

$$
5.9421 / \mathrm{B} \quad \mathrm{~N} \cdot \frac{\pi}{1 / 6}
$$

OZANAM's Compleat Courfe OF THE
MATHEMATICKS,
In FIVE Volumes.

Digitized by the Internet Archive in 2019 with funding from Wellcome Library

Curfus Mathematicus : OR, A
 Compleat Courfe OFTHE

MATHEMATICKS.

In Five Volumes.

Vol. I. Contains a fhort Treatife of Algebra, and the Elements of Euclid.
Vol. II. Aritbmetic and Trigonometry, with correat Tables of Logarithms, Sines and Tangents. Vol. III. Geometry and Fortificatior. Vol. IV. Mecbanics, and Perfpective. Vol. V. Geography and Dialiing.

The whole Illuftrated with near 200

 Copper Plates.Written in French by Monfieur OZ ANAM, Profeffor of the Matbematicks at Paris.

Now done into Englifh, with Additions and Corrections by Several Hands.

$$
L O N D O N:
$$

Printed for Fobn Nicholfon at the Queen's-Arms in Little-Britain, and Sold by Gobn Morpbew near Stationers-Hall. M DCC XII.

Curfus Mathematicus:

 OR, ACompleat Courfe OF THE
MATHEMATICKS.
Vol. I.

CONTAINING

A fhort Treatife of Algebra, The Elements of EUC LID.

Written in French by Monfieur O Z A NAM, Profeffor of the Mathematicks at Paris.

Now done into Engli/h.

$$
L O N D O N:
$$

Printed for $\mathfrak{F o b n}$ Nicbolfon at the Queen's-Arms in Little-Britain, and Sold by Fobn Morphem near Stationers-Hall. M DCC XII.
+

The AUTHOR's

PREFACE.

AFTER fo many Mathematical Works? that have been already Publifh'd, as well in the feveral Parts, as in a Body , ufually call'd a Course of Mathematics, in imitation of thofe that had done the like in other Sciences; I fhou'd never have entertain'd the leaft Thought of increafing the Number, and of compofing a New Currus, had not I found thofe hitherto done were but of little ufe: Some, becaufe too prolix and voluminous, and by that means, both deterring the lefs Laborious from medling with them, and diftracting the Minds of the moft Intent ; Others becaufe too concife, by giving them little or no clear Infight into the matter, rather fuppofing them already acquainted with thefe things, than making them fo ; it being almoft impoffible to be Short, and yet preferve that Clearnefs which is neceffary to inftruct Beginners: Laftly, Others are but of fmall ufe, becaufe written in foreign Languages, efpecially Latin; and fuch is the Unhappinefs of the ${ }_{*}^{*} 4$ Age,

PREFACE:

Age, that there are but few young Perfons fo well acquainted with that Language, as to be able to rcad Books written in it with any Pleafure, and underfiand the Terms with Eafe.

I flatter'd my felf with the hopes of fuc ceeding in my Delign, by the great Defire I have of feeing this Art flowrifh, that has been the diftinguifhing Cbaracter of the moft Polite? Ingenious, and Learned Ages, and of the good Difpofitions I find in the Minds of the prefent: For every body courts the Mathematics, efpecially fuch of the Nobility and Grear Men, as ufed to diftinguilh themfelves by defpifing the Learning of the Schools, but are however charm'd with the Beauties of this Science.

The Neceffity that Gentlemen are under, that would become confiderable in the Att of War, or any great Employment, which cannot fubgift without recourfe to the Mathematics, makes them leave off feveral trifing Amufements, and apply themfelves to thefe Sciences; and oftentimes the unexpected Pleafures they meet with, do fo furprife and engage them, that they make it ever after as well the delightful as the ferious part of their Studies.

I don't promife my Reader any Elegancy of Expreffion or Stile, which ferve only to tickle the Fancy and pleafe the Ear; nor do I invite him to any fuch Flowery Pleafures and Airy Delights, as the Mufes inchant their Admirers withal: But what I propofe is folid and fubftantial, and Pleafures becoming a Reafonable Creature. One may judge of the Genius of a Reader, by the Books he makes choice of, and the value he puts on them: Achilles was

PREFACE.

brought up in the Dicf of the contrary Sex, and fo could not be diftinguithed; yet no fooner was he prefented, on the one hand with Toys and Trifies, and on the other with Arms, but his Genius, bom for great Things, betray'd the fecret of his Education, and it was known by his Choice that he was deivin'd to be a Hero. One may difcover among Children, which of them are bom to fomething extraordinary, by their choice of Sports and Amufements; and never was any Child pleas'd with any thing a-kin to the Mathematics, that did not prove confiderable in whatever Employment he was afterwards engaged in.

I thall fay nothing here of the Ulefulnefs of Mathematics, becaufe I have done it already in my Mathematical Dictionary, Printed fome Years ago. And perhaps fome Perfons expect a grcater Work than I pretend at prefent to publifh : I know, a Man muft quit all other Studies when he applies himielf to the Mathematics, or at leaft intermit and fufpend them, till he has acquir'd the Art of Exactnefs and Method, in a word, till he has attain'd the Art of Reafoning well himfelf, and can judge of the Reafoning of another, till he can diftinguifh Truth from Error in all its various Shapes: So that I am afraid of being accus'd of Idlenefs, or Indifference for the Public, in whofe Service I profefs to have been fo long engag'd; I know, generally fpeaking and judging of Things according to their Goodnefs, no Bounds ought to be fet to Mathematical Books, and that one ought to go as far as one can, becaufe ris in a Way where a Man can never lofe himielf, or exhauft the Subjeg; but I am conitrain'd to accommodate my felf ro the Humour

Humour of fuch as fancy they can be the better by my Labours, becaufe fhort and eafy, which otherwife would difhearten them.

Such as ftudy the pleafurable part of Life, underftand the Secret of rifing with an Appetite, without cloying their Taft; the fame ought to be obferv'd by thofe who apply themfelves to Sciences : Yet I have not in there Treatifes been fo referv'd, but that I have given fufficient Infight to any Gentleman that is defirous to underftand thefe things, and have difcovered enough to enable him of himielf to make whar Progrefs he pleafes, either by reading of Authors, or by his own furcher Studies and private Reflections.

I have all along endeavour'd to fpeak with the greatelt Perpicuity I cou'd, without being confin'd to ftudied Phrafes or ufelefs Expreflions : Nor do I fuppofe my Readers at all acquainted with the Art, or any of its Terms, or Ways of Reafoning, but teach him them, and let no Term, tho' never fo little our of the way, pars unexplain'd, that no Difficulty may be left behind.

To inure the Mind to reafon on Abftracted Subjetts, fuch as are thofe of Mathematics, I begin with an Introduction, where you'll find a general Idea or Notion of thefe Sciences, the moft general Terms explain'd in order, together with fome Problems that may be refolv'd byRule and Compafs, to bring in the Hand of Beginners. And becaure without Algebra a Perfon cannot fo eafily diftinguifh the Relations of different Species of Quantities, nor refolve immediately any Problem, much lefṣ inveftigate a

Theorem,

Theorem, or find its Demontration wher the Theorm is known; 1 thought it proper to inFert in this intudaction a Compendium of dlgebry, whofe Name I knowe oughe not to fare the Reader, for 'tis only a Method of Reafoning by the help if the Letters of the Alphabet, repeefenting the Quantities, whote Relations are confider'd; and ir is to the Mathematics, the fame that Logic is to the ordinary khiloophy, and therefore has been called Logific, and is become fo common amongft us, becaufe of its engaging Beauty, and vaft Ule in all parts of the Mathematics, that even Ladies of the higheft Qualiry have been induced to leam it ; the Dutchefs of E - has attain'd fo great a Degree of Perfection, as well in Numbers as Geometry, that Perfons who make the greateit Figure for Learning have earnettly fought for the Honour of her Converfation. An Inftance fo illuItrious ought to banifh all forts of Diffidence, and excite thofe that love their Eafe.

And to difpofe the Mind, that it may not be taken with falfe Appearances, I have put the Elements of Enclid next, that ferve alfo for a kind of Introduction to the Mathematics, and being well underftood, will render all the other parts eafy, as being demonitrated from thefe Elements : And here you'll find that to become a Mathematician, one muft draw the Mind from every thing that falls under the Notice of our Senfes, and confider Quantity perfectly abftracted; fo that one muft begin to reafon after this abftracted manner, and accuffom ones felf to Ideas no ways concern'd with Matter, and above all, get a habit of affenting to nothing but what is Evident, yield to nothing but what we fee cannot be otherwife; in fine, we mult banilh
banifh from Mathematics all that is Doubto ful, or but Probable, and entertain nothing but Certainty and Demonitration.

I fhall not fpeak here in particular of the other parts of this Curfus, becaufe it would fwell the Preface, and deface the Ideas I would imprefs by the two Introductions; and perhaps make a Perfon imagine he is thorowly acquainted with them, when he has but juft heard them talk'd of. I thall only mention the Parts of the other Volumes, as I have done this ; that the Reader, finding at the Beginning of every Volume, particular Confiderations upon what is contain'd in it, may enter upon this Study with greater Satisfaction, and if I may fo fay, Greedinefs of learning and being acquainted with that, whofe Excellency and Urefulness is there laid down.

I thall only fay then, that I divide the whole Courfe into five Volumes: The Firft comprehends An Introduction to Matbematics, and the Elements of Euclid; the Second, Aritbmetic and Trigonometry; with exact Tables of \boldsymbol{L} ogarithms, Sines, Tangents; the Third, PraCtical Geometry and Fortification; the Fourth, Mechanics and Perfpective; the Laft, Geography and Dialling.

THE

BOOKSELLERS

TO THE

READER.

He Study of the Mathematics, in ous Nation, being become almoft univerfal, the UJefulnefs of which is fufficiently recommended by our Autbor, in bis feveral Prefaces to this Work; and there being in our Language no compleat Syffem yet extant, at leaft fo large and general as this; We, by the Advice and Direction of Several of the moft eminent in this Science, as well at London as the Univerfities of Great-Britain and Ireland, tbat this was the moft eafy, moft ufeful, and the cheapeft to the Buyer of any Courfe of the Mathematics yet extant in any Language, refolved to print it in Englifh; and having engaged Jeveral ingenious Gentlemen, well Jkill'd in the Parts they undertook, to Tranflate and Correct the Several Volumes, we have with a very great Expence compleated the fame; the whole containing Five Volumes, viz.

The Fivfl Volume contains an Introduction to the Mathematics, with the Elements of Euclid. The Introduction begins with the Definitions of the mol general Terms in Matbematics; wbich are follow'd by a lititle Treatife of Algebra, for the better underfanding of what enfues in the Courfe, and ends with many Geometrical Operations, perform'd both upon Faper witb Ruler and Compafes, and upon the Ground with a Line and Pins. The Elements of Euclid comprebend the firft Six Books, the Eleventh and Twelfith, with their Ujes.

In the Scsond Volume we bave Arithmetick, and Trigonomerty both Rectilineal and Spberical, with Tables of Logaritbms, Sines and Tangents. Arithmenic is divided into Three Parts; the Firft bandles Whole Numbers, the Second Fractions, and the Third Rules of Proportion. Trigonomeity bas alfo Three Divijions or Books; the Firft treats of the Conltuction of Tables, the Second of Rectilineal, and the Third of Spherical Trigonometry: With Tables of Logarithms, Sines, and Tangents. Thefe Tables were carefully Correfied by Mr. Hodgfon, Mafter of the Matbematical School at Chritt's Horpital, London.

The Third Volume compreberds Geometry and Fortification. Geometry is diffributed into $F_{\theta u r}$ Parts, of which the Firft teaches Surveying, or Meafuring of Land; the Second Longimerry, or Meafuring of Letigths; the Tbird Planimetry, or Meafuring of Surfaces; the Fourtb Stereometry, or Meafuring of Solids. Fortification coinfifts of Six Parts; in the Firft is bandled Regular Fortification, in the Second the Conffrution of Outworks,
works, in the Third the different Methods of Fortifying, in the Fourth Fortification Irregular, in the Fifib. Offenfive Fortification, and in the Sixth Defenfive Fortification: With the Tranflactors Appendix, concerving that Method of Fortifying which is truly Mr. Vauban's.

The Fourth Volume includes the Mechanics, (to which is added, by way of Notes, what was thought proper out of Dr. Wallis's Works, \&xc.) and Perfpective. In Mechanics are Three Rooks; the Firft is of Machines fimple and compounded, the Second of Statics, and the Third of Hydroftatics. Perfpective gives us fir/t the General and Fundamental Principles of that Science, and tben treats of Practical Perfpective, of Scenography, and of Shading.

The Fifth Volume confifts of Geography and Dialling. Of Geography there are two Parts; the Firft concerning the Coleftial Sphere, and the Second of the Terreftrial. Gnomonics or Dialling bath Five Chapters; the Firft contains many Lemma's, necelfory for the underftanding of the Theory and Practice of Dialling, the Second treats of Horizontal Dials, the Third of Vertical Dials, the Fourth of Inclined Dials, and the Fifth of the defcription of the Circles of the Sphere upon all Jorts of Dials.

The Firft, Second, and the Geometry part of the Third Volume, were look'd over by Mr. Jones, Profelfor of Matbematics in London, and Fellow of the Royal Society : The Fortification, as alfo the fourth and fifth Volumes were done by Mr. Defaguliers of Hart-Hall in Oxford.

This Author alfo writ a large Mathematical Difionsry, which is defign'd to be Tranflated into Englifo.

There is lately Publifh'd, in the fame Size as thefe Volumes

REcreations Mathematical and Phyfical, laying down and falving many profitable and delightful Problems of Aritbmetic, Geometry, Optics, Gnomonics, Cofmegraphy, Mechanics, Pbyfics, and Pyrotechay : By Monf. Ozanam, Profeffor of the Mathematics in Paris: Done into Engli/h, and illuftrated with very many Catts. The Two Volumes in French being contain'd in One, and fold for 6 s .6 d

A

Of the Names of fuch of

 the Subfrribers to, and Encouragers of this Work as permit* ted them to be Printed before the fame.-

MR. George Aldrich, of Lincoln-College, Oxon. Mr. Robert Arnold, Teacher of the Mathematicks. at the Hand and Pen in Barbican.

B

Mr. George Barry, Profeffor of Phyfick at Brent-Wood, E $\iint_{\text {ex }}$ Mr. Charles Bertie, of Hart-Hall, Oxono Mr. Edmunil Barnaby, Batchelor of Arts of Wadbam.College oxon.
Mr. Fobn Bainbridge, Batchelor of Arts of Hart-Hall, Oxon. Samuel Blunt, Gent.
The Reverend Mr. Brooke, Fellow of Brazen- $\mathrm{Nofo}_{0}=$ Collegen Oxon.
Mr. William Boyer, Printer in White-Fryars, Londono Mr. Betts, of Bernard's-Inn.
Micbael Burton Efq; of Wirkefworth in Derby-fire.
The Reverend Mr. Brackan, Curate of Sedgber, Wefo moreland.
Mr. Bronker, Schoolmafter of Madeley, Staffordflireo
Mr. Philip Bifbop, Bookfeller in Exon.
Mr. Tbomas Boultbee A. R. of Lincoln-College, Oxon.
Mr. Samuel Burnet M. A. Mafter of the Fret-School of Uto toxeter, Staffordfire:
Mr. Blith, Bookfeller in Colchefter.
Mr. Fobn Barnes, Bookfeller in Pall-Mall for ten compleat Books.

Fir. Cafwell, Profeffor of the Mathematicks to the Univerfit? of Oxon
Gobn Chamberlayne, of the Trner-temiple, Efq;
Fohn Campbell Efq;
Mr. Rictard Cardwell, of Hart-Hall in Oxon.
Mr. Cotterell of Birmingham.
Mr. Henry Clements, Bookfeller in Oxon.
D
The Reverend Mr. Gobn Davis, Vice-Principle of Hari-Hall, oxon.
The Reverend Mr. William Dennifon, Fellow of UniverfitiyCollege, oxan.
Dr. Francis Difs, of Guibon in Norfolk:
${ }^{3} M r$. Feremiah Davienifo.
Mr. Fobn Dougbarty.

E

Mr. George Edwards, Clark of Marybone in Middlefex. F
The Reverend Dr. Fames Fynny, Prebendary of Durbam.
The Reverend Mr. Peter Foulk, Canon Refidentiary of St. Pee ter's, Exon.
Goon Fortef Gue Aland, of the Middle. Temple, Efq;
Mr. Henry Fichat of Brent-W ood, Effex:
Mr. William Freeman, Bookfeller in Durbam.
G
Mr. David Gregory.
Mr. William Grantbam, Accomptant and Writing-Mafter, is Red crofs-Areet, London.
Mr. Thowizas Gore, of Trinity-College, Oxon.
Dr. Girdiner, of the Tower.
Thomas Granger of the Eaff-India-Houfe, Gent.
Mr. Goddard, Bookfeller in Norwith.
H
Mr. Frodg gon, Mafter of the Matbematical School at Cbrijt's. Hotpital London.
E- Harris Efq; at Befcoale near WoolJall, Staffor djhire.
Mr. Richard Head, of Hart Hall in $O \dot{x} o n$.
The Reverend Mr. Hold $\mathbf{m o r t h}$, of Magdalen-College, Oxon.
Mr. Thomas Fiuet.
The Reverend Mr. Anthony Hall, Fellow of Queens-College, Oxon。
The Reverend Mr. Fobn Hill, Fellow of Quens-College, Oxon.
Mr. Hunt, Officer in the Excife.
Mr. Fobn Hitches of Winburn in Dorfetfhire.
Mr_{0} Hilliard, Bookeller in York.

Mr. Fobn Hide, Bookfeller in Duklin, for Twelve Books.
Mr. Henry Hall, Bookfeller in Carlifle.
Mr. Hammond, Bookfeller at the Bath.
Mr. Thomas Hammond Jun. Bookfeller in York.
${ }^{\circ} \mathrm{I}$
Mr. William Fones, Profeffor of the Matbematicks in London.
Mr. Allen Fobnson, Supervifor in the Office of Excife of Litchfield Collétion.
Mr. Michael Fobnfon. Bookfeller in Litchfeld.
Mr^{2} Fames Ingram, Surgeon at Barnet.
Mr. William Fephcot, A. M.
Mr . Edmond Feffreys; Bookfeller in Cambridge. L
The Reverend Mr. Leigh, Fellow of Brazen-Nofe College Oxon.
Mr. Eatouch, Mafter of a Erench Boarding-School at Cbei $\sqrt{\text { Ca }}$. M
The Reverend Mr. Edward Morgan, Schoolmatter of Chepo ping Onver in Effex.
The Reverend Mr. Thomas Mathews, A. M. Prebendary of Hereford.
Mr. Macock, of Uttoxeter.
The Reverend Mr. Cbarles Manning, Batchelor of Arts of Hart-Hall, Oxon; and Curate of Nembina in Northampton Jhire.
Mr. Merchant of Hart-Hall, Oxon.
Mr. Fohn Matthems, Printer in Pilkington-Court, Little-Brit. tain, London.
The Reverend Mr. Martin, Batchelor of Law, and Fellow of Nem-College, Oxon.
Mr. Fobn Montford, Bookfeller in Worcefter; for four Books,

$$
\mathrm{P}
$$

Mr. Silvefter Pettyt, of Bernurd's-Inn, Gent.
Dr. Coniers Pur/hall, of Worcefter.
Mr. Charles Profer, of Worcefter.
Mr. Fobn Perry, near WirkJwortb in Derbyfire.
Mr. Nicholas Price.
Mr. William Pear $\int o n$, Printer in Femen. freet, London.
Mr. Anthony Piefley, Bookfeller in Oxen.
R
Mr. Ricbard Randall, Bookfeller in Nemcafle on Tine.

S

Mr. Sanderfon, A. M. Profeffor of the Mathematicks to the Univerfity of Cambridge.
Mr. Simpfon, Profeflor of the Matbematicks in the Univerfity of Glafcom.

The Reverend Mr. Sympfon, Mafter of Arts, and Fellow of Brazen-Nofe-College, Oxon.
Mr. Shortgrave, Batchelor of Arts, of Hart-Hall, Oxon.
Mr . Fobn Sturt, Engraver, in Alder gate-Atreet, London.
The Reverend Mr. Seale, A. B. Fellow of Exeter-College in Oxon.
Mr. Fobn Swale, Bookfeller in Leeds.
Mr. William Skinner, Student at Oriel-College, Oxon.
Mr. Simonds Bookfeller in Sheffeild, Tork-fire. T
The Right Honourable the Lord Trevor, Baron of Brombam. Mr. Andrew Tooke, Profeffor of Geometry at Grefham-College; London.
Mr. Cbarles Tyrrell, of Rochford in Effex.
Mr. Lewis Thomas, Printer in Oxon.
Edward Tarry, M. D. Phyfitian to the Englifh Factory $2 t$ Aleppo, in Turkey.
Mr. Fames Taylor of Cbatbam.
Mr. Tburlebaine, Bookfeller in Cambridge。
\square
The Reverend Mr. Fincent, of Rovenfone, Leicefter/hire. W
Ricbard Wynn, Serjeant at Law.
The Honourable Mr. Francis Wolverfone Wilkins, of Raversfone in Leicefterfhire.
Mr. Tbomas Walford, of Hart-Hall in Oxon.
Edward Williams, Gent.
Samuel Waters, of the Eaf. India-Houle, Gent.
The Reverend Mr. Woolcomb, A. M. of Exeter-College, Oxoms
Mr. Henry Walker, of Pontefralt in York-hire.
Mr. Wilkinfon, Bookfeller in PortSmontb.
Mr. Willmot, Bookrellaw: - :

INTRODUCTION TO THE

 flathematits.

 flathematits.}

MATHEMATICS is a Science which takes under confideration whatever can be meafur'd or computed, and becaufe every thing that can be meafur'd and computed is a concrete or difcrete Quantity, that is to fay, continued or difontinued ; it follows that the Objest of Mathematics is Quantity or finite Magnitude, fuch as is capable of increafe by Addition or Multiplication, and of decreafe by Subftraction or Divifion; and the Quantity that has a fenfible extenfion, call'd Dimenfion, as a Line, Surface, and Solid, and alfo Time, Motion and Weight, are the Objects of Geometry: But the fame Quantity that has no fenfible extenfion, fuch as Number, whofe Dimenfions are only imaginary, and not to be perceiv'd but by Thought, is the Object of Aritbmetic.

Thefe two Parts, Arithmetic and Geometry, which confitute what is commonly call'd Simple Matbematics, and which Plato calls the two Wings of a Mathematician, do mutually help each other, and are the foundation of the orher Parts of the Mathematics, commonly call'd Mix'd MatbemaLics, fuch as Afronomy, optics, Mechanics, \&ic. which are no other than Phyfical Knowiedge explain'd by the Principles of Arithmetic and Geometry.

Tho' the Mathematics take cogrizance only of Quan. tity, yet they do not confider it abfolutely and in it felf, but only the relation it may have to another Magnitude of the fame kind, by comparing together thefe two homogeneal Quantities, in order to the finding out fome hidden Truth, and afterwards to demonftrate it ${ }^{2}$ by reafons founa
ded on other Truths, which are naturally known to every body, and are therefore call'd Common Notions of the Mind? or Principles; of which there are three forts, viz. Definitio. ons, Axioms, and Ioftulates.

DEFINITIONS are the explications of fuch words and terms which concern a Propofition, towards the rendring. of it plain and clear, and for avoiding all manner of difficulties and objections, in the demonftration.
$A X I O M S$, or Maxims, are fimple and general Propofitions, the knowledge whereof is fo evident of it felf, that nobody can deny them without contradieting their natural fence and reafon; fo that every rational Man is oblig'd to allow of them, there being no proof more convincing than the natural light of the Mind. As when it is faid, that frome one Point to anotber Point there can but ore. right, Line be drawn.

PQSTUL ATES are fuppofitions of certain Practices? the performance whereof is fo ealy in it felf, that no Man of fenfe and judgment can be ignorant of it, or will: conteft it. As, upon a Plane to defcribe a Circle mitts a Compafso. They are call'd Poftulates or Demands, becaufe its requir'd. and expected that every Man fhou'd acknowledge them to be naturally known to all, and fo eafy that there is no mieed of any Mafter to teach them, or to be obliged to demonitrate them.

Thefe three forts of Principles being granted, the Mathematicians ufe them for the Demonftration of fuch Propofitions as they adyance, which are of two forts, to wit ${ }_{9}$ the principal Propofitions, which are either Problems or Theorems: And the lefs principal Propofitions; which are either Corollar ies or Lemmas, which when they have been demonftrated do in their turn conduce to the Proof of other Propofitions which depend on them.
A PROBLEM is a Quettion which propofes fome thing to be done, and teaches how to do it, and to con fruct it by the preceding Principles, touching fome Pradice commonly neceffary to the Demontration. As, to find the Centre of a given Circle. There are feveral forts of Problems, fome of which will be here explain'd, after having thewn what this word Given means.

By this word Given, the Mathematicians underfands fomething whofe Magnitude, or Pofition, or Species, or Proportion is known; fo that when its Magnitude is known, its faid to he given in Magnitude; and when its Pofition is known fts faid to be given in Pofition: But when its Mag. nitude and Pofition are known ${ }^{\text {ctis faid to be given in Mag. }}$ witude and Pofrion. Thus in defcribing a Circle on a Plane,

To the Mathematics.

its Centre is given in Pofition, its Diameter is given in Mag. nitude, and the Circle is given in Magnitude and Poftion; and if a Diameter be drawn at pleafure, tiat Diameter will be given in Magnitude and Pofition. The Eircle can only be given in Magnitude, when that Circle is only imaginary, and when only the Magnitude of its Diameter is known: Laftly when its Species is known, its faid to be given in Species; and when the Relation of two Quancities is known, they are then faid to be given in: Proportion, \&c.

There are Problems which are call'd Ordinate and Inordia nate, Determinate and Indeterminate, Simple, Plane, Solid, and Surgolid, that is to fay, more than Solid.

AnOrdinate Problem is that which can be done but only 5. 46 one way, As to make the Circumference of a Circle pals thbro' three given Points; there being but one only Circle, whofe circumference can pals chro' three given Points.

An Inordinate Problem is that which can be done an infinite number of ways. As to defcribe the Circumference of a CirGle thro two given Points, it being evident that thro' two given Points an infinite variety of Circles may be drawno

A Determinate Problem is that which has but one certain $5, ~ i s$ determin'd number of Solutions; as to divide a given Line into two equal parts, this Problem having but one Solution; or to find two whole Numbers, the differente of whose Squares Ball be equal to 48 , which has but two Solutions to wit, 8, 4, and 7,1 , for the two Numbers fought for.

An Indeterminate or Local Problem, is that which is capable of an infinite variety of different Solutions, fo that the Point which contributes to the refolution of the Problem, when it is in Geometry, may be taken at pleafure, within a certain extent call'd the Geometric Place, which may be a Line, a Plane, or a Solid; and then it it is faid that the Problem is a Place or Lotus, which is call'd Simple Place. or Loces ad linedm reEtam, when the Point which refolves the Problem is in a right Line: Plane Place, or Locus ad Circulum, when that Point is found in the circumference of a Circle: Solid Place, when the fame Point is found in the circumference of a Conic Section, other than the Circle, as of a Parabola, an Hyperbola, or of an Elliffes, \& c .

A Simple; or Linear Problem, is fuch as may be refolv'd Geometrically by the interfection of two right Lines. It is evident that fuch a Problem is Ordinate, becaufe it cari have but one Solution, fince tivo right Lines will cut one another but in one Point.

A Plane Problem is fuch as may be refolv'd Geometrically, by the interfection of the circumferences of two Circles, or by the interfection of the circumference of a Cirsle and a

INTRODUCTION

righe Linc. It is evident that fuch a Problem can have But two Solutions becaufe two circumferences of a Circle, or a right Line and the circumference of a Circle, can cut each other but in two Points only.

A Solid Problem is that which may be refolv'd by the interfétion of two Conic Sections, other than two Circles. It is evident that fuch a Problem can have at moft but four Solutions; becaufe two Conic Sections cannot interfect in more than four Points.

A Surfolid Problem is that which cannot be refolv'd Geometrically, without making ufe of fome Curve Line of a higher kind than Conic Sections. it is evident that fuch a Problem is capable of more than four Solutions, becaufe a Curve Line of a higher kind than Conic Sections may be cut by another Curve Line in above four Points.

A Problem that is extremely eafie and almoit felf-evident, and which ferves to refolve more difficult ones, is call'd a Porima, from the Greek word I'orimos, which fig: nifies a thing eafy to be comprehended, and which opens the way to things of a more difficult Nature; as fiom a given Line to cut off a lefs given Line.

A Problem which is poffible, but which has not ever been refolv'd, becaufe of its feeming difficulty, is call'd an Apore; as is now (by fome) the Squaring the Circle. Before Arcbimedes the Squaring of the Parabola was an Apore.

By this word Quadrature or Squaring is meant, in the Mathematics, the manner of reducing into a right lined Figure a Curve lined Figure, that is to Cay, a Figure bounded by Curve Lines, becaufe all right lined Eigures may be eafily reducsd into Squares. Thus the Squaring the Parabo$l a$ is the way of finding a right lined Figure equal to a Parabola; and the Squaring the Circle is the manner of defribing a right lined Figure equal to a given Cicle.

A THEOREM is a determinate Propofition touching the Nature and Properties of a thing, thewing how to find out an hidden Truth, and to deduce it from its proper Principles. Of which fort is this Propofition, which lays down, that when the tro Sides of a Triangle are equal, the two Angles at the Bafe are aljo equal.

A general Theorem which is difover'd in any Locus found, is call'd a Porifma; fo that when, either by the ancient or modern Analyfir, the conftruation of any local Problem is found out, and a general Theorem drawn from the conftruction of that Locus, fuch a Theorem is call'd a Porifma. A Porifma therefore is no other than a Corollary deliver'd like a Theoren that is difcover'd in a Locus, with its conftruction and demonftration, ferving, fays P appus, for

To the Mathematics.

the confrustion of the mof general and diffcult Problems.

The sord Porifma comes from the Greek Porifo which according to Proclus fignifies to eftablifh and conclude from what has been done and demonftrated, which made him define a Rorifna to be a Theorem drawn occafionally from ther Thearem done and demonftrated.

A COROLLAR Y° is a neceffary and evident Truth, that is to fay a confequence evidentiy drawn from what has been done or demonftrated. As if from a preceding Theorem, we learn that the two Angles of a Triangle are equal, when 5. I. the tro ofpofite sides are equal, it is concluded that the three Angles of an equilateral Triangle are equal.

A LEMM A is a Propdfition put where it is to ferve for the Demonftration of a Theorem, or Refolution of a Problem; it is commonly put before the Demonftration of the Theorem to the end its Demonftration fhou'd be lefs perplex'd; or before the refolation of a Problem, to render it the fhorter, and therefore 'tis that Euclid in his Elements teaches how to draw an equilateral Triangle, before he thews how from r. I. a Point given to draw a right line equal to one given, and 2. Io that he always demonftrates a Theorem before its inverfe, which in another Hace we have call'd a Reciprocal Theorem.

Among the lefs principal Piopofitions, we may likewife put the Scholium which fhall be explain'd after we have thewn what Demonftration means, together with its different kinds.

DEMONSTRATION is ore of many Syllogims, or fucceffive reafuning drawn one from another, which clearly and invincibly demonftrate a Propoftion, that is to fay, which convince the mind of the truth or fallity, of the poffiblity or impoffibility of a Propofition; and without Demonftration there is always reafon to doubt of any Propofition, unlefs it be a Principle, becaufe it frequently happens that a Propofition is falfe, when it feems true to the Senfes, and even to the Mind, which is often impos'd upon by the Senfer, when it has not fufficiently examin'd the thirg.

Thefe Reafonings are fourded on the three forts of Principles before mention'd, in properly applying them to each other, that is to fay, in applying one truth to another trath, and from thefe two truths concluding a third, and thus by continuing to deduce truths from truths, by a proper and orderly ufe not only of Definitions, axioms and Demands, already granted, but likewife of Theorems, Problems, Lemmas, and Corollaries, till we arrive at the lant Truth, call'd the Gonclufion, becaufe it concludes and fully

INTRODUCTION

and perfectly convinces the Mind of what was to be De: monftrated.

Befides the Conclufion, there belongs to a Demonftration the EIypotbefis, which is a fuppofition of the things known or given in the Propofition to be demonftrated or conftrueted; as alfo the Preparation, which is a conftruction made beforchand by drawing fome Lines either real or imaginary, to perform the Demonftration with the greater eafe, and more readily conduct the Mind to the knowledge of the truth propos'd to be demonftrated.

There are feveral forts of Demonftrations of which the two moft confiderable are thofe which we call Pofitive, of Afirmative, or Direct; and INegative, or Impodible, or Indirect.

A Pofitive, Affrmative, or Direet Demonfration is that which by affirmative and evident Prepofitions, drawn directly from each other, does at laft dificover the truth fought for, and concludes with what it pretended to de. monftrate, fo that it forces the Reafon to confent to fuch a truth. Of which fort is that in Prop. 1. B. 1. of Eu: clid's Elements, and many others.

A Negative, Impofible, or Indirect Demonflration is that which demonftrates a truth by fome abfurdity which neceffarily follows, if the propofition advanc'd and contefted mou'd not be true. Euclid therefore to demonftrate, that a Triangle which has two Angles equal bas allo two Sides equal, thews that the part wou'd be equal to its whole, if one of thofe two Sides were greater than the other, from whence he concludes they muft be equal.

Each of thefe two ways of Demonltration equally convince the Mind, and oblige it to confent to the Truth demonftrated, but do not equally enlighten it; for 'tis certain that the DireCI is more fatisfactory and clear than the Indirect. Wherefore the latter is not to be us'd but when it can't be avoided. Euclid indeed has made ufe of Indirect Demonftrations in many Propofitions, but we thall endeavour to render them Direct as much as poffible.

A SCHOLIUM is a Remark made on the Conftrum ation of a Problem, or on the Demonftration of a Theo. rem. As if after having found the Refolution of a Prob: lem, it be remark'd that in feveral Cafes the Refolution might have been done a thorter way by Compendiums drawn from the general Refolution: Or if after having demontrated a Theorem by Synthefis, it be remark'd that the Demonftration might likewife have been perform'd by Analyis. But now it concerns us to explain what is SynWhefis, and what Anolyess

To the Mathematics.

SPNTEESIS or Compofition is the Are of finding oxt the truth of a Propofition, by Confequences regularly drawn from eftablifh'd Principles, or by Propofitions which de monftrate each other, beginning at the moft fimple, and proceeding on to the more compound, until the laif be attain'd, which finifhes the conviction of the Mind as to the truth fought for, and obliges it to affent thereto: So that whofoever fhall confider with attention the confequence of all thefe propofitions, fhall be invincibly convinc'd of it, and thall no longer be able to refufe his confent to this laft truth, of which before he was in doubt, or abfolutely ignorant of.
$A N A L T S I S$, or Refolution is the Art of difcovering the truth of a Propolition by a way contrary to that of Compofition, to wit, by fuppofing the Propofition fuch as it is, and by examining what follows from this Propolition ${ }_{2}$ untill one arrives at fome clear truth, of which what has been fuppos'd is a neceffary confequence, to conclude from it the truth of the Propofition, by making ufe of Compofition by a retrograde order, namely by taking up its reafonings where the other ended. You have an example of Synthefis and Analyfis in Theor. 3. Part 3. Chat. 1. of Geometry.

Analyfis when it is us'd in pure Geometry, as the Ancients did, confifts more in the judgment and in the application of the Mind, than in particular Rules: But at prefent it is made ufe of in Algebra, which is a literal Arithmetic by the means whereof hidden truths are more eafly and methedically found out. I hall give you what M. Prefet fays of it in his New Elements of Mathematics.
"Never cou'd the Synthefis of Geometricians have ar"riv'd to fo high a pitch as it has done in this Age, 6: had not the Analyfis of the Moderns fupported it, and brought to light an infinite number of fine difcoveries " unknown to the moft learned anong the Ancients. It is s" indeed impoffible to argue by any other way more ingenioully, methodically, profoundly or learnedly, and « more compendioufly. Its expreffions by Letters are al"together fimple' and familiar, and the Mind can be fup${ }^{\text {es }}$ ply'd with nothing of fo great help, in the difcoveries 66 of truth, becaufe they leffen its labour, and dextrounly "fave its application, they fix it and render it attentive st upon the Object of its enquiries, they commodioully espoint out all the parts of them, they fupport the ina"s gination, they renew and fpare the Memory as much as "poffible, in a word, they rule and perfectly guide the s6 Mind, and yet fo little do they divide or employ it by

INTRODUCTION

is the Senfes, that they leave it an entire liberty to exert
st all its vigour and aetivity in its fearch after truth. So
" that nothing can efcape its penetration; and the juftneis
" or clearnefs of its reafonings does commonly difcover
" the fhortef way to the truths it feeks after, or the
"Mediums that are wanting to arrive at it, when they are " beyond its reach.

Thele and many other reafons have made me of opinion that fince Algebra is at prefent more efteem'd and more cultivated than ever, it wou'd not be amifs, before any other thing, for the fake of beginners, to add a Compendium of this noble Science, at leaft as much as we have need of in Euclid's Eiements, and elfewhere, to foften the Demonftrations which feem more difficult by any other way than by the Analyfis of Geometricians ; and to add laftly fome Geometrical Problems, which we thall refolve by Rule and Compafs upon Paper, and with a Stick and Chord or Chain upon the Ground, by fimple and eafy Practices, without any Demonftrations, to bring their hand in who never us'd fuch Inftruments, and to difpofe them the better to underftand Euclid's Elements, and the other Treatifes which ought to follow them.

COMPENDIUM 0 F Algebra.

ALGEBRA is a Science by means whereof we endeavour to refolve any poffible Problem in the Mathematics, which is done by the means of a fort of literal Arithmetic, which for that reafon has been call'd Specious Algebra, becaufe its reafonings are all done by the fpecies or forms of things, namely by the Letters of the Alphabet, which are extremely helpful to the memory and imagination of thofe, who apply themfelves to this noble Science: For without that, all thofe things which ferve to difcover the truth fought for, mult be retain'd in the Mind, which requires a ftrong Imagination, and cannot be done without great labour to the memory.

Thefe Letters reprefent each in particular either Lines or Numbers, according as the Problem is propos'd touching Geometry, or Aritbmetic; and being join'd together, they reprefent Planes, Solids, and higher Powers according to their Number; for if there are two Letters.together, as $a b$, they reprefent a Rectangle, whofe two dimenfions are reprefented by the Letters a, b, namely one fide by the Letter a, and the other fide by the other Letter b, fo that being multiplied together, they produce the Plane ab. And if there are two like Letters as aa, this Plane a an will be a Square, whofe fide is a_{3} which is call'd Square Root.

But if there are three Letters together as $a b c$, they will feprefent a Solid, namely a Rec. three
three dimenfions will be exprefs'd by the Letters a, b, c, to wit, the length by the Letter a, the breadth by b, and the height or depth by the laft letter c, to the end that thefe three Letters being multiplied together they may produce the folid $a b b$. So that if thefe three Letters are the fame as aad, this Solid aad, will reprefent a Cube, whofe fide is a, which is call'd Cube Rooto

Laftly, if there are more than three Letters together, they will reprefent a higher Power, of as many dimenfions as there are Letters: and fuch Powers are call'd Imaginaryo becaufe in nature there is no fenfible Quantity known, which has more than three dimenfions. This Power, or imaginary Quantities call'd Plano-Plane or a Power of four dimenfions, when it is exprefs'd by four Letters, as abod, and when thefe four Letters are the fame as adaa, this Plano-Plane daad ${ }_{3}$ is icall'd Square-Squar ${ }^{8} d_{\text {, }}$ whofe fide is a_{3} which is call'd Square-Squar'd Root.

This fame Power is call'd Plane-Solid, when it is reprefented by five Letters: and when they are the fame, as adaaa, it is call'd Surfolid, whofe fide is a_{3} which is call'd Surfolid Root.

Thus you fee that thefe Powers go on encreafing by a continual addition of Letters, which is equivalent to a continual Multiplication: And when they are compos'd of equal Letters, they are call'd Regulars, and Vieta calls them Gradual Ouantities, becaufe they encreafe by ia degree conformable to the number of their Letters. Thus ad, is a Power of the fecond Degree, becaufe it has two Letters'; and ada, is a Power of the third Degree, becaufe it has shree Letters, and fo on.

From whence it follows that the Roo', or the common Side a; of all thofe Powers, is a Pomer of the firft Degree.

But as by augmenting thele gradual Quantities by a continual addition of the fame Letter, the Number of the Letters may become fo great, that it will be hard to reckon them, and even to write them upon Paper; in fuch cafe it will fuffice only to write the Root, that is to fay, only one Letter, and to annex to it towards the right hand a Figure expreffing the number of the Letters, of which the Power is compos'd, and this number is call'd Exponent of the fame Power, and fhews the Number of its Dimenfions, it is conmonly written a little higher than the Letters, fo as not to confound them with the other Numbers, when there are any, or when there is any other Letter which follows after at the right hand. Thus to exprefs a Surfolid, or a Power of the fifth Degree, that is to fay, of five Dimenfions, whofe fide or Root is a_{3} inftead of reprefen-
ring it by thefe five Letters adada, you may reprefent it thus, a^{5}. To exprefs likewife the cube of as you may write thus as, and to exprefs the Square- $\int q u a r$ 'd of it, you muft write thus a^{4}. So of others.

It is eafily feen by what we juft now faid, that the gram dual Quantities, or the Powers of any Root, as a_{3} are $a^{1}, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}, a^{7}, a^{8}, a^{9}, a^{10}, b^{\circ} c$.
this natural Series, and that they are in a Geometrical Progreffion, while their Exponents are in an Arithmetical Progreffion, becuufe the Powers encreafe by a continual Multiplication of one and the fame Roots and their Exponents augment by a continual addition of that of the fame Roots, which is ${ }^{\circ} \mathrm{I}$, tho' not alway's written, becaufe it is underftood, for it is erident that a is equivalent to a^{R}.

Thus putting for a, what number you will, for example 2 , then a^{2} will be $4, a^{3}$, will be 8 , and the other Powers will be fuch as you fee here, which fhew that the Powers, or gradual Quantities, 2, 4, 8, Jec. are in a Geometrical

$$
\begin{array}{llll}
a^{x}, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}, a^{7}, a^{8}, & \text { bc } \\
2 ; & 8, & 16,32,64, & 128,256, \text { vic. }
\end{array}
$$

Progreffion, and that their Exponents 1, 2, 3, doc. are in an Arithmetical Progreffion. Which is the caufe that thefe Exponents may be confider'd as the Logarithms of their Powers. From whence it follows that the Exponent of a Power which is produc'd by the Multiplication of two other Powers. is equal to the Sum of the Exponents of thofe Powers. Thus the Surfolid 32, hath 5, for its Exponent, namely the Sum of the Exponents 1,4 , of the Powers 2, 16, which produce it, or of the Exponents 2, 3, of the Powers 4,8 , which produce it.

Thus you fee that there is a great difference between 3a, and a^{3}, becaufe a^{3}, fignifies the Cube of the Root a_{3} and $3 a$ reprefents the criple of that Root: So that if a be equal to 2 , its Cube a^{3} is equal to 8 , and its Triple $3 a$, is only equal to 6 , in like manner $3 a^{4}$, expreffes the triple of the Square-fquar'd of the Root a, fo that if a be equal to 2 , the Plano=Plane $3 a^{4}$ is equal to 48 . So of others.

C H A P. I.

Of Monomes, or Simple Quantities.

WH A T we call Monomes is a literal Quantity, which fubfifts alone, that is, fuch as is not accompanied: with

INTRODUCTION

any other Quantity connected by this Character + , which fignifies more, or by this -, which fignifies lefs.

PROBLEM 1.

To add one Quantity to another.

AS homogeneal Quantities do not affect the heterogeneal ones, that is to.fay, that one Quantity cannot augment another Quantity of a different kind, when it is added to ir, nor diminifh it, when it is fubitracted from it; it follows, that thofe which are to be added together, ought to be homogeneal, that is to fay, of the fame kind; and when they are of the fame kind, let their Coefficients, be added together, and the fame Letters; and the fame Exponents retain'd, and when they are of divers kinds they may be added by the Sign + , becaufe more, as well as lefs, does not make different kinds. This Addition will be cafily comprehended by the following Examples, where you
may fee that by the Addition of feveral Quantities of the fame kind, there one only Quantity is found, which coniequently is alfo a Monome; and by the addition of feveral Quantities of different kinds, a Polynome is form'd, which we will call Binome, when it is compos'd of two Monomes, which are call'd Terms as $2 a+3 b$; and Trinome, when it is comp.os'd of three Monomes or Terms, as $2 a a b+3 a b b+4 a^{3}$ Sr c.

P R O B L EM. II.

To Subftract one உuantity from another.

$\$$Ubifraction likewife fuppoles Quantities to be homogeneal ; for it is evident that a plane cannot be diminithed by the Subftraction of a Line, becaufe a Plane is compos'd of an infinite number of Lines, nor a Solid by the Subftraction of a Line, or Plane, becaufe a Solid is compos'd of an infinite number of Lines, and alfo of Planes.

As we have faid that the Sign lefs does not make different kinds, a Quantity may be fubftracted from anothee

Oatantity greater and of the fame kind, by taking its Coefficients from thofe of the greater, and by retaining the fance Letters, and their Exponents : and from another Quantity greater and of a different kind, by writing it after the greater towards the right hand, and by counecting them with the Sign -, which belongs to the Quantity that is to be fubtracted, which in this care is call'd Negative Quantity, altho' it be pofitive in it felf, being negative only in refpert to that from whish it is to be fubitracted. See the following Examples'.

$6 a$				
$2 a$	$8 a$ $4 a$	$\frac{3 a a}{5 a a}$	$\frac{4 a b b}{5 a b b}$	$\frac{3 a}{2 a}$
$8 a-2 b$	$\frac{2 a b}{2 a^{3}-2 a a b}$			

It often happens that a greater Quantity is required to be fubftracted from a lefs, which being abfolutely impoffible, the lefs muft be fubftracted from the greater, as was juft now taught, and the Sign - mult be prefix'd to the remainder, to thew that, that remainder proceeds from the fubftraction of a greater Quantity from a lefs, and confequently is a negative Quantity. Thus fubftracting 5 a from $3 a$, the remainder will be $-2 a$, and fubftracting $10 b b$ from $3 b b$, the remainder will be $-7 b b$, and fo for others.

To reprefent the excefs of one Quantity above another Quantity of a different kind, without knowing which is the greater; as if we cannot tell to which of thefe two Quantities the Sign - ought to be ittributed, they muft be join'd by this ... which fignifies Difference. Thus the difference of thefe two Quantitics $2 a, 3 b$, is $2 a$ ooc $3 b$, or $3 b \ldots 2 a$, and the difference of thele two $2 a^{3}, 4 a b b_{2}$, is $2 a^{3} \ldots 4 a b b$, or $4 a b b \ldots .2 a^{3}$.

PROBLEM III.

To multiply one Quantity by anotber.

MUltiplication does not any more than Divifion require the Quantities to be homogeneal, for nothing hinders but a Plane may be multiplied by a Line, and it will become a Solid; or a Solid by a Line, and it will become a Plano-Plane. Thus you fee that the Multiplication of Quantities changes the kind, and elevates it, except when it is made by a Number, in which cafe the fame kind remains.

Firft to multiply a literal Quantity by a number, mula tiply the Coofficient of that literal Quantity by that numbers

INTRODUCTION

ber, and retain the fame Letters and their Exponents. Thus to multiply this literal Quantity $3 a a b b$ by 4 , you muft multiply 3 by 4 , and you will have $12 a a b b$ for the Product.

But to multiply one literal Quantity by another, the Coefficients mult be multiplied together, and the Exponents added, if the Letters are the fame in each of the Factors, otherwife write down the Letters one after another with their Exponents, and prefix the Product of their Coefficients, as in the following Examples; where you may obferve that the Exponent of a Square is double, that of its Roots the

$2 a$	$2 a a$	$3 a$	$9 a a$	$18 a a b c$
$\frac{3 b}{6 a b}$	$\frac{4 a a}{8 a^{4}}$	$\frac{3 a}{9 a a}$	$\frac{3 a}{27 a^{3}}$	$\frac{4 a a c d}{72 a b b c a}$

Exponent of a Cube is triple that of its Root, and that the Exponent of a Square-fquar'd is quadruple that of its Root.

PROBLEM IV.

To Divide one Quantity by anotber.

DIvifion which Vieta calls Application, does not as we have already faid require the Quantities to be homo: general, for oftentimes a Quantity of a bigher Pomer, that is to fay of a higher kind, or which has more Dimenfions, is divided by one of a lower kind, or by one of a fewer dimenfions, as a Plane by a Line, and then a Line is produced: Or a Solid by a Line, and then the Quotient is a Plane. So of the reft. But a continued Quantity cannot be divided by another higher continued Quantity, Geometrically feaking, becaule that is againft the nature of the Quantity, but, you may divide a Quantity by a Quantity of the fame kind, and then the Quotient is abfolutely a Number, generally fpeaking.

Firft, if the Divifor be a Number, divide the Coefficient of the Dividend, by that Number, and retain the fame Letters and their Exponents: Thus, dividing 8abb, by 4, the (outient will be $2 a b b$, and dividing $32 a^{3}$ by 8 , the Quotient will be $4 a^{3}$.

But if the Divifor confift of one or more Letters, and that thefe fame Letters are found in the Dividend, which I fuppofe rais'd higher than the Divifor; then divide the Coefficients of the Dividend by thofe of the Divifor; and fubitract the Exponents of the Letters of the Divifor, from the Exponents of the Letters of the Dividend, and the

Letters which remain without an, Exponent, will vanish, and the others will remain in the Quotient, and will be Integers, if the Divifor has not Letters different from thole of the Dividend, or if all the Exponents of the Divifor be fubftracted from the like Exponents of the Dividend, other. wife thole different Letters muff be placed beneath, or elfe the difference of the Exponent with the fame Letters, found by fubftracting the leffer from the greater, as you fee in the lat of the following Examples.

PROBLEM V.

To extract the Root of a given Quantity.

WE have remarked in Multiplication, that the Expo next of a Square is double that of its Root, that the Exponent of a Cube is triple that of its Root, and to on. Wherefore to extract the Square Root of a given Quantity, you muff take the Square Root of its Coefficient, and the half of its Exponent, and to extract the Cube Root of it, you mut take the Cube Root of its Coefficient, and the third of its Exponent. Thus the Square Root of $64 a^{6} b^{6}$, is $8 a^{3} b^{3}$, and its Cube Root is $4 a a b b$, which has likewife its Square Root mab. So of others.

A Power which has neither + nor - prefix'd, is ac. counted affirmative, that is to fay, prefixed by a + , and then it will always have the Root fought, provided it has a Number which has fuch a Root prefix'd, and that its Exponent he divifible exactly by that of the fane Root, to wit by 2, for the Square Root, by 3, for the Cubic Root, and fo on. Thus the Square Root of $4 a^{8} b^{8}$ is $2 a^{4} b^{4}$, and the Cube Root of $a^{6} b^{6}$, is is lab, the Coefficient being underftood in the Root as well as in the Power; for it is evident that $a^{6} b^{6}$, is equivalent to $:^{6} b^{6}{ }_{9}$ and its Cube Root * 3 b equivalent to 1 ia db.

If the Power whofe Root is to be extracted be negative; that is to fay has - prefix'd, it will never have fuch a Root, altho' it has the Quality which we mention'd, unlefs the Exponent of the Root fought be an odd Number, and then the Root will be alfo negative. Thus the Cubic Root of $-8 a^{3} b 3$, is - $2 a b$, and the Surfolid Root of $-3 a^{20} b_{5}$, is - $2 a a b$. But - $4 a a b b$ has no Square Root, but fuch as is call'd Imaginary, which is exprefs'd thus, $\sqrt{-4 a b b}$, the Mark V fignifying Root.

When a given Quantity has no Root, the Character is prefix'd with the Exponent of the Root, placed above that radical Sign. Thus the Cube Root of $12 a^{3} b 3$; is exprefs'd in this manner, $\sqrt[3]{12 a^{3} b 3}$, and the $\subseteq q u a r e$ Root of $24 a a b b$, is writ thus, $\stackrel{i}{2}_{24 a b b b}$, or plainly thus, $\sqrt{24 a a b b}$, the Exponent 2 being underfood, which is negleeted to be written, when you wou'd reprefent a Square Root. And fuch Roots are commonly call'd Irrational Quantities.

Thefe Roots or irrational Quantities may be exprefs ${ }^{3} d_{2}$ more plainly, when the Power is divifible by another Power which has the Root fought for, to wit, by writing the radical Sign V between the Root of this other Power and the Quotient. Thus for the Cube Root of $12 a^{3} 33$, infead of $\overline{12 a 3 b 3}$, write $a b V_{12}^{3}$, becaufe the Power 12a3b3, is divifible by this $a^{3} b 3$, which its Cubic Root $a b$, and the Quotient is 12. In like manner to reprefent the Square Root of this Power, 6aabb, inflead of wriking thus, $\overline{v 6 a a b b}$, you may write thus $a b V G$, becaufe the given Power $6 a s b b$, is divifible by this aabb, the §quare Root whereof is $a b$, and the Quotient is 6 .

CHAP。

To the Mathematics

C H A P. II.

Of Pulynomes, or Compound शuantities:

YOU have feen in the preceding Chapter, that by the Addition, iand Subftraction of feveral Quantities of different kinds, a Polynome is formed, the Terms of which, that is to fay, the Monomes which compofe it may be differently affelfed, that is to ray, Affirmative or Negative; according as they have been added or fubftracted: Now leit the diltinction of: f and -, which are call'd Signs, thou'd caufe fome difficulty, before you come to the Practice, we thall here add the following Theorems.

THEOREMI.

Tbe Sum of two Quantities affected alike, is of the fame afo fection.

THat is to fay', that if any two Quantities are Affrmdo tive, or have + prefix'd, their Sum will be Affirmasive; and if they are Negative, their Sum will be alfo Negative. For it is evident that the sum $a+b$, of the two Quantities $a_{2}: b$, or $+a,+b$, which are affected alike, that is to fay, have the fame Sign prefix'd, which thew thiat they are both Affirmative, is Affirmative, becaufe if they were negative, that is, $-a-b$, each of thefe two Quancities would be alfo negative, which is contrary to the Suppofition. It is evident alfo that the Sum -a-b, of the two negative Quantities - $a,-b$, is negative, becaufe if it wăs affirmative, fo that it were $a+b$, each of thofe two Quantities would be alfo affirmative, whieh is alfo concrary to the fuppolition. Thus it is leen that + added to t makes t_{i} and that - added to - makes -

THEOREM II。

The Sum of two unequal Quantities differently affected, is of tive fame affection mith the greater, and is equal to their Difference.

FOR fince they are differently affected, by the fuppofition, the one ought to be affirmative and she other negative, and their Sum being compos ${ }^{2} d$ of a negative Quansity and an affirmative one, fhews that the negative Quantity ought to be fubftracted from the affirmative one, becaule Negation is a mark of Subftraction. Wherefore if the Negative is lefs than the Affirmative, it may be fubo ftracted from the Affirmative, and then there will remain a part of the Affirmative, fo that the Difference will beAffirmative, and of the fame affection with the greater. Whicto is one of the two things which was to be Demonftrated.

But if the negative Quantity be greater than the affirmative, as the negative cannot be fubftracted from the affirmative, which is fuppos'd lefs, you mult fubitract the lefs from the greater, that is to fay the affirmatrve from the negative, and there will remain a part of the negative ${ }_{\text {, }}$ fo that the Difference will be negative, and confequently of the fame Affection with the greater. Which remain'd to be Demonfrated.

Thus the Sum of $-2 a$ and $f 5 a$, is $+3 a$; and the Sum of $+2 a$ and of $-5 a_{3}$, is $-3 a^{\text {. From whense it }}$ follows that the Sum of two equal Quantities differently affected is O, or nothing.

THEOREM II.

To fubftrat one Quantity from another, is the fame thing as to add to that other Quantity the former, affeited by a contrary Sign.

THus, for example, if you would fubtract $+2 a$ from $+5 a$, that is, if to $+5 a$ you would add $-2 a \dot{3}$ becaufe the taking away of an Affirmative is fubftituting m Negative, and the Sum $+3 a$ will be the Remainder:

It is the fame if you would fubtract - $2 a$ from - $5 d_{3}$ that is, if $10-5 a$ you would add $+2 a$; becaufe the taking away of a Negation is fubftituting an Affirmation, and the Sum - 3 will be the Remainder:

But if you would fubftrat $+2 a$ frome $-5 a_{5}$ thes is，if to － $5 a$ you would add $-2 a$ ，the Sum $-7 a$ will be the Remainder ：And if you＇d fubitrase $-2 a$ from $+5 a$ ，that is， if to $+5 a$ you would add $+2 a$ ，the Sum $+7 a$ will be the Remainder．

THEOREM IV。

The Product of tho Quantities＂affected alike is affrmative， and the Product of two Quantities differencly affected is negative．

$\mathrm{I}^{\mathrm{T}}$$T$ is evident that if two Quantities are affirmative，their Produet will be alfo affirmative；beraufe in multiply ing an affirmative Quantity by another affirmative Quanti－ ty，you add it as mañy times as there are Units in that orher Quantity；for Affirmation is a mark of Addition： and as this Addition is made by an affirmative Quantity？ the Sum which is the Product will be alfo affirmative．

It is alfo evident，that if the $t w d$ ．antities which are multiplied are negative，their Product will be ftill affirmab tive ：becaufe in multiplying one negative Quantity，by ano－ ther negative Quantity，you fubftract it as many times as there are Units in that other negative Quantity；for Nega－ tion is a mark of Subffraction，and as this Subftration is made by a negative Quantity，the Negation is defroged； and confequently the Affirmation is reftored；fo that the Remainder which is the Product，will be affirmative。

Lafly it is evident，that if one of thefe two Quantities be negative，and the other affirmative，their Product will be negative ：becaufe in multiplying the negarive by the af－ firmative，you add it as often as there are Un＇ts in the afo firmative，and as this is an Addition of negative Quantities； the Sum or the Product will be negative；Furthermore，in multiplying an affirmative by a negative Quantity，you fub－ frract it as often as there are Units in that negative Quari－ tity，and as this is a Subftraction of affirmative Quantities？ by deftroying the affirmaticn you fubfitute a Negation，fe that the Remainder or Product is negative．

Thus you fee that + multiplied by + makes + that －multiplied by－makes t；and that－multiplied bs to or t by－makes－

THEOREMV.

The Quotient of two Quantities alike affected is affirmative; and the Quotient of tmo Quantities differently affected is negative.

THis Theorem is evident by the preceding one, becaufe if the Quotient of two Quantities alike affected werc not alifmative, as in multiplying the Quotient by the Divifor, you'd have the Quantity which was divided, the Product would rot be of the fame Affection with that Quantity. The fame Inconvenierce would happen if the Quotient of two Quantities differently affected were not negative. Therefore, dis.

$$
\text { PROBLEM. } \mathrm{I}_{\dot{\delta}}
$$

Addition of Polynomes or Compound Quantities.

HAving written down the Polynomes one under another in order, as in Vulgar Arithmetic, fo that Quantities of the fame kind, when there are any, may anfwer each other reépectively; add Quantities of the fame kind, as was taught in the preceding Chapter, and write thofe of different kinds below the line, each with its one Sign, as in the following Examples, where we have followed the Rules of t and - ; which have been taught in Theor. 1.2%

$$
\begin{gathered}
\begin{array}{c}
3 a^{3} b+3 a^{4}-6 a a b b-7 a b^{3} \\
7 a^{3} b-5 a^{4}+3 a b b-4 b c c \\
50 a^{3} b-2 a^{4}-6 a a b b+3 a a b c-7 a b^{3}-4 b b c c
\end{array} \\
\frac{a^{3}-3 a a b}{5 a^{3}+3 a b b} \frac{a}{a}
\end{gathered}
$$

PROBLEM II.

Subfration of Polynomes or Compound Quantities.

TO fubfradt one Polynome from another Polynome, you muft by Theor. 3. change the Signs of the Polynome to be fubftracted, that is to fay, + muft be made - , and mult be made + , then add that Polynome fo changed, to that from which you would fubltract, by the Precepts of the preceding Proble:n, and the Sum will be, by Theor. 3. the Remainder required, as in the following Examples.

$6 a b b-3 a^{3 b}+4 a b b c$
$2 a a b b-5 a^{3 b}+6 a b b c$
$4 a a b b+2 a^{3 b-2 a b b c}$

PROBLEM MI.

Multiplication of Polynomes.

HAving put the Multiplicator under the Polynome to be multiplied, as in Vulgar Arithmetic, multiply the fuperior Polynome by each Term of the inferior, according to the Precepts of the preceding Chapter, obferving the Rules of + and -, which have been taught in Theor. 40 then add all the Products together, as in the following Examples; where the laft fave one fhews that the Square of the Binome $a+b$, is the Trinome $a a+2 a b+b b$, which may ferve as a Rule for the Extraction of the Sy̧uare Root,

INTRODUCTION

$$
\begin{aligned}
& a+b \text { Side } \\
& \begin{array}{l}
+a b+b b \\
a+a b
\end{array} \\
& a a+2 a b+b b \text { Square }
\end{aligned}
$$

as well in literal Quantities as in numbers: And the laft Thews that the Cube of the fame Binome $a+b$, is this Quadrinome $a^{3}+3^{a d b}+3 a b b+6{ }^{2}$, which may likewife ferve as a Rule for the Extraction of the Cube Root, as well in literal Quantities as in numbers.

PROBLEM IV.
 Divijion of Polynomes.

FIrft, to divide a Polynome by a Monome (or a fingle Quantity.) each Term of the Polynome ought to be divided one after another by that Monome, according to the Precepts of the foregoing Chapter, and the Quotients put to the Rightoband, as in Common Arithmetic, with the Signs of and -, according to the Rule in Theor. 5. as in the following Examples, which may be underfood at Wht?

2a) $\begin{aligned} & 8 a b+4 a^{2} b^{2} c^{2}-3 a^{2} b^{4}\left(4 a^{5}+2 a b^{2} b^{2}-\frac{3}{2} a b^{3}\right. \\ & 8 a^{6}+4 a^{2} b^{2} c^{2}-3 a^{2} b^{4}\end{aligned}$ $8 a^{6}+4 a^{2} b^{2} c^{2}-3 a^{2} b^{4}$

2a) $\begin{aligned} & 9 a^{5}-12 a^{3} b^{2}-4 b^{2} c^{3} \\ & 9 a^{5}-12 a^{3} b^{2}-4 b^{2} c^{3} \\ & 0\end{aligned} \frac{9}{0}+\frac{9}{2} a^{4}+6 a^{2} b^{2}+\frac{2 b b c^{2}}{a}$
0
But if the Divifor be a Polynome, let the Terms be placed as in Common Divifion, and as in the two preceding Examples, then begin to divide at the highelt Power with refpect to the Letters that are in the Divifor, and finifh the reft as in Common Arithmetic, and as in the following Examples.

$$
\begin{gathered}
2 a+2 b) \frac{4 a a+12 a b+8 b b(2 a+4 b}{4 a a+4 a b} 0 \\
\frac{8 a b+8 b b}{8 a b+8 b} \\
\frac{9 a b-3 a b+b^{2}}{0} \\
3 a-b) \frac{9 a a-6 a b+b^{2}(3 a-b}{9 a b+b^{2}} \\
\frac{-3 a b+b^{2}}{0}
\end{gathered}
$$

$2 b c-c x) 4 a b^{2} c-2 a b c x+6 b^{2} c^{2}+b c^{2} x-2 c^{2} x^{2}(2 a b+3) c+2 c x$ $4 a b^{2} c-2 a b c x+6 b^{2} c^{2}-3 b c^{2} x$

$$
\begin{array}{r}
0.0 \quad \frac{+4 b c^{2} x-2 c^{2} x^{2}}{+4 b c^{2} x-2 c^{2} x^{2}}
\end{array} 0
$$

If after having multiply ${ }^{2} d$ the Divifor by the Quotient, the Product cannot be fubitracted for want of Quantities of the fame kind, fet down this Product below, changing its Sign of + or - into its contrary, becaule of subitraction, then proceed to divide till all the Terms be brought down as in the following Examples.

INTRODUCTION

$$
\begin{array}{r}
2 a+3 b) \frac{4 a a-9 b b(2 a-3 b}{4 a a+6 a b} \\
0-6 a b-9 b b \\
\\
\hline 0 a b-9 b b
\end{array}
$$

$$
\left.z^{2}+2 a b+b b\right) 2 a^{3} b+3 a^{2} b^{2}-b^{4}(2 a b-b b
$$

$$
2 a^{3} b+4 a^{2} b^{2}+2 a b^{3}
$$

$$
0-a^{2} b^{2}-2 a b^{3}-b
$$

$$
\therefore a^{2} b^{2}-2 a b^{3}-b^{4}
$$

$$
100
$$

$$
\begin{gathered}
(+b) a^{3}+b^{3}\left(a-a b+b^{3}\right. \\
\frac{a^{3}+a^{2} b}{0-a^{2} b+b^{3}} \\
\frac{a^{2} b-a b^{2}}{0+a b^{2}+b^{3}} \\
+a b^{2}+b^{3}
\end{gathered}
$$

起多

$$
\begin{gathered}
\text { a-b) } \begin{array}{c}
a^{3}-b^{3}\left(a^{2}+a b+b^{2}\right. \\
a^{3}-a^{2} b \\
0+a^{2} b-b^{3} \\
+a^{2} b-a b^{2} \\
0+a b^{2}-b^{3} \\
+a b^{2}-b^{3}
\end{array}
\end{gathered}
$$

If at the end of a Divifion there remains any thing, or that you cannot divide becaufe of forme different Letter in the Divifor and Dividend, make a Fraction of there two Po. lynomer, by putting the Divifor under the Polynome to be divided, with a line between. "Thus dividing, at + b by $a+b$ the Quotient will be $\frac{a+b b}{a+b}$, and dividing $a^{2}+b^{3}$ By in $\mathrm{m}^{-b_{8}}$ the Quotient will $\frac{a^{3}+b^{3}}{b-b}$. So of others.

PROBLEMV.

To Extrate the Root of a Polynome.

WE have faid in Multiplication, that the Trinome $a+2 a b+b^{3}$, whofe Square Root is $a+b$, ferves as a Rule to extract the Square Root by: And to thew you how, let us feek the square Root as if we did not know it, which muft be done after this manner.

Forafmuch as the Terms $a d$ and $b b$ are Squares, you may begin at which you will of thefe two ; if you begin 2t aa, put its Square Root a towards the Right-harid, like 2 Quotient, for the firf Letter of the Root which is

lought for, and alfo under the Square ad, fo that by multiplying a by a its Square may be had, which being fubo fracted from the Trinome $a a+2 a b+b^{2}$, put the Res mainder $3 a b+b^{2}$ under the Line; and fince in this Re. mainder there is $2 d$ in the Term $2 a b$, it is evident that you muft divide $2 a b$ by $2 a$, which is the double of the firlt found Letter a, and you will hate $+b$ for the fecond Term of the Root fought : wherefore this fecond Letter muft be put on the Right-hand, with its Sign + after the firft a, and alfo under its §quare b^{2}, which is the laft Term of the Remainder $2 a b+b^{2}$, fo that under this Remainder a $a b+b^{2}$, you will have $2 a+b$ for the Divifor, and fince there remains nothing after having multiplied and fubitrasted, as the Rule of Divifion prefrribes, one may conclude that the Square Root of the propofed Trinome $a a+2 a b+b b$ is precifely $a+b$.

In the fame manner the fquare Root of any other Power is extracted as in the following Examples.

$$
\begin{aligned}
& a^{6}+4 a^{3} b+6 a b b+4 a^{3}+b^{4}(a a+2 a b+b a \\
& \text { a } \\
& 0+\underset{2 a a}{4 a^{3} b}+\begin{array}{l}
a a b b \\
2 a b \\
\hline
\end{array} \\
& \begin{array}{l}
0 \quad 2 a b b+4 a b^{3}+b a \\
2 a a+4 a b+b b
\end{array} \\
& 000 \\
& 9 a^{4}-36 a^{3} b+72 a^{3}+36 b^{4}(3 a a-6 a b-6 b b \\
& 3 a d \\
& -3^{6 a^{3}} b+72 a b^{3} \\
& 6 a a-6 a b \\
& -36 a a b b+72 a b^{3}+36 b^{6} \\
& 6 a a-12 a b-6 b b
\end{aligned}
$$

If in the fecond Example the fquare Root had been bee gun to be extracted at the laft Term $36{ }^{64}$, this fquare Roo would have been found to be $6 b b+6 a b-3 a a$, whofe Signs + and - are contrary to thofe of the firft found Root $3 a d-6 a b-6 b b$, which thews that a Polynome has alo ways two fquare Roots, as well as a Monome, and every other Power ; and generally fpeaking, a Quantity has as many Roots, as the Exponent of that Root has Units.

We have alfo faid in the fame place, that is to fay, in Prob. 3. that the Quadrinonse $a^{3}+3 a a b+3 a b b+63$, whofe Cube Root is $a+b$, ferves for a Rule to extract the Cube Root by ; and to thew how, we will feek for this Cube Root as if we knew it not, thus:

Since the Terms a^{3} and b^{3} are Cubics, begin at which you will of thofe two; if you begin by a^{3}, put its Cube. Root a towards the Right-hand, as before, for the firft Letter of the Root fought, the Cube of which a^{3}, ought to be fubfracted from the propofed Polynome, and the Remainder $3 a a b+3 a b b+b^{3}$, mult be written under the Line, and divided by $3 a a$, the triple of the §quare of the firfe found Letter a_{2} becaufe in the firft Term $3 a a b_{3}$ of the Ree mainder $3 a a b+3 a b b+b^{3}$, this triple is found, and the Qugtient + b put towards the Right-hand, as before, for the fecond

```
a}\mp@subsup{a}{}{3}+3ab+3abb+b3(a+
a
0+3aab+3abb+bs
    3a
    0 + 3abb+bs
                O + b
                    -
```

fecond Letter of the Root fought, and the Remainder of the Divifion will be $3 a b b+b^{3}$, from which you muft fubftract $3 a b b$ and b^{3}, to wit, triple the Solid under the firft found Figure a, and the Square $b b$ of the fecond b, and the Cube of the fame fecond; and as nothing remains, it thews that the Cube Root of the propofed Polynome $a^{3}+3 a a b$ $+3 a b b+b^{3}$ is exacty $a+b$.

If the propofed Polynome has not fuch a Root as is required, you muft exprefs that Root by this Mark $\sqrt{ }$, which put towards the Left-hand of the Polynome, with a Line over the fame Polynome, thewing that the Character V does affect the whole Polynome. So to exprefs the Square Root of this Binome $a a b b+$ aace, you mult write thus, $\sqrt{a a b b}+a a c e$, or thus, $a \sqrt{b b+c c}$, becaufe the Bi: nome $a a b b$ + aace is divifible by the Square $a a$, whore Side is a, and the Quotient is $b b+c c_{\text {. In }}$ Inke manner to exprefs the Cube Root of this Binome $a^{3} b^{3}+a^{3} c^{3}$, you mult write $\sqrt[3]{a^{3} b^{3}}+a^{3} c^{3}$, or thus, $a \sqrt[3]{b^{3}+c^{3}}$, becaule the Bio nome $a^{3} b^{3}+a^{3} c^{3}$ is divifible by the Cube a^{3}, whofe Side is and the Quotient is $b^{3}+5^{3}$. So of others.

C H A P. III.

Of EQUAIIONS.

ANEQUATION is a Comparifon which is made between different Quantities, which we would bring to an Equality, and for this purpofe are commonly fepara: ted by this Character $=$, which fignifies Equal.

Thefe two Quantities are called Sides or Members of the E: quation; they are commonly compos'd of feveral Monomes or Terms, of which all thofe that are on one and the fage fide of the Equation, that is to fay, in one and the fanse Member, are confider'd together as one Quantity.
*"An Equation always follows the Analytical Refolution of a Problem, and at leaft contains onc unknown Quantity, which are commonly exprefs'd by the laft Letters of the Al. phabet x, y, z, the known Quantities are exprefs'd indifferently by the other Letters. Thus in the Equation $x x+2 a x=b c$, the unknown Quantity is x, which is the reafon that the two Terms $x_{x}, 2 a x$, where it is found, are called unknown Teirms, which are commonly plased on the fame fide : and the Term bc where it is not found, is called the known Term, as allo the laft Term, which commonly makes the other fide of the Equation, in order to compare it with the unknown; therefore it is that Vieta calls it Homogeneum Comparationis, tho' others call it the Absolutely, known Quantity.

Among all the Terms of an Equation, the firf is that wherein you have the highef Power of the unknown Quantity ; the •econd, that wherein the fame Quantity is one degree lefs; the third, that wherein the fame Quantity is two degrees lefs than the higheft Power, and fo on to the laj Term: As in this Equation, $x^{3}+a x x-b b x=a c c_{3}$ the firt Term is x^{3}, the fecond $a x y$, the third $b b x$, and the laft acc.

Tho' amongft all the Terms of an Equation the degree of the unknown Quantity is not equally decreas'd, by reafon of fome Term wanting, which often happens, yet that hinders not but that the Term where the unknown Quantity. is, for inftance, abated two Degrees below the firt, may be called the third, tho it be the fecond in order. Thus in the following Equation, $x^{4}+a d x x+b 3 x=c^{4}$, where the fecond Term is wanting, the firft Term is x^{4}, the third is 4arx the fourth is $63 x_{3}$ and the 18 an is c^{3}.

Tis the Mathematics.

Ail the Terms of an Equation ought to be homogeneal; it leaft in Geometrical Problems; and thofe wherein the unknown Quantity happens to be equally raifed, or thofe wherein it is not found, ought to be accounted as one Term only, as in this Equation, $x x+a x+b x=a d+b d$, the firft Term is $x x$, the fecond is $a x+b x$, and the laft is $a d+b d$.

An Equation is faid to be of as many Dimenfions as the unknown Quantity in the firft Term, that is to fays it is call'd an Equation of two Dimenfions, or Quadratic, if the Square of the unknown Letter be found in the firft Term; or of three Dimenfions, or Cubic, if the Cube of the fame unknown Quantity happens in the firf Term, duco Thus the following Equation $x^{3}-a b x_{1}=a a b$, is of three Dimenfions, or Cubic, becaufe the Cabe of the unknown Quantity x is found in the firft Term. And when in the Equation there is only one Term unknown, it is call'd Pure Equation; as $x^{3}=a b b$, or $x x=a b, \& c$.

The unknown Quantity of an Equation may have as many different or equal Values, as the Equation has Dimenfions: Thus in this Equation of two Dimenfions, $x x+2 x$ $=15$, there are two Roots, namely +3 , which being affirmative, is call'd a true Root; and - 5, which is a negative. Root, and by Des Cartes call'd a falfe Root ; that is to fay, x may be fuppofed $=+3$, or $=-5$. This has need of a Demonitration, but we thall fay no more. of it in this place. See Des Cartes's Geometry.

When one of the Roots of an Equation which depends on fome Problem is found, that Problem is refolved. But to firid this Rooxt, the Equation Thou'd be fo reduced, that the firf Term be multiplied by no other Quantity than Unity; which is always underitood, tho' not mention'd, or at leaft by another Quantity, which has a Root whole Exponent is equal to the number of Dimenfions of the E quation.

Further, all unknown Terms ought to be on one and the fame ficte of the 届quation, which for that reafon is called the unknown Side or Member, and alfo firft Side or Member, becaufe it is commonly wuritten firt on the Leftshand, and the known Terms on the other fide, which is commionly placed on the Right-hand after this Character $=$.

To conclude, the Equation ought to be brought down as much as poffible, that is, it ought to be fo reduc'd, that the unknown Quantity be brought to the loweft Degree polfible, for the more eafy finding out the Roots. This Reduction may be perform'd by means of the following Problĕm

$$
\mathrm{p}+\mathrm{O}
$$

INTMODUCTION

PROBLEMI

To Reduce an Equation by Antithefis:

AN TITHESIS is made ufe of to tranfoofe the Terms of an Equation from one fide to another, when they are not difpofed as they fhould be, which is commonly fuch that the firft Term be put firft in order, and immediately. follow'd by the fecond, if it is not wanting; and that in like manner the fecond be follow'd by the third, and fo on to the laft Term.

If the Term to be tranfipos'd from one fide to the other be affirmative, it muft be fubftracted from each fide, and if negative it muft be added, for by this means the Terms are tranfoos'd, and the Equation fill preferv'd free from any sonfufion, according to the Axiom which tells us, that if to two equal Quantities equal ones are added or Jubfiracted, the Sums or Differences will be equal.

As in this Equation $x^{3}-3 a x x=b_{3}-b b x+2 a x x$, if you put all the unknown Terms on the left hand, that is to fay, on the firft fide, you mult add to each fide the Term $b b x$, which is negative, and fubftract the Term $2 a x x$, which is affirmative; and the propos'd Equation $x^{3}-3 a x x$ $=b^{3}-b b x+2 a x x_{2}$ will be chang'd into this, $x^{3}-5 a x x$ $+b b x=b 3$.

From this general Rule the following Compendium may be drawn, for to tranfpofe any Termgiven from one fide to another; Strike out the Term to be tranfpofed. and put it on the other Side with a contrary Sign. Thus the following Equation $x^{4}+a a b b-a a c c=a a x x-c^{3} x$, may be changed into this, $x^{4}-a a x x+c^{3} x=a a c c-a a b b$, or into this, $x^{6}-d a s x$ + $c^{3} x+a a b b-a a c c=0$ 。

PROBLEM II.

To Reduce an Equation by Parabolifin.

rI is not fufficient that by the means of Antitbefis all the unknown Terms of an Equation may be brought to one fide, to find their Roots; but the firlt Term muft likewife have a Root conformable to the number of Dimenfions of the Equation, namely a Square Root if the Equation be of two Dimenfions, a Cube Boot if the Eguation be of three Dimsmiong, and 50 on.

To the Mathematics.

To this end, there needs no more, but to let the Coefficient of the firft Term be Unity, if it be found multiplied by any other Quantity than Unity, which may be done by Paraboli/m, to wit, by dividing each fide of the Equation by the known Quantity which multiplies the firlt Term, and this will by no means deftroy the Equation, by the Axiom which teaches us, that if equal Quantities are divided by one and the Same Quantity, the Quotients mill be equal.

As if in this Equation, $a x x+2 a b x=b c c$; each Side be divided by a, the Coefficient of the firf Term axx, you'll have this other Equation $x x+2 b x=\frac{b c c}{a}$: and in like manner if this other Equation $a b x^{3}+a a b b x=c^{3} d d$, be divided by the known Quantity $a b$, which multiplies the firlt Term $a b x^{3}$, you will have this other Equation, x^{3} $+a b x=\frac{c^{3} d d}{a b} \cdot$ So of others.

PROBLEM III.

To Reduce an Equation by Ifomeria.

ISOMERIA is us'd to clear an Equation from Fractions ${ }_{3}$ which are always troublefome in Calculation. To dø this, you mult firft multiply the propos'd Equation by the Denominator of the Fraction to be deftroy'd, and the Equation produced muft in like manner be multiplied by the Denominator of another Eraction, if there be one, and fo on.

Let us propofe this Equation, $\frac{x^{3}}{4}+a x x-\frac{b c c x}{a}=a b \delta_{0}$ and multiply it by the Denominator 4 of the Fraction $\frac{x}{4} x^{3}$, and we fhall have this Equation, $x^{3}+4 a x x-\frac{4 b c c x}{a}=4 a b b_{0}$ which beirg multiply'd by the Denominator a of the other Fraction $\frac{4 b c c x}{a}$, you will have this laft Equation withous Fractions, $a x^{3}+4 a a x x-4 b c c x=4 a a b b$.
For a Ahorter Method, multiply the propos ${ }^{3}$ Equation $\frac{x^{3}}{4}+a x x-\frac{b c c x}{a}=a b b$, by the Product $4 a$ of the $D c^{-}$ nominators A and \dot{a} of the two Eractions $\frac{x^{3}}{4}, \frac{b c c x}{a}$, and you'll have this other Equation without Fraetions, $d x^{8}$ $49 a x x=4 b c c x=4 a b b$.

1等O

INTRODUCTION

PROBLEM IV.

To Reduce in Equation by Hypobibarm.

