
2. Types of Computer Software

Contents

1 Operating system 1
1.1 Types of operating systems . 1

1.1.1 Single- and multi-tasking . 1
1.1.2 Single- and multi-user . 1
1.1.3 Distributed . 1
1.1.4 Templated . 1
1.1.5 Embedded . 2
1.1.6 Real-time . 2

1.2 History . 2
1.2.1 Mainframes . 2
1.2.2 Microcomputers . 4

1.3 Examples of operating systems . 4
1.3.1 Unix and Unix-like operating systems . 4
1.3.2 Microsoft Windows . 6
1.3.3 Other . 7

1.4 Components . 7
1.4.1 Kernel . 7
1.4.2 Networking . 11
1.4.3 Security . 12
1.4.4 User interface . 12

1.5 Real-time operating systems . 13
1.6 Operating system development as a hobby . 14
1.7 Diversity of operating systems and portability . 14
1.8 Market share . 14
1.9 See also . 14
1.10 References . 14
1.11 Further reading . 15
1.12 External links . 15

2 System software 16
2.1 See also . 16
2.2 References . 16
2.3 External links . 16

i

ii CONTENTS

3 Firmware 17
3.1 Origin of the term . 17
3.2 Personal computers . 17
3.3 Consumer products . 18
3.4 Automobiles . 18
3.5 Examples . 18
3.6 Flashing . 19
3.7 Firmware hacking . 19

3.7.1 HDD firmware hacks . 19
3.8 Security risks . 19
3.9 See also . 20
3.10 References . 20
3.11 External links . 20

4 Computer multitasking 21
4.1 Multiprogramming . 21
4.2 Cooperative multitasking . 22
4.3 Preemptive multitasking . 22
4.4 Real time . 23
4.5 Multithreading . 23
4.6 Memory protection . 23
4.7 Memory swapping . 23
4.8 Programming . 23
4.9 See also . 24
4.10 References . 24

5 Time-sharing 25
5.1 History . 25

5.1.1 Batch processing . 25
5.1.2 Time-sharing . 25
5.1.3 Development . 26
5.1.4 Time-sharing business . 26
5.1.5 The computer utility . 26
5.1.6 Security . 27

5.2 Notable time-sharing systems . 27
5.3 See also . 28
5.4 References . 28
5.5 Further reading . 28
5.6 External links . 28

6 Real-time computing 29
6.1 History . 29

CONTENTS iii

6.2 Criteria for real-time computing . 29
6.2.1 Real-time in digital signal processing . 30

6.3 Real-time and high-performance . 30
6.4 Near real-time . 31
6.5 Design methods . 31
6.6 See also . 31
6.7 References . 31
6.8 Further reading . 32
6.9 External links . 32

6.9.1 Technical committees . 32
6.9.2 Scientific conferences . 32
6.9.3 Journals . 32
6.9.4 Research groups . 32
6.9.5 Technical papers . 33

7 Fault tolerance 34
7.1 Terminology . 34
7.2 Components . 35
7.3 Redundancy . 35
7.4 Criteria . 35
7.5 Requirements . 35
7.6 Replication . 36
7.7 Disadvantages . 36
7.8 Examples . 37
7.9 Related terms . 37
7.10 See also . 37
7.11 References . 37
7.12 Bibliography . 38
7.13 External links . 38

8 Mean time between failures 39
8.1 The Overview . 39
8.2 Formal definition of MTBF . 40
8.3 Variations of MTBF . 40

8.3.1 MTTF and MTTFd calculation . 40
8.4 Notes . 40
8.5 See also . 40
8.6 References . 40
8.7 External links . 40

9 Flowchart 42
9.1 Overview . 42

iv CONTENTS

9.2 History . 43
9.3 Flowchart building blocks . 43

9.3.1 Symbols . 43
9.3.2 Data-flow extensions . 44

9.4 Types of flowchart . 44
9.5 Software . 45

9.5.1 Diagramming . 45
9.5.2 Programming . 45

9.6 See also . 45
9.7 References . 45
9.8 Further reading . 45
9.9 External links . 46

10 Programming language 47
10.1 Definitions . 47
10.2 History . 48

10.2.1 Early developments . 48
10.2.2 Refinement . 49
10.2.3 Consolidation and growth . 49

10.3 Elements . 50
10.3.1 Syntax . 50
10.3.2 Semantics . 51
10.3.3 Standard library and run-time system . 52

10.4 Design and implementation . 53
10.4.1 Specification . 53
10.4.2 Implementation . 53

10.5 Usage . 54
10.5.1 Measuring language usage . 54

10.6 Taxonomies . 54
10.7 See also . 55
10.8 References . 55
10.9 Further reading . 57
10.10External links . 58

11 History of programming languages 59
11.1 Early history . 59
11.2 First programming languages . 59
11.3 Establishing fundamental paradigms . 60
11.4 1980s: consolidation, modules, performance . 61
11.5 1990s: the Internet age . 61
11.6 Current trends . 62
11.7 Prominent people . 62

CONTENTS v

11.8 See also . 63
11.9 References . 63
11.10Further reading . 63
11.11External links . 63
11.12Text and image sources, contributors, and licenses . 64

11.12.1 Text . 64
11.12.2 Images . 68
11.12.3 Content license . 70

Chapter 1

Operating system

An operating system (OS) is software that manages
computer hardware and software resources and provides
common services for computer programs. The operating
system is an essential component of the system software
in a computer system. Application programs usually re-
quire an operating system to function.
Time-sharing operating systems schedule tasks for effi-
cient use of the system and may also include accounting
software for cost allocation of processor time, mass stor-
age, printing, and other resources.
For hardware functions such as input and output
and memory allocation, the operating system acts as
an intermediary between programs and the computer
hardware,[1][2] although the application code is usually ex-
ecuted directly by the hardware and frequently makes a
system call to an OS function or be interrupted by it. Op-
erating systems can be found on many devices that con-
tain a computer—from cellular phones and video game
consoles to supercomputers and web servers.
Examples of popular modern operating systems include
Android, BSD, iOS, Linux, OS X, QNX,Microsoft Win-
dows,[3]Windows Phone, and IBM z/OS. All these exam-
ples, except Windows, Windows Phone and z/OS, share
roots in UNIX.

1.1 Types of operating systems

1.1.1 Single- and multi-tasking

A single-tasking system can only run one program at a
time, while a multi-tasking operating system allows more
than one program to be running in concurrency. This is
achieved by time-sharing, dividing the available proces-
sor time between multiple processes which are each in-
terrupted repeatedly in time-slices by a task scheduling
subsystem of the operating system. Multi-tasking may be
characterized in pre-emptive and co-operative types. In
pre-emptive multitasking, the operating system slices the
CPU time and dedicates a slot to each of the programs.
Unix-like operating systems, e.g., Solaris, Linux, as well
as AmigaOS support pre-emptivemultitasking. Coopera-
tive multitasking is achieved by relying on each process to

provide time to the other processes in a defined manner.
16-bit versions of Microsoft Windows used cooperative
multi-tasking. 32-bit versions of both Windows NT and
Win9x, used pre-emptive multi-tasking. Mac OS prior to
OS X used to support cooperative multitasking.

1.1.2 Single- and multi-user

Single-user operating systems have no facilities to distin-
guish users, but may allow multiple programs to run at
the same time. Amulti-user operating system extends the
basic concept of multi-tasking with facilities that identify
processes and resources, such as disk space, belonging to
multiple users, and the system permits multiple users to
interact with the system at the same time. Time-sharing
operating systems schedule tasks for efficient use of the
system and may also include accounting software for cost
allocation of processor time, mass storage, printing, and
other resources to multiple users.

1.1.3 Distributed

A distributed operating system manages a group of dis-
tinct computers and makes them appear to be a single
computer. The development of networked computers
that could be linked and communicate with each other
gave rise to distributed computing. Distributed compu-
tations are carried out on more than one machine. When
computers in a group work in cooperation, they form a
distributed system.

1.1.4 Templated

In an OS, distributed and cloud computing context,
templating refers to creating a single virtual machine im-
age as a guest operating system, then saving it as a tool
for multiple running virtual machines (Gagne, 2012, p.
716). The technique is used both in virtualization and
cloud computing management, and is common in large
server warehouses. [4]

1

https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Operating_system_services
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/System_software
https://en.wikipedia.org/wiki/Time-sharing
https://en.wikipedia.org/wiki/Dynamic_memory_allocation
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Cellular_phone
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/BSD
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/QNX
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Windows_Phone
https://en.wikipedia.org/wiki/IBM_z/OS
https://en.wikipedia.org/wiki/UNIX
https://en.wikipedia.org/wiki/Multi-tasking
https://en.wikipedia.org/wiki/Time-sharing
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/AmigaOS
https://en.wikipedia.org/wiki/16-bit
https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/Multi-user
https://en.wikipedia.org/wiki/Distributed_operating_system
https://en.wikipedia.org/wiki/Glossary_of_operating_systems_terms

2 CHAPTER 1. OPERATING SYSTEM

1.1.5 Embedded

Embedded operating systems are designed to be used in
embedded computer systems. They are designed to op-
erate on small machines like PDAs with less autonomy.
They are able to operate with a limited number of re-
sources. They are very compact and extremely efficient
by design. Windows CE and Minix 3 are some examples
of embedded operating systems.

1.1.6 Real-time

A real-time operating system is an operating system that
guaranties to process events or data within a certain short
amount of time. A real-time operating system may be
single- or multi-tasking, but when multitasking, it uses
specialized scheduling algorithms so that a deterministic
nature of behavior is achieved. An event-driven system
switches between tasks based on their priorities or exter-
nal events while time-sharing operating systems switch
tasks based on clock interrupts.

1.2 History

Main article: History of operating systems
See also: Resident monitor

Early computers were built to perform a series of single
tasks, like a calculator. Basic operating system features
were developed in the 1950s, such as resident monitor
functions that could automatically run different programs
in succession to speed up processing. Operating systems
did not exist in their modern andmore complex forms un-
til the early 1960s.[5] Hardware features were added, that
enabled use of runtime libraries, interrupts, and parallel
processing. When personal computers became popular in
the 1980s, operating systems were made for them similar
in concept to those used on larger computers.
In the 1940s, the earliest electronic digital systems had
no operating systems. Electronic systems of this time
were programmed on rows of mechanical switches or by
jumper wires on plug boards. These were special-purpose
systems that, for example, generated ballistics tables for
the military or controlled the printing of payroll checks
from data on punched paper cards. After programmable
general purpose computers were invented, machine lan-
guages (consisting of strings of the binary digits 0 and 1
on punched paper tape) were introduced that sped up the
programming process (Stern, 1981).
In the early 1950s, a computer could execute only one
program at a time. Each user had sole use of the com-
puter for a limited period of time and would arrive at a
scheduled time with program and data on punched pa-
per cards and/or punched tape. The program would be
loaded into the machine, and the machine would be set to

OS/360 was used on most IBM mainframe computers beginning
in 1966, including computers utilized by the Apollo program.

work until the program completed or crashed. Programs
could generally be debugged via a front panel using toggle
switches and panel lights. It is said that Alan Turing was a
master of this on the early Manchester Mark 1 machine,
and he was already deriving the primitive conception of
an operating system from the principles of the Universal
Turing machine.[5]

Later machines came with libraries of programs, which
would be linked to a user’s program to assist in opera-
tions such as input and output and generating computer
code from human-readable symbolic code. This was the
genesis of the modern-day operating system. However,
machines still ran a single job at a time. At Cambridge
University in England the job queue was at one time a
washing line from which tapes were hung with different
colored clothes-pegs to indicate job-priority.
An improvement was the Atlas Supervisor introduced
with the Manchester Atlas commissioned in 1962, ‘con-
sidered by many to be the first recognisable modern op-
erating system’.[6] Brinch Hansen described it as “the
most significant breakthrough in the history of operating
systems.”[7]

1.2.1 Mainframes

Main article: Mainframe computer
See also: History of IBM mainframe operating systems

https://en.wikipedia.org/wiki/Embedded_operating_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/History_of_operating_systems
https://en.wikipedia.org/wiki/Resident_monitor
https://en.wikipedia.org/wiki/Resident_monitor
https://en.wikipedia.org/wiki/Runtime_library
https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Parallel_processing
https://en.wikipedia.org/wiki/Parallel_processing
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/OS/360
https://en.wikipedia.org/wiki/Apollo_program
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Manchester_Mark_1
https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Atlas_Supervisor
https://en.wikipedia.org/wiki/Atlas_(computer)
https://en.wikipedia.org/wiki/Per_Brinch_Hansen
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/History_of_IBM_mainframe_operating_systems

1.2. HISTORY 3

Through the 1950s, many major features were pioneered
in the field of operating systems, including batch pro-
cessing, input/output interrupt, buffering, multitasking,
spooling, runtime libraries, link-loading, and programs
for sorting records in files. These features were included
or not included in application software at the option of ap-
plication programmers, rather than in a separate operat-
ing system used by all applications. In 1959, the SHARE
Operating System was released as an integrated utility for
the IBM 704, and later in the 709 and 7090 mainframes,
although it was quickly supplanted by IBSYS/IBJOB on
the 709, 7090 and 7094.
During the 1960s, IBM’s OS/360 introduced the concept
of a single OS spanning an entire product line, which
was crucial for the success of the System/360 machines.
IBM's current mainframe operating systems are distant
descendants of this original system and applications writ-
ten for OS/360 can still be run on modern machines.
OS/360 also pioneered the concept that the operating sys-
tem keeps track of all of the system resources that are
used, including program and data space allocation inmain
memory and file space in secondary storage, and file lock-
ing during update. When the process is terminated for
any reason, all of these resources are re-claimed by the
operating system.
The alternative CP-67 system for the S/360-67 started
a whole line of IBM operating systems focused on the
concept of virtual machines. Other operating systems
used on IBM S/360 series mainframes included sys-
tems developed by IBM: COS/360 (Compatibility Op-
erating System), DOS/360 (Disk Operating System),
TSS/360 (Time Sharing System), TOS/360 (Tape Op-
erating System), BOS/360 (Basic Operating System),
and ACP (Airline Control Program), as well as a few
non-IBM systems: MTS (Michigan Terminal System),
MUSIC (Multi-User System for Interactive Computing),
and ORVYL (Stanford Timesharing System).
Control Data Corporation developed the SCOPE oper-
ating system in the 1960s, for batch processing. In co-
operation with the University of Minnesota, the Kronos
and later the NOS operating systems were developed dur-
ing the 1970s, which supported simultaneous batch and
timesharing use. Like many commercial timesharing sys-
tems, its interface was an extension of the Dartmouth
BASIC operating systems, one of the pioneering efforts
in timesharing and programming languages. In the late
1970s, Control Data and the University of Illinois devel-
oped the PLATO operating system, which used plasma
panel displays and long-distance time sharing networks.
Plato was remarkably innovative for its time, featuring
real-time chat, and multi-user graphical games.
In 1961, Burroughs Corporation introduced the B5000
with the MCP, (Master Control Program) operating sys-
tem. The B5000 was a stack machine designed to ex-
clusively support high-level languages with no machine
language or assembler, and indeed the MCP was the

first OS to be written exclusively in a high-level language
– ESPOL, a dialect of ALGOL. MCP also introduced
many other ground-breaking innovations, such as being
the first commercial implementation of virtual memory.
During development of the AS400, IBM made an ap-
proach to Burroughs to licence MCP to run on the AS400
hardware. This proposal was declined by Burroughs
management to protect its existing hardware production.
MCP is still in use today in the Unisys ClearPath/MCP
line of computers.
UNIVAC, the first commercial computer manufacturer,
produced a series of EXEC operating systems. Like
all early main-frame systems, this batch-oriented system
managed magnetic drums, disks, card readers and line
printers. In the 1970s, UNIVACproduced the Real-Time
Basic (RTB) system to support large-scale time sharing,
also patterned after the Dartmouth BC system.
General Electric and MIT developed General Electric
Comprehensive Operating Supervisor (GECOS), which
introduced the concept of ringed security privilege levels.
After acquisition by Honeywell it was renamed General
Comprehensive Operating System (GCOS).
Digital Equipment Corporation developed many oper-
ating systems for its various computer lines, including
TOPS-10 and TOPS-20 time sharing systems for the 36-
bit PDP-10 class systems. Before the widespread use
of UNIX, TOPS-10 was a particularly popular system in
universities, and in the early ARPANET community.
From the late 1960s through the late 1970s, several hard-
ware capabilities evolved that allowed similar or ported
software to run on more than one system. Early systems
had utilized microprogramming to implement features
on their systems in order to permit different underlying
computer architectures to appear to be the same as oth-
ers in a series. In fact, most 360s after the 360/40 (ex-
cept the 360/165 and 360/168) were microprogrammed
implementations.
The enormous investment in software for these systems
made since the 1960s caused most of the original com-
puter manufacturers to continue to develop compatible
operating systems along with the hardware. Notable sup-
ported mainframe operating systems include:

• Burroughs MCP – B5000, 1961 to Unisys
Clearpath/MCP, present.

• IBM OS/360 – IBM System/360, 1966 to IBM
z/OS, present.

• IBM CP-67 – IBM System/360, 1967 to IBM
z/VM, present.

• UNIVAC EXEC 8 – UNIVAC 1108, 1967, to OS
2200 Unisys Clearpath Dorado, present.

https://en.wikipedia.org/wiki/Batch_processing
https://en.wikipedia.org/wiki/Batch_processing
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Data_buffer
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Spooling
https://en.wikipedia.org/wiki/Runtime_library
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/SHARE_Operating_System
https://en.wikipedia.org/wiki/SHARE_Operating_System
https://en.wikipedia.org/wiki/IBM_704
https://en.wikipedia.org/wiki/IBM_709
https://en.wikipedia.org/wiki/IBM_7090
https://en.wikipedia.org/wiki/IBM_7090/94_IBSYS
https://en.wikipedia.org/wiki/OS/360
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/History_of_IBM_mainframe_operating_systems
https://en.wikipedia.org/wiki/History_of_IBM_mainframe_operating_systems
https://en.wikipedia.org/wiki/OS/360
https://en.wikipedia.org/wiki/File_locking
https://en.wikipedia.org/wiki/File_locking
https://en.wikipedia.org/wiki/CP-67
https://en.wikipedia.org/wiki/IBM_System/360_Model_67
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/DOS/360
https://en.wikipedia.org/wiki/TSS/360
https://en.wikipedia.org/wiki/TOS/360
https://en.wikipedia.org/wiki/BOS/360
https://en.wikipedia.org/wiki/IBM_Airline_Control_Program
https://en.wikipedia.org/wiki/Michigan_Terminal_System
https://en.wikipedia.org/wiki/MUSIC/SP
https://en.wikipedia.org/wiki/ORVYL
https://en.wikipedia.org/wiki/Control_Data_Corporation
https://en.wikipedia.org/wiki/SCOPE_(software)
https://en.wikipedia.org/wiki/Batch_processing
https://en.wikipedia.org/wiki/CDC_Kronos
https://en.wikipedia.org/wiki/NOS_(software)
https://en.wikipedia.org/wiki/PLATO_(computer_system)
https://en.wikipedia.org/wiki/Burroughs_Corporation
https://en.wikipedia.org/wiki/B5000
https://en.wikipedia.org/wiki/Master_Control_Program
https://en.wikipedia.org/wiki/MCP_(Burroughs_Large_Systems)
https://en.wikipedia.org/wiki/B5000
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Master_Control_Program
https://en.wikipedia.org/wiki/Executive_Systems_Problem_Oriented_Language
https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/Master_Control_Program
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/AS400
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Master_Control_Program
https://en.wikipedia.org/wiki/Unisys
https://en.wikipedia.org/wiki/ClearPath/MCP
https://en.wikipedia.org/wiki/General_Comprehensive_Operating_System
https://en.wikipedia.org/wiki/General_Comprehensive_Operating_System
https://en.wikipedia.org/wiki/TOPS-10
https://en.wikipedia.org/wiki/TOPS-20
https://en.wikipedia.org/wiki/ARPANET
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/MCP_(Burroughs_Large_Systems)
https://en.wikipedia.org/wiki/Burroughs_large_systems
https://en.wikipedia.org/wiki/Unisys
https://en.wikipedia.org/wiki/OS/360
https://en.wikipedia.org/wiki/IBM_System/360
https://en.wikipedia.org/wiki/Z/OS
https://en.wikipedia.org/wiki/CP-67
https://en.wikipedia.org/wiki/IBM_System/360
https://en.wikipedia.org/wiki/Z/VM
https://en.wikipedia.org/wiki/EXEC_8
https://en.wikipedia.org/wiki/UNIVAC_1108
https://en.wikipedia.org/wiki/Unisys_OS_2200_operating_system
https://en.wikipedia.org/wiki/Unisys_OS_2200_operating_system
https://en.wikipedia.org/wiki/Unisys

4 CHAPTER 1. OPERATING SYSTEM

PCDOS was an early personal computer OS that featured a com-
mand line interface.

Mac OS by Apple Computer became the first widespread OS to
feature a graphical user interface. Many of its features such as
windows and icons would later become commonplace in GUIs.

1.2.2 Microcomputers

The first microcomputers did not have the capacity or
need for the elaborate operating systems that had been
developed for mainframes and minis; minimalistic oper-
ating systems were developed, often loaded from ROM
and known as monitors. One notable early disk operating
system was CP/M, which was supported on many early
microcomputers and was closely imitated by Microsoft's
MS-DOS, which became widely popular as the operating
system chosen for the IBM PC (IBM’s version of it was
called IBM DOS or PC DOS). In the '80s, Apple Com-
puter Inc. (now Apple Inc.) abandoned its popular Apple
II series of microcomputers to introduce the Apple Mac-
intosh computer with an innovative Graphical User Inter-
face (GUI) to the Mac OS.
The introduction of the Intel 80386 CPU chip with 32-
bit architecture and paging capabilities, provided per-
sonal computers with the ability to run multitasking op-
erating systems like those of earlier minicomputers and
mainframes. Microsoft responded to this progress by hir-
ing Dave Cutler, who had developed the VMS operat-
ing system for Digital Equipment Corporation. He would
lead the development of the Windows NT operating sys-
tem, which continues to serve as the basis for Microsoft’s
operating systems line. Steve Jobs, a co-founder of Apple

Inc., started NeXT Computer Inc., which developed the
NEXTSTEP operating system. NEXTSTEP would later
be acquired byApple Inc. and used, along with code from
FreeBSD as the core of Mac OS X.
The GNU Project was started by activist and program-
mer Richard Stallman with the goal of creating a com-
plete free software replacement to the proprietary UNIX
operating system. While the project was highly successful
in duplicating the functionality of various parts of UNIX,
development of the GNU Hurd kernel proved to be un-
productive. In 1991, Finnish computer science student
Linus Torvalds, with cooperation from volunteers collab-
orating over the Internet, released the first version of the
Linux kernel. It was soon merged with the GNU user
space components and system software to form a com-
plete operating system. Since then, the combination of
the two major components has usually been referred to
as simply “Linux” by the software industry, a naming
convention that Stallman and the Free Software Founda-
tion remain opposed to, preferring the nameGNU/Linux.
The Berkeley Software Distribution, known as BSD, is
the UNIX derivative distributed by the University of Cal-
ifornia, Berkeley, starting in the 1970s. Freely distributed
and ported to many minicomputers, it eventually also
gained a following for use on PCs, mainly as FreeBSD,
NetBSD and OpenBSD.

1.3 Examples of operating systems

1.3.1 Unix and Unix-like operating sys-
tems

Evolution of Unix systems
Main article: Unix

Unix was originally written in assembly language.[8] Ken
Thompson wrote B, mainly based on BCPL, based on his
experience in the MULTICS project. B was replaced by
C, and Unix, rewritten in C, developed into a large, com-
plex family of inter-related operating systems which have
been influential in every modern operating system (see
History).
The Unix-like family is a diverse group of operating sys-
tems, with several major sub-categories including System
V, BSD, and Linux. The name "UNIX" is a trademark of
The Open Group which licenses it for use with any oper-
ating system that has been shown to conform to their def-
initions. “UNIX-like” is commonly used to refer to the
large set of operating systems which resemble the origi-
nal UNIX.
Unix-like systems run on a wide variety of computer ar-
chitectures. They are used heavily for servers in business,
as well as workstations in academic and engineering envi-
ronments. Free UNIX variants, such as Linux and BSD,

https://en.wikipedia.org/wiki/Apple_Computer
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Microcomputer
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Resident_monitor
https://en.wikipedia.org/wiki/Disk_operating_system
https://en.wikipedia.org/wiki/Disk_operating_system
https://en.wikipedia.org/wiki/CP/M
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/IBM_PC
https://en.wikipedia.org/wiki/PC_DOS
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Apple_II
https://en.wikipedia.org/wiki/Apple_II
https://en.wikipedia.org/wiki/Apple_Macintosh
https://en.wikipedia.org/wiki/Apple_Macintosh
https://en.wikipedia.org/wiki/Graphical_User_Interface
https://en.wikipedia.org/wiki/Graphical_User_Interface
https://en.wikipedia.org/wiki/Mac_OS
https://en.wikipedia.org/wiki/Intel_80386
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Minicomputer
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Dave_Cutler
https://en.wikipedia.org/wiki/OpenVMS
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Steve_Jobs
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/NeXT
https://en.wikipedia.org/wiki/NEXTSTEP
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/GNU_Project
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/UNIX
https://en.wikipedia.org/wiki/GNU_Hurd
https://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/User_space
https://en.wikipedia.org/wiki/User_space
https://en.wikipedia.org/wiki/System_software
https://en.wikipedia.org/wiki/Free_Software_Foundation
https://en.wikipedia.org/wiki/Free_Software_Foundation
https://en.wikipedia.org/wiki/BSD_(operating_system)
https://en.wikipedia.org/wiki/Ported
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/NetBSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/B_(programming_language)
https://en.wikipedia.org/wiki/BCPL
https://en.wikipedia.org/wiki/MULTICS
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/History_of_operating_systems
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/System_V
https://en.wikipedia.org/wiki/System_V
https://en.wikipedia.org/wiki/BSD_(operating_system)
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/UNIX
https://en.wikipedia.org/wiki/The_Open_Group
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Workstation
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution

1.3. EXAMPLES OF OPERATING SYSTEMS 5

are popular in these areas.
Four operating systems are certified by The Open Group
(holder of the Unix trademark) as Unix. HP’s HP-UX
and IBM’s AIX are both descendants of the original Sys-
tem V Unix and are designed to run only on their respec-
tive vendor’s hardware. In contrast, Sun Microsystems’s
Solaris Operating System can run on multiple types of
hardware, including x86 and Sparc servers, and PCs. Ap-
ple’s OS X, a replacement for Apple’s earlier (non-Unix)
Mac OS, is a hybrid kernel-based BSD variant derived
from NeXTSTEP, Mach, and FreeBSD.
Unix interoperability was sought by establishing the
POSIX standard. The POSIX standard can be applied to
any operating system, although it was originally created
for various Unix variants.

BSD and its descendants

Main article: Berkeley Software Distribution
A subgroup of the Unix family is the Berkeley Software

The first server for the World Wide Web ran on NeXTSTEP,
based on BSD

Distribution family, which includes FreeBSD, NetBSD,
and OpenBSD. These operating systems are most com-
monly found on webservers, although they can also func-
tion as a personal computer OS. The Internet owes much
of its existence to BSD, as many of the protocols now
commonly used by computers to connect, send and re-
ceive data over a network were widely implemented and
refined in BSD. The World Wide Web was also first
demonstrated on a number of computers running an OS
based on BSD called NextStep.
BSD has its roots in Unix. In 1974, University of Califor-
nia, Berkeley installed its first Unix system. Over time,
students and staff in the computer science department
there began adding new programs to make things easier,
such as text editors. When Berkeley received new VAX
computers in 1978 with Unix installed, the school’s un-
dergraduates modified Unix even more in order to take
advantage of the computer’s hardware possibilities. The
Defense Advanced Research Projects Agency of the US

Department of Defense took interest, and decided to fund
the project. Many schools, corporations, and government
organizations took notice and started to use Berkeley’s
version of Unix instead of the official one distributed by
AT&T.
Steve Jobs, upon leaving Apple Inc. in 1985, formed
NeXT Inc., a company that manufactured high-end com-
puters running on a variation of BSD called NeXTSTEP.
One of these computers was used by Tim Berners-Lee as
the first webserver to create the World Wide Web.
Developers like Keith Bostic encouraged the project to
replace any non-free code that originated with Bell Labs.
Once this was done, however, AT&T sued. Eventually,
after two years of legal disputes, the BSD project came
out ahead and spawned a number of free derivatives, such
as FreeBSD and NetBSD.

OS X Main article: OS X
OS X (formerly “Mac OS X”) is a line of open core

The standard user interface of OS X

graphical operating systems developed, marketed, and
sold by Apple Inc., the latest of which is pre-loaded on
all currently shipping Macintosh computers. OS X is the
successor to the originalMacOS, which had been Apple’s
primary operating system since 1984. Unlike its prede-
cessor, OS X is a UNIX operating system built on tech-
nology that had been developed at NeXT through the sec-
ond half of the 1980s and up until Apple purchased the
company in early 1997. The operating system was first
released in 1999 asMac OSX Server 1.0, with a desktop-
oriented version (Mac OS X v10.0 “Cheetah”) following
in March 2001. Since then, six more distinct “client” and
"server" editions of OS X have been released, until the
two were merged in OS X 10.7 “Lion”. Releases of OS
X v10.0 through v10.8 are named after big cats. Start-
ing with v10.9, “Mavericks”, OS X versions are named
after inspirational places in California.[9] OS X 10.10
“Yosemite”, the most recent version, was announced and
released on June 2, 2014 at the WWDC 2014.
Prior to its merging with OS X, the server edition – OS
X Server – was architecturally identical to its desktop
counterpart and usually ran on Apple’s line of Macin-
tosh server hardware. OS X Server included work group

https://en.wikipedia.org/wiki/The_Open_Group
https://en.wikipedia.org/wiki/HP-UX
https://en.wikipedia.org/wiki/AIX_operating_system
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Solaris_Operating_System
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Sparc
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/Hybrid_kernel
https://en.wikipedia.org/wiki/NeXTSTEP
https://en.wikipedia.org/wiki/Mach_(kernel)
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/NetBSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/Webserver
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/NextStep
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/Defense_Advanced_Research_Projects_Agency
https://en.wikipedia.org/wiki/United_States_Department_of_Defense
https://en.wikipedia.org/wiki/Steve_Jobs
https://en.wikipedia.org/wiki/NeXT
https://en.wikipedia.org/wiki/NeXTSTEP
https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/Keith_Bostic
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/NetBSD
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/Open_core
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Macintosh
https://en.wikipedia.org/wiki/Mac_OS
https://en.wikipedia.org/wiki/UNIX
https://en.wikipedia.org/wiki/NeXT
https://en.wikipedia.org/wiki/Mac_OS_X_Server_1.0
https://en.wikipedia.org/wiki/Mac_OS_X_v10.0
https://en.wikipedia.org/wiki/OS_X_Server
https://en.wikipedia.org/wiki/Mac_OS_X_Lion
https://en.wikipedia.org/wiki/Big_cat
https://en.wikipedia.org/wiki/California
https://en.wikipedia.org/wiki/OS_X_Yosemite
https://en.wikipedia.org/wiki/OS_X_Yosemite
https://en.wikipedia.org/wiki/Apple_Worldwide_Developers_Conference
https://en.wikipedia.org/wiki/OS_X_Server
https://en.wikipedia.org/wiki/OS_X_Server
https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Server_(computing)

6 CHAPTER 1. OPERATING SYSTEM

management and administration software tools that pro-
vide simplified access to key network services, including
a mail transfer agent, a Samba server, an LDAP server, a
domain name server, and others. With Mac OS X v10.7
Lion, all server aspects ofMac OSX Server have been in-
tegrated into the client version and the product re-branded
as “OS X” (dropping “Mac” from the name). The server
tools are now offered as an application.[10]

Linux and GNU

Main articles: GNU, Linux and Linux kernel
The GNU project is a collaboration of many program-

Ubuntu, desktop GNU/Linux distribution

mers who envisioned to create a free and open operat-
ing system that was similar to Unix but with new code
licensed on the open-source license model. It was started
in 1983 by Richard Stallman, and is responsible for many
components of most Linux variants. Thousands of pieces
of software for virtually every operating system are li-
censed under the GNU General Public License. Mean-
while, the Linux kernel originated in 1991 as a side
project of Linus Torvalds, while a university student in
Finland. He posted information about his project on
a newsgroup for computer students and programmers,
and received support and assistance from volunteers who
succeeded in creating a complete and functional ker-
nel. GNU programmers joint the effort and both groups
worked to integrate the finished GNU parts with the
Linux kernel to create a complete operating system.
Linux is Unix-like, but was developed without any Unix
code, unlike BSD and its variants. Because of its open li-
cense model, the Linux kernel code is available for study
and modification, which resulted in its use on a wide
range of computing machinery from supercomputers to
smart-watches. Although estimates suggest that Linux
and GNU software are used on only 1.82% of all personal
computers,[11][12] it has been widely adopted for use in
servers[13] and embedded systems[14] such as cell phones.
GNU/Linux has superseded Unix on many platforms and
is used on the ten most powerful supercomputers in the
world.[15] The Linux kernel is used in some popular dis-
tributions, such as Red Hat, Debian, Ubuntu, Linux Mint
and Google's Android.

Android, a popular mobile operating system using the Linux ker-
nel

Google Chromium OS Main article: Google
Chromium OS

Chromium is an operating system based on the Linux ker-
nel and designed by Google. Since Chromium OS targets
computer users who spendmost of their time on the Inter-
net, it is mainly a web browser with limited ability to run
local applications, though it has a built-in filemanager and
media player. Instead, it relies on Internet applications (or
Web apps) used in the web browser to accomplish tasks
such as word processing.[16] Chromium OS differs from
Chrome OS in that Chromium is open-source and used
primarily by developers whereas Chrome OS is the oper-
ating system shipped out in Chromebooks.[17]

1.3.2 Microsoft Windows

Main article: Microsoft Windows

Microsoft Windows is a family of proprietary operat-
ing systems designed by Microsoft Corporation and pri-
marily targeted to Intel architecture based computers,
with an estimated 88.9 percent total usage share on Web

https://en.wikipedia.org/wiki/Network_service
https://en.wikipedia.org/wiki/Mail_transfer_agent
https://en.wikipedia.org/wiki/Samba_software
https://en.wikipedia.org/wiki/LDAP
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Mac_OS_X_Lion
https://en.wikipedia.org/wiki/Mac_OS_X_Lion
https://en.wikipedia.org/wiki/GNU
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://en.wikipedia.org/wiki/GNU/Linux_distribution
https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Red_Hat
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://en.wikipedia.org/wiki/Linux_Mint
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Google_Chromium_OS
https://en.wikipedia.org/wiki/Google_Chromium_OS
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Internet_application
https://en.wikipedia.org/wiki/Web_app
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Microsoft_Corporation

1.4. COMPONENTS 7

connected computers.[12][18][19][20] The newest version is
Windows 8.1 for workstations and Windows Server 2012
R2 for servers. Windows 7 recently overtook Windows
XP as most used OS.[21][22][23]

Microsoft Windows originated in 1985 as an operating
environment running on top of MS-DOS, which was the
standard operating system shipped onmost Intel architec-
ture personal computers at the time. In 1995, Windows
95 was released which only used MS-DOS as a boot-
strap. For backwards compatibility, Win9x could run
real-mode MS-DOS[24][25] and 16 bits Windows 3.x[26]
drivers. Windows ME, released in 2000, was the last ver-
sion in the Win9x family. Later versions have all been
based on the Windows NT kernel. Current client ver-
sions of Windows run on IA-32, x86-64 and 32-bit ARM
microprocessors.[27] In addition Itanium is still supported
in older server version Windows Server 2008 R2. In the
past, Windows NT supported additional architectures.
Server editions of Windows are widely used. In recent
years, Microsoft has expended significant capital in an
effort to promote the use of Windows as a server op-
erating system. However, Windows’ usage on servers
is not as widespread as on personal computers, as Win-
dows competes against Linux and BSD for server market
share.[28][29]The first PC that used windows operating sys-
tem was the IBM Personal System/2.

1.3.3 Other

There have beenmany operating systems that were signif-
icant in their day but are no longer so, such as AmigaOS;
OS/2 from IBM and Microsoft; Mac OS, the non-Unix
precursor to Apple’s Mac OS X; BeOS; XTS-300; RISC
OS; MorphOS; Haiku; BareMetal and FreeMint. Some
are still used in niche markets and continue to be de-
veloped as minority platforms for enthusiast commu-
nities and specialist applications. OpenVMS formerly
from DEC, is still under active development by Hewlett-
Packard. Yet other operating systems are used almost
exclusively in academia, for operating systems education
or to do research on operating system concepts. A typi-
cal example of a system that fulfills both roles is MINIX,
while for example Singularity is used purely for research.
Other operating systems have failed to win significant
market share, but have introduced innovations that have
influenced mainstream operating systems, not least Bell
Labs’ Plan 9.

1.4 Components

The components of an operating system all exist in order
to make the different parts of a computer work together.
All user software needs to go through the operating sys-
tem in order to use any of the hardware, whether it be

as simple as a mouse or keyboard or as complex as an
Internet component.

1.4.1 Kernel

CPU Memory Devices

Kernel

Applications

A kernel connects the application software to the hardware of a
computer.

Main article: Kernel (computing)

With the aid of the firmware and device drivers, the ker-
nel provides the most basic level of control over all of the
computer’s hardware devices. It manages memory access
for programs in the RAM, it determines which programs
get access to which hardware resources, it sets up or re-
sets the CPU’s operating states for optimal operation at all
times, and it organizes the data for long-term non-volatile
storage with file systems on such media as disks, tapes,
flash memory, etc.

Program execution

Main article: Process (computing)

The operating system provides an interface between an
application program and the computer hardware, so that
an application program can interact with the hardware
only by obeying rules and procedures programmed into
the operating system. The operating system is also a set
of services which simplify development and execution of
application programs. Executing an application program
involves the creation of a process by the operating system
kernel which assigns memory space and other resources,
establishes a priority for the process in multi-tasking sys-
tems, loads program binary code into memory, and ini-
tiates execution of the application program which then
interacts with the user and with hardware devices.

https://en.wikipedia.org/wiki/Windows_8.1
https://en.wikipedia.org/wiki/Windows_Server_2012_R2
https://en.wikipedia.org/wiki/Windows_Server_2012_R2
https://en.wikipedia.org/wiki/Operating_environment
https://en.wikipedia.org/wiki/Operating_environment
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/Windows_95
https://en.wikipedia.org/wiki/Windows_95
https://en.wikipedia.org/wiki/Windows_3.x
https://en.wikipedia.org/wiki/Windows_ME
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Kernel_(computing)
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/ARMv7
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/Windows_Server_2008_R2
https://en.wikipedia.org/wiki/Server_operating_system
https://en.wikipedia.org/wiki/Server_operating_system
https://en.wikipedia.org/wiki/Personal_Computer
https://en.wikipedia.org/wiki/Windows
https://en.wikipedia.org/wiki/IBM_Personal_System/2
https://en.wikipedia.org/wiki/AmigaOS
https://en.wikipedia.org/wiki/OS/2
https://en.wikipedia.org/wiki/Mac_OS
https://en.wikipedia.org/wiki/BeOS
https://en.wikipedia.org/wiki/XTS-400
https://en.wikipedia.org/wiki/RISC_OS
https://en.wikipedia.org/wiki/RISC_OS
https://en.wikipedia.org/wiki/MorphOS
https://en.wikipedia.org/wiki/Haiku_(operating_system)
https://en.wikipedia.org/wiki/BareMetal
https://en.wikipedia.org/wiki/FreeMint
https://en.wikipedia.org/wiki/OpenVMS
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/MINIX
https://en.wikipedia.org/wiki/Singularity_(operating_system)
https://en.wikipedia.org/wiki/Plan_9_from_Bell_Labs
https://en.wikipedia.org/wiki/Kernel_(computing)
https://en.wikipedia.org/wiki/Firmware
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/RAM
https://en.wikipedia.org/wiki/Non-volatile_storage
https://en.wikipedia.org/wiki/Non-volatile_storage
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Kernel_(computer_science)

8 CHAPTER 1. OPERATING SYSTEM

Interrupts

Main article: Interrupt

Interrupts are central to operating systems, as they pro-
vide an efficient way for the operating system to interact
with and react to its environment. The alternative— hav-
ing the operating system “watch” the various sources of
input for events (polling) that require action — can be
found in older systems with very small stacks (50 or 60
bytes) but is unusual in modern systems with large stacks.
Interrupt-based programming is directly supported by
most modern CPUs. Interrupts provide a computer with
a way of automatically saving local register contexts, and
running specific code in response to events. Even very
basic computers support hardware interrupts, and allow
the programmer to specify code which may be run when
that event takes place.
When an interrupt is received, the computer’s hardware
automatically suspends whatever program is currently
running, saves its status, and runs computer code previ-
ously associated with the interrupt; this is analogous to
placing a bookmark in a book in response to a phone call.
In modern operating systems, interrupts are handled by
the operating system’s kernel. Interrupts may come from
either the computer’s hardware or the running program.
When a hardware device triggers an interrupt, the oper-
ating system’s kernel decides how to deal with this event,
generally by running some processing code. The amount
of code being run depends on the priority of the interrupt
(for example: a person usually responds to a smoke de-
tector alarm before answering the phone). The processing
of hardware interrupts is a task that is usually delegated
to software called a device driver, which may be part of
the operating system’s kernel, part of another program,
or both. Device drivers may then relay information to a
running program by various means.
A program may also trigger an interrupt to the operat-
ing system. If a program wishes to access hardware, for
example, it may interrupt the operating system’s kernel,
which causes control to be passed back to the kernel. The
kernel then processes the request. If a program wishes
additional resources (or wishes to shed resources) such as
memory, it triggers an interrupt to get the kernel’s atten-
tion.

Modes

Main articles: Protected mode and Supervisor mode
Modern CPUs support multiple modes of operation.
CPUs with this capability use at least two modes:
protected mode and supervisor mode. The supervisor
mode is used by the operating system’s kernel for low level
tasks that need unrestricted access to hardware, such as
controlling how memory is written and erased, and com-
munication with devices like graphics cards. Protected

Ring 3

Ring 2

Ring 1

Ring 0

Kernel

Device drivers

Applications

Device drivers

Least privileged

Most privileged

Privilege rings for the x86 available in protected mode. Operating
systems determine which processes run in each mode.

mode, in contrast, is used for almost everything else. Ap-
plications operate within protected mode, and can only
use hardware by communicating with the kernel, which
controls everything in supervisor mode. CPUs might
have other modes similar to protected mode as well, such
as the virtual modes in order to emulate older processor
types, such as 16-bit processors on a 32-bit one, or 32-bit
processors on a 64-bit one.
When a computer first starts up, it is automatically run-
ning in supervisor mode. The first few programs to run
on the computer, being the BIOS or EFI, bootloader, and
the operating system have unlimited access to hardware
– and this is required because, by definition, initializing
a protected environment can only be done outside of one.
However, when the operating system passes control to an-
other program, it can place the CPU into protected mode.
In protected mode, programs may have access to a more
limited set of the CPU’s instructions. A user program
may leave protected mode only by triggering an interrupt,
causing control to be passed back to the kernel. In this
way the operating system can maintain exclusive control
over things like access to hardware and memory.
The term “protected mode resource” generally refers to
one or more CPU registers, which contain information
that the running program isn't allowed to alter. Attempts
to alter these resources generally causes a switch to su-
pervisor mode, where the operating system can deal with
the illegal operation the program was attempting (for ex-
ample, by killing the program).

Memory management

Main article: Memory management

Among other things, a multiprogramming operating sys-
tem kernel must be responsible for managing all system
memory which is currently in use by programs. This en-
sures that a program does not interfere with memory al-
ready in use by another program. Since programs time

https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/Device_drivers
https://en.wikipedia.org/wiki/Protected_mode
https://en.wikipedia.org/wiki/Supervisor_mode
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Protected_mode
https://en.wikipedia.org/wiki/Supervisor_mode
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Protected_mode
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Supervisor_mode
https://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/Extensible_Firmware_Interface
https://en.wikipedia.org/wiki/Bootloader
https://en.wikipedia.org/wiki/Protected_mode
https://en.wikipedia.org/wiki/Protected_mode
https://en.wikipedia.org/wiki/Protected_mode
https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Kernel_(computer_science)

1.4. COMPONENTS 9

share, each program must have independent access to
memory.
Cooperative memory management, used by many early
operating systems, assumes that all programs make vol-
untary use of the kernel's memory manager, and do not
exceed their allocated memory. This system of memory
management is almost never seen any more, since pro-
grams often contain bugs which can cause them to exceed
their allocated memory. If a program fails, it may cause
memory used by one or more other programs to be af-
fected or overwritten. Malicious programs or viruses may
purposefully alter another program’s memory, or may af-
fect the operation of the operating system itself. With
cooperative memory management, it takes only one mis-
behaved program to crash the system.
Memory protection enables the kernel to limit a process’
access to the computer’s memory. Various methods of
memory protection exist, including memory segmenta-
tion and paging. All methods require some level of hard-
ware support (such as the 80286 MMU), which doesn't
exist in all computers.
In both segmentation and paging, certain protected mode
registers specify to the CPU what memory address it
should allow a running program to access. Attempts to
access other addresses trigger an interrupt which cause
the CPU to re-enter supervisor mode, placing the kernel
in charge. This is called a segmentation violation or Seg-
V for short, and since it is both difficult to assign a mean-
ingful result to such an operation, and because it is usually
a sign of a misbehaving program, the kernel generally re-
sorts to terminating the offending program, and reports
the error.
Windows versions 3.1 through ME had some level of
memory protection, but programs could easily circum-
vent the need to use it. A general protection fault would
be produced, indicating a segmentation violation had oc-
curred; however, the system would often crash anyway.

