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ABSTRACT

An investigation into the general nature and properties of phase

trajectories of third order linear feedback control systems has been

conducted.

The geometry of eigenvectors, eigenplanes, and the conic surface

named the eigencone was investigated with respect to system root

parameters. An analysis has been made of the orientation of eigenplanes

of systems with three real roots, and of complex eigenplane geometry as

the damping ratio Q, and undamped natural frequency uu were varied.
n

A method is introduced for determining system roots that will locate an

eigenplane or complex eigenplane in a pre-determined location in third

order error space.

Analog and digital computer programs used to obtain phase trajec-

tories of third order linear systems are presented. The effect of root

location in the s-plane on phase trajectories is discussed. A thorough

analysis of the effect of initial conditions on real root and complex

root phase trajectories is presented along with numerous photographs of

three-dimensional phase trajectory models.

The inter-relation of phase trajectories, eigenvectors, and eigen-

planes is analyzed. An analytical investigation of the response of a

complex root system to a step input was made as a first step towards

possible application of error space geometry to discontinuous control

systems

.
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Chapter I

INTRODUCTION

In recent years many papers have been written with regard to the

analysis and design of discontinuous feedback control systems. In many

of these papers, various schemes have been proposed for changing the

system damping at some optimum time to produce a deadbeat response.

However, the rigorous mathematical developments of the switching criteria

in some of these proposals tend to obscure somewhat the overall picture.

While this investigation does not concern itself with discontinuous

systems, the phase trajectories of third order linear feedback control

systems have a definite relationship to the eigenvector geometry of

three-dimensional error space which lends itself to easy visualization

of switching surfaces.

The general nature of the problem was to investigate the phase

trajectories of third order linear feedback control systems in response

to various initial conditions. It was intended originally to devote

the major portion of the investigation to phase trajectories of systems

characterized by one real root and a pair of complex conjugate roots

and only to verify Han's work (Ref. 1) regarding the trajectories of

systems with three real roots. However, during the course of the

investigation, it was found that the phase trajectories of both these

types of systems have a definite relationship to the eigenvectors

associated with the system and to certain plane? and surfaces defined by

these eigenvectors. It was found possible to describe any phase trajectory

of any third order linear system in response to any set of initial

conditions in terms of their relationship to the eigenvectors associated

with the system.

The use of eigenvectors to define surfaces and planes in phase

space is not a new concept but this application has been largely confined

to mathematical definitions and manipulations The approach adopted

during the course of this investigation was to construct various repre-

sentative types of phase trajectories and eigenvectors in a three-dimen-

sional coordinate system and observe them in relation to each other.

-1-





In the analysis and design of second order feedback control systems,

in particular, those systems with non-linearities, the use of the phase

plane has become wide-spread It is conceivable that the use of phase

space could also become a valuable tool in the analysis and design of

third order and higher feedback control systems.

The basic concept of phase space is the choosing of a particular set

of time variables of the control system as the coordinate axes of this

space. In most feedback control systems, the system error automatically

seeks zero, and the phase space coordinates are normally chosen as error,

E, error rate or velocity, E, and the (n-1) derivatives of error necessary

for control system of order n. The behavior of the system is then
/ .- (n-i)

described by the spatial coordinates E, E, E, ... E. These coordinates

are the previously mentioned time variables of the control system, and

then the system may be described mathematically by,

1
n
££ ^.a^.i^-r-a^i^l^ + - . a, i£_ +_ ae E -O (i-dn

dt
n

'dt"-' dt
n "* dt

For the third order systems which this paper is concerned with, Equation

(1-1) becomes, in more familiar form,

E + aE + bE + cE * (1-2)

Thus at any time, t, there is a point in space, called the "state"

point, which describes the behavior of the system, and as time varies

from t = to t - °°, this state point traces a path in this three-dimen-

sional space, called the phase trajectory As time, t, approaches infinity,

the system error seeks zero, and the phase trajectory approaches the origin

of this phase space.

Since this three-dimensional space is based on system error and its

derivatives, the phase space will hereafter be referred to as "error

space".

In previous investigations using phase space, for example, Bogner's

(Ref. 2), standard matrix techniques were used to manipulate phase space

into principal coordinate space. This coordinate system uses the eigen-

vectors as coordinate axes. This transformation is particularly u c eful





in the analysis of higher order contactor servo systems Since this

investigation is based primarily on physical interpretation of phase

trajectories, this transformation to principal coordinate axes was not

made

.

By limiting the order of the systems to be investigated to three,

and by not transforming into principal coordinate space, physical repre-

sentation of phase trajectories in three-dimensional error space was

possible. To aid in this physical representation of phase trajectories,

the coordinate planes and octants of third order error space are defined

as in Fig. 1, and transparent lucite models of error space similar to

Fig. 1 were constructed.

The various phase trajectories investigated were obtained from both

digital and analog computers. Wire models of these trajectories were

constructed in the coordinate system represented by the plastic models.

)
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Chapter II

EIGENVECTORS IN THLRD ORDER ERROR SPACE

General

1 1 is well known that for each real root of a third order system

there is an eigenvector which corresponds to a phase trajectory that is

a straight line. (See Ref. 3.) For a system with three real and distinct

roots, r < r, < r_, there are three eigenvectors. The eigenvector

associated with the smallest root r. is referred to as the slow eigenvector

since the time constant of r is larger than those of the other two roots

and produces a slower response. Similarly, since r_ has the shortest

time constant, its associated eigenvector is termed the fast eigenvector.

Since the time constant of r., is some intermediate value between that of

r and r , the eigenvector associated with it is referred to as the

intermediate eigenvector. In the case of a system defined by one real

root and a pair of complex conjugate roots, due to the presence of only

one real root, there will be only one eigenvector.

Determination of Eigenvectors

The differential equation of a linear third order feedback control

system may be expressed in terms of the system error, E, as

*E + aE + bE + cE * (II- 1)

where, in terms of the system roots r , r„ and r.~, all assumed real

and distinct

,

a a r + r + r

b - V2 +r
1
r

3
+ r

2
r
3

c » r
1

r
2
r
3

This third order differential equation may be rewritten as three

dependent first order differential equations by first setting E = E .

Then,

E - E » E
2

(II-2a)

E * E
2

* E
3

(Il-2b)

E = E
3

- -cE
1

-bE
2

-aE
3

(II-2c)
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The set of equations thus obtained can be written in matrix form as

E .
= AE . , i = 1,3. Thus

,

1

1

c - b - a

E
l

X E
2

E
3

(II-3)

The matrix of coefficients, A, has an eigenvalue X if and only if

there exists a vector E with components E , E~ and E such that AE = XE
,

where multiplication is matrix multiplication and E is considered to be

a one column matrix. Such a vector E is called an eigenvector of the

matrix. Eigenvectors exist satisfying AE « XE only when X satisfies the

determinant (A - Xl) = 0, where I is the identity matrix.

det (A - Xl)

Expanding the determinant,

X
3 + aX

2
+ bX + c

-X 1

-X 1

-c -b - (a+X)

(II-4)

(H-5)

The expression obtained is the characteristic equation of the matrix,

not to be confused with the characteristic equation of the feedback

control system. Any root X. of this equation is an eigenvalue, and

associated with each eigenvalue there is an eigenvector. The character-

istic equation factors into the form

(X
1
+ ri)(X2

+ r
2

) (X
3
+ r

3 ) OT-6)

Thus,

- r

.

- r

To find the eigenvector associated with each root, each root is sub-

stituted in turn into the matrix equation (A - X.I.) E. = 0.li
X
1

1

-x.
1

1

c -b ~(a+X
L

)

—
_».