H$T P O B I B \subset S$ iṣ an equal abatement of all the degrees of the unknown Quantity of an Equation, when that unknown Quancity is found in all the Terms: and this abatement is made by taking away the leaft Power of the unknown Quantity! fo that the Dimenfions of the Equation is by this means leffen'd. Thus the Equation $x^{4}+2 a x^{3}=b b x x$, which feems to be of four Dimenfions, is reduc'd to this $x x+2 a x=86$, which is but of two Dimenfions : and this Equation $x^{4}-a a x=c^{3} x$, which feems likewife to have four Dimenfions, is reduc'd to this, $x^{3} a d x=\epsilon^{3}$, which has but three Dimenfions.' So for the reft

PROBLEM V.

To Reduce an Equation by Multiplication.

FOR the avoiding of Fractions which commonly pro. ceed from Divifion, when you wou'd that the firft Term of an Equation Chou'd have a Root, whofe Exponent is equal to the number of its Dimenfions; then multiply each Member of the Equation by the Coefficient of the firlt Term, if the Equation be Quadratic; or by the Square of that Coefficient, if the the Equation be Cubic, and fo on. This Operation will not in the leaft de. ftroy the Equation, by the Axiom which teaches us, that if equal Quantities be multiply'd by one and the same Quantity, the Products will be equal; and the Equation propofed will be found reduced to another, whofe firlt Ierm will have fuch a Root as was required.

Thus to make a Square of the firft Term of this Quadratic $a x x+b c x=b b d$, multiply it by the Coefficient a of the firf Term $a x x$, and you'll have this other Equation $a a x x+a b c x=a b b d$, whole firft Term $a d x x$ has $a x$ for its Square Root. Likewife that the firft Term of this Cubic Equation $a x^{3}+b c x x-b b c x=c^{4}$, may be a Cube, multiply, it by the Square aa of the Coefficient a of the firl Term a \dot{x}^{3}; and you will have this other Equation, $a^{3} x^{3}+a a b c x x-a a b b c x x=a a c^{4}$, whofe firft Term $a^{3} x^{3}$ has ax for its Cube Root. The like of others.

Sometimes you may make ufe of Compendiums, for it fig. nifies little by what Quantity you multiply the given. Equation, provided the Root of the firf Term be fuch as was required. So in this Equation $a a^{3}+a b c x x=a b c^{3}$, if your would have the firft Term become a Cube, it will be fufficient to multiply the Equation by ' a, for then you'll have chis other Equation $a^{3} x^{3}+a a b c x x=a a b c 3$, whofe firf Term $a^{3} x^{3}$ is a Cube.

PROBLEM VI.

To Reduce an Equation by Divifion.

B^{y}Divifion we may alfo make the firft Term of an Equa. tion have a Root conformable to the number of its Di* menfions, namely by reducing it by Parabolijon, as you have feen in Prob. 2. without any further repetition.

It may alfo fometimes be of ufe to bring down an Equations namely when that Equation is divifible by a Binome, compos'd of the unknown Quantity and of an aliquot part of the idft Term, which in this cafe will be one of the Roots of the given Equation, to wit, the affirmative Root if in the Divifor it be negative, and the negative Root if it be affirmative. This fuppofes that the Equation fhould in fuch a manner be reduc'd by Antitbefis, that all its Terms thou'd be on one and the fame fide, and 0 on the other fide.

Thus, by dividing this Equation of three Dimenfions, $x^{3}-b x x-a x x-2 a b x-a a b=0$, by $x-a$, you'll have this Equation of two Dimenfions $x x+a x-b x-a b=0$. We have feveral different ways to find fuch a Divifor, which we fhall explain upon fome other occafion.

PROBLEM VII.

To Reduce an Equation by Extration of Roots.

A^{2}N Equation may alfo be brought down by extracting the square or Cubic Root of each fide, when that is poffible. To chis end, it is fufficient that the unknown fide of the Equation has the Root which is requir'd; for it fignifies litcle whether the known Side, that is to fay, the laft Term, has any fuch Root or no, becanfe being known, it may be always exprefs'd Geometrically, by finding fome mean Proportionals when it is irrational.

Thus, to bring down this Equation, $x x+2 x x+a x=b c_{x}$ the Square Root of each Side muft be extracted, and then you will have th:s Equation of a lower degree, $x+a=\sqrt{ }$ bc

INTRODUCTION

or $x+a=d$, by fuppofing the Quantity d a man Proportional between the two b, c, in which cafe $b c=d d$.

In like manner, to bring down the following Equation, $x^{3}+3 a x x+3 a d x+a^{3}=b 3$, you muft extract the Cube Root of each fide, and you'll have this Equation $x+a=b$, in which you will find by Antithefis $x=b-a$, for one of the three Roots of the given Equation.

If the unkrown fide of the given Equation has not fuch a Root as is required, fo that fomething remains, and that this remainder be known, you mult add to each fide if it be negative, or you muft fubftract if affirmative, and then the Equation may be brought down.

As in this Equation, $x^{3}+6 a x x+12 a a x=a b b$, by extracting the Cube Root of the unknown fide $x^{3}+6 a x x$ $+12 a a x$, there remains $-8 a^{3}$. Wherefore you mult add $8 a^{3}$ to each fide of the Equation, and you will have this other Equation, $x^{3}+6 a x x+12 a d x+8 a^{3}=a b b+8 a^{3}$. where extracting the Cube Root of each fide, you have this
Equation brought lower $x+a=\sqrt[3]{a b b}+8 a^{3}$.
Furthermore, becaufe by extracting the fquare Root of the unknown fide of this Equation, $x^{4}-2 a x^{3}+a a x x$ $-2 b b x x+2 a b b x=3^{b^{4}}$, there remains - b^{4}, you muft add b^{4} to each fide, and you have this other Equation. $x^{4}-2 a x^{3}+a a x x-2 b b x x+2 a b b x+b^{4}=b^{b^{4}}$; where extracting the fquare Root of each fide, you will have this other Equation more brought down, $x x \ldots s x \ldots l$..... $=2 b b$ 。

When all the Terms of the Equation are on one fide onlys fo that there is o on the other, it is not neceffary that the Remainder after the Extraction of the Root fought fors fhou'd be known, and it fuffices that it hath fuch a Root, becaufe being added to each fide of the Equation, you will have another Equation which may be brought lower.

As in this Equation, $9 a a b b-24 a a b x+12 a a x x-18 a b x x$ $+12 a x^{3}=0$, by extracting the'fquare Root of the unknown fide, there remains - $4 a d x-12 a x^{3}-9 x^{4}$, which thews that $4 a d x x+12 a x^{3}+9 x^{4}$, which has a fquare Root, mult be added to each fide, then you have this other Equation, $9 a a b b-24 a a b x+16 a a x x-18 a b x x+24 a x^{3}+9 x^{4}$ $=4 a d x x+12 a x^{3}+9 x^{4}$, whofe fquare Root gives this Equation in lower Terms, $3 a b \ldots 4 a x \ldots 3^{x x}=2 a x$ $+3 x x$.

This Method miay be applied to all Quadratic Equations, as in this, $x x-4 a x=b b$, where by extracting the fquare Root of the unknown fide $x x-4 i x$, there remains - $4 a a$; for if $4 a d$ be added to each fide; you will have

To the Mathematics.

this other Equation, $x x-4 a x+4 a a=b b+4 a a$, whofe fquare Root gires this Equation in lower Terms, $x \ldots 2$. .
$=\sqrt{b b+4 a a}$, in which you will find by Antitheris, $x=2 a$ $+\sqrt{b b+4 a}$, for the affirmative Root, or $x=2 a$ $\sqrt{b b+4 a a}$, for the negative Root of the Equation propos ${ }^{3} d_{3}$ $x x-4 a x=b b$.

Since the remains after the extraction of the fquare Root is always equal to the square of the Coefficient of the fecond Term, an Equation of two Dimenfions may be brought lower by this Compendium.

Add the Square of balf the Coefficient of the fecond Term to each Side of the Equation, and you'll bave another Equation, which may be brought lower by extracting the Square Root.

Let us propofe for example this Quadratic Equation, $x x+6 a x=b b$, and add to each fide thereof the fquare gan of the half $3 a$ of the Cocfficient $6 a$ of the fecond Term $6 a x$, and you will have this other Equation $x x+6 a x$ $+9 a a=b b+9 a a$, where by extracting the fquare Root of each fide, this lower Equation, $x+3 a=\sqrt{b b}+9 a b$ is had.

This Method may be allo apply'd to higher Equations, where there are but two unknown Terms, fuch that the greatef Exponent of the unknown Quantity is double the leaft, becaufe fuch an Equation is derivative from an Equation of two Dimerfions when it is a Bi-quadratic: a Derivative Equation being in general where the Exponents of the unknown Letter have one common Meafure greater than Unity: as $x^{4}+a b x x=b b c c$, or $x^{6}-2 a a b x^{3}=a a b 3 c$.

Thus you have a general Rule, to find by Calculation. the Roots of an Equation of two Dinenfions, and of its Derivatives, which is fufficient at prefent. If you would have any more, fee the general Method which we have taught in our Treatife of curves of the firft kind, to find the Roors of Equations of two and of three Dimenfions, by Calcu* lation.

The fame Method may be allo apply'd to Equations of three and of four Dimenfions, which may be brought lower by taking away the fecond Term, the pratice of which is a great deal longer and more laborious, than by the Extration of Roots, as we could hew in fome Examples, if our Defign were not to be brief.

Wherefore to finifh this little Treatife of Algebra, till we give a more ample one of it, we thall only add here fome Arithrnetical Queftions, to thew you the application of the Rules which we havs taught concerning the Reduetion of

Equations, and to put you into a Method to refolvé feveral others, in imitation of thofe that we are going to give, in which you'll find it neceffary to exercife your \{elf, if you have a defign to make any Progrefs in it.

A
 COLLECTION OF SOME
 Arithmetical Queftions, RESOLV'D BY The New Analy/s.

THE Reafonings we are oblig'd to make, in order to arrive to the refolution of a Queftion, being expref,'d on Paper by the Letters of the Alphabet, it is evident that thofe Letters reprefent the known Quantities in the Queftion, and likewife thofe that are fought for, which, as we have already faid, are commonly exprefs'd by the laft Letters of the Alphabet, $x, y, z, d y c$.

The known and unknown Quantities, which ferve to refolve the Queftion, beirig affum'd in Letters, the Queftion is fuppofed as refolved; and from this Suppofition are drawn as many Equations as can be, according to the conditions of the Queftion, by comparing thofe Quantities together, to find their relations, which is done by Adding them together, or by Subftracting them one from the other, or by Multiplying them, or by Dividing them by one and the fame Quanticy, as occafion requires, until an Equation be found, which being refolv ${ }^{3} d$ by the Problems of the preceding Chapter, you will at laft find the Value of the unknown Letter; which nuft be fubftituted in the frift Equations found, when there are feveral unknown Quantitiss, to find in one of thefe Equations the Value of ano

To the Mathematics.

ther unknown Quantity, which muft be likewife fubftituted until you come to an Equation where there is but one unknown Quantity, in order to be able to difcover it there, and fo on for the reft, as you fee in the following Queftions, which will illuftrate to you what I have faid.

QUESTIONI.

Three Perfons found 120 Crowns, about which they differed, and each took what be could. The firf faid, that if befides the Money be bad taken, be bad 2 Crowns, be grou'd bave enough to buy a certain Horfe mbich was to be fold: The fecond Said that be manted 4 Cromns to be able to buy the Horfe: And the third faid be manted 6. The Quefion is, What the Price of the Hor \sqrt{e} was, and bow mia. ny Cromns each Perfon bad?
T O refolve this Queftion, put the Letter x for the Price of the Horle, and then the firft Perfon's Money will be $x-2$, the fecond Perfon's Money will be $x-4$, and the third Perfon's Money will $x-6$: And becaufe all this Money, namely $3 x-12$, ought to make 120 Crowns, by fuppofition, you will have this Equation $3 x-12=120$, or adding 12 to each fide, then $3 x=132$, and dividing by 3, you will have 44 for the Value of the Horfe. Thus the value of the Horfe is 44 Crowns, from which fubracting 2 Crowns, becaufe of $x-2$, you will have 42 Crowns for the firft Perfon's Money; and if from the fame 44 Crowns you fubfract 4 Crowns, becaufe of $x-4$, you will have 40 Crowns for the fecond's Money; and laftly, if from the fame $4 \neq$ Crowns you fubitract 6 Crowns, becaufe of $x-6$, you will have 38 Crowns for the third Perfon's Money. Now it is evident that the Sum of thefe three Numbers $42,40,38$, which are the Sums of Money each of the three Perfons had got, is $120:$ And thus the Queftion is refolv'd.

SCHOLIUM.

To the end that you may not be oblig'd to renew the Analyfis, when the Numbers which are given in the Queftion are varied, put Letters for thofe Numbers, as a for $\mathbf{1 2 0}$. b for $2, c$ for $4, d$ for 6 , and then the Money of the firft will be $x-b$, that of the fecond $x-c$, and that of the third $x-d$; and as all this Money, which is equivalent to $3 x-b-c-d_{2}$ ought to be eqqual to the given numC_{3}

INTRODUCTION

ber a, you will have this Equation, $3 x-b-c-d=a$, which being reduc'd by Antithefis and by Parabolifm, will give $x=\frac{1}{3} a+\frac{1}{3} b+\frac{1}{3} c+\frac{2}{3} d$, for the general Refolution of the Queftion, undertanding by the General Refolution, that which is made in Letters, becaufe it ferves generally to refolve the Queftion for any given numbers whatever. Thus in this Queftion, whatever value be given to the four Letters a, b, c, d, the Queftion will be found refolv'd, without which there would be need of a new Analyfis, namely by reftoring to the Letters a, b, c, d, their fuppos'd Values. This is eafily conceiv'd, and we thall not anufe our felves hereafter, fo as to fay any more of it.

QUESTION II.

A Perfon going into a Church; gives 5 Pence to a Beggar, and in going out finds that the Remainder of his Money woss doubled: He goes into anotber Church, where be gives 100 Pence to the firfir Eeggar be meets, then be bad but two Crowns or 120 Pence left. The Queftion is, bow much Money be bad when be went into the firft Cburch.

1F x be put for the Money that he had when he went ine to the firt Church, there will remain $x-5$ in going out, becaufe it is fuppos'd that he gave s Pence to the Poor: And as it is allo fuppos'd that this remainder was doubled, he had $2 x-10$ in going into the fecond Church, where having again given 100 Perce to the Poor, if from $2 x-10$, 100 be fubltracted, the remainder will be $2 x-110$; which by fuppofition ought to be equal to 120 . So that you will have this Equation, $2 x-110=120$, to which adding 110 , you will have $2 x=230$, and dividing by 2 , you will have $x=115$ for the Refolution of the Queftion.

QUESTION III.

A Mercbant is to pay 250 Pounds at 4 Payments. viz. at the fecond Payment I1. more than at the firft, at the third Payment 11. more than at the Jecond, and at the fourth Payment II. more than at the third. The Quefion is, How much is each Fayment?

1F you put x for the firft Payment, you will have $x+1$ for the fecond Paymient, $x+2$ for the third Payment, and $x+3$ for the fourth Payment: And as all this Money, namely $4^{x}+6$ ought to be equivalent to 250 , you will

To the Mathematics.

will have this Equation, $4 x+6=250$, from which fubftracting 6 , you will have $4 x=244$, and dividing by 4 , you will have $x=6 \mathrm{I}$. Thus you will have $6 \mathrm{I} l$. for the firf Payment, wherefore the fecond Payment will be 62%. the third will be 63% and the fourth will be 64%

QUESTIONJV.

Some Perlons baving agreed to give 6 Pence a-piece to a Waterman, to carry them from. London to Gravefend, on this consdition, that if anotber Shou'd come into their Company, be Shou'd pay the fame Price. and they fhou'd Share the overplus among them, fö that the Waterman foos'd bave balf, the other balf being to be equally divided among the fame Perfons, or elfe given to the Waterman, and bis Pay to be leffen'd in proporfion to what they bad prowsisd bim ; There arrivid a fourth part of their Number, and three over, then the firf Comers mere to pay but 5 Pence to the Waterman. The number: of the perfons that came fir f is demanded.

T ET $4 x$ be the number of the Perfons that cane firft. Then $24 x$ is the Money due to the Waterman. $1 x+3$ the Perfons that afeerwards came. $6 x+18$ the Overplus. $3 x+9$ the half of the Overplus, which mult be fubftracted from $24 x$, and there will remain $2 \llbracket x-9$, for the Money due to the Waterman from the firl Perfons. If then you divide this Money by $4 x$, which is the num. ber of the firf Perfons, you will have $\frac{21 x-9}{4 x}$ for the Money which each ow'd the Waterman; and as it is fup. pos'd that each ow'd him 5 Pence, you will have this Equation, $\frac{21 x-9}{4 x}=5$, which being multiplied by $4 x$, you will have this, $21 x-9=20 x$, and by Antithifis you will find $x=9$, and confequently $4 x=36$, for the number of Perfons fought.

QUESTION V.

Three Ells of Satitin and four Ells of Taffety coft 57 Sbillings, and at the fame Price 5 Ells of the fame Sattin and tywo Ells of the fame Taffety cof 81 Sbillings. I demand the walue of the Satitin and Taflety per Ell.

IF x be put for the value of an Ell of Sattin, and y for the value of an Ell of Taffety, according to the conditions of the Queftion, you will have thefe two Equations,

$$
\begin{aligned}
& 3 x+4 y=57 \\
& 5 x+2 y=81
\end{aligned}
$$

To the end that in each of thefe two Equations one of the two unknown Quantities x, y, for example x, may be found multiply'd by one and the fame number, which is neceffary to be done, that by fubftracting one Equation from the other, there fhou'd remain a third Equation, wherein you have only the other unknown Quantity y; Multiply the firlt Equation, $3 x+4 y=57$, by the namber 5, which multiplies x in the fecond; and reciprorally the fecond $5 x+2 y=81$, by the number 3 , which multiplies the fame x in the firft; and you will have thefe two other Equations,

$$
\begin{array}{r}
15 x+20 y=285 \\
15 x+6 y=243 \\
\hline 4 y=42
\end{array}
$$

If you fubitract the fecond from the firit, you will have this third Equation, $14 y=42$, which being divided by 14, you will have $y=3$, for the value of an Ell of Tafo fety. And if in the room of y you fubfitute its value 3 , now found, the firlt Equation $3^{x}+4 y=57$, will be whang'd into this, $3 x+12=57$, from which fubitracting 32, and dividing the Remainder $3^{x}=45$ by 3 , you will have $x=15$, for the Value of an Ell of Sattin.

QUESTION VI.

One Perfon Said to another, if you will give me three of your Croins, I fhall bave as much as you bave left; and the other ansmer'd,' if you will give me five of yours, I- hall bave twice as mucb as you bave left: The Quoftion is bow many Crowns each Perjon kad.

F the Letter x be put for the number of Crowns the firt Perfon had, and y for the number of Crowns the fecond Perfon had, you will have, according to the conditions of the Queftion, thefe two Equations,

$$
\begin{aligned}
& x+3=y-3 \\
& y+5=2 x-10
\end{aligned}
$$

In the firft, $x+3=y-3$, you will find $y=x+6$; and in the fecond, $y+5=2 x-10$, you will find the fame $y=2 x-15$; wherefore you will have this third Equation, $x+6=2 x-15$; in which you'll find $x=21$, for the Money that the firf Perfon had ; and inftead of $y=x+6$, or of $y=2 x-15$, you will have $y=27$? for the Money that the other had.

QUESTLON.VII.

One bundred Perfons, confiftine of Men, Wamen and Children, expended in a Feaft 100 Pounds or 2000 Sbillings; each Man expended 100 Shillings, each Woman 20 Sbillings, and each Cbild 5 Shillings. The Number of Men, Women, and Cbildren is demanded.

F x be put for the number of the Men, y for the number of the Women, and $₹$ for the number of Children. you will have, according the conditions of the Queftion, thefe two Equations to be refolv'd,

$$
\begin{aligned}
& x+y+z=100 \\
& 0 x+20 y+5 z=2000
\end{aligned}
$$

If from each fide of the firft, $x+y+z=100$, you fub\&ract x and z, you will have $y=100-x-z$, and
if in the room of y, you put its value found $100-x-z$, inftead of $20 y$ you will have $2000-20 x-20 z$; and inftead of the fecond Equation $100 x+20 y+5 z=2000$, you will have this $80 x-192+2000=2000$, from whence fubltracting 2000 , you will have this, $80 x-15$ z $=0$, and adding $15 z$, yon will have this, $80 x=15 z$, and dividing by 5, you will have this, $16 x=32$; and laftly dividing by 3 , you will have this laft Equation, $\frac{10}{3} x=$?, where you fee that the Quantity ? would be known, if the other Quantity x were alfo known; and as there is nothing which determines this Quantity x, it thews that the Queftion propos'd is Indeterminate, that is to fay, it is capable of an infinite number of different Solutions, becaufe there is liberty to fuppofe the indeterminate Quantity x whatever one pleafes. But there is a Precaution to be taken concerning the value that may be given it, fo that the quantity z, or its valuc found $\frac{16}{3} x$, be a Whole number, which ought to be fo in this Queftion, becaufe the value $\frac{96}{3} x$ reprefents the number of Children, which ought not to be a Fraction by the nature of the Queftion. You muft fuppofe then for x a number divifible by 3 , which is the Denominator of the Fraction $\frac{16}{3} x$. If therefore you fuppofe $x=3$, inftead of $\frac{10}{3} x$ for ?, you will have 16 ; and inftead of $100-x-z$ for y, you will have 81. So that 3 Men, 81. Women, and 16 Children, will folve the Quetion.

To have another §olution, fuppofe $x=6$, and then you will find $z=32$, and confequently $y=62$; fo that 6 Men, 62 Women; and 32 Children, will be a fecond Solution.

To have a third Solution, fuppofe $x=9$, and then you will find $z=48$, and confequently $y=43$. So that 9 Men, 43 Women, and 48 Children, will be the third Solution.

To have a fourth Solution, fuppofe $x=12$, and then you 'will find $z=64$, and confequently $y=24$. So that $12 \mathrm{Men}, 24$ Women, and 64 Children, will be the fourth Solution.

To have a fifth Solution, fuppofe $x=15$, and then you will find $z=80$, and confequently $y=5$. So that 15 Men, 5 Women, and 80 Childret, will be the fifth Solution.

There is so other Solution in whole numbers, becaufe by putting for x, a number multiplied by 3, greater than 15 , the number of Men, Women, and Children would furpafs 100 , which is contrary to the Suppofition.

QUESTION VIII.

A Hall made in the form of Reetangular Parallelogram con. tains 90 Square Fathoms in its Area, and its Length is twice its Breadth, and three Fathoms more. The Length and the Breadth is demanded.

F x be put for the breadth, you will have by fuppofition $2 x+3$ for the length, which being multiplied by the breadth x, you will have $2 x^{2}+3 x$, for the Area of the Rectargle; and as this Area is fuppos'd to be 90 Square Fathoms, you will have this Equation, $2 x^{2}+3 x$ $=90$, which being divided by 2, you will have this, $x^{2}+\frac{3}{2} x=45$. Add to each fide the Square $\frac{9}{5}$ of the half $\frac{3}{4}$ of the Coefficient $\frac{3}{2}$ of the fecond Term, and you will have this Equation, $x^{2}+\frac{3}{2} x+\frac{97}{10}=\frac{729}{76}$, whofe §quare Root will give this Equation in lower Terms, $x+\frac{3}{4}=\frac{27}{4}$, from which fubftracting $\frac{3}{4}$ you will have $x=6$, for the breadth fought; and inftead of $2 x+3$, you will have 15 for the length. Thus the length of the Rectangle which was fought for, will be 15 Fathoms, and its breadth will be 6 .

THE

PRACTICE

O E

Geometry.

OUR Defign is to add here only the moft ufeful and mofe eafy Problems for Practice, whether on the Ground, or on Paper only; for the ufe of Beginners, to difpofe them the better to underftand what we have to fay hereafter, which requires a further knowledge ${ }_{2}$ without taking the pains of adding here the Definitions of many common Terms, which are generally well enough underftood by every body, or which may be undertood without any difficulty by the Practices hereafter taught, till fuch time as thefe Terms be explain'd and defin'd in their place.

PROBLEM 1.

Fo draw a Right Line from one given Point to anotber, upon a Plane.

Plate 1. HIrft, if the two Points be given upon Paper, or upon fome other Planc of a fimall extent, as A, B, it is naturally known by every one, that there is nothing to do but to apply a Ruler upon the two given Points A, B, and draw a Right Line with a Pin or lencil along the Ruler. Secondly:

Introduction Plate 1. Page 44

Secondly, to draw a Right Line thro' two Points given apon the Ground, it is alfo evident that there needs no more than to apply to the two given Points a Cord, ftretch'd out at both ends, as Artificers do, when theefe two Points are not far diitant; otherwife 'tis done by a vilual Ray, guided by the fights of fome Inftrument, by planting stakes at proper diftances along the vifual Ray, and giving notice, by word or fign, when it removes from the kight Line.

This Method is ufual among Surveyors and Engineers, that frequently have occafon to draw a Right Line of a confrderable length on the Ground: And if there be any danger, as when an Engineer would carry on a Trench towards a Place befieged, he traces this Line by means of a Fire, hid and conceal'd from the Enemy, which is fet at a place pitch upon in the day-time, and which he aims to come at, to direct the Workmen, and make the Approaches.

PROBLEM II.

To draw a Perpendicular to a given Line, thro' a given point.

THree Cales may happen ; for the given Point may be either in the given Line, or at one of the two extremities of the given Line, or out of the given Line. And moreover, the Point and the Line may be given either upon Ground or upon Paper. We fhall firf work upon Paper with Rule and Compars, and proceed in the fame manner on the Ground with Cord and Stake.

Firft then, if the Point C be given in the given Line $A B$, to draw a Perpendicular thro' this given Point C, take at plealure from the given Point C , upon the given Line AB on both fides, the two equal Diftances $C D, C E$, and defrribe from the two Points E, D, with any opening of the Compaffes greater than CD or CE, two Arcs of a Circle on both fides, which interfect here at the two Points F, G, thro' which you mult draw the Right Line FG, which if the work is done right, will pafs thro the given Point C, and will be perpendicular to the given Line $A B$.

When you have no Compuffes, you may make ufe of a〔quare, by applying its Right Angle to the given roint C, So that one of its fides may precifely anfwer one of the two Parts AC, BC, as for example upon the part AC, and then you muft draw along the other fide thro the given Point C, the Perpendicular CF, which is fought for: A Ad to know if it is ws!! drawn, likewife to know if the Square

INTRODUCTION

Plate I . be good, you mult apply one of its fides on the other part
Fig. Io $B C$, for then the other fide ought to coincide with the Perpendicular CF.

When the Line $A B$ is given on the Ground, you mult defcribe from the two Points E, D, two Arcs of a Circle, with Cords of any !ength, but equal, and greater than one of the two Lines CD, CE ; and as it is fometimes in. convenient to defcribe Arcs of a Circle upon the Ground, it will be better to join the two ends of thefe Cords together, which ought to be equally ftretch'd out, to have the point F, thro' which, and thro' the given point C, you may draw the Perpendicular CF.

You may alfo draw this Perpendicular CF, by making at the given Pont C, with a Graphometer, (Theodolite) or other wife, an Angle of 90 degrees, as will be taught in Prob. 9. You may do the fame thing upon Paper with a Protractor, or with a Sector, or otherwife, as will be allo taught in Prob. 9.

Secondly, if the Point thro' which you are to draw a Perpendicular to the Line $A B$, is given in one of its extremitie, as A, defcribe at pleafure from this Point A, the Arc of a Circle CDE, and with the fame opening of the Compafs, fet off twice from the Point C, where it curs the Line $A B$ in D, and from D, in E, defrribe from the two Points E, D, ftill with the fame opening of the Compafs, ewo Arcs of a Circle which cut here in the Point F, thro ${ }^{5}$ which, and thro' the given Point A, draw the Right Line AF, which will be Perpendicular to the propos'd Line $A B$.

This Perpendicular may alfo be drawn by the means of a Square, or by making at the given Point A, an Angle of 90 degrees. But we fhall teach another Method to do the Lame in Prop. 3 1. 1. 3. of Euclid's Elements.

When you are to draw a Perpendicular upon the Ground, you may alfo make at the end A of the Line $A B$, an Angle of 90 Degrees; or you may do as will be taught in Prop.48. l. 1. and likewife in Prop. 3x.l. 3. of Euclid's Elements.

5ig. 3.
Laftly, if the Point thro which you are to draw the Perpendicular, be given out of the given Line $A B$, as C_{3} defcribe at pleafure from this Point C, the Arc of, a Circle DE , which cuts the given Line AB in two points, as DE , from whish defcribe with the fame opening of the Com-

To the Mathematics.

pafs, two Arcs of a Circle, and draw thro their InterfeEtion F , and the given Point C, the Right Line CF, which will be the Perpendicular required.

It may happen that the given Point C mall be fo nigh one of the two ends of the given Line AB , that it will be hard to defcribe a Circle which will conveniently cut it in two Points; in this cafe draw through the given Point C, towarjs the other end, the Right Line CD, which you are to divide into two equal parts in the Point E; fron E defcibe thro' the two Foints C, D, the Semicircle CED, which will cut the given Line $A B$ in the Point F, thro' which the Perpendicular CF ought to pafs.

When the given Point C is upon the Ground, defcribe, with a Cord, an Arc of a Circle, fo as to cut the given Line $A B$ in two equal parts, as D, E, and divide the line $D E$ in two equal parts in the Point H, thro' which, and thro' the given Point, draw the Perpendicular CH.

If the Cord cannot conveniently cut the given line AB in two Points, which will happen when the given Point C thall be towards one of the two ends of the Line $A B$, you mult extend it towards the other end, until it meets the Line $A B$ in fome point, as D, and having divided it in two equal parts at the Point E, you mult extend its half $E C$, or $E D$, from E, until it meets the given Line $A B$ in one Point, as F_{3} thro' which you may draw the Perpendicular CF.

Or deicribe thro' the given Point C, from the two Points G, D, taken at pieafure upon the given Line $A B$, with a Cord, if you work on the Ground, or with a Compals is you work upon Paper, two Arcs of a Circle, which cut each ocher at the Point H, thro' which, and thro' the given Point C , draw the Perpendicular CH .

If you cannot conveniently trace Arcs of a Circle upon the Ground, tye at the given Point C a Cord, and extend it until it touches the given Line $A B$, then meafure the iength of it exagly, which will give the Quantity of the Perpendin cular CF, which we will fuppofe 6 Fathoms; Then feek a fquare number, from which fubfracting the fouare of 6 , that is to fay, 36 , the remainder is a fquare number. This firft and greateft fquare number is 100 , whore lide 10 will reprefent the length of the Line CD ; for if from $\mathbf{5 0 0}$ You fubftra 3^{6}, there remains 64 , whofe fquare Root is 8 , which reprefents the length of the part DF, the feroendicular
plate I . bing 6 , as we have already faid. Tye then at the given Fig. 4. Point C, a Cord 10 Fathoms long, and extend it till its extremity meets the given Line AB in fome point, as in D , from whence you muit reckon upon the given Line $A B_{2}$, towards the given point $\mathrm{C}, 8$ Fathoms, for example as far as the Point $F_{\text {, }}$ thro' which you may draw the Perpendicular CF.

To find a fquare number, from which fubftracting a given fquare number, there remains a fquare number, ufe this general Canor, which we have drawn from Algebra.

If to the given square an indeterminate square be added. greater or lefs than the given Square, and if the Sum be divided by double the Side of the fame indeterminate Square, you will bave the Side of the Square Sought.

A s if to the given fquare 36 , the fquare 4 be added, whofe fide is 2 , and if by the double 4 of this fide 2 , you divide the fum 40 , the quotient 10 will give the fide of the fquare fought, or the length of the Line, DF.

In like manner, if to the fame given fquare 36 , the fquare 9 be added, whofe fide is 3 , and the fum 45 be divided by the double 6 of the fame fide 3, you will have 7 fathoms and 3 feet for the line DF, and then the line $C D$ will be 4 fathoms and 6 feet.

All thefe practices are only proper upon the Ground, when the given point C is not very remote from the given line $A B$; for when the diftance of this point is great, Cords cannot be conveniently ufed, which even tho' they may be long enough, yet cannot be eafily extended In this cafe, a Theodolite or fome other Surveying-Inftrument may be ufed thus.

Fig. 3. To draw then from the given Point C upon the Ground, a Perpendicular to the given Line $A B$, fix the Staff upon this Line $A B$, and turn the Inftrument about, looking along the Diameter IK, till you fee the two ends \mathbf{A}, B, of the fame Line $A B$, and then this Diameter IK will precifely anfwer upon the Line AB; and holding the Inifrument in this fituation, you muft change it from the place by advancing it to the right or to the left, until by the other perpendicular Diameter LM, you may fee the given point C; and the point H where the Staff remains, will

To the Mathematics.

be that thro' which, and thro' the given Point C, you Plate x^{\prime} may draw the Perpendicular CH.

The Surveying Inftrument may be let alone, by imagining from the given Foint C , to the two Points, as A, B, taken at yeadure upon the given Line $A B$, the two Lines $C A, C B$, drawn; fo that the given Point C be, if it is politibe, between the two Points A, B, that is to fay, that the Perpendicular CH , be between the two Lines CA, CB, or sithin the Triangle $A B C$, whofe three fides ought to be meafur'd exactly, and by their means to find the diftance from the point H , of the Perpendiculdr, to one of the two points A, B, as A, arfivering to the fide $A C$, which I fuppofe the greater; and it may be done thus:

Divide by the double of the $B a f e A B$ of the Triangle $A B C$, the excefs of the fum of the fquare of the fame Bafe $A B$, and of the fquare of the greater fide $A C$, above the fquare of the befs $B C$.

Thus if the greater fide AC be of 15 fathoms, the lefs $B C 13$, and the bafe $A B 14$, by dividing the excefs 252, of the fum $42 i$, of the fquares $A B, A C$, above the fquare BC , by the double 28 of the bafe $A B$, you will have 9 fathons for the diftance from the point H of the Perpendicular, to the point A. If then you reckon 9 fathoms from A to H_{2} and you draw the right line CH_{3}, it will be the Ferperdicular fought.

If you cannot converiently chufe upon the given Line $A B$, two peints, between which is the point F of the Perperdicular, as if you could only take the two points A, G, fo that the Perpendicular CF falls without the Triangle $A C G$, whereof the fides $A G, A C, C G$, ought likewife to be known; you may find the difance $F G$, from the point F of the Perpendicular, to the neareft point G, thus:

Divide by double the bafe $A G$, the excess of the Square of the greateft fide $A C$, above the fum of the fquares of the two other filles $A G, C G$.

Thus if the greater fide AC were 15 fathoms, the Bafe, $A G 4$, and the other fide CG 13, by dividing the excefs 40 of the \{quare $A C$, which is 225 , above the fum 185 , of the fquares 16,169 , of the two other fides $A G, C G$, by the dquble' 8 of the bare AG, ycu will have 5 fathoms for

Fig. \&s
Fig. 3.

INTRODUCTION

the diftance FG, Jic. We will give in Prop.15. l. 1. of Eraclids Elements, another method of drawing a Perpendisular.

PROBLEMM.

Thro' a given Point to draw a Right Line, parallel to a given Right Line.

Flate Fig. 5.

TIf $R O^{\prime}$ the given Point C to draw a Line parallel to the given Line $A B$; from the Point D taken at pleafure in the Line $A B$, thro' the point C defcribe the Are $C E$, and from the Point C thros the Point D, the $\operatorname{Arc} D_{3}$ equal to the preceding CE, and you have the Point F , thro ${ }^{3}$ which, and the given Point C, draw the Right Line C_{F} which will be parallel to the given Line $A B$.

Or from the given Point C defrribe the Are HI , touching the given Line $A B$, and from the Point D, taken at pleafure in the fame Line $A B$, defcribe with the fame opening of the Compafs, the Arc LM: Laftly, thro the given Point C, draw the Right Line CF, touching the Arc LM, which will be the parallel requir'd. When it is to be perform'd on the Ground, do as is taught in Prop. 31. \%. I. of Euclid's Elements. We thew in Prop-34. l. I. of the fame Elements, another method, how upon Paper to draw a Parallel to a given Line thro a given Point : and in Prop. 21. Book 3. of the fame Elements, we thew how to draw thro' a given point, a Line parallel to a given inacceffible Line upon the Ground.

> PROBLEM IV.

To divide a given Right Line into ino equal parts:

Eiger. O divide the given Line $A B$ into two equal parts; deo fribe from its two ends A, B, with one and the fame opening of the Compafs, two Arcs interfecting at the two Points F, G, thro' which draw the Right Line FG, which will divide the given Line into two equal parts in the point C.
${ }^{3}$ Tis in the fame manner that you muft work it on the Ground, by defcribing the Arcs with two Cords of the fame length, tied to the two ends A, B : but to fave the trouble

To the Mathematics.

trouble of defribing Arcs; (which is pretty hard when the Ground is very uneven, and full of Thorns or Briars) join the two ends of thole two Cords, on one fide and the other, and you will have the two points F, G; or more eafily extend a Cord along the Line $A B$, and redouble it by join: ing its two ends, for thus you will have the half of the the given line $A B$, and then there needs no more than to fet off this half or redoubled Cord along the line $A B$, from one of its ends A or B , to find C the middle point requir'd.

If the Cord be lefs than the given line $A B$, cut off the two equal parts $\mathrm{AD}, \mathrm{BE}_{\mathrm{i}}$ and divide the line DE into two equal partso

PROBLEMV.

To divide a given Arc of Circle into two equal parts.

1. O divide the arc DE of a Circle whofe Center is B, into two equal parts, defcribe from its two ends E, D, with one and the fame opening of a Compafs, two arss interfesting each other in the point F; from which to the Centre B, draw the right line BF, which will divide the given are $D E$ into two equal parts at the point G.

When we fay that two arcs of a Circie mult be defcrib'd with one and the fame opening of a Compafs, without particularizing any thing, it is to be underftood that this opening may be taken at pleafure, provided the two arcs interfect.

If the Centre of the given are DE were not likewife given, you might divide it into two equal parts, by means of the preceding Problem, as if this are were a right line.

PROBLEM VI.

To divide a given Angle into two equal pariso.

TO divide the given angle $A B C$ into two equal angles; defcribe from the angular point B, the arc $D E$, with any opening of the Compafs, the greater the better, and from the two ends E, D, with one and the fame opening of the Compafs, defcribe two arcs interfesting in the point F , thro' which, and the point B , draw the right line $B F$, which will divide the given angle $A B C$ into two equal parts, that is to fay, the two angles $A B F, C B F$, will be equal to each other, as well as the two arcs GD,GE。 whish meafure 'em ${ }_{\text {d }}$

When the angle $\mathbf{A B C}$ is given upon the Ground，ond may find how many degrees it is of，as is thewn in Prob．8． and by Prob．9．make at the angular point B ，with the line $A B$ ，or with the line $B C$ ，an angle equal to the half of the propofed angle $A B C$ ，by means of the right line $B F$ ；which confequently will divide the angle $A B C$ into two equal parts．

P．R O B L EM VII．

To divide the Circumference of a Circle into Degreêso

MAthematicians divide the Circumference of a Circle into 360 equal parts，which they call Degrees；each Degree into 60 equal parts call＇d Minutés；each Mintute into 60 other equal parts，which they call Seconds；and To on． They have chofern the number 360 for the Circle，and the number 60 for the fubdivifions，becaufe thefe two numbers have feveral aliquot parts，and fo are more convenient in the Practice．We thall content our felves with the divi－ fion of the Semicircle into 180 degrees，as being fufficient for what we liave need of．

Plate I． Fig。 7.

Havirig from the point A ，taken at pleafure in the in definite line $B C$ ，defribed the Semicircle $B D C$ ，firt divide its Circunference into three equal parts，by fetting off the fame opening of the Compafs，that is to fay，the length of the Semidiameter $A B$ or $A C$ ，from C to E ，and from E to F ，or from B to F a and from F to E ，and you＇ll have the three equal parts $C E, E F, F B$ ；whereot each is equi－ valent to 60 degrees．Divide the arc $C E$ into two equal parts in the point G ，the arc EF into two equal parts． in the point D ，the arc $F B$ into two squal parts in the point H ，and the Semicircle will be divided into fix equal parts，each of which will be equivalent to 30 degrees． Divide the arc CG into three equal parts in the points H, J ，the arc GE into three equal parts in the points K, L ， the arc $E D$ into three equal parts in the points M, N ， the arc DF into three equal parts in the points O, P ，the arc $F H$ into three equal parts in the points Q, R ，and the arc BH into three equal parts in the points \mathbb{S}, T ；and the Semicircle will be divided into eigbteen equal parts， each of which comptehends 10 degress；wherefore if you divide each of thefe eighteen equal parts into two other equal parts，the Semisixcle will be diyided into thiry fix equal

To the Mathematics.

parts, each of which being laftly divided into five equal parts, the Semicircle will be divided into its 180 degrees, to which you m at annex figures from 10 to 10 degrees, as you fee in the Scheme which reprefents that Semicircle which inftument-makers do commonly make upon Brafs, and which they call a ProtraEEOF; or Traniporter, becaufe by applying it upon an angle, the quantity of that angle may be meafurd, or by applying it upon a given line, an angle of as many degrees as you will may be made. as we mall Mew in the following Problems.

PROBLEM VIII.

To find kow many Degrees a given Angle contains.

AS the meafure of a rectilineal angle is the are of any Circle defrrib'd from its angular point, it follows?
plate I .
Fig. 7. that if the number of the degrees compris'd between the lines which form the angle be known, the value of this angle will be known alfo. Wherefore if it is propos'd to meafure the angle VAX, apply the Protractor upon this angle, fo that its Centre may lye upon the angular point A, and its Diameter AC upon one of the two lines which form the angle, as upon the line $A V$, and then the arc CL of the Protractor, compris'd between the two lines forming the angle, being here of 50 degrees, fhews that the given angle VAX is 50 degrees,

If you have ro Pritraffor, make , 4fe of the Selfor, thus; Having defrib'd at pleafure from the angular point A of the given angle VAX, the arc Y Z, fet of the fome opening AY or AZ upon the Lire of Chords of the Sector, from 60 to 60 ; and the Sector remaining thus open, fet off upon the fame Line of Chords the arc YZ , and the equal number of degress on both frides that this extends? will give the quantity of the arc YZ , and confequently of the given angle VAX.

If the angle be given on the Groand, whether really oa imaginarily, meafure it by means of a large Semicircle diwided exactly into 180 degrees, and fometires into Mis nutes, or at leaft into every 5 Minutes. This Semicircle which the Smedes and Germans commonly call Afrolabe, and the French call Graphometer, is commonly made of Brafs, and has an Alidade or Index. being a Ruler of the fame D3 Meral

Plate 1. Eig. 7 :

INTRODUCTION

Metal, made to move about the Centre of the Semicircle, with two fights fet up at right angles, fo that the boles, or fine llits, which ferve to direct the vifual Rays, correfpond to the Line of Direction, which is drawn upon the Alidade or Index, and paffes thro the Centre of the Infrument, where the vifual angles are form'd.

> This Inftrument has alfo two fights fet up at right angles, each near ore of the two ends $\mathrm{B}_{2} \mathrm{C}$, of the Diameter BC , and she flits of thefe fights ferve alfo to conduct the Eye along the Diameter BC . This Inftrument is fo common, that it doesn't feem neceflary to give a longer defcription of it, wherefore I fhall teach at prefent how to ufe it, to meas fure an acceffible angle upon the Gound.

> To meafure then upon the Ground the acceffible angle VAX, apply on this angle the Semicircle, which ought to be fuftain'd by a Staff, fo that its Centre anfwers perpendicularly upon the angular point, which may be eafily done with a Plummet; and holding the Inftument almoft paralHel to the Plane of the given angle, turn it about till you fee thro' the immoveable fights fome point of the line $A V$, for thus the Diameter BC will anfwer upon this line AV, which ought to be fo always ; and the Inftrument being fixt in this fituation, turn the Index, until thro' the fights thereof you fee fome point of the other line AX, and then the Line of Direction will ohew upon the Circumference of the Semicircle the number of degrees in the given angle VAX.

An acceffibe angle on the Ground may be allo very ead fily and very exactly meafur'd by means of the following Table, which Thews the degrees and minutes of the angles, whofe two fides are each 30 feet, and the Bales being righe lines, encreafe by two and two Inches only, and this is fuffie cient for practice.

Table of Plane Angles comprebended by troo Sides of 30 Feet.
Bafes. Angles. | Bafes. Angles. | Bafes. Angles.

Table of Plane Angles comprebended by two Sides of 30 Fetio

Bafes. Angles. | Bares. Angles. | Bafes. Angles.

To the Mathematics:
Table of Plane Angles comprehended by two Sides of 30 Feet
Bares. Angles. | Safes. Angles. | Bares. Angles.

Bafes. Angles. | Bafes. Angles. | Bafes. Angles.

To the Mathematics.

If then it is propos'd to find the quantity of the angle VAX, take on each of its two fides AV, AX, the two parts $A Y, A Z$, each of 30 feet, and meafure the bafe $Y Z$ exactly in feet and inches, which we will fuppofe of 25 feet 6 inches, to which there anfwers in the Table 50 degrees 18 Minutes, for the quantity of the propos'd angle VAX.

The fame Table may alfo be of ufe to meafure the fame angle VAX, when it is upon Paper, namely by taking on the two fides AV, AX, of the angle, the two parts AY, $A Z$, each of 30 equal parts from fome Scale, that is to fay, upon a line divided exactly into equal parts, and by fetting off the bafe YZ upon the fame fale, you'll know how many like equal parts it contains, for this number of equal parts being fought in the Column of bafes in the preceding Table, will give on the other fide in another Column, the degrees and minutes that the angle VAX con: -tains.

PROBLEMIX。

At a given Point on a given Line, to make an Angle of a given Magnitude.

A T the given point A, upon the given line $A V$, to

Fig. 7 the Diameter of the Protractor on the given line AV, fo that its Centre anfwers exactly on the given point A, and the Inftrument remaining fo fixt, reckon from the exFremity C, of its Diameter, the so degrees propofed, and where they terminate, mark the point L , thro' which, and thro' the given point A, draw the right line ALX, which will make with the given line $A V$, the angle VAX, of 50 degrees.

If the point A is given upon the Ground, we ufe the Graphometer or Theodolite, and place it in fuch a manner, that it may have a fituation almoft parallel to the given Line AV, that its Centre anfwers perpendicularly on the given point A, and that its Diameter $B C$ anfwers on the line AV, which will happen, when by looking thro the immoveable fights, you fee fome point of the given line AV, then the Inftrument being fo fix'd, and the Index being turn'd to the point L of 50 degrees, fince an angle of 50 degrees is to be laid down, plant a Stake in the Ground in a point as X, which is in the vifual line paffing thro the fights of the Index, that is to fay, fo that this

INTRODUCTION

plate I. Eig. 7.

Stake being ftuck upright, may be perceiv'd by looking thro ${ }^{3}$ the fights of the Index, and then the line imagined to pafs by the point X, and by the given point A, will make with the given line AV an angle of 50 degrees, as was requir'd.

Fou may alfo, by means of the preceding Table, make on the Ground any angle you pleaic, on a given point of a given line; as if at the point A, of the given line $A V$, you would make with the fame line AV, an angle, for example, of 56 degrees, reckon 30 feet on this line $A V$, from A to Y, and there plant a Stake, to which tie a Cord 28 feet and 2 inches long, fuch as you find the bafe of an angle of 56 degrees to be in the preceding Table: plant alfo at the point A another Stake, to which tye another Cord equal to the lire AY, that is to fay, 30 feet long; lafly, join the two ends of thefe two Cords, tied so their Stakes, by extending them fo that each fide be fully ftretch'd out, and plant a Stake where the two ends, being joind together, meet upon the Ground, as in Z ; and then the imaginary line $A Z$, will make with the pro* pos'd line AV, which is often no other than imaginary, an angle of 5^{6} degrees, as was required.

The fame Table will alfo ferve to make upon Paper the fame angle of 56 degrees, or of any other number of degrees you pleafe, by defcribing from the given point A the are $Y Z$, with the diftance of 30° equal parts, taken off from fome Scale, and fet off on this arc the line YZ of 28 equal parts taken off from the fame Scale, and you have the point Z, thro' which, and thro' the given point A, draw the line $A Z X$, which will make with the given line AV, the angle VAX of 56 degrces.

But the Sector may ferve allo very conveniently to make upon Paper an angle of any number of degrees, as for example of 50 degrees, thus; defrribe from the given point A the arc YZ, with any opening of the Compars, which fet off on the two Lines of Chords of the Sektor, from 60 to 60 , fo that the Seltor be fo open'd, that the diftance from 60 to 60 on the Chords, be equal to the Semi-diameter AY, and the Sector remaining thus open, take off the fame Chords the diftance from 50 to 50 , fince you would have an angle of 50 degrees, and fet it on the arc $Y Z$, from Y to Z, and the are YZ will be 50 degrees, wherefore by drawing the line AZX, the angle VAX will be $\{0$ degrees.

To the Mathematics.

You may alto make on the Ground an angle of as many degrees as you will, by the help of the Seffor, which for this purpoie ought to have two fights fitted at right angles to each Line of Chords to direct the vifual Rays, with which you may make what angle you will, by opening the Sector in fuch a manner, that the two Lines of Chords fall make the fame angle at the Centre of the Seltor, which ought to anfwer to the point given on the Ground; and this may be done by feting off from the Centre on one of the two Lines of Chords, the diftance of the Chord correfpondent to the number of degrees. propoled, and applying the length of this Chord upon the fame Lines of Chords, on both fides from 60 to 60 ; for thus the Sector will be found open as is requir'd. See our Treatise of the USe of the Sector, or Compass of Proportion.

PROBLEM X.

At a given Point of a given Line to make an Angle equal to. an Angle given.

AT the given point A of the given line $A 3$, to make an angle equal to the given angle C; delcribe from this angle C, with any opening of the Compass, the arc $D E$, and with the fame opening, from the given point \dot{A} defrribe the $\operatorname{arc} F G$, equal to the firft DE, and you will have the point G, thro' which, and the given point A, draw the right line $A G H$, which will make the angle BAH, equal to the given angle C.

When you work on the Ground, you muff, by Prob. 8. meafure how many degrees the propos'd angle C contains, and by Prob. g. make at the given point A, the angle BAM, of as many degrees as is the angle C; for thus there two angles will be equal, and the Problem refolv'd.

PROBLEM XI.

Upon a given Line to make an Ifofeeles Triangle.

TO defribe upon the given line $A B$ an Ifofceles Trialgle; describe from its two ends A, B, with one and

Fig: 8
Plate es Fig. 78

plate I_{0}, point of Interfection C, draw to the fame extremities A, B_{δ} Fig. 90 the right lines $A C, B C$, and the Triangle $A B C$ will be Irofeles; But this Triangle will be equilateral, when the two ares are drawn with an opening of the Compals equal to the given line AB .

Work in the fame manner when the line $A B$ is given on, the Ground, to wit, by tying to the two ends A, B, two Cords of one and the fame length, and defcribe by their e means two arcs; or if thefe two arcs cannot conveniently be defrib'd, join the ends of thefe two Cords equally ftetch'd out, and you have the Vertex C of the Triangle rought.

PROBLEM XII.

Ta make a Parallelogram with two given Lineso

Eig. 10. O make a Parallelogram with the two given Lines $1 \mathrm{AB}, \mathrm{AC}$, that is to fay, a Parallelogram whofe breadth is equal to the given line $A B$, and length to the given line $A C$; make with thefe two given lines $A B, A C$, any angle whatever, BAC ; from the extremity B , with the interval $A C$, defrribe an arc, and another from the cxtremity C, with the interval $A B$, cutting the firft in the point D, from whence draw to the two points B, C, the right lines $C D, B D$, and then you have the Parallelogram required, A 1 DC.
'Tis almoft in the fame manner that you muft work it on the Ground, when the length and the pofition of the two lines $A B, A C$ is given, namely by tying to the point C a Cord equal to the breadth $A B$, and to the point B another Cord equal to the length $A C$, and by joining together the two ends of thefe two Cords equally ftretch'd out, you have the point D , $j \sigma^{c}$.

PROBLEM XIII.

To make a Triangle with tbree given Lines;

Plate 2. tig. II.

TO make a Triangle with the three given lines $A B, A C$, $A D$, the greateft of which ought to be lefs thian the fum of the other two ; from the extremity A of the firff given line $A B_{z}$ with the fecond given line $A C$ in the Com Pafles

Introduction Plate 2. Page 63

To the Mathematics:

paffes, defcribe an arc, and another from the other extremity B_{3} with the third given line AD in the Compaffes; and thro the interfecting point E of thefe two arcs, draw to the fame extremities A, B, the right lines AE, BE, and the. Triangle $A B E$ will be that requir'd.

When you work on the Ground, tie to the extremity \mathbb{A} of the firt given line $A B$, a Cord equal to the fecond $A C$, and to the other extremity B, another Cord equal to the third AD, then join together the ends of thofe two Cords equally fretch'd out, and you will have the point E , bro.

PROBLEM XIV.

To divide a given line into any number of equal parts.

TO divide the given line $A B$, for example, into fire equal parts; defcribe from the extremity A thro the other extremity B_{3} the arc $B C$, and from the extremity. B_{3} thro ${ }^{3}$ the other extremity A, the arc $A D$ equal to the arc $B C$, which may be of what bignefs you pleafe, and from the two Extremities A, B, thro' the points C, D, draw the indefinite lines $A C E, B D F$, which will terminate in E and F_{y} by running over on each from the two extremities A, B_{3} five equal parts of any bignefs, but the fame on the one and the other line; laftly, draw thro' the oppofite points of divifion, lines parallel to each other, and they will divide the given line $A B$ into five equal parts, as was requir'd.

If you will ufe the SeClor", apply the length of the given line AB on the Line of equal parts, to a number on both fides which is divifible by 5 , fince it is to divide the line $A B$ into 5 equal parts, as from 200 to 200 , the fifth part of which is 40 ; and the Sector remaining thus open, take off the fame Line of equal parts the diftance from 40 to 40 , which will be the fifth part of the given line $A B$. We fhall Thew in Prop. 1. 1. I. of Euclid's Elements, another way of dividing a given line inco equal parts.

PRO

Five. I2,

INTRODUCTION

PROBLEM XV.

To make a Stale for to lay domn Plans withal.

Rate 2. Eig. 13.

HAving drawn the two indefinite lines $A B, B C$, makirg at the point B any angle whatever $A B C$, run over on the line,$~ B C$ as inany equal parts as you pleafe, and of what length you will, as for example five from B to C. Make as many on the line $A B$, from B to E, and again as many on the line $C D$, which ought to be drawn thro ${ }^{\circ}$ the point C, parallel to the line $A B$, from C into F, and join all the points of divifion that are oppofite and equally diftant from the line BC , by as many right lines, which will be parallel to each other, and to the line BC , and will divide the Parallelogram BCFE into as many other little Parallelograms, all whofe Diagonals muft be drawn the fame way, which then will be parallel to each other.

It is not neceffary that the number of divifions in the line BE , fhou'd be equal to the number of the divifions in the line BC , for they may be more or lefs; but they ought to be equal to the number of equal parts in the oppofite and parallel line CF, whofe length is confequently equal to that of BE , and each ought to be run over as often as you wilt in a right line, as $C F$, three ximes, for example, at the points $\mathrm{H}, \mathrm{K}, \mathrm{D}$, and BE alfo three times at the points $\mathbf{G}, \mathrm{I}, \mathbf{A}$; which mult be join'd to their oppofites $\mathrm{H}, \mathrm{K}, \mathrm{D}$, by the parallel lines, GH, IK, $A D$, the laft of which $A D$, ought to be divided into as many equal parts as its equal. and oppofite parallel $B C$, that is to fay, the fame equal parts that have been run over on the line $B C$, ought to be run over on the line $A D$; then draw right and parallel lines thro' the points that are oppofite, and equally Diftant from the two parallels AB , CD, and the Scale will be finifh'd : To which annex numbers from 25 to 25 on the Parallels $A B, C D$, to fignify that each of the parts EG, EB, GI, and AI, comprehend 25 equal parts; which number 25 is found by multiplying the number of equal parts in the line BE , by the number of equal parts in the line $B C$, fo that each Diagonal is found divided into as many equal parts as the line $\mathrm{BC}_{\text {, }}$ as here into 5, at points, thro' which if you draw as many lines parallel to the line BC , they will divide each of the equal parts of the line BE , allo into five lefs equal

To the Mathematics.

parts, which are found on the great lines parallel to the line $A B$, namely one on the firft parallel $I_{\text {, }} 1$, from the

Plate ${ }^{2}$
Fig. 12. line EF to the next Diagonal; two on the fecond Parallel 2, 2, between the fame Line EF and the firlt Diagonal, that is to fay, between the two points 6,7 ; fo of others. From whence it follows, that the line 8, 7, contains 27 equal parts, the line 9,7 , comprehends 52 , which reprefent Feet, Fathoms, or any other meafure you will.

This Scale thus made, is call'd Plain Scale, becaule it is free to take divifions of what bignefs you will, fince its ${ }^{\circ}$ length is not determimed : But when its length is given, as alfo the number of its equal parts, it is call'd Forc'd Sciale, which will not be found difficult to make, to him who underftands the Conftruction of the preceding one; for if the length $A B$ is determined, and of a determinate number of parts, as for example, of 100. Fathoms, becaufe this number 100 is divifible by 4 , divide the length $A B$ into 4 equal parts, at the points E, G, T, each of which will reprefent 25 Fathoms; and becaufe this number 25 is divifible by 5 , divide the part EF into 5 equal parts, each of which will reprefent s Fathoms, becaufe by dividing 25 by 5 , the Quotient is 5 ; wherefore to have a Fathom; draw at pleafure thro' the extremity B , the indeterminate line BC , in order to run over s equal parts of any bignefs from B to C, then the reft may be done as before.

You may upon this principle, make fuch a Scale feveral ways, as in Fig. 14, which is a Scale of 20 equal parts, and in Fig. 15, where you have a Scale of 70 equal parts, which may be taken for Fathoms, Feet, Inches, or for any other Meafure you will. You need only look upon thefe three Figures to comprehend them, and therefore I thall fay no more of them ; except that if in Fig. 13. you run over on the line BC 6 equal parts, each divilion of the line EB would be taken for. a Fathom, and the fubdivifion had reprefented Feet, becaufe a Fathom contains 6 Feet, fo that the line 6, 7, would have reprefented two Feet, and the line 8, 7, had reprefented 5 Fathoms and 2 Feet; and lafty, the whole line AB had been 20 Fathoms.

PROBLEM XVI.

To lay domn an accefible Plato

FIrft, if you enter within the acceffible Place, fuppofe ABCDE , your beft way is to take a foul draught of it on Paper any how, to fet down the length in Feet; Fathoms, dec. of each Side, which we will fuppofe of as many Fathoms as you fee mark'd in the Figure, as alfo the Diagonals $A D, B D$, which you are at liberty to draw as you :will, from one Angle to another, fo that the given Plan be reduc ${ }^{3}$ d into Triangles, which mult be protracted one after another, by taking from a Scale as many equal parts as each line contain'd Fathoms on the Ground, for thus the whole Figure will be reduc'd into a fmall compafs upon Paper, and the Plan thereof laid down.

But to come to the Practice, draw on Paper the line at of 20 parts taken from the Scale, for the 20 Fatho as of the Side $A B$; then from the point b, with the diftance of 25 parts, for the 25 Fathoms of the fide BD , of the Triangle $A B D$, defcribe an Arc, and another from the point a with the diftance of 27 parts, for the 27 Fathoms of the other. Side $A D$, of the fame Triangle ABD , and thro' the interfection d of thefe two Arcs, draw from the two points a, b, the right lines $a d, b d$, which will make with she firft $a b_{\text {, }}$ the Triangle $a b d$, fimilar to the great one $A B D$, which in this manner is protracted. And thus the two other Triangles BCD, AED, may be protracted ; fo you have the finall Figure abcde fimilar to the great one ABCDE .

If the given Plan be bounded by fome Curvealines; take thofe Curvelines for right ones, when they differ but little; otherwife they muft be reduc'd into lines infenfibly differing from right ones, by drawing feveral little right ines that will nearly form the Figure, and reduce it into Triangles by drawing Diagonals, then will thefe Triangles be protracted, and confequently the given Figure, as was juit now taught.

Secondly, if it be impolfible to get within the given Fio gore, fo as to meafure the Diagonals, as if the given Plant was insluded befveen Walls or if it be Woods Eenny

Introduction Plate 3. Page Vg

To the Mathematics?

place, or a Pond; meafure this Plan from without, by taking as before the Sides with a Cord or Chain, and the

Plate 3 :
Fig. 17. Angles with an Inftrument, as was taught in Prob. 8. Then protract it on Paper, by taking its Sides off a Scale of equal parts, and fetting down the Angles obferved with a ProcraEtor, or otherwife is was taught. in Prob. 9. And thus the two Figures, viz. the great on the Ground, and the little on Paper, will be finilar, becaufe of the equality of their Angles, and the proportion of their Sides.

But fince it is ealy to miftake, as well in taking the Angles on the Ground, as in laying them down upon Pa per, and that a little error with refpect of the Angles; oco carions a confiderable difference ; it is better to ufe the following method, which always fucceeded well with me, when I took a little care to produce the Sides in a right linee

Let us propofe then the Plan $A B C D E$, which is acceflio ble without, but does not hinder but you may meafure its Sides, which we will fuppofe of as many Feet as are mark'd in the Figure; Preduce onc of the Sides $A B$, to F , as much in a right line as is ponfible, fo that BF be of a certain known length, more or lefs, according to the conveniency of the Ground, as for example 80 Feet, taking rather Feet than Fathoms, becaufe the Sides of the Plan have been meafur ${ }^{\prime} d$ in Feet; then meafure the line FC, and fuppole it 70 Feet, which ought to be fo done, becaufe this line makes with the other two BF, BC, the Triangle BFC, this being protraCted by the means of fome particular Scale, which may he fupplied by the Sector, taking off the meafures on the two Lines of equal parts on both fides, the Sector beirg more or lefs open, as you would have the Figure on the paper to be great or fmall, then you'll have the pofition of the Side BC, which cannot be done otherwife, without knowing the Angle $A B C_{2}$, where it is more difficult to fusceed well.

Produce in the fame manter the Side $B C$ to G, fo that C G be of any length, as 50 Feet, and in like manner meafure the line GD, which we will, fuppofe 40 Eeet, this will give the polition of the Side CD, without knowing the Argle ECD; and fince there remains no more than the two Sides AE, DE, you may fop there, becaufe that will be fufficient to lay down this Plan on Paper, which is done thús?
plate 3. Fig. 17.

Having drawn the line $a b$, let it be 100 parts from fome Scale, reprefenting the 100 Feet of the great. Side $A B$, and having produc'd it to f, fo that bf be 80 of the fame parts, for the 80 Feet of the line BF ; from the point f, with the diftance 70 parts, for the 70 Feet of the line FC, defribe an Arc, and another from the point b with the diftance 60 parts, for the 60 Feet of the Side $B C, 6$ and thro' the interfection c of thefe two Arcs', draw from the point b the Side $b c_{5}$ which produce to g, fo that cg be 50 parts, for the 50 Feet of the line C_{9}, and defcribe as before an Arc from the point g with the diftance 40 parts, for the 40 Feet of the line GD, and another from the poine c with the diftance 65 parts, for the 65 Feet of the side CD, and thro the Interfection d of thefe two Arcs draw from the point c the Side $i d$. Lafly, defribe an Arc from the point d with the diftance 90 parts, for the 90 Feet of the Side DE , and another from the point a with the diftance 100 parts, for the 100 Feet of the laft Side $A D$, and thro' the Interfection a of there two Arcs, draw from the two points a, d, the two Sides $a e$, $d e$, and the little Figure absde, will be fimilar to the great one ABCDE . See Prob. 5. Chap. 2. Part 3. Geom.

PROBLEM XVII.

To meafure an inaccefibe plan.

Nie. 18. IF the Plan ABCDE be inacceffible, fo that you cannot meafure the length of its fides with a Chain, much lefs produce them without, nor take its Angles; in fuch cafe you mult go quite round, defcribing as you go the Figure FGHI, as near to the place as may ba , and as regular as polfible, fo that the Angles of the given Plan, which are feen from one of the Angles of the circumfcrib'd Figure, may alfo be feen from another Angle of the fame Figure, as here the Angle A is feen from the two Angles F, G, as well as the Angle B; the Angle C is feen from the two Angles G, H, and likewife from H, I, which alfo has in view the Angle D; and laftly, the Angle E feen from the two Angles $F_{9} I$.

This being fuppos ${ }^{\circ} \mathrm{d}_{\text {, }}$ meafure with the Chain the fides of the Figure FGHI, and with an Inftrument take the vifual Angles whish are form'd at the points, $F_{8} G, H, I$; thery

To the Mathematics:

you need only defribe upon Paper a fmall Figure, fimilar to the great one FGHI, and at the Angles F, G, H, I, make

Plate 3.
Plate 18. other Angles equal to thofe obferv'd, by right lines reprefenting the vifual Rays, which will interfect each other in Points that reprefent the angles of the given Plan ABCDE , which by this means is Protracted, and reduc'd to a fimall compals on Paper, by draving right lines from the points of interfection. The Figure it felf explains it fufficiently, fo that no more need be faid of it.

PROBLEM XVIII.

To Produce a Line that is too Short.

TH O' this Problem be naturally known, and Euclid takes it for a Principle, yet in practice, when the given Line is fmall, it is difficult to do it well by the application of the Ruler, becaufe if you fail ever fo little in applying the Ruler upon a fmall extent, you renfibly deviate from the right line in an extent of a confiderable length; you mult thercfore have a point more remote from one of the two ends of the given right line, than thefe two ends are from, each other, which fhou'd be in a right line with thefe two fame extremities, in order to apply the Ruler thereto, that the given line may be produced with more exactnefs.

To find this point, defcribe from the extremity A of the given line $A B$, thro' the extremity B, the Arc $C B D$, and take at pleafure the two equal Arss $B C, B D$, defcribe from the ends C, D, with the fame opering of the Compafs, two Arcs, whofe point of interfcction E, will be in a right line with the two extremities A, B, for that by applying the Ruler upon the two Points A, E, you may the more exactly produce the given line AB.

If the line $A B$ is given upon the Ground, you may fix two Stakes upright at the ends A, B, and caufe a third Stake to be fix'd beyond P, if you would produce the line $A B$ on that fide to any confiderable diftance, as in E, fo that by looking along the two Stakes fix'd at A, B, you perceive the third Stake in \mathbf{E}, for thus there three. Stakes will be found in a right line, becaufe they will he in ore and the fame vifual Ray, which is always a right line, at leat when it is not of too great a length.

INTRODUCTION

Plate 3. F1g 20.

You cannot proceed in the fame manner when there's any Impediment, like that of the Wall CD, in this cafe : And therefore at the point B, let $B E$ be drawn at right angles to $A B$, and of any length, and draw from its extremity E_{3} thro' the two points A, F, taken at pleafure in the line $A B$, the right lines $E A, E F$, meafure the Angles $B E F, B E$ t, and the lines EF, EA: Then make on the other fide the Angle BEG equal to the Angle $B E F$, the line EG will be equal to the line BF ; make allo the Angle BEH , equal to the Angle BEA, and the line EH will be equal to the line EA, then the given line AB. may be continu'd beyond the Wall $C D$, by joining the two points G, H, by a right line, doc.

PROBLEM XIX

To infcribe a Regular Polygon in a given Circle.

FIrf, if you would defcribe an Hexagon in the given Circle BCDEFG, whofe Centre is A; the Radius $A B$ being fet off on the Circumference, will go round fix times exactly, and to give the fide of the Hexagon.

But if you would defrribe fome other regular Polygon, for example an Heptagon, you muft on the Centre A make the Angle BAC , equal to the Angle at the Centre, which in the Heptagon is ' 51 degrees, and about 20 minutes, and the Chord BC will be the fide of the Heptagon.

The Angle at the Centre of a regular Polygon is found by dividing 360 degrees by the number of fides of the Polygon, as by 7 for a Heptagon, 8 for an Octagon, and
fo on.

If you have a Sector, apply the length of the Radius AB from 6 to 6 , upon the Line of Polygons, and the Sectior ftanding thus open, take on the fame Line of Polygons, on both fides, the diffance from 7 to 7 for an Heptagon, 8 to 8 for an Oetagon, and fo on, and this diftance will be the fide of the Polygon fought. See the Treatife we have publidid concerning the Ufe of the Sedor.

Introduction Plate 4 Pag:70

To the Mathematicss

SCHOLIUM.

It is evident, that for to infcribe an equilateral Triangle in 7. given Circle, you need only fet off its Radius fix times on its Circumference, and draw the fides from two to two points; and for to infribe a iquare therein, you need only draw thro' the Centre of the given Circle two Diameters ${ }_{3}$ perpendicular to each other, which will divide the given Circle into four equal parts.

But to infrribe thercin a Pentagon, follow this particular Rule, which is demonftrable. Draw at pleafure thro the Centre A the Diameter BC, and raife from the fame Centre A, the perpendicular Radius AD ; divide the Radius AC equally in two at the point E , and let EF be equal to DE ; laftly, let DG be equal to DF, and this Chord DG will be the fide of the Pentagon infrrib'd in the Circle DGC: Obferve that the line AF is the fide of a regular Decagon ins. frrib'd in the fame Circle.

PROBLEM XX.

To defribe a Square upon a given Right-Line.

TO make a Square upon the given line $A B$; defcribe from the point A thro the point B_{2} the Arc $B C D E$, and

Plate 30 Fig 23:

PROBLEM XXI.

To defcribe a regular Polygon upon a given Right-Line。

plate 3. Fig. 22.

TO defcribe upon the given line BC a regular Polygon? for example an Heptagon; make at the two ends B, C, of the line BC ; the Angles $\mathrm{BCA}, \mathrm{CBA}$, each equal to the half of the internal Angle of the Polygon, which in this inftance is 64 degrees 17 minutes, and from the point \mathbb{A} where the two equal lines $A B, A C$, mest, defcribe thro ${ }^{2}$ the two points B, C, the Circumference of a Circle, wherein may be infcrib'd a regular Heptagon, each fide whereof will be equal to the given line $B C$.

The internal Angle of a Polygon is found by fubftracting from 180 degrees the Angle at the Centre, which is found by what has been thewn in the foregoing Problem: Or without knowing the Angle at the Centre, by maltiplying 80 degrees by the number of fides of the Polygon except two, namely by five for an Heptagon, fix for an Octagon, and fo on, and by dividing the Product by the number of the fides of the Polygon.

If you have a Sector, apply the length of the given line BC upon the Line of Polygons, to a number on both fides equal to the number of fides of the Polygon to be defcribd, as in this cafe from 7 to 7 ; and the Secior remaining thus open, take with a Compafs the diftarce from 6 to 6 on the fame Line of Polygons, and defcribe with this opening from the two ends B, C, of the given line $B C$, two Arcs, whofe Interfection will give the Centre A of a Circle, in which may be infrrit)'d the Polygon propofed, as here a segular Heptagon, where the given line BC will be one of its fides.

> PROBIEM XXII.

To defrribe the Circumference of a Circle thro three giver Points upon a Plane.
elate 4

THE three given points muft not lye in a right line, for then the-Problem would be impoffible. To defcribe therefore a Circle thro' the three given points A, B, C, which are not in a right line defribe from the two points

To the Mathematics.

A, B, both ways with the fame opening of the Compals, tiwo Arcs, and thro' their interlecting points E, D, draw the indefinite right line DEH. Defribe likewife from the two points B,C, both ways with one opening of the Compafs, two Arcs, which in this cafe will interfect in the two points F, G, thro' which draw the right line FG, which being produc'd if occafion requires, will cut the firt line DE , in like manner produc'd, in a point, as H , which will be the Centre of a Circle, whofe Circumference will pafo thro' the three given points A, B, C.

S C.HOLILM.

By this method a fegment of a Circle may be compleated, to wit, by taking at difretion thrce points in this Arc, and finding the Centre of a Circle which paffes thro' thefe there points.

PROBLEM XXIII.

To defcribe the common Oval on two given Diameters.

TO defribe the common Oval about the two given Diameters AB, CD, which cut each other at right angles and into two equal parts at the point \mathbf{E}, which is the Centre of the Oval ; fet off the length of the little Diameter $C D$, upon the great one AB , from A to O , and take on the fame great Diameter $A B$, the lines $E F, E G$, eq'al to $B O$, and upon the little Diameter $C D$, the lines $E H, E I$, each equal to three fourths of $B O$, that is to fay of EF ; or EG , Then draw from the Points' H, I, thro' the points F, G, the indefinite right lines $\mathrm{IK}, \mathrm{IM}, \mathrm{HL}, \mathrm{HN}$, which will be terminated at the points $\mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}$, by defribing from the point F thro' the point A the Arc KAL, and from the point G thro' the point B the Arc MBN. Laftly, defrribe from the point H thro' the two points L, N, the Arc LDN, which will pals thro' the point D; and from the point I thro the points K, M, the Arc KCM, which will pafs thro' the point C ; and you will have the perfect Oval ACBD.

The like Oval may allo be defrrib'd very eafily thus: Take upon the two given Diameters AB, CD, the equal Lines AF, BG, CH, DI, of any length, and join the right lines, FH, GI, each of which bifeet in the points O, P, on which eiect the twe Perpendiculars OQ, PR, which in

Fig. 27.
plate 4.
Fig. 25.
this cafe will cut the Diameter $C D$, in the points Q, R, thro' which, and the two points F, G, draw the indefinite right lines $R K, R M, Q L, Q N$, then the reft is done as before.

PROBLEM XXIV.

To defcribe the Matbematical oval about treo given Axes.

THE Oval we juft now defcrib'd is call'd the Common等 Oval, to difinguifh it from the Mathematical Oval, commonly call'd Eliipfis, and which has in no wife any part thereof circular, it being form'd by the Section of a Cy-. linder and a Plane which is not perpendicular to the Axis of the Cylinder, otherwife the Section would be a Circle: Or elfe by the fection of a right Cone and a Elane, cut ting the two oppolite fides of the Cone, and not parallel to the Bafe of the Cone, otherwife the fection would again be a Circle.
plate 4. Fig. 28.

The curve line $A C B D$ reprefents the Periphery of an Ellipfis, whofe principal property is, that if from two certain points F, G, taken upon the greatef Diameter $A B$, and equally remote from the Centre E . which are call'd Focii, be drawn to any point H , of the Circumference, the right lines FH, GH, their fum $\mathrm{FH}+\mathrm{GH}$ is equal to the great eft Diameter $A B$, which is call d the Principal Axis; the leffer Diameter CD, which is perpendicular to it being call'd the Leffer Axis; and the point E, where thefe two Axes sut each other, is call'd the Centre of the Ellipfis.

This curve line ACBD not being circular, either in whole or in part, cannot be defcrib'd Geometrically, bus by finding feveral points Geometrically, and joining them dextroully by one continued curve line, which will determine the Ellipfis; and this will be fo much the eafier, the more points there are found.

There are feveral methods for finding out thefe points; among others I have made choice of the following, which feems to me better than any for practice. Its Origin and Demonftration is drawn from the precedent property of the Focii F;G, which are to be found in the great Axis $A B$, by defcribing from the extremity C of the little $A x i s C D$, with the extent of the great semi-axis $A E$ or $B E$,

To the Mathematics:

she Arc FKG, which will cut the great $A x i s A B$ in the Focii F, G, by means of which an infinity of points in the

Plate 4.
Fig. 28.

From the Focii F, G, with any diftance in the Compafs greater than AF, or $B G$, defribe fimall Arcs both ways, and having fet off this fame diftance on the great axis AB , from A to I , and from the faid Focii, with an opening of the Compars equal to the Remainder BI of the gre:t Axis AB , defrribe other Arcs, cutting the former in four points H , which will be the points in the Curve of the Ellipfis. In the fame manner, by defcribing Arcs greater or leff, from the the faid Focii F, G, you will find as many other points in the Ellipfis as you pleafe, which points being join'd by a Curve line, the Ellipfis will be defrrib'd.

If you have no Compaffes, you may find as many points of an Ellipfis as you pleafe, by the help of the Ruler only, namely by fetting off on the edge of the faid Ruler from its end, the length of the great and fmall Semi-axis, which may be done without Compaffes, if you apply the end of the Ruler to the Centre E, and the edge of the fame Ruler on each of the two Semi-axes EB, EC, and mark upon the fame edge the points where the two ends fhall terminate; and by applying thefe two points upon the two Axes $A B, C D ;$ fo that the point of the fmall Semi-axis anfwers on the great A xis $A B$, and reciprocally the point of the great Semi-axis upon the fmall Axis CD; for then the fame end of the Ruler will note a point in the Ellipflis; and as this application may be made an infinite number of different ways, it is evident that by this means may be found as many different points of the Ellipfis as fhall be defrid.

This Method has its Demonftration; and is the foundation of a certain Infrumeht not uncomion, and made ufe of to defrribe an Ellipfis at orce, as the common Compafs is made ufe of to defribe a Circle. But there is another very eafy way of defrribing an Ellipfis at once, by a more fimple method, depending upon the general property of Focii, which we have mention'd already, and is common enough among Artificers.

Having found the two Focii F,G, as before fhewn, tie there.. unto a Cord, whofe length muft be equal to that of the曾lipfis's i. eo to the given great Azis $A B$, then there needs

INTRODUCTION

plate 4. Fig. 28.
no more than to ftretch out this Thread or Cord with a Pen or Pencil, which you mult move along the faid Cord equal. ly extended, and this Pen will by its motion defcribe the Circumference of an Ellipfis, where the two given lines AB, $C D$, will be the two Axes thereof, that is to fay, the length and breadth. This Cord is reprefented in the figure by the line FHG.

PROBLEM XXV.

To defcribe a Parabola on a given Axiso

Fig. 29.

THE Parabola is the fection of a Cone and a Plane parallel to one of the Sides of the Cone, that is to fay, to a right line drawn from the Vertex of the Cone thro fome point of the Circumference of its Bafe, which is a Circle. This Section or Parabola is bounded by a Curve Line call'd a Parabolical Line, and generally a Conic Line, becaufe a Conic Line is the Section of a Plane and a Conic Superficies, that is to ray, the Surface of a Cone. It is evident that this Parabolical Line is a Curve Line, and fpreads. in its progrefs not unlike a Rope flack pull'd, or a heavy body? which being thrown obliquely into the Air, defcends with much the fame obliquity, defcribing a Parabolical Line.

The effential property of the Parabola is, that draw within the Line as many Parallels as you pleafe, fuch as EE, divided equally in two at the points B , by the right line $A B$, which in this cafe is calld the Diameter of the Patabola, and the Axis, when it is perpendicular to thefe Parallels, call'd Ordinates, with refpect to the Diameter AB, which divide each of them equally in two; the Squares of all thefe Ordinates, are proportional to the correfiponding parts of the Diameter $A B$, taking them from the extremity A, which is call'd the Vertex of the Parabola: From whence may be drawn a Conftruction of the Parabola, but it will not be fo ealy as that which is derived from the property of its Focus D, which is fuch a point in the Axis $A B$, that if upon this Axis $A B$ produc'd, you take the part $A C$ equal to the part $A D$, the part $C B$ is equal to the correfponding line DE: Which gives a very eafy method to find out as many points in the Parabola as shall be defir'd.

To defcribe therefore a Parabola, thro' the point A of the given Axis AB; Take upon this produc'd Axis AB
the equal lines $A C, A D$, great or fmall, according as you would have your Parabola more or lefs open. Take on the fame A xis AB , below the Vertex A , as many different points as you would find in the Parabola, as B_{2} thro' which draw the indefinite lines EBE perpendicular to the Axis $A B$, in order to mark out the points E of the Parabola, by fetting off the diftances $C B$ from the Focus D, on both fides on their refpective perpendiculars, dic.

PROBLEM XXVI.

To defcribe an Hyperbola thro' a Point given between two given AJymptotes.

AN Hyperbola is the Section of a Cone cut by a Plane, Fig. 30. which being produced, meets the Cone in like manner produced, without its Vertex, and the Afymptotes are two right lines, as $A B, A C$, which cut each other in the point A, call'd the Centre of the Hyperbola, which Lines being produc'd as much as ever you will, can never cut the Hyperbola GDG, fo far off as it is produced, tho' they fill approach nearer to it, they being always diftant from it by a lefs quantity than any other that can poffibly be conceiv'd.

