con-

structed manually without the use of the subroutine, then

the appropriate name must be given to the file so that the

program can find it on the "B:" diskette in the future.

This file-naming procedure which includes the diskette index

is not specific to the KAYPRO II but is endemic to

microcomputers

.

2. MODPROB

At the termination of the subroutine "TYPEPROB"

or if the selection is made to re-run a problem that has

been previously entered, then the subroutine "MODPROB" will

be called. This subroutine will modify the format of the

problem file to include only that right hand side and that
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objective function applicable to this specific problem.

It will also add the appropriate logical variables to the

column list. This new set of non-zero problem elements will

then be written to a new text file, B.-probname.DAT, for

use. Additionally, the first set of basic variables will

be listed, by column number, with negative column numbers

representing artificial variables and indicating that Phase

I simplex will be required. An example of this DATa file

is shown in Appendix C.

This subroutine also allocates dynamic storage for

vectors and writes a file listing variable names. The user

will notice a delay during the time "MODPROB" is working.

A large portion of that time is due to the naming of logical

variables. The naming routine is slow in this implementation

due to inefficiencies in the JRT PASCAL structure (not an

important consideration in the development of the basic

algorithms) . There are faster ways to name the logical

variables, but a better method was not found for JRT PASCAL.

3. READPRQB

This subroutine completes the reading of the problem

data file into a working file that is random access,

binary and unreadable to a text editor. This is a fast

access off-line file from which the appropriate non-zero

elements of a column can be accessed when a column update

is required during the simplex procedure. Upon termination

of the "READPROB" subroutine, the problem has been transformed
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to canonical form and all initial values have been set.

The problem is now ready for the simplex technique.

C. THE PROBLEM SOLVER

The simplex algorithm implemented is a "textbook"

Pascal translation of the theory and approach already dis-

cussed. A modular, procedure-calling technique is used

which allows compilation of small units of code, linked

as external Pascal procedures. A short description of

each procedure follows.

1. SIMPLEX

The simplex procedure is the driver for the problem

solver. It determines the requirement for Phase I or Phase

II, initializes the required objective (cost) vector and

calls all of the other procedures directly associated with

the simplex algorithm.

2. PHASEI

This procedure solves the modified problem

Minimize £ x.

j artificial

subject to the given constraints,

arriving at a first feasible solution. If no such solution

exists and the problem is infeasible then the most feasible,

last iteration solution is output and the program is ter-

minated. If a feasible solution is found, then the original

problem cost vector is restored and Phase II simplex is begun
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3. BTRAN

The "BTRAN" subroutine calculates the simplex

multipliers

A = CgB" 1

using the formula (...(((c E ) E, ,)...) E,) .

A copy of the Pascal code for "BTRAN" is included

in Appendix D as an example of the implementation code.

4. CHUZQ

After "BTRAN" computes the simplex multipliers, this

procedure is called to calculate the current reduced costs

for all non-basic variables, c - AN. In the absence of

degeneracy the most negative reduced cost over all X is

chosen, resulting in the most rapid convergence to the

optimal solution. In the presence of degeneracy the hybrid

implementation of Bland's rule number 1 is activated.

5. FTRAN

This procedure is called at any time that a column

vector update is required. The function calculates,

Y = B A using the formula

V E
k-l ( '• (E

l
A
q
)) ••' )

•

6. CHUZP

Using an updated column from "FTRAN", "CHUZP"

determines the pivot row, p, using the three-case test

for bounded variables.
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7. PIVOT

This procedure is called by the simplex subroutine

and by the "REINVERT" procedure. Each time "PIVOT" is

called, an asterisk (*) is displayed on the CRT for refer-

ence. Each asterisk signifies the formation of one ETA

vector in the B product-form. If case a of the bounded

variable simplex algorithm is encountered and a non-basic

variable is reflected, (no eta vector is generated) , then

a pound sign (#) is printed in place of the asterisk.