—
E,

1
—Jk

X En
2

e\
3

_

(II-7)
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-X E + E
2

^ (ll-8a)

-X. El + e" ^ (II -8b)
l 2 3

-cE^ -bE^ -(a+X^ E^ - (II -8c)

To obtain a solution, any two of the three equations may be solved in

terms of one of the variables and an arbitrary constant K assumed for

its value. The easiest choice here is to solve Equations (ll-8a) and

(ll-8b) in terms of E„ and to assume E
9

a K-

1 1

E~t a X.E~t - X.K (II-9b)
3 l 2 i

v

The values obtained for E, , E~ and E_ may be checked by substitution into

Equation II-8c.

The general expression for an eigenvector may then be written as

? T" it + KE~! + X. Kit (11-10)
A. . 1 2 l 3
l

where E , E„ and E- may be considered as unit vectors along their

respective axes. In terms of E, E, E and r., where r. is any distinct

real root of the system, this expression may be written as

E = ^— E + KE - r.KE (11-11)
- r

.

i
i

From this general expression of an eigenvector in three dimensional error

space, it is seen that an eigenvector has a fixed orientation which is

dependent only upon the location of the associated real root.

Throughout the course of the investigation when it was desired to

determine the eigenvectors of a particular system, it was necessary to

locate only one point on a. particular eigenvector to orient it properly

in space. From the general expression derived for an eigenvector, any

arbitrary point on an eigenvector is given by the coordinates (E , E, E)

/ K K, -r.K] .

-7-





For example, assume a system with real roots at r
1

- .5, r, =* 1.0 and

r 3.0. Here the roots are defined as positive when they are located

in the left half of the complex s-plane. By assuming a value for K, the

coordinates of a point on each of the eigenvectors may be determined.

Let it be assumed that K=l. The resulting point on each of the eigen-

vectors are listed below.

Eigenvector (E , E , E)

slow (-2, 1, -.5)

intermediate (~1> 1> "1)

fast (-0.333, 1, -3)

Note that all three eigenvectors lie in octant 2'. (Refer to Fig. 1).

However, suppose that K - -1. Then

Eigenvector (E , E , E)

slow (2, -1, .5)

intermediate (1, -1, 1)

fast (0.333, -1, 3)

These eigenvectors all lie in octant 4. A model of this example is

shown in Fig. 2.

If the roots of the system had been chosen as negative, i.e.,

located in the right half of the complex s-plane, then the eigenvectors

would be located in octants 1 and 3'. Thus, for a third order system,

all possible eigenvectors of the system are restricted to octants

1, 2' ,
3* and 4.

The Eigencone

From observations of eigenvector location in three dimensional

models, it was theorized that there is a conical surface in three dimen-

sional error space which is the locus of all possible eigenvectors for

a third order system In order to prove this theory, the coordinates

of any arbitrary point (E , E, E) on an eigenvector are written in para-

metric form as

E - -^- E => K E = -r.K (11-12)
-r. i

i









Eliminating the parameter K and solving for r.,

E + r.E * ; r . * - § (TI-13a)
i 1 E

E + — » ; r. - - - (ll-13b)
r
i

J
E

Eliminating r. from these equations leaves

E
2

- EE * (11-14)

which is the equation of a right elliptical cone. Since direct sub-

stitution of the parametric equations for any arbitrary point on an

eigenvector satisfies this equation of a right elliptical cone, the

surface of the cone is the locus of all possible eigenvectors associated

with the roots of a third order system.

This cone, which will be referred to as the eigencone, can be

visualized as shown in Fig. 3 as the surface formed by an infinite

number of eigenvectors emanating radially from the origin of the

coordinate system. Figure 3 shows only that portion of the eigencone

determined by the eigenvectors of roots located in the left half of

the complex s- plane. An exploded view of the eigencone section located

in octant 2
1 is shown in Fig. 4. Figure 5 shows this same section of

the eigencone in its proper location as viewed looking into octant 4.

From these photographs it is apparent that the apex of the eigencone

is located at the origin of error space and is tangent to both the E and

E axes. It is symmetrical about the line E 3 E in the E/E plane and is

bisected by this plane. It will be noted in Fig 5 that the surface of

the eigencone nearest the E axis is labled SLOW while the surface nearest

the E axis is labled FAST The eigenvectors in these regions correspond

to phase trajectories which have response times characteristic of these

labels. By referring again to the parametric equations of a point on an

eigenvector Equation (ll- 121 it will be noted that for r. < 1.0, the

eigenvector will be located in the SLOW region while for r. > 1.0, the

eigenvector will be located in the FAST region When r. 1.0 the

eigenvector is equidistant from both the E and E axes. It should be

pointed out here that the classification of eigenvectors into slow,

-10-





intermediate and fast not according to the labels on the eigencone,

but is applied only to eigenvectors associated with the roots of a given

system. It is incorrect to arbitrarily call all eigenvectors slow if

they are associated with r. < 1.0 or fast if r. > 1 0. For different

systems, the slow eigenvector of one may have a faster response than

the fast eigenvector in the other. The labeling of the eigencone into

slow and fast regions is intended to indicate the relative speed of

response as related to the eigenvectors, and not to establish any sharp

line of demarcation.

- 11
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Chapter 111

E1GENPLANES IN THIRD ORDER ERROR SPACE

General

It has been shown (Ref. 1, 4, 5) that any two eigenvectors in error

space define a plane, passing through the origin of error space, called

an eigenplane (or sometimes a "hyperplane") . The eigenplane has an equation

one order lower than the order of the characteristic equation of the

control system. The eigenplane equation is obtained by suppressing the

root corresponding to the pertinent eigenvector in the differential

equation of the system. Thus, in general,

L-z i=z

For the third order case with real distinct roots, r.. < r
?
< r~,

p., * E + (r
2
+r„) E + r,r E = (r suppressed)

p. - E + (r +r ) E+r r, E «0 (r suppressed) (III-2)

M-» * E + (r +r ) E + r r E * (r suppressed)

are the defining equations for the three eigenplanes.

The eigenplanes in third order error space are also defined by two

straight lines, the two eigenvectors corresponding to the two roots

contained in the eigenplane equation. That is, the eigenplane defined

by suppressing the smallest root, r , whose corresponding eigenvector

is the slow eigenvector, contains, and can be defined by, the intermediate

and fast eigenvectors. In a like manner, the other two eigenplanes are

defined by the combination of slow and fast eigenvectors, and by the

combination of slow and intermediate eigenvectors

When referring to specific eigenplanes hereafter in this paper, the

"First" eigenplane will mean that plane containing the intermediate and

fast eigenvectors formed by suppressing the smallest root, r ; the

"Second" eigenplane will mean that plane containing the slow and fast

-15-





eigenvectors formed by suppressing the root, r« ; and the "Third"

eigenplane will mean that plane containing the slow and intermediate

eigenvectors formed by suppressing the largest root, r..

Eigenplanes of Systems With Three Real Distinct Roots

In a control system having three real distinct roots, there will,

of course, exist three eigenplanes in error space. Since these eigen-

planes are each defined by two eigenvectors, they should intersect the

eigencone along lines corresponding to their two defining eigenvectors

This can be proved analytically by a simultaneous solution of the

equations of the eigencone and of the eigenplane as shown below:

-2
Equation of eigencone: E - EE =

Equation of eigenplane: (jl =» E + AE + BE =0

where A r + r

B = r
2
r
2

Solving the equation of the eigencone for E yields:

E

This expression for E, when substituted into the equation of the

eigenplane, yields: _

=E + AE + B —
IE /

or
-1 ... .2
E + AEE + BE *

Now, assume E to have any arbitrary value, K. Hence,
-2 •• 2
E + AKE + BK 3 0, and this expression, when solved by the quadratic

formula, yields for E,

£ .. -AK ± M(AK) 2 - 4BK-

-16





or in terms c ; roots, r. and r.