Virtual memory

Main article: Virtual memory
Further information: Page fault
The use of virtual memory addressing (such as paging
or segmentation) means that the kernel can choose what
memory each program may use at any given time, allow-
ing the operating system to use the same memory loca-
tions for multiple tasks.
If a program tries to access memory that isn't in its current
range of accessible memory, but nonetheless has been al-
located to it, the kernel is interrupted in the same way
as it would if the program were to exceed its allocated
memory. (See section on memory management.) Under
UNIX this kind of interrupt is referred to as a page fault.
When the kernel detects a page fault it generally adjusts
the virtual memory range of the program which triggered

Disk

RAM

Another
process's
memory

Virtual memory
(per process)

Physical
memory

Many operating systems can “trick” programs into using memory
scattered around the hard disk and RAM as if it is one continuous
chunk of memory, called virtual memory.

it, granting it access to the memory requested. This gives
the kernel discretionary power over where a particular ap-
plication’s memory is stored, or even whether or not it has
actually been allocated yet.
In modern operating systems, memory which is accessed
less frequently can be temporarily stored on disk or other
media to make that space available for use by other pro-
grams. This is called swapping, as an area of memory can
be used bymultiple programs, and what that memory area
contains can be swapped or exchanged on demand.
“Virtual memory” provides the programmer or the user
with the perception that there is a much larger amount of
RAM in the computer than is really there.[30]

Multitasking

Main articles: Computer multitasking and Process
management (computing)
Further information: Context switch, Preemptive multi-
tasking and Cooperative multitasking

Multitasking refers to the running of multiple indepen-
dent computer programs on the same computer; giving

https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/Memory_protection
https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/80286
https://en.wikipedia.org/wiki/Protected_mode
https://en.wikipedia.org/wiki/Supervisor_mode
https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/Segmentation_violation
https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/General_protection_fault
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Process_management_(computing)
https://en.wikipedia.org/wiki/Process_management_(computing)
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Preemptive_multitasking
https://en.wikipedia.org/wiki/Preemptive_multitasking
https://en.wikipedia.org/wiki/Cooperative_multitasking
https://en.wikipedia.org/wiki/Computer_multitasking

10 CHAPTER 1. OPERATING SYSTEM

the appearance that it is performing the tasks at the same
time. Since most computers can do at most one or two
things at one time, this is generally done via time-sharing,
which means that each program uses a share of the com-
puter’s time to execute.
An operating system kernel contains a scheduling pro-
gram which determines how much time each process
spends executing, and in which order execution control
should be passed to programs. Control is passed to a pro-
cess by the kernel, which allows the program access to the
CPU and memory. Later, control is returned to the ker-
nel through some mechanism, so that another program
may be allowed to use the CPU. This so-called passing
of control between the kernel and applications is called a
context switch.
An early model which governed the allocation of time
to programs was called cooperative multitasking. In this
model, when control is passed to a program by the ker-
nel, it may execute for as long as it wants before explicitly
returning control to the kernel. This means that a mali-
cious or malfunctioning program may not only prevent
any other programs from using the CPU, but it can hang
the entire system if it enters an infinite loop.
Modern operating systems extend the concepts of appli-
cation preemption to device drivers and kernel code, so
that the operating system has preemptive control over in-
ternal run-times as well.
The philosophy governing preemptive multitasking is that
of ensuring that all programs are given regular time on
the CPU. This implies that all programs must be limited
in how much time they are allowed to spend on the CPU
without being interrupted. To accomplish this, modern
operating system kernels make use of a timed interrupt.
A protected mode timer is set by the kernel which trig-
gers a return to supervisor mode after the specified time
has elapsed. (See above sections on Interrupts and Dual
Mode Operation.)
On many single user operating systems cooperative mul-
titasking is perfectly adequate, as home computers gen-
erally run a small number of well tested programs. The
AmigaOS is an exception, having pre-emptive multitask-
ing from its very first version. Windows NT was the first
version of Microsoft Windows which enforced preemp-
tive multitasking, but it didn't reach the home user mar-
ket until Windows XP (since Windows NT was targeted
at professionals).

Disk access and file systems

Main article: Virtual file system
Access to data stored on disks is a central feature of all
operating systems. Computers store data on disks using
files, which are structured in specific ways in order to al-
low for faster access, higher reliability, and to make better
use out of the drive’s available space. The specific way in

Filesystems allow users and programs to organize and sort files
on a computer, often through the use of directories (or “folders”)

which files are stored on a disk is called a file system, and
enables files to have names and attributes. It also allows
them to be stored in a hierarchy of directories or folders
arranged in a directory tree.
Early operating systems generally supported a single type
of disk drive and only one kind of file system. Early file
systems were limited in their capacity, speed, and in the
kinds of file names and directory structures they could
use. These limitations often reflected limitations in the
operating systems they were designed for, making it very
difficult for an operating system to support more than one
file system.
While many simpler operating systems support a limited
range of options for accessing storage systems, operat-
ing systems like UNIX and Linux support a technology
known as a virtual file system or VFS. An operating sys-
tem such as UNIX supports a wide array of storage de-
vices, regardless of their design or file systems, allowing
them to be accessed through a common application pro-
gramming interface (API). This makes it unnecessary for
programs to have any knowledge about the device they
are accessing. A VFS allows the operating system to pro-
vide programs with access to an unlimited number of de-
vices with an infinite variety of file systems installed on
them, through the use of specific device drivers and file
system drivers.
A connected storage device, such as a hard drive, is ac-
cessed through a device driver. The device driver under-
stands the specific language of the drive and is able to
translate that language into a standard language used by
the operating system to access all disk drives. On UNIX,
this is the language of block devices.
When the kernel has an appropriate device driver in place,
it can then access the contents of the disk drive in raw for-
mat, which may contain one or more file systems. A file
system driver is used to translate the commands used to
access each specific file system into a standard set of com-
mands that the operating system can use to talk to all file
systems. Programs can then deal with these file systems
on the basis of filenames, and directories/folders, con-

https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Cooperative_multitasking
https://en.wikipedia.org/wiki/Infinite_loop
https://en.wikipedia.org/wiki/Preemptive_multitasking
https://en.wikipedia.org/wiki/Protected_mode
https://en.wikipedia.org/wiki/AmigaOS
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Windows_XP
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Virtual_file_system
https://en.wikipedia.org/wiki/Hard_disk_drives
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Directory_tree
https://en.wikipedia.org/wiki/UNIX
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Virtual_file_system
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Data_storage_device
https://en.wikipedia.org/wiki/Hard_drive
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Block_device

1.4. COMPONENTS 11

tained within a hierarchical structure. They can create,
delete, open, and close files, as well as gather various in-
formation about them, including access permissions, size,
free space, and creation and modification dates.
Various differences between file systems make support-
ing all file systems difficult. Allowed characters in file
names, case sensitivity, and the presence of various kinds
of file attributes makes the implementation of a single
interface for every file system a daunting task. Operat-
ing systems tend to recommend using (and so support
natively) file systems specifically designed for them; for
example, NTFS in Windows and ext3 and ReiserFS in
Linux. However, in practice, third party drives are usu-
ally available to give support for the most widely used
file systems in most general-purpose operating systems
(for example, NTFS is available in Linux through NTFS-
3g, and ext2/3 and ReiserFS are available in Windows
through third-party software).
Support for file systems is highly varied among modern
operating systems, although there are several common
file systems which almost all operating systems include
support and drivers for. Operating systems vary on file
system support and on the disk formats they may be in-
stalled on. Under Windows, each file system is usually
limited in application to certain media; for example, CDs
must use ISO 9660 or UDF, and as of Windows Vista,
NTFS is the only file system which the operating system
can be installed on. It is possible to install Linux onto
many types of file systems. Unlike other operating sys-
tems, Linux and UNIX allow any file system to be used
regardless of the media it is stored in, whether it is a hard
drive, a disc (CD, DVD...), a USB flash drive, or even
contained within a file located on another file system.

Device drivers

Main article: Device driver

A device driver is a specific type of computer software
developed to allow interaction with hardware devices.
Typically this constitutes an interface for communicat-
ing with the device, through the specific computer bus
or communications subsystem that the hardware is con-
nected to, providing commands to and/or receiving data
from the device, and on the other end, the requisite inter-
faces to the operating system and software applications.
It is a specialized hardware-dependent computer program
which is also operating system specific that enables an-
other program, typically an operating system or applica-
tions software package or computer program running un-
der the operating system kernel, to interact transparently
with a hardware device, and usually provides the requi-
site interrupt handling necessary for any necessary asyn-
chronous time-dependent hardware interfacing needs.
The key design goal of device drivers is abstraction. Ev-
ery model of hardware (even within the same class of

device) is different. Newer models also are released by
manufacturers that provide more reliable or better perfor-
mance and these newer models are often controlled dif-
ferently. Computers and their operating systems cannot
be expected to know how to control every device, both
now and in the future. To solve this problem, operat-
ing systems essentially dictate how every type of device
should be controlled. The function of the device driver is
then to translate these operating system mandated func-
tion calls into device specific calls. In theory a new de-
vice, which is controlled in a newmanner, should function
correctly if a suitable driver is available. This new driver
ensures that the device appears to operate as usual from
the operating system’s point of view.
Under versions of Windows before Vista and versions of
Linux before 2.6, all driver execution was co-operative,
meaning that if a driver entered an infinite loop it would
freeze the system. More recent revisions of these oper-
ating systems incorporate kernel preemption, where the
kernel interrupts the driver to give it tasks, and then sep-
arates itself from the process until it receives a response
from the device driver, or gives it more tasks to do.

1.4.2 Networking

Main article: Computer network

Currentlymost operating systems support a variety of net-
working protocols, hardware, and applications for using
them. This means that computers running dissimilar op-
erating systems can participate in a common network for
sharing resources such as computing, files, printers, and
scanners using either wired or wireless connections. Net-
works can essentially allow a computer’s operating system
to access the resources of a remote computer to support
the same functions as it could if those resources were con-
nected directly to the local computer. This includes ev-
erything from simple communication, to using networked
file systems or even sharing another computer’s graphics
or sound hardware. Some network services allow the re-
sources of a computer to be accessed transparently, such
as SSH which allows networked users direct access to a
computer’s command line interface.
Client/server networking allows a program on a com-
puter, called a client, to connect via a network to another
computer, called a server. Servers offer (or host) various
services to other network computers and users. These
services are usually provided through ports or numbered
access points beyond the server’s network address. Each
port number is usually associated with a maximum of one
running program, which is responsible for handling re-
quests to that port. A daemon, being a user program, can
in turn access the local hardware resources of that com-
puter by passing requests to the operating system kernel.
Many operating systems support one or more vendor-
specific or open networking protocols as well, for ex-

https://en.wikipedia.org/wiki/Case_sensitivity
https://en.wikipedia.org/wiki/File_attribute
https://en.wikipedia.org/wiki/NTFS
https://en.wikipedia.org/wiki/Ext3
https://en.wikipedia.org/wiki/ReiserFS
https://en.wikipedia.org/wiki/NTFS-3g
https://en.wikipedia.org/wiki/NTFS-3g
https://en.wikipedia.org/wiki/ISO_9660
https://en.wikipedia.org/wiki/Universal_Disk_Format
https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/NTFS
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Abstraction
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/IP_address

12 CHAPTER 1. OPERATING SYSTEM

ample, SNA on IBM systems, DECnet on systems from
Digital Equipment Corporation, and Microsoft-specific
protocols (SMB) onWindows. Specific protocols for spe-
cific tasks may also be supported such as NFS for file
access. Protocols like ESound, or esd can be easily ex-
tended over the network to provide sound from local ap-
plications, on a remote system’s sound hardware.

1.4.3 Security

Main article: Computer security

A computer being secure depends on a number of tech-
nologies working properly. A modern operating system
provides access to a number of resources, which are avail-
able to software running on the system, and to external
devices like networks via the kernel.
The operating system must be capable of distinguish-
ing between requests which should be allowed to be pro-
cessed, and others which should not be processed. While
some systems may simply distinguish between “privi-
leged” and “non-privileged”, systems commonly have a
form of requester identity, such as a user name. To es-
tablish identity there may be a process of authentication.
Often a username must be quoted, and each username
may have a password. Other methods of authentication,
such as magnetic cards or biometric data, might be used
instead. In some cases, especially connections from the
network, resources may be accessed with no authentica-
tion at all (such as reading files over a network share).
Also covered by the concept of requester identity is au-
thorization; the particular services and resources accessi-
ble by the requester once logged into a system are tied to
either the requester’s user account or to the variously con-
figured groups of users to which the requester belongs.
In addition to the allow or disallow model of security, a
system with a high level of security also offers auditing
options. These would allow tracking of requests for ac-
cess to resources (such as, “who has been reading this
file?"). Internal security, or security from an already run-
ning program is only possible if all possibly harmful re-
quests must be carried out through interrupts to the op-
erating system kernel. If programs can directly access
hardware and resources, they cannot be secured.
External security involves a request from outside the com-
puter, such as a login at a connected console or some
kind of network connection. External requests are of-
ten passed through device drivers to the operating sys-
tem’s kernel, where they can be passed onto applications,
or carried out directly. Security of operating systems
has long been a concern because of highly sensitive data
held on computers, both of a commercial and military na-
ture. The United States Government Department of De-
fense (DoD) created the Trusted Computer System Evalu-
ation Criteria (TCSEC) which is a standard that sets ba-
sic requirements for assessing the effectiveness of secu-

rity. This became of vital importance to operating system
makers, because the TCSEC was used to evaluate, clas-
sify and select trusted operating systems being considered
for the processing, storage and retrieval of sensitive or
classified information.
Network services include offerings such as file sharing,
print services, email, web sites, and file transfer proto-
cols (FTP), most of which can have compromised secu-
rity. At the front line of security are hardware devices
known as firewalls or intrusion detection/prevention sys-
tems. At the operating system level, there are a number
of software firewalls available, as well as intrusion detec-
tion/prevention systems. Most modern operating systems
include a software firewall, which is enabled by default. A
software firewall can be configured to allow or deny net-
work traffic to or from a service or application running
on the operating system. Therefore, one can install and
be running an insecure service, such as Telnet or FTP,
and not have to be threatened by a security breach be-
cause the firewall would deny all traffic trying to connect
to the service on that port.
An alternative strategy, and the only sandbox strategy
available in systems that do not meet the Popek and Gold-
berg virtualization requirements, is where the operating
system is not running user programs as native code, but
instead either emulates a processor or provides a host for
a p-code based system such as Java.
Internal security is especially relevant for multi-user sys-
tems; it allows each user of the system to have private files
that the other users cannot tamper with or read. Internal
security is also vital if auditing is to be of any use, since
a program can potentially bypass the operating system,
inclusive of bypassing auditing.

1.4.4 User interface

A screenshot of the Bourne Again Shell command line. Each
command is typed out after the 'prompt', and then its output ap-
pears below, working its way down the screen. The current com-
mand prompt is at the bottom.

https://en.wikipedia.org/wiki/Systems_Network_Architecture
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/DECnet
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/Server_message_block
https://en.wikipedia.org/wiki/Network_File_System_(protocol)
https://en.wikipedia.org/wiki/ESound
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Government_of_the_United_States
https://en.wikipedia.org/wiki/United_States_Department_of_Defense
https://en.wikipedia.org/wiki/United_States_Department_of_Defense
https://en.wikipedia.org/wiki/Trusted_Computer_System_Evaluation_Criteria
https://en.wikipedia.org/wiki/Trusted_Computer_System_Evaluation_Criteria
https://en.wikipedia.org/wiki/Trusted_operating_system
https://en.wikipedia.org/wiki/Classified_information
https://en.wikipedia.org/wiki/File_transfer_protocol
https://en.wikipedia.org/wiki/File_transfer_protocol
https://en.wikipedia.org/wiki/Firewall_(networking)
https://en.wikipedia.org/wiki/Sandbox_(computer_security)
https://en.wikipedia.org/wiki/Popek_and_Goldberg_virtualization_requirements
https://en.wikipedia.org/wiki/Popek_and_Goldberg_virtualization_requirements
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/P-code_machine
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

1.5. REAL-TIME OPERATING SYSTEMS 13

Main article: Operating system user interface

Every computer that is to be operated by an individual
requires a user interface. The user interface is usually re-
ferred to as a shell and is essential if human interaction
is to be supported. The user interface views the directory
structure and requests services from the operating system
that will acquire data from input hardware devices, such
as a keyboard, mouse or credit card reader, and requests
operating system services to display prompts, status mes-
sages and such on output hardware devices, such as a
videomonitor or printer. The twomost common forms of
a user interface have historically been the command-line
interface, where computer commands are typed out line-
by-line, and the graphical user interface, where a visual
environment (most commonly a WIMP) is present.

Graphical user interfaces

A screenshot of the KDE Plasma Desktop graphical user inter-
face. Programs take the form of images on the screen, and the
files, folders (directories), and applications take the form of icons
and symbols. A mouse is used to navigate the computer.

Most of the modern computer systems support graphical
user interfaces (GUI), and often include them. In some
computer systems, such as the original implementation of
Mac OS, the GUI is integrated into the kernel.
While technically a graphical user interface is not an op-
erating system service, incorporating support for one into
the operating system kernel can allow the GUI to be more
responsive by reducing the number of context switches re-
quired for the GUI to perform its output functions. Other
operating systems are modular, separating the graphics
subsystem from the kernel and the Operating System. In
the 1980s UNIX, VMS and many others had operating
systems that were built this way. Linux andMacOSX are
also built this way. Modern releases of Microsoft Win-
dows such as Windows Vista implement a graphics sub-
system that is mostly in user-space; however the graphics
drawing routines of versions between Windows NT 4.0
and Windows Server 2003 exist mostly in kernel space.
Windows 9x had very little distinction between the inter-
face and the kernel.

Many computer operating systems allow the user to install
or create any user interface they desire. The X Window
System in conjunction with GNOME or KDE Plasma
Desktop is a commonly found setup on most Unix and
Unix-like (BSD, Linux, Solaris) systems. A number of
Windows shell replacements have been released for Mi-
crosoft Windows, which offer alternatives to the included
Windows shell, but the shell itself cannot be separated
from Windows.
Numerous Unix-basedGUIs have existed over time, most
derived from X11. Competition among the various ven-
dors of Unix (HP, IBM, Sun) led to much fragmentation,
though an effort to standardize in the 1990s to COSE
and CDE failed for various reasons, and were eventu-
ally eclipsed by the widespread adoption of GNOME and
K Desktop Environment. Prior to free software-based
toolkits and desktop environments, Motif was the preva-
lent toolkit/desktop combination (and was the basis upon
which CDE was developed).
Graphical user interfaces evolve over time. For exam-
ple, Windows has modified its user interface almost every
time a newmajor version ofWindows is released, and the
Mac OS GUI changed dramatically with the introduction
of Mac OS X in 1999.[31]

1.5 Real-time operating systems

Main article: Real-time operating system

A real-time operating system (RTOS) is an operating sys-
tem intended for applications with fixed deadlines (real-
time computing). Such applications include some small
embedded systems, automobile engine controllers, indus-
trial robots, spacecraft, industrial control, and some large-
scale computing systems.
An early example of a large-scale real-time operating sys-
tem was Transaction Processing Facility developed by
American Airlines and IBM for the Sabre Airline Reser-
vations System.
Embedded systems that have fixed deadlines use a real-
time operating system such as VxWorks, PikeOS, eCos,
QNX, MontaVista Linux and RTLinux. Windows CE is
a real-time operating system that shares similar APIs to
desktop Windows but shares none of desktop Windows’
codebase. Symbian OS also has an RTOS kernel (EKA2)
starting with version 8.0b.
Some embedded systems use operating systems such as
Palm OS, BSD, and Linux, although such operating sys-
tems do not support real-time computing.

https://en.wikipedia.org/wiki/Operating_system_user_interface
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/Directory_structure
https://en.wikipedia.org/wiki/Directory_structure
https://en.wikipedia.org/wiki/Input_device
https://en.wikipedia.org/wiki/Keyboard_(computing)
https://en.wikipedia.org/wiki/Mouse_(computing)
https://en.wikipedia.org/wiki/Credit_card
https://en.wikipedia.org/wiki/Command-line_interface#Command_prompt
https://en.wikipedia.org/wiki/Status_message
https://en.wikipedia.org/wiki/Status_message
https://en.wikipedia.org/wiki/Output_device
https://en.wikipedia.org/wiki/Computer_monitor
https://en.wikipedia.org/wiki/Printer_(computing)
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/WIMP_(computing)
https://en.wikipedia.org/wiki/KDE_Plasma_Desktop
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Mac_OS
https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Modularity_(programming)
https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/Windows_NT_4.0
https://en.wikipedia.org/wiki/Windows_Server_2003
https://en.wikipedia.org/wiki/Windows_9x
https://en.wikipedia.org/wiki/X_Window_System
https://en.wikipedia.org/wiki/X_Window_System
https://en.wikipedia.org/wiki/GNOME
https://en.wikipedia.org/wiki/KDE_Plasma_Desktop
https://en.wikipedia.org/wiki/KDE_Plasma_Desktop
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Windows_shell_replacement
https://en.wikipedia.org/wiki/Windows_shell
https://en.wikipedia.org/wiki/Common_Open_Software_Environment
https://en.wikipedia.org/wiki/Common_Desktop_Environment
https://en.wikipedia.org/wiki/K_Desktop_Environment
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Transaction_Processing_Facility
https://en.wikipedia.org/wiki/American_Airlines
https://en.wikipedia.org/wiki/International_Business_Machines
https://en.wikipedia.org/wiki/Sabre_Airline_Reservations_System
https://en.wikipedia.org/wiki/Sabre_Airline_Reservations_System
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/VxWorks
https://en.wikipedia.org/wiki/PikeOS
https://en.wikipedia.org/wiki/ECos
https://en.wikipedia.org/wiki/QNX
https://en.wikipedia.org/wiki/MontaVista_Linux
https://en.wikipedia.org/wiki/RTLinux
https://en.wikipedia.org/wiki/Windows_CE
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Symbian_OS
https://en.wikipedia.org/wiki/Palm_OS
https://en.wikipedia.org/wiki/BSD_(operating_system)
https://en.wikipedia.org/wiki/Linux

14 CHAPTER 1. OPERATING SYSTEM

1.6 Operating system development
as a hobby

See also: Hobbyist operating system development

Operating system development is one of the most com-
plicated activities in which a computing hobbyist may en-
gage. A hobby operating system may be classified as one
whose code has not been directly derived from an existing
operating system, and has few users and active develop-
ers.[32]

In some cases, hobby development is in support of a
"homebrew" computing device, for example, a simple
single-board computer powered by a 6502 microproces-
sor. Or, development may be for an architecture already
in widespread use. Operating system development may
come from entirely new concepts, or may commence by
modeling an existing operating system. In either case, the
hobbyist is his/her own developer, or may interact with a
small and sometimes unstructured group of individuals
who have like interests.
Examples of a hobby operating system include ReactOS
and Syllable.

1.7 Diversity of operating systems
and portability

Application software is generally written for use on a spe-
cific operating system, and sometimes even for specific
hardware. When porting the application to run on another
OS, the functionality required by that application may be
implemented differently by that OS (the names of func-
tions, meaning of arguments, etc.) requiring the applica-
tion to be adapted, changed, or otherwise maintained.
Unix was the first operating system not written in assem-
bly language, making it very portable to systems different
from its native PDP-11.[33]

This cost in supporting operating systems diversity can be
avoided by instead writing applications against software
platforms like Java or Qt. These abstractions have already
borne the cost of adaptation to specific operating systems
and their system libraries.
Another approach is for operating system vendors to
adopt standards. For example, POSIX and OS abstrac-
tion layers provide commonalities that reduce porting
costs.

1.8 Market share

Main article: Usage share of operating systems

Source: Gartner

1.9 See also

1.10 References
[1] Stallings (2005). Operating Systems, Internals and Design

Principles. Pearson: Prentice Hall. p. 6.

[2] Dhotre, I.A. (2009). Operating Systems. Technical Publi-
cations. p. 1.

[3] “Operating System Market Share”. Net Applications.

[4] Silberschatz Galvin Gagne (2012). Operating Systems
Concepts. New York: Wiley. ISBN 978-1118063330.

[5] Hansen, Per Brinch, ed. (2001). Classic Operating Sys-
tems. Springer. pp. 4–7. ISBN 0-387-95113-X.

[6] Lavington 1980, pp. 50—52

[7] Brinch Hansen 2000

[8] Ritchie, Dennis. “Unix Manual, first edition”. Lucent
Technologies. Retrieved 22 November 2012.

[9] “Apple introduces mac OS X Maverick’s at WWDC”.
YouTube. TechandPlayTV. June 10, 2013. Retrieved
November 17, 2013.

[10] “OS X Mountain Lion – Move your Mac even further
ahead”. Apple. Retrieved 2012-08-07.

[11] Usage share of operating systems

[12] “Top 5 Operating Systems from January to April 2011”.
StatCounter. October 2009. Retrieved November 5,
2009.

[13] “IDC report into Server market share”. Idc.com. Re-
trieved 2012-08-07.

[14] “Linux still top embedded OS”. Archived from the origi-
nal on 2012-05-29.

[15] Jermoluk, Tom (2012-08-03). “TOP500 List – Novem-
ber 2010 (1–100) | TOP500 Supercomputing Sites”.
Top500.org. Retrieved 2012-08-07.

[16] “Chromium OS”. Chromium.org.

[17] “Chromium OS FAQ”. The Chromium Projects. Re-
trieved 28 February 2014.

[18] “Global Web Stats”. Net Market Share, Net Applications.
May 2011. Retrieved 2011-05-07.

[19] “Global Web Stats”. W3Counter, Awio Web Services.
September 2009. Retrieved 2009-10-24.

[20] “Operating SystemMarket Share”. Net Applications. Oc-
tober 2009. Retrieved November 5, 2009.

[21] “w3schools.com OS Platform Statistics”. Retrieved Oc-
tober 30, 2011.

https://en.wikipedia.org/wiki/Hobbyist_operating_system_development
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Homebrew_Computer_Club
https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/6502_microprocessor
https://en.wikipedia.org/wiki/6502_microprocessor
https://en.wikipedia.org/wiki/ReactOS
https://en.wikipedia.org/wiki/Syllable_(operating_system)
https://en.wikipedia.org/wiki/Software_maintenance
https://en.wikipedia.org/wiki/Software_portability
https://en.wikipedia.org/wiki/PDP-11
https://en.wikipedia.org/wiki/Software_platform
https://en.wikipedia.org/wiki/Software_platform
https://en.wikipedia.org/wiki/Java_(software_platform)
https://en.wikipedia.org/wiki/Qt_(toolkit)
https://en.wikipedia.org/wiki/System_library
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Operating_system_abstraction_layer
https://en.wikipedia.org/wiki/Operating_system_abstraction_layer
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems
http://marketshare.hitslink.com/operating-system-market-share.aspx?qprid=10
http://www.amazon.com/Operating-System-Concepts-9th-Edition-ebook/dp/B00APSZCEQ/ref=tmm_kin_title_0?ie=UTF8&qid=1394037951&sr=1-1
http://www.amazon.com/Operating-System-Concepts-9th-Edition-ebook/dp/B00APSZCEQ/ref=tmm_kin_title_0?ie=UTF8&qid=1394037951&sr=1-1
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1118063330
http://books.google.com/?id=-PDPBvIPYBkC&lpg=PP1&pg=PP1#v=onepage&q
http://books.google.com/?id=-PDPBvIPYBkC&lpg=PP1&pg=PP1#v=onepage&q
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-387-95113-X
https://en.wikipedia.org/wiki/Operating%2520system#CITEREFLavington1980
https://en.wikipedia.org/wiki/Operating%2520system#CITEREFBrinch_Hansen2000
http://cm.bell-labs.com/cm/cs/who/dmr/1stEdman.html
http://www.youtube.com/watch?v=BqGsTuY3yWc
http://www.apple.com/macosx/lion/
http://www.apple.com/macosx/lion/
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems
http://gs.statcounter.com/#os-ww-monthly-201101-201104-bar
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22360110§ionId=null&elementId=null&pageType=SYNOPSIS
http://archive.is/kgx2
http://www.linuxdevices.com/news/NS4920597981.html
http://www.linuxdevices.com/news/NS4920597981.html
http://www.top500.org/list/2010/11/100
http://www.top500.org/list/2010/11/100
http://www.chromium.org/chromium-os
http://www.chromium.org/chromium-os/chromium-os-faq
http://marketshare.hitslink.com/operating-system-market-share.aspx?qprid=8
http://www.w3counter.com/globalstats.php
http://marketshare.hitslink.com/operating-system-market-share.aspx?qprid=8
http://www.w3schools.com/browsers/browsers_os.asp

1.12. EXTERNAL LINKS 15

[22] “Stats Count Global Stats Top Five Operating Systems”.
Retrieved October 30, 2011.

[23] “Global statistics at w3counter.com”. Retrieved 23 Jan-
uary 2012.

[24] “Troubleshooting MS-DOS Compatibility Mode on Hard
Disks”. Support.microsoft.com. Retrieved 2012-08-07.

[25] “Using NDIS 2 PCMCIA Network Card Drivers in Win-
dows 95”. Support.microsoft.com. Retrieved 2012-08-
07.

[26] “INFO: Windows 95 Multimedia Wave Device Drivers
Must be 16 bit”. Support.microsoft.com. Retrieved 2012-
08-07.

[27] Arthur, Charles. “Windows 8 will run on ARM chips -
but third-party apps will need rewrite”. The Guardian.

[28] “Operating System Share by Groups for Sites in All Lo-
cations January 2009”.

[29] “Behind the IDC data: Windows still No. 1 in server op-
erating systems”. ZDNet. 2010-02-26.

[30] Stallings, William (2008). Computer Organization & Ar-
chitecture. New Delhi: Prentice-Hall of India Private
Limited. p. 267. ISBN 978-81-203-2962-1.

[31] Poisson, Ken. “Chronology of Personal Computer Soft-
ware”. Retrieved on 2008-05-07. Last checked on 2009-
03-30.

[32] “MyOS is less hobby than yours”. Osnews. December 21,
2009. Retrieved December 21, 2009.

[33] “The History of Unix”. BYTE. August 1983. p. 188. Re-
trieved 31 January 2015.

[34] Lance Whitney (January 7, 2014). “Android device ship-
ments to top 1 billion this year -- Gartner”.

1.11 Further reading
• Auslander, Marc A.; Larkin, David C.; Scherr, Al-
lan L. (1981). “The evolution of theMVSOperating
System”. IBM J. Research & Development.

• Deitel, Harvey M.; Deitel, Paul; Choffnes, David.
Operating Systems. Pearson/Prentice Hall. ISBN
978-0-13-092641-8.

• Bic, Lubomur F.; Shaw, Alan C. (2003). Operating
Systems. Pearson: Prentice Hall.

• Silberschatz, Avi; Galvin, Peter; Gagne, Greg
(2008). Operating Systems Concepts. John Wiley &
Sons. ISBN 0-470-12872-0.

• O'Brien, J.A., & Marakas, G.M.(2011). Manage-
ment Information Systems. 10e. McGraw-Hill Ir-
win

• Leva, Alberto; Maggio, Martina; Papadopoulos,
Alessandro Vittorio; Terraneo, Federico (2013).
Control-based Operating System Design. IET. ISBN
978-1-84919-609-3.

1.12 External links
• Operating Systems at DMOZ

• Multics History and the history of operating systems

http://gs.statcounter.com/#os-ww-monthly-201010-201110
http://www.w3counter.com/globalstats.php
http://support.microsoft.com/kb/130179/EN-US
http://support.microsoft.com/kb/130179/EN-US
http://support.microsoft.com/kb/134748/en
http://support.microsoft.com/kb/134748/en
http://support.microsoft.com/kb/163354/en
http://support.microsoft.com/kb/163354/en
http://www.theguardian.com/technology/2011/jan/05/microsoft-windows-8-arm-processors
http://www.theguardian.com/technology/2011/jan/05/microsoft-windows-8-arm-processors
http://news.netcraft.com/SSL-Survey/CMatch/osdv_all
http://news.netcraft.com/SSL-Survey/CMatch/osdv_all
http://blogs.zdnet.com/microsoft/?p=5408
http://blogs.zdnet.com/microsoft/?p=5408
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-81-203-2962-1
http://www.islandnet.com/~kpolsson/compsoft/soft1998.htm
http://www.islandnet.com/~kpolsson/compsoft/soft1998.htm
http://www.osnews.com/story/22638/My_OS_Is_Less_Hobby_than_Yours
https://archive.org/stream/byte-magazine-1983-08/1983_08_BYTE_08-08_The_C_Language#page/n189/mode/2up
http://news.cnet.com/8301-1035_3-57616768-94/android-device-shipments-to-top-1-billion-this-year-gartner/?part=rss&subj=cnet&tag=title&utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+cnet%252FNnTv+%2528CNET+River+RSS%2529
http://news.cnet.com/8301-1035_3-57616768-94/android-device-shipments-to-top-1-billion-this-year-gartner/?part=rss&subj=cnet&tag=title&utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+cnet%252FNnTv+%2528CNET+River+RSS%2529
http://www.research.ibm.com/journal/rd/255/auslander.pdf
http://www.research.ibm.com/journal/rd/255/auslander.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-13-092641-8
https://en.wikipedia.org/wiki/Prentice_Hall
https://en.wikipedia.org/wiki/John_Wiley_&_Sons
https://en.wikipedia.org/wiki/John_Wiley_&_Sons
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-470-12872-0
https://en.wikipedia.org/wiki/Institution_of_Engineering_and_Technology
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-84919-609-3
https://www.dmoz.org/Computers/Software/Operating_Systems
https://en.wikipedia.org/wiki/DMOZ
http://www.cbi.umn.edu/iterations/haigh.html

Chapter 2

System software

Not to be confused with Software system.

System software (systems software) is computer soft-
ware designed to operate and control the computer hard-
ware and to provide a platform for running application
software.[1] System software can be separated into two
different categories, operating systems and utility soft-
ware.

• The operating system (prominent examples being
z/OS, Microsoft Windows, Mac OS X and Linux),
allows the parts of a computer to work together
by performing tasks like transferring data between
memory and disks or rendering output onto a display
device. It also provides a platform to run high-level
system software and application software.

• A kernel is the core part of the operating sys-
tem that defines an API for applications pro-
grams (including some system software) and
an interface to device drivers.
• Device drivers such as computer BIOS
and device firmware provide basic func-
tionality to operate and control the hard-
ware connected to or built into the com-
puter.

• A user interface “allows users to interact with
a computer.”[2] Since the 1980s the graphical
user interface (GUI) has been perhaps the
most common user interface technology. The
command-line interface is still a commonly
used alternative.

• Utility software helps to analyze, configure, opti-
mize and maintain the computer, such as virus
protection.[3]

In some publications, the term system software also in-
cludes software development tools (like a compiler, linker
or debugger).[4]

In contrast to system software, software that allows users
to do things like create text documents, play games, lis-
ten to music, or web browsers to surf the web are called
application software.[5] The line where the distinction

should be drawn isn't always clear. Most operating sys-
tems bundle such software. Such software is not consid-
ered system software when it can be uninstalled without
affecting the functioning of other software. Exceptions
could be e.g. web browsers such as Internet Explorer
where Microsoft argued in court that it was system soft-
ware that could not be uninstalled. Later examples are
Chrome OS and Firefox OS where the browser functions
as the only user interface and the only way to run pro-
grams (and other web browser can not be installed in their
place), then they can well be argued to be (part of) the op-
erating system and then system software.

2.1 See also
• Systems programming language

2.2 References
[1] “What is software? - Definition from WhatIs.com”.

Searchsoa.techtarget.com. Retrieved 2012-06-24.

[2] Daeryong, Kim. “Microcomputer Information Technol-
ogy”. Retrieved 2013-09-22.

[3] “What is System Software?". Alverno.edu. 2011-07-24.
Archived from the original on 2011-07-24. Retrieved
2012-06-24.

[4] “What is systems software? - A Word Definition From
the Webopedia Computer Dictionary”. Webopedia.com.
Retrieved 2012-06-24.

[5] W. W. Milner, Ann Montgomery-Smith (2000). Infor-
mation and Communication technology for Intermediate
Gnvq. p.126

2.3 External links
• Sammet, Jean (October 1971). “Brief Sur-
vey of Languages Used for Systems Implemen-
tation”. SCM SIGPLAN Notices 6 (9): 1–19.
doi:10.1145/942596.807055.

16

https://en.wikipedia.org/wiki/Software_system
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Z/OS
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Data_(computing)
https://en.wikipedia.org/wiki/Random_access_memory
https://en.wikipedia.org/wiki/Disk_storage
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Kernel_(computing)
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/Firmware
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Utility_software
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Debugger
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Internet_Explorer
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Chrome_OS
https://en.wikipedia.org/wiki/Firefox_OS
https://en.wikipedia.org/wiki/Systems_programming_language
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci213024,00.html
http://home.olemiss.edu/~misbook/sfsysfm.htm
http://home.olemiss.edu/~misbook/sfsysfm.htm
http://web.archive.org/web/20110724172944/http://depts.alverno.edu/cil/mod1/software/system.html
http://depts.alverno.edu/cil/mod1/software/system.html
http://www.webopedia.com/TERM/S/systems_software.html
http://www.webopedia.com/TERM/S/systems_software.html
http://dl.acm.org/citation.cfm?id=807055
http://dl.acm.org/citation.cfm?id=807055
http://dl.acm.org/citation.cfm?id=807055
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F942596.807055

Chapter 3

Firmware

A typical firmware-controlled device: a television remote control.
Consumer products like this have been using firmware since the
1970s.

In electronic systems and computing, firmware is “the
combination of a hardware device, e.g. an integrated cir-
cuit, and computer instructions and data that reside as
read only software on that device”. As a result, firmware
usually cannot be modified during normal operation of
the device.[1] Typical examples of devices containing
firmware are embedded systems (such as traffic lights,
consumer appliances, and digital watches), computers,
computer peripherals, mobile phones, and digital cam-
eras. The firmware contained in these devices provides
the control program for the device.
Firmware is held in non-volatile memory devices such
as ROM, EPROM, or flash memory. Changing the
firmware of a device may rarely or never be done during
its economic lifetime; some firmwarememory devices are
permanently installed and cannot be changed after manu-
facture. Common reasons for updating firmware include
fixing bugs or adding features to the device. This may re-
quire ROM integrated circuits to be physically replaced,
or flash memory to be reprogrammed through a special
procedure.[2] Firmware such as the ROM BIOS of a per-
sonal computer may contain only elementary basic func-
tions of a device and may only provide services to higher-
level software. Firmware such as the program of an em-
bedded system may be the only program that will run on
the system and provide all of its functions.

Before integrated circuits, other firmware devices in-
cluded a discrete semiconductor diode matrix. The
Apollo guidance computer had firmware consisting of a
specially manufactured core memory plane, called "core
rope memory", where data were stored by physically
threading wires through (1) or around (0) the core storing
each data bit.[3]

3.1 Origin of the term

Ascher Opler coined the term “firmware” in a 1967
Datamation article.[4] Originally, it meant the contents of
a writable control store (a small specialized high speed
memory), containing microcode that defined and imple-
mented the computer’s instruction set, and that could be
reloaded to specialize or modify the instructions that the
central processing unit (CPU) could execute. As origi-
nally used, firmware contrasted with hardware (the CPU
itself) and software (normal instructions executing on a
CPU). It was not composed of CPU machine instruc-
tions, but of lower-level microcode involved in the im-
plementation of machine instructions. It existed on the
boundary between hardware and software; thus the name
“firmware”.
Still later, popular usage extended the word “firmware”
to denote anything ROM-resident, including processor
machine-instructions for BIOS, bootstrap loaders, or spe-
cialized applications.
Until the mid-1990s, updating firmware typically in-
volved replacing a storage medium containing firmware,
usually a socketed ROM integrated circuit. Flash mem-
ory allows firmware to be updated without physically re-
moving an integrated circuit from the system. An er-
ror during the update process may make the device non-
functional, or “bricked”.

3.2 Personal computers

In some respects, the various firmware components are
as important as the operating system in a working com-
puter. However, unlike most modern operating systems,

17

https://en.wikipedia.org/wiki/Electronic_system
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Embedded_systems
https://en.wikipedia.org/wiki/Mobile_phone
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/Non-volatile_memory
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/EPROM
https://en.wikipedia.org/wiki/Flash_memory
https://en.wikipedia.org/wiki/ROM_BIOS
https://en.wikipedia.org/wiki/Semiconductor_diode
https://en.wikipedia.org/wiki/Diode_matrix
https://en.wikipedia.org/wiki/Apollo_guidance_computer
https://en.wikipedia.org/wiki/Core_memory
https://en.wikipedia.org/wiki/Core_rope_memory
https://en.wikipedia.org/wiki/Core_rope_memory
https://en.wikipedia.org/wiki/Datamation
https://en.wikipedia.org/wiki/Control_store
https://en.wikipedia.org/wiki/Microcode
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/Booting
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Brick_(electronics)
https://en.wikipedia.org/wiki/Operating_system

18 CHAPTER 3. FIRMWARE

ROM BIOS firmware on a Baby AT motherboard

firmware rarely has a well-evolved automatic mechanism
of updating itself to fix any functionality issues detected
after shipping the unit.
The BIOS may be “manually” updated by a user, using
a small utility program. In contrast, firmware in storage
devices (harddisks, DVD drives, flash storage) rarely gets
updated, even when flash (rather than ROM) storage is
used for the firmware; there are no standardized mecha-
nisms for detecting or updating firmware versions.
Most computer peripherals are themselves special-
purpose computers. Devices such as printers, scanners,
cameras, USB drives, have firmware stored internally.
Some devices may permit field replacement of firmware.
Some low-cost peripherals no longer contain non-volatile
memory for firmware, and instead rely on the host system
to transfer the device control program from a disk file or
CD.[5]

3.3 Consumer products

As of 2010 most portable music players support firmware
upgrades. Some companies use firmware updates to add
new playable file formats (codecs); iriver added Vorbis
playback support this way, for instance. Other features
that may change with firmware updates include the GUI
or even the battery life. Most mobile phones have a
Firmware Over The Air firmware upgrade capability for
much the same reasons; some may even be upgraded to
enhance reception or sound quality, illustrating the fact
that firmware is used at more than one level in complex
products (in a CPU-likemicrocontroller versus in a digital
signal processor, in this particular case).

3.4 Automobiles

Since 1996 most automobiles have employed an on-
board computer and various sensors to detect mechan-
ical problems. As of 2010 modern vehicles also em-
ploy computer-controlled ABS systems and computer-
operated Transmission Control Units (TCU). The driver
can also get in-dash information while driving in this
manner, such as real-time fuel-economy and tire-pressure

readings. Local dealers can update most vehicle
firmware.

3.5 Examples

Examples of firmware include:

• In consumer products:

• Timing and control systems for washing ma-
chines

• Controlling sound and video attributes, as well
as the channel list, in modern TVs

• EPROM chips used in the Eventide H-3000
series of digital music processors

• In computers:

• The BIOS found in IBM-compatible personal
computers

• The (U)EFI-compliant firmware used on
Itanium systems, Intel-based computers from
Apple, and many Intel desktop computer
motherboards

• Open Firmware, used in SPARC-based com-
puters from Sun Microsystems and Oracle
Corporation, PowerPC-based computers from
Apple, and computers from Genesi

• ARCS, used in computers fromSiliconGraph-
ics

• Kickstart, used in the Amiga line of computers
(POST, hardware init + Plug and Play auto-
configuration of peripherals, kernel, etc.)

• RTAS (Run-Time Abstraction Services), used
in computers from IBM

• The Common Firmware Environment (CFE)

• In routers and firewalls:

• OpenWrt – an open-source firewall/router OS
based on Linux

• m0n0wall – an embedded firewall distribution
of FreeBSD

• IPFire – a free Linux router and firewall dis-
tribution

• fli4l – a free Linux router and firewall distri-
bution

• In NAS systems:

• NAS4Free – an open-source NAS operating
system based on FreeBSD 9.1

• Openfiler – a free Linux-based NAS operating
system

https://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/Baby_AT
https://en.wikipedia.org/wiki/Motherboard
https://en.wikipedia.org/wiki/USB_flash_drive
https://en.wikipedia.org/wiki/Portable_music_player
https://en.wikipedia.org/wiki/Iriver
https://en.wikipedia.org/wiki/Vorbis
https://en.wikipedia.org/wiki/Mobile_phone
https://en.wikipedia.org/wiki/Firmware_Over_The_Air
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Automobile
https://en.wikipedia.org/wiki/Transmission_control_unit
https://en.wikipedia.org/wiki/Washing_machine
https://en.wikipedia.org/wiki/Washing_machine
https://en.wikipedia.org/wiki/TV
https://en.wikipedia.org/wiki/EPROM
https://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/Extensible_Firmware_Interface
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Open_Firmware
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Genesi
https://en.wikipedia.org/wiki/ARCS_(computing)
https://en.wikipedia.org/wiki/Silicon_Graphics
https://en.wikipedia.org/wiki/Silicon_Graphics
https://en.wikipedia.org/wiki/Kickstart_(Amiga)
https://en.wikipedia.org/wiki/Amiga
https://en.wikipedia.org/wiki/Power-on_self-test
https://en.wikipedia.org/wiki/Plug_and_Play
https://en.wikipedia.org/wiki/Autoconfig
https://en.wikipedia.org/wiki/Autoconfig
https://en.wikipedia.org/wiki/Kernel_(computing)
https://en.wikipedia.org/wiki/Run-Time_Abstraction_Services
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Common_Firmware_Environment
https://en.wikipedia.org/wiki/Residential_gateway
https://en.wikipedia.org/wiki/Firewall_(computing)
https://en.wikipedia.org/wiki/OpenWrt
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/M0n0wall
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/IPFire
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Fli4l
https://en.wikipedia.org/wiki/Network-attached_storage
https://en.wikipedia.org/wiki/NAS4Free
https://en.wikipedia.org/wiki/Openfiler

3.8. SECURITY RISKS 19

3.6 Flashing

Flashing[6] involves the overwriting of existing firmware
or data on EEPROM modules present in an electronic
device with new data.[6] This can be done to upgrade a
device[7] or to change the provider of a service associated
with the function of the device, such as changing from one
mobile phone service provider to another or installing a
new operating system. If firmware is upgradable, it is of-
ten done via a program from the provider, and will often
allow the old firmware to be saved before upgrading so
it can be reverted to if the process fails, or if the newer
version performs worse.