8. REINVERT

"REINVERT" is a direct implementation of Hellerman

and Rarick's preassigned pivot procedure with a few modifi-

cations. Forward pivots are completed as they are assigned

so that subsequent forward transformations can be used

immediately to reveal scaling difficulties requiring spike

swapping (pivot element too small) . Constraint redundancy

checks are also implemented as described in [Ref . 2] , page

214.

D. OUTPUT

The "FILEOUT" procedure causes the current solution to

be written to the output file, B:PFI.LST. At program

termination this text file may be printed using any simple

word processor. An example of the program output for the

example problem is shown in Appendix E.

This procedure reverses most transformations used to

convert to (LPC) . Thus, upper and lower variable bounds,
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free variables, and the extremal operator (min/max) appear

on the report as they did in the original formulation.

Constraints appear with non-negative right hand sides. The

report also lists reduced costs for non-basic variables and

dual prices for constraints with structural variables

basic.
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V. CONCLUSIONS AND RECOMMENDATIONS

The simplex implementation described has shown that

advanced algorithms for linear programming problems can be

packaged in an easy to use, interactive system on a micro-

computer. It has also shown that while solution time is

certainly not on the same order of magnitude offered by

mainframes, neither is there the cost associated with main-

frame CPU time-sharing. Reasonable solution time for a

linear program on a microcomputer might be the length of a

coffee break. This implementation averages three to four

seconds per pivot for early iteration pivots and approximately

5 seconds after thirty pivots.

A time test was run on a problem posed by MICRO VISION

(135 Herzel Blvd., Lindenhurst, N.Y. 11757) as an advertise-

ment for their "MATHEMATICAL PROGRAMMING PACKAGE II". This

problem restated as a bounded variable problem has 8 con-

straints and 17 variables, including logicals . The original

A-matrix is 85 percent dense. Total solution time on the

KAYPRO-II at 2.5 MHz clock speed was 125 seconds. This time

included 30 seconds required to write three solutions, Phase

I, Phase II, and the reinversion solution. Phase I and

reinversion times were also included in the solution time.

While these times are not as good as the MICRO VISION time

published, the limit on the number of variables and constraints
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for the MICRO VISION version is listed as "100 x 100 on the

IBM Personal Computer or model XT with 128K memory". The

limit on constraints and variables for the description

given in this paper has not been reached. The limiting

factors are the number of elements in the one-dimensional

vectors required for the underlying data structure and the

size and density of the diskettes used to store the out-of-

core files.

Serial file organization of the problem and eta files on

diskettes would greatly improve performance. This modifi-

cation would require organization of these files in "pages"

of columns to permit efficient serial reading of a (problem

dependent) set of columns at each diskette access. In

concert with this modification, partial pricing ("batch

pricing") would probably improve execution efficiency a bit

more. Unfortunately, these relatively easy modifications

require significant redesign of dynamic memory management

and file handling constraints. These enhancements have not

been implemented at this writing.

We hope that the work presented here will further stimu-

late the development of additional mathematical programming

software for use on microcomputers. As costs of micro-

computers continue to decrease while system capabilities

progress, the operations research community must be prepared

to take full advantage of the availability and potential of

these valuable tools.
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Copies of the PASCAL code and diskettes formatted for

the KAYPRO II, containing all subroutines may be obtained

from the author. Please address requests to:

Major D. W. Theune

P. 0. Box 1083

Springfield, Va., USA 22151.
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APPENDIX A

EXAMPLE INPUT FILE

PROBLEM STATEMENT

minimize 2x, + x
2

+ 3x
3

- 2x. + 10x
5

subject to x, + x
3

- x
4

+ 2x
5

= 5

x
2

+ 2x
3

+ 2x
4

+ x
5

= 9

1 x]l 7 ' 0£x
2
£l0, £ X- _< 1, 2 £ x, £ 5, < x, < 3

EXAMPLE INPUT FILE

number of constraints / number of variables

< no blank space here >

non-zero problem elements

format

:

