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Abstract

An extensive Ocean Prediction Through Observation, Modeling, and

Analysis (OPTOMA) domain, off Northern and Central California, was

surveyed in November 1986, during OPTOMA 23. Surface dynamic height (SDH),

sea surface temperature (SST), and other fields were mapped with a Gandin

objective analysis (OA) model; stream function nowcasts and hindcasts of

the mesoscale oceanic field were generated by a quasigeostrophic (QOG)

model, initialized and updated with OA fields of dynamic topography.

The westward propagation, at 5-to-10 km/day, of an anticyclone was

the predominant mesoscale event; cyclonic features were quasi-stationary.

Surface velocities, estimated from changes in SST patterns observed in

pai:'s of satellite images, were consistent in direction with geostrophic

surface velocities and ca. twice the magnitude, as expected from their

increased spatial resolution. Altimetric sea surface height (SSH) fields

were consistent with SDH fields. A simulation of the GEOSAT sampling

pattern reproduced the SDH field accurately using two ascending and four

descending orbits. Hence, GEOSAT altimetry can be effective in mapping the

mesoscale variability of the California Current System (CCS).

The impact of data upon QG nowcasts/hindcasts was evaluated by

incorporating wind stress and bottom topography and subsampling an in situ

data set. Ten-day hindcasts of the upper level stream function and the

temperature at 100 m (T100), derived from an empirical relation with the

vertical derivative of the stream function, were compared with

climatology, persistence, and a verification field. The optimal QG model



configuration, for this case, was: interpolated boundary conditions, no

bottom topography, and no wind stress curl forcing.

The Generalized Digital Environmental Model (GDEM), the Navy standard

climatology, had accurate averages and ranges of values, but it was not

representive of the mesoscale field. Because the mesoscale field did not

change much over the ten-day period, persistence fields scored well. OG

hindcasts were most sensitive to data density: the one-half subsampled

fields scored well and the one-eighth fields were poor. Even in the latter

case, the model filled data gaps and areas of cyclonic and anticyclonic

activity were adequately delineated. Poorly initialized fields were

recovered with good boundary condition updates; hindcasts using simulated

GEOSAT and Sofar data located features accurately, but were noisy and had

a range of values lower than the verification field. TiO fields extracted

from the hindcasts were accurate.

The Fall Transition of 1986 in the CCS was a chronic event; winds

favorable for upwelling fluctuated and diminished in late October, but

occurred during short periods through December. A balance of alongshore

pressure gradient and wind stress at Monterey shifted from maximum

southward in late November to maximum northward two weeks later. The

northward nearshore flow was observed in satellite imagery, SDH and SSH OA

fields, and in QG hindcasts. An increase in SST at NDBC buoys and Granite

Canyon was also consistent with the Fall T-ansition. Near surface warming,

expected nearshore during the Transition, was observed to ca. 300 km

offshore in OA and TIO fields.
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I. INTRODUCTION

A. STATEMENT OF THE PROBLEM

Variable mesoscale ocean features (e.g., eddies, current meanders,

and fronts) can have a considerable impact on marine operations,

economics, and safety. Mesoscale features have horizontal spatial scales

of order 50 to 500 km, vertical scales of order 100 to 1000 m, and

temporal scales from days to months. Mesoscale features have been well

documented on a world-wide basis (Robinson, 1983).

Regional eddy models (REM) and eddy-resolving global ocean

circulation models (EGOCM) have been developed over the past five years

for mesoscale ocean simu]ation and prediction. Generally, these evolved

along the same lines as their numerical weather prediction counterparts,

many of which are used operationally; however, almost all of the

mesoscale ocean models are research models. Two major limiting factors

preventing their operational implementation are the lack of data for

initialization, updating of boundary conditions, and verification of

results, and the expense of running full-basin eddy-resolving models.

Due to financial and logistical constraints, basin-wide in situ

observation on an eddy scale is impractical. The data currently

available for operational use are sparse, noisy, spatially and

temporally irregular, and often restricted (i.e., classified for

security). Usually, the fields required to initialize a model (e.g.,

dynamic topography) are not the same fields readily available in the

operational data (e.g., temperature profiles). Also, the acquisition of

oceanic data is expensive (e.g., a single airborne AXBT survey costs ca.
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$40,000; a P.-3 on a ten hour flight uses fuel at the rate of $3000/hr

and may drop 100 AXBT's at a price of $125/AXBT).

There will probably never be enough data from contemporary,

conventional sources to make most models operational. Short-term

solutions require extensive survey work in small domains, feature models

which insert canonical structures of mesoscale features, or correlation

of surface signals with fields at depth along with judicious use of

AVHRR imagery and GEOSAT altimetry. The long-term solution to the

problem of ocean prediction may come from EGCM's which link the ocean

with the atmosphere and from the use of data from satellite and acoustic

remote sensing systems. Both long- and short-term methodologies require

evaluation and validation of the model system (i.e., the data stream,

the assimilation scheme, the models, and the outputs).

The research emphasis for mesoscale ocean modeling has traditionally

been on understanding physical processes. Initialized with climatology,

edited historical data, or idealized states, the models have been used

as research tools. On the other hand, the operational (i.e., Navy)

mesoscale ocean modeling emphasis is on real-time feature location and

nowcasting the sound speed field for anti-submarine warfare purposes

(Peloquin, 1988). Due to this difference in emphasis, a successful

evaluation and validation of a model by research modelers (the

scientific process) does not necessarily guarantee success for

operational modelers (the operational process), and vice versa.

Ideally, the scientific process of evaluation and validation first

determines whether or not a model accurately characterizes mesoscale

features and other permanent circulation features. Sensitivity case
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studies, or Ocean Prediction Experiments (OPE), then follow to assess

model system performance with different parameters and data inputs using

synthetic ocean fields or real data. These case studies provide error

estimates from which the decision as to whether or not to transition the

model can be made.

The operational process of evaluation and validation, done typically

after the scientific process, uses similar terminology but answers

different questions. Among these are:

(1) Does the model perform well with an operational data
stream (i.e., what is the quantity of data needed to
produce a "good" forecast),

(2) How robust is the model (i.e., how does the model
degrade if certain data are not available),

(3) Does the model fit within the system of models being run,
and

(4) Is it better than what is currently available?

The Harvard Open Ocean Model (HOOM), a quasigeostrophic (0G) dynamic

REM, is the first mesoscale ocean prediction model to undergo the

transition from the research community to operational use (at the Naval

Oceanographic Office, NAVOCEANO). The domain modeled at NAVOCEANO is in

the Gulf Stream, roughly from Cape Hatteras to the New England

Seamounts, and the version used is known as the Navy Operational Gulf

Stream (NOGUFS) model 1.0 (called GULFCAST at Harvard). Although the

model does not provide the fields required for acoustic coupling

directly, with proper initialization and boundary condition updating, it

does identify and locate features. From this, together with feature

models and climatology, the sound speed may be inferred.
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Unfortunately, the HOOM was transitioned after a scientific

evaluation of its performance, but before an operational evaluation. The

model requires intensive resources and is limited in capability and

physics; still, there is an implicit push to apply the model in many

domains, such as the Northeast Pacific (NEPAC) and the Greenland-

Iceland-Norwegian Sea (GINSEA), with little time for further evaluation

and validation.

From the scientific standpoint, Robinson et al. (1986 and 1987) have

demonstrated the accuracy of the HOOM in the California Current System

(CCS) and Gulf Stream, respectively, under research conditions. However,

its performance under realistic operational conditions is unknown and

case studies with NOGUFS are in progress at the Naval Ocean Research and

Development Activity (NORDA). Also unknown is how well the model behaves

operationally in an eastern boundary current (e.g., the CCS) and

whether or not feature models are required universally to compensate for

the lack of data.

B. ELEMENTS OF THE PROBLEM

In this data sensitivity case study, mesoscale ocean fields in the

CCS are analyzed with the Harvard Ocean Descriptive-Predictive System

(ODPS), which consists of the data set, an objective analysis (OA) model

for data assimilation, and the HOOM. Data are from the last survey in

the Ocean Prediction Through Observation, Modeling and Analysis (OPTOMA)

program, an extensive, four-year, joint NPS/Harvard project sponsored by

ONR which sought to understand the mesoscale variability and dynamics of
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the CCS and to determine the scientific limits to practical mesoscale

ocean forecasting (Rienecker et al., 1984).

The OPTOMA 23 survey, which took place in November 1986, consisted

of six synoptic survey flights (with a total of ca. 500 AXBT's) and two

ship surveys (with ca. 50 XBT's and 50 CTD's). The OPTOMA 23 OG model

domain is larger than previous OPTOMA OG experiments (by a factor of 5)

and bottom topography and wind forcing are included in the model.

Furthermore, the data set is unique in that the fall transition of the

CCS (i.e., the onset of the Davidson Current) took place about the same

time as the surveys.

The effect of various data types, sampling densities, and analysis

techniques upon nowcasts and hindcasts in the OPTOMA domain are explored

in this dissertation. This is an evaluation of the ODPS methodology; the

mesoscale features are modeled with the QG model, which is initialized,

updated, and verified with fields from an OA model. Although the input

data fields have gaps in space and time, the model outputs provide a

complete and internally consistent time series of ocean fields. These

fields, together with sea level, coastal SST, and wind stress time

series, are used to describe the thermal structure in the CCS during the

Fall Transition period in 1986 (Figure 1.1).

The major question addressed by this research is: What is the

sensitivity of the OA and QG models to the spatial resolution of the

input surface and subsurface data? Additional questions are: does SST

correlate with other surface and subsurface fields during the OPTOMA 23,

and, thus, can infrared (IR) imagery help initialize the models?
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C. RESEARCH PHASES

Research was conducted in three phases:

(1) nowcasts were made with statistical and dynamical models
using in situ data and various initialization strategies,

(2) a sensitivity analysis was conducted by varying input data
resolution, and

(3) the mesoscale fields were used in conjunction with
nearshore data to describe the 1986 Fall Transition of the
CCS.

In Chapter II, previous oceanographic studies along the Central

California coast are reviewed in order to describe mesoscale activity

from Cape Mendocino south to Point Conception and the techniques and

procedures used to analyze this activity (e.g., in situ observations,

numerical models, and remotely sensed data). In Chapter III, the

procedures for processing and analyzing in situ and remotely sensed data

are described. In Chapter IV, surface dynamic topography referenced to

450 m (SDH), sea surface temperature (SST), mixed layer depth (MLD),

temperature at 50 m (T50), and the depth of the 80 C isotherm (Z08) are

objectively analyzed and compared with each other and satellite data.

The full fields are used to describe the offshore mesoscale activity in

the domain from 9 to 19 November 1986. In Chapter V, QG nowcasts are

generated with full and partial inputs of dynamic height (50 m, 150 m,

and 400 m), wind stress, and bottom topography and sensitivity studies

are analyzed. In Chapter VI, the offshore mesoscale fields are used in

conjunction with an expanded analysis of coastal data to describe the

1986 Fall Transition of the CCS. In Chapter VII, results are summarized,

conclusions are drawn, and recommendations are made.

7



II. BACKGROUND STUDIES AND LITERATURE REVIEW

A. CALIFORNIA CURRENT SYSTEM

1. General

The OPTOMA program was an intensive study of the CCS off Central

and Northern California, from the coast to ca. 400 km offshore. The

general goals of OPTOMA were to understand the dynamics of the mesoscale

eddies and jets in the CCS and to develop an ocean prediction system

consisting ef an observing system and four-dimensional data assimilation

into dynamical models (Rienecker et al., 1987).

Starting in March 1982 with OPTOMA 1, an extensive series of 45

separate oceanographic survey cruises and flights were conducted by

OPTOMA in the CCS from Cape Mendocino to Point Sur. The program was

completed in November 1986 by OPTOMA 23, a survey designed and executed,

as a part of this study, to investigate the scientific and operational

limits to the ocean prediction system.

As a result of the rich data set, the mesoscale activity, as

observed in satellite imagery and in situ data, was well-described

(e.g., Rienecker et al., 1989, Rienecker et al., 1985, and Mooers and

Robinson, 1984), and modeled (e.g., Robinson et al., 1986 and Rienecker

et al., 1987). Other, unexpected results, such as descriptions of cool

filaments (Flament et al., 1985) and of the El Nino signal off Central

California in 1982-1983 (Rienecker et al., 1986), were obtained.

Most of the OPTOMA ship surveys were in one of two (300 km) sub-

domains, Northern California (NOCAL) and Central California (CENCAL);

aircraft surveys frequently covered both domains (Rienecker et al.,
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1987). The ship surveys were quasi-synoptic; due to the slow ship speed,

a few days were required to survey the domain. The aircraft surveys were

synoptic.

The area of interest for OPTOMA 23 is a deep ocean (4200 m), 300

by 600 km rectangular domain parallel to and ca. 100 km off Northern

California (Figure 2.1). The northern boundary of the domain is offshore

of Cape Mendocino and south of the Mendocino Escarpment, which changes

depth from approximately 3000 to 4200 m over a distance of 30 km.

2. Currents and Mean Flow

The domain is under the influence of the California Current

System (CCS), an eastern boundary current with a high level of mesoscale

activity which has been well-documented. In the upper ocean, four

currents make up the system: the California Current, the California

Undercurrent, the Davidson Current, and the Southern California Current

(Hickey, 1979). The first three of these currents and the coastal

upwelling jet influence the area of interest.

The California Current is part of the North Pacific Subtropical

(anticyclonic) Gyre centered near Hawaii. The wind-driven, baroclinic

geostrophic current is a continuation of the West Wind Drift in the

North Pacific. After splitting, between 40 and 45 N, a portion flows

southward along the coast and turns westward between 20 and 30 N

becoming part of the North Equatorial Current (Sverdrup et al., 1942).

The current is weak, shallow (0 to 300 m), and broad. It has a

mean southward flow of 5 to 10 cm/s with respect to a 500 m reference

level (Hickey, 1979); most vertical shear is in the upper 200 m and

horizontal variability at 500 m with respect to 1000 m is thought to be
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negligible (Wyllie, 1966). The main core of the current is ca. 300 to

400 km offshore; its western boundary is ca. 900 km offshore. The water

associated with the California Current is a mixture of cool Pacific

Subarctic water with a near-surface salinity minimum and warmer North

Pacific Central water from the west (Simpson et al., 1986).

The northward subsurface flow over the continental slope is the

California Undercurrent, also called the Counter Current. Flow is

maximum at 200 to 250 m in the summer and fall and is distinguishable

from the California Current by its higher temperature and salinity.

Fluctuation events in the flow, on time scales of a few days, appear to

be correlated with fluctuations in the alongshore component of the local

wind stress (Hickey, 1979).

The Davidson Current is the surface expression of the high speed

poleward core of the California Undercurrent which rises from 200 m to

the surface during the late fall and winter north of Point Conception

coincident with the minimum monthly mean equatorward alongshore wind

stress forcing. This flow has a jet-like structure and it extends

through the water column over the continental slope. The Davidson

Current is near the coast, confined roughly to the continental shelf and

slope, inshore of the California Current axis.

An analysis of current meter data acquired by Smith et al. (1986)

provides some insight on the magnitude of the barotropic component of

the California Current. Preliminary results estimated the ratio of

barotropic to first-mode baroclinic variance to be 0.5 in the OPTOMA

domain and 2.0 a few hundred kilometers west (Rienecker et al., 1988).

For comparison, in the MODE area, McWilliams (1976) statistically
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obtained a barotropic kinetic energy to baroclinic first-mode kinetic

energy ratio of 0.58.

3. Coastal Upwelling and Transitions

Coastal upwelling is an event-type process with a temporal scale

of several days to a few weeks, an offshore scale of ca. 10 to 50 km,

and a vertical scale of ca. 50 to 200 m. It is caused by offshore Ekman

transport due to equatorward wind events which are predominant off

California during the spring and summer. The cool water mass close to

shore contrasts with the warmer water of the CCS and is easily

distinguished in infrared (IR) imagery.

The upwelled water maintains its identity and provides a tracer

of mesoscale flow as it is advected hundreds of kilometers offshore in

narrow, ca. 40 km, filaments by jets associated with the mesoscale

field. Offshore transport is ca. 1 X 106 m 3s, an order of magnitude

greater than Ekman transport. The slower return flow, south of the

offshore filament, is still recognizable although the water subsides as

it flows around the meander (CTZ Group, 1988 and Flament et al. 1985).

Occurrence of the Davidson Current is associated with the

seasonal weakening of equatorward winds favorable for upwelling and the

onset of poleward winds. Theoretically, westward radiation of annual

Rossby waves may be a relaxation mechanism from the upwelling regime

(Mysak, 1983). Such waves have been observed in temperature fields at

300 m between Hawaii and San Francisco, and the West last was

identified as a probable source region by Kang and Maagard (1980) and

White and Saur (1981).
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The fall transition between California Current and Davidson

Current regimes off Central California has been described in only a few

studies. The 1978 Fall Transition off Cape San Martin, south of Point

Sur, was indicated by a gradual, month-long rise in temperature from the

surface to 200 m and an abrupt change from equatorward to poleward flow;

there was a gradual rise in SST at Granite Canyon (2.5 *C). There was no

evidence of local wind forcing (Wickham et al., 1987). The 1984 Fall

Transition was indicated by a gradual, but sporadic, cessation of

coastal upwelling, a gradual increase in SST at Granite Canyon (2.0 *C),

an abrupt increase in SL along the coast from San Luis Obispo to

Crescent City, and an increase in poleward flow off Half Moon Bay and

Point Sur (Breaker and Bratkovich, 1988, and Chelton et al., 1987). The

fall transitions are accompanied by a deepening of the Aleutian Low,

near 50 N and 140 W, and zonal flow at 500 mb (Strub and James, 1988).

Some indicators (e.g., SL) changed abruptly, some (e.g., SST and

coastal upwelling indices) changed over a period of months. Nearshore

sources of data (e.g., coastal sea levels, SST's on moored buoys and

current meters on the shelf) at a few locations were used to describe

the transitions; these did not put the transition into context with

offshore mesoscale activity or with cool filament activity.

4. Mesoscale Activity

Much of the information about the CCS comes from the California

Cooperative Fisheries Investigation (CalCOFI) program. Started in 1950,

CalCOFI sampled the CCS along the California coast with a fixed, coarse

grid of parallel lines spaced 65 km apart with offshore stations every

74 km (Figure 2.2). Temperature, salinity, density, and dissolved oxygen
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data are available at 14 standard levels to 500 m. In 1969, the program

was reduced to providing monthly coverage every third year mostly along

cardinal lines, 195 km apart, off Southern California (Lynn et al.,

1982).

Although the CalCOFI sampling scheme undersamples the mesoscale

field, the data show evidence of meanders associated with semi-permanent

eddies identified in later mesoscale-oriented surveys (e.g., Simpson et

al. 1986 and Rienecker et al., 1987). Wyrtki et al. (1976) showed that

there was significant mescoscale activity in the CCS from calculations

of the ratio of eddy kinetic energy to mean kinetic energy averaged over

50 squares. The data were from daily ship drift observations which had a

time scale of 24 hours, a spatial scale of 400 km, and included the

effects of wind. Off Central California, the ratio was 20 to one.

Complex meanders with wavelengths 300 to 500 km, eddy formations,

and jets with speeds of 20 to 40 cm/s were first observed in satellite

IR imagery in the CCS by Bernstein et al. (1977). The predominant

wavelengths observed were consistent with the fastest growing,

baroclinically unstable waves. Baroclinically unstable waves, with

wavelengths of 60 to 200 km, were observed from Vancouver Island to

Northern California in winter, summer and fall sequences of high

resolution IR images (Emery and Mysak, 1980, and Ikeda and Emery, 1984).

Strong vertical shear near 150 m, due to equatorward surface flow over

the poleward 7alifornia Undercurrent, was suggested as an apparent

energy source.

To test this hypothesis, a baroclinically unstable vertical

profile from Ikeda et al. (1984) with "event" surface speed maxima of 40
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cm/s was used to initialize a primitive equation (PE) model with 9 km

spacing, 10 vertical levels, and realistic topography of the greater

OPTOMA domain (Batteen et al., 1988a). This experiment produced dipole

eddies and filaments, while a flow more representative of seasonal

averages, 5 cm/s, did not form eddies. Eddies were either stationary or

moved to the west and southwest.

The following is a synopsis of mesoscale variability in the area

of interest from other numerical and observational studies:

(a) Numerous investigators, e.g., Hickey (1979), Broenkow
(1982), Simpson et al. (1984), Koblinsky et al. (1984),
and Huyer et al. (1984) have identified mesoscale features
such as a semi-permanent cyclone south of the Mendocino
Escarpment, an anticyclone ca. 100 km off the coast between
San Francisco and Monterey, and a recurrent anticyclone
400 km southwest of Point Conception. Typical observations
and common results are:

(1) length scales of about 100 to 200 km,
(2) time scales of about 100 days,
(3) a depth of influence, in some cases, to at least

1500 m (Koblinsky et al., 1984),
(4) near surface velocities of 20 to 50 cm/s,
(5) changes in dynamic height of 20 dyn cm,
(6) approximate geostrophic balance (Ro=0.1), and
(7) preferred locations associated with forcing.

(b) Current meters moored within the OPTOMA domain showed
evidence of eddy-like features with diameters of 100 km,
speeds at 175 m of ca. 10 cm/s, and high vertical
coherence. These propagated to the southwest at ca. three
km/day (Smith et al., 1986).

(c) Narimousa and Maxworthy (1985) used a rotating tank to
generate high speed jet-like plumes, standing waves, and
semi-permanent eddies associated with modeled topography
representative of Cape Mendocino and Point Arena.

(d) Using a PE model with a straight coast, a flat bottom and
and steady climatological winds, Batteen et al. (1988b)
showed that alongshore variation in wind stress plays a
role in determining the location of eddy generation
regions.
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(e) Mooers and Robinson (1984) and Rienecker et al. (1985)
observed eddies and jets in hydrographic data and IR
imagery. Point Arena appeared to be the origin of cyclones
which move offshore south of the jet. Typical parameters of
the jets were:

(1) speeds of 50 to 80 cm/s (referenced to 450 m),
(2) widths of 50 to 60 km,
(3) extensions in depth from the surface to 200 m,
(4) an offshore extension of 160 to 300 km,
(5) temperature gradients ca. 2 C/20 km, and
(6) salinity gradients ca. 0.5 ppt/20 km.

(f) Using the HOOM, Robinson et al. (1986) found that vorticity
inputs from non-linear interactions were as important for
eddy development as the relative vorticity term, and
Rienecker and Mooers (1988) determined that both local
instability processes and wind stress curl were important
to the evolution of the mesoscale field off Northern
California.

(g) In a review of all OPTOMA surveys, Rienecker and Mooers
(1988) noted propagation in the eddy field which varied
from one survey to another (e.g., to the west or south at
two to five km/day). Simpson et al.(1986), on the other
hand, saw no evidence of westward propagation out of the
the CCS in a domain to the south.

Some aspects of the mesoscale fields are consistent throughout

these studies. Baroclinic instability and wind stress curl were

important in forcing mesoscale activity and bottom topography played a

role in determining their location. However, the observed and modeled

direction of propagation of these features varied (e.g., stationary,

west, southwest, and south).

Three zones of offshore mesoscale activity off San Francisco were

identified by Simpson et al. (1986) from the seasonal range of surface

dynamic height (SDH) and its standard deviation (a): coastal, transition

(with principally anticyclonic activity 400 to 500 km offshore), and

oceanic. Inshore of 200 km, in the coastal zone, there is a complex mean
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current structure associated with the CCS and intermittent upwelling.

Instantaneous flow is typified by jets, filaments, eddies, meanders and

larger scale events (e.g., El Nino and Rossby waves).

B. OCEAN MODELS

1. General

Model studies have several advantages over observational studies;

a dynamical or statistical model can interpolate data gaps, temporal and

spatial, and forecast. Complete, balanced fields at any level can be

accessed at any time step. The major problems, some of which are

inherent to numerical techniques, are: limited computer capability and

resources, instability of small scale features, poor quality and small

quantity of data inputs, complications with data assimilation, and

incomplete physics.

The pair of ocean models utilized in this research are a part of

the Ocean Descriptive-Predictive System (ODPS) used by OPTOMA. ODPS

includes an observational network, a statistical model (i.e., objective

analysis), and a dynamical model (i.e., the quasigeostrophic HOOM). ODPS

has been used in the CCS for several years.

2. Objective Analysis

a. General

Initializing the model with observed data generally requires

griddig in space and time of typically irregular and asynoptic data.

There are a number of Objective Analysis (OA) techniques available for

this task. The ODPS OA is the Gandin method introduced to oceanographic
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applications by Bretherton et al. (1976) and used, for example, in

POLYMODE by Carter and Robinson (1981) and Robinson and Leslie (1985).

b. Model Parameters

The method assumes the measurements, Ti, which could be SST

or any other scalar, taken at n observation points p.(x,y,t), are

composed of the true value of the scalar field, 9i, and a random error,

.. The error is not systemmatic; it is from sampling or instrumental

noise. Error is uncorrelated with the true field, c.8.= 0, and c.£.

E6ij, where E is the error variance.

The least squares optimum linear estimator of ei , e p,is:

N N -1
ep = C pi ( E Aij i j ) (equation 2.1)

i=l =

-1where Ai is the inverse of the covariance matrix, 4,i1 , and C pi is the

covariance between the estimated value and the i th observation, 0p i .

The correlation function, the radius of influence (spatial

and temporal), the maximum number of data points used at each grid

point, and the error value (mean square noise level as a fraction of

variance) are unique to each analyzed data set and the mapping has

varyingr degrees of sensitivity to each parameter. Additionally, the mean
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or a trend can be removed and the output can be smoothed by a Shapiro

filter to remove small scale features.

Of the input parameters, only the error value is carried

through the OA calculations. The others determine which data points will

be used at each grid point. Selection of a proper radius of influence is

crucial in sparse data sets where a choice between recently observed,

but physically distant data, and old, but nearby data, must often be

resolved.

c. Autocorrelation

The autocorrelation function, used to compute the

correlation between an interpolation point and an observation, is

calculated from the data set. The data are assumed to be isotropic,

which is a valid assumption away from the cool filaments and upwelling

front near the coast. Data pairs are binned according to the distance

between the pair; the product of each data pair is summed for each bin;

the sum is normalized by the number of elements in each bin and the

variance; finally, a least squares fit of the following function to the

calculated correlation function is made over a minimum of three bins, to

include the first zero crossing and the first bin (from zero to 1.0 km):

C(r) = Co(1-(r/a)2 )exp(-(r/b) 2) for r*O,

C(O) = Co(1+C) for r=0 (equation 2.2),

where C(r) is the fitted correlation value, r is the range, Co is the

maximum correlation at zero lag, c is the ratio of noise to signal
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variance, and a and b are the calculated coefficients. Equation 2.2

smoothly, and usually accurately, portrays most calculated correlation

functions, without the spikiness often observed in the latter, and

ensures positive correlations within the range of the first zero

crossing.

The OA routine uses the correlation function to determine

the set of observations which will influence each interpolation point

and the elements of the autocorrelation matrix, A... To help ensure that13

A.. is easily inverted, the OA routine biases the matrix towards13

diagonal dominance by limiting the size of the off-diagonal values, by

ensuring no observations are too close to each other, and by adding the

nise variance to the diagonal elements.

d. Filtering and Detrending

A Shapiro filter is used to reduce small scale features

(Shapiro, 1970); this linear filter acts as a horizontal diffusion term.

It is a low pass filter with a sharp roll off; maximum damping occurs at

short wavelengths with little or no damping at long ones. The Shapiro

filter removes small scale noise from the scalar field after the

objective analysis is performed. It has no impact upon the error field.

A detrending routine calculates a plane which best fits the data set.

This plane provides the analysis value at gridpoints where there are no

observations within the spatial and temporal windows.

e. Other Parameters

The spatial and temporal windows, and the number of data

points allowed to influence each gridpoint, determine the available set
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of observations at each gridpoint. If a phase propagation is used, the

observation positions are moved prior to determining If the observation

fits within the radius of influence. Those observations within the

radius of influence and temporal window with the highest correlations

are used in calculating the value of the field at the gridpoint.

A typical spatial window for the OPTOMA data sets is 75 km;

temporal windows vary depending upon the data set, but three to seven

days is typical. The number of data points influencing each gridpoint

can be varied from two to 15. As the number decreases, apparent small

scale noise is introduced and the error estimate increases. As the

number increases, the small scale noise disappears, the noise estimate

decreases, but the time required to invert the larger matrix increases.

For practical purposes, the number of data points influencing each

gridpoint was chosen to be five to seven.

When there are no observations within the spatial and

temporal windows for a gridpoint provided by a sparse data set, the

value assigned to the gridpoint is taken from the plane calculated in

the detrending routine. Often, this plane accounts for little of the

observed variance in the signal, and the error estimate at that

gridpoint is 100%.

f. Weaknesses of the OA

Errors in the data arise from instrumental and geophysical

noise. These errors can be introduced into the OA model output, and the

results can be further affected by the data sampling scheme and

imperfect knowledge of the statistics. OA has no dynamics; it is

strictly an analysis scheme.
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This scheme can also produce space-time dependent, phase

propagated statistical forecasts using a single, fixed phase speed. For

asynoptic surveys, the observations are moved a distance determined by

the phase speed and the difference between the observation time and the

central time of the analysis. This could lead to inaccuracies for

asynoptic surveys in areas of differential advection. For example,

Legeckis and Bane (1983) tried to correlate AVHRR imagery and airborne

data from a Precision Radiometric Thermometer (PRT). The AVHRR imagery

was copied at night and the aircraft flew the following day, some 6 to

10 hours later. Unaccounted for advection resulted in a 4 to 6 km

misalignment of the data sets and low correlations.

For several reasons, the OA field may show little

resemblance to the "true" field at a particular time, even if the data

are truly synoptic. First, selection of a particular grid scale

restricts the scale of variability, and thus dynamical processes, which

can be resolved; features of 2AX size and smaller are not resolved and

sub-grid scale processes appear as aliased noise. Second, tight

gradients, which can be drawn accurately by subjective (hand) analysis,

are spread out over many gridpoints, especially when the correlation

function zero-crossings are large. This effect can be reduced somewhat

near fronts if the selection of observations influencing a gridpoint is

restricted to those observations in similar water masses. Third, the OA

features are weaker than the observed values (i.e., the variance is

lower) as the OA acts as a low pass filter. Finally, the OA scheme in

its 2-D form must be applied to the data at individual levels; there is
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no guarantee of vertical consistency or stability between OA fields

throughnitt the water column without the use of a 3-D form of OA.

g. Alternative Schemes

The Naval Oceanography Command is replacing its Expanded

Ocean Thermal System (EOTS) with a Gandin objective analysis scheme, the

Optimum Thermal Interpolation System (OTIS). It is mathematically

similar to the model used in ODPS; however, instead of detrending a

plane from the data, OTIS uses climatology as a first guess field. Also,

the correlation scales are based upon climatology, basin-dependent and

much larger than the values used in the CCS; for example, the zonal

scale is 200 to 250 km, the meridional scale is 500 to 750 km (Phoebus,

1988). Another technique which weighs the observations with the inverse

of the distance between the gridpoint and observation is introduced in

Chapter III.

3. Quasigeostrophic Model

a. The Quasigeostrophic Approximation

The quasigeostrophic (QG) approximation is derived from the

non-linear equations of motion (u,v,w), a thermal equation and the

continuity equation with Boussinesq, 0-plane and hydrostatic

approximations. These equations are non-dimensionalized, expanded about

a small parameter (c, the Rossby number) and separated by orders of

approximation. The zero and first order approximations are:
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Zero order First order

V O=8P /ax U Ot-VI-V 0 Y=-8PI/8x

UO=- C Po / ay  Vo t0 UI +U 0 Y=- aP 
1 

/ ay

pO= - 8P / 8z -p 1P /-8z-pl=0

aUo/ax+ aVo/ay=o 8U1/8x+8V 1/ay+8V 1/az=o

Wo=0 d0/dt(p 0 )-W1N
2 =0

(equation 2.3),

where 0 and 1 indicate order of approximation, U, V, and W are

velocities in the X, Y, and Z directions, P is pressure, p is density,

N is the Brunt-Vaisala frequency, and d0/dt is the material derivative

with advection by zero order terms.

The diagnostic equations governing the zero order motion are

in geostrophic and hydrostatic balance on an f-plane. The flow is

horizontally non-divergent, and thus, there is no zero order vertical

component of velocity. The zero order density field is prescribed; the

first order density field is predicted. There is no wind or thermal

forcing; mixing and diffusion are not incorporated.

25



The zero and first order equations are used to derive the

gnverning equation in terms of the QG vorticity balance:

d0/dt( o+a/az(1/N
2aP0 /az)+OY)=F (equation 2.4),

where % is the zero order relative (vertical) vorticity,

a/az(1/N 2aP/az) is the thermal vorticity introduced by density

stratification, OY is the planetary vorticity (Y is the north-south

distance on the 0-plane), and F includes effects of filtering, bottom

drag, and wind stress curl, if they are incorporated.

Ignoring F, the left hand side of equation 2.4 can be

expressed as:

r2

+ c J( P, &) + r ( )zt + r2( '2'i(aJz) ) O¢x = 0
t zt z

(A) (B) (C) (D) (E)

(equation 2.5)

where term (A) is the local rate of change of relative vorticity; (B),

the advection of relative vorticity; (C), the local rate of change of

thermal vorticity; (D), the advection of thermal vorticity; and, (E),

the advection of planetary vorticity.
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The process of non-dimensionalization introduces three

2
ratios: a, ,ar r t, V0 t/L, is the ratio of scaling time to the

advective time scale; 0, 0Lt, is the ratio of scaling time to the

planetary wave time scale; and, r, f0 L/ N H, is the ratio of the length

scale, L, to the baroclinic Rossby radius of deformation. H is the

thermocline depth scale; VO, is the velocity scale; t, the time scale;

and, fop the value of the Coriolis parameter.

OG phenomena cover a wide range of dynamic activity

including Rossby wave propagation, barotropic and baroclinic

instability, Rossby wave solitons, jets, and non-linear interactions.

Since potential vorticity is conserved by equation 2.4, neglecting the

effects of F, the direction of flow on surfaces of constant density is

along contours of potential vorticity. The QG approximation is v.1id for

mid-latitude interior flows over relatively flat topography (bottom

slopes of order c are allowed) in domains with a horizontal scale that

is much greater than the vertical scale, but less than the planetary

scale, a vertical scale which is ca. the basin depth, and a time scale

greater than a day.

There are limitations in the use of a OG model: it lacks

complete physics (e.g., higheL order terms have been dropped and there

is no thermodynamic term) and it assumes small amplitude topographical

and interfacial displacements (e.g., outcropping of isopycnals is not

allowed).
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b. HOOM Specifications and Parameters

The HOOM requires initial and boundary conditions for each

timestep. These are provided from objectively analyzed fields or feature

models. Vorticity () and streamfunction (j) are initially specified

throughout the model; at each timestep, q along the boundary and at

inflow points along the boundary are required. The model is integrated

forward in time using an Adams-Bashforth finite differencing scheme

(boundary conditions must subsequently be provided). Finite elements are

used for horizontal derivatives, and finite differencing or collocation

is used for vertical derivatives (Miller et al. 1983).

In past OPTOMA applications, vorticity at the boundaries was

computed by using an objective analysis with an extra gridpoint at the

edge rather than calculating a one-sided derivative (Rienecker and

Moo~rs, 1989). Vorticity information on the boundary cannot propagate

into the interior when the stream function is tangential to the boundary

and noise is introduced when this occurs (Robinson and Haidvogel, 1980).