3.7 Firmware hacking

Sometimes third parties create an unofficial new or mod-
ified (“aftermarket”) version of firmware to provide new
features or to unlock hidden functionality. Examples in-
clude:

• Rockbox for digital audio players.

• CHDK[8] and Magic Lantern[8] for Canon digital
cameras.

• Nikon Hacker project for Nikon EXPEED DSLRs.

• Many third-party firmware projects for wireless
routers, including:

• OpenWrt, and its derivatives such as DD-
WRT, for wireless routers.[8]

• RouterTech – for ADSLmodem/routers based
on the Texas Instruments AR7 chipset (with
the Pspboot or Adam2 bootloader).

• List of wireless router firmware projects

• Firmware that allows DVD drives to be region-free.

• SamyGO, modified firmware for Samsung
televisions.[9]

• Many homebrew projects for gaming consoles.
These often unlock general-purpose computing
functionality in previously limited devices (e.g., run-
ning Doom on iPods).

Most firmware hacks are free and open source software
as well.
These hacks usually take advantage of the firmware up-
date facility on many devices to install or run themselves.
Some, however, must resort to exploits in order to run,
because the manufacturer has attempted to lock the hard-
ware to stop it from running unlicensed code.

3.7.1 HDD firmware hacks

The Moscow-based Kaspersky Lab discovered that a
group of developers it refers to as the "Equation Group"
has developed hard disk drive firmware modifications for
various drivemodels, containing a trojan horse that allows
data to be stored on the drive in locations that will not
be erased even if the drive is formatted or wiped.[10] Al-
though the Kaspersky Lab report did not explicitly claim
that this group is part of the United States National Secu-
rity Agency (NSA), evidence obtained from the code of
various Equation Group software suggests that they are
part of the NSA.[11][12]

Researchers from the Kaspersky Lab categorized the
undertakings by Equation Group as the most advanced
hacking operation ever uncovered, also documenting
around 500 infections caused by the Equation Group in
at least 42 countries.

3.8 Security risks

Mark Shuttleworth, founder of the Ubuntu Linux dis-
tribution, has described proprietary firmware as a secu-
rity risk,[13] saying that “firmware on your device is the
NSA's best friend” and calling firmware “a trojan horse of
monumental proportions”. He has pointed out that low-
quality, closed source firmware is a major threat to system
security:[14] “Your biggest mistake is to assume that the
NSA is the only institution abusing this position of trust
– in fact, it’s reasonable to assume that all firmware is a
cesspool of insecurity, courtesy of incompetence of the
highest degree from manufacturers, and competence of
the highest degree from a very wide range of such agen-
cies”.
As a solution to this problem, he has called for declarative
firmware.[14] Firmware should be open source so that the
code can be checked and verified; it should also be declar-
ative, meaning that it should describe “hardware linkage
and dependencies” and “should not include executable
code".[14]

Custom firmware hacks have also focused on injecting
malware into devices such as smartphones or USB de-
vices. One such smartphone injection was demonstrated
on the Symbian OS at MalCon,[15][16] a hacker conven-
tion. A USB device firmware hack called BadUSB was
presented at Black Hat USA 2014 conference,[17] demon-
strating how a USB flash drive microcontroller can be re-
programmed to spoof various other device types in order
to take control of a computer, exfiltrate data, or spy on the
user.[18][19] Other security researchers have worked fur-
ther on how to exploit the principles behind BadUSB,[20]
releasing at the same time the source code of hacking
tools that can be used to modify the behavior of USB flash
drives.[21]

https://en.wikipedia.org/wiki/Service_provider
https://en.wikipedia.org/wiki/Mobile_phone
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Rockbox
https://en.wikipedia.org/wiki/Digital_audio_player
https://en.wikipedia.org/wiki/CHDK
https://en.wikipedia.org/wiki/Canon_EOS_5D_Mark_II#Video_functionality
https://en.wikipedia.org/wiki/Canon_digital_camera
https://en.wikipedia.org/wiki/Canon_digital_camera
https://en.wikipedia.org/wiki/EXPEED
https://en.wikipedia.org/wiki/Nikon_DSLR
https://en.wikipedia.org/wiki/OpenWrt
https://en.wikipedia.org/wiki/DD-WRT
https://en.wikipedia.org/wiki/DD-WRT
https://en.wikipedia.org/wiki/Wireless_router
https://en.wikipedia.org/wiki/ADSL
https://en.wikipedia.org/wiki/TI-AR7
https://en.wikipedia.org/wiki/Adam2
https://en.wikipedia.org/wiki/Bootloader
https://en.wikipedia.org/wiki/List_of_wireless_router_firmware_projects
https://en.wikipedia.org/wiki/DVD_region_code
https://en.wikipedia.org/wiki/Samsung
https://en.wikipedia.org/wiki/Homebrew_(video_games)
https://en.wikipedia.org/wiki/Doom_(video_game)
https://en.wikipedia.org/wiki/IPod
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Exploit_(computer_security)
https://en.wikipedia.org/wiki/Unsigned_code
https://en.wikipedia.org/wiki/Kaspersky_Lab
https://en.wikipedia.org/wiki/Equation_Group
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Trojan_horse_(computing)
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/Mark_Shuttleworth
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/NSA
https://en.wikipedia.org/wiki/Closed_source
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Executable_code
https://en.wikipedia.org/wiki/Executable_code
https://en.wikipedia.org/wiki/Malware
https://en.wikipedia.org/wiki/USB_device
https://en.wikipedia.org/wiki/USB_device
https://en.wikipedia.org/wiki/Symbian_OS#Malware
https://en.wikipedia.org/wiki/Malcon
https://en.wikipedia.org/wiki/Hacker_convention
https://en.wikipedia.org/wiki/Hacker_convention
https://en.wikipedia.org/wiki/Black_Hat_Briefings
https://en.wikipedia.org/wiki/USB_flash_drive

20 CHAPTER 3. FIRMWARE

3.9 See also

• ROM image

• UEFI

• Coreboot

• Microcode

• Binary blob

• Bootloader

• Aftermarket firmware category

3.10 References
[1] “Glossary of Computer System Software Development

Terminology (8/95)". fda.gov. FDA. November 25,
2014. Retrieved March 1, 2015.

[2] “What is firmware?". incepator.pinzaru.ro. Retrieved
2013-06-14.

[3] Dag Spicer (August 12, 2000). “One Giant Leap: The
Apollo Guidance Computer”. Dr. Dobbs. Retrieved Au-
gust 24, 2012.

[4] Opler, Ascher (January 1967). “Fourth-Generation Soft-
ware”. Datamation 13 (1): 22–24.

[5] Corbet, Jonathan; Rubini, Alessandro; Kroah-Hartman,
Greg (2005). Linux Device Drivers. O'Reilly Media. p.
405. ISBN 0596005903.

[6] “Flashing Firmware”. Tech-Faq.com. Retrieved July 8,
2011.

[7] “HTC Developer Center”. HTC. Archived from the orig-
inal on April 26, 2011. Retrieved July 8, 2011.

[8] “Custom Firmware Rocks!". 2009-08-05. Retrieved
2009-08-13.

[9] “SamyGO: replacing television firmware”. LWN.net.
2009-11-14. Retrieved 2009-12-11.

[10] “Equation Group: The Crown Creator of Cyber-
Espionage”. Kaspersky Lab. February 16, 2015.

[11] Dan Goodin (February 2015). “How “omnipotent” hack-
ers tied to NSA hid for 14 years—and were found at last”.
Ars Technica.

[12] “Breaking: Kaspersky Exposes NSA’s Worldwide, Back-
door Hacking of Virtually All Hard-Drive Firmware”.
Daily Kos. February 17, 2015.

[13] Linux Format n°184, June 2014, page 7.

[14] Linux Magazine issue 162, May 2014, page 9.

[15] “We will be back soon!". Malcon.org. Retrieved 2013-
06-14.

[16] “Hacker plants back door in Symbian firmware”. H-
online.com. 2010-12-08. Archived from the original on
21 May 2013. Retrieved 2013-06-14.

[17] “Why the Security of USB Is Fundamentally Broken”.
Wired.com. 2014-07-31. Retrieved 2014-08-04.

[18] “BadUSB - On Accessories that Turn Evil”. Black-
Hat.com. Retrieved 2014-08-06.

[19] Karsten Nohl; Sascha Krißler; Jakob Lell (2014-08-07).
“BadUSB – On accessories that turn evil” (PDF). sr-
labs.de. Retrieved 2014-08-23.

[20] “BadUSB Malware Released - Infect millions of USB
Drives”. The Hacking Post - Latest hacking News & Se-
curity Updates. Retrieved 7 October 2014.

[21] “The Unpatchable Malware That Infects USBs Is Now on
the Loose”. WIRED. Retrieved 7 October 2014.

3.11 External links
• BadUSB - On Accessories that Turn Evil on
YouTube, by Karsten Nohl and Jakob Lell

• Phison 2251-03 (2303) Custom Firmware & Exist-
ing Firmware Patches (BadUSB)

• Hard disk hacking (includes an analysis of feasible
security exploits through firmware modifications, in
eight parts)

• Snake on a keyboard (firmware modifications, in
seven parts)

https://en.wikipedia.org/wiki/ROM_image
https://en.wikipedia.org/wiki/UEFI
https://en.wikipedia.org/wiki/Coreboot
https://en.wikipedia.org/wiki/Microcode
https://en.wikipedia.org/wiki/Binary_blob
https://en.wikipedia.org/wiki/Bootloader
https://en.wikipedia.org/wiki/Category:Aftermarket_firmware
http://www.fda.gov/iceci/inspections/inspectionguides/ucm074875.htm
http://www.fda.gov/iceci/inspections/inspectionguides/ucm074875.htm
https://en.wikipedia.org/wiki/Food_and_Drug_Administration
http://incepator.pinzaru.ro/software/what-is-firmware/
http://www.drdobbs.com/one-giant-leap-the-apollo-guidance-compu/184404139
http://www.drdobbs.com/one-giant-leap-the-apollo-guidance-compu/184404139
https://en.wikipedia.org/wiki/O%2527Reilly_Media
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0596005903
http://www.tech-faq.com/flashing-firmware.html
http://web.archive.org/web/20110426201145/http://developer.htc.com/adp.html
https://en.wikipedia.org/wiki/HTC
http://developer.htc.com/adp.html
http://developer.htc.com/adp.html
http://www.maximumpc.com/article/features/frimware_hacks?page=0%252C1
http://lwn.net/Articles/361445/
https://en.wikipedia.org/wiki/LWN.net
http://www.kaspersky.com/about/news/virus/2015/Equation-Group-The-Crown-Creator-of-Cyber-Espionage
http://www.kaspersky.com/about/news/virus/2015/Equation-Group-The-Crown-Creator-of-Cyber-Espionage
https://en.wikipedia.org/wiki/Kaspersky_Lab
http://arstechnica.com/security/2015/02/how-omnipotent-hackers-tied-to-the-nsa-hid-for-14-years-and-were-found-at-last/
http://arstechnica.com/security/2015/02/how-omnipotent-hackers-tied-to-the-nsa-hid-for-14-years-and-were-found-at-last/
https://en.wikipedia.org/wiki/Ars_Technica
https://www.dailykos.com/story/2015/02/17/1364910/-Breaking-Kaspersky-Exposes-NSA-s-Worldwide-Backdoor-Hacking-of-Virtually-All-Hard-Drive-Firmware
https://www.dailykos.com/story/2015/02/17/1364910/-Breaking-Kaspersky-Exposes-NSA-s-Worldwide-Backdoor-Hacking-of-Virtually-All-Hard-Drive-Firmware
https://en.wikipedia.org/wiki/Daily_Kos
http://www.malcon.org/
http://web.archive.org/web/20130521142131/http://www.h-online.com/security/news/item/Hacker-plants-back-door-in-Symbian-firmware-1149926.html
http://www.h-online.com/security/news/item/Hacker-plants-back-door-in-Symbian-firmware-1149926.html
http://www.wired.com/2014/07/usb-security/
https://www.blackhat.com/us-14/briefings.html#badusb-on-accessories-that-turn-evil
https://srlabs.de/blog/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
http://hackingpost.com/badusb-malware-infect-millions-of-usb/
http://hackingpost.com/badusb-malware-infect-millions-of-usb/
http://www.wired.com/2014/10/code-published-for-unfixable-usb-attack/
http://www.wired.com/2014/10/code-published-for-unfixable-usb-attack/
https://www.youtube.com/watch?v=nuruzFqMgIw
https://en.wikipedia.org/wiki/YouTube
https://github.com/adamcaudill/Psychson
https://github.com/adamcaudill/Psychson
https://spritesmods.com/?art=hddhack
https://spritesmods.com/?art=rapidisnake

Chapter 4

Computer multitasking

For other uses, see Multitasking (disambiguation).
In computing,multitasking is a method where multiple

Modern desktop operating systems are capable of handling large
numbers of different processes at the same time. This screenshot
shows Linux Mint running simultaneously Xfce desktop environ-
ment, Firefox, a calculator program, the built-in calendar, Vim,
GIMP, and VLC media player.

tasks (also known as processes) are performed during the
same period of time – they are executed concurrently (in
overlapping time periods, new tasks starting before others
have ended) instead of sequentially (one completing be-
fore the next starts). The tasks share common processing
resources, such as central processing units (CPUs) and
main memory.
Multitasking does not necessarily mean that multiple
tasks are executing at exactly the same instant. In other
words, multitasking does not imply parallel execution, but
it does mean that more than one task can be part-way
through execution at the same time, and that more than
one task is advancing over a given period of time.
In the case of a computer with a single CPU, only one task
is said to be running at any point in time, meaning that
the CPU is actively executing instructions for that task.
Multitasking solves the problem by scheduling which task
may be the one running at any given time, and when an-
other waiting task gets a turn. The act of reassigning a
CPU from one task to another one is called a context
switch. When context switches occur frequently enough,
the illusion of parallelism is achieved.
Even on multiprocessor or multicore computers, which
have multiple CPUs/cores so more than one task can be

executed at once (physically, one per CPU or core), mul-
titasking allows many more tasks to be run than there
are CPUs. The term multitasking has become an inter-
national term, as the same word is used in many other
languages such as German, Italian, Dutch, Danish and
Norwegian.
Operating systems may adopt one of many different
scheduling strategies, which generally fall into the follow-
ing categories:

• In multiprogramming systems, the running task
keeps running until it performs an operation that
requires waiting for an external event (e.g. read-
ing from a tape) or until the computer’s scheduler
forcibly swaps the running task out of the CPU.
Multiprogramming systems are designed to maxi-
mize CPU usage.

• In time-sharing systems, the running task is required
to relinquish the CPU, either voluntarily or by an ex-
ternal event such as a hardware interrupt. Time shar-
ing systems are designed to allow several programs
to execute apparently simultaneously.

• In real-time systems, some waiting tasks are guar-
anteed to be given the CPU when an external event
occurs. Real time systems are designed to control
mechanical devices such as industrial robots, which
require timely processing.

4.1 Multiprogramming

In the early days of computing, CPU time was expensive,
and peripherals were very slow. When the computer ran
a program that needed access to a peripheral, the central
processing unit (CPU) would have to stop executing pro-
gram instructions while the peripheral processed the data.
This was deemed very inefficient.
The first computer using a multiprogramming system was
the British Leo III owned by J. Lyons and Co. Several
different programs in batch were loaded in the computer
memory, and the first one began to run. When the first
program reached an instruction waiting for a peripheral,

21

https://en.wikipedia.org/wiki/Multitasking_(disambiguation)
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Linux_Mint
https://en.wikipedia.org/wiki/Xfce
https://en.wikipedia.org/wiki/Firefox
https://en.wikipedia.org/wiki/Vim_(text_editor)
https://en.wikipedia.org/wiki/GIMP
https://en.wikipedia.org/wiki/VLC_media_player
https://en.wikipedia.org/wiki/Task_(computers)
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Multiprocessor
https://en.wikipedia.org/wiki/Multicore
https://en.wikipedia.org/wiki/Multiprogramming
https://en.wikipedia.org/wiki/Time-sharing
https://en.wikipedia.org/wiki/Hardware_interrupt
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/CPU_time
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/LEO_(computer)#Applications_and_successors
https://en.wikipedia.org/wiki/J._Lyons_and_Co.

22 CHAPTER 4. COMPUTER MULTITASKING

the context of this program was stored away, and the sec-
ond program in memory was given a chance to run. The
process continued until all programs finished running.
The use of multiprogramming was enhanced by the ar-
rival of virtual memory and virtual machine technology,
which enabled individual programs to make use of mem-
ory and operating system resources as if other concur-
rently running programs were, for all practical purposes,
non-existent and invisible to them.
Multiprogramming doesn't give any guarantee that a pro-
gram will run in a timely manner. Indeed, the very first
program may very well run for hours without needing ac-
cess to a peripheral. As there were no users waiting at an
interactive terminal, this was no problem: users handed
in a deck of punched cards to an operator, and came back
a few hours later for printed results. Multiprogramming
greatly reduced wait times when multiple batches were
being processed.

4.2 Cooperative multitasking

See also: Nonpreemptive multitasking

The expression “time sharing” usually designated com-
puters shared by interactive users at terminals, such as
IBM’s TSO, and VM/CMS. The term “time-sharing” is
no longer commonly used, having been replaced by “mul-
titasking”, following the advent of personal computers
and workstations rather than shared interactive systems.
Early multitasking systems used applications that volun-
tarily ceded time to one another. This approach, which
was eventually supported by many computer operating
systems, is known today as cooperative multitasking. Al-
though it is now rarely used in larger systems except for
specific applications such as CICS or the JES2 subsystem,
cooperative multitasking was once the scheduling scheme
employed by Microsoft Windows (prior to Windows 95
and Windows NT) and Mac OS (prior to OS X) in or-
der to enable multiple applications to be run simultane-
ously. Windows 9x also used cooperative multitasking,
but only for 16-bit legacy applications, much the same
way as pre-Leopard PowerPC versions ofMac OSX used
it for Classic applications. The network operating system
NetWare used cooperative multitasking up to NetWare
6.5. Cooperative multitasking is still used today on RISC
OS systems.[1]

As a cooperatively multitasked system relies on each pro-
cess regularly giving up time to other processes on the sys-
tem, one poorly designed program can consume all of the
CPU time for itself, either by performing extensive cal-
culations or by busy waiting; both would cause the whole
system to hang. In a server environment, this is a hazard
that makes the entire environment unacceptably fragile.

4.3 Preemptive multitasking

Main article: Preemption (computing)

Preemptive multitasking allows the computer system to
guarantee more reliably each process a regular “slice”
of operating time. It also allows the system to deal
rapidly with important external events like incoming data,
whichmight require the immediate attention of one or an-
other process. Operating systems were developed to take
advantage of these hardware capabilities and run mul-
tiple processes preemptively. Preemptive multitasking
was supported on DEC’s PDP-8 computers, and imple-
mented in OS/360 MFT in 1967, in MULTICS (1964),
and Unix (1969); it is a core feature of all Unix-like op-
erating systems, such as Linux, Solaris and BSD with its
derivatives.[2]

At any specific time, processes can be grouped into two
categories: those that are waiting for input or output
(called "I/O bound"), and those that are fully utilizing the
CPU ("CPU bound"). In primitive systems, the software
would often "poll", or "busywait" while waiting for re-
quested input (such as disk, keyboard or network input).
During this time, the system was not performing useful
work. With the advent of interrupts and preemptive mul-
titasking, I/O bound processes could be “blocked”, or put
on hold, pending the arrival of the necessary data, allow-
ing other processes to utilize the CPU. As the arrival of
the requested data would generate an interrupt, blocked
processes could be guaranteed a timely return to execu-
tion.
The earliest preemptive multitasking OS available to
home users was Sinclair QDOS on the Sinclair QL, re-
leased in 1984, but very few people bought the machine.
Commodore’s powerful Amiga, released the following
year, was the first commercially successful home com-
puter to use the technology, and its multimedia abilities
make it a clear ancestor of contemporary multitasking
personal computers. Microsoft made preemptive multi-
tasking a core feature of their flagship operating system
in the early 1990s when developing Windows NT 3.1 and
thenWindows 95. It was later adopted on the AppleMac-
intosh byMacOSX that, as a Unix-like operating system,
uses preemptive multitasking for all native applications.
A similar model is used in Windows 9x and the Windows
NT family, where native 32-bit applications are multi-
tasked preemptively, and legacy 16-bit Windows 3.x pro-
grams are multitasked cooperatively within a single pro-
cess, although in the NT family it is possible to force a
16-bit application to run as a separate preemptively mul-
titasked process.[3] 64-bit editions of Windows, both for
the x86-64 and Itanium architectures, no longer provide
support for legacy 16-bit applications, and thus provide
preemptive multitasking for all supported applications.

https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Nonpreemptive_multitasking
https://en.wikipedia.org/wiki/Time_Sharing_Option
https://en.wikipedia.org/wiki/CP/CMS
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/CICS
https://en.wikipedia.org/wiki/JES2
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Windows_95
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Mac_OS
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/Windows_9x
https://en.wikipedia.org/wiki/Mac_OS_X_v10.5
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Classic_(Mac_OS_X)
https://en.wikipedia.org/wiki/NetWare
https://en.wikipedia.org/wiki/RISC_OS
https://en.wikipedia.org/wiki/RISC_OS
https://en.wikipedia.org/wiki/Busy_wait
https://en.wikipedia.org/wiki/Hang_(computing)
https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/PDP-8#Programming_facilities
https://en.wikipedia.org/wiki/OS/360_and_successors#MFT
https://en.wikipedia.org/wiki/MULTICS
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Comparison_of_BSD_operating_systems
https://en.wikipedia.org/wiki/I/O_bound
https://en.wikipedia.org/wiki/CPU_bound
https://en.wikipedia.org/wiki/Polling_(computer_science)
https://en.wikipedia.org/wiki/Busy_waiting
https://en.wikipedia.org/wiki/Sinclair_QDOS
https://en.wikipedia.org/wiki/Sinclair_QL
https://en.wikipedia.org/wiki/Amiga
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Windows_NT_3.1
https://en.wikipedia.org/wiki/Windows_95
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Windows_9x
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Windows_3.1x
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Itanium

4.7. MEMORY SWAPPING 23

4.4 Real time

Another reason for multitasking was in the design of real-
time computing systems, where there are a number of
possibly unrelated external activities needed to be con-
trolled by a single processor system. In such systems a hi-
erarchical interrupt system is coupled with process prior-
itization to ensure that key activities were given a greater
share of available process time.

4.5 Multithreading

As multitasking greatly improved the throughput of com-
puters, programmers started to implement applications as
sets of cooperating processes (e. g., one process gathering
input data, one process processing input data, one process
writing out results on disk). This, however, required some
tools to allow processes to efficiently exchange data.
Threads were born from the idea that the most efficient
way for cooperating processes to exchange data would be
to share their entire memory space. Thus, threads are
effectively processes that run in the same memory con-
text and share other resources with their parent processes,
such as open files. Threads are described as lightweight
processes because switching between threads does not in-
volve changing the memory context.[4][5][6]

While threads are scheduled preemptively, some operat-
ing systems provide a variant to threads, named fibers,
that are scheduled cooperatively. On operating systems
that do not provide fibers, an application may implement
its own fibers using repeated calls to worker functions.
Fibers are even more lightweight than threads, and some-
what easier to program with, although they tend to lose
some or all of the benefits of threads on machines with
multiple processors.
Some systems directly support multithreading in hard-
ware.

4.6 Memory protection

Main article: Memory protection

Essential to any multitasking system is to safely and effec-
tively share access to system resources. Access to mem-
ory must be strictly managed to ensure that no process
can inadvertently or deliberately read or write to memory
locations outside of the process’s address space. This is
done for the purpose of general system stability and data
integrity, as well as data security.
In general, memory access management is the operating
system kernel’s responsibility, in combination with hard-
ware mechanisms (such as the memory management unit
(MMU)) that provide supporting functionalities. If a pro-

cess attempts to access a memory location outside of its
memory space, the MMU denies the request and signals
the kernel to take appropriate actions; this usually results
in forcibly terminating the offending process. Depending
on the software and kernel design and the specific error
in question, the user may receive an access violation error
message such as “segmentation fault”.
In a well designed and correctly implemented multitask-
ing system, a given process can never directly access
memory that belongs to another process. An exception
to this rule is in the case of shared memory; for exam-
ple, in the System V inter-process communication mech-
anism the kernel allocates memory to be mutually shared
by multiple processes. Such features are often used by
database management software such as PostgreSQL.
Inadequate memory protection mechanisms, either due to
flaws in their design or poor implementations, allow for
security vulnerabilities that may be potentially exploited
by malicious software.

4.7 Memory swapping

Use of a swap file or swap partition is a way for the op-
erating system to provide more memory than is physi-
cally available by keeping portions of the primary mem-
ory in secondary storage. While multitasking and mem-
ory swapping are two completely unrelated techniques,
they are very often used together, as swapping memory
allows more tasks to be loaded at the same time. Typ-
ically, a multitasking system allows another process to
run when the running process hits a point where it has
to wait for some portion of memory to be reloaded from
secondary storage.

4.8 Programming

Processes that are entirely independent are notmuch trou-
ble to program in a multitasking environment. Most of
the complexity in multitasking systems comes from the
need to share computer resources between tasks and to
synchronize the operation of co-operating tasks.
Various concurrent computing techniques are used to
avoid potential problems caused by multiple tasks at-
tempting to access the same resource.
Bigger systems were sometimes built with a central pro-
cessor(s) and some number of I/O processors, a kind of
asymmetric multiprocessing.
Over the years, multitasking systems have been refined.
Modern operating systems generally include detailed
mechanisms for prioritizing processes, while symmetric
multiprocessing has introduced new complexities and ca-
pabilities.

https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Process_time
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Parent_process
https://en.wikipedia.org/wiki/Fiber_(computer_science)
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Multithreading_(computer_hardware)
https://en.wikipedia.org/wiki/Multithreading_(computer_hardware)
https://en.wikipedia.org/wiki/Memory_protection
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Secondary_storage
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Channel_I/O
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Symmetric_multiprocessing

24 CHAPTER 4. COMPUTER MULTITASKING

4.9 See also
• Process state

4.10 References
[1] “Preemptive multitasking”. riscos.info. 2009-11-03. Re-

trieved 2014-07-27.

[2] “UNIX, Part One”. The Digital Research Initiative. ibib-
lio.org. 2002-01-30. Retrieved 2014-01-09.

[3] Smart Computing Article - Windows 2000 &16-Bit Ap-
plications

[4] Eduardo Ciliendo; Takechika Kunimasa (April 25, 2008).
“Linux Performance and Tuning Guidelines” (PDF). red-
books.ibm.com. IBM. p. 4. Retrieved March 1, 2015.

[5] “Context Switch Definition”. linfo.org. May 28, 2006.
Retrieved February 26, 2015.

[6] “What are threads (user/kernel)?". tldp.org. September 8,
1997. Retrieved February 26, 2015.

https://en.wikipedia.org/wiki/Process_state
http://www.riscos.info/index.php/Preemptive_multitasking
http://www.ibiblio.org/team/intro/unix/what.html
http://www.smartcomputing.com/editorial/article.asp?article=articles%252F2005%252Fs1606%252F08s06%252F08s06.asp
http://www.smartcomputing.com/editorial/article.asp?article=articles%252F2005%252Fs1606%252F08s06%252F08s06.asp
http://www.redbooks.ibm.com/redpapers/pdfs/redp4285.pdf
https://en.wikipedia.org/wiki/IBM
http://www.linfo.org/context_switch.html
http://www.tldp.org/FAQ/Threads-FAQ/Types.html

Chapter 5

Time-sharing

This article is about the computing term. For the type of
property ownership, see Timeshare.

In computing, time-sharing is the sharing of a com-
puting resource among many users by means of
multiprogramming and multi-tasking. Its introduction in
the 1960s, and emergence as the prominent model of
computing in the 1970s, represented a major technolog-
ical shift in the history of computing.
By allowing a large number of users to interact
concurrently with a single computer, time-sharing dra-
matically lowered the cost of providing computing capa-
bility, made it possible for individuals and organizations
to use a computer without owning one, and promoted the
interactive use of computers and the development of new
interactive applications.

5.1 History

5.1.1 Batch processing

Main article: Batch processing

The earliest computers were extremely expensive de-
vices, and very slow in comparison to recent models. Ma-
chines were typically dedicated to a particular set of tasks
and operated by control panels, the operator manually en-
tering small programs via switches in order to load and
run a series of programs. These programs might take
hours, or even weeks, to run. As computers grew in
speed, run times dropped, and soon the time taken to start
up the next program became a concern. Batch processing
methodologies evolved to decrease these “dead periods”
by queuing up programs so that as soon as one program
completed, the next would start.
To support a batch processing operation, a number of
comparatively inexpensive card punch or paper tape writ-
ers were used by programmers to write their programs
“offline”. When typing (or punching) was complete, the
programs were submitted to the operations team, which
scheduled them to be run. Important programs were
started quickly; how long before less important programs

were started was unpredictable. When the program run
was finally completed, the output (generally printed) was
returned to the programmer. The complete process might
take days, during which time the programmermight never
see the computer.
The alternative of allowing the user to operate the com-
puter directly was generally far too expensive to consider.
This was because users might have long periods of enter-
ing code while the computer remained idle. This situ-
ation limited interactive development to those organiza-
tions that could afford to waste computing cycles: large
universities for the most part. Programmers at the uni-
versities decried the behaviors that batch processing im-
posed, to the point that Stanford students made a short
film humorously critiquing it.[1] They experimented with
new ways to interact directly with the computer, a field
today known as human–computer interaction.

5.1.2 Time-sharing

Unix time-sharing at the University of Wisconsin, 1978

Time-sharing was developed out of the realization that
while any single user wouldmake inefficient use of a com-
puter, a large group of users together would not. This
was due to the pattern of interaction: Typically an in-
dividual user entered bursts of information followed by
long pauses but a group of users working at the same time
would mean that the pauses of one user would be filled by
the activity of the others. Given an optimal group size, the
overall process could be very efficient. Similarly, small

25

https://en.wikipedia.org/wiki/Timeshare
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Multiprogramming
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Batch_processing
https://en.wikipedia.org/wiki/Batch_processing
https://en.wikipedia.org/wiki/Card_punch
https://en.wikipedia.org/wiki/Paper_tape
https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/University_of_Wisconsin

26 CHAPTER 5. TIME-SHARING

slices of time spent waiting for disk, tape, or network in-
put could be granted to other users.
Implementing a system able to take advantage of this
would be difficult. Batch processing was really a method-
ological development on top of the earliest systems; com-
puters still ran single programs for single users at any
time, all that batch processing changed was the time de-
lay between one program and the next. Developing a sys-
tem that supported multiple users at the same time was
a completely different concept; the “state” of each user
and their programs would have to be kept in the machine,
and then switched between quickly. This would take up
computer cycles, and on the slow machines of the era this
was a concern. However, as computers rapidly improved
in speed, and especially in size of core memory in which
users’ states were retained, the overhead of time-sharing
continually decreased, relatively.
The concept was first described publicly in early 1957
by Bob Bemer as part of an article in Automatic Control
Magazine. The first project to implement a time-sharing
system was initiated by John McCarthy in late 1957, on
a modified IBM 704, and later on an additionally mod-
ified IBM 7090 computer. Although he left to work on
Project MAC and other projects, one of the results of the
project, known as the Compatible Time-Sharing System or
CTSS, was demonstrated in November 1961. CTSS has
a good claim to be the first time-sharing system and re-
mained in use until 1973. Another contender for the first
demonstrated time-sharing system was PLATO II, cre-
ated by Donald Bitzer at a public demonstration at Robert
Allerton Park near the University of Illinois in early 1961.
Bitzer has long said that the PLATO project would have
gotten the patent on time-sharing if only the University
of Illinois had known how to process patent applications
faster, but at the time university patents were so few and
far between, they took a long time to be submitted. The
first commercially successful time-sharing systemwas the
Dartmouth Time Sharing System.

5.1.3 Development

Throughout the late 1960s and the 1970s, computer
terminals were multiplexed onto large institutional
mainframe computers (Centralized computing systems),
which in many implementations sequentially polled the
terminals to see if there was any additional data or action
requested by the computer user. Later technology in in-
terconnections were interrupt driven, and some of these
used parallel data transfer technologies such as the IEEE
488 standard. Generally, computer terminals were uti-
lized on college properties in much the same places as
desktop computers or personal computers are found today.
In the earliest days of personal computers, many were in
fact used as particularly smart terminals for time-sharing
systems.
With the rise ofmicrocomputing in the early 1980s, time-

sharing faded into the background because individual mi-
croprocessors were sufficiently inexpensive that a single
person could have all the CPU time dedicated solely to
their needs, even when idle. However, the Internet has
brought the general concept of time-sharing back into
popularity. Expensive corporate server farms costing
millions can host thousands of customers all sharing the
same common resources. As with the early serial termi-
nals, websites operate primarily in bursts of activity fol-
lowed by periods of idle time. This bursting nature per-
mits the service to be used by many website customers at
once, and none of them notice any delays in communica-
tions until the servers start to get very busy.

5.1.4 Time-sharing business

In the 1960s, several companies started providing time-
sharing services as service bureaus. Early systems used
Teletype Model 33 KSR or ASR or Teletype Model
35 KSR or ASR machines in ASCII environments, and
IBM Selectric typewriter-based terminals in EBCDIC
environments. They would connect to the central com-
puter by dial-up Bell 103A modem or acoustically cou-
pled modems operating at 10–15 characters per second.
Later terminals and modems supported 30–120 charac-
ters per second. The time-sharing system would provide
a complete operating environment, including a variety
of programming language processors, various software
packages, file storage, bulk printing, and off-line storage.
Users were charged rent for the terminal, a charge for
hours of connect time, a charge for seconds of CPU time,
and a charge for kilobyte-months of disk storage.
Common systems used for time-sharing included the
SDS 940, the PDP-10, and the IBM 360. Compa-
nies providing this service included GE's GEISCO, IBM
subsidiary The Service Bureau Corporation, Tymshare
(founded in 1966), National CSS (founded in 1967 and
bought by Dun & Bradstreet in 1979), Dial Data (bought
by Tymshare in 1968), and Bolt, Beranek, and New-
man (BBN). By 1968, there were 32 such service bu-
reaus serving the US National Institutes of Health (NIH)
alone.[2] The Auerbach Guide to Timesharing (1973) lists
125 different timesharing services using equipment from
Burroughs, CDC, DEC, HP, Honeywell, IBM, RCA,
Univac and XDS.[3]

5.1.5 The computer utility

Beginning in 1964 the Multics operating system was de-
signed as a computing utility, modeled on the electrical
or telephone utilities. In the 1970s Ted Nelson's original
"Xanadu" hypertext repository was envisioned as such a
service. It seemed as the computer industry grew that
no such consolidation of computing resources would oc-
cur as timesharing systems. However in the 1990s the
concept was revived in somewhat modified form as cloud

https://en.wikipedia.org/wiki/Core_memory
https://en.wikipedia.org/wiki/Overhead_(computing)
https://en.wikipedia.org/wiki/Bob_Bemer
https://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
https://en.wikipedia.org/wiki/IBM_704
https://en.wikipedia.org/wiki/IBM_7090
https://en.wikipedia.org/wiki/Project_MAC
https://en.wikipedia.org/wiki/Compatible_Time-Sharing_System
https://en.wikipedia.org/wiki/PLATO_(computer_system)
https://en.wikipedia.org/wiki/Donald_Bitzer
https://en.wikipedia.org/wiki/Robert_Allerton_Park
https://en.wikipedia.org/wiki/Robert_Allerton_Park
https://en.wikipedia.org/wiki/Dartmouth_Time_Sharing_System
https://en.wikipedia.org/wiki/Computer_terminals
https://en.wikipedia.org/wiki/Computer_terminals
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Centralized_computing
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/IEEE_488
https://en.wikipedia.org/wiki/IEEE_488
https://en.wikipedia.org/wiki/Desktop_computer
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/CPU_time
https://en.wikipedia.org/wiki/Service_bureau
https://en.wikipedia.org/wiki/Teletype_Model_33
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/EBCDIC
https://en.wikipedia.org/wiki/Centralized_computing
https://en.wikipedia.org/wiki/Centralized_computing
https://en.wikipedia.org/wiki/Dial-up
https://en.wikipedia.org/wiki/Acoustic_coupler
https://en.wikipedia.org/wiki/Acoustic_coupler
https://en.wikipedia.org/wiki/Modem
https://en.wikipedia.org/wiki/SDS_940
https://en.wikipedia.org/wiki/PDP-10
https://en.wikipedia.org/wiki/IBM_360
https://en.wikipedia.org/wiki/GE
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Service_Bureau_Corporation
https://en.wikipedia.org/wiki/Tymnet
https://en.wikipedia.org/wiki/National_CSS
https://en.wikipedia.org/wiki/Bolt,_Beranek,_and_Newman
https://en.wikipedia.org/wiki/Bolt,_Beranek,_and_Newman
https://en.wikipedia.org/wiki/National_Institutes_of_Health
https://en.wikipedia.org/wiki/Burroughs_Corporation
https://en.wikipedia.org/wiki/Control_Data_Corporation
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/Honeywell
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/RCA
https://en.wikipedia.org/wiki/Univac
https://en.wikipedia.org/wiki/Scientific_Data_Systems
https://en.wikipedia.org/wiki/Multics
https://en.wikipedia.org/wiki/Computing_utility
https://en.wikipedia.org/wiki/Ted_Nelson
https://en.wikipedia.org/wiki/Project_Xanadu
https://en.wikipedia.org/wiki/Cloud_computing

5.2. NOTABLE TIME-SHARING SYSTEMS 27

computing.

5.1.6 Security

Time-sharing was the first time that multiple processes,
owned by different users, were running on a single
machine; and these processes could interfere with one
another.[4] For example, one process might alter shared
resources which another process relied on, such as a vari-
able stored in memory. When only one user was using
the system, this would result in possibly wrong output -
but with multiple users, this might mean that other users
got to see information they were not meant to see.
To prevent this from happening, an operating system
needed to enforce a set of policies that determined which
privileges each process had. For example, the operating
systemmight deny access to a certain variable by a certain
process.
The first international conference on computer security in
London in 1971 was primarily driven by the time-sharing
industry and its customers.

5.2 Notable time-sharing systems

See also: Time-sharing system evolution

Significant early timesharing systems:[3]

• Allen-Babcock RUSH (Remote Users of Shared
Hardware) Time-sharing System on IBM S/360
hardware[5] → Tymshare

• AT&T Bell Labs Unix → UC Berkeley BSD Unix

• BBNPDP-1 Time-sharing System→Massachusetts
General Hospital PDP-1D → MUMPS

• BBN TENEX → DEC TOPS-20, Foonly
FOONEX, MAXC OS at PARC, Stanford
Low Overhead Timesharing System (LOTS)

• Berkeley Timesharing System at UC Berkeley
Project Genie → Scientific Data Systems SDS 940
(Tymshare, BBN, SRI, Community Memory) →
BCC 500 → MAXC at PARC

• Burroughs Time-sharing MCP → HP 3000 MPE

• Cambridge Multiple Access System was developed
for the Titan, the prototype Atlas 2 computer built
by Ferranti for the University of Cambridge.[6] This
was the first time-sharing system developed outside
the United States, and which influenced the later de-
velopment of UNIX.

• CDC MACE, APEX → Kronos → NOS →
NOS/VE

• CompuServe, also branded as Compu-Serv, CIS.

• Compu-Time, Inc.,[3] on Honeywell 400/4000,
started in 1968 in Ft Lauderdale, Florida, moved to
Daytona Beach in 1970.

• Dartmouth Time Sharing System (DTSS) → GE
Time-sharing → GEnie

• DEC PDP-6 Time-sharing Monitor → TOPS-10 →
TSS-8, RSTS-11, RSX-11 → VAX/VMS

• HP 2000 Time-Shared BASIC

• IBM CALL/360, CALL/OS - using IBM 360/50

• IBM CP-40 → CP-67 → CP-370 → CP/CMS →
VM/CMS

• IBM TSO for OS/MVT → for OS/VS2 → for MVS
→ for z/OS

• IBM TSS/360 → TSS/370

• International Timesharing Corporation on dual
CDC 3300 systems.[3]

• MIT CTSS→MULTICS (MIT / GE / Bell Labs) →
Unix

• MIT Time-sharing System for the DEC PDP-1 →
ITS

• McGill University MUSIC → IBM MUSIC/SP

• Michigan Terminal System, on the IBM S/360-67,
S/370, and successors.

• Michigan State University CDC
SCOPE/HUSTLER System

• National CSS VP/CSS, on IBM 360 series; origi-
nally based on IBM’s CP/CMS.

• Oregon State University OS-3, on CDC 3000 series.

• Prime Computer PRIMOS

• RAND JOSS → JOSS-2 → JOSS-3

• RCA TSOS → Univac / Unisys VMOS → VS/9

• Service in Informatics and Analysis (SIA), on CDC
6600 Kronos.

• System Development Corporation Time-sharing
System, on the AN/FSQ-32.

• Stanford ORVYL and WYLBUR, on IBM S/360-
67.

• Stanford PDP-1 Time-sharing System → SAIL →
WAITS

• Time Sharing Ltd. (TSL)[7] on DEC PDP-10 sys-
tems → Automatic Data Processing (ADP), first
commercial time-sharing system in Europe and first
dual (fault tolerant) time-sharing system.

https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Time-sharing_system_evolution
https://en.wikipedia.org/wiki/Allen-Babcock
https://en.wikipedia.org/wiki/IBM_S/360
https://en.wikipedia.org/wiki/Tymshare
https://en.wikipedia.org/wiki/AT&T_Corporation
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/BBN_Technologies
https://en.wikipedia.org/wiki/PDP-1
https://en.wikipedia.org/wiki/Massachusetts_General_Hospital
https://en.wikipedia.org/wiki/Massachusetts_General_Hospital
https://en.wikipedia.org/wiki/MUMPS
https://en.wikipedia.org/wiki/BBN_Technologies
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/TOPS-20
https://en.wikipedia.org/wiki/PARC_(company)
https://en.wikipedia.org/wiki/Stanford_University
https://en.wikipedia.org/wiki/Berkeley_Timesharing_System
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/Project_Genie
https://en.wikipedia.org/wiki/Scientific_Data_Systems
https://en.wikipedia.org/wiki/SDS_940
https://en.wikipedia.org/wiki/Tymshare
https://en.wikipedia.org/wiki/BBN_Technologies
https://en.wikipedia.org/wiki/Stanford_Research_Institute
https://en.wikipedia.org/wiki/Burroughs_Corporation
https://en.wikipedia.org/wiki/Master_Control_Program
https://en.wikipedia.org/wiki/HP_3000
https://en.wikipedia.org/wiki/Titan_(computer)
https://en.wikipedia.org/wiki/Atlas_(computer)
https://en.wikipedia.org/wiki/Ferranti
https://en.wikipedia.org/wiki/University_of_Cambridge
https://en.wikipedia.org/wiki/UNIX
https://en.wikipedia.org/wiki/Control_Data_Corporation
https://en.wikipedia.org/wiki/CDC_Kronos
https://en.wikipedia.org/wiki/NOS_(software)
https://en.wikipedia.org/wiki/NOS/VE
https://en.wikipedia.org/wiki/CompuServe
https://en.wikipedia.org/wiki/Honeywell
https://en.wikipedia.org/wiki/Dartmouth_Time_Sharing_System
https://en.wikipedia.org/wiki/GEnie
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/PDP-6
https://en.wikipedia.org/wiki/TOPS-10
https://en.wikipedia.org/wiki/TSS-8
https://en.wikipedia.org/wiki/RSTS/E
https://en.wikipedia.org/wiki/RSX-11
https://en.wikipedia.org/wiki/VAX/VMS
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/HP_Time-Shared_BASIC
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/List_of_IBM_products#Services
https://en.wikipedia.org/wiki/IBM_CP-40
https://en.wikipedia.org/wiki/CP-67
https://en.wikipedia.org/wiki/CP-370
https://en.wikipedia.org/wiki/CP/CMS
https://en.wikipedia.org/wiki/VM/CMS
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Time_Sharing_Option
https://en.wikipedia.org/wiki/OS/MVT
https://en.wikipedia.org/wiki/OS/VS2_(SVS)
https://en.wikipedia.org/wiki/MVS
https://en.wikipedia.org/wiki/Z/OS
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/TSS/360
https://en.wikipedia.org/wiki/CDC_3000
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/Compatible_Time-Sharing_System
https://en.wikipedia.org/wiki/MULTICS
https://en.wikipedia.org/wiki/General_Electric
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/PDP-1
https://en.wikipedia.org/wiki/Incompatible_Timesharing_System
https://en.wikipedia.org/wiki/McGill_University
https://en.wikipedia.org/wiki/MUSIC/SP
https://en.wikipedia.org/wiki/Michigan_Terminal_System
https://en.wikipedia.org/wiki/IBM_System/360_Model_67
https://en.wikipedia.org/wiki/S/370
https://en.wikipedia.org/wiki/Michigan_State_University
https://en.wikipedia.org/wiki/CDC_SCOPE_(software)
https://en.wikipedia.org/wiki/CDC_SCOPE_(software)
https://en.wikipedia.org/wiki/National_CSS
https://en.wikipedia.org/wiki/VP/CSS
https://en.wikipedia.org/wiki/IBM_360
https://en.wikipedia.org/wiki/CP/CMS
https://en.wikipedia.org/wiki/Oregon_State_University
https://en.wikipedia.org/wiki/CDC_3000
https://en.wikipedia.org/wiki/Prime_Computer
https://en.wikipedia.org/wiki/PRIMOS
https://en.wikipedia.org/wiki/RAND
https://en.wikipedia.org/wiki/JOSS
https://en.wikipedia.org/wiki/RCA
https://en.wikipedia.org/wiki/Time_Sharing_Operating_System
https://en.wikipedia.org/wiki/UNIVAC
https://en.wikipedia.org/wiki/Unisys
https://en.wikipedia.org/wiki/VS/9
https://en.wikipedia.org/wiki/Service_in_Informatics_and_Analysis
https://en.wikipedia.org/wiki/CDC_6600
https://en.wikipedia.org/wiki/CDC_6600
https://en.wikipedia.org/wiki/CDC_Kronos
https://en.wikipedia.org/wiki/System_Development_Corporation
https://en.wikipedia.org/wiki/AN/FSQ-32
https://en.wikipedia.org/wiki/Stanford_University
https://en.wikipedia.org/wiki/ORVYL_and_WYLBUR
https://en.wikipedia.org/wiki/IBM_System/360_Model_67
https://en.wikipedia.org/wiki/IBM_System/360_Model_67
https://en.wikipedia.org/wiki/Stanford_University
https://en.wikipedia.org/wiki/PDP-1
https://en.wikipedia.org/wiki/Stanford_Artificial_Intelligence_Laboratory
https://en.wikipedia.org/wiki/WAITS
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/PDP-10
https://en.wikipedia.org/wiki/Automatic_Data_Processing

28 CHAPTER 5. TIME-SHARING

• Tymshare SDS-940 → Tymcom X→ Tymcom XX

• UC Berkeley CAL-TSS, on CDC 6400.