The property of thefe Afymptotes is fuch, that if you draw within their Angle a right line at pleafure, as EF, which cuts the Afymptotes in the two points E, F; and the Hyperbola in the two points D, G, the lines $D E, F G$, are equal to each other. Ard therefore if the point. D be given within the Afymptotes $A B, A C$, thro which point an Hyperbola is requir'd to be defcrib'd, draw thro' the faid given point D any right line as EF , upon which fet off the length of the part DE, bounded by the given point D, and one of the Afymptotes, beginning at the point F , from the other Arymptote to the point G_{2} which will be the point of the Hyperbola, doc.

THE
 CONTENTS

OFTHE

Introduction.

Eneral Definitions
A Compendium of Algebira

C HAP.- I.

Of Monomes, or fimple Quantities.

Prob. T. To add one Quantity to another 12
Prob. II. To fubjerall one Quantity from another 12
Prob. III. To multiply one Quantity by another 13.
Prob. IV. To divide one Quantity by another 14
Prob. V. To extrall the Root of a given Quantity 15
CHAP. II.
Of Polynomes or Compound Quartities.Theor. T. The Sum of two Ountities affected alike, is of thefame affection17Theor. II. The Sum of two unequal puantities differently af-fected, is of the fame affection with the greater, and is equalto their difference 18

Theor. III. To fubftraCI one Quantity from another, is the fame thing as to add-to that otber Quantity the former, affected by a contrary Sign.
Theor IV: The Produet of two Ouanities affected alike is affir mative

CONTENTS.

mative, and the Product of imo Quantivies. differentiy affected

 is negative19
Theor. W. The Quotient of two Qumities alike affictel is - affmative, and the Quotient of two Quantities differently offected is negative

20
Prob. 1. Addition of Polynomes or Compound Quantities 20
Prob II. Subfraction of Polynomes or Compound Quantities 2 I
Prob. III. Multiplication of Polinomes 2 I
Prob. IV. Divifion of Polynomes... 22
Prob. V. To extraEZ the Root of a Polynome 25

CHAP. III. Of Equations.

Prob. I. To reduice an Equation by Antitbefis $\quad 30$
Prob. I. To reduce an Equation by Parabolifin. $\quad 30$
Prob. IIT. To reduce an Equation by Ifomeria 3
Prob. IV. To reduce an Equation by Hypobibalm. 32
Prob. V. To reduce an Equation by Multiplication. 32
Prob. VT. To reduce an Equation by Divifion. 33
Prob. VII. To reảuce an Equation by Extration of Roots 33
A "Collection of Some Arithmetical Quefions. refolv'd by the Nem Andyris

The Practice of Geometry.
Prob. I. To draw a Rigbt Line from one given Point to ano. ther, upon a Plane

344
Probi. 1J. To draw a Perpendicular to a given Line, thro a given Point

45
Prob. III. Thro a given Point to draw a Right Line paralle? to a given Right Line
Prohlem IV. To divide a given Right tine into two equal parts
Prob. V. To divide a given Arc of a Circle into two equal 50 parts 5 E Prob. VT. To divide a given Angle into troo equal parts 5 E Prob. VII. To divide the Circumference of a Circle into Degrees

52
Prob. VIII: To find bow many Degrees a given Angle cono tains

53
Prob. IX. At a given Point on a given Line, to make an An gle of a given Magnitude
Prob. X. At a given Point of a given Line, to make an Angle equal to a in Angle given
Trob. XI. Upoo a given Line to make añ Ifofceles Triangle 6 ,

INTRODUCTION

Prob. XIII. To make a Triangle with three given Iines $\mathbf{6 2}$ Prob. XIV. To divide a given Line into any number of equal parts
Prob. XV. To make a Scale for to lay domn Plans witbal 64
Prob. XVI. To lay down an acceffible Plan 66
Prob. XVII. To meajure an inaccefible Plan 68
Prob, XVIII. To produce a Line that istoo fhort 69
Prob. XIX. To infcribe a regular Polygon in a given Circle 70
Prob. XX. To defcribe a Square upon a given Right Line 7 I
Prob. XXI. To defcribe a regular Polygon upon a given Right Line

72
Prob. XXII. To defcribe the Circumference of a Circle tbro ${ }^{\circ}$ three given Points upon a Plane

72
Prob. XXIII. To defaribe the common Oral on two given Diameters

73
Prob. XXIV. To defcribe the Matbematical Owal about two given Axes

74
Prob. XXV. To defcribe a Parabola on a given Axis 76
Prob. XXVI. To defcribe an Hyperbola thro a Point given bea tween two Afymptotes.

$F 1 \sim 1 S$

THE

Elements of Euclid

Explain'd and Demonftrated in a Thort and eafy Method; with the Ufe of the Propofitions.

ALTHO' our Defign in this thort Treatife (or Courfe of the Matbernaticks.s is not to explain all the Books of Euclid's Elements, but only the Six firt, the Eleventh, and Twelf th, (which will be füficient for the underttanding all the reft we thall here offer afterwards) ; We fhall, notwithftanding, follow Euclid Step by Step; without in the leaft receding from his Merhod of Juppofing not bing but what has been be-fore-band, either laid down by way of Principle, or elfe demonArated; without changing any thing in his Method or Conftructions, when they are at the fame time both general and eafy, and depend upon fome Propofition or Propofitions that have been before demonftrated ; that fo we may give every Propofition its juft Value and Ufe, which fome have neglected to do, and that particularly when in following Euclid's Method the Solution had been more univerfal. Thus (for Example) after Euclid has taught us to conffruct a Triangle of any three Lines given, for a Mian to have recourfe to folve the following Problem, viz. To maks
22. z 23. F, an Angle at any Point of a given Line, equal to an Angle given; this would be impertinent, and befide the Author's Intention, as well as contrary to the Order and Beauty of a methodical Procefs in thefe Sciences. Tó refolve this In ft Problem without making ufe of the Precedent, is nejther fo general nor Geometrical. However, to give the Reader as little trouble as poffible, and abridge our Work, we fhall imitate F. Tacguet, or Dechales, in nor troubling the Reader with thofe Propofitions we fhall think unneceffary and of no confequence, or of but little Ufe to demonfrate thofe that follow: We fhall alfo endeavour to illuftrate the principal Propofitions by the moft familiar Examples we poffibly can. Thofe that defire any more may confult Henrion, who is the beft Commentator upon Euclid I know.

The FIRST BOOK of

EUCLID'S ELEMENTS.

EUCLID treats in this Firft Book, of Lines, of Angles, and of Triangles, and other right-lin'd plane Figures, and chiefly Parallelograms, fhewing the Method of reducing any right-lin'd Plane into a Parallelogram, in order afterwards to reduce it (or make it) into a Square, as he fhews in his Second Book; at the end of which, he demonftrates that celebrated Propofition of Pytbagor.u, That in a right-angled Triangle, the Square of the greatef of the Sides (commonly call'd the Bafe, or Hypothenufe) is equal to the Sum of the Squares of the other two : which is the Foundation of Geometrical Addition, and Subftraction too, in the Cafe of adding or fubftracting of Planes; i.e. whereby feveral Planes may be fumm'd up (viz. their Area's) into one, and confequently one found equal to their Sum.

DEFINITIONS.

I.

A Mathematical Point is that which bas no Parts (or at leaft is what is confider'd as fuch) and which of courfe is indivifble ; and which confequently has no other Exifence, than in the Underfanding of thofe that think of it.

By this Definition, a Mathematical Point may be diftinguifh'd from a Pbyfical.one, which may be perceiv'd by our Senfes, as having Parts. Yet notwithffanding that, we often ufe them promifcuoufly, the one with the other, upon the fcore we never confider it (when we think of it as fuch) as capable of being futdivided: Thus when we fay a certain thing is exactly fo many Feet long, we confider the Yard or Foot as an whole (or undivided Quantity) and confequently as an indivifible Point, that is, as a Mathematical Point: But yet if befides the determinate Number of Feet, there fhould happers to be fome odd Inches, then the Inch would be confider'd as the Indivifible (or Mathematical) Point, as being the leaft Subdivifion; which, as fuch, would be taken for a Phyfical Point.
II. A

Explain'd and Demonfrated.

II.

A Line is a Length without either Breadth or Thicknefs s_{3} swhich of courre can only be an Object of the Underfanding.

We generally fay, that a Line is generated by the Mow tion of a Point, whence it can neither have Length nor Breadth, and may be conceived as the Motion or Flux of a Point from any one determinate Part of Space to another ; or, as we cannot poffibly trace out any Line (in matter) whatfoever, that is not a Phyfical one, or which, befides its Length, has not fome Breadth and Thicknefs: yet that will be no Obftacle but that we may conceive or take it for a Mathematical Line, while we only conceive it as Length; as when we only conceive the Length of a Journey, without making any Reflections on the Breadth, \&rc. of the Way.

III.

The two Extremities (or Ends) of a Line are Points.
This is to be uncerftood of thofe Lines only that have two Extremities (or Ends); nor does it hence follow that all Lines have two Ends; it being certain that thofe which include, or every waysterminate, Space, fuch as the Circumference of a Circle, an Ellipfe, ór. have no Ends.

> IV.

A Right-Line is that mhereof all the Points are equally plac'd between its two Extremities.

Whence it follows, that a curve-Line is that which has not all its Points plac'd equally between its two Extremities, becaufe fome are elevated above, and fome fubfide below others.

V.

A Superficies or Surface is an Extenfion, or Space extended. without any Thicknefs or Depth.

As a Line is the firft Species of continued Quantity, having but one Dimenfion, viz. Length, fo a Superficies is a fecond Species of it, becaufe it has two Dimenfions, wiz. Length and Breadth : And as a Line is conceiv'd to be produc'd by the Motion of a Point, fo may we conceive a Surface to be produc'd by the Motion of a Line: And finally, as a Line confifts of an infinite Number of Points, fo does a surface confift of an infinite Number of Lines.

VI.

The Extremities or Ends of a Surface, (viz. when it bas any) are Lines.

This follows from the Nature of a Surface, which bem ing compos'd of an infinite Number of Lines, mun needs
be terminated by them, if it be terminated at all: Which is to be thus underftood then only, when both the one and the other of thefe two Species of Quantity have Extremities or Ends ; for we have already taken notice, that the Circle, Ellipfe, ofc. are terminated by one Line only, which has no End; or to fpeak more properly, whereof the two Ends are joined together; thus we fhall in the fame Senfe take notice, that a Sphare, a Spharoid, \&c. are terminated by one only Surface, which has no Ends.
VII.

A Plane-Surface, or a Plane, is that which bas all its RightLines equally plac'd between its Extremities; So that one does not rife bigher or fubfide lower than the other.

Whence it follows, that a Curve-Surface is that which has not all its Parts placed equally between its Extremities, one rifing higher, another falling lower, than each other: And when fuch a Surface is confider'd in relation to the Side that fubfides, it is call'd a Concave-Surface; and when it is confider'd on that which rifes up, it is call'd convex. Thus the Happy above may be conceiv'd to fee the Convex-Side of Heaven (according to the Ptolemaick Syftem) while thofe below can only fee the Concave Part of it.

VIII.

A Plane-Angle is an indefnite Space terminated by troo Lines
plate I , Fig. I. inclining to one another [or rather by the meeting of thofe two Lines] when they meet in a Point upon the Plane where the Angle is formed, and don't by that meeting make a RightLine, as ABC.

Hence you fee, that to form an Angle, it is not only neceffary for the two Lines to meet at the angular Point, but to meet likewife in fuch manner, as that being produc'd, they fhall interfect, and afterwards deviate from each other.

You alfo fee, that the Magnitude of the Angle does not depend on the Length of the Lines that form it, but on the Quantity of the Inclination; for it is evident from the Definition, that the more or lefs the Lines are inclin'd, the Angle will alfo be the greater or the lefs: And the Angle is denominated Plane, becaufe it is defcrib'd on a Plane. There are three Sorts of them, which we fhall now explain.

IX.

A right-lined Angle is that whereof the two Lines that form it are Right-Lines; as in $A B C$, the two Lines $B A, B C$, are Right-Lines; as alfo in the Angle $A B K$, where $B A$ and BK are Right-Lines.

Book 1, euclid's Elements Plate 1. Page 4.

Explain'd and Demonftrated.

It is this Angle alone that Euclid treats of in this Book, wherefore whenever we fpeak fimply of an Angle, it is to be underftood of a right-lin'd Angle, which may be denoted by one only Letter, viz. by that at its angular Point, when one only Angle is formed there ; but when at the fame Point there are more Angles than one, formed by more Lines that terminate there, then to denote the particular Angle we mean, we make ufe of three Letters, the middlemof wherecf fignifies or points out the angular Point. Thus, becaufe at the Point B there are three Angles, if we would denote the Ang!e made by the two Lines BA, BC, we fhould write it thus, $A B C$; and if we meant the Angle made by the two Lines, BA, BK, we fhould write it thus, $A B K$; and in like manner to rer prefent the Angle made by the two Lines, BK, BC, we fhould call it either KDC , or elfe CBI ; and fo of orthers.

We have already faid, that an Angle is greater or lefs accoiding as the Inclination of the Lines that form it is greater or lefs: And here we fhall acquaint the Reader, that the meafure of a right-lin'd Angle is determin'd by the Arch of a Circle defcrib'd at pleafure from its angular Point, and terminated by the two Lines of that Angle: Thus the meafure of the Angle ABC is the Arch DE, or alfo EG, whofe Centers are at the'Point B; the Arch DE being exadly the fame part of the Circumference of its Circle, as the Arch FG is of its refpectively: For if you imagine the line $B C$ to move about the fixt Point B, fo that it may make with the immoveable Line AB Angles greater or lefs, all the Points of the faid Line BC will move circularly, and at the fame time about the Point B. So that the Point E, for example, will defcribe by its Motion the Arch DE, which by confequence will be the Meafure of the Angle $A B C$; and in like manner, the Point G will. defcribe, by its Motion, the Arch FG, which will alfo, by the fame Reafon, be the Meafure of the Angle ABC, and fo of others.

It will be eafy to conclude from what we have been faying, that the Right-Line BK fhall then divide the Angle $A B C$ into two equal Parts, that is into two equal Angles, viz. ABK , and KBC , when paffing through the Point B, it Thall divide DE, the Meafure of the Angle ABC into two equal Parts in the Point I, that is into two equal Arches, ID, and IE, which are the meafures of the equal Angles $A B K, K B C$. Where we fee that two Angles, as ABK, KBC, are equal, when their Meafures ID, IE, which are defcrib'd from their angular

Points with the fame Opening of the Compaffes, are equal.

By what we have been faying, it will nce be difficult to guefs at what wiil be the Meafures of a Curve-lined Angle, which is a Plane-Angle contain'd under two Curve-Lines, as ABC; for you are only to compare the curve-lin'd Angle $A B C$, with right-lin'd one DBE; whereof the right-lines DB, DE, touch at the Point B , the two Curve-Lines AB , AC, the Inclination whereof can never folitile change, but the Aperture of the Lines that touch them mult dange allo at the fame time: For which Reafon, if from the Point B, you defcribe at pleafure the Arch of the Circle FG ; that Arch, vix. FG, which is comprehended under $B D$ and $B E$, being the Meafure of the right-lined Angle BDE, fhall alfo be the Meafure of the curve-lined one ABC.

After the fame way we alfo may determine the Meafure of a Mixt-lined Angle, or an Angle comprehended under a Curve-Line and a Right-Line, as ABC, viz. by draving thro' the Point B, the Right-Line $B D$, which fhall touch the Curve $A B$ in B; and by defcribing at pleafure from the fame Point B, the Circumference of a Circle, the Part whereof FE, comprehended under the Right-Line BC, and the Tangent BD, Thall be the Meafure of the mixt-lin'd Angle $A B C$.

It evidently follows from what has been faid, that when two Lines only touch one another, they cannot form an Angle, [that may be compar'd with a Rightlin'd one] becaufe they are not inclin'd the one to the other. Thus the imaginary Angle of Contatt, made of the Tangent and Circumference of a Circle, is improperly call'd an Angle. We have made this Remark upon it, in our Notes we have elfewhere made on the Euclid of F . Dechales.
' Becaufe that which is call'd the Angle of Contact is ${ }^{6}$ lefs than any right-lin'd Angle whatfoever, it follows ' that it is equal to nothing, or that it is nothing. Thus - we fee, that when a Right-Line touches the Circumfe "rence of a Circle, it does not make an Angle with it. "Wherefore the Difficulties that arife from it will vanifh, © when we confider that that Contaf does not make an "Angle, as they only arife from the Suppofition that it - does, and that the Definition of an Angle has not been fuf"ficiently cleared up, nor has it been well enough defin'd ${ }^{6}$ what the Contact of two 2 uantities is.
"Wherefore we fay in general the ContaEt of inso 2uano tyties is the meeting of thofe two Quantiries fo, that be
ing produc'd, they fhall not interfect one another's that is to fay, they are not inclined to each other. Whence "it follows, that an Angle is not rightly defin'd by the Contact of two Lines, and that this (whatever it is to be call'd) ought to be defin'd from the Meeting of the two Lines that compofe it; for it does not follow, becaufe two Quantities touch one another, that therefore they make an Angle; for when thofe two Quantities are 'Rigk-Lines, all the Parts of the one coincide with all the P arts of the other, when they touch: Whence they ' not being inclin'd to each other, do not interfect, and ' fo make no Angle, tho' they meet and touch. The ' fame thing may be faid of any Right-Line that touches a Curve, becaufe in Conta¢t they are not properly inclin'd to one another, and do not make an Angle. For altho' the Curve feem to approach to and recede from "the Right-Line by its Curvature, and by confequence to incline to the Right-Line, and to make an Angle with it, that only proceeds from the Figure of the Curve-Line, which may be feveral ways diverfify'd, and yet make the fame Angle with the Right-Line: Whence it is eafy to conclude, that a Tangent to a Circle does not make an Angle with its Periphery. This ' being rightly underftood, all the Difficulties that can arife upon the Contage of thefe two Lines, which are improperly call'd an Angle, will vanifh.

- What I have been difcourfing of, may (perhaps) be better conceiv'd, if we confider, that an Angle form'd ' by two Curve-Lines, ought to bear fome Proportion 'to a right-lined Angle, form'd by the Meeting of two 'Right-Lines, that touch the two Curves in the Point where they meet (or in the Point of Contact) ; becaufe ' according as thofe two Lines incline to one another ' more or lefs, the two Tangents fhould do fo alfo, and 'confequently form a greater or lefs Angle, which ' would alfo be the Meafure of the Quantity of the curv-lin'd Angle. Whence it follows, that when thofe 'two Curves come to touch one another, they will make ' no Angle at all, becaufe the two Tangents will coin'cide.
' Hence it is we fay, for example, that if from any 'Point of the Circumference of the Ellipfe, we fhould 'draw two Right-Lines to the two Focii; thofe two Right - Lines would make, together with the Circumference, 'two equal Angles; I fay thofe two Angles are not prow - perly determined by the Circumference of the Ellipfe, - but by a Right-Line (or Tangent) that is imagin'd to
- fall upon the Circumference without-fide, at the Point ' where they make thofe Angles.

X.

Plate 1. Eig. 40

Fig. 5?

Fig. 6,

When a Right-Line folls upon another, and makes the Angles on both Sides equal, fo that it does not incline more to the one Side than the other; each of thofe Angles is called a RightAngle; and each of thofe two Eines is fard to be perpendicular to the other. Thus we know that the Line $A B$ is perpendicular to $C D$, because it makes with that Line CD on each Side, th equal Angles $A B C, A B D$, which for that reafon are called Right ones.

Thofe that do not underftand the Mathematicks, commonly call a Perpendicular a Plumb-Line, without confidering that a Plumb-Line is that Line only which is perpendicular to the Horizon, as a Thread would be with a Lead or Weight hung at the end of it, which we thence call a Plurimet. Whence, if the Line CD was horizontal, or parallel to the Plane of the Horizon, its PerpendicuIar AB would be a Plumb-Line; and if the Line CD was not horizontal, but inclin'd to the Plan of the Horizon, if the Line AB fill made with CD equal Angles on both Sids, it would not ceafe to be perpendicular, tho' it would to be a Plumb-Line, but would be juft as different from that, as the Line CD itfelf would be from being horizontal; and both would become inclin'd to the Horizon.

XI.

1. An Obtufe-Angle is that which is greater than a Right-one; as $A B D$.

We may add to this Definition, that the Meafure of an Obtufe-Angle is the Arch of a Circle lefs than a Semicircle, becaufe Euclid does not confider any Opening of two Right-Lines that thould be meafur'd by an Arch greater than a Semicircle, a's an Angle, as may be feen in the 21.3. Thus the Inclination of the two Lines AB, AC, makes an Angle at the Point A, that is not meafured by the great Arch DEE, which is bigger than a Semicircle; but by the little one DGF, which is lefs than a Semicircle.

XII.

An Acute-Angle is that which is lefs than a Right-one; as $A B C$.

Thole two Angles, viz the Acute and Obtufe, differ from a Right-one in this, that there is but one Species of Right Angles, there not being fome greater and fome Ifis; whereas among Acute and Obtufe-Angles there

Explain'd and Demonftrated.

may be an Infinity of bigger and lefs, becaufe their Meam Plate r. fures may be greater or lefs Parts of a Circle. It may Fig. so be eafily feen by the Figure, that when one Right-Line falls upon another to which it is not perpendicular, it may in this cafe be call'd an Oblique-Line; which alfo gives occafion to call an Obligue-Angle either an Acute-Ansgle, or an Obtufe-one; that iṣ to fay, an Angle that is not a Right-one ; and it makes on one Side an Acute-Angle, as ABC ; on the other an Obtufe-one, as ABD.

XIII.

The Term is the Extremity of any thing.

Hence it is evident there are three Sorts of Terms, wiz.
a Point, which is the Extremity of a Line; and a Line, which is the Extremity of a Surface; and a Surface, which bounds or terminates a Body; which cannot be the Extremity of any other real Quantity, at leaft that we know of.
XIV.

A Figure is any Space or Quantity of two or three Dimenfons, comprchended under, or bounded every way by, one or more Terms.

It follows from this Definition, that neither a Line nor an Angle can be called Figures, becaufe a Line tho bounded by two Points, viz. when a Right-Line, and finite, has but one Dimenfion: And an Angle, tho' bounded by two Lines, yet is not bounded every where, the Space which thofe two Lines include being indefinite or infinite. Among Figures which are terminated by one only Term, are the Circle, the Ellipfe, the Sphere, for. and among Figures bounded by feveral Terms, are the Triangle, the Square, the Pyramid, orc. A Plane-Surface is called a Plane-Figure, or fimply a Plane.

$$
\dot{X} V .
$$

A Circle is a Plane-Figure, terminated by a Boundary of one Fig. 7. Line only, which is called its Circumference, as $A B C D A$, withinn which is a Point, as E, called its Centre; "from which all the Right-Lines $E A, E B, E C, \& c$. drawn to the Circumference, are equal to one atrother.

The Vulgar commonly call the Circumference the Circle; as e.g. the Hoop of a Tub, abfracting from the Plane that is bounded by that Circumference, which notwithfanding is what Mathematicians properly call a Circle, and which neverthelefs they themfelves too often confound with its Circumference ; as e.g. when they propofe from a given Point to defcribe a Circle; whereas manner, when they fay that two Circles can only interfeat or cut one another in two Points, they mean it only of the two Circumferences, as Euclid has demonftrated it in the 10.3 .

The Circle might alfo be very well defin'd a PlaneSurface, produc'd by the Motion of a finite Right-Line moving about a fix'd Point (till the Motion end where it began) which fix'd Point is call'd the Centre, and to which one end of the Right-Line is conceiv'd to be faften'd, while the other defcribes by its Motion the Circumference of the Circle.

We commonly fay the Circle is the moft perfect of all Plane-Figures, becaufe there is no irregularity in it, its Circumference being every where equally round, and its Area the greateft of all Ifoperimetrical Figures; e.g. its Area is greater than that of a Square of an equal Perio meter.

XVI.

Plate x .
Eig. 7.

XVIII.

A Semicircle is a plane Figure, terminated by the Diame-Plare x. ter of a Circle, and by b:lf its circumference; as $A E C B A$, or AECDA.

This Figure is called a Semicircle, becaufe it is equal Fig, 7 : to half the Circle. Hence alfo the half of a Semicircle is call'd a Quadrant, as AEBA, or DECB, which is terminated by two Semidiameters or Radiz, perpendicular to one another, and by the fourth Part of the Circumference of the Circle, which is fometimes confounded with the Quadrant ; as when we fay that the Quadrant of a Circle is the Meafure of a Right-Angle, inftead of faying that the fourth Part or Quarter of the Circumference is fo.

XIX.

The Segment of a Circle is a Part of a Circle, terminated by a Part of its Circumference, and by a Right-Line; $A C B A,{ }_{1}$ Figo 8 or $A D C A$.

It is evident by this Definition of Euclid, that a Semicircle is a Segment of a Circle : But commonly we mean by a Segment of a Circle, a Part of it either greater or lefs than a Semicircle: Whence it follows that the RightLine that terminates or bounds it, muft needs be lefs than the Diameter, and by confequence can't pafs thro ${ }^{\circ}$ its Centre, as AC, which can't pafs thro' E. Here (as I fuppofe) Euclid did not defign to leave this Definition thus, becaufe it fuppofes the Diameter to be the greateft of all Right-Lines that can be drawn within the Circle, which ftands in need of a Demonftration, and which is demonftrated in the 15.3. where Eutlid repeats the Definition of the Segment of a Circle, it being his Defign in that Book to demonftrate its Properties ; wherefore he feems only occafionally to have inferted it here.
XX.

A right-lined Figure is that tobich is terminated by RigbtLines.

Whence it follows, that a Curvilined Figure is that which is terminated by Curve-Lines; and a Mixt-Figure that which is terminated by both Right-Lines and Curves. Euclid treats here only of right-lined Figures, whereof he fhews the Properties of feveral, which we thall explain in order.
XXI.

A Figure conjfing of tbree Sides (which is alfo called a Triangle) is a Figure terminated by three Right-Lines; as ABC.

A Triangle is the firft and moff fimple of right-lined Figures, and is fo called by reafon it has three Angles : And when we fay fimply a Triangle, without fecifying of what Sort, we always mean a right-lined Triangle,

Mate I .

Fig. 13

Fig. 19

Eig. IO

Fid. 9
which is compos'd of three Right-Lines ; a curvilined Triangle being a Plane-Figure terminated by three CurveLines. Euclid treats only here of the right-lined Triangle, where of he makes fix Species, viz: three that are diverfified by their Angles, and three by their Sides; as fhall be fhewn after we have explain'd other more compos'd Figures.

XXII.

A Figure that has four Sides, which is alfo called a Quadrilateral Figure, and a Quadrangle, is a Plane-Figure terminated by four Right-Lines; as ABCD.

This Figure is called a Quadrangle, becaufe, having four Sides, it has alfo four Angles. Euclid makes alfo feveral Species or Kinds of thefe, diverfified by their Angles and Sides; which we fhall explain after the Triangles.

XXIII.

A Multilateral (or many-fided) Figure, called allo a Po1ygon, is a Plane-Figure, oterminated by more than four RightLines; as $A B C D E F$.

This Figure is called a Polygon; becaufe, having feveral Sides, it has alfo feveral Angles; when it has five it is called a Pentagon; when it has fix an Hexagon; and when feven an Heptagon; when eight an Offagon; when nine an Enneagon or Nonagon; and a Decagon when it has ten; when eleven an Endecagon; and a Dodecagon when rwelve: And when fuch a Polygon has all its Angles and all its Sides equal, it is called Regular, and frregular when there are any of them unequal.

XXIV.

Among Trilateral (or three fided) Figires, that is called an equilateral Triangle, which has its ibree Sides equal; as $D E F$: whereof the three Sides $D E, D F, E F$, are equal.

An equilateral Triangle is the moft fimple of all rightlined Figures, and only of one Kind; and it is with this Triangle that Euclid begins his Propofitions (it being his firf) that he may by means of this Problem refolve feveral others, altho' he might alfo have folv'd them by an Ifofceles Triangle; but he was refolv'd to make ufe of the moft fimple.

XXV.

An Ifofceles Triangle is that witich has only two Legs egual ; as $A B C$, whercof the two Legs or Sides $A B, B C$, are equal.

It is evident, that among the different Sorts of Triangles, the Ifofceles fands in the fecond Rank; at leaft with relation to its Sides. It may be either right-angled;
acute-angled (or an Oxygon) ; or obtufe-angled (or an Plate I_{o} Amblygon): Becaufe the Angle C, contain'd by the two "ig. 9 . equal Sides AC, BC, may be either right, acute, or obtufe. It alfo follows, that every equilateral Triangle is an IJof celes, but not that every Ifofceles is equilateral.

XXVI.

A Scalene Triangle is that whereof the three Sides are una Fig, ix equal ; as GHI, the three Sides whereof, GH, GI, HI, are unequal.
It is evident that a Scolene Triangle may be right-angled, becaufe it may have one of its Angles right; and alfo obtufe-angled, becaufe it may have one of its Angles obtufe; and acute-angled, becaufe all its Angles may be acute, as in the precedent Triangle GHI.

XXVII.

Moreover, among tbree-fided Figures, that is called a right-Fig. ז2 angled Triangle which has one Right-Angle: as MKL, whercin the Amgle K is a Right-one.
It is evident, that a right-angled Triangle may be an IJofeces, becaufe the two Sides KL, KM, which contain the Right-Angle K, may be equal: It may alfo be Scolene, becaule the fame two Sides KL, KM may be unequal, as they really are in this Figure, which makes all the three Sides unequal, becaufe the Hypothenufe LM is greater than either of the two other Sides, KL, KM, as we thall demonftrate in the 19th Prop. But it can't be Equilateral, becaufe its three Angles would then be equal by the 5 th Prop. and confequently each would be one third of two Right-Angles, and therefore acute; becaufe all the three Angles of a Triangle taken together, are exactly equal to two Right-ones, by the 32 d Prop.

XXVIII.

An Amblygon Triangle is that which bas one Obtufe-An- Eis., gle; as ABC, wherein the Angle C is obiufe, or greater than a Rigbt-Angle.

Hence we may fee alfo, as before, that an Ambligon Triangle cannot be Equilateral, but that it may be either Ifofceles or Scalene. We may alfo learn that it cannot be right-angled, becaufe one of its Angles are fuppos'd to be obtufe, that is, greater than a Right-one: whence it neceffarily follows, that the other two muft be acute.

XXIX.

An Oxygon Triangle is that which bas all its Angles

Plate x . Eig. 10.
acute; as DEF, where each of its three Angles D, E, F, is acute.

We may eafily perceive by what has been faid of a right-angled Triangle, that an equilateral Triangle muft needs be an Oxygon, and that an Oxygon may be either Ifofceles or scalene. Thefe two laft Sorts of Triangles, viz. the obtufe-angled and the acute-angled (which have no Right-Angle) are commonly called Oblique-angled Trio angles.

XXX.

Fig. 13 Among Quadrilateral (or four-fided) Figures, that is called a Square, which has four Right-Angles, and the four Sides equal; as $A B C D$.

A Square is the moff fimple, and at the fame time the moft capacious of all four-fided Figures: And as there can be but one Sort of Square, it is commonly made ufe of in Practical Menfuration, viz. in meafuring Surfaces, to exprefs their Contents or Area's, that is to fay, what they contain in Square Meafure, as in fquare Feet, Yards, Poles, Ec. A Right-Line drawn from any Angle of a Square, to the oppofite one, as AC, or BD, is called the Diagonal or Diameter of that Square ; and the Point where two fuch Diagonals interfect, and cut each other into two equal parts at Right-Angles, is called its Centre. We underftand by a fquare Foot, or one Foot fquare, a Square whereof each Side is one Foot long; as likewife by a fquare Pole, a Square whereof each Side is a Pole in length.

XXXI.

Fig, IS
An Oblong, whoich is alfo smply called a Rectangle, is a Figure of four Sides, which bas all the Angles right, but which has not all the Sides equal; as KLMN.

Thefe two Figures, viz. the Square and the Oblong, are called rectangular or right-angled, becaufe they have all their Angles right ; and they differ only in this, viz. that the Oblong has only its two oppofite Sides equal; as KL and MN, likewife KN, LM; whereas the Square has all its Sides equal. They are of great ufe in the common Affairs of Life, as in Surveying and Carpentry, \&oc. we reduce Figures into Squares or Rectangles, in order to meafure them : In Architecture, ©oc. we commonly make Chambers, Courts, Gardens, and Allies, in Form of Rectangles :- And in other Arts we fee Tables, Cabinets, Looking-Glaffes, of co in that Shape.

XXXII.

AR hombus is Figure conffing of four equal sides, whereof Plate \boldsymbol{X}. the Angles are obligue; as EFGH.

This Figure in Heraldry is called a Lofange, and differs from a Square in this, that its Angles are not ${ }^{4}$ right ones, as having two acute, viz. the two oppofite ones E, G; and the two other oppofite ones F, H, obtufe : And in this alfo, that there may be feveral Sorts of them, becaufe their Angles may vary, or be greater or lefs ad inffo nitum.

XXXIII.

A Rhomboid is a Figure of four Sides, whereof the two oppo- Fig. 17: fite ones are equal, without being either equilateral or rectangular; as $A B C D$, wherein the two oppofite Sides $A B, C D$, are equal; as alfo the other two oppojite ones $A D, B \dot{C}$, and wherein the Angles are oblique.

It is evident that this Figure, as well as the precedent, has two Angles oppofite to one another acute, viz. A and C ; and the two other oppofite Angles B, D, obtufe: And that it may likewife vary or be diverfified an infinite Number of Ways.

XXXIV.

All other quadrilateral Figures, which have not the Properaigig ties of the precedent ones, are called Trapezia; as EFGH.

The four precedent Figures, viz! the Square, the Oblong, the Rbomb, and the Rbomboid, which may all be called parallelograms, becaufe their oppofite Sides are parallel, as thall be demonftrated in the 34 th Prop. are commonly reckoned among regular Figures; and all the reft, which Euclid calls Trapezia, are irregular Figures; which we thall diftinguifh into two Sorts, calling that only a Trapezium, none of whofe Sides are parallel to one another, and that a Trapezoid, which has two parallel Sides, as Fig. 20° $A B C D$, where $A B, C D$, are parallel.

XXXV.

Parallel Right-Lines are thole that being produch indef- Eig. T6. nitely on the Sarie Plane, will never meet; as $A B C D$.

To make this Definition yet clearer, we may add, that two Right-Lines that are parallel to one another, do not only not meet any where on the fame Plane, how far foever produc'd, but alfo that they are always (or every where) equidifant from one another. And as the Di- ftance of any two Lines is eftimated by the fhorteft Line that can be drawn betwixt them, which will be a perpendicular one ; it follows that all the perpendicular Lines drawn between two Parallels are equal.

POSTULATES.

E
UCLID in this Book, as likewife in all the reft, makes ufe only of a Right-Line and a Circle; the defcription whereof is fo ealy, that he takes it for granted by way of Poftulate, that any one may;
I.
'From a given Point draw a Right-Line to any other © Point given.
II.
' That one may produce a given finite Right-Line " indefinitely.

> III.
"That one may defcribe a Circle from any given Cene " tre, and with any given Radirs.

To thefe there are commonly added two Poftulates more; but as they don't agree with the Definition we have given of a Poftulate, which is, that it is the Principle Sof a Problem, as an Axiom is of a Theorem"; we fhall, with other Commentators of Euclid, place them among the number of

$$
A X I O M S .
$$

I.

Plate 1.
Fig. 19.

THofe Magnitudes which are equal to any common one, are equal amongf themSelves; e.g. The two Lines AF, $B C$, are each equal to the fame third Line $A B$, and therefore they are alfo equal to one another.

This Axiom may be made more general thus; Thofe Magnitudes which are equal to the fame common one, or to any Number of equal ones, are equal among themfelves.

Clavius adds to this Axiom thefe two others; viz. Any Magnitude that is lefs or greater than either of two equal ones, is alfo lefs or greater than the other; and reciprocally, if of two equal Magnitudes the one is greater or lefs than a third Magnitude, the other fhall alfo be greater or lefs than that third.

Explain'd and Demonflrated.

To the fe two Axioms may be added the three follows ing, which Euclid makes ufe of in feveral of his Demonftrations, viz.

A Magnitude is equal to another Magnitude, when it is neither greater nor lefs than that Magnitude.
2. A Quantity is greater than another Quantity, when it is neither equal nor lefs.
3. A Quantity is lefs than another Quantity, whera it is neither equal nor greater.

II.

If to equal Magnitudes you add equal Magnitudes, the whole will be cqual: As, if to two Lines, each whereof is five Foot long, you add two others, each of three Foot long? you'll have two equal Lines, each of eight Foot long.

III.

If from equal Magnitudes you fubfraci or take awoay equai Magnitudes, the Remainders will be equal: e. g. As if from two Lines each of eight Foot long, you fubftract or cut off two Lines each of three Foot long, there will remain. two Lines each of five Foot long.

IV.

If to unegual Magnitudes you add cyual ones, the Wholes ar the Sums Sall be unequal: e. g. If to a Line of three Foot long, and to a Line of two Foot long, you add two Lines of four Foot, one to each, you'll have two Lines? one of feven Font, the other of fix Foot, which are und equal.

To this Axiom Claviws adds this other, vix. If to nas equal Magnitudes you add unequal Magnitudes, viz. the gireater to the greater, and the lefs to the lefs, the Wholes fhall be unequal: As, If to a Line of five Foot you add a Line of four Foot, and to a Line of two Foot you add a Line of three Foot; you'll have for the firft a Line of 9 Foot, and for the fecond a Line of five Foot, which are unequal.
V.

If from unequal Magnitudes you fubftraEt unequal Magnitudes, the Remainder Joall be unequal: As, if from a Line of eight Foot, and from another of fix Foot, you fubftract two Lines of two Foot each; there will remain two Lines, unequal.
clavius adds likewife to this Axiom the following ; If from unequal Magnitudes you fubitract unequal Magnitudes, viz. the lefs from the greateft, and the greateft from the lefs, the Remainders fhall be unequal ; the firf Remainder being greater than the fecond: As, If from a Line of eight Foot you fubftract a Line of two Foot, and from a Line of fix Foot you fubftract a Line of four Foot; you'll have on one hand a Line of fix Foot, and on the other a Line of two Foot; which is lefs than the firft remaining Line of 'fix Foot.

VI.

Magnitudes that are double, each of the Same Magnitude, are equal among themfelves.

Becaufe equal Magnitudes may be each taken for the other, or for one and the fame Magnitude. This Axiom may be more generally exprefs'd thus'; 'Magnitudes 6 which are double, each of the fame Magnitude, or of "equal Magnitudes, are equal among themfelves" : Or yet more generally thus; 'Magnitudes which are double, ©triple, quadruple, \& co. of the fame or equal Magnitudes, ' are equal among themfelves.' Reciprocally it is evident, that if of two equal Magnitudes the one is double, triple, or quadruple, $\& c$. of a third Magnitude, the other fhall be alio double, triple, or quadruple of the fame Magnitude.

VII

Magnitudes which are each one half of the Same Magnitude, are equal a mong themfelves.
This Axiom may alfo be made more general; and we may fay, That Magnitudes which are the Half, or one third Part, or a Quarter, foc. of the fame Magnitude, or of equal Magnitudes, are equal among themfelves. And reciprocally, equal Magnitudes are each one Half, one Third, or one Quarter, of the fame Magnitude, or of equal Magnitudes.

VIII.

Magnitudes which every pay agree, are equal.
The Senfe of this Axiom is (for Example) That if two Lines being plac'd one upon the other, do fo agree, as that all the Parts of the one correfpond exactly to all the Parts of the other, fo that neither furpafies (or is greater or lefs than) the other, thofe two Lines are equal. We

Explain'd and Demonftrated.

may fay the fame of two Angles, of two Surfaces, or of two Solids, when one being plac'd upon the other, or fuppofed to penetrate the other, neither of them furpaffes the other.

IX.

The mbole is greater than any one of its Parts.
To this Axiom may be added this other, iiz. 'That ' all the Parts taken together are equal to the whole :" that is to fay, that the whole is equal to all its Parts taken together.

X.

All Right-Angles are egual to one anot ber.
This is a Corollary of the Definition of a Perpendiculdr; which fuppofes, that it makes on the Line on which it falls two equal Angles, which we call right ones. Whence it follows, that a right-lined Angle, or a curvilined, or a mixt Angle, may be faid to be a right one, when it is equal to a right one.

XI.

If one Right-Line cut two other Right-Lines, , othat it makes with them (on the Same Side) the two interior Angles (takens together) lefs than two Right-Angles; thofe two Lines being produc'd on that Side, Sall at length meet each other.

That is to fay, if the two Right-Lines AB, CD, are cut plate x . by a third Right-Line DE, fo that the two interior An- Fig. at. gles, e.g. thofe towards the Extremities B and D, viz. BFG, DGF, are (taken together) lefs than two right ones; the Lines AB, CD being produc'd to wards the faid Extremities B and D, will meet.
As this Theorem is not felf-evident, we fhall not make ufe of it as a Principle, but fhall demonftrate it in the 34 Prop. after the fame way as we have done it already in Dechales, becaufe that Demonfration feems to me very natural.. Becaufe therefore this Axiom of Euclid is not to take place here, we will fubftitute the following in its room.

XII.

All the Perpendiculars that can be drawn between troo Paral. lels are equal.
This Axiom is to be underftood of two Parallel RightLines, and of Right-Lines that are perpendicular to one of them : For it is evident from the Definition of Parallels, that if the two Right-Lines AB, CD are parallel, wig. 26.

$$
\mathrm{C}=2
$$

and
and there be drawn to one of thofe two the Perpendiculars EF, GH, and as many others as you pleafe, all thofe Perpendiculars fhall be equal to one another.

XIII.

Two Right-Lines can't comprebend (or include) Space, or. conffitute a Figure.
It is evident, That two Right-Lines, meeting one another, can only make an Angle, which is not a Figure. We might add, That two Right-Lines can only meet in one Point; which is the chief Reafon why they can'r include Space, or form a Figure.

XIV.

If one Magnitude is double of another, and a Line added to the firft, double of a Line added to the fecond, the one whole fhall be double of the other. As if to a Line of fix Foot, which is the double of a Line of three Foot, you add a Line of four Foot, which is double of a Line of two Foot, (to be added to the other) the whole ten Foot will be double of the other whole five Foot.

XV.

If one Magnitude be double of anotber, and a Part cut off from the fypt, double of a Part cut off from the fecond, the Remainder of the furt Jhall be double of the Remainder of the Second. As if from a Line of ten Foot, which is double of a Line of five Foot, you cut a Line of four Foot, which is double of a Line of two Foot, the Remainder fix Foot fhall be double of the Remainder three Foot.

We omit feveral other Axioms, becaufe the precedent ones are fufficient for the Demonftrations we fhall here have ocicafion to make ufe of, wherein thefe Axioms thall be cited at length. As for the Propofitions, and the Books where they are to be found, we fhall cite them only by two Numbers, the firft whereof fhall denote the Propofition, and the fecond the Book. As for Example, if we were to cite the third Propofition of the fecond Book, we fhall only fet down thefe two Numbers, viw. 3, 2. And afrer this Way Mathematicians have in all Parts of the Mathematicks cited the Propofitions and Books of Euclid's Elements. And when in any Book of the Elements, the Citation is made by one Figure only, it denotes the Number of the Propofition of the fame Book that was cited before.

PROPOSITIONS.

0

PROPOSITION I.

PROBLEMI.

O make an equilateral Triangle on any given furite
Line.
To make an equilateral Triangle, e.g. on the givers pare as Line $A B$; from one End of the Line, viz. A, deficribe Fig. z3. an Arch of a Circle BCD, that fhall pafs thro the other end B, and likewife from the end B defcribe the Arch of a Circle ACE, which fhall cut the precedent Arch BCD in the Point C, from which draw to the two ends A and B, the Right-Lines $A C, B C$; and the Triangle ABC will be an equilateral one; that is, the three Sides AB , AC, BC will be equal.

> DEMONSRATION.

The Line AC is equal to the I ine AB , by the Definio tion of a Circle: And alfo the Line BC is equal to the fame AB . Therefore by $A x$. r. the two Lines AC, BC, and confequently $\mathrm{AC}, \mathrm{BC}, \mathrm{AB}$ are all three equal to one another: Which wass to be demonftrated.

U S E.
This Propofition may not only be of ufe to demonftrate the next, but alfo the gth, roth, and inth. And it may alfo be of ufe in feveral other Cafes, and thofe not inconfiderable ones: As for example, it may ferve for dividing a Line into any given Number of equal Parts; which may be eafily done thus, e.g.

To divide the given Line $A B$ into five equal Parts, fer off at pleafure on the indefinite Line CD five equal Parts from C to D, arrd upon the Line CD defcribe the equilateral Triangle CDE; and draw thro' the Points of Divifion of the Bafe CD, to the Angle C, as many RightLines, and you'll have an Inftrument not only fit and
C_{3} proper

Pla.te 2. Fig 2ヶ。
proper for quinqui-fecting the Line AB , but alfo any $\mathrm{o}=$ ther Line whatfoever that is lefs than the Bafe-Line CD after this way, viz. Cut off from the two Sides EC, ED, the two Lines EF, EG, each of them equal to the given Line $A B$, and draw the Right-Line $F G$, which will be equal to $A B$ the Line propos'd, and will be quinquifeced by the Lines drawn from the Angle E, thro' the Divifions of the Bafe CD.
The Demonferation of this Praxis depends upon the 3. 6. Eucl. But if any Reader is not yet acquainted with that Book, nor the way of cutting off a lefs Quantity from a greater, it will be fufficient to fuppofe the thing as done, to fuperimpofe the leffer Line on the greater; for in Practice, we may, according to Arijfotle, fuppofe what we know how to do, as already done. This Propofition may be made ufe of to meafure an Horizontal Line on the Ground, which is only acceffible at one End, as we flall fhew in our Practical Geometry.

PROPOSITION II.

PROBLEMII.

Ta draw from a given Point, a Line equal to a Line given.

Fig. 230

TO draw from the given Point A, a Line equal to the given Line BC , draw the right Line AB , and by Prop. I. defcribe upon the Line AB , the equilateral Triangle ABD. Defcribe from the Point B, thro' the Point C, the Arch of a Circle ICK, and produce the Side BD, to the Point E, in the Arch of the faid Circle. Defcribe from the Point D, thro' the Point E, the Arch of the Circle GEFH, and produce the Side AD, to the Arch of the faid Circle in F. I fay the Line AF, is equal to the the given Line BC; and confequently the Problem is refolv'd.

DEMONSTRATION.

If from the two Lines DE, DF, which are equal, by the Definition of a Circle, you cut of the two Lines DA, DB, which are alfo equal by Confruction, becaufe they are Sides of the equilateral Triangle ABD, there

Explain'd and Demonftrated.

will remain by Axiom I. the two equal Lines AF, $\mathrm{BE}^{\text {. Plate }} 2$. Thus we know that the Line AF is equal to the Line BE ; and as by the Definition of a Circle, the Line BC , is alfo equal to the fame Line BE , it follows by Axiom I . that the Line AF is equal to the Line BC . © E. F. \& D.

> USE.

This Propofition may ferve as a Lemma for the following, and alfo to demonftrate the 5 and 20 Propofition, and on feveral other Occafions.

PROPOSITION III.

PROBLEM III.

T wo unequal right Lines being given, to cut off from the Greater, a Part equal to the Lefs.

O cut off from the given Line $A B$, a Part equal to leaft ; draw by Prop. 2. from the Point A, the Line AE equal to $C D$, and defcribe from the faid Point A, thro' the Point E, the Arch of a Circle GFH, which fhall cut off from the greateft given. Line $A B$, the Part AF equal to the leffer given Line CD.

DEMONSTRATION.

The Line AF is equal to the Line AE, by the Definition of a Circle, and the Line CD is equal to the fame Line AE, by Conftruction; therefore by $A x$, I. the Line AF is equal to the Line CD. Q. E. F. Oo D.

USE.

This Propofition will be of Ufe to demonftrate the 18, and its feveral other Cafes, which are not worth the while to talk of here. We may fay that this, as well as the precedent, may be made ufe of feveral Ways, which we fhall here omit, becaufe the Conftruction and Demonftration will always be the fame,

$$
\text { C. } 4 \quad \mathrm{P} / \mathrm{RO}_{0}
$$

THEOREM

If in two Triangles, two Sides of the one are equal to two Sides of the other, cach to each, and the two Angles comprehended between thofe equal Sides are equal; the Bafe of the one fhall alfo be equal to the Bafe of the other, and the otber two Angles of the one, equal to the remaining two Argles's of the other, each to each refpectively, and the two Triangles foall be wholly equal to cach other.
E. 26. Say, that if the Side AC of the Triangle ABC, be Side BC equal to the Side EF, and the Angle C comprehended by thofe 2 Sides, equal to the Angle F; the Bafe $A B$ thall be equal to the lafe $D E$, and the Angle A to the Angle D, and the Angle B to the Angle E, and the whole Triangle ABC to the whole Triangle DEF.

DEMONSTRATION.

magine the Triangle $A B C$ to be placed upon the Triangle DEF, in fuch Manner that the Side AC fhall juft cover, or coincide with the Side DF, which may be done by $A \rightsquigarrow$. 8. becaufe thofe two Lines AC, DF are fuppored equal; in which Care the Side CB fhall fall exactly on the Side FE, becaufe the two Angles C, F, are fuppoled equal; and the Point C falling upon the Point F, the Point. B by $A x .8$. will fall upon the Point E , becaufe the two Lines BC, EF are alfo fuppos'd equal; for which Reafon the Bafe $A B$ will fall upon the Bafe DE, becaufe if it fell either upon DGE, or DHE, two Lines would comprehend Space, contrary to $A x$. I2. In like Manner by 40.8 . the Bare AB will be equal to the Bafe DE, and the Angle A to the Angle D, and the Angle B to the Angle E, and the whole Triangle $A B C$, to the whole Triangle DEF. 2. E. D.

> USE.

This Propofition may be of ufe to demonfrate the pollowing, and alfo the $8,10,14,42$. and feveral other Propofitions of the following Books, but chiefly Prop. 6. of the 6th Book, which has a great Affinity with this. It may alfoferve to meafure any inacceffible Line or the Ground, which you cannot goover by reafon of fome

Book 1, Euclid's. Elements Plate 2, Page 24.

fome Impediment, as fhall be fhewn in our Praticacl Geometry.

Asthe Demonftrations which depend on the Suprapofition (or placing) of one Line upon another, do not equally pleafe all, we fhall demonftrate the Propofitions that follow in another Method, as alfo the very next Theorem, which F. Tacquct demonftrates by the Method of Supra-pofition, and which we fhall demonftrate by Means of the precedent Theorem, as follows.

THEOREM.

Tro Triangles are always equal, if they bave each one side equal, and the two Angles, adjacent to that Side, equal, each to each.

1Say, if the Side $A B$ of the Triangle $A B C$, be equal to the Side $D E$, of the Triangle DEF, and the adjacent Angle A equal to the adjacent Angle D, and the other adjacent Angle B equal alfo to the other adjacent Angle E; the two Triangles $A B C$, DEF fhall be equal:

PREPARATION.

Upon the Side BC, make the Line BI equal to the Side EF, without confidering where the Point I fhall fall, and draw the right Line AI.

DEMONSTRATION.

The Triangles ABI, DEF, having the two Sides AB, BI equal to the two Sides DE, EF, and the Angle B comprehended between them, equal to the comprehended Angle E, are themfelves equal by the precedent Theorem; and the Angle BAI is equal to the Angle EDF : and as we fuppore that the Angle BAC is alfo equal to the Angle EDF, it follows by $A x .1$, that the Angle BAI is equal to the Angle $B A C$, and by $\mathcal{A x}$. 8. that the Line AI will fall on the Line AC, and confequently the Point I upon the Point C, whence it appears that ${ }^{\circ} B C$ is equal to BI : and becaufe EF is alfo equal to BI, by conftr. it follows by $A x$. I. that the two Sides BC, EF, are equal, and by the precedent Theorem, that the Trim angle ABC is equal to the Triangle DEF. Q. E. D. See Prop. 26.

PROPOSITION V.

THEOREM II.

Plate in . In 2 Ifofceles Triangle the two Angles above the Base are equal to one another, and the Sides being produc'd, the two Angles under the Bale, are also equal to one another.

Fig. 27°

ISay that if the two Sides AC, BC of the Triangle $A B C$ are equal to one another, and they be produced below the Bare $A B$; the Angles $A B C, C A B$ which are above the Bare $A B$, will be equal to each other; and that the Angles $A B E, B A D$ which are under the Bale $A B$, will also be equal.

PREPARATION.

Set off upon the equal Sides AC, BC, prolong'd the two equal Lines $\mathrm{AD}, \overline{\mathrm{BE}}$ at pleafure, and draw the right Lines AE, BD.

DEMONSTRATION.

If to the equal Lines $C A, C B$, you add the two equal Lines AD, BE, it is Evident by $\mathcal{A} x .2$, that the two Lines CD, CE will be equal, and by Prop.4. that the two. Triangles CDB, CEA will be allo equal, because they have the Angle C common, and the two Sides CD, CB equal to the two Sides CE, CA. Wherefore the Bare BD will be equal to the Bare AE, the Angre D to the Angle E, and the Angle CAE to the Angle CBD, and by Prop. 4. The two Triangles $\mathrm{ABD}, \mathrm{BAE}$ will be alfo equal, because they have the two Sides AD, BD equal to the two Sides BE, AE, and the contain'd Angle D equal to the contain'd Angle E. Wherefore the Angles $\mathrm{DAB}, \mathrm{ABE}$ will be equal. Which was one of the things to be demonstrated: And the Angles $A B D, B A E$ will alfo be equal, which being fubtracted or taken away from the two Angles CBD, CAE, which were demonstrated to be equal, there will remain by Ax.3. the two equal Angles CBA, CAB. Which rem main'd to be demonfrated.

COROLLARY.

It follows from this Propofition, that an Equilateral 'Triangle, or one that has all its three Sides equal, is alfo Equiangular, or has all its three Angles alfo equal, becaufe, as we have already obferv'd elfewhere, every Equilateral Triangle is an.Ifofceles one.

USE:

An Ifofceles Triangle may be made ufe of inftead of an Equilateral one to divide a given Line, or a given Angle, into two equal Parts; as alfo to draw a Perpendicular to any Line given. The Ufe alfo of the Sector or Compaffes of Proportion is founded on the Nature of an Ifofeeles Triangle : and thence likewife we calculated our Table of Plane Angles; the Ufe whereof we have fhewn in taking the Meafure of an Angle upon the Ground. This Propofition will alfo ferve us to demonm ftrate the 18th, 20th, and 24th Propofitions; and feveral others in the following Books.

PROPOSITION VI.

THEOREM III.

If a Triangle bas two equal Angles, the Sides oppofite to them will be alfo cqual.

Say if the two Angles ABC, BAC of the Triangle lig. 28. ABC , are equal to one another, the Sides $B C, A C$ which fubtend them, that is, which are oppofite to them, fhall alfo be equal to one another.

PREPARATION.

On the Side BC fet off the Line BD equal to the other Side AC, without confidering where the Point D fhall fall, and draw the right Line AD.

DEMONSTRATION.

The Triangles $A B C, A B D$, having the two Sides $A B, B D$ equal to the two Sides $A B, A C$, and the contained Angle B equal to the contained Angle $B A C$, are

Plate 2. 2ig. 2\% equal to one another, by Prop. 4. whence the Angle BAD is equal to the Angle B : and as we fuppofe the Angle BAC to be equal to the Angle B , it follows by $A x$. I . that the Angle BAD is equal to the Angle BAC, and confequently that the Line AD will fall on the Line $A C$, and the Point D. upon the Point C , and confequently that the Side BC is equal to the Line BD , by Ax. 8. and as the Side AC , is alfo equal to the Line BD , by Comftr. it neceffarily follows from $A x$. I. that the two Sides AC, BC. muft be equal to one another. Q.E.D.

COROLLARY.

It follows from this Propofition, that every Equiengular Triangle is alfo Equilateral, that is, that every Triangle, that has its three Angles equal, has alfo itsthree Sides equal.

USE.

This Propofition may be very conveniently made ufe of to meafure a Line on the Ground that has one of its Ends only acceifible, as fhall be fhewn in our Praftical Gegmetry. It may alfo be made ufe of to meafure the height of a Tower fituated on an Horizontal Plane, by means of its Shadow, which will always be equal to the height of the Tower, when the Sun is 45 Degrees only above the Horizon, which may eafily be found by a Quadrant, or an Aftrolabe, \&oc. for then you have an Imaginiary Right-angled Triangle, the Hypothenufe whereof is one of the Sun's beams, which terminates the Shadow, and in which each of the acute Angles confifts of 45 Degrees, which makes the two Legs of the Triangle, viz. The Tower and its Shadow, equal.
As the 7th Prop. only ferves by way of Lemma to the $8 t$ b, which woay be demonfrated alone woit bout it; We foall omit it heree, as being of no ot ther Confiderable Ufe in Gegmetry, ous Defigg being only to treat of what may be ufeful.

PROPOSITION VIII.

THEOREM V.

If two Triangles bave troo Sides of the one, equal to two Sides of the other, each to each, and their Bales equal; thole two Triangles are equal, and the Angles contained under the equal Sides are equal.

ISay, that if the Side AC of the Triangle ABC, be plite 2 equal to the Side $A D$ of the Triangle ABD, and the Fig. ann Side $B C$ to the Side $B D$, and the $B a f e ~ A B$ be common to them both, which is the fame thing as to have equal Bafes; the two Triangles $A B C, A B D$, fhall be every way equal.

PREPARATION.

Draw the right Line CD, which will fall here within the two Triangles ABC, ABD, for it may alfo fall without, or concide with the two equal Sides: But the Demonftration of all thefe Cafes will be eafy to any one that throughly underitands the Demonftration of the Cafe we have here before us.

DEMONSTRATION.

Since the two Sides AC, AD are equal, as alfo the two Sides BC, BD, by Hypoth. the Angle ACD will be equal to the Angle $A D C$, and the Angle $B C D$ will be equal to the Angle ADC, by Prop. 5. and by Ax. .2, the whole Angle ACB will be equal to the whole Angle ADB. Wherefore by Prop. 4. the two Triangles ABC, ABD , will be wholly equal. 2. E. D.

USE.

This Propofition may ferve as a Lemma to the follown ing, as alfo to make an Angle, at any given Point of a Line, equal to an Angle given, as fhall be fhewn in Prop. 23. and it will be of particular ufe in Prop. 5. of the 6t Book, with which it has a very great Affinity.

PROPOSITION IX.
 PROBLEM IV.

To divide an Angle into two equal Parts.

Plate 2. Fig. 30.
$T O$ divide the Angle ABC into two equal Parts, that is to fay into two equal Angles, defcribe at Pleafure from the Point B, the Arch of the Circle EFG, and draw the right Line EF, whereon make (by Prop. 1.) the equilateral Triangle DEF, in order to find the Point $D_{\text {; }}$ thro' which, and thro' the Point B of the given Angle $A B C$, draw the right Line $B D ;$ I fay, that Line will divide the given Angle ABC into two equal Parts, or the Angle ABD will be equal to the Angle DBC.

DEMONSTRATION.

The Side BE of the Triangle BDE is equal to the Side BF of the Triangle BDF, (by the Definition of a Circle) and the Side DE is equal to the Side DF, becaufe they are the Sides of an equilateral Triangle, and moreover the Side BD is common to the two Triangles. Therefore by Prop. 8. thofe two Triangles BED BFD are equal, and the Angle DBE is equal to the Angle DBF. 2. E. D. See Prop. 30. 3.

U S E.

Proh. 7 Introd.

You may have feen in our Practical Geometry the ule of this Problem, in dividing the Circumference of a Semicircle into twelve equal Parts of 15 Degrees each, and confequently the whole Circumference into 24 equal Parts, for it is the fame thing to divide an Arch as an Angle, it being certain that the Arch EF, which meafures the Angle $A B C$, is alfo at the fame Time divided into two equal Parts in the Point G, by the Line BD. It is alfo by Means of this Problem that we divide the Circumference of a Circle into 32 equal Parts, for the 32 Points of the Nautical Compafs. This Problem is alfo very ufeful in Dyalling, when befides the HourLines; we have a Mind to fet off the half Hours, and Quarters of Hours.

Explain'd and Demonftrated.

SCHOLIUM.

Euclid only fhews us how to bifect an Angle, or divide it into two equal Parts, as for the Trifection, or dividing it into three equal Parts, or any other Num ber of odd Parts, it is Geometrically impoffible, viz. By only making ufe of a Circle and right Line, as Ewclid does. We fhall repeat here what we have faid on'this Point, in our Notes on F. Dechales's Euclid.

By thes Word Geometrically, we are here only to underfound the Circle and right Line, Euclid's Geometry extending it Self 20 farther. But by the Geometry of Monjeur Defcartes, me are taught that the Solution of a Problem is Geometrical, when it is refolv'd by the moft fimple and natural Way pojfible, altho' befides the Circle (or the Circumfsrence of a Circle) we make ufe of Some other Curve Line; as for Example, of Some one of the Conick Sections for Solid Froblems, because a Solid Problems is of Such a Nature as to admit of no Simpler Solution. Thus thofe for Example that would Trifect an Angle, only by a Circle and right Line, bew that they are not very converfant ins Geometry, this Problem being by its Nature a folid one.

PROPOSITIONX.

PROBLEMV.

To divide a given Line into two equal Parts.

TO divide the given Line $A B$ into two equal Parts, Plate 2. defcribe thereon the equilateral Triangle $A B C$, by Prop. 1. and by Prop. 9. divide the Angle C into two equal Parts by the right Line CD, which will alfo divide the propofed Line into two equal Parts in D ; fo that the two Parts AD, BD fhall be equal to one another.

DEMONSTRATION.

The Side AC of the Triangle ADC, is equal to the Side BC of the Triangle CDB, becaufe they are the Sides of an equilateral Triangle; and the Side CD is common to them both, and the contained Angle ACD is equal to the contained Angle BCD by Conftruct. Therefore to one another, and the Bare $A D$ is equal to the Bafe $B D$. Thus the Line $A B$ is divided into two equal Parts in D. 2.E.D.

US E.

This Problem may be very conveniently made ufe of, to draw thro' any Point affign'd without a given Line on the Ground, or on Paper, a Perpendicular, as may be feen in our Practical Geometry on the Ground, and as thall be thewn on Paper in Prop. 12. Euclide alfo makes ufe of it in his Preparation for the Demonftration of the 16 Prop. and it is ufed for feveral other Operations in Practice.

PROPOSITION XI.

PROBLEM VI.

Plate 2 : From given Point in a given Line to erect a Perpendicular.

Fig. 32.

TO draw a Perpendicular thro' the given Point \mathbf{C} upon the given Line $A B$, fet off at Pleafure on $A B$ the two equal Lines CD, CE and by Prop. I. Defcribe on the Line DE the Equilateral Triangle DEF, in order to find the Point F, thro' which, and the given Point C, draw the right Line CF, and that fhall be the Perpendicular required, fo that the two Angles DCF, ECF fhall be equal to one another.

DEMONSTRATION.

The three Sides of the Triangle FCD, are equal to the three Sides of the Triangle FCE, the Side CE being equal to the Side CD by Conftruction, and the Side EF to the Side DF, becaufe they are the Sides of an Equilateral Triangle, the Side CF being common. Therefore by Prop. 8. the two Triangles FCD, FCE are equal to one another, and the Angle DCF is equal to the Angle ECF. 2. E. D.

USE.

The ufe of a Perpendicular is fo common both in Ma: thematicks, and all Practical Arts, that he muft have been but little converfant among Men, that does not know fomething of it. We make ufe of it in the 46 Prop. for drawing two Lines perpendicular to one another, in order to make a Square. And there is Tcarce any thing perform'd in Pra\&tical Geometry, witho out having occafion to draw a Perpendicular. We may fay the fame in Relation to Fortifcation and Perfpe? crive ; and in Dialling we always begin by drawing two perpendicular Lines, if we are to make a Quadrant on any Plane by Geometrical Rules. Moreover Stoneo Cutters, Mafons, and feveral other Artificers have almof always their Squares in their Hands, to fquare their Works by.

PROPOSTTION XIT

PR○BLEM VI.

Froma a given Point, taken at Pleafure without a given hight Line, to draw a Perpendicular to that Line?
TO draw from the given Point C , a Perpendicular to Plate a? the given Line AB , defribe at Pleafure from the Fig. fite Point C, the Arch of the Circle DE, which ihall clyt the given Line $A B$ in two Points, as in D and E; and hawing by Prop. 10 . divided the Line DE into two equial Parts in the Point F, draw from that Point, wiz. F, to the given Point C, the right Line CE, 1 fay that Line will be the Perpendicular fought; fo that the two Angles CFD, CFE, thall be gqual to each other, and confequently right ones.

DEMONSTRATION.

If you draw the right Lines $C D, C E$, it is evident from the 8 Prop. that the two Triangles FCD, FCE are equal, becaufe the three Sides of the one are equal to the three Sides of the other: 'for the Side CF is common, and the Side DF is equal to the Side EF by Conftrution, and the Side CD is equal to the Side CE' by the Definition of Circle. Whence is follows that the Angle CFD is equal to the Angle CFE. 2. Es . F \& D.

USE.

This Problem is ufeful on feveral Occafions, but chiefly in Surveying, where in order to know the Area of a Triangle upon the Ground, they are oblig'd to let fall from one of its Angles a Perpendicular to the oppofite Side, to meafure its Length by, and afterwards to multiply it by half the Side on which it falls, as we fhall fhew more particularly in our Practical Geometry.

PROPOSITION XIII.

THEOREM VI.

If one right Line fall upon another, it will either wake wit\% it two right Angles, or two Angles, which taken together, will be equal to two right ones.

Plate 2. Hig. 340.

ISay, that the Line CD, which cuts the Line AB in the Point D, makes with the faid Line $A B$ at the Point D , the two Angles $\mathrm{ADC}, \mathrm{BDC}$, which are either right Angles, or (taken together) equal to two right ones.

DEMONSTRATION.

It is evident from the Definition of a Perpendicular, that if the Line $C D$ be perpendicular to the Line $A B$, the two Angles $A D C, B D C$, are right ones; but if it be not perpendicular to the Linie $A B$, draw by Prop. II. from the Point D, the Line DE which fhall be perpendicular to it, in order to have the two right Angles ADE, BDE, to which the Sum of the two Angles ADC, BDC is equal; whence it follows that the two Angles ADC, BDC taken together, are equal to two right ones. 2. E. D.

COROLLARYI.

It follows from this Propofition, that if one of any two Angles made by a Line that falls on another right Line, be acute as BDC, the other ADC thall neceffarily be obtufe: and if one of thofe two be right, the other thall be fo too: And laftly, if one be known, the other

Explain'd and Demonftrated.

will be fo too, by fubtracting the known one from two right ones, that is to fay from 180 Degrees, becaule a right Angle confifts of 90 Degrees, as being meafured by one fourth Part of the Circumference of a Circle which; as we have elfewhere fhewn, confifts of 360 Degrees.

COROLLARY 2.

It alfo follows, that if two right Lines interfect one another, they fhall make four Angles, which taken together fhall be equal to four right ones; for the two Angles on one Side are equal to two right ones, as we have already demonftrated, and by the fame Reafon, the two Angles on the other Side make alfo two right ones ; and befides, all the four Angles are meafured by the whole Circumference of a Circle, which meafures (or contains) four right Angles. Whence it is eafy to conclude, that all the Angles it is poffible to form on a Plane by all the feveral right Lines that can terminate in the fame Point, will altogether make four right Angles.

U S E.

This Propofition may be of ufe not only for the fol-plate 20 lowing one, and feveral others, but alfo to meafure an Fig . 35 : Angle on the Ground you cannot come within Side of: As for Example, the Angle $A B C$, made by the meeting of two Walls, for if you produce one of the two Sides or Walls $A B, B C$, by means of a Rope, or ortherwife; for Example, $A B$ towards D, and then meafure the Angle CBD after the Method we have already fhewn * elfewhere, the faid Angle CBD being fubtracted from 180 Degrees, the Remainder gives the Quantity of the Angle ABC, which was fought; as if e. g. the Angle CBD confifts of 50 Degrees, by fubtracting of 50 from 180 , there will remain 130 Degrees for the Angle ABC, whichs was propofed to be found.

PROPOSITION XIV. THEOREM VII.

If at one Point of any right Line, two other right Lines meet, which make with it in both Sides two Angles equal together, to two right Angles; thefe two Lines being continued will make but one and the Same right Line.
Say, that if the two Lines BC, BD, meet at the Point Eie 36 , B, of the Line A B, fo that they make with that Line $A B$, the two Angles $A B C, A B D$, equal together to two
plaze 2.

right Angles, there two Lines BC, BD, do meet at the Point B, directly, that is to fay they make together one right Line.

PREPARATION.

Extent one of the two Lines BC, BD, as for Exame ple, $B C$ towards E, fo that CBE be one right Line without confidering where the Line BE falleth.

DEMONSTRATION.

Since it is fuppofed that CBE is a right Line, the two Angles $A B C, A B E$, are together equal to two right Angles, per Prop. 13. and becaufe the two Angles ABC, $A B D$, are together fuppos'd alfo equal to two right Anw gles, it follows por Ax. I. that the two Angles ABC, $A B E$, are together equal to the two $A B C, A B D$, taken together, and putting away the common Angle ABC, you will have per $A x$. 3. the Angle $A B E$, equal to the Angle ABD , which fhews per $A x .8$. that the Line $B E$, falls upon the Line BD, and that thus the two Lines BC, BD, are pofited directly. Which was the Thing to be grosid.

COROLLARY.

It follows from this Propofition, that if from one and the fame Point of a right Line, two perpendicular Lines are drawn on both Sides, thofe two Perpendiculars will make a right Line.

USE.

This Propofition is the converfe of the preceding, and may be ufeful in Practice, to know if three Points which are feen on the Ground, as B, C, D are in a right Line, when you cainnot poffibly pafs to the two Extreams C, D, but only to the middle B; for then you need only chufe for the Sight a commodious Point upon the Ground, as A, and meafure with a Graphometre or o. therwife, the Quantity of the vifual Angles, $A B C, A B D$,

Explain'd and Demonfrated.

then add them together, and if their Sum is precifely 180 plase ${ }^{2}$. Degrees, it may be concluded that the three propos'd Fig. ${ }^{\text {to }}$ Points C, B, D, are in a right Line, otherwife they will be in the Circumference of a Circle, the Center whereof will be towards A, when that Sum fhall be lefs than 180 Degrees, and contrariwife, when it thall be greater.

PROPOSITION XV.

THEOREM VIII.

If two right Lines interfect, the oppofite Angles at the Veptex will be equal to one another.

WHen two right Lines interfect, as AB, CD, which sit. 37. cut one another at the Point E, the wo oppofite Angles which they make at that Point E, as AEC, BED, are call'd oppofite Augles at the Vertex, and are alsays. equal.

DEMONSTRATION.

The two Angles AEC, AED, are per $A x$. 1 . together equal to the two Angles, $A E D, B E D$, taken together, becaufe each fum is equivalent to two Right-Angles, per Prop. 13. Wherefore by taking away the common Angle AED, there will remain per Ax. 3. the Angle AEC, equal to the Angle BED. Which was to be fhavers.

SCHOLIUM.

In the fame manner may be fhewn that the two other oppofite Angles at the Vertex AED, BEC, are alio equal to each other. But the Converfe of this Propofition is likewife true, to wit, if at the fame Point E , of the right Line AB , two other right Lines, $\mathrm{EC}, \mathrm{ED}_{\text {, }}$ meet together, which make with it the two oppofite An gles at the Vertex AEC, BED, equal to each other, thofe two Lines EC, ED, will be in a right Line; becaufe if to each of the fe two equal Angles AEC, BED, the common Angle AED, be added, it will be feen por $2 A x$. I. that the two AEC, AED are equal together to the two AED, BED, taken together, and becaufe thefe two Angles AED, BED, make together two right Angles per Prop. 13. it follows that the two AEC, BED, are alfo together equal to two right Angles, and that per Propo s4. the two Lines EC, ED, are in a right Line.

$$
\mathrm{D}_{3} \text { पS E }
$$

U S E.

This Propofition ferves as a Lemma to the following, and ferves likewife to meafure an acceffible Line upon the Ground, which cannot be perambulated by reafon of fome hindrance, as we fhall fhew in the Practical Geometry. It ferves likewife to draw from a gi. ven Pcint without a given Line upon the Ground, a Perpendicular, as you thall fee.

To draw through the given Point C, a Line perpendicular to the given Line $A B$, draw through the Point C, to the Point D, taken at difcretion upon the Line $A B$, the Line $C D$, and upon the fame Line $A B$, the part DE, equal to the half CG , or DG , of the Line CD , continue the Line CD to F , fo that the Line EF, may be equal to the Line DE , and make the Line DB , equal to the I ine DF, to have the given Point B, through which, and through the given Point C, you are to draw the Line $C B$, which will be perpendicular to the propos'd Line $A B$; as will be found by drawing the right Line $B G$, which will be equal to the two GC, GD, by reafon of the two equal and oppofite Angles at the Vertex EDF, BDG, which renders the two Triangles EFD, DGB equal, of c.

This Propofition is likewife very ufeful to meafure an inacceffible Angle upon the Ground, as ABC. Thus, fix two Stakes in the Ground, in fome commodious Place, as to the Points D, E, fo that the three Points D, B, C, as well as the three A, B, E, be in a right Line, and meafure with a Graphometre, or otherwife, the two Angles D, E, and fubftract their Sum from 180 Degrees, to have for a Remainder the third Angle DBE, or its equal and oppofite at the Vertex $A B C$, which confequently will be known.

PROPOSITION XVI.

THEOREM IX.

One of the three Sides of a Triangle being produc'd, the exte" rior Angle is greater than either of the two interior oppogite ones.

[^0]

PREPARATION.

Having divided the Side CB, equally in two at the Plate 3: Point E, per Prop. Io. draw the right Line AE, and ex- Eig. 40. tend it to F, fo that EF be equal to AE , and join the right Line BF. In like manner having divided the Side $A B$, equally in two at the Point G, draw the Line CG, and extend-it to H , fo that GH be equal to CG , and join the Line BH. Laftly, extend the Side BC, towards I.

DEMONSTRATION."

Becaufe the two Sides AE, CE, of the Triangle ACE, are equal to the two Sides EF, EB, of the Triangle EFB, per conftr. and the included Angle AEC equal to the included Angle BEF, per Prop. 15. thefe two Trian-gles ACE, EFB, will be equal per Prop. 4. and the Angle ACE, will be equal to the Argle EBF, and confequently lefs than the Angle CBD. Which was the Thing finft to be demongtrated.

In like manner, becaufe the two Sides AG, CG, of the Triangle ACG, are equal to the two Sides BG, GH, of the Triangle BCAH, per conftr. and the included Angle AGC, equal to the included Angle BGH, per Prop. 55. thefe two Triangles BGH, ACG, will be equal per Prop. 4. and the Angle CAG will be equal to the Angle GBH, and confequently lefs than the Angle GBI. And becaufe the Angle GBI, is equal to the Angle CBD, per Prop. 15. it follows that the Angle CAG, is likewife lefs than the Angles CBD. Which remain'd to be prov'd.

SCHOLIUM.

This Propofition and the following might be made appear more briefly, by confidering them as Corollaries of the 32 Prop. which may be demonftrated independantly of thefe, as Father Taguet doth it.

It is evident that when the Interior Angle BCA, fhall be the bigger, in which Cafe the Point A, will befarther off the Point B, this interior bigger Angle, to wit, BCK, will always be lefs than the exterior CBD, and that the Excefs will not be fo great ; fo that it will diminifh continually, that is to fay, that the Interior Angle will ftill more and more approach towaids an Equality with the Exterior, in proportion as the Point A, becomes more remote from the Point B, till at length the Point A, D 4
being infinitely remov'd from the Point B, in which Cafe the Line CA will be parallel to the Line AB; as for the purpofe CL, the Angle BCL will be equal to the exterior CBD. From whence it evidently follows, that when the two Lines AB, CL, fhall be parallel to each other, the two Angles BCL, CBD, which Euclid calls Alternate Angles, will be equal, and reciprocally that when thefe two alternate Angles BCL, CBD, fhall be equal ; the two Lines AB, CL, will be parallel.

USE.

This Propofition ferves not only to demonftrate the following and many others, but likewife to demonftrate ${ }_{\text {B }}$ that from one and the fame Point given, there cannot be drawh more thian one Line perpendicular to a given right Line; becaufe if from the Point F, cou'd be drawn, for Example, the two Lines FC, FE, perpendicular to the Line $A B$, the Exterior Angle FEB, which in this Cafe is a right one, would be equal per $A x$. Io. to the interior oppofite Angle C, which is allo a right one, and yet it has been demonftrated to be greater.

It is likewife demonftrable by means of this Propos fition, that from one and the fame Point there cannot be drawn more than two equal Lines upon one Line given, becaufe if from the Point F, cou'd be drawn for Example the three equal Lines, FD, FC, FE, each of the two Angles, FDC, FCE, wou'd be equal to the Angle FEC, per Prop. 5. Wherefore the Angle FCE, which is exterior with refpect to the Triangle FCD, wou'd be equal to the interior oppofite Angle FDC, and yet it hath been demonftrated to be greatet. From whence it follows that a right Line and a Circumference bf a Circle cannot interfect but in two Points.

PROPOSITION XVII. THEOREM X.

家a Triangle any two angles taken together are lefs than twiod right Angles.
Thate 3: Say, that the two Angles for Example ABC, ${ }^{\text {P }} \mathrm{BAC}$, of the Triangle $A B C$, are together lefs than two sight Angles.

DEMONSTRATION.

For if the Side $A B$, is extended towards D, it will appear per Prop. 16. that the exterior Angle CBD, is greater than the interior oppofite BAC. Wherefore if to each

Explain'd and Demonftrated.

each of there two unequal Angles CBD , BAC, the Ari- plate 3. gle ABC be added, you will have the two Angles BAC, Fig. 40% ABC , lefs together than the two $\mathrm{ABC}, \mathrm{CBD}$, taken together, that is to fay per Prop. 15. lefs than two right Angles. Which wids to be hewn.

COROLLARY。

It follows from this Propofition, that if in a Triangie one of the three Angles is a right one or even obtufe, each of the other two will of neceffity be acute, and that in an Ifocele Triangle, each of the two equal Angles is alfo acute.

U S E.

This Propofition begins to convince the Mind of the Truth of Euclid's II Ax. of which however we will give the Demonftration, when we fhall have demonftrated the 34 Prop.

It ferves alfo to prove that from one and the fame Point, two Lines cannot be drawn perpendicular to one and the fame Line, becaufe if that were poflible, you wou'd have a Triangle, where two Angles wou'd together be equal to two right ones, fince each wou'd be a right one. Contrary to what we juft now demonftrated.

It likewife ferves to fhew that if a Triangle hath ant obtufe Angle, the Perpendicular drawn from one of the two acute Angles upon its oppofite Side, will fall without the Triangle, towards the obtufe Angle, becaufe otherwife you wou'd have a Triangle, where two Angles taken together wou'd be bigger than two right Angles, for the one wou'd be right, and the other obtufe : Contrary to what has been demonftrated.

PROPOSITION. XVII.

THEOREM XI.

 greateft Angle.

ISay, that if the Side BC, of the Triangle ABC, is for Fig. azi Example bigger than the Side AC, the Angle BAC, which refpects the bigger Side BC, is bigger than the Angle B, which is oppofite to the lefs AC.

PRE。

PREPARATION.

Plate 3: Hig. 410

Cut off from the bigger Side BC, the Part CD, equal to the lefs AC, and join the right AD, which will neceffarily be within the Triangle ABC.

DEMONSTRATION.

Becaure the two Sides CA, CD, of the Triangle ADC, are equal per conffr. the two Angles DAC, ADC, will be alfo equal per Prop. 5. and becaufe per Prop. 16. the exterior Angle ADC, is bigger than the interior oppofite B , the Angle DAC, and much more the whole Angle BAC, will be bigger than the fame Angle B. Which was to be Shewn.

COROLLARY.

It follows from this Propofition, that in a Scalene Triangle, all the Angles are unequal. This alfo follows from the 6 th Propofition, becaufe if there had been two equal Angles, there wou'd be likewife two equa! Sides, and fo the Triangle wou'd not be Scalene.

US E.

This Propofition ferves not only for a Demonftration of the following which is its Inverfe, but likewife very uifeful in Trigonometry, to be able to difcern the greateft of the two Angles of a Triangle, without knowing it, which may be done, if the bignefs, or only the Ratio of the oppofite Sides be known, it being certain that the greateft of thefe two Angles will be that which thall be fubtended by the greatelt Side.

PROPOSITION XIX.

THEOREM XII.