Initialization and boundary condition strategies cover a

wide range of options and remain an active issue in attempts to make the

HOOM operational. Generally, the term "hindcast" describes use of the

model when the boundary conditions, and possibly interior data, are

known, persisted from one input (known) field to another, or linearly

interpolated between input fields. If new observations are provided for

the boundary conditions, the model "nowcasts" the interior. If the

boundary conditions are extrapolated or otherwise forecast, it

"forecasts" the interior.
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The model has a rigid lid. The wind forced layer at the

surface, z=O, is horizontally divergent due to curl zT. Vertical velocity

in the top layer is calculated at each time step at the top (z=O) by the

following:

OG E
w + w = 0

where, wQG = eVoHD-I1w and wE = k 0V X '/pf) (equation 2.6).

At the bottom (z=-l), there is a no slip boundary condition

and no normal flow through the bottom. Net transport is to the left of

geostrophic flow. Vertical velocity:

W = UVB (equation 2.7)

where B(x,y) is the bottom topography. Bottom topography within QG

constraints must have a slope less than r (Robinson and Walstad, 1987).

Vertical velocity forces changes in p through the

relationship:

r2 [ D(a a*/az)/Dt } = -w (equation 2.8)

and the OG streamfunction is related to the dynamic pressure

perturbation, P', by:
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*/VoL = P' (equation 2.9).

Enstrophy cascades from small wavenumbers to large

wavenumbers due to numerical techniques used in the model. If it

accumulates, numerical instability results. There is no horizontal c.

vertical diffusion term in this model; the same Shapiro filter used in

the OA is applied to remove the small scale vorticity which may cause

instability. With better initialization, and better boundary conditions,

use of the filter can be reduced (Robinson et al., 1986).

The HOOM is portable in that it only requires bottom

topography and mean stratification in a new domain, as long as the

assumptions made in the QG approximation remain valid (Robinson and

Walstad, 1987a). With good initialization and boundary conditions, the

model can be updated with partial or sparse data to perform as ? data

interpolation scheme (Robinson and Leslie, 1985).

c. HOOM Usage

Robinson and Haidvogel (1980) simulated oceanic conditions

in the POLYMODE area using a barotropic version of the HOOM. By

introducing errors, gaps in the data, and noise into the initial and

boundary conditions, they noted that the forecast error was sensitive to

the frequency of updating boundary streamfunction data, but not as

sensitive to vorticity error. After four months, the simulated forecast

had a root mean square (rms) error of about 10% which was attributed to

inadequate dynamic representation, computer error, and observational

error (initial and boundary conditions, and verification).
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Miller et al. (1981) calibrated the same model with an exact

solution (Rossby waves) and simulated observed ocean conditions. After

two wave periods (about 160 days), the rms errors were less than 0%

(concentrated near the boundaries). Occasionally, large error structures

occurred at the boundaries where the flow was tangent to the boundary;

however, why they formed at one point and not another has nok been

explained. Of the two techniques for determining the vertical

dei. atives, finite differencing was the easier to implement, while the

collocation technique was more accurate and efficient.

Robinson and LeXi - (1985) ran a set of QG predictive

experiments in the POLYMODE area using various data inputs. In one

series of tests in small domains (order of 100 km), the interior

conditions were set to zero and the boundary conditions were updated

continuously; the interiors were accurately forecast. In another series

with the initial conditions for the interior provided, fluctuations in

the rms error were attributed to bad or unrepresentative hydrocasts.

Modeling groups at the Naval Postgraduate School and Harvard

used the QC model extensively in the CCS as part of the OPTOMA program

(Rienecker and Mooers, 1988, Rienecker et al. 1985 and Robinson et al.

19d6). The model was the principle tool in determining the relative

importance of non-linear interactions, baroclinicity, relative

vorticity, and surface forcing from Ekman pumping. The domain for these

experiments was small, ca. 150 km square, the asynoptic data spanned ca.

a month, and, when wind stress was incorporated, a single value was

used. Climatology was used, in a limited sense, for the stability

profile.
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The HOOM is currently in use at the Naval Oceanographic

Office forecasting the 100 m position of the north wall of the Gulf

Stream and its rings. The system, known as GULFCAST or as the Navy

Operational Gulf Stream Model (NOGUFS) 1.0, provides a forecast once a

week in a rectangular domain situated between ca. 30 and 46 N and 50 and

72 W. The model has six vertical levels and 15 km grid spacing.

Due to the spatial extent of the GULFCAST domain, it is not

feasible to obtain in situ data alone to initialize the model. Instead,

"feature models", which are canonical, analytical 3-D structures of the

Gulf Stream and rings, are used to provide in situ fields for

initialization and the boundary condition updating at positions provided

by remote sensing, and mean stratification at mid-thermocline is derived

from Levitus climatology. This approach appears to work well in the

robust Gulf Stream where major features are coherently structured. The

process of producing a forecast takes a week and requires many steps

(Glenn et al., 1987):

(1) The locations of the Gulf Stream and rings are determined
from satellite (GEOSAT or AVHRR), AXBT's and the previous
forecast.

(2) Feature models are used to estimate the velocity fields for
QG initialization at the appropriate locations using width,
maximum velocity, and vertical shear parameters for the
Gulf Stream and radius, depth, and maximum swirl velocity
parameters for the rings.

(3) The OG model dynamically adjusts the features, interpolates
between the features, and evolves the full fields.

(4) A dedicated survey flight is flown, for example, to verify
the position of features not seen in imagery but carried
forward from the previous forecast by model dynamics and to
resolve major events (e.g., eddy-stream mergers, eddy
pinch-offs, and eddy-eddy interactions). Ca. 20 to 30
AXBT's are dropped. These in situ observations are used in
the final forecast.
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(5) Sensitivity analyses using smaller, higher resolution OG
models are conducted at inflow and outflow regions to
determine the exact positions of the Gulf Stream and rings
and the evolution of any Gulf Stream-ring interactions.
These determine the best and most probable initial and
boundary conditions, and

(6) The model is re-initialized and a one-week forecast is
made.

The domain includes the New England Seamounts which are

steep (0.15) and tall (order of 1000 m) enough to invalidate the OG

approximation. (However, Adamec (1988) used a three-level OG model to

study the southward deflection of the Gulf Stream over the New England

Seamounts). The seamounts are either removed, shortened and filtered, or

left untouched for short range forecasts. The latter is the technique

used operationally. Although wind data are readily available, no surface

forcing is incorporated because local atmospheric forcing is assumed to

have minimal influence in the dynamics of the overall Gulf Stream and

its eddies.

Based upon a limited number of research evaluations,

GULFCAST has scientifically "verified" consistently (Robinson et al.,

1987). However, a measure of accuracy, other than rms position error,

has not been developed and the verification was qualitative and visual

(i.e., compared with IR imagery). Generally, some difficulties in

forecasting are attributed to misinterpreting weak surface signatures

and persisting unobserved rings which may have changed position or

shape. Additionally, temperature extractions at isolated points have not

been accurate unless the properties for slope, Stream, and Sargasso Sea

water masses are manually "tuned".
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NORDA is currently evaluating GULFCAST sensitivity to data

inputs in a quantitative sense with focus on IR imagery, GEOSAT

altimetry, and XBT's (the in situ observations are used in an "all or

none" sense). Six case studies have been identified for analysis. This

evaluation uses the same GULFCAST process described above with an

appropriate operational restriction: there is no sensitivity analysis of

initial and boundary conditions (which requires additional resources and

an educated staff). In this manner, the model had an rms error in

forecasting the position of the Gulf Stream of ca. 50 km, and it did not

beat persistence. The main problems cited are: over-development of

meanders, phase problems at the outflow, and an inability to handle

ring-stream interactions (Martinek, 1989).

Although GULFCAST is manpower and resource intensive, it

provides an operationally useful product. Whether or not the HOOM has

similar operational value in less vigorous domains (e.g., the CCS) is

not known.

d. Other Uses of QG Models

Although restricted in physics, QG models have operational

roots in numerical weather forecasting (Charney et al. 1950). Compared

with a more complete primitive equation model, QG models have been

popular because generically they are simple, fast, and inexpensive to

run and their applicability to mid-ocean mesoscale flow regimes has been

demonstrated in other research ocean modeling studies. Most of the work

with QG models, other than the HOOM, has been with a modest number of

layers or levels in large domains, with grid spacing of ca. 20 km. For

example:
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(1) The Holland (1978) model is a two-layer model which has
been used by Malanotte-Rizzoli et al. (1984) to investigate
the effects of model parameterization and by Vallis et al.
(1987) to study the effects of climatological wind stress
in the Pacific. The latter effort employed the Holland
model in a coarser resolution (one degree), non-eddy
resolving model of the North Pacific basin from 15 N to 45
N latitude and from the coast to 140 W longitude; bottom
topography was included.

(2) Ikeda et al. (1984) and Ikeda et al. (1989) used a two-
layer OG model to analyze baroclinic instability cf the
California Undercurrent off Washington and the Norwegian
Coastal Current off Norway, respectively. Both domains were
similar in size to the OPTOMA domain and the latter study
included the shallow, ca. 300 m, bottom topography.

(3) Cummins (1989) and Cummins and Myzak (1988) used a three
level, climatological wind-driven version to study the
effects of wind stress curl in a large (1000 by 3000 km)
Northeast Pacific domain. An artificial frictional boundary
was used to isolate the interior. The model reproduced many
of the expected features, but the lack of in situ data
precluded quantitative verification.

4. Evaluation of Sampling Schemes

Robinson and Haidvogel (1980), in their barotropic simulation,

also found that, with initial vorticity set to zero and accurate

boundary conditions, the model recreated the flow in the domain after a

few days. A subsampling of boundary observations by Robinson and Tu

(1981), for insertion into the same barotropic model, showed that model

errors increased as sampling resolution decreased. Still, their worst-

case error, associated with a grid of ca. 62 km in the interior and ca.

16 km on the boundary, was an "acceptable" 15%. Also, persistence

boundary conditions adversely affected model accuracy, but the error

dropped immediately when the boundaries were updated.
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Oceanic sampling strategies have been generally discussed in

Ocean Prediction Experiments (OPE) and Observing System Simulation

Experiments (OSSE). For example, other than the NORDA GULFCAST work in

progress, Batteen et al. (1988a) used simulated observations, subsampled

from a PE model, in an OA model to assess sampling strategies in the

OPTOMA domain. The resulting maps were verified against the PE model

field. They determined that a limited number of observations are best

utilized in a regular grid pattern and that the spatial sensitivity was

much more important that the temporal sensitivity. However, their data

were perfect (i.e., noise-free), complete (i.e., no failures), and the

data were used in the OA model only (i.e., no dynamics involved).

C. REMOTE SENSING FROM SATELLITES

1. Introduction

Among the presently available space-based remote sensing systems

are the Advanced Very High Resolution Radiometer (AVHRR) and (until

January 1990) the satellite altimeter. AVHRR, used since the late 1970's

and currently on the NOAA-series polar orbiting satellites, provides

images of the ocean surface at various wavelengths including visual,

near infrared, and far infrared wavelengths. The altimeter was an active

microwave sensor which provided an independent source of all-weather

ocean, wind, and geoid measurements. It had been used by oceanographers

since late 1986 and data from GEOSAT are still being processed.

High resolution infrared (IR) images of the ocean surface

covering large areas of ocean can be obtained rapidly. Accurate sea

surface temperatures, corrected for atmospheric water vapor and skin
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versus bulk temperature differences, can be derived from a single,

cloud-free multi-channel image. Under favorable conditions, complex

circulation patterns can be inferred from a sequence of images.

Altimetry data, consisting of specular radar measurements along a

narrow orbital subpath, are used to derive several kinds of geophysical

information such as ocean currents, wind speed, and significant wave

height. Of importance to mesoscale observations is the distance from the

satellite to the sea surface; however, there are many error sources in

the process of correcting the raw signal to a usable sea surface height

(SSH).

2. Vertical Coherence of Oceanic Fields

A major limitation of both AVHRR and altimetry is their inability

to directly detect subsurface fields. Both data sets consist of a

single variable, SST or SSH; but, these variables can be "enhanced and

extended" by in sltu observations, time series of surface fields, and

appropriate ocean models. For studies of subsurface processes, satellite

data are useful only if the surface signal contains information about

the subsurface signal. This holds in many, but not all, cases of

mesoscale variablilty. In this manner, remote sensing can quantitatively

contribute to a 4-dimensional description of the ocean fields (Robinson

and Leslie, 1985, and Rienecker et al., 1985).

Bernstein et al. (1977) stated that satellites could provide

extensive information on thE horizontal gradient of temperature through

the upper 100 meters. Evidence throughout the years has tempered such

optimism. An "estimation" of the subsurface thermal structure using the

surface temperature pattern may be possible in some areas, at certain
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times, and under certain conditions; i.e., some observations show high

correlation between surface and subsurface structure particluarly when

the dynamics in the mixed layer have not masked the interior mesoscale

variability.

There are many examples in the Pacific of low correlations. In

the subtropics, Dorman and Saur (1978) found two uncorrelated levels,

one above 60 to 100 m and one below, with contrasting statistical

properties and anomaly patterns. They suggested that atmospheric

synoptic processes were important in the upper level while ocean

mesoscale processes are important at depth. Emery and Mysak (1980) noted

that only one-third of eddies in the CCS off Vancouver had surface

expressions. Broenkow (1982) observed a tilt in the axis of a CCS eddy

resulting in a 35 km displacement of the center at 1000 m from the

surface position. Likewise, Roden (1984) noted that subsurface

temperature fronts in the Pacific were often displaced great distances

from their surface expressions. Also, storms have been noted to decouple

or distort the surface signature from the subsurface vcrtcx (Simpson et

al., 1986).

In the OPTOMA domain, in August 1982, Rienecker et al. (1985)

found a seasonal correlation between the surface and 30 m. At times the

SST pattern appeared to be determined by summertime heating, upwelling

and advection by the mesoscale flow field with offshore displacement

caused by local atmospheric forcing. Surface temperature and dynamic

topography were not correlated. Rienecker et al. (1987) correlated

objectively analyzed fields of SST and T50 for most of the OPTOMA
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surveys. The average correlation was ca. 0.8; however, there were

significant periods of decorrelation throughout the surveys.

High correlations between a surface signal and a field at depth

have been noted by others. In the Northern Pacific subtropical front

during winter, Van Woert (1982) found that temperature and dynamic

topography at 800 m were highly correlated with surface values. In the

California coastal upwelling zone near Point Sur, Breaker (1983) noted

high correlations between the surface and thermocline temperatures.

Using CalCOFI historical data and mean satellite-derived SST,

Fiedler (1988) made point-to-point calculations of vertical coherence,

mostly south of Point Conception. Off Central California, high vertical

coherence at a depth greater than the MLD was most likely in the summer

when the mixed layer was shallow and the water column was strongly

stratified. Although no problems were mentioned, this was also the time

when surface masking would be most apparent.

These studies have inadequately addressed the necessary

conditions which allow a correlation between a surface and subsurface

signal (e.g., no diurnal layer, no surface masking, and moderate winds)

and the time-space scales of the correlation.

3. Summary of IR Imagery

a. General

The AVHRR imager is carried on the NOAA series of polar-

orbiting, sun-synchronous satellites. These satellites (NOAA 6,7,8 and

9) are in ca. 850 km orbits which provide 2500 km swath coverage twice

daily with five channels (0.58- 0.68, 0.725-1.10, 3.55-3.93, 10.3-11.3,

and 11.5-12.5 micions).
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The AVHRR has many advantages as a tool for observing SST:

good spatial resolution (1.1 km at nadir), good temperature resolution

(Noise Equivalent Differential Temperature, NEDT, ca. 0.10 C in most

channels), broad geographic range, and coverage about twice a day. Its

major limitations are: inability to view through clouds, a precessing

orbit which occasionally prevents viewing a particular area repeatedly,

changing atmospheric moisture and aerosol effects, and the fact that it

measures a single surface variable which is subject to change through a

myriad of mechanisms and processes (Appendix A).

b. AVHRR Imagery Applications

Some researchers simply correct satellite measurements to in

situ observations. For example, Vastano and Bernstein (1984) corrected

AVHRR measurements to coincide with XBT measurements in the vicinity of

the Oyashio Front. Most measurements agreed after the correction wth

exceptions attributed to satellite-ship asynopticity and position

discrepancies. However, they had little data to work with, only 16 data

pairs even with a large temporal and spatial window (24 hours and 25

km).

Generally, the following multi-channel correction was used

in the OPTOMA domain:

SST45=1.0346*T4+2.5779*(T4-T5)-0.61+1.2*(SEC( )-1.0)

(equation 2.10),
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where SST45 is SST based upon channel 4 and 5, T4 is channel 4

brightness temperature, T5 is channel 5 brightness temperature, and + is

the zenith angle (Bernstein, personal communication, 1988). A comparison

of mean differences and rms scatter between in situ and AVHRR data using

various algorithms verified the accuracy of equation 2.10; however, in

one particular case, a constant correction to channel 4 data was more

accurate (Rienecker et al., 1985). To check for cloud-contamination, the

data were flagged if a in a 5X5 array of channel 4 data was greater than

an arbitrary threshold of 0.30 C (although strong SST fronts were also

be flagged).

Surface motion vector analysis is an application of a

meteorological technique, cloud motion analysis, to ocean purposes

(Leese et al. 1971). Simply put, the technique is to track the position

of the same feature through a series of different images and calculate

the displacement, which can be done manually or by automated techniques

(Emery et al. 1986). When used successfully, the result is a near-

synoptic estimate of surface velocities over a large area.

The features tracked are small enough to be located

precisely, yet they must be large enough to maintain their integrity

from one image to the other, ca. 10 km in length. The types of thermal

features most easily tracked are: cold or warm intrusions, isolated hot

or cold spots, seaward extremes of upwelling, and wave pattern

"meanders" along sharp fronts.
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The motion between the two positions is assumed to be

linear, irrotational, and the result of advection. Errors arise from

deviation from a linear track due to distortion of the feature,

curvilinear motion, rotation, and non-advective processes (e.g., wave

propagation), inaccurate registration of the images, and tracking error.

The tracks cross SST isotherms, which appears contrary to geostrophy,

but the features are typically shallow tracers with no vertical

structure. In shallow areas, wind mixing and tides distort the images

and near the coast, upwelling is not well-tracked. Surface masking

caused by diurnal heating under clear sky and low wind conditions may

also be a problem.

In the earliest applications, surface stream functions and

dynamic heights were derived in the Oyashio and Kuroshio currents from

surface vectors (Vastano and Borders, 1984; Vastalno and Bernstein,

1985). A 10 to 20 km thermal feature was tracked as it moved around a

large cyclonic eddy in the CCS, but there were no in situ measurements

for comparison (Koblinsky et al., 1984). One automated technique matches

the displacement from one image to the area of highest correlation,

within a small window, in the next image (Emery et al., 1987). Off the

Straits of Juan de Fuca, the satellite measured velocities compared well

to geostrophic velocities and other types of in situ observations for

comparison. A total of 27 comparisons between surface drifters, drogued

at 2 m, and satellite vectors were made off Southern California
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(Svejkovsky, 1988). The rms difference was 5.9 cm/s with the largest

errors near shear zones where the satellite measurements and drifters

were not colocated and the separation was enough to put the two in

different velocity regions. These works were typified by comparisons to

a very limited number of point-to-point, in situ observations even with

large spatial and temporal windows of comparison.

4. Summary of Satellite AlLinaetry

a. General

GEOSAT, the satellite altimeter platform, was launched in

February 1985 with two goals: the precise measurement of the geoid on a

fine mesh, a classified mission, and ocean measurement from an Exact

Repeat Mission (ERM). The latter is a 17-day repeat cycle with a track

spacing of ca. 135 km at the equator and an orbital period of ca. 100

minutes. GEOSAT completed its first mission in September 1986 and

started the ERM in October 1986. The system was declared to be

operalloidl in the ERM on 8 November 1986.

Many corrections must be made and large sources of error

must be removed before a usable value of sea surface height (SSH) is

available (Appendix A). Fortunately, though the competing signals and

errors are large compared with the mesoscale signal, they are of

different magnitude and have different horizontal scales. This allows

processing techniques (e.g., curve fitting, smoothing, and filtering) to

separate signal from noise (Calman, 1987). The error budget results in

an error of ca. 2 cm over 100 km, about the same as that for dynamic

height computed from observed vertical profiles of temperature and
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salinity. Difficulties in using altimetry data are: temporal aliasing

due to the 17-day repeat, spatial aliasing due to the ca. 100 km track

spacing, gaps in the data, an incomplete understanding of the effects of

moisture in the atmosphere upon the radar travel time, and the loss of

large scale oceanic signals due to geoid and orbit processing

techniques.

b. GEOSAT Altimetry Applications

Satellite altimetry bypasses many difficulties of in situ

measurement of the velocity field. It is rapid, global, and direct

(i.e., there is no reference level assumption). Surface geostrophic

currents are related to sea surface slope through the geostrophic

balance where the crosstrack surface current component is proportional

to along-track slope. In mid-latitudes, a slope of 1 meter over 100 km

results in a one meter per second current. To ascertain velocities

within 10% on these scales, the rms error associated with the height

measurements must be less than 10 cm. The surface velocity is given by:

V = g/f (dt/dx) (equation 2.11),

where V is the absolute cross-track surface geostrophic current, g is

gravity, f is the Coriolis parameter, and df/dx is the alongtrack

derivative of the vertical displacement of the sea surface.

In the CCS, where the Pacific geoid is not well known (it is

classified) and descending tracks are noisy and gappy, there have been

few studies using altimetry data. Altimetric topography from an
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ascending orbit which passes through the OPTOMA domain close to the

coast was compared to ocean topography obtained from 15 CTD stations

with an along-orbit spacing of 15 km (Kosro et al., 1988). The dynamic

topography referenced to 500 meters was computed and demeaned. The

altimeter heights were corrected for the tides, the FNOC troposphere,

the ionosphere, the inverse barometric effect, the geoid (obtained by

averaging the first 16 repeat cycles) and the orbit error (modeled as a

bias and tilt over the latitude band 34 N to 45 N). This process also

eliminated mean currents. The heights were interpolated in space and

time to the CTD stations and demeaned.

Both data sets depicted a 20 cm perturbation over 50 km due

to a strong offshore filament clearly seen in satellite IR imagery. The

sea surface topography corresponded to an offshore speed of ca. 50 cm/s

over 30 km. The rms differences between the GEOSAT and calculated data

sets are 3.2 cm in May 1987 and 4.1 cm in June 1987.

Based on rms difference between altimetric sea level and a

one-year mean, four areas of maximum variability along the West Coast

were identified, including one within the OPTOMA domain off San

Francisco and Cape Mendocino (White and Tai, 1988). A spectral analysis

showed a dominant annual cycle with a maximum in the winter, contrary to

in situ observations of a maximum rms residual from May to August and a

minimum from fall to winter (Rienecker and Mooers, 1988 and Flament et

al., 1988).
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D. SUMMARY OF BACKGROUND LITERATURE REVIEW

The CCS, off Central California, is a complex system of five

currents: the California Current, the California Undercurrent, the

Davidson Current, the Southern California Current, and a coastal

upwelling jet. The system is further complicated by mesoscale

variability, coastal upwelling, and transitions during spring and fall.

The OPTOMA domain, a 225 by 550 rectangle ca. 100 km offshore, is an

area of year-round mesoscale activity. Mesoscale activity (e.g., eddies

with length scales of 100 to 200 km, time scales of 100 days, and

flows of 20 to 50 cm/s) has been observed and well-described by CalCOFI,

OPTOMA, and other independent surveys using in situ measurements and

data from remotely sensed sources (e.g., IR imagery and satellite

altimetry). Baroclinic instability, wind stress curl, and bottom

topography are important in forcing mesoscale activity and in

determining preferred location.

IR imagery, when available, vividly depicts mesoscale activity, both

in single images and in surface motion analyses from a pair of images;

however, clouds often prohibit the viewing of the sea surface and

masking of features sometimes occurs. With careful processing and

reduction of the error budget, satellite altimetry also depicts

mesoscale activity; however, the 17-day ERM orbits are widely spaced and

most descending orbits have many spatial gaps.

The Ocean Descriptive-Predictive System (ODPS), made up in part by

OA and QG models, has been used in the OPTOMA domain to map and

"nowcast" or "hindcast" fields. A sensitivity analysis on data

requirements for the models has not been done previous to this study.
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III. DATA ACQUISITION, PROCESSING, AND ANALYSIS

A. INTRODUCTION

This study incorporated data from many sources: in situ data from

aircraft, ship and buoys (six moored and one drifting); satellite data

(AVHRR and GEOSAT); coastal data (six sea level sites and one SST site);

modeled fields (NOGAPS winds); and climatology (the Navy standard and

CalCOFI). OPTOMA 23 was unique in two respects: this was the first

OPTOMA boundary condition updating experiment using aircraft; and, this

was the first OPTOMA effort to integrate concurrent data sources in a

comprehensive oceanographic, meteorological and acoustical study of the

CCS. The time frame of the initial study, a two-week period in November

1986, was expanded to a six-month review of coastal sea levels, Granite

Canyon SST, winds, and data from the National Data Buoy Center (NDBC)

buoys off Central California tc describe the Fall Transition of the CCS

(Figure 3.1).

The key component of the OPTOMA 23 data acquisition was the

dedicated use of the Project BIRDSEYE RP-3D aircraft. The aircraft, part

of NAVOCEANO Project OS-06-87, flew six flights between 9 and 19

November 1987 (Julian dates 86313 and 86323); five of these were surveys

of the OPTOMA domain, and one provided data within 50 km of Monterey Bay

which linked the offshore mesoscale fields with coastal data. During the

last two flights, the R/V POINT SUR made observations at sea in the

CENCAL domain.
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B. ANALYSIS OF IN SITU DATA

1. General

The Project BIRDSEYE aircraft was used for the survey; it is a

modified P-3A, equipped with a precision radiometric thermistor (PRT-5)

which continuously recorded SST within 0.10 C (i.e., after correcting

for system drift), air and dewpoint sensors, and airborne expendable

bathythermograph (AXBT) data acquisition and processing equipment.

Position was determined by use of two inertial navigation systems

updated hourly with TACAN, a radio navigation system. The cumulative

navigation error upon landing was within 2.0 km for all flights.

OPTOMA 23P1 was the first event, a survey on 9 November 1986

(Julian date 86313) of the NOCAL domain. OPTOMA 23P2 was the second

event, a survey on 10 November of the CENCAL domain. An acoustics

flight, OPTOMA 23P3, in support of a study by the Environmental Acoustic

Research Group (EARG) was flown on 13 November within 50 km 3f Monterey

Bay (this provided data for the Fall Transition analysis). The next

OPTOMA flight, OPTOMA 23P4, was a boundary condition update flight

around the perimeter of the NOCAL and CENCAL domains on 16 November

(Julian date 86320). The last two flights, OPTOMA 23P5 and 23P6, flown

on 17 and 19 November, respectively (Julian dates 86321 and 86323), were

repeats of the NOCAL track and the CENCAL track. These were originally

scheduled to take place a week after the boundary condition update

flight, but operational commitments for the aircraft and the offshore

Pacific Missile Test Center range, which covers the CENCAL domain forced

an early end to the mission. Weather was not a factor in
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mission scheduling. Each survey took four-to-five hours to complete not

including transit time (Figure 3.2).

Buoy spacing was ca. 30 km. Many factors influenced the final

survey pattern. The RP-3D can carry ca. 100 AXBT's on an eight hour

mission. The typical flight profile on station was a speed of 240 knots

at an altitude of 1000 feet. This altitude optimized radio reception

range (ca. 50 nm at 1000 feet), weather (the stratus layer was typically

higher than 1000 feet and the ocean surface remained in view), and fuel

conservation. From this altitude, an AXBT takes ca. one minute for fall

and light-off time. Shallow AXBT's (300 m) then transmit for 200 s, deep

AXBT's (750 m), for 500 s. AXBT's were available in three radio

channels; with three receivers aboard the aircraft and all equipment

operating properly, a station spacing of 10 to 15 km was possible in

some areas (e.g., near cool filaments).

Approximately 508 AXBT's were dropped in support of the OPTOMA

flights (100 per flight) with a relatively high failure rate of 20% due

to aged probes. The drop positions were spaced every 30 km for the NOCAL

and CENCAL surveyz and every 40 km for the boundary condition update

flight (Figure 3.3). There were some AXBT's left for reseeding of buoys

that failed in "critical" areas (e.g., near the cool filaments). (The

AXBT data have been forwarded to the National Oceanographic Data Center

by Johnson et al., 1988).

The AXBT signals were recorded on analog tape and digitized

onboard the aircraft by the NAVOCEANO data acquisition system and by the

Airborne Digital Data Acquisition System (ADDAS), the NPS system (Colton

et al., 1984). Temperature-depth profiles were made in flight as the
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Figure 3.2 Flight tracks for OPTOMA 23. NOCAL and CENCAL surveys were
flown twice (on 9 and 17 November 1986 and on 10 and 19 November 1986,
respectively); the boundary condition update survey was flown once, on
16 November 1986.
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signal was digitized. Data from the PRT-5 (upward scanning and sea

scanning sensors), the air and dewpoint temperature were recorded

continuously on strip charts. The PRT-5 provided an independent

measurement of SST (Appendix B).

The R/V POINT SUR made CTD and XBT profiles in the CENCAL domain

13 to 18 November. The ship survey focused on a cool filament identified

in satellite imagery and in the data from the first two survey flights.

A drifting buoy was released from the ship north of the cool filament on

18 November (Appendix C).

2. Data Processing

The general OPTOMA procedure for creation of dynamic topography

fields is summarized:

(1) the domain is surveyed using ship or aircraft with XBT's,
AXBT's, CTD's and other equipment when available (e.g.,
PRT-5),

(2) AXBT data are digitized at 0.1 s intervals (or about 15 cm
interval in the vertical), edited with a spike removal
routine, and smoothed with a 3-point filter,

(3) a salinity profile for each XBT or AXBT is inferred from a
mean T-S relationship derived from CTD observations (or
from climatology if necessary),

(4) fields are extended to depth by adding linear tails, or by
adding a mean correction to account for dynamic topography
between levels, and

(5) dynamic heights are calculated.

OPTOMA 23 used a variety of AXBT's (5 different lots from 3

manufacturers) each with presumably subtle differences in temperature-

frequency response and drop rate. Although there are improved algorithms

for some AXBT's (e.g., Boyd, 1986), the standard Navy equation was used
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to convert XBT and AXBT time of fall to depth. The Navy specifications

for depth accuracy is 5%. With AXBT's, frequency is converted to

temperature using the Sippican (Ghent) temperature equation.

To calculate dynamic heights from AXBT profiles, a corresponding

salinity profile is needed and can be estimated (the ratio of the number

of CTD's to XBT's is ca. 1 to 10 for the OPTOMA cruises and airborne

surveys acquire no salinity data). In previous OPTOMA experiments, a

mean T-S relationship derived from concurrent CTD casts had been used to

determine salinity at the XBT sites. This is an acceptable procedure

when the T-S relationship is stable (e.g., no major variations in the

T-S relationship due to variations in water mass, inversions, heating,

or river run-off) and it has been used in the OPTOMA domain (Rienecker

et al., 1985).

Two mean T-S relationships were used to estimate salinity from

the temperature files recorded by the AXBT's. South of 37 N, the mean

T-S relationship from ca. 40 concurrent CTD measurements (away from the

continental shelf) was used; north of 37 N, a mean T-S relationship from

25 CTD measurements made during OPTOMA 13 in the NOCAL domain in

November 1984 was used.

Both T-S relationships were compared with data from the

California Cooperative Oceanic Fisheries Investigations (CalCOFI). Other

than the OPTOMA surveys, the CalCOFI data set is the most comprehensive

data set in the CCS; however, the CalCOFI surveys have been infrequent

north of San Francisco and have had alongshore spacing of 195 km in
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recent years (Chelton, 1982). The OPTOMA 23 T-S relationships were

similar to the mean CalCOFI T-S relationship (Figure 3.4).

The CalCOFI T-S relationship, plus and minus the standard

deviations, roughly bracketed the OPTOMA T-S relationships. To ensure

that differences in T-S relationships did not quantitatively affect

results, the T-S relationship extremes were used, with observed

temperatures, to calculate two dynamic topography sets. The two

resulting OA fields of SDH correlated perfectly and had a RMSE of less

than 3 dyn cm.

3. Extension of Shallow Fields to Depth

A linear extension was used to extend AXBT profiles shallower

than 450 m but deeper than 300 m. The addition of a linear tail makes no

assumptions about the relationship between deep and shallow fields. The

technique used the vertical temperature change calculated over the last

25 m of the profile in a manner similar to that used by the OTIS

software at FLENUMOCEANCEN. The estimate for each profile was compared

with an estimate derived by linear interpolation between the deepest

temperature value in the profile and GDEM climatology at 500 m. This

extension technique was tested against the 25 deep AXBT's dropped during

23P4; the rms difference between the estimated and the actual recorded

temperature at 450 m was 0.5* C.

Another method used to compare dynamic topography referenced to

300 m and that referenced tr 450 m was the addition of the average

difference between the two levels. Using the deep AXBT's from survey
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lines are the CalCOFI standard deviations from line 70.
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23P4 (ca. 25 AXBT's), this was ca. 16.7 dyn cm. The mean difference

between 300 and 450 m, over the entire OPTOMA ensemble, is 19 dyn cm

with a a of 1 dyn cm (Rienecker et al., 1987).

4. Objective Analysis

a. Introduction

Objective analyses were conducted for a variety of fields:

SST (both from XBT and PRT-5 inputs), MLD, the temperature at 50 m

(T50), the depth of the thermocline (80 C isotherm, Z8 and 10' C

isotherm, Z10) and dynamic height (0, 50, 150, and 400 m referenced to

300 or 450 m).

b. Sensitivity Analysis

Prior to running the OA for research purposes, a

sensitivity analysis was conducted on the spatial and temporal windows,

and on the maximum number of data points influencing each gridpoint to

determine the optimal values for the analyses. (The coefficients of the

fitted correlation were determined for the data set and fixed).

As a test of the filtering effects, sine waves sampled on a

8.33 km grid with wavelengths from 10 to 200 km were filtered using a

second order Shapiro filter applied once (the standard filter used by

Robinson et al., 1980). As expected, the shorter waves were affected the

most (the reduction averaged ca. 95% for a 10 km wave); little effect

was noted at wavelengths of 75 km and above (ca. 2% for a 75 km wave).

(This routine was subjected to a sensitivity test with a signal

comprised of a plane, random noise, and a sine wave. As expected with

only a plane input, the detrend routine fit the input plane perfectly;

when the amplitudes of the noise and sine wave components were
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increased, the estimates of the input plane were less accurate and the

goodness of fit decreased.)

c. Autocorrelation

The autocorrelation functions were calculated for survey

ensembles of each field and for each field using data from individual

surveys (e.g., SST from all of OPTOMA 23 would make up the ensemble, SST

from OPTOMA 23P1 would be an individual survey). For the most part,

ensemble values were used in the OA; these values were similar to ihose

calculated from the individual surveys, but, having a larger number of

observations, they were more statistically reliable (Figure 3.5).