• XDS UTS → CP-V → Honeywell CP-6

5.3 See also
• The Heralds of Resource Sharing, a 1972 film.

• History of CP/CMS, IBM’s virtual machine operat-
ing system (CP) that supported time-sharing (CMS).

• IBM M44/44X, an experimental computer system
based on an IBM 7044 used to simulate multiple vir-
tual machines.

• IBM System/360 Model 67, the only IBM S/360 se-
ries mainframe to support virtual memory.

• Multiseat configuration, multiple users on a single
personal computer.

• Project MAC, a DARPA funded project at MIT fa-
mous for groundbreaking research in operating sys-
tems, artificial intelligence, and the theory of com-
putation.

• TELCOMP, an interactive, conversational pro-
gramming language based on JOSS, developed by
BBN in 1964.

• Timeline of operating systems

• VAX (Virtual Address eXtension), a computer ar-
chitecture and family of computers developed by
DEC.

• Virtual memory

5.4 References
[1] Ellis D. Kropotchev Silent Film, 1967, This student-

produced film from Stanford University is a humorous
spoof of the trials and tribulations of a college hacker
condemned to use batch processing. Originally created
by Arthur Eisenson and Gary Feldman, the film gives the
viewer a feel for the process of computer programming
in the 1960s. Original music by Heather Yager. Com-
puter History Museum, Object ID 102695643. Retrieved
November 29, 2013.

[2] “Information Technology Corporate Histories Collec-
tion”, Computer History Museum. Retrieved November
29, 2013.

[3] Auerbach Guide to Time Sharing. Auerbach Publishers,
Inc. 1973. Retrieved November 29, 2013.

[4] Silberschatz, Abraham; Galvin, Peter; Gagne, Greg
(2010). Operating system concepts (8th ed.). Hoboken,
N.J.: Wiley & Sons. p. 591. ISBN 978-0-470-23399-3.

[5] “A Brief Description of Privacy Measures in the RUSH
Time-Sharing System”, J.D. Babcock, AFIPS Conference
Proceedings, Spring Joint Computer Conference, Vol. 30,
1967, pp. 301-302.

[6] Hartley, D. F. (1968), The Cambridge multiple-access sys-
tem: user’s reference manual, Cambridge: Cambridge
Univ. Press, ISBN 978-0901224002

[7] “Time Sharing”, James Miller. Retrieved 30 November
2013.

5.5 Further reading
• Nelson, Theodor (1974). Computer Lib: You
Can and Must Understand Computers Now; Dream
Machines: “New Freedoms Through Computer
Screens— A Minority Report”. Self-published.
ISBN 0-89347-002-3. pp. 56–57.

5.6 External links
• “Time Sharing Supervisor Programs”, notes com-
paring the supervisor programs of CP-67, TSS/360,
the Michigan Terminal System (MTS), and Multics
by Michael T. Alexander, Advanced Topics in Sys-
tems Programming (1970, revised 1971), University
of Michigan Engineering Summer Conference.

• “The Computer Utility As AMarketplace For Com-
puter Services”, Robert Frankston's MIT Master’s
Thesis, 1973.

• Reminiscences on the Theory of Time-Sharing by
John McCarthy, 1983.

• Origins of timesharing by Bob Bemer.

• “40 years of Multics, 1969-2009”, an interview with
Professor Fernando J. Corbató on the history of
Multics and origins of time-sharing, 2009.

• “Mainframe Computers: The Virtues of Sharing”,
Revolution: The First 2000 Years of Comput-
ing, Computer HistoryMuseumExhibition, January
2011.

• “Mainframe Computers: Timesharing as a Busi-
ness”, Revolution: The First 2000Years of Comput-
ing, Computer HistoryMuseumExhibition, January
2011.

https://en.wikipedia.org/wiki/Tymshare
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/CDC_6000_series
https://en.wikipedia.org/wiki/Scientific_Data_Systems
https://en.wikipedia.org/wiki/Universal_Time-Sharing_System
https://en.wikipedia.org/wiki/CP-V_operating_system
https://en.wikipedia.org/wiki/Honeywell
https://en.wikipedia.org/wiki/CP-6
https://en.wikipedia.org/wiki/Computer_Networks:_The_Heralds_of_Resource_Sharing
https://en.wikipedia.org/wiki/History_of_CP/CMS
https://en.wikipedia.org/wiki/IBM_M44/44X
https://en.wikipedia.org/wiki/IBM_7044
https://en.wikipedia.org/wiki/IBM_System/360_Model_67
https://en.wikipedia.org/wiki/IBM_S/360
https://en.wikipedia.org/wiki/IBM_S/360
https://en.wikipedia.org/wiki/Multiseat_configuration
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Project_MAC
https://en.wikipedia.org/wiki/DARPA
https://en.wikipedia.org/wiki/MIT
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Theory_of_computation
https://en.wikipedia.org/wiki/Theory_of_computation
https://en.wikipedia.org/wiki/TELCOMP
https://en.wikipedia.org/wiki/JOSS
https://en.wikipedia.org/wiki/BBN_Technologies
https://en.wikipedia.org/wiki/Timeline_of_operating_systems
https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/VAX-11
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/Virtual_memory
http://www.computerhistory.org/revolution/punched-cards/2/211/2253
http://www.computerhistory.org/corphist/view.php?s=stories&id=136
http://www.computerhistory.org/corphist/view.php?s=stories&id=136
http://bitsavers.trailing-edge.com/pdf/auerbach/GuideToTimesharing_Jan73.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-470-23399-3
http://web.mit.edu/smadnick/www/MITtheses/23846284.pdf
http://web.mit.edu/smadnick/www/MITtheses/23846284.pdf
https://en.wikipedia.org/wiki/David_Hartley_(computer_scientist)
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0901224002
http://www.jamesmiller.com/timesharing001.html
https://en.wikipedia.org/wiki/Ted_Nelson
https://en.wikipedia.org/wiki/Computer_Lib_/_Dream_Machines
https://en.wikipedia.org/wiki/Computer_Lib_/_Dream_Machines
https://en.wikipedia.org/wiki/Special:BookSources/0893470023
http://archive.michigan-terminal-system.org/documentation/documents/timeSharingSupervisorPrograms-1971.pdf
https://en.wikipedia.org/wiki/CP-67
https://en.wikipedia.org/wiki/TSS/360
https://en.wikipedia.org/wiki/Michigan_Terminal_System
https://en.wikipedia.org/wiki/Multics
http://www.frankston.com/public/?name=TR128
http://www.frankston.com/public/?name=TR128
https://en.wikipedia.org/wiki/Bob_Frankston
http://jmc.stanford.edu/computing-science/timesharing.html
https://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
http://www.bobbemer.com/TIMESHAR.HTM
https://en.wikipedia.org/wiki/Bob_Bemer
http://www.cio.com.au/article/325323/cio_blast_from_past_40_years_multics_1969-2009
https://en.wikipedia.org/wiki/Fernando_J._Corbat%C3%B3
https://en.wikipedia.org/wiki/Multics
http://www.computerhistory.org/revolution/mainframe-computers/7/178
http://www.computerhistory.org/revolution/mainframe-computers/7/181
http://www.computerhistory.org/revolution/mainframe-computers/7/181

Chapter 6

Real-time computing

In computer science, real-time computing (RTC), or
reactive computing, is the study of hardware and
software systems that are subject to a “real-time con-
straint”, for example operational deadlines from event to
system response. Real-time programs must guarantee re-
sponse within strict time constraints, often referred to as
“deadlines”.[1] Real-time responses are often understood
to be in the order of milliseconds, and sometimes mi-
croseconds. Conversely, a system without real-time facil-
ities, cannot guarantee a response within any timeframe
(regardless of actual or expected response times).
A real-time system is one which “controls an environment
by receiving data, processing them, and returning the re-
sults sufficiently quickly to affect the environment at that
time.”[2] This usage of “real-time” should not be con-
fused with the two other legitimate uses of the term: in
simulation the termmeans that the simulation’s clock runs
as fast as a real clock, while in processing and enterprise
systems the term is used to mean “without perceivable
delay”.
Real-time software may use one or more of the follow-
ing: synchronous programming languages, real-time op-
erating systems, and real-time networks, each of which
provide essential frameworks on which to build a real-
time software application.
A real-time system may be one where its application can
be considered (within context) to be mission critical. The
anti-lock brakes on a car are a simple example of a real-
time computing system: the real-time constraint in this
system is the time in which the brakes must be released
to prevent the wheel from locking.[3] Real-time computa-
tions can be said to have failed if they are not completed
before their deadline, where their deadline is relative to
an event. A real-time deadline must be met, regardless of
system load.

6.1 History

The term real-time derives from its use in early
simulation, in which a real-world process is simulated at a
rate that matched that of the real process (now called real-
time simulation to avoid ambiguity). Analog computers,

most often, were capable of simulating at a much faster
pace than real-time, a situation that could be just as dan-
gerous as a slow simulation if it were not also recognized
and accounted for.
Once when the MOS Technology 6502 (used in the
Commodore 64 and Apple II), and later when the
Motorola 68000 (used in the Macintosh, Atari ST, and
Commodore Amiga) were popular, anybody could use
their home computer as a real-time system. The pos-
sibility to deactivate other interrupts allowed for hard-
coded loops with defined timing, and the low interrupt
latency allowed the implementation of a real-time oper-
ating system, giving the user interface and the disk drives
lower priority than the real-time thread. Compared to
these the Programmable Interrupt Controller of the Intel
CPUs (8086..80586) generates a very large latency and
the Windows operating system is neither a real-time op-
erating system nor does it allow a program to take over the
CPU completely and use its own scheduler, without us-
ing native machine language and thus surpassing all inter-
ruptingWindows code. However, several coding libraries
exist which offer real time capabilities in a high level lan-
guage on a variety of operating systems, for example Java
Real Time. The Motorola 68000 and subsequent family
members (68010, 68020 etc.) also became popular with
manufacturers of industrial control systems thanks to this
facility. This application area is one in which real-time
control offers genuine advantages in terms of process per-
formance and safety.

6.2 Criteria for real-time comput-
ing

A system is said to be real-time if the total correctness
of an operation depends not only upon its logical correct-
ness, but also upon the time in which it is performed.[4]
Real-time systems, as well as their deadlines, are classi-
fied by the consequence of missing a deadline:

• Hard – missing a deadline is a total system failure.

• Firm – infrequent deadline misses are tolerable, but
may degrade the system’s quality of service. The

29

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Computer_simulation
https://en.wikipedia.org/wiki/Enterprise_system
https://en.wikipedia.org/wiki/Enterprise_system
https://en.wikipedia.org/wiki/Synchronous_programming_language
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Mission_critical
https://en.wikipedia.org/wiki/Anti-lock_brakes
https://en.wikipedia.org/wiki/Load_(computing)
https://en.wikipedia.org/wiki/Simulation
https://en.wikipedia.org/wiki/Real-time_simulation
https://en.wikipedia.org/wiki/Real-time_simulation
https://en.wikipedia.org/wiki/Analog_computer
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/Commodore_64
https://en.wikipedia.org/wiki/Apple_II
https://en.wikipedia.org/wiki/Motorola_68000
https://en.wikipedia.org/wiki/Macintosh
https://en.wikipedia.org/wiki/Atari_ST
https://en.wikipedia.org/wiki/Commodore_Amiga
https://en.wikipedia.org/wiki/Interrupt_latency
https://en.wikipedia.org/wiki/Interrupt_latency
https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Real_time_Java
https://en.wikipedia.org/wiki/Real_time_Java
https://en.wikipedia.org/wiki/Motorola_68000

30 CHAPTER 6. REAL-TIME COMPUTING

usefulness of a result is zero after its deadline.

• Soft – the usefulness of a result degrades after its
deadline, thereby degrading the system’s quality of
service.

Thus, the goal of a hard real-time system is to ensure that
all deadlines are met, but for soft real-time systems the
goal becomes meeting a certain subset of deadlines in or-
der to optimize some application-specific criteria. The
particular criteria optimized depend on the application,
but some typical examples include maximizing the num-
ber of deadlines met, minimizing the lateness of tasks and
maximizing the number of high priority tasks meeting
their deadlines.
Hard real-time systems are used when it is imperative that
an event be reacted to within a strict deadline. Such strong
guarantees are required of systems for which not react-
ing in a certain interval of time would cause great loss
in some manner, especially damaging the surroundings
physically or threatening human lives (although the strict
definition is simply that missing the deadline constitutes
failure of the system). For example, a car engine control
system is a hard real-time system because a delayed sig-
nal may cause engine failure or damage. Other examples
of hard real-time embedded systems include medical sys-
tems such as heart pacemakers and industrial process con-
trollers. Hard real-time systems are typically found inter-
acting at a low level with physical hardware, in embedded
systems. Early video game systems such as the Atari 2600
and Cinematronics vector graphics had hard real-time re-
quirements because of the nature of the graphics and tim-
ing hardware.
In the context of multitasking systems the scheduling pol-
icy is normally priority driven (pre-emptive schedulers).
Other scheduling algorithms include Earliest Deadline
First, which, ignoring the overhead of context switching,
is sufficient for system loads of less than 100%.[5] New
overlay scheduling systems, such as an Adaptive Partition
Scheduler assist in managing large systems with a mixture
of hard real-time and non real-time applications.
Soft real-time systems are typically used to solve issues
of concurrent access and the need to keep a number
of connected systems up-to-date through changing situ-
ations. An example can be software that maintains and
updates the flight plans for commercial airliners: the
flight plans must be kept reasonably current, but they
can operate with the latency of a few seconds. Live
audio-video systems are also usually soft real-time; vi-
olation of constraints results in degraded quality, but
the system can continue to operate and also recover in
the future using workload prediction and reconfiguration
methodologies.[6]

6.2.1 Real-time in digital signal processing

In a real-time digital signal processing (DSP) process, the
analyzed (input) and generated (output) samples can be
processed (or generated) continuously in the time it takes
to input and output the same set of samples independent
of the processing delay.[7] It means that the processing
delay must be bounded even if the processing continues
for an unlimited time. That means that the mean process-
ing time per sample is no greater than the sampling pe-
riod, which is the reciprocal of the sampling rate. This is
the criterion whether the samples are grouped together in
large segments and processed as blocks or are processed
individually and whether there are long, short, or non-
existent input and output buffers.
Consider an audio DSP example; if a process requires
2.01 seconds to analyze, synthesize, or process 2.00 sec-
onds of sound, it is not real-time. If it takes 1.99 seconds,
it is or can be made into a real-time DSP process.
A common life analog is standing in a line or queue
waiting for the checkout in a grocery store. If the line
asymptotically grows longer and longer without bound,
the checkout process is not real-time. If the length of
the line is bounded, customers are being “processed” and
output as rapidly, on average, as they are being inputted
and that process is real-time. The grocer might go out of
business or must at least lose business if they cannot make
their checkout process real-time; thus, it is fundamentally
important that this process is real-time.
A signal processing algorithm that cannot keep up with
the flow of input data with output falling farther and far-
ther behind the input is not real-time. But if the delay
of the output (relative to the input) is bounded regard-
ing a process that operates over an unlimited time, then
that signal processing algorithm is real-time, even if the
throughput delay may be very long.

6.3 Real-time and high-
performance

Real-time computing is sometimes misunderstood to be
high-performance computing, but this is not an accurate
classification.[8] For example, a massive supercomputer
executing a scientific simulation may offer impressive
performance, yet it is not executing a real-time compu-
tation. Conversely, once the hardware and software for
an anti-lock braking system have been designed to meet
its required deadlines, no further performance gains are
obligatory. Furthermore, if a network server is highly
loaded with network traffic, its response time may be
slower but will (in most cases) still succeed before it times
out (hits its deadline). Hence, such a network server
would not be considered a real-time system: temporal
failures (delays, time-outs, etc.) are typically small and
compartmentalized (limited in effect) but are not catas-

https://en.wikipedia.org/wiki/Automobile
https://en.wikipedia.org/wiki/Internal_combustion_engine
https://en.wikipedia.org/wiki/Artificial_pacemaker
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Atari_2600
https://en.wikipedia.org/wiki/Cinematronics
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Preemptive_multitasking
https://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling
https://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Adaptive_Partition_Scheduler
https://en.wikipedia.org/wiki/Adaptive_Partition_Scheduler
https://en.wikipedia.org/wiki/Airline
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Sampling_rate
https://en.wikipedia.org/wiki/Data_buffer
https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/Audio_analysis
https://en.wikipedia.org/wiki/Sound_synthesis
https://en.wikipedia.org/wiki/Queue_area
https://en.wikipedia.org/wiki/High-performance_computing
https://en.wikipedia.org/wiki/Supercomputer

6.5. DESIGN METHODS 31

trophic failures. In a real-time system, such as the FTSE
100 Index, a slow-down beyond limits would often be
considered catastrophic in its application context. There-
fore, the most important requirement of a real-time sys-
tem is predictability and not performance.
Some kinds of software, such as many chess-playing pro-
grams, can fall into either category. For instance, a chess
program designed to play in a tournament with a clock
will need to decide on a move before a certain deadline or
lose the game, and is therefore a real-time computation,
but a chess program that is allowed to run indefinitely be-
fore moving is not. In both of these cases, however, high
performance is desirable: the more work a tournament
chess program can do in the allotted time, the better its
moves will be, and the faster an unconstrained chess pro-
gram runs, the sooner it will be able to move. This exam-
ple also illustrates the essential difference between real-
time computations and other computations: if the tour-
nament chess program does not make a decision about its
next move in its allotted time it loses the game—i.e., it
fails as a real-time computation—while in the other sce-
nario, meeting the deadline is assumed not to be neces-
sary. High-performance is indicative of the amount of
processing that is performed in a given amount of time,
while real-time is the ability to get done with the process-
ing to yield a useful output in the available time.

6.4 Near real-time

The term "near real-time" or "nearly real-time" (NRT),
in telecommunications and computing, refers to the
time delay introduced, by automated data processing
or network transmission, between the occurrence of an
event and the use of the processed data, such as for dis-
play or feedback and control purposes. For example, a
near-real-time display depicts an event or situation as it
existed at the current time minus the processing time, as
nearly the time of the live event.[9]

The distinction between the terms “near real time” and
“real time” is somewhat nebulous and must be defined
for the situation at hand. The term implies that there
are no significant delays.[9] In many cases, processing
described as “real-time” would be more accurately de-
scribed as “near real-time”.
Near real-time also refers to delayed real-time transmis-
sion of voice and video. It allows playing video im-
ages, in approximately real-time, without having to wait
for an entire large video file to download. Incompatible
databases can export/import to common flat files that the
other database can import/export on a scheduled basis so
that they can sync/share common data in “near real-time”
with each other.
The distinction between “near real-time” and “real-time”
varies, and the delay is dependent on the type and speed of
the transmission. The delay in near real-time is typically

of the order of several seconds to several minutes.

6.5 Design methods

Several methods exist to aid the design of real-time sys-
tems, an example of which is MASCOT, an old but very
successful method which represents the concurrent struc-
ture of the system. Other examples are HOOD, Real-
Time UML, AADL, the Ravenscar profile, and Real-
Time Java.

6.6 See also

• Processing modes

• Real-time testing

• Synchronous programming language

• Ptolemy Project

• DSOS

• Worst-case execution time

• Scheduling analysis real-time systems

• Time-utility function

• Real-time computer graphics

6.7 References
[1] Ben-Ari, M., “Principles of Concurrent and Distributed

Programming”, Prentice Hall, 1990. ISBN 0-13-711821-
X. Ch16, Page 164

[2] Martin, James (1965). Programming Real-time Computer
Systems. Englewood Cliffs, NJ: Prentice-Hall Inc. p. 4.
ISBN 013-730507-9.

[3] Krishna Kant (May 2010). Computer-Based Industrial
Control. books.google.com (PHI Learning). p. 356. Re-
trieved 2015-01-17.

[4] Shin, K.G.; Ramanathan, P. (Jan 1994). “Real-time com-
puting: a new discipline of computer science and engi-
neering”. Proceedings of the IEEE (IEEE) 82 (1): 6–24.
doi:10.1109/5.259423. ISSN 0018-9219.

[5] C. Liu and J. Layland. Scheduling Algorithms for Multi-
programming in a Hard Real-time Environment. Journal
of the ACM, 20(1):46-−61, Jan. 1973. http://citeseer.
ist.psu.edu/liu73scheduling.html

[6] “Real-time reconfiguration for guaranteeing QoS provi-
sioning levels in Grid environments”. Future Generation
Computer Systems (Elsevier) 25 (7): 779–784. July 2009.
doi:10.1016/j.future.2008.11.001.

https://en.wikipedia.org/wiki/FTSE_100_Index
https://en.wikipedia.org/wiki/FTSE_100_Index
https://en.wikipedia.org/wiki/Computer_chess
https://en.wikipedia.org/wiki/Computer_chess
https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Network_delay
https://en.wikipedia.org/wiki/Data_processing
https://en.wikipedia.org/wiki/Telecommunications_network
https://en.wikipedia.org/wiki/Feedback
https://en.wikipedia.org/wiki/Modular_Approach_to_Software_Construction_Operation_and_Test
https://en.wikipedia.org/wiki/Concurrency_(computer_science)
https://en.wikipedia.org/wiki/HOOD_method
https://en.wikipedia.org/wiki/AADL
https://en.wikipedia.org/wiki/Ravenscar_profile
https://en.wikipedia.org/wiki/Real_time_Java
https://en.wikipedia.org/wiki/Real_time_Java
https://en.wikipedia.org/wiki/Processing_modes
https://en.wikipedia.org/wiki/Real-time_testing
https://en.wikipedia.org/wiki/Synchronous_programming_language
https://en.wikipedia.org/wiki/Ptolemy_Project
https://en.wikipedia.org/wiki/DSOS
https://en.wikipedia.org/wiki/Worst-case_execution_time
https://en.wikipedia.org/wiki/Scheduling_analysis_real-time_systems
https://en.wikipedia.org/wiki/Time-utility_function
https://en.wikipedia.org/wiki/Real-time_computer_graphics
https://en.wikipedia.org/wiki/Special:BookSources/013711821X
https://en.wikipedia.org/wiki/Special:BookSources/013711821X
http://books.google.com/books/about/Programming_real_time_computer_systems.html?id=LgpKodW460oC
http://books.google.com/books/about/Programming_real_time_computer_systems.html?id=LgpKodW460oC
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/013-730507-9
https://books.google.com/books?id=3714jIryozYC&pg=PA356&lpg=PA356&source=bl&ots=BP7xAwhMKQ&sig=SMiV28RFLbHc1oidETdz6PgM7Ds&hl=en&sa=X&ei=hwS6VMzlKsbLaNC8goAL&redir_esc=y#v=onepage&q&f=false
https://books.google.com/books?id=3714jIryozYC&pg=PA356&lpg=PA356&source=bl&ots=BP7xAwhMKQ&sig=SMiV28RFLbHc1oidETdz6PgM7Ds&hl=en&sa=X&ei=hwS6VMzlKsbLaNC8goAL&redir_esc=y#v=onepage&q&f=false
https://en.wikipedia.org/wiki/IEEE
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1109%252F5.259423
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0018-9219
http://citeseer.ist.psu.edu/liu73scheduling.html
http://citeseer.ist.psu.edu/liu73scheduling.html
http://dx.doi.org/10.1016/j.future.2008.11.001
http://dx.doi.org/10.1016/j.future.2008.11.001
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1016%252Fj.future.2008.11.001

32 CHAPTER 6. REAL-TIME COMPUTING

[7] S.M. Kuo, B.H. Lee, and W. Tian, “Real-Time Digital
Signal Processing: Implementations and Applications”,
Wiley, 2006. ISBN 0-470-01495-4. Section 1.3.4: Real-
Time Constraints.

[8] John Stankovic (1988), “Misconceptions about real-time
computing: a serious problem for next-generation sys-
tems”, Computer (IEEE Computer Society) 21 (10): 11,
doi:10.1109/2.7053

[9] “Federal Standard 1037C: Glossary of Telecommunica-
tions Terms”. Its.bldrdoc.gov. Retrieved 2014-04-26.

6.8 Further reading

• Alan Burns and Andy Wellings (2009), Real-Time
Systems and Programming Languages (4th ed.),
Addison-Wesley, ISBN 978-0-321-41745-9

• Buttazzo, Giorgio (2011), Hard Real-Time Comput-
ing Systems: Predictable Scheduling Algorithms and
Applications, New York, NY: Springer.

• Liu, Jane W.S. (2000), Real-time systems, Upper
Saddle River, NJ: Prentice Hall.

6.9 External links

6.9.1 Technical committees

• IEEE Technical Committee on Real-Time Systems

• Euromicro Technical Committee on Real-time Sys-
tems

6.9.2 Scientific conferences

• RTNS - International Conference on Real-Time
Networks and Systems

• ECRTS - Euromicro Conference on Real-time Sys-
tems

• IEEE Real-time Systems Symposium

• IEEE Real-time Technology and Applications Sym-
posium

• International Symposium on Object-oriented Real-
time distributed Computing

• IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications

• Real-Time & Embedded Computing Conference

6.9.3 Journals

• International Journal of Critical Computer-Based
Systems

• International Journal of Real-Time Systems

6.9.4 Research groups

• Cyber-Physical Systems Integration Lab, University
of Illinois at Urbana-Champaign.

• IDA Institute of Computer and Network Engineer-
ing, TU Braunschweig, Germany

• CISTER Research Unit, ISEP, Polytechnic Institute
of Porto (IPP), Portugal

• Real-Time Systems Research
Group,INRIA,LORIA NANCY, France

• Real-Time & Embedded Computing Laboratory
(USMAN SHARIF BCS-SP03-37)

• Mälardalen Real-Time research Centre

• Real-Time Computing Laboratory

• Real-Time Systems Laboratory

• RTSE Laboratory

• Institute for Systems Engineering - Real Time sys-
tems Group

• Real-Time Systems Laboratory at Scuola Superiore
Sant'Anna, Pisa, Italy

• Technical University of Kaiserslautern - Institute for
Electrical Engineering and Information Technology
- Real-Time Systems Group

• Vienna University of Technology - Institute for
Computer Engineering - Real-Time Systems Group

• Real-Time Systems Research Group at the Univer-
sity of York, UK

• Chalmers University of Technology - Dependable
Real-Time Systems research group

• ARTES: a national Swedish strategic research initia-
tive in Real-Time Systems supported by the Swedish
Foundation for Strategic Research (SSF), SE

• Real-Time Systems at the University of North Car-
olina at Chapel Hill

• Real-time Systems Laboratory at Virginia Polytech-
nic and State University, Blacksburg

• Mc2labs RealTime Industries. Real-time ICT Re-
search & Development. RealTime Internet pro-
gramming infrastructures, Mogliano Veneto, Italy

https://en.wikipedia.org/wiki/Special:BookSources/0470014954
http://media.wiley.com/product_data/excerpt/54/04700149/0470014954.pdf
http://media.wiley.com/product_data/excerpt/54/04700149/0470014954.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1109%252F2.7053
http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm
http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-321-41745-9
http://cs-www.bu.edu/pub/ieee-rts/
http://www.ecrts.org/
http://www.ecrts.org/
http://www-rtns2014.cea.fr/
http://www-rtns2014.cea.fr/
http://www.ecrts.org/
http://www.ecrts.org/
http://www.rtss.org/
http://www.rtas.org/
http://www.rtas.org/
http://www.informatik.uni-trier.de/~ley/db/conf/isorc/index.html
http://www.informatik.uni-trier.de/~ley/db/conf/isorc/index.html
http://www.rtcsa.org/
http://www.rtcsa.org/
http://rtecc.com/home/
http://www.inderscience.com/ijccbs
http://www.inderscience.com/ijccbs
http://www.springer.com/computer/communication+networks/journal/11241
http://publish.illinois.edu/cpsintegrationlab/
http://publish.illinois.edu/cpsintegrationlab/
http://www.ida.ing.tu-bs.de/
http://www.ida.ing.tu-bs.de/
http://www.cister.isep.ipp.pt/
http://www.cister.isep.ipp.pt/
http://www.loria.fr/equipes/TRIO/english/index.html
http://www.loria.fr/equipes/TRIO/english/index.html
http://www.cs.virginia.edu/~control/
http://www.cs.virginia.edu/~control/
http://www.mrtc.mdh.se/
http://www.eecs.umich.edu/RTCL
http://www.ida.liu.se/~rtslab/
http://rtselab.org/
http://www.rts.uni-hannover.de/en
http://www.rts.uni-hannover.de/en
http://retis.sssup.it/
http://retis.sssup.it/
http://rts.eit.uni-kl.de/
http://rts.eit.uni-kl.de/
http://rts.eit.uni-kl.de/
http://www.vmars.tuwien.ac.at/
http://www.vmars.tuwien.ac.at/
http://www.cs.york.ac.uk/rts/
http://www.cs.york.ac.uk/rts/
http://www.chalmers.se/cse/EN/research/research-groups/dependable-real-time
http://www.chalmers.se/cse/EN/research/research-groups/dependable-real-time
http://www.artes.uu.se/
http://www.artes.uu.se/
http://www.artes.uu.se/
http://www.cs.unc.edu/~anderson/real-time/
http://www.cs.unc.edu/~anderson/real-time/
http://www.real-time.ece.vt.edu/
http://www.real-time.ece.vt.edu/
http://docs.mc2labs.net/
http://docs.mc2labs.net/
http://docs.mc2labs.net/

6.9. EXTERNAL LINKS 33

• Simula Research Laboratory, Media Performance
Group

• Parallel Architectures for Real-time Systems, Brus-
sels, Belgium, Europe.

6.9.5 Technical papers

• The What, Where and Why of Real-Time Simula-
tion

http://simula.no/department/media
http://simula.no/department/media
http://parts.ulb.ac.be/index.php
http://parts.ulb.ac.be/index.php
http://www.opal-rt.com/technical-document/what-where-and-why-real-time-simulation
http://www.opal-rt.com/technical-document/what-where-and-why-real-time-simulation

Chapter 7

Fault tolerance

Fault tolerance is the property that enables a system to
continue operating properly in the event of the failure of
(or one or more faults within) some of its components.
If its operating quality decreases at all, the decrease is
proportional to the severity of the failure, as compared to
a naively designed system in which even a small failure
can cause total breakdown. Fault tolerance is particularly
sought after in high-availability or life-critical systems.
A fault-tolerant design enables a system to continue its
intended operation, possibly at a reduced level, rather
than failing completely, when some part of the system
fails.[1] The term is most commonly used to describe
computer systems designed to continue more or less fully
operational with, perhaps, a reduction in throughput or
an increase in response time in the event of some partial
failure. That is, the system as a whole is not stopped due
to problems either in the hardware or the software. An
example in another field is a motor vehicle designed so
it will continue to be drivable if one of the tires is punc-
tured. A structure is able to retain its integrity in the pres-
ence of damage due to causes such as fatigue, corrosion,
manufacturing flaws, or impact.
Within the scope of an individual system, fault tolerance
can be achieved by anticipating exceptional conditions
and building the system to cope with them, and, in gen-
eral, aiming for self-stabilization so that the system con-
verges towards an error-free state. However, if the conse-
quences of a system failure are catastrophic, or the cost of
making it sufficiently reliable is very high, a better solu-
tion may be to use some form of duplication. In any case,
if the consequence of a system failure is so catastrophic,
the system must be able to use reversion to fall back to a
safe mode. This is similar to roll-back recovery but can
be a human action if humans are present in the loop.

7.1 Terminology

A highly fault-tolerant system might continue at the same
level of performance even though one or more compo-
nents have failed. For example, a building with a backup
electrical generator will provide the same voltage to wall
outlets even if the grid power fails.

An example of graceful degradation by design in an image with
transparency. The top two images are each the result of viewing
the composite image in a viewer that recognises transparency.
The bottom two images are the result in a viewer with no sup-
port for transparency. Because the transparency mask (centre
bottom) is discarded, only the overlay (centre top) remains; the
image on the left has been designed to degrade gracefully, hence
is still meaningful without its transparency information.

A system that is designed to fail safe, or fail-secure, or
fail gracefully, whether it functions at a reduced level
or fails completely, does so in a way that protects peo-
ple, property, or data from injury, damage, intrusion, or
disclosure. In computers, a program might fail-safe by
executing a graceful exit (as opposed to an uncontrolled
crash) in order to prevent data corruption after experi-
encing an error. A similar distinction is made between
“failing well” and "failing badly".
Fail-deadly is the opposite strategy, which can be used in
weapon systems that are designed to kill or injure targets
even if part of the system is damaged or destroyed.
A system that is designed to experience graceful degra-
dation, or to fail soft (used in computing, similar to “fail
safe”[2]) operates at a reduced level of performance af-
ter some component failures. For example, a building
may operate lighting at reduced levels and elevators at re-
duced speeds if grid power fails, rather than either trap-
ping people in the dark completely or continuing to op-
erate at full power. In computing an example of grace-
ful degradation is that if insufficient network bandwidth
is available to stream an online video, a lower-resolution
version might be streamed in place of the high-resolution
version. Progressive enhancement is an example in com-
puting, where web pages are available in a basic functional
format for older, small-screen, or limited-capability web
browsers, but in an enhanced version for browsers capable

34

https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/High-availability
https://en.wikipedia.org/wiki/Life-critical_system
https://en.wikipedia.org/wiki/Failure
https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Response_time_(technology)
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Fatigue_(material)
https://en.wikipedia.org/wiki/Corrosion
https://en.wikipedia.org/wiki/Self-stabilization
https://en.wikipedia.org/wiki/Fail_safe
https://en.wikipedia.org/wiki/Graceful_exit
https://en.wikipedia.org/wiki/Failing_badly
https://en.wikipedia.org/wiki/Fail-deadly
https://en.wikipedia.org/wiki/Progressive_enhancement

7.4. CRITERIA 35

of handling additional technologies or that have a larger
display available.
In fault-tolerant computer systems, programs that are
considered robust are designed to continue operation de-
spite an error, exception, or invalid input, instead of
crashing completely. Software brittleness is the opposite
of robustness. Resilient networks continue to transmit
data despite the failure of some links or nodes; resilient
buildings and infrastructure are likewise expected to
prevent complete failure in situations like earthquakes,
floods, or collisions.
A system with high failure transparency will alert users
that a component failure has occurred, even if it contin-
ues to operate with full performance, so that failure can be
repaired or imminent complete failure anticipated. Like-
wise, a fail-fast component is designed to report at the
first point of failure, rather than allow downstream com-
ponents to fail and generate reports then. This allows eas-
ier diagnosis of the underlying problem, and may prevent
improper operation in a broken state.

7.2 Components

If each component, in turn, can continue to function when
one of its subcomponents fails, this will allow the total
system to continue to operate as well. Using a passen-
ger vehicle as an example, a car can have “run-flat” tires,
which each contain a solid rubber core, allowing them
to be used even if a tire is punctured. The punctured
“run-flat” tire may be used for a limited time at a reduced
speed.

7.3 Redundancy

Main article: redundancy (engineering)

Redundancy is the provision of functional capabilities
that would be unnecessary in a fault-free environment.[3]
This can consist of backup components which automati-
cally “kick in” should one component fail. For example,
large cargo trucks can lose a tire without anymajor conse-
quences. They have many tires, and no one tire is critical
(with the exception of the front tires, which are used to
steer). The idea of incorporating redundancy in order to
improve the reliability of a system was pioneered by John
von Neumann in the 1950s.[4]

Two kinds of redundancy are possible:[5] space redun-
dancy and time redundancy. Space redundancy provides
additional components, functions, or data items that are
unnecessary for fault-free operation. Space redundancy
is further classified into hardware, software and infor-
mation redundancy, depending on the type of redundant
resources added to the system. In time redundancy the

computation or data transmission is repeated and the re-
sult is compared to a stored copy of the previous result.

7.4 Criteria

Providing fault-tolerant design for every component is
normally not an option. Associated redundancy brings a
number of penalties: increase in weight, size, power con-
sumption, cost, as well as time to design, verify, and test.
Therefore, a number of choices have to be examined to
determine which components should be fault tolerant:[6]

• How critical is the component? In a car, the radio
is not critical, so this component has less need for
fault tolerance.

• How likely is the component to fail? Some com-
ponents, like the drive shaft in a car, are not likely
to fail, so no fault tolerance is needed.

• How expensive is it to make the component fault
tolerant? Requiring a redundant car engine, for ex-
ample, would likely be too expensive both econom-
ically and in terms of weight and space, to be con-
sidered.

An example of a component that passes all the tests is
a car’s occupant restraint system. While we do not nor-
mally think of the primary occupant restraint system, it
is gravity. If the vehicle rolls over or undergoes severe
g-forces, then this primary method of occupant restraint
may fail. Restraining the occupants during such an acci-
dent is absolutely critical to safety, so we pass the first test.
Accidents causing occupant ejection were quite common
before seat belts, so we pass the second test. The cost
of a redundant restraint method like seat belts is quite
low, both economically and in terms or weight and space,
so we pass the third test. Therefore, adding seat belts to
all vehicles is an excellent idea. Other “supplemental re-
straint systems”, such as airbags, are more expensive and
so pass that test by a smaller margin.

7.5 Requirements

The basic characteristics of fault tolerance require:

1. No single point of failure – If a system experiences
a failure, it must continue to operate without inter-
ruption during the repair process.

2. Fault isolation to the failing component – When a
failure occurs, the system must be able to isolate the
failure to the offending component. This requires

https://en.wikipedia.org/wiki/Fault-tolerant_computer_system
https://en.wikipedia.org/wiki/Robustness_(computer_science)
https://en.wikipedia.org/wiki/Software_brittleness
https://en.wikipedia.org/wiki/Resilience_(network)
https://en.wikipedia.org/wiki/Resilience_(engineering_and_construction)
https://en.wikipedia.org/wiki/Resilience_(engineering_and_construction)
https://en.wikipedia.org/wiki/Failure_transparency
https://en.wikipedia.org/wiki/Fail-fast
https://en.wikipedia.org/wiki/Run-flat_tire
https://en.wikipedia.org/wiki/Redundancy_(engineering)
https://en.wikipedia.org/wiki/Gravity
https://en.wikipedia.org/wiki/Seat_belt
https://en.wikipedia.org/wiki/Airbag
https://en.wikipedia.org/wiki/Single_point_of_failure
https://en.wikipedia.org/wiki/Fault_isolation

36 CHAPTER 7. FAULT TOLERANCE

the addition of dedicated failure detection mecha-
nisms that exist only for the purpose of fault isola-
tion. Recovery from a fault condition requires clas-
sifying the fault or failing component. The National
Institute of Standards and Technology (NIST) cate-
gorizes faults based on locality, cause, duration, and
effect.

3. Fault containment to prevent propagation of the fail-
ure – Some failure mechanisms can cause a sys-
tem to fail by propagating the failure to the rest of
the system. An example of this kind of failure is
the “rogue transmitter” which can swamp legitimate
communication in a system and cause overall system
failure. Firewalls or other mechanisms that isolate a
rogue transmitter or failing component to protect the
system are required.

4. Availability of reversion modes

In addition, fault-tolerant systems are characterized in
terms of both planned service outages and unplanned ser-
vice outages. These are usually measured at the applica-
tion level and not just at a hardware level. The figure of
merit is called availability and is expressed as a percent-
age. For example, a five nines system would statistically
provide 99.999% availability.
Fault-tolerant systems are typically based on the concept
of redundancy.

7.6 Replication

Spare components address the first fundamental charac-
teristic of fault tolerance in three ways:

• Replication: Providing multiple identical instances
of the same system or subsystem, directing tasks or
requests to all of them in parallel, and choosing the
correct result on the basis of a quorum;

• Redundancy: Providing multiple identical instances
of the same system and switching to one of the re-
maining instances in case of a failure (failover);

• Diversity: Providing multiple different implementa-
tions of the same specification, and using them like
replicated systems to cope with errors in a specific
implementation.

All implementations of RAID, redundant array of inde-
pendent disks, except RAID 0, are examples of a fault-
tolerant storage device that uses data redundancy.
A lockstep fault-tolerant machine uses replicated ele-
ments operating in parallel. At any time, all the replica-
tions of each element should be in the same state. The
same inputs are provided to each replication, and the

same outputs are expected. The outputs of the replica-
tions are compared using a voting circuit. Amachine with
two replications of each element is termed dual modular
redundant (DMR). The voting circuit can then only detect
a mismatch and recovery relies on other methods. A ma-
chine with three replications of each element is termed
triple modular redundant (TMR). The voting circuit can
determine which replication is in error when a two-to-one
vote is observed. In this case, the voting circuit can out-
put the correct result, and discard the erroneous version.
After this, the internal state of the erroneous replication
is assumed to be different from that of the other two, and
the voting circuit can switch to a DMRmode. This model
can be applied to any larger number of replications.
Lockstep fault-tolerant machines are most easily made
fully synchronous, with each gate of each replication
making the same state transition on the same edge of the
clock, and the clocks to the replications being exactly in
phase. However, it is possible to build lockstep systems
without this requirement.
Bringing the replications into synchrony requires making
their internal stored states the same. They can be started
from a fixed initial state, such as the reset state. Alterna-
tively, the internal state of one replica can be copied to
another replica.
One variant of DMR is pair-and-spare. Two replicated
elements operate in lockstep as a pair, with a voting cir-
cuit that detects any mismatch between their operations
and outputs a signal indicating that there is an error. An-
other pair operates exactly the same way. A final circuit
selects the output of the pair that does not proclaim that
it is in error. Pair-and-spare requires four replicas rather
than the three of TMR, but has been used commercially.

7.7 Disadvantages

Fault-tolerant design’s advantages are obvious, while
many of its disadvantages are not:

• Interference with fault detection in the same
component. To continue the above passenger vehi-
cle example, with either of the fault-tolerant systems
it may not be obvious to the driver when a tire has
been punctured. This is usually handled with a sepa-
rate “automated fault-detection system”. In the case
of the tire, an air pressure monitor detects the loss
of pressure and notifies the driver. The alternative is
a “manual fault-detection system”, such as manually
inspecting all tires at each stop.

• Interference with fault detection in another com-
ponent. Another variation of this problem is when
fault tolerance in one component prevents fault de-
tection in a different component. For example, if
component B performs some operation based on the

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Firewall_(computing)
https://en.wikipedia.org/wiki/Availability
https://en.wikipedia.org/wiki/5_nines
https://en.wikipedia.org/wiki/Replication_(computer_science)
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Quorum
https://en.wikipedia.org/wiki/Redundancy_(engineering)
https://en.wikipedia.org/wiki/Failover
https://en.wikipedia.org/wiki/RAID
https://en.wikipedia.org/wiki/RAID
https://en.wikipedia.org/wiki/RAID
https://en.wikipedia.org/wiki/Data_storage_device
https://en.wikipedia.org/wiki/Data_redundancy
https://en.wikipedia.org/wiki/Lockstep_(computing)
https://en.wikipedia.org/wiki/Replication_(computing)
https://en.wikipedia.org/wiki/Voting_circuit
https://en.wikipedia.org/wiki/Dual_modular_redundancy
https://en.wikipedia.org/wiki/Dual_modular_redundancy
https://en.wikipedia.org/wiki/Triple_modular_redundancy
https://en.wikipedia.org/wiki/Lockstep_(computing)
https://en.wikipedia.org/wiki/Synchronization_(computer_science)

7.9. RELATED TERMS 37

output from component A, then fault tolerance in B
can hide a problem with A. If component B is later
changed (to a less fault-tolerant design) the system
may fail suddenly, making it appear that the new
component B is the problem. Only after the system
has been carefully scrutinized will it become clear
that the root problem is actually with component A.

• Reduction of priority of fault correction. Even
if the operator is aware of the fault, having a fault-
tolerant system is likely to reduce the importance of
repairing the fault. If the faults are not corrected,
this will eventually lead to system failure, when the
fault-tolerant component fails completely or when
all redundant components have also failed.

• Test difficulty. For certain critical fault-tolerant
systems, such as a nuclear reactor, there is no
easy way to verify that the backup components are
functional. The most infamous example of this is
Chernobyl, where operators tested the emergency
backup cooling by disabling primary and secondary
cooling. The backup failed, resulting in a core melt-
down and massive release of radiation.

• Cost. Both fault-tolerant components and redun-
dant components tend to increase cost. This can be
a purely economic cost or can include other mea-
sures, such as weight. Manned spaceships, for ex-
ample, have so many redundant and fault-tolerant
components that their weight is increased dramat-
ically over unmanned systems, which don't require
the same level of safety.

• Inferior components. A fault-tolerant design may
allow for the use of inferior components, which
would have otherwise made the system inoperable.
While this practice has the potential to mitigate the
cost increase, use of multiple inferior components
may lower the reliability of the system to a level
equal to, or even worse than, a comparable non-
fault-tolerant system.