In every Triangle the bigger side is that which is oppos'd to the bigger Angle.

ISay, that if the Angle BAC, of the Triangle ABC, is larger than the Angle B, the Side BC, oppofite to the larger Angle BAC, is larger than the Side AC, oppofite. to the lefs Angle B.

DE

DEMONSTRATION.

It is already evident that the Side BC, cannot be equal to the Side AC, becaufe per Prop. 5. the Angle B wou'd be equal to the Angle BAC, which is fuppos'd larger. It is alfo evident that the Side BC, cannot be lefs than the Side AC, becaufe per Prop. 18. the Angle B, wou'd be larger than the Angle BAC, the which on the contrary is fuppos'd larger. Since therefore the Side BC, cannot be equal nor lefs than the Side AC, it ought per $A x$. I. to be larger than the Side AC. Which was to be prov'd.

COROLLARY.

From this Propofition it follows, that of a right Angled Triangle, the greateft of the three Sides is the Hypotenufe, becaufe the greateft of the three Angles is the Right Angle ; and that in an Amblygone Triangle, the largeft of all the Sides, is that which is oppofite to the obture Angle, becaufe this obtufe Angle is alfo the largeft of the three Angles.

U S E.

This Propofition ferves as a Lemma to the following, Plate 2. and is' very ufeful to demonftrate that the Perpendicular Line is the fhorteft of all thofe which can be drawn from one Point, to one and the fame right Line; that is to. fay, that if the Line FC is perpendicular to the Line AB , it is lefs than the Line FE, which is oblique, becaufe that Perpendicular FC, is oppofite to the obtufe Angle FEC, which is lefs than the right Angle C, to which the oblique FE is oppofite.

PROPOSITION XX.

THEOREM XIII.

In all Triangles, any two Sides taken together, are greater than the third Side.

A Lthough Arcbimedes hath taken this Propofition for Plase 3° an Axiom, we will however demonftrate it in $E u-$ Fig، 420 clid's Manner. I fay then the two Sides, for Example, AB, AC, of the Triangle ABC , taken together, are greater than the third Side BC.

PREPARATION.

Hiate 3 ? Fize

Lengthen one of the two Sides $A B, A C$, as $A C$, ro D, fo that the Line $A D$, be equal to the other Side $A B_{\text {, }}$, and join the right Line BD.

DEMONSTRATION.

Becaule the two Sides $A B, A D$, of the Triangle $A B D$, will be equal per Conftr. the Angle D, is equal to the Angle ABD, per Prop. 5. and confequently lefs than the Angle DBC: Wherefore the Side CD, or the two $A B$, $A C$, are greater than the Side BC, per Prop. 19. Which nos to be fhemon.

SCHOLIUM.

Inftead of extending the Side AC, you may per Prop. 9. divide the Angle BAC, equally in two by the right Line AE, and then you will find per Prop. I6. that the exterior Angle BEA, is larger than the interior oppofite EAC, or EAB, and that confequently the Side AB is farger than the Side BE, per Prop. 19. You will find in the Tike Manner, that the Exterior Angle CEA, is bigger than the interior oppofite EAB , or EAC, and that confequently the Side AC, is larger than the Side EC. From whence it is eafy to conclude, that the two Sides $A B$, AC , are together larger than the two EB, EC, that is to say, than whole Side BC.

COROLLARY.

It follows from this Propofition, that a Right-Line is the Ihorteft of all the Lines which can be drawn from one Point to another.

USE.

This Propofition ferves as a Lemma to the following whereof the preceding Corollary is likewife a Confequent, and I have not obfery'd that it is of any confiderable Ufe befides.

PROPOSITION XXI.

THEOREM XIV.

Iff from one Point taken at difcretion within a Triangle, two Plate Kight-Lines are drawn to the Extremities of one of its Sides, Fig. 4 ? they will be together lefs than the two other Sides of the Triangle, bat they will make a larger Angle.

ISay, that if from the Point D, taken at Pleafure in the Triangle ABC , the Right-Lines DA, DB, be drawn to the Extreams A, B, of the Side AB, their Sum $D A+D B$, will be lefs than the Sum $A C+B C$, of the two other Sides AC, BC; and that the Angle ADR , is bigger than the Angle ACB .

DEMONSTRATION.

In the Triangle AEC, which is had by extending $A D$, cowards E, the Sum AC-1-CE is larger chan AE, per Prop. 20. Wherefore if to each of thefe unequal quantities, you add EB, you will know per $A x$. 4. that the Sum $\mathrm{AC}+$ $B C$, is larger than the Sum, AE-1-EB. Likewife in the Triangle DEB , the Sum $\mathrm{DE}-1-\mathrm{EB}$ is larger than BD , per Prop. 20. and adding AD, you will have per Ax. 4. the the Sum $A E-1-E B$, larger than the Sum $A D-B D$. But the Sum $A C-1-B C$, has been demonftrated greater than the Sum $A E+E B$. Therefore the Sum $A C-1-B C$. will with much more Reafon be greater than the Sums $\mathrm{AD}+\mathrm{BD}$. Which was one of the troo Things to be ghemon.

The exterior Angle ADB, is bigger than the interior oppofite DEB, which being Exterior, with Refpect to the Triangle AEC, is alfo bigger than the interior oppofite ACE, per Prop. 16. Therefore with much more Reafon, the Angle ADB, is bigger than the Angle ACB. Which remain'd to be provid.

SCHOLIUM.

If you draw the Right-Line CDF, it may be demorArated in another manner, that the Angle $A D B$, is big_{-} ger than the Angle $A C B$: If you confider that the exterior Angle ADF, is bigger than the interior Oppolite ACD, per Prop. 16. and that likewife the exterior Angle BDF , is bigger than the interior Oppofite BCD, ta
conclude from thence, that the Sum of the two Angles, $\mathrm{ADF}, \mathrm{BDF}$, that is to fay the whole Angle ADB , is bigger than the Sum of the two $A C D, B C D$, or than the whole Angle ACB.

If upon the fame Bafe AB , another Triangle be defcrib'd within the Triangle $A D B$, and fo on, it would be demonftrable as before, that the two Sides of the later Triangle, would be together lefs than the two Sides of the preceeding Triangle. From whence it is eafy to conclude, that the Sum of the two Sides ftill continuing to diminifh as far as the Right-Line AB , this Right-Line AB , is the leaft of all thofe which can be drawn through its two Extremities A, B.

U S E.

This Propofition ferves to demonftrate a Café of the 8. 3. Prop. it may ferve alfo to demonftrate the 2 I . II Prop. and we fhall make very good ufe of it in Spherical Trigonometry, to demonftrate that in a Spherical Triangle, the three Angles taken together are bigger than two Right-Angles.

PROPOSITION XXII.

PROBLEM VIII.

To defcribe a Triangle of three given Lines, whereof the bigger ought to be lefs than the Sum of the otber two.

TO defcribe a Triangle, whofe three Sides fhall 2 be equal to the three Lines, $A B, A C, A D$, the biggeft whereof $A D$, ought to be lefs than the Sum of the two others, $A B, A C$, otherwife the Problem wou'd be impoffible, becaufe per Prob. 20. in every Triangle, the Sum of any two Sides is greater than the third, if you would have the fecond given Line AC, ferve for a Bafe to the Triangle that is fearch'd for, defrribe from its Extremity A, an Arch of a Circle at the opening of one of the two other given Lines $A B, A D$, as of $A B$; and with the Interval of the laft given Line AD, defcribe from the other Extremity C, another Arch of a Circle. which thall interfect the firft, at the Point \mathbf{E}, from which you muft draw to the two Points A, C, the Right-Lines EA, EC, and the Triangle ACE, will be that which is fought for.

DEMONSTRATION.

Since the Arch of the Circle defcrib'd from the Point Pate ${ }^{3}{ }^{\circ}$ A, was made with the Interval of AB , the Side AE , ought Eig . 4.4 . of Neceffity to be equal to the Line $A B$; and in like Manner the Side CE, is equal to the Line AD; fo the three Sides of the Triangle ACE, are equal to the three given Lines $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$. Which was to be done and Demonfifated.

U S E.

This Problem feems to be put here by Euclid for no other Reafon but to refolve the following; becaufe its made no Ufe of afterwards. But it may be very ferviceable to defrribe a Figure equal to another, which for that Purpofe, when it hath more than three Sides, ought to be reduc'd into Triangles by feveral Diagonals, or Right-Lines drawn from one Angle to another, to make other Triangles apart in the fame Order, which fhou'd have all the Sides equal to all the Sides of the Triangles, which will be found in the propos'd Figure. This may be likewife perform'd, by making a like Figure, when the propos'd Figure fhall be projected; that is to fay, when you wou'd raife an acceffible Plane on the Ground, to wit, by taking on every Side, as many little Parts meafur'd by a Scale, as the Sides of the Triangle of the propos'd Plan fhall have Feet or Yards; as you have feen in Prob. 16. Introd.

PROPOSITION XXIII.

PROBLEM JX.

To make at a given Point of a given Right-Line, an Angle equal to a given Anyle.
TO make at the given Point D , of the given Line DE , Fig a 45 an Angle equal to the given Angle $A B C$, draw thro' the two Points F, G, taken at Difcretion upon the Lines AB, AC, the right FG, and make per Prop. 22. from the three Lines BF, BG, FG, the Triangie DHI, fo that the two Sides DH, DI, which are round about the given Point D, be equal to the two Sides BF, BG, which make the propos'd Angle B ; and the Angle D, will be equal to the given Angle B.

DEMONSTRATION.

Plate 3 ? Fig. 4s,

Since the three Sides of the Triangle DHI, are equal per Conftr. to the three Sides of the Triangle BFG; thefe two Triangles BFG, DHI, will be equal to one another, per Prop. 8. and the Angle D, will be equal to the Angle B, becaufe they are oppofite to the equal Sides., Whicla apas to be done and demonjtrated.

USE.

This Propofition ferves not only for the Demonfration of the following, and to refolve the 42 , but likewife for the Determination of Prop. 33 , and 34. l. 3. and alfo Prop. 2. and 3. l. 4. It ferves likewife to raife an accefliBle Plan, or inacceffible which is on the Ground, as you have feen in Prob. 16, 17. Introd.

Laftly, It ferves in Dialling, in Perpective, in Fortificas tion, and in all the other Parts of the Mathematicks, where the Rule and Compaffes are us'd, and principally in Geodefic, that is to fay, in Surveying of Lands, the Operations thereof for the moft Part wou'd be impoffible, if you cou'd not make one Angle equal to another, or of fuch a Number of Degrees as you wou'd.

PROPOSITION XXIV.

THEOREM XV.

If two Triangles bave two Sides equal to two sides, each th
each, that which hath the greateft Angle contain'd by thofe
two equal Sides, bas the greateft Bafs.

ALthough this Propofition be as a Corollary of the fourth, neverthelefs as that Corollary depends properly upon nothing but the Senfes, and that its Certainty ought to be evident to Reafon, and the Principles whereon it dependeth, we fhall demonftrate it in Euclid's Manner, thus,
Fig. 46. I fay then, that if the Side AC, of the Triangle ABC , be equal to the Side DF, of the Triangle DEF, and the Side BC, equal to the Side EF; but that the in: sluded Angle ACB, be greater than the included Angle DEE; the Bafe AB, will begreater than the Bade DE.

PREPARATION.

Make per Prop. 23. at the Point F, of the Line DF, the Plate 3 , Angle DFG equal to the Angle C, with the Line Fig. 96 ? FG, which will neceffarily fall without the Triangle DEF, becaufe the Angle DEE is fuppos'd lefs than the Angle C. Make the Line FG equal to the Line BC, and join the right Line DG.

DEMONSTRATION.

Becaufe the Line DF is equal to the Line AC, per. sup. and the Line $B C$ equal to the Line $F G$, per coingtr. and likewife the Angle C, equal to the Angle DFG, per conffr. the two Triangles ABC, DEF, will be equal to one another, per Prop. 4. and the Bafe AB, will be equal to the Bare DG.

Becaufe the Sides EF, FG, are equal each to the fame Side BC, per conftr. it follows per $A x$. I. that the Sides FG, FE, are equal, and that per prop. 5. the Angle FEG, is equal to the Angle FGE, and confequently greater than the Angle DGE, which with much more Reafon will be lefs than the Angle DEG, therefore by Prop. 19. the Line DG, or $A B$, its equal, as hath been demono srated, is greater than DE. Which was to be fhewn.

USE.

This Propofition ferves not only to demonfrate the following, which is its Inverfe, but likewife to demonftrate a Cafe of Prop. 7. and 8.7.3. and a Cafe of Prot. 15. \%. 3.

PROPOSITION XXV. THEOREM XVI.

of tro Triangles which have two equal sides; anch to each, that which bath the greater Baje, bath the Angle oppojite to that Bafe, alfo greater than the Angle oppogite to tha leffer Eafe.

ISay, that if the Side AC of the Triangle ABC, be equal to the Side DF of the Triangle DEF, and the Side BC equal to the Side EF ; but the Bafe AB greater than the Bafe DE; the Angle C is greater than the Ang gle DFE.

DEMONSTRATION.

Plate 3. Fig. 46 .

Firft, The Angle C cannot be equal to the Angle DFE, becaufe by Prop. 4. the Bafe AB wou'd be equal to the Bafe DE, and yet it is fuppos'd to be greater. Nor can the fame Angle C be lefs than the Angle DFE, becaufe by Prop. 24: the Bafe AB wou'd be lefs than the Bafe DE, and yet it is fuppos'd to be greater. Therefore by $A x$. I. the Angle C is greater than the Angle DFE. Which was to be demonfluated.

SCHOLIUM.

Altho this Demonftration be not direct, it doth not fail to convince the mind of the truth of this Propofition, and it feems that Euclid. puts it here only for its Eafinefs.

If you wou'd have a direct one, make at the Point D , per Prop. 23. the Angle EDH equal to the Angle A, by the Line DH, equal to the Line AC, or DF its equal per Sup. and having extended the Bafe DE to I, fo that the Line DI, be equal to the Bafe AB , join the right-Line HI, which is here cut at K , by the Side EC extended, join likewife the right Line FH.

This Preparation being made, it will appear that fince the two Sides DH, DI, of the Triangle DHI, are equal to the two Sides AC, AB, of the Triangle ABC, and the compriz'd Angle HDI, equal to the compriz'd Angle A, per.conftr. thefe two Triangles ABC, HDI, are equal to one another, per Prop. 4. and confequently the Side BC, or EF equal to the Side HI, and the Angle C equal to the Angle DHI. From whence it follows that the Line KF is greater than the Line KH, and that per Prop. © 8. the Angle FHK is greater than the Angle HFK; and becaufe that per Prop. 5. the Angle DFH is equal to the Angle DHF, by reafon of the two equal Sides DF, DH, per conftr. it follows per $A x .4$, that the whole Angle DHK, or the Angle C, which hath been demonftrated equal to it, is greater than the whole Angle DFE. Which woas to be demonftrated.

Explain'd and Demonfrated.

PROPOSITION XXVI.

THEOREM XVII.

The Triangle which bath two Angles equal to thofe of another, and one side, fimilarly pofited, likerwife equal, is equal to it ervery Way.

ISay, that if the Angle A of the Triangle ABC, be Eig. 47。 equal to the Angle FDE of the Triangle DFE, and the Angle B equal to the Angle E, and likewife the Side AB equal to the Side DE, which are compris'd between the two equal Angles, or the Side AC equal to the Side DF, which are oppofite to the two equal Angles B, E, thefe two Triangles ABC, DEF, are intirely equal.

PREPARATION:

Upon Suppofition that the Side $A B$ is equal to the Side DE, take on the Side EF, the Line EG, equal to the Side $B C$, without confidering where the Point G falleth, and join the Line DG; and uponSuppofition that the Side AC is equal to the Side DF, take on the Side DE, the Line $D H$, equal to the Side $A B$, without confidering where the Point H falleth, and join the Line FH.

DEMONSTRATION.

Becaufeper Sup. I. the Side $A B$ of the Triangle $A B C$. is equal to the Side DE of the Triangle DEF, and the Angle B, equal to the Angle E, and that the Side EG, hath been made equal to the Side BC, the two Triangles $\mathrm{ABC}, \mathrm{DGE}$, will be equal to one another, per Prop. 4. and the Angle GDE will be equal to the Angle A, and confequently to the Angle FDE. From whence it follows that the Line DG, falleth on the Line DF, and confequently the Point G upon the Point F. Wherefore the Side EF will be equal to the Side EG, and confequently to the Side BC, and per Prop. 4. the Triangle ABC will be equal to the Triangle DEF. Which is one of the Cafes which was to be demonftrated.

Becaufe per Sup. 2. the Side AC of the Triangle ABC, is equal to the Side DF of the Triangle DFH, and the comprehended Angle A equal to the comprehended Angle FDE, and that the Side DH has been made equal to the Side AB, thefe two Triangles ABC, DFH, will be equal to one another, per Prop.4. and the Angle DHF, will be equal to the Angle B, and confequently to the

Plate 3.
Eig.47. Angle E, which is fuppos'd equal to the Angle B. From whence it follows that the Point H , ought to fall upon the Point E, otherwife an exterior Angle wou'd be had equal to its interior oppofite, which is contrary to Prop. 16. and that confequencly the Side $D H$, or $A^{\prime} B$, is equal to the Side DE. Wherefore per Prop. 4. the Triangle ABC is equal to the Triangle DEF. Whict remain'd to be proved.

U'S E.

Plate 2. Eig. 3

Plate 3. Eig. $4^{8 .}$

Eucliad doth not often make ufe of this Propofition; tho' it be very ufeful upon many occafions. It may ferve to demonfrate that in an Ifofecles Triangle, as ABC, if the Angle C, included by the two equal Sides AC, BC, be divided equally in two by the right Line $C D$, this right Line $C D$, will cut the Bafe $A B$ at right Angles; and equally in two at the Point D; or if from the fame Angle C, you draw upon the Bafe $A B$, the Perpendicular $C D$; this Perpendicular $C D$, will divide the Bafe $A B$ equally in two, by reafon of the two equal Trian. gles ADC, EDC, which have the Angles equal, each to each, and an equal Side fimilarly pofited, to wit, the common Side CD.

We fhall make ufe of this Propofition alfo in Dialling, to demonftrate the manner, which we fhall there fhew; to find the dividing Center of a Right-Line, which reprefents upon a Plane a great Circle of the Sphere; and the fame Propofition may be very ufeful to meafure on the Ground, a Line which is onily accelfible at one of its two Extreams as $A B$, which I fuppofe to be acceffible towards A, where you are to make, by means of a Graphometre, or otherwife, the Right-Angle BAC, with the Line AC; of a difcretionary Length; after which you ouglit to remove your felf to the Point C, to meafure the Quantity of the Angle ACB, and to make one equal to it on the other Side at the fame Point C, as $A C D$, with the Line $C D$, which being extended as much as there fhall be occafion for, it will meet the Line $A B$, alfo extended, in.fome Point as D; and then there will be nothing more to be done but to meafure with a Cord, or otherwife, the Line AD; which will be equal to the propos'd Line AB, by reafon of the Equality of the two Triangles $A C B, A C D$, which have equal Angles, and one equal Side fimilarly pofited, to wit, the common Side AC.

PROPOSITION XXVII.

THEOREM XVIII.

> If one Right-Line falling upon two other Right-Lines, make the interior alternately oppogite Angles equal to each other: there two Lines will be parallel to each other.

ISay, that if the Right-Line HF, cut the two $A B, C D, ~ F i g, ~ s o{ }^{\circ}$ fo that the two interior alternately oppofite Angles AEF, EFD, which are call'd Alternate Angles, are equal to each other; thefe two Lines $A B, C D$, are parallel to each other.

DEMONSTRATION.

For if the two Lines AB, CD, were not parallel, they wou'd, being extended, meet in fome Point, as in G, and then they wou'd make the Triangle EFG, whereof the exterior Angle AEF wou'd be equal to its interior oppofite EFG, contrary to what hath been demonAtrated in Prop. 16. Thus the two Lines AB, CD, cannot meet together, and per Def. 35 . they ought to be parallel to each other. Which was to be demonftrated.

SCHOLIUM.

This Propofition is a refult of the remark that we have made in Prop. I6. It may be demonftrated directly, plare so by drawing per Prop. I2. from the Point F, the Line FI, Figo stis perpendicular to the Line $A B$. and by taking the Line FK , equal to the Line EI, and joining the Line EK; after which it will be known per Prop 4. that the two Triangles EIF, EKE, are equal to each other, by reafon of the two Sides EI, EF, equal to the two KF, EF, and by reafon of the compris'd Angle IEF, equal to the compris'd Angle EFK, per Sup. From whence it follows that the Angle K is equal to the Angle I, and confequently a right one, and that the Line EK is perpendicular to the Line CD, and moreover that this perpendicular EK, is equal to the Line EI, which is alfo per. pendicular to the Line AB , per Congtr. which makes that the two Lines AB, CD, are equally remote from one another, and confequently parallel.
USE.

It may be known by this Propofition, when two Lines wpon the Ground or upon Paper, are Parallels, which

$$
\text { E } 3
$$

Plate 4. Fig. 4 ro will happen when the alternate Angles fhall be equal. It ferves alfo to draw thro' a given Point a Line parallel to a given Line, as you will fee in Prop. 31. and as you have already feen in Prob. 3. Introd. It ferves alfo to demonftrate Prop. 32. and feveral others, as you fhall fee hereafter.

PROPOSITION XXVIII. THEOREM XIX.

If one Right-Line cutting two other Right-Lines, make with them the exterior Angle equal to its oppofite interior on the Same Side, or the two Interiors on the Same Side, equal together to trono Right-Angles; the fe troo Right-Lines will be . parallel to one another.

Plate 4. Fig 5 I。

ISay, that if the Right-Line GF, cut the two $A B, C D$, fo that the exterior Angle GEB, be equal to the interior oppofite of the fame Side EFD, or that the two Interiors of the fame Part BEF, EFD, be together equal to two right ones, the two Lines AB, CD, are parallel.

DEMONSTRATION.

Since the Angle EFD is equal to the Angle GEB, per Sup. and the Angle AEF equal to the fame Angle GER, per Prop. 15. it follows per $A x$. I. that the Angle AEF is equal to the Angle EFD, and per Prop. 27. that the Lines AB, CD, are parallel to each other. Which is one of the two Things which was to be demonfrated.

Since the two Angles BEF, EFD, are alfo together equal to two right Angles, per Sup. and that the two BEF, AEF, are alfo together equal to two right ones, per Prop. 13. it follows per $A x .3$. that if from thefe two equal Sums you fubftract the common Angle BEF, there will remain the Angle AEF, equal to the Angle EFD, and per Prop. 27. the two Lines AB, CD, are parallel. Whick remain'd to be prow'd.

USE.

This Propofition hath the fame Ufes as the precedent, and moreover it ferves to convince the Mind of the truch of Euclid's' eleventh Axiom, for it is evident that the two interior Angles BEF, EFD, which are on one
and the fame Side being equal together to two right Angles, the Lines AB, CD, are Parallel ; and that thofe Plate 3. two Angles cannot become fo little lefs than two right ones, as that the two Lines $A B, C D$, will not meet (being extended) on the fame Side.

LEM MA.

The Right-Line which is perpendicular to one of two Parallels, is arfo perpendicular to the other.

1Say, that if the Line EF, be perpendicular to one of the two Plate 3. Parallel: $A B, C D$, as for Example to the Line $C D$, it is alfo Fig. 49. Perpendicular to the Line $A B$.

PREPARATION.

Take upon the Line $C D$, the two equal Lines $F G, F H$, of a difcretionary bignefs, and draw thro' the two points G, H. per Prop. II. the Lines GI, HK, perpendicular to the fame Line CD. Foin the right Lines FI, FK.

DEMONSTRATION.

Becaufe the Side $F G$, of the Triangle $F G I$, rightangled in G, is per conftruct. equal to the Side FH of the Triangle FHK, rightangled in. H, and the Side GI, equal to the Side HK, per Ax. II. thefe two rightangled Triangles FGI, HFK, will be cqual to one another, per Prop. 4. and the Bafe FI will be equal to the Bafe FK, and the twoo Angles GFI, FHK, will be equal, the which being fubducted from the two Angles GFE, HFE, which are equal, per Def. Io. becaufe they are right ones, per Sup. there will remain, per Ax. 3. the two eyual Angles EFI, EFK, and per Prop. 4. the two Triangles IEF, KEF, will be equal to each other, because they bave the common Side EF, the Side FI equal to the Side FK, and the compris'd Angle EFI equal to the compris'd Angle EFK, as hath been demongtrated. Wherefore the Angle IEF will be equal to the Angle KEF, and per Def. Io. thefe two Angles will be right ones, and the Line $E F$ will be perpendicular to the Line AR. Which was to be demonftrated.

PROPOSITION XXIX.

THEOREM X̧X.

If one Right-Line interfect two Parallels, the alternaie Angles will be equal to one another; the exterior Angle will be equal to the intcriop oppofiteon the Same Side; and the troo Interiors, on the fame Side, will together be equal to two RightAngles.

ISay, that, if the Right-Line GF, cut the two Parallels AB, CD, the alternate Angles AEF, EFD, are equal to each other; the exterior Angle GEB is equal to the interior oppofite on the fame Side EFD; and that the two Interiors on the fame Side BEF, EFD, are together equal to two Right-Angles.

PREPARATION.

Draw from the two Points E, F, the Right Lines EX; WI, perpendicular to the two Lines $A B, C D$.

DEMONSTRATION.

The two Lines FI, KE, are equal to each other, per Ax. II. and each will be, per preceeding Lemma, perpens dicular to the two Parallels AB, CD; alfo the two An" glesIFK, EKF, will be right ones, and confequently equal together to two right ones, wherefore per Prop. fition 28. the two Lines FI, KE, are Parallels, to which the two IE, FK, being perpendicular, are equal to each other, per Ax. I. Wherefore per Prop. 8. the two Triangles FIE, FKE, will be equal to one another, and the Angle IEF will be equal to the Angle EFK. Which is one of the three Things which was to be proved.

Since the Angle AEF hath been demonftrated equal to the Angle EFD, and that it is alfo equal to the Angle GEB, per Prop: 15 . it follows, per Ax. I. that the An* gle GEB is equal to the Angle EFD. Which was likewife to be demonftrated.

Laftly, Since the two Angles BEF, AEF, are to gether equal to two right ones, per Prop. I3. if inftead of the Angle AEB, you take its alternate EFD, which has been demonftrated equal to it, it will appear that the two Angles BEF, EFD, are together equal to two right ones: andich revinin'd to be demonfrated.

Book 1. Euslidis Elements Plate \& Page 56

U S E.

We have already faid in our Remarks upon the Euctid Plate $4 \cdot$ of Father Dechales, that this Propofition ferves likewife. Fig. sfo to demonitrate the eleventh Axiom of Euclid, which is, That if one Right-Line falling on two others, makes the topo interior Angles of the fame Side, lefs together than two right aues, the e Lines being extended will mect on this Side; for if they were not to meet, that is to fay, if they never cono currd, they wou'd be Parallels, per Def. 35 . becaufe they are fuppos'd right Lines; and allo as it hath been fhewn, the interior Angles wou'd be together equal to two right ones, contrary to the Suppofition of this Maxim. We thall better fhew this towards the end of the 34 Prop.

PROPOSITION XXX.

THEOREM XXI.

Right-Lines Parallel to one and the fame Right-Line, are Parallel to each other.

ISay, that if each of the two Right-Lines $A B, C D$, is Fig. se parallel to the fame Line EF, thefe two Lines $A B, C D$, are parallel to each other.

PREPARATION.

Draw at Pleafure the Right-Line GH, which cuts the propos'd three Lines $A B, E F, C D$; in three Points, as $\bar{I}, \bar{K}, \mathrm{H}$.

DEMONSTRATION.

Since the two Lines $A B, E F$, are \dot{P} arallel, per Sup. the Angle GIB will be equal to the Angle IKF, per Prop. 29. and fince in like manner it is fuppos'd that the two Lines EF, CD, are parallel, the Angle KHD, will be equal to the fame Angle IKF. Whence it follows per $A x$. I. that the Angle GIB is equal to the Angle KHD, and that per Prop. 28. the two Lines AB, CD, are Parallels. Wbich wiss tobe demonftrated.

SCHOLIUM.

This Propofition may be demonftrated otherwife, and very eafily by drawing at pleafure the two Lines $\mathbf{L H}, \mathbf{I M}$, perpendicular to the Line EF, which will alfo be perpendicular to each of the two Lines, AB, CD, per preceding Lemma.

The two Lines LN, IO, are equal to each other, per Ax. in. as well as the two HN, MO: Wherefore per $A x .2$. the two Lines $\mathrm{LH}, \mathbf{I M}$, will be likewife equal to each other, and per Def. 35. the two Lines AB, CD, will be parallel to each other. Which was to be demonftrated.

The three Lines AB, CD, EF, are here fuppos'd by Euclid in one and the fame Plane, otherwife the two preceding Demonftrations wou'd be imperfect. But in Prop. 9. l. ir. we fhall demonftrate the Truth of this Theorem, tho' thefe three Lines be not in one and the fame Plane.

$$
\mathrm{U} S \mathrm{E} .
$$

This Propofition may be of ufe to fhew, that if tworight Lines which cut each other, are parallel to two other RightLines, which interfect in the fame Plane, thefe four Right-Lines contain two equal Angles.

As, if the two Lines AB, AC; are parallel to the two $D E, D F$, viz. $A B$ to $D E$, and $A C$ to $D F$, the two $A n-$ gles A, D, are equal to each other.

PREPARATION.

Draw from the Point C taken at Pleafure upon the Line AC, the right Line CG, parallel to the Line AB, and from the Point E taken at difcretion upon the Line DE, the right Line EG, parallel to the Line AC; this Line EG will meet the firft $C G$, in fome Point, as G.

DEMONSTRATION.

Eecaufe the two Lines GC, DE, are parallel to the fame $A B$, the three $A B, G C, D E$, will be parallel to each other, as was juft now demonftrated, and in like manner becaufe the two Lines GE, DF, are parallel to the fame AC , the three $\mathrm{AC}, \mathrm{GE}, \mathrm{DF}$, will be parallel to each other. Wherefore per Prop. 29. all the alternate Angles, A, C, G, D, and confequently the two A, D, will be enual to each other. Which was to be provid.

Tho' the two Angles A, D, be not in the fame Plane, llate is. they are, however, equal to each other, provided their Fig. sq. Lines continue parallel each to each, as will be demonftrated in Prop. IO, II.

PROPOSITION XXXI.

PROBLEM X.

To draw thro' a given Point, a Right-Line parallel to a givels Line.

7 O draw thro the given Point C , a Line parallel to the Fig. 55° given Line $A B$; draw at pleafure thro' the given Point C, the Right-Line CD, which cuts the propos'd Line $A B$, in fome Point as D, and make per Prop. 23. at the Point C, the Angle DCE equal to the Angle ADC, with the Right-Line CE, which will be parallel to AB.

DEMONSTRATION.

The alternate Angles ADC, DCE, are equal per conftr. therefore per Prop. 27. the Lines AB, CD, are parallel. Which apas to be done and demonfrated.

US E.

The Ufe of Parallel-Lines is as frequent as that of Perpendiculars; it being certain that nothing can for Example be practis'd in Perfpective, without drawing feveral Parallel-Lines, or which is the fame thing, without drawing feveral Perpendiculars to the Ground. Line, becaufe all Lines perpendicular to one and the fame Line, are parallel to each other, as is evident per Prop. 28. In the defcription of Polar-Dials, the HourLines are drawn Parallel to each other, and to the Sub-ftile-Line, becaufe thefe Sorts of Dyals have no Center at all, as we fhall demonftrate in the Dyalling. Fortification cannot be without Parallel-Lines, when the Engineer wou'd draw the Ichnography of Parapets, Talus's. Efplanades, ơc.

PROPOSITION XXXII.

pate \%

THEOREM XXII.

In alt Triangles, one of the sides being extended, the exterios Axgle is equal to the two interior oppogite ones taken together: and the three Angles of Triangle are together equal to two right Angles.

ISay, that if from the Triangle $A B C$, the Side $A B$ be extended towards D, the exterior Angle CBD is equal to the two Interiors A, C, taken together; and that the three Angles $A, A B C, C$, are together equal to two right Angles.

PREPARATION.

Make per Prop. 23 at the Point B, the Angle DBE equal to the Angle A, with the Line BE, which will be pa-. wallel to the Line AC, per Prop. 28. and per Prop. 29. the Angle C will be equal to the Angle CBE.

DEMONSTRATION.

Since the Angle CBE is equal to the Angle C, and the Angle DBE to the Angle A, the two Angles A, C, taken together, will be equal to the two $\mathrm{DBE}, \mathrm{CBE}$, taken together, that is to fay, to the whole exterior Angle CBD. Which is one of the two things that was to be fhemn.

Since the exterior Angle CBD is equal to the two oppofite interior A, C, if on each Side the Angle $A B C$ is added, it will appear that the three Angles $A, A B C, C$, are together equal to the two $\mathrm{ABC}, \mathrm{CBD}$, that is to fay, to two right Angles, per Prop. 13. Which remain'd to b elemozfltated.
COROLLARY I.

It follows from this Propofition, that the three Angles of one Triangle are together equal to the three Angles raken together of another Triangle.

COROLEARY II.

If two Angles of one Triangle are equal to two Angles of another Triangle, each to each; the third Angle of the one will be equal to the third Angle of the other.

COROLLARY III.

In a Right-Angled Triangle, the two acute Angles taken together, are precifely equal to one right one.

COROLLARY IV.

Each Angle of an equilateral Triangle is 60 Degrees, becaufe it is the third of two Right-Angles, which make 180 Degrees.

COROLLARY. V.

All the Angles of a Polygon are equivalent to as many Times 180 Degrees, as the Polygon has Sides, except two, becaufe it is divifible into fo many Triangles. Whence it follows that in a Figure of four Sides, the four Angles make together four right ones, that is to fay. 360 Degrees.

COROLLARY VI.

In all Polygons, each Side being extended, all the exterior Angles taken together are equal to four right ones, or to 360 Degrees. This refults from this Prom polition, and Prop. I 3.

U S E.

This Propolition is very ufeful in many Propofitions of this and the following Books, and likewife in all Parts of Trigonometry, which confiders a Triangle only with refpect to its Angles, or its Sides. It is alfo very ufeful to meafure upon the Ground an inacceffible Angle, as you have feen in the Ufe of Prop. 15. Engineers make great Ufe of it in raifing Platforms, and they know that they have well meafur'd the Angles of a Plan, when all the Angles of that Plan make rogether as many times 180 Degrees, as the Plan hasSides, except two:

PROPOSITION XXXIII.

THEOREM, XXIII.

The Right-Lines are equal and parallel, which join the Extre mities, lying the fame way, of two other equal and parallel right Lines.

ISay, that if the two Right-Lines AB, CD; are parallel and equal, the Right-Lines AC, BD, which join their extremities, are alfo parallel and equal.

DEMONSTRATION.

If the Right-Line AD , be drawn, it will be known per Prop. 4. that the two TrianglesiADR, ADC, are equal to each other, becaufe they have the common Side AD, the Side AB equal to the Side CD, per Sup. and the included Angle ADC equal to the included Angle BAD, per Prop. 29. Wherefore the Line AC will be equal to the Line BD: Which is one of the troo Things mobich was to be ferwn: And the Angle DAC will be equal to the Angle ADB , wherefore per Prop. 27 : the two Lines AC, BD, will be parallel to each other. Which remain'd to be Sherwn.
U S E.

This Propofition ferves for the Demonftration of Prop. 35. and alfo to meafure upon the Ground an acceffible Line at its two Extreams, and inacceffible at its Middle, as we fhall teach in our Practical Geometry.

PROPOSITION XXXIV.

THEOREM XXIV.

In all Parallelograms, the Angles and the oppofite Sides are equat to each otber, and the Diagonal divides it equally in two.

Fig. 56.

Say, that if the Figure ABDC be a Parallelogram, , the oppofite Angles B, C, are equal to one another, as well as the two $B A C, B D C$: and in like manner the

Explain'd and Demonftrated.

the oppofite Sides AB, CD, are equal to one another, as well as the two AC, BD: And 1aftly, the Diagonal AD divides the Parallelogram ABDC equally in two; that is to fay, the two Triangles ADB, ADC, are equal to one another.

DEMONSTRATION.

Becaufe the two Lines $A B, C D$, are Parallels per Sup. the two alternate Angles BAD, ADC, will be equal to one another, per Prop. 29. as well as the two alternate Angles $\triangle D B, D A C$, by reafon of the two Parallels AC, BD. From whence it follows, per Prop. 32. that the third Angle B will be equal to the third Angle C, and per Ax. 2. the whole Angle BAC, equal to the whole Angle BDC. Which is one of the three Things which was to be demonftrated.

Since therefore the two Triangles ADB, ADC, are equiangular, and that they have the common Side AD, fimilarly pofited, they will be equal to one another per Prop. 26. Which is the Second of the three Things that was to be Shewn.

Laftly, The Sides oppofite to the equal Angles of the two equal Triangles $\mathrm{ADB}, \mathrm{ADC}$, to wit, AB, CD, and AC, BD, will be equal to each other. Which remaind to be provid.

USE.

The Method which you will find in our. Prastical Gegmetry, to meafure the Height and Bignefs of a Mountain, by the means of a Plomb-Line, and a long Rule, which is call'd Cultellation, is founded upon this Propofition; the which ferves likewife for the Divifion of a Field, when it is a Parallelogram, at leaft when you wou'd divide it equally in two, which is done by the Diagonal AD, when you have no determin'd Point to make that Divifion. But if you wou'd divide it equally rig. 5 g. in two, by a Right-Line drawn from a Point given in one Side, as through the Point E, you muft drawfrom this Point E, through the Point F, the middle of the Diagonal AD, the Right-Line EFG, which will divide the Parallelogram ABDC into two equal Trapeziums ACGE, EGDB, by reafon of the Triangle AFE equal to the Triangle DFG, per Prop. 26. and by reafon of the two equal Trapeziums, CF, BF, per Ax. 3. becaufe per Prop.34. the two Triangles $A D B, A D C$, are equal to one another.

Flate 4.
1ig. 57.

It is known that a Quadrangular Field is a Parallelo gram, when of its four Angles, the two oppofite are equal, or when of its four Sides the two oppofite are equal, as it iseafy to dèmoniftrate per Prop. 8. Which difcovers the Original and Demonftration of a certain Inftrument, commonly made ufe of to draw parallel Lines, and which upon that account is call'd a Parallel Ruler, becaufe it is compos'd of two long Rulers faftned toge ther by two other leffer Rulers, and equal to one another, which preferve the two great Rulers always in a parallelifm whatever Situation you give them.

Wherefore when you wou'd by the help of this Inftrument draw thro a given Point, a Line parallel to a given Line, there is nothing more to do than to apply the Edge of one of the two Rulers along the given Line, and the fecond Ruler being kept feady and immoveable, you muft advance the firft as far as the given Point, to the end that thro' that Point you may draw along the Ruler a Right-Line, which will be parallel to the propos'd one.

This Propofition ferves alfo to demonftrate Euclid's eleventh Axiom, which we fhall prove in the following manner, being a Demonffration that feems to me very plain and very natural.
hig. 58.
I fay then, that if the two Right-Lines $A B, C D$, are interfected by a third Right-Line EF, fo that the two interior Angles BEF, EFD, which are on the fame Side, are together lefs than two right ones; the two Lines $A B_{8}$, $\mathbb{C D}$, being extended, will meet on this fame Side.

DEMONSTRATION.

To demonftrate this Truth, it will fuffice to have de= monftrated, that if on the fame Side with the interior Arigles BEF, EFD, you draw the Right-Line GH pà rallel to the Line EF, and terminated by the two Lines $\dot{A} B, C D$, this Line GH, will be lefs than the Line EF.

For this purpofe draw thro the Point H , the RightLine HI , parallel to the Line AB . It is evident that this Line HI, meets the Line EF, at the Point I, between the Points E, F, becaufe if it meet it beyond the Point F, as in L, it wou'd follow that the two Angles BE F, HLF, wou'd be together equal to two right ones, per Prop. 29. and confequently greater than the two BEF, EFD, which are fappos'd lefs together than two righe ones, and that fo by taking away the common Angle BEF; the Angle HLE, wou'd remain greater than the Angle EFD, which is impoffble, becaufe the Angle EFD. being
being exterior, is greater than the interior oppofite one HLF, per Prop. 16. the fame Point I, cannot alfo fall on the Point F, becaufe the Lines AB, CD, wou'd be Parallels, and fo the two interior Angles BEF, EFD, wou'd together be equal to two right ones, per Prop. 28. and yet they are fuppos'd lefs. Therefore fince the Point I, falleth between the two Points E, F, and that the Figure GHIE is a Parallelogram, whereof the oppofite Sides GH, EI, are equal, per Prop. 34. it follows that the Line GH is lefs than the Line EF. Which mas to be demonfrated.

PROPOSITION XXXV.

THEOREM XXV.

Parallelograms are equal to one another, when they bave the Jame Bafe, and are between the fame Pwrallels.

ISay, that the Parallelograms EFGH, EIKH; are equal to one another, becaufe they are between the two Pa rallels AB, CD, and have the common Bafe EH.

DEMONSTRATION.

The Sides IK, FG, are equal each to the Side EH, plate T_{d} per Prop. 34. and per. $A x$. I. they are equal to one another; Fig. 59: and if the Side GI be added to them, you will have per Ax. 2. the Side FI, of the Triangle FEI, equal to the Side GK, of the Triangle GHK; and becaufe the Side EF is equal to the Side GH, and the Side EI equal to the Side HK, per Prop. 34. it follows per Prop. 8. that the two Triangles EFI, GHK, are equal to one another wherefore if from each the common Triangle GLI, be taken away, there will remain the Trapezium FL , equal per $A x .3$. to the Trapezium KL, and laftly if to each of thefe two equal Trapezia FL, KL, the Triangle ELH, be added, you will have the Parallelogram EFGH equal per $A x$. 2. to the Parallelogram EIKH. . Which was to be provid.

SCHOLIUM.

This Theorem may be demonftrated more eafily by the Metrod of Indivifibles in this manner. Imagine the Parallelogram EFGH, to be divided into as many little equal Paralo lelograms as you pleafe, by Lines parallel to one another, and to the common Bafe EH, to which they will be all F

Plate 4. Fig. 0_{0}.
equal, and confequentily equal to one another, thefe Lines being continued, will divide the other Parallelogram EIKH, in fo many Parallelograms equal to each other, and to the preceding ones; which makes that thefe two Parallelograms EFGH, EIKH, are equal to one another, becaufe whatever Divifion is made, there will ftill be as many Lires of the fame Length, and equally clofe, in the one as in the other: So that if the Divifion be infinite, as it is ftill fuppos'd to be, which occafion'd the Name of the Method of Indivifibles to be given this fort of Demonftration, each Parallelogram will be compos'd of an equal Number of equal Lines, that is to fay, of little equal Parallelograms whereof the Breadth is infinitely little, and confequently they will be equal to one another: Which wos to be flewn.

This Method of Indivifibles is of great Ufe to demon. ftrate the hardef Theorems in Gcometry, principally for the Tangents of curved Lines, and for the Quadrature of Curves, that is tofay, to reduce a Curvilineal Figure into a Rectilineal one; it being certain, that by means thereof Theorems may be demonfrated, which wou'd be difficult to be done by Euclid's Elements alone. You will find an Example of itin the firft Theorem of our Planimetry.

The moft Learned Men allow of the Geometry of Indivifibles, and none but thofe who are lefs expert reject ic and that doubtlefs becaufe they are eafily miftaken, by not knowing how to make a juit Application of it, for want of well underftanding the Foundation of this Geometry, which confifts principally in taking for the Area of a Surface, the Sum of the infinite Lines which fill it, and for the Solidity of a Body, the infinite Surfaces it is compos'd of; fo that two Surfaces are etteem'd equal, when each is fill'd with an equal Sum of Lines, in like manner equal and parallel to each other; and likewife two Solids are efteem'd equal, when the one and the other is compos'd of an equal Sum of Surfaces, in like manner equal and parallel to each other, orc.

> USE.

This Propofition ferves for the Demonftration of the following and feveral others, and likewife to meafure a Parallelogram, which is not Rectangular, as EIKH, becaufe it may be reduc'd into another which is Rectanghlar, to wit, in drawing from the two Extremities E, H, of the Side EH, the two Lines EF, GH, perpendicular to the Side EH, which being terminated by the other oppofite and parallel Side IK, extended as far as :
thall be neceffary, will finifh the Rectangular Parallelo. Plate ". gram EFGH, equal to the propos'd Parallelogram EIKH, Fig, 6 oo the Area whereof will confequently be known, if you multiply together the two Sides EF, EH, which form the Right-Angle E: as if EF is for Example ${ }_{5}$ Feet, and E.H 3, by multiplying 5 by 3, you will have 15 fquare Feet, for the Content of the Rectangular Parallelogram EFGH, or of its equal EIKH.

PROPOSITION XXXVI.

THEOREM XXVI.

Parallelograms are equen to each other, when they bave equal Bafes, and are between the fame Parallels.

ISay, that if the two Parallelograms EFGH, IKLM, Eig. $62{ }^{\circ}$ are between the fame Parallels AB, CD, and that their Bafes EH, IM, be equal to each other, thefe Parallelos grams EFGH, MKLM, are alfo equal to eachother.

PREPARATION.

Join the two Extremities of the two equal and paw rallel Bafes EH, KL, by the Right-LinesEK, HL, which will be alfo equal and parallel, per Prop. 33. Io that pers Dধf. 34. the Figure EKLH will be a Parallelogram.

DEMONSRATION.

Since each of the two Parallelograms EFGH, IKLM ${ }_{\text {. }}$ is equal to the Parallelogram EKLH, it follows per $A x$. I. that they are equal to each other. Which was to be jhemon.

SCHOLIUM.

This Propofition is virtually the fame as the preced. ing, becaufe to have one and the fame Bafe is the fame thing as to have equal Bafes; and it is exprefs'd more gee nerally in Prop. r. 6.

When it is faid, that troo Parallelograms. are between the Same Parallels; it fignifies that two of their oppofite Sides do meet in two Lines parallel to each other; fuch as $A B, C D$, in this Place.

US E.

This Propofition is very ferviceable to divide in as many equal Parts as you will, a Field which hath the Figure of a Parallelogram, as if you wou'd divide in three equal Parts, for Example, the Parallelogram $A B C D$, you muft divide two of its oppofite Sides $A D$, $B C$, each in three equal Parts, and you muft join the oppofite Points of Divifion by the Right-Lines EG, FH, which will divide the propos'd Parallelogram ABCD, in three lefs Parallelograms, which will be equal to eack other, fince their Bafes are equal to each other.

PROPOSITION XXXVII. THEOREM XXVII.

Triangles are equal, when they bave the fame Bafe, and are: between the fame Parallels.

Tig. 64. Say, that if the Triangles EFG, EFH, have the fame: Bafe EF, and are inclos'd between the fame Parallels: AB, CD, fo that their Vertex's G, H, do terminate at: the fame Line $A B$, parallel to the common Bafe EF; thefe two Triangles EFG, EFH, are equal to eachi other.

PREPARATION.

Take upon the Line AB, the Lines GA, HB, equall each to the common Bafe EF, and join the Right-Line: AE, which will be Parallel to the Line FG, per Prop. 33. and the Line BF, which will be likewife parallel to the: Line EH.

DEMONSTRATION.

Since the Side EG, of the Triangle EFG, is the Di-1 agonal of the Parallelogram EFGA, this Triangle EFG, will be the half of the Parallelogram EFGA, per Prop. 34. and by the fame Reafon the Triangle EFH, will be? the half of the Parallelogram EFBH; and as the Parallelograms EFGA, EFBH, are equal to each other, per Prop. 35. their Halves, that is to fay, the Triangles EFG, IFH, will be alfo equal to each other. W.W. D.

Explain'd and Demonftrated.

U S E.

This Popofition ferves to demonftrate that when two Plate 4: Right-Lines interfect between two Parallels, their Parts are Fig. áso proportional; as if the two Lines EH,FG, interfect at the Point I, between the two Parallels AB, CD, their Parts IE, IH, IF, IG, are proportionable; for if the RightLines EG, FH, be join'd, it will be known per Prop. 37. that the two Triangles EFG, EFH, are equal to each other, therefore if from each you fubftract the common Triangle EIF, there will remain per $A x .3$. the Triangle EIG, equal to the Triangle FIH, and by reafon of the two equal Angles EIG, FIH, per Frop. 15. it follows per 15. 6. that the four Lines IE, IH, IF, IG, are proportional. Which wass to be demonftrated.

This Propofition is alfo very ferviceable, to reduce any right lin'd Figure into a Triangle, which is done thus,
Firft of all, to reduce into a Triangle the Trapezium Plate s: $A B C D$, having drawn at pleafure the Diagonal BD, draw Eig. 660 from the Angle C, oppofite to that Diagonal, the RightLine CE, parallel to the fame Diagonal, BD , and from the Point E , where it meets the extended Side AB , draw to the Angle D, the Line DE, and the Triangle ADE, will be equal to the propos'd Trapezium ABCD.

DEMONSTRATION.

Since the two Triangles DCB, DEB, have the fame Bafe BD, and are between the fame Parallel BD, CE, they will be equal to each other, per Prop. 37. Wherefore if from each the common Triangle BFD, be put away, there will remain $p e r A x_{0}$. the Triangle CFD, equal to the Triangle BEF, whereof each being added to the Trapazium ABFD, there will be had per Ax. 2. the Trapezium ABCD, equal to the Triangle ADE. Which was to be done and demonfrated.
${ }^{3}$ 'Tis in the fame manner, that a Figure of more than four Sides is reduc'd into a Triangle, to wit, by reducing it firft into another which hath a Side lefs, as you have juft now feen, and this into another, which has likewifé a Sidelefs, and fo on, until you come to a Triangle.

PROPOSITION XXXVIII.

THEOREM XXVIII.

Triangles are equal when they bave equal Bafes, and are between the Same Parallels.

ISay, that the two Triangles EFG, HiK, which are between the fame Parallets Ais, CD, and whereof the Bafes EF, HI, are equal to each other, are alfo equal to each other.

PREPARATION.

Take upon the Line $A B$, the Line $G A$, equal to the Bafe EF, and join the Right-Line AE, which will be parallel to the Side FG, per Prop. 33. Take upon the fame Line AB, the Line KB, equal to the Bafe HI, and join the Line BI, which will be parallel to the Side HK.

DEMONSTRATION.

Becaufe the Side EG is the Diagonal of the Parallelo. gram EFGA, the Triangle EFG; will be the half of that Parallelogram per Prop. 34 and in like manner, fince the Side IK is the Diagonal of the Parallelogram HIBK, the Triangle HIK, will be the half of that Parallelogram; and as the two Parallelograms EFGA, HBK, are equal to each other per Prop. 36. it follows that their lialves, that is to fay the Triangles EFG, HIK, are alfo equal. to each other. Which was to be feewn.

USE.

This Propolition ferves to divide a Triangular Field into as many equal Parts as you will, by right Lines drawn from one of its Angles thus.
4ig 8.
To divide the Triangle ABC, for example into three equal Parts, by right Lines drawn from the Angle C, divide the Side $A B$ ', oppofite to this Angle C, into three equal Parts at the Points D, E, and draw thro there Points E, D, to the Angle C, as many right Lines, which will divide the propos'd Triangle ABC into three equal Triangles

Book 1. Euclid's Elements Plate 5. Page 70

Triangles, fince their Bafes are equal ${ }^{\circ}$, and they have the Plate s° fame Point C, for the Vertex, which is the fame thing Fig 68. as to be between the fame Parallels.

You may alfo very eafily by the means of this Propofie pig. 69. tion divide a Piece of Ground, which hath the Figure of a Trapezoid; as if you wou'd divide the Trapezoid ABCD , for Example into four equal Parts, you muft divide each of its two parallel Sides $A B, C D$, into four equal parts, and you muft join the oppofite Points of Divifion by the right Lines EH, FI, GK, the which will divide the propos'd Trapezoid ABCD, into four leffer Trapezoids, which will be equal to each other, becaufe they are compos'd of equal Triangles, as will be found by drawing their Diagonals, which will divide them into Triangles, the Bafes whereof will be equal to each other, \&r

PROPOSITION XXXIX. THEOREM XXIX.

Equal Triangles, which bave one and the fame Bafe, are between the Same Parallels.

ISay, that if the Triangles $A B C, A B D$, which have Fig. 70. the fame $B a f e A B$, are equal to each other, they are between the fame Parallels; that is to fay, the right Line CD, which joins their Vertex's; C, D, is parallel to the common $B a f e A B$, and fo they are between the fame Parallels AB, CD.

PREPARATION.

Draw from the Point C, the Line $C E$ parallel to the common Bafe AB, which will meet the Side AD, in fome Point, as in E, through which, and through the extremity B, of the common Bafe $A B$, you muft draw the Right-Line BE, without confidering where the Point E falleth, becaufe the Demonftration is ftill the fame.

DEMONSTRATIO•N.

Since the Triangles $A B C, A B E$, are between the fame Parallels AB, CE, per conftr. and have the common Bafe $A B$, they will be equal to each other, per Prop. 37. and as the Triangle $A B D$, is equal to the Triangle $A B C$, per \$up. it. follows per $A x$. I, that the two Triangles ABD,

ABE, are equal to each other, and per $A x .8$. the Point E falleth upon the Point D, and the Line CE, upon the Line $C D$, and confequently the Line $C D$, is parallel to the common Bafe AB. Which was to be Bewn.
USE.

Eig. 71:
This Propofition ferves to demonftrate that, Every 2uadrilateral which is divided cqually in two by each of its two Diagonals, is a Parallelogram; that is to fay, that if the Quadrilateral $A B C D$, be divided equally in two, by the Diagonal AC, and alfo equally in two by the other Diagonal ED, fo that the three Triangles $A B C, A B D$, $A C D$, be equal to each other, per $A x .7$. as being each the half of the Quadrilateral $A B C D$; this Quadrilateral $A B C D$, will be a Parallelogram.

DEMONSTRATION.

Since the two Triangles ABC, ABD, which have the fame Bafe $A B$, are equal to each otherper Sup. they will be between the fame Parallels per Prop. 39. that is to fay, that the Line CD, will be parallel to the common Bafe $A B$, It will be known in the fame manner, that by ReaFon of the two equal Triangles ACB, ABD, which are upon the fame Bafe AD, the Line BC is parallel to the common Bare AD , and fo the Figure ABCD is a $\mathrm{Pa}-$ rallelogram. Which poas to be fhewn.

PROPOSITION XL.

THEOREM XXX.

equal, Triangles, which bave equal Bafes uporn one and the Same Rigbt-Line, are between the fame Parallels:

6ian 30
Say, that if the equal Triangles $\mathrm{ABC}, \mathrm{DEF}$, have their equal Bafes AB, DE, upon the Right-Line AE , their Vertex's. C, F, are terminated by the Right-Line CF, parallel to the firf Right-Line AE.

PREPARATION.

Draw from the Point C, the Line CG, Parallel to AE, which will meer the Side DF, in fome Point,
as in G, thro' which, and thro' the Extremity E, Plate so of the Bafe DE, you muft draw the Right-Line GE, Fig. 72. without confidering where the Point G falleth, becaufe the Demonftration will be always the fame, as you fhall ree.

DEMONSTRATION.

Since the Triangles ABC, DEG, are between the fame Parallels AE, CG, per conftr. and that their Bafes, AB, DE, are equal, per. suppofition, they' will be equal to each other, per Prop. 38. and as the Triangle DEF, is fuppos'd equal to the Triangle $A B C$, it follows per $A x$. I. that the two Triangles DEF, DEG, are equal to each other, and per Ax. 8. the Point G, falleth on the Point F , and the Line CG upon the Line CF, and confequently the Line CF , is parallel to the Line AE , becaufe the Line CG, hath been fuppos'd parallel to the fame Line AE. Which was to be fhewn.

PROPOSITION: XLI.

THEOREM XXXI.

If a Parallelogram and a Triangle bave one and the Same Bafe, and are between the Same Parallels, the Parallelogram will be double the Triangle.

ISay, that if the Parallelogram EFGH, and the Triangle Fig. 730: EFI, have one common Bafe EF, and are between the fame Parallels $A B, C D$, fo that the Vertex I, of the Triangle EFI, terminates precifely at the Line AB, parallel to the common Bafe EF; the Parallelogram EFGH, is double the Triangle EFI.

PREPARATION.

Draw from thie Extremity F, of the common Bare EF, the right Line FB, parallel to the Side EI; of the TriEFI, and you'll have the Parallelogram EFBI.

DEMONSTRATION.

Becaufe the Parallelogram EFGH is equal to the Pao rallelogram EFBI, per Prop. 35: and that the Parallelogram EFBI is double the Txiangle EFI, per Prop. 34.

Plate 5. Fig. 73.
it follows that the Parallelogram EFGH, is alfo double the Triangle EFI. Which was to be fiewn.

SCHOLIUM.

This Propofition may be demonftrated otherwife, and very eafily, if inftead of drawing the Parallel FB, you draw the Diagonal EG, for then it will be known per Prop. 37. that the Triangle EFG is equal to the Triangle EFI; from whence it follows that the Parallelogram EFGH, being double the Triangle EFG, per Prop. 34. it is alfo double the Triangle EFI. Which woas to be ghem.

USE.

This Propofition ferves as a Lemma to the following, and alfo to demonftrate Prop. 47. It is the Foundation of the Method, generally made ufe of to find out the Area of a Triangle, which is to multiply the Bafe of the Triangle by its perpendicular drawn from the oppofite Angle, and to take the half of the Product; becaufe by multiplying the Bafe EF, of the Triangle EFI, by its Perpendicular IK, you have the Contents of a Rectangu1ar Parallelogram, as EFGH wou'd be, which is double the Triangle, as we have juft now demonftrated, which makes that the half of it is taken, to have the Area of a Triangle.

PROPOSITION.XLI. PROBLEM XII.

To deforibe a Parallelogram equal to a Triangle given, and baving an Angle equal to a given rigbt-lin'd Angle.
Eig. 74.: TO reduce the given Triangle ABC , into a Parallelo. gram, which hath one Angle equal to the given Angle D, divide its Bafe $A B$, equally in two at the Point E, per Prop. 10. and per Prop. 3 I: draw thro' the Angle C, oppofite to the Bafe $A B$, the indefinite Right-Line $C G$, parallel to the fame Bafe AB: Make by Prop. 23 . at the Point E, the Angle BEF, equal to the given D, and per Prop. 3I. draw thro the Point B , the Right-Line BG , parallel to the Line EF; and the Parallelogram EBGF, will be equal to the propos'd Triangle $A B C$.

DE

Explain'd and Demonftrated.

DEMONSTRATION.

If your join the Right-Line CE, it will be known per Prop. 38. that the two Triangles-CEA, CEB, are équal to each other, and that confequently the Triangle ABC, is double the Triangle CEB; and as the Parallelogram EFGB, is alfo double the Triangle CEB, per Prop. 4 r. it follows per $A x .6$. that the Parallelogram EFGB, is equal to the Triangle ABC . Which was to be done and demonArated.

USE.

This Propofition ferves as a Lemma to the following, and alfo to reduce a Triangle into a Rectangular Parallelogram, which will be done if you draw the Line EF, perpetidicular to the Bafe AB. From whence is deriv'd the common methiod of finding the Area of a Triangle, as of the Triangle $A B C$, which is to multiply the half $B E$, of its Bafe $A B$; by the Perpendicula: EF, which is equal to the Perpendicular which wou'd fall from the Angle C, upon the Bafe AB, for thus you have the Area of the Rectangular Parallelogram EFBG, which hath been demonftrated equal to the Triangle ABC .

We leave out bere, Prop. XLIII. XLIV. becaufe we can do without'em in the Refolution of what is to follow, and becaufe they are not of any conjderable ufe in Georatry.

PROPOSITION XLV.

PROBLEM XIII.

To defcribe a Parallelogram equal to a right-lin'd Figure given, and baving an Angle equal to a given. Angle.

IT is evident that if per Prop. 37. you reduce the given Plate 5: Rectiline into a Triangle, and that Triangle into Fig. 75. a Parallelogram, which hath an Angle equal to the given one, per Prop. 42. the Problem will be refolv'd.

PROPOSITION XLVI.

PROBLEM XIV.

To describe a square upon a given Line.

TO defcribe a Square upon the given Line $A B$, draw per Prop. II. from the two Extremities A, B, the two Lines $A D, B C$, equal and perpendicular each to the mme Line AB, and join the Right-Line CD, and the Pigre ABCD will be a Square, fo that its four Angles will be right ones, and its four Sides equal to each other.

DEMONSTRATION.

Since the two Lines $A D, B C$, are equal each to the fame AB, per confer. they will be equal to each other per Ax. x. and becaufe they have been made perpendicular to the fame AB, they will be parallel to each other, per Prop. 28. and per Prop. 33. the two Lines AB, CD, will be equal and parallel to each other. Thus the four Sides of the Figure ABCD, will be equal to each other. Which is one of the two things to be heron.

Since the Figure ABCD, is a Parallelogram, as we have just now difcover'd, the Angle C will be equal to its oppofite A, per Prop. 34. and confequently a right one, and likewife the Angle D, will be equal to its Oppofite W, and consequently a right one. Thus the four Anglee of the Figure ABCD , will be right ones. Which remained to be proved.

USE.

This Propofition ferves as a Lemma to the following Theorem, and ferves alfo for the Demonftration of al mont all the Popofitions of the Second Book, and upon many other Occafions.

PROPOSITION XLVII.

THEOREM XXXIII.

In Right angled Triangles the Square of the Hypotenufe is squal. to the Sum of the Squares of the two other Sides.

ISay, that the Square ABIH, defcrib'd upon the Hypotenufe, or upon the Side $A B$, oppofite to the Right-Angle C, of the Rectangular Triangle ABC, is equal to the Sum of the Squares ACDE, BCFG, de fcrib'd on the two other Sides AC, BC.

PREPARATION.

Draw from the Right-Angle C, the Line CKL perpendicular to the Hypotenufe $A B$, and join the righe Lines CH, CI, and AG, BE; for I fuppofe that per Prop. 46. a Square hath been defcrib'd upon each of the three Sides of the Rectangular Triangle ABC, whereof the Hypotenufe AB, is here fuppos'd 5 Feet, the Side AC, 4. and the other Side BC, 3. and then 'tis already feen by Experience, that the Square alone of the Hypotenufe $A B$, hath as many Square Feet, to wit, 25 : as the two other Squares contain together, for the Square of AC , contains 16, and the Square of BC, contains on which with 16, make 25. Let us fee at prefent the

DEMONSTRATION.

The two Triangles $\mathrm{ABG}, \mathrm{BCI}$, are equal to each other, per Prop. 4. becaufe they have the two Sides $A B_{8}$ BG , equal to the two BI, BC, and the compriz'd Angle $A B G$, equal to the compris'd Angle C.BI, each being compos'd of a Right-Angle, and of the common AcuteAngle $A B C$.

In like mannier the two Triangles $\mathrm{ABE}, \mathrm{ACH}$, are equal to each other, becaufe they have the two Sides $A B, A E$, equal to the two $A H, A C$, and the compris'd Angle CAH, equal to the compris'd Angle BAE, eacls
slate 5. Eig. 76.
being compos'd of a Right-Angle, and of the common Acute-Angle BAC:

Becaufe the two Angles ACB, ACD, are right ones, and confequently equal together to two right ones, it will be known per Prop. 14. that BCD is a right Line, and by the fame Reafon, it will be known that ACF, is a Right-Line, by reafor of the two Right-Angles BCA, BCF.

Becaufe the Triangle $A B G$, and the Parallelogramı BCFG, have the fame Bafe BG, and are between the fame Parallels AF, BG, the Parallelogram BCFG, will be double the Triangle $A B G$, per Prop. 41. It will be known in the fame Manner, that the Parallelogram KLIB, is double the Triangle BCI, becaufe they have the fame Bafe BI, and are between the fame Parallels CL, BI. From whence it is eafy to conclude, that as each of the two Triangles, ABG, BCI , which have been demonftrated equal, is the half of its Parallelogram, as it hath been demonftrated; their doubles, to wit, the Square BCFG, and the Parallelogram KLiB, are equal to each other.

It may be demonftrated in the fame Manner, that the Square ACDE, is equal to the Parallelogram AKLH, from whence it follows that the Sum of the two Parallelograms BKLI, AKLH, that is to fay, the fingle Square ABIH , is equal to the Sum of the two Squares BCFG, ACDE . Which was to be demonftrated.

This Demonftration fuppofes that the Line CKL, is parallel to each of the two BI, AH, which is evident per Prop. 28. becaufe each of thofe three Lines is per conftr. perpendicular to the fame Line AB .

USE.

This Propofition ferves not only for the Demonftration of the following, and of many others in the fucceeding Books, but it ferves alfo as a Foundation to a great Part of the Mathematicks. You will fee the Ufe of it in Trigonometry, for the Conftruction of the Table of Sines, Tangents, and Secants; and we will here teach the Ufe of it, for the Addition of Squares; and of other regular Figures, the Sides whereof and the Angles are equal, and alfo for the Addition of Circles.

Book. 1. Euclid's Elements Plate 6. Page 79

Explain'd and Demonftrated.

To find a Square equal to the Sum of the three given Plate 6. Squares AB, AC, AD, draw to the Side AD, the Per- ${ }^{\text {Eig. }}{ }^{780}$ pendicular DE, equal to the Side AC , and join the right Line AE, which will be the Side of a Square equal to the two Squares AD, DE, or AC , by reafon of the RightAngle D: Wherefore if you draw to the Side AE, the Perpendicular AF, equal to the laft Side AB, and joins the Right-Line EF, this Line EF will be the Side of a Square equal to the Sum of the three AB, AC, AD.

In like manner to find an Equilateral Triangle equal pig. 9 ? to the Sum of the two AB, AC, draw to the Side AC , the Perpendicular CD, equal to the other Side AB , and join the right AD, which will be the Side of the Equilateral Triangle $A D E$, equal to the two propos'd $A B, A C$, becaufe like Figures are between themfelves as the Squares of their homologous Sides. per 20.6. See 31. 6.
"Tis in the fame manner that feveral given Circles Eig. 800° are added together; as for Example, the two whereof the Semi-Diameters are AB, AC, to wit by drawing to the Radius AC , the perpendicular AD , equal to the other Radius AB , and by joining the Right-Line CD, which will be the Radius of a Circle equal to the two propos'd AB, AC, becaufe Circles are as the Square of their Diameters, or of the ir Semi-diameters; per 2.12.

LEMMA.

If upon two equal Lines two Squares are deferib'd, thofe two Squares will be equal to each other.

ISay, that if the two Sides $A B, E F$, are equal to each other, Plate s: the two Squares $A B C D, E F G H$, are alfo equal to eash Fig. $7 \%_{0}$ other.

DEMONSTRATION.

If you draw the two Diagonals, $A C, E G$, they will divine their Squares cqually in two, per Prop. 34. in Such manner that the Triangle $A B C$, will be the balf of the Square $A B C D$ and the Triangle EFG, the half of the Square EFGH; and becaufe thefe troo Triangles $A B C, E F G$, are equal to each of er: per Prop. 4. it follows that their Doubles, that is to fay, thes Squares $A B C D, E F G H$, are alfo equal to eachother. Which was to be fhewn.

Plate 6.
Fig. $8 x_{5}$

PROPOSITION XLVIII.

THEOREM XXXIV.

If in Triangle the square of one Side be equal to the Sum of the Sguares of the two other Sides, the Angle oppofite blat Side is a right one.

ISay, that if the Square of the Side BC, of the Trian gle ABC, be egual to the Sum of the Squares of the two other Sides AB, AC, the Angle A, oppofite to the firft Side BC, is a right one.

PREPARATION.

Draw per Prop. 11. the Line AD, perpendicular to AC and equal to the Side $A B$, and join the right $C D$.

DEMONSTRATION.

By reafon of the Right-Angle CAD, the Square of the Side CD is equal to the Square of the two other Sides AC, AD, of the Rectangular Triangle DAC, per Prop. 47. and becaufe the Side $A B$ is equal to the Side $A D$, per conftr. the Square of $A B$, will be equal to the Square of $A D$, per preceding Lemma. Thus the Square of $C D$, will be equal to the Sum of the Squares of $A B, A C$, and as this Sum is equal to the fquare of $B C$, per Sup. it follows that the fquare of $C D$, isequal to the Square of CB , and that confequently the two Sides CD, CB, are equal to each other. Wherefore per Prop. 8. the Triangles ADC, $A B C$, will be equal to each other, and the Angle CAB will be equal to the Angle CAD, and confequently a right one. Which was to be fberon.
USE.

This Propofition, which is the Inverfe of the Precedo ing, ferves to draw a Perpendicular through the Extremity of a Line given upon the Ground, as A, of the given Line AD, thus, Take from A, as far as E, upon the given Line AD, the Length of four Yards, and. faften at the Point A, a Cord 3 Yards long, and at the Point E, another Cord 5 Yards long. It is evident per

Friop. 48. that if you ffretch the two Cords, and join to- plate 6 . gether their Extremities, you will have the Point \mathbf{C} of fig . 8 z , the Perpendicular AC, becaufe 3, 4, 5 ; makes in Numbers a Rętangular Triangle.

Inftead of 3 Yards for AC, you may meafure it 5 , and inftead of 4 for AE you may take 12 ; and then inftead of 5 , you muft take 13, for the Cord, or Hypotenufe CE, becaufe $5,12,13$, is a Rectangular Triangle in Numbers. The like for others:

To find a Rectangular Triangle in Numbers, the Product of any two Numbers is one Side, the Difference of their Squares is the other side, and the Sum of the fame Squares is the Hypoterufe.

Thus by thefe two Numbers, 2, 3, which are call'd Generating Numbers, the double 12, of their Product 6, is the Side AE, the Difference of their Squares $4, \cdot 9$, is the Side AC, and the Sum 13, of the fame Squares 4. 9, is the Hypotenufe CE.

The SECOND BOOK of

EUCLID's Elements.

EUclid after having explain'd in the preceding Book, the Properties of the Parallelogram in general, treats in this, particularly of Rectangular Paralle. lograms, which are call'd by one only Name, Rectangles: Comparing together the Squares and the Rectangles which are form'd by a Right-Line vairoufly cut, and of its Parts.

Altho' this Book feems difficult, yet it will prove very eafy to him, who fhall examine with Attention its Propofitions, mof of the Demonftrations whereof will be conceiv'd by regarding fimply the Figure, being founded only upon this clear and evident Principle, which teaches us, that the whole is cqual to all its Parts taken to gether.

DEFINITIONS.

I.

The Rectangle contain'd under two Lines is that where Wis. I. thofe two Lines, which reprefent the Length and the Breadth thereof form a Right-Angle. Thus it is known, that the Rectangle $A B C D$, is compris'd under the two Lines $A B, A D$, which form the Right-Angle A, the Line $A B$ reprefenting the Lensth, and AD the Breadth.
A Rectangle is feldom other than imaginary, becaufe it fuffices that the Length of it AB , and the Breadth $A D$ is given, to conceive that of thefe two Lines $A B, A D$, it is polfible to form a Rectangle thereof, which becomes a Square, when thefe two Lines are equal to each other.
A Quantity of the Surface of a Rectangle, that is to fay, the Area of a Rectangle is meafur'd by little Squares, as by fquare Feet, or by fquare Yards, according

Book 2, Euciad's Elements Plate 1. Page \mathcal{S}_{2}

cording as the Length and the Breadth are exprefs'd in Fig. xo Feet or in Yards.

The Neceffity of this Meafure proceeds from a Surface being produc'd by the motion of a Line, which produces the Lines that compofe the Surface, by the infinite Number of Points, whereof the Line whicls ismov'd is compos'd ; as a Rectangle by the motion of a Line along another, which is perpendicular to it.

Thus if the Breadth AD, is compos'd, for example of three Points, that is to fay, of three Feet, by taking a Foot for a Point ; and if this Line AD, is mov'd along the Breadth $A B$, which we will fuppofe five Feet, by fill keeping at Right-Angles ; it will defcribe by its continual motion, Right-Lines, which will interfect at Right-Angles; and will make as many fquare Feet as you fee mark'd in the Figure, to wit 15 , which may be found compendioufly by multiplying the Length by the Breadth, that is to fay, five by three.

This is the reafon why the faid Rectangle is fometimes exprefs'd in Numbers, without being actually defcrib'd, to wit, by multiplying together the Numbers of the Meafures of the two Lines which form it, to fhew by the Product of the Multiplication, that the Rectangle, which is conceiv'd, made under thefe two Lines, hath as many fuch like fquare Meafures in its Superficies; and 'tis for this Reafon that the Number produc'd by the Multiplication of thefe two others, is call'd by Euclid, a Plane Number, whereof the two other Numbers which produce it, are calld the sides.

The Reafon of this Multiplication is evident, becaufe if the Length AB, be but a Foor, the Line AD, in paffing over that Foot of the Line AB, wou'd produce a Row of three fquare Feet ; but as the Length AB , is fuppos'd five Feet, the Line AD, in going over thofe five Feet, wou'd produce five Rows of three fquare Feet each, that is to fay, five times three fquare Feer, or 15 fquare Feet for the intire Superficies of the Reatangle $A B C D$.

Now as the Length $A B$, may allo be imagined to move along the Breadth AD, to produce the fame Plane ABCD , it is evident that the Length AB , by be ing mov'd one Foot, along the Line AD; will produce a Row of five.fquare Feet; and that in being mov'd three Feet, that is to fay, in going over the whole Line AD, ftill parallel to its felf, will produce three Rows of five fquare Feet, that is to fay, three times five fquare Feet, or fifteen fquare Feet as before, for the

Eig. I.

Eig I

Surface ABCD. Where you fee that two Numbers being multiplyed reciprocally, the one by the other, produce one and the Same Number. As here by multiplying 3 by 5, the fame Number is produced as by multiplying 5 by 3 , to wit, 15.

II.

If through a Point E, taken at difcretion, upon the Diagonal AC, of the Rectangle ABCD, you draw to the two Sides $A B, A D$, the two Parallels $F G, H I$, there will be form'd four little Rectangles, whereof the two DE, $B E$, through which the Diagonal paffes not, with the one of the other two, as with GI, form the Figure BCF, which is call'd Gnomon, becaufe it refembles a Carpenter's Square.

PROPOSITION I. THEOREM I .

If of two Right-Lines, the one is cut in as many Payts as your will, the Rectangle compris'd under thofe two Lines is equal to the Rectangles compris'd under the Line which is not dio vided, and under the Parts of that which is divided.
 be divided at the Points, E, F, the Rectangle $A B C D$, compris'd under thofe two Lines, is equal to all the Rectangles compris'd under the Line $A D$, which is not divided, and under the Parts $\mathrm{AE}, \mathrm{EF}, \mathrm{BF}$, of the divided Line $A B$. So that if the Line $A D$, is for example 10 Feet, the Line AB 12. and its Parts AE, 3, EF, 5, and BF, 4. the Rectangle in Numbers under thefe two Lines 12,10 , to wit, 120 , is equal to the Rectangle 30 , under AD, AE, thie Rectangle 50 , under AD, EF, and the Rectangle 40, under AD, BF.

PREPARATION.

Draw from the Points of divifion E, F, the RightLines $E G, F H$, perpendicular to the Line $A B$, the which will be parallel to each other, and to the Sides AD, BC, as is evident per 28. 1. and per 30 . I. by reafon of the four Right-Angles A, E, F, B, and more than that, they will be equal to each other per 34. I. by rea= fon of the three Parallelograms $A G, E H, F C$.

DEMONSTRATION.

Since the Rectangle AG, is made under the Line AD and the firlt Part AE, the Rettangle EH, is made under the Line EG , or AD , its equal, and the other Part EF, and the Rectangle FC, is made under the Line FH, or AD, its equal, and the laft Part BF; and fince thefe three Rectangles AG, EH, FC, agree with the Rectangle ABCD , to which per $A x$. 8. they are equal, it follows that the Rectangle $A B C D$, is equal to the Sum of all the Rectangles compris'd under the Line AD, and each Part of the other Line AB. Which wasas to be fhewn.

USE.

This Propofition ferves for the Demonftration of the ordinary Practice of Multiplication, at leaft when you multiply a Number compofed of feveral Figures, by another Number of a fingle Figure. For Example, wheri you wou'd multiply 312 by 3 , you muf take this Num ber 3 for the Line $A D$, and the firf Number 312, for the Line $A B$, and its Parts 300 for $A E$; 10 for EF, and 2 for BF , the which being multiplyed feparately by 3, you have 900 for the Rectangles AG, 30 for the Rect angle EH, 6 for the Rectangle FC, and the Sum 936, of thefe three Rectangles, give the Rectangle ABCD , for the Produet of the Multiplication.

In like manner to multiply $a+b-1-c$ by d, you muft take d for $A D$, and $a+b+c$ for $A B$, and its Parts a for AE, b for EF, and c for BF, the which being multiplied feparately by d, produces $a d$, for the Rectangle AG, bd for the Rectangle EH, $c d$ for the Rectangle FC, and the Sum $a d+b d+c d$ of thofe three Rectangles give the Area of the Rectangle $A B C D$, for the Product of the Multiplication.

The whole Practice of Multiplication, cannot be demonftrated by this Propofition nor the following ones, for when there is to be multiplyed together two Numbers compos'd each of feveral Figures, to demonftrate the ordinary Practice us'd in this Multiplication, there is need of a Theorem more general than the preceding, to wit, that the Rectangle under two right Lines cut as you pleafe, is equal to all the Rectangles made under the Parts of the one and the Parts of the other. That is to lay, if the Line $A B$, be cut at the Points E.F, and the Figo ? der tho fe two Lines is equal to all the Rectangles compris'd under the Parts of the Line AB, and the Parts of the Line AD ; as will be eafily feen by drawing from the Points of Divifion, perpendiculars to each Line.

PROPOSITION. II.

THEOREM II.

The Square of a Line divided as you will, is equal to all the Rectangles compris'd under the whole Line, and each of its Parts.

ALthough this Propofition be a Corollary of the Prem ticularly, after Euclid's manner.

If fay then, that if the Line $A B$, be divided for example in two Parts at the Point E, its Square $A B C D$, is equal to all the Rectangles compris'd under the fame Line $A B$, and each of its Parts. So that if the Part $A E$, is for example 3 . Feet, and the Part EB 5, fo that the whole Line AB or AD, be $8: F e e t$, in which Cafe the Square $A B C D$, will be 64 Feet fquare, becaufe that 8 multiplyed by 8 makes 64 , the which Number is equal to the Number 24 fquare Feet of the Rectangle AF, and to the Number 40 Square Feet of the Rectangle EC.

PREPARATION.

Draw from the Point of Divifion E, the Right-Line EE, perpendicular to the Line $A B$, which will divide the Square $A B C D$, in two Rectangles AF, EC, whereof the Sides $A D, E F$, wiil be equal to the Line $A B$.

DEMONSTRATION.

Since the Rectangle AF, is made under the firf Part $A E$, and the Line $A D$, equal to the Line $A B$; and Since the Rectangle EC is compris'd under the other Part EB, and the Line EF, equal to the fame Line AB : nad that the ie two Rectangles AF, EC, agree with the Square
Explain'd and Demonfrated.

Square ABCD , it follows per $A x .8$. that the Square Fig. 5o ABCD is equal to them. Which was to be fiemon.
US E.

This Propofition ferves for the Demonftration of Prop. 4. by a Method, which will ferve for the fecond Demonftration to Prop. 2. to wit, by Analyfis, thus,

If the Letter a be put for the Part AE, and the Letter b. for the other Part EB, fo that the whole Iine AB, or AD, be $a-1$, the Rectangle AF, will be $a a-1-a b$, and the Rectangle EC, will be $a b+b b$, and the Sum of thofe two Rectangles will be aat-2ab+bb for the Square ABCD, where you fee that this Square is equal to the two Squares aa, bb, of the two Parts AE, EB, and to the double Rectangle $2 a b$ under the fame Parts, as Prog. 4 . emports.

PROPOSITION III.
 THEOREM III.

If you divide at pleafure a Line in two; the Rectangle compris'd under the whole Line, and one of its Parts, is equal to the Square of that Part, and to the Rectangle under the two Parts.

JSay, that if the Line AB , be divided as you will in Fig. 6. E, the Rectangle $A B C D$, under that Line $A B$, and the Part $A E$, fo that $A D, A E$, be two equal Lines; is equal to the Square of the fame Part AE , and to the Rectangle under the two Parts AE, BE.

PREPARATION.