,- -(n + ra)K ±\Jv,
zK\ Zrrrfc KS^K 2

-4^rt K
c ^

-r;K-rz K iV^^-^^KN^K^

- C K-rz K ±(r;K-rl K)
z

• *

Thus : E = - rz Y\
,

- r, K

E
' -r4K' -^ K r

2-
r

<

t =

Hence: (£,£,£) =
(^ ,

K,"Kr,) and (~-£, K, -Krz )

which are the coordinates of any point on the two eigenvectors defining

the eigenplane, |J.

.

If one were to visualize all three eigenplanes in error space, a

volume would be bounded by these three eigenplanes. This volume would

be two pyramids, in octants 4 and 2' with their apexes at the origin

of error space and their edges corresponding to the three eigenvectors

of the system. Fig 6 is a pictorial representation of just the

pyramid in octant 2
1 defined by the three eigenvectors and bounded by

the three eigenplanes of a system with roots, r a 333, r ffl 1.0,

and r - 3.0

The orientation of this pyramid is such that it will always lie

within the eigencone and its size and shape will depend on the location

-17-
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of the system roots on the axis of reals If the system roots are all

close together, the volume of the pyramid will be small as compared

to the volume enclosed by the eigencone. Conversely, if r is allowed

to approach zero and r is allowed to approach infinity, with r. S 1.0,

the resulting pyramid will almost completely fill the eigencone.

If all three system roots are small, i.e., less than 1.0, the

pyramid will be relatively small and oriented near the E axis; and,

conversely, if all three roots are greater than 1.0, the pyramid will

also be small, but oriented near the E axis.

Eigenplanes of Systems Having One Real Root and a Complex Pair of Roots

For a control system having one real root and two conjugate complex

roots, it can be readily seen from equations (III -2) which define the

three general eigenplanes that only one eigenplane can exist for this

system. If r„ and r_ are of the form a + jb, the eigenplanes M. and

M- cannot exist because of the imaginary coefficients of E and E in

Equation (ill- 1). Thus only one eigenplane, p, E + (r,-h:-)E + r
2
r„ E =

,

and, as was shown in the previous section, only one eigenvector with

coordinates/+ — , + k, + k r, will exist in error space. This single

I

r
i " 7

eigenplane existing for this type system will subsequently be

referred to a s the "complex eigenplane".

Closer inspection of the equation of the complex eigenplane given

above shows that since the real root, r. , does not appear in the equation,

the location of the complex eigenplane in error space is completely

independent of the magnitude of the real root of the system.

An investigation of the effects of varying system parameters and

complex root location was conducted to gain more knowledge about the

orientation of the complex eigenplane in error space In this phase of

the investigation, the three-dimensional model was invaluable. By

setting any one of the three coordinates of Equations (1II-2) equal

to zero, the traces in the three coordinate planes of the model were

easily computed and drawn on the transparent coordinate frame. This

permitted easy visualization of the eigenplanes and their orientation

with respect to each other, to the eigenvectors, and to the eigencone.

-19-





The first investigation of

the eigenplane location was

made by keeping the damping

ratio, C» of the system

constant while varying the

natural frequency of the

system, w , keeping the

real root of the system

constant also. This is

equivalent to the root

movement shown to the right

in Fig. 7.

The root locations investigated were:

j«j

X

\
\
\
\

<r
A

r = 3.0

2,3

constant

.5 + j .5

c

w
n

707

r
2 3

= l -° ± J 1 -°

rn =2.0+j2.0

r^-S.O+j 3.0

w - 1.414
n

w =2.828
n

w « 4.242
n

Fig. 7 Root Movement;
w variable, C, constant
n

707 = constant

(Case A)

(Case B)

(Case C)

(Case D)

Models of the eigenplanes of these cases were built and from

these it was seen that with C, constant, varying w causes the eigenplane
n

to "twist" around the eigencone. This twist can be easily seen in Fig. 8

which shows the eigenplanes for Cases A, B, C and D respectively.

As can also be seen from Fig. 9, views looking down the edges of the

eigenplanes of Cases A, B, and C, the angle that the eigenplane makes with

the eigencone appears to remain constant as w is varied. No attempt was

made to analytically prove this angle to be constant, nor was an attempt

made to derive a relationship of this angle to the value of Q chosen

in the investigation.

In the next phase of the investigation, the real root and the real

part of the complex roots were kept constant while the imaginary part of

the complex roots was varied.
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X

!

This movement of the

roots is shown at right in

Fig. 10.

The root locations in-

vestigated were:

r a 3.0 constant

r
2 3

" 1 "° 1 J l ° ( Case B )

r = 1.0 + j 2.0 (Case F)

r
2 3

" 1- ± J 3-0 (Case G)

ro 3
" 1- + J 4 -0 (Case H)

Fig. 10 Root Movement;
lm(x + jy) variable,

Re(x + jy) constant

In determining the equations of the traces of these complex

eigenplanes in the coordinate planes, it was found that the trace of

all complex eigenplanes, where they intersected the E/E plane, was

constant. This is equivalent, in three dimensions, to a rotation of

the complex eigenplane about a line in the E/E plane. This rotation

of the complex eigenplane with the variation of the imaginary part of

the complex roots is shown pictorially in Fig. 11 for Cases F, G and H.

Without the use of the three-dimensional models, it can be seen that

the variation of only the imaginary part of the complex roots will have

no effect on the trace of the eigenplane in the E/E plane. The equation

of this trace is:

E + (r
2
+ r

3
) E =*

and, with r and r complex conjugates, the coefficient of the E term

in the above expression depends only on the magnitude of the real part

of the complex roots.

The final phase of this investigation of eigenplane geometry

consisted of varying the system damping ratio, £, while holding the

natural frequency of the system, w , constant.
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This movement of the roots is

shown at the right in Fig. 12.

The root locations investigated

were:

r, =» 3.0 m constant

w = 2.83 - constant
n

Fig. 12 Root Movement;

£ variable, w constant
n

r„ , - 1.414 + J2.452,3 - J

r
2 3

» 2.0 + j2.0

r - 2.45 + jl 414

r - 2.735 + j .732
2,3 -

C
3 -707

C * -866

C * .966

(Case I)

(Case C)

(Case M)

(Case j)

Here again, in determining the equations of the traces of these

various complex eigenplanes, it was found that the trace of all complex

eigenplanes, where they intersected one of the coordinate planes, was

constant. In this instance, the constant trace was located in the

E/E plane. This, likewise, is the same as a rotation of the complex

eigenplane about a line in the E/E plane. This rotation of the complex

eigenplane as the system C varies, with w held constant, is shown in

Fig. 13, for Cases C, 1, and J, respectively.

Further analysis of the last two phases of this investigation of

the geometry of the eigenplane has led to a generalization regarding

the orientation of the complex eigenplane as the location of the complex

roots of a third order system is varied. That is, as the imaginary part

of the complex roots is varied from large values to small values, (this

is equivalent to increasing the system Q the complex eigenplane rotates

toward the surface of the eigencone and as Q reaches 1.0, the complex
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eigenplane becomes tangent to the eigencone at the eigenvector corres-

ponding to the magnitude of these two roots as they enter the axis of

reals. At the moment of entry, the roots are real and repeated, and

are associated with a common eigenvector. This may also be shown

analytically by obtaining the equation of the eigenplane tangent to the

eigencone

.

The general form of a plane tangent to a conic surface at a point is

(ft) (M.) + (ffl (t-b + &l^ = o

E=E„ &=£o E=£
c

9

where jR(E, E, E) E - EE (the equation of the eigencone).

Performing the partial differentiation at the point E = E , E = E ,

E * E yields
o

-E (E - E ) + 2E (E - E ) -E (E - E ) =
o 00 00 o

/ K \
Let (E , E , E ) * / - —

, K, -r.Kl , any point on an eigenvector,ooor x

Thus

K

1
c

Combining terms and dividing through by K gives:

• •

r. E+2E+— =
1 r

.