7.8 Examples

Hardware fault tolerance sometimes requires that broken
parts be taken out and replaced with new parts while
the system is still operational (in computing known as
hot swapping). Such a system implemented with a sin-
gle backup is known as single point tolerant, and repre-
sents the vast majority of fault-tolerant systems. In such
systems the mean time between failures should be long
enough for the operators to have time to fix the broken de-
vices (mean time to repair) before the backup also fails.
It helps if the time between failures is as long as possi-
ble, but this is not specifically required in a fault-tolerant
system.

Fault tolerance is notably successful in computer appli-
cations. Tandem Computers built their entire business
on such machines, which used single-point tolerance to
create their NonStop systems with uptimes measured in
years.
Fail-safe architectures may encompass also the computer
software, for example by process replication (computer
science).
Data formats may also be designed to degrade gracefully.
HTML for example, is designed to be forward compati-
ble, allowing new HTML entities to be ignored by Web
browsers which do not understand them without causing
the document to be unusable.

7.9 Related terms

There is a difference between fault tolerance and sys-
tems that rarely have problems. For instance, theWestern
Electric crossbar systems had failure rates of two hours
per forty years, and therefore were highly fault resistant.
But when a fault did occur they still stopped operating
completely, and therefore were not fault tolerant.

7.10 See also

• Control reconfiguration

• Defence in depth

• Elegant degradation

• Error-tolerant design (human-error-tolerant design)

• Fault-tolerant computer systems

• List of system quality attributes

• Resilience (ecology)

• Resilience (network)

• Safe-life design

7.11 References

[1] Johnson, B. W. (1984). “Fault-Tolerant Microprocessor-
Based Systems”, IEEE Micro, vol. 4, no. 6, pp. 6–21

[2] Stallings, W (2009): Operating Systems. Internals and
Design Principles, sixth edition

[3] Laprie, J. C. (1985). “Dependable Computing and Fault
Tolerance: Concepts and Terminology”, Proceedings of
15th International Symposium on Fault-Tolerant Comput-
ing (FTSC-15), pp. 2–11

https://en.wikipedia.org/wiki/Nuclear_reactor
https://en.wikipedia.org/wiki/Chernobyl_disaster
https://en.wikipedia.org/wiki/Human_spaceflight
https://en.wikipedia.org/wiki/Hot_swapping
https://en.wikipedia.org/wiki/Mean_time_between_failure
https://en.wikipedia.org/wiki/Mean_time_to_repair
https://en.wikipedia.org/wiki/Tandem_Computers
https://en.wikipedia.org/wiki/Uptime
https://en.wikipedia.org/wiki/Replication_(computer_science)
https://en.wikipedia.org/wiki/Replication_(computer_science)
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Forward_compatibility
https://en.wikipedia.org/wiki/Forward_compatibility
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Western_Electric
https://en.wikipedia.org/wiki/Western_Electric
https://en.wikipedia.org/wiki/Crossbar_switch
https://en.wikipedia.org/wiki/Control_reconfiguration
https://en.wikipedia.org/wiki/Defence_in_depth
https://en.wikipedia.org/wiki/Elegant_degradation
https://en.wikipedia.org/wiki/Error-tolerant_design
https://en.wikipedia.org/wiki/Fault-tolerant_computer_systems
https://en.wikipedia.org/wiki/List_of_system_quality_attributes
https://en.wikipedia.org/wiki/Resilience_(ecology)
https://en.wikipedia.org/wiki/Resilience_(network)
https://en.wikipedia.org/wiki/Safe-life_design

38 CHAPTER 7. FAULT TOLERANCE

[4] von Neumann, J. (1956). “Probabilistic Logics and Syn-
thesis of Reliable Organisms from Unreliable Compo-
nents”, in Automata Studies, eds. C. Shannon and J. Mc-
Carthy, Princeton University Press, pp. 43–98

[5] Avizienis, A. (1976). “Fault-Tolerant Systems”, IEEE
Transactions on Computers, vol. 25, no. 12, pp. 1304–
1312

[6] Dubrova, E. (2013). “Fault-Tolerant Design”, Springer,
2013, ISBN 978-1-4614-2112-2

7.12 Bibliography

• Brian Randell, P.A. Lee, P. C. Treleaven (June
1978). “Reliability Issues in Computing SystemDe-
sign”. ACMComputing Surveys (CSUR) 10 (2): 123–
165. doi:10.1145/356725.356729. ISSN 0360-
0300.

• P. J. Denning (December 1976). “Fault tolerant op-
erating systems”. ACMComputing Surveys (CSUR) 8
(4): 359–389. doi:10.1145/356678.356680. ISSN
0360-0300.

• Theodore A. Linden (December 1976). “Operating
System Structures to Support Security and Reli-
able Software”. ACM Computing Surveys (CSUR) 8
(4): 409–445. doi:10.1145/356678.356682. ISSN
0360-0300.

• Menychtas, Andreas; Konstanteli, Kleopatra
(2012), Fault Detection and Recovery Mechanisms
and Techniques for Service Oriented Infrastructures,
Achieving Real-Time in Distributed Computing:
From Grids to Clouds, IGI Global, pp. 259–274,
doi:10.4018/978-1-60960-827-9.ch014

7.13 External links

• Implementation and evaluation of failsafe computer-
controlled systems

• Seminar on Self-Healing Systems

• Interview with Robert Hanmer about his book Pat-
terns for Fault Tolerant Software (Part One, Part
Two) (Podcast)

• Article "Practical Considerations in Making
CORBA Services Fault-Tolerant" by Priya
Narasimhan

• Article "Experiences, Strategies and Challenges
in Building Fault-Tolerant CORBA Systems" by
Pascal Felber and Priya Narasimhan

• Dependability And Its Threats: A Taxonomy by Al-
girdas Avizienis, Jean-Claude Laprie, B. Randell

• EU funded research project HPC4U addressing de-
velopment of fault tolerant technologies for Grid
computing environments

• Fault Tolerance and High Availability Systems

• Graceful Degradation in the RKBExplorer

• Fault Tolerance and High Availability Systems for
Check Point Firewall and VPN networks with Re-
silience line of FCR appliances

• Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing

https://en.wikipedia.org/wiki/Special:BookSources/9781461421122
https://en.wikipedia.org/wiki/Brian_Randell
http://portal.acm.org/citation.cfm?id=356729&coll=&dl=ACM&CFID=15151515&CFTOKEN=6184618
http://portal.acm.org/citation.cfm?id=356729&coll=&dl=ACM&CFID=15151515&CFTOKEN=6184618
https://en.wikipedia.org/wiki/ACM_Computing_Surveys
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F356725.356729
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0360-0300
https://www.worldcat.org/issn/0360-0300
https://en.wikipedia.org/wiki/P._J._Denning
http://portal.acm.org/citation.cfm?id=356680&dl=ACM&coll=&CFID=15151515&CFTOKEN=6184618
http://portal.acm.org/citation.cfm?id=356680&dl=ACM&coll=&CFID=15151515&CFTOKEN=6184618
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F356678.356680
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0360-0300
http://portal.acm.org/citation.cfm?id=356682&coll=&dl=ACM&CFID=15151515&CFTOKEN=6184618
http://portal.acm.org/citation.cfm?id=356682&coll=&dl=ACM&CFID=15151515&CFTOKEN=6184618
http://portal.acm.org/citation.cfm?id=356682&coll=&dl=ACM&CFID=15151515&CFTOKEN=6184618
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F356678.356682
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0360-0300
http://dx.doi.org/10.4018/978-1-60960-827-9.ch014
http://dx.doi.org/10.4018/978-1-60960-827-9.ch014
https://en.wikipedia.org/wiki/IGI_Global
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.4018%252F978-1-60960-827-9.ch014
http://portal.acm.org/citation.cfm?id=779417
http://portal.acm.org/citation.cfm?id=779417
http://www.cs.rutgers.edu/~iftode/seminar04_papers.htm
https://en.wikipedia.org/wiki/Robert_Hanmer
http://se-radio.net/podcast/2007-11/episode-77-fault-tolerance-bob-hanmer-pt-1
http://se-radio.net/podcast/2007-11/episode-78-fault-tolerance-bob-hanmer-pt-2
http://se-radio.net/podcast/2007-11/episode-78-fault-tolerance-bob-hanmer-pt-2
http://citeseer.csail.mit.edu/677518.html
http://citeseer.csail.mit.edu/677518.html
https://en.wikipedia.org/wiki/Priya_Narasimhan
https://en.wikipedia.org/wiki/Priya_Narasimhan
http://doi.ieeecomputersociety.org/10.1109/TC.2004.1275293
http://doi.ieeecomputersociety.org/10.1109/TC.2004.1275293
https://en.wikipedia.org/wiki/Pascal_Felber
https://en.wikipedia.org/wiki/Priya_Narasimhan
http://rodin.cs.ncl.ac.uk/Publications/avizienis.pdf
https://en.wikipedia.org/wiki/Brian_Randell
http://www.hpc4u.org/
http://www.sohar.com/services/fault_tolerance/
http://www.rkbexplorer.com/explorer/#display=mechanism-%7Bhttp://resex.rkbexplorer.com/id/resilience-mechanism-736676d7%7D
http://www.resilience.com/
http://www.resilience.com/
http://www.resilience.com/
http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf
http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf

Chapter 8

Mean time between failures

Mean time between failures (MTBF) is the predicted
elapsed time between inherent failures of a system during
operation.[1] MTBF can be calculated as the arithmetic
mean (average) time between failures of a system. The
MTBF is typically part of a model that assumes the failed
system is immediately repaired (mean time to repair, or
MTTR), as a part of a renewal process. This is in contrast
to the mean time to failure (MTTF), which measures av-
erage time to failures with the modeling assumption that
the failed system is not repaired (infinite repair time).
The definition of MTBF depends on the definition of
what is considered a system failure. For complex,
repairable systems, failures are considered to be those out
of design conditions which place the system out of service
and into a state for repair. Failures which occur that can
be left or maintained in an unrepaired condition, and do
not place the system out of service, are not considered
failures under this definition.[2] In addition, units that are
taken down for routine scheduled maintenance or inven-
tory control are not considered within the definition of
failure.

8.1 The Overview

Mean time between failures (MTBF) describes the ex-
pected time between two failures for a repairable system,
while mean time to failure (MTTF) denotes the expected
time to failure for a non-repairable system. For exam-
ple, three identical systems starting to function properly at
time 0 are working until all of them fail. The first system
failed at 100 hours, the second failed at 120 hours and the
third failed at 130 hours. The MTBF of the system is the
average of the three failure times, which is 116.667 hours.
If the systems are non-repairable, then their MTTFwould
be 116.667 hours.
In general, MTBF is the “up-time” between two failure
states of a repairable system during operation as outlined
here:

up time (after repair) down time (unplanned)

Time Between Failures = { down time - up time}

Up

Down
off one failure one failureone failure

between failures

For each observation, the “down time” is the instanta-
neous time it went down, which is after (i.e. greater than)
the moment it went up, the “up time”. The difference
(“down time” minus “up time”) is the amount of time it
was operating between these two events.
Once theMTBF of a system is known, the probability that
any one particular systemwill be operational at time equal
to the MTBF can be calculated. This calculation requires
that the system is working within its “useful life period”,
which is characterized by a relatively constant failure rate
(the middle part of the "bathtub curve") when only ran-
dom failures are occurring. Under this assumption, any
one particular system will survive to its calculated MTBF
with a probability of 36.8% (i.e., it will fail before with
a probability of 63.2%). The same applies to the MTTF
of a system working within this time period.[3]

MTBF value prediction is an important element in the
development of products. However, it is incorrect to
extrapolate MTBF to give an estimate of the life time of
a component, which will typically be much less than sug-
gested by the original MTBF due to the much higher fail-
ure rates in the “end-of-life wearout” part of the “bathtub
curve”.
Reliability engineers and design engineers often use reli-
ability software to calculate a product’s MTBF according
to various methods and standards (MIL-HDBK-217F,
Telcordia SR332, Siemens Norm, FIDES,UTE 80-810

39

https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Failure
https://en.wikipedia.org/wiki/Mean_time_to_repair
https://en.wikipedia.org/wiki/Renewal_process
https://en.wikipedia.org/wiki/Failure
https://en.wikipedia.org/wiki/Failure
https://en.wikipedia.org/wiki/Repairable
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Bathtub_curve
https://en.wikipedia.org/wiki/Extrapolate

40 CHAPTER 8. MEAN TIME BETWEEN FAILURES

(RDF2000), etc.). However, these “prediction” methods
are not intended to reflect fielded MTBF as is commonly
believed; the intent of these tools is to focus design efforts
on the weak links in the design.

8.2 Formal definition of MTBF

By referring to the figure above, the MTBF is the sum
of the operational periods divided by the number of ob-
served failures. If the “Down time” (with space) refers to
the start of “downtime” (without space) and “up time”
(with space) refers to the start of “uptime” (without
space), the formula will be:

failures between time Mean = MTBF =

∑
(downtime of start− uptime of start)

failures of number .

The MTBF is often denoted by the Greek letter θ, or

MTBF = θ.

The MTBF can be defined in terms of the expected value
of the density function ƒ(t)

MTBF =

∫ ∞

0

tf(t) dt

where ƒ is the density function of time until failure – sat-
isfying the standard requirement of density functions –

∫ ∞

0

f(t) dt = 1.

In this context (of reliability) is density function ƒ(t) also
often referred as reliability function R(t).

8.3 Variations of MTBF

There are many variations of MTBF, such as mean time
between system aborts (MTBSA) or mean time between
critical failures (MTBCF) or mean time between un-
scheduled removal (MTBUR). Such nomenclature is used
when it is desirable to differentiate among types of fail-
ures, such as critical and non-critical failures. For exam-
ple, in an automobile, the failure of the FM radio does not
prevent the primary operation of the vehicle. Mean time
to failure (MTTF) is sometimes used instead of MTBF
in cases where a system is replaced after a failure, since
MTBF denotes time between failures in a system which is
repaired. MTTFd is an extension of MTTF, where MT-
TFd is only concerned about failures which would result
in a dangerous condition.

8.3.1 MTTF and MTTFd calculation

MTTF ≈ B10

0.1nop
,

MTTFd ≈ B10d

0.1nop
,

where B10 is the number of operations that a device will
operate prior to 10% of a sample of those devices would
fail. B₁₀⛴ is the same calculation, but where 10% of
the sample would fail to danger. nₒ⛽ is the number of
operations/cycles.[4]

8.4 Notes
[1] Jones, James V., Integrated Logistics Support Handbook,

page 4.2

[2] Colombo, A.G., and Sáiz de Bustamante, Amalio: Sys-
tems reliability assessment – Proceedings of the Ispra
Course held at the Escuela Tecnica Superior de Ingenieros
Navales, Madrid, Spain, September 19–23, 1988 in collab-
oration with Universidad Politecnica de Madrid, 1988

[3] “Reliability and MTBF Overview”. Vicor Reliability En-
gineering. Retrieved 1 November 2014.

[4] “B10d Assessment - Reliability Parameter for Electro-
Mechanical Components”. TUVRheinland. Retrieved 16
April 2012.

8.5 See also
• Failure rate

• Annualized failure rate

• Mean time to repair

• Power-On Hours

8.6 References
• Jones, James V., Integrated Logistics Support Hand-
book, McGraw–Hill Professional, 3rd edition (June
8, 2006), ISBN 0-07-147168-5

8.7 External links
• MTBF and Life Expectancy on Monitor

• MTBF and Life Expectancy on I/O Modules

• MTBF and Life Expectancy on Harddisk

• MTBF and Life Expectancy on Mechanical Craft

• Reliability and Availability Basics

https://en.wikipedia.org/wiki/Theta
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Density_function
https://en.wikipedia.org/wiki/Reliability_(engineering)
https://en.wikipedia.org/wiki/Reliability_function
http://www.vicorpower.com/documents/quality/Rel_MTBF.pdf
http://www.tuv.com/web/media_get.php?mediaid=29575&fileid...2
http://www.tuv.com/web/media_get.php?mediaid=29575&fileid...2
https://en.wikipedia.org/wiki/Failure_rate
https://en.wikipedia.org/wiki/Annualized_failure_rate
https://en.wikipedia.org/wiki/Mean_time_to_repair
https://en.wikipedia.org/wiki/Power-On_Hours
https://en.wikipedia.org/wiki/Special:BookSources/0071471685
http://www.repairfaq.org/REPAIR/F_monfaqf.html#MONFAQF_002
http://www.crouzet-usa.com/techtalk/lofiversion/index.php?t114.html
http://dearauthor.com/ebooks/its-april-fools-day-have-you-backed-up-your-ebooks/
http://www.irrigationcraft.com/b.htm
http://www.eventhelix.com/RealtimeMantra/FaultHandling/reliability_availability_basics.htm

8.7. EXTERNAL LINKS 41

• Summary including MTTF discussion

• MTBCF Example spreadsheet

• “Failure Rates, MTBF, and All That” at MathPages

http://www.vicr.com/documents/quality/Rel_MTBF.pdf
http://www.industrial-ebooks.com/spread_sheet/MTBCF_Calculation_Example250.php
http://www.mathpages.com/home/kmath498/kmath498.htm

Chapter 9

Flowchart

For the music group, see Flowchart (band).
A flowchart is a type of diagram that represents an

Lamp doesn't work

Lamp
plugged in?

Bulb
burned out?

Repair lamp

No

Replace bulb

Plug in lamp

Yes

No

Yes

A simple flowchart representing a process for dealing with a non-
functioning lamp.

algorithm, workflow or process, showing the steps as
boxes of various kinds, and their order by connecting
them with arrows. This diagrammatic representation il-
lustrates a solution model to a given problem. Flowcharts
are used in analyzing, designing, documenting or manag-
ing a process or program in various fields.[1]

9.1 Overview

Flowcharts are used in designing and documenting com-
plex processes or programs. Like other types of dia-
grams, they help visualize what is going on and thereby
help the people to understand a process, and perhaps also

find flaws, bottlenecks, and other less-obvious features
within it. There are many different types of flowcharts,
and each type has its own repertoire of boxes and nota-
tional conventions. The twomost common types of boxes
in a flowchart are:

• a processing step, usually called activity, and de-
noted as a rectangular box

• a decision, usually denoted as a diamond.

A flowchart is described as “cross-functional” when the
page is divided into different swimlanes describing the
control of different organizational units. A symbol ap-
pearing in a particular “lane” is within the control of
that organizational unit. This technique allows the au-
thor to locate the responsibility for performing an action
or making a decision correctly, showing the responsibility
of each organizational unit for different parts of a single
process.
Flowcharts depict certain aspects of processes and they
are usually complemented by other types of diagram.
For instance, Kaoru Ishikawa defined the flowchart as
one of the seven basic tools of quality control, next
to the histogram, Pareto chart, check sheet, control
chart, cause-and-effect diagram, and the scatter diagram.
Similarly, in UML, a standard concept-modeling nota-
tion used in software development, the activity diagram,
which is a type of flowchart, is just one of many different
diagram types.
Nassi-Shneiderman diagrams and Drakon-charts are an
alternative notation for process flow.
Common alternative names include: flowchart, process
flowchart, functional flowchart, process map, process
chart, functional process chart, business process model,
process model, process flow diagram, work flow diagram,
business flow diagram. The terms “flowchart” and “flow
chart” are used interchangeably.
The underlying graph structure of a flow chart is a flow
graph, which abstracts away node types, their contents
and other ancillary information.

42

https://en.wikipedia.org/wiki/Flowchart_(band)
https://en.wikipedia.org/wiki/Diagram
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Problem_solving
https://en.wikipedia.org/wiki/Swimlane
https://en.wikipedia.org/wiki/Kaoru_Ishikawa
https://en.wikipedia.org/wiki/Histogram
https://en.wikipedia.org/wiki/Pareto_chart
https://en.wikipedia.org/wiki/Check_sheet
https://en.wikipedia.org/wiki/Control_chart
https://en.wikipedia.org/wiki/Control_chart
https://en.wikipedia.org/wiki/Ishikawa_diagram
https://en.wikipedia.org/wiki/Scatter_diagram
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Activity_diagram
https://en.wikipedia.org/wiki/Nassi-Shneiderman_diagram
https://en.wikipedia.org/wiki/DRAKON
https://en.wikipedia.org/wiki/Workflow
https://en.wikipedia.org/wiki/Graph_(mathematics)
https://en.wikipedia.org/wiki/Flow_graph
https://en.wikipedia.org/wiki/Flow_graph

9.3. FLOWCHART BUILDING BLOCKS 43

9.2 History

Template for drawing flowcharts (late 1970s) showing the dif-
ferent symbols.

The first structured method for document process flow,
the "flow process chart", was introduced by Frank
Gilbreth to members of the American Society of Me-
chanical Engineers (ASME) in 1921 in the presentation
“Process Charts—First Steps in Finding the One Best
Way”.[2] Gilbreth’s tools quickly found their way into
industrial engineering curricula. In the early 1930s, an
industrial engineer, Allan H. Mogensen began training
business people in the use of some of the tools of indus-
trial engineering at his Work Simplification Conferences
in Lake Placid, New York.
A 1944 graduate of Mogensen's class, Art Spinanger,
took the tools back to Procter and Gamble where he de-
veloped their Deliberate Methods Change Program. An-
other 1944 graduate, Ben S. Graham, Director of Form-
craft Engineering at Standard Register Industrial, adapted
the flow process chart to information processing with his
development of the multi-flow process chart to display
multiple documents and their relationships.[3] In 1947,
ASME adopted a symbol set derived fromGilbreth’s orig-
inal work as the “ASME Standard: Operation and Flow
Process Charts.”[4]

Douglas Hartree in 1949 explained that Herman Golds-
tine and John von Neumann had developed a flowchart
(originally, diagram) to plan computer programs.[5] His
contemporary account is endorsed by IBM engineers[6]
and by Goldstine’s personal recollections.[7] The original
programming flowcharts of Goldstine and von Neumann
can be seen in their unpublished report, “Planning and

coding of problems for an electronic computing instru-
ment, Part II, Volume 1” (1947), which is reproduced in
von Neumann’s collected works.[8] Besides describing the
logical flow of control, flowcharts allowed programmers
to lay out machine language programs in computer mem-
ory before the development of assembly languages and
assemblers.[9]

Flowcharts used to be a popular means for describ-
ing computer algorithms and are still used for this
purpose.[10] Modern techniques such as UML activity di-
agrams and Drakon-charts can be considered to be ex-
tensions of the flowchart. In the 1970s the popularity
of flowcharts as an own method decreased when inter-
active computer terminals and third-generation program-
ming languages became the common tools of the trade,
since algorithms can be expressed much more concisely
as source code in such a language, and also because de-
signing algorithms using flowcharts was more likely to re-
sult in spaghetti code because of the need for gotos to
describe arbitrary jumps in control flow. Often pseudo-
code is used, which uses the common idioms of such lan-
guages without strictly adhering to the details of a partic-
ular one.

9.3 Flowchart building blocks

9.3.1 Symbols

FlowChart Symbols List A typical flowchart from older
basic computer science textbooks may have the following
kinds of symbols:

Start and end symbols Represented as circles, ovals or
rounded (fillet) rectangles, usually containing the
word “Start” or “End”, or another phrase signaling
the start or end of a process, such as “submit inquiry”
or “receive product”.

Arrows Showing "flow of control". An arrow coming
from one symbol and ending at another symbol rep-
resents that control passes to the symbol the arrow
points to. The line for the arrow can be solid or
dashed. The meaning of the arrow with dashed line
may differ from one flowchart to another and can be
defined in the legend.

Generic processing steps Represented as rectangles.
Examples: “Add 1 to X"; “replace identified part";
“save changes” or similar.

Subroutines Represented as rectangles with double-
struck vertical edges; these are used to show com-
plex processing steps whichmay be detailed in a sep-
arate flowchart. Example: PROCESS-FILES. One
subroutine may have multiple distinct entry points
or exit flows (see coroutine); if so, these are shown

https://en.wikipedia.org/wiki/Flow_process_chart
https://en.wikipedia.org/wiki/Frank_Bunker_Gilbreth,_Sr.
https://en.wikipedia.org/wiki/Frank_Bunker_Gilbreth,_Sr.
https://en.wikipedia.org/wiki/American_Society_of_Mechanical_Engineers
https://en.wikipedia.org/wiki/American_Society_of_Mechanical_Engineers
https://en.wikipedia.org/wiki/Industrial_engineering
https://en.wikipedia.org/wiki/Allan_H._Mogensen
https://en.wikipedia.org/wiki/Lake_Placid,_New_York
https://en.wikipedia.org/wiki/New_York
https://en.wikipedia.org/wiki/Allan_H._Mogensen
https://en.wikipedia.org/wiki/Procter_and_Gamble
https://en.wikipedia.org/wiki/Benjamin_S._Graham
https://en.wikipedia.org/wiki/Standard_Register_Industrial
https://en.wikipedia.org/wiki/ASME
https://en.wikipedia.org/wiki/Douglas_Hartree
https://en.wikipedia.org/wiki/Herman_Goldstine
https://en.wikipedia.org/wiki/Herman_Goldstine
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Computer_algorithm
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Activity_diagram
https://en.wikipedia.org/wiki/Activity_diagram
https://en.wikipedia.org/wiki/DRAKON
https://en.wikipedia.org/wiki/Computer_terminal
https://en.wikipedia.org/wiki/Third-generation_programming_language
https://en.wikipedia.org/wiki/Third-generation_programming_language
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Spaghetti_code
https://en.wikipedia.org/wiki/Goto
https://en.wikipedia.org/wiki/Pseudo-code
https://en.wikipedia.org/wiki/Pseudo-code
http://www.breezetree.com/images/flow-chart-symbols.png
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Rectangles
https://en.wikipedia.org/wiki/Coroutine

44 CHAPTER 9. FLOWCHART

as labeled 'wells’ in the rectangle, and control arrows
connect to these 'wells’.

Input/Output Represented as a parallelogram. Exam-
ples: Get X from the user; display X.

Prepare conditional Represented as a hexagon. Shows
operations which have no effect other than preparing
a value for a subsequent conditional or decision step
(see below).

Conditional or decision Represented as a diamond
(rhombus) showing where a decision is necessary,
commonly a Yes/No question or True/False test.
The conditional symbol is peculiar in that it has two
arrows coming out of it, usually from the bottom
point and right point, one corresponding to Yes or
True, and one corresponding to No or False. (The
arrows should always be labeled.) More than two
arrows can be used, but this is normally a clear in-
dicator that a complex decision is being taken, in
which case it may need to be broken-down further
or replaced with the “pre-defined process” symbol.

Junction symbol Generally represented with a black
blob, showing where multiple control flows converge
in a single exit flow. A junction symbol will have
more than one arrow coming into it, but only one
going out.

In simple cases, one may simply have an arrow point to
another arrow instead. These are useful to repre-
sent an iterative process (what in Computer Science
is called a loop). A loop may, for example, consist
of a connector where control first enters, processing
steps, a conditional with one arrow exiting the loop,
and one going back to the connector.

For additional clarity, wherever two lines accidentally
cross in the drawing, one of themmay be drawnwith
a small semicircle over the other, showing that no
junction is intended.

Labeled connectors Represented by an identifying la-
bel inside a circle. Labeled connectors are used in
complex or multi-sheet diagrams to substitute for ar-
rows. For each label, the “outflow” connector must
always be unique, but there may be any number of
“inflow” connectors. In this case, a junction in con-
trol flow is implied.

Concurrency symbol Represented by a double trans-
verse line with any number of entry and exit ar-
rows. These symbols are used whenever two ormore
control flows must operate simultaneously. The exit
flows are activated concurrently when all of the entry
flows have reached the concurrency symbol. A con-
currency symbol with a single entry flow is a fork;
one with a single exit flow is a join.

All processes should flow from top to bottom and left to
right.

9.3.2 Data-flow extensions

A number of symbols have been standardized for data
flow diagrams to represent data flow, rather than con-
trol flow. These symbols may also be used in control
flowcharts (e.g. to substitute for the parallelogram sym-
bol).

• A Document represented as a rectangle with a wavy
base;

• A Manual input represented by quadrilateral, with
the top irregularly sloping up from left to right. An
example would be to signify data-entry from a form;

• AManual operation represented by a trapezoid with
the longest parallel side at the top, to represent an
operation or adjustment to process that can only be
made manually.

• A Data File represented by a cylinder.

9.4 Types of flowchart

Sterneckert (2003) suggested that flowcharts can be mod-
eled from the perspective of different user groups (such
as managers, system analysts and clerks) and that there
are four general types:[11]

• Document flowcharts, showing controls over a
document-flow through a system

• Data flowcharts, showing controls over a data-flow
in a system

• System flowcharts showing controls at a physical or
resource level

• Program flowchart, showing the controls in a pro-
gram within a system

Notice that every type of flowchart focuses on some kind
of control, rather than on the particular flow itself.[11]

However there are several of these classifications. For ex-
ample AndrewVeronis (1978) named three basic types of
flowcharts: the system flowchart, the general flowchart,
and the detailed flowchart.[12] That same year Marilyn
Bohl (1978) stated “in practice, two kinds of flowcharts
are used in solution planning: system flowcharts and pro-
gram flowcharts...”.[13] More recently Mark A. Fryman
(2001) stated that there are more differences: “Decision
flowcharts, logic flowcharts, systems flowcharts, product
flowcharts, and process flowcharts are just a few of the

https://en.wikipedia.org/wiki/Parallelogram
https://en.wikipedia.org/wiki/Hexagon
https://en.wikipedia.org/wiki/Rhombus
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Control_flow#Loops
https://en.wikipedia.org/wiki/Data_flow_diagram
https://en.wikipedia.org/wiki/Data_flow_diagram
https://en.wikipedia.org/wiki/Rectangle
https://en.wikipedia.org/wiki/Quadrilateral
https://en.wikipedia.org/wiki/Trapezoid

9.6. SEE ALSO 45

different types of flowcharts that are used in business and
government”.[14]

In addition, many diagram techniques exist that are simi-
lar to flowcharts but carry a different name, such as UML
activity diagrams.

9.5 Software

9.5.1 Diagramming

Main article: Diagramming software § Flowchart

Any drawing program can be used to create flowchart
diagrams, but these will have no underlying data model
to share data with databases or other programs such
as project management systems or spreadsheet. Some
tools offer special support for flowchart drawing. Many
software packages exist that can create flowcharts auto-
matically, either directly from a programming language
source code, or from a flowchart description language.
On-line web-based versions of such programs are avail-
able.

9.5.2 Programming

Flowgorithm

There are several applications that use flowcharts to rep-
resent and execute programs. Generally these are used as
teaching tools for beginner students.
These include:

• Flowgorithm

• Raptor

• LARP

• Visual Logic

9.6 See also

9.7 References
[1] SEVOCAB: Software and Systems Engineering Vocabu-

lary. Term: Flow chart. Retrieved 31 July 2008.

[2] Frank Bunker Gilbreth, Lillian Moller Gilbreth (1921)
Process Charts. American Society of Mechanical Engi-
neers.

[3] Graham, Jr., Ben S. (10 June 1996). “People come first”.
Keynote Address at Workflow Canada.

[4] American Society of Mechanical Engineers (1947) ASME
standard; operation and flow process charts. New York,
1947. (online version)

[5] Hartree, Douglas (1949). Calculating Instruments and
Machines. The University of Illinois Press. p. 112.
Hartree stated:
“Von Neumann and Goldstine (40) have proposed a
method of indicating the structure of the sequence of op-
erating instructions by means of a “flow diagram” repre-
senting the control sequence. This is in the form of a block
diagram, in which the blocks represent operations or groups
of operations, and are joined by directed lines representing
the sequence of these operations...”

[6] Bashe, Charles (1986). IBM’s Early Computers. The MIT
Press. p. 327.

[7] Goldstine, Herman (1972). The Computer from Pascal to
Von Neumann. Princeton University Press. pp. 266–267.
ISBN 0-691-08104-2.

[8] Taub, Abraham (1963). John von Neumann Collected
Works 5. Macmillan. pp. 80–151.

[9] Akera, Atsushi; Frederik Nebeker (2002). From 0 to 1:
An Authoritative History of Modern Computing. Oxford
University Press. p. 105. ISBN 0-19-514025-7.

[10] Bohl, Rynn: “Tools for Structured and Object-Oriented
Design”, Prentice Hall, 2007.

[11] Alan B. Sterneckert (2003) Critical Incident Management.
p. 126

[12] Andrew Veronis (1978)Microprocessors: Design and Ap-
plications. p. 111

[13] Marilyn Bohl (1978) A Guide for Programmers. p. 65.

[14] Mark A. Fryman (2001) Quality and Process Improve-
ment. p. 169.

9.8 Further reading
• ISO (1985). Information processing -- Documenta-
tion symbols and conventions for data, program and
system flowcharts, program network charts and sys-
tem resources charts. International Organization for
Standardization. ISO 5807:1985.

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Activity_diagram
https://en.wikipedia.org/wiki/Diagramming_software#Flowchart
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Spreadsheet
https://en.wikipedia.org/wiki/Diagramming_software#Flowchart
https://en.wikipedia.org/wiki/Flowgorithm_(programming_language)
https://en.wikipedia.org/wiki/Raptor_(programming_language)
https://en.wikipedia.org/wiki/LARP_(programming_language)
https://en.wikipedia.org/wiki/Visual_Logic_(programming_language)
http://pascal.computer.org/sev_display/index.action
http://pascal.computer.org/sev_display/index.action
http://openlibrary.org/books/OL24983025M/Process_charts
http://www.worksimp.com/articles/keynoteworkflowcanada.htm
http://catalog.hathitrust.org/Record/005735891
https://en.wikipedia.org/wiki/Douglas_Rayner_Hartree
https://archive.org/stream/calculatinginstr00doug#page/112/mode/2up
https://archive.org/stream/calculatinginstr00doug#page/112/mode/2up
https://en.wikipedia.org/wiki/Herman_H._Goldstine
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-691-08104-2
https://en.wikipedia.org/wiki/Abraham_Haskel_Taub
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-19-514025-7
http://books.google.co.uk/books?id=8z93xStbEpAC&lpg=PP126&pg=PA126#v=onepage&q=&f=false
http://books.google.co.uk/books?id=GZ9QAAAAMAAJ&q=%2522three+basic+types+of+flowcharts+%2528ie,+the+system+flowchart,+the+general+flowchart,+and+the+detailed+flowchart%2529.%2522&dq=%2522three+basic+types+of+flowcharts+%2528ie,+the+system+flowchart,+the+general+flowchart,+and+the+detailed+flowchart%2529.%2522&as_brr=0
http://books.google.co.uk/books?id=M-_B7czAy0kC&pg=PA169#v=onepage&q=&f=false
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=11955
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=11955
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=11955
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=11955

46 CHAPTER 9. FLOWCHART

• ISO 10628: Flow Diagrams For Process Plants -
General Rules

• ECMA 4: Flowcharts (withdrawn - list of with-
drawn standards)

• Schultheiss, Louis A., and Edward M. Heiliger.
"Techniques of flow-charting.” (1963); with intro-
duction by Edward Heiliger.

9.9 External links
• Flowcharting Techniques An IBM manual from
1969 (5MB PDF format)

• Advanced Flowchart - Why and how to create ad-
vanced flowchart

http://www.ecma-international.org/publications/files/ECMA-ST-WITHDRAWN/ECMA-4,%25202nd%2520Edition,%2520September%25201966.pdf
http://www.ecma-international.org/publications/standards/Standardwithdrawn.htm
https://en.wikipedia.org/wiki/Schultheiss,_Louis_A.
https://www.ideals.illinois.edu/bitstream/handle/2142/743/1963Schultheiss.pdf?sequence=2
http://www.fh-jena.de/~kleine/history/software/IBM-FlowchartingTechniques-GC20-8152-1.pdf
http://www.tipskey.com/article/advanced_flowchart/

Chapter 10

Programming language

An example of source code written in the Java programming
language, which will print the message "Hello World!" to the
standard output when it is compiled and then run by the Java
Virtual Machine.

A programming language is a formal constructed
language designed to communicate instructions to a
machine, particularly a computer. Programming lan-
guages can be used to create programs to control the be-
havior of a machine or to express algorithms.
The earliest programming languages preceded the
invention of the digital computer and were used to di-
rect the behavior of machines such as Jacquard looms
and player pianos.[1] Thousands of different program-
ming languages have been created, mainly in the com-
puter field, and many more still are being created every
year. Many programming languages require computa-
tion to be specified in an imperative form (i.e., as a se-
quence of operations to perform), while other languages
utilize other forms of program specification such as the
declarative form (i.e. the desired result is specified, not
how to achieve it).
The description of a programming language is usually
split into the two components of syntax (form) and
semantics (meaning). Some languages are defined by a
specification document (for example, the C programming
language is specified by an ISO Standard), while other
languages (such as Perl) have a dominant implementation
that is treated as a reference.

10.1 Definitions

A programming language is a notation for writing
programs, which are specifications of a computation or

algorithm.[2] Some, but not all, authors restrict the term
“programming language” to those languages that can ex-
press all possible algorithms.[2][3] Traits often considered
important for what constitutes a programming language
include:

Function and target A computer programming lan-
guage is a language used to write computer pro-
grams, which involve a computer performing some
kind of computation[4] or algorithm and possibly
control external devices such as printers, disk drives,
robots,[5] and so on. For example, PostScript pro-
grams are frequently created by another program
to control a computer printer or display. More
generally, a programming language may describe
computation on some, possibly abstract, machine.
It is generally accepted that a complete specifica-
tion for a programming language includes a descrip-
tion, possibly idealized, of a machine or processor
for that language.[6] In most practical contexts, a
programming language involves a computer; conse-
quently, programming languages are usually defined
and studied this way.[7] Programming languages dif-
fer from natural languages in that natural languages
are only used for interaction between people, while
programming languages also allow humans to com-
municate instructions to machines.

Abstractions Programming languages usually contain
abstractions for defining and manipulating data
structures or controlling the flow of execution. The
practical necessity that a programming language
support adequate abstractions is expressed by the
abstraction principle;[8] this principle is sometimes
formulated as recommendation to the programmer
to make proper use of such abstractions.[9]

Expressive power The theory of computation classifies
languages by the computations they are capable of
expressing. All Turing complete languages can im-
plement the same set of algorithms. ANSI/ISO
SQL-92 and Charity are examples of languages that
are not Turing complete, yet often called program-
ming languages.[10][11]

47

https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Java_programming_language
https://en.wikipedia.org/wiki/Java_programming_language
https://en.wikipedia.org/wiki/Hello_world_program
https://en.wikipedia.org/wiki/Standard_output
https://en.wikipedia.org/wiki/Compiled
https://en.wikipedia.org/wiki/JVM
https://en.wikipedia.org/wiki/JVM
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Constructed_language
https://en.wikipedia.org/wiki/Constructed_language
https://en.wikipedia.org/wiki/Machine_instruction
https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Program_(machine)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/History_of_computing_hardware
https://en.wikipedia.org/wiki/Jacquard_loom
https://en.wikipedia.org/wiki/Player_piano
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Programming_language_implementation
https://en.wikipedia.org/wiki/Reference_implementation
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Printer_(computing)
https://en.wikipedia.org/wiki/Disk_drive
https://en.wikipedia.org/wiki/Robot
https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Abstraction_principle_(programming)
https://en.wikipedia.org/wiki/Theory_of_computation
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/SQL-92
https://en.wikipedia.org/wiki/SQL-92
https://en.wikipedia.org/wiki/Charity_(programming_language)

48 CHAPTER 10. PROGRAMMING LANGUAGE

Markup languages like XML, HTML or troff, which de-
fine structured data, are not usually considered program-
ming languages.[12][13][14] Programming languages may,
however, share the syntax with markup languages if a
computational semantics is defined. XSLT, for example,
is a Turing complete XML dialect.[15][16][17] Moreover,
LaTeX, which is mostly used for structuring documents,
also contains a Turing complete subset.[18][19]

The term computer language is sometimes used inter-
changeably with programming language.[20] However,
the usage of both terms varies among authors, including
the exact scope of each. One usage describes program-
ming languages as a subset of computer languages.[21]
In this vein, languages used in computing that have a
different goal than expressing computer programs are
generically designated computer languages. For instance,
markup languages are sometimes referred to as computer
languages to emphasize that they are not meant to be used
for programming.[22]

Another usage regards programming languages as the-
oretical constructs for programming abstract machines,
and computer languages as the subset thereof that runs
on physical computers, which have finite hardware
resources.[23] John C. Reynolds emphasizes that formal
specification languages are just as much programming
languages as are the languages intended for execution. He
also argues that textual and even graphical input formats
that affect the behavior of a computer are programming
languages, despite the fact they are commonly not Turing-
complete, and remarks that ignorance of programming
language concepts is the reason for many flaws in input
formats.[24]

10.2 History

Main articles: History of programming languages and
Programming language generations

10.2.1 Early developments

The first programming languages designed to communi-
cate instructions to a computer were written in the 1950s.
An early high-level programming language to be designed
for a computer was Plankalkül, developed for the German
Z3 by Konrad Zuse between 1943 and 1945. However,
it was not implemented until 1998 and 2000.[25]

John Mauchly's Short Code, proposed in 1949, was
one of the first high-level languages ever developed for
an electronic computer.[26] Unlike machine code, Short
Code statements represented mathematical expressions
in understandable form. However, the program had to
be translated into machine code every time it ran, mak-
ing the process much slower than running the equivalent
machine code.

The Manchester Mark 1 ran programs written in Autocode from
1952.

At the University of Manchester, Alick Glennie devel-
oped Autocode in the early 1950s. A programming lan-
guage, it used a compiler to automatically convert the lan-
guage into machine code. The first code and compiler
was developed in 1952 for the Mark 1 computer at the
University of Manchester and is considered to be the first
compiled high-level programming language.[27][28]

The second autocode was developed for the Mark 1 by
R. A. Brooker in 1954 and was called the “Mark 1 Au-
tocode”. Brooker also developed an autocode for the
Ferranti Mercury in the 1950s in conjunction with the
University of Manchester. The version for the EDSAC 2
was devised by D. F. Hartley of University of Cambridge
Mathematical Laboratory in 1961. Known as EDSAC
2 Autocode, it was a straight development from Mercury
Autocode adapted for local circumstances, and was noted
for its object code optimisation and source-language di-
agnostics which were advanced for the time. A contem-
porary but separate thread of development, Atlas Au-
tocode was developed for the University of Manchester
Atlas 1 machine.
Another early programming language was devised by
Grace Hopper in the US, called FLOW-MATIC. It was
developed for the UNIVAC I at Remington Rand during
the period from 1955 until 1959. Hopper found that busi-
ness data processing customers were uncomfortable with
mathematical notation, and in early 1955, she and her
team wrote a specification for an English programming
language and implemented a prototype.[29] The FLOW-
MATIC compiler became publicly available in early 1958
and was substantially complete in 1959.[30] Flow-Matic
was a major influence in the design of COBOL, since only
it and its direct descendent AIMACO were in actual use
at the time.[31] The language Fortran was developed at
IBM in the mid '50s, and became the first widely used
high-level general purpose programming language.

https://en.wikipedia.org/wiki/Markup_languages
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Troff
https://en.wikipedia.org/wiki/Structured_data
https://en.wikipedia.org/wiki/XSLT
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/John_C._Reynolds
https://en.wikipedia.org/wiki/Formal_specification
https://en.wikipedia.org/wiki/Formal_specification
https://en.wikipedia.org/wiki/History_of_programming_languages
https://en.wikipedia.org/wiki/Programming_language_generations
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Plankalk%C3%BCl
https://en.wikipedia.org/wiki/Z3_(computer)
https://en.wikipedia.org/wiki/Konrad_Zuse
https://en.wikipedia.org/wiki/John_Mauchly
https://en.wikipedia.org/wiki/Short_Code_(computer_language)
https://en.wikipedia.org/wiki/Electronic_computer
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Manchester_Mark_1
https://en.wikipedia.org/wiki/Autocode
https://en.wikipedia.org/wiki/University_of_Manchester
https://en.wikipedia.org/wiki/Alick_Glennie
https://en.wikipedia.org/wiki/Autocode
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Manchester_Mark_1
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Tony_Brooker
https://en.wikipedia.org/wiki/Ferranti_Mercury
https://en.wikipedia.org/wiki/EDSAC
https://en.wikipedia.org/wiki/David_Hartley_(computer_scientist)
https://en.wikipedia.org/wiki/University_of_Cambridge_Mathematical_Laboratory
https://en.wikipedia.org/wiki/University_of_Cambridge_Mathematical_Laboratory
https://en.wikipedia.org/wiki/Atlas_Autocode
https://en.wikipedia.org/wiki/Atlas_Autocode
https://en.wikipedia.org/wiki/Atlas_Computer_(Manchester)
https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/FLOW-MATIC
https://en.wikipedia.org/wiki/UNIVAC_I
https://en.wikipedia.org/wiki/Remington_Rand
https://en.wikipedia.org/wiki/English_language
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/AIMACO
https://en.wikipedia.org/wiki/Fortran

10.2. HISTORY 49

10.2.2 Refinement

The period from the 1960s to the late 1970s brought the
development of themajor language paradigms now in use:

• APL introduced array programming and influenced
functional programming.[32]

• ALGOL refined both structured procedural pro-
gramming and the discipline of language specifica-
tion; the “Revised Report on the Algorithmic Lan-
guage ALGOL 60" became a model for how later
language specifications were written.

• In the 1960s, Simula was the first language designed
to support object-oriented programming; in the mid-
1970s, Smalltalk followed with the first “purely”
object-oriented language.

• Cwas developed between 1969 and 1973 as a system
programming language, and remains popular.[33]

• Prolog, designed in 1972, was the first logic pro-
gramming language.

• In 1978, ML built a polymorphic type system on top
of Lisp, pioneering statically typed functional pro-
gramming languages.