Draw from the Point of Divifion E , the right Line EF, perpendicular to the Line $A B$, the which perpendicular will be equal to the Part AE, becaufe it is parallel and equal to the Line $A D$, which is fuppos'd equal to the Part AE ; which makes that the Rectangle AF, is the Square of the Part AE, and EC the Rectangle under the two Parts AE, EB.

DEMONSTRATION.

Since the Rectangle AF is the Square of the Part AE; AE, BE, and fince thofe two Rectangles AF, EC, agree with the Rectangle ABCD , it follows per $A x$. 8. that the Rectangle $A B C D$, is equal to the Square $A F$, of the Part AE , and to the Rectangle EC, under the Parts $A E$, BE. Which mas to be demonfrated.

SCHOLIUM.

The Mind may be convinc'd of the Truth of this The orem without any Preparation, to wit, by Analyfis, by putting the Letter a for the Part AE, and the Letter b for the other Part BE, fo that the whole Line AB, be $a+b$, the which being multiplyed by AD or AE , or a comes $a a+a b$ for the Rectangle ABCD, the which is equal as you fee, to the Square aa of the Part AE, and to the Rectangle ab under the Parts AE, BE. Whbich was to be Jheven.

> U S E.

This Propofition may ferve for the Demonftration of the following; and alfo of Prop. 14. and is made ufe of upon feveral other occafions, for the ready and eafy demonftration of more difficult Theorems.

PROPOSITION IV.

THEOREM IV.

Tike Square of a Line divided in two at pleafure, is equal to the Squares of its two Payts, and to two Rectangles under the Same Paits.

TSay, that the Square $A B C D$, of the Line $A B$, cut as you will at the Point E, is equal to the Squares of the Parts AE, BE, and to two Rectangles under the Same Parts AE, BE. So that if the Part AE, is for example 3 Feet, and the Part BE, 6, fo that the whole Line $A B$ be 9 Feet, the Square $A B C D$, which will be - 8 I Feet fquare, becaufe 9 multiplyed by 9 makes 8 I, is equal to the Square 9 of the Part AE, to the Square 36, of the other Part BE, and to the two Rectangles 3nder the Pats AE, BE, that is to fay, to twice 18 of 1036

18 ${ }^{5}$

PREPARATION.

Having drawn the Diagonal AC, draw from the Toint E, the right EF perpendicular to the Line $A B$, and through the Point G, where it cuts the Diagonal AC , draw to the fame Line AB , the Parallel HI, the which with the firf EF, divides the Square ABCD, in four Rectangles, to wit, AG, BG, CG, DG.

DEMONSTRATION.

By reafon of the two equal Sides BA, BC, of the Triangle AB , per conftr. the two Angles $\mathrm{BAC}, \mathrm{ACB}$, will be equal to each other, per 5.1 . and each will be a femiright one per 32. I. becaufe together they make a right one, by reafon of the Angle B, which is a right one, fince it is the Angle of a Square.

It will be known in the fame manner that the two Angles DAC, DCA, of the Rectangular Ifofcele Triangle ADC, are each a femi-right one. From whence it fol lows per 32. I. that by reafon of the right Angles E, H, I, the Angles AGE, AGH, CGF, CGI, are alfo femiright ones, and confequently equal to each other, and per 6. I. that the two Lines AE, GE, are equal to each other, as well as the two AH, GH, and as the two GI, CI, and again as the two CF, GF.

Becaure the oppofite Sides of a Parallelogram are equal to each other, per 34 . I. it is eafy to conclude that the Rectangle AG, is the Square of the Part AE, that the Rectangle FI, is the Square of the other Pare BE, and that each of the two Rectangles BG, DG, is made under the fame Parts AE, BE, and fince thefe four Rectangles AG, FI, BG, DG, agree with the Square ABCD, it fol. lows by $A x .8$. that they are equal to it. What in was :o be demonfirated.

SCHOLIUM.

This Propofition may be demonftrated by means of the preceding, without the Diagonal AC, to wit, by making AH equal to the Part AE , and by drawing from the Point E the Line EF; perpendicular to the Line AB, and from the Point H the Line HI, perpendicular to the Line $A D$, and by reafoning in this manner.

The Rectangle AI, under the Line $A B$, and the Part $A E$ is equal to the Square AG of this Part AE, and to the Rectangle EI, under the Parts AE, BE, by Prop. 3. and likewife the Rectangle DI, under the fame Line $A B$, and the other Part BE is equal to the Square FI, of this Part BE, and to the Rectangle DG, under the Parts AE, BE; but the two Rectangles AI, DI, are together equal to the Square $A B C D$, as you fee: therefore the Squares of the two Parts AE, BE, with the double Rectangle under the fame Parts AE, BE, are alfo together equal to the Square ABCD. Which was to be demonjerated.

The Analyfis difcovers and demonftrates alfo at the珵再 time the Truth of this Theorem, for if you put the Letter for the Part AE, and the Letter b for the other Part BE , fo that the Line AB be $a+b$, by multiplying $a+b$ by its felf, that is to fay, by $a-b$, you have $a+2 a b$ $+b b$ for the Area of the Square $A B C D$, where you fee that this Area is equal to the Squares iva, $b b$, of the two Parts AE, BE, and to the double Rectangle $2 a b$ under the fame Parts AE, BE. Whichwas to be denionfrated:

U S E.

This Propofition ferves for the Demonftration of the following ones, and principally for the Demonftration of Prop. I2. It is the Foundation of the Method commonly us'd in finding the Square Root of a Number compos'd of more than two Figures. As if the Number be 529 , you muft confider this Number 529, as the Area of the Square $A B C D$, whereof the Side of the Square is fought in Numbers, which is that which is call'd Square Root, the which ought to have in this Example two Figures, which are reprefented by the Parts AE, BE.

When you take the fquare Root of 5 , which is equivalent to 500 , you have 2 or 20 for the bigger Part BE, whereof the Square is 4 or 400 , which is reprefented by the Square FI, being taken away from 529, which reprefents the Square ABCD, there remains 129, for the Gnomon FAI, which comprehends the two equal Rectangles FH, BG, and the Square AG of the Part AE, which reprefents the fecond Figure of the Root which is fought.

To find this fecond Figure, it is conceiv'd that thefe two equal Rectangles FH, BG, are fet in the right Line, to the end that together they fhould make a fingle Rectangle, whereof the Bafe will be 4 or 40 , to wit, the double

Explain'd and Demoinfrated.

double of the firf Figure found; becaufe this fingle Eig.7. Reitangle, with the Square AG, make a whole Rectangle, which is equivalent to 129 , if 129 be divided by the double 40, you'll find 3 in the Quntient for the fecond Figure of the Root which is look'd for, the which confequently will be equivalent to $20-53$, or 23 ; and when you have multiplyed the Divifor 40 by 3 , and fubftracted the Product i20, which is the Sum of the two equal Rectangles. DG, BG, there remains again. 9, for the Square AG, fo that from the Remainder 9, you ought to fubftract again the Square 9, of the fecond found Figure 3.

The indetermin'd Square $a a+2 a b+b b$, whereof the Square Root $a+b$ is fufficient to find the Square Root of a Number, as of the fame Number 529; for when from this Number 529, you fubftract the Square 400 , of the firt found Figure 20 , which the Letter a reprefents, it is as if from $a a+2 a b+b b$ you have fubftracted the Square $a a$, and then the remainder i 29 will be reprefented by the reft $2 a b+b b$, which thews that to find the fecond Figure, which the Letter b reprefents, you muft divide the Remainder by the double of the firft, by reafon of $2 a b, \& c$.

COROLLARY 1.

It follows from this Propofition, that the Diagonal of a Square divides each of the two oppofite Angles equally in two, and that the Rectangles through which it paffes, as EH, EI, are Squàres.

COROLLARYII.

It follows alfo that of any two Numbers, the Sum of their Squares with the double of their Product makes one fquare Number, to wit the Square of the Sum of thofe two Numbers.

PROPOSITION V. THEOREM V.

If a Right-Line is cut equally and unequally, the Rectangle compris'd under the unequal Parts, with the square of the Part between the two Section Points, is equal to the Square of half the Line.

ISay, that if the Line $A B$, be cut equally in two at fig. 8: the Point C, and unequally in two at the Point D, fo that the unequal Parts be $A D, D B$; the Rectangle compris'd
pris'd under tho fe two unequal Parts AD, BD, with the Square of the Part CD, terminated by the two lection Points C, D, is equal to the Square BCEF, of the half $B C$, of the Line $A B$.

That is to fay, that if the Line $A B$ is for example 12 Feet, and its half AC , or BC , consequently 6 , the intercepted Part CD, 4, and confequiently the great unequal Part AD 10, and the little Part BD, 2, the Rectangle 20, of thole two unequal Parts io, 2, with the Square 16 of the intercepted Part 4 , is equal to the Square 36 of the half σ, of the Line $A B$.

PREPARATION.

Having drawn the Diagonal BE, draw from the Point D, the Line $D G$, perpendicular to the Line $A B$, and through the Point I, where it' cuts the Diagonal $\mathrm{BE}^{\text {, }}$ draw the Line KL, perpendicular to the Line DG, and thole two Perpendiculars DG, KL, will divide the Square BCEF into four Rectangles, whereof the two CI, FI, will be equal to each other, by Prof. 4. and the two others DK, LG, will be Squares by the fame Prof. Raife again from the Point A , upon AB , the perpend icular AH, which meeting the Line KL, extended, in the Point H , will be per 34. I. equal to the Line BK, or to the unequal Part BD, infomuch that the Rectangle AI , is compris'd under the unequal Parts $\mathrm{AD}_{\text {, }}$ BD.

DEMONSTRATION.

Becaure the two Rectangles AL, CK, are compris'd under equal Lines, they will be equal to each other, as well as the two CI, FI, the which being join'd to the two preceding, each to each, fheweth that the Rectangle A, , under the unequal Parts AD, BD, is equal to the Gnomon FBL; and becaufe this Gnomon FBL, with the Square GL, of the intercepted Part CD, is equal to the Square BCEF, it follows that the Rectangle under the unequal Parts AD, BD, with the Square GL; of the intercepted Part CD, is also equal to the Square BCEF. Which was to be demonfrated.

Explain'd and Demonfrated.

SCHOLIUM.

Youmay difpenfe with the Square BCEF, and be contented with the Rectangle $\mathbf{A K}$, compris'd under the Line $A B$, and its little unequal Part BD, equal to BK. or AH , and the two perpendiculars have CL, DI, to have this demonftrated.

Becaufe the Square of the Line BC is equal by Prop. 4. to the Squares of the Lines CD, BD, and to the two Rectangles under the fame Lines CD, BD, that is to fay, to the double Rectangle CI, and that inftead of a Rectangle CI, and of a Square of the Line BD, that is to fay, of the Square DK, the fingle Rectangle CK, or CH, its equal may be put ; it is plain that the Square of the Line BC , is equal to the Square of the Line CD , and to the two Rettangles CH, CI, that is to fay to the fingle Right-Angle AI, under the unequal Parts AD, CD. Which was to be demonftrated.

This may alfo be very eafily demonftrated by Analy $\mathrm{fis} s_{3}$ thus,

If you put the Letter a for the half $A C$, or $B C$, and the Letter b for the intercepted Part CD, you will have $a+b$ for the greateft unequal Part AD, and $a-b$ for the leaft BD : and if you multiply thofe two Parts to gether AD, BD, or $a+b, a--b$, you will have, $a a-b b$, for the Rectangle under the fame Parts AD, BD, to which adding the Square $b 6$ of the intercepted Parr CD, you will have aa for the Sum of the Rectangle under the unequal Parts $A D, B D$, and of the Square of the intercepted Part CD, the which Sum, as you fee, is fully equal to the Square of the half BC . Which was to be demonftrated.

U S E.

This Propofition ferves to demonfrate Prop. 14. and alfo Prop. 35. 3. and to demonftrate the principal Prom perties of the Ellipfis, as may be feen in the Treatife that we have heretofore publifh'd concerning Lines of the \int econd kind.

It is the Foundation of all Quadratick Equations, on Equations of two Dimenfions, and of the Method that is commonly us'd to find the Square Root of a Binomial, where one of the Terms is a Rational Number, and the Square of the other alfo a Rational Number.
This Propofition ferves alfo to demonftrate, that the Product under the Sum, and the Difference of two unequal? Numbers, is equal to the Difference of their Squares; being"tis
evident that AD is the Sum, and BD thie Difference of two Numbers exprefs'd by the Lines AC, CD, and that the Excefs of the Square CF, of the greater Number BC, or AC, above the Square GL, of the leffer Number CD, to wit, the Gnomon FBL, is equal to the Rectangle under the Sum AD, and the Difference BD of the fame two Numbers, AC, CD; befides that this Rectangle hath been found in Letters to be aa-bb, to wit, the Difference of the Squares of the Numbers AC, CD, becaufe the Letter a hath been put for AC , and the Letter b for CD.

COROLLARY.

From whence it follows, that the Difference of two Squares is divijfble by the Sum or. by the Difference of their sides: which ferves to find by Calculation the Roots of Equations of two Dimenfions, as we have taught to= wards the end of our Treatife of Lines of the fecond kind.
It follows alfo that, if to the Product of two uncyual Numbers, the Sguare of half their Difference be added, there will be produced a Square Number: to wit, the Square of half their Sum; it being certain that as AC, or BC, is half the Sum of the two Quantities AD, DB , fo CD is half their Difference, becaufe as the greater AD , furpaffes the half AC , by CD , fo the lefs BD , is furpafs'd by the fame half AC , or BC , by the fame Quantity CD .

PROPOSITION VI.

THEOREM VI.

If a Right-Line be added to another divided equally in twio, the Rectangle compris'd under the whole Line, and under the added one, mith the Square of balf the divided Line, is equal to the Square of a Line comapos'd of the added one, and of half the divided one.

Fis. 9。

Say, that if to the Line $A B$, which is divided equally in two at the Point C , the Line BD be added to it, of what bignefs you will, the Rectangle under the whole Line $A D$, and under the added one $B D$, with the Square of the half $A C$, or BC, is equal to the Square CDEF, of the Line $C D$, compos'd of the half $B C$, and of that added $B D$.

That is to fay, that if the Line $A B$, is for example io Feet, and the added one $\mathrm{BD}, 2$, and confequently the half $A C$, or $B C, 5$, the compos'd one $C_{3} 7$, and the whols

Explain'd and Demonftrated.

whole one AD, 12 ; the Rectangle 24, under the Line Fig. s? AD and the Line BD, with the Square 25 , of the half $B C$, is equal to the Square 49, of the Line CD, which is 7 Feet.

FREPARATION.

Having drawn the Diagonal DF, raife from the Point B, the Line $B G$, perpendicular to the Line $A D$, and through the Point I, where it cuts the Diagonal DF_{3} draw the Line KL, perpendicular to the Line BG, and thefe two Perpendiculars BG, KL., will divide the Square CDEF, into four Rectangles CI, DI, EI, FI, whereof the two DI, FI, are Squares by Prop. 4. and the two others CI, EI, are equal to each other, by the fame. Again, from the Point A, erę AH perpendicular to $A B$, which will meet the Line KL, prolong'd at the Point H , and will make the Rectangle AL, equal to the Rectangle CI, and confequently to the Rectangle EI, fince thefe Rectangles have the fame Length and the fame Breadth.

DEMONSTRATION.

If to each of the two equal Rectangles AL, EI, the common Rectangle CK be added, you will have the Rectangle $A K$, equal to the Gnomon EDL, and if to each of thefe two equal Quantities, the common Square GL be added, you will find that the Rectangle AK, together with the Square GL, that is to fay, the Reatangle under the Lines AD, BD, together with the Square of the half BC, is equal to the Square CDEF. Which was to be demongfrated.

SCHOLIUM.

This Propofition may alfo be demonfrated very eafily by the new Analyfis, by putting the Letter a for the half $A C$, or $B C$, and the Letter b for the added Line $B D$, and then will be had $2 a$, for the Line $A B, a+b$, for the Line CD, and $2 a+b$ for the Line AD , and the Rectangle under AD and BD will be $2 a b+b b$; to which adding the Square aa of the half $B C$, you'll have $a a+2 a b$ $+6 b$ for the Sum of the Rectangle under the Lines $A D$, BD, and of the Square of the halfBC, which Sum $a+2 a b$ +66 is, as you fee, equal to the Squaxe of the Line $\mathrm{CD}_{\text {, }}$ which is equivalent to $a+b$, becaufe multiplying $a+\frac{b}{b}$
by $a+b$ there comes $a a+2 a b+b b$. Which was so be dessonjfrated.

> USE.

This Propofition ferves to demonffrate Prop. 1Y. and alfo Prop.36.3, and to demonftrate the principal Properties of the Hyperbola, as may be feen in the Treatije of Lines of the fecond kind, which we have publifh'd heretofore: It ferves alfo to refolve Equations of two Dimenfions, and upon feveral other Occafions.

COROLLARY

It follows alfo from this Propofition, that if to the Product of two unequial Numbers, you add the Square of half of. their Differences, the Sum woill be a Square Number, to wit, the Square of half the Sum of thote two Numbers: it being certain that as AC , or BC , is half the Difference of the two Quantities AD, BD, which reprefents the swo Numbers, fo CD is half their Sum, as will be known by adding to the greater Number AD, the leaft $B D$, in a Right-Line towards A, to have their Sum, whereof $C D$ will be the half.

PROPOSITION VII.

THEOREM VII.

The Square of a Line divided into two Parts at pleafure, with that of the one of its two Parts, are together equal to two Rectangles under that Line, and the fame Part, and to the Square of the other Part.

Fig. 10.

1Say, that the Square $A B D E$, of the Line $A B$, cut at pleafure, as fuppofe in the Point C, with the Square ACLK, of its Part AC, are together equal to two Rectangles compris'd under the Line AB , and the fame Pare $A C$, and to the Square of the other Part BC.

That is to fay, that if the Line AB, is for example 12 Feet, its Part AC, 5, and confequently the other Part BC, 7 , the Square 144 of the Line $A B$, with the Square 25 , of the Part AC, makes the Sum 169, equal to 120 , which is the double Rectangle under the Line AB , and the fame Part AC , and to the Square 49; of the other Part BC:

PREPARATION.

Fig $10{ }^{\circ}$
Having drawn the Diagonal BE, prolong the Line CL to \mathbf{F}, and through the Point G , where the Line CF cuts the Diagonal BE, draw the Line HI, perpenidicular to the Line CF, and thefe two Perpendiculars CF, HI, will divide the Square ABDE, into four Rectangles, whereof the two CI, FH, are two Squares, and the two others AG, DG, are equal to each other, by prop. 4.

DEMONSTRATION.

If to the two equal Rectangles $A G, D G$, the two equal Squares AL, FH, be added, the two equal Rectangles GK, DH, will be had, whereof each is compris'd under the Line AB," and its Part AC, fo that the Sum of thofe two equal Rectangles, that is to fay; the Figure DHL is equal to two Rectangles under the Line $A B$, and its Part AC ; wherefore if to each of thefe two equal Quantities you add the Square CI, then will the Figure DHL, with the Square CI, that is to fay, the Square $A D$ of the Line $A B$, with the Square $A L$, of its Part AC, are together equal to two Rectangles under the Line $A B$, and the fame Part $A C$, and to the
 frated.

SCHOLIUM.

This Theorem may be demonfrated by the new Analyfis, by putting the Letter i for the Part AC, and the Letter b for the other Part BC, and then you will have $a-1 b$ for the Line $A B$, and $a a+a b$ for the Rectangle under the Line AB, and its Part AC, and the double of this Rectangle will be $2 a a+2 a b$, to which adding the Square $6 b$ of the other Part BC, you will have $2 a a+$ $2 a b+b b$, for the Sum of the two Rectangles under the Line AB , and its Part AC , and of the Square of the other Part BC, the which Sum $2 a a+2 a b+b b$, is equal to the Sum of the Square $a a+2 a b+b b$, of the Line $\mathrm{AB}_{\text {, }}$ and of the Square an of the firft Part AC. Which was to be demongtrated.

USE.

This Propolition doth not feem of any great Ufe in the Mathematicks, and it feems as if Euclid put it here only as a Lemma to Prop. 13.

PROPOSITION VII.

THEOREM.VIII.

If a Line cut in Some Point ant pleafure is propos ${ }^{9}$, and ne of its Pants be added to it, the Square of the shole Line is equal to four Rectangles under the propos'd Line and under that Part, and to the Square of the other Part.
Eig. II Say, that if the Line AB be cut in C, as you pleafe, and you add to it the Line $B D$, equal to the Part, $B C$; the Square $A D E F$, of the whole $A D$, is equal to four Rectangles under the Line $A B$, and its Part $B C$, or: $B D$, and to the Square of the other Part AC.

That is to fay, that if the Line AB, is for example 7 Feet, its Part AC 5, and confequently the other Part: BC or BD_{2}, and the whole $A D_{9}$; the Square 8 I , of: this Line AD, is equal to the Quadruple of the Rectan. gle 14, under the Line $A B$, and the Part $B C$, or $B D$, to wit to 56 , and to the Square 25 of theother Part AC.

PREPARATION.

Having drawn the Diagonal DF, raife from the two Points B, C, the Lines BG, CH, perpendicular to the: Line AB , and through the Points I, K , where they cut the Diagonal DF, draw the Lines LM, NO, parallel to the Line AB; and the Square ADEF, will be found diovided into feveral Rectangles, among which the fix LH, $\mathrm{NG}, \mathrm{PQ}, \mathrm{PO}, \mathrm{BQ}, \mathrm{BO}$, will be Squares, whereof the: four laft PQ, PO, BQ, BO, will be equal to each? other, becaufe their Side are equal each to the Line BC , $0 \% \mathrm{BD}$.

Explain'd and Demonftrated.

DEMONSTRATION:

The Rectangles $\mathbf{A K}, \mathbf{N P}, \mathbf{E K}$, are equal to each other, becaufe they have one and the fame Length equal to the Line $A B$, and one and the fame Breadth equal to the Part BC, or BD : anid the Rectangle GI, with the little Square BO, make likewife together a Rectangle equal to one of the three preceding, becaufe they are equivalent to the fingle Rectangle GQ, by reafoin of the Square PO, equal to the Square BO. Thus you find precifely in the Square ADEF, four Rectangles under the Line $A B$, and its Part $B C$, or $B D$, and more than that, the Square LH, of the other Part AC. Which wious to be die mongfrated.

SCHOLIUM.

To demonftrate this Propofition by the new Analyfis; put as ufual, the Letter for the Part AC, and the Letter b for the other Part BC, or BD, and theni you have $a-1-b$ for the Line $\mathrm{AB}, 2 b$ for the Line CD , and $a+2 b$ for the whole Line AD, whofe Square aat $4 a b-1-4 b b$ is compos'd of the Quadruple $4 a b+4 b b$, of the Rectangle $a b-1-b b$ of the Line AB , and of the Part BC, or BD, and of the Square ai of the other Pars AC, Which sows to be demonftrated.

USE.

This Propofition ferves to make out feveral DemonIftrations in Geometry, and I have made very good ufe of it in my Treatije of Lines of the fecond kind, to demon. ftrate that the Focus of the Parabola is diftant from the Vertex of the Parabola, by a Quantity equal to the fourth Part of the Parameter.

COROLLARY I.

It follows from this Propofition, That if to quadruple the Prodult of any two Number's, the Square of their Difference be added, the Sum will be a Square Numbsr; to wit the Difference, by reaton of $B C$ equal to $B D$.

COROLLARY II.

It follows alfo that square is quadruple to another Square, when its Side is double the Side of that other Square: it being evident that the Square CM , whereof the Side CD is double the Side BD, of the little Square BO, is quadruple that Square BO, becaufe it comprehends four equal to it.

PROPOSITION IX.

THEOREM IX.

If a Line be cut equally and unequally, the Squares of the unc equal Parts, will. be together double the Sum of the Square of balf the divided Line, and of the Square of the Part terminated by the two Points of Divifion.

Rig. 12: Tay, that if the Line $A B$ be divided equally in the Point C , and unequally in the Point D , fo that the two unequal Parts be $A D, B D$; the Squares of thofe two unequal Parts AD, BD, are together double the Squares of the Lines AC, CD, taken together.

That is to fay, that if the Line $A B$, is for example ro Feet, the intercepted Part CD, 2, and confequently the half AC , or $\mathrm{BC}, 5$, the greateft unequal Part, $\mathrm{AD}, 7$, and the lefs BD, 3 ; the Sum 58 of the Squares 49,9 , of the unequal Parts AD, BD, is double the Sum 29, of the Squares 25 , 4, of the Lines, $A C, C D$.

PREPARATION.

Raife from the middle Point C, the right Line CE, perpendicular to the Line $A B$, and equal to its half $A C$, or BC , and join the Right-Lines AE, BE. Draw from the Point D, the Line DF, parallel to the Line CE, and from the, Point F, the Right-Line $F G$, parallel to the

Line CD, and you'll have the Parallelogram CDFG, Fig ${ }^{\text {t2 }}$, whereof the two oppofite Sides CD, FG, will be equal to to each other by 34. I. Laftly, join the Right-Lin AF。

DEMONSTRATION.

It will be known as in Prop. 4. that each of the acute Angles of the two Rectangular Ifofeles Triangles ECA, ECB, is a femi-right one; and confequently the whole Angle AEB, is a right one. It appears alfo by 29, 1 . and by 32. I. that the two acute Angles of each of the two Rectangular Trianglés EGF, FDB, is a femi-right one, and that by 6. I. thofe two Triangles are Ifofceles, that is to fay, that the Line EG, is equal to the Line GF, or CD, its equal, and the Line DF to the Line DB.

Becaufe by 47 . I. the Square of the Line AE, is equal to the Sum of the Squares of the two Lines AC, CE, which are equal to each other by confr. it follows that the Square of the Line AE, is double the Square AC, that is to fay the Square of the Line AC; and thus it is we thall difcourfe hereafter." It appears likewife that the Square EF, is double the Square GF, or CD. From whence it follows that the Sum of the Squares AE, EF, or by 47. I. the fingle Square AF, or again the Sum of the two AD, DF, or the two AD, DB, is double the Sum of the two AC, CD. Which pass to be demonffrated.

SCHOLIUM.

To demonftrate this Theorem by the new Analyfis, pue the Letrer a for the half $A C$, or $B C$, and the Letter b for the intercepted Part CD, the which being added to, and taken from the half AC, or BC, you will have $a+b$ for the greateft Part AD, whereof the Square is $a a+2 a b$ $+6 b$; and $a--b$ for the leaft Part BD, whereof the Square $a z--2 a b+b b$ being added to the preceding Square $a a+2 a b$ + 66 of the greateft Part AD, you will have $2 a a+2 b b$ for the Sum of the two Squares AD, BD, the which is double, as you fee to the Sum $a a+66$, of the Square $a x$ of the half AC, and of the Square 66 of the intercepted Part CD. Which was to be demongrated.

Eig. I3:
This Propofition ferves to demonifrate that the Squares of the verled Sine of an Angle of 45 Degrees, of the verfed sine of an Angle, which is the remainder of the precedent from a Semi-circle, that is to Say, 135 Degrees, are together triple the squiare of the Radius. That is to fay, if in the Semi-circle ABE, the Centre whereof is C, and the Diameter is $A B$, the Arch EB is 45. Degrees, and that from the Point E, you draw the right Line $E D$, perpendicular to the Diameter $A B$; the Squares of the Lines AD, BD; which are the verfed Sines of the Arches $\triangle \mathrm{AE}, \mathrm{BE}$, or of the Angles ACE , BCE , are together eriple the Square of the Radius AC.

DEMONSTRATION.

Since the Angle ECD, of the Rectangular Triangle CDE, is a femiright one, by sup. the Angle CED, will be alfo a remi-right one, by 32.1 . and by 6. I. the Lines $C D, D E$, will be equal to each other, and the Square of the Radius CE, or AC, being by 47 . 1. equal to the Squares of the two equal Lines $C D, D E$, will be double the Square of each. Thus inftead of double the Square CD, you may take the Square of the Radius AC.

Becaufe by prop.9. the Squares of the Lines AD, BD, are together double the Square of the Radius AC, and the Square of the intercepted Part CD, if in the Place of double the Square of this intercepted Part CD, you take the Square of the Radius AC, which has been demonftrated equal to it, it will appear that the Squares of the Lines $A D, B D$, are together triple the Square $A C$. which was to be demonftrated.

PROPOSITIONX.
 THEOREMX.

If one rigkt-Line be added to another equally divided, the Square of the Line compos'd of, the troo, with the Square of the added one, are together double the Square of balf the divided Line, and the Square of the Line compos'd. nf this. balf, and of the added one.

[^1]1Say, that if the Line BD be added to the Line $A B$, divided equally in two at the Point C, the Square of the whole Line AD, with the Square of the Line added $B D$, are together double the Square of the half $A C$ or $B C^{\prime}$
$B C$, and of the Square of the Line $C D$, compos'd of the Eigo x_{4}. half $B C$, and of the added one BD.
That is to fay, if the Line $A B$, is for example so Feet, and the added Line BD, in which Cafe the half AC , or BC will be 5 , the Line CD 8 , and the whole Line AD 13 ; the Sum 178, of the Square 169 , of the whole Line AD, and of the Square 9 , of the added Line. BD, will be double the Sum of the Square 25, of the half AC , or BC , and of the Squre 64 , of the Line CD , compos'd of the half $B C$, and of the added Line BD.

PREPARATION:

Raife from the Point C the Line CE, perpendicular to the Line AB , and equal to the half AC or BC , and join the Right-Lines AE, BE. Draw from the Point D, the Line DF, parallel to the Line CE, and from the Poine E the Line EF, parallel to the Life CD, and you'll have the Parallelogram CEFD, whereof the two oppofite Sides CD, EF, will be equal to each other, by 34. . 1 . Laftly, prolong the two Lines BE; DF, until they meet at the Point G, and join the Right-Line AG.

DEMONSTRATION.

It will appear as in Prop. 9. that the Angle AEG, is a right one, and, it will not be difficult to difcover that the two Rectangular Triangles BDG, EFG; are Ifofceles, that is to fay, that the Line DG is equal to the Line $\mathrm{BD}_{\text {, }}$ and the Line FG equal to the Line EF, and confequento ly to the Line CD.

It will appear likewife, as in Prop. 9. that the Square AE, is double the Square AC, and the Square EG double the Square EF, or CD. From whence it follows that the Sum of the two Squares'AE, EG, or by 47. 1. the fingle Square AG, or the fum of the two $A D, D G$, or of the two $A D, B D$, is double the fum of the two AC, CD. Which was to be demsonffrated.

SCHOLIUM.

To demonfrate this Propofition by the new Analyfis, put the Letter a for the half AC, or BC, and the Letter b for the added Line BD; in which Cafe you will have 7a for $A B ;$, 6 for $C D$, and $2 a+b$ for the whole line

AD, whore Square $4 a m+4 a b-1-b b$ being added the Square $b b$ of the added Line BD, the Sum $4 a \alpha-1-4 a b+2 b b$ is, as you fee, double the Sum $2 a a+-2 a b+b b$ of the Square am of the half AC, and of the Square $a a+2 a b+b b$ of the Line CD, compos'd of the half and of the added Line. Which was to be provid.

USE.

This Propofition may ferve to demonftrate that, the Sum of the Squares of the verfed sine of an Angle of 60 Dee
Fig: grees, and of the ryerfed Sine of an Angle which is the Remainder of the preceding to i Semi-circle,-that is to Say, 120 Degrees, is to the Square of the Radius, as 5 to 2. That is to fay, in the Semi-circle ABEF, the Centre whereof is C, and the Diameter is AB , the Arch AF is 60 Degrees, and that from the Point F, you draw the right $F G$, perpendicular to the Diameter $A B$; the Sum of the Squares of the Lines AG, BG, which are the verfed Sines of the Arches AF, BF, or of the Angles ACF, BCF, is to the Square of the Radius BC, as 5 to $\%$, or the Square of the Radius BC, is to the Sum of the Squares of the verfed Sines AG, BG, as 2 to 5.

DEMONSTRATION.

Becaufe the Point C is the Centre of the Semi-circle ABE , the two Sides CA, CF, of the Triangle ACF , are equal to each other : and the Angles CAF, AFC, will be likewife equal to each other, by $5: 1$ and becaufe the Angle ACF is 60 Degrees by sup. the two others CAF, $A F C$, will be together 120 Degrees by 32. I. and cono requently each will be 60 Degrees, becaufe the half of 120 is 60 . Thus the three Angles of the Triangle AFC, will be equal to each other, from whence it follows by prop. 6. that this Triangle is equilateral, and confequently the Perpendicular $F G$ divides the Bafe $A C$ equally in two, becaufe the two Rétangular Triangles AGF, CGF are equal to each other, by 26. I.

Becaufe the Line $A C$ is divided equally in two at the Point G, and that the Line BC is added to it, it follows by Prop. 10. that the fum of the Squares of the whole AB, and of the Line added EC, is double the fum of the Squares $A G, B G$; and as the line $A B$ is double the line $B C$, the $S q u a r e ~ A B$ will be quadruple the Square BC, by Corall. Prap. 3 , and the fum of the fame Squares $A B, B C$ will confequetly be quigtuple the Square BC. From Whence

Explain'd and Demonftrated.

whence it may eafily be concluded, that the quintuple of Eig. 53. thie Square of the Radius $B C$ is double the Sum of the Squares of the verfed Sines AG, BG, and that confequently the Square of the Radius BC, is to the Sum of the Squares of the verfed Sines $A G, B G$, as 3 is to 5 . Which was to be demonftrated.

PROPOSITION XI. PROBLEMI.

To cut a given Right-Line in two fuch Part's, that the Rectapiz gle under the whole and one of its Parts, be equal to the Square of the otber Part.

TO divide the given Line $A B$ in the Point H, for Ex- Fig $\overline{\text { Bg }}$ ample, fo that the Rectangle under the Line $A B$, and its Part BH, be equal to the Square of the other Part AH ; defcribe by Prop. 46. 1. upon the Line $A B$ the Square $A B C D$, and having divided the Side $A D$ equally in two at the Point E, fet the Length of the Line EB, upon the prolong'd Line $A D$, from \mathbf{E} to \mathbf{F}, upon the Line AF, defcribe the Square AFGH, which will give the Point H required. So that if the Line $G H$ be extended to I, the Rectangle BI will be equal to the Square AG.

DEMONSTRATION.

Becaufe the Line $A D$, is divided equally in two at the Point E, by conft. and that the Line AF is added to it, it is plain by Prop. 7. that the Rectangle under the whole DF and the Line added AF, that is to fay, the Rectangle $D G$, with the Square of the half AE, is equal to the Square EF or EB, that is to fay by 47. 1. to the two Squares AE, AB taken together; wherefore if your take away from each Side the Square AE, there will remain the fingle Rectangle DG equal to the fingle Square $A B C D$; and if from thefe two equal Plaries you fubftract the common Rectangle AI, it will appear that the, Square AG is equal to the Rectangle BI. Which was to be done and demonftrated.

SCHOLIUM.

This Line AB, thus divided in H, is faid by Euclid, Def. 3. 6. to be cut in rrean and axtream proportion; and the Part than $A E$, half of $A B$, by Reafon of $A B$ lefs by Prop. ig. 1. than EB , or than EF , and by fubfracting from thofe unequal Quantities $A B, E F$, the equal ones $A H, A F$, there remains BH , lefs than AE .

USE.

Among the different Ufes of this Line thus cut, we Hig. is. will only fay in this Place that it ferves to infcribe in a Circle a Regular Pentagon, and alfo a regular Pentedecagon, that is to fay, a regular Polygon of fifteen Sides; as will be taught in Prop. Ix: and I6. of Book 4 .

It is likewife very fuccefffully us'd to find the Sines of an Arch of 18 Degrees, becaufe. we fhall fhew in Prop. 10. 4. that the greater Part AH, is the Side of a regular Decagon infcribable in a Circle, whofe Radius is $A B$, and confequently is the Chord of an Arch of 36 Degrees ${ }_{2}$ whofe half is the Sine of is Degrees. But to find this Chord AH, fuppole the whole Sine AB, to be 100000 Parts, and confequently its half AE , will be 50000 , add zogether the Square 10000000000,2500000000 of thofe two Lines, and the Sum-12500000000, will be by 47 . I. the Square BE, wherefore by taking the Square Root of this Sum, you will have 1 Ir805, for the Line BE, or EF its equal, from whence fubftracting the Line AE, which is equivalent to 50000 , you will have 61803 for AF, or for the Chord AH of 36 Degrees, whofe hale 3ogor is the Sine of I8 Degrees.

PROPOSITION XII.
 THEOREM XI.

in obtufeangled Triangles, the Square of the Side, oppoite to the obtufe Angle, is equal to the sum of the Squares of the ?wo other Sides, and to two Rectangles equal to each other, zobereof each is compris'd, under one of the two sides of the - obtufe Angle, and the Part of tbat produc'd Side, intercepted between the obtufe Angle and the perpendicular drawn from the oppgite Angle upon the Same Side.

2ig. 0.0

1Say, if from the acute Angle C, of the Amblygon or obtufe-angled Triangle ABC, you let fall upon its produc'd oppofite Side $A B$, the Perpendicular $C D$, the Square of the Side $A C$, oppofite to the obtufe Angle B_{2}. is equal to the two Squares $A B, B C$, and to two Rect- under the Side $A B$, and the Part $B D$, terminated by the obtufe Angle B, and by the Perpendicular CD.

That is to fay, if the Side $A B$, is for example 4 Feet, the Side BC 13, the Side AC, 15 , and the Part BD, 5 , in which cafe the Perpendicular CD will be I2 Feet; the Square 225 of the Side AC is equal to the Sum of the Square i 6 , of the Side AB, of the Square 169 of the Side BC , and of 40 the double of the Rectangle 30 , under the Side $A B$, and the Part $B D$.

DEMONSTRATION.

Forafmuch as by Prop. 4. the Square AD is equal to the Squares AB, BD, and to two Rectangles under AB , $B D$, if to thefe two equal Quantities you add the Square CD, it will appear that the Sum of the two Squares AB, CD, or by 47.3 . the fingle Square AC, is equal to the Square $A B$, to the Sum of the two Squares $B D,{ }^{\circ} \mathrm{CD}$, that is to fay, by 47. 1. to the Square BC, and to two Rectangles under AB, BD. Which was to be demoonflifated.

SCHOLIUM.

To render the Demonftration of this Theorem plainer, make upon CD, the Square CE, upon AD, the Square $A G$, upon $B D$, the Square $B E$, and upon $A B$, the Square BK , and produce the Side BL, as far as H : and then it will appear that each of the two Rectangles HK, HF; is made under $A B, B D$, and thofe togerher with the Square BK, and the two Squares BF, CE, that is to fay, by 47 . I. the Square BC, are equal to the two Squares $A G, C E$, or by 47. . . to the fingle Square AC.

USE.

This Propofition ferves to difcover when there is arf obtufe Angle in a Triangle, whofe three Sides are known, to wit, when the Square of the Side oppofite to that Angle fhall be greater than the Sum of the Squares of the two other Sides.

It is us'd alfo to difcover the Quantity of the Perpendicular of an obtufe angled Triangle, when it falls without, which always happens when it falls from one of the acute Angles, as we have fhewn in Prop. 17. This Perpendicular, as CD, will be found by the means of the three known Sides of the Triangle $A B C$. Thus,

Becaufe

Becaufe we have fuppos'd the Side AB_{4} Feet, the Side BC 13, and the Side AC 15, the Square of AC will be 225 , the Square of $A B$ will be 16 , and the Square of $B C$, will be 169 , the Sum of there two laft, 16 , 169 , will be I85, the which being fubftracted from the firft 225 , there will remain 40 , whofe half 20 , will be the Rectangle under AB, BD : wherefore if you divide this Rectangle 20, by its Breadth AB , which is fuppos'd 4 Feet, you will have 5 Feet, for its Length BD, whofe Square 25, being taken from the Square 169, of the Side BC, there will remain 144, for the Square of the Perpendicular CD, by 47. r. wherefore if you take the Square Root of this remainder, 144, you will have 12 Feet, for the Perpendicular CD.

PROPOSITION XII.
 THEOREM XII.

Ins any Rectilinear Triangle what Soever, the Square of the Side oppofite to an acute Angle, with two Rectangles compris'd under the Side upon which falls the perpendicular from the oppofite Angle, and under the Part compris'd between the perpendicular and the acute Angle, is equal to the Sum of the Squares of the two other Sides.

ISay, if in the Triangle ABC, the Angle B is acute, the Square of the Side AC, oppofite to that acute Angle B, with two Rectangles compriș'd under the Side $A B$, and the Part $B D$ compris'd between the acute $A n^{\prime}$ gle B, and the Perpendicular CD, which falls from the Angle C, oppofite to the Side AB, is equal to the Sum of the Squares of the two other Sides AB, BC.

That is to fay, if the Side AB, is for example 14 Feet, the Side BC, 13, the Side AC, 15, and the Part BD, 5, in which cafe the Perpendicular CD will be 12. Feet, the Sum 365 of the Square 225 of the Side AC, and 140 the double of the Rectangle 70 , under $A B$ and $B D$, is equal to the Sum of the Square 196 of the Side $A B$, and of the Square 169 of the Side BC.

DEMONSRATION.

Eecaufe that by Prop. 7. the Sum of the two Squares $A B, B D$, is equal to the Sum of the Square $A D$, and to the doubleRectangles under $A B, B D$, if you add to each

Side the Square of the Perpendicular CD, it will appear Fig. x . that the Sum of the Square $A B$, and of the two Squares $B D, C D$, that is to fay, by 47.1 . of the Square $B C$, is equal to the Sum of the two Squares $A D, C D$, or by 47. 1. of the fingle Square AC, and of the double Recto angle under AB, BD. Which was to be demonfrated.

SCHOLIUM.

To render the Demonftration of this Theorem plainer, defcribe upon $A B$ the Square $A E$, upon BD the Square DG, and produce the Side GH as far as I, and the Perpendicular CD as far as K ; and then 'twill appear that each of the two Rectangles DE, AG, is made under the Lines AB, BD, and that the Rectangle IK is the Square of the Line AD. We fhall take then the Square AD, for IK, and the double of the Rectangle under the Lines AB, BD, for the Sum of the two DE, AG; and as this Sum, with the Square IK, is equal to the Square AE, and to the Square DG, becaufe in the Sum of the two Rectangles DE, AG, the Square DG is taken twice, if to each Side you add the Square CD, it will appear that the Sum of the double Rectangle under AB, BD, and of the two Squares $A D, C D$, that is to fay, by 47.1 . of the fingle Square AC, is equal to the Sum of the Square $A B$, and of the two Squares $B D, C D$, or by 47 . I. of the fingle Square BC.

USE.

This Propofition ferves to difcover when a propos'd Angle is acute in a Triangle, whofe three Sides is known, which will happen when the Square of the Side oppofite to that Angle, is lefs than the Sum of the Squares of the two other Sides.

It is ufed alfo to find the Length of the Perpendicular of a Triangle, when it falls within, which will always happen, when each of the two Angles of the Bafe fhall be acute. This Perperidicular, as CD , will be found by means of the three known Sides of the Triangle $A B C$, thus,

Becaufe we have fuppos'd the Side AB ${ }_{14}$ Feet, the Side BC 13 , and the Side $A C 15$, the Square $A B$ 196, the Square BC will be 169 , and the Square AC will be 225 , the which being fubitracted from the Sum 365 of the two firf 196, 169 ; there will remain 140, whofe half go, is the Rectangle under $A B_{2} B D_{\circ}$, wherefore if you divida

The Elements of Euclid Book II.

 divide 90 by 14 , which is $A B$, you will have 5 , for BD_{2}. the Square whereof 25 , being fubftracted from the Square 169 of the Side BC, the remainder 144 will be the Square of the Perpendicular CD, by 47. I. Wherefore the fquare Root 12 of this Remainder 144 , will be the Quantity of the Perpendicular CD.
PROPOSITION XIV. PROBLEM II.

To reduce a Right-lind Figure given into a Square.

AS a Right-lin'd Figure may be reduc'd into a Rect angle by Prop. 45. 1. it is evident that to reduce a Right-lin'd Figure propofed into a Square, you need only know how to reduce a given Rectangle into a Square, as ABCD , thus,

Having produc'd one of the Sides, as $A B$ to E, fo that the Line BE be equal to the other Side $B C$, and having divided the whole Line AE into two equal Parts in the Point F, defcribe from this Point F, through the two Points A, E, the Semi-circle AGE, and produce the Side BC, as far as G. The Line BG will be the Side of a Square equal to the propos'd Rectangle $A B C D$.

DEMONSTRATION.

Forafmuch as the Line AE is cut in two equal Parts in the Point F, and into two unequal Parts in the Point B , the Rectangle under the unequal Parts AB, BF, that is to fay, AC, with the Square of the intercepted Part FB, is by Prop. 5. equal to the Square FE, or FG, that is to fay, by $47 . \mathrm{I}$. to the two Squares BF, BG, wherefore taking away the common Square BF, there remains the Rectangle AC, equal to the Square BG. Which was to be done and demonfrated.

SCHOLIUM.

Without producing the Side $A B$, divide it into two equal Parts in the Point I, and defcribe from this Point 1 , through the Points A, B, the Semi-circle AKB, and having taken the Line $A H$ equal to the Side $A D$, draw from the Point H, the right $H K$, perpendicular to the Side $A B$, and through the Point K, where the Circumference AKB is cut by the Perpendicular HK, draw to
the Point A, the Right-Line AK, whofe Square will be Figo 18 , equal to the Rectangle ABCD .

DEMONSTRATION.

Becaufe the Line $A B$, is cut into two equal Parts in the Point I, and into two unequal Parts in the Point H_{a} the Rectangle under the unequal Parts AH, BH, with the Square of the intercepted Part HI, will be by Prop. 5: equal to the Square of the half AI, or $I \mathrm{~K}$, that is to fay, by 47.1 . to the two Squares HK, HI ; wherefore if you take away from each Side the Square HI, there will re main the fingle Rectangle under the Lines AH, BH, equal to the fingle Square HK, and if to each of thefe two equal Planes you add the Square AH , it will appear that the fum of the Rectangle under the Parts AH, BH, and of the Square AH, that is to fay by Prop. 3, the prom pos'd Rectangle $A B C D$, is equal to the fum of the two Squares $A H, " H K$, or by 47 . to the fingle Square AK. Which pas to be done and demonfrated.

The Point H may happen to coincide with the Point I, to wit, when the Length $A B$ fhall be double the Breadth AD, in which cafe the Line HI, will be equal to o, which alters the Demonftration fo very little, that it is unneceflary to fay more of it.

US E.

This Propofition ferves for the Refolution of Prof. 25. 6. where this Problem is found refolv'd more generally.

The THIRD BOOK of

EUCLID's Elements.

EUclid explains in this Book the Nature and Properties of the moft perfect Figure of all, which is the Circle, by comparing the feveral Lines which may be drawn as well within as without its Circumference, by the different Angles which are form'd there, and by the Contacts of a Right-Line, and of the Circumference of a Circle, or of two Circumferences of Circles: and he gives the firf Principles of the In= ftruments which are ufed in Aftronomy, and in other Arts, which are hardly to be done without the Circle.

> DEFINITIONS。

I.

Equal Circles are thofe whore Diameters, or Semie diameters are equal to each other.
II.

A Right-Line is faid to touch a Circle, when it meets prate r : the Circumference of that Circle without making an Fig. I Angle with it, that is to fay, without cutting it, or without entering within, being produced as $A B$, and is call'd a Tangent.
III.

It is faid that two Circles touches ons another, when their

Book 3. Euclid's Elements Plate 1. Page 112.

cheir Circumferences meet without cutting each other，Figo zo bs A and B，

IV．

It is faid that two Right－Lines are equally diftant from the Eentre of a Circle，when the two Perpendiculars drawn from the Centre upon thofe two Lines，are equal to each other．Thus＇tis known that the two Lines $A B$ ，$C D$ ，Figg fin are equally diffant from the Centre E ，becqufe their Perpendicu－ lars $E F, E G$ ，are equal to each other．

$$
\mathrm{V}_{\mathrm{t}}
$$

The segment of a Circle，is a Part of a Circlle terminas Figi ted by a Right－Line and by a Part of the Circumfe． rence of the fame Circle ：as $A B C$ ，or $A B D$ ．
It is evident that when a Right－Line $A B$ fhall pafs through the Centre of a Circle，the two Segments ACB， ADB，will be equal to each other，becaufe each will be a Semi－circle．But as we have already faid in Def．8．I． we commonly underftand by the Segment of a Circle，a Part of the Circle greater than a Semi－circles as AGB，of lefs，as ADB ，

VI

The Angle of a Segment，is the mixcilinear Angis form＇d Eis sh by the Circumference of a Circle and the Right－Line， which terminates the Segment．Thus＂tis faid that the Angle of the Segment $A C B$ ，is the mix＇d Angle $B A C:$ and the Angle of the Segment $A D B$ ，is the mix＇d Angle efiD， or $A B D$ ．

It is evident that the Angle of a Segment lefs than a Semi－circle is Acute，that the Angle of a Segment equal to a Semi－circle is a Right－one，and that the Angle of ？Segment greater than a Semi－circle is obtufe．

VII．

The Angle in a Segment，is an Angle comprehended by Fig－कh swo Right－Lines，which begin from any Point in the Arch of the Segment，and end in the two Extremities of the Right－Line，which ferves for the Bafe to that Segment．Thus it is faid that the Rectilinear angle ACB is in the Segment $A B C A$ ，and that the Recililineqr Angle ADB 3）in the Segment ABDA．

It is evident that the Angle ACB，which is in the greater Segment ABCA is lefs than the Angle ADB， which is in the lefs Segment ABDA．It is faid that the Angle ACB is fubtended by the Arch ADB，and that in like manner the Angle ADB is fubtended by the Arch ACB．It is alfo faid that a Segment is capable of fuch an Angle，when the Angle in the Segment is equal ：to that Angle．

VIII．

Similar Segments of a Circle are thofe which are caa pable of equal Angles．

It may be faid in the fame manner that the fimilay Arches of a Circle，are thofe upon which are form＇d equal Angles at the Centre，or at the Circumference：：＇and we call that an Angle at the Centre which is made at the Centre of a Circle，or of a Regular Polygon，which is the fame as that of the circtimfrib＇d Circle．

IX．

The Sector of a Circle is the Part of a Circle，termina． ted by two Semi－diameters，and by a Part of the Cir－ cumference of a Circle：as the Figure $A B C D$ ，or the $F i=$ gure ABED．

The two Radij AB, AD ，mult not make one and the fame Right－Line，becaufe infteàd of a Sector would be a Semi－circle．So that a Sector of a Circle is neceffa－ rily greater or lefs than a Semi－circle，as ABCD ，or greater as $A B E D$ ．

X．

पig．7．It is faid that a Qudrilateral Figure is infcrib＇d in a Circle， when each of its angular Points touch the Circumfe－ rence of the Circle，as ABCD．

PROPOSITIONI． PROBLEMI．

To find the Centre of a given Circle．
Fig $8:$

TO find the Centre of a Circle，the Circumference whereof is ADBE，draw within any Line what－－ ever as $A B$ ，and having divided it equally in two at the Point C ，draw through this Point C ，the right Line DE，

Explain'd and Demonfrated.

 pendicular CE, the Centre of the Circle is to be found, ${ }^{\text {Eig. }} 8$. there needs no more than to divide it equally in two at the Point F, which will be the Centre required, as we thall demonftrate, by fhewing that the Centre of the Circle muft be in the Perpendicular DE.
PREPARATION。

Let us fuppofe that the Centre of the Circle is G, witho out confidering where that Point G falleth, and let us draw from this Point G, to the two Extremities A, Bs of the Line $A B$, and through its middle Point C, the Right-Lines GA, GB, GC.

DEMONSTRATION.

Becaufe the two Triangles AGC, BGC are equal to each other, by 8. I. fince they have the common fide GC, the fide GA, equal to the fide GB, by Def. of the Circle, and the fide AC, equal to the fide BC, by conffro the Angle GCB, will be equal to the Angle GCA, and thus each of its two Angles will be a right one, and confequently equal to the Angle DCB, which is alfo a right one by conftr. So that the two Angles DCB, GCB, being equal to each other, the Line CG falleth upon the Line CD , and confequently the Centre G is in CD , or DE . Which mas to be demonftrated.

COROLLARY.

It follows from this Propofition, that the Centre of a Circle is found in a Right-Line, which divides another Right-Line drawn in the Circle at Right-Angles, and into two equal Parts.

US E.

This Propofition ferves for the following ones, which: do fuppofe every where that the Centre of a Circle fought for is found.

Plate x. Fis 10.

PROPOSITION II.

THEOREM I.

A Right-Line drawn through two points, takcu at pleafure in the Circumference of Circle, is entively within the Civcle.

1Say that the Right-Line AB, drawn through the two Points A, B, taken at Pleafure in the Circumference of Circle, the Centre whereof is C , is quite within the Circle: that is to fay, that any Point whatever of this Line, as D , is nearer the Centre C , than one of the two Points A, B, which are in the Circumference.

DEMONSTRATION.

Having drawn the Right-Lines CA, CB, CD, it will appear that fince the Point C is the Centre of the Circle, the two lines CA, CB, are equal to each other, and that by 5. ․ the two Angles A, B, are equal to each other; and becaufe the Angle ADC, is exterior with regard to to the 'Triangle BDC, it is by 16.1 . greater than the interior oppofite one B, or than A its equal; wherefore by 19. I. the fide CA will be greater than the fide CD, and the Point D, confequently nearer the Center C than the Point A. Which pas to be demonftrated.

COROLLARY.

It follows from this Propofition, that a Right-Line doth not touch the Circumference of a Circle but in one Point, becaufe if it fhou'd touch it in two, it might: be drawn from one of thofe Points to the other, and for wou'd enter within the Circle, and confequently cut: its Carcumference, and not touch it.

U S E.

This Propofition ferves for feveral of the following; ones, which fuppofe that a Right-Line drawn from one: Point to another Point of the Circumference of a Circle, falis quite within the Circle; and it is upon this Foundation? one may demonftrate that a Sphere touches a Plane in ore Point only.

PROPOSITION. II.

THEOREM II.

Abstract

If tobe Diameter of Circle divides into two equal Parts, a Right-Line which paffes not through the Centre, it will sut it at Right-Angles ; and if it cuts it at Right-Angles, it will divide it into two equal Parts.

ISay firf, that if the Diameter CD of the Circle $A C B D$, cuts the Line $A B$, which does not pars thro ${ }^{*}$ the Centre F, into two equal Parts in the Point E, each of the two Angles CEA, CEB, will be right ones.

DEMONSTRATION.

If you draw the Radij AF, BF, it will appear by 8. 1. that the two Triangles FEA, FEB, are equal to eacl other, by reafon of the common Side EF, of the Radius AF, equal to the Radius BF, by Def. of the Circle, and of the Line AE, equal to the Line BE, by Sup. Wherefore the two Angles AEF, BEF, will be alfo equal to each other ; and confequently right ones. Which was to demonftrated.

I fay in the fecond Place, that if the Diameter CD_{3} be perpendicular to the Line $A B$, fo that each of the two Angles which are made at the Point E, be right ones, the Line AB will be divided into two equal Parts inn the Point E, that is to fay, the Sides AE, BE, of tre two Rectangular Triangles AEF, BEF, will be equal to each other, as appears by 26. I. by reafon of the two equal Angles A, B, by 5. I. and of the common Side EF, fimilarly pofited, or of the Side AF equal to the Side BF.

USE.

This Propofition ferves for the Demonftration of Prap. 4. 14. \& 35. and is us'd in Trigonometry, to demonfarate that the Chord of an Arch is double the Sine of the half of that Arch: as here, that the Chord $A B$, is double the Sine AE, of the Arch AD, which is equal to the half of the Arch ADB, as it may be feen eafily by Fraf. 28. by drawing the Chords $A D, B D$, which are equal to each
others

Plate x . Fig. 9. other, becaufe the Square AD, is by 47. I. equal to the two Squares AE, DE, or BE, DE, and that the Square $B D$, is alfo equal to the fame Squares BE, DE, by 47 . I. or. or without referring to Prop. 28. it is known that in the equal Triangles, AEF, BEF, the Angles AFE, BFE, are equal to each other, and that confequently the Arches AD, BD, which meafure' em , 'will be' alfo equal to eack other.

PROPOSITION IV.

THEOREM III.

Tro Right-Lines cutting eachotber in a Circle, in one Point which is not its Centre, do not cut one anotber equally.

Fig: in: Say, that if in the Circle ADBC, the Centre whereof is F , the two Right Lines, AB, CD, do interfect in a Point E, different from the Centre F, thefe two Lines $A B, C D$, do not cut each other into two equal Parts, that is to fay, although the two Parts of the one, as AE, $B E$, may be equal to each other, the two Parts of the other CE, DE, cannot at the fame time be alfo equal to each other.

DEMONSTRATION.

Since it is fuppos'd that the Line $A B$, is divided equally in two at the Point E; if you draw through this Point E, and through the Centre F, the Diameter GH, the Angle FEB, will be a right one, by Prop. 3. where fore the Angle FED, will be Acute; fo that if froin the Centre F, the Line FI is drawn perpendicular to the Line CD, this Perpendicular FI, will divide, by Prop. 4. the Line CD equally in two at the Point \mathbf{I}, which will be different from the Point E. Since then the two Parts CI, DI, are equal to each other, the two CE, DE, will be unequal. Which was to be derrongrated.

THEOREM IV.

Two Circles which cut each other, bave different Centres.

ISay, that the Centers E, F, of the two Circles $A B C$, ABD , which cut each other in A , are different, fo_{0} that they do not coincide together.

PREPARATION.

Join the two Centres E, F, by the Right-Line FD, without confidering whether this Line FD , be extended and continue it untilit cuts the Circumferences of two Circles at the Point CD. Again, imagine the RightLines EA, FA, drawn.

DEMONSTRATION.

Becaufe by Defin. of the Circle, the Line FA is equal to the Line FD, or FC-CD, and the Line EA to the Line EC , or $\mathrm{FC}-1-\mathrm{EF}$, the Difference of the two Lines FA, $E A$, will be equal to the Difference of the two $F C+C D$, EC-J-EF, that is to fay, of the two CD, EF, and becaufe the Line CD is a real one, the Difference of the two Lines FA, EA, will be alfo real, and the two Centres E, F, will be confequently different. Which was to bo demonfrated.

SCHOLIUM.

We have chang'd Euclid's Demonftration, to a direct one, becaufe the indirect ones do not enlighten the Mind fo well. Neverthelefs as this Demonftration depends upon fome Axioms as yet unmention'd, we fhall here explain in few Words: Euclid's Demonftration, which feems to me more eafy for Beginners.

If the two Centres E, F, did coincide together, fo that the Centre E , be common to the two Circles $\mathrm{AB}^{\prime} \mathrm{C}$, $A B D$, each of the two Lines EC, ED, wou'd be equal ro the fame Line EA," by Def. of the Circle, and confequently thefe two Lines $E C, E D$, wou'd be equal to eack other, that is to fay, the Part wou'd be equal to the Whole, which is abfurd, foc.

14 SE

late is. ELs. 52.

This Propofition ferves to demonitrate, that two Circumferences of a Circle cannot cut one another but in two Points, as you will fee in Prop. io.

PROPOSITION VI. THEOREM V.

Yin o Circles which touch one another within, bare not one at ho the Same Centre.

ISay, that if the two Circles $A B C, A D E$, touch at the Point A, they have not one and the fame Centre, as for Example F.

PREPARATION.

Draw from the fupposid common Centre F, to the Point of Contact A, the Right -Line FA, and another Right-Line what foever FD, cutting the Circumference of the great Circle at the Point D, and the Circumference of the little one at the Point B.

DEMONSTRATION.

If the Point F, were the common Centre to the two Circles $A B C, A D E$, the two Lines FB, FD, would be equal each to the fame Line FA, and confequently equal to each other, which is impoffible, because the Line $\cdot \mathrm{FD}$ is effentially greater than the Line FB. It is therefore impolfible that the Point F, thou"d be the common Cen are to the two Circles $\mathrm{ABC}, \mathrm{ADE}$. Whish was to be dea. mongtrated.

SCHOLIUM.

Euclid demonfrates this Propofition only in the Care when the two Circles touch one another within, because it is evident, that when they touch without, they cannot have one and the fame Centre.

> USE.

This Proposition serves to demonftrate Prop. ir . 12 : which fuppofe that Circles which touch one another within or without, have different Centres.

PRO.

PROPOSITION VIL

THEOREM VI.

hf from a Point other than the Centre, taken at pleafure upors the Diameter of Circle, be dramn feveral Right-Lines to the Circumference, the greateft of all the Lines is that Fart of the Diameter wherein the Centre is, and the leaff is the remainder of the Diameter. As for the other Lines, the neareft. to that which paffes through the Centre is greater than anothere which is more remote from it: and more than two equid Right-Lines cannot be drawn from that fanse Boint, on one Side and the other of the leaft or of the greatef.

1Say firft, that if upon the Diameter $A B$, you take any where, but on the Centre D, of the Circle AG, BF, Point at pleafure, as C , and if you draw feveral RightLines to the Circumference, as CE, CF; \&oc. the Line $C B$, wherein the Centre D is found, is the greateft of all, for example greater than the Line CE.

DEMONSTRATION.

Becaufe of the 'Triangle CDE, the two Sides CD, DE laken together, are greater thian the third CE, by $20 . z^{2}$. and the two CD, DE, are together equal to the Line $C B, b y$ reafon of the Radius DE equal to the Radius DB, by Def. of the Centre, it follows that the Line CB is greater than the Line CE. Which was to be demonftrated. It may be demonftrated in like manner, that the Line CB is greater than the Line CF, and than any other Line, which can be drawn from the Point C .

I fay in the fecond Place, that the Line CA, which is the remainder of the Diameter $A B$, is the leaft of all, for example lefs than the Line CE.

Plate 1.
Fig. I4.

DEMONSTRATION.
By drawing the Radius DF, it will appear as before, that in the Triangle CDF, the two Sides CD, CF, taken together are greater than the third DF, or DA, wherefore if you fubftract CD from each Side, it will appear that the Line CF is greater than the Line CA. Which roas to be demonftrated. This alfo is feen from the following Demionftration.

I fay in the third Place, that the Line CE, which is nearer the greateft CB , is greater than the Line CF, which is further from it.

DEMONSTRATION.

Becaufe the two Sides CD, DE, of the Triangle CDE , are equal to the two Sides CD, DF, of the Triangle CDF, and the compris'd Angle CDE is greater than the compris'd Angle CDF, the Bafe CE will be by 24. I. greater than the Bafe CF. Whicb ppas to be demonflrated:

Laftly, I fay that from the fame Point C, there cannot be drawn more than two equal Lines to the Circumference, as for example CF, CG, upon fuppofition that the Angles CDF, CDG, on both Sides are made equal.

DEMONSTRATION.

Becaufe the two Sides CD, DF, of the Triangle CDF, are equal to the two Sides CD, DG, of the Triangle CDG, and the compris'd Angle CDF equal to the compris'd Angle CDG, the Bafes CF, CG, will be equal to each other by 4 . 1 : and as all the lines which may be drawn on both Sides, will be either nearer CB, or more remote, and confequently greater or lefs than CF, or CG, it follows that there can be but two equal Lines drawn from it. Which remain'd to be demonftrated.

USE.

This Propofition is us'd in Afronomy, to demonftrate the different Diffances of a Planet from the Earth, and to fhew that it is the moft diffant from the Earth, that it can be, in its truc Apogaum, and as near the Earth as it can polibly be, in its truc Perigaum.

Explain'd and Demonfrated.

PROPOSITION VIII. THEOREM VII.

If from a Point taken at pleafure, without a Circle, you draws any Number of Right-Lines, terminating in the Concave Circumference of the Circle, the greateft of all is that which pafles thro the Centre: and that which is nearer it, is greater than another which is further off. On the contrary, of thife Lines which, fall on the Convex Circumference, that which being produc'd pafes through the Center, is the leaft of all; and that which is neareft it, is lefs than ansther which is snore remote. Lafly, take it either way, the lefs or the greater, there can't be drawn from that Same Point above two Right-Lines equal to one another.

WE underfand by the Concave Circumference that which regards the infide, and by the Convex Circumference, that which regards the outfide. This being fuppos'd, I fay firt, that if from the Point C , taken at pleafure without the Circle AFBG, you: draw feveral Right-Lines meeting the Circumference as well Concave as Convex; the Line CB which paffes thro' the Centre D, is the greateft of all thofe which come to the Concave Circumference, for example greater than than the Line CE.

DEMONSTRATION.

Becaufe by drawing the Radius DE, you have the Triangle CDE, the two Sides whereof CD, DE, are together greater than the third CE, by 20. I. and becande the two Sides CD, DE, are together equal to the Line $C B$, by reafon of the Radius DE equal to the Radius DB, by Def. of a Centre; it follows that the Line CB is greater than the Line CE. Which was to be demonftrated. In the fame manner may be demonftrated that the Line $C B$ is greater than the Line CF, and than any other that fhall be drawn from Point C.

I fay, fecondly, that the Line CE, which is nearer the greateft Line CB, is greater than the Line CF, which is fursther off.

DE-

Pate 1.
Wig 15

DEMONSTRATION.

By drawing the Radius DF, it will appear that fince the two Sides CD, DE, of the Triangle CDE, are equal to the two Sides CD, DF, of the Triangle CDF, and that the compris'd Angle CDE, is greater than the compris'd Angle CDF, the Bafe CE will be by 24. 1. greater than the Bafe CF. Which was to be demonftrated.

I fay, in the third Place, that the Line CA, which being produc'd paffes thro' the Centre D, is the leaft of thofe that can be drawn from the Point C to the Convex Circumference, for example lefs than the Line CI.

DEMONSTRATION.

Secaufe by drawing the Radius DI, you have the Triw angle CID, the two Sides whereof CI, DI, taken together, are greater than the Side CD, by 20. I. by ta* king away the equal Lines DI, DA, it will be found that the Line CA is lefs than the Line CI. Which was to be demonftrated.

I fay, in the fourth Place, that the Line CI, which is nearer to the leaft Line CA ; is lefs than the Line CH_{3} which is further off.

DEMONSTRATION.

By drawing the Radius DH , it will appear by 21. 1. that the two Sides CI, DI, of the Triangle CID, are to gether lefs than the two CH, DH, taken together; wherefore by taking away the equal Sides DI, DH, it is plain that the Line CI is lefs than the Line CH. With was to be demonprated.

I fay, fifthly, that from the fame Point C, you can draw but two equal Lines to the Concave Circumference, for example CE, CG, by fuppofing there be made on each Side the two equal Angles CDE, CDG。

DEMONSTRATION.

Becaule the two Sides CD, DE, of the Triangle CDE, are equal to the two Sides CD, DG, of the Triangle CDG, and the compris'd Angle CDE, equal to the comoris'd Angle CDG, the Bafes CE, CG, will be equal to each

Explain'd and Demonftrated.

each other by 4. r. And as all the Lines which can be Plate x . drawn one Side or the other, will be either nearer to or Fig, ${ }^{\text {s }}$, further from CB, and confequently greater or lefs than CE, or than CG; it follows that no more than two equal Lines can be drawn from thence. Which was to be demonftrated.

Laftly, I fay, that from the fame Point C, only two equal Lines can be drawn as far as the Convex Circumference, for example, CI, CK, fuppofing on each Side the two equal Angles CDI, CDK be made.

DEMONSTRATION.

Becaufe the two Sides CD, DI, are equal to the two Sides CD, DK, and the compris'd Angle CDI of the Triangle CID, equal to the compris'd Angle CDK of the Triangle CKD, the Bafes CI, CK, will be equal to each other, by 4. I. and a third equal one can't be drawn, becaufe according as it approaches more or lefs to the Line CA, it will be greater or lefs. Which ree. main'd to be demonffrated.

COROLLARY.

It follows from this Propofition, that the greatelt of the Right-Lines that can be drawn from the Point C, to the Convex Circumference of the Circle AFBG, is that which touches this Circumference, as CL, which touches it in L.

PROPOSITION IX.

THEOREM VIII.

The Point from whence three equal Lines may be drawn to tric Circumference of a Circle, is the Center of that Circle.

THis is a Confequence from Prop. 7. where it has bsen demonftrated, that from a Point which is not the Center of a Circle, you can't draw to its Circumference more than two equal Lines, and this Propofition is put here only to demonftrate the following.

PROPOSITION X.
 THEOREM IX.

The Circumferences of two Circles interfect only int two Pointso

TI is evident that the two Circles $\mathrm{ABC}, \mathrm{ADC}$, may cut each other in two Points, as A, C; becaufe if the Point E , is for example, the Centre of the Circle ABC , the Lines EA, EC, drawn from this Centre E, to the Points A, C, will be equal to each other: and as the Point E can't be the Centre of the Circle ADB, by Prop. 5. You have another Point E than the Centre of the Circle ADB, from which may be drawn to its Circumference, the two equal Lines EA, EC, which is poffible by Prop. 7. Where we have demontrated that there can't be drawn from the Point E, to the Circumference of the Circle ADB, more than two equal Lines; from whence it may be concluded, that the two Circles $A B C, A D C$, can't likewife cut each other in above two Points. Which was to be demongtrated.

US E.

This Propolition ferves, as we have already faid in Dechales's Euclid, to Shew that Equations of two Dimenfions, which may be all refolv'd by the Interfection of two Circles, have but two Roots, fince the Circumferences of two Circles cannot interfect but in two Points.

PROPOSITION XI.

THEOREM X.

If iwo Circles touch eath, other within, the Right-Line drawn thro' their Centres, being produc'd, will pafs thro' the Point where they touch.

Eig. 17°

1Say, that if thro the Centres I, G, of the two Circles $\mathrm{ABC}, \mathrm{ADE}$, whofe Circimferences touch each other within, you draw the Right-Line FG , and produce it, till it cuts the exterior Circumference ADE in A , and the interior $A B C$ in H; thefe two Circles will touch each. other in the Points $\mathrm{A}, \mathrm{H}_{2}$ that is to fay, thefe two

Book 3. Euclid's Elements Plate 2. Page 12,6.

Point A, H, do coincide, fo that their Diftance AH is Plate 2. infinitely little, and reduc'd to nothing.

PREPARATION.

Draw from the Centre F, any Right-Line whatever TD, which cuts the exterior Circumference in the Point D, and the interior in the Point B, and join the Right Line BD.

DEMONSTRATION.

Becaufe the two Sides FG, FD, of the Triangle FDG, are together by Prop. 20. I. greater than the third GD, or GA its equal, by taking away FG from each Side, it will appear that the Line FD is greater than the Line FA, and then by taking away the two equal Lines FB, FH, it will at laft be found that the Linc'BD is greater than the Line AH, what diftance foever this Line BD is from the Point of Contact : and as the Line BD approaching more and more to the Point of Contact, becomes fill lefs, fo that at the Point of Contact 'tis reduc'd to nothing, and yet remains greater than the Line AH, it muft neceffarily be that this Line AH is reduc'd to nothing, and that in the Point H , or A , where the two Circles $\mathrm{ABC}, \mathrm{ADE}$ touch each other. Which pass to be demonfrated.

SCHOLIUM.

We have here given a diref Demonftration, which confequently is different from that of Euched, as you thall fee, after we have faid, that if you produce the Line FG on the other Side towards E, the greatef Diftance CE of the two Circumferences ABC, ADE, is double the Difance FG of their Centres, becaufe if to the two equal Lines FA, FC, or FA, FG-1-CG, be added the common Line FG, it will appear that the Line GA, or $\mathcal{G E}$ is equal to ${ }_{2} \mathrm{FG}+\mathrm{CG}$, wherefore by taking away CG , it will alfo appear that the Line CE is equal to double the Line FG.

Ifay then, that if the two Circles $\mathrm{ABC}, \mathrm{ABE}$, touch Fig. ${ }^{8} \mathrm{8}$, each other within at the Point A, the Right-Line drawn through the Centre E of the Circle $A B C$, and through the Centre G of the Circle ADE, being continu'd, will pafs through the Point of Contact A, fo that it cannot go for example to Point D.

Plate 2. Ef. 18.

DEMONSTRATION.

For by drawing the Radij FA, GA, it will appear byi 20. I. that in the Triangle GFA, the two Sides GF, FA taken together, that is to fay, GF, FB, or the fingle: Line GB is greater than the third Side GA, or GD, which is impofible; it is likewife impoffible that the: Line FG, being produc'd, fhould pafs through any othert Point than the Point of Contagt A. Which poas to be deos monferated.

USE.

Hig. i7. This Propofition ferves to defcribe the Circumferences of a Circle, which touches the Circumference of anothert Circle in a given Point ; as if the Point A be given int the Circumference of the given Circle ADE, and your draw from the Centre G, of the given Circle, through, the given Point A, the Right-Line AG, upon which youl may chufe at pleafure a Point as F, for the Centre of the? Circle which will touch in A the propos'd Circle ADE,

PROPOSITION XIT.
 THEOREM XI.

If the Circumferences of two Circles touch each ot ber without, tho Right-Line drawn through their Centres, will pafs through the Point where they touch each other.

Fig. 39

1Say, that if thro the Centres G, H, of two Circles ABC, DEF, whofe Circumferences touch each other without, you draw the Right-Line GH, which cuts the Circumference $A B C$ at the Point A, and the Circumference DEF at Point D; thefetwo Circles will touch each other in the Points A, D, that is to fay, thefe two Points A, D, coincide, fo that their diftance AD is reduced to nothing.

PREPARATION.

Draw thro' the Point I, raken at pleafure without the two Circles ABC, DEF, and thro' their Centres G, H, the Right-Lines GI, HI, which will cut the two Ciro cumfererces ABC, DEF, in two Points, as B, E.

DE

Becaufe the two Sides GI, HI, of the Triangle GHI, are together greater than the third Side GH, by 20. I. If you sake from one Side the two Lines GB, HE, and from the other Side the two GA, HD, which are equal to the two preceding, it will appear that the Sum of the two Lines IB, IE, is greater than the Line AD; and as this Sum becomes lefs in Proportion as the Point I is nearer to the Point of Contact, fo that it is reduc'd to nothing at the Point of Contact, and yet remains greater than the Line $A D$; this Line $A D$ muft neceffarily be reduc'd to nothing, and the Point A, or D, be where the two Circles $\mathrm{ABC}, \mathrm{DEF}$, touch each other. Which was to be demone frated.

SCHOLIUM.

If this demonftration, which we have render'd direct Eis. 200_{0}° as much as" poffibly we cou'd, does not pleafe you, follow that of Euclid, which is indireat, as you'll fee.

I fay then, if the two Circles ABC, BDE, touch each other without at Point B, the Right-Line GH, drawn thro', the Centres G, H, of thofe two Circles, will paf's thro' the Point of Contact B, fo that it can't cut the Circumference $\mathrm{ABC}, \mathrm{BDE}$, for example at the two Points A, D.

DEMONSTRATION.

For by drawing the Radij BG, BH, it will be found by 20. I. that in the Triangle GBH, the two Sides GB, HB , or the two GA, HD, are together greater than the third Side GH, which being impoffible, it is likewife impoffible for the Right-Line GH, which joins the Centres G, H, of the two propos'd Circles, to pafs any where but thro' the Point of Contact. Which wafs to be demonferated,

USE.

This Propofition and the foregoing ferve to demono ftrate the following, which fuppofes that a Right-Line drawn thro' the Centres of two Circles that touch each other, does pafs thro' the Point of Contact, that is to fay? thro' the Poist where they touch each other.

THEOREM XII.

Two Circumferences of Circles touch each other only in one Point, wheiber it be within or without.

ISay, firf, that if the two Circles ABC, ABD, touchi each other within at the Point A_{3}, they cannot touch again in another Point, as B.

PREPARATION.

Draw thro the Centre E of the Circle ABC , to the Centre F of the Circle ABD, the Right-Line EF, which being produc'd will pafs thro' the Point of Contact A, by Prop. II. and draw thro the fame Centres E, F, to the other fuppos'd Point of Contact B, the right Lines BE, BF.

DEMONSTRATION.

It is known by 20. 1. that in the Triangle BEF, the Sum of the two Sides EB, EF, or EA, EF; or the fingle Line FA, wou'd be greater than the third Side FB, whicls being impoffible, becaufe FA, FB, are equal Radij, it is alfo impoffible that the two Circles $\mathrm{ABC}, \mathrm{ABD}$, which touch each other at the Point A, fhou'd touch again at Point B. Which was to be demonffated.

I fay, in the fecond place, that if the rwo Circles ABC , ABD , touch each other without, at Point A , they can't touch again in another Point as B.

DEMONSTRATION.

Having made a Preparation like the foregoing, it will be found by 20. I. that in the Triangle EBF, the Sum of the two Sides EB, FB, or EA, FA, that is to fay, the fingle Line EF, is greater than the third Side EF, which being impoifible, it is in like manner impoffible that the two Circumferences of the Circles $\mathrm{ABC}, \mathrm{ABD}$, which touch each other at the Point A, fhou'd again touch at the Point B. Which was to be demontrated.

SCHOLIUM.

There may be added to the Demonftration of each of Fig. 21, 220 thefe two Cafes, that if the two. Circumferences ABC , ABD, cou'd touch at Point A, and again at Point B, the Right-Line drawn through the Centres F, G. ought by Prop, II. I2. to pafs thro each of thefe two contact Points A and B, which is impolfible.

PROPOSITION XIV.

THEOREM XIII.

Equal Right-Lines drainn in a Circle, are equaliy diftant froms the Centre; and thofe that are equally diftant from the Centre, are equal to each other.

Wo Lines are faid to be in a Circle, when they are terminated each way in the Circumference, as $A B$, Fig à, $C D$; and I fay, firf, that if thefe two Lines $A B, C D$, are equal to each other, they are equally remote from the Centre E; that is to fay, by Def. 4. if from the Centre E, be let fall the two Perpendiculars EF, EG, which will divide them equally in two at the Points $F ; G, b y$ Prop. 3. thefe two Perpendiculars EF, EG, will be equal to each other.

DEMONSTRATION.

Having drawn the Radij, EA, EB, EC, ED, it will appear by 18. I that the two Ifofceles Triangles AEB, CED, are equal to each other, and that confequently the two Angles B, C, will be alfo equal to each other; fo that by 26. I. the two Sides EF, EG, of the two Rectangular Triangles EFB, EGC, are in like manner equal to each other. Which was to be demonfrated.

I Say, in the fecond Place, that if the two Lines $\mathbf{A B}$, $C D$, are equally remote from the Centre E, that is to fay, if their Perpendiculars EF, EG, are equal to eack other, thefe two Lines AB, CD, are likewife equal to each other, which we fhall demonftrate, if we thew that their halves BF, CG, are equal to each other.

DEMONSTRATION.

 Fig. 23 a

USE.

This Propofition ferves to demonitrate, that all the Perpendiculars, let fall from the Centre of a regular Polygon upon each of its Sides, are equal to one another, becaufe this Centre is the fame as the Centre of the Cirele circumfcrib'd, as you will better perceive, when you bave read the 4th Book, which treats of regular Polygons infcrib'd and circumfrrib'd round a Circle. We hall likewife make ufe of this Propofition, to demonftrate a Care of the following; and it may likewife be ufed to demonftrate that leffer Circles which are equally dijfant froma the Contre of the sphere, are equal to each other.

RROPOSITION XV.

THEOREM XIV.

Iff foreral Right-Lines be drawn in a Circle, the greateft of alt is the Dianneter, and that which is neareft the Centre, is grater than that which is further off.

Say firt, that the Diameter $A B$ of the Circle, whofe Centre is L , is the greateft of all other Right-Lines teat can be drawn in this Circle, for example greater thatiche Line CD , which is not a Diameter.

DEMONSTRATION.

If yousaw the two Radij LC, ID, then by 20 . 1. in the Triangle CLD, the Sun of the two Sides LC, LD, or $L A, L B$, that is to fay, the Line $A B$, is greater than the thinu Side CD. Whit was to bo demonforated. In the
fame manner 'tis demonftrable that the Diameter $A B$ is ${ }^{\text {Prats }} 2-$ greater than any other Line whatever, that can be Eis. 24. drawn in the Circle thro a Point which is not the Center.

I fay, in the fecond Place, that the Line EF, which is more remote from the Centre L , than the Line CD . is iefs than that Line CD, which is nearer it.

PREPARATION.

Draw from the Centre L, the Line LG, perpendicwlar to the Line CD, and the Line LH perpendicular to the Line EF; and as this Line LH is greater than the Line LG, becaufe its fuppos'd that the Line EF, is further from the Centre L, than the Line CD, take the Line LO equal to the Line LG, and draw thro' the Point \mathbf{O}, in the Line LH, the Perpendicular IK, which will be equal to the Line CD, by Prop. 14. Laftly, Draw the Radij LI, LK, LE, LF.