1

or
2

E + 2r. E + r E =*

1 1

which is the equation of an eigenplane defined by any two repeated

real roots , r .

.
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A special case of tangency between eigenplane and eigencone exists

for the case of three repeated real roots. Here, the line of tangency

corresponds to a single eigenvector which is the only eigenvector of the

system, and is the eigenvector for all three roots.

Extending this reasoning further helps explain the existance of the

previously mentioned pyramid of real root eigenplanes. If a system

gain is high enough so that the root locus consists of one real root

and a complex pair, there will be one real root eigenvector and a complex

eigenplane in error space. As the gain is lowered such that the complex

roots just enter the axis of reals, the complex eigenplane is tangent

to the eigencone at the eigenvector corresponding to the two repeated

real roots. As the system gain is lowered further, the entering roots

will diverge on the axis of reals and the complex eigenplane breaks

into two real eigenplanes, now passing through the eigencone and inter-

secting it at the real root eigenvectors. These two real root eigen-

vectors now form the pyramid with the original real root eigenvector.

Method of Determining Roots to Locate an Eigenplane in a Desired Location

A method of fixing the eigenplane in error space has been developed

whereby, given any two traces of the eigenplane on the coordinate planes,

the required system roots can be readily determined. As has been pre-

viously shown, only the complex conjugate roots of the system are necessary

to define the complex eigenplane, and the real root of the system can be

of any magnitude. The real roots, taken two at a time, will define the

eigenplanes of a system with three real roots.

The method will first be developed in general terras, and then a

numerical example will be given. First, consider the differential

equation of a third order system:

E + aE + bE + cE =*
(III-3)

where: a r + r~ + r

b =* r r + r
2
r, + r r

c a r r r12 3

-28-





Let r = z

r
2

= x + jy

r
3

3 r
2

> * x jy

Thus
2 2

r, + r =» 2x and r
?
r ^

~ x "*" ^

The equation of a typical eigenplane is given by:

llj - E + (r + r
3

) E + r^ E =»

Substitution of the above expressions for r~ + r and r r into (J. yields:

p. - E + (2x) E + (x
2
+ y

2
) E =

This expression will give the following traces of p... in the three

coordinate planes:

(In E/E plane) 2xE + (x
2
+ y

2
) E » (III-4a)

(In E/E plane) E + 2xE (III-4b)

(In E/E plane) E + (x + y ) E - (III-4c)

Rewriting the above trace equations in terms of the angle at the origin

yields

:

- tan ©c = —

—

(in-5a)

-g " Uh p " 77 (iu-5b)

E -~tdhT= x i + y
2 (in-5c)
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Where a, f3, and y are defined in Fig. 14

E

h -e E <-

J.
-E £X

A

X

/r
->E

v
« •

E

Fig. 14. Angles Of, 3, and y on the coordinate planes.

By determining any two of the three angles, a, |3, and y, and

substituting these angles into the corresponding tangent equations (III-5)

a system of two equations in the two unknowns, x and y, are established.

On solving for x and y, r„ and r, are determined. If y is determined to

be complex, substitution into the expression r_ _ =* x + jy yields r~

and r„ as real roots. If y is real, then r. and r„ are complex conjugate

roots

.

Numerical Example for Complex Eigenplane

Assume that a complex eigenplane is required to be located such

that its trace in the e/E plane is defined by a « 45 , and in the

E/E plane by P = 60°,

Substituting these into Equations (III~5a) and (III-5b) yields:

- 1tan 4-5 -

2. £

Tan GO -

(lll-6a)

(III-6b)

Solution of (III~6b) directly determines x:

1_ = .183X =

zVT
30-





and this, when substituted into (Ill-6a) yields:

(+. 288)
2
+ y

2
- +2 (+288)

y
2

- 576 -.0833 - .4927

° r
y - Nj .4927 - .701

Therefore the required roots r_ and r are:

r
2

- .288 + j .701

Numerical Example for Real Root Eigenplane

Assume that an eigenplane is required to be located such that its

trace in the E/E plane is defined by a => 15 , and in the E/E plane by

Y = 45 .

Substituting these values into Equations (III-5a) and (III-5c) yields:

tan IS'- £g- - -2C8

2.
.

2.

tan 45°= * +y =
1

Substitution into the upper equation yields x directly:

_L - .ZG8
2X

_J__ _ * _ I.8G5

(l.SGsf-h ^ = /

*= / -3A1S

u -. ±f-z.+75

- ±i hS73

31-





= l.8C5+j(j'-57j)

= .29Z

r3 = |.8C5-j(j/-5"73j

= 3.45S

Note that since r
?

and r are complex conjugate roots, only one value

of y, either positive or negative, need be substituted into r~ „ x + jy.
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Chapter IV

PHASE TRAJECTORIES OF THIRD ORDER LINEAR SYSTEMS

General

It is well known that the time solution to the differential

equation of a linear third order feedback control system can be repre-

sented by a continuous curve in three-dimensional error space. If the

differential equation of a third order system,

1' + aE + bE + cE - (IV- 1)

is solved by Laplace transform methods, the time solution obtained is:

L(t) - — £ + : — £

C f. -^)(r
2
-rb ) (iv-2)

where E , E , and E are the initial conditions of error, error velocity,
o o o J

and error acceleration respectively. Successive differentiation of

Equation (IV-2) with respect to time yields similar expressions for E(t)

and E(t)

.

Substituting the values of initial conditions E , E , and E , system° o o o

root values, and time into Equation (IV-2) and its derivatives yields the

coordinates of points which describe the "state", i.e., the error, error

velocity, and error acceleration of the system at that particular time.

The locus of all these points is the phase trajectory of the system.

The calculation of trajectories by direct substitution into

Equation (IV-2) and its derivatives would be a laborious process. This

simple but time consuming method of solving for phase trajectories

suggests solution by means of electronic computers.
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In the initial stages of this investigation, solution of the

differential equation (IV-1) was accomplished utilizing the Control Data

Corporation 1604 high speed solid state general purpose digital computer.

The digital computer program was written in FORTRAN language and is

given in Appendix A along with its flow diagram. This FORTRAN program

is based on the Runge-Kutta method of numerical integration. In order

to obtain the desired accuracy of solution, state points were computed

at intervals of 0.01 sec. but were printed out at intervals of 0.05 sec.

A sample print out of the digital solution is also given in Appendix A.

The program was allowed to run for a total problem time of 10.0 sec,

and in practically all cases, at the end of this time, the values of

E, E, and E were small enough to consider that the trajectory had reached

the origin of error space. In the beginning of the investigation, it had

been anticipated that a digital to x-y plotter would be used to obtain

the trajectories in graphical form. However, this plotting equipment did

not become available, and it was necessary to hand plot all phase

trajectories

.

In the latter stages of the investigation, in order to obtain

trajectories more rapidly, a Donner 3100 analog computer was used in

conjunction with an x-y servo plotter. The flow chart and scaling data

for the analog computer solution are given in Appendix B.

In both the digital and analog solutions, plots of the trajectories

in the three coordinate planes, E/E, E/E, and E/E were made and then

transferred to the corresponding planes of the plexiglass models. Using

these projections, the three-dimensional models of the phase trajectories

were constructed. Samples of the three projections of a typical phase

trajectory of a three real root system, as obtained from the analog

computer, are given in Figs. 15 through 17.

Effect of Root Location on Phase Trajectories

For a system defined by a given set of roots, the phase trajectories

in response to various initial conditions are constrained by the eigen-

vectors and eigenplanes associated with the defining roots. Since it has

been shown previously that eigenvector and eigenplane orientation are
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dependent only on root location, any change in root location will cause

a reorientation of eigenvectors and eigenplanes and so define a different

system. The phase trajectories of this system will be altered from

that of the original system in a manner dictated by the new orientation.