Each of these languages spawned descendants, and most
modern programming languages count at least one of
them in their ancestry.
The 1960s and 1970s also saw considerable debate over
the merits of structured programming, and whether pro-
gramming languages should be designed to support it.[34]
Edsger Dijkstra, in a famous 1968 letter published in the
Communications of the ACM, argued that GOTO state-
ments should be eliminated from all “higher level” pro-
gramming languages.[35]

10.2.3 Consolidation and growth

The 1980s were years of relative consolidation. C++
combined object-oriented and systems programming.
The United States government standardized Ada, a sys-
tems programming language derived from Pascal and in-
tended for use by defense contractors. In Japan and else-
where, vast sums were spent investigating so-called “fifth
generation” languages that incorporated logic program-
ming constructs.[36] The functional languages community
moved to standardize ML and Lisp. Rather than invent-
ing new paradigms, all of these movements elaborated
upon the ideas invented in the previous decade.
One important trend in language design for programming
large-scale systems during the 1980s was an increased fo-
cus on the use of modules, or large-scale organizational
units of code. Modula-2, Ada, and ML all developed no-
table module systems in the 1980s, although other lan-
guages, such as PL/I, already had extensive support for

A selection of textbooks that teach programming, in languages
both popular and obscure. These are only a few of the thousands
of programming languages and dialects that have been designed
in history.

modular programming. Module systems were often wed-
ded to generic programming constructs.[37]

The rapid growth of the Internet in the mid-1990s cre-
ated opportunities for new languages. Perl, originally a
Unix scripting tool first released in 1987, became com-
mon in dynamic websites. Java came to be used for
server-side programming, and bytecode virtual machines
became popular again in commercial settings with their
promise of "Write once, run anywhere" (UCSD Pascal
had been popular for a time in the early 1980s). These
developments were not fundamentally novel, rather they
were refinements to existing languages and paradigms,
and largely based on the C family of programming lan-
guages.
Programming language evolution continues, in both in-
dustry and research. Current directions include secu-
rity and reliability verification, new kinds of modular-
ity (mixins, delegates, aspects), and database integration
such as Microsoft’s LINQ.
The 4GLs are examples of languages which are domain-
specific, such as SQL, which manipulates and returns sets
of data rather than the scalar values which are canonical
to most programming languages. Perl, for example, with
its "here document" can hold multiple 4GL programs, as
well as multiple JavaScript programs, in part of its own
perl code and use variable interpolation in the “here doc-
ument” to support multi-language programming.[38]

https://en.wikipedia.org/wiki/APL_(programming_language)
https://en.wikipedia.org/wiki/Array_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/Programming_language_specification
https://en.wikipedia.org/wiki/Programming_language_specification
https://en.wikipedia.org/wiki/ALGOL_60
https://en.wikipedia.org/wiki/Simula
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/System_programming_language
https://en.wikipedia.org/wiki/System_programming_language
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Goto
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/Fifth-generation_programming_language
https://en.wikipedia.org/wiki/Fifth-generation_programming_language
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/Modula-2
https://en.wikipedia.org/wiki/PL/I
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Write_once,_run_anywhere
https://en.wikipedia.org/wiki/UCSD_Pascal
https://en.wikipedia.org/wiki/Mixin
https://en.wikipedia.org/wiki/Delegation_(programming)
https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Language_Integrated_Query
https://en.wikipedia.org/wiki/Fourth-generation_programming_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Set_(computer_science)
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Here_document
https://en.wikipedia.org/wiki/Variable_interpolation

50 CHAPTER 10. PROGRAMMING LANGUAGE

10.3 Elements

All programming languages have some primitive build-
ing blocks for the description of data and the processes
or transformations applied to them (like the addition of
two numbers or the selection of an item from a collec-
tion). These primitives are defined by syntactic and se-
mantic rules which describe their structure and meaning
respectively.

10.3.1 Syntax

Parse tree of Python code with inset tokenization

def add5(x):
return x+5

def dotwrite(ast):
nodename = getNodename()
label=symbol.sym_name.get(int(ast[0]),ast[0])
print ' %s [label="%s' % (nodename, label),
if isinstance(ast[1], str):

if ast[1].strip():
print '= %s"];' % ast[1]

else:
print '"]'

else:
print '"];'
children = []
for n, child in enumerate(ast[1:]):

children.append(dotwrite(child))
print ' %s -> {' % nodename,
for name in children:

print '%s' % name,

Syntax highlighting is often used to aid programmers in recogniz-
ing elements of source code. The language above is Python.

Main article: Syntax (programming languages)

A programming language’s surface form is known as its
syntax. Most programming languages are purely textual;
they use sequences of text including words, numbers, and
punctuation, much like written natural languages. On the
other hand, there are some programming languages which
are more graphical in nature, using visual relationships
between symbols to specify a program.
The syntax of a language describes the possible combi-

nations of symbols that form a syntactically correct pro-
gram. The meaning given to a combination of symbols
is handled by semantics (either formal or hard-coded in
a reference implementation). Since most languages are
textual, this article discusses textual syntax.
Programming language syntax is usually defined using a
combination of regular expressions (for lexical structure)
and Backus–Naur Form (for grammatical structure). Be-
low is a simple grammar, based on Lisp:
expression ::= atom | list atom ::= number | symbol
number ::= [+-]?['0'-'9']+ symbol ::= ['A'-'Z''a'-'z'].* list
::= '(' expression* ')'

This grammar specifies the following:

• an expression is either an atom or a list;

• an atom is either a number or a symbol;

• a number is an unbroken sequence of one or more
decimal digits, optionally preceded by a plus or mi-
nus sign;

• a symbol is a letter followed by zero or more of any
characters (excluding whitespace); and

• a list is a matched pair of parentheses, with zero or
more expressions inside it.

The following are examples of well-formed token se-
quences in this grammar: 12345, () and (a b c232 (1)).
Not all syntactically correct programs are semanti-
cally correct. Many syntactically correct programs are
nonetheless ill-formed, per the language’s rules; and may
(depending on the language specification and the sound-
ness of the implementation) result in an error on trans-
lation or execution. In some cases, such programs may
exhibit undefined behavior. Even when a program is well-
defined within a language, it may still have a meaning that
is not intended by the person who wrote it.
Using natural language as an example, it may not be pos-
sible to assign a meaning to a grammatically correct sen-
tence or the sentence may be false:

• "Colorless green ideas sleep furiously.” is grammat-
ically well-formed but has no generally accepted
meaning.

• “John is a married bachelor.” is grammatically well-
formed but expresses a meaning that cannot be true.

The following C language fragment is syntactically cor-
rect, but performs operations that are not semantically
defined (the operation *p >> 4 has no meaning for a value
having a complex type and p->im is not defined because
the value of p is the null pointer):

https://en.wikipedia.org/wiki/Language_primitive
https://en.wikipedia.org/wiki/Parse_tree
https://en.wikipedia.org/wiki/Syntax_highlighting
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/Visual_programming_language
https://en.wikipedia.org/wiki/Formal_semantics_of_programming_languages
https://en.wikipedia.org/wiki/Reference_implementation_(computing)
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Lexical_analysis
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Undefined_behavior
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Colorless_green_ideas_sleep_furiously
https://en.wikipedia.org/wiki/Pointer_(computer_programming)

10.3. ELEMENTS 51

complex *p = NULL; complex abs_p = sqrt(*p >> 4 +
p->im);

If the type declaration on the first line were omitted, the
program would trigger an error on compilation, as the
variable “p” would not be defined. But the programwould
still be syntactically correct, since type declarations pro-
vide only semantic information.
The grammar needed to specify a programming language
can be classified by its position in the Chomsky hierarchy.
The syntax of most programming languages can be spec-
ified using a Type-2 grammar, i.e., they are context-free
grammars.[39] Some languages, including Perl and Lisp,
contain constructs that allow execution during the pars-
ing phase. Languages that have constructs that allow the
programmer to alter the behavior of the parser make syn-
tax analysis an undecidable problem, and generally blur
the distinction between parsing and execution.[40] In con-
trast to Lisp’s macro system and Perl’s BEGIN blocks,
which may contain general computations, C macros are
merely string replacements, and do not require code
execution.[41]

10.3.2 Semantics

The term Semantics refers to the meaning of languages,
as opposed to their form (syntax).

Static semantics

The static semantics defines restrictions on the struc-
ture of valid texts that are hard or impossible to ex-
press in standard syntactic formalisms.[2] For compiled
languages, static semantics essentially include those se-
mantic rules that can be checked at compile time. Ex-
amples include checking that every identifier is declared
before it is used (in languages that require such declara-
tions) or that the labels on the arms of a case statement
are distinct.[42] Many important restrictions of this type,
like checking that identifiers are used in the appropriate
context (e.g. not adding an integer to a function name),
or that subroutine calls have the appropriate number and
type of arguments, can be enforced by defining them as
rules in a logic called a type system. Other forms of static
analyses like data flow analysis may also be part of static
semantics. Newer programming languages like Java and
C# have definite assignment analysis, a form of data flow
analysis, as part of their static semantics.

Dynamic semantics

Main article: Semantics of programming languages

Once data has been specified, the machine must be in-
structed to perform operations on the data. For exam-

ple, the semantics may define the strategy by which ex-
pressions are evaluated to values, or the manner in which
control structures conditionally execute statements. The
dynamic semantics (also known as execution semantics) of
a language defines how and when the various constructs
of a language should produce a program behavior. There
are many ways of defining execution semantics. Natural
language is often used to specify the execution semantics
of languages commonly used in practice. A significant
amount of academic research went into formal seman-
tics of programming languages, which allow execution se-
mantics to be specified in a formal manner. Results from
this field of research have seen limited application to pro-
gramming language design and implementation outside
academia.

Type system

Main articles: Data type, Type system and Type safety

A type system defines how a programming language clas-
sifies values and expressions into types, how it can ma-
nipulate those types and how they interact. The goal of
a type system is to verify and usually enforce a certain
level of correctness in programs written in that language
by detecting certain incorrect operations. Any decidable
type system involves a trade-off: while it rejects many
incorrect programs, it can also prohibit some correct, al-
beit unusual programs. In order to bypass this down-
side, a number of languages have type loopholes, usually
unchecked casts that may be used by the programmer to
explicitly allow a normally disallowed operation between
different types. In most typed languages, the type system
is used only to type check programs, but a number of
languages, usually functional ones, infer types, relieving
the programmer from the need to write type annotations.
The formal design and study of type systems is known as
type theory.

Typed versus untyped languages A language is typed
if the specification of every operation defines types of
data to which the operation is applicable, with the im-
plication that it is not applicable to other types.[43] For
example, the data represented by “this text between the
quotes” is a string, and in many programming languages
dividing a number by a string has no meaning and will
be rejected by the compilers. The invalid operation may
be detected when the program is compiled (“static” type
checking) and will be rejected by the compiler with a
compilation error message, or it may be detected when
the program is run (“dynamic” type checking), resulting
in a run-time exception. Many languages allow a func-
tion called an exception handler to be written to handle
this exception and, for example, always return "−1” as
the result.
A special case of typed languages are the single-type lan-

https://en.wikipedia.org/wiki/Type_declaration
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Undecidable_problem
https://en.wikipedia.org/wiki/Lisp_macro
https://en.wikipedia.org/wiki/Semantics#Computer_science
https://en.wikipedia.org/wiki/Programming%2520language#Syntax
https://en.wikipedia.org/wiki/Identifier
https://en.wikipedia.org/wiki/Case_statement
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Static_code_analysis
https://en.wikipedia.org/wiki/Static_code_analysis
https://en.wikipedia.org/wiki/Data_flow_analysis
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Definite_assignment_analysis
https://en.wikipedia.org/wiki/Semantics_of_programming_languages
https://en.wikipedia.org/wiki/Evaluation_strategy
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Statement_(computer_science)
https://en.wikipedia.org/wiki/Formal_semantics_of_programming_languages
https://en.wikipedia.org/wiki/Formal_semantics_of_programming_languages
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Type_safety
https://en.wikipedia.org/wiki/Decidability_(logic)
https://en.wikipedia.org/wiki/Type_conversion#Explicit_type_conversion
https://en.wikipedia.org/wiki/Type_checking
https://en.wikipedia.org/wiki/Type_inference
https://en.wikipedia.org/wiki/Type_theory
https://en.wikipedia.org/wiki/String_literal
https://en.wikipedia.org/wiki/Exception_handling

52 CHAPTER 10. PROGRAMMING LANGUAGE

guages. These are often scripting or markup languages,
such as REXX or SGML, and have only one data type—
most commonly character strings which are used for both
symbolic and numeric data.
In contrast, an untyped language, such as most assembly
languages, allows any operation to be performed on any
data, which are generally considered to be sequences of
bits of various lengths.[43] High-level languages which are
untyped include BCPL, Tcl, and some varieties of Forth.
In practice, while few languages are considered typed
from the point of view of type theory (verifying or re-
jecting all operations), most modern languages offer a
degree of typing.[43] Many production languages provide
means to bypass or subvert the type system, trading type-
safety for finer control over the program’s execution (see
casting).

Static versus dynamic typing In static typing, all ex-
pressions have their types determined prior to when the
program is executed, typically at compile-time. For ex-
ample, 1 and (2+2) are integer expressions; they cannot
be passed to a function that expects a string, or stored in
a variable that is defined to hold dates.[43]

Statically typed languages can be either manifestly typed
or type-inferred. In the first case, the programmer must
explicitly write types at certain textual positions (for ex-
ample, at variable declarations). In the second case, the
compiler infers the types of expressions and declarations
based on context. Most mainstream statically typed lan-
guages, such as C++, C# and Java, are manifestly typed.
Complete type inference has traditionally been associated
with less mainstream languages, such as Haskell and ML.
However, many manifestly typed languages support par-
tial type inference; for example, Java and C# both infer
types in certain limited cases.[44]

Dynamic typing, also called latent typing, determines the
type-safety of operations at run time; in other words,
types are associated with run-time values rather than tex-
tual expressions.[43] As with type-inferred languages, dy-
namically typed languages do not require the programmer
to write explicit type annotations on expressions. Among
other things, this may permit a single variable to refer to
values of different types at different points in the program
execution. However, type errors cannot be automatically
detected until a piece of code is actually executed, po-
tentially making debugging more difficult. Lisp, Perl,
Python, JavaScript, and Ruby are dynamically typed.

Weak and strong typing Weak typing allows a value
of one type to be treated as another, for example treating
a string as a number.[43] This can occasionally be useful,
but it can also allow some kinds of program faults to go
undetected at compile time and even at run time.
Strong typing prevents the above. An attempt to perform
an operation on the wrong type of value raises an error.[43]

Strongly typed languages are often termed type-safe or
safe.
An alternative definition for “weakly typed” refers to lan-
guages, such as Perl and JavaScript, which permit a large
number of implicit type conversions. In JavaScript, for
example, the expression 2 * x implicitly converts x to a
number, and this conversion succeeds even if x is null,
undefined, an Array, or a string of letters. Such implicit
conversions are often useful, but they can mask program-
ming errors. Strong and static are now generally consid-
ered orthogonal concepts, but usage in the literature dif-
fers. Some use the term strongly typed to mean strongly,
statically typed, or, even more confusingly, to mean sim-
ply statically typed. Thus C has been called both strongly
typed and weakly, statically typed.[45][46]

It may seem odd to some professional programmers that
C could be “weakly, statically typed”. However, notice
that the use of the generic pointer, the void* pointer,
does allow for casting of pointers to other pointers with-
out needing to do an explicit cast. This is extremely sim-
ilar to somehow casting an array of bytes to any kind of
datatype in C without using an explicit cast, such as (int)
or (char).

10.3.3 Standard library and run-time sys-
tem

Main article: Standard library

Most programming languages have an associated core
library (sometimes known as the 'standard library', es-
pecially if it is included as part of the published language
standard), which is conventionally made available by all
implementations of the language. Core libraries typically
include definitions for commonly used algorithms, data
structures, and mechanisms for input and output.
The line between a language and its core library differs
from language to language. In some cases, the language
designers may treat the library as a separate entity from
the language. However, a language’s core library is often
treated as part of the language by its users, and some lan-
guage specifications even require that this library be made
available in all implementations. Indeed, some languages
are designed so that themeanings of certain syntactic con-
structs cannot even be described without referring to the
core library. For example, in Java, a string literal is de-
fined as an instance of the java.lang.String class; simi-
larly, in Smalltalk, an anonymous function expression (a
“block”) constructs an instance of the library’s BlockCon-
text class. Conversely, Scheme contains multiple coher-
ent subsets that suffice to construct the rest of the lan-
guage as library macros, and so the language designers
do not even bother to say which portions of the language
must be implemented as language constructs, and which
must be implemented as parts of a library.

https://en.wikipedia.org/wiki/REXX
https://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/BCPL
https://en.wikipedia.org/wiki/Tcl
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://en.wikipedia.org/wiki/Type_theory
https://en.wikipedia.org/wiki/Type_conversion#Explicit_type_conversion
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Manifest_typing
https://en.wikipedia.org/wiki/Type_inference
https://en.wikipedia.org/wiki/Declaration_(computer_science)
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Weak_typing
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Compile_time
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Strongly_typed_programming_language
https://en.wikipedia.org/wiki/Type_safety
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Standard_library
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Anonymous_function
https://en.wikipedia.org/wiki/Scheme_(programming_language)

10.4. DESIGN AND IMPLEMENTATION 53

10.4 Design and implementation

Programming languages share properties with natural
languages related to their purpose as vehicles for com-
munication, having a syntactic form separate from its se-
mantics, and showing language families of related lan-
guages branching one from another.[47][48] But as artifi-
cial constructs, they also differ in fundamental ways from
languages that have evolved through usage. A signifi-
cant difference is that a programming language can be
fully described and studied in its entirety, since it has a
precise and finite definition.[49] By contrast, natural lan-
guages have changing meanings given by their users in
different communities. While constructed languages are
also artificial languages designed from the ground up with
a specific purpose, they lack the precise and complete se-
mantic definition that a programming language has.
Many programming languages have been designed from
scratch, altered to meet new needs, and combined with
other languages. Many have eventually fallen into disuse.
Although there have been attempts to design one “uni-
versal” programming language that serves all purposes,
all of them have failed to be generally accepted as filling
this role.[50] The need for diverse programming languages
arises from the diversity of contexts in which languages
are used:

• Programs range from tiny scripts written by individ-
ual hobbyists to huge systems written by hundreds of
programmers.

• Programmers range in expertise from novices who
need simplicity above all else, to experts who may
be comfortable with considerable complexity.

• Programs must balance speed, size, and simplic-
ity on systems ranging from microcontrollers to
supercomputers.

• Programs may be written once and not change for
generations, or they may undergo continual modifi-
cation.

• Programmers may simply differ in their tastes: they
may be accustomed to discussing problems and ex-
pressing them in a particular language.

One common trend in the development of programming
languages has been to add more ability to solve problems
using a higher level of abstraction. The earliest program-
ming languages were tied very closely to the underlying
hardware of the computer. As new programming lan-
guages have developed, features have been added that let
programmers express ideas that are more remote from
simple translation into underlying hardware instructions.
Because programmers are less tied to the complexity of
the computer, their programs can do more computing
with less effort from the programmer. This lets them
write more functionality per time unit.[51]

Natural language programming has been proposed as a
way to eliminate the need for a specialized language for
programming. However, this goal remains distant and its
benefits are open to debate. Edsger W. Dijkstra took the
position that the use of a formal language is essential to
prevent the introduction of meaningless constructs, and
dismissed natural language programming as “foolish”.[52]
Alan Perlis was similarly dismissive of the idea.[53] Hy-
brid approaches have been taken in Structured English
and SQL.
A language’s designers and users must construct a num-
ber of artifacts that govern and enable the practice of pro-
gramming. The most important of these artifacts are the
language specification and implementation.

10.4.1 Specification

Main article: Programming language specification

The specification of a programming language is an arti-
fact that the language users and the implementors can use
to agree upon whether a piece of source code is a valid
program in that language, and if so what its behavior shall
be.
A programming language specification can take several
forms, including the following:

• An explicit definition of the syntax, static seman-
tics, and execution semantics of the language. While
syntax is commonly specified using a formal gram-
mar, semantic definitions may be written in natural
language (e.g., as in the C language), or a formal se-
mantics (e.g., as in Standard ML[54] and Scheme[55]
specifications).

• A description of the behavior of a translator for the
language (e.g., the C++ and Fortran specifications).
The syntax and semantics of the language have to be
inferred from this description, which may be written
in natural or a formal language.

• A reference or model implementation, sometimes
written in the language being specified (e.g., Prolog
or ANSI REXX[56]). The syntax and semantics of
the language are explicit in the behavior of the ref-
erence implementation.

10.4.2 Implementation

Main article: Programming language implementation

An implementation of a programming language provides
a way to write programs in that language and execute
them on one or more configurations of hardware and
software. There are, broadly, two approaches to pro-
gramming language implementation: compilation and

https://en.wikipedia.org/wiki/Constructed_languages
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Natural_language_programming
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Natural_language_programming
https://en.wikipedia.org/wiki/Alan_Perlis
https://en.wikipedia.org/wiki/Structured_English
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Programming_language_specification
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Programming_language_implementation
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Formal_semantics_of_programming_languages
https://en.wikipedia.org/wiki/Formal_semantics_of_programming_languages
https://en.wikipedia.org/wiki/Standard_ML
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Reference_implementation
https://en.wikipedia.org/wiki/Meta-circular_evaluator
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/REXX
https://en.wikipedia.org/wiki/Programming_language_implementation
https://en.wikipedia.org/wiki/Compiler

54 CHAPTER 10. PROGRAMMING LANGUAGE

interpretation. It is generally possible to implement a lan-
guage using either technique.
The output of a compiler may be executed by hardware or
a program called an interpreter. In some implementations
that make use of the interpreter approach there is no dis-
tinct boundary between compiling and interpreting. For
instance, some implementations of BASIC compile and
then execute the source a line at a time.
Programs that are executed directly on the hardware usu-
ally run several orders of magnitude faster than those that
are interpreted in software.
One technique for improving the performance of in-
terpreted programs is just-in-time compilation. Here
the virtual machine, just before execution, translates the
blocks of bytecode which are going to be used to machine
code, for direct execution on the hardware.

10.5 Usage

Thousands of different programming languages have
been created, mainly in the computing field.[57]

Programming languages differ from most other forms of
human expression in that they require a greater degree of
precision and completeness. When using a natural lan-
guage to communicate with other people, human authors
and speakers can be ambiguous and make small errors,
and still expect their intent to be understood. However,
figuratively speaking, computers “do exactly what they
are told to do”, and cannot “understand” what code the
programmer intended to write. The combination of the
language definition, a program, and the program’s inputs
must fully specify the external behavior that occurs when
the program is executed, within the domain of control
of that program. On the other hand, ideas about an algo-
rithm can be communicated to humans without the preci-
sion required for execution by using pseudocode, which
interleaves natural language with code written in a pro-
gramming language.
A programming language provides a structured mecha-
nism for defining pieces of data, and the operations or
transformations that may be carried out automatically on
that data. A programmer uses the abstractions present in
the language to represent the concepts involved in a com-
putation. These concepts are represented as a collection
of the simplest elements available (called primitives).[58]
Programming is the process by which programmers com-
bine these primitives to compose new programs, or adapt
existing ones to new uses or a changing environment.
Programs for a computer might be executed in a batch
process without human interaction, or a user might type
commands in an interactive session of an interpreter. In
this case the “commands” are simply programs, whose
execution is chained together. When a language can run
its commands through an interpreter (such as a Unix shell

or other command-line interface), without compiling, it
is called a scripting language.[59]

10.5.1 Measuring language usage

Main article: Measuring programming language popu-
larity

It is difficult to determine which programming languages
are most widely used, and what usage means varies by
context. One language may occupy the greater number
of programmer hours, a different one have more lines
of code, and a third utilize the most CPU time. Some
languages are very popular for particular kinds of ap-
plications. For example, COBOL is still strong in the
corporate data center, often on large mainframes;[60][61]
Fortran in scientific and engineering applications; Ada in
aerospace, transportation, military, real-time and embed-
ded applications; and C in embedded applications and op-
erating systems. Other languages are regularly used to
write many different kinds of applications.
Various methods of measuring language popularity, each
subject to a different bias over what is measured, have
been proposed:

• counting the number of job advertisements that
mention the language[62]

• the number of books sold that teach or describe the
language[63]

• estimates of the number of existing lines of code
written in the language – which may underestimate
languages not often found in public searches[64]

• counts of language references (i.e., to the name of
the language) found using a web search engine.

Combining and averaging information from various in-
ternet sites, langpop.com claims that in 2013 the ten most
popular programming languages are (in descending order
by overall popularity): C, Java, PHP, JavaScript, C++,
Python, Shell, Ruby, Objective-C and C#.[65]

10.6 Taxonomies

For more details on this topic, see Categorical list of
programming languages.

There is no overarching classification scheme for pro-
gramming languages. A given programming language
does not usually have a single ancestor language. Lan-
guages commonly arise by combining the elements of
several predecessor languages with new ideas in circula-
tion at the time. Ideas that originate in one language will

https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Language_primitive
https://en.wikipedia.org/wiki/Computer_Programming
https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Batch_processing
https://en.wikipedia.org/wiki/Batch_processing
https://en.wikipedia.org/wiki/Command_(computing)
https://en.wikipedia.org/wiki/Session_(computer_science)
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Shell_script
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Objective-C
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Categorical_list_of_programming_languages
https://en.wikipedia.org/wiki/Categorical_list_of_programming_languages

10.8. REFERENCES 55

diffuse throughout a family of related languages, and then
leap suddenly across familial gaps to appear in an entirely
different family.
The task is further complicated by the fact that languages
can be classified along multiple axes. For example, Java
is both an object-oriented language (because it encour-
ages object-oriented organization) and a concurrent lan-
guage (because it contains built-in constructs for running
multiple threads in parallel). Python is an object-oriented
scripting language.
In broad strokes, programming languages divide into
programming paradigms and a classification by intended
domain of use, with general-purpose programming lan-
guages distinguished from domain-specific programming
languages. Traditionally, programming languages have
been regarded as describing computation in terms of im-
perative sentences, i.e. issuing commands. These are
generally called imperative programming languages. A
great deal of research in programming languages has
been aimed at blurring the distinction between a pro-
gram as a set of instructions and a program as an asser-
tion about the desired answer, which is the main feature
of declarative programming.[66] More refined paradigms
include procedural programming, object-oriented pro-
gramming, functional programming, and logic program-
ming; some languages are hybrids of paradigms or multi-
paradigmatic. An assembly language is not so much a
paradigm as a direct model of an underlying machine ar-
chitecture. By purpose, programming languages might
be considered general purpose, system programming lan-
guages, scripting languages, domain-specific languages,
or concurrent/distributed languages (or a combination of
these).[67] Some general purpose languages were designed
largely with educational goals.[68]

A programming language may also be classified by fac-
tors unrelated to programming paradigm. For instance,
most programming languages use English language key-
words, while a minority do not. Other languages may be
classified as being deliberately esoteric or not.

10.7 See also

• Comparison of programming languages (basic in-
structions)

• Comparison of programming languages

• Computer programming

• Computer science and Outline of computer science

• Educational programming language

• Invariant based programming

• Lists of programming languages

• List of programming language researchers

• Programming languages used in most popular web-
sites

• Literate programming

• Dialect (computing)

• Programming language theory

• Pseudocode

• Scientific language

• Software engineering and List of software engineer-
ing topics

10.8 References
[1] Ettinger, James (2004) Jacquard’s Web, Oxford Univer-

sity Press

[2] Aaby, Anthony (2004). Introduction to Programming
Languages.

[3] In mathematical terms, this means the programming lan-
guage is Turing-complete MacLennan, Bruce J. (1987).
Principles of Programming Languages. Oxford University
Press. p. 1. ISBN 0-19-511306-3.

[4] ACM SIGPLAN (2003). “Bylaws of the Special Inter-
est Group on Programming Languages of the Association
for Computing Machinery”. Retrieved 19 June 2006.,
The scope of SIGPLAN is the theory, design, implemen-
tation, description, and application of computer program-
ming languages - languages that permit the specification of
a variety of different computations, thereby providing the
user with significant control (immediate or delayed) over
the computer’s operation.

[5] Dean, Tom (2002). “Programming Robots”. Building In-
telligent Robots. Brown University Department of Com-
puter Science. Retrieved 23 September 2006.

[6] R. Narasimahan, Programming Languages and Comput-
ers: A Unified Metatheory, pp. 189-−247 in Franz Alt,
Morris Rubinoff (eds.) Advances in computers, Volume
8, Academic Press, 1994, ISBN 0-12-012108-5, p.193
: “a complete specification of a programming language
must, by definition, include a specification of a processor-
-idealized, if you will--for that language.” [the source cites
many references to support this statement]

[7] Ben Ari, Mordechai (1996). Understanding Programming
Languages. John Wiley and Sons. Programs and lan-
guages can be defined as purely formal mathematical ob-
jects. However, more people are interested in programs
than in other mathematical objects such as groups, pre-
cisely because it is possible to use the program—the se-
quence of symbols—to control the execution of a com-
puter. While we highly recommend the study of the the-
ory of programming, this text will generally limit itself to
the study of programs as they are executed on a computer.

[8] David A. Schmidt, The structure of typed programming
languages, MIT Press, 1994, ISBN 0-262-19349-3, p. 32

https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Domain-specific_programming_language
https://en.wikipedia.org/wiki/Domain-specific_programming_language
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/System_programming_language
https://en.wikipedia.org/wiki/System_programming_language
https://en.wikipedia.org/wiki/English_language
https://en.wikipedia.org/wiki/Non-English-based_programming_languages
https://en.wikipedia.org/wiki/Esoteric_programming_language
https://en.wikipedia.org/wiki/Comparison_of_programming_languages_(basic_instructions)
https://en.wikipedia.org/wiki/Comparison_of_programming_languages_(basic_instructions)
https://en.wikipedia.org/wiki/Comparison_of_programming_languages
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Outline_of_computer_science
https://en.wikipedia.org/wiki/Educational_programming_language
https://en.wikipedia.org/wiki/Invariant_based_programming
https://en.wikipedia.org/wiki/Lists_of_programming_languages
https://en.wikipedia.org/wiki/List_of_programming_language_researchers
https://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites
https://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites
https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Dialect_(computing)
https://en.wikipedia.org/wiki/Programming_language_theory
https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Scientific_language
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/List_of_software_engineering_topics
https://en.wikipedia.org/wiki/List_of_software_engineering_topics
http://www.emu.edu.tr/aelci/Courses/D-318/D-318-Files/plbook/intro.htm
http://www.emu.edu.tr/aelci/Courses/D-318/D-318-Files/plbook/intro.htm
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-19-511306-3
https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
http://www.acm.org/sigs/sigplan/sigplan_bylaws.htm
http://www.acm.org/sigs/sigplan/sigplan_bylaws.htm
http://www.acm.org/sigs/sigplan/sigplan_bylaws.htm
http://www.cs.brown.edu/people/tld/courses/cs148/02/programming.html
https://en.wikipedia.org/wiki/Special:BookSources/0120121085
https://en.wikipedia.org/wiki/Special:BookSources/0262193493

56 CHAPTER 10. PROGRAMMING LANGUAGE

[9] Pierce, Benjamin (2002). Types and Programming Lan-
guages. MIT Press. p. 339. ISBN 0-262-16209-1.

[10] Digital Equipment Corporation. “Information Technol-
ogy - Database Language SQL (Proposed revised text
of DIS 9075)". ISO/IEC 9075:1992, Database Language
SQL. Retrieved 29 June 2006.

[11] The Charity Development Group (December 1996). “The
CHARITY Home Page”. Retrieved 29 June 2006., Char-
ity is a categorical programming language..., All Charity
computations terminate.

[12] XML in 10 pointsW3C, 1999, XML is not a programming
language.

[13] Powell, Thomas (2003). HTML & XHTML: the complete
reference. McGraw-Hill. p. 25. ISBN 0-07-222942-X.
HTML is not a programming language.

[14] Dykes, Lucinda; Tittel, Ed (2005). XML For Dummies,
4th Edition. Wiley. p. 20. ISBN 0-7645-8845-1. ...it’s a
markup language, not a programming language.

[15] “What kind of language is XSLT?". IBM.com. Retrieved
3 December 2010.

[16] “XSLT is a Programming Language”.
Msdn.microsoft.com. Retrieved 3 December 2010.

[17] Scott, Michael (2006). Programming Language Pragmat-
ics. Morgan Kaufmann. p. 802. ISBN 0-12-633951-1.
XSLT, though highly specialized to the transformation of
XML, is a Turing-complete programming language.

[18] http://tobi.oetiker.ch/lshort/lshort.pdf

[19] Syropoulos, Apostolos; Antonis Tsolomitis; Nick Sofro-
niou (2003). Digital typography using LaTeX. Springer-
Verlag. p. 213. ISBN 0-387-95217-9. TeX is not only
an excellent typesetting engine but also a real programming
language.

[20] Robert A. Edmunds, The Prentice-Hall standard glossary
of computer terminology, Prentice-Hall, 1985, p. 91

[21] Pascal Lando, Anne Lapujade, Gilles Kassel, and Frédéric
Fürst, Towards a General Ontology of Computer Pro-
grams, ICSOFT 2007, pp. 163-170

[22] S.K. Bajpai, Introduction To Computers And C Program-
ming, New Age International, 2007, ISBN 81-224-1379-
X, p. 346

[23] R. Narasimahan, Programming Languages and Comput-
ers: A Unified Metatheory, pp. 189-−247 in Franz Alt,
Morris Rubinoff (eds.) Advances in computers, Volume
8, Academic Press, 1994, ISBN 0-12-012108-5, p.215:
"[...] the model [...] for computer languages differs
from that [...] for programming languages in only two
respects. In a computer language, there are only finitely
many names--or registers--which can assume only finitely
many values--or states--and these states are not further
distinguished in terms of any other attributes. [author’s
footnote:] This may sound like a truism but its implica-
tions are far reaching. For example, it would imply that
any model for programming languages, by fixing certain
of its parameters or features, should be reducible in a nat-
ural way to a model for computer languages.”

[24] John C. Reynolds, Some thoughts on teaching program-
ming and programming languages, SIGPLAN Notices,
Volume 43, Issue 11, November 2008, p.109

[25] Rojas, Raúl, et al. (2000). “Plankalkül: The First High-
Level Programming Language and its Implementation”.
Institut für Informatik, Freie Universität Berlin, Technical
Report B-3/2000. (full text)

[26] Sebesta, W.S Concepts of Programming languages.
2006;M6 14:18 pp.44. ISBN 0-321-33025-0

[27] Knuth, Donald E.; Pardo, Luis Trabb. “Early development
of programming languages”. Encyclopedia of Computer
Science and Technology (Marcel Dekker) 7: 419–493.

[28] Peter J. Bentley (2012). Digitized: The Science of Com-
puters and how it Shapes Our World. Oxford University
Press. p. 87.

[29] Hopper (1978) p. 16.

[30] Sammet (1969) p. 316

[31] Sammet (1978) p. 204.

[32] Richard L. Wexelblat: History of Programming Lan-
guages, Academic Press, 1981, chapter XIV.

[33] François Labelle. “Programming Language Usage
Graph”. SourceForge. Retrieved 21 June 2006.. This
comparison analyzes trends in number of projects hosted
by a popular community programming repository. During
most years of the comparison, C leads by a considerable
margin; in 2006, Java overtakes C, but the combination of
C/C++ still leads considerably.

[34] Hayes, Brian (2006). “The Semicolon Wars”. American
Scientist 94 (4): 299–303. doi:10.1511/2006.60.299.

[35] Dijkstra, Edsger W. (March 1968). “Go To Statement
Considered Harmful”. Communications of the ACM 11
(3): 147–148. doi:10.1145/362929.362947. Retrieved
2014-05-22.

[36] Tetsuro Fujise, Takashi Chikayama, Kazuaki Roku-
sawa, Akihiko Nakase (December 1994). “KLIC: A
Portable Implementation of KL1” Proc. of FGCS '94,
ICOT Tokyo, December 1994. http://www.icot.or.jp/
ARCHIVE/HomePage-E.html KLIC is a portable imple-
mentation of a concurrent logic programming language
KL1.

[37] Jim Bender (15 March 2004). “Mini-Bibliography on
Modules for Functional Programming Languages”. Read-
Scheme.org. Retrieved 27 September 2006.

[38] Wall, Programming Perl ISBN 0-596-00027-8 p. 66

[39] Michael Sipser (1996). Introduction to the Theory of Com-
putation. PWS Publishing. ISBN 0-534-94728-X. Sec-
tion 2.2: Pushdown Automata, pp.101–114.

[40] Jeffrey Kegler, "Perl and Undecidability", The Perl Re-
view. Papers 2 and 3 prove, using respectively Rice’s the-
orem and direct reduction to the halting problem, that the
parsing of Perl programs is in general undecidable.

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-262-16209-1
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://pll.cpsc.ucalgary.ca/charity1/www/home.html
http://pll.cpsc.ucalgary.ca/charity1/www/home.html
http://www.w3.org/XML/1999/XML-in-10-points.html
https://en.wikipedia.org/wiki/W3C
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-07-222942-X
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-7645-8845-1
http://www.ibm.com/developerworks/library/x-xslt/
http://msdn.microsoft.com/en-us/library/ms767587(VS.85).aspx
https://en.wikipedia.org/wiki/Morgan_Kaufmann
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-12-633951-1
http://tobi.oetiker.ch/lshort/lshort.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-387-95217-9
http://www.loa-cnr.it/ICSOFT2007_final.pdf
http://www.loa-cnr.it/ICSOFT2007_final.pdf
http://dblp.uni-trier.de/db/conf/icsoft/icsoft2007-1.html
https://en.wikipedia.org/wiki/Special:BookSources/812241379X
https://en.wikipedia.org/wiki/Special:BookSources/812241379X
https://en.wikipedia.org/wiki/Special:BookSources/0120121085
https://en.wikipedia.org/wiki/SIGPLAN
https://en.wikipedia.org/wiki/Ra%C3%BAl_Rojas
http://www.zib.de/zuse/Inhalt/Programme/Plankalkuel/Plankalkuel-Report/Plankalkuel-Report.htm
https://en.wikipedia.org/wiki/Special:BookSources/0321330250
http://books.google.co.uk/books?id=kpYX_lNI0VMC
http://books.google.co.uk/books?id=kpYX_lNI0VMC
http://www.cs.berkeley.edu/~flab/languages.html
http://www.cs.berkeley.edu/~flab/languages.html
https://en.wikipedia.org/wiki/SourceForge
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1511%252F2006.60.299
https://en.wikipedia.org/wiki/Edsger_Dijkstra
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F362929.362947
http://www.icot.or.jp/ARCHIVE/HomePage-E.html
http://www.icot.or.jp/ARCHIVE/HomePage-E.html
https://en.wikipedia.org/wiki/KL1
http://readscheme.org/modules/
http://readscheme.org/modules/
https://en.wikipedia.org/wiki/Special:BookSources/0596000278
https://en.wikipedia.org/wiki/Michael_Sipser
https://en.wikipedia.org/wiki/Introduction_to_the_Theory_of_Computation
https://en.wikipedia.org/wiki/Introduction_to_the_Theory_of_Computation
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-534-94728-X
http://www.jeffreykegler.com/Home/perl-and-undecidability
https://en.wikipedia.org/wiki/Rice%2527s_theorem
https://en.wikipedia.org/wiki/Rice%2527s_theorem
https://en.wikipedia.org/wiki/Halting_problem

10.9. FURTHER READING 57

[41] Marty Hall, 1995, Lecture Notes: Macros, PostScript
version

[42] Michael Lee Scott, Programming language pragmatics,
Edition 2, Morgan Kaufmann, 2006, ISBN 0-12-633951-
1, p. 18–19

[43] Andrew Cooke. “Introduction To Computer Languages”.
Retrieved 13 July 2012.

[44] Specifically, instantiations of generic types are in-
ferred for certain expression forms. Type inference in
Generic Java—the research language that provided the
basis for Java 1.5’s bounded parametric polymorphism
extensions—is discussed in two informal manuscripts
from the Types mailing list: Generic Java type inference
is unsound (Alan Jeffrey, 17 December 2001) and Sound
Generic Java type inference (Martin Odersky, 15 January
2002). C#'s type system is similar to Java’s, and uses a
similar partial type inference scheme.

[45] “Revised Report on the Algorithmic Language Scheme”.
20 February 1998. Retrieved 9 June 2006.

[46] Luca Cardelli and Peter Wegner. “On Understand-
ing Types, Data Abstraction, and Polymorphism”.
Manuscript (1985). Retrieved 9 June 2006.

[47] Steven R. Fischer, A history of language, Reaktion Books,
2003, ISBN 1-86189-080-X, p. 205

[48] Éric Lévénez (2011). “Computer Languages History”.

[49] Jing Huang. “Artificial Language vs. Natural Language”.

[50] IBM in first publishing PL/I, for example, rather ambi-
tiously titled its manual The universal programming lan-
guage PL/I (IBMLibrary; 1966). The title reflected IBM’s
goals for unlimited subsetting capability: PL/I is designed
in such a way that one can isolate subsets from it satisfy-
ing the requirements of particular applications. (“PL/I”.
Encyclopedia of Mathematics. Retrieved 29 June 2006.).
Ada and UNCOL had similar early goals.

[51] Frederick P. Brooks, Jr.: The Mythical Man-Month,
Addison-Wesley, 1982, pp. 93-94

[52] Dijkstra, Edsger W. On the foolishness of “natural lan-
guage programming.” EWD667.

[53] Perlis, Alan (September 1982). “Epigrams on Program-
ming”. SIGPLAN Notices Vol. 17, No. 9. pp. 7–13.

[54] Milner, R.; M. Tofte, R. Harper and D. MacQueen.
(1997). The Definition of Standard ML (Revised). MIT
Press. ISBN 0-262-63181-4.

[55] Kelsey, Richard; William Clinger and Jonathan Rees
(February 1998). “Section 7.2 Formal semantics”.
Revised5 Report on the Algorithmic Language Scheme. Re-
trieved 9 June 2006.

[56] ANSI — Programming Language Rexx, X3-274.1996

[57] “HOPL: an interactive Roster of Programming Lan-
guages”. Australia: Murdoch University. Retrieved 1
June 2009. This site lists 8512 languages.

[58] Abelson, Sussman, and Sussman. “Structure and Interpre-
tation of Computer Programs”. Retrieved 3 March 2009.

[59] Brown Vicki (1999). “Scripting Languages”.
mactech.com. Retrieved November 17, 2014.

[60] Georgina Swan (2009-09-21). “COBOL turns 50”. com-
puterworld.com.au. Retrieved 2013-10-19.

[61] Ed Airey (2012-05-03). “7 Myths of COBOL De-
bunked”. developer.com. Retrieved 2013-10-19.

[62] Nicholas Enticknap. “SSL/Computer Weekly IT salary
survey: finance boom drives IT job growth”. Computer-
weekly.com. Retrieved 2013-06-14.

[63] “Counting programming languages by book sales”.
Radar.oreilly.com. 2 August 2006. Retrieved 3 Decem-
ber 2010.

[64] Bieman, J.M.; Murdock, V., Finding code on the World
Wide Web: a preliminary investigation, Proceedings First
IEEE International Workshop on Source Code Analysis
and Manipulation, 2001

[65] “Programming Language Popularity”. langpop.com.
2013-10-25. Retrieved 2014-01-02.

[66] Carl A. Gunter, Semantics of Programming Languages:
Structures and Techniques, MIT Press, 1992, ISBN 0-262-
57095-5, p. 1

[67] “TUNES: Programming Languages”.

[68] Wirth, Niklaus (1993). “Recollections about the devel-
opment of Pascal”. Proc. 2nd ACM SIGPLAN con-
ference on history of programming languages: 333–342.
doi:10.1145/154766.155378. ISBN 0-89791-570-4. Re-
trieved 30 June 2006.

10.9 Further reading

See also: History of programming languages § Further
reading

• Abelson, Harold; Sussman, Gerald Jay (1996).
Structure and Interpretation of Computer Programs
(2nd ed.). MIT Press.

• Raphael Finkel: Advanced Programming Language
Design, Addison Wesley 1995.

• Daniel P. Friedman, Mitchell Wand, Christopher T.
Haynes: Essentials of Programming Languages, The
MIT Press 2001.

• Maurizio Gabbrielli and Simone Martini: “Pro-
gramming Languages: Principles and Paradigms”,
Springer, 2010.