DEMONSTRATION.

Becaufe the two Sides LI, LK, of the Triangle ILK, are equal to the two Sides LE, LF, of the Triangle ELF, and that the compris'd Angle ILK, is greater than the compris'd Angle ELF, the Bafe IK, or CD its equal, will be greater than the Bafe EF, by Prop. 24. 1. Which res main'd to be demonjfrated.

USE.

This Propofition ferves to demonftrate in the Sphere, that the fmall Circles which are further off, from the Centre of the Sphere, are leffer, becaufe theis Diameters are deffer.

Eig. 25.

PROPOSITION XVI.

THEOREM XV.

The perpendicular Line drawon thro' the Extremity of the Dias meter of acircle, is wholly woithout the Circle; and every other Right-Line drawn between it, and the Circumference of the Circle cuts it, and enters woithin it.

JSay, firf, that if thro' the extremity A of the Dia meter AB, of a Circle whofe Center is E, you draw the Line $C D$, perpendicular to the fame Diameter $A B$; that Perpendicular CD is quite out of the Circle, fo that any Point whatever of this Perpendicular CD , as H_{2} is more remote from the Centre \mathbf{E} than the Point \mathbf{A}.

DEMONSTRATION.

If your draw the Right-Line EH, you will have the Reftangular Triangle EAH, whofe Hypotenufe EH is greater than the Side EA, by 19. I. becaufe it is oppofite to the Right-Angle A, which is the greateft by 32. I. Whence it follows that the Point H, is further from the Centre Ethan the Point A, which is in the Circumference, and that confequently the Line CD is quite without the Circle, fo that it touches the Circle in the Point A. Which was to be demonftrated.

Ifay, fecondly, that from the Point of Contact A, there can't be drawn below the Tangent CD, any RightLine, for inftance AF, which does not cut the Circumference of the Circle ; and which does not enterinto it.

PREPARATION.

Let fall from the Centre E, on the Line AF, the Perpendicular $E G$, which will cut the Line $A F$ in fome Place below the Point A, as in E, by reaton of the acute Angle EAF.

DEMONSTRATION.

Becaufe the Angle G is right, it will be the greater of the Angles of the Triangle EGA, by 32. 1. and by 19. I. the Hypothenufe EA will be greater than the Side EG. Whence it follows, that the Point G is nearer the

Explain'd and Demonftrated.

Centre E than the Point A, and fo the Line AF, cuts Plate 2. the Circle, and enters it. Which remain'd to be demon= Figo 250 Arated.

SCHOLIUM.

The Commentators of Euclid add to this Propofition, that the Angle of the Semi-circle, namely, that which the Diameter of a Circle niakes with its Circumference, as EAI, is greater than any Rectilineal Acute Angle whatever; which is evident from our Definition of the An gle, by the which it is known that the mix'd Angle EAI is equal to the right-lin'd Angle EAC, which is a right one.

They add likewife, tho unneceffarily, that CAI, which they have very improperly call'd Angle of Contact, is Tefs than any right-lind Angle whatever, and that confequently it is reduc'd to nothing, which is likewife evident, becaufe that is not an Angle, as we have obJerv'd in Def. 9. I.

USE.

This Propofition ferves for Prop. 33. and likewife to draw a Tangent thro a Point given in the Circumference of a given Circle; as if the Point A be given, you mult draw thro' this Point A, to the Centre E, the right AE, to which on the fame Point A erect the Perpendicular AD, which will be the Tangent requir'd. We fhall teach in the following Propofition the manner of drawing a Tangent, thro" a Point given without the Circle,

PROPOSITION XVII.

PROBLEM II.

Frosia given Point without a given Circle, to dram a Right. Line which touches its Circumference.
TO draw from the given Point A, without the given fig. $26_{\$}^{\circ}$ Circle ECG, whofe Centre is, 3 , a Right-Line, which touches the Circumference ECG: Draw thro' the given Point A, to the Centre B, the Right-Line $A B$, which here cuts the Circumference ECG, in the Point: C, throigh which draw to the Line $A B$, the indefinite Perpendicular CD, which will be terminated in D, by the Circumference of a Circle defcrib'd from the Center \mathbb{B}, thro' the given Point A. Laftly, draw from the Center B, thro' the Point D , the right BD , and thro' the Point E , where it cuts the Circumference ECG, draw to the giv'ru Point A, the right AE, which will bethe Tangent requird:

Plate $2 \cdot$
EM. 26.

DEMONSTRATION.

It is plain by 4. I. that the two Triangles $\mathrm{BAE}, \mathrm{BDC}$, are equal to each other, becaufe they have the two Sides $B A, B E$, equal to the two Sides BD, BC, and the comm mon compris'd Angle B, wherefore the Angle BEA will be equal to the Angle BCD, which being right, the Anim gle BEA will be alío right, and by Prop. 16. the RightLine AE will touch the Circle ECG in the Point E. Which was to be done and demonstrated.

US E.

The USe of Tangent Lines is very frequent in Trigon rometry; as well Spherical as Rectilineal; as alfo in Dopetricks, to determine the points of Reflexion upon a curved Surface, as well Concave as Convex. "Tic likewife made ufe of in Dealing, for the Defcription of the Babylenian and Italian Hours; and in Navigation, where we take a Tangent-Line for our Horizon when we obferve the Height of the Sun, or forme other Star. 'Ti aldo very commodiounly made fe of in Speculative Geometry, for the Quadrature of Curves, whereof you have an Example in the firf Theorem of our Planimetry, which will ferve for the Quadrature of the Circle, and of the Parabola We foal lay down in Prop. 31. another more effie Me. shod to draw Tangents.

PROPOSITION XVII.
 THEOREM XVI.

ARight-Line drawn from the Centre of the Circle, to a Point moliere another Right-Line touches its Circumference, is petpendicular to that other Right-Line.
-gig. 25°

ISay, that if the Right -Line CD, touches in the Point A, the Circumference of the Circle AIB, whore Cenre is E ; the Right-Line AE drawn tho the Point of Contact A, and tho' the Centre E_{2} is perpendicular to the Tangent-Line CD.

DEMONSTRATION,

For if the Line EA is not perpendicular to the Tame gent-Line CD, it will make with it on the one Side
an Acure-Angle, and on the other an obtufe one: if forex-Plate 2. ample you wou'd have the Angle EAC obtufe, you may Fig. 25: cut off the Right-Angle EAF, by the Line AF, which in this cafe being perpendicular to the Diameter $A B$, will touch the Circle at the fame Point A, where 'tis fuppos'd that the Line CD touches it by Prop. 16. and fo being quite out of the Circle, you may draw between the Tangent-Line AC, and the Circumference AIB, a RightLine, which is contrary to the fecond Cafe of the Prop. 16. Therefore there is no other Line perpendicular to the Diameter $A B$, than the Tangent Line CD. Which wass to be demonfatrated.

SCHOLIUM.

This Propofition may yet be demonftrated feveral other ways, among the reft I have chofen the following, which feems to me the plaineft and eafieft of all.
If the Line EA is not perpendicular to the TangentLine CD, let it be EH, fo that the Angle \mathbf{H} be a right one, in which cafe this Angle H will be the greateft of the three Angles of the Triangle EAH, by 32. 1. and by 19. I. the Side EA will be greater than the Side EH, and the Point. H will be within the Circle, and fo the Line CD will not be a Tangent-Line. There is not therefore any other Line perpendicular to the TangentLine CD , but the Diameter AB. Which was to be demonfirated.

This Demonftration is not direet, but it may be made direct, by faying that fince the Line CD touches the Circumference AIB, at the Point A, all its Points are further diftant from the Centre E than the Point A , and thus all the Right-Lines which fhall be drawn from the Centre E, thro all'thefe Points, will be larger than the Line EA, the which being the fhorteft of all, ought to be perpendicular to the Tangent-Line CD, by 8.1 , $\%^{\circ}$.

> USE.

This Propofition ferves for the Demonftration of the following, and likewife of Prop. 32 and 36.

PROPOSITION XIX.

THEOREM XVII.

-a Perpendicular drawn to a Right-Line which toucties a Cipa cle, at the Point of Contact, paffes thro' the Centre.

TSay, that if the Line $A B$, touches at the Point C, the Circumference of the Circle CDE, and if thro' the Point of Contact C, be drawn the Right-Line CF pere pendicular to the Tangent $A B$, the Centre of the Circle CDE is in the Perpendicular CF, or which is the fam shing, this Perpendicular CF paffes thro' the Centre:

DEMONSRATION.

For if it is fuppos"d that the Centre of the Circle is in G, and that you draw the Right GC, it will be perpendicular to the Tangent $A B$, by Prop. 18. and becaufe the Right-Line CF is alfo perpendicular to the Tangent $A B$, By sup. the two Angles BCF, BCG, being right ones, will be equal to each other, and the Line CG, will confequently agree with the Line CF. Whence it follows that the Centre of the Circle will be in the Line CF: Which was to be demonjtrated.

PROPOSITION XX.

THEOREM XVIII.

The Angle at the Centre is double the Angle at the Circumforence of a Circle, whon thefe two Angles fand on one and the fame Arch.

Eig. 28.

THe Angle at the Circumference, fo call'd, is that whole forming Lines are in a Circle, and whofe angular Point is in the Circumference of the fame Circle, as BAC, one of whofe Sides may be in a Right-Line with the Sides of the Angle at the Centre BDC, as in Fig.29. Orits two Sides may inclofe the Angle at the Centre, as in Fig. 28. Or one of its two Sides may cut one of the two Sides of the Angle at the Centre, as in Fig. 30. In

Book 3. Euclid's Elements Plate .3. Page 139.

all thefe Cafes, I fay, that the Angle at the Centre BDC Plate r 1 is double the Angle at the Circumference BAC.

Fig. 28.

Demonftration of the firf Cafe.

Becaufe the Angle in the Centre BDC is exterior with plate 3^{3} refpect to the Ifofceles Triangles ADB, it is by 32.1 Eig. 29. equal to the two oppofite interiors A, B, which being equal to each other by 5. I. it follows that the Angle at the Centre BDC is double the Angle at the Circumference BAC. Which was to be demonfrated.

Demongration of the fecond Cafe.
Having drawn from the Angle A, thro' the Centre D, Plaie 2 : the right ADE, it will appear as before, that the Angle Fig. 28. BDE is double the Angle BAE, and the Angle CDE double the Angle CAE. Whence it follows that the whole Angle BDC is double the whole Angle BAC. Which was to be demonftrated.

Demonftration of the third Cafe.

Having in like manner drawn the right ADE; it will Plate a? alfo be found as before, that the Angle $B D E$, is double the Angle BAE, and that the whole Angle CDE, is double the whole Angle CAE. Whence 'tis eafy to conclude that the remaining Angle CDB, is double the remaining Angle CAB. Which was to be demanfirated.

> USE.

> Fig st?

This Propofition ferves for the following, and may be of ufe in dividing a given Angle into two equal Parts, as $B A C$, to wit, by defcribing from the angular Point A, the Semi-circle DEF, and by drawing the right EF, which will make at F an Angle equal to half of the propos'd BAC, becaufe the Angle A is made at the Centre, and the Angle F at the Circumference, and both ftand upon the fame Arch DE.

PROPOSITION XXI.

THEOREM XIX.

Elate 3 :
Eige 32.33." The Angles which are in one and the fame Segment of Circles; are equal to each other.

THere may happen two Cafes, becaufe the Angles mayt be in a Segment greater than a Semi-circle, or in at Segment lefs than a Semi-circle. They may likewife be: in a Semi-circle; but this third Cafe will be demonftra-ted as the fecond; wherefore we fhall fpeak only of the: two firft.

Eig: 33°

I fay therefore, firf, that the two Angles D, C, whichs are in the Segment ABCD, greater than a Semi-circle ${ }_{2}$ are equal to each other.

DEMONSTRATION.

By drawing from the Centre E, the two Radij, EA, LB, it will appear by Prop. 20. that each of the two Anm. gles at Circumference C, D, is equal to half of the Angle at the Centre AEB , and that confequently thefe two Angles C, D, are equal to each other. Which was to be demonftrated.

I fay, in the fecond Place, that the two Angles C, D, which are in the Segment $A B C D$, lefs than a Semi-circle, are equal to each other.

DEMONSTRATION.

Becaure the two Angles CAD, CBD, are in the Segment CBAD greater than a Semi-circle, they are equal to each other by the preceding Cafe; and becaufe the two oppofite and vertical Angles AED, BEC, are alfo equal to each other, by 15.1 . it follows by 32. 1. that the Angles $\mathrm{ACB}, \mathrm{ADB}$, are equal to each other. Which reo maind to be demonftrated.

USE.

As it is taken for a Principle in Optics, That a Line $\begin{gathered}\text { Piate 3. } \\ \text { 3. }\end{gathered}$ appears always equal, when it is feen under equal Angles, it is manifeft from this Propolition, that the Line $A B$ ought to appear equal, being feen from the Points C, D, or any other Point whatever of the Arch ADCB . fince thus it is always feen under equal Angles.

This Propofition ferves alfo for the following; and to defcribe a great Circle whofe Centre cannot be had, which is extreamly ufeful in the Defcription of great Aftrolabes, which are made by the Principles of the Stereographical Projection of the Sphere; and likewife to give a Spherical Figure to Copper Tools, on which Glaffes for Telefcopes are to be ground and polifh'd. This great Circle is defcrib'd mechanically thus.

To defcribe for example, a Circumference of a Circle, thro' the three given Points A, B, C, you are to form upon Iron, or fome other folid Matter, an Angle ACB, equal to that which contains the Segment $A B C D$, and having put in the Points A, B, two Iron-Pins very firm, you muft move the Triangle ACB, the Sides whereof CA, CB, ought to be fufficiently long, fo that the Side CA touches the Pin A, and the Side CB the Pin B, and then the Point A will defcribe by this Motion the Ciro cumference ADCB.

Becaufe the Inverfe of this Propofition is likewife true, it may be of very good ufe to draw through a given Point a Line parallel to a given inacceffible Line on the Ground, as you fhall fee.

Through the given Point C, to draw a Line CE paral-Fig. 3 3. lel to an inacceffible given Line $A B$ upon the Ground, meafure with a Graphometre, or otherwife, the Angle ACB , and choofe upon the Ground the Point D, fo that the Angle ADB be equal to the Angle ACB , to the end that the four Points $\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{B}$, be in a Circumference of a Circle. After that, make at the Point C , with the Line CB, the Angle BCE equal to the Angle ADC , draw the Right-Line CE, which will be parallel to the given Line AB, by 29. I. becaufe the Angle BCE is equal to its alternate Angle ABC, equal by Prop. 2t. to the Angle ADC, fince each ftands on the fame Arch $\mathrm{AC}, \delta \mathrm{C}$.

PROPOSITION XXII． THEOREM XX．

The two oppogite Angles of a Quadrilateral Figure inforib＇d in Circle，are taken together equal to two Right－Angles．

ISay，that the two oppofite Angles BAD，BCD，of the Quadrilateral $A B C D$ infcrib＇d in a Circle，are taken together equal to two right ories，that is to fay，they are equal to the three Angles of a Triangle，namely of the Triangle BCD，which taken together are equivalent to two right ones，by 32．1．

DEMONSTRATION．

If you draw the two Diagonals $A C, B D$ ，it will appear by Prop．2I．that the Angle BDC，is equal to the Angle BAC，which ftands upon the fame Arch BC，and that in like manner the Angle DBC is equal to the Angle DAC， which fands upon the fame Arch CD：Whence it fol－ lows that the whole Angle BAD is equal to the Sum of the two Angles BDC，DBC ；wherefore by adding the common Angle $B C D$ ，it＇will appear that the Sum of the two oppofite Angles $B A D, B C D$ ，is equal to the Sum of the three $\mathrm{BDC}, \mathrm{DBC}, \mathrm{BCD}$ ，that is to fay，to two right ones．Which was to be demonfirated．

S CHOLIUM．

To be the more convinc＇d of the Truth of this Theos rem，you may confider that fince by Prop．20．the Angle at the Circumference is but half the Angle at the Centre， which is meafur＇d by the Arch that fubtends thefe two Angles，it follows that the Angle at the Circumference $B A D$ ，contains but half the Degrees of the Arch BCD， and that in like manner，the Angle $B C D$ contains but half the Degrees of the Arch BAD，and that confequent－ ly thefe two Angles RAD，BCD，contain together but half the whole Circle，or 360 Degrees，that is to fay， they make together 180 Degrees，or two Right－Angles． Which was to be demonfrated．

USE．

This Pronofition ferves to demonfrate Part of Prop． 3 and 32.

PROPOSITION XXIII. THEOREM XXI.

Tuo fimilar Segments of a Circle, defcrib'd on one and the fane Rigbt-Line, are equal to each other.

Say, that if the two Segments of a Circle ABCA, ABDA , are alike, fo that they comprehend the equal Angles $A C B, A D B$, they will be equal to each other.

PREPARATION.

Imagine the Segment ADB, applied on the Segment ACB , turning it towards C , round the common Bafe $A B$; and then you will find that thefe two Segments do not exceed each other ; that is to fay, the Circumference $A D B$ will fall no where but on the Circumference ACB ; and if you wou'd have it reach AEB , produce the Line AC as far as E ; and join the Right-Line BE.

DEMONSTRATION.

Since you wou'd have the Segment AEB, be the fame as the Segment $A D B$, which is fuppos'd equal to the Segment ACB, the Segment AEB muft too be-equal to the Segment ACB ; and confequently the Angle E. be equal to the Angle ACB; per Def. 8. which being impoffible; becaufe the Angle ACB exterior, is greater than the oppofite interior \mathbf{E}, by .16. 1. it is alfo impoffible that the Segment ADB fhould fall any where but on the Segment ACB. Whence it follows 'that the two Segments $\mathrm{ACB}, \mathrm{ADB}$, are equal to each other, Which woss to be demongtrated.

Plate 3. Eig 3 3 。

PROPOSITION XXIV. THEOREM XXII.

Troo like Segments of a Circle, defcrib'd upon two equal Lines, are equal to each other.

ISay, that if the two Bafes $A B, D E$, of the two Seg. ments of a Circle, ABCA, DEFD, are equal to each other, and that thefe two Segments be alike, fo that they contain the equal Angles ACB, DFE; thefe fame two Segments $\mathrm{ABC}, \mathrm{DEF}$, will be equal to each other,

PREPARATION.

Imagine the Segment DEF lay'd upon the Segment $A B C$, fo that the Bafe DE coincides with the Bafe $A B$ i which is poffible becaufe thefe two Bafes are fuppos'd equal : and then you will find that thefe two Segments. will not exceed each other, that is to fay, they will coincide, and if you would have the Segment DEF take, up the Space AGB, produce the Line BC as far as G_{3} and join the right $A G$.

DEMONSTRATION.

Since you wou'd have the Segment AGB to be the fame as the Segment AEF , which is fuppos'd equal to the Segment ACB, the Segment AGB muft likewife be equal to the Segment $A C B$, and confequently the Angle G be equal to the Angle ACB, by Def. 8. which being impoffible, becaufe the exterior Angle ACB is greater than the oppofite interior one G, by 16. I. it is allo impoffible that the Segment DEF fhou'd fall any where but on the Segment ACB. From whence it follows that the two Segments ABC, DEF, are equal to each other. Which was to be demonfrated.

> USE.

This Propofition is made ufe of to reduce a mix'd Ifofceles Triangle, whofe two equal Sides are two Arcs of equal Circles, into a Rectileneal Ifofceles Tris angle: As if the propos'd Triangle be ADCEB, whofe two Sides $A D C, B E C$, are twc equal Arcs of equal Circles, you are to draw the Ringt-Lines AC, BC, the which

Explain'd and Demonfrated.

which with the Bafe $A B$, will make the Rectilineal Ifofceles Triangle ABC , equal to the propos'd ADCEB_{2} becaufe of the two equal Segments of a Circle, ACD_{2} BCE, ofr.

PROPOSITION XXV.

PROBLEM III.

A Segment of circle being given, to find the Centre of thas Circle.

7 O find the Centre of a Circle, whofe Segment is Plate 3: ABC ; choofe at pleafure three Points upon the Fig. 3?s Circumference ABC , as $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and join the RightLines $A B, B C$, and having divided them equally in two at the Points D, E, erect on thofe Points the two Per pendiculars DF, EF, and their Point of Interfection $\mathrm{F}_{\text {g }}$ will be the Centre fought.

DEMONSTRATION.

Becaule by prop. r. the Centre of the Circle, whofe Circumference paffes thro" the three Points A, B, C, is in each of the two Perpendiculars DF, EF, it ought to be in their common Interfection F, where confequently the Centre of the Circle muft be, whereof ABC is $\%$ Segment. Which was to be done and demonftrated.
USE.

This Propofition is the Foundation of the Prastice which we have taught in the Refolution of Probl. 22. In trod. and it likewife ferves to defcribe the circumference of a Circle, thro the three angular peints of given Triangle? as will be taught in Prop. 4. 5.

PROPOSITION XXVI.

THEOREM XXIII.

In equal Circles, the equal Awgles at the Centre, or at the Circumference, are fubtended by equal Arches.

Fig.40: Suppofe that the Circles $\mathrm{ABD}, \mathrm{EFH}$, are equal, fo that the RadijCA, GE, be equal to each other. This being fo, I fay, firft, that if the Angles at the Centre $\mathrm{ACB}, \mathrm{EGF}$, are equal to each other; the Arches AB , EF, which fubtend them, are in like manner equal to: each other, becaufe:they are their Meafures.

Ifay, fecondly, that if the Angles at the Circumfe. rence D, H, are equal to each other, the Arches AB , EF, on which they ftand, are likewife equal to each other, becaule by Prop. 20. thofe Angles D, H, are the halves of the Angles at the Centre C, G, which are equal to each other, and confequently have their equal Meafures AB, EF. Which poas to be demonftrated.

PROPOSITION XXVII.

THEOREM XXIV.

The Angles at the Centre or Circumfercnce of equal Circles, are equal to each otber, when they are fubtended by equal Arches.

Eig. 40

ISuppofe that the Circles $A B D, E F H$, are equal, fo that the Radij CA, GE, be equal to each other, and that the Arches $A B, E F$, are in like manner equal. This being fo, I fay, firft, that the Angles at the Centre C, G, are equal to each other, becaufe their Meafures $A B$, TF, "are fuppos'd equal.

Iay, in the fecond Place, that the Angles at the Circumference D, H, are equal to each other, becaufe by Prop. 20. they are the halves of the Angles, at the Centre C, G which have been demonftrated to be equal.

Book 3. Euclid's Elements Plate 4. Page 147

PROPOSITION XXVIII. plate क.
 Fig. 4 :

THEOREM XXV.

Equal Lines in equal Circles bave equal Arci.
Suppofe the Circles $A B C, D E F$, are equal, and confequently their Radij AG, DH, as alfo the Lines $\mathrm{AB}_{\text {i }}$ DE; then, I fay, the Arcs AIB, DKE; are equal, becaufe they are the Meafures of the two Angles at the Centre G, H, but they by 8. I. are equal. Which mas tel be demonftrated.

PROPOSITION XXIX.

THEOREM XXVI.

Right-Lines fubtending equal Arcs in equal Circles, are ailfo equal,

T Suppofe tie Circles ABC, DEF, are equal, confe Fig. at quently their Radij $A G, D H$, and the Arcs $A I B$, DKE; then, I fay, the Lines $A B, D E$, are equal, for the Arcs AIB, DKE being fuppos'd to be equal, the Angles at the Centre G, H, meafured by them muft alfo be equal, and by 40 . the Ifofceles Triangles, ABG_{9} $D E H$, are equal, and confequeatly their Bafes $A B, D E$: Which was to be demonftratem.

Li PRO

Milate f. Eig 420

PROPOSITION XXX.

PROBLEM IV.

To biject given Arc.
TO bifect the Arc ABC, join the two Extremities, A, C, by the Right-Line AC, and bifecting it in the Point D, let fall the Perpendicular BD, and that will bifect the Arc propos'd $A B C$, fo that the two Arcs $A B, B C$, thall be equal.

DEMONSTRATION.

Drawing the Lines $A B, B C$, you will find by 4 . i. they are equal, the right-angled Triangles ADB, CDB being equal. Confequently by Prop. 28. the two Arcs $A B, B C$, are alfo equal. Which was to be demonftrated.

USE.

This Propofition ferves to bifect an Angle, divide a Circle into 32 equal Parts, for the 32 Winds or Points of the Naurical Compafs. It ferves alfo to divide a Circle into its 360 Degrees, tho' 'tis but in Part, be-. caufe we fould know how to divide a Circle at leaft into three equal Parts, which can't be done by the common Geomerry, it being a folid Problem, but in practice we are contented with making this Divifion by Tentati-. on, which is enough for coming at what is propos'd to be effeted.

PROPOSITION XXXI.

THEOREM XXVII.

In a Circle, an Angle in a Semi-circle is right, that in greater Segment is acute, that in a lefs, is obtufe.

ISay firf, the Angle ABC, in the Semi-circle ABDC Plate A. is right, fo that producing one of the Lines $B A, B C$, for inftance BC towards F , the Angles $\mathrm{ABF}, \mathrm{ABC}$, will be equal, confequently right.

DEMONSTRATION.

Draw the Radius BE, and by 5. I. You know that in the Ifofceles Triangle AEB, the Angle ABE is equal to the Angle BAE, and in like manner in the Ifofceles Triangle $B E C$, the Angle EBC is equal to the Angle BCE. Whence it follows, that the whole Angle $A B C$ is equal to the fum of $\mathrm{BAC}, \mathrm{BCE}$, that is to fay by $32 . \mathrm{I}$, to the external Angle ABF , and confequently each of the two Angles $\mathrm{ABC}, \mathrm{ABF}$ is right. Which was to be demonftrated.

I fay, in the fecond Place, that the Angle BAC, in the Segment BAC, greater than a Semi-circle, is acure, or lefs than a right.

DEMONSTRATION.

Since the Triangle $A B C$ is right angled in B, as has been demonftrated, it follows by 32. 1. that each of the other two Angles are acute, confequently that BAC is lefs than a right. Which was to be demonerrated.

Laftly, I fay, the Angle D, in the Segment BCD_{3} lefs than a Semi-circle, is obtufe or greater than aright.

DEMONSTRATION.

Becaufe the two oppofite Angles A, D of the Quadrio lateral Figure $A B D C$, are taken together equal to two right ones, by Prop. 22, and the Angle A has been de= monftrated to be acute, the Angle D muft be obtufe. Which was to be dersonfliated.

U S E.

Plate 4. Fig. 44:

4iz 450

Eig. f̧b

Hig 53.

This Propofition ferves to find whether a Square be true ; for defcribing the Semi-circle ABC, and applying the right Angle of the Square to any Point of the Circumference, for inftance B, that one of its Legs, as $A B$, touch the Extremity A of the Diameter AC, if the other Ieg BC alfo touch the other Extremity C, the Square is juft.

This Propofition is alfo very ufeful in erecting a Perpendicular upon a given Point of a given Line: Thus if you were to erect a Perpendicular upon the Point A of the given Line $A B$, defcribe thro' the given Point A, upon the Point C , taken at Difcretion without the given Iine $A B$, the Circumference of a Circle, and thro ${ }^{\circ}$ the Point B, where it cuts the Line $A B$, draw thro' the Center C the Diameter $B C D$, cutting $A D$ in D, through which and the given Point A, draw the Right-Line $A D$, and that will be a Perpendicular to the Line $A B$ propofed, that is to fay, the Angle BAD will be a right one, becaufe tis in a Semi-circle.

This Propofition ferves alfo to let fall a Perpendicular. from one of the three Angles of a Triangle on the oppofite Side, or even two at once: Thus if you were to lec fall Perpendiculars from the Angles A, B, of the Triangle ABC , on the oppofite Sides AC, BC, defcribe upon the third Side AB, the Semi-circle ADEB, and thro' the Points E, D, where the Circumference cuts the Sides AC, BC, draw to the Angles propos'd A, B, the RightLines AE, BD, and they will be perpendicular to the Sides BC, AC, by the Property of the Semi-circle.

If fhould never hive done, if I fhould endeavour to reckon up all the different Ufes of this Propofition: I thall therefore content my felf with faying, it is of ufe in Trigonometry, for computing the Table of Sines: in Arithmetick, by Geometry, for fubftracting finilar Figures; and demonftrating the following Propofition, and furnifhing us with an eafier Method than that in prop. 17. for drawing a Tangent thro" a given Point without the Circumference of a given Circle. Thus if from the Point A, you would draw a Right-Line, that foould be a Tangent to the: Circle CEB, whofe Centre is D : Draw from the Centre D, to the Point given A, the Right-Ine AD, upon which defcribe the Semicircle AED, cutting the Circumference of the given Circle in the Poist E, thro' which and the given Point

Explain'd and Demonftrated.

A, draw the Right-Line AE, and it flaall be the Tangent fought by Prop. 16. for the Angle AED being in the Semi-circle is a right one.

PROPOSITION XXXI.

THEOREM XXVII.

A Right-Line cutting the Circumference of a Circle at the Point of Contact, makes two. Angles with the Tangent equal to tho

AN Alternate Segment is that which is on the other Side plateq. of the Rectilineal Angle made at the Point of Con- Eig. 47% tact, as ADEA, in regard of the oppolite Angle CAD, made by the Line AD, at the Point of Contaf A, with the Tangent AC; or the Segment ADFA, in regard of the oppofite Angle $B A D$, form'd by the Same Line $A D$, with the Tangent $A B$, at the fame Point of Contact A.

I fay, firft, then that the Angle CAD is equal to the Angle made in the alternate Segment ADEA, for infance to the Angle AED made by the Line ED, with the Diameter AE.

DEMONSTRATION.

Becaufe the Angle ADE is right, by Prop. 3 I. the two other Angles AED, EAD, of the Triangle ADE; are aaken together equal to one right, by 32.1 . and confequently equal to the Angle CAE , which is alfo right by Prop. 16. wherefore taking away the common Angle EAD, "tis evident the fingle Angle AED, is eqqual to the Angle CAD. Which was to be decronftrated.

If fay in the fecond Place, if you draw. thro' the Point F, taken at Difcretion in the Arc AFD, the Lines AF, $D F$, the Angle $B A D$ is equal to the Angle $A P D$, made in the alternate Segment $A D F A$.

DENONSTRATION.

Becaufe in the Quadilateral Figure AEDF, the Sum of the two opeofite Angles E, E, is equal to two right ones, by Prop. 22. and confequently equal to the Sum of $B A D, C A D$, which are allo equal to two right ones by Prog.13.1. taking away the Angles AED, CAD, demon-

$$
14
$$ is equal to the fingle Angle F. Which was to be demond Arated.

§ CHOLIUM.

We alf along fuppofed in both the Demonftrations,

Plate 4:
Eg. 47. that the Line AD was without the Center G; for if it paffed through it, as AE does, it would make with the Tangent CB two Right-Angles by Prop. 18. and the Angles in the Semi-circles would alfo be right, by Prop. 31. Thus the Propofition is evident.
USE.

This Propofition ferves to demonftrate Prop. 33 , and 34 . and Prop. 10.4. and that if feveral Circles touch one ancther in the fame Point, as A, and a Line be drawn thro' it, cutting their Circumferences, as AF, the Arcs of each Circle terminated by that Line, namely AD, AE, AF, are fimilar Parts of their Circumferences, becaufe all Angles made in the alternate Segments are equal, each being equal to the Angle made by the Right-Line AF and Tangent BC.

PROPOSITION XXXIII.

PROBLEM V.

Todefcribe ona given Right-Line a Segment of a Circle, that 5ig. 49. Sall contain any given Angle.
${ }^{2}$ IS evident by Prop. 31, that if the Angle given be right, you have nothing to do but to defcribe a Semi-circle on the given Line AB, for that Segment of a Circle will contain a right Angle. But if the given Angle be not right, make on the Extremity B of the given Right-Line $A B$, the Angle $A B C$ equal to the given one by drawing $B C$, to which draw the Perpendicular BD, from the Point B, then make on the other Extremity A, the Angle $B A E$, equal to the Angle $A B E$, and that will make the Sides AE, BE, of the Triangle ABE, equal by 6. I: you can therefore defcribe on the Point E, as a Center thro' the two Extremities A, B, a Circamference of a Circle, and the Segment ABDA fhall te capable of containing the given Angle, or its equal $A B C$.

DE。

DEMONSTRATION.

plate 4. Fig. 49.

Becaufe the Line BC is perpendicular to the Diameter BD, by conftr. it follows by Prop. 18, that 'tis a Tangent to the Circle at the Point- B , and by Prop. 32. the Segment ABDA can contains an Angle equal to the Angle $A B C$, equal by Conftruction to the Angle given. Which was to be demonftrated.
USE.

By the help of this Propofition you may find a Point from whence the two unequal Parts of a Line divided into two Parts will appear equal, namely by making on one of the given Lines any kind of Segment of a Circle, and on the other a Segment of a Circle fimilar to the former; for the Points where the Circumferences of the two Segments interfect, will be that from whence the two Lines propofed being feen under equal Angles, will appear equal.

PROPOSITION XXXIV.

PROBLEM VI.

To cut off a Segment capable of containing any given Angle, from a given Circle.

T I S evident by Prop. 3 I . that if the Angle given be right, only. draw any Diameter in the Circle gim ven, and that will cut off on each Side a Semi-circle, that will contain a Right-Angle: But if the Angle given be not a right one, draw by Prop. I6. a Tangent BC to the Point A, taken at Difcretion in the Circumference of the given Circle, and draw the Line $A D$, making the Angle CAD at the Point A, equal to the given one, and it will cut off from the Circle given, the Segment ADEA, that can contain the Angle CAD, and confequently the given Angle, as is evident by Prop. 32.

PROPOSITION. XXXV.

THEOREM XXIX.

Two Right-Lines croffing one another in a Circle, the Rectangle under the two Parts of the one, is equal to the Rectangle sunder the two Parts of the other.

Plate \bar{q}° Fig. Sy.

THefe two Lines may interfect one another feveral ways, as in the Center, and then their Parts will be equal, or one pafling thro' the Center may bifect the other that does not, and then they will be perpendicular to each other, by Prop. 3. or one paffing thro the Centre may cut the other that does not, into two unequal Parts: Or laftly, the two Lines may cut one another without the Centre. I fay, in all thefe Cafes the Rectangle under the two Parts of the one, are equal to the Rectangle under the two Parts of the other:

Demonftration of the firgt Cafe.

${ }^{2}$ Tis evident, if the two Lines interfect in the Centre, that their Parts are equal, becaufe each is equal to the Radius of the Circle, confequently their Redangles are equal, being Squares of the fame Radius. Which ross to be demonftrated.

Demonftration of the Second Cafe.
If one of the two Lines, as AB , pafs thro' the Cent tre, and cutting the other that does not pafs thro the Centre at right Angles, bifects it in the Point E, by 5. 2. you may find that the Rectangle under the Parts AE, BE, together with the Square of the intermediate Part EF, is equal to the Square of FB , or FC , or by 4% 1. to the two Squares EF, FC, wherefore fubftracting the common. Square EF, you will find the fingle Rectangle under the Parts AE, BE, is equal to the Square EC alone, that is to fay to the Rectangle under the Paxts EC, ED. Which was to be demonftrated.

> Demongration of the third Cafe.

Fig j2. If one of the two Lines $A B, C D$, infecting one ano-
ther, without the Centre in the Point E, as $A B$ pafs Plate 40 thro' the Centre F of the Circle, and is not perpendicular to the other CD, let fall FG perpendicular to the other CD, from the Center F, and it will bifect it in the Point G, by Prop. 3. and draw the Radius FC, then by 5.2. the Rectangle under the Parts CE, DE, toge* ther with the Square of the intermediate Part EG, is equal to the Square of the half CG ; wherefore adding the Square FG , the Rectangle under the Lines CE, DE, together with the Sum of the Squares F G,$E G$, or by 47. I. with fingle Square FE, is equal to the Squares CG, FG, or by 47 . I. to the fingle Square $F C$ or $F B$, or by 5. 2. to the Rectangle under the Lines AE, BE, and to the Square of the intermediate Part FE, which taken from each Side, leaves the fingle Rectangle under the Parts CE, DE, equal to the fingle Refangle under the Parts, AE, BE. Which was to be demonferated.

Demondtrationi of the fourth Cuse.

Laftly, If neither of the two Lines CD, HI, intere fecting one another in a Point E withour the Gircle, pafs thro' the Centre F, you may eafily demonitrate that the Rectangle under the Parts CE, DE, is equal to the Ref angle under the Parts EH, EI, becaufe, drawing the Diameter AB thro' the Point E, 'tis evident from the preceding Cafe, that each of thefe two Rectangles is equal to the Rectangles under the Parts AE, BE, and confequently equal to one another. Which was to be doo monffrated.

USE.

This Propofition ferves to demonfrate feveral Theorems in Trigonometry, and to find a Mean proportional betwen two given Lines; for inftance, AE, BE, for having placed them in a Right-Line, deforibe the Semio circle $A B C$, upon their Sum $A B$, and erect the Perpendicular EC; upon the Point E, of the Line AB, and that fhall be the mean proportional fought, as has been demonfrated in Prop. 53. 6. you may alfo find a third Proportional to two, or a fourth to three given Lines.

Plate 4.
Fig. 53.

THEOREM XXX.

ATangent and Secant being drawn from the fame Point taken at Pleafure without the Circle; the Square of the Tangent will be equal to the Rectangle under the whole Secant, and its external Part.
I Say, firt, the Square of the Tangent AE, is equal to the Rectangle under the whole Secant $A B$, that pates thrọ the Center D, and its external Part AC.

DEMONSTRATION.

Draw the Radius DE thro' the Centre D and Point of Contact, and by Prop. 18. the Triangle ADE is rightangled in E , and by 6. 2. the Rectangles under the Lines AB, AC, with the Square CD or DE , is equal to the Square of the Line AD, that is to fay, to the two Squares AE, DE, by 47. 1. wherefore taking away the common Square DE, 'tis plain the Rectangle under the Lines $A B, A C$, is equal to the fingle Square $A E$. Which was to be demonftrated.

I fay, in the fecond Place, the Square of the Tangent AE , is equal to the Rectangle under the Line AB , that does not pals thro' the Centre and its external Part AC.

PREPARATION.

Draw as before the Radius DE, and that will be perpendicular to the Tangent AE, by Prop. 18. Draw alfo the Radius DC, and let fall from the Centre D, the Line DG perpendicular to the Line $A B$, and it will bifeet it in G. Laftly, Join the Right-Line AD.

DEMONSTRATION.

Becaufe the Rectangle under the Lines AB, AC, with the Square CG, is equal to the Square AG, by 6. 2. adding to each Side the Square DG, the Rectangle under the Lines AB, AC, together with the Sum of the two Squares CG, DG, that is to fay, by 47.1 . with the fingle Squares AG, DG, or by 47. I. to the fingle Square AD, Fig. 54. or the two Squares AE, DE; wherefore take away the common Square DE, and you will find the fingle Rect angle under the Lines $A B, A C$, equal to the fingle Square AE. Which was to be demonftrated.

COROLLARYI.

From hence it follows that drawing a Right-Line, as AH , from the fame Point A , the Rectangle under that Line AH, and its Part AI, is equal to the Rectangle under the whole Line AB, and its external Part AC, becaufe each of thefe Rectangles is equal to the fame Square, namely, the Square of the Tangent AE.

COROLLARY. II.

From hence alfo it follows, that if you draw another Tangent AF, from the fame Point A, that Tangent AF, will be equal to the firft AE , becaufe the Square of each is equal to the Rectangle under the Lines AB, AC, or the Rectangle under the Lines AH, AI.

USE.

We fhall make ufe of this Propofition in Trigono metry, to find, otherwife and eafier than by Prop. 15. 2. the Segments of the Bafe of a Triangle made by a Perpendicular falling from the Angle oppofite to the Bafe, which ferves to find the Area of the Triangle, as alfo to find the Angle, as fhall be feen in Trigonometry. This Propofition ferves alfo to demonftrate the following one, which is its converfe.

PROPOSITION XXXVII.
 THEOREM XXXI.

If the Rectangle under the Secant, and its external Part, be equal to the Square of a Line meeting the Circumference of a Circle, that Line is a Tangent.

ISay, if the Rectangle under the Secant $A B$, and its $\mathrm{F}_{2} z^{\circ}$ ss: external Part AC, be equal to the Square of the Line AE, meeting in \mathbf{E} the Circumference of the Circle EFH whofe

Plase 4 :
5ig. 5 4. the Circle in that Point E.

DEMONSTRATION.

Draw the Right-Line AD, Tangent AF, and Radio DE, DF, by Prop. 36. the Square of the Tangent AF is equal to the Rectangle of the Lines AB, AC; and fince AE Square is fuppos'd equal to the fame Rectangle, it follows that the Line AE, AF are equal, and by 8 . . the Angle E is equal to the Angle F , which being right by Frop. 18: the Angle E will be right, and by Prop. I 5. the Line AE will be a Tangent in the Point E. Whoich sons to be demonftrated.

USE.

This Propofition ferves to demonftrate Prop. 10. 4. and that but two Tangents can be drawn from the fame Point taken at pleafure without the Circle, becaufe by this and the laft, the two Tangents AE, AF, being equal, if a third could be drawn as AI, it would alfo be equal to the two foregoing AE, AF, and fo more than zwo equal Lines could be drawn from the fame Point to the Convex Circumference of a Circle, contrary to Prop. 8. There are other Ufes but lefs confiderable, whichr I omit, that I may come to the following Book.

THE

The FOURTH BOOK of

EUCLID's ELements.

EUclid having explained the principal Properties of the Circle, gives us here feveral Problems for in fcribing and circumferibing regular Polygons, which is of vaft ufe in the Fortification of regular Places, and making Tables of Sines in Trigonometry, and Squaring the Circle in Geometry, to which. you may ap proach, as near as you pleafe, by infcribed and circumm icribed Polygons, and for explaining the different Afpects of Planets in Aftrology, that take their Names from Polygons determining their Diftances, by the rela tion to that Part which this Diftance is of the whole Circumference of a great Circle, that paffes thro' the Centers of the Planets.

DEFINITIONS.

I.

A Rectilineal Figure is faid to be infcribed in another Rection eineal Figure, when the Vertex of each of its Angles rouches one of the Sides of the Figure that "tis infcribe Fig is. ed in. Thus the Figure EFGH, is infcribed in the Figure $A B C D$.

II.

> A RefFilineal Figure is circumfcribed about another Rectilim seal Figure, when each of its Sides paffes thro' the Ver tex of one of the Angles of the Figure about which "tis circumfcribed. Thus the Figure ABCD is circumf cribed about the Figure EFGH.

Thefe two Definitions are of no ufe in what we have to fay, becaufe this Book treats only of Rectilineal Figures infcrib'd or circumfcrib'd about a Circle. But becaufe the Commentators have not omitted them, and they may be of ufe in other Cafes, we have not neg. lected them.

III.

A Rectilineal Figure is faid to be infcribed in a Circle, when the Vertex of each of its Angles touches the Circumfe-

Eig. 3.

Fig. 6: A Rectilineal Figure is faid to be circumfcribed about a Circle, when each of its Sides touches the Circumference of the Circle it is circumfcribed about. Thus the Triangle ABC is circumfcribed about the Circle EFG, because its Sides iouch the Circumference in the Points E, F, G.

V.

A Circle is \int aid to be infcribed in a Rectilineal Figure, when the Circumference touches each of the \$ides of the Figure 'tis infcribed in. Thus the Circle DEF is ins. fcribed in the Triangle IKL, becaufe its Circumference toucbes its Sides in the Points D, E, F.

VI.

 ABC is infcribed in the Circle ABFEC , tho the Triangle DEF is not, becaufe the Vertex of the Angle EDF does not touch the Circumference,
IV.

Fig. 3.

Fig. 2.
Eig. 50
,

VII.

 its Circumference paffes thro the Vertex of each Angle of the Figure it is faid to be circumfcribed about. Thus the Circle $A B F E C$ is circumforib'd about the Triangle $A B C$, -becaufe its Civicumfercnce pafies thro' the Vertices of the Triangls. A, B, C,A Right-Line applied to a Circle, is that whofe two Exe remities touch the Circumference of the Circle to which it is applied, os AF。

PRO rence of the Circle "tis infcribed in. Thus the Triangle

Book 4. Cucind's Elements Plate 1. Page 160.

PROPOSITION I:

PROBLEM I.

To apply to a givjen Circle a RightoLine lefo than zots Diameter.

O apply to the Circle $A E C B$, a Right-Line lefs than Fig. at
its Diameter $A B$, mark out the Length of that Right Line upon the Diameter, as BD, and defcribe upon the Point B, thro' the Point D, a Circumference of a Circle, cutting the Circumference of the given Circle in the Points C, F. Lafly, Draw thro' one of thefe two Points F, C, as C, to the Point B, the Right-Line BC, and that will be equal to the given Line BD_{2} by Def. of circle ${ }_{\text {s }}$ and the Problem is refolv'd.

USE.

This Propofition is neceffary for folving the following Tooblems, and fuppofes the given Right-Line nơt to be greater than the Diameter of the Circle given, becaufe it has been demonftrated in Prop. 15.3. that the greateft Tight-Line that can be drawn in a Circle, is the Dizo meter.

PROPOSITION II.

PROBLEM II.

to inforibe ing a given circle a Triangle Equiangular to
given one.
TO infcribe in the given Circle DGH, a Triangle Fig ${ }^{4}$ Equiangular to the given Triangle ABC , draw thro' the Point D taken at Difcretion in the Circumference, the Tangent EF, and make with that Tangent EF, at the Point of Contact D, on one fide the Angle FDG, equal to the Angle A, and on the other fide the Angle EDH; equal to the Angle B. Laftly, Join the Right-Line GH, and the Triangle DGH, will be equiangular to the givers one $A B C$, fo that the Angle G will be equal to the Angle B, and the Angle H to the Angle A.

Becaufe by 32.3. the Angle FDG, or A, is equal to the Angle H of the alternate Segment DHGD, and, in like manner the Angle EDH, or B, is equal to the Angle G of the alternate Segment GDHG, it follows by 32. I. that the Third Angle GDH, is equal to the Third Angle C, and thus the Triangle DGH is equiangular to the given Triangle ABC . Which was to be demonftrated.

U S E.

This Propofition ferves to infcribe a regular Pentagon in a given Circle, as you will find in Prop. II. or a regular Pentedecagon, as thall be fhown in Prop. 16.

PROPOSITION III.

PROBLEM III.

To circumfcribe about a given Circle a Triangle equiangalar. to a given one.

Fig. 5. 1 circumfcribe about the given Circle DEF, whofe Center is O, a Triangle equiangular to the given one ABC , draw any Radius $O D$, and producing the Bafe $A B$ of the given Triangle $A B C$, towards G, and H, make at the Center O, with the Radius OD, on one fide the Angle DOE equal to the external Angle CBH, on the other fide the Angle DOF equal to the other external Angle CAG. Laftly, draw thro' the Points E, F, D, the Tangents IK, KL, LI, and they will make the Triangle IKL equiangular to that propos'd ABC , and circumfcrib'd about the given Circle DEF.

DEMONSRATION.

Since the three fides of the Triangle IKL touch the Circle DEF, by Conftr, 'tis evident by Def. 4. the Triangle IKL is circumfrrib'd, and by 16. 3. the three Angles $\mathrm{D}, \mathrm{E}, \mathrm{E}$, are Right; and becaufe by $32 . \mathrm{r}$. the four Angles of the Trapezium KDOE, are taken together equal to four Right, and the two E, D, are Right, it folm lows alfo that the two others DOE, and K, are taken together equal to two Right ones, and confequently to the

Explain'd and Demonfrated.

two HBC, ABC , that are alfo equal to two Right ones, by 13. I. and becaure the Angle DOE is equal to the Angle HBC, by Conftr. the Angle K muft neseffarily be equal to the Angle ABC. After the fame manner the Angle I may be demonftrated to be equal to the Angle BAC. Whence 'tis eafy to conclude, by 32 . I. that the Triangle IKL is equiangular to the Triangle ABC。Which nime be demonftrated.

PROPOSITION IV。

PROBLEM IV.

To infcribe a Circle in a given Trianste.

TO infcribe a Circle in the given Triangle ABC, bi$\widehat{A D}, \mathrm{CD}$, and let fall from the Point D , where they interfect, the Perpendiculars DE, DF, DG to the thire fides of the Triangle propos'd ABC , and they will be equal. fo that a Circle defcrib'd upon the Center D, thiro' the Point E, will pafs thro the Points F, G.

DEMONSTRATION:

Becaure the Angles E, F, are equal, being Right, by Conftr. and the Line AD bifects the Angle BAC, the two Triangles ADE, ADF, will be equal, by 26 . 1. and the fide DE will be equal to the fide DF. After the fame manner the two right-angled Triangles CDF, CDG; may be demonftrated to be equal, and confequently the fide DF equal to the fide DG. Whence it follows, that the three Perpendiculars DE, DF, DG, are equal, and that a Circle may be defcrib ${ }^{\circ}$ d upon the Center D, thro the three Points E, F, G; and fince the Angles made at the three Points E, F, G, are Right, the fides of the Trianigle ABC, will be Tangents to the Circumference of the Circle, confequently the Circle is infcrib'd in the Triangle' Whicb wois to be demiontrated.

U S E.

This Propofition ferves to demonfrate, that three Right-Lines bifecting the Angles of a Triangle, meet inf the fame Point within the Triangle, becaufe the Center of the Circle that may be infcrib'd in' that Triangle, is in eack of thofe Lines.

PROPOSITION V.

PROBLEM V.

To circcurnfribe Gircle about a givert Triangle.
Fig. T. TO circumfcribe a Circle about the given Triangle $A B C$, bifeet two of its fides, as $A B, B C$, in the Points D, E, from whence let fall the Perpendicular DF, EF, and the Point F, where they interfect, will be the Centre of the Circle fought, fo that the three Lines FA, the FB, FC, are equal.

DEMONSTRATION.

You know by 4. 1. the two right-angled Triangles $\mathrm{ADF}, \mathrm{BDF}$, are equal, and confequently the two Lines AF, BF, are equal. After the fame manner, you may know, that the two Lines BF, CF, are alfo equal. Whence it follows; that the three Lines AF, BF, CF, are equal, and confequently that upon the Point F, as a Center, a Circle may be defcrib'd, whofe Circumference will pafs thro the Points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, which therefore will be circumfcrib'd about the Triangle ABC. Which was to be demonfirated.
U S E.

This Propofition ferves to demonftrate that the three Perpendiculars, erected upon the middle of the fides of a Triangle, interfect in the fame Point, becaufe each paffes thro' the Center of the Circle that may be circumicrib'd.

PROPOSITION VI.

PROBLEM VI.

To infrribe a Square in given Circle.

TO infcribe a Square in the given Circle ABCD, Fig 7 draw thro' its Center E_{3} any Diameter as $A C$, and another as $B D$ perpendicular to it, join the Right-Lines $A B, A D, B C, C D$, and the Rectilineal Figure $A B C D$ will be a Square.

DEMONSTRATION.

The four Angles of the Rectilineal Figure $A B C D$, are Right, by 3 x .3 . becaufe they are in Semi-circles; and its four Sides are equal, becaufe they are the Hypotenufes of the four right-angled Triangles AEB, BEC, CED, AED, that are equal by 4.1 . Confequently the Rectilineal Figure ABCD is a Square. Whis rows to te demongtrated.

PROPOSITION VI.

PROBLEM VII.
To circumfcribe a Square about given Cirele.

TO circumfcribe a Square about the given Circle Fig. 9: EFGH, whofe Center is I, draw at Pleafure the two perpendicular Diameters EG, FH, and draw thro" the four Points $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$, the Tangents $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$, $A D$, and they will make the Square $A B C D$, which will circumfribe the Circle EFGH.

DEMONSTRATION,

'Tis evident the Figure ABCD is circumfcrib'd about the Circle EFGH, becaufe all its Sides touch the Cir cumference, by conftr. 'Tis evident allo that the fame Figure $A B C D$ is a Square, thefe Angles made at the four Points E, F, G, H, being Right, and confequently the four Squares AI, BI, CI, DI, that compofe the Figure ABCD, are equal, of

PROPOSITION VIII.

PROBLEM VIII.

To inforibe Circle iyp the given Square.

Xig. TO infcribe a Circle in a given Square $A B C D$; birect each of the Sides in the Points E, F, G, H, and join the Right-Lines EG, FH, and the Point of Interfection I, will be the Center of the Circle fought, which may confequently be drawn thro the four Points E, F, G, H, becaufe the four Lines IE, IF, IG, IH, are equal.

DEMONSTRATION.

Becaufe the Lines AH, BF, are equal and parallel. the Lines $A B, F H$, will be alfo equal and parallel, by 33. 1. And fo the Figure AF will be a Parallelogram; by the fame way you may find, that the Figures CE, CH, DF, are Parallelograms equal to the firft AF : and fince they are Rectangles, and bifected by the Lines, that prom ceed from the Point I, it follows that their Halves AI, BI, CI, DI, are equal Squares, and confequently the Lines IE, IF, IG, IH, are equal. Which was to be demon? Pratod.

PROPOSITION 1X.

PROBLEM IX.

To circumfcribe a Circle abo ut a given Sguare.

Fig. \% $T 0$ circumicribe a Circle about the Square $A B C D$, draw the two Diagonals $A C, B D$, and the Point E, of their Section, will be the Center of the Circle fought: fo that the four Lines EA, EB, EC, ED, are equal

> DEMONSTRATION.

Becaufe all the acute Angles of the four Triangles AEB, \&ED, CEB, CED, by 4. 2. ate Semi-right,

Explain'd and Demonfrated.

and confequently equal, as well as the Sides AB, BC, Fig. .7. CD, AD, becaufe they are the Sides of the Square ABCD , thefe four Triangles, by 26 . I. will be equal, and confequently their Sides EA, EB, EC, ED. So that a Circle may be defcrib'd upon the Point E , as a Center, thro' the Points A, B, C, D. Which was to be demongfrated.

PROPOSITIONX.

PROBLEM XX.

To make an Ifofceles Triangle, where each of the two Angles at the Bafe fhall be double the third.

TO make the Ifofceles Triangle ABC, in which each fig. z. of the two Angles at the Bafe A and C, are double the third Angle B, draw the Line $A B$ what length you pleafe, and divide it at the Point D, by II. 2. fo that the Square of BD be equal to the Rectangle under AB , AD : And having defcrib'd the Arc ACE, upon the Point B, thro' the Point A, apply to it, by Prop. I. the Right-Line AC equal to BD, and join the Right-Line $B C$, then will $A B C$ be the Triangle fought.

DEMONSTRATION.

${ }^{3}$ Tis evident the Triangle ABC is Ifofceles, that is go fay, the two Legs BA, BC, are equal, for the Point B, by Conftr. is the Center of the Arc ACE. Whence it follows, by 5.r. that the Angles A and C are equal: What remains to be demonfrated is, that each is double the Angle B, which will be done by drawing the RightLine CD, and a Circumference thiro' the three Points B, C, D; and then reafon thus.

Becaufe the Rectangle under the whole Line $A B$, and its Part AD, is, by Conffr. equal to the Square of the other Part $B D$, or $A C$, its equal, the Line $A C$ will be a Tangent in the Point C to the Circumference FBDC, by 37.3 . and 32.3 . the Angle ACD will be equal to the Angle \#3; and fince, by i_{2}, 1, the external Angle ADC is equal M 4

Fig．yo o to the Sum of the two internal and oppofite B，BCD，or $A C D, B C D$ ，that is to fay，to the whole Angle $B C A$ ，on the Angle A，it follows，by 6．I．that the Line AC，or 3D，is equal to the Line CD，and，by 5．1．the Angle B， or $A C D$ ，is equal to the Angle ECD，and consequently the whole BCA，or the Angle A，its Equal，＇is double the Angle C．Which wo as to be demonfrated．

USE．

This is fubfervient to the following one，and ferves for infcribing a regular Decagon in a Circle，becaufe the Line AC，apply＇d in the Circle，whole Radius is AB， is the Side of a Decagon that may be infrrib＇d in it，the Angle B being 36 Degrees，the roth part of the whole Circle，or 360 Degrees．Thus you fee the Radius AB， which is the Side of a Hexagon，as fall be demonftra－ ted in Prop．15．being by II．2．cut in extreme and mean Proportion at the Point D ，the greater Part BD is equal to the Side of the Decagon，and you will find by the next Proposition，that the greater Part BD，is the Side of a regular Pentagon，that may be infcrib＇d in a Circle circumfcrib＇d about an Ifofceles Triangle ABC：

PROPOSITION XI．

PROBLEM XI．

To inforibe a regular Pentagon in a Circle．
Gig．青。罗

TO infcribe a regular Pentagon in the given Circle DEFGH，make，by Prop．Io，the Ifofceles Triangle ARC，in which each of its two Legs at the Bare A，B， Shall be double the third C，and，by Prop．＇2．infcribe in the given Circle the Triangle DEG equiangular to the Triangle ABC，and fo the two Angles at the Bare GDE， GED，will be each double the third Angle DGE：Where－ fore bifect each of the fe two Angles GDE，GED，by the Right－Lines DF，EH，and join the Points：E，F，G，H，D， by Right－Lines，and the Figure DEFGH will be a regular Pentagon，that is to fay，equilateral and equio angular．

DEMON

DEMONSTRATION.

Becaufe the Angles DGE, EDF, FDG, GEH, DEH, Fig. In are halves of the Angle GDE, or GED its equal, by conf. they will be equal to one another, and by 26.3. the Arcs DE, EF, FG, GH, DH, on which they infift, will alfo be equal, confequently by 29.3 . the Lines DE, EF, FG, GH, DH, are alfo equal. Thus you fee the Pentagor DEFGH, is equilateral and equiangular, becaufe each of its Angles infift upon three equal Arcs. Which wass to be demonfitated.

U S E.

This Propofition ferves not only for Citadels, that are ufually made of five Baftions, but for refolving the next and the ${ }_{10}$ th Propofition, and befides opens the way for uneven Polygons: For 'tis evident that to infcribe for inftance an Heptagon in a given Circle, you mult know how to make an Ifofceles Triangle in which each of the two Angles at the Bafe is triple the Third: But it being a folid Problem, Euclid has not refolved it.

PROPOSITION XII. PROBLEM XII.

To circumfribe a regular Pentagon about a given Circle.

T^{0}O circumfcribe a regular Pentagon about a given Figo sz. Circle ABCDE, whofe Centre is F, you muft infribe by Prop. ix. the regular Pentagon ABCDE, and draw Tangents by 17. 3. thro' the Points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, and you will have the Pentagon fought.

DEMONSTRATION.

Drawing from the Center F, the Lines FA, FG, FB, FH, FC, you will find by 8. r. the Triangles FGA, FGB, are equal, the Side FG being common, and the two Radij FA, FB, equal by Def. of a Circle, and the two Tangents GA, GB, equal by 36.3 . confequently the Angles

Angles AFG, BFG, will be equal as well as FGA, FGB and by the fame method you may find that the two Angles BFH, CFH, are equal, as well as BHF, CHF; and becaufe the whole Angle AFB is equal to the whole An= gle BFC , by 27 . x . the Arcs AB, BC, being equal by eonff. their halves BFG, BFH, will alfo be equal. From whence 'tis eafy to conclude that the four Triangles $\mathrm{AFG}, \mathrm{BFG}, \mathrm{BFH}, \mathrm{CFH}$, are alfo equal, and may be demonftrated after the fame manner, drawing other RightLines from the Center F, thro' the Points I, D, L, E, K, and confequently the Pentagon GHILK is equilateral and equiangular. Which wass to be done and demonfrated.

PROPOSITION XIIT.

PROBLEM XIII.

To infcribe a Circle in Regular Pentagon.

Fig. I2: TO infcribe a Circle in the Regular Pentagon GHILK , do as you did in the Cafe of a Triangle, that is to fay, bifect two of its Angles, as G, H, by the RightLines GF, HF, and the Point F of their Section will be the Centre of the Circle fought, fo that letting fall from the Centre F the Perpendiculars FA, FB, FC, to the Sides $\mathrm{GK}, \mathrm{GH}, \mathrm{HI}$, $\mathrm{O}^{\circ} \%$ they will be equal.

DEMONSTRATION.

Becaure the Angle FGB is equal to the Angle FGA, by conft. and the Side FG, common to the two Triangles FAG, FBG, right-angled in A and B, by confir they they will be equal by 26 . I. and the Perpendicular FA, will be equal to the Perpendicular EB, and confequently the three Perpendiculars FA, FB, FC, and all the reft, that can be let fall from the Point F, on the Sides of the Pentagon propos'd, are equal to one another. Thus you have found the Point F, on which a Circle may be defcrib' d_{2}
defrrib'd, whofe Circumference will touch the Sides of Eig, 12! the regular Pentagon GHILK. Which was to be demonjfraw tech.

PROPOSITION XIV.

PROBLEM XIV.

To circumefribe a Circle about a Regular Pentagors.
TO circumfcribe a Circle about the Regular Pentagon, Fieq. \bar{z}_{3}^{3} ABCDE, do as in the Cafe of a Triangle, that is ro fay, bifect two of its Sides, as AB, BC, at the Points M, N, and erect the Perpendiculars MF, NF, from. the Points M, N, and the Point F of their Section will be the Centre of the Circle, fo that if you draw from the Centre F, to the Angles of the Pentagon propofed, the Right-Lines FA, FB, FC, ofc. they will all be equal.

DEMONSTRATION.

Becaufe the Line AM is equal to the Line BM, by conft. and the Side FM common to the two Triangles FMA, FMB, right-angled in M, by conff. thefe two right-arigled Triangles FMA, FMB will be equal by 4. I. and their Hypotenufes alfo, FA, FB. After the fame manner the Hypotenufe FC of the right-angled Trian sle FNC, may be demonftrated to be equal to the Hy potenufe FB of the right-angled Triangle FMB, and confequently the three Lines FA, FB, FC, and all others, that can be drawn from the Centre F, thro' the Angles of the Pentagon propos'd, are equal to one another. And fo the Point F is found, upon which a Circle may be defcribed, whofe Circumference will paiss thro' all the Angles of the given Pentagon ABCDE. Which was to be demonafrated.

SCHOLIUM.

The three foregoing Problems applied to a Regular Pentagon, may be applied after the fame manner, to any other Regular Polygon, and for that Reafon Euclid feeaks no more of it in what follows.

PROPOSITION XV.
 PROBLEM XV.

To infcribe Regular Hexagon in a Circle.
Fig 230 TO infribe a Regular Hexagon in the Circle ABCDEF, whofe Centre is G, draw any Diameter as $A D$, and defcribe the Arc BGF, from its Extremiry A, thro' the Centre G, cutting the Circumference of the given Circle in the Points B, F, thro' which draw the Diameters $B E, F C$, and then the Lines $A B, B C, C D$, $\mathrm{DE}, \mathrm{EF}, \mathrm{AF}$, and the Figure ABCDEF will be a Regular Hexagon, that is to fay equilateral and equiamo gular.

DEMONSTRATION.

Becaufe each of the two Triangles AFG, ABG, is equilateral, 'tis alfo equiangular by 5. 1. and each of the two Angles AGF, AGB, is a third of two right ones, by 32. I. as well as their equals, and oppofite at the Vertex CGD, DGE, by 15. 1. Whence 'tis eafy to conclude, that each of the two other equal Angles BGC, EGF, is alfo a third of two right ones, becaufe the three AGB, BGC, CGD, taken together are equal to two right ones, and fo the Angles at the Centre being equal, the Hexagon ABCDEF will be a regular one. Whish was to be effected and demonfirated.

USE.

"This Propofition ferves to difcover to us, that the Side of an Hexagon, infcrib'd in a Circle, is equal to the Radius or Semi-Diameter of the fame Circle, and
that furnifhes us with a Method of dividing the Circumference of a Circle into fix equal Parts, by applying the Radius fix times to the Circle; and 'tis with this they generally begin in dividing the Circumference of a Circle into 3 6o equal Parts or Degrees, as has been feen in Prob. 7. Introd.

You fee alfo that an equilateral Triangle may eafily be infcribed in a Circle by this Propofition, for having divided its Circumference into fix equal Parts, as has been taught, join every other Point by Right-Lines, and thofe three Lines will form an equilateral Triangle.

The ufe of the Sector in refpect to the Line of Polygons, is founded on this Propofition, that fhews us alfo that the Sine of an Arc of 30 Degrees is equal to half the Radius, and the making Tables of Sines is generally begun with this Problem, as fhall be feen in the Treatife of Trigonometry.

PROPOSITION XVI. PROBLEM XVI.

To infcribe a Regular Pextedecagon in a Circle.

TO infcribe in the Circle ABCDEF, a Regular Pente- Fig. as decagon, or Figure of fifteen Sides, infcribe by Prop. 2. or 15 . the equilateral Triangle ACE, and by Prop. 11. the regular Pentagon ABDOF, fo that the Triangle and Pentagon may have one of their Angles at the fame Point A; then the Arc CD will be a fifteenth Part of the Circumference.

DEMONSTRATION.

Imagine the Circumference to be divided into fifteen equal Parts, then the $\operatorname{Arc} \mathrm{AB}$ or BD , will contain three, becaufe the Arcs are each a fifth Part of the Circumference by conff. The Arc AC alfo will contain five, becaufe tis a third Part of the Circumference by conff. Whence 'tis eafy to conclude that the Arc BC contains two, confequently the Arc CD one, for fubftracting three, that are in $A B$ from five that are in $A C$, and there are in BC , from three that are in BD, there will remain one for CD. Whith was to be effected end demonfer bo ted.

USE.

This Propofition opens the way to other uneven Po lygons, for as multiplying 3 by 5 , the Product 15 , fhews. that a Polygon of 15 Sides may be form'd by the help of a regular Figure of 3 and 5 Sides: So multiplying 3 for inftance by 7 , the Product 21 fhews that you may de frribe a Polygon of 21 Sides by the means of a reguo lar Figure of 3 and 7 Sides.

The FIFTH BOOK of

EUCLID's Elements.

FUclid in this Book treats of Ratios and Proportions; that he may compleat the Doctrine of Planes in the fixth Book; which he treated of fingly in the four preceding Books.

As this Book is the Foundation of the fixth and following Books, fo 'tis the Foundation of the principal Parts of Matbematicks, where Proportions can't be paffed over, by reafon of the Comparifon one is continually obliged to make of fome Quantities with others: And 'tis alfo abfolutely neceffary for the underftanding of all Mathematical Treatifes demonffrated by Proportions \% for in Practical Geometry, for inftance, acceffible and inacceffible Lines in furveying are meafur'd and found by: Reafonings depending upon Proportions; Arithmetic contains the Rule of Three, call'd the Rule of Proportion, becaufe perform'd by Proportions: Alfronomy compares the different Magnitudes of the Planets, and their Orbs, and different Diftances from the Earth, or Sun. Statics confiders the Proportions of Weights; and Mufck applies them to Sounds. So that you may affure your felf, that you can draw no certain Conclufion in Matbematicks. without the Knowledge of Proportions.

DEFINITIONS.

1.

A Part is a lefs Quantity compar'd with a greater that it exact'y meafures. Thus Line of two seet is Part of is Line of fix Feet, for it exactly meafures it by 3, that is, it is contained thrse times without a remainder.

Thus Euclid defines a Part, commonly call'd an Aliquot Part, to diftinguifh it from what they call an Aliquant Part, that does not meafure the whole exactly; as a Line of two Feet does not in regard of 5 . Feet, being conrain'd twice and I remaining, and fo is as an aliquant Part of 5 Feet.

By a Whole is underftood a greater Quantity in relation to a lefs, whether it actually contains it, or does not ; and by a Part in general, a lefs Quantity in regard of a greater, whether it meafures it or no, as when we fay, The Whole is greater than its Part.

An Aliguot Part takes its Name and Denomination from the Number of equal Parts a Quantity is divided into, that is to fay, the Number of times 'tis contained in that Quantity or Whole. Thus an Aliquot Part that is contain'd twice in any Quantity is call'd an half, and is writ thus $\frac{1}{2}$; and that which is contain'd thrice, is call'd a third, and exprefs'd thus, $\frac{3}{3}$, of c.

An Aliquant Part has fometimes aliquot Parts, that meafure the Quantity 'tis a Part of ; thus for inftance σ, which is an aliquant Part of 8, has for its aliquot Pare 2 , which is a Quarter of 8 , of which confequently 6 is three Quarters, fince 6 contains 2 three times, and is expreffed thus, $\frac{3}{4}$.

Parts, whether aliquant or aliquot, are call'd Fractions, in refpect of the whole of which they are Parts; and when exprefs'd by Numbers, as we thall hereafter do ; the upper Number is call'd, The Numerator of the Fraction, and the under, The Denominator of the Same Fraction. Thus in this Fraction $\stackrel{2}{;}$ fignifying two fifths, the Numerator is 2, and the Denominator 5 .

II.

A 2 uantity is Multiple of another, that contains that other a certain Number of Times exactly, that is to fay without any Remainder. Thus a Line of fix Feet is the multiple of a Line of two Feet, because it contains it three times exactly.
'Tis evident the Multiple is greater than that Quantity whofe Multiple it is faid to be, it being an aliquot Part of it, and call'd a submultiple, in refpect of its Multiple, that takes its Name and Denomination from the Number of Times, it contains its Submultipié. Thus a Line of 6 Feet is call'd the Triple of a Line of 2 Feet, becaufe it contains it 3 times exactly; but a Line of two Feet is call'd the Subtriple of a Line of 6 Feet, becaule it is contain'd in it three times precifely.

III.

Equimultiples of Several 2uantities, are Quantities that contain equally, or an equal Number of Times, or as many Times, the Quantities whofe Equimultiples they are faid to be, that is to fay, their aliquot Parts, or Sub multiples, which confequently meafure their Equimultiples equally. Thus becaufe a Line of 12 Fere contains á Line of 2 Feet, as many Times as a Line of 30 Feet does a Line of 5 Feet, the two Lines of 12 Feet and. 30 Feet "are Equirmultiples of the Lines of 2 Fcet and, 5 Feet.

Thus Euclid defines Equimultiples, but we fhall call more generally Equimultiples of Several Quantities, fuch as contain the Quantities whofe Equimultiples they are, an equal Number of Times, whether that Number be an Integer or Fraction, or Integer and Frations, provided they be fimilar Parts.

Thus we know that $\$$ and ro are Equimultiples, of 2 and 4 , becaule 5 contains 2 twice and one over, which is half two, and in like manner so contains itwice, and two over, which are half 4.
'Tis in this Senfe we would be underftood to fpeak, when we fay two Quancities for inftance contain or are contained in two others, an equal Number of Times, each of its own,

Book V.

By fimilar Parts of Several Quantities, whet ther aligrot or aliguant, we underftand fuch as are contained an equal number of times by them. Thus 9 and 15 are fimilar Parts of 12 and 20 , becaule 9 is three quarters of 12 , as well as 15 of 20 .

When any two Quantities are multiplied by the fame Quantity, the two Quantities produced by that Multio plication are Equimultiples of the two former, which confequently are fimilar Parts of the two latter.

Thus multiplying the two Quantities a and c, by the fame Quantity d, you will have thefe two Quantities $a d, c d$, which are Equimultiples of the two former $a_{3} c$, which are fimilar Parts of the Quantities ad, cd, whether d reprefent an Integer or Fraction.

IV.

Ratio is the Relation of two Quantities of the fame kind, compar'd together in regard of their Quantity, to know how and how often one contains or is contained in the other.

Quantities of the fame kind are called Homogeneous, as two Lines, two Surfaces, two Solids: Quantities of different kinds are called Heterogeneous, as a Line and a Surface, and a Solid, ofrc.

The two Homogeneous Quantities compar'd together in a Ratio, are call'd the Terms of that Ratio, that that is compar'd is call'd the Antecedent, that to which the former is compar'd is call'd the Confequent.

Thus in the Ratio of 2 to 3 , the Antecedent is 2 , the Confequent is 3. This Ratio may eafly be comprehen ded, exprefling it Fraction wife, thus, $\frac{2}{3}$, whofe Numerator 2 is the Antecedent, and Denominator 3 is the Confequent.
'Tis evident the Terms of a Ratio ought to be Homogeneous, and of a finite Quantity, becaufe otherwife it could not be faid how or how often one Quantity is contain'd in another. Which made Euclid fay, two Quantities have a Ratio, when by Multiplication one may become greater than the other. Then you may fee there is no Ratio between a Line and a Surface, becaufe a Line multiplied, that is produced as much as you pleafe, will not have any Breadth, confequently can never equal a Surface, that befides Length has Breadth.

Explain'd and Demonftrated.

Nor is there any Ratio between a finite and ani infinite Line, tho' thefe two Quantities are Homogeneous, becaufe 'tis a peculiar Property of finite Quantity to meafure or be meafured by another, fo that one may fay, one is contain'd in the other a certain number of times.
'Tis evident alfo, that to find the Ratio of one Quantity to another, you muft divide the Antecedent by the Confequent, and the Quotient, call'd the Quantity of the Ratio, thows the Relation of the Antecedent to the Confequent, or the relative Quantity of the Antecedent in regard of the Confequent, which is properly call'd Ratio.

Since therefore a Ratio is a Quantity or Magnitude, tho' relative, all that agrees to Quantity or Magnitude in general, agrees alfo to a Ratio: Hence a Ratio is divided into a Ratio of Equality, and a Ratio of Inequality, and one Ratio may be equal or greater than another. But you muft take care you don't confound the Ratio of Equa lity, with the Equality of two Ratio's ; becaufe,

A Ratio of Equality is a Ratio wherein the Antecedent is equal to the Confequent, as thie Ratio of 4 to 4 , of B to B , $\mathrm{O}_{\mathrm{c}} \mathrm{c}$.

A Ratio of Inequality is a Ratio wherein the Antecedent is greater or lefs than the Confequent, which from hence is divided into a Ratio of lefs Inequality, and a Ratio of greáter Inequality.

A Ratio of lefs Inequality is a Ratio wherein the Antece. dent is lefs than the Confequent; as the Ratio of 2 to 3. 'Tis evident from what has been faid before, that the Quantity of a fimilar Ratio, is a Number expreffine how and how often the Antecedent is contained in the Confequent, or which is the fame thing, what Part it is of the Confequent.

Thus the Ratio of 6 to 12 is ani half, becaufe 6 is half 12 , and this Ratio is call'd Subdupple. After the fame manner the Quantity of the Ratio of 2 to 6 is a third, becaufe 2 is a third of 6 , and this Ratio is call'd a Subtreple. Thus alro the Quantity of the Ratio of 4 to 6 , is two thirds, becaufe 4 is equal to two thirds of 6 , and this Ratio is calld a Subfefquialter, becaule 4 is contain'd in 6 , once and half a time more.

A Ratio of greater Incquality, is a Ratio wherein the Antecedent is greater than the Confequent; as the Ratio of 3 to 2. 'Tis evident from what has been faid above, that the Quantity of a like Ratio is a Number expreffing: how and how often the Antecedent contains the Confequent, or which is the fame,thing, what Part of the Antecedent the Confequent is.

Thus the Quantity of the Ratio of 12 to 6 is 2, becaufe 12 contains 6 twice, and this Ratio is call'd the Duple. After the fame manner, the Quantity of the Ratio of 6 to 2 is 3 , becaufe 6 contains 2 three times, and this Ratio is calld the Triple. In like manner the Quantity of the Ratio of 6 to 4 is one and an half, becaufe 6 contains 4 once and an half, and this Ratio is call'd Sefouialter.

The Ratio of Inequality is divided further into that which is called Number to Number, and that which is call'd a Surd Ratio.

The Ratio of Number to Number is call'd a Rational Ratio, and is fuch an one as may be expreffed in Numbers, that is you may exprefs by Numbers how often the Antecedent contains or is contain'd in the Confequent. Such is the Ratio of a Foot to a Yard, becaufe a Foot is to a Yard as I to 3 , or the Antecedent is contain'd 3 times in the Confequent. Such is alfo the Ratio of a Line of 6 Feet to a Line of 4 Feet, where the Antecedent contains the Confequent once and an half.

A Surd Ratio, call'd alfo an Irrational Ratio, is that which can't be expreffed in Numbers; that is to fay, 'tis impoffible to exprefs by Numbers how often the Antecedent is contained, or does contain the Confequent, as the Ratio of the Side of a Square to its Diagonal, which is fuch, that tho' each Line apart has aliquot Parts, lefs and lefs continually, yet not one of thofe that meafures for Inftance the Side of the Square, tho' taken never fo fmall, can meafure the Diagonal exactly, that is to fay, that it fhall be contain'd in it a certain Number of Times without a Remainder, which is the Reafon why the Ratio of thofe two Lines can't be expreffed in Numbers.
When the Ratio of two Quantities is that of Number to Number, the Quantities are faid to be Commenfurable, becaufe they have fome kind of Part that may ferve as a common meafure; but if the Ratio of two Quantities be irrational, becaufe they have no Part fo fmall as to be a common meafure to both Quantities; then they are call'd Incommenfurable.

The Ratio we have already fpoken of at prefent, and fhall further treat of, is call'd Geometric Ratio, to diftinguifh it from Aritbmetick Ratio, which is the Relation of two Homogeneous Quantities, confidering how much one exceeds or is exceeded by another, when they are anequal, which is call'd their Difference. When Ratio is mention'd.

Explain'd and Demonfrated.

mention'd alone, you muft underftand Geometric, concerning which Euclid defigns to fpeak in thefe Elements.

> V.

Equal or fimilar Ratio's are fuch as have their Antecedents equally containing or contained in their Confequents, or which is the fame thing, the Antecedent of one Ratio contains any kind of aliquot Part of its Confequent, as often as the Antecedent of the other Ratio contains a fimilar aliquot part of its Confequent.
Thus the Ratio of 2 to 3 , is the fame or egual or finailar. to the Ratio of 4 to 6 , becaule 2 is in 3 . once and an half, and in like manner 4 is in 6 , once and an balf; or 2 contains troo thirds of 3, as well as 4 contains 2 thirds of 6 .

This is the Reafon why we fay 2 is to 3 , as 4 is to 6 , and for brevity ufe four Points :: to exprefs the Equality of the two Ratio's, writing it thus, $2,3:=4,6$, to fignify that the Ratio of 2 to 3 , is equal to the Ratio of 4 to 6 . In like manner to exprefs that a is to $a d$, as is to $b d$, we write thus $a, a d:: b, b d$.

VI.

Froporitional Quantities are fuch as have the fame Ratio; fuch are the four following, $2,3,4,6$, becaulse the Ratio of, to 3 is the faime as that of 4 to 6 ; as allo the four following a, ad, b, bd, because the fint a is contain'd as oftem in the fecond ad. as the third b is in the fouith bd, the equal Number of Times being reprefented by the Same Letter d, wobich may be taken for an Integer or Fraction.

VII.

That Ratio is greater than another, whofe Antecedent contains any aliquot Part of its Confequent, oftner than the Antecedent of the other contains a fimilar aliquot Part of its Confequent. This the Ratio of 101 to 10 is greater than the Ratio of 500 to 50 , becaufe 101 contains a bundrid. and one times the tenth Part of 10 , whereas 500 cono tains but one hundred Times the tenth Part of 50 , that is 5 .

VIII.

Proportion or Analogy, which is frequently confounded with Ratio, is a Similitude or Equality of two Ratio's; for inflance 2, 3,:: 4, 6, where you lee the four preportional Quantities make a Proportion.
In a Proportion there are always four Terms, the firft and fourth, that is, the firf Antecedent and the laft Confequent, are called Extreams ; the fecond and third, that is, the Confequent of the firft Ratio, and Antecedent of the fecond, are call'd the Means; the two Anrecedents are called Homologous Terms, and fo are the two Confequents.

Thefe four Terms may fometimes be reduced to chree, as when the Confequent of the firt Ratio is the fame as the Antecedent of the fecond, and then the Proportion is call'd continued, thus $2,4:: 4,8$. But if the four Terms are different, as thefe are $2,3:: 4$, 6. 'tis call'd difcontinued Proportion.

The Proportion that we have and fhall treat of here, is call'd Geometric Proportion, to diftinguifh it from Arithmetic Proportion, which is an Equality of two Arithmetic Ratio's found between four Quantities, where the firft exceeds the fecond, or is exceeded by it, by a Quantity equal to that, whereby the third exceeds, or is exceeded by the fourth; and fometimes thefe four Terms alfo may be reduced to three; but this kind of Proportion not being ufed in thefe Elements, I fhall only fpeak of the Geometric, and that under the fingle Name of Proportion.

IX.