For a system defined by three real roots, it has been previously

shown that any change in root location will effect the orientation and

size of the pyramid bounded by the three eigenplanes- The phase trajec-

tories will exhibit the same general characteristics in response to initial

conditions as discussed in the following sections but will be dependent

on the particular orientation and size of the pyramid.

As was previously indicated, a system defined by one real root and

two complex conjugate roots has only one eigenvector and one eigenplane.

Changing the location of the real root changes the time response of the

system by moving the eigenvector along the surface of the eigencone

towards either a slower or faster trajectory. When the complex roots

are changed, the eigenplane is reoriented and the phase trajectories are

changed with regard to their E, E, and E overshoots. In addition to

eigenplane reorientation, if the complex roots are changed so as to

produce a change in damping ratio, £, the general oscillatory nature of

the trajectories is increased or decreased.

Effect of Initial Conditions on Phase Trajectories

One of the primary purposes of this investigation was to study the

effect of varying initial conditions on the phase trajectories of third

order linear systems. In particular, three general areas for the

location of these initial conditions were selected:

1) Initial conditions on an eigenvector.

2) Initial conditions in an eigenplane.

3) Initial conditions not in an eigenplane.

Each of these will be discussed in the following paragraphs.

1. Initial Conditions on an Eigenvector.

If initial conditions corresponding to any point located on an eigen-

vector are substituted into Equation (IV-2) , two of the three terms on

the right side of the equation vanish. As an example, let:
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E —
, E * -K, and *E* = Kr.

o r o o 1

Substitution into Equation (IV-2) yields:

This further simplifies to

E(t) = — €

From which

r "t

£ (0 = -K£
_ct

and EW= Kr,€"

Hence it can be seen that at any time, t, the state point of the

system has the same coordinates,
|

—
, -K, Kr , as any arbitrary point

on an eigenvector and the trajectory is a straight line coinciding with

the eigenvector. Figures 18 through 20 are typical analog solutions of

a trajectory with initial conditions on a system eigenvector.

This statement that a phase trajectory having initial conditions on

an eigenvector will remain on the eigenvector holds for both a system

with three real roots, and a system with one real root and two complex

conjugate roots. This is apparent from Equation (IV-2) which holds for

both systems.

As an interesting sidelight to this property of phase trajectories

with initial conditions on eigenvectors, an unstable system with complex

roots in the right half plane and its real root in the left half plane

was simulated on the analog computer. This system was given a set of

initial conditions on an eigenvector, and as the solution was generated,
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the phase trajectory coincided with the eigenvector until just before

it reached the origin. Here, the instability of the system caused the

development of diverging oscillations about the origin. Figure 21 is

the projection of this trajectory on the E/E plane.

2. Initial Conditions in an Eigenplane.

If initial conditions corresponding to any point in an eigenplane

or a complex eigenplane are substituted into Equation (IV-2), Han has

shown (Ref. 1, pp. 26-36) that the resulting phase trajectory will

always remain in the plane.

A phase trajectory starting in a complex eigenplane will be an

oscillatory curve that spirals into the origin of error space, always

remaining in the complex eigenplane. Figure 22 shows the general

oscillatory nature of the trajectories of four different systems having

one real root and two complex conjugate roots. The systems illustrated

are:

1 + j3

* 1 + jl

- 2 + j2

» .5 + j.5

Figure 23 is a view of the same model, but looking down the edge of the

complex eigenplane of Case A Figure 24 shows the phase trajectories of

Case L only, looking into octant 1. Figure 25 is a view of the same

model of Case L but looking down the edge of the complex eigenplane. The

dashed line in Figs. 24 and 2 5 represents the eigenvector corresponding

to the real root, r ="0.5, of Case L-

In a system having three real and distinct roots the phase trajec-

tories will also remain in an eigenplane if the initial conditions are

located in this eigenplane. However, the trajectories will not have the

oscillatory nature as in Figs. 22 through 25, but will be curves that

become asymptotic to the slower of the two eigenvectors which define

the eigenplane.
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Figure 26 shows a model cc>! ced of a number of phase trajec-

tories of a system with three real roots, r - 5, r
?

* 1 0,

r~ = 2.0, all having initial conditions in tru Third eigenplane, defined

by the slow and intermediate eigenvectors. Note here that two of the

phase trajectories, (A) and (b), are straight lines in octants 4 and 2',

indicating that the initial conditions for these trajectories were

chosen on the slow eigenvector, This figure readily illustrates the

above statement that the phase trajectories become asymptotic to the

slower of the two defining eigenvectors.

Figure 27 is another view of the same model but looking down the

edge of the Third eigenplane, and showing that the phase trajectories

all remain in the eigenplane.

Figure 28 shows phase trajectories of a system having three real

roots, r 0.333, r * 1.0, r 3 3.0. In this figure, Trajectory (A)

has initial conditions in the First eigenplane and becomes asymptotic

to the intermediate eigenvector, Trajectory (B) has initial conditions

in the Second eigenplane and becomes asymptotic to the slow eigenvector,

and Trajectory (C) has initial conditions in the Third eigenplane and

also becomes asymptotic to the slow eigenvector.

3. Initial Conditions not in an Eigenplane.

Han and Thaler have stated (Ref. 3) that eigenplanes "subdivide

the (error) space into regions so that no phase trajectories can pass out

of one region and into another. Thus the (eigenplanes) act as boundaries

which funnel the phase trajectories into the origin".

For a system having three real and distinct roots, this statement

can be modified to read that "the pyramid of eigenplanes subdivides

error space into regions so that phase trajectories starting inside

the pyramid will remain inside and those phase trajectories originating

outside the pyramid will never enter the pyramid of eigenplanes. Thus

the pyramid acts as a boundary which funnels the phase trajectories into

the origin".

It is important to note that not only does the pyramid funnel the

phase trajectories into the origin, but it funnels them in asymptotic
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to the slow eigenvector, no matter how close the initial conditions

might be to the fast or intermediate eigenvectors Figure 29 shows

two phase trajectories of a three real root system with roots:

r = 0.333, r = 1.0, r a 3.0, whose initial conditions are inside

the pyramid of eigenplanes. It can readily be seen that both trajec-

tories approach the slow eigenvector asymptotically even though (A) has

its initial conditions near the intermediate eigenvector and (B) has

its initial conditions approximately halfway between the intermediate and

fast eigenvectors.

Figure 30 is an illustration of a number of phase trajectories

whose initial conditions are all outside the pyramid of eigenplanes.

Here again it can be seen that all phase trajectories originating

outside the eigenplanes approach the origin of error space asymptotic to

the slow eigenvector. Three of these trajectories exhibit interesting

properties. Trajectory (A) originates in octant 4 near the fast eigen-

vector, but does not approach the origin along the slow eigenvector in

the same octant, Instead it penetrates into octants 3 and 2, then

finally approaches the origin asymptotic to the slow eigenvector in

octant 2'. Trajectory (B) originates in octant 4 1

, but instead of going

to the slow eigenvector in the adjacent octant 4, it journeys through

octants 4, 3, 2, and finally approaches the origin along the slow eigen-

vector in octant 2
1

. Trajectory (C) originates near the intermediate

eigenvector in octant 4, approaches this intermediate eigenvector,

parallels it for a short time, and then finally becomes asymptotic to

the slow eigenvector very near the origin in octant 4.

These unusual excursions through error space of trajectories whose

initial conditions are outside the pyramid of eigenplanes are results

of the basic property of eigenplanes, i.e., eigenplanes act as boundaries

on phase trajectories. When the initial conditions are between any two

eigenplanes, the phase trajectories must always remain between them until

the trajectories reach the slow eigenvector which exists between or on

these bounding eigenplanes.
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In the investigation of the effect of initial conditions not in an

eigenplane, more attention was focused on those systems having one real

root and two complex conjugate roots, A number of interesting results

were obtained.