In fitting the autocorrelation functional form to the data

(equation 2.2), typical values for the zero crossing, a, are between 50

and 100 km; for the radius of curvature, b, between 75 and 100 km. The

95% confidence interval can be estimated by assuming white noise and a

normal distribution using the following:

CI = Cb ± 1.96/4NBb  (equation 3.1),

where CI is the 95% confidence interval, Cb is the correlation in the

bin, NBb is the number of elements in the bin, and b is the respective

bin number. The noise at zero lag, determined by extrapolating from the

first three range bins, ranged from 0.0 to 0.13, and the fitted

functions generally fell within the 95% confidence limits. For all

fields, the plane removed by the detrending routine did not account for

much of the variance in the signal (Table 1).
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TABLE 1. AUTOCORRELATION RESULTS FOR DATA ENSEMBLES OPTOMA 23.

Data #Obs Range Mean Std Goodness Estimate Zero
Set (min) Dev of fit of noise X-ing

(max) (plane) (zero lag) (km)

SDH 411 48.0 55.0 6.2 0.30 0.02 99
(dyn cm) 66.0

SST(XBT) 411 10.8 14.5 0.9 0.46 0.02 99
(0 C) 16.8

SST(PRT) 943 10.2 13.5 0.9 0.07 0.08 146
(0 C) 16.3

MLD 411 00.0 30.4 15.2 0.07 0.13 95
(i) 84.0

Zl0 411 10.0 83.0 19.0 0.14 0.00 104
(i) 152.0

DIFF 327 -2.2 -0.74 0.5 0.01 0.00 80
(PRT-AXBT) +0.4
(0 C)

GEOSAT 377 -13.8 2.6 0.6 0.25 0.03 108
Altimetry +21.3
(cm)
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The effects of slightly different parameters are expected to

be negligible with dense data sets. To confirm this, an experiment was

conducted using parameters from SST (derived from PRT-5 measurements)

during OPTOMA 23. The full ensemble consisted of over 900 measurements

taken over 10 days; the individual survey consisted of ca. 150

measurements taken during the first two days. Two OA fields were

generated using the same dense (153 point) data input set in the same

domain with parameters from either the ensemble or individual survey.

Although the autocorrelations for the two data sets are different (the

zero crossing for the ensemble is 145 km, and for the individual survey

it is 95 km), the two fields correlated perfectly and had an rms

difference of 0.030 C, :hich is much less than the sensor noise level;

similar results were obtained using a sparse data set of 20 points.

These two fields also correlated perfectly, but had a slightly larger

rms difference, 0.040 C. These results should not be expected for all

data sets, particularly for those cases when parameters for individual

surveys vary and the ensemble values are a non-representative average.

d. Objective Analysis

For each survey day, synoptic objective analyses were run on

each field. Additionally, daily time series for SST (AXBT) and Z8 were

run from day 86313 to 86323 using time windows of two, three, or seven

days, depending upon the temporal gap in data coverage. In these

asynoptic cases, a westward propagation of 5 km/day. appropriate for

Rossby wave propagation and observed in the OPTOMA 23 data set, was used

to propagate the observations westward.
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A 12 by 26-grid rectangle with 20 km spacing was used to

incorporate both the NOCAL and CENCAL domains; some finer scale grids,

8.3 and 12.0 km, were used to analyze the transition off Monterey Bay.

The maximum number of observations allowed to influence each grid point

was seven; it was noted that values less than five resulted in a

significantly noisier field and values higher than seven required more

computer time with little difference in the output.

A spatial radius of influence of 75 km was chosen because

the error field in the analyses was minimized when the spatial radius of

influence was less than the zero crossing, as determined by the

autocorrelation calculation, but larger than the station spacing.

The internal Rossby radius, X, a ratio of baroclinic phase

speed to the Coriolis parameter, C/fo, is fundamental to the length

scale of mesoscale features. Emery et al. (1984) averaged data in five-

degree squares in the North Pacific and calculated X seasonally; off

Central California, X was ca. 28 km with little annual change (on a

smaller scale in the OPTOMA domain, Rienecker et al. (1985) and Robinson

et al. (1986) calculated X to be ca. 25 km). The radius of influence is

about 3X.

Although there were spatial gaps in data coverage, the

correlation statistics and sampling coverage produced objective analyses

with low error fields (Figure 3.6). All analyses in the time series

ensembles between the second and third surveys (10 and 16 November) had

error fields with larger values due to the absence of data.
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5. Evaluation of Model Output

OA fields are compared against climatology, a persisted field,

and a verification field in order to quantify changes and to evaluate

model accuracy. All OA fields have been mapped in a consistent manner.

The evaluation techniques are field-to-field comparisons and start with

a difference field:

D = P - 0 (equation 3.2)

where, D is the difference between the model predicted field, P, and the

observed field, 0. All errors are assumed to be in P.

The Root Mean Square Error, RMSE, is:

N 2 N 1/2
RMSE E w. d 2) /l w. 1/ (equation 3.3)

where, j is the position, and w. is a weight factor to adjust for
J

varying grid size, if required.

RMSE decomposes into two parts, Root Mean Square Error systematic

(RMSE s), which gives an indication of linear bias or the similarity in

pattern recognition, and Root Mean Square Error unsystematic (RMSE U),

which gives an indication of precision:
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2 2 2RMSE RMSE s + RMSE (equation 3.4)s u

and

N A 2 N
RMSES [ E E w. IPj- 0. I E 1 w. /j=1 3 J j-1 3

N A 2 N
RMSEu [E w IP- PI Ej~ W

A
where P. is the ]east squares estimator of P.. RMSEU is the best

measurement in determining which prediction is more accurate since it

can be interpreted as a measure of a model's potential accuracy with

respect to estimating observed values (Wilmott et al., 1985).

Pattern correlation (Corr) is another index of accuracy; it is

used to estimate how closely the pattern, or structure, in one field

resembles that in another:

Corr = _(P-P) (0-6) (equation 3.5),

N 2 a 2
p 0

where P and 0 are the values of field one and two at the gripoint; P

and 0 are the field averages; N is the number of points; and, a are the

variances. A 60% correlation is the lower limit of useful skill

recognized in the meteorological community (Rosmond, 1989).
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Finally, a qualitative assessment of a model's ability to

represent mesoscale features, by an experienced analyst, is important. A

single index of value can give misleading indications of model

performance, particularly near mesoscale features where a slight error

in forecasting the position of a feature may lead to large RMS errors.

6. Inverse Distance OA

For a comparison to the standard ODPS OA scheme, another

technique which estimates the value of the field at the grid by

weighting the neighboring observations with the inverse of the distance

between the gridpoint and the observation was encoded from Davis (1973).

The final value is:

Yj = (E (Yi/Dij))/(E i/Dij) (equation 3.6),

where Yj is the estimated value at the gridpoint j, Yi is the observed

value at position i, and Dij is the distance between gridpoint and

observation.

Two comparisons were made, SST from PRT-5 measurements on day

86314 and the difference between PRT-5-derived SST and AXBT-derived SST

on the same day. Although the basic schemes for calculating the grid

values are markedly different, other parameters were kept constant in

order to facilitate the comparison (i.e., the domain, the grid, the

number of observations influencing each gridpoint, the phase speed used

to advect asynoptic observations, the filter, and most, important, the

input data field). Data were spaced approximately 1.5X.
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The SST OA field using the inverse distance method was compared

to the SST OA field using the Gandin method (Figure 3.7). The

correlation between the two is 1.0 and the rms difference is 0.090*

Similar results were obtained in the other comparison. It is apparent

that when the data are dense as in these two cases, the choice of OA

techniques is nnt critical (Appendix D).

The advantage of the inverse distance technique over the Gandin

method is speed of computation. The disadvantages are: there is no a

priori estimate of error, there are no statistics utilized as in the

Gandin method (thus, there is no statistical significance in the

resulting field) and, there are no physics utilized in the scheme (same

criticism of the Gandin technique).

C. WINDS, COASTAL, AND BUOY DATA

1. General

Oceanic conditions along the California coast were examined over

a six month period from 1 July 1986 to 31 December 1986; this period

more than covered the OPTOMA 23 survey (9 to 19 November 1986). Sea

level data from NOAA/NOS tide gauges at six coastal stations; SST, 10 m

winds, and sea level pressure data from nine National Data Buoy Center

(NDBC) moored buoys; SST data from Granite Canyon (40 km south of Point

Sur); Marine Boundary Layer (MBL) winds from the Fleet Numerical

Oceanography Center (FNOC); and, Bakun upwelling indices at feur

positions were analyzed to characterize the Fall Transition (Figure

3.8).
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upwelling index calculations.
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2. Wind Stress

Wind data were from three sources: aircraft observations at 1000

feet (spaced ca. 50 km), moored buoy data at 10 m, and the MBL winds at

19.5 m. The MBL winds were the only source of daily, globally gridded

(2.5 degree) data. The MBL data are a blend of wind data and six-hour

forecast data from the Navy Operational Global Atmospheric Weather

Prediction System (NOGAPS). The wind stress curl calculated from the MBL

grid underestimates the actual wind stress curl because of the large

grid spacing. Although measured at altitude, the aircraft winds provided

a consistency check on the MBL winds. The NDBC winds were used to check

the MBL analysis and they provided an estimate of the change in wind

stress along the coast.

Wind stress was used in the analysis of the 1986 Fall Transition,

and wind stress curl forces the surface layer of the 0G model through

Ekman pumping. Wind stress was computed from the 10 m wiaids using ihe

drag law:

a d 2 (equation 3.7)= air d 10

where T is the stress magnitude, p air is the density of air, Cd is the

drag coefficient from Smith (1988), and U1 0 is the wind speed at 10 m.

Stress from the MBL winds was computed in a similar manner using a drag

coefficient for 19.5 m. For the transition analysis, the 10 m winds were

decomposed into alongshore and cross-shore components using a counter-

clockwise rotation of 20 degrees.
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Smith (1988) provides an updated estimate of Cd which varies with

wind speed (increases with higher wind speed) and stability (decreases

as stability increases; vertical density gradients can add or remove

vertical turbulent kinetic energy) from 0.9 to 1.3 X 10- 3 . (Other

formulas, e.g., Large and Pond, 1981, have overestimated wind stress).

These coefficients are derived from data averaged over time periods less

than one hour and are intended for use with observations, not with long

period average values.

3. Bakun Upwelling Indices

Direct observations of upwelling velocities are not available and

indications of upwelling in SST are qualitative. As an alternative, the

offshore directed surface Ekman transport is used to define an index.

Bakun upwelling indices were computed by the NOAA/NMFS Pacific

Environmental Group. These indices describe offshore Ekman transport in

cubic meters per second per 100 m of shoreline; the larger the number,

the more transport offshore. Values along the coast at 3-degree

intervals were calculated from FNOC 6-hourly objectively analyzed

synoptic wind/pressure analyses (Bakun, 1973):

M = T/pf (equation 3.8)

where M is the index, p is density, and T is alongshore wind stress.

4. Granite Canyon SST

Granite Canyon is a coastal site 15 km south of Monterey (ca. 50

km north of NDBC buoy 46028 and 150 km southeast of NDBC buoy 46012)
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included in this analysis to provide a coastal "benchmark" for

comparison with SST measured offshore by the NDBC buoys. It is

representative of open ocean measurements; the site has excellent

exposure to the deep ocean with the continental shelf less than 10 km

wide. Bucket SST's are measured to the nearest 0.10 C at ca. 0800 local

daily; as such, there is the possibility of aliasing by the

predominately semi-diurnal tide (Breaker and Mooers, 1986). The 1986

annual SST range is ca. 3.50 C with a minimum in April/May due to

coastal upwelling and a maximum in September/October due to summer

heating. In the fall, the mean temperature drops from 13.00 C in early

October to 12 50 C in early November. With the fall transition, there is

a 0.50 C rise in the middle of November followed by a drop to 12.4' C in

early December.

5. Filtering

All of these data, except the MBL winds, Bakun Indices and the

Granite Canyon SST, were filtered using a Godin filter, which has a low

pass of 0.0 to 0.8 cpd (30 hours) and a half amplitude of 0.4 cpd (66

hours), to eliminate diurnal and semi-diurnal components of the raw

signal (Godin, 1972).

A two-week mean was computed and removed from the sea levels at

each sea level station. The sea level deviations were hydrostatically

corrected for atmospheric pressure:

SLadj = (SL(t)-SLm) - (SLP(t)-SLP m)X R (equation 3.9)

72



where SLadj is the atmospherically adjusted sea level deviation, SL(t)

is the filtered sea level, SL is the sea level mean at that station,

SLP(t) is the filtered sea level pressure, SLP is the sea level

pressure mean at the nearest NDBC buoy, and R is the hydrostatic ratio

of 1.0 cm depression in SL for each 1.005 mb increase in atmospheric

pressure.

D. CLIMATOLOGY

1. General

Climatological or historical data are required to: (1) provide a

T-S relationship, (2) benchmark model performance, and (3) to initialize

the OG model (by providing a vertical profile of the mean Brunt-Vaisala

frequency). CalCOFI data, OPTOMA 13 data, and GDEM climatology were

used.

2. Generalized Digital Environmental Model

The Generalized Digital Environmental Model (GDEM), the Navy

standard climatology, was initially developed to define homogeneous

sound speed provinces. It can provide, among other things, a "synthetic"

oceanographic station with temperature and salinity for any location

with minimal computer resource requirements and with adequate resolution

for acoustic modeling purposes. GDEM consists of monthly coefficients

for models of ocean temperature, salinity, and sound speed on a 30

minute grid. The coefficients are derived from fitting observations from

the Master Oceanographic Observation Data Set (MOODS) and other data
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sets held at the Naval Oceanographic Office, but not yet added to MOODS

(Davis et al., 1986). GDEM has not been used in the OPTOMA domain.

The basic functional form in the top 400 m is the squared

amplitude response of a Butterworth filter which describes the vertical

profile from the surface to the base of the seasonal thermocline and an

exponential tail which extends the model to 400 m:

(To-T4 ) [I1+(n 1 /A) 2BI (T0 - T4 )T(D) = _______ + T4  -

[I+(D/A) B I (n /A)?B  (nI/A)2P

(equation 3.10)

where, T(D) is the temperature at depth, D, A is the coefficient

describing the depth of the mid-thermocline, B is the coefficient

controlling the vertical derivative, n 1 is the depth of the seasonal

thermocline, T0 is the surface temperature, and T4 is the temperature at

the depth of the mid-thermocline. (Observed temperatures are

normalized.) This function is fit to historical temperature profiles

which have been quality controlled, edited, and binned, geographically

and seasonally.

The model is in three layers. The shallow top layer, to 400 m,

has temperature in three-month seasons (except for surface temperatures

which are monthly) and salinity in five-month bins. The "global" rms

error of fit is less than 0.50 and 0.1 ppt, respectively. At mid-depth,
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to 2000 m, the bins are six months for both temperature and salinity,

and in the deep layer, the bins are 12 months.

E. ANALYSIS OF REMOTELY SENSED DATA

1. AVHRR

a. General Processing

AVHRR data are used to update and verify the ODPS outputs by

filling in gaps between intensive 3-D samplings. This additional data

source iq used to provide MCSST fields, surface velocity fields obtained

from feature displacement in successive images, and guidance for the

selection of conventional data inputs.

The SST variations in the OPTOMA area cover about a 60 C

range and have maximum gradients of the order of 10 C/10 km. The minimum

wavelength which can be resolved using AVHRk imagery is an order of

magnitude smaller than X and the mesoscale features of interest are

about 50 to 100 km in size. Assuming that there is a discernable and

persistent surface expression, the features change intensity, advect,

and propagate slowly enough so that no details important to the

mesoscale field are lost with imagery available every 12 to 48 hours.

Pairs of useful images preferably 12 to 48 hours apart are

required to compute surface velocities using a NPS program called

OCEANTRAK. This program is based upon a meteorological cloud motion

vector analysis technique. An estimate of the error in rach approach is

of interest.

Satellite data were recorded at the Scripps Satellite Ocean

Facility (SSOF). From 1982 through 1985, NOAA-7 passes were routinely
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recorded for OPTOMA surveys; NOAA-6 and 8 were recorded only on special

occasions. NOAA-9 and NOAA-10 became operational in 1985 and 1986,

respectively. OPTOMA 23 images were obtained from the latter two

satellites.

Images of the OPTOMA domain from June and July 1985 (OPTOMA

5), May through November 1984 (OPTOMA 11, 12, 13, and 14), July 1985

(pre-OPTOMA 17), April (OPTOMA 20), July, August (OPTOMA 21 and 22), and

November 1986 (OPTOMA 23) were reviewed and graded on an arbitrary

usefulness scale of 1 to 10. Images with ratings of 8 and above were

considered to be excellent; 6 to 8, good but degraded by cloud cover; 4

to 6 usable only in composites. When possible, visual and IR images were

viewed side-by-side to help discern low level clouds from sea surface

features.

About 300 images (about onte-third of the total) were judged

to be good to excellent (Table 2). In contrast to the conclusion reached

by Fiedler et al. (1985), from his partial review of imagery available

during the OPTOMA surveys, it appears that adequate numbers of good

images are available as sources for data.

Weather was the most important factor degrading the

usefulness of the image. The area off Point Arena is under the regional

storm track in winter and low stratus or fog is prevalent in the summer.

Satellite precession, and the resulting movement of the field of view,

was another prohibitive factor. Every ten days or so, the OPTOMA domain

would be on the extreme boundary of or would completely fall out of the

field of view.
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TABLE 2. AVHRR IMAGERY AVAILABLE DURING SELECTED OPTOMA SURVEYS.

1983 JUN JUL AUG SEP

excellent 14 11 03 02
good 15 20 16 12
total 29 31 9 1-4

1984 MAY JUN JUL AUG SEP OCT NOV

excellent 19 09 20 27 20 06 01
good 06 12 20 10 12 08 10
total 25 T1 41 37 32 14 Ti

1985 JUL

excellent 02
good 10
total 12

1986 MAR APR JUN JUL AUG NOV

excellent 00 01 03 15 02 20
good 01 05 00 01 00 10
total 01 06 03 16 2 30
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b. Satellite Images During OPTOMA 23

The OPTOMA 23 images were first viewed on a Chromatics GKS

system at the Institute for Naval Oceanography (INO). Channel 2, the

visual channel recorded during the day, provided images which were

crucial in determining whether or not features near the coast identified

in IR channels were low stratus, fog, or sea surface. Images from

channel 3 had systematic noise in them, although NOAA-10 was less noisy

than NOAA-9. The best cloud free images were recorded on 10, 11, and 21

November, Julian dates 314, 315 and 325, respectively (Appendix E).

Usable, partially cloudy images were recorded on 9, 15, 16, 17, and 19

November, Julian dates 86313, 86319, 86320, 86321 and 86323,

respectively. The remaining images recorded on 8 and 20 November were

too cloudy (Table 3).

Twelve passes over the CCS during the period from 8 November

(Julian date 86312) through 21 November (Julian date 86325) were

recorded. During the day, channels 2,3,4, and 5 were copied; at night,

only the IR channels (3,4, and 5). The resulting 44 images were reduced

to 512 by 512 8-bit arrays centered on Point Reyes (38.5 N, 128.3 W).

The images were corrected for curvature and earth-located using two

landmarks to within ca. one km and sensor counts were converted to

relative temperatures at the receiving site.

c. Level-4 Processing

The usable images were further processed. These images were

screened for clouds and land contamination using threshold temperatures

for clouds and land obtained on the Chromatics system. The 512 by 512

arrays covered the OPTOMA domain north of 35 N. Each pixel was navigated
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TABLE 3. OPTOMA 23 IR IMAGERY

DATE JULIAN TIME NOAA CLOUD TIME OF
DATE (GMT) SAT COVER A/C SURVEY

07 Nov 86311
08 Nov 86312 2216 9 CLOUDY
09 Nov 86313 2206 9 PARTIAL 1800-2359 (P1)
10 Nov 86314 1623 10 CLEAR

2154 9 CLEAR 1900-0130 (P2)
11 Nov 86315 1203 9 CLEAR

2145 9 CLEAR
12 Nov 86316
13 Nov 86317
14 Nov 86318
15 Nov 86319 2242 9 PARTIAL
16 Nov 86320 1110 9 PARTIAL 1700-0200 (P3)
17 Nov 86321 2221 9 PARTIAL 2000-0130 (P4)
18 Nov 86322
19 Nov 86323 2159 9 PARTIAL
20 Nov 86324 1207 9 PARTIAL 2100-0200 (P5)
21 Nov 86325 1157 9 CLEAR
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to a latitude and longitude grid (estimated accuracy of 1.2 kw) and

channels 4 and 5 were screened for clouds and land mass (Table 4). Those

pixels within the OPTOMA domain, ca. 57% of the total, were used in

calculating absolute SST from a split-channel algorithm (equation 2.11).

The Interactive Digital Environmental Analysis (IDEA)

Laboratory at NPS was used to enhance the images and to perform surface

motion vector analysis using OCEANTRAK. The enhancement curve assigned

an 8-bit gray shade value of 0 to temperatures warmer than 180 C and a

value of 255 to temperatures colder than 90 C. Temperatures in between

were linearly interpolated. These values highlighted the oceanic

features in the OPTOMA domain.

The OCEANTRAK system produced nine sets of vectors ka total

of 220) from eight images. All of the images had numerous small-scale

features, ca. 10 km in diameter, suitable for tracking. The usable time

difference between images was from 6 to 48 hours. (Svejkovsky, 1988,

tracked somewhat larger features through a maximum of 36 hours time

difference off Southern California in the winter.) Six hours was the

minimum separation time between sequential images. Motion was hard to

discern except near filaments. Beyond 48 hours, the small scale features

became unrecognizable. Masking of parts of the domain by clouds was the

most prohibitive factor.

Qualitatively, there is good agreement between the

geostrophic fields and the satellite surface vector fields. Differences

are attributed to errors within the vector analysis approach (e.g., non-

linear flow, distortion of surface features, and operator error),

ageostrophic effects, and a different level of no motion than that
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TABLE 4. AVHRR TEMPERATURE STATISTICS

Image % Cloud or Land Range Mean Std Dev

Screened from (-C) T1--) TC)
Channel: From To
4 5

312 27 29 10.2 20.2 14.1 1.2

313 34 45 9.0 20.5 12.9 1.8

314A 9 9 8.4 19.9 13.7 1.3

314B 12 12 7.8 14.3 11.4 1.3

315N 12 11 6.9 15.7 13.3 1.3

315 34 34 8.2 23.1 13.2 1.5

319 36 39 7.7 20.8 13.5 1.7

320 44 55 7.5 15.5 12.9 1.4

321 32 33 9.3 21.0 14.1 1.4

323 14 18 9.2 22.1 13.6 1.7

324 71 72 8.9 13.7 11.4 1.0

325 17 18 9.2 15.9 13.6 1.1
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assumed in this analysis. The satellite vector fields ate apparently

repeatable.

An estimate of error includes navigation error-, operator

errors and non-translational errors. All errors have a different impact

depending upon the time difference between images. For the navigation

error, with the images registered to within one pixel, the minimum

discernable motion over a 48 hr period equates to advection of ca. one

cm/s; the same translation observed in images over a six hour period

equates to advection of ca. five cm/s. For operator error, the minimum

translation discernable for a 10 km diameter feature could result in a

five km displacement of the true position.

2. GEOSAT

GEOSAT data, provided by Dr Ziv Sirkes of the Institute for Naval

Oceanography bu, visiting at the Woods Hole Oceanographic Institution,

were originally acquired at the Applied Physics Laboratory (APL) at

Johns Hopkins University. APL created Geophysical Data Records with

time, latitude, longitude, altitude (ten measurements per second),

statistics, and flags. These records were available through the National

Enviror. ental Satellite Data and Infc-mation Service (NESDIS).

There are 244 ERM orbits world-wide, spaced ca. 164 km apart at

the equator. The "Bermuda Orbit" is designated AOOO. Six orbital sub-

tracks pass through the OPTOMA domain (Figure 3.9); two are ascending

orbits, which pass parallel to the coast, but perpendicular to the cool

filaments, A119 and A162; four are descending orbits which cross

offshore, D042, D085, D128, and D171. The first four 17-day repeat
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orbits are of interest. These were on 8 Nov 86 (the ERM was declared

stable and operational on this day), 25 Nov 86, 12 Dec 86, and 29 Dec 86

(Julian dates 86312, 86329, 86346, and 86363, respectively).

The data were processed with the colinear technique and two

corrections were applied by Dr Sirkes: the lorg term mean, based upon

the 46 repeat orbits then available, was removed from 30-degree arcs

through the domain, and tides were corrected using the Schwiderski tidal

model. Unfortunately, removal of the long term mean not only removes the

geoid, but also the steady and long-period ocean phenomena. No moisture

corrections were made. The final records con:.ined position (latitude

and longitude) and sea surface height (SSH) measurements every second

(ca. 7 km alongtrack spacing).

Autocorrelations were calculated for each 17-day orbit ensemble.

The zero crossing for the autocorrelation was ca. 110 km, roughly the

same as the zero crossing for in situ observations of SDH. The range of

values and standard deviations were also similar, ca. 20 and 30 cm,

respectively. OA fields of SSH were calculated for each day using the

same OA routine as used for in situ fields.

F. SUMMARY OF DATA ACQUISITION, PROCESSING, AND ANALYSIS

OPTOMA 23 incorporated data from many sources: in situ data

(aircraft, ship and buoys), satellite data (AVHRR and GEOSAT), coastal

data (SL and SST), and climatology. The key component of the survey was

the dedicated use of the Project BIRDSEYE RP-3D which flew six flights

from 9 to 19 November 1986 (Julian dates 86313 and 86323, respectively).
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Ca. 100 AXBT's were dropped at 30 km intervals during surveys of

NOCAL and CENCAL (two in each subdomain), and at 40 km intervals during

a boundary condition update flight. A salinity profile was estimated for

each AXBT using either a historical or an observed (from the ship survey

in the southern part of the domain) T-S relationships. Both T-S

relationships were similar to CalCOFI climatology.

Daily OA maps were generated for SST, MLD, T50, Z08, Z1O, and

dynamic heights. The "standard" OA statistical method used: ensemble

autocorrelation functions (with zero crossings ca. 100 km) specific to

each data type, a temporal window of 3 days, a spatial window of 75 km,

a westward propagation of 5 km/day (for the days between surveys), and a

Shapiro filter.

Subsampling of the densest data set, the PRT-5 data, indicated that

relatively accurate (with correlations of 0.70 or better) OA fields

could be reproduced with one-quarter densities when care was taken in

selection of data. An inverse distance OA technique produced roughly

similar fields, withoUt error estimates.

For an analysis of the 1986 Fall Transition, hourly SL at six

coastal locations were filtered (to remove diurnal effects) corrected

for the inverse barometer effect, and daily-averaged. Hourly wind data

from NDBC buoys were also filtered and daily-averaged. Wind stress was

calculated, using drag coefficients from Smith (1988), from both NDBC

winds and FNOC MBL winds. As indicators of upwelling, daily Bakun

Upwelling indices (at 33, 36, 39, and 42 N latitude), hourly SST from

NDBC buoys (filtered and daily-averaged) and Granite Canyon SST (daily)

were processed and plotted.
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For quantitative comparison, evaluation techniques focused upon

difference fields, RMSE, and pattern correlation between various fields

(Willmott et al., 1985). GDEM climatology was processed in the same

manner as observed data to provide a first order comparison.

Although the domain was often cloudy, 12 AVHRR useable images were

recorded and processed. These produced MCSST OA fields and nine sets of

surface motion vectors (from pairs of images as much as 48 hours apart).

The first four GEOSAT17-day ERM orbits were on 8 November, 25

November, 12 December, and 29 December (the first two bracket the OPTOMA

23 survey). Six orbits (two ascending and four descending) were

colinearly processed for each ERM orbit; the long term means were

removed (taking care of geoid and orbit error) and the data were

corrected for tides. The resulting SSH had ranges of values and

autocorrelations similar to those for in situ SDH. OA fields of SSH were

mapped for each of the four Exact Repeat Mission days.
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IV. DESCRIPTION OF OPTOMA 23 FIELDS

A. INTRODUCTION

1. General

The OPTOMA 23 domain was dynamically active with two anticyclonic

features and two cyclonic features (ACI off Point Arena, AC2 off

Monterey Bay, C1 off Cape Mendocino, and C2 on the western boundary,

Figure 4.1). There was one cool filament, off Point Reyes, which

extended westward into and, eventually, through the domain (other cool

filaments, visible in IR imagery, off Point Arena and Point Sur, did not

extend into the domain).

The observed (and later the QG-predicted) fields were

qualitatively compared to earlier OPTOMA surveys, OPTOMA 18 and 22, and

quantitatively compared to two benchmarks: climatology and persistence.

The climatological benchmarks were objective analyses of GDEM-derived

date. The persisted benchmarks were objective analyses of data from the

first two surveys. (Wind forcing, bottom topography, and in situ data

from the OPTOMA 23P3 survey off Monterey Bay are discussed in later

chapters).

2. GDEM Fields

OA climatology fields of SDH (referenced to 450 m) for the months

of October, November, and December were qualitatively similar with broad

and slow (ca. 7 cm/s) southward flow of the California Current and large

meanders with wavelengths of ca. 500 km. There was a persistent

anticyclonic feature, with a diameter of ca. 200 km, in the northwest

corner of the domain. It weakened from 90 dyn cm in October to 85 in
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Figure 4.1 SDH (contoured at 2 dvn cm intervals, ref 450 m) and SST
(contoured at 0.5 IC) from in situ data. 9 and 19 November 1986 (Julian
Dates 86313 and 86323). AC2 apparently moved northwest and another
anticyclonic feature (AC3) formed on the southeast border.
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December (Figure 4.2). The range of values was consistent with the

observed range; also consistent were the slight decreases in dynamic

range, mean, and standard deviation (a) from October through November

(Table 5).

OA climatology fields of SST, T50, TIO0, MLD, Z08, and Z10 also

had similar means and ranges as observations (Figures 4.3 and 4.4). Of

note, the T100, Z08, and Z10 fields had features on the eastern boundary

indicative of the California Undercurrent (CUC). However, instead of

flowing northward through the domain, the apparent CUC reversed

cyclonically to join the California Current. The weak cyclonic feature

in the southeast corner of the domain was distinguishable in dynamic

topography at subsurface levels through the water column (Figure 4.5).

The difference in November climatological SDH, referenced to 300

m, and that referenced to 450 m, was 19.3 dyn cm (16.7 and 19.0 dyn cm

were the differences calculated from OPTOMA 23 data and the entire

OPTOMA ensemble, respectively). The SDH with a 300 m reference level had

a dynamic range of 10.1 dyn cm and a maximum velocity of 6.5 cm/s; the

450 m reference level, 9.9 dyn cm and 6.9 cm/s; and, the 750 m reference

level, 9.5 dyn cm and 6.5 cm/s (Figure 4.6).

450 m was not a "true" reference level, i.e., a level of no

motion. This was demonstrated in the tilt of the temperature field at

450 m. The climatological temperature at 450 m was ca. 5.8 *C. The depth

of the 5.8 *C isotherm shoaled from 500 to 400 m acroSs the domain (over

225 km); the north-south variation in depth was ca. 50 m (over 550 km).

However, the selection of a shallow reference level, at 300 or 450 m,

was satisfactory in that topographies referenced to these levels
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TABLE 5. GDEM BASIC STATISTICS

Field Range Mean
(Units) from to

GDEM SDH FIELDS

SDH (OCT) 79.0 90.2 83.3 3.2
SDH (NOV) 78.4 88.3 82.2 3.0
SDH (DEC) 77.8 86.4 81.7 2.4
(dyn cm)

OCTOBER

SST 12.8 16.9 14.9 0.9
TS0 10.7 14.4 11.8 0.9
T100 9.2 10.4 9.6 0.2
(0C)

MLD 8.4 47.2 28.8 8.0
ZIo 62.7 119.9 81.4 11.6
Z08 204.6 268.8 227.5 11.6
(W)

NOVEMBER

SST 12.4 15.5 14.0 0.7
T50 10.6 14.0 11.9 0.9

T100 9.1 10.4 9.5 0.2
(0C)

MLD 13.0 30.8 22.7 4.1
ZIO 66.5 120.5 79.4 10.9
Z08 188.1 251.6 216.3 12.5
(W)

DECEMBER

SST 10.9 14.5 12.8 0.8
T50 10.4 13.5 11.6 0.7
T100 9.1 10.4 9.6 0.2
(0C

MLD 9.0 42.2 22.6 7.4
ZIo 64.8 115.5 83.5 10.3
Z08 192.0 262.8 225.8 14.0
(W)
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adequately depicted the flow. (The use of the abbreviation SDH will

imply a 450 m reference level, hereafter).

3. A Review of OPTOMA 18 and OPTOMA 22

The entire domain from Cape Mendocino to Point Sur was surveyed

four times during the OPTOMA program (twice by aircraft, OPTOMA 18 and

23). November surveys were conducted each year from 1982 through 1986;

however, all but one, OPTOMA 18 in 1985, were in domains too small to

provide useful comparisons to OPTOMA 23. Prior to OPTOMA 23, from 27

July to 5 August 1986, OPTOMA 22 surveyed the NOCAL domain and the

inshore area to the continental shelf (by ship).

OA fields of SDH, SST, MLD, Z08, and T50 were produced for most

OPTOMA surveys using the ODPS OA routine with a single covariance

function, based upon the SDH covariance with a zero crossing of 79 km,

and a single phase propagation, 5 km/day to the west (Rienecker et al.,

1987). In general, throughout the OPTOMA program, meanders during the

summer were "sharper" and eddies were more densely packed than those

during the winter. The means and standard deviations (a) of SDH were

larger in the summer than in the winter. The mean SDH of anticyclones in

the summer was 100 dyn cm; in the winter, 88 dyn cm. There was a smaller

difference for cyclones, 83 and 80 dyn cm, respectively (Rienecker and

Mooers, 1988).

OPTOMA 18, surveyed the same domain as OPTOMA 23, from 31 October

to 2 November 1985 (this was not an anomalous El Nino period). A

meandering southward jet, with an apparent wavelength of ca. 300 km, was

ca. 200 km offshore and had a speed of ca. 15 cm/s. Two cold nearshore

cyclonic features, one located off Point Arena and the other off Point
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Reyes, were south of cool filaments. TLere was warm anticyclonic

activity on the western boundary with one feature off San Francisco and

another off Monterey (Figure 4.7). The maximum SDH and SST gradients,

associated with the jet, were ca. 12 dyn cm and 3.20 C/100 km. T50 was

much cooler towards the coast and the front was easily distinguished at

50 m where the maximum temperature gradient increased to ca. 4.40 C/100

km. Z08 showed well-defined features and was shallow (ca. 150 m)

nearshore and in cyclones, and deep (ca. 270 m) in anticyclones. These

observations were consistent with coastal upwelling conditions. AE

fields were highly correlated with each other.

The observed fields during the OPTOMA 18 and 23 surveys were

qualitatively similar. The mesoscale features were of the same size and

the fields had a similar range of values. However during OPTOMA 18, the

positions of the major features were reversed from OPTOMA 23 (i.e., the

cyclonic activity was nearshore during OPTOMA 18 and offshore during

OPTOMA 23), the jet meandered southward through the entire domain

between the zones of cyclonic and anticyclonic activity, and the SDH

gradients were tighter.

The survey just prior to OPTOMA 23, a ship survey in July and

August 1986 (also not an El Nino period), co-ered the NOCAL domain off

Point Arena and Point Reyes. A southward jet, with a speed of ce. 23

cm/s, was ca. 200 km offshore between a trough parallel to the coast

(100 km offshore) and warm anticyclonic features along the western

boundary (Figure 4.8). The maximum SDH and SST gradients associated with

the offshore jet, were 18 dyn cm and 2.40 C/100 km, respectively. The

temperature gradient for this front increased to 4.00 C/100 km in the
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Figure 4.8 OPTOMA 22. 25 July -5 August 1986. SDH, SST, T50, ZOB Maps

(Rienecker et al., 1987).
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T50 field. There was a nearshore, northward flowing, jet within 100 km

of the coast. A second front, presumably the upwelling front within 50

km of the coast, was also distinguishable in the SST field (with a

gradient of 2.40 C/ 50 km), but not in the T50 field. Z08 was shallow

(170 m) in the trough and deep (270 m) in the anticyclones.