/ optional

col # / row # / value / row # / value

< blank space required >

right hand sides

rhs # / restriction / value

< blank space required >

2 5

2 1 1 3 2

2 2 1 3 1

3 1 1 2 2

3 3 3

4 1 -1 2 2

4 3 -2

5 1 2 2 1

5 3 10

1 e 5

1 e 9

XI 4

X2 4

X3 4

X4 4

X5 4

variable name / type of bounds
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UB XI 7

UB X2 10

UB X3 1

LB X4 2

UB X4 5

UB X5 3

< blank space required >

variable bounds UB = upper or LB = lower

variable name and value
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APPENDIX B

INTERACTIVE SESSION

CRT SCREEN PRESENTATION 1:

A>b:exec pfi
Exec ver 3.0

DEBUG? =» no, 1 * yes

Do you wish to:
(1) input a new problem?
(2) re-run an old problem with modifications?

TYPE YOUR CHOICE 1 or 2
1

Input the problem name.
This name will be used whenever the problem is recalled
FORMAT:

enter EXACTLY wight characters. CCCCCCCC
bounded2

SCREEN 2

THIS PROGRAM IS INTENDED TO BUILD A DATA FILE FOR PRESENTATION OF
A LINEAR PROGRAM TO THE PACKAGE THESIS. PFI

If you want to continue type "go" and <enter>.
If you have already entered your data

or if the data file you wish to use has already been created
then type "return" and <enter> to return to the main program.

90
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SCREEN 3

THIS PROGRAM IS INTERACTIVE:
PROMPTS WILL BE GIVEN AS FOLLOWS:

The first two entries will be the NUMBER OF ROWS and COLUMNS.

Remaining entries will be entered in a modified column input format.
Columns will be requested in order.
You will enter the current row number of the next non-zero value
and the value associated with that column and row.

Row # / Value // Optional Row # / Value

NOTE::
Current column numbers will be provided. If all rows for the current
column have been entered, type —1" for the next row number and the
column number will be incremented.

TYPE ANY CHARACTER and <enter> TO CONTINUE
f

SCREEN 4

INPUT NUMBER OF CONSTRAINT ROWS
Do not count the objective function!!!!

2

INPUT NUMBER OF VARIABLES
DO NOT COUNT LOGICAL VARIABLES! ! !

!

and DO NOT ENTER LOGICAL VARIABLE COLUMNS!!!!!!

DO NOT COUNT THE RIGHT HAND SIDE AS A COLUMN! ! !

!
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SCREEN 5

YOU WILL NOW BE ASKED TO ENTER THE NON-ZERO PROBLEM ELEMENT'S.
All entries will be entered by column.
A RESTRICTED number o-f rows and columns may be entered.

The first 2 rows o-f each column represent the non-objectiv«
rows. All additional rows entered will be treated as additional
objective rows. You will be asked later, which objective function
is to be considered in a given problem solution.
a maximum of 10 objective rows may be assigned to a given problem,

similarly:
The first 5 columns will be treated as variables. All remaining
columns will be assumed as independent sets of technological constraints.
You will be asked later, which of these sets is to be considered for
the current problem solution.

TYPE ANY CHARACTER and <enter> TO CONTINUE

SCREEN 6 (DATA INPUT)

The following entries may pe placed IN ORDER in any column.
The following restrictions apply:

All row numbers must be entered as integers.
All values must be entered as real numbers as follows;

0.123 or 2.34 or 34.0 . The decimal must have a preceeding
and a foil owing . numeral

.

ENTER NOW:

Current column is 1

Type up to 5 characters to assign variable name for column 1

XI

Choose appropriate variable bounds for variable XI

LB UB
(1) <= XI <* infinity
(2) -infinity <= XI <=
(3) XI unrestricted (FREE)

(4) a <= XI <= b

(5) a <» XI <= infinity
(6) -infinity <= XI < b

TYPE (1 or 2 or ... 6)

4
WHAT IS THE LOWER BOUND? a = LB.

WHAT IS THE UPPER BOUND? b UB.