The first complex root system which was studied had roots of:

r, = 3.0, r., - = .25 + j5.0. This system was very lightly damped,

having a value for £ of 0.05. As might be expected, the phase trajec-

tory was highly oscillatory. This can readily be seen in Fig. 31.

In this particular three-dimensional model, the scaling of E, E, and E

values of points on the phase trajectory were modified in order to

obtain a model capable of analysis. Here, for one coordinate axis unit,

E * 2, E =4, and E = 1. When a random initial condition, Point (A),

not in the complex eigenplane, was applied to this system, the phase

trajectory very quickly became asymptotic to the complex eigenplane.

Figure 32, a view looking down the E axis, shows that the phase trajec-

tory has become asymptotic to the complex eigenplane after less than one

oscillation. Here it should be noted that this model pictured in Figs. 31

and 32 does not show the last five oscillations of the complete trajec-

tory, and they would continue from Point (B) and eventually reach the

origin of error space.

The next complex root system studied had roots at r =0 5,

r 1.0 + j 3.0. The system was lightly damped, having £ - 0.3.

The general nature of this system's oscillatory trajectories was seen

previously in Fig. 24 In this investigation, a variety of initial

conditions not in the complex eigenplane were applied and analyzed

The first initial condition applied was a step input In this

instance, the step had a magnitude of 4 radians. Curve (A) of

Fig. 33 is the resulting phase trajectory Also shown in Fig 33 is

the real root eigenvector represented by the dashed line, and two

trajectories having initial conditions in the complex eigenplane,

Curves (B) and (B\)> Figure 33 indicates that for this system, the

phase trajectory starting outside the complex eigenplane does not

approach the origin of error space asymptotic to the complex eigenplane,
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but instead appears to become asymptotic tc the system eigenvector

Figure 34 is another view of the same model, but looking up the eigen-

vector in octant 4 Note here the similarity of the general shape of the

phase trajectories having initial conditions in and out of the complex

eigenplane

.

The next initial conditions applied to this system was an initial

velocity of magnitude 2.0 rad/sec . Curve (A) of Fig. 35 is the resulting

phase trajectory. Also shown are the system eigenvector and the two

trajectories in the complex eigenplane as before. Fig. 36 is a view

of the same model looking down the edge of the complex eigenplane.

Although it is difficult to tell from Fig 36, the phase trajectory did

not immediately become asymptotic to the complex eigenplane, as it did

in the preceding system having £ a 0.5. Figure 37 is another view of

the same model looking down the eigenvector in octant 2', Note again the

similar curvature of the phase trajectories having initial conditions

in and out of the complex eigenplane.

Next, an initial condition very near the eigenvector was applied to

the system. As can be seen from Fig- 38, the phase trajectory quickly

became asymptotic to the eigenvector instead of to the complex eigenplane.

Finally an initial condition that was equidistant from the eigen-

vector and the complex eigenplane was applied to the system Figure 39

shows the resulting phase trajectory as Curve (A) and the two trajectories

in the eigenplane, curves (B) and (B') as well as the system eigenvector.

As can be seen in Fig. 39, the phase trajectory again becomes asymptotic,

not to the complex eigenplane, but to the eigenvector, developing the

characteristic spiral around the eigenvector as was seen previously in

Figs. 33 and 38. Figure 40 is a view of this model looking up the

eigenvector in octant 4. The similarity of the. phase trajectories

with initial conditions in and out of the complex eigenplane noted here

and in previously discussed views looking up the eigenvector indicated

that there must be some relation between the phase trajectories and the

eigenvector. This led to the next phase of the investigation.
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However, before proceeding further, the results of this phase of

the investigation indicate that for systems having one real root and two

complex roots, the phase trajectories of the systems that are very lightly

damped tend to become asymptotic to the complex eigenplane. For systems

with moderate to heavy damping, the trajectories become asymptotic to

the system eigenvector as they approach the origin of error space.

Interrelation of Phase Trajectories, Eigenplanes, and Eigenvectors

In the study of phase trajectories of systems having one real and

two complex conjugate roots, it was noted that a striking similarity

existed between trajectories with initial conditions inside and outside

the complex eigenplane when the trajectories were viewed looking along

the system eigenvector, as in Fig. 40. Further investigation led to

the following development of an interrelation among phase trajectories,

eigenplanes, and eigenvectors.

It can be seen from the mathematics of Chapters II and III, and

also in Figs. 24 and 25, that the system eigenvector pierces the complex

eigenplane at the origin of error space Mathematically, the complex

eigenplane can be translated along the eigenvector, keeping the origin

of the complex eigenplane coincident with the eigenvector, and keeping

the complex eigenplane oriented parallel to its original position. A

set of initial conditions can be applied to the system corresponding to

the point on the eigenvector containing the origin of the translated

eigenplane. If the complex eigenplane is then allowed to move along

the eigenvector at the same velocity as the system state point, this

state point will always coincide with the origin of the complex eigen-

plane as these points move toward the origin of error space Extending

this further, let the complex eigenplane be translated again along the

eigenvector, and impose a set of initial conditions on the system such

that the initial state point lies in the translated eigenplane some

distance from the translated origin . If the complex eigenplane is

allowed to move toward the origin along the eigenvector as before, the

state point now traces the phase trajectory in three-dimensional error

space. What has really happened is that the state point has never left

67-





the translated complex eigenplane The trace it has made in the complex

eigenplane is exactly the same as the phase trajectory described by the

state point had the initial conditions been applied in the original

untranslated complex eigenplane at the same distance from the origin as

the present initial conditions were from the eigenvector in the trans-

lated plane. Hence it can be seen that any phase trajectory is the

result of the superposition of two separate sets of initial conditions,

one set on the eigenvector and the other set in the complex eigenplane.

In a system with three real roots, the same results are obtained if

an eigenplane is translated along the eigenvector not defining the eigen-

plane.

Hence, any phase trajectory in three-dimensional error space can

be described as the superposition of the two trajectories resulting from

initial conditions on an eigenvector, and initial conditions in either a

complex or real root eigenplane.

This hypothesis was then checked using the analog computer set-up

as given in Appendix C. In Fig. C-l, the upper system was given initial

conditions corresponding to a point lying on the eigenvector. The lower,

or "primed" system was given a set of initial conditions corresponding to

a point offset from the eigenvector by a distance equivalent to the initial

conditions in the complex eigenplane. The difference of the two systems

was then plotted by x-y recorder and compared with the phase trajectory

in the complex eigenplane.

Figure 41 is the E/E projection of the phase trajectory in the

complex eigenplane and Fig. 42 is the E/E projection of the phase tra-

jectory of the "difference" system. The validity of the above hypothesis

can be seen by a comparison of the identical projections of the phase

trajectories of Figs. 41 and 42.

Complex Root Phase Trajectories in Response to a Step Input

In Fig. 33, the phase trajectory of a system with one real root and

a pair of complex conjugate roots is shown for a step input By noting

the tight spiral of the trajectory around the eigenvector, it must be

concluded that for this particular case, the trajectory intersects the
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eigencone. Since trajectories of this type could prove of great impor-

tance in switching applications, it was decided to investigate additional

trajectories with step inputs to see if a definite pattern could be

established as to if, where, and when the trajectories intersect the

eigencone

.

The three-dimensional models which had proved invaluable heretofore

could not be constructed precisely enough tc provide anything more than

a general description of the trajectory However, from the models it was

established that all complex trajectories do not intersect the eigencone.