The equatorward wind stress relaxed during July 1986. The

observed effects were an increase in the coastal poleward flow, as

compared with observations during OPTOMA 21 (7 to 20 July), and a

decrease in width of a cool filament off Point Arena from 40 to 10 km

(Rienecker and Mooers, 1989).

B. ENVIRONMENTAL SUMMARY

1. Weather Summary

The weather throughout the two-week period for OPTOMA 23 was

typical for the season. The OPTOMA domain and central coast area were

often in a neutral point between the quasi-stationary North Pacific High

pressure system ca. 1000 km to the west, a weaker high pressure system

over the Sierras and Rockies, a thermal trough over Southern California,

and low pressure systems to the north over the Pacific Northwest. In the

fall and winter the Aleutian low is strong, so the NOCAL wind field is

dominated by storm systems at three to five-day intervals.

During OPTOMA 23, three storms passed from the Gulf of Alaska

through the Pacific Northwest along the principal storm track, 1500 km

to the north of the domain. Another storm traveled along a secondary

storm track, from an area about 1500 km southwest of San Diego, to

Southern California. The period from 9 to 20 November was often cloudy,

100



but there was only one frontal passage through the domain, on 14 and 15

November, with numerous low stratus clouds and high clouds.

2. Ocean Summary

Two anticyclones, two cyclones, a meandering jet, and a cool

filament directly influenced the OPTOMA 23 domain. The two anticyclones

(100 km radius) extended from the surface to depth; one, off Point Arena

(ACl) propagated westward (ca. 5 km/day) from the eastern boundary to

the center of the domain north of the cool filament axis. The

development and progression of the second anticyclone (AC2), to the

south off Monterey, was less certain. It appeared to have strengthened

and moved west. The two cyclones, one in the north (Cl) and one in the

southwest (C2), were quasi-stationary. There was one cool filament off

Point Reyes, which extended westward through the domain. Another off

Point Sur, approached the domain from the southeast, but did not reach

it until late in the survey period. Both filaments were easily

identified in satellite images. None of the eddies were identifiable in

single satellite images; however, sequences of images highlighted the

surface flow around the eddies.

The CCS during this period was not under the anomalous influence

of El Nino. The El Nino signal of January 1987 was first identified as a

Kelvin wave in the tropical mid-ocean in altimetry data (Cheney, 1989).

C. INDIVIDUAL SURVEYS AND TIME SERIES

1. Surveys 23P1 and 23P2

On 9 November, during OPTOMA 23P1, most of the NOCAL survey

domain was overcast with broken mid-level stratus. Approximately one-
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fourth of the track, particularly in the quadrant closest to Cape

Mendocino was undercast (i.e., an obscuration between the aircraft and

the surface) with low stratus or fog. Aircraft winds at altitude (1000

feet) were steady from the northwest (330 to 345 degrees) at 9 to 15 m/s

and were consistent with 850 mb winds (4800 feet). On the following day,

10 November, during OPTOMA 23P2 in CENCAL, only a small pcrnion of the

domain along the western and southern borders was overcast with broken

stratus. The western central area and the southeastern corner were

undercast. Aircraft winds (700 to 1000 feet) were from the north (000 to

010 degrees) at 5 to 10 m/s. There was a small area of wind divergence

northwest of the central low cloudy area where the winds were from the

northeast (035 degrees) at 10 m/s. The quasi-stationary North Pacific

High was 1000 km west, a stationary frontal system was oriented east to

west near the Oregon border, and a warm front was rapidly approaching

the Washington coast (Figure 4.9).

There were two cyclonic features, one to the northeast (Cl) and

one to the southwest (C2), and two anticyclonic features, one in the

center (AC1) and one to the south (AC2), depicted in the SDH field

(Figure 4.10). The apparent wavelength of the jet meandering between

these features was ca. 350 km. A cool filament extended offshore from

Point Reyes on the central eastern border. Mixed layer depths, ranging

from 0 to 70 m, were shallower to the north of the filament and along

the eastern boundary and deeper to the south and west. Between AC1 and

C2, there was a broad offshore flow ca. 150 km wide. This flow was

highly geostrophic; the Rossby number (R0 ), U/f0L, was ca. 0.02 (with U
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ca. 20 cm/s and L ca. 100 km). (SST and Z08 OA fields from OPTOMA 23P1

and 23P2 were used to coordinate the survey conducted by the R/V POINT

SUR in the southern part of the CENCAL domain).

All the mesoscale features had strong vertical support (i.e.,

they were evident in surface and subsurface fields), which was

persistent throughout the survey period (Figure 4.11). The cold core

cyclonic feature in the northeast corner (Cl) was over a large cold dome

with vertical changes in isotherms of ca. 30 m. The dome had a

discernable tilt with depth towards the southwest. The anticyclone off

Point Arena (AC1) had a warm core at depth and a layer of cooler water

over it from the surface to ca. 50 m, apparently from upwelled water

(the MLD was 20 to 30 m). On the southwestern boundary, the cyclonic

feature (C2) had a cold dome with a diameter of ca. 200 km at a depth of

100 m and isotherms had vertical changes of ca. 100 m. The southern

anticyclonic feature (AC2) was better defined in the Z08 field tian in

the SDH field.

2. Survey 23P4

A week later, on 16 November, the weather situation had

deteriorated. OPTOMA 23P4 was a boundary updating survey. In the

southern half of this larger domain, there was a stratus overcast.

Undercast areas were in the southwestern corner and to the north off

Point Reyes; otherwise, the domain was clear. Aircraft winds were

varied; in the cloudy southern area, the winds were from the east (025

to 090 degrees) at 3 to 10 m/s; in the clear northern area, the winds

were from the north (350 to 020 degrees) at 7 to 15 m/s.

105



A

20

Gi 7

300

400
0 100 200

Distance (km-)

E F
21

0

100

5 200 7

300

400
0 1C0 200

Distance (kirn)

37N ~-
CYCLONIC Monterey

rC~(JlfM H:Pt. Sur

ii) Morro
E Boy

35t A

128W 1-16W 124W 122W 120W

Figure 4.11 Example of cold dome associated wiith cyclonic feature,
center of surface expression and 70 dyn cm contour marked, along track
A-B and E-F during OPTOMA 23P2 on 10 November 1986 (Johnson et al.,
1988).

106



A strong storm and frontal system was moving southeast at 25 knots

from a position 1200 km to the northwest of the domain (Figure 4.12).

There was an east-to-west oriented dissipating front 200 km north

of the survey area. A low pressure system and trough moving northeast at

15 knots were 1000 km to the south.

In the SDH field, there was continuity in the positions and

strengths of the two cyclones and two anticyclones from a week earlier.

While the cyclonic features remained stationary, AC1 moved westward ca.

40 km (best seen in Z08), and AC2 apparently strengthened and moved

slightly north. The cool filament off Point Arena extended through the

domain and shifted northward (Figure 4.13). Another filament, off Point

Sur, can be identified in satellite imagery to the east of the domain.

The MLD (not shown) was consistent with earlier surveys.

3. Surveys 23P5 and 23P6

On 17 November, during OPTOMA 23P5, the sky was almost entirely

cloud free. There was some scattered stratus near the grid center, but

no undercast. Aircraft winds were generally north-northeasterly (005 to

035) at 5 to 10 m/s. Some cyclonic turning was evident in the

southeastern corner with winds from the northwest (320 to 340) at 5 to

10 m/s. Two days later, on 19 November during OPTOMA 23P6, there was a

scattered overcast in the western half of the domain over a solid and

heavy low stratus deck (fog). The eastern half was clear. There was some

anticyclonic turning of the winds progressing from north to south. In

the north, winds were from the northwest at 5 to 8 m/s; in the south,

they were from the north at 5 to 10 m/s.
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The storm from the northwest identified on 16 November made

landfall near Vancouver. A cold front from this system extended to the

north and west of the survey area. The southern storm passed through

California and wcs situated over Nevada. A weak and dissipating front

extended from this system through central California (Figure 4.14).

The cyclones, anticyclones, and cool filaments identified earlier

persisted in the SDH, SST, T50, and Z08 fields (Figure 4.15). The

northern filament, off Point Reyes, extended offshore and the southern

filament, off Point Sur, extended to the southeast about 50 km with a

well-defined cold feature, particularly notable in the T50 field.

4. Time Series From OA

Since OPTOMA 23 covered a 10-day period, only a part (i.e., a

third to a quarter) of the expected eddy life cycle was surveyed. Still,

to track the evolution of the features identified in the individual

surveys, and to determine the persistence of the features, time series

of three representative fields, SDH, SST and Z08, were created from

objective analyses using 3 and 7-day time windows (a westward advection

of 5 km/day was assumed). The error fields were small, generally less

than 5%, except along the southern border during the first four days,

where the 23P2 data were gappy, and in the NOCAL domain during days

86317 and 86318, prior to the boundary condition update flight, 23P4

(Figure 4.16).

In the SDH time series, the anticyclone on the eastern border off

Point Reyes (ACl) and the anticyclone in the southern part of the domain

(AC2) moved west at ca. 10 km/day (Figure 4.17). The cyclone on the
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northern boundary (Cl) and the cyclone on the southwest border (C2) were

quasi-stationary; C1 "deepened" and C2 "filled" slightly, 2 dyn cm, over

the period.

In the SST times series, the cool filament located off Point

Arena, right of center and extending from the eastern border, persisted

throughout the series and eventually moved westward across the entire

domain, at ca. 10 km/day (Figure 4.18). The shape of the cool filament

was smeared out by the OA routine. To the northwest, there was a

persistent warm tongue. Advection by the anticyclonic eddy to the north

of the filament (AC1) accounted for the penetration of warm surface

water along the northern axis of the filament; and, the cyclonic eddy on

the southwest border (C2) advected another warm tongue northward (ca. 20

cm/s).

In the Z08 time series, the anticyclonic and cyclonic eddies were

distinct deep and shallow features, respectively (Figure 4.19). The Z08

fields behaved similarly to the SDH fields; however, the movement of the

deep feature associated with AC2 can be more easily followed in the ZO8

field. It moved northwestward for the first five days and became

stationary at day 86319.

SDH, SST, and Z08 were "forecast" from the initial observations

from the first two surveys (day 86313) to day 86323 using the OA routine

with a westward propagation of 5 km/day. These 10-day forecasts were

compared with the verification fields, from the last two surveys, on day

86323. For a benchmark, persistence and climatology comparisons were

also made.
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Qualitatively, the SDH forecast, compared to the verification

field, looked "fair"; the forecast best depicted the activity of AC

(Figure 4.20). The SST forecast looked "poor" with the exception of the

northern and southern boundaries where SST was fairly constant; the

forecast did not account for the reorientation and rapid westward

extension of the cool filament off Point Arena (Figure 4.21). The Z08

forecast looked "good", although the forecast did not account for the

deepening of AC2 (Figure 4.22).

Quantitatively, using correlation and RMS error as measures, the

SDH forecast was slightly better than persistence and significantly

better than climatology. The SST forecast was about the same as

persistence and worse than climatology. The Z08 forecast was slightly

worse than persistence and significantly better than climatology (Table

6).

5. Mean Temperature-Depth Profiles

a. OPTOMA 18 and 22

In comparison to OPTOMA 18 (Wittmann et al., 1985), also a

large domain survey in October 1985, the average temperature profile for

OPTOMA 23 (November 1986) was 0.7 0C warmer from the surface to 150 m

and somewhat warmer to 300 m. The average temperature profiles for the

northern surveys, P1 and P4, were the same as OPTOMA 18; the average

profiles for P2 and P5, the southern surveys, were the same at the

surface, slightly warmer to 75 m, and slightly cooler from there to 300

m.

OPTOMA 22 was a survey of the NOCAL domain and the inshore

area to the upwelling zone over the continental shelf in July and August
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TABLE 6. OA FORECAST COMPARISON FIGURES

Field 1 Compared to CORR MAE RMS RMSN

SDH 86323 OA 10-day 0.71 2.01 2.31 .80
SDH 86313 0.69 2.1 2.8 .75
(Persistence)
SDH GDEM -0.16 6.7 8.0 2.80
(Climatology)

SST 86323 OA 10-day 0.67 0.492 0.622 .80
SST 86313 0.66 0.47 0.61 .87
(Persistence)
SST GDEM 0.73 0.67 0.77 1.06
(Climatology)

Z08 86323 OA 10-day 0.79 18.93 24.03 .62
Z08 86313 0.83 15.1 19.5 .57
(Persistence)
Z08 GDEM 0.54 41.4 46.7 3.38
(Climatology)

CORR - correlation;
MAE - Mean Absolute Error;
RMS - Root Mean Square;
RMSN - Root Mean Square Normalized (by variance field 2)

Notes:

1 - Units are dyn cm.
2 - Units are OC.
3 - Units are m.
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1986 (Ciandro et al., 1986). The average temperature profile for OPTOMA

23 was warmer than OPTOMA 22 above 100 m (0.6 0C at the surface and 1.0

0C at 50 m). Below 100 m the profiles were the same.

b. Changes during OPTOMA 23

In the northern part of the domain, from survey P1 to P5,

eight days apart, the average SST remained the same, the water column

from the surface to 75 m warmed by 0.2 0C, and between 75 and 300 m, it

remained the same. In the southern part of the domain, from survey P2 to

P6, nine days apart, the average SST cooled by 0.4 0C, the column from

the surface to 100 m cooled by 0.2 0C, and between 75 and 300 m, it

remained the same. On a shorter time scale of a few days, from P4 to P5,

the water column between 40 and 70 m warmed 0.3 *C; otherwise, it

remained the same. From P4 to P6, the upper 300 m warmed slightly, with

SST warmer by 1.0 *C (Johnson et al., 1988). These changes are further

analyzed in Chapter VI.

D. SATELLITE FIELDS

1. General Description

Eight five-channel AVHRR images were analyzed for OPTOMA 23:

86314 (day), 86314 (evening), 86315 (day), 86315 (evening), 86319,

86321, 86323, and 86325. The cool coastal water, cool filaments off

Point Arena, Point Reyes and Point Sur, and numerous small-scale

features (diameter ca. 10 km) were vividly obvious in the IR channels

(Appendix E). (The 512 X 512 pixel images were centered or Point Reyes;

therefore, they are truncated on the southern boundary at 35 N).

Throughout OPTOMA 23, the identification of mesoscale features from a

single IR image was difficult due to the complicated pattern of multiple
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small-scale features, particularly along the periphery of the cool

filaments, and surface masking, either by cool upwelled water or the

warm surface water offshore in the CCS.

In the IR imagery (e.g., Figures E.1 and E.3 on Julian Days 86314

and 86315, respectively), the broad (100 km wide measured on the eastern

boundary of the domain), cool filament, identified in the SST OA fields

between Point Reyes and Point Arena (Figure 4.1), was a narrow (ca. 10

to 30 km measured on the eastern boundary of the domain) filament

anchored nearshore at Point Reyes. It was embedded in a wider (ca. 200

km), cool body of water. At the beginning of the survey, the upwelling

front was 25 to 75 km offshore and the cool filament was 30 km wide and

350 km long; at the end of the survey, the upwelling front was 10 to 40

km offshore and the cool filament had lost integrity. The relaxation of

the upwelling front and dissipation of the filament were consistent with

the weakening and cessation of winds favorable for upwelling as seen in

the Bakun indices (Table 7).

2. MCSST

The high-resolution AVHRR data were navigated, screened for

clouds, converted to MCSST, and objectively analyzed to the same grid

used for the other fields. As with other OA fields, the MCSST input data

were smoothed and averaged by the OA routine.

Qualitatively, some of the MCSST OA fields were similar to the

SST fields The best are 86314A, 86315N, 86315, 86321, and 86325 (Figure

4.23). The worst, with gaps in the data due to high and mid-level

clouds, were B6314B, 86319, 86320, and 86324 (Figure 4.24).

Quantitatively, all of the MCSST fields were ca. 0.8 0C cooler than the
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TABLE 7. SUMMARY OF IR OBSERVATIONS DURING OPTOMA 23

Satellite Bakun Index Distance of Upwelling Filament

Image 36N 39N Front Offshore (km) length width 2

Cal/Julian Mendocino Pt Arena Pt Reyes (km)

Date

10/314A 10 80 75 25 50 Note 4 30
10/314B 10 80 75 40 50 350 30
11/315N -1 45 75 40 50 350 20
11/315 -1 45 75 25 50 300 15
15/319 -9 5 Note 4 10 40 Note 4 10
17/321 -8 12 50 10 50 Note 5
19/323 36 -4 Note 4 40 30
21/325 23 -3 Note 4

Notes:

1 - Units are m3 Is per 100 m of coastline
2 - Measured at easter- boundary of OPTOMA domain, ca. 100 km offshore
3 - Calendar date is in November 1986; Julian year is 1986
4 - Viewing prohibited by clouds
5 - Filament lost integrity and "broke apart"
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SST OA fields and had standard deviations (a) ca. 0.3 0C higher. The

lower average temperature in the satellite data was consistent with the

presence of sub-pixel size clouds or low stratus with cool temperatures

close to that of the ocean surface, but not cool enough for the pixel to

be screened out as "cloudy". The numerous small scale features in each

satellite image account for the higher standard deviation (Table 8).

3. Satellite Surface Vectors and Comparisons

Although the eddies in the CCS during OPTOMA 23 did not have

well-defined and easily discernable surface signals, cold upwelled water

did act as a tracer and could be observed as it was advected in

filaments between eddies (encirclement of an eddy by cold water did not

occur). The flow field was more apparent and identifiable in pairs or

series of images, especially near filaments.

Satellite surface vectors were processed with the OCEANTRAK

(manual) technique from eight pairs of images. The time intervals (At)

were as short as six hours (between images on day 86314) and as long as

48 hours. The shortest At gave a rich "sense" of motion; however, it was

difficult to pinpoint the center of features accurately (a 20 cm/s flow

over six hours displaces a feature ca. four pixels). Other pairs of

images with At from 48 to 96 hours were analyzed; features lost their

identity beyond 48 hours. The optimal At was ca. 20 hours. Three sets of

surface vectors were obtained (Table 9). Although the method is quite

subjective, the results were consistent from one set to another.

Qualitatively, some of the vectors (Figure E.1O) compared well

with geostrophic velocities derived from SDH fields (Figure 4.25). The

areas of agreement were away from the coast where circulation in the CCS
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TABLE 8. COMPARISONS OF SATELLITE MCSST AND IN SITU SST OA FIELDS

Field 1 Compared to CORR MAE1  RMS 1  RMSN
MCSST SST OA

86314A SST 86314 0.22 0.9 1.4 1.4
86314B SST 86314 0.62 0.9 1.2 1.1
86315N SST 86315 0.85 0.6 0.7 0.9
86315 SST 86315 0.82 0.6 0.8 1.0
86319 SST 86319 0.56 0.9 1.3 1.1
86321 SST 86321 0.70 0.7 1.0 1.1
86323 SST 86323 0.36 0.9 1.3 1.2
86325 SST 86325 0.83 0.8 0.9 1.7

CORR - Correlation;
MAE - Mean Absolute Error;
RMS - Root Mean Square;
RMSN - Root Mean Square Normalized (by variance field 2)

Note:

1 - Units are *C.

TABLE 9. SATELLITE SURFACE VECTORS AND SDH GEOSTROPHIC VELOCITIES1

Data Number Range Mean a 6t
Set of Obs (cm/s) (cm/s) (crm/s) (hFs)

314-315 67 4.4-40.0 17.1 7.4 14:08

86314 3122 0.0-19.8 07.7 4.6 N/A

315-315 48 9.5-54.0 27.5 10.0 19:40

86315 3122 0.0-20.0 07.8 4.7 N/A

323-325 16 6.5-25.7 24.3 11.2 37:58

86323 3122 0.0-16.3 07.4 3.6 N/A

Notes:

1 - Satellite surface vectors are separate measurements;
SDH geostrophic velocities are from OA fields

2 - 12 X 26 grid
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Figure 4.25 Geostrophic surface velocity vectors on day 86314 at same
scale as satellite image from day 86314.
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and around the mesoscale features was easily determined. Areas of

disagreement were in the northeast where the upwelling front reached the

domain near C1 (the area closest to shore, ca. 80 km offshore), and in

the filaments off Point Reyes and Point Sur.

The geostrophic velocities near C1 were cyclonic and weak (ca. 2

cm/s) around the feature. The satellite surface vectors were also weak

(ca. 5 cm/s), and they were inconsistent in direction (both in the same

image pair, but in a slightly different position, and in different image

pairs, but in the same area). Satellite-derived speeds were higher than

geostrophic speeds in the filament and there was differential motion, or

horizontal shear, across the filament due to the recirculation pattern.

Quantitatively, 60 satellite vectors, from the three vector sets,

were compared, vector-by-vector, with geostrophic velocities. In all

comparisons, the two measurements were within 10 km and 24 hours of each

other. Two-thirds of the pairs had directions within 200 of each other;

the exceptions were all within the cyclone to the north (Cl) or the

filaments off Point Reyes and Point Sur.

Of the vectors away from these areas of disagreement (40), the

satellite-derived speeds were higher than geostrophic speeds in all but

seven instances (five of these were the same). The satellite-derived

average speeds were almost twice the geostrophic average speeds (11.5

versus 6.7 cm/s) and the standard deviation was slightly higher (4.5

versus 3.5 cm/s). The mean absolute difference was 5.1 cm/s (standard

deviation of 4.2 cm/s).
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The Ekman drift during the first two periods, on days 86314 and

86315, was ca. three to four cm/s (directed offshore) and was calculated

from:

V = P() -1 H (42 v)-1  (equation 4.1),

where V is the Ekman drift at the surface, T is the wind stress , H is

the depth of influence (assumed to be the average mixed layer depth, ca.

20 m), v is the assumed vertical eddy viscosity (103 cm2 Is) and p is the

average density of sea water. The wind stresses were obtained from three

NDBC moored buoys on the eastern boundary of the domain (buoys 46013,

46014, and 46028). The Ekman drift estimates were of the same magnitude

and direction as those derived from the Bakun indices, at 36 and 39 N,

assuming the mixed layer moved like a slab (average MLD ca. 20 m).

During the last period, on days 86323 and 86325, the wind stress

increased and the Ekman drift was estimated to be ca. 10 cm/s to the

west. The Bakun-derived estimate was an order of magnitude smaller.

The Ekman drift improved the comparison between satellite-derived

and geostrophic speeds, when added to geostrophic speeds (without regard

to direction) and accounted for most of the difference (ca. 75%).

However, the mesoscale field had velocities in all directions while the

Ekman drift was predominantly offshore.

There appeared to be a bias away from low velocities due to the

technique; displacements of many pixels were easier to mark than

displacement of a few pixels. The lowest limit of measurement was
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estimated to be one pixel over 12 hours (2 to 3 cm/s); the practical

limit was two to three times this.

The geostrophic velocities were spatially smoothed and, thus,

underestimated maximum velocities. Differences may also be attributed to

the geostrophic technique, which integrated dynamic topography over

depth and introduced level-of-no-motion errors, the higher resolution of

the satellite image compared with the SDH field, which spread the

gradient over many gridpoints, and ageostrophic effects.

3. SSH

a. General

The in situ survey covered a 10-day period, which was

insufficient to observe a complete cycle in eddy evolution. GEOSAT

altimetry data were available every 17 days for the ERM, starting on 8

November 1989 (Julian Date 86312) and, though aliased for periods less

than 34 days, it added useful observations from the beginning of OPTOMA

23 through the end of the year. Both ascending and descending orbits

were used to generate OA fields of SSH; in the past, only ascending

orbits were used in the CCS because the descending orbits are often

gappy and missing data.

b. Description of SSH Fields

The SSH data were objectively analyzed in the same manner

used for other fields. The GEOSAT observations alongtrack are nearly

simultaneous (the satellite takes less than a minute to cross the OPTOMA

domain), but from orbit to orbit, the data were asynoptic and as much as

72 hours apart. Six repeat orbits were used to provide data for five OA

fields on days 86312, 86329, 86346, 86363, and 87015 (no more than four
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orbits were available for any one analysis). The first field was on the

day before the survey started and it provided the only reliable

comparison with in situ data (OPT23P1 and OPT23P2 data were used to

generate an SDH field for 86312). The second field was ca. one week

after the survey and it provided insight into the 1986 Fall Transition

(for comparison purposes, OPT23P5 and OP23P6 were used to generate an

SDH field for 86329).

Mesoscale activity was evident in all SSH OA fields (Figure

4.26). The size of the mesoscale features, and the range of heights,

were both consistent with expected values and the observations. However,

on day 86312, the location of derived features was not entirely

consistent with direct observations. In the northern half of the domain,

where there were two ascending and one descending tracks (Figure 4.27),

the cyclone in the northeast corner of the domain (Cl) and the

anticyclone on the eastern boundary (ACI) were in the same location as

noted in the SDH field. In the southern half of the domain, where there

were two ascending tracks, there was an apparent anticyclone where the

in situ data indicated a cyclone was located. The anomaly was ca. 10 cm

higher than expected, a reasonable figure for a moisture correction.

However, a review of imagery for this day showed no discontinuities in

the cloud cover which may have caused the anomaly. Instead, there was a

continuous stratus cloud cover throughout the domain, and a moisture

correction would be applied equally over the domain. (This image was not

analyzed for MCSST because of the cloud cover).
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Quantitatively, the SSH and SDH fields on day 86312 had the

same range of values, ca. 20 cm (or dyn cm, respectively), and the same

standard deviation, ca. 4 cm (dyn cm). The fields did not correlate well

over the entire domain, 0.27. When the northern half of both fields were

compared, however, the correlation increased to 0.73, indicative of the

positive impact of data from the descending orbit in the north.

Qualitatively, the SSH field on day 86329 was similar to the

SDH OA forecast field. Both had anticyclonic features near the eastern

boundary and an offshore trough. The range of values and standard

deviation for the SSH field were larger than those for the SDH field (30

cm versus 20 dyn cm, and 7 cm versus 3 dyn cm). Although there was

visual similarity, the correlation between the two fields was low

(0.47). A strong, meridional, northward jet of ca. 33 cm/s (gradient of

20 cm over 85 km) dominated the SSH field. (The strongest jet in the SDH

field was half this). This analysis had a lower error field than the

previous case because of the additional orbital track to the south

(Figure 4.28). The 1986 Fall Transition of the CCS took place between

days 86312 and 86329, 8 and 25 November, respectively (Chapter 6).

c. Evaluation of GEOSAT Sampling Strategy

The six GEOSAT orbital subtracks in the OPTOMA domain, plus

one to the west, were superimposed over the SDH field on day 86312 and

the field was sampled at 7 km intervals. (The SDH field was extrapolated

tro the west). Thf "simulated" data were then objectively analyzed to

assess the impact of additional subtracks.
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The first experiment, Simulation 1, followed the sampling

pattern on day 86312 (i.e., two ascending tracks and one descending

track to the north) and had 104 observations. Qualitatively, the SDH

field to the north was reproduced fairly well and the anomalous

anticyclone to the south was introduced (Figure 4.29). The OA error

field was high, ranging from 5 to 100 %, and averaging 27%.

Quantitatively, it correlated with the SDH field and showed skill

(0.74), but had high error measurements (Table 10).

The second experiment, Simulation 2, added three descending

tracks, all in the domain to the south of the first descending track,

and had 167 obsarvations. Qualitatively, the SDH field over the whole

domain was well reproduced (Figure 4.30). Quantitatively, the OA error

field decreased, ranging from 4 to 86%, averaging 14%, with a standard

deviation of 10%; the correlation increased markedly (0.93) and the

error measurements decreasAd.

The third experiment, Simulation 3, added an ascending

track, to the west of the domain, and had 218 observations.

Qualitatively, the SDH field was well reproduced (Figure 4.31) and the

OA error field decreased slightly. It ranged from 4 to 86%, averaged

13%, and had a standard deviation of 8%; the correlation increr.sed to

0.97 and the error measurements, MAE and RMS, were 1 cm.

OA maps of SSH reproduced the in situ field accurately (with

a correlation greater than 0.90) using perfect data from six orbits (two

ascending and four descending). The addit.on of another ascending orbit

(a seventh orbit) improved the correlation slightly.
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TABLE 10. COMPARISONS OF IN SITU SDH, GEOSAT SSH, AND SIMULATED SSH 1

Field 1 Range Mean CORR MAE RMS RMSN
Field 2 from to

GEOSAT SSH 86312 -5 to 16 6. 4. 0.27
SDH 86312 63 to 83 76. 4.

GEOSAT SSH 86312 -5 to 16 6. 4. 0.74 2. 3. 1.1
SIMULATION 1 71 to 82 76. 3.

GEOSAT SS 86312 -5 to 16 6. 4. 0.93 1. 1. 0.5
SIMULATION 2 71 to 83 76. 3.

GEOSAT SSH 86312 -5 to 16 6. 4. 0.97 1. 1. 0.3
SIMULATION 3 66 to 83 76. 3.

GEOSAT SSH 86312 -5 to 16 6. 4. 0.25
DEMEANED SIMULATION 71 to 82 77. 3.

CORR - Correlation;
MAE - Mean Absolute Error;
RMS - Root Mean Square;
RMSN - Root Mean Square Normalized (by variance field 2)

Note:

1 - Units are cm for GEOSAT fields, and dyn cm for simulations.
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E. VERTICAL COHERENCE AND AVERAGE VALUES

1. Vertical Coherence

During OPTOMA 23, there was little correlation between SST and

fields at depth. However, the dynamic topography, from the surface to at

least 300 m, and Z08 were all highly correlated throughout the survey

(Table 11). The cyclonic features (Cl and C2) on the northeast and

western borders and the anticyclonic feature (ACi) on the eastern border

extended in depth through the water column from the surface to 300 m

(Figure 4.32). The anticyclonic features on the southern border (AC2)

was distinguishable at depth only by a weak ridge. The range in dynamic

height appeared to have an e-folding depth of ca. 360 m. decreasing from

ca. 14 dyn cm at the surface to ca. 4 dyn cm at 360 m. (There were

numerous temperature inversions near the filaments, Appendix F).

Correlations between SDH and SST and between SDH and Z08

throighout the OPTOMA surveys were high (Figure 4.33). The correlation

between SDH and SST averaged 0.65 with a a of 0.1i. The time series of

the correlation between SDH and SST had significant deviations from the

average, particularly during August 1982 and October 1983. The

correlation between SDH and SST during OPTOMA 23 was 0.06 (during OPTOMA

18, it was 0.70).

The correlation between SDH and Z08 averaged 0.83 with a a of

0.17. Deviations occurred during October 1983, the summer of 1984, and

the spring of 1986. The correlation between SDH and Z8 during OPTOMA 23

was 0.71 (during OPTOMA 18, it was 0.80).
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TABLE 11. COMPARISONS OF OPTOMA 23 FIELDS IN THE VERTICAL

Comparison Range Mean a CORR
Field from to

SDH2  63 to 83 76. 4. N/A
DH 50 m 50 to 68 60. 3. 0.97
DH 100 m 42 to 56 49. 4. 0.88
DH 200 m 27 to 37 32. 2. 0.81
DH 300 m 15 to 21 18. 1. 0.77
DH 400 m 4 to 6 6. 1. 0.71

SST3  12.9 to 14.4 0.7 0.06
16.4

Z084  120 to 179. 34. 0.71
258

MCSST 3  9.3 to 13.5 1.0 0.57
15.5

CORR - Correlation;
MAE - Mean Absolute Error;
RMS - Root Mean Square;
RMSN - Root Mean Square Normalized (by variance field 2)

Notes:

1 - All fields are compared with SDH.
2 - Units are dyn cm.
3 - Units are *C.
4 - Units are m.
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2. Comparisons with OPTOMA Ensemble Averages

Rienecker et al. (1987) calculated SDH, SST, and Z08 averages and

a for each OPTOMA survey through OPTOMA 22 (42 cruises and flights). For

comparison, SDH, SST, and Z08 basic statistics were calculated for the

OPTOMA 23 ensembles and plotted with the other surveys (Figure 4.34). To

plot SDH from AXBT and CTD/XBT surveys on the same plot, the SDH from

the P-3 surveys (referenced to 300 m) were corrected to the SDH from the

ship surveys (referenced to 450 m) by adding 19 dyn-cm. This was the

average difference over the entire OPTOMA survey ensemble and the

difference in GDEM climatology between the SDH referenced at the two

levels.

The SDH time series had seasonal variations each year. The SDH

during each November, when the fall transition is expected, was lower

than the SDH during the previous summer; the a tor the winter was less

than that during the summer. Both observations were consistent with the

decrease in mesoscale activity in the winter. The maximum signal

occurred during the 1982-1983 El Nino. The total range covered was ca.

20 dyn-cm. The OPTOMA 23 SDH were the lowest in the ensemble.

The SST time series had seasonal variations with no long term

trend evident. The total range covered was ca. 7 *C. The OPTOMA 23 SST

were typical of SST values during the other fall surveys. The summer of

1983 had the highest SST, consistent with the El Nino (ca. 2 *C warmer

than other summers). The following summer had the lowest SST, perhaps

indicative of stronger upwelling and offshore transport.

There was no seasonal variation in the ZOS time series. As

expected, it was similar to, but out of phase with the SDH time series
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(i.e., higher SDH, more anticyclonic activity, and deeper Z08). The

1982-1983 El Nino signal was identifiable: Z08 was at its deepest during

this period reflecting the warmer water at shallower depths. Z08 was at

a minimum during the summer of 1984, coincident with the cooler SST (and

upwelling). The total range covered was ca. 200 m. Z08 during OPTOMA 23

was typical of the other surveys.

F. SUMMARY AND DISCUSSION OF THE OPTOMA 23 FIELDS

Two anticyclonic features and two cyclonic features were in the

OPTOMA 23 domain (ACI off Point Arena, AC2 off Monterey Bay, C1 off Cape

Mendocino, and C2 on the western boundary). There was one cool filament,

which extended westward from Point Reyes into and, eventually, through

the domain. The two anticyclones (100 km radius) extended from the

surface to 300 m; AC1 propagated westward (ca. 5 km/day), the other

appeared to strengthen and move west. The two cyclones were larger than

the anticyclones, they were quasi-stationary, and they extended from the

surface to 300 m.

OA fields of SDH, SST, T50, T1O0, MLD, Z08, and Z1O during OPTOMA 23

were roughly comparable (in the range of values, but not in pattern)

with GDEM climatology and past OPTOMA surveys. The OPTOMA 23 mean and

standard deviation of SDH were lower than summer OPTOMA surveys, and

meanders and eddies were not as "sharp" or as "densely packed". OA time

series of three representative fields, SDH, SST and Z08, had small error

fields, generally less than 5%. OA "10-day forecasts" of SDH, SST, and

Z08 were about as accurate as persistence and generally better than

climatology (except for SST).
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The cool coastal water, cool filaments off Point Arena, Point Reyes

and Point Sur, and numerous small-scale features (diameter ca. 10 km)

were vividly obvious in the IR channels. However, eddies could not be

distinguished in a single IR image due to the complicated pattern of

multiple small-scale features and surface masking. In the imagery, the

broad cool filament, identified in the SST OA fields between Point Reyes

and Point Arena, was a narrow filament embedded in a wider cool body of

water. During the survey, the upwelling front moved closer to shore and

the cool filament lost integrity as winds favorable for upwelling

ceased.