2uantities continually proportional, are fuch as are in a continued Proportion, as $2,4,8$, or $1,3,9,27$, or $a c a d, a d b, a b b, b b b, \quad \& c$.
(A Series of Quantities continually Proportional, is call'd a Progreffion, and may be either Geometric, or Aritbinetic, as the Quantities are in a continued Geometric or Arithmetic Proportion. Thus the Quantities, I, 4, 8, 16, 32, ©ro. are a Geometric Progrefion, and the Quantities $5,3,5,7,9,11$, $6 c_{0}$ are an Arithmetic Prgridibive

X.

In a Geometric Progreffion, that is to fay, in a Series of Quantities continually, proportional, the Ratio of the firft to the third, is the Duplicate, the Ratio of the firft to the fecond, or the Ratio of the fecond to the third, becaufe thofe two Ratio's are equal ; and the Ratio of the firft to the fourth is the Triplicate of the Ratio of the firft to the fecond, or of the fecond to the third, or of the third to the fourth, and fo on.

Thus in this Series of 2uantities continually proportional, 32, 16, 8, 4, 2, 1, the Ratio of 32 to 8 , is the Duplicate of the Ratio of 32 to 16 , or of the Ravio of 16 to 8. Iecaufe it contains the e two equal Ratio's; and the Ratio of 32 to 4, is the Triplicate of the Ratio of 32 to 15 , or of the Ratio of 16 to 8, or of the Ratio of 8 to 4, becoulfe it constains tho e e tbree equal Ratio's.

You muff take care not to confound a Duple Ratio, with a Duplicate Ratio, or a Triple Ratio with a Triplicate Fatio. Thus in the foregoing Example, I took fhotice that the Ratio of 32 to 8 , which is Quadruple, is the Duplicate of 32 to 15 , which is Duple; and that the Ratio of 32 to 4, which is Octuple, is the Triplicate of the Ratio of 32 to 16, which is Duple, this Triplicate Ratio being fo call'd, becaufe 'tis made up of three equal Ratio's, as the firit was call'd the Duplicate, becaufe it is made up of two equal Ratio's. This will be better underfood, when I have explain'd what a Ratio made up of feveral others, is.

A Ratio is then faid to becompounded of other Ratio's, when its Antecedent is equal to the Produat of all the Antecedents of the other Ratio's drawn into one another, and its Confequent in like manner, equal to the Product of all the Confequents of the other Ratio's.

Thus the Ratio $\frac{{ }^{\frac{43}{105}}}{105}$ is compounded, or made up of thefe three Ratio's $\frac{2}{3}, \frac{4}{3}, \frac{6}{7}$, that is to lay, the Ratio of 48 to 105, or of 16 to 35 , taking the third Part of each Term, is compounded of the Ratio of 2 to 3 , of the Ratio of 4 to 5, and of the Ratio of 6 to 7 , becaufe the Antecedent 4^{8} is equal to the Produft of the three Anfecedents 2,4 , 6, and the Confequent ros, is equal to the Product of the Confequents 3, 5, 7.

The Neceffity of this Multiplication will be evident to any one that confiders that a Ratio made up of a Duple and Triple is a Sextuple, whofe Quantity 6 is equal to the Product of 2 and 3, the Quantities of the Duple and Triple Ratio's; it being certain that the double of a Triple or the triple of a Duple is a Sextuple, becaufe 2 multiplied by 3 , or 3 by 2 , makes 6 . Whence it follows, that the Quinntity of a puplicate Ratio, is a fquare Number, namely, the Square of the Quantity common to the two equal Ratio's, that make up the Duplicate Ratio ; and that the Quantity of a Triplicate Ratio, is a Cube, namely the Cube of the Quantity common to the three equal Ratio's, of which the Triplicate Ratio is compounded, and confequently the Duplicate Ratio of a Duple Ratio is a Quadruple, becaufe the Square of 2 is 4, and the Duplicate Ratio of a triple Ratio is a Noncuple, becaufe the Square of 3 is 9 ; and fo the Triplicate Ratio of a Duple Ratio is Octuple, becaufe the Cube of 2 is 8 . And fo of the reft.
\because Tiseafy to fee, by what has been faid, that the fame Ratio may be compounded of feveral different Ratio's, becaufe feveral different Quantities, multiplied together may produce the fame Number, for the Quantity of the Ratio, that is compounded of them. Thus the Dedecuple Ratio, whofe Quantity is 12 , is compounded of the Triple and Quadruple, becaufe their Quantities 3 and 4 multiplied together make 12 ; alfo of the Duple and Sextuple, becaufe their Quantities 2 and 6 multiplied together, produce the fame Number 12. Whence it follows that Ratio's compounded of equal Ratio's are equal.

* 'Tis evident that in a Series of as many Quantities as you will, the Ratio of the firf to the laft is compounded of all the particular Ratio's of the firt to the fecond, of the fecond to the third, of the third to the fourth, and fo on to the laft, becaufe the Quantities of all thefe Ram tio's multiplied together, produce the Quantity of the Ratio of the firft to the laft. Thus in thefe four Quantities a, \vec{b}, c, d, the Ratio of the firft to the laft, namely $\frac{7}{d}$ is compounded of $\frac{a}{b}$ the Ratio of the firft to the fecond, of $\frac{b}{c}$ the Ratio of the fecond to the third, of $\frac{c}{d}$ the Ratio of the third to the fourth, becaufe thefe chree Ratio $s_{3} \frac{x^{\prime}}{b}, \frac{b}{6}, \frac{c}{d}$, multiplided together make ace or $\frac{a}{6}$ namely the Ratio of the firft to the laft. Thero

Explain'd and Demonftrated.

Thefe Remarks ferve to demonftrate Prop. 22 and 23.
This Book being compoped princtipally to demonftrate the remaining Defritions, that Serve to argue by Proportion; I thought it better to omit them here, and explain and demonArate them in their proper Place, in the following Propofe tions.

PROPOSITION. VII.

THEOREM VII.

Equal Quantitics bave a like Ratio to the fame third 2uasm tity, and the Same Quantity has a like Ratio to equal 2uantities.
A. ${ }^{24}$ C. 8. Say firft, that if the two Quantities A B. 24. C.8. and B are equal; they will have the fame Ratio to a third Quantity C.

DEMONSTRATION.

Becaufe the two Quantities A, B, are equal by Sup. they will contain any aliquot Part of the third Quantity C , the one as often as the other, and fo by Def. 5 . they will have the fame Ratio to that third Quantity. Which was to be demonftrated.

I fay, fecondly, that if the Quantities A and B are equal, the Quantity \mathbf{C} will have the fame Ratio to the Quantity A , as it has to the Quantity B .

DEMONSTRATION.

Becaufe the two Quantities A, B, are equal, by sup. their fimilar aliouot Parts will alfo be equal, and the third Quantity C, will contain each of them equally; wherefore by Def. 5. that third Quantity C will have the fame Ratio to each of the two equal Quantities A, B. Which sads to be demongtrated.
USE.

This Propofition ferves to demonftrate the 14 Prop. of this Book, and 14 and' 15 Prop. Book 6. and Prop. 34.12.

PROPOSITION VIII.

THEOREM VIII.

Of two 2uantities, the greater bas a greater Ratio to a third than the lefs: and this third Quantity bas, greater Ratio to the lefs, than it bas to the greater.
A. ${ }^{48}$ C. I2. Say firft, that if of two Quantities A, B. 36 . $\mathrm{C} .12 . I \mathrm{~B}$, the greater is A , it will have a greater Ratio to a third Quantity C, than the lefs one B, has.

DEMONSTRATION.

Becaufe the Quantity A is greater than the Quantity B, by Sup. it will contain a certain aliquot Part of C, oftner than the Quantity B does, and by Def. 7. the Ratio of A to C, will be greater than the Ratio of B to C. Which was to be demoriftrated.

I fay in the fecond Place, if the Quantity B is lefs than the Quantity A, the Ratio of C to B, is greater than the Rario of C to A .

$$
D E_{0}
$$

DEMONSTRATION.

Becaufe the Quantity B is lefs than the Quantity A, by Sup. its aliquot Parts will be lefs than the fimilar aliquot Parts of the Quantity A, confequently the Quantity C will contain an aliquot Part of the Quantity B, oftner than it will a fimilaraliquot Part of the Quantity A; wherefore by Def. 7. the Ratio of C to B, will be greater than the Ratio of C to A . Which was to be demongirated.
US E.

This Propofition ferves to demonftrate Prop. 14.

PROPOSITION IX.

THEOREM IX.

Quantities baving the fame Ratio to a third are equal; and they to which a third Quantity bas the Same Ratio are alfo equal.
A. 3. C. 2. Say firf, if each of the two Quantities B. 3. C. 2. A, B, have the fame Ratio to a third Quantity C , thefe two Quanties A, B, are equal.

DEMONSTRATION.

Becaufe the Ratio of A to C is equal to that of B to C, by sup. the Quantity A will contain an aliquot Part of the Quantity C, as often as B does, by Def. 5. and confequently thefe two Quantities A and B will be equal. Which was to be demonftrated.

If fay in the fecond Place, that if a third Quantity C have the fame Ratio to each of the two Quantities \mathbf{A} and B, thefe two Quantities A and B are alfo equal.

DEMONSTRATION.

Becaufe the Ratio of \mathbf{C} to \mathbf{A} is equal to that of \mathbf{C} to B, by/ Sup. a certain aliquot Part of A will be contain'd in C , as often as a fimilar aliquot Part of B, by Def. 5 . Wherefore an aliquot Part of \mathbf{A} will be equal to a fimilar aliquot Part of B, and confequently A and B will be equal. Which remainid to be demonfluated.

USE.

This Propofition ferves to demonftrate Prop. 14. and Erop. 2, 5, 7, 14, 25, and 31. Book 6. and Prot. 34. Book II. Laftly, Prop. 15. Book. 12.

PROPOSITION X.

THEOREM X.

Of two Quantities, that which bas the greateft Ratio to a third Quantity, is the greater: on the contrary, that to antich a third bas a greater Ratio, is the lefs.
A. 12. C. 2. Say firf, that if of two Quantities A, B, B. ©. C. 2. the firft A has a greater Ratio to a third Quantity \mathbf{C}, than the fecond \mathbf{B} to the fame Quantity $\mathrm{C}_{\text {, }}$ that firf Quantity \mathbf{A} is greater than the fecond \mathbf{B}.

DEMONSTRATION.
Becaufe the Ratio of \mathbf{A} to \mathbf{C} is greater than that of B to C, by sup. the Antecedent A contains a certain aliquot Part of its Confequent C, oftner than the Antecedent B contains a fimilar aliquot Part of its Confequent C, by Def. 7. Whence it follows that the Quantity A is greater than the Quantity B. Which was to be demono flrated.

I Say, in the fecond Place, that if the third Quantity \mathbf{C}, has a greater Rutio to the fecond B, than it has to the firft A, that fecond Quantity B, is lefs than the former A .

DEMONSTRATION.

Becaufe the Ratio of C to B is greater than the Ratio of C to A , by sup. the Quantity C contains a certain aliquot Part of \mathbf{B}, oftner than it does a fimilar aliquot Part of A, by Def. 7. and confequently B will be lefs than A. Which remains to be demonffrated.

> USE.

This Propofition ferves to demonftrate Prop. i4.

PROPOSITION XI.

THEOREM XI.

Ratio's equal to the Same Ratio, are equal to one another.
A. 2. B. 3. :: C. 4. D. 6. Tay, if the two Ratio's of E. 8. F. i2.:: C. 4. D. 6. D A to B, and of E to F, are each equal to that of C to D, they are equal to one another.

DEMONSTRATION.

Becaufe A is to be, as \mathbf{C} to D , the Antecedent \mathbf{A} contains its Confequent B, as often as the Antecedent \mathbf{C} does its Confequent D: likewife becaufe E is to F , as C to D , the Antecedent E will contain its Confequent F, as often as the Antecedent C, does its Confequent D, by Def.' 5 . Wherefore the Antecedent A will contain its Confequent B, as often as the Antecedent E does its Confequent F, and by Def. 5. the Ratio of A to B, will be equal to that of E to F . Which was to be demonftrated.
USE.

This Propofition ferves to demonftrate Prop. 25 , and 31. Boof 6. and Prop. 34. B. 12.

PROPOSITION XII.

THEOREM XII.

If foceral 2itantities are proportional, the Sum of all the Ano tecedents is to the Sum of all the Consequents, as any one Antecedent is to its Consequent.
A.2.B. af : : C. 3. D. 6. Say, if the Ratio of A to B, be the fame as the Ra. tio of C to D, the Ratio of the Sum $A-1-C$ of the two two Antecedents, to the Sum B-D of the two Confe. quents, is the fame as that of the Antecedent A to the Confequent B.

DEMONSTRATION.

Becaufe A is to B, as C to D, by Sup. the Antecedent A will contain any aliquot Part of its Confequent B, as often as the Antecedent C contains a fimilar aliquot Part of its Confequent D; for infance an half, by Def. 5. and fince half B added to half D, makes half $B-5$, $\mathrm{A}+\mathrm{C}$ will contain half $\mathrm{B}+\mathrm{D}$ as often as A contains half B, and confequently the Ratio of A to B, is fimilar to that of $A+C$, to $B-D$. Which wors to be demions flrated.
USE.

This Propofition ferves to demonftrate Prop. 5, 6, and. 7, of Book I2, and that an Ellipfe is a mean Proportional. between two Circles defcribid about its two Axes, as you will find in our Planimetry. It ferves alfo to demono fitate the Rule of Fellowhip, and Prop. 20. 6. and Prot. 25.12.

PROPOSITION XIII.

THEOREM XIII.

If two Ratio's be equal, and one greater than a third Ratio, the other will alfo be greater than the fame third Ratio.
A. 2. B. 3. :: C. 4. D. 6. Say, if the two Ratio's of E. 7. F. 12. A to B, and of C to D, be equal, and the firf Ratio of A to B greater than the third Ratio of E to F, the fecond Ratio of C to D, will alfo be greater than the fame Ratio of E to F.

DEMONSTRATION.

Becaufe the Ratio of A to B is greater than that of E to F , by sup. the Antecedent A will contain any aliquor Part of its confequent B, oftner than the Antecedent E contains a fimilar aliquot Part of its Confequent F , by Dff. 7. and fince the Antecedent C contains a fimilar aliquot Part of its Confequent D, as often as the Antem cedent A contains that of its Confequent B, becaufe the Ratio of A to B is the fame with that of C to D, by Sup. the Antecedent C muft contain an aliquot Part of its Confequent D, oftner than the Antecedent E, cons. tains a fimilar aliquot Part of its Confequent F, and by Def. 7. the Ratio of C to D , being alfo greater than that of \mathbf{E} to \mathbf{F}. Which was to be demonfrated.

PROPOSITION XIV.
 THEOREM XIV.

In four proportional 2 uantities, if the firf be greater, equal, or lefs than the third, the fecond alfo will be greater, equal, or lefs than the fourth.

A, B. : : C, D. Say firf, if of the fe four Proportional I2. 3. :: 4. I. Quantities, A, B, C, D, the firft, which is A, be greater than the third, C, the fecond alfo, B, will be greater than the fourth D.

DEMONSTRATION.

Becaufe A is greater than C, by sup. the Ratio of A to B is greater than the Ratio of C to B, by Propera. and fince the Ratio of A to B is equal to that of C to D, by Sup. the Ratio of C to D will be greater than that of C to B, and by Prop.4. B will be greater than D. Which was to be demonifrated.
A. B. :: C. D. If fay, fecondly, if A the firft of there 3. 4.2 .3 .4 four proportional Quantities, A, B, C D, be equal to C the third, B allo the fecond will be equal to D the fourth.

DEMONSTRATION.

Becaule A is equal to C by sup. the Ratio of A to B, is the fame as that of C to B, by Prop. r. and fince the Ratio of A to B, is equal to that of C to D by sup. the Ratio of C to D will be the fame as that of C to B, and by Prop.3. B will be equal to D. Which was to be demonnrated.
A. B. ::C. D. Laftly, I fay if A, the firft of thefe 3. 4.:: 3. 6. four proportional Quantities, A, B, C, D, be lefsthan C the third; B the fecond will be alfo lefe than D the fourth.

DEMONSTRATION.

Becaufe A is lefs than \mathbf{C} by sup. the Ratio of A to C will be lefs than that of C to B , by Prop. 2 . and fince the Ratio of A to B is equal to that of C to D, by Sup. the Ratio of C to D will be lefs than that of C to B, and by Prop. 4. B will belefs than D. Which remain'd to be denoonftrated.
U S E.

It ferves to demonftrate Prop. 24, and Prop. 25.15 and 25, of Book 6 .

LEMMA I.

If four Quantities be proportional, the Product of the Extreams is equal to the Product of the Means.

T Hefé four Quantities a, ad, b, bd, being proportional, by Def. 6. the Product of the two Extreams a, bd, is evidently equal to the Product of the Means, ad, b, beccule the two Extreams a, bd, multiplied together are equal to the twoo Means ad, b_{2} - mnultiplied together, namely, abd. Which was to be demonitrated.

LEMMA II.

Thofe four Quantities are proportional, the Product of whofe Extreams is equal to the Product of the two Means.

ISay, the fe four Quantities a, b, c, d, are proportional, if the Product ad of the Extreams be equal to bc the Pro duct of the Means.

DEMONSRATION.

Suppofe a to be contain'd in b, acertain Number of Times expreffed by m , in wobich Cafe am will be equal to b , and c contain'd in d , a certain Number of Times exproffed by n , theng cn will be equal to d, infead of baving the Product ad, equal to the Product bc, youi mill bave the Produst acn equid to the Product acm ; confequently dividing each of the cgial Terms. by ac, you will bave m egual to n; wherefore b contains a ded offen as d does c , and by Def. 6. the four Quantities $\mathrm{a}_{3} \mathrm{~b}, \mathrm{c}, \mathrm{d}_{5}$. are proporitional. Which was to be demonftrated.

PROPOSITION XV.

THEOREM XV.

Equimultiples, and their fimilar Aliguot Parts, are pree portional.

TSay, the four Quantities ad, bd, a, b, whore two firizz Terms ad, bd, are Equimultiples of the 5 wo laft, b, are proportional.

DEMONSTRATION.

Becaufe the Product of the two Extreams ad, b, of the four Quantities propofed $a d, b d, a, b$, is the fame with the Product of the two. Means $b d$, a, namely äbd, confequently by Lemmiz 2. the four Quantities ad, $b d, a, b_{B}$ are proportional. Which wos to be demonfuated.
US E.

This Propofition ferves to demonftrate Prop. 1. and 33. Booke 6. and Prop. 13. 12.

PROPOSITION XVI.

THEOREM XVI.

If fow Quatities are proportional, they are alfo proportional when altern'd.

ARatio is faid to be altern'd, when the Place of the two middle terms in the Proportion is chang'd, the one being fubftituted in the room of the other, and the Proportion yet continuing; that is to fay, the four Quantities that were proportional; continue to be fo after ahis, Change: But this is to be demonitrated.

If ay therefore, if the four QuantiA, B. $:=C, D$. ties A, B, C, D, are proportional, 2. 3. $\therefore 4_{0} . \sigma_{i}$ thefe four A, C, B, D, are proportio. nal alfo.

DEMONSTRATION.

For fince the four Quantities A, B, C, D, are propore rional, by sup. by Lem 1. the Product AD of the Extreams, is equal to the Product $B C$ of the Means; and by zers. 2. thefe four Quantities A, C, B, D; are alfo proprorional. Which was to be demonfluated.

Explaind and Demonfrated.

Or becaufe the Ratio of A to C is compounded of the Ratio's of A to B, and of B to C, which are equal to the two Ratio's of B to C, and of C to D, of which the Ratio alro of B to D is compounded: 'Tis eafy to conclude from the Remarks made in Def. 10. that the Ratio of A to C is equal to that of B to D, that is to fay, that the four Quantities A, C, B, D, are grogortional. Whbich zons so be hemongtratred.

SCHOLIUM.

An invepted Ratio.

One may demonftrate after the fame maner, what Euclid demonftrates after the 4th Prop. which we have omitted, namely, that if the four Quantities $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, are proportional, thefe four alfo B, A, D, C,' are alfo proportional, which is call'd an inverted Ratio, in which we compare the Confequent with the Antecedent; bee caufe the Quantities A, B, C, D, being proportional, the Product AD of the two Extreams is equal to the Product of the Means BC, by Lein. I. and by Lem. 2. thefé four Quantities $\mathrm{B}, \mathrm{A}, \mathrm{D}, \mathrm{C}$, are proportional alfo.

PROPOSITION XVII.

THEOREM XVII.

Proportion by Divifion.
if four 2unntities are proportional, they mill be for alfo whet divided.

AProporition is faid to be divided, when inftead of each Antecedent you fubfitute the Excefs of that Antecedent above its Confequent, and ftill the Quantities are proportional, as we are now to demonftrate.

I fay then, if thefe four Quantities ad, a, bd,b, are proportional, as they certainly are, as "tis evident by Def. 6. and allo by Lem. 2, that is to fay, the Ratio of add to a is the fame as that of $b d$ to b; by dividing the Proportion, the Ratio of ad- n to \dot{a}, is the fame with that of $b d-b$ है 6.

DEMONSTRATION.

Becaufe the Product of the two Means $a, b d-b$, and of the tivo Extreams ad- a, b, of thefe four Quantities, $a d-a, a, b d-b, b$, is the fame, namely, abd-ab, it follows by Lem. 2. that thefe four Quantities ad-a; a_{0} $b a-b, b$, are proportional. Which was to be demonftrated.

S CHOLIUM.

Converfion of Proportion.
The Divifion of Proportion juft now defined, fuppofes the Antecedent is greater than its Confequent ; but fince it may be lefs, and then Proportion by Divifion feeming impoffible, it muft be defined more generally, taking the Difierence between the Antecedent and Confequent, inftead of the Excels, and then if you compare it with the Antecedent, which is call'd Converting a Proportion, you may demonftrate that the Proportion remains.

PROPOSITION XVIII.

THEOREM XVIII.

Compofition of Proportion.
If four 2 uantities are Proportional, they are fo when Cons. pounded.

THers aroportion is faid to be Compounded, when the Sum of the Antecedent and its Confequent is fub ftituted in the room of each Antecedent, the Quantities continuing to be proportional, as we fhall demonftrate.

Ifay theri, if thefe four Quantities $a, a d, b, b d$, are proportional, as they certainly are, as is evident by Def. 6. and Lerm. 2. that is to fay, the Ratio of a to ad, is the fame as that of b to $b d$, compounding them the Ratio of sid to $a d$, is the fame as that of $d-b d$, to $b d$.

DEMONSTRATION.

Becaufe if you multiply the two Extreams a-tad, Fa'rogether, and the two Means $a d, b-b d$ of there four proportional
proportional Quantities $a+a d, a d, b+b d, b d$, the Product will be the fame, namely, $a b d+a b d d$, confequently by Lem. 2. thefe four Quantities $a+a d, a d, b+b d, b d$, are proportional. Which was to be demonjfrated.

SCHOLIUM.

One might alfo put inftead of each Confequent, the Sum of the Confequent and its Antecedent, to compare it with its Antecedent, and demonftrate after the fame manner that the Proportion continues: which Euclid demonftrates by a Confequence drawn from Prop. 19. which beirig thus ufelefs, as well as Prop. 20. and 21. we fhall confequently omit them:

U S E.
This Propofition ferves to demonftrate Prop. 24. and Prop. 3I. 6.

PROPOSITION XXII.

THEOREM XXII.

Proportion ex xquo ordinata.
If there be certain Number of Quantities in one Rank in Proportion ex equo, with a like Number of Ruantities in another, the Ratio of the two Extreams of one Rank is equal to the Ratio of the two Extreams of the otber.

QUantities are faid to be in Proportion ex equa, when in feveral Quantities in one Rank proportional to as many in the other, the firf Quantity in one Rank is to the fecond, as the firft in the other Rank is to its fecond, and the fecond of the firft Rank is to its third, as the fecond of the fecond Rank is to its third, and fo on.

Thus if you have thefe three A. 2. B. 3. C. 4. Quantities A, B, C, in one Rank, D. 8. E. i2. F. 16. and three others D, E, F, in ano ther, fo that A be to B, as D to E, and B to C as E to F, I fay then that A is to C as D to F.

DEMONSTRATION.

Becaufe the Ratio of A to C is compounded of the Ratio's of A to B, and of B to C, and the Ratio of D to F, is compounded of the Ratio's of D to E and E to $F_{\text {, }}$ which are by Sup, equal to the two Ratio's of A to B, and of B to C, it follows that the two Ratio's of A to C, and D to F is compounded of fimilar Ratio's, and cono requently equal. Which wo to be demonfrated.

> USE.

This Propofition ferves to demonftrate Prop.8. 6. and feveral other fine Theorems in Geometry, as the 4 th Lem. of our Dialling.

PROPOSITION XXIII.

THEOREM XXIII.

Proportion ex æquo perturbata.
If there be certain Number of 2 uantities in one Rank, Proportion ex xquo perturbata, with an equal Num ber of Termsin another Rank, the Ratio of the two Extreams of one Rank, is equal to the Ratio of the: two Extreames of the other Rank.

A
Proportion is faid to be ex equo perturbata, when feveral Quantities in one Rank, are proportional to as many in another Rank, fo as that the firft of one Rank is to the fecond, as the laft fave one of the other Rank is to the laft, and the fecond of the firft Rank is to the third, as the laft fave two of the fecond Rank is to the laft fave one, and fo on to the firft of the fecond Rank.

This if you have the three Quan A. 2. B. q. C. I. tities A, B, C, in one Rank, and D.12. E.3.F.6. three others D, E, F, in another, To as that A is to B, as \mathbf{E} is to \mathbf{F}, and \mathbf{B} is to C, as D is to E. I fay in this care A is to C, as D is to F.

DEMONSTRATION.

Becaufe the Ratio of A to C is compounded of the Ratios of A to B and of B to C, and the Ratio of D to F is compounded of the Ratio of D to E, equal to that of B to C, by sup. and of E to F, equal to that of A to B, ir follows from the Remarks made on Def. Io, that the Ràtio of A to C is equal to that of D to F . Which wes to be demonfirated.

USE.

This Propofition is ufed in Spherical Trigonometry, to demonfrate that in a Spherical triangle, the Sines of the Angles are proportional to the Sines of their oppofite Sides. It ferves alfo in Plain Trigonometry to demonftrate that in a Rectilineal Triangle, the Sines of the Angles are proportionsl to their oppofite sides. This Propofition is of ule alfo in the Demonftration of Prog. 24 .

PROPOSITION XXIV.

THEOREM XXIV.

If of Six Quantities, the furf is to the Second as the thive is so the fourth; , and the fffth to the fecond, as the fixt to the fourth; the Sum of the forlt and fftt will be to the fecsond, as the Sum of the third and fixtb to the fourth.

A. 2. B. 3. :: C. 4. D. 6. E. 8. B. 3. :: F. 16.D. 6.

Say, if of thefe fix Quantities A, B, C, D, E, F, the Ratio of the firft A , and fecond B, be equal to the Ratio of the third C, and fourth D; and the Ratio of the fifth E, to the fecond $B_{\text {; }}$, is the fame with that of the fixth F, to the fourth D; the Sum $A+E$ of the firft and fifth is to the fecond B, as the Sum of the third and fixth $C+E$ to the fourth D.

DEMQNSTRATION

Since by sup. the Ratio of A to B, is equal to that of C to D, the Antecedent A, will contain an aliquot Part of its Confequent B, as often as the Antecedent C contains a fimilar aliquot Part of its Confequent B, by Def. 5 , and by the fame Definition, fince the Ratio of E to B is like that of F to D by Sup. the Antecedent E will contain the fame aliquot Part of its Confequent \mathbf{B}, as often as the Antecedent F contains a fimilar aliquot Part of its Confequent D : Confequently $A+E$, the Sum of the two Antecedents A, E, will contain any aliquot Part whatever of their common Confequent \mathbf{B}, as often'as C4F, the Sum of the two other Confequents C, F, contains a fimilar aliquot Part of their common Confequent D: and fo by Def. 5. the Ratio of $A-1-E$ to B, will be the fame as that of C+F to D. Which was to ,be densonftrated.

SCHOLIUM.

This Propofition may be demonftrated otherwife and eafier thus: Since the Ratio of E to B, is fuppofed equal to that of F to D, by Inverfion of Proportion; the Ratio of B to E is the fame with that of D to F; and fince the Ratio of A to B, is the fame with that of C to D, by Suppofition, you will have the \int e three Quantities A, B, E, in one Rank, and C,D,F, in another, in a Proportion ex equio ordinsta, confequently by Prop. 22, the Ratio of A to E is the fame with that of C to F , and by Compofition of Proportion according to Prop. I8. the Ratio of $\mathrm{A}-1-\mathrm{E}$, to \mathbf{E}, is the fame with that of $\mathrm{C}+\mathrm{F}$, to \mathbf{F}. Which was th b demsonftrated.

PROPOSITION•XXV.

THEOREM XXV.

In four proportional 2uantities the Sum of the two Extreams is greater than the Sum of the two Means.

ISay, the Sum of the two Extreams ab-tcd, of there four Quantities $a b, b d, a c, c d$, proportional by Lem. 2. is greater than $a c-1-b d$, the Sum of the two Means

DEMONSTRATION.

If the firft $a b$ be fuppofed greater than the third $a c$, divide each of thofe two unequal Quantities $a b, a c$, by a, and you will find the Quantity b is greater than the Quantity c, then multiply each of thefe two unequal Quantities, b, c, by the Difference $a-d$, and you will find the Product $a b-b d$, greater than the Product $a c-c d$; and laftly, add to each of thefe unequal Products, $a b-b d$, $a c-c d$, the Sum $b d+c d$, you will find the Sum $a b+c d^{\prime}$, is greater than the Sum ac-|bd. Which woss to be demonfrated.

S C H OLI U M.

If you would have another Demonftration, fuppofe the four Quantities, A, B, C, D, proportional, and the firf A greater than the third C, and then the fecond C, will be greater than the fourth D, by Prop. 14. Then, I fay, the Sum A-D of the two Extreams is greater than the Sum of the two Means $B+C$.

DEMONSTRATION.

Since the four Quantities A, B, C, D, are fuppofed proportional, by Divifion of Proportion, according to Prop. 17. A-B, B, C-D, D, are alfo proportional ; and fince we know that B the fecond, is greater than D the fourth, then by Prop. 14. A-B, the firft, muft be greater than $\mathrm{C}-\mathrm{D}$ the third; confequently add $\mathrm{B}+\mathrm{D}$ the Sum to each of thefe unequal Quantities $A-B$, C-D, and you will find the Sum $A+D$, is greater than the Sum $\mathrm{B}+\mathrm{C}$. Which was to bedemonflrated.

USE.

This Propofition ferves to fhew the Difference between Geometric and Arithmetic Proportion, in the latter, the Sum of the two Extreams is equal to the Sum of the Means, as fhall be demonftrated in our Trigonometry; , whereas in the former the Sum of the two Extreams is greater than the Sum of the two Means, as has been demonftrated two ways.

The Commentators upon Euclid, bave added nine Propofitions more, which wee fhall omit, becaufe they are not Euclid's, and may be eafily underfiood by any one thast uraderfands the feregoing.

THE

SIXTH BOOK

O F

EUGLID's ELEMENTS.

EEclid, having explain'd in general the feveral Sorts of Proportion, begins in this Book to apply thens to Planes, and firft to Triangles, comparing their Areas, Sides, and Angles refpectively together. On that Account this Book is the Foundation of the Conftruction and Ufe of all Sorts of Mathematical Infruments, as the Graphometer, Aftrolabe, Geometrical Quadrant, Jacob's Staff, Sector, and all others as are of wre in Menfuration: and befides of all Machines as are ufed in Mechanics, inftead of moving Powers, as the Balance, Lever, Pully, Axis in Peritrochio, the Screw and the reft as well fimple as compound, as ferve to aug. Inent the Motive forces in any Ratio.

DEFINITIONS.

I.

Similar Rectilineal Figures are fuch as have all their Angles refpectively equal, and the Sides contain'd by the proportional.
plate 1. Fig.

Plate 2 .
Eig. 18.

Thus the two Rectilineal Figures $A B C, B D E$ are fimilar, bee caufe the Angle ABC is equal to the Angle BDE; and the angle $B A C$ equal to the Angle DBE; and the Side $A B$ to the Side $B C$, as the Side $B D$, to the side $D E$: and the Side $A B$, to the Side $A C$, as the Side $B D$ to $B E$, \&c.

If all the Rectilineal Figures were Triangular, it would be enough to fay they are equiangular inftead of fimilar, becaufe in Prop. 4. we have demonftrated that equiangular Triangles, have alfo their Sides proporcional; or inftead of faying Triangles are fimilar, one might fay they have their Sides proportional, becaufe Triangles that have their Sides proportional, are equi" angular, as thall be demonftrated in Proo. 5.

II.

Reciprocal Figures are fuch as have Sides that may be fo compar'd, as that the Antecedent of one Ratio, and Confequent of the other, is to be found in the fame Figure.

Thus the two Figures $\mathrm{ABE}, \mathrm{ACD}$, are reciprocal, be caufe as the Side $A B$ is to the Side $A C$, fo is the Side $A D$ to the Side $A E$.

III.

A Line is faid to be cut in extream and mean Proportion. when the whole Line is to its greater Part; as that greater Part is to the lefs. Thus the Line AD is divided at the Point B, into extreams and mean Proportion, if the Ratio of the Line $A D$, to its greater Part $A B$, be the fame with that of the greater Part $A B$, to its lefs $B D$.

This Line is fo calld, becaure in the three Proportio onals $\mathrm{AD}, \mathrm{AB}, \mathrm{BD}$, the Extream Ratio, is that between the two Extreams AD, $B D$, and the Mean Ratio is that between the whole $A D$, and the Mean $A B$, or between the Mean $A B$, and the other Extream BD.

IV.

Mare r :
Figo 4.

The Height of a Figure, is a Right-Line let fall perpendicularly from the Vertex to the Bafe. Thus the Height of the Triangle $A B C$, is the perpendicular AF, let fall from the Tertex is upon the Bafe BC: and fo alfo the Height of the Triangle $C D E$ is the perpendicular $D H$, let fall frove the Vertex D winn the Bafe CE.
${ }^{3}$ Tis

Book 6. Euclid's Elements Plate 1. Page 204

${ }^{7}$ Tis evident, that if two Triangles or Parallelograms of the fame Height, have their Bafes in the fame RightLine, and the fame Way, they are between the fame Pao rallels; and that if they are between the fame Parallels, they are of the fame Height. So that two Triangles, or Parallelograms of equal Heights may be plac'd between the fame Parallels.

PROPOSITION.

THEOREM I.

Triangles and Parallelograms of the fame Height are to one another as their Bafes.

ISay firf, if the two Triangles ABC, CDE, are of the pate a: fame Height, or between the fame Parallels AD, BE, Fig. 4° they are to one another as their Bafes, that is to fay, the Triangle $A B C$, is to the Triangle $C D E$, as the Bafe $B C$ to the Bafe CE.

PREPARATION.

Bifect each of the Bafes BC, CE, at the Points F, G, and draw the Right-Lines AF, DG; then by 38. I. the two Triangles FAC, FAB, are equal, as well as GDC, GDE. Confequently the whole Triangle BAC is double each of the equal Triangles FAB, FAC, fince the Bafe BC is double each of the two equal Bafes FB, FC : and in like manner the whole Triangle CDE is double each of the two equal Triangles GDC, GDE, fince the Bafe CE is double each of the two equal Bafes GC, GE. From whence 'tis eafy to conclude by 15. 5. that the Ratio of the Bafe BC is to its half FC , juft as the Triangle BAC , to its half FAC: Thus alfo the Ratio of the Bare CE, to its half CG, is equal to the Ratio of the Triangle CDE, to its half CDG.

DEMONSTAATION.

This being fuppofed, confider BC is to its half FC , , CE to its half CG: and fo alfo that the Triangle BAC, is to its half FAC, as the Triangle CDE, to its half CDG, and confequently the Proportion between the four Lines BC, FC, CE, CG, is fimilar to the Proportion that is between the four Triangles BAC, FAC, CDE, CDG: Wherefore changing them by 16. 5. You will find the Heights AF and DH being equal, that the Proportion between the four Lines BC, CE, CF, CG, is equal to that between the four Triangles BAC, CDE, FAC, CDG. Whence 'tis eafy to conclude that in this fecond Proportion, the firft Triangle BAC is to the fecond CDE_{2} as the firt Line BC , to the fecond Line CE, in the firf Proportion. Which was to be demoijerated.

I fay in the fecond Place, that Parallelograms of the fame Height are to one another as their Bafes', becaufe Parallelograms being double Triangles of the fame Bafe and Height, by 41. 1. are as their Bafes, ©f. Which ree main"d to be demonffrated.

USE.

This Propofition is of ufe in the following, and in Prop. 14, 15, and 19: and alfo to demonftrate that Triangles and Parallelograms, whofe Bafes are equal, are as their Heiglits, becaufe their Heights may be taken for their Bafes; and the Bafes for Heights, which is too eafy to infift upon.

PROPOSITION II.

Rase s:
Eig. 5 .

THEOREM II.

* Right-Line drame Parallel to one of the Sides of a Triana gle, cuts the Legs proportionally; and if it cuts the Legs proportionally; ' tis parallel to the third Side.

ISay firf, if the Right-Line DE be drawn parallel to the Side $A B$, of the Triangle $A B C$, it will cut the two other Legs AC, BC, proportionally, fo that the Part CD thall be to the Part AD, as the Part CE to the Part BE.

DEMONSTRATION.

Draw the Right-Lines $A E, B D$, and you will find the two Triangles CED, DEA, having the fame Vertex E, to have the fame Height, and by Prop. 1. they are to one another as their Bafes CD, AD: After the fame manner, the two Triangles CDE, EDB, having the fame Vertex D, and confequently the fame Height, are to one another as their Bafes; CE, BE; and fince the two Triangles DEA, EDB, between the fame Parallels AB, $D E$, and having the fame Bafe DE, are equal by 3% 'Tis eafy to conclude by II. 5. the Ratio of the Parts CD, AD, is the fame with that of the Parts CE, BE, Which was to be demonftrated.

I fay fecondly, if the Line $D E$, cut the two Sides AC, BC, proportionally, 'tis parallel to the third Side $A B$.

DEMONSTRATION,

Connecting as before; the Right-Lines AE, $B D$, confider that fince the four Lines $C D, A D, C E, B E$, are proportional by sup the four Triangles CED, DEA, CDE, EDB, are propertional by Prop'.. I, and becaufe the
the two Antecedents CED, and CDE, are equal, repre. fenting the fame Triangle, the Confequents aldo are equal, DEA, EDB, by 14.5. Wherefore by 39. 1. the Line DE will be parallel to the Side AB. Which remaine to be demonforated.

> USE.

This Propofition serves to demonstrate the following one and Prop. 4. and that feveral Lines drawn Parallel to the fame Side cut the Legs proportionally.

PROPOSITION III.

THEOREM III.

"A Right-Line bifecting an Angle of Triangle, divides the oppofite Side into two Parts that are in the fame Ratio as the two other Sides: and if it divide a Side into two Parts proportional to the twa other Sides, it biSects the opposite Angle.

Fig. 6. Say first, if the Right-Line AD, bifect the Angle BAC of the Triangle, it cuts the oppofite Side BC into two Parts $B D, C D$, that are in the fame Ratio as the two other Sides AB, AC.

PREPARATION.

Produce one of the two Sides $A B, A C$, as $A C$ in E, "till $A E$ be equal to the other Side $A B$, and join the Right-Line BE.

DEMONSTRATION.

Becaufe the Triangle BAE is an Ifofcele, by condo. the Angle E will be equal to the Angle ABE, by 5.1. and becaufe the external Angle BAC, double the Angle $B A D$, is equal to the two internal and opposite E,

Explain'd and Demonftrated.

$E, A B E$, by 32. 1. it will be double each, and confe- Plate x. quently the Angle $A B E$. So the alternate Angles BAD, Fig. 6. $A B E$, will be equal, and by 27. I. the Line AD will be parallel to the Side BE of the Triangle BEC, and by Prop. 2, the Ratio of the two Parts BD, CD, will be equal to that of the two Parts AE, AC, or the two Sides AB, AC. Which woas to be demonftrated.

I fay fecondly, if the Ratio of the two Parts BD, CD, be equal to that of the two Sides $A B ; A C$, the Angle $B A D$ is equal to the Angle CAD.

DEMONSTRATION.

Make a Conftruction fimilar to the foregoing, and fince by Sup. the Ratio of the two Lines $B D, C D$, is equal to that of the two $A B, A C$, or $A E, A C$, the Line AD is parallel to the Side $B E$ of the Triangle $A E B$, by Prop. 2. and by Prop. 29. 1. the Angle BAD is equal to each of the two equal Angles $E, A B E$; and fince the Angle BAC is double the Angle E, it will be alfo double the Angle BAD, which will confequently be equal to the Angle CAD. Which remain'd to be demonfrated.

U S.E.

This Propofition may ferve to divide a given Line into two Parts proportional to two other given Lines; provided the Sum of the two given Lines be greater than the firft : Thus to cut the Line BC into two Parts proportional to the two given Lines $A B, A C$, form with the three given Lines $\mathrm{BC}, \mathrm{AB}, \mathrm{AC}$, the Triangle BAC , by 22. I. and by 19. 1. bifect the Angle A, by the Right-Line AD, ofr.

PROPOSITION IV.

THEOREM IV.

Equiangular Triangles bave thsir Sides proportional.

ISay, if the two Triangles $\mathrm{ABC}, \mathrm{BDE}$, are equiangu* ${ }^{\circ} \mathrm{g}$. H° lar, fo that the Angle A, is equal to the Angle DBE, and the Angle $A B C$ equal to the Angle $B D E$, and conSequently the third Angle ACB equal to the third P Angle pofite to the equal Angles, is equal to that of the two Sides AC, BE, oppofite to equal Angles.

PREPARATION.

Having imagin'd the two Triangles $\mathrm{ABC}, \mathrm{BDE}$, fo pofited that the two Sides oppofite to the equal Angles, as $A B, B D$, join by their Extremities in a Right-Line, produce the two Sides $A C$, $D E$, 'till they meet in a Point, as E .

DEMONSTRATION.

Becaure ABD is a Right-Line, and by Conft. the Angle $A D F$, equal to the Angle $A B C$, by sup. the Line $B C$ will be parallel to the Line DF, by 28. r. and fo alfo becaufe the Angle A is equal to the Angle DBE, the the Line BE will be parallel to the Line AF : Thus the Figure BCFE will be a Parallelogram, whofe two oppofite Sides BC, EF, are equal, by 34.1 . as well as the two oppofite ones, BE, CF, and in the Triangle ADF, the Line BC being parallel to the Side DF, the Ratio of $A B$ to $B D$ will be equal to that of $A C$ to $C F$, or $B E$, by $B_{r o p} 2$. and fo alfo the Line BE being parallel to the Side AF , the Ratio of the two Lines AB, BD is equal to that of thofe two EF or BC , and DE. Which was to be demonftrated.

SCHOLIUM.

${ }^{\text {TT Tis evident by ri. 5. that the Ratio of the two Sides }}$ AC, BE, oppofite to the equal Angles, is alfo equal to that of the two Sides $B C, D E$, oppofite to equal Angles, becaule each of the two Ratio's has been demonftrated to be equal to that of $A B$ to $B D$.
'Tis evident alfo by 16. 5 ; that the Sides containing the equal Angles in each Triangle, are profortional,
that is to fay, for inflance, that the Ratio of the two Plate x . Sides $A B, A C$, is equal to that of the two $B D, B E$, be- Fig. z. caufe it has been demonftrated that the four Sides $A B$, $\mathrm{BD}, \mathrm{AC}, \mathrm{BE}$, are proportional, confequently by converfion, $\mathrm{AB}, \mathrm{AC}, \mathrm{BD}, \mathrm{BE}$, alfo are proportional: Whence it follows by Def. x. that equiangular Triangles are fimilars

USE。

This Propofition is not only neceffary for the follow. ing ones, but is the Foundations of the Principal Praetices of Trigonometry, and of the ufe of the Univerfal Inftrument, on which are defcribed little Triangles, fimilar to thofe that are imagin'd to be on the Ground, when 'tis ufed to tmeafure any inacceffible Line, take a Plan, or trace one upon the Ground: 'Tis alfo the Foundation of the Ufe of the Compafs of Proportion as may be feen in a Treatife upon that Subject already publifhed, where Demonftrations are founded upon that Propofition.

PROPOSITIONV. THEOREM V.

Triangles that bave their sides proportional, wre equiangular.
Say, if in the two Triangles $\mathrm{ABC}, \mathrm{BDE}$, the Side Fig. z : $A B$, is to the Side $B C$, as the Side BD to the Side $D E$: and the Side $A B$, to the Side $A C$, as the Side $B D$, to the Side BE ; thefe two Triangles $\mathrm{ABC}, \mathrm{BDE}$, are equiangular, fo that the Angle $A B C$ is equal to the Angle BDE, the Angle A to the Angle DBE, and confequently the third Angle ACB, equal to the third Angle BED.

PREPARATION.

Make by 23.1. at the Extremity B of the Side BD, the Angle DBG, equal to the Angle A, and at the oiher Extremity D, the Angle $B D G$ equal to the Angle $A B C$.

$$
P=\quad D E
$$

DEMONSTRATION.

Plate 1. Eg. 1.

Becaufe the Triangles $\mathrm{ABC}, \mathrm{BGD}$, are equiangular by Conff. the Ratio of $A B$ to $B C$ is the fame as that of BD to DG, by Prop. 4. and becaufe the Ratio of $A B$ to BC is the fame as that of BD to DE by sup. it follows by II. 5. that the Ratio of $B D$ to $B G$, is equal to that of BD to DE , and by 14.5 . the Side DE is equal to the Side DG : After the fame manner the Ratio of AB to $A C$ is the fame as that of $B D$ to $B G$, and fince the Ratio of $A B$ to $A C$ is fuppos'd the fame as that of $B D$ to $B E$, the Ratio of $B D$ to $B G$ will be fimilar to that of $B D$ to $B E$, and the Side BG, will be equal to the Side BE; confequently by 8. 1 . the Triangle BDE will be equiangular to the Triangle BDG , and confequently to the Triangle ABC . Which was to be demongtrated.

U S E.

The Method taught in Prob. I6. Introd. to take an acceffible Plan on the Ground, is founded upon this Propofition, very much refembling the eighth of the firft Bock, that ferves alfo for the Demontration of this, as has been thewn; for fince by 8. I. if two Triangles have their Sides equal, they themfelves are alfo equal and equiangular, by the fame, if the Sides of the two Triangles ase proportional, they themfelves alfo are equiangular, conlequently by Def. they are alfo fimilar.

PROPOSITION VI.

THEOREM VT.

Triangles baving their Sides about an equal Angle proportional, are equiangular.

1Say, if the Angle A, of the Triangle ABC, be equal to the Angle is of the Triangle BDE, and the two Sides $\triangle B, A C$, proportional to thefe two $B D, B E$, the Triangle ABC , is equiangular with the Triangle BDE .

PREPARATION.

Plate x . Eig. 1.

Make at the Extremity B, of the Side BD, by 23. 1. an Angle DBG equal to the Angle A, or DBE fuppofed equal to the Angle A, and at the other Extremity D, the Angle $B D G$ equal to the Angle $A B C$.

DEMONSTRATION:

Becaufe the Triangles $A B C, B G D$ are equiangular by Conftr. the Ratio of the two Sides AB, AC, will be equal to that of the two $B D, B G$, by Prop. 4 . and becaufe the Ratio of the fame two Sides $A B, A C$, is alfo equal to that of the two BD, BE, by Sup. it follows by II. 5. that the Ratio of $B D$ to $B G$, is equal to that of $B D$ to $B E$, and by 14.5. that the Side $B G$ is equal to the Side $B E$: wherefore by 4. 1 . the Triangle BDF will be equiangular with the Triangle BDG, and confequently with the Triangle ABC. Which was to be demonfrated.

USE.

The Demonftration of Prop. 20. depends upor this, which very much refembles the fourth of the firt Book, ufed in the Demonftration of this; for fince by 4.1 . two Triangles having two Sides, and the Angle contained equal, are in all refpect equal and equiangular, by the fame two Triangles. having two Sides proportional, and the Angle contain'd equal, are alfo equiangular, and confequently by Prop. 4. they are fimilar.

Prop. VIM, is needlefs.

PROPOSITION VIII.

rlate to Eig. 7

THEOREM VIII.

A Perpendicular let fall from the Right-Angle of a right-angled Triangle upon the oppofite Side, divides the Triangle inta two others fimilar to it Self.

ISay, if you let fall a Perpendicular DA, to the oppofite Side BC, call'd the Hypotenufe, from the RightAngle D, of the right-angled Triangle BDC, each of thele two right-angled Triangles $\mathrm{DAB}, \mathrm{DAC}$, will be fimilar to BDC the Triangle propofed ; fo that the Angle $A D C$ will be equal to the Angle B, and the Angle ADB equal to the Angle C.

DEMONSTRATION.

Becaufe the Angle A of the Triangle ADB is right, by Sup. the Sum of the two others B, ADB, will alfo by 32. I. be right, and confequently equal to the Angle BDC, which is right by sup. Wherefore taking away the common Angle $A D B$, there will remain the Angle B equal to the Angle ADC: So alfo becaufe the Angle A, of the Triangle ACD is right, the Sum of the two others $C, A D C$ is equal to a right one alfo, that is to fay, to the Angle. BDC, confequently take away the Angle $A D C$, and you will have the Angle C, equal to the Angle ADB . Which was to be demonftrated.

USE.

This Propofition ferves to find a Mean proportional between two Lines given, as fhall be fhown in Prop. Is. becaufe the Perpendiculas AD , is a Mean proportional between the two Parts or Segments $A B, A C$, the Trim angles $\mathrm{ADB}, \mathrm{ADC}$, being fimilar ; confequently by Irop. 4. the two Sides AB, AD, of the Triangle ABD , are proportional to the two AD, AC, of the Triangle ADC: From hence an eafy Method of meafuring any Right-Line acceffible only at one Extremity, by the help of a Square; fuppofe AC, acceflible at the Extreznity A. where erect at Right-Angles a Stick AD of a known
known Length, and put the Right-Angle of the Square Plase i. at the Point D, fo as that looking along one of its Sides ${ }^{\text {Fig.. }} 7$ $D C$, you may perceive the Point C, and along the other DB another Point, as B , then fince the Lines AB, AD, AC, are proportional; multiply the Length of the Srick AD by it felf, and divide the Product by the Quantity of the Line $A B$, and you will have that of the Line $A C$ fought.

PROPOSITION IX.

PROBLEMI.

To cut off any Part of a given Line.
TO cut off, for inftance, a third Part from the given Fig. \&o Line AD, draw the Line AE at pleafure, and having taken the Line AC of an arbitrary Length, take AE tripple the Line AC, and draw thro the Point C, the Line BC, parallel to the Line DE, and that will cut off the Line $A B$, equal to a third Part of the Line $A D$ propofed.

DEMONSTRATION.

Becaufe the two Lines $B C, D E$, are parallel, the Angle ABC will be equal to the Angle ADE , by 29. 8. and becaufe the Angle A is common, the Triangle ABC will be equiangular to the Triangle ADE, by 32.1. Wherefore by Prop: 4, the Ratio of the Lines AE, AC will be equal to that of the Lines $A D, A B$; and fince AE is triple AC , by conft. AD alfo. will be triple A Which was to be demonfrated.

USE.

This Propofition ferves to divide a given Line into as many equal Parts as you pleafe; for tis plain, that to divide the Line $A D$, into three equal Parts, for infance, no more is neceffary than to cut off a third Part $A B$, is has been thewr.

PROPOSITION X.

PROBLEM II.

To divide a given Line in the fame manner as another givers Line is divided.

Plate r." Fig 8.

TO divide the given Line $A D$ at the Point B, juft as the Line AE is divided in C, fo that the Ratio of the two Parts $A B, B D$, be equal to that of $A C, C E$; join the two given Lines AD , AE , at any Angle you pleafe, as DAE, and having joined the Right-Line DE, draw the Right-Line BC, parallel to the Line DE, thro' the Point C, and the two Parts AB, BD, will be prom portional to thofe two $A C, C E$.

DEMONSTRATION.

Becaufe the Line BC is parallel to the Side DE of the Triangle ADE, by Conft. the Ratio of the two Parts AB, BD, will be by Prop. 2. equal to that of AC, CE. TWhich pas to be demongtrated.

USE.

This Propofition may be very well ufed in dividing a given Linéinto as many equal Parts as you pleafe; for ? tis evident that if the two Parts AC, CE, were equal; AB, BD, would alfo be equal. See Prob. I4. Introd.

PROPOSITION XI.
 PROBLEM III.

To find a third Line proportional to troo given Lines. iv, AC, make any Angle BAC, with the two given Lines, and applying the Length of the fecond Line given
given $A C$ to the firt $A B$, from A to $C E$, join the Right-plate 1. Line BC, and draw ED parallel to it, and the Line AD Fig. 9. will be the third proportional to the two given Lines $A B, A C$.

DEMONSTRATION.

Becaufe the two Triangles $\mathrm{ABC}, \mathrm{ACD}$ are equianguIar, as you have feen in Prop. 9. the Ratio of the two Sides AB, AC, of the Triangle ABC, will be like that of the two Sides AE, AD, of the Triangle AED, by Prop. 4. So that the Line $A D$ will be a third Proportional to the two AB, AC. Which was to be demonftrated.

USE.
This Propofition may be ufed in reducing a given Square into a Rectangle of a given Height ; by finding a third Proportional to the Height fought, and the Side of the given Square, and that will be the Bafe of the Rectangle fought, as is evident from Prop.17. This Propofition is alfo ufed in the Demonfration of Prop. 39.

PROPOSITION. XII.

PROBLEM IV.

To find a fourth Proportional to three given Lines.
T- find a fourth Proportional to the three given Lines, Fig. 8 .
$\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$, make any Angle BAC with the two former, $A B, A C$, and joining the Right-Line $B C$, apply the Length of the third given Line $A D$, to the firft $A B$, from A to D; and draw from the Point D a Line $D E$ parallel to the Line $B C$, thro' the Point D, and the Line AE will be a fourth Proportional to the three Lines given $A B, A C, A D$:

DEMONSTRATION.

Becaufe the Line BC , is parallel to the Line DE , by
Conffo.
pate I .
A. 8 . Conft. the Triangle ABC will be equiangular with the Triangle ADE, as we faw in Prop. 9. Confequently by Prop. 4. the four Lines $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$. AE , will be proportional. Which was to be demonflrated.

USE.

> This Propofition ferves to reduce a given Triangle inro another of a given Height, by finding a fourth Proportional to the given Height, and the two Sides of the given Rectangle, and that will be the Bafe of the Rectangle fought, as is plain by Prop. 16.

PROPOSITION XIII.

PROBLEM V.

To find a Mean proportional between two given Lines.
Fig. 7: $\quad \mathrm{O}$ find a Mean proportional between the two given I Lines AB , AC , form one Right-Line BC out of them both, and defcribe the Semicirle ADC upon it, and ereat from $\mathrm{A}_{\text {, a }}$ Perpendicular AD upon the Line BC , and that will be a Mean proportional between AB . $A C$.

DEMONSTRATION.

Join the Right-Lines BD, CD, and by 3r. 3. you will find the Angle BDC is right, and by Prop. 8. the Line $A D$ is a Mean proportional between $A B, A D$. Which suas to be effected and demonftrated

SCHOLIUM.

If the Paper be not long enough to form a Right-Line out of the two propofed $A B, A C$, cut off from the greateft $A C$, the Part $A E$, equal to the leaft $A B$, and having defcrib'd upon AC, the Semicircle AFC, draw from the Point E, the Right-Line EF perpendicular to the fame Line AC, and join the Right-Line AF, and it will be a Mean proportional between the two Lines propofed $A B, A C$.

DEMONSTRATION.

Join the Right-Line CF, and by 3r. 3. you will find Plate ro the Angle AFC is right, and by Frop. 8. the two Right- Fig. 7o angled Triangles FEA, FEC, are equiangular to the great one AFC; confequently by Prop. 4. the Ratio of the two Sides AC, AF, of the Triangle AFC, is equal to that of the two Sides AF, AE, of the Triangle AEF, wherefore the Line AF is a Mean proportional between AC and AE , or AB , its equal. Which woes to be demongtrated. See Prop. 17.

U S E.

As the former Propofition ferves to do the Rule of Three, fo this ferves to find in Lines the Square Root of a Number propofed, namely, by finding a Mean proportional between the Number propofed and Unity, for that will be the Root fought, by Prop. 17.

PROPOSITION XIV.

THEOREM IX.

Equiangular and equal Parallelograms are reciprocal, and
Reciprocal Parallelograms are equiangular and equal.
Say, firft, if the Parallelograms $\mathrm{ACD}, \mathrm{ABE}$, are kig. z. equiangular and equal, they are alfo reciprocal, that is to fay, the Side $A C$ is to the Side $A B$, as the Side $A E$ to the Side AD.

PREPARATION.

Imagining the two Parallelograms $A C D, A B E$, fo plac'd as that the Sides AB, AC, may be in a Right-Line, in which Cafe the two other Sides AD, AE, will alfo be a Right-Line, by 14. I. Becaufe the Angle CAD is equal to the Angle BAE, by sup. Produce the other Sides till they interfect in F, and form the Parallelogram $A E$.

Plate i.
Fig. 2.

DEMONSTRATION.

Becaufe the Parallelograms CD, BE are equal by $S_{u p}$ they have the fame Ratio to the Parallelogram AF.by 75 : and becaufe by Prop. I. the Parallelogram CD is to the Parallelogram AF, as the Bafe AC to the Bafe AB, and the Parallelogram BE is alfo to the Parallelogram BD, as the Bafe AE to the Bafe AD; it follows that the Ratio of the two Lines AC, AB, is equal to that of AE, AD. Which was to be demonArated.
If fay, in the fecond Place, that if the Parallelograms $\mathrm{ACD}, \mathrm{ABE}$, are equiangular and reciprocal, they are alfo equal.

DEMONSTRATION.

If a Conftruction be made like to the foregoing, by Prop. r. Since the Ratio of $A C$ to $A B$ is equal to that of AE to AD, by Sup. The Ratio alfo of the Parallelogram $A C D$, to the Parallelogram AF, is equal to that of the Parallelogram ABE, to the fame Parallelogram AF, and by 9. 5. the two Parallelograms ACD, ABE are equal. which remain'd to be demonjfrated.

USE.

This Propofition ferves to demonftrate Prop. 16, and that Rule in Arithmetic call'd The Rule of Three inverfe.

PROPOSITION XV. THEOREM X.

The equal Triangles, that bave one Angle equal, have the Sides about that equal Angle reciprocally proportional; and if the Sides are reciprocally proportional, the Triangles are equal.

Eig 30 Say, firf, if two Triangles $A B C, D B E$, are equal, and the Angle $A B C$ equal to the Angle EBD, the Ratio of the two Sides $A B, B D$, is equal to that of $B E_{2}$ BC.

PREPARATION.

Plate I :
Fige 3.

Imagine the two Triangles $\mathrm{ABC}, \mathrm{EBD}$, placid fo as that the two Sides $A B, B D$, be in a Right-Line, in which Cafe BE, and BC will alfo form a Right-Line, by 14. I. Becaufe the Angle ABC , is equal to the Angle DBE, by Sup. and join the Right-Line. AE.

DEMONSTRATION.

Becaufe the Triangles $A B C, E B D$ are equal, by Stip. they will have the fame Ratio to the Triangle $A B E$, by 7. 5. and becaufe by Prop. 1. the Triangle ABE is to the Triangle BED, as the Bafe $A B$ is to the $B a r e ~ B D$, and in like manner the Triangle $A B E$ is to the Triangle ABC , as the Bafe BE, to the Bafe BC, it follows that the four Lines $\mathrm{AB}, \mathrm{BD}, \mathrm{BE}, \mathrm{BC}$ are proportional. Which zpas to be demonftrated.

I fay, in the fecond Place, if the two Angles ABC, $E B D$, are equal, and the Sides $A B, B D, B E, B C$, proportional, the Triangles $\mathrm{ABC}, \mathrm{EBD}$ are alfo equal.

DEMONSTRATION.

Make a Conftruction like to the preceding, and by Prop. I. fince the Ratio of $A B$ to $B D$, is equal to that of BE to BC ; by Sup. The Ratio alfo of the Triangle ABE , to the Triangle EBD, is fimilar to that of the Triangle ABE, to the Triangle ABC, and by 14. 5. the two Triangles $\mathrm{ABC}, \mathrm{EBD}$ are equal. Which remain'd to be demonfrated.

U S E.

This Propofition ferves to demonftrate Prop. 19. and t'at two Right-Lines interfect one another proportionally between Parallels, becaufe if you join the Right-Line CD, it will be parallel to the Right-Line AE, by 39. I. the Triangle ACD being equal to the Triangle, CED, Or6.

PROPOSITION XVI.

THEOREM XI.

If four Lines are proportional, the Rectangle of the two Extreams is equal to the Rectangle of the two Means; and if the ReEtangle of the two Extreams be egual to that of the two Means, the four Lines are proportional.

Plate 1.

Fig. 2.

ISay, firit, if the four Lines $A B, A C, A D, A E$, are proportional, the Rectangle $A B E$, of the Extreams $A B, A E$, is equal to the Rectangle of the Means $A C$, $A D$.

DEMONSTRATION.

Becaufe the four Lines $A B, A C, A D, A E$, are proportional, by sup. the Rectangles ABE, ACD will be reciprocal, by Def. 2. and fince they are equiangular, by Conft. it follows from Prop. 15. that they are equal. Which was to be demonftrated.

I fay, in the fecond Place, if the Rectangles ACD, $A B E$, are equal, the four Lines $A B, A C, A D, A E$, are proportional.

DEMONSTRATION.

Becaufe the two Rectangles $\mathrm{ACD}, \mathrm{ABE}$, are equal by Sup. and equiangular by conft. they are reciprocal by Prop.14. that is to fay by Dcf. 2. the four Lines AB, $\mathrm{AC}, \mathrm{AD}, \mathrm{AE}$, are proportional. Which was wohat res raninid to be demongtrated.

> USE.

This Propofition ferves to demonftrate the Rule of Three, becaufe the Area of a Rectangle being found by multiplying the two Sides that form the Right-Angle together, as has been feen in the fecond Book, 'tis eafy - to conclude from this Propofition, that in four proportional Quantities, the Product of the two Extreams is

Book 6. Euclid's Elements Plate 2. Page 223

Explain'd and Demonfrated.

equal to that of the two Means; and fo on the contrary. Piate r. Which we have already demonftrated.

It may alfo be demonftrated by this Propofition, that if two Right-Lines interfect one another in a Point with Plate ?: out a Circle, and cut the Circumference, as AB, AD, the whole and their external Parts are reciprocally proproportional, that is to fay, the whole $A B$, is to the whole AD , reciprocally as the Part AE is to the Part AC , becaufe the Rectangle of the Lines AB, AC, is equal to that of the Lines $A D, A E$.

PROPOSITION XVII. THEOREM XII.

If three Lines are proportional, the Square of the Mean is eq al to the Rectangle of the two Extreams; and if the Rectangle. of the two Extreams is equal to the Square of the Mexm, the three Lines are proportional.

THis Propofition is a Corollary of the former, becaufe three proportional Lines are equivalent to four, having the two Means equal, and by that Means the Rectangle of the two Means becomes a Square.

USE.

This Propofition ferves not only to demonftrate Prop. 30. but that if from a Point taken without the Circle, plate 20 as A, a Tangent AF, and Secant AD be drawn, the ${ }^{\text {Eig. } 20 .}$ Tangent is a Mean proportional between the Secant AD, and itsexternal Part AE, becaufe the Rectangle of the two Lines $A D, A E$, is equal to the Square of the Tangent AE, by 36.3.

One may alfo demonftrate by this Method, that if two Right-Lines interfect one another in a Circle, as fig. 2 . BC, DE, their Parts are reciprocally. proportional, that is to fay, the Part $A B$, is to the Part $A D$, reciprocally as the Part AE is to the Part AC, becaufe by 35.3. the Rectangle of the Parts AB, AC; is equal to that of the Parts AD, AE.

From hence an eafy Method of finding a Mean pro-Eig. 20. portional between two given Lines, as AD, AE, may be drawn, namely, defcribing on the Diference DE, a Circumference of a Circle, and drawing the Tangent AF, which will be the mean proportional fought.

PROPOSITION XVIII.

PROBLEM VI.

To defribe upon a given Line Eolygon fimilar to a given one.

Pate 1:
TO defcribe on the Line EF, a Polygon fimilar to the given one $A B C D$, draw the Diagonal $B D$, and the Angle E being made equal to the Angle A, make alfo the Angle EFH equal to the Arigle ABD. Make the Angle $\mathbb{E H G}$ equal to the Angle BDC, and the Angle HFG equal to the Angle DBC, and the Figure EFGH will te fimilar to the propofed one $A B C D$, that is to fay, all the Angles of the one, will be equal to all the Angles of the other, and the Sides proportional.

DEMONSTRATION.

Tis already evident by Conft. that the two Polygons AECD, EFGH are equiangular, becaufe all the Triangles of the Polygon ABCD are made equiangular with all the Triangles of the Polygon EFGH, fo that all that remains, is to demonftrate that the Sides are proportio. nal.

Becaufe the three Triangles $\mathrm{ABD}, \mathrm{EFH}$, are equiangular by Conft. it follows by Prop. 4. that the two Sides AB, AD, are proportional to EF, EH; and fo alfo becaufe the two Triangles $\mathrm{BCD}, \mathrm{FGH}$, are equiangular, the two Sides BC, Ci are proportional to thofe two FG, GH. But I fay further, the two Sides AB, BC, are alfo proportional to the two EF, FG, and the two AD , CD , to the two EH, GH, as we fhall now demonftrated.

Becaufe in the two equiangular Triangles ABD, EFH, the Ratio of the two Sides AB, BD, is like that of the two EF, FH, by Prop. 4. and in like manner in the equiangular Triangles $B C D, F G H$, the Ratio of the two Sides $B D, B C$, is equal to that of the two FH, FG; fo that the three Lines $\mathrm{BA}, \mathrm{BD}, \mathrm{BC}$, are Proportional to the three Lines $\mathrm{FE}, \mathrm{FH}, \mathrm{FG}$, and
by 22 . the Ratio of the two Sides $A B, B C$, is like Plate 1. that of the two EF, FG. Which is one of the things that Fig. 10. das to be demongtrated.

After the famemanner in the two equiangular Triangles $A B D, E F H$, the Ratio of the two Sides $A D, B D$, is equal to that of the two EH, FH; and in like manner in the two equiangular Triangles BCD, FGH, the Ratio of the two Sides $B D, C D$ is the fame with that of the two FH, GH. This you fee that the three Lines DA, $D B, D C$, alfo proportional to the three Lines HE, HF, HG , and by 22. 5. the Ratio of the two Sides AD, CD , is equal to that of the two EH, GH. Which is wobat remain'd to be demonftrated.

U S E.

This Propofition is the Foundation of what is taughe in Prob. 17. Introd. to take an inacćeflible Plan on the Ground; as alfo of the Method ordinarily ufed to trace apon the Ground the Plan of a Fortrefs, whofe Defign is drawn upon Paper: for fince you can't work it upon the Ground as upon Paper, you muft make upon the Ground Angles equal to thofe of the Plan defcribed ont Paper.

PROPOSITION YIX.

THEOREM XIII,

Equiangular Triangles are in Duplicate Ratio of that of their Homologous Sides.

HOmologous Sides are the Sides of two fimilar Rectiline- Fig. 天at al Figares, that are oppofite to the equal Angles: Thus if the two Triangles ABC, DEE, are equiangular; and confequently fimilar, by Prop. 4. fo that the Angle A is equal to the Angle D, and the Angle B to the Angle E, and confequently the third Angle C equal to the third Angle F ; the two Sides AB , DE, that are oppofite to the two equal Angles C, F, are Homologous.

This being fuppofed, I fay the Ratio of the two Tri${ }^{2}$ ngles ABC, DEF, is the Duplicate of that of the two

Homo:

Plate. x. Eig. 82. Homologous Sides AB, DE, that is to fay, if by Prop. 11. you find a third proportional Line AG, to the two Homologous sides AB, DE, the Triangle ABC is to the Triangle DEF as the firft proportional $A B$ is to the third proportional AG.

DEMONSTRATION:

Becaufe the Triangles ABC, DEF, are equiangular, by Sup. the Ratio of the two Sides AC, DF, is equal to that of the two AB, DE, which is alfo equal to that of DE, AG, by Comft. becaufe the Line AG was made a third proportional to AB, DE : confequently by II. 5 . the Ratio of the two Sides AC, DF, will be equal to that of DE, AG, and the Angle A being equal to the Angle D, by sup. the Triangle ACG, will be equal to the Triangle DEF, by Prop. 15. and fince the Triangle $A B C$ is to the Triangle $A G C$, as the $B a f e ~ A B$ to the Bafe AG, by Prop. I. the Triangle ABC is to the Triangle DEF, as the firft Proportional AB, to the third Proportional AG. Which was to be demongrated.

COROLLARY.

It follows from this Propofition, that equiangular Triangles are as the Squares of their Homologous Sides; fince the Triangle here ABC, is to the Triangle DEF, as the Square of the Side AB, namely AI, to the Square DL of the Homologous Side DE, becaufe thefe two Squares are to one another as their halves, by 15.5. and confequently as the Triangles ABH, DEK, which being equiangular by 4. 2. are in a Duplicate Ratio of their Homologous Sides AB, DE, as the Triangles $\mathrm{ABC}, \mathrm{DEF}$.

USE.

This Propofition ferves to undeceive fuch as eafily imagine that fimilar Figures are as their Sides, fince it is certain if the Sides of the one for inftance, are double the Sides of the other, the greater will be Quadruple the lefs, becaufe the Duplicate Ratio of the Double is the Quadruple.

PROPOSITION XX.

THEOREM XIV.

Similar Polygons may be divided into as many fimilar Triaingles; and fimilar Polygons are in the Duplicate Ratio of their Sides.

ISay firf, if the Polygons ABCDE, FGHIK, are fimio plate it lar, they may be divided into as many fimilar Tri- Fig. x\% angles that will be fimilar Parts of their Polygons, each of its own.

DEMONSTRATION.
Draw the Diagonals DA, DB, IF, IG; and by 户roop. 6. the two Triangles AED, FKI, are fimilar, becaufe the Angles E, K are equal, and the Sides EA, ED, are proportional to KF, KI; the two Polygons propofed being. luppofed fimilar. And fo alfo you may find that the Triangle BCD is fimilar to the Triangle GHI. Confequently 'tis eafy to conclude that the two other Trio angles ADB, FIG are alfo fimilar, becaufe equiangular. Which woas to be demonffrated.

I fay, in the fecond Place, the fimilar Polygons ABCDE, FGHIK, are is a Duplicate Ratio of their Homologous Sides.

DEMONSTRATION.

Since the two Polygons are made up of fimilar Trio angles, as has been demionftrated, and they are all in a Duplicate Ratio of their Homologous Sides, by Propó 19. and the Ratio of the Sides is the fame, the Rolygons being fuppofed fimilar, the Duplicate Ratio will ailo be the fame, and fo each Triangle of one Polygon will be to each Triangle of the other' in the fame Ratio, and by 12. 5. the Ratio of each Triangle to its fimilar, will be
the fame with that of the Sum of all the Triangles of one Polygon, to the Sum of all the Triangles of the other; that is to fay, of one Folygon to the other: and becaufe the Ratio of thefe two Triangles is the Duplicate of that of their Homolcgous Sides, the Polygon alfo muft be in the Duplicate Ratio of that of their Homo logous Sides, Which wass to be demonfrated.

COROLLARY.

From this Propofition it follows, that fimilar Polygons are as the Squares of their Homologous Sides; and that three Lines being proportional, the Polygon defcrib'd upon the firf, is to the fimilar Polygon defcrib'd upon the fecond, as the firft Line is to the third, becaufe that Ratio is the Duplicate of that of the firft to the fecond, that are two Homologous Sides of thefe two Polygons.

U S E.

This Propofition is of ure in Prop. 21. and 22. and to encreafe a given Polygon in a given Ratio; as if you would have a Polygon quadruple of another, double all the Sides, for the Duplicate Ratio of the double is quad druple; and fo if you would have a Polygon noncuple of another, triple all the Sides, becaufe the Duplicate of the Triple is Noncuple.

But 'tis evident that to leffen a given Polygon aco cording to a given Ratio, the contrary is to be done; fo that if you would have a Polygon but a quarter of that propofed, you muft take half the Sides.
And if any other Ratio were propofed, for inftance, that of 2 to 3 , find a Mean proportional between the double of one Side of the Polygon propofed and its Triple, and that will be the Homologous Side of the Poly* gon fought.

PROPOSITION XXI.

THEOREM XV.

Troo Polygons fimilar to a third, are fimilar to one anothcr.
Mate 2 ? Eig. Ig.

Say, if each of the two Polygons ABCD, IKLM is fimilar to the Polygon EFGH, thefe two Polygons $\mathrm{ABCD}, \mathrm{IKLM}$, are fimilar to each other.

D E.

DEMONSTRATION.

Becaufe the Polygons ABCD, EFGH are fimilar, by Sup. one may be divided by Diagonals into as many fimilar Triangles as the other, by Prop. 20. as here into two, the Triangle ABD, being fimilar to the Triangle IKM, and the Triangle BCD, to the Triangle FGH. Thus alfo the Polygon IKLM being fuppofed fimilar to the Polygon EFGH, the Triangle IKM will be fimilar to the Triangle EFH, and confequently to the Triangle ABD, becaufe two Angles equal to a third, are equal to one another; and fo alfo the Triangle KLM will be fimilar to the Triangle FGH, and confequently to the Triangle BCD. Confequently the Polygons ABCD, EFGH being compofed of an equal Number of equiangu. lar Triangles, will alfo be equiangular, becaufe their fimilar Triangles having their refpective Angles equal, the Angles of the Polygon made up of them will alfo be equal; and becaufe thefe fimilar Triangles have their Sides proportional, by Prop. 4. the Polygons allo will have their Sides proportional, and byy Def. I. will be fimilar. Which was to be demonglrated.

PROPOSITION XXII.

THEOREM XVI.

If four Right-Lines are proportional; the fimilar polygons deferibed on thafe Lines, will allo be proportional; and if they are proportional, the four Lines will alfo be proportional.

ISay, firft, if the four Lines $A B, A C, A D, A E$, are ${ }_{\text {Fig: }}$ Is: thofe Lines, for the four the two Squares and two Tra geziums, will be proportional.

DEMONSTRATION.

* Becaufe the four Lines $A B, A C, A D, A E$, are proo portional, by Sup. the Duplicate Ratio of the two firft, AB, AC, is equal to the Duplicate Ratio of the two Iaft AD, AE; and fince by Prop. 20. the Duplicate Ratio of the two firft $A B, A C$, is equal to that of their fimilar Polygons, and the Duplicate Ratio of the two laft AD, AE , is equal to that of their fimilar Polygons, it fol lows, that thefe four Polygons are proportional. Whicher soas to be demonftrated.

If fay, in the fecond Place, if four fimilar Polygons form'd on the four Lines $A B, A C, A D, A E$, are pró portional, thefe four Lines will alfo be proportional.

DEMONSTRATION,

Becaufe the Ratio of the two firft Polygons is equal to that of the two laft, by Sup. and each is the Duplicate of that of their Homologous Sides, by Prop. 20. the four Homologous Sides and confequently the four Lines $A B, A C, A D, A E$, are proportional. Which remsing do to Be demongtrated.

> USE.

This Propofition rerves to do the Rule of Three Geometrically, when three Figures being given, a fourth Proportional is to be found, namely by reducing the three Figures propofed into three Squares, when they are not fimilar, and finding a fourth Proportional to the Sides of the three Squares, and that will be the Side of a Square equal to the fourth Proportional Figure fought. This Propofition ferves alfo to demonftrate Pros. I. II.

PROPOSITION XXIII.

THEOREM XVII.

Equiangular Parallelograms are in a Ratio compounded of that of their sides.

Say, if the two Parallelograms $\mathrm{ACD}, \mathrm{ABE}$, are equiangular, their Ratio is compounded of the Ratio of Plate X: the Side $A C$, to the Side $A B$, and of the Ratio of the Fig. 20 Side AD, to the Side AE.

PREPARATION.

Having imagin'd the two Parallelograms $A C D, A B E$, placed fo as that the Sides AB, AC may be in a RightLine, in which Cafe the two other Sides AD, AE, will alfo be in a Right-Line, by i4. i. becaufe the Angle CAD, is equal to the Angle BAE; produce the other Sides till they meet in a Point, as \mathbf{F}, and fo make a third Parallelogram AF.

DEMONSTRATION.

Becaufe in the three Parallelograms ACD, AF, ABE, the Ratio of the firft to the third is compofed of the Ratio of the firft to the fecond, which is equal to that of the Bafe AC to the Bafe AB , and of the Ratio of the fe . cond to the third, which is alfo equal to that of the Bafe AD to the Bafe AE; it follows that the Ratio of the Parallelogram ACD, to the Parallelogram ABE, is com. pofed of the Ratio of the Side AC to the Side AB, and of the Ratio of the Side AD to the Side AE. Which was to Es demongrated.

S CHOLIUM.

Eig.
 \section*{\section*{PROPOSITION XXIV.
 \section*{\section*{PROPOSITION XXIV. THEOREM XVIII.} THEOREM XVIII.}

If you draw two Eines parallel to two Sides of a Parallelogram,
thro a Point in the Diagonal, there will be formed fous
Parallelograms, of which thofe two that the Diagonal palfes
If you draw two Eines parallel to two Sides of a Parallelogram,
thro a Point in the Diagonal, there will be formed fous
Parallelograms, of which thofe two that the Diagonal palfes
If you draw two Eines parallel to two Sides of a Parallelogram,
thro a Point in the Diagonal, there will be formed fous
Parallelograms, of which thofe two that the Diagonal palfes thro', are fimilar to one another and to the great one.
If you would compound the Ratio's of AC to AB, and of AD to AE, you muft multiply the two Antecedents $A C, A D$ togethet, and fo you will have the Content of the Parallelogram ACD ; multiply alfo the two Confequents $A B, A E$, and then you will have the Area of the Parallelogram ABE, in Meafures fimilar to that of the Parallelogram ACD; which is an additional Proof of the two Parallelograms, being in a Ratio compound ed of that of their Sides.

Since a Triangle is equal to half a Parallelogram of the fame Bafe and Height, you may eafily find by this Propofition, that two Triangles having one Angle equal, are in a Ratio compounded of the Sides that form the Angle, as if they were Parallelograms, which may be eafily feen, by drawing the two Diagonals $C D, B E$, doco

1 Say, if thro the Point Etaken at Difcretion in the Diagonal BD of the Parallelogram ABCD , you draw the two Lines FG, HI, parallel to the two Sides AD_{2} AB , the two Parallelograms GH, FI, are fimilar to one another and to the great one.

DEMONSTRATION.

Becaufe the Line HI is parallel to AB, by sup. the Angle DHE will be equal to the Angle A; by 29. 1. which makes the two Triangles DHE, DAB fimilar Confequently by prop. 4. the Ratio of DH to HE , will We equal to that of $A D$ to $A B$, and by Def: I. the Paralle Jogram GH will be fimilar to the Parallelogram ABCD. fifer the fame manner you may find that the Parallelo. confequently to the Parallelogram GH. Which was to be Eig. Js. demonffrated.

S C HOLIUM.

The Converfe of this Propofition is alfo certainly true, namely, that if the Parallelogram GH, or FI, be fimilar to the great one $A B C D$, having an Angle common, the Diagonal of the "great one drawn thro' the common Angle, will pafs thro' the other Angle of the lefs, as Euclid has demonftrated in Prop. 26. which we omit, bes caufe eafily underftood, and of little Ufe.

PROPOSITION XXV。

PROBLEMVII.

Two Rectilineal Figures being given, to deforibe a third equal to one of the given ones, and finilar to the other.

Plate $=$ TO defcribe a Rectilineal Figure equal to the given Fige 16. one $A B C$, and fimilar to the given one DEF, reduce into a Square each of the two Rectilineal Figures given, $\mathrm{ABC}, \mathrm{DEF}$, by $\mathrm{m}_{4}{ }^{2}$. So that GH be the Side of a Square equal to the Rectilineal Figure ABC, and IK the Side of a Square equal to the Rectilineal Figure DEF. Then find by Prop. 12 . a fourth Proportional LM, to the three Lines IK, GH, DE, and by. Prop. 18. defcribe upon that Line LM, the Rectilineal Figure LMN, fimilar to the Rectilineal Figure DEF, which here is an equilateral Triangle, and the Regilineal Figure LMN, will be equal to the Rectilineal Figure ABC .