A trajectory of this type is shown in Fig. 31 Also, a study of Figs. 5

and 33, indicates that if a trajectory does intersect the eigencone, it

will occur at a faster eigenvector than that of the system

After having exhausted the possibilities of the three-dimensional

models, an analytical approach was adopted. If the initial conditions

of a phase traiectory are chosen such that E ~ E - 0, the initialJ o o

condition E is an initial step and can be considered as a step input,
o

Introducing these initial conditions into Equation (IV-2)

:

E(t)--E<
r* ra £ + ULl

at r,r«.
-ot

(l-TXfc-ir.) (^yr.-r,) (r,-ii)(r;-ii)

(IV-3)

Taking the first and second derivatives of the above expression;

(t)-E
-r,t .rxt r,rz rj

-at

(ra-r0(i3-r.) (n-ri)(i5-ra) L
rr^)(rz-rS) (TV-4)

EW-E. n
Z
ra rj +

n r£ o
-at

^ -r

2. -nt
r, r,r3 __ e

J

(r*-n)(rj-r;) (rrtyfa-ty (rr r3)(rz-r3)
(iv-5)
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Substituting the above expressions for E(t), E(t), ard E(t) into

Equation (11-14), the equation of the eigencone:

r
-(n + l)t -(r, + r,)t -<r2 + r^t

5 € +_ r, e '+ Q e =Q

(IV-6)

This equation satisfies the conditions that exist when and if the phase

trajectory in response to a step input intersects the eigencone. It

can be seen from this equation that if an intersection occurs, the time

of intersection is independent of the size of the step input. Further-

more, on obtaining a time of intersection, the equation becomes linear

and indicates that all points of intersection are along a straight line

on the surface of the eigencone. This line, by definition, roust be

along the same eigenvector.

In order to obtain a solution to Equation (IV-6), the equation is

simplified as shown in Appendix D to obtain the transcendental equation:

Cos 3 t + o Sin 3 t - e
{a ~ a)t

(IV-7)

where; a real root

a 3 real part of complex root

|3 imaginary part of complex root

2 a 2
'•!

i

Pa

If a time of intersection exists other than the trivial case

of t a 0, it can be obtained from a graphical solution of the above

equation. If a solution exists, in all except special cases, it is

possible to obtain more than one solution if the plot is continued

beyond the first intersection. Figure 33 is a trajectory which would

produce multiple intersections as noted by the tight spiral around

the eigenvector.
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In order to avoid plotting Equation (IV- 7) for systems with no

intersections, R. L. Ashford (Ref. 6) has devised a criteria whereby

it is possible to determine whether or not a solution exists. In

essence, it amounts to expanding both sides of Equation (IV- 7) in a

Maclaurin series and taking the coefficient of the first power term in

order to determine the slope of each curve. The slope of the curve for

the left side of the equation is given by CTj3 while that of the right is

(a-a). Ashford states that when (a. -a) is less than zero, there will

always be an infinite number of solutions, and when (a-a) is greater

than zero, a non- trivial solution will exist provided a(3 is greater

than (a-o*). Ashford' s criteria, then, states that a phase trajectory

in response to a step input will intersect the eigencone whenever:

1. (a-a) <

2. (a-o) > and ag > (a- a)

If, through Ashford' s criteria, an intersection is indicated, a

graphical solution of Equation (IV- 7) will determine the time of inter-

section. By substituting this value of time into Equations (IV-3),

(IV-4) , and (IV-5) , the point of intersection of the trajectory with

the eigencone is determined and hence, the eigenvector.

-73-





Chapter V

CONCLUSIONS

From the results of this investigation, the following conclusions

can be made regarding the eigenvector geometry and phase trajectories of

third order linear feedback control systems:

1) The orientation of system eigenvectors in third order error

space if a function of the location of the roots of the system on the

complex s-plane.

2) The locus of all eigenvector? associated with a third order

system is a conic surface describing two right elliptical cones located

in octants 1, 2, 3' and 4' with apexes at the origin of error space.

3) An eigenplane can be fixed at a desired orientation in error

space by proper choice of system roots.

4) The orientation of the complex eigenplane in error space is

completely independent of the real root of the system and depends only

on the location of the complex conjugate roots on the complex s-plane.

5) The complex eigenplane never intersects the eigencone except at

the origin, however, it can become tangent, and its point of tangency is

along the eigenvector associated with a pair of repeated real roots.

6) The three eigenplanes of a system having three real and distinct

roots form a pyramid interior to the eigencone. This pyramid serves to

funnel phase trajectories into the origin of error space.

7) Phase trajectories of systems with three real roots having

initial conditions in an eigenplane will remain in this plane and will

approach the origin of error space asymptotic to the slowest of the two

defining eigenvectors.

8) Phase trajectories of systems with one real and two complex

conjugate roots having initial conditions in the complex eigenplane will

remain in the complex eigenplane.

9) Phase trajectories of moderate and heavily damped complex root

systems, having initial conditions not in the complex eigenplane, spiral

into the origin of error space asymptotic to the system eigenvector.
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10) Phase trajectories of very lightly damped complex root systems,

having initial conditions not in the complex eigenplane, will spiral

toward the origin asymptotic to the complex eigenplane.

11) Phase trajectories of a system with three real roots whose

initial conditions are not in an eigenplane cannot penetrate an eigen-

plane and will approach the origin of error space asymptotic to the slow

eigenvector.

12) Any third order phase trajectory in response to any initial

conditions can be described by the superposition of the two phase trajec-

tories resulting from initial conditions on an eigenvector and initial

conditions in either a complex or real root eigenplane. (See Chapter IV,

PP- 67 > 68 )

13) If the phase trajectory of a system with one real and a pair

of complex conjugate roots intersects the eigencone in response to a

step input, the time of intersection is independent of the size of step

and the intersection will occur along a faster eigenvector than the

original system eigenvector.
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Chapter VI

RECOMMENDATIONS

From the results of this thesis it can be seen that there are

certain areas of interest which warrant further investigation. A logical

extension of this thesis would be an attempt to project the results

obtained herein for third order systems into the more general case of

Nth order systems. The existence of hypersurfaces in N-dimensional

error space corresponding to the three-dimensional eigenplanes has

been well established in the literature. While not yet proven, it

seems reasonable to assume that there must also exist in N-dimensions

a hypersurface which corresponds to the eigencone. Thus it should be

possible to describe the characteristics of phase trajectories of Nth

order systems in terms of the various hypersurfaces defined by the

N-dimensional eigenvectors.

The results of this thesis could also have applications in the

design of discontinuous control systems. The literature contains a

great deal of information on various schemes which utilize hypersurfaces

as switching surfaces, but none of these hypersurfaces are comparable to

the eigencone. However, in the N-dimensional case, it would have to be

proven mathematically that under certain conditions the phase trajectories

intersect an N-dimensional eigencone and that eigencone switching could

be effected.

The effect of non-linearities on the phase trajectories of third

order and higher systems is another field of investigation to which the

results of this thesis can also be extended. The regions of three-

dimensional error space in which a system is linear can be defined by

various planes which establish the boundaries of the linear region. For

example, in the case of velocity saturation, the linear region is defined

by the planes E = + K, where K is a constant. Similarly, the linear

region in the case of torque saturation is established by the planes

E = + K. In N-dimensions it seems reasonable, to assume that corresponding

hypersurfaces exist which also establish the boundaries of these linear

regions, and their effect on phase trajectories has not been adequately

described.
-76-
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P"SVDIX A

DIGITAL COMPUTER PLOW DIAGRAM, PROG^Ai ,

AND SAMPLE PPirT OUT OF I'HIRD ORDE^
DIFFERENTIAL EQUATION SOLUTION

Subroutine
DE^IV

START

t *

Rear! Initial
Condition and
N Input Data

II = 1

Subroutine

RUNGE-KUTTA

Igg^ Is :
j- _ N? \No

T + AT-^T

PRINT

No
{is T 10? "

Ŷes

T+AT->-T

11+ 1-*II

Note: Program HALTS when there
are no mo^e Input Data
cards to be read.