• David Gelernter, Suresh Jagannathan: Programming
Linguistics, The MIT Press 1990.

http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.html
https://en.wikipedia.org/wiki/PostScript
http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.ps
https://en.wikipedia.org/wiki/Special:BookSources/0126339511
https://en.wikipedia.org/wiki/Special:BookSources/0126339511
http://www.acooke.org/comp-lang.html
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming
http://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00849.html
http://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00849.html
https://en.wikipedia.org/wiki/Alan_Jeffrey
http://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00921.html
http://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00921.html
https://en.wikipedia.org/wiki/Martin_Odersky
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-4.html
https://en.wikipedia.org/wiki/Luca_Cardelli
https://en.wikipedia.org/wiki/Peter_Wegner
http://citeseer.ist.psu.edu/cardelli85understanding.html
http://citeseer.ist.psu.edu/cardelli85understanding.html
https://en.wikipedia.org/wiki/Special:BookSources/186189080X
http://www.levenez.com/lang/
http://www.cs.cornell.edu/info/Projects/Nuprl/cs611/fall94notes/cn2/subsection3_1_3.html
http://www.encyclopediaofmath.org/index.php?title=PL/I&oldid=19175
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/UNCOL
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD667.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD667.html
http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html
http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html
https://en.wikipedia.org/wiki/Robin_Milner
https://en.wikipedia.org/wiki/Mads_Tofte
https://en.wikipedia.org/wiki/Robert_Harper_(computer_scientist)
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-262-63181-4
http://www.schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-10.html#%25_sec_7.2
https://en.wikipedia.org/wiki/American_National_Standards_Institute
http://hopl.murdoch.edu.au/
http://hopl.murdoch.edu.au/
https://en.wikipedia.org/wiki/Murdoch_University
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html
http://www.mactech.com/articles/mactech/Vol.15/15.09/ScriptingLanguages/index.html
http://www.computerworld.com.au/article/319269/cobol_turns_50/
http://www.developer.com/lang/other/7-myths-of-cobol-debunked.html
http://www.developer.com/lang/other/7-myths-of-cobol-debunked.html
http://www.computerweekly.com/Articles/2007/09/11/226631/sslcomputer-weekly-it-salary-survey-finance-boom-drives-it-job.htm
http://www.computerweekly.com/Articles/2007/09/11/226631/sslcomputer-weekly-it-salary-survey-finance-boom-drives-it-job.htm
http://radar.oreilly.com/archives/2006/08/programming_language_trends_1.html
http://www.langpop.com/
https://en.wikipedia.org/wiki/Special:BookSources/0262570955
https://en.wikipedia.org/wiki/Special:BookSources/0262570955
http://tunes.org/wiki/programming_20languages.html
https://en.wikipedia.org/wiki/Niklaus_Wirth
http://portal.acm.org/citation.cfm?id=155378
http://portal.acm.org/citation.cfm?id=155378
https://en.wikipedia.org/wiki/SIGPLAN
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F154766.155378
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-89791-570-4
https://en.wikipedia.org/wiki/History_of_programming_languages#Further_reading
https://en.wikipedia.org/wiki/History_of_programming_languages#Further_reading
https://en.wikipedia.org/wiki/Harold_Abelson
https://en.wikipedia.org/wiki/Gerald_Jay_Sussman
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html
https://en.wikipedia.org/wiki/Raphael_Finkel
http://www.nondot.org/sabre/Mirrored/AdvProgLangDesign/
http://www.nondot.org/sabre/Mirrored/AdvProgLangDesign/
https://en.wikipedia.org/wiki/Daniel_P._Friedman
https://en.wikipedia.org/wiki/Mitchell_Wand
https://en.wikipedia.org/wiki/Christopher_T._Haynes
https://en.wikipedia.org/wiki/Christopher_T._Haynes
https://en.wikipedia.org/wiki/Essentials_of_Programming_Languages
https://en.wikipedia.org/wiki/David_Gelernter
https://en.wikipedia.org/wiki/Suresh_Jagannathan
https://en.wikipedia.org/wiki/The_MIT_Press

58 CHAPTER 10. PROGRAMMING LANGUAGE

• Ellis Horowitz (ed.): Programming Languages, a
Grand Tour (3rd ed.), 1987.

• Ellis Horowitz: Fundamentals of Programming Lan-
guages, 1989.

• Shriram Krishnamurthi: Programming Languages:
Application and Interpretation, online publication.

• Bruce J. MacLennan: Principles of Programming
Languages: Design, Evaluation, and Implementa-
tion, Oxford University Press 1999.

• John C. Mitchell: Concepts in Programming Lan-
guages, Cambridge University Press 2002.

• Benjamin C. Pierce: Types and Programming Lan-
guages, The MIT Press 2002.

• Terrence W. Pratt and Marvin V. Zelkowitz: Pro-
gramming Languages: Design and Implementation
(4th ed.), Prentice Hall 2000.

• Peter H. Salus. Handbook of Programming Lan-
guages (4 vols.). Macmillan 1998.

• Ravi Sethi: Programming Languages: Concepts and
Constructs, 2nd ed., Addison-Wesley 1996.

• Michael L. Scott: Programming Language Pragmat-
ics, Morgan Kaufmann Publishers 2005.

• Robert W. Sebesta: Concepts of Programming Lan-
guages, 9th ed., Addison Wesley 2009.

• Franklyn Turbak and David Gifford with Mark
Sheldon: Design Concepts in Programming Lan-
guages, The MIT Press 2009.

• Peter Van Roy and Seif Haridi. Concepts, Tech-
niques, and Models of Computer Programming, The
MIT Press 2004.

• David A. Watt. Programming Language Concepts
and Paradigms. Prentice Hall 1990.

• David A. Watt and Muffy Thomas. Programming
Language Syntax and Semantics. Prentice Hall
1991.

• David A. Watt. Programming Language Processors.
Prentice Hall 1993.

• David A. Watt. Programming Language Design
Concepts. John Wiley & Sons 2004.

10.10 External links
• 99 Bottles of Beer A collection of implementations
in many languages.

• Computer Programming Languages at DMOZ

https://en.wikipedia.org/wiki/Ellis_Horowitz
https://en.wikipedia.org/wiki/Shriram_Krishnamurthi
https://en.wikipedia.org/wiki/Programming_Languages:_Application_and_Interpretation
https://en.wikipedia.org/wiki/Programming_Languages:_Application_and_Interpretation
http://www.cs.brown.edu/~sk/Publications/Books/ProgLangs/
https://en.wikipedia.org/wiki/Bruce_J._MacLennan
https://en.wikipedia.org/wiki/Oxford_University_Press
https://en.wikipedia.org/wiki/John_C._Mitchell
https://en.wikipedia.org/wiki/Cambridge_University_Press
https://en.wikipedia.org/wiki/Benjamin_C._Pierce
https://en.wikipedia.org/wiki/Types_and_Programming_Languages
https://en.wikipedia.org/wiki/Types_and_Programming_Languages
https://en.wikipedia.org/wiki/Terrence_W._Pratt
https://en.wikipedia.org/wiki/Marvin_V._Zelkowitz
https://en.wikipedia.org/wiki/Peter_H._Salus
https://en.wikipedia.org/wiki/Ravi_Sethi
https://en.wikipedia.org/wiki/Addison-Wesley
https://en.wikipedia.org/wiki/Michael_L._Scott
https://en.wikipedia.org/wiki/Morgan_Kaufmann_Publishers
https://en.wikipedia.org/wiki/Robert_W._Sebesta
https://en.wikipedia.org/wiki/Franklyn_Turbak
https://en.wikipedia.org/wiki/David_Gifford
https://en.wikipedia.org/wiki/Mark_Sheldon
https://en.wikipedia.org/wiki/Mark_Sheldon
https://en.wikipedia.org/wiki/Peter_Van_Roy
https://en.wikipedia.org/wiki/Seif_Haridi
https://en.wikipedia.org/wiki/Concepts,_Techniques,_and_Models_of_Computer_Programming
https://en.wikipedia.org/wiki/Concepts,_Techniques,_and_Models_of_Computer_Programming
https://en.wikipedia.org/wiki/David_A._Watt
https://en.wikipedia.org/wiki/Muffy_Thomas
http://www.99-bottles-of-beer.net/
https://www.dmoz.org/Computers/Programming/Languages
https://en.wikipedia.org/wiki/DMOZ

Chapter 11

History of programming languages

This article discusses the major developments in the his-
tory of programming languages. For a detailed time-
line of events, see: Timeline of programming languages.

11.1 Early history

During a nine-month period in 1840-1843, Ada Lovelace
translated the memoir of Italian mathematician Luigi
Menabrea about Charles Babbage's newest proposed ma-
chine, the Analytical Engine. With the article she ap-
pended a set of notes which specified in complete de-
tail a method for calculating Bernoulli numbers with the
Analytical Engine, recognized by some historians as the
world’s first computer program.[1]

Herman Hollerith realized that he could encode infor-
mation on punch cards when he observed that train
conductors encode the appearance of the ticket holders
on the train tickets using the position of punched holes
on the tickets. Hollerith then encoded the 1890 census
data on punch cards.
The first computer codes were specialized for their appli-
cations. In the first decades of the 20th century, numer-
ical calculations were based on decimal numbers. Even-
tually it was realized that logic could be represented with
numbers, not only with words. For example, Alonzo
Church was able to express the lambda calculus in a for-
mulaic way. The Turing machine was an abstraction
of the operation of a tape-marking machine, for exam-
ple, in use at the telephone companies. Turing machines
set the basis for storage of programs as data in the von
Neumann architecture of computers by representing a
machine through a finite number. However, unlike the
lambda calculus, Turing’s code does not serve well as a
basis for higher-level languages—its principal use is in
rigorous analyses of algorithmic complexity.
Like many “firsts” in history, the first modern program-
ming language is hard to identify. From the start, the
restrictions of the hardware defined the language. Punch
cards allowed 80 columns, but some of the columns had
to be used for a sorting number on each card. FOR-
TRAN included some keywords which were the same as
English words, such as “IF”, “GOTO” (go to) and “CON-

TINUE”. The use of a magnetic drum for memory meant
that computer programs also had to be interleaved with
the rotations of the drum. Thus the programs were more
hardware-dependent.
To some people, what was the first modern program-
ming language depends on how much power and human-
readability is required before the status of “programming
language” is granted. Jacquard looms and Charles Bab-
bage’s Difference Engine both had simple, extremely lim-
ited languages for describing the actions that these ma-
chines should perform. One can even regard the punch
holes on a player piano scroll as a limited domain-specific
language, albeit not designed for human consumption.

11.2 First programming languages

In the 1940s, the first recognizably modern electrically
powered computers were created. The limited speed
and memory capacity forced programmers to write hand
tuned assembly language programs. It was eventually re-
alized that programming in assembly language required a
great deal of intellectual effort and was error-prone.
The first programming languages designed to communi-
cate instructions to a computer were written in the 1950s.
An early high-level programming language to be designed
for a computer was Plankalkül, developed for the German
Z3 by Konrad Zuse between 1943 and 1945. However,
it was not implemented until 1998 and 2000.[2]

John Mauchly's Short Code, proposed in 1949, was one
of the first high-level languages ever developed for an
electronic computer.[3] Unlike machine code, Short Code
statements represented mathematical expressions in un-
derstandable form. However, the program had to be
translated into machine code every time it ran, making
the process much slower than running the equivalent ma-
chine code.
At the University of Manchester, Alick Glennie devel-
oped Autocode in the early 1950s. A programming lan-
guage, it used a compiler to automatically convert the lan-
guage into machine code. The first code and compiler
was developed in 1952 for the Mark 1 computer at the
University of Manchester and is considered to be the first

59

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Luigi_Menabrea
https://en.wikipedia.org/wiki/Luigi_Menabrea
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Analytical_engine
https://en.wikipedia.org/wiki/Bernoulli_number
https://en.wikipedia.org/wiki/Herman_Hollerith
https://en.wikipedia.org/wiki/Punched_card
https://en.wikipedia.org/wiki/Train
https://en.wikipedia.org/wiki/Conductor_(transportation)
https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Von_Neumann_architecture#Development_of_the_stored-program_concept
https://en.wikipedia.org/wiki/Von_Neumann_architecture#Development_of_the_stored-program_concept
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Drum_memory
https://en.wikipedia.org/wiki/Difference_engine
https://en.wikipedia.org/wiki/Player_piano
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Plankalk%C3%BCl
https://en.wikipedia.org/wiki/Z3_(computer)
https://en.wikipedia.org/wiki/Konrad_Zuse
https://en.wikipedia.org/wiki/John_Mauchly
https://en.wikipedia.org/wiki/Short_Code_(computer_language)
https://en.wikipedia.org/wiki/Electronic_computer
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/University_of_Manchester
https://en.wikipedia.org/wiki/Alick_Glennie
https://en.wikipedia.org/wiki/Autocode
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Manchester_Mark_1

60 CHAPTER 11. HISTORY OF PROGRAMMING LANGUAGES

The Manchester Mark 1 ran programs written in Autocode from
1952.

compiled high-level programming language.[4][5]

The second autocode was developed for the Mark 1 by
R. A. Brooker in 1954 and was called the “Mark 1 Au-
tocode”. Brooker also developed an autocode for the
Ferranti Mercury in the 1950s in conjunction with the
University of Manchester. The version for the EDSAC 2
was devised by D. F. Hartley of University of Cambridge
Mathematical Laboratory in 1961. Known as EDSAC
2 Autocode, it was a straight development from Mercury
Autocode adapted for local circumstances, and was noted
for its object code optimisation and source-language di-
agnostics which were advanced for the time. A contem-
porary but separate thread of development, Atlas Au-
tocode was developed for the University of Manchester
Atlas 1 machine.
Another early programming language was devised by
Grace Hopper in the US, called FLOW-MATIC. It was
developed for the UNIVAC I at Remington Rand during
the period from 1955 until 1959. Hopper found that busi-
ness data processing customers were uncomfortable with
mathematical notation, and in early 1955, she and her
team wrote a specification for an English programming
language and implemented a prototype.[6] The FLOW-
MATIC compiler became publicly available in early 1958
and was substantially complete in 1959.[7] Flow-Matic
was a major influence in the design of COBOL, since
only it and its direct descendent AIMACO were in actual
use at the time.[8] The language Fortran was developed at
IBM in the mid 1950s, and became the first widely used
high-level general purpose programming language.
Other languages still in use today, include LISP (1958),
invented by John McCarthy and COBOL (1959), cre-
ated by the Short Range Committee. Another milestone
in the late 1950s was the publication, by a committee
of American and European computer scientists, of “a
new language for algorithms"; the ALGOL 60 Report (the
"ALGOrithmic Language”). This report consolidated
many ideas circulating at the time and featured three key
language innovations:

• nested block structure: code sequences and asso-
ciated declarations could be grouped into blocks
without having to be turned into separate, explicitly
named procedures;

• lexical scoping: a block could have its own pri-
vate variables, procedures and functions, invisible to
code outside that block, that is, information hiding.

Another innovation, related to this, was in how the lan-
guage was described:

• a mathematically exact notation, Backus-Naur Form
(BNF), was used to describe the language’s syntax.
Nearly all subsequent programming languages have
used a variant of BNF to describe the context-free
portion of their syntax.

Algol 60 was particularly influential in the design of later
languages, some of which soon became more popular.
The Burroughs large systems were designed to be pro-
grammed in an extended subset of Algol.
Algol’s key ideas were continued, producing ALGOL 68:

• syntax and semantics became evenmore orthogonal,
with anonymous routines, a recursive typing system
with higher-order functions, etc.;

• not only the context-free part, but the full lan-
guage syntax and semantics were defined formally,
in terms of VanWijngaarden grammar, a formalism
designed specifically for this purpose.

Algol 68’s many little-used language features (for exam-
ple, concurrent and parallel blocks) and its complex sys-
tem of syntactic shortcuts and automatic type coercions
made it unpopular with implementers and gained it a rep-
utation of being difficult. Niklaus Wirth actually walked
out of the design committee to create the simpler Pascal
language.
Some important languages that were developed in this pe-
riod include:

11.3 Establishing fundamental
paradigms

The period from the late 1960s to the late 1970s brought
a major flowering of programming languages. Most of
the major language paradigms now in use were invented
in this period:

• Simula, invented in the late 1960s by Nygaard and
Dahl as a superset of Algol 60, was the first language
designed to support object-oriented programming.

https://en.wikipedia.org/wiki/Manchester_Mark_1
https://en.wikipedia.org/wiki/Autocode
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Tony_Brooker
https://en.wikipedia.org/wiki/Ferranti_Mercury
https://en.wikipedia.org/wiki/EDSAC
https://en.wikipedia.org/wiki/D._F._Hartley
https://en.wikipedia.org/wiki/University_of_Cambridge_Mathematical_Laboratory
https://en.wikipedia.org/wiki/University_of_Cambridge_Mathematical_Laboratory
https://en.wikipedia.org/wiki/Atlas_Autocode
https://en.wikipedia.org/wiki/Atlas_Autocode
https://en.wikipedia.org/wiki/Atlas_Computer_(Manchester)
https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/FLOW-MATIC
https://en.wikipedia.org/wiki/UNIVAC_I
https://en.wikipedia.org/wiki/Remington_Rand
https://en.wikipedia.org/wiki/English_language
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/AIMACO
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/Block_(programming)
https://en.wikipedia.org/wiki/Scope_(programming)
https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Backus-Naur_Form
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Burroughs_large_systems
https://en.wikipedia.org/wiki/ALGOL_68
https://en.wikipedia.org/wiki/Van_Wijngaarden_grammar
https://en.wikipedia.org/wiki/Niklaus_Wirth
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/Simula
https://en.wikipedia.org/wiki/Kristen_Nygaard
https://en.wikipedia.org/wiki/Ole-Johan_Dahl
https://en.wikipedia.org/wiki/Object-oriented_programming

11.5. 1990S: THE INTERNET AGE 61

• C, an early systems programming language, was de-
veloped by Dennis Ritchie and Ken Thompson at
Bell Labs between 1969 and 1973.

• Smalltalk (mid-1970s) provided a complete
ground-up design of an object-oriented language.

• Prolog, designed in 1972 by Colmerauer, Roussel,
and Kowalski, was the first logic programming lan-
guage.

• ML built a polymorphic type system (invented by
Robin Milner in 1973) on top of Lisp , pioneering
statically typed functional programming languages.

Each of these languages spawned an entire family of de-
scendants, and most modern languages count at least one
of them in their ancestry.
The 1960s and 1970s also saw considerable debate over
the merits of "structured programming", which essen-
tially meant programming without the use of Goto. This
debate was closely related to language design: some lan-
guages did not include GOTO, which forced structured
programming on the programmer. Although the debate
raged hotly at the time, nearly all programmers now agree
that, even in languages that provide GOTO, it is bad
programming style to use it except in rare circumstances.
As a result, later generations of language designers have
found the structured programming debate tedious and
even bewildering.
To provide even faster compile times, some languages
were structured for "one-pass compilers" which expect
subordinate routines to be defined first, as with Pascal,
where the main routine, or driver function, is the final
section of the program listing.
Some important languages that were developed in this pe-
riod include:

11.4 1980s: consolidation, mod-
ules, performance

The 1980s were years of relative consolidation in
imperative languages. Rather than inventing new
paradigms, all of these movements elaborated upon the
ideas invented in the previous decade. C++ combined
object-oriented and systems programming. The United
States government standardized Ada, a systems program-
ming language intended for use by defense contractors.
In Japan and elsewhere, vast sums were spent investi-
gating so-called fifth-generation programming languages
that incorporated logic programming constructs. The
functional languages community moved to standardize
ML and Lisp. Research in Miranda, a functional lan-
guage with lazy evaluation, began to take hold in this
decade.

One important new trend in language design was an in-
creased focus on programming for large-scale systems
through the use of modules, or large-scale organizational
units of code. Modula, Ada, and ML all developed no-
table module systems in the 1980s. Module systems
were often wedded to generic programming constructs-
--generics being, in essence, parametrized modules (see
also polymorphism in object-oriented programming).
Although major new paradigms for imperative program-
ming languages did not appear, many researchers ex-
panded on the ideas of prior languages and adapted them
to new contexts. For example, the languages of the Argus
and Emerald systems adapted object-oriented program-
ming to distributed systems.
The 1980s also brought advances in programming lan-
guage implementation. The RISCmovement in computer
architecture postulated that hardware should be designed
for compilers rather than for human assembly program-
mers. Aided by processor speed improvements that en-
abled increasingly aggressive compilation techniques, the
RISC movement sparked greater interest in compilation
technology for high-level languages.
Language technology continued along these lines well
into the 1990s.
Some important languages that were developed in this pe-
riod include:

11.5 1990s: the Internet age

The rapid growth of the Internet in the mid-1990s was the
next major historic event in programming languages. By
opening up a radically new platform for computer sys-
tems, the Internet created an opportunity for new lan-
guages to be adopted. In particular, the JavaScript pro-
gramming language rose to popularity because of its early
integration with the Netscape Navigator web browser.
Various other scripting languages achieved widespread
use in developing customized application for web servers
such as PHP. The 1990s saw no fundamental novelty
in imperative languages, but much recombination and
maturation of old ideas. This era began the spread of
functional languages. A big driving philosophy was pro-
grammer productivity. Many “rapid application devel-
opment” (RAD) languages emerged, which usually came
with an IDE, garbage collection, and were descendants of
older languages. All such languages were object-oriented.
These included Object Pascal, Visual Basic, and Java.
Java in particular received much attention. More rad-
ical and innovative than the RAD languages were the
new scripting languages. These did not directly descend
from other languages and featured new syntaxes andmore
liberal incorporation of features. Many consider these
scripting languages to be more productive than even the
RAD languages, but often because of choices that make
small programs simpler but large programs more difficult

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/System_programming
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Alain_Colmerauer
https://en.wikipedia.org/wiki/Phillipe_Roussel
https://en.wikipedia.org/wiki/Robert_Kowalski
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/Robin_Milner
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Goto
https://en.wikipedia.org/wiki/Programming_style
https://en.wikipedia.org/wiki/One-pass_compiler
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/Imperative_language
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/Fifth-generation_programming_language
https://en.wikipedia.org/wiki/Miranda_(programming_language)
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Modula
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming
https://en.wikipedia.org/wiki/Argus_(computer_system)
https://en.wikipedia.org/wiki/Emerald_(computer_system)
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Imperative_language
https://en.wikipedia.org/wiki/Functional_language
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object_Pascal
https://en.wikipedia.org/wiki/Visual_Basic
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Scripting_language

62 CHAPTER 11. HISTORY OF PROGRAMMING LANGUAGES

to write and maintain. Nevertheless, scripting languages
came to be the most prominent ones used in connection
with the Web.
Some important languages that were developed in this pe-
riod include:

11.6 Current trends

Programming language evolution continues, in both in-
dustry and research. Some of the current trends include:

• Increasing support for functional programming in
mainstream languages used commercially, including
pure functional programming for making code eas-
ier to reason about and easier to parallelise (at both
micro- and macro- levels)

• Constructs to support concurrent and distributed
programming.

• Mechanisms for adding security and reliability veri-
fication to the language: extended static checking,
dependent typing, information flow control, static
thread safety.

• Alternative mechanisms for composability and
modularity: mixins, traits, delegates, aspects.

• Component-oriented software development.

• Metaprogramming, reflection or access to the
abstract syntax tree

• Increased emphasis on distribution and mobility.

• Integration with databases, including XML and
relational databases.

• Support for Unicode so that source code (program
text) is not restricted to those characters contained in
the ASCII character set; allowing, for example, use
of non-Latin-based scripts or extended punctuation.

• XML for graphical interface (XUL, XAML).

• Open source as a developmental philosophy for lan-
guages, including the GNU compiler collection and
recent languages such as Python, Ruby, and Squeak.

• AOP or Aspect Oriented Programming allowing de-
velopers to code by places in code extended behav-
iors.

• Massively parallel languages for coding 2000 pro-
cessor GPU graphics processing units and super-
computer arrays including OpenCL

Some important languages developed during this period
include:

11.7 Prominent people

Some key people who helped develop programming lan-
guages (in alpha order):

• Joe Armstrong, creator of Erlang.

• John Backus, inventor of Fortran.

• Alan Cooper, developer of Visual Basic.

• Edsger W. Dijkstra, developed the framework for
structured programming.

• Jean-Yves Girard, co-inventor of the polymorphic
lambda calculus (System F).

• James Gosling, developer of Oak, the precursor of
Java.

• Anders Hejlsberg, developer of Turbo Pascal,
Delphi and C#.

• Rich Hickey, creator of Clojure.

• Grace Hopper, developer of Flow-Matic, influenc-
ing COBOL.

• Jean Ichbiah, chief designer of Ada, Ada 83

• Kenneth E. Iverson, developer of APL, and co-
developer of J along with Roger Hui.

• Alan Kay, pioneering work on object-oriented pro-
gramming, and originator of Smalltalk.

• Brian Kernighan, co-author of the first book on
the C programming language with Dennis Ritchie,
coauthor of the AWK andAMPL programming lan-
guages.

• Yukihiro Matsumoto, creator of Ruby.

• John McCarthy, inventor of LISP.

• Bertrand Meyer, inventor of Eiffel.

• Robin Milner, inventor of ML, and sharing credit
for Hindley–Milner polymorphic type inference.

• John von Neumann, originator of the operating sys-
tem concept.

• Martin Odersky, creator of Scala, and previously a
contributor to the design of Java.

• John C. Reynolds, co-inventor of the polymorphic
lambda calculus (System F).

• Dennis Ritchie, inventor of C. Unix Operating Sys-
tem, Plan 9 Operating System.

• Nathaniel Rochester, inventor of first assembler
(IBM 701).

• Guido van Rossum, creator of Python.

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Purely_functional
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Dependent_typing
https://en.wikipedia.org/wiki/Thread_safety
https://en.wikipedia.org/wiki/Mixin
https://en.wikipedia.org/wiki/Trait_(computer_programming)
https://en.wikipedia.org/wiki/Delegation_(programming)
https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Metaprogramming
https://en.wikipedia.org/wiki/Reflection_(computer_science)
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Latin
https://en.wikipedia.org/wiki/XUL
https://en.wikipedia.org/wiki/Extensible_Application_Markup_Language
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Squeak
https://en.wikipedia.org/wiki/Aspect_Oriented_Programming
https://en.wikipedia.org/wiki/OpenCL
https://en.wikipedia.org/wiki/Joe_Armstrong_(programming)
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/John_Backus
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Alan_Cooper
https://en.wikipedia.org/wiki/Visual_Basic
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Jean-Yves_Girard
https://en.wikipedia.org/wiki/Polymorphic_lambda_calculus
https://en.wikipedia.org/wiki/Polymorphic_lambda_calculus
https://en.wikipedia.org/wiki/James_Gosling
https://en.wikipedia.org/wiki/Oak_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Anders_Hejlsberg
https://en.wikipedia.org/wiki/Turbo_Pascal
https://en.wikipedia.org/wiki/Embarcadero_Delphi
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Rich_Hickey
https://en.wikipedia.org/wiki/Clojure
https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/Flow-Matic
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Jean_Ichbiah
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/Ada_83
https://en.wikipedia.org/wiki/Kenneth_E._Iverson
https://en.wikipedia.org/wiki/APL_(programming_language)
https://en.wikipedia.org/wiki/J_(programming_language)
https://en.wikipedia.org/wiki/Roger_Hui
https://en.wikipedia.org/wiki/Alan_Kay
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Brian_Kernighan
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/AWK
https://en.wikipedia.org/wiki/AMPL_(programming_language)
https://en.wikipedia.org/wiki/Yukihiro_Matsumoto
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Bertrand_Meyer
https://en.wikipedia.org/wiki/Eiffel_(programming_language)
https://en.wikipedia.org/wiki/Robin_Milner
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner
https://en.wikipedia.org/wiki/Parametric_polymorphism
https://en.wikipedia.org/wiki/Type_inference
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Martin_Odersky
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/John_C._Reynolds
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Nathaniel_Rochester_(computer_scientist)
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Python_(programming_language)

11.11. EXTERNAL LINKS 63

• Bjarne Stroustrup, developer of C++.
• Ken Thompson, inventor of B, Go Programming
Language, Inferno Programming Language, and
Unix Operating System co-author.

• Larry Wall, creator of the Perl programming lan-
guage (see Perl and Perl 6).

• Niklaus Wirth, inventor of Pascal, Modula and
Oberon.

• Stephen Wolfram, creator of Mathematica.

11.8 See also

11.9 References
[1] J. Fuegi and J. Francis (October–December 2003),

“Lovelace & Babbage and the creation of the 1843
'notes’", Annals of the History of Computing 25 (4): 16,
19, 25, doi:10.1109/MAHC.2003.1253887

[2] Rojas, Raúl, et al. (2000). “Plankalkül: The First High-
Level Programming Language and its Implementation”.
Institut für Informatik, Freie Universität Berlin, Technical
Report B-3/2000. (full text)

[3] Sebesta, W.S Concepts of Programming languages.
2006;M6 14:18 pp.44. ISBN 0-321-33025-0

[4] Knuth, Donald E.; Pardo, Luis Trabb. “Early development
of programming languages”. Encyclopedia of Computer
Science and Technology (Marcel Dekker) 7: 419–493.

[5] Peter J. Bentley (2012). Digitized: The Science of Com-
puters and how it Shapes Our World. Oxford University
Press. p. 87.

[6] Hopper (1978) p. 16.

[7] Sammet (1969) p. 316

[8] Sammet (1978) p. 204.

11.10 Further reading
• Rosen, Saul, (editor), Programming Systems and
Languages, McGraw-Hill, 1967

• Sammet, Jean E., Programming Languages: History
and Fundamentals, Prentice-Hall, 1969

• Sammet, Jean E. (July 1972). “Program-
ming Languages: History and Future”. Com-
munications of the ACM 15 (7): 601–610.
doi:10.1145/361454.361485.

• Richard L.Wexelblat (ed.): History of Programming
Languages, Academic Press 1981.

• Thomas J. Bergin and Richard G. Gibson (eds.):
History of Programming Languages, Addison Wes-
ley, 1996.

11.11 External links
• History and evolution of programming languages.

• Graph of programming language history

https://en.wikipedia.org/wiki/Bjarne_Stroustrup
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/B_(programming_language)
https://en.wikipedia.org/wiki/Larry_Wall
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Perl_6
https://en.wikipedia.org/wiki/Niklaus_Wirth
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/Modula
https://en.wikipedia.org/wiki/Oberon_(programming_language)
https://en.wikipedia.org/wiki/Stephen_Wolfram
https://en.wikipedia.org/wiki/Mathematica
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1109%252FMAHC.2003.1253887
https://en.wikipedia.org/wiki/Ra%C3%BAl_Rojas
ftp://ftp.mi.fu-berlin.de/pub/reports/TR-B-00-03.pdf
https://en.wikipedia.org/wiki/Special:BookSources/0321330250
http://books.google.co.uk/books?id=kpYX_lNI0VMC
http://books.google.co.uk/books?id=kpYX_lNI0VMC
https://en.wikipedia.org/wiki/Saul_Rosen
https://en.wikipedia.org/wiki/Jean_E._Sammet
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F361454.361485
https://en.wikipedia.org/wiki/Richard_L._Wexelblat
https://en.wikipedia.org/wiki/Academic_Press
https://en.wikipedia.org/wiki/Thomas_J._Bergin
https://en.wikipedia.org/wiki/Richard_G._Gibson
http://www.scriptol.com/programming/history.php
http://www.levenez.com/lang/history.html

64 CHAPTER 11. HISTORY OF PROGRAMMING LANGUAGES

11.12 Text and image sources, contributors, and licenses

11.12.1 Text
• Operating system Source: http://en.wikipedia.org/wiki/Operating%20system?oldid=650050168 Contributors: Damian Yerrick, Magnus

Manske, Brion VIBBER, Mav, Robert Merkel, The Anome, Tarquin, Stephen Gilbert, Jeronimo, Amillar, Awaterl, Andre Engels, Rmher-
men, Christian List, Fubar Obfusco, Ghakko, SolKarma, SimonP, Hannes Hirzel, Ellmist, Ark, Heron, Hirzel, Olivier, Edward, Ubiquity,
Patrick, RTC, Ghyll, D, Norm, Kku, Tannin, Wapcaplet, Ixfd64, Eurleif, Dori, Minesweeper, CesarB, Ahoerstemeier, KAMiKAZOW,
Gepotto, Kokamomi, Stevenj, Nanshu, Typhoon, Yaronf, Darkwind, Trisweb, Nikai, IMSoP, Rotem Dan, Evercat, Jordi Burguet Castell,
²¹², Mxn, GRAHAMUK, Conti, Hashar, Htaccess, Dysprosia, Tpbradbury, Maximus Rex, Furrykef, Cleduc, Bevo, Traroth, Shizhao,
Gerard Czadowski, Joy, Stormie, AnonMoos, Olathe, Lumos3, Sewing, Branddobbe, Robbot, Noldoaran, Sander123, Fredrik, RedWolf,
Moondyne, Romanm, Lowellian, Stewartadcock, Rfc1394, SchmuckyTheCat, Texture, Blainster, Caknuck, Mendalus, Kagredon, To-
bias Bergemann, McDutchie, Alexwcovington, Martinwguy, Giftlite, DavidCary, Kim Bruning, Kenny sh, Ævar Arnfjörð Bjarmason, Tom
harrison, Zigger, SheikYerBooty, Foot, No Guru, Enigmar007, CyborgTosser, Jfdwolff, Sdfisher, AlistairMcMillan, Falcon Kirtaran, Vam-
pWillow, Jaan513, Wiki Wikardo, Wmahan, K7jeb, Alexf, Bact, Kjetil r, Antandrus, Beland, Onco p53, Kusunose, Ablewisuk, Am088,
Karol Langner, 1297, Rdsmith4, APH, Bornslippy, Bbbl67, Zfr, Gschizas, Gscshoyru, Creidieki, Henriquevicente, Jh51681, Hillel, Demi-
urge, Zondor, Squash, Grunt, Canterbury Tail, Bluemask, Gazpacho, Mike Rosoft, Rolandg, D6, Ta bu shi da yu, Archer3, RossPatterson,
Discospinster, Rich Farmbrough, Lovelac7, Florian Blaschke, Wk muriithi, HeikoEvermann, Notinasnaid, SocratesJedi, Andrew Maiman,
Dyl, Rubicon, ESkog, JoeSmack, Ylee, CanisRufus, Livajo, Tyrel, MBisanz, Ben Webber, El C, Phil websurfer@yahoo.com, Mwan-
ner, RoyBoy, EurekaLott, Triona, Dudboi, Coolcaesar, Wareh, Bastique, Afed, Bobo192, Iamunknown, Viriditas, R. S. Shaw, Polluks,
Jjk, Daesotho, Syzygy, Cncxbox, Kjkolb, Nk, Trevj, Minghong, Idleguy, Nsaa, Mdd, Jumbuck, Musiphil, Alansohn, Guy Harris, Conan,
Uogl, Atlant, Jeltz, Andrewpmk, Riana, Stephen Turner, Gaurav1146, Wdfarmer, Snowolf, Wtmitchell, Ronark, Gbeeker, Wtshymanski,
Paul1337, Max Naylor, RainbowOfLight, LFaraone, Bsadowski1, Gortu, Kusma, Freyr, Djsasso, Dan100, Markaci, Rzelnik, Kenyon, Sam
Vimes, Woohookitty, Karnesky, Lost.goblin, Shreevatsa, Georgia guy, TigerShark, Prophile, Ae-a, Thorpe, MattGiuca, Robert K S, Ruud
Koot, JeremyA, Hdante, MONGO, Miss Madeline, Acerperi, Robertwharvey, Schzmo, Eyreland, Meneth, Umofomia, Waldir, Wayward,
������, Jbarta, Marudubshinki, Mandarax, Slgrandson, Graham87, Cuvtixo, MCMasterChef, Kbdank71, CarbonUnit, Jclemens, Brolin
Empey, Gorrister, Rjwilmsi, Dosman, Koavf, Attitude2000, Raffaele Megabyte, Alll, OKtosiTe, Ian Dunster, Sango123, DirkvdM, Fish
and karate, SNIyer12, Titoxd, Ian Pitchford, Mirror Vax, Pruefer, SchuminWeb, RobertG, Ground Zero, Latka, Winhunter, Crazycomput-
ers, RexNL, Gurch, Patato, Ayla, Intgr, Zotel, Ahunt, BMF81, Tarmo Tanilsoo, Qaanol, Theshibboleth, King of Hearts, Chobot, SirGrant,
Celebere, DVdm, Cactus.man, Carlosvigopaz, Roboto de Ajvol, YurikBot, Wavelength, TexasAndroid, Hawaiian717, RattusMaximus,
X42bn6, Daverocks, Logixoul, DestroyerPC, Gardar Rurak, SpuriousQ, Lar, Hansfn, Stephenb, Gaius Cornelius, Cpuwhiz11, Canageek,
Dmlandfair, Big Brother 1984, NawlinWiki, Shreshth91, Wiki alf, Astral, Grafen, Ang3lboy2001, Jaxl, SivaKumar, RazorICE, Ino5hiro,
Nick, Xdenizen, Moe Epsilon, Mikeblas, MarkSG, Tony1, Joshlk, Dasnov, DeadEyeArrow, Gogodidi, Ke5crz, Oliverdl, Elkman, Nlu,
Mike92591, Wknight94, Dsda, Daniel C, Floydoid, Phgao, TheguX, Zzuuzz, Tokai, Clindhartsen, Theda, Closedmouth, E Wing, KGasso,
Anouymous, Josh3580, Charlik, JoanneB, Alasdair, LeonardoRob0t, Fram, JLaTondre, Fsiler, Chris1219, Ilmari Karonen, Katieh5584,
Simxp, Meegs, NeilN, Delinka, Teply, Rayngwf, Tyomitch, Arcadie, Kimdino, Luk, Davidam, Sardanaphalus, SmackBot, Drummondja-
cob, MattieTK, Smadge1, Captain Goggles, Aim Here, Julepalme, KAtremer, Incnis Mrsi, Caminoix, Reedy, Ashley thomas80, Knowled-
geOfSelf, Hydrogen Iodide, Unyoyega, Lvken7, Rokfaith, Blue520, WilyD, Jfg284, KocjoBot, Chairman S., Matthuxtable, Jedikaiti, Monz,
BiT, Alsandro, Müslimix, Yamaguchi��, Macintosh User, SmackEater, Gilliam, Ohnoitsjamie, Hmains, Betacommand, Cybiko123, Enno,
ERcheck, JSpudeman, JorgePeixoto, BenAveling, Guess Who, Andyzweb, GoneAwayNowAndRetired, Bluebot, Bidgee, Unbreakable MJ,
DStoykov, Badriram, Thumperward, DJ Craig, Mnemoc, Miquonranger03, MalafayaBot, AlexDitto, Jerome Charles Potts, Lexlex, Let-
dorf, Omniplex, Vbigdeli, Baronnet, DHN-bot, Charles Nguyen, MovGP0, Philip Howard, Darth Panda, Cfallin, Verrai, FredStrauss,
Emurphy42, Schwallex, Rrelf, J00tel, Can't sleep, clown will eat me, Милан Јелисавчић, Frap, Onorem, Skidude9950, Parasti, Nixeagle,
Sommers, Snowmanradio, JonHarder, Thecomputist, Yidisheryid, Benjamin Mako Hill, DrDnar, Yoink23, Addshore, Flubbit, Kcordina,
Edivorce, Mr.Z-man, Slogan621, SundarBot, Easwarno1, Paul E T, Grover cleveland, Khoikhoi, World-os.com, Cybercobra, Jhonsrid,
Nakon, VegaDark, MisterCharlie, Tompsci, Warren, Superswade, Huszone, Tomcool, Mwtoews, Leaflord, Kidde, Sigma 7, LeoNomis,
Ck lostsword, Fyver528, Qwerty0, The undertow, SashatoBot, Lambiam, Harryboyles, Cdills, Kuru, Rodri316, Vincenzo.romano, Sir
Nicholas de Mimsy-Porpington, Linnell, Edwy, Kashmiri, Joffeloff, Goodnightmush, Antonielly, KenBest, IronGargoyle, Ben Moore,
Camilo Sanchez, Tom Hek, Chrisch, Aaronstj, Hanii Puppy, Loadmaster, JHunterJ, Ems2, Noah Salzman, Ehheh, Nayak143, Manifesta-
tion, Tdscanuck, MTSbot, Rlinfinity, Wwagner, Lucid, Rubena, Emx, Iridescent, Casull, Twas Now, Golfington, Beno1000, Jfayel, Zlem-
ming, Courcelles, Linkspamremover, Desolator12, Slobot, Tawkerbot2, Alegoo92, Gumbos, Cartread, Tgnome, EvilRobot69, Fvasconcel-
los, J Milburn, JForget, James pic, Ahy1, Unixguy, CmdrObot, Deon, Ale jrb, Raysonho, Mattbr, Flonase, Makeemlighter, Btate, Kev19,
Charles dye, RockMaster, Michael B. Trausch, NE Ent, SolarisBigot, SpooK, TempestSA, Karimarie, Mblumber, Krauss, A876, Oosoom,
Mortus Est, Michaelas10, Gogo Dodo, Travelbird, David Santos, TheWorld, Corpx, Spanglegluppet, Medovina, Odie5533, Kotiwalo, Dy-
naflow, Christian75, Chrislk02, Trevjs, Sp, After Midnight, Omicronpersei8, Jguard18, Landroo, Maziotis, Rbanzai, Nrabinowitz, Jame-
sAM, Littlegeisha, Thijs!bot, Epbr123, Kubanczyk, Jobrad, Qwyrxian, Ultimus, Anshuk, N5iln, Jdm64, Ursu17, Marek69, James086, Doy-
ley, Optimisticrizwan, TommyB7973, Ideogram, TurboForce, CharlotteWebb, CarbonX, SusanLesch, Ablonus, Sean William, TarkusAB,
Dawnseeker2000, AlefZet, Escarbot, Dzubint, KrakatoaKatie, AntiVandalBot, Mike33, Luna Santin, Widefox, Guy Macon, Seaphoto,
QuiteUnusual, ForrestVoight, Prolog, Memset, Chase@osdev.org, PhJ, Credema, Sridip, Yellowdesk, Alphachimpbot, Jstirling, MichaelR.,
Eleete, MikeLynch, Ioeth, JAnDbot, Chaitanya.lala, SuperLuigi31, Leuko, Numlockfishy, DuncanHill, NapoliRoma, Ethanhardman3,
MER-C, Arch dude, Nvt, Socalaaron, Hut 8.5, Greensburger, Knokej, Adams kevin, Bookinvestor, SteveSims, Raanoo, Bencherlite, Pierre
Monteux, RogierBrussee, Jaysweet, Bongwarrior, VoABot II, JamesBWatson, Marko75, SHCarter, Kajasudhakarababu, PeterStJohn,
Lucyin, Sedmic, Rami R, Inklein, Jatkins, Twsx, Bubba hotep, Manojbp07, Alanbrowne, Bleh999, Indon, 28421u2232nfenfcenc, Cre-
ativename, Papadopa, User A1, Bwildasi, Glen, DerHexer, Wdflake, Janitor Starr, ChaoticHeavens, Calltech, Seba5618, Oroso, Stephen-
chou0722, Adriaan, AVRS, PhantomS, MartinBot, Miaers, BetBot, Alexswilliams, Ethan.hardman, Vanessaezekowitz, Kiore, Twitty666,
Aladdin Sane, Comperr, Rettetast, Joemaza, Anaxial, Jonathan Hall, Mickyfitz13, R'n'B, CommonsDelinker, Nono64, PrestonH, Tgeairn,
Erkan Yilmaz, Manticore, J.delanoy, Pharaoh of the Wizards, Trusilver, Uncle Dick, Public Menace, Jesant13, DanDoughty, Johnnay-
lor, Jerry, Ian.thomson, Cpiral, Alexei-ALXM, Davidm617617, Dispenser, It Is Me Here, Katalaveno, Mc hammerutime, Grosscha, Silas
S. Brown, AntiSpamBot, Plasticup, Dvn805, Warut, NewEnglandYankee, Burkeaj, Matthardingu, Super Mac Gamer, Cobi, Touch Of
Light, Tatrgel, Bigdumbdinosaur, Mufka, Manassehkatz, Orrs, Tdrtdr, DigitallyBorn, Althepal, Cometstyles, Mwheatland, Simon the
Dragon, RB972, Vanished user 39948282, Treisijs, Dekard, MrPaul84, Bonadea, Useight, TheNewPhobia, CardinalDan, Idioma-bot, Joe-
coolatjunkmaildotcom, Signalhead, Vox Humana 8', S.borchers, Hammersoft, VolkovBot, Thedjatclubrock, Thomas.W, Riahc3, Murder-
bike, S10462, Rhyswynne, Jeff G., AlnoktaBOT, Brownga, Philip Trueman, Kyuuseishu, TXiKiBoT, Masonkinyon, Amphlett7, Zidonuke,