Some of the MCSST OA fields were similar to the SST OA fields; those

that were not had gaps due to high and mid-level clouds. The MCSST

fields were ca. 0.8 IC cooler than the SST OA fields and had standard

deviations ca. 0.3 0C higher, consistent with the presence of sub-pixel

size clouds, low stratus and numerous small scale oceanic features.

OCEANTRAK satellite surface vectors were processed with time

intervals (At) as short as six hours and as long as 48 hours; the

optimal At was ca. 20 hours. The shortest At gave a rich "sense" of

motion, but it was impossible to pinpoint the center of features

accurately and beyond 48 hours, features lost their identity and were

impossible to follow.

Although the method was quite subjective, the resulting vectors were

consistent from one set to another and most of the vectors compared well

with geostrophic velocities derived from SDH fields. Areas of

disagreement were in the northeast corner of the domain (near a cyclone

and where the upwelling front reached the domain) and near the cool
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filament. Satellite-derived speeds were generally higher than

geostrophic speeds by a factor of two. A correction for Ekman drift

improved the comparison between satellite-derived and geostrophic

speeds, and accounted for most of the difference in speed (ca. 75%).

Satellite surface velocity vectors were biased away from low

velocities due to the technique; displacements of many pixels were

easier to mark than displacement of a few pixels and the lowest limit of

measurement was estimated to be one pixel over 12 hours (2 to 3 cm/s);

the practical limit was two to three times this. The geostrophic

velocities underestimated maximum velocities due to spatial smoothing,

the integration of dynamic topography over depth, and level-of-no-motion

errors. Also, there may have been ageostrophic effects.

Mesoscale activity was evident in the GEOSAT data (SSH OA fields).

The size of the resoscale features, the range of heights, and standard

deviations were similar to those in SDH observations. However, on day

86312, the location of derived features was not entirely consistent with

in situ observations; the sampling pattern accounted for the

difference.

The mesoscale field apparently changed after the survey was

completed (86323). The SSH field on day 86329, similar to the SDH OA

forecast field, had anticyclonic features near the eastern boundary and

an offshore trough resulting in a strong, meridional, northward jet of

ca. 33 cm/s (gradient of 20 cm over 85 km). It was estimated that the

1986 Fall Transition in the CCS started between days 86312 and 86329 (8

and 25 November, repectively).
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Simulations of GEOSAT data reproduced in situ fields accurately

(with a correlation greater than 0.90) using perfect data from six

orbits (two ascending and four descending). The addition of another

ascending orbit (a 3eventh orbit) improved the correlation slightly.

During OPTOMA 23, there was little correlation between bST and

fields at depth (0.06, compared to the OPTOMA average and a of 0.65 and

0.11, respectively). However, the dynamic topography, from the surface

to at least 300 m, and Z08 were all highly correlated (0.71, compared to

the OPTOMA average and a of 0.83 and 0.17, respectively). The cyclonic

features (Cl and C2) on the northeast and western borders and the

anticyclonic feature (ACI) on the eastern border exteaded in depth

through the water column from the surface to 100 m while the

anticyclonic features were distinguishable at depth only by a weak

ridge. The average SDH during OPTOdA 23 was the lowest in the OPTOMA

series; the average SST and Z08 were typical of values during other fall

surveys.
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V. QUASIGEOSTROPHIC "NOWCASTS" AND "HINDCASTS"

A. GENERAL

To determine sensitivity to different initial and boundary

conditions, the QG model was usei to "nowcast" and "hindcast" the

streamfunction (*) fields in the OPTOMA 23 domain. In nowcasting, OA

felds of observed dynamic topography (converted to 4) initialized the

model and were dynamically balanced by the model (within the limits of

QG physics). In hindcasting, the future fields were generated from the

initial field with specified boundary conditions. The boundary

conditions were either persisted, from the initialization and from

updates supplied to the model at later times, or linearly interpolated

between initial and final fields.

Generally, the hindcasts were for ten days, from the initialization

on day 86313 to day 86323, and these provided continuity between survey

dates and determined the quasigeostrophic development of mesoscale

features. The exceptions were 30-day hindcasts to determine model

behavior beyond the OPTOMA 23 time period and a 15-day hindcast to

compare with the GEOSAT SSH field on day 86329.

The OG model output fields for comparison were upper level * and the

temperature at 100 m (T1O0), a derived quantity. For W verification

purposes, nowcasts were generated for each day, from day 86313 to day

86323; the nowcasts were initialized with OA fields of dynamic

topography at -1, 150, and 400 m on the same days (see Figure 4.17),

boundary conditions were persisted, and neither wind stress curl fr-cing

nor bottom topography were incorporated. For T'00 verification purposes,
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OA fields of TI00 were generated from full-field in situ data on days

86313 and 86323. As with the OA time series of dynamic topography, the

nowcasts and TIO fields were expected to most accurately depict the

state of the ocean on OPTOMA 23 survey days (86313, 86321, and 86323).

Climatology (from GDEM) and persistence (from day 86313) hindcasts were

generated to provide baseline comparisons. Model accuracy (score) was

ranked by pattern correlation (CORR) and root mean square error (RMSE),

normalized by the standard deviation of the verification field (RMSN).

The impact of model parameters and data inputs, for initial and

boundary conditions, on nowcast and hindcast accuracy was rigorously

tested (OPTOMA 23 was a specific case study in the CCS during autumn,

thus, the modeling results and comparisons were not expected to be

statistically representative of general conditions). Variations included

changes in the stability profile, the use of persisted or forecast

boundary conditions, the incorporation of wind stress curl forcing and

bottom topography, and different data subsamples (Table 12). The

subsampling test scheme focused on simulations of: incomplete in situ

data, poor initializations with good boundary condition updates, good

surface fields with poor subsurface fields, and poor surface fields with

good subsurface fields. The first two were referred to as 'Standard

Subsampling' and the later two as 'Simulated GEOSAT' and 'Simulated

Sofar' subsampling.
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TABLE 12. MATRIX OF QG MODEL RUNS

I. GDEM (NOVEMBER) CLIMATOLOGY INITIALIZATION

3 LEVELS
(Extended by EOF)

II. STRATIFICATION

GDEM OPTOMA (Ensemble) OPTOMA 23

III. BOUNDARY CONDITIONS

PERSISTED INTERPOLATED

From all three surveys (86313, 86320, 86323) or
from the first and last surveys (86313, 86323)

IV. WIND STRESS CURL FORCING

NOT INCLUDED INCLUDED

If included, one of four wind stress curl values,
calculated within the OPTOMA 23 domain, was used
(north, central, southern, or spatially averaged)

V. BOTTOM TOPOGRAPHY

NOT INCLUDED INCLUDED

If included, an unlimited topography or one restricted
to depths greater than 3400 m was used.

VI. "OPTIMAL" RUNa

PERSISTENCE FIELD VERIFICATION FIELD

With data from all three surveys (86313, 86320, and
86323) or from the first and last surveys (86313, 86323)

VII. DATA SUBSAMPLINGa

FULL ONE-HALF ONE-QUARTER ONE-EIGHTH

With combinations of data from 50, 150, and 150 m

Notes:

a - These model runs used the optimal configuration deteirmined
from previous sensitivity tests (i.e., 6 levels, OPTOMA 23
stratification, interpolated boundary conditions, no wind
stress curl, and no bottom topography).
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B. FULL FIELD INITIALIZATION AND SENSITIVITY ANALYSIS

1. Model Parameters

The domain of the QG model was increased from a 150 km by 150 km

square, used in past OPTOMA experiments (e.g., Rienecker and Mooers,

1989) to a 225 km by 500 km domain. Initialization and boundary

conditions were provided from OA dynamic topography in the three upper

levels (50, 150, and 400 m, referenced to 450 m) for OPTOMA 23 survey

days (86313, initialization; 86320, boundary condition update; and,

86323, verification, Figure 5.1). Fields for the three lower levels (at

1050, 2150, or 3400 m) were provided by an internal routine, which

extended data from the three upper levels to the lower three levels

using Emprical Orthogonal Functions (EOFs).

The QG model was run with model parameters specific to the OPTOMA

domain and verified during past OPTOMA experiments (Rienecker and

Mooers, 1989). The advective time scale in the domain (d/V) was ca.

three days and the planetary time scale (1/0d) was ca. 23 days (with d

= 50 km, V = 20 cm/s, and 8 = 10-I1 s- m-). (Other scaling parameters

were: thermocline depth, Ht= 150 m and depth, H = 4000 m). The grid

spacing was 20 km and the model had 11 X 25 lateral gridpoints. The six

vertical levels were at 100, 200, 600, 1533, 2767, and 4000 m.

The Adams-Bashforth finite difference method for time derivatives

was conditionally stable with a time step of two hours (i.e., the scheme

was stable when the time step, 6t, was not greater than the amount of

time necessary for a signal to move one grid,. Occasionally, with

subsampled fields or with some wind stress curl forcing cases, the time
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step was halved to one hour. (Table 20, Appendix G, is an example and an

explanation of typical data inputs to run the model).

Hindcasts proved to be insensitive to the differences in three

stratification profiles derived from: November GDEM climatology, the

OPTOMA ensemble, and the observed OPTOMA 23 data. The non-dimensional

stratification scale, r 2 , and the normalized stratification, a(z), were

calculated from the Brunt-Vaiasala frequency, N(z), for each level

(Table 13). (N 2(z) was evaluated from the surface to 4000 m directly

from climatology. It was fit to an exponential function with a value of

0.227 X 10- 4 s-2 at 300 m and an e-folding depth of ca. 800 m for the

OPTOMA data, Rienecker and Mooers, 1989.)

2. Boundary Conditions

Boundary conditions for the hiiidcasts were provided by OA fields

with a domain larger than the QG domain (they were calculated along the

outer two grids). They were either persisted, in a step-wise fashion

from survey-to-survey, or linearly interpolated between surveys (also

called "benchmark" boundary conditions). Since the cyclonic features on

the boundaries were quasi-stationary, the boundary conditions during

OPTOMA 23 did not change dramatically over the course of the survey. Two

hindcasts were made for each boundary condition type; one updated the

boundary conditions on day 86320, the other did not.

Qualitatively, when boundary conditions were persisted, there was

little change in the hindcast fields (Figure 5.2). For the first five

days, there was little difference between persisted and interpolated

cases (Figure 5.3). In the "interpolated" hindcast, as new boundary
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TABLE 13. NON-DIMENSIONAL N /N(Z), a(Z), QG MODEL VALUES0

DEPTH (i) NOV GDEM OPTOMA OPTOMA 23
ENSEMBLE

0 1.87 1.39 1.37

100 1.38 1.26 1.61

200 2.72 2.48 6.35

600 13.66 11.64 11.40

1530 50.58 38.08 50.50

2770 193.60 184.98 245.30

4000 1030.30 886.81 1175.90

Other Parameters:

r2  6.439 7.481 5.641 (note a)

N 1.43 X 10-4  1.23 X 10-4  1.63 X 10-4  (note b)

Notes:

a r = f2d2/No2ht2  where f (coriolis) is 0.91 X 10 4 s at 3d N,

d (length scale) is 50 km,, and ht (thermocline vertical length

scale) is 150 m

b - N is the mid-thermocline (ca. 50 to 100 m) Brunt-Vaisala0

frequency; units are s
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conditions were inserted, AC1 moved to the northwest at ca. 5 km/day and

C2 strengthened (as observed). Quantitatively, throughout the ten-day

period, the interpolated boundary condition hindcasts were better than

the persisted hindcasts. When compared with a verification field on day

86323, the interpolated boundary conditions resulted in ca. the same

pattern correlation and RMSN (0.92 and 42%) as the persisted boundary

conditions. Boundary condition updates on day 86320 improved the scores

(Table 14).

3. Bottom Topography Effects

The OG model had a rigid lid and fixed levels. When bottom

topography was incorporated in the model, it had an effect upon -P in the

lower level through vertical velocity (equation 2.7) and first-order

continuity. * in upper levels was affected through the thermal vorticity

term (equation 2.5).

Bottom topography for the QG model came from the 5' by 5' (10 km)

DBDB5 NAVOCEANO data base. The sea floor is flat, with slope of order

10- 3 except for a small seamount in the southwest quadrant of the

domain, which rises above the seafloor ca. 500 m with a slope of ca. 5%,

and the continental slope in the northeast corner (Figure 5.4).

The QG constraint requiring no zero-order vertical velocity

effectively limits bottom slope to order c (.02). The slopes, from both

the unsmoothed DBDB5 data set and the OA bottom topography fields, even

at their steepest in the northeast corner, were of order c. However, the

vertical flow over the seamount could have had an effect upon the QG

model (assuming significant ho'izontal flow at depth).
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The topographic 1-effect (0t) was compared to the planetary

s-effect through:

ot = f H /htd (equation 5.1),

where f is the coriolis parameter (ca. 10- 4 s- ), H is the bottom depth

(4000 m), ht is the thermocline vertical length scale (150 m), and d is

the length scale (50 km) (Ikeda et al., 1989). Over the seamount in the

southwest corner of the domain, where Hb is 2000 m, t is ca. 10- 8 ,

significantly greater than 0, ca. 1

To avoid potential problems caused by bottom topography, the

DBDB5 data were smoothed and interpolated to the model grid using the OA

routine (Figure 5.5). The seamount was smoothed out by the OA routine;

to the northwest, bottom depths rose above 2500 m (level five in the

model is at 2767 m). Topography was scaled by dividing through by the

thermocline depth, ht, and the Rossby number, c, to be consistent with

the non-dimensionalization procedure followed in deriving the governing

equation (equation 2.4).

Hindcasts were made using full field data inputs, OPTOMA 23

stratification, interpolated boundary conditions, and bottom topography.
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the lower three levels were filled through the EOF data extension

technique or by climatology. Qualitatively, with both EOF data extension

and climatological lower levels, the surface field was markedly affected

after ta. five days (Figure 5.6). The anticyclone on the eastern

boundary (ACl) moved rapidly to the northwest (ca. 20 km/day),

increasing the gradient between ACi and the cyclone to the north (Cl)

and the cyclone on the western boundary extended to the northeast. Lower

levels showed the impact of positive vertical velocity in the northeast

corner of the domain: there was divergence and anticyclonic flow in

level 5 (potential vorticity was conserved).

Quantitatively, incorporation of bottom topography and EOF

extension resulted in a correlation of 0.85 and a RMSN of 53% in the

upper level. The lower levels were also highly correlated (ca. 0.75),

except for level 5 (0.34) for the reasons noted (Table 14). Truncation

of the bottom topography, to depths deeper than 3400 m, had similar

results. When input fields which included climatological fields at depth

were used to initialize the model, the hindcasts were qualitatively and

quantitatively worse (upper level correlation of 0.34 and RMSN of 188%)

although the lower level was less energetic (Table 14).

4. Wind Forcing

Wind stress curl forces the surface layer through Ekman pumping

(equation 2.6). In past applications, wind stress curl forcing in the QG

model improved pattern correlation, from 0.73 to 0.96, and reduced RMSN

from 85 to 28% (Rienecker and Mooers, 1988). Since the QG model used a

single value of stress over the entire domain and the Rienecker and

Mooers (1988) domain was ca. one-fourth the size of the OPTOMA 23
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domain, similar results were not necessarily expected. (Whether or not

differential stress curl contributed to the evolution of the mesoscale

field during OPTOMA 23 w-s not addressed).

FNOC Marine Boundary Layer (MBL) winds were used to derive wind

stress and wind stress curl on a 2.5 degree grid twice a day (Figure

5.7). The MBL winds were derived from the pressure analysis for the

lowest level (19.5 m) in the Navy Operational Global Atmospheric

Prediction System (NOGAPS) and wind observations, added using a Cressman

over-relaxation technique.

The winds were converted to surface wind stress and the drag

coefficient was corrected for stability and wind speed (equation 3.6).

(The air-sea temperature difference, from NDBC buoys moored off the

coast along the eastern border of the domain, averaged -0.5 0C.) Drag

coefficient values ranged from 0.9 to 1.3 x 10-3 (Smith, 1988), a

slightly larger range than other valued used in the past, ca. 1.1 to 1.2

x 10-3 (Large and Pond, 1981, and Smith, 1980).

Wind stress curl was calculated using a centered finite

difference scheme at the northern, center, and southern MBL gridpoints

within the OPTOMA 23 domain. A spatial average was also calculated. Wind

stress curl values during the OPTOMA 23 survey ranged from ca. -3.0 to

4.0 x 10 -8 dynes/cm 3 (Figure 5.8).

The MBL wind stress curl values during OPTOMA 23 were similar to

those calculated during other OPTOMA winter experiments (Rienecker and

Mooers, 1989). Because of the large grid spacing (300 km), estimates of

wind stress curl from MBL winds were expected to be conservative (low).
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Figure 5.7 The OPTOMA 23 domain with MEL gridpoints (x), at 2.5 degree
resolution, and NDBC buoy positions (dots). Wind stress curl was
calculated at the northern grid point (N), the central (C), the southern
(S), and area-averaged.
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However, spot wind stress calculations using NDBC buoy data were of

similar magnitude (6Tx /6y was calculated because the buoys were roughly

aligned north-south). These buoys observations were not independent from

the MBL data set, but the buoys were not spaced as far apart as the MBL

grids (ca. 100 km). Aircraft wind observations at 1000 feet were closely

spaced (ca. 50 km), but they were stronger (ca. 10 to 20 m/s) and the

wind stress curls were much larger than at the surface. Hence, aircraft

winds were not used to evaluate MBL winds.

Four hindcasts with wind stress curl forcing from the three

gridpoints and the area-average were made. Qualitatively, the

incorporation of wind stress curl forcing made little difference (Figure

5.9). Quantitatively, the correlation was lower (dropping to ca. 0.80)

and RMSN was higher (rising to ca. 65%); the center gridpoint and

averaged wind stress cases were the best of the four used. Incluion of

bottom topography with wind stress curl forcing changed the scores only

slightly (Table 14).

C. OPTIMAL CONFIGURATION HINDCASTS

1. Optimal Hindcasts Fields

The optimal configuration, i.e., the configuration with the best

overall comparison with the verification field, was: OPTOMA 23

stratification, three-level initialization fields (three upper level

filled by OA inputs mapped from full fields on days 86313, 86320, and

86323, with the three lower levels extended by EOF), interpolated

boundary conditions, no wind stress curl forcing, and no bottom
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topography (Figure 5.10). This hindcast qualitatively and quantitatively

compared the best with the verification nowcast on day 86323 and had a

pattern correlation and RMSN of 0.92 and 42%, respectively. The

correlations and RMSN were similar at all six levels.

The streamfunction, in the upper level, ranged from -3.01 to 2.63

with a mean of 0.03 and a standard deviation of 1.06 (non-dimensional

units). The mean and standard deviation decreased with depth. Four

mesoscale features (Cl to the north, C2 to the southwest, AC to the

east, and AC2 to the southeast), identified originally in OA fields,

were recognizable in the hindcasts. C1 remained on the northern border

and increased in size and intensified; C2 remained quasi-stationary; AM

moved northwest through the domain at ca. 6 km/day; and AC2 was a quasi-

stationary ridge feature extending southwest.

In contrast, the nowcast persistence field, from day 86313, had a

pattern correlation and RMSN of 0.78 and 88% when compared with the

verification nowcast on day 86323 (Table 14). For further comparison,

the model was initialized with GDEM November climatological dynamic

topography, persisted boundary conditions, and no wind stress curl

forcing or bottom topography (Figure 5.11). The climatological hindcast

(climatological data which were dynamically balanced by the model and

called "dynamic climatologies") compared poorly with the verification

nowcast; the pattern correlation and RSMN were nowcast were 0.42 and

144%, respectively (Table 14). (The pattern correlations and RMSN for

all variations leading to the selection of the optimal configuration are

plotted in Figures 5.12, 5.13, and 5.14.)
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TABLE 14. FULL FIELD QG COMPARISONS

INPUTa INPUT b BOUNDARY WIND BOTTOM LEVEL CORR RMSN
FIELD LEVELS CONDITIONS STRESS TOPOGRAPHY

Stratification

13,20 3 PERSISTED NO NO 1 0.82 62%
GPEM
13,20 3 PERSISTED NO NO 1 0.82 62%
OPTOMA ENSEMBLE
13,20 3 PERSISTED NO NO 1 0.82 62%
OPTOMA 23

Boundary Condition Tests

13,20,23 3 INTERPOLATED NO NO 1 0.92 48%
13,20,23 3 PERSISTED NO NO 1 0.93 42%
13,23 3 PERSISTED NO NO 1 0.82 62%
13,23 3 INTERPOLATED NO NO 1 0.65 58%

Bottom Topography

13,20,23 3 INTERPOLATED NO YES 1 0.85 53%
5 0.34 85%
6 0.75 67%

13,20,23 3 INTERPOLATED NO YES 1 0.34 18R%
3, Climatology

Wind Stress Curl Forcing

13,20,23 3 INTERPOLATED YES Cc  NO 1 0.83 65%
YES N NO 1 0.83 72%
YES S NO 1 0.81 71%
YES A NO 1 0.77 87%
YES C YES 1 0.86 58%

Notes:

a - Julian day 13 (86313); 20 (86320); or 23 (86323)
b - upper three levels are full fields; lower three are either

filled by EOF extension of upper three levels or by climatology
c - C is the wind stress curl from the center grid; N, the northern grid;

S, the southern grid; A, the average of all three (N, C, and S)

CORR - correlation;
RMSN - Root Mean Square, normalized by the standard deviation of the
verification field on day 86323
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TABLE 14. FULL FIELD QG COMPARISONS (CONTINUED)

INPUTa INPUT b BOUNDARY WIND BOTTOM LEVEL CORR RMSN
FIELD LEVELS CONDITIONS STRESS TOPOGRAPHY

Persistence

13 3 PERSISTED NO NO 1 0.78 88%

Dynamic Climatology

NOV GDEM 3 PERSISTED NO NO 1 0.42 144%
6 0.54 110%

Notes:

a - Julian day 13 (86313); 20 (86320); or 23 (86323)
b - upper three levels are full fields; lower three are either

filled by EOF extension of upper three levels or by climatology

CORR - correlation;
RMS - Root Mean Square, normalized by the standard deviation of the
verification field on day 86323
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2. Diagnostics

Daily model diagnostics were computed for each level. These

diagnostics included: thermal and relative vorticity (Z), potential

vorticity (0), and kinetic energy (1Vw1 2/2, NRG), maximum velocity,

pattern correlation (CORR), and RMS (difference between q fields).

The thermal and relative vorticity, potential vorticity, and

kinetic energy diagnostics were area-integrated (over the full domain).

In a closed basin, with no sources or sinks of heat or momentum, the

model conserves potential vorticity and kinetic energy (as well as

enstrophy, 2). In the OPTOMA 23 experiments, these were not constant

due to the inflow/outflow of mass through open boundaries and the

dissipation-like effects of filtering.

The energy and vorticity values in the upper two levels (the near

surface and thermocline levels) were an order of magnitude larger than

those in deeper levels (Figures 5.15, 5.16, and 5.17). Total kinetic

energy, and kinetic energy in levels one and two, were fairly constant

with initially high values dropping after three days. Total thermal and

relative vorticity peaked near day 86321 (coincident with the new

boundary conditions) and decreased steadily thereafter as the

anticyclonic features propagated westward through the domain.

The vorticity values peaked on day 86321 and decreased through

the end of the 30 day hindcast; potential vorticity was nearly constant

through the same period. There was no evidence of "ringing" (i.e.,

dramatic changes in the field as the model dynamically adjusts to the

initialization field).
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The use of OA fields of dynamic topography for initialization helped

ensure that the QG model started from a "realistic" state. Except for

the subsampled fields, the OA fields were from full-data sets and they

were smoothed by a Shapiro filter.

3. GEOSAT SSH Hindcast (86329)

The initialization field on day 86313 was hindcast to day 86329

to determine if QG dynamics accounted for the observed SSH field on day

86329. Boundary conditions were interpolated from day 86313 to day 86323

and persisted from then on. Wind stress curl forcing and bottom

topography were not incorporated.

Although the boundary conditions on day 86323 fixed the mesoscale

field in position past day 86323, the hindcast does qualitatively

reproduce the major features in the SSH field on day 86329 (Figure

5.18). However, the OG hindcast propagated the anticyclonic zone further

west than the observations indicate. Quantitatively, the QG forecast

field had a correlation of 0.67 with the SSH field and had a maximum

northward speed of ca. 37 cm/s. The SSH field had a maximum northward

speed of 33 cm/s. (In comparison, the correlation between the SSH field

and a 10-day OA forecast SDH field was 0.47 and the OA field had a

maximum northward speed of 20 cm/s.)

4. Temperature Extractions

The motivation for extraction of temperatures from the QG model

came from the acoustic modeling community. Of the three parameters which

determine sound speed (temperature, salinity, and depth), temperature

has the most pronounced effect near the surface (&C/ST = 2.4 m/s/*C);
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6C/Sz, the gradient of sound speed with respect to z, determines the arc

of the ray oLiginating at that depth (Urick, 1982).

While MCSST or other SST estimates are accurate and readily

available, temperatures at depth in most parts of the ocean are not.

Unlike a primitive equations (PE) model, in a QG model, temperature (T)

must be analytically or empirically derived at the interfaces between

levels. From the hydrostatic equation, T is proportional to the vertical

derivative of *, 6*/Sz; however, the "analytical" approach does not

produce accurate values of T because of scaling considerations and the

selection of a mean temperature profile (the temperature perturbations

are added to the mean). Instead, temperatures have been derived

empirically from OG hindcasts in the following manner:

(1) characteristic values for in situ * are identified at each
model level (plus the top and bottom),

(2) corresponding temperature profiles are obtained from in
situ values or historical data bases and a value of T is
assigned to the charcteristic * at each model level, and

(3) the appropriate T at each gridpoint is determined by
linear interpolation between the two closest
characteristic * (Glenn and Robinson, 1989).

Three methods of extracting the temperature at 100 m (T100) were

compared. Two were based upon Glenn and Robinson (1989); the first used

in situ observations of T and *, the second used climatological values.

The third method empirically related T to 6*/&z, instead of *.
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The 'in situ', 'climatological', and 'vertical derivative'

temperature equations were:

T = 0.43* + 9.3 (equation 5.2),

T = 2.20* + 9.5 (equation 5.3), and

T = 1.236*/6z + 9.3 (equation 5.4).

TiO fields were generated from QG hindcasts on days 86313 and

86323 and compared with T100 OA fields. Qualitatively, both the in situ

and vertical derivative methods reproduced the temperature fields on

days 86313 and 86323 (Figures 5.19 and 5.20). While both of these

methods accurately derived the mean temperature and variance of the

observed fields (ca. 9.3 0C and 0.20 0C squared), the vertical

derivative was the most accurate with a pattern correlation of 0.93 and

a RMSN of 61%. (The in situ scores were 0.71 and 76%, respectively.)

Qualitatively and quantitatively, the climatological method was the

least accurate (with a pattern correlation of 0.71, a RMSN of 88%, and a

variance ca. four times that of the other methods, 4.54 OC squared).

A T100 difference field was calculated between days 86313 and

86323 for both vertical derivative and in situ methods (Figure 5.21).

With both methods, warming -n the southern part of the domain was

observed apparently in conjunction with the fall transition. The

difference field from the vertical-derivative temperature fields was

more accurate (pattcrn correlation of 0.90 and RMSN of 11%).
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D. DATA SUBSAMPLING

1. Subsampling Techniques

The QG model has been shown to be very sensitive to data inputs

and initial conditions (Appendix H). An initial estimate of data

requirements for mesoscale modeling was four hydrographic measurements

per Rossby Radius per synoptic period (Walstad, 1988). This was a

theoretical upper limit and equated to a station spacing of ca. 6 km and

thousands of casts in the OPTOMA 23 domain. (OPTOMA 23 station spacing,

based upon operational and logistical constraints, was 30 km, and ca.

550 measurements were made.)

To assess the minimum data requirements for skillfull QG nowcasts

and hindcasts (pattern correlation of 0.60 or greater, Rosmond, 1989),

OPTOMA 23 dynamic height data were subsampled. As with PRT-5 data

(Appendix D), three subsampling techniques were utilized: alternate

(selection of every other point), random, and "smart pick" (Appendix G).

Data were reduced from ca. 160 observations for each field to 80 (one-

half fields), 40 (one-quarter fields), and 20 (one-eighth field) (Figure

5.22).

Objective analyses of dynamic topography, at 50, 150, and 400 m,

mapped using data from the three subsampling techniques produced results

similar to the PRT-5 subsampling. Qualitatively, most of the one-half

subsampled fields, some of the one-quarter subsampled fields, and a few

of the one-eighth subsampled fields reproduced the full field analyses

with skill (Figures 5.23, 5.24, and 5.25).

Quantitatively, in all cases, the basic statistics (mean and

standard deviation) of the subsampled fields were representative of
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those for the full fields (Table 21, Appendix G). The one-half fields

compared the best: pattern correlation ranged from 0.88 to 0.97,

averaged 0.93, with a standard deviation of 0.03; RMSN was the lowest,

10 to 30%. The average pattern correlation for the one-quarter and one-

eighth fields were 0.72 (standard deviation of 0.09) and 0.69 (standard

deviation of 0.11), respectively. The "smart pick" choices were only

slightly better than the random and every other selection.

The comparisons were worse, in general, for the subsampled fields

on day 86320, the boundary condition update survey. The full field

consisted of 84 observations on this day, significantly fewer

observations than from the initialization survey (123) or from the

verification survey (154); thus, .he subsampled fields were smaller.

Various combinations of full and subsampled random fields were

used as input fields into the optimal OG model configuration to simulate

different data quantity and sources. The subsampling experiments focused

solely upon the impact of data densitiy upon initial and boundary

conditions; thus, the optimal configuration incorporated OPTOMA 23

stratification, interpolated boundary conditions, and wind stress curl

forcing and bottom topography were not included.

The permutations of data inputs were combinations of full fields

and subsampled fields at different levels on days 86313, 86320, and

86323. These fields were used as initial and boundary condition fields.

Specific experiments were: a 'straight-forward' subsampling from full to

one-eighth fields to determine minimum data requirements for the 0G

model (referred to as the standard subsampling); subsampled initial

fields and full boundary condition updates to determine if the model
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could improve a poor initialization (initialization and boundary

condition subsampling); full fields in the upper level with

climatological fields at depth to simulate GEOSAT data (GEOSAT

simulations); and, fields at thermocline levels with climatology at the

surface and at depth to simulate Sofar float data (Sofar simulations).

2. Standard Subsampling

The standard subsampling OG modeling experiments were

initialized, and the boundary conditions were updated, by one-half, one-

quarter, and one-eighth fields on days 86313, 86321, and 86323.

Qualitatively, the one-half hindcasts reproduced the mnesoscale features

well (Figure 5.26). The one-quarter hindcasts also reproduced the

mesoscale features, but they were noisier (Figure 5.27). The one-eighth

hindcasts were poor, although the model filled data gaps and the areas

of cyclonic or anticyclonic activity were accurately delineated (Figure

5.28).

Comparisons between full and subsampled OA fields of dynamic

height provided initial correlation and RMSN; the QG hindcasts did not

match these initial scores; but, in general, skill was maintained.

Quantitatively, the half-fields performed the best, starting on day

86313 with a correlation of 0.95 and an RMSN of 32%. The correlation

dropped to a low of 0.74 and the RMSN rose to 70% just before new

boundary conditions were inserted on day 86321. After day 86321, the

correlation rose to 0.80 and the RMSN leveled off. The one-quarter field

exhibited similar behavior with the correlation dropping from 0.73 to

0.66 before rising; however, the QG model improved the initial RMSN from

142% to ca. 80%. The correlation for the one-eighth field hindcast
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dropped from 0.62 to 0.44 and skill was lost after ca. one day when the

correlation dropped below 0.60. RMSN for the one-eighth hindcast

remained high, ca. 115% (Figure 5.29 and Table 15).

3. Initialization and Boundary Condition Subsampling

QG hindcasts were run with subsampled (one-half, one-quarter, and

one-eighth) initial fields and full boundary condition updates to

quantify whether or not the OG model could recover a poor

initialization. Qualitatively, the one-half hindcasts reproduced the

mesoscale features well and there was little difference between this and

earlier cases although the ridge to the south was amplified (Figure

5.30). The one-quarter hindcasts also reproduced the mesoscale features

and the noisiness identified in earlier cases dissipated after three or

four days (Figure 5.31). The one-eighth hindcasts were poor, although

the model filled data gaps and the areas of cyclonic or anticyclonic

activity were accurately delineated (Figure 5.32).

Quantitatively, correlations and RMSN values were similar to, but

slightly worse than the standard subsampling cases. As with the

subsampled case, most original OA scores were not matched, but skill was

demonstrated. Quantitatively, the half fields performed the best,

starting on day 86313 with a correlation of 0.95 and an RMSN of 32%. The

correlation dropped to a low of 0.74 and the RMSN rose to 70% just

before new boundary conditions were inserted on day 86321. After day

86321, the correlation rose to 0.80 and the RMSN leveled off. The one-

quarter field exhibited similar behavior with the correlation dropping

form 0.73 to 0.66 before rising; however, the OG model improved the

initial RMSN from 142% to ca. 80%. The correlation for the one-eighth
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for the one-eighth field hindcast dropped from 0.62 to 0.44 and skill

was lost after ca. one day when the correlation dropped below 0.60. RMSN

for the one-quarter hindcast remained high, ca. 115% (Figure 5.33 and

Table 15).

Qualitatively, a related experiment, hindcasts for ten days with

good initialization fields and poor boundary condition updates (one-

half, one-quarter, and one-eighth fields on day 86321), were not much

different from the optimal hindcast and showed no significant impact on

the mesoscale features. Qualitatively, correlations and RMSN values were

slightly worse than the optimal hindcasts (Table 15). However, these

were ten-day hindcasts and the poor boundary conditions were inserted

near the end of the period. If these were persisted past ten days, the

mesoscale fields would be poorly reproduced.

4. GEOSAT and Sofar Simulations

Simulated GEOSAT and Sofar initialization and boundary condition

update fields were created by combining upper level OA dynamic height

fields with lower level climatology (GEOSAT) and mid-level (150 and 400

m) OA dynamic height fields with upper and lower level climatology

(Sofar). Hindcast experiments included GEOSAT or Sofar initialization

and combinations of GEOSAT, Sofar, or full data boundary condition

updates.

Qualitatively, GEOSAT initialization did locate mesoscale

features accurately; however, in all cases, the range of values was

lower than the verification field and the fields appeared noisier,

especially when GEOSAT boundary conditions were used (Figure 5.34).

Quantitatively, all simulations showed skill in pattern correlation, and
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the simulation with full boundary conditions updated scored best with a

pattern correlation on day 86323 of 0.80, and a RMSN of 75%. (Figure

5.35, Table 15).

Qualitatively, the QG model rapidly filled in the initial

climatological upper level and all of the Sofar initialization hindcasts

located the mesoscale features accurately. As in the GEOSAT simulation,

the range of values in the Sofar hindcasts was less than that observed

in the verification field and the fields appeared noisier (Figure 5.36).

Quantitatively, insertion of data at two levels (2 and 3) did not

improve the single level initialization much (correlation changed from

0.73 to 0.74, and RSMN dropped from 93 to 75%). Boundary condition

updates improved the scores more so; full boundary condition updates on

day 86323 increased the pattern correlation to 0.82 and reduced RMSN to

62% (Figure 5.37, Table 15).