Fig. A-l Flow Diagram of Digital Computer Program
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Sample Digital Print Out - PROGRAM PHATRAJ

Initial Conditions : on Eigenvector

T= .000 E» -.6667 El- 2.0000 E2=* -6.0000

T = .050 6 = -.5 733 61 = 1.7214

j: I 150 |;
-.4939
* # * ? i 1 [}:

1.4816
I . 9 t •> 1

T* .200 E« -. -1659 bl = 1.09 76
T = .250 6 = -. 3149 El = .9447
T = .300 e= -•2711 El = .81 31
T = .350 b= -.2333 bl = .6999
T = .400 6 = -.2008 El- .6024
T = .450 fc

= -.1 729 El* .5185
T = .500 6 = -.1488 bl = .4463
T = .550 E = -. 1 28 1 El = .3841
T = .600 b = -. 1 102 El = .3306
T = .650 fc = -.0949 El = .2846
T = .700 t = -.0817 El = .2449
T = .750 6 = -.1 703 bl = .2108
T = .800 E = -.0605 61 = . 1814
T=- .850 b = -.0521 61 = . 1562
T = .900 t = -.0448 61 = . 1344
T = .950 6 = -.038 6 61 = . 1 157
T = 1.000 6 = -.0332 61 = .0996
T = 1.050 t = -.0286 61 = .0857
T = 1. 100 6 = -.0 246 61 = .0738
T = 1.150 t = -.0212 El = .0635
T = 1.200 b = -.0 182 61 = .0547
T= 1.250 E = -.0157 61 = .0470
T= 1.300 E- -.( L35 61 = .0405
T = 1.350 b = - . 1 1

6

6 1 = .0349
T = 1.400 b = -.0100 61 = .0300
T = 1.450 6 = -.0086 tl = .0 258
T= 1.500 E = -.0 74 61 = .0222
T = 1.550 b = -.0064 61 = .0191
T = 1.600 E = -.0055 El = .0165
T = 1 .650 E = -.004 7 61 = .0142
T= 1.700 b = -.0041 61 = .0122
T = 1.750 6 = -.0035 bl = .0105
T = 1.800 E = -.0030 El = .0090
T= 1.850 E = -.0026 61 = .0078
T = 1.900 b = -.0023 El = .0067
T = 1.950 b = -.0019 61 = .0058
T = 2.000 b = -.0017 61 = .0050
T = 2.050 E = -.0014 El = .0043
T = 2. 100 E= -.0012 61 = .0037
T = 2. 150 E = -.0011 61 = .0032
T = 2.200 b = -.0009 £1 = .0027
T= 2.250 E = -.0003 El = .0024
T = 2.300 b = -.0007 El = .0020
T = 2.3 50 b = -.0 006 61 = .0017
T = 2.400 E = -.0005 El = .0015
T= 2.450 b = -.0004 61 = .0013
T= 2.500 b = -.0004 61 = .0011
T = 2.550 b = -.000 3 61 = .0010
T = 2.600 6 = -.000 3 61 = .0008
T= 2.650 E = -.0002 £1 = .0007
T = 2.700 6 = -.0002 El = .0006
T = 2.750 E = -.000 2 El = .0005
T = 2.800 E = -.0002 61 = .0005
T= . 2.850 E = -.0001 61 = .0004
T= 2.900 b = -.0001 61 = .0003
T = 2.950 b = -.0001 61 = .000'3
T = 3.000 b = -.0001 61 = .0003
T= 3.050 E = -.0001 61 = .0002
T = 3.100 E = -.0001 £1 = .C002
T = 3.150 E = -.(,001 61 = .0002
T = 3.200 b = -.0 001 61 = .0001
T= 3.250 E = -.0000 61 = .0001
T = 3.300 E = -.0000 61 = .0001

62 = -5. 1642

H !•
-4.4 4 49
-9, 62*8

62 = -3.2929
62 = -2.0 342
F2 = -2.4 394
62 = -2.0996
62 = -1.8072
62 = -1.5554
62 = -1.3388
62 = -I. 1523
62 = -.9913
62 = -.8536
62 = -. 7347
62 = -.6324
62 = -.5443
12 = -.4685
t2 = -.4032
62 = -.34 71
62 = -.2987
t2 = -.2571
62 = -.2213
62 = -.1905
62 = -. 1639
E2 = -. 1411
62 = -. 1214
62 = -.104 5
L2 = -.0900
£2 = -.0774
£2 = -.0667
E2 = -.0574
b2 = -.0494
62 = -.0425
£2 = -.0366
£2 = -.0315
62 = -.0271
£2 = -.0233
62 = -.0201
£2 = -.0173
£2 = -.0149
c2 = -.0128
£2 = -.0110
E2 = -.0095
62 = -.0082
62 = -.0070
€2 = -.0060
E2 = -.0052
£2 = -.0045
£2 = -.0039
£2 = -.0033
t2 = -.0029
£2 = -.o02 5
E2 = -.0021
£2 = -.0018
E2 = -.0016
E2 = -.0014
£2 = -.0012
£2 = -.0010
E2 = -.0009
E2 = -.0007
E2 = -.0006
62 = -.0006
£2 = -.0005
£2 = -.0004
£2 = -.0004
£2 = -.0003
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Appendix B

ANALOG COMPUTER SOLUTION OF THIRD ORDER DIFFERENTIAL EQUATION

General third order equation :

E+aE + b£ +cE = o

b

c

= <\ + 1 * r
i

r.

<r f r

Scaling factors :

oc
t

= 10

PC= = °<P = <** = O.

Basic equation for an integrator

<2o = -
<it/ CT

/PC'..
-
r

e, + ... </*,

Scaling of amplifier stages

1. Amplifier 1

re
, •• • •

E = ~
J
(o.E-HbE + cLjdt

E = -

*., - a. *.C*.

a, 2 :

a i3

bR.Cf.

0C4

-81-





2 . Amplifier 3

r
t..

E= I
Edt

P

3. Amplifier 5

E = / e d*

1 = J*fE« «„ .- Mit
RS CU

4. Amplifiers 21, 22, 23

No scaling required since these amplifiers are used only as sign changers.

The analog computer schematic for the general solution is shown in Fig. B-l
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Appendix C

COMPUTER SET-UP AND INITIAL CONDITION DERIVATION FOR

PHASE TRAJECTORIES IN TRANSLATING EIGENPLANE

The computer set-up as used on the Donner 3100 is given in Fig. C-l.

The initial conditions for the phase trajectory shown in Fig. 41

were for a point in the complex eigenplane and were:

E - 0.5, E - + 1.0, E - + 3.0
o o o

The complex eigenplane was translated to a point on the eigenvector

corresponding to:

E-+4.0, E--2.0, E*1.0

Therefore the initial conditions of the point in the translated eigen-

plane were:

E ' = E + E - + 3.5
o o

E ' =» E + E * - 1.0
o o

E * » E + E =+4.0
o o

These initial conditions gave the phase trajectory of Fig. 42.
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Appendix D

DERIVATION OF THE TRANCENDENTAL EQUATION

cos 3t + a sin 3t = e^" ')*

This expression may be rewritten as

where

r, o vl >- -r,/U , [\ , B*,—£

—

% C =

(D-2)

Dividing through by C,

C + ^"^ = € (D-3)

Here, A = J&fiGl* and £. a S(iLJl)
c no c rr(ri-i

Let

rz = <x +j (3

Then A _ qoC-o^-jaft ~ ft* _ J_ clk - <*.*- (3
Z

|

0~

IV Here <T =• _
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Similarly, £>
|

Q~

C Z

Multiplying (D-3) by g

f
Zj

(r.^.^Jt

A f
(^Jt B ,

l _ (<;-§-£)<
c + ^- = £ (D-4)

A B
Substituting for r , r , r , — and — in (D-4),

i c j a l>

i-^w^a+i-)^ 1 -,:'^
2 2

y
(t

+
z7)

€ : «

i(€ l6t
+6

-
J^ + ^(£

^-
6-^) = £

^^

cos (3£ + <T"S/n (3t =. £
(*.-<*) t-
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