7
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ROW # / VALUE // OPTIONAL ROW # / VALUE
Negative row to end column

113 2
Last row entered was objective row # 1

-1
Current column is 2
Type up to 5 characters to assign variable name -for column 2
X2

Choose appropriate variable bounds -for variable X2

(1) <- X2 <- infinity
(2) -infinity <= X2 <»
(3) X2 unrestricted (FREE)
(4) a <= X2 <= b
(5) a <= X2 <= infinity
(6) -in-finity <= X2 <- b

TYPE (1 or 2 or ... 6)
4

WHAT IS THE LOWER BOUND? a LB.

WHAT IS THE UPPER BOUND? b - UB.
10

ROW # / VALUE // OPTIONAL ROW # / VALUE
Negative row to end column

2 13 1

Last row entered was objective row # 1

-1
Current column is 3
Type up to 5 characters to assign variable name -for column 3
X3

Choose appropriate variable bounds for variable X3

LB UB
(1) <- X3 <= infinity
(2) -infinity <= X3 <»
(3) X3 unrestricted (FREE)
(4) a <= X3 <= b
<5) a <= X3 <= infinity
(6) -infinity <= X3 <» b

TYPE (1 or 2 or ... 6)
4

WHAT IS THE LOWER BOUND? a LB.

WHAT IS THE UPPER BOUND? b * U5.
1

ROW # / VALUE // OPTIONAL ROW # / VALUE
Negative row to end column

112 2
3 3 -i
Current column is 4
Type up to 5 characters to assign variable name for column 4
X4
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Choose appropriate variable bounds -for variable X4

LB UB
(1) <= X4 <= in-finity
(2) -infinity <= X4 <=
(3) X4 unrestricted (FREE)
(4) a <= X4 <= b
(5) a <= X4 <= in-finity
(6) -in-finity <= X4 <= b

TYPE (1 or 2 or ... 6)
4

WHAT IS THE LOWER BOUND? a - LB.
2

WHAT IS THE UPPER BOUND? b = UB.
5

ROW # / VALUE // OPTIONAL ROW # / VALUE
Negative row to end column

1-12 2
3 -2 -1
Current column is 5
Type up to S characters to assign variable name -for column 5
XS

Choose appropriate variable bounds -for variable X5

LB UB
(1) <= XS <= in-finity
(2) -in-finity <= X5 <=
(3) X5 unrestricted (FREE)
(4) a <= X5 <= b
<5> a <= X5 <= in-finity
(6) -in-finity <= X5 <» b

TYPE (1 or 2 or ... 6)

4
WHAT IS THE LOWER BOUND? a = LB.

WHAT IS THE UPPER BOUND? b - UB.
3

ROW * / VALUE // OPTIONAL ROW * / VALUE
Negative row to end column

12 2 1

3 10 -1
Current column is RIGHT HAND SIDE # 1

All rows o-f RIGHT HAND SIDE require an entry.
ENTER type o-f constraint -followed by the value o-f the current RHS.
ZERO VALUES AS 0.0

For RHS # 1, ROW # 1

ENTER G L or E
FOR >= <=

Followed by:
<SPACE> , value o-f RHS , <RETURN>. .

• 5
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For RHS # 1, ROW # 2
ENTER G L or E
FOR >= <=

Fallowed by:
<SPACE> , value of RHS , <RETURN>.

.

• 9

RHS 1 is complete. Do you have another RHS column? ( Y or N )

< Y or N >

n
Is the objective to be MINimized : or MAXimized.
ENTER MIN or MAX
•in

Input the integer number o-f the objective row to be considered.
This integer must be in the range 1 to 10

1

Input the integer number o-f the Right Hand Side to be considered.
This integer must be in the range 1 to number o-f RHS columns.

1

Begin phase 1

##*dealing with degeneracy
-•dealing with degeneracy

Phase I solution complete.