5. Temperature Extractions from Subsampled Hindcasts

Temperature extractions were calculated for the standard

subsampling cases (subsampling of one-half, one-quarter, and one-eighth)

using the vertical derivative method (equation 5.4) (Figure 5.38).

Qualitatively, on day 86313, the one-half field reproduced the T100

observed field well with a pattern correlation of 0.95 and RMSN of 31%.

The one-quarter field also showed statistical skill, but it reproduced

only a few of the features. It had a pattern correlation of 0.73 and a

RMSN of 142%. The one-eighth field also was poor (0.62 and 119%). The

quality of the extracted T100 field deteriorated with forecast time with

pattern correlations dropping and RMSN rising in all but one case, the

one-quarter subsampling (Figure 5.39).
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TABLE 15. OG SUBSAMPLED COMPARISONS

INPUTa  INPUTb  BOUNDARY WIND BOTTOM LEVEL CORR RMSN
FIELD LEVELS CONDITIONS STRESS TOPOGRAPHY

Optimal Configuration

13,20,23 3 INTERPOLATED NO NO 1 0.92 42Z

Standard Subsampling

13,20,23 1/2 INTERPOLATED NO NO 1 0.77 72%
1/4 1 0.71 82%
1/8 1 0.44 115%

Poor Initialization; Good Boundary Conditions Subsampling

13,20,23 1/2 INTERPOLATED NO NO 1 0.82 73%
1/4 1 0.72 81%
1/8 1 0.62 105%

Good Initialization; Poor Boundary Conditions Subsampling

13,20,23 1/2 INTERPOLATED NO NO 1 0.89 46%
1/4 1 0.83 53%
1/8 1 0.72 61%

GEOSAT Simulation

13,23 SFC INTERPOLATED NO NO 1 0.80 77%
TO FULL FIELD

Sofar Simulation

13 150 M PERSISTED NO NO 1 0.73 93%
13 150 M PERSISTED 1 0.74 75%

450 M
13,23 150 M INTERPOLATED 1 0.82 62%

450 M TO FULL FIELD

Notes:

a - Julian day 13 (86313); 20 (86320); or 23 (86323)
b - upper three levels are full fields; lower three are either

filled by EOF extension or by climatology

CORR - correlation;
RMSN - Root Mean Square, Normalized by the standard deviation of the
verification field on day 86323
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E. SUMMARY AND DISCUSSION OF QG MODELING

There was not much change in the ocean field over the ten day OPTOMA

survey period. Most QG nowcasts and hindcasts located the mesoscale

features accurately, but RMSN varied greatly with data inputs. The

significance of tha individual hindcast scores lies in how well the

hindcasts did with respect to persistence and climatology. Persistence

scores were good (0.78 and 88%, pattern corrolation and RMSN,

respectively) and proved hard to beat without full data inputs (if there

had been more change in the mesoscale fields, persistence scores would

be worse). As expected, climatology represented the mesoscale activity

poorly (0.42 and 144%).

With the cyclonic features on the north (Cl) and southwest (C2)

boundaries being quasi-stationary, the principal dynamic event was the

movement of an anticyclonic feature (AC1), from the eastern boundary of

the domain off Point Arena, to the northwest at ca. 5-to-6 km/day. A

secondary event, the apparent movement of an anticyclone (AC2) from the

southeastern boundary north (as seen in the Z08 field, Figure 4.19), was

not resolved by the QG model. Instead, a persistent ridge extended

southwest through the domain from the initialized position.

The optimal QG model configuration for OPTOMA 23 utilized OPTOMA 23

stratification, interpolated boundary conditions, no wind stress curl

forcing, no bottom topography, and full data fields extended from the

upper three levels to the lower three by EOF's. Although the optimal

configuration used OPTOMA 23 data for stratification, the hindcasts were

robust to stratification scales. Interpolated boundary conditions

allowed the model to adjust to the insertion of new data over time (in a
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linearly interpolated fashion). Persisted boundary conditions were

abruptly introduced and forced the model to adjust to an instantaneous

change in boundary conditions. The inclusion of wind stress curl forcing

and bottom topography both had a detrimental effect upon the quality of

the hindcasts; the single value of wind stress curl used over the entire

domain may not have been representative of actual forcing and the steep

bottom topography in the northeast made the QG approximation invalid.

The 0G hindcasts were most sensitive to initialization and boundary

conditions. A decrease in data quantity was seen to directly impact

hindcast skill; however, skill was still shown at a one-quarter

subsampling (with pattern correlation greater than 0.60). Initialization

of deep fields was crucial to overall mesoscale development as was

observed by the use of climatology in the upper and lower levels in

GEOSAT and Sofar hindcast experiments. In these initializations, the Q(

model located features accurately and the pattern correlaions were

high, but RMSN values were high due to the low range of * values (with

respect to observations) in the upper level of the hindcast. These

simulations improved as more data were added through boundary condition

updates.

In other experiments, the QG model was able to forecast the features

in the mesoscale field observed in GEOSAT SSH on day 86329, six days

after the conclusion of the OPTOMA 23 survey, and TIO fields, derived

from an empirical relationship between T100 and 6*/Iz, were accurate.

The 0G hindcasts showed a warming trend, also observed in OA fields, in

the southern part of the domain which occurred between the start and

finish of OPTOMA 23.
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VI. THE FALL TRANSITION OF 1986

A. GENERAL

Fall transitions, the change in the CCS from southward surface flow

and northward subsurface flow to northward flow over the continental

slope and shelf, have been observed in coastal sea level (SL) and SST

data, and in nearshore moored-buoy and current meter records (Chapter

II). There have not been associated analyses of the offshore mesoscale

field during the fall transition (nor during the spring transitions).

In the OPTOMA domain, the summer atmospheric and oceanic conditions

are characteristic of an upwelling regime with persistent equatorward

winds, relatively cool water over the continental shelf, and low coastal

SL. Near capes, the cool water is often advected offshore in cool

filaments tens of km wide and hundreds of km long by strong mesoscale

features (Rienerker et al., 1985, and Flament et al., 1985). During the

winter, the winds are variable (occasionally equatorward), there is

relatively warm water over the continental shelf, and the coastal SL are

high. Some mesoscale features exist, but they are weaker and less

densely packed than those in the summer.

The spring transition between the two regimes typically occurs over

a period of a few days or a week in March or early April. Fall

transitions, starting in November or early December, are not as

pronounced as spring transitions and sporadic upwelling may continue

through the winter. A cessation of winds favorable for upwelling (the

Aleutian Low deepens near 40 N and 150 W and the 500 mb flow becomes

zonal), an increase in coastal temperatures, and a rise in coastal SL
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(as the southward flowing California Current is "displaced" in upper

ocean, coastal waters by the northward flowing Davidson Current) are

expected with fall transition (Strub and James, 1988).

B. COASTAL DATA PROCESSING

Atmospheric and oceanic conditions along the California coast were

examined over a six-month period from July through December 1986 (the

OPTOMA 23 survey was between 9 and 19 November 1986). SL data from

NOAA/NOS tide gauges at six coastal stations, data from nine National

Data Buoy Center (NDBC) moored buoys (SST, 10 m winds, and sea level

pressure), SST data from Granite Canyon (40 km south of Point Sur),

analyses from FNOC (Marine Boundary Layer (MBL) winds, surface and 500

mb analyses), and Bakun upwelling indices at four positions were

analyzed to determine when the Fall Transition of 1986 started.

Additionally, satellite-derived surface velocity vectors (near the

coast), offshore observations (CTD's and XBT's), and GEOSAT data (a 17-

day ERM SSH OA field) were used to confirm and expand upon the coastal

observations.

Hourly data (coastal SL and NDBC buoy data) were filtered using a

Godin filter, which has a low pass of 0.0 to 0.8 cpd (30 hours) and a

half amplitude of 0.4 cpd (66 hours); this filter effectively reduces

diurnal and semi-diurnal components of the original data to zero (Godin,

1972). The SL deviations were hydrostatically corrected for atmospheric

pressure (equation 3.9) and demeaned.

Granite Canyon is a coastal site 15 km south of Monterey (ca. 50 km

north of NDBC buoy 46028 and 150 km southwest of NDBC buoy 46012)
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included in this analysis to provide a coastal "benchmark" for

comparison with SST measured offshore by the NDBC buoys. It is

representative of open ocean measurements; the site has excellent

exposure to the deep ocean with the continental shelf break less tha,, 10

km offshore. Bucket SST's were measured to the nearest 0.1 OC at ca.

0800 local daily (thus, the possibility of aliasing by the predominately

semi-diurnal tide, Breaker and Mooers, 1986).

The SST range at Granite Canyon during 1986 was ca. 3.5 0C with a

minimum in April and May due to coastal upwelling and a maximum in

September and October. In the fall, the mean temperature dropped from

13.0 0C in early October to 12.5 OC in early November. There was a 0.5

0C rise in the middle of November followed by a drop to 12.4 0C in early

December.

Six-month time series of winds were generated from MBL winds (on a

2.5 degree grid and at a level of 19.5 m) and winds from six NDBC buoys

(these are not independent data sets). Both wind sets were decomposed

into alongshore and cross-shore components using a counter-clockwise

rotation of 20 degrees. Wind stress was computed from the winds using

the drag law (equation 3.7) at five points along the coast (Figure 6.1).

Bakun upwelling indices were computed by the NOAA/NMFS Pacific

Environmental Group. These indices describe offshore Ekman transport in

cubic meters per second per 100 m of shoreline; the larger the number,

the more transport offshore. Values were calculated from FNOC 6-hourly

objectively analyzed synoptic wind/pressure analyses (Mason and Bakun,

1986).
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Figure 6.1 Gridpoints for MBL winds (X) and the positions of the six
NIDBC moored buoys (circles). Time series of winds were analyzed at grids
labelled 1 through 5. Bakun indices were calculated at 33, 36, 39, and
42 N (squares).
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C. DESCRIPTION OF THE TRANSITION

The 1986 time series of daily and weekly averaged Bakun upwelling

indices at 36 and 39 N depicted typical summer and winter periods

(Figure 6.2). A persistent positive (i.e., winds favorable for

upwelling) signal commenced at both latitudes in late March; the signal

was inconsistent in November and negative in early December. In early

November, the North Pacific High was near 40 N 140 W and there was a 500

mb trough over the southwestern United States; on 17 November, the

Aleutian Low, near 50 N 140 W, had deepened and the 500 mb flow was

zonal. This change was typical of a fall transition (Strub and James).

Hence, from consideration of the atmospheric forcing alone, the start of

the fall transition was expected in November or early December.

Upon closer review of the Bakun upwelling indices from 33 to 42 N in

the fall (Figure 6.3), there were four episodes of winds favorable to

coastal upwelling near the expected time of the fall transition: 4 to 9

November, 21 to 27 November, 29 November to 1 December, and 6 to 10

December.

The wind vectors, and the sea level pressures, from the six NDBC

data buoys nearest the OPTOMA 23 domain showed episodic atmospheric

events typically every five-to-seven days throughout the fall (Figure

6.4). Those episodes in November and early December were consistent with

the Bakun upwelling indices. The atmospheric events occurred

simultaneously or within a day along the entire coast. However, there

was a distinction between atmospheric regimes; the winds in the south

were predominantly southeastward while winds in the north were

predominantly northward. Variances in SLP and winds were less at the two
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Figure 6.2 1986 daily (vertical bars) and weekly average (short

horizontal bars) Bakun upwelling indices at 39 N (top) and 36 N

(bottom). Positive values indicate offshore transport.
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Figure 6.4 Low pass filtered wind vectors from 14 October- to 14 December

1986. The scale is in rn/s and the vectol is towards the direction the

wind is blowing; direction has not been rotated. The vertical lines

identify the four episodes of winds favorable for upwelling.
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southern buoys than at the four northern buoys. The alongshore and

cross-shore wind stresses from the four northern buoys confirmed that

winds favorable to coastal upwelling ceased in the north except for the

four events noted (Figure 6.5). The intervening periods between the

episodes had light and mostly onshore wind stress.

The first episode, which peaked on 7 November, included strongly

positive Bakun indices at all latitudes with a maximum at 39 N of ca.

300 (units are cubic meters per second per 100 m of coastline), the

largest signal during the three month period. For this episode, the

alongshore stress was as high as 10 dynes/cm 2 and cross-shore stress was

2as high as 6 dynes/cm . The hydrostatically-adjusted SL deviations along

the coast showed a dramatic drop (ca. 30 cm at Crescent City) from 3 tQ

9 November, followed by a larger rise (ca. 40 cm at Crescent City) from

10 to 19 November (Figure 6.6). This drop and rise cycle was coincident

with the onset and demise of the week-long period of strong winds. This

SL signal occurred first at Crescent City and progressed southward,

apparently covering 900 km over a two-to-three day period, about the

same time as an atmospheric wind event passed southward along the coast.

The winds favorable for upwelling ceased in the south first, and the

subsequent rise in SL took the same amount of time to progress northward

along the coast.

There was a 2.5 °C drop in SST over a two-day period at offshore

buoys first observed at the northernmost buoy (46014) on 7 November

coincident with the wind event favorable for upwelling and lower SL

(Figure 6.7). This SST signal also progressed southward as far as the
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Figure 6.7 Low pass filtered hourly SST from the northern three NDBC
buoys (top) and the southern three NDBC buoys plus Granite Canyon daily
SST (bottom) from 14 October to 14 December 1986.
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buoy south of Point Sur (46028); but did not reach the buoy off Point

Conception (46023) which only cooled to 16 OC. With the cessation of the

wind event and the rise in SL, the SST rose ca. 2 *C over a three-to-

five day period at the two northern buoys, at Granite Canyon, and at the

buoy offshore between Monterey and Port San Luis, 46028. The SST at the

other three buoys remained cooler (46023 got no cooler than 16.0 *C;

46026, 12.0 *C; and 46012, 12.5 OC) throughout the analyzed period in a

manner similar to the response reported by Breaker and Bratkovich

(1988). These buoys were all located near points or capes; i.e., sites

of coastal upwelling centers and positions of cool filaments.

The second episode, which peaked ca. 22 November, had moderately

positive Bakun indices south of 39 N with a maximum of ca. 175 at 36 N.

This event was less than half as intense as the first with an average

2
wind stress of ca. 5 dynes/cm . Between 19 and 22 November, a second

(larger) drop (ca. 40 cm at Crescent City), coincident with winds

favorable for upwelling, was followed by a second (smaller) rise from 22

to 28 November. The SL drops occurred more or less simultaneously along

the coast and, again, recovery progressed from south to north.

The second upwelling event started with winds favorable for

upwelling on 18 November and resulted in a uniform drop in SL and SST at

some sites a few days later. Again, the buoys off capes or points

generally did not react. However, the SST at the buoy off Point

Conception dropped ca. 1.5 0C from its earlier "floor" and the SST off

Point Arena, at buoy 46013, was constant at 12.0 *C. The drop in SST at

Granite Canyon was similar to the drops at the two closest offshore
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buoys, and it apparently occurred slightly after the drop at buoy 46012

to the north and slightly before the drop at buoy 46028.

The third episode, which peaked on 30 November, had weakly positive

Bakun indices at all latitudes with a maximum of 50 at 36 and 39 N. A

third smaller two-day drop in SL, which started on the 29 November

occurred more or less simultaneously along the coast. Qualitatively,

there was good correlation between the sea level and atmospheric signals

with the ocean responding in a manner typical to upwelling; i.e., there

were slight and temporary decreases in SST during this short period.

The final (fourth) episode, which peaked on 8 December, was

moderately positive at all latitudes with a maximum Bakun index of 125

at 39 N. There was a large increase (e.g., ca. 40 cm at Crescent City

and ca. 30 cm elsewhere) in SL, which peaked on 3 December. This episode

occurred during upwelling favorable conditions. The increase was first

observed at Port San Luis to the south and last observed at Crescent

City to the north two days later yielding an apparent propagation speed

of ca. 400 km day- 1. The following drop in the SL anomaly to nearly zero

occurred during southward and onshore winds.

The final (fourth) upwelling event differed in that the sea level

pressure was high, the Bakun index was high, the sea level dropped, but

SST did not change for most of the buoys. To the contrary, for most

buoys and Granite Canyon, the low SST on 25 November was followed by an

increase which continued through the first two weeks in December,

raising temperature ca. 0.1 *C/day for two-to-three weeks. The rise
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started in the south and traveled north at ca. 150 km/day to Monterey.

From Monterey north, the change was almost simultaneous.

D. CHANGES IN MESOSCALE FIELDS

Offshore, mostly in the OPTOMA 23 domain, a total of six OPTOMA

survey flights were flown between 9 and 19 November (Julian dates 86313

and 86323), deploying ca. 350 shallow AXBTs. During OPTOMA 23P3, ca. 20

AXBT's were deployed near Monterey Bay on 11 November (Julian Day

86315). From 15 to 19 November, the R/V POINT SUR was at sea making ca.

80 CTD and XBT observations during two quasi-synoptic surveys off

Monterey and Point Sur near a cool filament identified in satellite

imagery and in objectively-analyzed data fields from earlier survey

flights (Chapters III and IV).

The CTD's and XBT's acquired by the R/V POINT SUR were an

independent in situ data set (except for the use of the CTD's in

providing an average T-S relationship to use with the AXBT's in the

CENCAL domain) linking the coastal and offshore observations. The CTD

observations were acquired along two roughly parallel lines extending

ca. 250 km offshore from Monterey and Point Sur 50 km to the south

(Figure 6.8).

These data were analyzed in two ways: SDH, SST, T200, and S200 were

objectively analyzed on 16 November (Julian date 86320); and,

differences throughout the water column from the surface to 450 m were

calculated at positions common to the two ship surveys. These were

usually within two to three km and ca. 96 hours apart. Differences were

calculated by subtracting leg 1 data from leg 2 data in the vertical
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Figure 6.8 CTD and XBT positions during the two R/V POINT SUJR surveys in
November 1986. A-A' identifies the seven XBT's in the offshore group; B-
B', the three CTD's in the "off-filament" group.
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from the surface to 450 m at 17 positions. About half of the comparisons

were CTD measurements which provided an estimate of change in both

temperature and salinity fields. The remainder were XBT measurements or

a mix which provided only temperature changes.

The OPTOMA 23 domain was active with mesoscale variability (Figure

6.9). There were two cool filaments, one off Point Reyes and one off

Point Sur, which extended westward through the domain and were readily

identified in satellite IR images. There were two anticyclones (200 km

diameter) extending from the surface to depth which propagated westward

(ca. 5 km/day) over the course of ten days from the eastern boundary to

the center of the domain north of the cool filament axes. There were

also two quasi-stationary cyclones; one to the north and one to the

southwest. Z08 generally deepened towards the coast. Correspondingly,

temperatures at depth, e.g. T50, generally decreased towards the coast.

Mixed layer depths averaged 30 m and ranged from the zero to 40 m.

On 9 November, the jet appeared to enter the domain in the northwest

corner ca. 300 km offshore and turn towards Point Reyes where it

recurved seaward and joined flow from the south circulating around a

cyclone. It was at most 90 km wide and had a maximum speed of ca. 15

cm/s. The jet was similar ten days later although there was circulation

around the anticyclone off Point Reyes.

There was an anticyclonic feature near Monterey Bay on 16 November,

evident in the SDH field, but not in the SST field (Figure 6.10). The

northward geostrophic flow around this feature was ca. 10 cm/s. At 200

m, the feature was warm and less saline than the surrounding water

(Figure 6.11). These OA fields were generated from R/V POINT SUR, OPTOMA
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Figure 6.9 OPTOMA 23 fields at the beginning of the survey, 9 November
(left), and at the end of the survey, 19 November (right). Surface
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Figure 6.10 OA fields off Monterey Bay on 16 November 1986. SDH (top) is
referenced to 450 m and contoured at one dyn cm. SST (bottom) is
contoured at 0.25 *C. The crosses are data from the R/V Point Sur; the
dots are data from OPTOMA 23P3. OPTOMA 23P4 data was also used.
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Figure 6.11 OA fields off Monterey Bay on 16 November 1986. T200 (top)

is contoured at 0.25 OC. Salinity at 200 m (bottom) is contoured at 
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PPT. The crosses are data from the R/V Point Sur; the dots are data from
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23P3, and OPTOMA 23P4 data using a five-day temporal window and were

consistent with the fields in the OPTOMA 23 domain.

Satellite-derived surface velocity vectors from images on 11 and 12

November (Julian dates 86314 and 86315) showed the broad southward flow

associated with the California Current, its interaction with the cool

filament off Point Reyes, and the nearshore coastal jet flowing

northward at 10 to 20 cm/s (Figure E.9). The nearshore coastal jet was

present from the southern limit of the imagery (near Point Sur) to Point

Reyes where it appeared to be truncated by the cool filament "anchored"

there. North of Point Reyes, mesoscale features dominated the flow field

from the OPTOMA domain to the coast and there was no evidence of a

coastal jet. These conditions persisted a week later in satellite

imagery on 19 November (Julian date 86323, Figures E.10, E.11, and

E.12).

Difference fields of SST, temperatures throughout the water column

to 300 m, and the Z08 were calculated by subtracting the 9 November

fields from the 19 November fields (Figure 6.12). The SST difference

field showed a warming trend from the southern border of the domain to

as far north as Point Arena with an increase in SST as great as 1.2 'C.

The T50 field had also warmed, an average of 0.3 *C with a standard

deviation of 1.1 *C, in the same region except for a cool area

associated with the southern anticyclone. The cool filament off Point

Reyes was the northern boundary of the warming trend in both the surface

and T50 fields. The T100, T200, and T300 fields also warmed, about half

as much as the T50 field, mostly to the south.
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Figure 6.12 OPTOIIA 23 difference fields calculated by subtracting fields
on 9 November from the same fields observed on 19 November. SST and T50
are contoured at 0.2 0C intervals. T200 at 0.05 'C and Z08 at 10 m.
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During the winter, the isotherms in the mid-thermocline were

expected to be level; during active upwelling, they were expected to

slope upward towards the coast (Lentz, 1987). Mesoscale features

superimpose variation upon a "smooth plane". During OPTOMA 23, Z08

ranged from 130 to 270 m and it was difficult to determine a trend. The

difference field indicated shoaling of Z08 in the southern part of the

domain and off Point Reyes, and deepening near the anticyclone to the

south and offshore.

The difference between observed temperature and salinity profiles,

CTD's and XBT's from the R/V POINT SUR on 15 and 19 November were used

to verify change in the water mass indicative of the transition. To

avoid the effects of ..,ixed layer dynamics, difference calculations were

between 50 and 300 m. The average MLD was 24.5 m (standard deviation;

12.2 m; range, from zero to 40 m) on 15 November and it was deeper, 27.2

m (standard deviation, 8.8 m; range, 10 to 40 m), on 19 November.

Diurnal biases and effects of internal waves were not estimated.

The average temperature increased with the major warming occurring

between 50 and 150 m. At 50 m the average increase was 0.7 0C and the

standard deviation was the largest, 1.3 *C. This was an increase of ca.

0.2 0C per day. The average salinity change decreased, particularly

between 50 and 150 m (Figure 6.13).

To isolate the bias of observations in the filament and to

distinguish between observations on the shelf and those offshore in the

mesoscale field, the differenced pairs of CTD's and XBT's were placed

Into four groups: shelf, offshore, filament, and nearshore. Two of these

groups, offshore and filament, showed changes expected during the

242



LEG I-LEG2 TEMPERATURE LEGI-LEG2 SALINITY

TOTP C SALINtTY PPT 0. 4

-2.0 1.0 0.0 1.0 2.0 0. -. 202 0.
.... .. ... ......

..........

Figure 6.13 R/V POINT SUIR CTD and XBT temperature (left) and salinity

(right) average differences (solid lines) and one standard deviation
(dashed lines) calculated from positions (17) common to the surveys.
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transition, i.e., increases in salinity and temperature (Figure 6.14).

The northern offshore line was made up of XBT's only; their temperature

increase averaged 0.5* C with the highest values again at 50 m. The

CTD's off the filament cooled above 80 m and warmed below. The warming

at depth was greater than 0.5 *C. Salinity increased an average of .04

PPT, with the largest increase also above 80 m.

There were no in situ surveys later than 21 November (Julian date

86323). However, OA SSH fields on days 86312 and 86329, the two 17-day

ERM orbits which bracketed the OPTOMA 23 survey, indicated a change in

the mesoscale flow pattern (Figure 6.15). Prior to and during the OPTOMA

23 survey, the domain was filled with mesoscale features; after the

survey, a large meridional nearshore ridge and an offshore trough were

the predominant features in SSH. These would be expected after the fall

transition. The northward geostrophic flow between the two features was

ca. 20 cm/s.

E. DISCUSSION OF THE FALL TRANSITION OF 1986

1. General

Regarding the sea surface as an externally prescribed forcing

function, and neglecting bottom friction and non-linear effects, the

local velocity profile can be uniquely determined by wind stress and sea

surface slope:

av/at + fu = -g a /ay + (T yo)/H (equation 6.1)
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where u and v are depth-averaged velocities, f is the coriolis

parameter, g is gravity, < is the free surface elevation (above the

undisturbed surface), T is the average wind stress in the north-south

direction at the surface, and H is the depth (Welander, 1957 and Werner

and Hickey, 1983). H is typically 100 m (Enfield and Allen, 1980).

The balance is between the alongshore pressure gradient force

(PGF), -g3 /ay, and the surface wind stress, T /H, assuming no offshoreyo

flow and no local acceleration term. At a position on the coast, local

forcing is due to wind stress; remote forcing is due to a change in SL

at a neighboring position which changes the SL slope between the two.

The remote forcing contribution decreases southward along the west

coast; it is ca. 25% at Crescent City, 12% at San Francisco, and 10% at

Avila Beach. Additionally, seasonal heating or cooling and freshwater

contributions to large scale elevation slope are insignificant (less

than 10 % at Monterey) (Hickey and Pola, 1983).

In the CCS (off Washington and Oregon), a northward PGF develops

in the summer, opposing the southward local wind stress. During winter,

the PGF is southward, opposing the northward local wind stress (Werner

and Hickey, 1983). In November, between 35 and 38 N in the CCS (a

Northern Hemisphere minimum in SL and SST anomaly variances, Enfield and

Allen, 1980), the PGF is usually northward (Hickey and Pola, 1983).

Northward flow is expected at a coastal position when the SL to the

south is higher than the SL to the north. This may occur when winds were

not favorable for upwelling to the south and favorable to the north.
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Calculation of the SL slope between two stations is not straight

forward due to difficulties in geodetic leveling and the effects of deep

ocean currents on coastal SL. Geodetic leveling indicates that the SL

rises 7 cm between 32 N and 48 N. South of San Francisco, empirical

evidence suggests that deep ocean currents contribute significantly to

coastal elevation slope, where shelf is narrow (the offshore scale is

ca. 20 to 30 km), in the summer and fall. A steric height leveling,

referenced to 500 m, is opposite to the geodetic correction and

decreases from south to north; the correction to "quasi-absolute" SL is

82.0 cm at Port San Luis, 78.5 cm at San Francisco, and 77.8 cm at

Crescent City (Reid and Mantyla, 1976).

The changes in the offshore fields may have been related to the

transition in the coastal zone because of a combination of offshore

mesoscale advection and coastal wave activity. A similar effect was

noticeable in IR imagery when mesoscale features advected cool filaments

of upwelled water hundreds of kilometers offshore. In this situation,

the mesoscale feature bordered the upwelling zone. With the cessation of

upwelling and the persistence of the mesoscale feature within the

coastal zone of influence, warm water could be advected offshore.

In a coastal topographic wave, the pressure field is trapped in a

nearshore band, the scale width of which is:

L = ( 2r / fks )1/2 (equation 6.1),
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where r is the bottom resistance coefficient, f is coriolis, k is the

alongshore wavenumber of the wind stress, and s is the bottom slope

(Csanady, 1978).

Using values appropriate for the Central California coast

(r 0Ic -1 f 0-4 s-1 0-8 -1 0-2
(r = 0.1 cm s , f = 10 s k = 10 cm , and s = 10 ), L = 45 km

(compared to 141 km off the east coast, where s is an order of magnitude

2 -2
smaller). With a stress amplitude, F, of 1 cm s (t/p), the velocity

-1
amplitude, V = F/r, is 10 cm s , and the elevation amplitude, 2F/kLgs,

is ca. 40 cm (Csanady, 1978). These values are similar to observed

changes in SL and the nearshore surface velocities and mesoscale

features with offshore circulation (e.g., the anticyclone near Monterey

Bay) were within 45 km of the coast.

The results are sensitive to the bottom friction component; a

-1
value of 0.01 cm s results in a smaller width scale of 14 km, a higher

-1
velocity of ca. 100 cm s , and a smaller elevation amplitude of ca. 14

cm (Hickey and Pola, 1983). A higher wavenumber (e.g., 10-7  cm- )

results in a larger width scale (141 km) and a negligible elevation

amplitude.

2. CCS, November 1986

Autumn climatological ocean and weather conditions along the

Northern and Central California Coast consist of northward winds, yarm,

saline water near the coast, and a flat thermocline offshore. The actual

conditions differ from climatology for a variety of reasons (e.g.,

sporadic southward winds due to passing storms, large scale oceanic
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warming due to El Nino events, and perturbations due to mesoscale

activity from the continental shelf to at least the continental rise).

By early November 1986, persistent winds favorable for upwelling

had ceased along most of the coast and upwelling became a sporadic event

(as opposed to an almost continuous condition during the summer months).

The upwelled water (Undercurrent) during early November was different

from the local surface water (California Current). The transition had

not yet started. Later in the month, the upwelled water was

indistinguishable from surface water, and in many locations, SST started

to rise, as is typical during the winter season. The Davidson Current

had displaced the California Current off Central California and Fall

Transition of 1986 had started. During this period, a warming trend in

the upper 200 m in the mesoscale field hundreds of kilometers offshore

apparently accompanied the coastal transition.

Three upwelling events (4 to 11 November, 18 to 25 November, and

2 to 5 December) and the intermediate periods were of interest (Table

16). The first two events were consistent with summer regime upwelling

as there were higher sea level pressures, stronger equatorward winds

(and thus higher upwelling indices), lower sea levels, and lower SST.

The last episode included higher SST and was not consistent with summer

upwelling; it appeared that the Davidson Current was established off

Northern and Central California near 25 November while there were

intermittent winds which were occasionally favorable for upwelling.

Unlike conditions described by Breaker and Mooers (1986), there

was inconclusive evidence in 1986 for a wave-like disturbance

propagating along the coast accounting for the transition. During the
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TABLE 16. QUALITATIVE SUMMARY OF COASTAL SIGNALS

1 2 3 4 5

Time Period: 4 to 11 12 to 17 18 to 25 26 NOV to 2 to 5
NOV NOV NOV 1 DEC DEC

Sea Level High Avg High Avg Avg
Pressure:

Winds: Onshore Nil Onshore Light Onshore
Southward Southward Southward
Strong Moderate Light

1
Bakun Index: ++ Nil ++ Nil Nil but

150 150 rising to 50

SST:2  Large drop Large rise Moderate
rise

DT/Dt : -0.8 +0.5 to +0.8

See Level: Big drop Big rise Big drop Big rise
16 to 32 17 to 39 23 to 37 24 to 32

Remarks: Upwelling Upwelling Transition Transitinn

Notes:

1. Positive implies upwelling favorable
2. Includes Granite Canyon
3. degrees C per day
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upwelling events, the northern and central coast SST's reacted

simultaneously; during the warming transition event, there was apparent

propagation along the southern part of the coast, suggesting that two or

more regimes may exist. On the otherhand, similar to the spring

conditions described by Huyer et al. (1979), the coastal waters

responded to rapidly moving wind events.

The balance of forces, between the alongshore PGF, (-gaC/ay) and

the surface wind stress (T yo/H), were calculated at four of the six

coastal SL sites (Port San Luis, Monterey, Point Reyes, and Crescent

City), from 1 July 1986 through 31 Dcccmbcr 1986. The alongshore PGF was

calculated from the slope of SL between the site and its southern

neighbor. The wind stress was calculated at the nearest MBL grid point,

except for Monterey where the wind stress was linearly interpolated

between grid points. The analysis was not sensitive to depth (H was

varied from 25 to 100 m) or to the steric and geodetic corrections.

Changes mostly affected the time of the zero crossing; a reduced H and

no corrections resulted in a delay of one or two days.

The balance at Monterey best depicted the start of the fall

transition, in late November and early December, and its nature; i.e.,

the balance fluctuated throughout the winter as the PGF and wind stress

varied (Figure 6.16). Although the start of the transition was not

evident elsewhere, its fluctuating nature was universal:

(1) the PGF at Crescent City was strongly northvard, and
increasing, throughout the six-month period; wind stress
was predominantly southward until late October when it
became mostly northward (exceptions noted in Table 16),
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(2) before the start of the transition, the PGF and wind stress
at Point Reyes were generally southward; in November, both
forces were near zero, and

(3) generally, the PGF at Port San Luis was strongly northward

and the wind stress was weakly southward.

Minima in the balances near the start of the transition, progressed

poleward £tom Port San Luis on 25 November to Crescent City on 7

December (800 km in 12 days, ca. 70 km/day).

The onset of the Fall Transition of 1986 was easily

distinguished at Monterey as the balance changed from an extreme minimum

on 20 November (Julian date 86324, a day after OPTOMA 23 concluded),

when both PGF and wind stress were southward, to a zero crossing on 3

December, and a maximum on 8 December, when PGF was strongly northward

and the wind stress was near zero. Although the wind stress remained

slightly southward for the rest of the year, the balance did not remain

strongly positive; the PGF was southward for a few days on 13 December

and 27 December. This reinforced the impression that the fall transition

was not abrupt (as is the spring transition).

That the balance of forces was not expected to be zero; the wind

stress and SL along the west coast are not always correlated. In an

analysis of monthly sea level anomalies along the North and South

American West Coast from 1950 to 1974 (which focused on El Nino events),

there was high correlation between wind stress and SL north of San

Francisco and low correlation south (however, the study only had two SL

sites south of San Francisco in the Northen Hemisphere and wind stress

in those areas may have been an overestimation due to the effects of the

coastal mountain range), the anomaly variances for SL and SST were
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minimum in the Northern Hemisphere between 35 and 38 N, and there was

poleward propagation of events at a speed of 60 to 100 km/day (Enfield

and Allen, 1980).

Identification of either the spring or fall transition, as

discussed, may come from identification of the subsurface water mass,

either with subsurface measurements using CTD's or inferences of water

mass origin using current meters, by analysis of upwelled surface water,

or from the cessation of winds favorable for upwelling (and the

subsequent balance of forces). Sporadic winds favorable for upwelling

may occur anytime during the year, but the upwelled water is similar to

the surrounding surface waters only after the fall transition and before

the spring transition. The time of the spring transition, because of the

quick onset of strong upwelling favorable winds, is easier to determine

than the time of the fall transition when the winds favorable for

upwelling gradually and erratically cease.

SST was a good indicator of the transition. Upwelling along the

Northern and Central California Coast during the summer generally

results in lower SST and SL. Offshore measurements reflected the

upwelling when acquired within the upwelled water mass (i.e., between

the upwelling front and the shore or within a cool filament of entrained

upwelled water). When upwelling occurred after the fall transition and

before the spring transition, there was no drop in SST since the

underlying water mass was the same temperature as the offshore surface

water mass.
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VII. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

A. SUMMARY

1. General

A mesoscale model selected for operational use must be thoroughly

tested to understand its strengths and weaknesses and how it reacts to

different data inputs. Such testing has high priority within the Navy,

and it generally has not been done (Pittenger, 1989). The purpose of

this case study was to determine the sensitivity of OA and QG models to

the spatial resolution of input surface and subsurface data.