DEMONSTRATION.

Becaufe the four Lines IK, GH, DE, LM, are proportional; by Conffr: their Squares will allo be proportional, by Prop.22. and becaufe the Squares of the two Lines DE, LAM, are in the fame Ratio as the two fimilar Rectilineal Figures DEF, LMN, by Prop. 20 . the Ratio of the Squares of thofe two Lines $1 \mathrm{~K}, \mathrm{GH}$, is equal to that of the two Rectilineal Figures DEF, LMN; and

Plate 2. Eig. 56
fince the Square of the Line IK, is equal to the Rectilineal Figure DEF, by Conftr. Then by 14. 5. the Square of the Line GH, or the Rectilineal Figure ABC, is equal to the Rectilineal Figure LMN. Which was to be effected and demonftrsted.

U S E.

The ufe of this Propofition is more extenfive than that of Prop. 14. 2. by which the Rectilineal propofed can only be reduced into a Square, whereas this Propofition ferves to reduce it into any other Figure you pleafe; thus here we have reduced the Scalene Triangle ABC, into an equilateral Triangle. We have refolved this Problem otherwife than Euclid has, becaufe his Method depends on a Propofition in the firft Book, that we have omitted becaufe it feem'd too perplex'd.

We fhall here omit Prop. XXVI. XXVII. XXVIII. and XXIX. that are but of little Coneequence.

PROPOSTTION XXX.

PROBLEM X.

To cut a Right-Line in extream and mean Proportion.

理部: 18.
O divide the given Right-Line AD , into extream and mean Proportion, cut it at the Point B, by II: 2. So that the ReEangle of the whole $A D$, and its leffer Part BD, namely the Rectangle BC, be equal to the Square $A G$, of the greater Part $A B$, and the Problem is folved.

DEMONSRATION.

Becaufe the Refangle $B C$ is equal to the Square $A G$ of the Line $A B$, by Conftr. the three Lines $C D$, or $A D$, AB, BD, will be proportional, by Prop. 17. and Def. 3. the Line AD will be cut at the Point B, in extream and mean Proportion. Which was to be effected and demonftro 386

USE.

A Line thus cut has feveral Properties, as may be Pate 2. feen in a Book publifhed by Luctas de fancto Sepulchro, and ferves, as has been thewn, to defcribe a Pentagon and a regular Decagon ; and Euclid ufes it in the thirteenths Book, to determine the Sides of the five regular Bos dies.

PROPOSITION XXXI. THEOREM XXI.

If you deforibe three fimilar Rectilineal Figures upon'the threes Sides of a Rectangle Triangle, that which us form'd upon the Side oppogite to the Right-Angle, is equal to the Sum of the two otherrs:

ISay, if you deferibe upon the Sides of the Triangle Fig is ABC , right-angled in A , three fimilar Rectilineal Figures, for inftance, the three Triangles ABD, ACE, BCF, the Triangle BCF, is equal to the Sum of the other two ABD, ACE.

DEMONSTRATION:

Becaufe by Prop. 20, the Rectilineal Figure ABD is ro the Rectilineal Figure ACE , as the Square AB , to the Square AC, and compounding by 18.5. the Sum ABD+ ACE, will be to ACE, as the Sum of the two Squares $A B, A C$, that is to fay, by 47 . I. as the Square $B C$, to the Square AC; and becaufe the Ratio of the Square $B C$ to the Square AC, is equal to that of the Rectilineal Figure BCF, to its fimilar one ACE, by Prop. 20. then by 11.5. the Ratio of the Rectilineal Figure BCF, to the Rectilineal Figure ACE, is equal to that of the Sum $\mathrm{ACD}+\mathrm{ACE}$, to the fame Rectilineal Figure ACE , and by 9. 5. the Rectilineal Figure BCF, is equal to the Sum of $A C D, A C E$. Which wans to be demonjfrated.

USE.

This Propofition ferves in general to add Ceveral fimilar Figures together, as we faid in 47 . x. fo that we need not infift any longer upon it.
We omit Prop. XXXII. because not neceflary, nor of mucio Confequence

PROPOSITION XXXIII.

THEOREM XXIII.

in equal Circles, the Angles at the Center or Circurnference; aif alfo their Secfors, are to one another as the Arcs they infige мро

Wlate 2?

ISay, firft, the two Angles at the Centre BAC, EDF, of the two equal Circles BIC, EKF, are to one ano ther as their Arcs $B C, E F$, that ferve inftead of their Bafe。

PREPARATION.

Biiest each of the two Angles BAC, EDF, with the Radius's AG, DH, and they will bifect the Arcs BC, EF, at the Points G, H, as alfo the Sectors ABCA, DEFD.

DEMONSTRATION.

Becaufe by 15.5. the Arc BC is to its half BG, as the Arc EF is to its half EH, and in like manner the Angle BAC, is to its half BAG, as the Angle EDF is to its half EDH, the Proportion between the four Arcs $\mathrm{BC}, \mathrm{BG}, \mathrm{EF}, \mathrm{EH}$, is fimilar to that between the four Angles BAC, BAG, EDF, EDH; confequently by Converfion, by 16.5 . the Circles BIC, EKF being equal, the Proportion between the four Arcs $\mathrm{BC}, \mathrm{EF}, \mathrm{BG}, \mathrm{EH}$, is fimilar to that between the four Angles BAC, EDF, BAG, EDH, and confequently in this fecond Proportion, the Ratio of the firft Angle BAE,

Explain'd and Demonfrated.

$B A C$, to the fecond EDF, is equal to that of the firf plate 1 : Arc BC, to the fecond EF, in the firft Proportion. Fig. 19? Which was to be demorjErated. Confequently the Angles at the Circumference I, K, being halves of the Angles at the Center A, D, by 20. 3. are alfo as their Bafes BC, EF. After the fame manner the Sectors ABCA , DEFD may be demonftrated to be as their Bafes BC, EF, confidering them as Angles.

SCHOLIUM.

This Demonftration is of the fame Nature with that of the firf Propofition of this Book; but if the Circles are not equal in this Propofition, or the Heights not equal in the former, you can't reafon by Converfios of Proportions.

The

THE

ELEVENTH BOOK

OF

EUCLID's Elements.

EUclid in this Book begins to treat of a Body or Solid, and firf of Parallelopipeds, after he has explain'd in the beginning fome Properties of their bounding Surfaces. We omit the feventh, eighth; ninth and tenth Book, becaufe they have no Connexion with the fix firft, nor with the eleventli and twelfth; we fhall only add, becaufe they, and the preceding fix, are enough for the tolerable underftanding of the principal Parts of Mathematicks; the eleventh and twelfth being abfolutely neceffary for underftanding the third Part of Practical Geometry, calld Stereometry, Spherical Trigonomeiry, Dialling;' Perfpective, and in general whatever belongs to the Section of Planes and Solids. Such as would have more, may confult Henrion, who has demonftrated all the other Books, and the Data.

DEFINITIONS.

I.

Pie A Body or Solid, is the third Species of Magnitude Fig. x. it has Length, Breadth and Depth. As ABCD, that Fig. 1. bas ithree Dimenfions, Length AB, Breadt万 BC, Depth. CD.

Book 11. Euclid's Elements Plate 1. Page 2.34.

Explain'd and Demonfrated.

Philofophers divide Bodies into hard, or fuch as do not eafily give way to another ; and foft or fuch as do, and may eafily be penetrated by another. But fince the Imagination makes eafy and feafible things moft difficult in execution, one may imagine a hard Body as eafy penetrated as a foft one. And then Mathematicians call a Solid Boly, or a Solid fimply, whatever is extended in Length, Breadth and Depth, abftracting from Matter, and conceiving a Body produc'd by the Motion of a Surface, as a Surface is by the Motion of a Line, and a Line by the Motion of a Point, and that a Body is made up of an infinite Number of Surfaces, as a Surface is of Lines, and a Line of Points. Confequently,

II.

The Extremities of a Body, are the Surfaces that bound it.

A Body is neceffarily bounded by Surfaces, as well ${ }^{\text {Fig. }}$. 0 on the account of what has been faid, as becaufe, upon examining a Body as ABCD in particular, you may eafily find an Upper Part, namely, the Surface DEF; an Under Part, namely the oppofite Surface, ABC, call'd the Bafe; a Fore-part, namely the Surface FAB: a Hinder Part, oppofite to that; and Sides, one of which appears in the Figure, reprefented by the Surface $B C D$.

III.

A Right-Line is faid to be perpendicular to alane, or erected perpendicularly upon a Plane, that is perpendicular to all the Lines it meets drawn upon the Plane.

Thus the Right-Line $A B$, is perpendicular to the Plane CDEF, or erefted perpendicularly upon it, if it be perpendicular to Fig 2 : each of the Lines, GH_{4} IK, LM, that it meets at the Point \mathbb{B}, in that Plane.
IV. On:

IV.

Blate i.

Fig 3

V.

Tig. 3. The Inclination of a Right-Line upon a"Plane, is the Acute-Angle made by that Line and another Right-Line, drawn thro the Point where the Extremity of the Line inclined meets the Plane, and thro' the Point of the fame Plane, where it is cut by the perpendicular to that Plane, drawn from the other Extremity of the inclined Line.

Thus the Inclination of the Right-Line IL, with the Plane ABCD, is the Acute-Angle KLI, made woith the Line KLe drawn thro' the Points L, K, where the Plane ABCD is cut bys the inclined Line $I L$, and the Line IK, perperadicular to the Plane $A B C D$.

In like manner the Inclination of the fame Line IL, to the Plane EFGH, is the Angle KIL, that it forms with the RightLine IK, drawn thro the Points I, K, where the Plane EFGH is cut by the inclined Line $I L$, and the Line LK perpendicular to the Plane EFGH.

VI,

The Inclination of two Planes is the Acure-Angle of two Right-Lines, perpendicular to the common Seetion of the two Planes, and drawn thro' the fame Point of the fame common Section in each Plane.

Thus the Inclination of the two Planes ABCD, EFGH, is the Acute-Angle that the Right-Line HI drawn in the Plane ABCD, Eig. is perpendicular to the common Section CE, makes with the Line $H K$, dramn in the Plane EFGC, perpendicular to the fame common Section.
'Tis plain from this-Definition, that two Planes muft not be perpendicular to each other, that they may be faid to be inclined:' and from the foregoing Definition that a Right-Line muft not be perpendicular to the Plane, that it may be faid to be inclined to it.

VII.

Planes fimilarly inclined are fuch as have equal Inclunations to a third Plane.

Tho' the Inclination of the Planes, fuppofes that they are not perpendicular to one another, yet that does nor hinder but that two Planes may be faid to be fimilarly inclin'd to a third Plane, when they are perpendicular to it.

VIII.

Paraliel planes are fuch as being continued as far as you pleafe, will never meet, being always equidiftant : Gige Such tre the two Planes ABCD, EFGH, whofe Difance IK, DL, perpendicular to them, are equal.

> IX.

Similar Solids are fuch as are bounded by an equat Number of fimilax Planes. For inffance two Cubef.

X.

Similar and equal solids, are fuch as are bounded by an equal Number of fimilar and equal Planes; fo that imagining one to penetrate the other, neither would exceed, as having equal Angles and Sides.

XI.

A Solid Angle is an indefinite concave Space, termina-

Plate r::
Eig. 6. ted in a Point by feveral Planes meeting in the Point, where the folid Angle is form'd: As A terminated by the three triangular Planes $B A D, C A D, B A C$.

XII.

Fig. I.

Fig. 7. as ABCD, terminated by the three Parallelograms

Fig. r.

Fig. 8.
A Prifm, is a Solid having two oppofite Planes parallel, fimilar and equal, and the others Parallelograms: Thus $A B C D$, whofe two oppofite Planes $A B C, D E F$, are parallel, fimilar and equal, and the others, as $F A B, B C D$, \&c. Parallelograms.
'Tis call'd a Triangular Prifm, when its two oppofite and parallel Planes, are two fimilar and equal Triangles: $\mathrm{ABFE}, \mathrm{ACDE}, \mathrm{BCDF}$, and the two fimilar parallel and equal Triangles, $\mathrm{ABC}, \mathrm{EFD}$.
'Tis call'd a Parallelopiped, when 'tis terminated by fix Parallelograms, of which the two oppofite and parallel are equal; and when all thefe Parallelograms are Rect-

$$
2 .
$$ angles, the Prifm is call'd a Right-Angled Parallelopiped, as ABCD. which take the Name of a Cube or Hexaedrum, if all its Sides are equal, that is to fay, when'tis bounded

Explain'd and Demonftrated.

the Motion of a Surface producing a Solid, and this Mo Plate i. tion anfwers the continual Multiplication according to Fig. ε_{0} the three Dimenfions of a right-angled Parallelopiped, in finding the Solidity, that is to fay, the Number of the Cubic Meafures it contains.

Thus the Solidity of the right-angled Parallelopiped $A B C D$, whofe Length $A B$ is here fuppofed to be 4 Feet, its Breadth BC, 2, and its Depth Ci, 3, is found by multiplying thefe three Numbers $4,2,3$, together, and the fourth Number that comes forth, namely 24, is call'd a Solid Number, whofe Sides are 4, 2, 3, becaule they fhow that a right-angled Parallelopiped, 4 Feet long, 2 Feet broad, and 3 deep, contains 2_{4} Cubic Feet in its Solidity.

Thus becaufe a Yard long, as AB, contains 3 Feet, a Figo 8o Cubic Yard ABCD, will contain 27 Cubic Feet, and from hence 'tis that the Number 27 arifing from the mutual multiplication of three equal Numbers, is call'd a Cubic Number, whofe Side, or Cube Root is one of them, namely 3 .

A Rectangled Parallelopiped, is regard of its three Dimenfions, is call'd a Solid of tbree Lines, which are its three Dimenfions; that is to fay, one of thefe three Lines reprefents its Breadth, and the other its Length, and the third its Depth, whether the Solid be real or, imaginary.

Thus the Solid of the three Lines $A B, B C, C D$, is the right-angled Parallelopiped ABCD , which is reprefented in Numbers, when the three Dimenfions are expreffed by Numbers; as if the Length AB, be 4 Feer, the Breadth BC, 2, and Depth CD, 3, the Solid of thefe three Numbers $4,2,3$, will be 24 , namely the Product of thefe three Numbers $4,2,3$, which on that account is call'd a Solid Product, and if you fubftitute Letters inftead of Numbers, as a, b, c, their folid Pro= duct will be abc.

The other Definitions belong to the Twelfot Booky and are shere explaind.

PROPOSITIONI.

THEOREMI.

A Right-Line in a Plane, if produced, will fill be ine that Plane.

Plate f .
Fig. 10 .

ISay, if the Right-Line EF, be in the Plane ABCD, when produced, 'twill fill be in the fame Plane $\overline{A B C D}$.

PREPARATION.

Draw from the Point F, in the Plane $A B C D$, the Right-Line FG , perpendicular to the Line EF, and another FH , to the Line FG.

DEMONSTRATION.

Hecaure each of the two Angles GFE, GFH, is a right one by conftr. the two Lines FH, FE, conftitute a right Line, by 14. 1. and becaufe each is in the Plane ABCD, the Line EF produced, that is to fay, the whole RightLine EH, is in the fame Plane ABCD . Which wo to be dersonglirated.
U S E.

This Propofition ferves to demonftrate the following one, and we fhall ufe it in Dialling, to make out that a great Circle of' a Sphere' is reprefented on a Plane, by a Right-Line.

PROPOSITION I.

THEOREM II.

Two Right-Lines interfecting one anotber, are in the fame Plane: So alfo are all the Parts of a Triangle.

ISay, the two Right-Lines $A B, C D$, meeting in the Point E, and the Triangle AEC, whofe two Sides AE,

Explain'd and Demonfrated.

$A E, C E$, are parts of the two preceding Lines $A B, C D, P_{\text {late }}$ I. are in the fame Plane.

DEMONSTRATION.

If thro' the Point F taken at difcretion in the Side CE, you draw a Right-Line AFG, to the oppofite Angle A, by Prop. I. the two Parts AF, FG_{2} are in the fame Plane, and fo alfo are the two AE, EB, and CF, EF, and becaufe the three Points E, F, C, are in a RightLine by conftr. the three Lines $\mathrm{AB}, \mathrm{AG}, \mathrm{CG}$ muft nèceffarily touch one another, as alfo the three Planes in which they are, and fo become one.

Thus you may find that the Line $A F$ is in the fame Plane as the Side AE of the Triangle AEC; and after the fame manner you may find that all the Right-Lines that can be drawn from the Angle A, thro' what other Points you pleafe in the Side CE, are in the fame Plane as they in the Side AE of the Triangle AEC.. Whence 'tis ealy to conclude that the Triangle AEC, as well as the two Lines AB, CD, are in the fame Plane. Which was to be demongtrated.

U S E.

This Propofition ferves to demonftrate Prop. 4. and 5. that fuppofe two Right-Lines making an Angle to be in the fame Plane. 'Tis of ufe in Perfpective, to demonftrate that a Right-Line when projected upon a Plane, is a Right-Line, where we fhall fuppofe, that all RightLines drawn from the Eye, thro' all the Points of a Right-Line, are in the fame Plane, that is Trianm gular.

PROPOSITION III．

THEOREM III．

The common Section of tmo Planes is a Right－Line．
Mlate I．
䨋名。3．

TIS Pevident that the common Section of the two Planes $\mathrm{ABCD}, \mathrm{EFGH}$ ，is a Right－Line，becaule if thro＇any two Points E，H，of this common Section， you draw in each Plane two Right－Lines，they will fall mpon one another，becaufe they can＇t bound a Space，and fo they will make one Right－Line EH，which being common to the two Planes ABCD，EFGH；muft be Their common Section．Which was to be demonfrated．

USE．

This Propofition ferves to demonftrate Prop．4．16．I8． and 19．that fuppofe the common Section of two Planes is a Right－Line．We fhall alfo ufe it in Perfpective，to demonftrate that a Right－Line projected on a Plane will be a Right－Line；and in Dialling，to demonftrate that all great Circles of a Sphere projected on a Plane，will be Right－Lines：It may be ufed alfo in other Projecti－ ons，as to demonftrate that an intire great Circle，pero pendicular to the Plane of Projection，when projected becomes a Right－Line．

PROPOSITION．IV．

THEOREM IV．

A Right－Line perpendicular to two others that interfect one arothor，will be the fame to the Plane of thofe twous Iuives．

ISay，if the Line AB be perpendicular to each of the two Right－Lines GH，IK，that are in the Plane CDED，and interfect in the Point B，it will alfo be pere pendicular to the Plane CDEF，that is to fay，by Def． 3

PREPARATION.

Cut the equal Lines $\mathrm{BG}, \mathrm{BH}, \mathrm{BI}, \mathrm{BK}$, at difcretion, and join the Right-Lines GI; KH. And draw from the Point A, thro' the Points $\mathrm{I}, \mathrm{L}, \mathrm{G}, \mathrm{K}, \mathrm{M}, \mathrm{H}$, as many Right-Lines.

DEMONSTRATION.

Becaufe the four right-angled Triangles $A B G, A B H$, ABI, ABK, are equal, by 4. I. the Bafes AG, AH, AI, $A K$, will be equal ; and for the fame Reafon the Ifofceles Triangles GBI, KBH, being equal, their Bafes GI, KH, will be equal, together with their Angles. Confequently by 26 . I. the equiangular Triangles $L B G, \mathrm{MBH}$, will alfo be equal, and confequently the Side BL, is equal to the Side BM, and the Side GL to the Side HM, and by 8., s. the Triangles AGI, AKH, are equal, and confequently the Angle AGI is equal to the Angle AHM. Wherefore by 4. 1. the two Triangles AGL, AHM are equal, confequently the Bafe AL is equal to the Bare AM. Whence 'tis eafy to conclude by 8. r. that the Triangles $A B L, A B M$, are equal, and confequently the Angle $A B L$ is equal to the Angle $A B M$, fo that the Line $A B$ is perpendicular to the Line $L M$, Whick was to be demonftrated.

USE.

This Propofition ferves to demonftrate Prop. 5. 8. 9. 11. and 15. and in Spherics, that a Right-Line paffing thro' the Poles of a Circle, is perpendicular to the Plane of that Circle. It furnifhes us alfo with a Method of letting fall a Perpendicular to a Plane, from a Point given without the Plane, different from that in Prop. II. For inftance, if you would let fall a Perpendicular to the Plane CDEF, from the Point A, defcribe upon the Point A, with any aperture of your Compars you pleafe,
the Circumference of a Circle on that Plane, and having marked at Pleafure three Points on that Surface, as G, H, I, for finding the Center B, draw thro the Center. B to the Point given A, the Right-Line $A B$, and that thall be perpendicular to the Plane propofed CDEF, the three Right-Lines AG, AH, AI, being equal. By this you may know whether a Stile, as AB , be placed right on the Plane CDEF, by taking at pleafure from its Foot the three equal Diftances $\mathrm{BG}, \mathrm{BH}, \mathrm{BI}$, for if it be well fixed, the Point B will be equidiftant from the three Points G, H, I.

PROPOSITION V.

THEOREM V.

> If: one Right-Line be perpendicular to three others, interfecting one another ing the fame Point; thofe three will be in the fame Plane.

ISay, if the Right-Line $A B$, be perpendicular to the three Lines $\mathrm{BC}, \mathrm{BD}, \mathrm{BF}$, interfecting one another in che Point B , thefe three Lines, $\mathrm{BC}, \mathrm{BD}, \mathrm{BF}$, are in the fame Plane: So that if the Plane of the two Lines BA, $B F$, be $B A K$, and the Plane of $B C$, and $B D$ be DGHI, the Line BE will be the common Section of thofe two Planes.

DEMONSTRATION.

If the Line $B E$ be the common Seation of the two Planes DGHI, BAK, then by Def. 3. the Line AB being perpendicular to BD and BC , by Sup. and confequently so their Plane D GHI, by prop. 4. It is alfo perpendicular to the common Section BE, and fo the Angle ABE is right, confequently equal to the Angle ABF , which is alo right, becaufe the Line $A B$ is fuppofed alfo to be perperidicular to the Line BF. Whence tis eafy to conclude that the two Lines BE, BF, agree together, and confequently the Line BF is the common Section of the two Planes DGHI, BAK, fo that it is in the Plane of The twa Hines BC, BD. Whach was to be demontrated.

This Propofition is a Lemma to the following one.

PROPOSITION VI.

THEOREM VI.

Right-Lines perpendicular to the fame Plane, are pawillel to one another.

I
Say, if the two Right-Lines $A B, C D$, are each per-Plate $\mathrm{I}^{\text {? }}$. pendicular to the Plane EFGH, they are parallel to ${ }^{\text {Fig. }}$ a each other.

PREPARATION.

Join the Right-Line BD, to which having- drawn the perpendicular DI equal to $A B$, in the Plane EFGH, join the Right-Lines BI, AI, AD.

DEMONSTRATION.

Becaufe the Line $A B$ is perpendicular to the Plane EFGH, by Sup. it will alfo be perpendicular to the Line BD , by Def. 3. So that the Angle ABD being right, will be equal to the Angle BDI, that is alfo right by Conftr. and becaufe the Line DI was made equal to the Linie $A B$, by 4.1 . the two right-angled Triangles $A B D$, $D B I$, are equal, and the Bafe $A D$ equal to the Bafe $B I$ and then by 8. r. the two Triangles AID, AIB, are equal, and the Angle ADI equal to the Angle ABI, which being right, by Def. 3. Lecaufe the Line $A B$ is perpendicular to the Plane EFGH, the Angle ADI muft be right, and fo 1 D perpendicular to AD , and fince it is alfo perpendicular to the Line $B D$, by Conftr. and to The Line CD, by Def. 3 . the Line CD being fuppofed ретрел
USE.

This Propofition ferves to demonftrate Prop. 9. 13. and 14. and fhow that two Parallel Lines, as $A B, C D$,
and 14 . and fhow that two Parallel Lines, as $A B, C D$,
are in the fame Plane, and this ferves to demonftrate
Prob. 7. and 8 . that fuppofes two parallel Lines to be in
and 14. and fhow that two Parallel Lines, as AB, CD,
are in the fame Plane, and this ferves to demonftrate
Prob. 7. and 8 . that fuppofes two parallel Lines to be in the fame Plane.

PROPOSITION VII.

THEOREM*VII.

" Right-Line drawn from one parallel to another, is in the Plane of thofe two Parallels.

Plate 2.
Fig. 13.
perpendicular to the Plane EFGH, the three Lines DC, $D A, D B$, to which the Line ID is perpendicular, are in the fame Plane, by Prop. 5. confequently the two Perpendiculars AB, CD, are alfo in the fame Plane, and by 29. I. they are parallel to one another. Which was to be demsonftrated.

1Say, if thro' the Point E, of the Line AB, you draw to another Point F of the Line CD, parallel to the firft AB, the Right-Line EF, that Right-Line EF, is in the Plane of thefe two parallel Lines $A B, C D$.

DEMONSTRATION.

Becaufe the two Points E, F, are in the Plane of the two Parallels AB, CD, a Right-Line may be drawn. in this Plane thro' the Points E, F, that fhall not differ from the Line EF, becaufe two Right-Lines can't bound a Space. So that the Line EF is in the Plane of the two farallels AB, CD. Which was to be demongtrated.

Book 11. CAuclid's Elements Plate 2.Page 2.50

1 等

－．．．．$=$

PROPOSITION VIII.

THEOREM VIII.

If there be two parallel Lines, the one pexpendicular to a certain Plane, the other alfo will be perpendicular to the Same Flane.

Say, if the two Lines $A B, C D$, be parallel, and the plate so,
 cond CD is alfo perpendicular to the Plane EFGH.

> PREPARATION.

In the Plane EFGH draw the Line BD, and it will be perpendicular to the Line $A B$, by Def.3. and by 29. I. to the parallel one CD . In the fame Plane draw the Line DI perpendicular to BD , and equal to AB , and draw the Right-Lines AD, AI, BI.

DEMONSTRATION.

Becaufe by 4. I. the two right-angled Triangles $\mathrm{ABD}, \mathrm{BDI}$, are equal, the two Bafes AD, BI, will alfo be equal: and by 8.1. the two Triangles ABI, ADI, will be equal, and the Angle ADI will be equal to the Angle $A B I$, which being right by $D e f$. 3 . Since the Line $A B$ is perpendicular to the Plane EFGH, by sup the Angle ADI will be right alfo. So that the Line DI being perpendicular to the two Lines DB, DA, will by Prop. 4 . be perpendicular to their Plane, the fame with that in which the two parallels $A B, C D$ are, and confequently to the Line CD, by Def. 3. Since therefore the Line CD is perpendicular to DB, DI, it will alfo by Prop. 4. be perpendicular to their Plane, that is fay, to the Plane EFGH. Which toas to be demonfrated.
USE.
'This Propofition ferves to demonftrate Prop. 9, 10, Ir, F 2 , and 18 .

PRO.

PROPOSITION IX.

THEORE'M IX.

Two Right-Lines parallel to a third, are parallel to one anotber, tho they be not in the fame Plane.

Plate 2. Say, if the Lines AB, CD, be parallel each to the Eig. 14.
fame Line EF, they are fo to one another, tho' they be not in the fame Plane, otherwife this Theorem would be evident by 30. 1.

PREPARATION.

Draw thro' the Point G, taken at difcretion in the Line EF, in the Plane of the two Parallels $A B$, EF, the Line GH, perpendicular to the Line EF, and it will be perpendicular alfo to the Line $A B$, by 29. 1. and in the Plane of the two Parallels EF, CD, the Line GI perpendicular to the fame Line EF, and it will be perpendicu. lar to the Line CD, by 29. I.

DEMONSTRATION.

Becaufe the Line EG is perpendicular to each of the two Lines GH, GI, by Conftr. it will be perpendicular to their Flane, by Prop. 4. confequently by Prop. 8. the the two Lines $A B, C D$, that are parallel to the Line EG, by Sup will alfo be perpendicular to the fame Plane of the two Lines GH, G1, and by Prop. 6. the two Lines $A B, C D$, will be parallel to one another. Which 20 ass to be demonfrated.
U S E.

This Propolition ferves to demonftrate the following, and Prop. 15. and is ufed in Dialling, to demonftrate that in different Dials, the Axes are parallel to one another, becaufe they are fo to the Axis of the Wold.

PROPOSITION X.

THEOREM X.

If two Right-Lines, making an Angle, are parallel to two others of a different Plane, the two others will form an Angle equal to that of the two former.

ISay, if the two Lines A B, AC, are parallel to the fe plate 2: two DE, DF, the Angle BAC is equal to the Angle Big . I_{5} EDF, tho' the Plane of the two Lines $\overline{A B}, A C$, be diffe rent from that of the two Lines $D E, D F$.

PREPARATION.

Cut off the Line $D E$ equal to the Line $A B$, and the Line $D F$ equal to the Line $A C$, and join the RightLines $\mathrm{BC}, \mathrm{EF}, \mathrm{LE}, \mathrm{AD}, \mathrm{CF}$.

DEMONSTRATION.

Becaufe the two Lines $A B, D E$, are parallel by sup. and equal by conf. the two Lines $A D, B E$, will alfo be equal and parallel, by 33. 1. and for the fame reafon AD, CF, will be equal and parallel: Confequently BE , CF will be equal, by Ax. i. and parallel by Prop. 9. and by 33. I. BC, EF, will be equal. And laftly, by 8. I: the two Triangles $A B C$, DEF, will be equal, and the Angle BAC equal to the Angle EDF. Which mas to be demonforated.

USE.

This Propofition is ufed in Perfpective to demonfrate that two Right-Lines, parallel to the Plane of Projection, when projected, form an Angle equal to that of the two Right-Lines; and that two Right-Lines when projected, are parallel to one another, if the two Right Lines are parallel to one another and the Plane of Projection. Prop. 24, is demonatrated alfo by the help of this.

PROPOSITION XI.

PROBLEM I:

To let fall a Right-Line from a Point given without a Plane, perpendicular to it.

TO let fall a Perpendicular to the Plane ABCD, from the Point E, given without the Plane: draw at dif-

Plate 2.
Fig. 16.
cretion in the Plane, the Right-Line FG, and let fall perpendicular to it, the Line EH from the Point E, by 12. 1. draw alfo from the Point H, the Right-Line HI perpendicular to the Line FG, by ir. I. and by 12, I. the Perpendicular EI, to the Line HI, from the Point given E, and it will be perpendicular to the Plane propofed.

DEMONSTRATION.

Becaufe the Line FG is perpendicular to HI and HE, by Conftr. it will be fo alfo to their Plane EHI, by Prop. 4. Confequently, draw IK parallel to the Line FG, and you will find by Prop.8. that it is perpendicular alfo to the Plane EHI, and confequently to the Line EI, by Def. 3. Since therefore the Line EI is perpendicular to IK and IH, it is perpendicular alfo by Prop. 4, to their Plane ABCD. Which was to be demonfrated.

> US E.

This Propofition ferves as a Lemma to the following one; and I thall ufe it pretty often in Dialling, when in drawing a Dyal upon a Wall, having determined the extremity of the Stile at the Point of a Wire planted. obliquely on the Wall, I would determine its Foot and Length.

PROPOSITION XII.

PROBLEM II.

To erect is Line perpendicular to a Plane from as Point givens in the Plane.

Terect a Line from the Point B, in the Plane Plate r : EFGH, perpendicular to that Plane; let fall by ${ }^{\text {Fig. } 12 .}$ Prop. If. from the Point C, taken at difcretion without the Plane, the Perpendicular CD, and thro' the Point B , draw by 30. 1. the Line $A B$ parallel to the Line $C D$, and it will be perpendicular to the Plane propofed EFGH, as is evident by Prop. 8.
USE.

This Propofition ferves in Dialling for placing the Stile in a Dial defcribed on a Plane: But 'tis better to ufe a Square, drawing from the Foot of the Stile B, two Lines at difcretion BD, BI, in the Plane of the Dial EFGH, to apply to it the Side of the Square, fo that the Right-Angle touch the Point B, and place the Stile AB, fo that it touch the other Side of the Square ${ }_{z}$ for by that means it will be perpendicular to the two Lines BD, BI, and confequently to their Plane EFGH ${ }_{\nabla}$ by Prop. 4 .

PROPOSITION XIII.

THEOREM XI.

Tino Right-Lines can't be drawn perpendicular to a Plake. thro' the fame Point.

ISay, firlt, that from the Point D, taken in the Plane EFGH, two different Right-Lines can't be drawn perpendicular to this Plane, for inftance DC, DA; becaufe thefe two Lines would be parallel to each other by Prop. 6. and fo would coincide, and form but one and the fame Line, fince they proceed from the lame Point D.

Plate I. Fig. 12.

Ifay, in the fecond Place, that from the Point A, taken without the Plane EFGH, two different RightLines can't be drawn perpendicular to this fame Plane, for inftance $A B, A D$, as well on the account of what has been faid, as becaufe thefe two Perpendiculars $A B$, AD, being in the fame Plane, by Prop. 3. whofe Section with the Plane EFGH, will be BD, they will make with that common Section BD, two Right-Angles by Def. 3. fo that each of thefe two Angles $\mathrm{ABD}, \mathrm{ADB}$, of the Triangle DAB , would be right, which is impoffible, by 32 . 1 .

U S E.

This Propofition is fo evident, that it deferves not to be mentioned, and Euclid feems, unwilling to have added it, were it not to demonftrate by the help of it, Prop. 19. and 38.

PROPOSITION XIV.
 THEOREM XII.

Thofe Planes are parallel, that have the Same Right-Line, perpendicular to therin.

Fig. s.

ISay, if the Line IK be perpendicular to each of the two Planes, $A B C D, E F G H$, thefe two Planes are parallel, that is to fay, equidiftant by Def. 8. So that if you draw the Line DI parallel to the Line IK, it being perpendicular at the fame time to the two Planes ABCD, EFGH, by Prop. 6. the two Parallel Lines IK, DL, wilk be equal.

DEMONSTRATION.

Join the Right-Lines, ID, KL, and you will find by Def. 3. that the four Angles of a Figure DIKL are right, and confequently is a Parallelogram, wherefore by 34. In the two oppofite Sides IK, DL, will be equal. Which reas to be demongtrated.

U S E.

This Propofition fhews us that all the Circles of a Sphere, having the fame Poles, are parallel, becaufe they

Explain'd and Demonffrated.

have the fame Axis, perpendicular to them: We fhall make ufe of this Propofition in the Demonftration of the following one.

PROPOSITIONXV.

THEOREM XIII.

If the two Legs of one Angle are paratlel to the two Legs of another in a different Plane, the Planes of theese two Angles will be parallel.

Plate s ?
Siy, if the Lines $I M$, IN, of the Angle MIN, in the Fig. Plane ABCD, are Parallel to the two Lines GP; GE; of the Angle PGE, in the Plane EFGH, the two Planes $\mathrm{ABCD}, \mathrm{EEGH}$ are Parallel.

PREPARATION.

Let fall the Line IK perpendicular to the Plane EFGH, from the Point I, by Prop. II. and thro' the Point K, where it meets the Plane, draw in the fame Plane the two Lines KO, KQ, parallel to GP, GE, and by confequence to IM, IN, by Prop. 9 .

DEMONSTRATION.

Becaufe the Line IK is perpendicular to the Plarie EFGH, by Conftr. each of the two Angles IKO, IKO will be right, by Def. 3. and becaufe the two Lines KO. IM are parallel by Conftr. and confequently in the fame Plane, by Prop. 6. the Angle KIM will be alfo right, by 29. I. After the fame manner you may find the Angle KIN is right, becaufe $K Q$, IN are parallel. Wherefore the Line IK, being perpendicular to IM, and IN, will alTo be perpendicular to their Plane $A B C D$, by Pros. 4 . and becaufe 'tis perpendicular alfo to the Plane EFGH, by Confir. it follows by Prop. 14. that the two Planes $\mathrm{ABCD}, \mathrm{EFGH}$, are parallel. Which wans to be demone strated.

PROPOSITION XVI.

THEOREM XIV.
The common Sections of one Plane, with two other parallel planes, are alfo parallel.

Eig. So

- TIS plain the two common Sections ID, KL, of the Plane DIKL, with the two parallel Planes ABCD, EFGH, are parallel, becaufe being in the parallel Planes ABCD, EFGH, they cannot get out of it, by Prop. I. and lo can never meet.

USE.
This Propofition ferves to demonftrate the following, and Prop. 16. and 24, and in Perfpective, to demonftrate that Lines parallel to a Plane of Projection, are fo alfo when projected.

PROPOSITION XVIF.

THEOREM XV.

Two Right-Lines are cut proportionally by parallel Planes.
Plare 2:
要: 7.

1Say, the two Right-Lines $A B, C D$, are divided pro. portionally by the Parallel Planes GH, IK, LM, that is to fay, the Ratio of the Parts $A E, E B$, is equal to that of CF, ED.

DEMONSTRATION.

Draw the Right-Line AD, meeting the Plane IK in the Point O, and by prop. 16. you will find the common SedionsEO, BD, of the Triangular Plane ABD, with the two parallel Planes $\mathbf{I K}, \mathrm{LM}$, to be Parallel, and by

Explain'd and Demonftrated.

2.6. the Ratio of the two Lines AO, OD, equal to the Plate 2. Ratio of the two lines $A O, O D$. In like manner, Fige 57 . you may find that the common Sections AC, OF, of the Triangular Plane ADC, with the two parallel Planes GH, IK are parallel, and confequently the Ratio of the two Lines CF, FD, is equal to that of the two Lines AO, OD ; that is to fay, to the two $A E$, $E D$. Whick was to be demoinforated.

PROPOSITION XVIII.

THEOREM XVI.

If a Right-Line be perpendicular to a Plane, all the Planes it
cani be found in, are alfo perpendicular to that Planes.
plate E :
I Say, if the Line IK be perpendicular to the Plane Fig 3. ABCD , any Plane whatever wherein 'tis found, for inftance the Plane EFGH, whofe common Section witlix the Plane ABCD , is the Right-Line EH , will be perpendicular to the Plane ABCD.

DEMONSTRATION.

Draw in the Plane EFGH, any Line as GH, perpend dicular to the common Section EH, by 29. 1. you will find it parallel to the Line IK, which being perpendicular to the Plané ABCD, by; Süp. makes it evident by Prop. 8. that the Parallel GH, is alfo perpendicular to the Plane ABCD, and by Def. 4 , that the Plane EFGHI is perpendicular to the Plane ABCD . Which was to be dea monjfrated.

USE.

This Propofition ferves to demonftrate that all the great Circles of a Sphere, paffing thro' the Poles of another, are perpendicular to the Poles of that other; and that all verrical Circles are perpendicular to the Plane of the Horizon. Laftly, That all Meridional Cixcles are pergendicular to the Plane of the Equator.

PROPOSITION XIX.

THEOREM XVII.

If two interfecting Planes, be perpendicular to another, their common Section alfo will be perpendicular.

Plate 2: Fig. 18.

ISay, if each of thefe two Planes ABCD, EFGH, whofe common Section is MH , be perpendicular to the Plane IKLC, their common Section MH, will alfo be perpendicular to that Plane.

PREPARATION.

Draw from the Point H, in the Plane $A B C D$, the Right-Line HN, perpendicular to the common Section DH of this Plane, with the Plane IKLC, and in the Plane EFGH, the Right-Line HO, perpendicular to the common Section GH, of that Plane, with the Plane IKLC.

DEMONSTRATION.

Becaufe the two Lines HN, HO, are by conftr. perpendicular to the common Sections DH, GH, of the Plane IKLC, with the Planes ABCD, EFGH, that are perpendicular to the Plane IKLC, by Sup. they would be perpendicular by Def. 4. to the fame Plane IKLC, but that being impoffible by Prop. 13. thefe two Perpendiculars HN, HO, muft become one, namely HM , which by confequence is perpendicular to the Plane IKLC. Which ras to be demonftrated.

U S E.

This Propofition is of ufe in Perfpective, to demonAtrate, that when the Plane of Projection is right, that is to fay, is perpendicular to the Geometric Plane, RightLines perpendicular to the Geometric Plane, when projected, become Right-Lines perpendicular to the Ground.

PROPOSITION XX.

THEOREM XVIII.

> If three Plane Angles form a Solid one, the Sum of any two is greater than the third.

ISay, if the three Plane Angles BAC, BAD, CAD, plate n? form the folid Angle A, the greateft for inftance Fig. 6. BAE, is lefs than the Sum of the two others BAD, CAD.

CONSTRUCTION.

Cut off from the greateff Angle BAC, the Angle BAE, equal to the Angle BAD, and making the Lines AD, AE equal, join the Right-Lines, BEC, DB, DC.

DEMONSTRATION.

Becaufe the Angle BAE is equal to the Angle BAD, by Conftr. and the Side $A E$ equal to the Side $A D$, the Triangles BAD, BAE, will be equal by 4. I. and the Bafe $B E$, equal to the $B a f e B D$; and fince the Sides $D B$, DC, of the Triangle BDC, taken together, are greater than the fingle Side BC, by 20 . I. taking away the equal Lines $B D, B E$, there will remain the Line $C D$, greater than the Line CE, and by 25. I. The Angle CAD will be greater than the Angle CAE. Wherefore adding the two equal Angles BAD, BAE, you will find the two Angles $C A D, B A D$ are taken together greater than the Angle BAC. Which pas to be demoraftrated.
U S E.

This Propofition ferves to demonftrate the following, though that may be demonftrated without it, as you fhall fee.

PROPOSITION XXI.

THEOREM XIX.

Sill the plane Angles that form a Solid one, taken rogether; are lefs than four risht.

Mare i: Say, the Sum of the three plane Angles BAC, BAD, Eig. 6.: CAD, that form the folid Angle A, are tógether lefs than four right.

DEMONSTRATION.

If the three Plane Angles BAC, BAD, CAD, were in the Plane BCD, they would be together equal to four fright, becaufe meafur'd by the Circumference of a Circle defcribed upon their common Point A; but fince the Angles are raifed above the Plane BCD, and confequentJy lefs than if they were upon that Plane, as 'tis plain from 2I. I. the three Angles BAC, BAD, CAD, together, muft be lefs than four right." Which mas to be dew swonfrated.

The XXII and XXIII Propofitions are needlefs.

PROPOSITION XXIV.
 THEOREM XXI.

If a Solia be bounded by parallel planes on four Sides, the oppofite ones will be fimilar and equal parallelograms.

部。"

ISay, if the folid $A B C D E$, be bounded by parallel Planes, on four Sides, its oppofite Surfaces are fimio 1 ar and equal Rarallelograms.

DEMONSTRATION.

Becaufe the Planes AEGF, BCDH, are parallel by Conffr, and cut by the Plane DEFH, the common Sectio ons EE, DH, will be parallel by prop. 6 , and fo becaufe
caufe the Planes ABHF, CDEG, are parallel, and cut Plate x. by the Plane DEFH, the common Sections ED, FH, Fig. x_{s} will be parallel. Which fhows that the Plane DEFH is a Parallelogram; and thus alfo you may find, that the other Planes are Parallelograms: Whence one may eafily conclude, that the two oppofite ones are equiano gular, by Prop. ro. and equal, becaufe they have equal Sides 16.9. 34. 1. Which was to be denonffristed.

USE.

This Propofition ferves as a Lemma to the next, and to demonftrate Prop. 28.

PROPOSITION XXV. THEOREM XXI.

If a Parallelopiped be cut by a Plane parallel to one of its Surfaces; the troo Solids that are formid by that Divifion, will be to one another as their Bafes.

ISay, if you divide the Parallelopiped ABCDE, by the plate 2. Plane FGHI, parallel to the Plane AOEK, or iig. zo BCDL, the Solid EFGHA, will be to the Solid FDCBH, as the Bafe AHIK, to the Bafe HILB.

DEMONSTRATION.

Imagine Planes parallel to the common Bafe ABLF or CDEO, to pafs thro' all the Points of the Line AO, that may be taken for the common Heighr of the two Solids EH, FB, that are Parallelopipeds, by prop. 24. and thefe Planes will divide each Solid into an equal Number of little Planes, that are Parallelograms equal and fimilar to the Bafe of its. Parallelopiped, by Pro. 24. So that each Plane of the folid EH, will have the fame Ratio to each Plane of the folid FB, as the Bafe AI, has to the Bafe HL, and by 12.5. all the Planes of the Solid EH_{3} that is to fay, the Solid EH will have the

Plate 2.等器 19.
fame Ratio to all the Planes of the Solid FB, that is to fay, to the Sold FB, as the Bafe AI has to the Bafe HI. Which pas to be demonfrated.

USE.

This Propofition fhows us that Parallelopipeds of the fame Height, are to one another as their Bafes; which ought to be extended to Prims too, becaufe the DemonAtration will ferve there, if the two oppofite Planes that are parallel; fimilar and equal, be confider'd as Bafes.

Propofition XXVI. and XXVII. are needlefs.

PROPOSITION XXVIH.

THEOREM XXIII.

A Parallelopiped is divided into two equal Prifms, by a Plane that paffes thro' the two Diagonals of the two oppogite Surfaces. Say, the Parallelopiped ABCDE, is divided into two equal Parts by a lane paffing thro the two parallel

Diagonals AC, FD, of the two oppofite Surfaces, $A B C G$, DEFH.

DEMONSTRATION:

Imagine Planes parallel to the Bafe ABCG , paffing thro' all the Pcints'of the Line AF, that may be looked upon as the Height of the Parallelopiped ABE, and they will divide the Parallelopiped $A \mathbb{E}$, into little Parallelo. grams fimilar and equal to the Bafe ABCG, by prop. 24. and by 34. 1. they will be divided each into two equal 'Triangles by the Plane that paffes thro' the two Diagonals AC, ED. Which Shows that the two Triangular Prifms arifing from the Setion of the Parallelopiped ABCDE, by the Diagonal Plane, contains an equal Number of Triangles, and confequently are equal. Whick

U S E.

This Propofition ferves to demonftrate Prop. XL.
Prop. XXIX. is needlefs, becaufe virtually contain'd in the two next, that we bave reduced into pre.

PROPOSITION. XXX. and XXXI.

THEOREM XXV. and XXVI.

> Parallelopipeds of the Same Height, baving the Same Bales or equal Bafes, are equal.

$\$$ T naturally follows from Prop. 25. where we found
that Parallelopipeds of the fame Height are to one another as their :afes; from whence 'tis eafy to conclude that when the Bafes are equal, the Parallelopipeds are equal. 'Tis the fame in Prifms.

PROPOSITION XXXII.

THEOREM XXVII.

Parallelopipeds of the Same Height, areas their Bafes.
7 His alfo follows from Prop. 25. that fhows this Theorem is alfo true of Prifms.

PROPOSITION XXXIII.

THEOREM XXVIII.

Similar Parallelopipeds are in the triplicate Ratio of their Homologous Sides.

Plate 2: Tay, if the Parallelopipeds ABLC, CDEF are fimilar, all the Planes of the one being fimilar to all the Planes of the other, and all their Angles equal. In which Cafe the Solids may be plac'd in a Right-Line, as may be feen in the Figure, thefe Parallelopipeds will be in the triplicate Ratio of that of their Homologous Sides, for inftance, AC, CF.

DEMONSTRATION.

Defcribe the Parallelopipeds CG, OM, by producing the Sides of the two propofed, as you fee in the Figure, then by Prop. 22. the folid ABLC, is to the Solid BCFG, of the fame Height, as the Bafe AH, to the Bafe CI, or by 6. I. as the Side AC, to the Side CF: And thus you may find, that the Solid BCFG, is to the Solid CEKL, as the Bafe CI is to the Bafe CE, or as the Side CH is to the Side CO. And laftly, That the Solid CEKL is to the Solid CDEF, as the Bafe OK to the Bafe DE, or as the Side ON is to the Side OD; but fince the Ratio of ON to OD is the fame as that of CH to CO, and that of AC to CF, by Sup. It follows that the Ratio of the Solid ABLC to the Solid CDEF being compounded of three equal Ratios, muft be the triplicate of each, and confequently of that of AC to CF. Which was so be demonffrated.

> COROLLARY. I.

It follows from this Propofition, that fimilar Parallelopipeds are as the Cubes of their Homologous Sides, becaufe the Cubes being Cimilar Parallelopipeds are in

Explain'd and Demonftrated.

She Triplicate Ratio of that of their Homologous Sides.

COROLLARYII.

From hence alfo it follows, that if four Lines be in continual Proportion, a Parallelopiped defcribed on the firft, is to a fimilar one defribed on the fecond, as the firft Line is to the fourth, becaule the Ratio of the firf to the fourth is the triplicate of that of the firft to the fecond.

COROLLARY III.

Laftly, Similar Triangular Prifms are in the Triplicate Ratio of that of their Homologous Sides, becaufe by Prot. 28. they are halves of fimilar Paralielopipeds, that are in this Triplicate Ratio. 'Tis the fame alio in fimilar Polygonal Prifms, becaufe they may be reduced into Triangular Prifms.

U S E.

This Propofition ferves to augment or diminifh a Solid ; for inftance a Cube, according to a given Ratio. Asif you would have a Cube double another propofed, which is commonly call'd the Duplication of the Cube ; find two continual mean proportional between the Side of the Cube propofed and its double, and then the next Proportional will be the Side of the Cube, that is double the propofed one, as is evident by Corol. 2. This Propofition is ufed in demonftrating. Prop. 37 .

By this Propofition alfo you find, that if a Cube weigh a Pound for inftance, a Cube of homogeneous Matter, whofe Side is double that of the former, will weigh eight Pounds, becaufe the Triplicate of the double, is the Octuple. And thus alfo a Sphere, whofe Diameter is double that of another, will be eight times greater, becaufe two Spheres are in the triplicate Ratio of that of their Diamerers, by 18. 12. This Propofition is whed in demonftrating Prop. 8, 12. and 12, 12.

PROPOSITION XXXIV.

THEOREM XXIX.

Equal Parallelopipeds bave their Bafes and Heights reciprocal; and Such as have their Bafes and Heigbts reciprocal, are equal.

Elate 2. Fig. 21.

ISay, firf, if the Parallelopipeds ABCD, FGHI, be equal, their Bafes and Heights are reciprocal, that is to fay, the Bafe ABCE; is to the Bafe IGHO, as the Height HI, to the Height CD.

PREPARATION.

Taking HM equal to CD, make the Plane MLK, pafs thro' the Point M, parallel to the Bafe FGHO.

DEMONSTRATION.

- Becaufe the Solid AD, is to the-Solid FM of the fame Height by Conpr. as the Bafe AC is to the Bafe FH, by Prop. 32. the Solid EI is equal to the Solid AD, by Sup. is alfo to the Solid FM, as the Bafe AC, to the Bafe FM, by \%. 5. and becaufe by Prop. 32. the Solid FI is to the Solid EM, as the Bare GI to the Bafe GM, or by I. 6. as the Height HI, to the Height HM or CD, its equal, by Conftr. it follows by II. 5. that the Bafe AC is to the Bafe HH , as the Height HI, to the Height CD. Whicto was to be demonftrated.

I fay, in the fecond Place, if the Bafe AC be to the Bafe FH, as the Height HI is to the Height CD, the two Parallelopipeds AD, HI, are equal.

DEMONSTRATION.

Becaufe the Bafe AC is to thie Bafe FH, as the Height HI to the Height CD, or HM by sup. and by Prop. 32. the Bafe AC is to the Bare FH, as the Solid AD, to the Solid FM of the fame Height; the Solid AD will be to the Solid FM , as the Height HII to the Height HM,

Explain'd and Demonfrated.

and becaufe the Height HI is to the Height HM, as the Hate 2 . Bale GI is to the Bate GM, by т. 6. or as the Solid FI ${ }^{\text {Figs. }} 2 \mathrm{~F}$, to the Solid FM, by 32. the Solid AD muff be to the Solid FM, as' the Solid FI is to the Solid FM. and by 9. 5. the Solids AD, FI, are equal. Which remained to be demonfrated.

SCHOLIUM.

There two Demonfrations fuppofe that the Parallelo piped propofed AD, FI, are right-angled, fo that the Sides CD, HI, may be taken for their Heights, but when that does not happen, that is to fay, when the Sides CD, HI, are not perpendicular to their Bales AC, FH, fill the Demonftration will be the fame, becaufe by Prop. 28. you may, imagine right-angled Paralielopipeds equal to the proposed ones upon the fame Bates, by making them of the fame Height. 'Tis plain alfo, this Theorem may be applied to all Sorts of Prifms, without enlarging upon it.

US E.

This Propofition ferves to change a given Prim into another, on a given Bare; thus if you would make a Prifm on the Bate ARCE, equal to the given Prifm FI, find the Line CD a fourth proportional to the Bafe AC , the Bare FH, and the Height HI, and that foal be the Height of the Prim fought, © \& c It is used all to make out the 9 . 12 .

The XXXV Prop, is needles.

PROPOSITION XXXVI.

THEOREM XXXI.

If three Right-Lines be proportional, the Parallelopiped of the fe three Right-Lines, is equal to a Parallelopiped that is equiangular, and has all its Sides equal to the middle Line.

ISay, if the Lines $A B, A C, A D$, are proportional, the Parallelopiped $A B K C$, made by thole three Lines, that is to fay, whole three Dimenfions are equal to them, is equal to the equiangular Parallelopiped DEFGH, each of whofe Sides is equal to the mean Proportional AC.

DEMONSTRATION:

Becaufe each of the two Sides DE, EF, is equal to the Line AC , and the three Lines $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$; proportionals, by sup. AB is to DE , is EF to AD , and by 14. 6. the two Bafes ABID, DEFG, fuppofed to be equiangular; are equal: and becaufe the Heights $\mathbf{K L} ; \mathbf{G O}$, are equal, the Angles F, I, being equal ; and the Sides FG . IK, equal by sup. Then by Prop. 3 i. the Solias AK, DG are equal. Which was to be demionftrated.

USE.

This Propofition is very ufeful in Arithmetic, to find the Side of a Cube equal to the Sum or Difference of two given Cubes, tho' indeed it may be done otherwifes. without this Propofition.

PROPOSITION XXXVII.

THEOREM XXXII.

Similar Parallelopipeds defcribed oni Proportional Lines, are proportional, and if the fimilar Parallelopipeds be proportio nal, the Homologous Sides will alfo be proportional.

THe Demonftration of this Propofition, is entirely the fame with that of fimilar Polygons in 22.6. only ufing the triplicate Ratio inftead of the duplicate, becaute fimilar Parallelopipeds are in the triplicate Ratio of that of their Homologous Sides, by Prop. 33. 'tis' needefs therefore to infift any longer on it.

PROPOSITION XXXVM.

THEOREM XXXIII.

If two planes be perpendicutai to one another, Perperdiculan let fall from a Point in one of thefe Planes to the other. zoill fall upon the common Section of the plates.

Tay, if you let fall from the Point I, taken in the plate $\overrightarrow{\mathrm{z}}$. Plane EFGH, the Line IK, perpendicular to the fig. 3. Plane ABCD, which is fuppos'd perpendicular to the Plane EFGH, the Point I is in the Perpendicular IK, will fall upon the common Section EH.

DEMONSTRATION

A Perpendicular let fall from the Point I, in the Plane EFGH, to the common Section EH, will be perm pendicular to the Plane ABCD, by Def. 4 and becaufe by Prop. 13. two Perpendiculars can't be drawn to the fame Plane, that fame perpendicular will coincide with the firf IK, and fo will meet the common Section EH. Which woas to be demonjtratod.
USE.

This is very ufeful in the Orthographic Projection of a Spliere, to derionfirate that a Circle perpendicular to the Plane of Projection, is reprefented by at Right-Line; and in Dialling, that a great Circle perpendicular to the Plane of the Dial, is reprefented by a Right-Line paffing thro' the Foot of the Style.

This Propofition feems to be mifplac'd, for it refpects. only Liries and Planes, and ought to be plac'd at the beginning of the Book, at leaft after Prop. i3. that ferves to demonftrate it.

I omit Prop. XXXIX. becoufe of no great Confequence.

PROPOSITION XL.

THEOREM XXXV.

- Prifm, whofe Bafe is a Parallelogram double the Triangula Bafe of another Prifm of the fame Height, is equal to that other Triangular Prifm.

Plate 2. Fig. 23.

ISay, if the Heights AE, FK, of the two Triangular Prifms ABCDE, FGHIK, are equal, and the Bafe FGHO of the fecond, be a Parallelogram double the Triangular Bafe ABP of the firft, thefe two Prifms are equal.

DEMONSTRATION.

Compleat the Parallelogram ABLP, and it will be double the Parallelogram ABP, by 34. I: and confé quently equal to the Parallelogram FGHO ; that is alfo double the Triangle ABP, by sup. Then compleat the Parallelopipeds ABMD, FGNI, and you will find by Prop. 3I. the two Parallelopipeds are equal, and confequently the Prifms ABD, FGI, their halves, by Prop. 28. are alfo equal. Which was to be demonftrated.

US E.

This Propofition thews how to find the Solidity of a Triangular Prifm, by multiplying its Triangular Bafe by its Height, or if you take one of its other Surfaces that are Parallelograms, for a Bafe, by multiplying that Bafe by half the Height, becaufe multiplying by the whole Height, you find the Solidity of a Parallelopiped, that is double the Prifm. Upon this Principle Sloaping Bodies are meafured, as you will find in the Practio cal Geometry.

Book 12, Euclids Elements Page 27.3

THE

TWELETH BOOK

OF

EUCLID's Eiements.

EUclid having trèated of Prifms, and Parallelopipeds in the former Book, explains in this the Proper ties of other Bodies that are more difficult, name. 3y fuch as are bounded by Curve Surfaces, as the Cone ${ }_{2}$ Cylinder, and Sphere, concerning which the great Avo. bimedes has given us very neat Demonftrations.

DEFINITIONS:

$$
I
$$

A Pyramid is a Body bounded by feveral Triangula
Planes meeting in the fame Point, and having another Plane for the Bafe: As ABCD, call'da Triangular Prifm, because its Bafe ABC is a Triangle, at Pyrawid taking its Name from the Fibgure of the Bafe.
${ }^{2}$ Tis evident a Pyramid muft have four Surfaces at leaft, including the Bafe, from whence the Pyramid is call'd a Tetradrum, if its Triangles are equal and equio lateral

I.

A Sphere is a Solid botnded by one Surface, having a certain Point in it, from whence all Right-Lines drawn to the Surface are equal: as ABCD.
'Tis plain a Sphere is generated by the intire Revolu- Fig. 2 ? gion of a Semicircle upon its Diameter. Thus imagine T the Semicircle ABC , to move round the Diameter AC , till its Circumference ABC come to the Place where it began to move, and then its Motion will generate the Sphere ABCD.

III.

The Axe of a Sphere is that Right-Line or immoveable Diameter that the Semicircle is fuppos'd to revolve about, in generating the Sphere : as AC.

This Line is call'd fo from the Latin Word Axis, that fignifies an Axle-Tree.

IV.

The Center of a Spbere is that Point from which all Right-Lines drawn to the Surface, are equal: as E .

V.

The Diameter of a Spbere, is a Right-Line drawn thro the Center of the Sphere, and bounded on each Side by its Surface: as AC.
Fig. 2.
${ }^{\circ}$ Tis evident that if a Sphere be cut by a Plane palfing thro' its Center, the Section will be a Circle, as ADCE, and the Sphere will be divided into two equal Parts, call'd Hemifpheres, as ABCD, whofe external Surface is call'd the Convex Surface, and the internal Surface, its Concare Surface.
-' Tis evident that every Axe is a Diameter, but not every Diameter an Axe. Tis evident alfo that a Sphere as well as a Circle, has an infinite Number of Diameters, all equal to one another, whofe Halves iffuing from the Center, and terminated by the Surface, are call'd, Semi-diameters, or Radii, as in a Circle.

VI.

A Cone is a Solid bounded by two Superficies, produced by the intire Revolution of a right-arigled Triangle, about one of its Sides, forming the Righto Angle.

Thus Suppofe the Right-Angled Triangle ACD revolve round Fig' to the immoveable Side AC, So that the Circumvolution be perfect, that is to Jay, the Side CD, flop at the Place it began to move in, and the Triangle ACD will defrribe by that intire Revolution the Cone $A B E D$, call'd a Right-angled Cone; if the righto angled Triangle $A C D$, calld the generating Triangle, is an ITof cele, an obtule angled Cone; if the immoreable side AC be lefs than the other CD; and an Accute-angled Cone, if the immeveable Side $A C$ be greater than the other $C D$, as it bappens in this Figure.

A Solid produc'd by the Motion of an oblique angled Triangle, that is to fay, one that has not a RightAngle, is alfo call'd a Prifm. And then to diftinguifh this Cone from the preceding, 'tis call'd an Inclined Cone, Figo ${ }^{\circ}$? as GHI, which is produced by the Motion of the oblique angled Triangle GCH, upon the immoveable Side GO.

VII.

 rating Triangle: As $A \bar{C}$, paffing thro' the Center \bar{C}° of its Bafe, and perpendicular to it when it is right.

VIII.

A cylinder is a Solid bounded by threë Surfaces gene. rated by the intire Revolution of a rightit-angled Parallelogram about one of the Sides that form the RightAngle.
Thus if you inagine the right-angled Parallelogram GOBC, to aiss \& revolve about the immoveable side GO, till the Revolution be intire, that is, till the side OB , arrive at the Place where it began; the Parallelogram $B C G O$, will defcribe by that intive Revolution the Cylinder $A B C D$.

A Solid generated by the Motion of a Parallelogram, that has never an Angle right, is alfo call'd a Cylinder; but then to diftinguilh it from the foregoing, call'd a Right Cylinder, this is call'd an inclined Cylinder, as Figh ? ${ }^{3}$ HIKL, which is generated by the Niotion of an oblique angled Parallelogram KLNM, about the immoveable Side MN.

IX.

The Axe of a Cylinder is the immoveable Side of the Pa-

Fig. 6.

Fig. 4:

Fig. 6

Similar Cones and Cylinders are fuch as have their Axes proportional to the Diameters of their Bares.

This Definition belongs to right Cones and Cylinders, for in inclin'd ones, you muft add, and their Axes fimilarly inclin'd to their Bafes.

PROPOSITION I.

THEOREM I.

Similar Polygons inforib'd in Circles are in the fame Ratio that the Squares of the Diameters of the Circles are in.

Eig. 8.
The Bafe of a Cone, is a Circle generated by the Notion of the moveable Side of the generating Triangle. As EED whofe Center is C, thro which the AxE AC pafes.

XI.

The Bafes of a CyIinder, are the two oppofite equal and parallel circles, generated by the Motion of the two oppofite equal and parallel Sides of the generating Parallelogram. As $D E C$, $A F B$, whofe Centers are G, O, thro' which the AXGF Paffes.

XII.

 rallelogram that generates the Cylinder: As GF, which゙ is perpendicular to its two Bafes, if the Cylinder be a right one.
X.

PREPARATION.

Draw from the two equal Angles F, \mathbf{I}, thro the Cen- Phere x . ters L, M, the Diameters FN, IO, and from the two rig. B. other equal Angles E, H, thro' the Extremities \mathbf{N}, \mathbf{O}, of thefe Diameters, draw the Right-Lines EN, HO, then draw the Right-Lines $A F, C l$.

DEMONSTRATION.

Becaufe the Angles AEF, CHI, are equal, by Sup. and the Ratio of the two Sides AE, EF, is equal to that of CH, HI, the Polygons being fimilar, the two Triangles AEF, CHI, will be fimilar, by 6. 6. and the two Angles EAF, HCI, equal, which being allo equal to ENF, HOI, by 2 I. 3. ENF, and HOI are equal, and by 32. I. the two Triangles NEF, OHI, that are rightangled by 3 i. 3 . being equiangular: Confequently by 4. 6. the four Lines EF, HI, FN, IO, are proportiona?, and by 22. 6. the Polygon AEFBG form'd upon the firt Line EF, is to the fimilar Polygon CHIDK, form'd upon the fecond Line HI, as the Square of the third HN is 0 the Square of the fourth 10. Which was to be demonfryan ted.

USE.

This Propofition ferves as a Lemma to the next, and to demonftrate Prop. 12. And fince we have demonftrem ted in fimilar right-angled Triangles NEF, OHM, that the Ratio of the Side EF, to the homologous Side HII, is equal to the Ratio of the Diameter FN, to the Diamee ter 10 , it follows by reafon of the Similitude of the Poligons, that the Side AE, is to its homologous Side CT, as the Diameter FN, to the Diameter 10, and fo of the other Sides. Whence 'tis eafy to conclude by 12.5. that the Perimiter of the Polygon of the Circle ABs, is to the Perimiter of the fimilar Polygon of the CircleCO, as the Diameter FN is to the Diameter 10. Since the greater Number of Sides the Polygon infcribed has, the nearer its Perimeter approaches to the Circumference of the Circle; fo that it becomes the Circumference of the Circle, when the Number of Sides of the Polygon is infinite, 'tis evident the Circumference of the Circle AB_{2} is to its Diameter FN, as the Circumference of the Circle CD is to its Diameter IO. And this ferves to find the Circumference of a Circle by its Diameter, or the Diameter of a Circle by its Circumference, if we could but pnce know the Ratio of the Circumference of a Circle to its Diameter, which is as 314 to 100 nearly, as sthall be shown in our Practical Geometry.

PROPOSITION. II.

THEOREM II.

The surfaces of Circles are as the Squares of their Diameters.

Fig. \%

ISay the Area of the Circle $A B$, is to the Area of the Circle CD, as the Square of the Diameter FN is to the Square of the Diameter 10 .

DEMONSTRATION.

Becaure by Prop. x. a Polygon infcrib'd in the Circle $A B$, is to the fimilar Polygon infcrib'd in the Circle CD, as the Square of the Diameter FN, is to the Square of the Diameter IO, and this Theorem is generally true of all Polygons, which become Circles, if the Sides be regular and the Number infinite; from whence it follows that the Circles AB, CD, are as the Squares of hheir Diameters FN, IO. Which was to be demionfratedo
COROLLARY

Circles are in the Duplicate Ratio of that of their Dig ameters, becaufe the Squares of their Diameters are in the Duplicate Ratio of that of their Sides, which are The Diameters themfelves.

COROLO

COROLLARY II.

Circles are in the fame Ratio as fimilar Polygons infrib'd, becaufe both of them are as the Squares of the Diameters of the Circles.

U S E.

This Propofition ferves to find the Area of a Circle, its Diameter being given, if the Ratio of the Area of a Circle to the Square of its Diameter be once known, tho ${ }^{\circ}$ it is as 785 to 1000 nearly, as fhall be fhewn in our PraEtical Geometry.

Prop. III. and IV. are needlefs, becaule they only Serve to demongfrate Prop V. and VI. that we fhall demonftrate othermije and more eafly, by the Geometry of IndiviEbbles.

PROPOSITION V.and VI.

THEOREM V.and VI.

Pyramids of the fame Height are as their Bafes.

PYramids of the fame Height are as their Bafes, whew ther they be Triangular, as Prop. V. requires, or Polygonal, as Prop. VI. Becaufe if you imagine Planes parallel to the Bafe, to pafs thro' all the Points of each Height fuppofed equal, they will divide each Pyramid into an equal Number of Planes fimilar to their Bafe, confequently the Ratio of a Pläne of one Pyramid to its Bafe, is the fame with that of the correfponding Plane of the other Pyramid to its Bafe, by 22. 6. becaufe the Planes and Bafes have their Sides proportional, the fame Plane cutting their Heights proportionally. Confesuently by 12.5 all the fimilar planes, that make up one Pyramid are, that is, the whole Pyramid is to its Bafe, juft as many fimilar Planes that compofe the other Pyramid, that is all that Pyramid, is to its Bafe. Which was to be demonfrated.

U.S E:

This Propofition ferves to demonftrate the next, that suppofes Pyramids of equal Bafes and Heights to be equal, which plainly follows from what has been demonftrae ted.

PROPOSITION VII.

THEOREM VII.

A Pyramid is the third Part of a Prifm of the Same Bafe and Altitude.

Eigo Say firf, a Pyramid having for its Bafe one of the two Triangles $B C D$, AEF, that are the two parallel fimilar and equal Bafes of the Triangular Prifm ABCDEF, and that is of the fame Height with the Prifm; for in fance the Pyramid ABCD, will be the third Part of the Tame Prifm.

DEMONSTRATION.

Draw the three Diagonals $A C, A D, C E$, and they will divide their Parallelograms into two equal Parts, by 34巩. the Prifm ABCDEF is made up of the three equal Triangular Prifms ABCD, ACDE, ACEF; for the two firt, $A B C D, A C D E$, having the fame Vertex C, and confequently the fame Height, and their Bafes $\mathrm{ADB}_{\text {, }}$ ADE, equal by 35. I. are equal, by Prop. 5. After the fame manner the two laft Pyramids ACDE, ACEF, may be found to be equal, becaufe they have the fame Vertex A, and confequently the fame Height, and their Bafes CED, CEF, are equal. Whence it follows that the three Pyramids are equal, and confequently the Pyramid $A B C D$ is the third Part of the Triangular Prifne ABCDEE,

ABCDEF, of the fame Bafe and Altitude. Whict was to be demonfirated.

I fay in the fecond Place, a Pyramid, having its Bafe of any other Figure, is fill the third Part of a Polygonal Prifm of the fame Bafe and Altitude, becaufe the Polygonal Prifm may be divided into Triangular Prifms, and by that means the Pyramid alfo will be divided into as many Triangular Pyramids, each of which will be the third Part of its Prifm. Confequently by 12. 5. the Polygonal Pyramid is alfo the third Part of its Polygonal Prifm. Wbich remain'd to be demonftrated.

USE.
This Propofition ferves to demonftrate the following ones, and find the Solidity of a Pyramid, the Bafe and Height being given : for fince by multiplying the Bafe of a Pyramid by its Height, you find the Solidity of a Prifm, triple the Pyramid, take the third Part of this Solidity, which is the fame thing as multiplying the Bafe by a third Part of its Height, or the Height by the third Part of the Bafe, and you will have the Solidity of the Prifm propofed.

PROPOSITION VII.

THEOREM VIII.

> Similar Pyramids are in the Triplicate Ratio of that of their Homologous Sides.

THis Propofition will be evident, if we imagine upon the Bates of the Pyramids, Similar Prifms of the fame Height, which being in the Triplicate Ratio of that of their Homologous Sides, by 33. 12. the fimilar Pyramids that are their third Parts, by Prop. 7. will alfo be in the triplicate Ratio of that of their Homologous Sides. Which rars to be demonfirated.

PROPOSITION IX.

THEOREM IX.

Equal Pyramids bave their Bafes and Heights reciprocal: and. Such as bave their Bafes and Heights reciprocal, are equal.

1
Say firf, if two Pyramids are equal, the Bafe of the firt is to the Bafe of the fecond, as the Height of the fecond is to the Height of the firft.

DEMONSTRATION.

Imagine upon the Bafes of the two Pyramids, Prifms of the fame Height, and they will be equal, becaufe by. Prop. 7. they are triple the Pyramids, that are equal by Sup. Confequently by 34. Ir. the Bafes and Heights of thefe Prifms, being the fame with thofe of the Pyramids, are reciprocal. Which was to be demonftrated.

I fay in the fecond Place, if the Bafes and Heights are reciprocal, that is to fay, the Bafe of the firft Pyramid to the Bafe of the fecond, reciprocally as the Height of the fecond is to the Height of the firft, the two Pyra. mids are equal.

DEMONSTRATION.

Imagine as before, upon the Bafes of the two Pyra* mids, Prifms of the fame Height, by 34. II. they will be equal, becaufe their Bafes and Heights are reciprocal, by sup. Confequently the Pyramids, which are third Parts of them, by Prop. 7. are equal. Which remain's. to be demonftrated.

PROPOSITION X.

THEOREM X.

-1 Cone is the third Pant of a Cylinder of the Same Bafe and Height.

THis Propofition will be evident, if we confider that a Cone is a Pyramid of an infinite Number of Sides, and in like manner, a Cylinder is a Prifm of an infinite Number of Sides; and fince a Pyramid is the third of a Prifm of the fame Bafe and Height, a Cone muft alfo be the third part of a Cylinder of the fame Bafe and Height. Which was to be demonfrated.

PROPOSITION XI.

THEOREM XI.

Cylinders and cones of the fame Height, are as ubeir Bafes
7 His Propofition will be evident, if we confider that the Bafes of Cylinders and Cones being Circles, that is, Regular Polygons of an infinite Number of Sides; Cylinders are Prifms of an infinite Number of Sides, and Cones are Pyramids of an infinite Number of Sides. Confequently what has heen faid of Prifms in 32. II Prop. 5. and 6. may be underftood of Cylinders and Cones.

PROPOSITION XII.

THEOREM XII.

Similar Cylinders and Cones are in the Triplicate Ratio of that of the Diameters of their Bafes.

[^2]
DEMONSTRATION.

Confider a Cylinder as a Parallelopiped, or a Prifm of an infinite Number of Sides, and a Circle as a Regular Polygon of an infinite Number of Sides, and by 33. II. Similar Cylinders are in the Triplicate Ratio of that of their Homologous Sides, and confequently of that of the Diameters of their Bafes, that are in the fame Ratio as the Homologous Sides of Similar Polygons infcribed in the Rafes, by Prop. I. Which was to be demonftrated.

Ifay, in the fecond place, Similar Cones are alfo in the Triplicate Ratio of that of the Diameters of their Bafes.

DEMONSTRATION.

Confider after the fame manner, a Cone as a Pyramid of an infinite Number of Sides,' by Prop. 8. Cones are in the Triplicate Ratio of that of their Homologous Sides, the fame with that of the Diameters of their Bafes, by Prop..I. and confequently the Cones are in the Triplicate Ratio of that of the Diameters of their Bafes. Which remaing to be demonfrated.

COROLLARYI.

Similar Cones are in the Triplicate Ratio, or as the Cubes of their Axes, becaufe thofe Axes are in the fame Ratio, as the Diameters of their Bafes, by reafon of the equal Angles made by the Axes and Diameters, fince the Cones are fuppos'd fimilar.

COROLLARYII.

Similar Cones are in the Triplicate R atio, or as the Cubes of their Sides inclined to their Bafes, becaufe thefe Sides are proportional to the Diameters of the Bafes, the Angles that the Sides make with the Diameters, being equal. From whence one may eafily conclude, that fimilar Cylinders and Cones are in the Triplicate

Ratio

Ratio of that of their Heights, that ferve to demono atrate Prop. 18.

PROPOSITION XIII.

THEOREM XIII.

A Cylinder cut by a Plane parallel to its Bafe, has the Parts of its Axe in the Same Ratio as the Parts of the Cylinder.

ISay, if the Cylinder ABCD, be cut by the Plane EF, Figo rop parallel to the Bafe $A B$, or $C D$, that cuts the Axe GH at the Point I; the Ratio of the Cylinder ABFE, to the Cylinder EFCD, as the Part HI to the Part IG.

PREPARATION.

Divide each of the two Parts GI, HI, into two equal Parts at the Points \mathbf{O} and R, and caufe the Planes PQ, MN, parallel to the Bafe $A B$, to pafs thro' thefe middle Points O, R, and they will divide the Cylinder EFCD, into two equal Cylinders EFQP, PQCD, and the Cylinder ABFE into two equal Cylinders ABNM, MNFE, by Prop. Ir. becaufe their Heights, as well as their Bam fes are equal.

DEMONSTRATION.

Becaufe by 15.5. the Cylinder AF, is to its half AN, as the Cylinder EC, is to its half $\mathbf{E Q}$; and the Part $\mathbf{H I}$, to its half HR , as the Part IG to its half 10 , the Prom portion of the four Cylinders AF, AN, EC, EQ, is fimilar to that of the four Parts $\mathrm{HI}, \mathrm{HR}, \mathrm{IG}, \mathbf{I O}$, confequently by Alternation by 16. 5. you will find the Proportion of the four Cylinders AF, EC, AN, EQ, is fimilar to that of the four Parts HI, IG, HR, IO, and confequently in this fecond Proportion, the Ratio of the firft Cylinder AF, to the fecond EC, is equal to that of the firft Fart HI, to the fecond IG. Which was to be demenfr ated.

SCHOLIUM.

This Demonftration is different from the common Fig: रु०? one, that fuppofes the two Parts HI, IG, have'a common Meafure, which is too particular, fince they might be incommenfurable. For the fame reafon I have des monftrated the firft and laft Propofition of the fixth Book.

COROLLARY.

Cylinders of equal Bafes are as their Heights, which is of ufe in the next Popofition; for if you let fall from G in the Axe GH, the Right-Line GK, perpendicular to the Plane of the Bafe AB, which will alfo be perpendicular to the Plane of the Bafe EF, and the Lines HK, IL, be made the common Sections of the two Paralle Planes AB, EF, and the Triangular Plane GKH, you will find by 16. II. that the two common Sections HK, IL, are parallel, and by 2.6. that the Ratio of HI to $\mathrm{IG}_{\text {; }}$ that has been demonftrated to be the fame as that of the two Cylinders AF, EC, whore Bafes AB, EF, are equal; is equal to that of the Height KL to the Height LG.

PROPOSITION XIV

THEOREM XIV.

Cylinders and Cones of the fame Bafe are as their Heights.

Fig 1 ?

1Say firf, the Ratio of the two Cylinders $A B C D$, EFGH; that I fuppofe right ones, is equal to that of their Heights $A D, E H$, if their Bafes $A B, E F$, are equal.

PREPARATION.

Cut off the greateft Height AD, the Part AI equal to the leaft Height EH, and fuppofe the Plane IK to pals thro' the Point I, parallel to the Bafe $A B$, and by Prop. II. it will cut off the Cylinder AK, equal to the Cylinder EG.

DEMONSTRATION.

Becaure the Cylinder AC, is to the Cylinder AK, as the Height AD, is to the Height AI, by Prop. I3. and Eig. wx: the Cylinder AK is equal to the Cylinder EG, and the Height Al equal to the Height EH, by Conf. the Cylinder AC, will alfo be to the Cylinder EG, as the Height AD to the Height EH. Which mas to be demonffrated.

I fay in the fecond Place, Cones whofe Bafes are equal, are as their Heights, becaufe they are the third Parts of Cylinders, by Prop. 1o. whofe Ratio has been demonArated to be equal to that of their Heights.

PROPOSITION XV. THEOREM XV.

Equal Cylinders and Cones burve their Bafes and Heights reo ciprocal; and Such as bave their Bafes and Heights reciproa cal, are equal.

THis Propofition is plain from 34. II. for Cylinders, that are nothing but Parallelopipeds of an infinite Number of Sides, and for Cones by Prop. 10. Since they are the third Parts of Cylinders.

I omit Prop. XVI. and XVII. because too perplexing, and only forving to demonftrate the next, that I Ball demionfrate - more eafy may

PROPOSITION XVII.

THEOREM XVIIL.

Spheres are in the Triplicate Ratio of that of theire Diameters.

THis Propofition will be evident, if we confider a Sphere is compofed of an infinite Number of little equal Cones, whofe common Vertex is the Center of the

888
 The Elements of Eucliad
 Book XII.

 the Center of the Sphere, and Height the Radius of the fame Sphere; and whofe Bafes being infinitely fmall, may pafs for Planes and are in the Surface of the Sphere and confequently the Sum of all thefe Cones of the fame Height, that is, the Solidity of the Sphere is equal, to one Cone, whofe Height is the fame Radius of the Sphere and Bafe, the intire Surface of the Sphere; and fince the Cone equal to this Sphere is fimilar to a Cone equal to another Sphere, becaufe all Spheres are fimilar. and fimilar Cones are in the Triplicate Ratio of their Heights, that here are the Radius's of the two Spheres to which they are equal, it follows that the two Spheres alfo are in the Triplicate Ratio of their Radii, or Semidiameters, and confequently of their Diameters. Whict spas to be demonftrated.
COROLLARY.

Spheres are as the Cubes of their Diameters, becaule Cubes are fimilar Solids, that by 3I. II. are in the Tric plicate Ratio of their Sides.

$$
U S E
$$

This Propofition ferves to find the Solidity of a Sphere, its Diameter being given; were the Ratio of a Sphere to the Cube of its Diameter but once known, tho' it is as 157 to 300 nearly, as fhall be fhewn in the Geometry.

$\mathrm{F}\left[\mathrm{M} \mathrm{I} \mathrm{S}_{0}\right.$

[^0]: 3 Say if you extend, for Example, the Side $A B$, of the Triangles $A B C$, towards D, the exterior Angle CBD, is greater than either of the two interior Oppofite BAC, ACP.

[^1]: E裡滈

[^2]: ISay firf, Similar Cylinders are in the Triplicate Ratio of that of the Diameters of their Bafes that are Circles.

 D E