Do you wish to print out all intermediate solutions?
Type any positive integer i-f YES

negative integer or if NO

Begin phase 2
dealing with degeneracy
•dealing with degeneracy

Phase II solution complete:

REINVERSION IN PROGRESS

REINVERSION COMPLETE

Program termination
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2 7

1 1 1 3 2

2 2 1 3 1

3 1 1 2 2

3 3 3

4 1 -1 2 2

4 3 -2

5 1 2 2 1

5 3 10

6 1 1

7 2 1

8 1 5

8 2 9

-6

-7

APPENDIX C

EXAMPLE PROBLEM FILE

m,n Constraints, variables

This list is produced by

the package and is not

accessible to the user.

initial basis columns (-) denotes artificials
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APPENDIX D

BTRAN PROCEDURE LISTING

procedure btrart;
(produce pricing vector tlCi3= Cb * Binverse)

var
i, j, ki : integer;
tx: real;

begin
for iS« 1 to m do

begin
tlCi3:= cCjbasicCi J3;
i-f (eCjbasicCiD3<0) then tlCi3:= -tlCili
i-f <abs<tlCiDXzl) then tlCi3:= 0.0;

end;
i-f <np <> 0) then

begin
for 1:» np downto 1 do

begin
tx:= 0.0;
for ki: = keC13 to keCl+13-1 do

begin
read(binv, rrn, ki| eta);
tx:* tx + tlCeta.ietaD * eta. etas;

end;
if (abs(tx) < zl) then tx:= 0.0;
tlCkjClD3:= tx;

end;
end;

i-f (debug) then
begin

writeln(outf ile; 'BASIC COST VECTOR');
for j:= 1 to m do

writeln(outfile; tlCj3,' ');
end;

end; {procedure btran).
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APPENDIX E

OUTPUT LISTING FOR LP PROBLEM SOLVER

Output -for problem bounded2

Dealing with degeneracy!

Dealing with degeneracy!

Phase I solution :

The problem is minimize.

Variable Basic CCj3 Value
Name •for

Constraint
initial

XI : 1 0.0000000000
X2 : 2 0.0000000000
X3 1.0000000000
X4 2.0000000000
xs 3. 0000000000

Reduced
Cost

0. 0000000000
0.0000000000
0.0000000000
0.0000000000
0. 0000000000

Row

1

2

Basic Original
Variable RHS

XI
X2

e 5
e 9

Slack
Value

0.0000000000
0.0000000000

Dual
Prices

0.0000000000
0. 0000000000

Value o-f the objective -function :

Current value and solution represent tableau -for pivot # 2

Dealing with degeneracy!

Dealing with degeneracy!
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Optimal phase II solution
The problem is minimize.

Variable
Name

XI
X2
X3
X4
XS

Basic
•for

Constraint

1

2

CCj3
initial

2
1

3
-2

10

Valui

7.0000000000
1 . 0000000000
1 . 0000000000
3.0000000000
0.0000000000

Reduced
Cost

2.0000000000
0.0000000000
3. 0000000000
0. 0000000000
1.0000000000

Row Basic Original
Variable RHS

1

2
X2
X4

e 5
e 9

Slack
Value

0.0000000000
0.0000000000

Dual
Prices

-4.000000000
-1.000000000

Value o-f the objective -function : 12

Current value and solution represent tableau -for pivot # S

REINVERSION AFTER PIVOT # 3

REINVERSION COMPLETE The problem is minimize.

Variable Basic CCj J Value
Name for ini

Constraint

XI 2 7.0000000000
X2 2 1 1 . 0000000000
X3 3 1 . 0000000000
X4 : l -2 3.0000000000
XS 10 0.0000000000

Rom Basic Original Slack
Variable RHS Value

1

2
X4
X2

e 5
e 9

0.0000000000
0.0000000000

Reduced
Cost

2.0000000000
0.0000000000
3.0000000000
0.0000000000
1 . 0000000000

Dual
Prices

-4. 0000000000
-1 . 0000000000

Value o-f the objective -function : 12

Current value and solution represent tableau -for pivot # 2
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