This case study is one of a limited number of evaluations of an

end-to-end ocean mesoscale nowcast system. Although it is a study in the

CCS, the overall Navy objective is to acquire a model which is

'transportable' and the geographic focus of Navy modeling efforts is

being de-emphasized (Peloquin, 1988).

Elements of the study were ODPS (OA and QG models) and data

collected during OPTOMA 23, a survey (principally airborne) planned and

executed as a fundamental part of this study. Six aircraft flights,

conducted by a research RP-3D aircraft between 9 and 19 November 1986,

surveyed a 250 km by 550 km domain in the CCS off Central California and

dropped a total of ca. 550 AXBT's. This was one of the first uses of the

NAVOCEANO RP-3D in which local scientists had absolute control over

planning the mission.

Data from many other sources were also incorporated: ship data,

drifting and moored buoy data, satellite data (AVHRR and GEOSAT),
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modeled fields (MBL winds), climatology (GDEM and CalCOFI), and coastal

data. Some of these were unique (e.g., GEOSAT descending orbits were

used for the first time in OPTOMA). Coincidently, the survey period, 9

through 19 November 1986 (Julian Dates 86313 through 86323) included the

beginning of the Fall Transition of 1986, the change in the CCS from

southward surface flow and northward subsurface flow to northward flow

throughout the water column over the continental shelf and slope as

equatorward wind stress ceases.

The OPTOMA program has provided one of the richest data sets for

ocean mesoscale analysis anywhere in the world; it surveyed the CCS off

Central California over a period of four years and revisited the domain

every few months. The surveys all made extensive use of AVHRR imagery in

plannning and to observe ocean conditions, in particular, the mesoscale

activity, jets, and coastal upwelling. The data have led to better

descriptions of mesoscale activity in the CCS, both during normal and

anomalous (e.g., El Nino) periods, and the modeling of jets and

mesoscale features. OPTOMA 23 was the last survey in this extensive

series and it extended the modeling domain.

2. Synopsis

The California Current is a broad and shallow southward flowing

eastern boundary current; the system exhibits year-round mesoscale

activity such as complex meanders with wavelengths of 300 to 500 km,

eddies with diameters of ca. 100 km, and jets with speeds of ca. 20 to

50 cm/s (or greater).

OA was used to map features, to test the sensitivity of mapping

accuracy to data sampling and other parameters, and to provide inputs
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for the OG model. SDH, SSH, SST (from AXBT and PRT-5 measurements),

MCSST, MLD, T50, and Z08 were mapped for the initialization surveys

(OPT23P1 and P2, day 86313, 9 November), the boundary condition update

survey (OPT23P4, day 86321, 17 November), and the verification survey

(OPT23P5 and P6, day 86323, 19 November). OA time series of SDH, SST,

and Z08 from day 86313 through day 86323 were also generated from OA

maps. OA observation experiments with different data sources and

subsampling schemes were also conducted and intercomparisons were made:

PRT-5 SST data (the most dense data set) were subsampled from full to

one-eighth fields; GDEM climatology, analyzed for the first time in the

CCS, was compared to observations; a 10-day forecast of SDH, SST, and

Z08 was generated; and, the GEOSAT survey pattern was analyzed. Finally,

for each QG model run, the OA provided dynamic heights for the upper

three model levels (50, 150, and 400 m).

To calculate dynamic heights, a salinity profile was estimated

for each AXBT (or XBT) from a T-S relationship, a reliable technique in

the CCS where the T-S relationship is "tight" in the main thermocline.

Where possible, an observed T-S relationship was used. To the south of

Monterey Bay, this came from a concurrent survey by the R/V POINT SUR

(ca. 40 CTD's); to the north, historical data from OPTOMA 13 was used.

Both of these T-S relationships were similar to the corresponding T-S

relationship from CalCOFI data.

In general, during all of the OPTOMA surveys, there were many

useful AVHRR images (Table 2). Most of the surveys were predicated upon

the availability of good imagery to guide the ship or aircraft survey.
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Whenever possible, visual and IR images were used side by side to help

discern low level clouds. There were 12 useful images during OPTOMA 23.

Eight pairs of AVHRR images were processed, manually, with OCEANTRAK.

This study included the first use of GEOSAT data from descending

passes and, consequently, the first mesoscale OA mapping of SSH in the

CCS. The raw GEOSAT data were processed in a colinear fashion, i.e., a

long term mean wds removed from each ERM orbit, and the tides were

removed. No moisture correction was applied. The SSH data were then

processed in a manner similar to SDH; autocorrelations were performed

and the data were objectively analyzed.

The weather was generally benign, there were some cloud-free days

(IR images were available), and winds favorable for coastal upwelling

had ceased, except for short events. There was one frontal passage, on

14 and 15 November (in the middle of the survey), during which the light

winds shifted to the north.

In the OPTOMA 23 domain, there were two anticyclones, one off

Point Arena and one off Monterey, and two cyclonic features, both on the

boundaries, one to the northeast and one to the southwest. The cyclonic

features were quasi-stationary throughout the survey, while the northern

anticyclone moved westward at 5 km/day and the southern anticyclone

moved northwestward at roughly the same speed. The mesoscale features

were not as tightly packed as during the summer; the maximum speed in

the jet was ca. 20 cm/s. Although only part of an eddy cycle, the 10-day

OA time series showed the evolution, persistence and stability of the

features adequately. The features changed strength slightly, deepening

or filling ca. 2 dyn cm over the survey period.
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There were two cool filaments, narrow (ca. 30 km) and long (ca.

200 km) in IR images, one off Point Reyes and the other off Point Sur.

The IR imagery also showed that the filaments were embedded in a wide,

cool body of water. In the OA SST maps, they were spread over many grid

cells and appeared to be 100 km wide. The cool filaments were persistent

in the OA SST time series and moved through the domain westwa-d at ca.

10 km/day. About 10% of tha AXBT's had acoustically significant

inversions, with strengths of at least 0.2 0C and widths of at least 5

m, between 50 and 200 m. These were clustered about the filaments and

were deepest towards shore.

At the beginning of survey, the upwelling front was 25 to 75 km

offshore; at the end, it was 10 to 40 km offshore and the cool filaments

had lost their integrity. This was consistent with the weakening and

cessation of winds favorable for upwelling (Table 7).

The activity surveyed during OPTOMA 23 was typical of that

surveyed during other OPTOMA surveys in autumn. The SDH values (the

lowest in the entire OPTOMA ensemble), range of values (20 dyn cm), and

standard deviation were lower than summer values. SST averages were

typical of autumn averages and SST did not correlate with SDH (0.06) nor

fields at depth. (The OPTOMA ensemble mean correlation between SST and

SDH was 0.65 with a standard deviation of 0.11.) SDH and Z08 were highly

correlated (0.80), close to the OPTOMA ensemble mean, 0.83 (with a

standard deviation of 0.17).

The OPTOMA 23 fields were qualitatively similar to those of the

previous yeal, during OPTOMA 18, although the positions of the cyclonic

features and anticyclonic features were reversed (i.e., during OPTOMA
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18, the cyclones were nearshore). OPTOMA 23 fields were quite different

from OPTOMA 22 fields, a summer 1986 survey during a period of relaxed

equatorward winds.

The optimal QG model hindcast configuration was OPTOMA 23

stratification, full data fields in the upper three levels (extended to

the lower three levels by EOF's), interpolated boundary conditions, no

wind stress curl forcing, and no bottom topography. These hindcasts

scored well over the ten day OPTOMA 23 period (pattern correlation of

0.92 and RMSN of 42%). T1O0 fields, extracted from the optimal

configuration and derived from an empirical relationship between T0

and the vertical derivative of the stream function, were accurate.

The optimal hindcasts depicted the principal dynamic event in the

domain, the movement of an anticyclonic feature (AM) from the eastern

boundary to the northwest at ca. 5 or 6 km/day, as was observed. A

secondary event, the apparent movement of an anticyclone (AC2) from the

southeastern boundary north, was not resolved by the QG model. Instead,

the QG dynamics extended a persistent ridge southwest through the domain

from the initialized state.

The QG hindcasts were most sensitive to initialization and

boundE.ry conditions. A decrease in data quantity was seen to directly

impact hindcast skill; however, skill was still shown at a one-quarter

subsampling (with pattern correlation greater than 0.60). With

subsampled inputs, most nowcasts and hindcasts located the mesoscale

features accurately, but RMSN varied greatly with da*a inputs.

Persistence scores were good (0.78 and 88%, pattern correlation and

RMSN, respectively) and climatology scores were poor (0.42 and 144%).
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GEOSAT and Sofar simulation hindcasts showed skill in pattern

correlation and improved overall with the addition of in situ data

through boundary conditions.

The Fall Transition of 1986 started immediately after the OPTOMA

23 survey, near 25 November and was most apparent in a balance of PGF

and wind stress forces at Monterey and in Granite Canyon SST. The

transition influenced the coastal waters (coastal sea levels were lower

and temperatures were higher) and the OPTOMA domain (temperatures were

higher). By early November, persistent winds favorable for upwelling,

characteristic of the summer, had ceased along most of the coast as the

Aleutian Low deepened, although there were sporadic upwelling events

throughout the rest of the year. During the first of these sporadic

events, the upwelled water was cool; later in the month, the upwelled

water was indistinguishable from surface water and SST along the coast

started to rise, indicating that the transition had occurred.

This was the first look at the offshore mesoscale field during

a fall transition (spring transitions have not been analyzed either with

such a focus). From the beginning to the end of the survey (9 to 20

November), the southern half of the OPTOMA 23 domain warmed 1.2 'C at

the surface and 0.3 0C at 50 m. This warming was also noted in the QG

hindcasts. While the aircraft surveys did not continue through the

transition, northward flow was indicated in satellite-derived surface

velocity vectors, in the GEOSAT SSH field on 25 November (day 86329), in

SDR OA 'forecasts', and in a QG model forecast. This was consistent with

the conjectured presence of the Davidson (Inshore) Current.
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B. CONCLUSIONS

1. General

The CCS is representative of other eastern boundary currents and

coastal upwell.ing regimes; hence an operational ability to nowcast the

ocean mesoscale in the CCS implies an ability to nowcast elsewhere. Ili

situ data requirements for an accurate OA or QG representation of the

CCS were shown to be high.

2. Observations

The utility of an aircraft AXBT survey for a large domain in the

CCS was demonstrated to be practical. The inherent weaknesses of

aircraft surveys to describe the mesoscale fields and to provide inputs

to ODPS (e.g., grid spacing which is about the Rossby radius of

deformation, shallow AXBT's whose profiles must be extrapolated to

depth, the lack of salinity measurements, and data gaps) are overcome by

prudent selection of methods and the use of other data sources.

The use of historical and observed T-S relationships to generate

salinity profiles from temperature profiles was appropriate; extreme

cases differed uniformly across the domain by less than 3 dyn cm. The

extension of shallow data, from 300 to 450 m, produced an average

difference in SDH of 16.7 dyn cm, between the reference levels of 300

and 450 m. (This compared to 19.0 dyn cm for the OPTOMA ensemble and for

GDEM climatological data).

Although the range of values and means were accurate in the CCS

for the month of November, GDEM climatology, at 30' resolution, was, of

course, of limited value in describing mesoscale activity. (GDEM

provides a monthly climatology which presumably averages out mesoscale
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variability.) However, OA fields from GDEM data reproduced the large

scale features of flow in the CCS, i.e., the California Current and the

California Undercurrent (Table 5), and the vertical profile of the

Brunt-Vaisala frequency obtained from GDEM was good enough for use in

the QG model. GDEM also provided reasonable T-S and T-4 relationships

for calculations of dynamic topography and T1O0, respectively.

November 1986 was a good period for observing the CCS with AVHRR

imagery, as suggested by Fiedler et al. (1985). A ',ingle, enhanced IR

image, although rich with small scale detail such as cool filaments and

the coastal upwelling front, could not be used to pinpoint the location

of mesoscale features in the CCS. Flickering between pairs of images, or

an analysis of the satellite-derived surface vector field did highlight

mesoscale features.

The satellite surface vector analysis produced vectors: which were

repeatable and consistent over 6-to-48 hours (compared with the 20 to 24

hour time difference used previously in the CCS by Svejkovsky, 1988).

There was a bias away from low speeds due to the technique; the lowest

detectable speed was estimated to be 2--to-3 cm/s. The speeds from

satellite surface vector analysis averaged 17-t3-28 cm/s, which was

higher than the average geostrophic speeds from SDH. This was expected

since the rt-solution of the satellite image was higher than the

resolution of the OPTOMA AXBT grid. A correction for Ekman drift, about

3-to-4 cm/s, improved the comparison.

MCSST fields compared well with SST fields on cloud-free days;

e.g., RMSE 0.7 'C and a pattern correlation of 0.9, with the MCSST

colder than SST. These values agree with the performance figure
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predicted by Minnett (1986). However, on partially cloudy days, even

with cloud screening, MCSST and SST did not compare well; e.g., RMSE

increased to as high as 1.4 0C and the pattern correlation dropped to as

low as 0.22. These inferior results indicated contamination of the

retrieved temperature by sub-pixel size clouds or low stratus clouds

which were not screened. An automated MCSST system in the CCS during the

fall could include a first guess field, but it may still require manual

quality control, using visual and IR images side by side, to properly

distinguish low level stratus and fog from the sea surface.

GEOSAT altimetry was a useful data source for analysis of the

mesoscale field in the CCS. The GEOSAT ascending orbits were most

reliable and had few data gaps while the descending orbits suffered from

data drop-off (i.e., the altimeter was off-line as the satellite passed

overhead from land to sea). However, the descending orbits were crucial

in mapping the mesoscale field; simulations of data subsampling using

GEOSAT suborbital tracks showed that the accuracy of the GEOSAT

altimeter in reproducing a mesoscale field, as reflected in pattern

correlation, increased significantly as the number of available

subtracks increased, from 0.73 with three subtracks to 0.97 with seven

subtracks (Table 10). Simulations also indicated that the absence of a

moisture correction to the altimetric measurements had no apparent

impact upon the accuracy of the SSH fields during OPTOMA 23. With these

results, it was apparent that the ERM 17-day repeat orbit survey pattern

was adequate for a description of mesoscale ocean variability in the CCS

as long as data were available from all orbits.
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The PRT-5 provided high resolution, stable, and continuous SST

measurements over a narrow swath (Appendix B). There was one exact

repeat track which reproduced SST measurements within 0.1 0C of the

previous track, and the SST OA maps from PRT-5 data were highly

correlated with the SST OA maps from AXBT data, but ca. 0.7 0C cooler,

with a standard deviation of 0.5 0C (similar to MCSST from IR imagery).

The PRT-5 measured SST gradients as high as 0.5 *C/km (about twice as

high as IR imagery and many times higher than OA maps indicated), and it

indicated surface cooling of ca. 1.0 *C betwepr Q and 19 November.

The drifter was of little value in analyzing the mesoscale

fields, principally because it was deployed late in the survey in the

jet off Point Sur, at the southern boundary of the domain. It was

advected 40 cm/s to the west until it was ca. 250 km offshore (at the

seaward extent of the Point Sur cool filament) when it turned and

progressed southward at 80 cm/s. This speed was greater than expected

(an order of magnitude greater than the Ekman drift) and the southward

movement may have been associated with the loss of the drogue. Overall,

the drifter speeds were about twice as high as the maximum geostrophic

speeds; the latter may have been underestimated due to coarse grid

spacing or a reference level which was too shallow (the drifter speeds

were somewhat higher than satellite surface vectors).

SST did not correlate with any field at depth during OPTOMA 23.

This may be due to the broad areas of warm watet offshore and cool water

inshore which were over anticyclonic and cyclonic features alike and the

numerous inversions near the filaments. SDH and Z08 did correlate well;

Z08 was indicative of the mean thermocline.
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3. Modeling

Even though there were gaps in the observations (due to AXBT

failures), the Gandin OA technique worked well for all fields (SDH, SSH,

SST, MCSST, MLD, T50, Z08) and produced gridded maps with low error

estimates (e.g., typically 10% and no greater than 30%). When data were

dense (i.e., observations spaced 20 to 30 km), the OA fields proved to

be robust and insensitive to variations in model parameters and

technique. Also, since the autocorrelation scales and noise estimates at

zero lag were roughly similar for all fields, and when the data were

dense, a single zero-crossing and error estimate (ca. 100 km and 0.95,

respectively) could be used for all fields with minimal impact. An

alternative OA technique, inverse distance, provided maps which were

virtually identical to those from the Gandin method, although it did not

provide error estimates. OA time series of SDH, SST, and Z08 were

con3istent with observations. These used a 5 km/day westward phase

velocity, the standard phase propagation used for all fields during

OPTOMA 23, for maps between the surveys.

For some fields, the OA showed that some skill as a "forecasting"

scheme over persistence and climatology. An OA 10-day forecast

experiment qualitatively reproduced estimates of the SDH field, but only

good estimates of the ZO8 field and poor estimates of the SST field.

Ouantitatively, the SDH and Z08 forecasts were slightly better than

persistence and much better than climatology, but SST climatology was

better than either the forecast or persistence (Table 6). The same

experimental technique was used to produce a SDH field on day 86329 from

data observed on day 86323. This field was very similar to that observed
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in GEOSAT data, SSH, on day 86329 and verified the presence of northward

flow near the coast.

The OA acted as a low-pass filter; the technique spread data nver

too large an area (the radius of influence), smoothed small scale

features, decreased gradients, lowered variance, and persisted features

which had dissipated. For example, the OA MCSST fields did not reproduce

the smaller mesoscale eddies (ca. 10 km in diameter), the sharp

gradients, or the narrow width of the cool filaments as they were

observed in IR imagery. The imagery showed the breakup of the filament

as upwelling ceased; the OA persisted the filament throughout the

survey.

Also, the OA required a large amount of data to provide maps

which had skill over persistence and climatology. PRT-5 SST data, the

densest data set of the OPIOMA 23 survey, were subsampled and reduced

from full fields to one-eighth fields by random selection, alternate

selection (selection of every other point), and by "smart pick". Both

Gandin and Inverse OA techniques were used for comparison. At one

extreme, the one-half fields correlated higher than 0.80 with an RMS of

ca. 1.0 *C; at the other extreme, the one-eighth fields did not

correlate and had high errors, 2.0 to 3.0 0C. The "smart pick"

selections did the best, but with little appreciable difference over the

otheL two methods.

In the OPTOMA 23 domain, the lowest number of observations needed

to demonstrate skill (i.e., correlation of 0.60 or higher) was ca. 40

(the one-quarter subsampled field); on a rectangular grid covering the

domain, these would need to be spaced 50 km or less. OA maps of
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mesoscale features during OPTOMA 23 are fairly insensitive to the

spatial sampling scheme and a feature-oriented scheme is slightly better

than a regular spaced grid (these results are consistent with Rienecker

et al., 1987, and Batteen et al., 1988a).

The QOG model was capable of producing accurate nowcasts, ten-day

hindcasts, and in one case, an accurate forecast (with persisted

boundary conditions) of the SSH field. The advantages of the QG model

were: it produced accurate results for medium range forecasts (i.e.,

three to five days) with good initial conditions, it could be

initialized with various data types, accurate temperatures were

extracted from it (using the vertical derivative method), and it could

be run quickly and cheaply (allowing numerous sensitivity analyses). The

disadvantages were that it took careful fine-tuning and manual

intervention to produce the best forecast (prohibiting a "stand alone"

system), temperature could not be extracted directly, and the results

were very dependent upon data density.

The QG model was resource intensive and sensitive to boundary

conditions. Initialization with full OA fields from all three survey

dates (days 86313, 86321, and 86323) produced accurate hindcasts with

both persisted and forecast boundary conditions. The westward advection

of the anticyclonic features and the stationary cyclonic features (fixed

in position by the boundary conditions) were accurately hindcast. Wind

forcing was of little impact; FNOC MBL winds on a 2.5 degree grid may be

too coarse to be effective in forcing mesoscale ocean models, and their

curl may be a serious underestimate. Except for the continental slope in
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the northeast corner of the domain where the bottom shoaled, the

inclusion of bottom topography had no effect upon the model SSH.

With relative comparisons between climatology, persistence, model

output, and verification (observed) fields, quantitative measures (i.e.,

pattern correlation and RMSN) gave a good evaluation of model accuracy.

A qualitative comparison, with historical or climatological fields, also

had merit in giving a general sense of how well a model represented the

mesoscale field and would be particularly useful in identifying

anomalous ocean conditions (e.g., El Nino).

4. Fall Transition

The Fall Transition of 1986 started about a week after the end of

the OPTOMA 23 survey, around 25 November. The transition influenced the

coastal waters and the OPTOMA domain. The transition was expected after

the cessation of winds favorable for upwelling, but in November and

December, there was no abrupt cessation of these winds. The transition

was identified through an analysis of many data records: wind (offshore

and MBL fields), temperature (offshore and coastal), and coastal SL. A

change in the balance of forces, between alongshore pressure gradient

and wind stress, at Monterey indicated the start of the transition most

clearly. In addition, AVHRR imagery showed nearshore northward flow as

did GEOSAT SSH OA fields on 25 November, when there was no in situ data.

A warming trend in the mesoscale field, hundreds of kilometers offshore,

suggested a link between the coastal transition and the mesoscale field.

Although the boundary conditions may have been inadequate, the OG

model did confirm two important changes associated with the transition,
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the northward flow throughout the eastern half of the OPTOMA domain,

seen in the SDH and SSH OA fields, and the warming trend. SST,

specifically from NDBC buoys which were ca. 30 km offshore and within

the coastal upwelling zone or near filaments, was not a good indicator

of the transition because the temperatures measured at these buoys was

relatively constani for some time after its onset.

Unlike conditions described by Breaker and Mooers (1986), there

was inconclusive evidence for a wave-like disturbance propagating along

the coast. Instead, the coastal waters responded to rapidly moving wind

events, similar to the spring conditions described by Huyer et al.

(1979). During the upwelling events, the northern and central coast

SST's reacted simultaneously; during the warming transition event, there

was apparent northward propagation along the southern part of the coast,

suggesting that two or more regimes may exist.

C. RECOMMENDATIONS

1. General

With focus on the operational use of a dynamical model, the

importance of a good initial estimate of the state of the ocean cannot

be over emphasized. Some poor initializations may be improved by

accurate boundary condition updates; however, a priori knowledge of the

quality of initialization is unavailable in a real-time operational run.

Emphasis in modeling should be on providing the best possible nowcast

from available data, knowledge of the statistics of mesoscale fields,

and understanding the dynamics influencing a domain.
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Thi-. modeling effort, involving data processing, OA for

initialization and boundary condition updating, and the QG model,

requires dense in situ observations (e.g., 40 AXBT's every two weeks),

full satellite coverage (e.g., cloud-free AVHRR images and GEOSAT orbits

with no data gaps), and intensive manual interaction to produce

hindcasts with skill (i.e., a pattern correlation of at least 0.60). If

similar systems are expected to be used correctly and accurately, then

they must be utilized at large "centers" (e.g, FNOC and NAVOCEANO) where

human expertise and data resources, unavailable elsewhere, can be pooled

and tapped.

Model evaluation, in the research or operational sense, requires

access to research quality data, quasi-operational data streams,

climatology, gridding (interpolating and extrapolating) routines, and

statistical routines. Acquiring data and processing it for model

evaluation is a time-consuming and expensive process; for a single

researcher, the process is difficult. Community-wide acceptance of

procedures and standards of performance and an objective facility

providing access to research-quality data bases and evaluation software

are needed.

With the predominant Navy interest on the effects of mesoscale

activity upon acoustic propagation, all mesoscale models should be

evaluated on their impact upon acoustic propagation loss profiles and

their ability to couple with an acoustic model, such as the Limited

Finite Difference Parabolic Equations (LFDPE) model. The limited number

of vertical levels in the 0G model cannot represent all of the areas
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critical to an accurate acoustic propagation forecast: SST, the mixed

layer depth, the shallow sound channels, and the deep sound channel

axis.

2. Observations

This survey measured the mesoscale field in the CCS over a ten-

day period during a period of weak mesoscale activity. This was an

inadequate duration and inappropriate season to observe substantial

temporal changes in the mesoscale field (note: it had been originally

scheduled for a month). A month-long survey, perhaps in the summer,

would capture much of the life cycle of a mesoscale feature. With

adequate planning, such a survey could be completed with no increase of

in situ resources; the aircraft would be scheduled to do the

initialization survey, a boundary condition update flight one-to-two

weeks later, and a verification survey one-to-two weeks after that.

Additional IR images and GEOSAT orbits would be processed at minimal

expense. This would provide a more comprehensive assessment of the ODPS.

To better observe a fall, or spring, transition with in situ

data, an array of drifters should be deployed nearshore. Since the

drifters advect offshore rapidly, deployment would have to be quick and

timed carefully from coastal SL and SST indications.

The AVHRR IR, PRT-5 SST, and GEOSAT altimetry processing or

analyses from OPTOMA 23 should be expanded to:

(1) Provide a time series of SST and satellite (AVHRR) surface
vectors In the CCS which could provide insight into the
seasonal transitions, and other phenomena,

(2) Run the automated satellite surface vector technique on the
same images used manually and compare results,
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(3) Generate a dynamic height field from the satellite surface
vectors for comparison with in situ fields and altinetric
SSH for possible use as an initialization field,

(4) Investigate the dynamic processes involved with the
formation of inversions to detcrrmine if they are present
in conjunction with identifiable surface features,

(5) Follow the track of the drifting buoy south of the OPTOMA
23 domain through December 1986 and compare buoy velocities
and temperatures with satellite surface vectors
and MCSST, and

(6) Process another GEOSAT ascending oriiit, preferably to the
west, and incorporate it into OA SH fields.

3. Modeling

The present OA used in ODPS is a rudimentary data assimilation

scheme which does not provide a full 4-D assimilation capability. The

relative merits of an improved scheme can be evaluated by reworking

OPTOMA data and comparing results. The OA can be improved in a number of

ways:

(1) Data which influence a gridpoint can be filtered to ensure
that they come from similar water masses (thus eliminating
"smearing" across fronts),

(2) The selection of phase speeds to provide advection of
observations can be improved by having differing phase
speeds at various gridpoints to account for differential
advection, and

(3) A 3-D OA could account for vertical tilt, incorporate
stability constraints, and simplify the mapping of fields
at different levels for -ntry into the OG model (i.e., a
single OA model run instead of one run for each level and a
merging routine, as is presently done).

The physics of the dynamiL model in ODPS could be improved by

replacing the QG model with a primitive equation (PE) model, and the PE
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model nowcasts/hindcasts could be compared with existing OG

nowcasts/hindcasts. Until then, the QG model may be improved by:

(1) Providing wind stress at all gridpoints (investigate the
impact of differential wind stress curl forcing),

(2) Developirg feature models for CCS, and

(3) more fully investigating the temperature extraction
process (specifically adding the temperature perturbations
related to the vertical derivative of the stream function
to the mean temperature profile from climatology.
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APPENDIX A: LITERATURE REVIEW ON SATELLITE REMOTELY SENSED DATA

Cloud cover presents the most difficult problem for viewing the sea

surface off tre West Coast. Fiedler et al. (1985) determined that

between 30 and 38 N the mos. favorable condicions for remote sensing of

the CCS exist from October through April and that low stratus interferes

otherwise. However, Kelly (1983) and Rienecker et al. (1985) have had

limited success at other times of the year (e.g., summer).

The masking of the sea surface by cloud cover has biased the

estimated oceanic front location to the cloud-_ree areas. Additionally,

Legeckis (1978) noted that it was difficult to distinguish between low

clouds and upwelled water in IR images due to the J1nilarity of their

temperatures. Viewing both visible and IR channels eliminates areas of

confusion.

.,Ithough the AVHRR does not view through clouds, its high resolution

allows use in rartly cloudy areas although sub-grid scale clouds will

always contaminate the retrieved temperatures. Many algorithms using

threshold tests, uniformity of t3mperature tests and comparison of two

channels have been developed to detect cloudiness (Kelly, 1985); still,

most investigators use composites of partially clear IR images to

construct an image "averaged" over a few days (e.g., Stramma et al.,

1986).

Although the measurements are done in an atmospheric window,

atmospheric absorption and emission are not negligible. The nlt effect

of the atmosphere is to make the retrieved SST lower than the actual
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SST. The relevant absorbing and emitting constituents are carbon

dioxide, nitrogen and water vapor. The first two are well-mixed gases

with negligible effects. Water vapor is not well mixed and the vertical

distribution of temperature and moisture are usually not known.

Atmospheric transmissivity can vary from about 90% for dry

atmospheres with 1.0 cm precipitable water to 30% for moist atmospheres

with 5.5 cm precipitable water (Deschamps and Phulpin, 1980). The

effects of atmospheric state, nadir angle, cloud height, and cloud

amount upon the accuracy of retrieved SST were theoretically estimated

to account for a 2.00 C error (Maul and Sidran, 1973). Algorithms have

since improved and the rms difference between corrected SST from AVHRR

and in situ measurements is about 0.7* C (Minnett, 1986).

The remote sensing of SST measures the skin temperature of the ocean

surface. The skin temperature is usually different from the temperature

measured at 1 m (bucket or shallow ports) by thermometers. Bulk

measurement accuracies are estimated to be about 0.2 to 1.00 C (Tabata,

1982) and differences between the skin temperature sensed by the

satellite and the bulk temperature is between 0.1 and 0.50 C, with the

skin temperature usually less than the bulk temperature due to upward

heat flux (Paulson and Simpson, 1981). Additionally, spatial variability

is greater in the satellite SST field than in the in situ 1 m

temperature field due to diurnal heating and cooling, air-sea

interactions, and "patchiness" within a satellite footprint (fronts,

differential heating, mixing and varying surface emissivity).

SST derived from AVHRR data have been compared with bucket, ship

injection, drifting and fixed buoys and XBT measurements. In the North
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Pacific, there was a bias of -0.2o C with a standard deviation (a) of

1.00 C between AVHRR and XBT's using a point comparison with a 12 hour

and 100 km window (Njoku, 1985). A rms difference of 0.60 C has been

calculated between AVHRR and drifting buoys (Strong and McClain, 1984).

Navigation error is inherent to the problem of comparing accuracies.

The process of earth-locating an image and correcting for geometric

distortion has an error of two to five km (Kelly, 1983). The navigation

systems of the ships, aircraft, and buoys also have errors (LORAN-C

fixes are accurate to 0.1 km). As an example of the cumulative effect of

these errors, the Ships of Opportunity Program (SOOP) verified frontal

locations derived by satellite only to within 10 km for months with

well-defined fronts (Stage and Weller, 1985).

Algorithms using two or more channels provide a relatively accurate

correction for each pixel regardless of the scale of the moisture field

in the atmosphere. These algorithms assume that the surface is a

uniform, perfect black body. Three channel algorithms minimize the non-

linear effects due to the first order Taylor series expansion and

variable absorption coefficients, but they utilize the near IR channel.

While this channel is least affected by water vapor, it has been a noisy

channel due to sensor problems and sunglint. In practice then, the three

channel algorithms are used at night while the two channel algorithms

are used during the day.

The coefficients for the algorithms may be calculated from knowing

the specific absorption coefficient of water vapor for the different

channels, but in practice, these coefficients are determined through

regression analysis. Often, these analyses are performed over large
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areas and under a wide variety of conditions in order to provide a

meaningful number of comparisons. The moisture correction, skin-bulk

temperature differences, and other factors are included in the analysis.

Other factors add noise and uncertainty to what is measured by the

AVHRR. Robinson et al. (1983) measured a diurnal thermocline in the top

meter of the water column with a bSST as much as 1.50 C. Deschamps and

Frouin (1984) fit the diurnal change in SST to the inverse of the wind

speed. They noted a mean change of 1.00 C and the highest, 5.00 C, was

under no-wind conditions. They recommended restricting the use of

satellite SST measurements to night or when the wind was greater than 5

m/s to avoid biases from diurnal changes. In a study of surface cooling

by Atlantic hurricanes, Stramma et al. (1986) note diurnal biases in

areas of high pressure (light winds).

The AVHRR sensor field of view acts much like a low pass filter and

for a 1 km square footprint, SST variations are low (less than 0.10 C)

except near fronts, and with larger footprints (25 km square), the

variations are 1.0 to 3 .00 C. Surface and bulk temperature differences

and instrument noise make a point-to-point comparison of less than 0.5*

C difference unlikely even when the satellite image is centered upon the

in situ device (Gasparovic, 1983). Also, due to the spatial averaging,

noise introduced by factors such as the thinning of the surface viscous

layer due to surface gravity waves is negligible (Simpson and Paulson,

1980).

The interaction of a radar pulse with the sea surface is well

understood. Simply put, the returning wave shape increases linearly to a

plateau, then decreases, due to a finite antenna bea-iwidth and the lower
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number of sea surface elements having the proper geometry for specular

reflection. Each return pulse is divided into range gates and the time

associated with the center of the returning rise area determines the

range to the ocean surface. The shape of the return is analyzed to

determine other ocean properties: the stretching of the pulse by ocean

waves has been modeled with the probability density functions of various

significant wave heights, and the backscatter has been modeled with the

mean square slope of the sea surface and wind (Barrick and Swift, 1980).

An accurate measurement of the height of the satellite above the

instantaneous ocean surface, Hat is obtained only after numerous

corrections are applied to the raw signal. "Housekeeping" eliminates

much data. Due to the wobble of the satellite as it passes over the

poles, data from many descending passes in the northern hemisphere are

lost until the satellite stabilizes. Also, the sensor takes about six

seconds to recover after passing from land to water (ca. 42 km of

track), although some tracks have lost data for hundreds of kilometers.

Atmospheric corrections are well-modeled. An ionospheric correction

of 2 to 20 cm is required to account for free electrons in the

ionosphere which change the index of refraction for EM propagation

(Lorell, 1982).

Atmospheric moisture algorithms are more controversial: a wet

troposphere correction of 10 to 50 cm can be provided from Fleet

Numerical Oceanography Center (FNOC) fields, or measured by the Scanning

Multi-spectral Microwave Radiometer (SMMR), an experimental sensor on
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NIMBUS-7. Most corrections have used the FNOC fields which have a 5.73

cm rms error compared to radiosonde data and are on a coarse grid of 2.5

degrees; the SMMR fields have a 2.79 cm rms error and higher spatial

resolution of ca. 30 km (Tapley, 1982). In some parts of the world, a

weak oceanic signal can be masked by moisture in the atmosphere unless

high resolution SSMR data are used (Hawkins, 1989). Many investigators

use no moisture correction since the algorithms are uncertain (Sirkes,

1989).

The resulting signal, Ha, is a combination of various geophysical

signals and instrument error (Figure A.1). The sea height, , is the

difference of two large numbers, the orbit height above the reference

geoid, H0 , and Ha:

= H - H - H + E (equation A.1),
o a g

where n is the sea surface height (SSH), H is the orbit height above0

the reference geoid, H is the range to the instantaneous ocean surface,a

H is the geoid, and E is instrument error.
g

The geoid is the dominant signal competing with SSH. An independent

determination of the geoid by means other than altimetry would be ideal

(e.g., a single track minus an accurate geoid). The alternative is to

difference data from repeat orbits or cross-over tracks to remove the

signal from time-independent sources. This not only removes the geoid

and orbital errors, but also mean currents. Satellite orbit
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uncertainties exist due to incomplete modeling of the dynamic forces

upon the satellite (e.g., gravity, atmospheric drag, and solar radiation

pressure). The orbit height is obtained from orbit models or from a

world-wide ground based tracking network which provides a best fit to an

ellipse or an ephemeris. The rms instrument noise error for the GEOSAT

altimeter is estimated to be 3 cm (Sailor and LeShack, 1987).

ri is further broken down into contributions from various oceanic

components (Calman, 1987):

= mean' 'meso+ ntide + "wave + Vbar + ' (equation A.2),

where n is the ocean surface, n meanis due to mean currents, n meso is due

to mesoscale features, ntide is due to tides, %waveis due to the

significant wave height, 'ibar is the inverse barometer correction, ind

'' is due to other time-dependent contributions (e.g., wind).

Tides are modeled using the Schwiderski tidal model. Surface waves

cause an EM bias that is not well-accounted for. Shorter waves are more

predominant on the crests of larger waves than in the trough. This

results in a more intense return from the trough thus biasing the

measured range towards the trough. For this problem, a constant 2%

correction is used. The inverse barometer effect is accounted for with a

ratio of 1.005 mb to 1.0 cm sea height.
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APPENDIX B: PRT-5 DATA

The PRT-5 data provide another independent estimate of SST (the

others are AXBT, AVHRR, and buoy measurements). The PRT-5 measures skin

temperatures accurate to 0.1 0C in a swath approximately 10 m wide from

an altitude of 1000 feet (Athey, 1986). A PRT-5 recorded skin SST

continuously throughout each OPTOMA 23 flight except when the aircraft

passed over or through low clouds, fog, 6r areas of precipitation

(defined as "undercast") and when calibrations were made. Another PRT-5

scanned upward and recorded the presence of overcast. Calibrations were

done about every 30 minutes by manually placing the instrument over a

13 0C water bath. The PRT-5 readings were then corrected by assuming a

linear drift between calibrations. For the most part, corrections were

about +1.0 *C. On one flight, the instrument was stable throughout with

a constant correction of +1.3 *C and on two flights, corrections were as

high as +2.5 *C.

Only "reliable" data were digitized (i.e., cloud free); these

consisted of measurements colocated with AXBT drops and of measurements

near features of interest (e.g., fronts) between AXBT drops. The PRT-5

record provided a continuous and annotated time line of events with time

accurate to about 6 seconds (0.8 km of travel at 240 knots). The

intermediate positions had to be calculated assuming a direct flight

path and constant airspeed between AXBT drops. The routine used to

position these intermediate points was tested on about 10 "known" points

for each survey (i.e., known to within the accuracy of the onboard
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navigation system). For all flights, the rms error in plotting these

points was 1.2 to 1.6 km.

Of interest are the rapid changes in SST as recorded by the PRT-5

and the large gradients encountered (Figure B.1). These gradients are as

large as 0.5 *C/km. All OPTOHA survey flights recorded similar PRT-5

measurements although there was cooling of the average PRT-5 SST of ca.

1 0C from the first two flights to the last two flights. None of the SST

gradients were correlated with changes in the air temperature or dew

point at altitude suggesting that they were not caused by atmospheric

phenomena.

The objectives of this survey did not include repeated sampling of

the same track; however, in reseeding a critically-positioned failed

buoy on day 86321, the aircraft repeated, within navigation limits, ca.

40 km of track (equating to ca. 5 minutes travel time) which included a

frontal zone. The track was first flown at approximately 0000 GMT and

repeated about one hour later. The records fit within 0.1 0C over the

entire 5 minute period except at the front. Although the relative

temperature change across the front is the same for both transits, the

gradient measured later is twice that of the earlier measurement (0.8

*C/km versus 0.4 0C/km). This may be caused by the aircraft crossing the

front at a different angle.

Objective analyses of SST derived from the PRT-5 measurements were

generated from measurements on the survey day only using the same grid

and procedures described earlier with ensemble PRT-5 statistics (Figure

B.2). These are qualitatively similar to the AXBT SST fields. Higher

resolution PRT-5 objective analyses with grid spacing of 6 km have
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finer scale structure than the coarse 20 km grid spacing set, but the

major features in both are similar.

There were 327 intercomparisons of PRT-5 and AXBT SST (cloud free

and reliable AXBT drops). This was 81% of the total possible. The

difference, PRT-AXBT, for the entire ensemble ranged from -2.2 to 0.4

*C. The mean difference was - 0.7 0C with a a of 0.5 0C. In individual

data sets, the differences varied and there was cooling of the average

PRT-5 SST from 13.0 to 11.8 *C throughout the period while the AXBT SST

cooled from 14.0 to 13.7 0C (one-third the PRT change). Since the time

of day was relatively constant survey-to-survey, it is assumed that the

passage of the cold front on the 14th and 15th accounted for the skin

surface cooling. OA difference fields were generated for days 86313,

86320, and 86323 (Figure B.3). These fields are inversely correlated

with the mixed layer fields (correlations range from -0.95 to -0.89).
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APPENDIX C: DRIFTING BUOY

A drifting buoy was deploypd by R/V POINT SUR on 18 Ncvember 1986

(Julian Date 86322) 120 km due west of Monterey. The buoy was a standard

Polar Research Laboratory hull and sensor package. It was equipped with

a SST sensor which provided near instantaneous measurements, a 20 m wide

windowshade drogue at 65 m, and an Argos satellite transmitter. The buoy

was deployed in an offshore jet which was identified in preliminary

objective analyses of SST and Z10; there were no plans for recovery.

A Local User's Terminal (LUT) was used to receive the satellite

transmissions. Five satellite-derived fixes were received prior to

deployment; these fixes were 1.2 to 9.2 km from the actual buoy

position. The SST measurements were not given an situ test; the

manufacturer's specification for temperature accuracy is 0.20 C.

SST and position information were transmitted and received by the

LUT several times a day through NOAA 6 and 9 (Table 17). The buoy

advected to the west at ca. 40 cm/s until 29 November when it turned

south and accelerated to ca. 80 cm/s. It is possible that the drogue

fell off at this time, and that the turn and increase in speed were due

to surface winds or that the buoy left the influence of the cool

filament and was caught up by the mean southward flow of the CCS.

The buoy positions from time of deployment to 1400 06 December 1986

were plotted along with SST and SDH objective analyses for 18 November

(Figure C.1). The SST from the buoy agrees well with the synoptic

shipboard and aircraft measurements. Qualitatively, there is some

agreement between the path of the buoy and the expected influence of the
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synoptic features identified on 18 November. The track starts in an

apparent offshore jet and turns south under the influence of an

anticyclone to the vest. The track is not perfectly matched with the

features in the analyses and many factors may account for the

difference: the current affecting the buoy may be made up of

ageostrophic components not reflected in this analysis, the OA fields

are generated from data measured oai the first day of drift only, the OA

technique spreads features out (with grids of 20 km), and navigation

error in both platforms (buoy and ship/aircraft) could be as large as 10

km.

TABLE 17. DRIFTING BUOY DATA

Point Time Date Lat Long SST

A 0112 19 Nov 36.16 123.19 N/A
B 2208 19 Nov 36.13 123.27 N/A
C 2157 20 Nov 36.17 123.34 15.3
D 0162 21 Nov 36.17 123.43 14.9
E 0052 22 Nov 36.18 123.55 14.1
F 1141 22 Nov 36.17 124.03 14.0
G 0019 25 Nov 36.12 124.22 15.1
H 1141 26 Nov 36.13 124.29 14.8

Ia  1609 27 Nov 36.14 124.38 14.5
J 0035 01 Dec 35.56 124.49 13.9
K 1407 02 Dec 35.21 124.47 15.0
L 0241 04 Dec 34.41 124.57 15.2
M 1411 06 Dec 34.04 124.50 15.7

Note a: The drifter left the domain of Figure C.1
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APPENDIX D: PRT-5 DATA SUBSAMPLING

An SST data set, derived from PRT-5 measurements on day 86313, was

subsampled to quantify the effects of data density on OA model accuracy.

(This set of data had more observations than any other during the

OPTOMA 23 survey). The field was subsampled in three ways: first, by

selecting alternate points, the data set was subsampled by factors of

two (alternate); second, the fields were subsampled by a random

selection process (random); and, third, the fields were subsampled by a

"smart pick" process which used a priori knowledge of the field being

analyzed (smart). For the latter, observations which were in the

proximity of high gradient areas, or in maximum and minimum areas, were

selectively retained. (The "smart pick" could have been influenced by

climatology, persistence, or the subjective experience of an analyst and

is related to the operational technique of "bogusing", i.e., the

insertion of a feature into a field where there are no observations).

The resulting data sets contained approximately 160 (full), 80 (half),

40 (quarter) and 20 (eighth) observations (Figure D.1). For comparison

purposes, OA model parameters were kept constant, and both Gandin and

inverse distance methods were used.

The Gandin OA, using the full data set, was the verification field.

Qualitatively, two fields, the "eighth" inverse distance fields,

alternate and random selection, were not similar to the other fields

(Figures D.2 and D.3). The "full", "half", and "quarter" fields all

reproduced the features in the verification field; the "smart" picks for
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both the Gandin and inverse distance methods looked the best; the Gandin

method looked better than the inverse distance method for all subsampled

fields.

The OA error fields, generated by the Gandin method only, increased

as the number of data points was reduced (Figure D.4). The average error

was less than 5% for the full field; it increased to ca. 15% for the

half-fields, 35% for the quarter-fields, and 45% for the eighth-fields.

(The error for all fields was higher in the northeast, where an

undercast prohibited measurements of the ocean surface). The error

fields for the random data subsampling were higher than the error fields

from the other subsamplings.

Quantitatively, all "half" fields, except the random selection,

correlated well with the verification field (0.80 or higher). Generally,

for each data density, the Gandin and inverse distance methods differed

slightly. All "eighth" fields did not compare well with the verification

field, but the best were the "smart" fields (Table 18).

With dense data fields, it appears that the selection of the OA

method and the position of the observations are not crucial. With sparse

data fields, the position of the observations and the choice of the OA

method is more important; however, there are still large errors in the

sparse fields.
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TABLE 18. PRT-5 OA SUBSAMPLING COMPARISONS

Gandin Method

Selection of Every Other Point (Alternate)

OA Data MEAN a CORR MAE RMS
Method Set (VC) TOr) TIN)

Gandin full 13.9 0.8 1.00 0.0 0.0
Inv Dist full 13.9 0.8 1.00 0.0 0.0
Gandin 1/2 13.7 0.8 0.84 0.6 1.0
Gandin 1/4 13.7 0.9 0.71 1.0 1.6
Gandin 1/8 13.9 0.9 0.51 1.7 2.7

Random Selection of Points (Random)

OA Data MEAN CORR MAE RMS
Method Set (VC) (0) (-)

Gandin full 13.9 0.8 1.00 0.0 0.0
Inv Dist full 13.9 0.8 1.00 0.0 0.0
Gandin 1/2 14.0 0.8 0.79 0.8 1.3
Gandin 1/4 14.0 0.9 0.69 1.2 1.9
Gandin 1/8 13.8 0.9 0.47 1.8 3.1

"Smart Pick" (Smart)

OA Data MEAN a CORR MAE RMS
Method Set (VC) TIC) TIC)

Gandin full 13.9 0.8 1.00 0.0 0.0
Inv Dist full 13.9 0.8 1.00 0.0 0.0
Gandin 1/2 14.1 0.9 0.86 0.7 1.3
Gandin 1/4 13.8 0.9 0.73 0.9 1.6
Gandin 1/8 13.9 1.0 0.60 1.2 1.9
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TABLE 18. (CONTINUED)

Inverse Distance Method

Selection of Every Other Point (Alternate)

OA Data MEAN 0 CORR MAE RMS
Method Set (VC) *(00) r'-)
Gandin full 13.9 0.8 1.00 0.0 0.0
Inv Dist full 13.9 0.8 1.00 0.0 0.0
Inv Dist 1/2 13.7 0.8 0.80 0.7 1.2
Inv Dist 1/4 13.7 0.9 0.69 0.9 1.6
Inv Dist 1/8 13.9 0.9 0.20 1.4 2.3

Random Selection of Points (Random)

OA Data MEAN a CORR MAE RMS
Method Set (OC) ('0) TC)

Gandin full 13.9 0.8 1.00 0.0 0.0
Inv Dist full 13.9 0.8 1.00 0.0 0.0
Inv Dist 1/2 14.0 0.8 0.72 0.8 1.4
Inv Dist 1/4 14.0 0.9 0.60 1.1 1.9
Inv Dist 1/8 14.0 0.9 0.37 1.5 2.7

"Smart Pick" (Snart)

OA Data MEAN F CORR MAE RMS
Method Set (VC) (0) (OC)

Gandin full 13.9 0.8 1.00 0.0 0.0
Inv Dist full 13.9 0.8 1.00 0.0 0.0
Inv Dist 1/2 14.1 0.9 0.84 0.8 1.2
Inv Dist 1/4 13.8 0.9 0.71 1.2 2.1
Inv Dist 1/8 13.9 1.0 0.43 1.5 2.3
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APPENDIX E: SATELLITE IMAGES

Figure E.1 AVHRR IR image from NOAA-10, channel 4, of OPTOMA domain on
Julian Day 86314 at 16:23 GMT.
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Figure E.2 AVHRR IR Image from NOAA-9, channel 4, of OPTOKA domain on
Julian Day 86314 at 21:55 GMlT. Land is masked white.
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Figure E.3 AVHRR IR Image from NOAA-9, channel 4, of OPTOMA domain on

Julian Day 86315 at 12:03 GMT. Land is masked white.

303



Figure E.4 AVHRR IP image frow NOAA-9, channel 4, of OPTOMA domain on

Julian Day 86315 FL 21:45 GMT.
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Figure E.5 AV1JRR IR image from NOAA-9, channel 4, of OPTOMA domain on

Julian Day 86310 a-t 22:42 GM T.



Figure E.6 AVHRR IR image from NOAA-9, channel 4, of OPTOMA domain on
Julian Day 86321 at 22:21 GMT.
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Figure E.7 AVHRR IR image from NOAA-9, channel 4, of OPTOHA domain on

Juliar Day 86323 at 21:59 GMT.
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Figure E.8 AVHRR IR image from NOAA-9, channel 4, of OPTOMA domain on
Julian Day 86325 at 11:57 GMT. Land is masked white.
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Ji

Figure E.9 Surface velocity vectors superimposed on channel 4 IR image
from day 86315 (12:03 GMT). Vectors were calculated from day 86314
(16:23 GMT). At Is ca. 20 hours. 10 cm/s scale in upper left corner.
Land is masked white.
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Figure E.O Surface velocity vectors superimposed on channel 4 IR image
from day 86315 (21:45 CMT). Vectors were calculated from day 86314
(16:23 GMlT). t is ca. 29 hours. 10 cm/s scale in upper right corner.
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Figure E.i1. Surface velocity vectors superimposed on channel 4 IR image
from dny 86315 (12:03 GMT). Vectors were calculated from day 86314
(21:55 Gmr). 6t is ca. 14 hours. 10 cm/s scale in upper left corner.
Land is masked white.
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Figure E.12 Surface velocity vectors superimposed on channel 4 IR image
from day 86315 (21:45 GMT). Vectors vere calculated from day 86315
(12:03 GMT). At is ca. 10 hours. 10 cm/s scale in upper left corner.
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APPENDIX F: INVERSIONS

There were temperature inversions in about 10% of the OPTOMA 23 AXBT

measurements. Some traces had multiple inversions. Three parameters

describe the inversions: the intensity (AT between the maximum

temperature and the first above lying minimum), depth, and width. The

intensities of the OPTOMA 23 inversions ranged from 0.2 to 1.00 C, the

depths were typically between 50 and 200 m, and the widths averaged ca.

15 m (Table 19). Inversions capable of trapping low-frequency (ca. 150

hz) acoustic signals (i.e., those with a 6T greater than 0.20 C and a AZ

greater than 5 m) were screened and plotted (Figure F.1).

Inversions in the CCS are common; 47% of the BT profiles near 30 N

and 125 W over a 15-day period had inversions of 0.50C or higher. The

most common depth and width was 100 m and 15 m, respectively (Roden,

1964). These inversions were not associated with static instabilities

(the temperature inversions were compensated by salinity inversions of

the opposite sign). These were similar in size, strength, and location

in the water column to inversions observed in the eastern Subtropical

Front between 30 and 35 N (Roden, 1974).

The inversions from the first two flights on 9 and 10 November

(OPTOMA23 P1 and P2) were clustered around the periphery of the two cool

filaments. The same was true a week later on 16 November (OPTOMA23 P3)

with the addition of an inversion in the center of the domain. Many more

inversions were present both near the cool filaments and throughout the

rest of the domain on 17 and 19 November (OPTOMA23 P4 and PS).
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The location of most OPTOMA 23 inversions did not appear to be

random and may have been areas of cool water subsidence, along the edges

of the cool filament, or of mesoscale recirculation (Flament et al.,

1985). Large changes in temperature and salinity associated with a cool

filament, which were highly variable in space and time, were observed

off Point Arena in July 1986 (Rienecker and Mooers, 1989). The observed

depths of the OPTOMA 23 inversions were between the maximum depth of the

cool filament, ca. 50 m, and the depth of influence of the jut, ca. 200

m.

Inversions in the subtropical latitudes were caused by differential

advection of water of different origin. In regions of jets, the

inversions occurred within the layer of strong velocity shear and may

have been caused by turbulence (Roden, 1974). Differentiation, with

respect to depth, of the equation for the conservation of temperature,

T, gives insight into the mesoscale factors which give rise to

inversions (Roden, 1964):

&/&t (&T/Sz) = -VH/6z VH T + SUH/6z VH T (equation F.1),

(1) (2) (3)

where, term (1) is the temporal rate of change of the temperature

gradient with depth, term (2) is due to velocity shear and the

temperature gradient, and term (3) is due to a depth-variable diffusion,
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V, and the Laplacian of the temperature distribution (it is assumed that

VH ST/6z and V2 6T/Sz are zero).

Term (2) will contribute to an inversion (i.e., term (1) less than

zero) if the current shear is negative and a southward current flows

from cold to warm water (as in the CCS). Term (3) will contribute to an

inversion if the diffusion term increases with depth and there are high

temperatures in the interior (as observed in anticyclonic features).
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TABLE 19. OPTOMA 23 INVERSIONS (STRENGTHS AND WIDTHS GREATER OR EQUAL
TO 0.?o C AND 5 M RESPECTIVELY)

JULIAN DAY TIME LAT LONG AXIS WIDTH STRENGTH
DATE NOV GMT (N) (W) Depth (M) (C)

86313 09 2107 39.3 125.3 72 8 0.2
86313 09 2318 38.5 125.2 63 23 0.3
86313 09 2329 38.4 125.3 82 6 0.2
86314 10 2108 35.6 123.2 ill 33 1.0
86314 10 2140 35.5 125.2 61 11 0.2
86314 10 2330 36.6 124.3 76 10 0.6
86314 10 2341 36.5 123.5 100 10 0.2
86314 10 2355 36.1 123.1 70 12 0.3
86315 11 0003 36.0 124.5 64 18 0.5
86320 16 1913 39.2 126.1 80 10 0.3
86320 16 2015 36.6 123.3 203 7 0.2
86320 16 2040 35.5 123.5 203 6 0.2
86320 16 2237 39.2 124.6 135 21 0.3
86321 17 1935 37.5 124.1 225 17 0.2
86321 17 2231 39.2 126.1 94 16 0.3
86321 17 2336 38.4 126.1 60 17 0.5
86323 19 2208 36.2 124.2 86 6 0.2
86323 19 2255 36.2 123.4 84 14 0.2
86323 19 2349 35.5 124.2 191 9 0.2
86324 20 0039 37.1 124.5 88 7 0.2
86324 20 0102 36.1 125.3 83 8 0.2
86324 20 0208 37.3 123.2 170 40 0.5
86324 20 0306 35.3 125.3 42 13 0.3
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APPENDIX G. QG MODEL INPUTS AND DYNAMIC TOPOGRAPHY DATA SUBSAMPLING

TABLE 20. EXAMPLE OF QG MODEL INPUTS

$ RUN QMODL1
1 TITLE(2OA4)
GDEM CLIMATOLOGY
1
INPUT "IELD 3 LEVELS 50, 150, 400 M DH
1
FULL FIELD, WINDS, AND BOTTOM TOPOGRAPHY
2 ALPHA, BETA, AND KAPPA (BOTTOM FRICTION) 3F10.0
1.998 0.901 0.00
3 NUMBER OF LATERAL AND VERTICAL INTERVALS 315

11 25 6
4 DEPTH INTERVALS
0.6667 0.6667 2.6667 6.22 8.22 8.22
5 STRATIFICATION SCALES (GAMMA AND SIGMA)
6.439 1.87 1.38 2.72 13.66 50.58 193.60 1030.30
6 FILTER (ORDER, FREQUENCY, NUMBER OF TIMES PER TIME STEP)

4 1 1
7 PRAM
0.0 0.0 0.0 0.0 0.0 0.0865 0.0 0.0
0.0298 50000. 4000. 150. 0.0 0.0 0.0 1.0
8 DT, TSTART, TMAX, YBASIN
0.0036042 0.0 0.90
9 IFDIFF, IFPERT, IFRST, IFTOP, IFBOT, IFTVV, IFTREL, IFTWRT

1 0 0 0 0 0 0 0
11 DIAGNOSTIC PRINTING

0.865
12 PRINT ARRAYS

1 .865
1123
13 ARRAY PLOTS

1 .0865
6123456
14 RDT
181.
15 ROTATION ANGLE

38.
16 IFDH; IFEXT

1 1
-9 END SPECS
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TABLE 20. (Continued)

Explanation:

(1) CARD 1 header,
(2) CARD 2 advective and 0 scales, bottom friction,
(3) CARD 3 total number of lateral gridpoints and vertical

levels,
(4) CARD 4 depth intervals (normalized by ht, 150 m),

(5) CARD 5 stratification scales, r 2 and a,
(6) CARD 6 Shapiro filter, the order, the number of

repetitions of the filter each time it is called,
and the interval in time steps between
activations,

(7) CARD 7 16 parameters:
PRAM(5), number of data sets to skip into the

boundary data,
PRAM(6), time interval between successive

boundary data sets,
PRAM(9), the Rossby Number (V/fd),
PRAM(10), horizontal length scale, d,
PRAM(11), average depth, L,
PRAM(12), vertical length scale, H,

PRAM(16), persisted of interpolated boundary
conditions,

(8) CARD 8 normalized time interval, beginning and ending
times, basin scale,

(9) CARD 9 8 switches:
finite differencing or collocation in depth,
calculate perturbation fields,
restart,
use top density information,
use bottom density information,
use top vertical velocity,
use bottom topography,
write unformatted output,

(10) CARD 11 diagnostic printing,
(11) CARD 12 number of printing cycles and frequency,

number of levels to be printed, and a list,
of the levels,

(12) CARD 13 plotting (similar to CARD 12),
(13) CARD 14 restart time,
(14) CARD 15 angle of domain rotation.
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TABLE 21. SUBSAMPLED OA DH FIELDS (FOR QG MODEL INPUT)1 COMPARISONS

Day 86313 Full field:

MEAN2  STD DEV
2 CORR RMSE 2

Surface 0.76 .04 N/A N/A
50 m 0.60 .03

150 m 0.40 .02
400 m 0.06 .00

Day 86313 One-half "alternate" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.74 .05 0.96 0.01
50 m] 0.61 .03 0.97 0.01

150 [] 0.39 .02 0.96 0.01
400 [] 0.06 .00 0.95 0.01

Day 86313 One-quarter "alternate" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.75 .03 0.73 0.03
50 [] 0.60 .03 0.80 0.02
150 [] 0.37 .03 0.89 0.02
400 mn 0.06 .01 0.83 0.00

Day 86313 One-eighth "alternate" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.76 .03 0.50 0.04
50 m 0.59 .02 0.70 0.03
150 in 0.41 .02 0.77 0.01
400 mn 0.06 .00 0.53 0.00

Notes:

STD DEV - standard deviation;
CORR - correlation;
RMSE - Root Mean Square;

1 - Comparisons of subsampled fields are made with corresponding full
field

2 - Units are dyn m.
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TABLE 21. (CONTINUED)

Day 86320 Full field:

MEAN 2  STD DEV2 CORR RMS 2

Surface 0.75 .03 N/A N/A
50 m 0.60 .03
150 m 0.40 .02
400 m 0.06 .00

Day 86320 One-half "alternate" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.76 .04 0.89 0.02
50 m 0.61 .04 0.91 0.02
150 m 0.38 .03 0.95 0.01
400 m 0.06 .01 0.94 0.00

Day 86320 One-quarter "alternate" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.74 .02 0.56 0.02
50 m 0.59 .02 0.54 0.02
150 m 0.41 .02 0.72 0.02
400 m 0.06 .00 0.75 0.00

Day 86320 One-eighth "alternate" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.77 .03 0.72 0.02
50 m 0.62 .02 0.76 0.02
150 m 0.39 .02 0.81 0.01
400 m 0.06 .00 0.72 0.00

Notes:

STD DEV - standard deviation;
CORR - correlation;
RMSE - Root Mean Square;

1 - Comparisons of subsampled fields are made with corresponding full
field

2 - Units are dyn m.
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TABLE 21. (CONTINUED)

Day 86323 Full field:

MEAN2  STD DEV
2 CORR RMS2

Surface 0.76 .03 N/A N/A
50 m 0.61 .03
150 m 0.40 .02
400 m 0.06 .00

Day 86323 One-half "alternate" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.75 .02 0.88 0.02
50 m 0.58 .02 0.89 0.02
150 m 0.41 .01 0.93 0.01
400 m 0.06 .00 0.91 0.00

Day 86323 One-quarter "alternate" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.76 .03 0.63 0.03
50 m 0.58 .03 0.67 0.03

150 m 0.41 .02 0.71 0.02
400 m 0.06 .00 0.73 0.00

Day 86323 One-eighth "alternate" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.77 .05 0.57 0.05
50 m 0.60 .05 0.66 0.04

150 m 0.42 .04 0.78 0.03
400 m 0.05 .01 0.77 0.01

Notes:

STD DEV - standard deviation;
CORR - correlation;
RMSE - Root Mean Square;

1 - Comparisons of subsampled fields are made with corresponding full
field

2 - Units are dyn m.
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TABLE 21. (CONTINUED)

Day 86313 Full field:

MEAN2  STD DEV2 CORR RMSE 2

Surface 0.76 .04 N/A N/A
50 m 0.60 .03

150 m 0.40 .02
400 m 0.06 .00

Day 86313 One-half randomly subsampled:

MEAN STD DEV CORR RMSE

Surface 0.76 .04 0.96 0.01
50 m 0.60 .03 0.96 0.01

150 m 0.40 .02 0.96 0.01
400 m 0.06 .00 0.95 0.01

Day 86313 One-quarter randomly subsampled:

MEAN STD DEV CORR RMSE

Surface 0.75 .03 0.72 0.03
50 m 0.59 .03 0.80 0.02

150 m 0.39 .03 0.89 0.02
400 m 0.06 .01 0.83 0.00

Day 86313 One-eighth randomly subsampled:

MEAN STD DEV CORR RMSE

Surface 0.75 .02 0.50 0.04
50 m 0.59 .02 0.69 0.03

150 m 0.40 .02 0.78 0.01
400 m 0.06 .00 0.55 0.00

Notes:

STD DEV - standard deviation;
CORR - correlation;
RMSE - Root Mean Square;

1 - Comparisons of subsampled fields are made with corresponding full
field

2 - Units are dyn m.
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TABLE 21. (CONTINUED)

Day 86320 Full field:

MEAN2  STD DEV
2 CORR RMS 2

Surface 0.75 .03 N/A N/A
50 m 0.60 .03
150 m 0.40 .02
400 m 0.06 .00

Day 86320 One-half randomly subsampled:

MEAN STD DEV CORR RMSE

Surface 0.75 .04 0.89 0.02
50 m 0.60 .04 0.92 0.02
150 m 0.39 .03 0.96 0.01
400 m 0.06 .01 0.94 0.00

Day 86320 One-quarter randomly subsampled:

MEAN STD DEV CORR RMSE

Surface 0.75 .02 0.58 0.02
50 m 0.60 .02 0.59 0.02

150 m 0.40 .02 0.72 0.02
400 m 0.06 .00 0.75 0.00

Day 86320 One-eighth randomly subsampled:

MEAN STD DEV CORR RMSE

Surface 0.76 .02 0.73 0.02
50 m 0.61 .02 0.75 0.02

150 m 0.40 .02 0.83 0.01
400 m 0.06 .00 0.73 0.00

Notes:

STD DEV - standard deviation;
CORR - correlation;
RMSE - Root Mean Square;

1 - Comparisons of subsampled fields are made with corresponding full
field

2 - Units are dyn m.
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TABLE 21. (CONTINUED)

Day 86323 Full field:

MEAN 2  STD DEV
2 CORR RMS 2

Surface 0.76 .03 N/A N/A
50 m 0.61 .03

150 m 0.40 .02
400 m 0.06 .00

Day 86323 One-half randomly subsampled:

MEAN STD DEV CORR RMSE

Surface 0.76 .02 0.88 0.02
50 m 0.60 .02 0.91 0.02

150 m 0.40 .01 0.94 0.01
400 m 0.06 .00 0.91 0.00

Day 86323 One-quarter randomly subsampled:

MEAN STD DEV CORR RMSE

Surface 0.76 .03 0.64 0.03
50 m 0.60 .03 0.66 0.03
150 m 0.40 .02 0.72 0.02
400 m 0.06 .00 0.73 0.00

Day 86323 One-eighth randomly subsampled:

MEAN STD DEV CORR RMSE

Surface 0.77 .05 0.56 0.05
50 m 0.61 .05 0.65 0.04
150 m 0.41 .04 0.78 0.03
400 m 0.06 .01 0.78 0.01

Notes:

STD DEV - standard deviation;
CORR - correlation;
RMSE - Root Mean Square;

1 - Comparisons of subsampled fields are made with corresponding full

field
2 - Units are dyn m.
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TABLE 21. (CONTINUED)

Day 86313 Full field:

MEAN2  STD DEV2 CORR RMSE 2

Surface 0.76 .04 N/A N/A
50 m 0.60 .03
150 m 0.40 .02
400 m 0.06 .00

Day 86313 One-half "smart pick" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.76 .04 0.97 0.01
50 m 0.60 .03 0.97 0.01
150 m 0.40 .02 0.97 0.01
400 m 0.06 .00 0.96 0.01

Day 86313 One-quarter "smart pick" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.77 .03 0.74 0.03
50 m 0.61 .03 0.82 0.02

150 m 0.40 .03 0.90 0.02
400 m 0.06 .01 0.85 0.00

Day 86313 One-eighth "smart pick" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.75 .02 0.55 0.04
5C Al . 0 A)? 0 70 0.03

150 m 0.40 .02 0.79 0.01
400 m 0.06 .00 0.58 0.00

Notes:

STD DEV - standard deviation;
CORR - correlation;
RMSE - Root Mean Square;

1 - Comparisons of subsampled fields are made with corresponding full
field

2 - Units are dyn m.
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TABLE 21. (CONTINUED)

Day 86320 Full field:

MEAN 2  STD DEV2 CORR RMS2

Surface 0.75 .03 N/A N/A
50 m 0.60 .03
150 m 0.40 .02
400 m 0.06 .00

Day 86320 One-half "smart pick" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.75 .04 0.91 0.02
50 m 0.60 .04 0.93 0.02

150 m 0.40 .03 0.96 0.01
400 m 0.06 .01 0.94 0.00

Day 86320 One-quarter "smart pick" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.75 .02 0.60 0.02
50 m 0.60 .02 0.62 0.02
150 m 0.40 .02 0.74 0.02
400 m 0.06 .00 0.77 0.00

Day 86320 One-eighth "smart pick" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.76 .02 0.78 0.02
50 m 0.60 .02 0.77 0.02

150 m 0.40 .02 0.82 0.01
400 m 0.06 .00 0.80 0.00

Notes:

STD DEV - standard deviation;
CORR - correlation;
RMSE - Root Mean Square;

1 - Comparisons of subsampled fields are made withi corresponding full
field

2 - Units are dyn m.
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TABLE 21. (CONTINUED)

Day 86323 Full field:

MEAN2  STD DEV 2 CORR RMS2

Surface 0.76 .03 N/A N/A
50 m 0.61 .03

150 m 0.40 .02
400 m 0.06 .00

Day 86323 One-half "smart pick" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.76 .02 0.90 0.02
50 m 0.60 .02 0.92 0.02

150 m 0.40 .01 0.95 0.01
400 m 0.06 .00 0.92 0.00

Day 86323 One-quarter "smart pick" subsampled:

MEAN STD DEV CORR RMSE

Surface 0.76 .03 0.67 0.03
50 m 0.60 .03 0.68 0.03

150 m 0.40 .02 0.75 0.02
400 m 0.06 .00 0.75 0.00

Day 86323 One-eighth "smart pick" subsampled:

MEAN STD DEV CORK RMSE

Surface 0.77 .05 0.62 0.05
50 m 0.61 .05 0.68 0.04

150 m 0.41 .04 0.80 0.03
400 m 0.06 .01 0.78 0.01

Notes:

STD DEV - standard deviation;
CORR - correlation;
RMSE - Root Mean Square;

1 - Comparisons of subsampled fields are made with corresponding full
field

2 - Units are dyn m.
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APPENDIX H: COMNAVOCEANCOM INDEPENDENT MODEL REVIEW PANEL (CIMREP)

The Harvard Open Ocean Model (HOOM), with feature model

initialization, is currently in use at the Naval Oceanographic Office

forecasting the 100 m position of the north wall of the Gulf Stream and

its rings. The system, known as the Navy Operational Gulf Stream Model

(NOGUFS) 1.0 or GULFCAST, provides a forecast once a week in a

rectangular domain situated between ca. 30 and 46 N and 50 and 72 W.

NOGUFS 1.0 was delivered to the Naval Oceanographic Office in

January 1989 for operational testing (i.e., an evaluation with

operational resources) after a technical evaluation (i.e., a scientific,

research quality evaluation) by the Navy Oceanographic and Atmospheric

Research Laboratory (NOARL). During operational testing, seven-day

forecasts had the same skill as persistence (Martinek, 1989).

The COMNAVOCEANCOM Independent Model Review Panel (CIMREP) was

formed by the Commander, Naval Oceanography Command in April 1989 to

evaluate NOGUFS 1.0 operational testing criteria, implementation

procedures, model tendencies, strengths and weaknesses, and to recommend

near and long-term improvements to upgrade model capabilities (Koehr,

1989). The panel was chaired by Dr William Schmitz (Woods Hole

Oceanographic Institute), with the other members being: Dr Dana Thompson

(NOARL), Dr Denny Kirwan (Old Dominion University), Dr John Hovermale

(NOARL), and CDR Edward Johnson, USN (Institute for Naval Oceanography).

CIMREP met three times (20 April, 11 July, and 11 December 1989)

and found that meander growth was overly rapid, phase and amplitude

problems existed on the eastern boundary, and there were difficulties
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with stream-ring interactions. The panel recommended changes in the

feature model parameters, an increase in model resolution (vertical and

horizontal), a shift in the domain, and an improvement in the amount and

quality of the input data sets (Schmitz, 1989a, 1989b, and 1990).

Additionally, CIMREP was influential in changing research priorities and

in the drafting of a Memorandum of Understanding between COMNAVOCEANCOM

and NOARL covering future model transition.

More details on CIMREP can be obtained through the Commander, Naval

Oceanography Command staff, Mr Ray Partridge (601-688-4322).
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