http://en.wikipedia.org/wiki/Operating%2520system?oldid=650050168

11.12. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES 65

Manmohan Brahma, Neversay.misher, Hqb, NPrice, Ngien, Naohiro19 revertvandal, Wingnutamj, Vanished user ikijeirw34iuaeolaseriffic,
Anna Lincoln, Ocolon, Lradrama, Melsaran, Mistman123, JhsBot, Sanfranman59, Jackfork, LeaveSleaves, Tpk5010, Seb az86556, Ran-
domHippopotamus, 1yesfan, Hrundi Bakshi, Kaustubh.singh, Maxim, Rjgarr, Ngch89, Milan Keršláger, Lejarrag, BigDunc, Andy Dingley,
Dirkbb, Jsysinc, Alten, Wasted Sapience, Prashanthomesh, Jpeeling, Benneman, Rainsak, WJetChao, Synthebot, Falcon8765, Enviroboy,
Duke56, RaseaC, Insanity Incarnate, Brianga, Jackmiles2006, Zx-man, AlleborgoBot, Badhaker, Jimmi Hugh, Bhu z Crecelu, Logan,
EmxBot, Deconstructhis, Kbrose, The Random Editor, SPQRobin, SieBot, Coffee, Utahraptor ostrommaysi, Rektide, YonaBot, Euryalus,
BotMultichill, EwokiWiki, Themoose8, Zephyrus67, Zemoxian, Winchelsea, Josh the Nerd, RavenXtra, Rockstone35, DBishop1984, Tri-
wbe, March23.1999, Yintan, Revent, DavidHalko, Kaypoh, GrooveDog, Jerryobject, Purbo T, Buonoj, Android Mouse, Toddst1, Oda
Mari, Aruton, Oxymoron83, Antonio Lopez, Harry, Techman224, BenoniBot, Dantheman88, P.Marlow, Pithree, Echo95, Pinkadelica,
M2Ys4U, Nergaal, Denisarona, Escape Orbit, Martarius, ClueBot, Avenged Eightfold, GorillaWarfare, PipepBot, Wikievil666, The Thing
That Should Not Be, Alksentrs, MarioRadev, Rilak, Emwave, Jan1nad, ImperfectlyInformed, Arakunem, Drmies, Cp111, Unknown-xyz,
Mild Bill Hiccup, E.mammadli, Kathleen.wright5, Polyamorph, Boing! said Zebedee, McLovin34, Jdrowlands, Mbalamuruga, Lyt701,
Danieltobey, Ramif 47, The1DB, Asiri wiki, DragonBot, Rbakels, Excirial, Socrates2008, Jusdafax, M4gnum0n, Andy pyro, Susheel
verma, Eeekster, John Nevard, Kamanleodickson, Winston365, Njuuton, Lightedbulb, Posix memalign, Garlovel, Sun Creator, Tyler,
Jotterbot, Josef.94, Tnxman307, Dekisugi, Youwillnevergetthis, Rmere, Yes-minister, Muralihbh, La Pianista, Ninuxpdb, OlurotimiO,
Thingg, Andy16666, Callmejosh, Aitias, Mdikici, Johnuniq, SF007, Kerowhack, DumZiBoT, XLinkBot, Aaron north, Spitfire, Marmot-
teNZ, Stickee, Rror, Agentlame, Rreagan007, Klungel, Skarebo, WikHead, ErkinBatu, NellieBly, Galzigler, KenshinWithNoise, Alex-
ius08, Kgoetz, Osarius, HexaChord, JimPlamondon, CalumH93, Ratnadeepm, Ghettoblaster, NNLauron, AVand, Wluka, Donhoraldo,
Love manjeet kumar singh, Melab-1, Mabdul, Ente75, Raywil, Tothwolf, Grandscribe, Elsendero, Ronhjones, CanadianLinuxUser, Scherr,
Debloper, Lindert, Ka Faraq Gatri, MrOllie, Download, Eivindbot, LaaknorBot, Chamal N, CarsracBot, EconoPhysicist, M.r santosh ku-
mar., Glane23, AnnaFrance, Favonian, Kyle1278, LinkFA-Bot, Jasper Deng, Manickam001, Tide rolls, Luckas Blade, Teles, Gail, Jarble,
Legobot, Wisconsinsurfer, Luckas-bot, Yobot, Applechair, WikiDan61, 2D, OrgasGirl, Senator Palpatine, Josepsbd, II MusLiM HyBRiD
II, PlutosGeek, 2nth0nyj, Washburnmav, Mmxx, THEN WHO WAS PHONE?, Nallimbot, Sven nestle, Golftheman, Baron1984, Timir
Saxa, Knownot, Masharabinovich, Amicon, Quarkuar, TestEditBot, South Bay, Tempodivalse, Synchronism, Jorge.guillen, AnomieBOT,
Create g77, 1exec1, Götz, Geph, Lucy-seline, Jim1138, 789455dot38, 9258fahsflkh917fas, Piano non troppo, AdjustShift, Law, Remix-
soft10, RandomAct, Flewis, Materialscientist, Mcloud91, 9marksparks9, Twistedkevin, Felyza, Rabi Javed, Johnny039, Waterjuice, GB
fan, Ashikpa, Xqbot, TheAMmollusc, Holden15, Capricorn42, CoolingGibbon, Biometricse, Nasnema, Mononomic, Jeffwang, Inferno,
Lord of Penguins, HDrake, Pmlineditor, Nayvik, RibotBOT, Kyng, Oroba, Karolinski, Cul22dude, Sophus Bie, Sidious1741, Maitchy,
N419BH, =Josh.Harris, Shadowjams, Chatul, Astatine-210, Kevin586, Endothermic, Jerrysmp, Lkatkinsmith, Captain-n00dle, Erickan-
ner, FrescoBot, OspreyPL, Ashleypurdy, Trimaine, Pepper, Mthomp1998, Fobenavi, Gauravdce07, Michael93555, Cps274203, Ishanjand,
Photonik UK, Clsin, Jjupiter100, Kwiki, Dhtwiki, WellHowdyDoo, DivineAlpha, Safinaskar, Citation bot 1, Skomes, DrilBot, Pinethicket,
I dream of horses, Abazgiri, Vicenarian, Elockid, AR bd, 10metreh, Martin smith 637, Skyerise, Ngyikp, Bfirsh, Jschnur, RedBot, Masti-
Bot, Chikoosahu, Meaghan, Ltomuta, Gtgray1948, Merlion444, White Shadows, Tim1357, Wormsgoat, TobeBot, SchreyP, Yunshui,
Zonafan39, نوری ,ئاراس Mptb3, Javierito92, Dinamik-bot, Vrenator, TBloemink, MrX, Defender of torch, Ansumang, Aoidh, Ondertitel,
DeDroa, Rro4785, WikiTome, Weedwhacker128, Lysander89, Reach Out to the Truth, Jesse V., Programming geek, DARTH SIDIOUS
2, Dexter Nextnumber, SirGre, Alextyhy, Jfmantis, Kjaleshire, Mppl3z, TjBot, Pontiacsunfire08, Stealthmartin, BjörnBergman, Sweet
blueberry pie, Sarikaanand, DiaNoCHe, Francis2795, Lordmarlineo, Slon02, Urvashi.iyogi, Deagle AP, Rollins83, N sharma000, Vin-
nyzz, EmausBot, Tasting boob, Odell421, SampigeVenkatesh, RA0808, Cookdn, Nwusr123log, Mrankur, CaptRik, NotAnonymous0,
Tommy2010, Elvenmuse, Wikipelli, Alisha.4m, Werieth, ZéroBot, John Cline, Ida Shaw, Parsonscat, MithrandirAgain, Enna59, EdECol-
bert, Bbuss, Ferrenrock, Lt monu, Vorosgy, Fred Gandt, Hazard-SJ, Bijesh nair, Can You Prove That You're Human, Demonkoryu, Util-
itytrack, Tolly4bolly, Thine Antique Pen, W163, Eab28, Icefirearceus, Arman Cagle, THeReDragOn, OllieWilliamson, L Kensington,
Bachinchi, Gsarwa, Donner60, Wikiloop, Djonesuk, Puffin, Adityachodya, ChuispastonBot, Wakebrdkid, GrayFullbuster, Sven Manguard,
DASHBotAV, Rocketrod1960, Blu Aardvark III, Jekyllhide, Cgt, Petrb, MetaEntropy, ClueBot NG, Cwmhiraeth, Nothingisoftensome-
thing, Frankdushantha, JetBlast, Matthiaspaul, NULL, Satellizer, Sparkle24, Dhardik007, Adair2324, WorldBrains, SunCountryGuy01,
Feedintm, Doh5678, Sainath468, Muon, Mesoderm, O.Koslowski, Geekman314, 149AFK, Joshua Gyamfi, CaroleHenson, Alenaross07,
Widr, WikiPuppies, Ashish Gaikwad, Sharanbngr, Friecode, Cllnk, Helpful Pixie Bot, Jijojohnpj, Mujz1, පසිඳු කාවින්ද, Ndavidow, Cal-
abe1992, Wbm1058, Karabulutis252, Sunay419, Altay437, Muehlburger, Lowercase sigmabot, Lifemaestro, BG19bot, Pcbsder, Inte-
gralexplora, Northamerica1000, Who.was.phone, Snow Rise, Abhik0904, Atomician, CimanyD, Yowanvista, Dainomite, Aranea Mortem,
Bcxfu75k, Upthegro, Lmmaaaoooo, Glacialfox, GeneralChrisV, Jkl4201, Achowat, Vikrant manore, ItsMeowAnywhere, Iswariya.r, Super-
novaExplosion, Sharkert, Pratyya Ghosh, Cyberbot II, Fronx, DreamFieldArts, Meowmeow8956, Macintosh123, MadGuy7023, JYBot,
TravellerQLD, Dexbot, Sakariyerirash, Kushalbiswas777, Ziiike, Webclient101, Mualif02, 12Danny123, Nozomimous, TwoTwoHello,
Frosty, SFK2, Hair, Openmikenite, Sowlos, Harris james, Corn cheese, Crossy1234, Epicgenius, Poydoy, Acetotyce, Carrot Lord, Pde-
calculus, Sosthenes12, ArjunML, EngGerm12, AnthonyJ Lock, Mjoshi91, Comp.arch, Melody Lavender, Fercho333, AlexanderRedd,
Dannyruthe, Bbirkinbine, Inaaaa, Monkbot, Augbog, TerryAlex, NQ, Offy284, Suspender guy, Nelsonkam, TranquilHope, Endlesss2014,
Derpmeup, Trevor35on, Mathewisgreat, Prakashmeansvictory, Harshkohli1, Kharl denis, OSMAX20 and Anonymous: 2325

• System software Source: http://en.wikipedia.org/wiki/System%20software?oldid=634807927 Contributors: Edward, Ixfd64, Ahoerste-
meier, Stan Shebs, Snoyes, Mxn, Dysprosia, Haukurth, Wernher, Noldoaran, Fredrik, Nurg, Tobias Bergemann, Kenny sh, Mboverload,
Telso, LiDaobing, OverlordQ, Karl Dickman, Brianjd, Discospinster, Rich Farmbrough, Mani1, Danakil, Mwanner, Jpgordon, Bobo192,
Mdd, Alansohn, Arthena, Conan, Bookandcoffee, RHaworth, Camw, Ilya, TheSlash, Yamamoto Ichiro, Chobot, DVdm, Gwernol, Geg,
YurikBot, Wimt, NawlinWiki, Wiki alf, Jabencarsey, Jpbowen, Dbfirs, Linkofazeroth, Closedmouth, Spawn Man, Wikinstone, Ariel-
Gold, Kungfuadam, Bill, SmackBot, Hydrogen Iodide, Blue520, Gilliam, Nzd, Tv316, Jerome Charles Potts, Octahedron80, Jahiegel,
JonHarder, Rgill, Tomcool, Hkmaly, OliverWKim, Jon186, IvanLanin, Beno1000, Porterjoh, AshLin, Tawkerbot4, Kozuch, Doug s, San-
thosh0123, Andyjsmith, DmitTrix, Dzubint, Porqin, The prophet wizard of the crayon cake, Seaphoto, Olexandr Kravchuk, Spencer, Rafax,
JAnDbot, The Transhumanist, Rami R, Mcguire, A1s, Tuxkapono, MartinBot, Anaxial, CommonsDelinker, J.delanoy, Superbighead,
Hippi ippi, Jeff G., Paxcoder, Alfa989, Vipinhari, Qxz, Seraphim, Enviroboy, Funeral, Micasantheace, Breawycker, Happysailor, Aruton,
Oxymoron83, Shooke, Jacob.jose, Mygerardromance, Martin H., Brian Geppert, Deavenger, ClueBot, Dr.EnAmi, Pointillist, Excirial,
SoxBot III, Jammmie999, XLinkBot, David Delony, Skarebo, WikHead, Addbot, Dawynn, Grandscribe, AkhtaBot, Jncraton, NjardarBot,
Favonian, Tide rolls, OlEnglish, WuBot, Jarble, Legobot, Luckas-bot, TestEditBot, Peter Flass, AnomieBOT, Hameedfs, Flewis, Materi-
alscientist, Chakakhan1, ArthurBot, Xqbot, Capricorn42, GrouchoBot, Feldhaus, Omnipaedista, Thehelpfulbot, Michael93555, Winterst,
Shanmugamp7, Davie4125, FoxBot, SchreyP, Aoidh, DARTH SIDIOUS 2, Ripchip Bot, Deagle AP, Enauspeaker, EmausBot, JMet-
zler, Akerans, Stemoc, Zap Rowsdower, Ocaasi, Jbergste, Tevion5, ClueBot NG, Jack Greenmaven, Craigbarnes85, Chillllls, S 90164,
Ajorganxhi, YborCityJohn, Ahme t 151, Aelonai, Northamerica1000, Compfreak7, Thegreatgrabber, GoShow, Webclient101, Pimgd,
Passengerpigeon, Everymorning, SandeepEricsson, Comp.arch, Hoa Thai Nguyen, My name is not dave, Dannyruthe, Kishoreklnce, 7Sidz,

http://en.wikipedia.org/wiki/System%2520software?oldid=634807927

66 CHAPTER 11. HISTORY OF PROGRAMMING LANGUAGES

Bacon1234321, TerryAlex and Anonymous: 219
• Firmware Source: http://en.wikipedia.org/wiki/Firmware?oldid=649489764 Contributors: Damian Yerrick, Zundark, The Anome, Tar-

quin, Andre Engels, Enchanter, Hannes Hirzel, Rbrwr, Nixdorf, Mac, Smack, Dysprosia, Myshkin, Furrykef, Wernher, Robbot, Zz, Tech-
tonik, Bkell, Wikibot, Engerim, Alan Liefting, David Gerard, DavidCary, Kenny sh, Antandrus, Beland, Panit, Abdull, Adashiel, Vsmith,
Jojit fb, Lysdexia, Alansohn, Guy Harris, Spangineer, Brock, Wtshymanski, TahitiB, Dzordzm, SCEhardt, Isnow, Graham87, Raffaele
Megabyte, NeonMerlin, Fred Bradstadt, Titoxd, FlaBot, SchuminWeb, Ayla, Fresheneesz, BMF81, King of Hearts, Chobot, Nastajus,
WriterHound, YurikBot, Borgx, MMuzammils, Stephenb, Manop, Sikon, Cunado19, Jabencarsey, Code65536, Bota47, Nlu, Gregzeng,
Nikkimaria, GrinBot, Perardi, NetRolller 3D, SmackBot, YellowMonkey, Redslime, F, Wlindley, Hydrogen Iodide, Gribeco, Ultramandk,
Evanreyes, Brianski, Jcarroll, Dlohcierekim’s sock, Frap, Chlewbot, Steveo1544, LouScheffer, Joema, Decltype, DylanW, NickPenguin,
Autopilot, Weatherman1126, AThing, Mr Stephen, UKER, Dicklyon, Bashari, Amitch, The7thmagus, CapitalR, Sph147, Tawkerbot2, Ryt,
Nuclearo, Sandeep pranavam, HenkeB, SolarisBigot, Phatom87, O mores, MikeLacey, Normix, Stevag, Thijs!bot, Kubanczyk, Fourchette,
Dgies, Icep, Mentifisto, Widefox, Nosbig, JAnDbot, Arch dude, Aki009, ProjectPlatinum, VoABot II, Kuyabribri, Tedickey, Some-
thingWittyHere, Alex Spade, Gwern, Majesty9012, Herbythyme, Public Menace, Thaurisil, Laurusnobilis, JensRex, LordAnubisBOT,
Cometstyles, STBotD, DorganBot, Ertyeryery, Aaronsingh, CardinalDan, Idioma-bot, Deor, Philip Trueman, Rocketmagnet, TyrantX,
WolfgangEcker, DennyColt, LeaveSleaves, Mazarin07, Softtest123, Miko3k, Alaniaris, SieBot, WereSpielChequers, Winchelsea, Stone-
jag, Steven Zhang, OKBot, Dillard421, ClueBot, Meekywiki, ChandlerMapBot, Posix memalign, SchreiberBike, Zappa711, Joel Saks,
Darkicebot, S1fw, Rror, Cmr08, Jaymacdonald, Kurniasan, Dsimic, Addbot, Grandscribe, Cptnoremac, Colcolstyles, Fluffernutter, Cst17,
Aclews56, ChenzwBot, 5 albert square, Tide rolls, Rainbow will, Another-anomaly, Crt, Luckas-bot, Yobot, Ptbotgourou, Fraggle81,
Legobot II, Crispmuncher, MrBurns, AnomieBOT, Exp HP, Rubinbot, Name5555, Gacpro, Xqbot, Rijndael, The Evil IP address, Grou-
choBot, RibotBOT, Universalss, Fobeteh, Erik9, SupportFTP, FrescoBot, Mohandesi, Winterst, SpaceFlight89, Jandalhandler, Siddharthsi-
vakumar, TobeBot, SchreyP, RjwilmsiBot, Jtsandlund, Lopifalko, WikitanvirBot, Chewbaca75, Liquidmetalrob, Doomedtx, Contribute23,
The contributor 4783, Chezi-Schlaff, MaGa, ChuispastonBot, VictorianMutant, Kenny Strawn, Rocketrod1960, ClueBot NG, Rajaram
Sarangapani, Steve dexon, Wbm1058, BG19bot, Walk&check, Arashium, Mark Arsten, Compfreak7, Rancher 42, Winston Chuen-Shih
Yang, BattyBot, Tkbx, Tagremover, Bachware, Ajv39, Marian Robinson, NoBearHere, Melonkelon, Gerardwm, Shaddycrook, Comp.arch,
Monkbot, Guglastican, Tanankmaster118, MXocrossIIB, Garfield Garfield, Ggordonbyrne and Anonymous: 314

• Computer multitasking Source: http://en.wikipedia.org/wiki/Computer%20multitasking?oldid=649350501 Contributors: Damian Yer-
rick, Bryan Derksen, The Anome, Ap, Rjstott, Dachshund, Pit, Rp, Theanthrope, Ahoerstemeier, Salsa Shark, Magnus.de, Jessel, Tp-
bradbury, Wernher, Robbot, Tobias Bergemann, Jyril, Lupin, Peruvianllama, AJim, AlistairMcMillan, Nayuki, Edcolins, Wmahan, Tip-
iac, Starblue, Stephan Leclercq, Zhuuu, Beland, QuiTeVexat, Simson, Burschik, Ulmanor, Abdull, Mormegil, CALR, Rich Farmbrough,
Florian Blaschke, Djce, Dmeranda, Bender235, Lou Crazy, CanisRufus, Drhex, Bobo192, R. S. Shaw, Csabo, Wtshymanski, H2g2bob,
Mikenolte, Nuno Tavares, Gimboid13, Palica, Pabix, Guinness2702, Bhadani, GeorgeBills, FlaBot, Chris Purcell, RexNL, YurikBot,
Wavelength, DMahalko, Piet Delport, Zimbricchio, CarlHewitt, Dianne Hackborn, Misza13, DeadEyeArrow, PS2pcGAMER, JakkoW-
esterbeke, Ketsuekigata, Drable, Thomas Blomberg, GrinBot, SmackBot, Reedy, Ixtli, Sparking Spirit, Andy M. Wang, Stevage, Nbarth,
Rrelf, Tsca.bot, AntiVan, Zvar, Jsavit, Radagast83, FormerUser1, Esb, Ozhiker, Harryboyles, BlindWanderer, Loadmaster, Dicklyon,
EdC, Peyre, Iridescent, Tawkerbot2, FatalError, Unixguy, Ale jrb, Phatom87, Xaariz, Kubanczyk, Wikid77, Marek69, AntiVandalBot,
Ad88110, Alphachimpbot, JAnDbot, MER-C, Arch dude, Magioladitis, JNW, Faizhaider, Web-Crawling Stickler, Glen, Manticore,
Maurice Carbonaro, Public Menace, Jesant13, Silas S. Brown, Cometstyles, Jcea, VolkovBot, Mazarin07, HiDrNick, Toyalla, SieBot,
RucasHost, Theaveng, Yerpo, Ixe013, Nskillen, Frappucino, Anchor Link Bot, Mhouston, ClueBot, Ndenison, M4gnum0n, PixelBot,
Estirabot, Sun Creator, Oliverbell99, Fiskegalen92, Andy16666, DumZiBoT, Joel Saks, Kwjbot, Dsimic, Arkantospurple, Deineka, Ak-
shatdabralit, Cst17, CarsracBot, Lightbot, שי ,דוד Gail, Zorrobot, John.St, Legobot, Luckas-bot, ArchonMagnus, Peter Flass, AnomieBOT,
TwistedText, Materialscientist, GB fan, Xqbot, Julle, Almabot, 399man, RibotBOT, Alan.A.Mick, Rat2, D'ohBot, Mfwitten, Atlantia,
EmausBot, WikitanvirBot, Dewritech, Tolly4bolly, L Kensington, ChuispastonBot, 28bot, ClueBot NG, Scicluna93, Toastyking, Meso-
derm, ScottSteiner, Theopolisme, Compilation finished successfully, Jimperio, GGShinobi, Venera Seyranyan, ANI MARTIROSYAN,
Shaun, BattyBot, FizzixNerd, Wrmattison, Mogism, Jamesx12345, Sriharsh1234, Vcfahrenbruck, OMPIRE, Benjamintf1, 7stone7, Ayan-
Mazumdar91 and Anonymous: 191

• Time-sharing Source: http://en.wikipedia.org/wiki/Time-sharing?oldid=647367226 Contributors: Derek Ross, Dachshund, Maury
Markowitz, Stevertigo, Michael Hardy, Geoffrey, Docu, EdH, Magnus.de, Fuzheado, Greenrd, Lfwlfw, Saltine, Shizhao, Robbot, Nick
Pisarro, Jr., Tobias Bergemann, Pretzelpaws, Macrakis, VampWillow, Andycjp, Phe, Deh, Dyl, Cedders, R. S. Shaw, Cohesion, Guy Har-
ris, Diego Moya, M7, RainbowOfLight, SteinbDJ, Roland2, Kelly Martin, DonPMitchell, Pmcjones, Graham87, FreplySpang, Predius,
WCFrancis, Toresbe, Eubot, GreyCat, Chobot, YurikBot, DMahalko, Msikma, Robertvan1, Rwwww, GrinBot, Armin76, KnightRider,
SmackBot, Skizzik, Snori, Elagatis, LaggedOnUser, Alinefr, Nbarth, Wootmaster, Zalmoxe, Lguzenda, Tlesher, IronGargoyle, 16@r,
Loadmaster, Wws, NormHardy, Quibik, Thijs!bot, Alphachimpbot, Steveprutz, SteveSims, Antipodean Contributor, GermanX, Gw-
ern, Al Kossow, Gregory haynes, Mindgames11, Trusilver, Huey45, Wa3frp, Public Menace, Dispenser, Uhai, DorganBot, VolkovBot,
Anajemstaht, TedColes, Patelski, Sources said, BloodDoll, WRK, Herbnet, Rvonder, MenoBot, Bbump, DumZiBoT, Baudway, Jabber-
woch, Ghettoblaster, MrOllie, Lightbot, Legobot, Luckas-bot, Yobot, Peter Flass, AnomieBOT, Pragmatiste, Materialscientist, XZeroBot,
Prunesqualer, FrescoBot, Cbonnert, W Nowicki, Winterst, Turtlecom, Skyerise, Mattrod666, Kmnamee, ZéroBot, Lilianag, W163, Don-
ner60, ClueBot NG, Blitzmut, Snotbot, Kangaroopower, Creichardt0130, Numbermaniac, Jamesx12345, Huihermit and Anonymous: 103

• Real-time computing Source: http://en.wikipedia.org/wiki/Real-time%20computing?oldid=645623988 Contributors: Damian Yerrick,
The Anome, WillWare, Alex, Khendon, Aldie, Stevertigo, Frecklefoot, Patrick, Mac, BigFatBuddha, Tristanb, Kaihsu, Greenrd, Fur-
rykef, Wernher, Bloodshedder, Pakaran, Wikibot, Giftlite, DavidCary, Mintleaf, BenFrantzDale, Levin, Sietse, Tweenk, Neilc, Electrawn,
Sam Hocevar, Bluefoxicy, Abdull, RevRagnarok, Ulflarsen, Fuffzsch, Discospinster, Smyth, S.K., RoyBoy, Quaternion, Krischik, Suru-
ena, P garyali, Nuno Tavares, Ruud Koot, The Nameless, Graham87, JoelG, Ronnotel, Jerickson314, Cjoev, GeorgeBills, Eubot, Arnero,
EamonnPKeane, Roboto de Ajvol, YurikBot, Borgx, Ori.livneh, Gsathish, JulesH, ScottyWZ, TERdON, 2over0, CIreland, That Guy,
From That Show!, SmackBot, Redslime, Ianb1469, Janm67, Tripledot, Frap, Cybercobra, MParaz, Jwy, MureninC, Tompsci, Fitzhugh,
Gvf, Mdsharpe, D o m e, Kvng, Lee Carre, Woodroar, Wleizero, Vocaro, FatalError, CmdrObot, Ultimus, FabgrOOv, JMatthews, Al
Lemos, WhaleyTim, Afabbro, AntiVandalBot, Cbs228, Ste4k, Lperez2029, Bongwarrior, Britton ohl, Pitagora, Gwern, Mange01, Pro-
fessorDJF, Dvanaken, Public Menace, Lonesomefighter, Treisijs, Dindon, Simonjwright, Jozue, Sibin m, Jackfork, Bearian, Softtest123,
Codeispoetry, NHSKR, ClueBot, The Thing That Should Not Be, Wolfch, Benabomb1, Niemeyerstein en, Niceguyedc, Teutonic Tamer,
Semitransgenic, XLinkBot, FellGleaming, Dekart, Dsimic, Addbot, Ghettoblaster, Mathew Rammer, GyroMagician, Graham.Fountain,
Flamminifra, Yobot, TaBOT-zerem, Peter Flass, Cosmiclazer, AnomieBOT, JJ-Stern, Groovenstein, Omnipaedista, MightyMaven, Shad-
owjams, A.amitkumar, FrescoBot, StaticVision, Phanhaitrieu, Alexeicolin, Ecoman24, RenamedUser01302013, A930913, L Kensington,
Rmashhadi, Rocketrod1960, Planetscared, ClueBot NG, Andrew McRae 78, Matthiaspaul, Massimiliano Carli, Neotheone1981, Danim,

http://en.wikipedia.org/wiki/Firmware?oldid=649489764
http://en.wikipedia.org/wiki/Computer%2520multitasking?oldid=649350501
http://en.wikipedia.org/wiki/Time-sharing?oldid=647367226
http://en.wikipedia.org/wiki/Real-time%2520computing?oldid=645623988

11.12. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES 67

Helpful Pixie Bot, BG19bot, Walk&check, Magdjtk, Mohmdbilal, Yelojakit, Anjublaxs, Kodign, Harlem Baker Hughes, Mc2labs, Ameny-
chtas and Anonymous: 194

• Fault tolerance Source: http://en.wikipedia.org/wiki/Fault%20tolerance?oldid=650112739 Contributors: DavidCary, Rchandra, Beland,
Neutrality, Conan, BMF81, StuRat, Kvng, Adrian J. Hunter, Alikaalex, SimonTrew, Pianist ru, Fraggle81, AnomieBOT, BG19bot,
MusikAnimal, Closeddoors1559, MaryEFreeman, Amenychtas, Monkbot, Andrewstone and Anonymous: 4

• Mean time between failures Source: http://en.wikipedia.org/wiki/Mean%20time%20between%20failures?oldid=637628726 Contribu-
tors: SimonP, Youandme, JohnOwens, Michael Hardy,Wapcaplet, Ixfd64, Tomi, Delirium, Ronz, Den fjättrade ankan, Nnh, Owen, Robbot,
Chealer, Panthouse, Bkell, Mat-C, Emrys2, Alanl, Beiss, Art LaPella, Causa sui, Guy Harris, Atlant, ShunterAlhena, Wyatts, Versageek,
Koavf, Apapadop, Aspro, Chobot, Fabartus, Gerben49, Kyle Barbour, Habbie, SmackBot, AnOddName, Ppntori, BrynJones216, Bluebot,
Thumperward, MalafayaBot, Nbarth, Aaron Lawrence, Arkrishna, JoeBot, CmdrObot, David Santos, Judygs, BetacommandBot, Pogogun-
ner, AntiVandalBot, Carewolf, JAnDbot, MER-C, Flippin42, Brownout, Dtroncho, Rocinante9x, R'n'B,Wiki Raja, EdBever, Bin95, Anton
Khorev, Skullers, Rubyuser, Sdsds, Melsaran, Seb az86556, Tomaxer, EgbertE, Root Beers, AlleborgoBot, Finnrind, Sunookitsune, Toma-
lak geretkal, NYCDA, Johnqtodd, Elnon, Bassplr19, PipepBot, PetterEkhem, Ashchori, Andjohn2000, Ferdna, Ppejack, Cincaipatrin,
Boulty, Scuarty, Qwfp, Maurizio.Cattaneo, Dsimic, Scasa155, Tayste, Addbot, Lookskywatcher, LatitudeBot, Lunchsure, SpBot, Ettrig,
Luckas-bot, Yobot, AnomieBOT, Piano non troppo, Materialscientist, Xqbot, RibotBOT, SassoBot, Elavierijr, Alexdfromald, Jodypro,
EmausBot, Ibbn, Telcoterry, Empty Buffer, Gapeev, ,خالقیان ClueBot NG, AeroPsico, Helpful Pixie Bot, Linear77, Weakestletter,
Honza889, Zalatos, Jpetitbon and Anonymous: 134

• Flowchart Source: http://en.wikipedia.org/wiki/Flowchart?oldid=650120814 Contributors: Damian Yerrick, Stevertigo, Michael Hardy,
Booyabazooka, Norm, Rp, Wapcaplet, GTBacchus, Haakon, Ronz, Darkwind, Poor Yorick, Frieda, Tacvek, Jm34harvey, Sbwoodside,
Bevo, Robbot, PBS, Romanm, Phatsphere, Anthony, Tobias Bergemann, Giftlite, Andromeda, Kim Bruning, Mintleaf, Tom harrison,
Bensaccount, Tusharvjoshi, Apsio, Edcolins, Geni, Antandrus, Xinit, Tels, BoP, Dcandeto, Andreas Kaufmann, Rob cowie, Mormegil,
Discospinster, Luvcraft, Pixel8, LeeHunter, ZeroOne, Nabla, Bobo192, WikiLeon, Minghong, SeanGustafson, Mdd, Patsw, Gary, Pinar,
Diego Moya, Zeborah, Mysdaao, Jost Riedel, Wtshymanski, Hawky, ScotS, Kazvorpal, Forteblast, Bobrayner, Nuno Tavares, Goodger-
ster, Trapolator, Triddle, Davidfstr, Roundand, Isnow, Mandarax, Sin-man, Knudvaneeden, Kane5187, Crazynas, Ligulem, BasBloem-
saat, The wub, Ttwaring, Jobarts, Gurch, Czar, Threner, Sstrader, Vonkje, DVdm, Gdrbot, YurikBot, Wavelength, Borgx, Jzylstra,
TriniTriggs, RussBot, Michael Slone, Bergsten, Akamad, Rsrikanth05, NawlinWiki, Welsh, Jon1012, Aaron Brenneman, Dethomas, Mj-
chonoles, RUL3R, DeadEyeArrow, Ejl, Jadster, Nacimota, Closedmouth, Nae'blis, LeonardoRob0t, Gesslein, Cmglee, AndrewWTaylor,
EJSawyer, Hpmagic, SmackBot, Haza-w, Jfgrcar, Chelmite, Alksub, Jhedemann, Frymaster, BiT, Gilliam, Toddintr, Ohnoitsjamie, Tim-
bouctou, Jjalexand, Persian Poet Gal, Lazyquasar, MK8, Emufarmers, Silly rabbit, SchfiftyThree, Metacomet, Aoreias, Octahedron80,
Kostmo, Chendy, Xchbla423, DanielJudeCook, JonHarder, Juandev, Rrburke, Seattlenow, Alx xlA, Demoeconomist, Dreadstar, Doo-
dle77, Pmarc, FelisLeo, Kukini, Rklawton, Kuru, Ckatz, Noah Salzman, Wikidrone, Yaxh, Squirepants101, Hu12, Mkoyle, Levineps,
Fireman.sparkey, Iridescent, Dreftymac, Pimlottc, Blehfu, Zfang, Tfinneid, Tawkerbot2, George100, Amniarix, GeordieMcBain, JFor-
get, DevinCook, Slazenger, Ajikoe, Gogo Dodo, Kallerdis, ThreeVryl, Csodessa, Ebyabe, Bayonetblaha, Thijs!bot, Epbr123, Daa89563,
Headbomb, Marek69, A3RO, Void Ptr, Leon7, Escarbot, Mentifisto, AntiVandalBot, Seaphoto, VectorPosse, FirefoxRocks, Isilanes, Dy-
lan Lake, SoftwareSalesRep, LéonTheCleaner, Res2216firestar, Andrzejbanas, Deadbeef, JAnDbot, Ndyguy, ThomasO1989, MER-C,
PhilKnight, Fourchannel, Aki009, Raanoo, Dixius99, VoABot II, Swpb, Skew-t, Irrelative, Indon, Abednigo, Minion o' Bill, Martynas
Patasius, DerHexer, Philg88, Hbent, Cocytus, Gwern, MartinBot, TheInfluence, JBakaka, CommonsDelinker, Steve5682, Erkan Yilmaz,
J.delanoy, Trusilver, Rgoodermote, Numbo3, Kaizer1784, Ginsengbomb, Eliz81, SCB '92, Bhanks, Iain marcuson, Schaaftin, Pmiller42au,
Dpdearing, Edrawing, Skier Dude, Davandron, SuzanneKn, NewEnglandYankee, Cometstyles, Jamesontai, Taffykins, Tbone762, Informa-
vores, Bonadea, Chsimps, Shiva.rock, SoCalSuperEagle, VolkovBot, Cassovian, Jeff G., WOSlinker, YewBowman, Zidonuke, Planetary
Chaos, Chartex, JayC, Jimrogerz, Sotruetwo, Gramware, Slash454, DaisyN, Kuppuz, UnitedStatesian, Sychen, Jamelan, Economist332,
Wortech tom, Madhero88, Zhenqinli, Priyanshu hbti, Falcon8765, Eye of slink, Insanity Incarnate, Dusti, Flyer22, Qst, Dwiakigle, Pm
master, EnOreg, Oxymoron83, Jdaloner, Hobartimus, Sunrise, Zaq 42, Mygerardromance, Haris.tv, Denisarona, Nishadha, Martarius,
ClueBot, Ohedland, Rjd0060, Jan1nad, Bjornwireen, Ancos, Lampak, Gordon Ecker, NathanWalther, SpikeToronto, Lartoven, Rhodo-
dendrites, DeltaQuad, ChrisHodgesUK, Johnuniq, SoxBot III, Bücherwürmlein, DumZiBoT, XLinkBot, Cycn, Libcub, Skarebo, Wik-
Head, NellieBly, Tcreg010, Maimai009, Addbot, ERK, Proofreader77, Kongr43gpen, MrOllie, Jimmcgovern15, Numbo3-bot, LarryJeff,
Tide rolls, Sbasan, Lightbot, Avono, JakobVoss, Juzzierules97, Luckas-bot, Yobot, Cflm001, Mauler90, GateKeeper, Agent phoenex,
AnomieBOT, Rubinbot, Jim1138, IRP, Piano non troppo, 90, AdjustShift, Materialscientist, Citation bot, ArthurBot, Ayda D, Xqbot,
Spidern, The sock that should not be, Capricorn42, 4twenty42o, Jmundo, Tomwsulcer, J04n, Stratocracy, Darrellswain, GainLine, Shad-
owjams, Davidobrisbane, FrescoBot, Canton Viaduct, Inc ru, Artem M. Pelenitsyn, Kaziali, Green Tea Writer, Techturtle, Beniganj,
Supercuban, RockfangSemi, Pinethicket, HRoestBot, Edderso, RedBot, Pweemz, SpaceFlight89, Bgpaulus, Viswanath1947, DC, Gryllida,
TobeBot, Mikhailcazi, Vrenator, Suffusion of Yellow, Tbhotch, RobertMfromLI, LoStrangolatore, Blue.eyed.girly, DASHBot, EmausBot,
Gfoley4, Sumsum2010, Georgie30.11.96, Jsvforever, Tommy2010,Wikipelli, K6ka, ZéroBot, John Cline, Iwillgoogleitforyou, ZweiOhren,
Makecat, DiamFC,OnePt618, Tolly4bolly, ThineAntique Pen, HupHollandHup, Donner60, 28bot, Cgt, ClueBot NG,Keith caly, Satellizer,
Movses-bot, RobotEducativo, Widr, Eucolopo, Shanmanatpoi, Oddbodz, Strike Eagle, DBigXray, BG19bot, Pine, Vagobot, Владимир
Паронджанов, AvocatoBot, Paoloss, Altaïr, LongLiveMusic, Jurjenz04, Klilidiplomus, Pito Pup, Mike Kue, Cimorcus, RichardMills65,
StarryGrandma, AuthorizeditorA, Electricmuffin11, EuroCarGT, JYBot, Kushalbiswas777, Cwobeel, Maryeputnam, GigaGerard, I am
One of Many, FrigidNinja, Joelee99, Konyservant, Ugog Nizdast, Ginsuloft, Monkbot, AKS.9955, IvanZhilin, U2fanboi, Theo rosicky,
Kamran.Rokni, Surell24, Miasusu and Anonymous: 686

• Programming language Source: http://en.wikipedia.org/wiki/Programming%20language?oldid=650001603 Contributors: Magnus
Manske, MatthewWoodcraft, Derek Ross, LC, Brion VIBBER, Mav, Koyaanis Qatsi, AstroNomer, Jeronimo, Ap, Malcolm Farmer, Alex,
Rjstott, Andre Engels, Fubar Obfusco, SimonP, Merphant, FvdP, Imran, Rlee0001, B4hand, Stevertigo, Hfastedge, DennisDaniels, Ed-
ward, K.lee, Michael Hardy, Tim Starling, Booyabazooka, Kwertii, Nixdorf, MartinHarper, Ixfd64, TakuyaMurata, Karingo, Minesweeper,
Ahoerstemeier, Nanshu, Angela, Kragen, Poor Yorick, Nikai, Andres, Grin, Evercat, TonyClarke, ²¹², Jonik, Mxn, Vivin, Speuler, Dave
Bell, Dcoetzee, Reddi, Ww, Mac c, Dysprosia, Jitse Niesen, Gutza, Doradus, Zoicon5, 2988, Taxman, ZeWrestler, Bevo, Jph, Jusjih,
David.Monniaux, Mrjeff, Finlay McWalter, Pumpie, AlexPlank, Robbot, Noldoaran, Murray Langton, Friedo, Fredrik, Thniels, Red-
Wolf, Altenmann, SmartBee, Romanm, Rursus, Wlievens, Hadal, Borislav, Lupo, BigSmoke, Gwicke, Tobias Bergemann, Ancheta Wis,
Gploc, Centrx, Giftlite, Thv, Dtaylor1984, Akadruid, PaulFord, Cobaltbluetony, Everyking, Esap, Wikibob, Mellum, Jorend, AJim,
Bonaovox, Behnam, Ptk, Macrakis, VampWillow, Bobblewik, Wmahan, Vadmium, Quagmire, Yath, Beland, Elembis, Jossi, Phil San-
difer, DenisMoskowitz, Marcos, RainerBlome, Addicted2Sanity, Joyous!, Positron, Quota, Teval, Zondor, Damieng, EagleOne, Gazpa-
cho, Mike Rosoft, Brianjd, SimonEast, Yana209, Noisy, Zaheen, Rich Farmbrough, Leibniz, Jpk, HeikoEvermann, Lulu of the Lotus-
Eaters, LindsayH, Michael Zimmermann, Paul August, ESkog, Kbh3rd, Ben Standeven, Danakil, CanisRufus, Hayabusa future, Shanes,

http://en.wikipedia.org/wiki/Fault%2520tolerance?oldid=650112739
http://en.wikipedia.org/wiki/Mean%2520time%2520between%2520failures?oldid=637628726
http://en.wikipedia.org/wiki/Flowchart?oldid=650120814
http://en.wikipedia.org/wiki/Programming%2520language?oldid=650001603

68 CHAPTER 11. HISTORY OF PROGRAMMING LANGUAGES

Bobo192, AmosWolfe, Mpils, L33tminion, SpeedyGonsales, Photonique, Tgr, Saccade, Kickstart70, Sam Korn, Phyzome, Simplyanil,
Alansohn, Liao, Guy Harris, Diego Moya, Jeltz, Krischik, Suruena, Omphaloscope, Zawersh, Kinema, HenryLi, KTC, Forderud, Oleg
Alexandrov, Mahanga, Revived, Infinoid, Roland2, Hoziron, Woohookitty, NewbieDoo, Nuggetboy, Ilario, Oldadamml, Nameneko, Ruud
Koot, Goodgerster, Brentdax, KymFarnik, Dolfrog, Davidfstr, Mangojuice, Toussaint, Marudubshinki, Yoric, Chun-hian, Kbdank71,
Mendaliv, Pwv1, Icey, Ketiltrout, Sjakkalle, Rjwilmsi, Tizio, Angusmclellan, Koavf, Swirsky, Wikibofh, Amire80, Quiddity, Oblivi-
ous, Ligulem, DouglasGreen, Bubba73, Reinis, GregAsche, JanSuchy, Fantom, FlaBot, Mathbot, Undeference, Nihiltres, Harmil, Vsion,
Xavier Combelle, RexNL, Ewlyahoocom, Gurch, Mpradeep, Quuxplusone, Tysto, Windharp, Chobot, Bgwhite, ColdFeet, Wavelength,
Hairy Dude, RussBot, Hyad, Robert A West, Taejo, Davidpdx, Bhny, Piet Delport, KSmrq, SpuriousQ, Edward301, Stephenb, Gaius
Cornelius, Rsrikanth05, Wimt, CarlHewitt, EngineerScotty, NawlinWiki, Wiki alf, Jaxl, Johann Wolfgang, BirgitteSB, Mccready, Bran-
don, Jpbowen, JulesH, Sekelsenmat, Nick C, Tony1, Slaad, Natkeeran, BOT-Superzerocool, DeadEyeArrow, Perry Middlemiss, Ms2ger,
Pooryorick, WAS 4.250, Novasource, Zero1328, Rushyo, Closedmouth, Jwissick, Kuciwalker, Cedar101, Peter, Donhalcon, Vahid83,
Katieh5584, Kungfuadam, TuukkaH, DVD R W, SmackBot, Tarret, KnowledgeOfSelf, Lagalag, Vald, Brick Thrower, Alksub, Monz,
ElAmericano, Xaosflux, Gilliam, Duke Ganote, Ohnoitsjamie, Bh3u4m, Bluebot, Klasbricks, LinguistAtLarge, JMSwtlk, Persian Poet
Gal, SeeAnd, MK8, Jprg1966, Thumperward, Fplay, EncMstr, Victorgrigas, RayAYang, Nbarth, Royboycrashfan, Can't sleep, clown
will eat me, Rrburke, Allan McInnes, -Barry-, Cybercobra, Nick125, MisterCharlie, HarisM, Hammer1980, DMacks, MegaHasher, Vri-
ullop, Derek farn, Waterfles, Zarniwoot, Antonielly, JohnWittle, Ckatz, 16@r, A. Parrot, Eivind F Øyangen, Dan128, Slakr, Alhoori,
Pieguy48, Xionbox, Dl2000, SubSeven, Hu12, Stephen B Streater, Iridescent, Dreftymac, DavidHOzAu, Tawkerbot2, Vkhaitan, Switcher-
cat, INkubusse, Acacix, Ahy1, Georg Peter, Kris Schnee, Green caterpillar, Burkedavis, Jaxad0127, ShelfSkewed, MarsRover, Napi, Ezrak-
ilty, Charlie Huggard, Ubiq, Krauss, RenamedUser2, Fl, Peterdjones, Jason5ayers, Blaisorblade, Torc2, NotQuiteEXPComplete, Mattisse,
Malleus Fatuorum, Epbr123, Qwyrxian, N5iln, Headbomb, John254, Merbabu, Ideogram, AccurateOne, Natalie Erin, Escarbot, Acaciz,
AntiVandalBot, Tewy, Gioto, Luna Santin, Seaphoto, Wildboy211, Prolog, Jj137, Science History, VictorAnyakin, KHaskell, JAnDbot,
JaK81600, MER-C, IanOsgood, Andonic, Hut 8.5, PhilKnight, Four Dog Night, VoABot II, Necklace, Foobah, Tedickey, Catgut, Indon,
JohnLai, Abednigo, Mkdw, ArmadilloFromHell, DerHexer, Philg88, Khalid Mahmood, Calltech, Gwern, Kiminatheguardian, MartinBot,
Benjaminct, Mschel, Autocratique, Tgeairn, J.delanoy, Pharaoh of the Wizards, Kimse, Trusilver, Giorgios (usurped), Ntalamai, Abeli-
avsky, Macaldo, Jesant13, It Is Me Here, LordAnubisBOT, McSly, Dominator09, SparsityProblem, Raise exception, NewEnglandYankee,
Ohms law, Cmichael, Ultra two, Juliancolton, LordCo Centre, Don't Copy That Floppy, Useight, Steel1943, Idioma-bot, Funandtrvl, Reelrt,
Ottershrew, Red Thrush’s Bot, VolkovBot, Cireshoe, Philip Trueman, Muro de Aguas, Charlesriver, Tomatensaft, Lradrama, K12308025,
DragonLord, Sgbirch, Noformation, MearsMan, PlayStation 69, Yk Yk Yk, Cnilep, AlleborgoBot, Knyf, S.Örvarr.S, EJF, SieBot, Soni-
cology, Tiddly Tom, Speed Air Man, Bill122, Krawi, Timhowardriley, Logarkh, Jerryobject, Mwaisberg, Happysailor, Flyer22, Ranafon,
Faradayplank, Lightmouse, Techman224, BenoniBot, Shane A. Bender, Chillum, ClueBot, CSProfBill, The Thing That Should Not Be, Vs-
Bot, Alliswellthen, Kedearian, Mild Bill Hiccup, Blanchardb, Robert Skyhawk, Iwantitalllllllll, Skytreader, Jotterbot, Hans Adler, Noosen-
taal, MelonBot, Chinabuffalo, SoxBot III, HopeChrist, Darkicebot, Naderi 8189, Cp15, Slashem, Noctibus, MystBot, Dsimic, Addbot,
JPINFV, L Gottschalk, DOI bot, Ronhjones, Fieldday-sunday, Mentisock, Roux, LinkFA-Bot, Systemetsys, Wikisedia, Tide rolls, Avono,
Gail, Jarble, Andylmurphy, Ben Ben, Legobot, Luckas-bot, Yobot, Midinastasurazz, OrgasGirl, Fraggle81, TaBOT-zerem, Abram.carolan,
Pcap, Ningauble, Peter Flass, Conor123777, AnomieBOT, Nottsadol, 1exec1, Jim1138, Galoubet, Ulric1313, Lucian1900, Materialsci-
entist, Citation bot, Maxis ftw, Fayt82, MauritsBot, Xqbot, Capricorn42, Jeffrey Mall, XZeroBot, Miym, GrouchoBot, Papercutbiology,
RibotBOT, Gbruin, Russell Joseph McCann, Shadowjams, A.amitkumar, Apwestern, Captain-n00dle, Manpreett, Edgars2007, FrescoBot,
Mark Renier, Mìthrandir, DivineAlpha, Citation bot 1, I dream of horses, Elockid, HRoestBot, 10metreh, Jonesey95, Jschnur, Σ, Robo Cop,
Txt.file, Cmdodanli, نوری ,ئاراس TheTechFan, Specs112, Diannaa, WikiTome, Suffusion of Yellow, Stroppolo, Vaibhavkanwal, DARTH
SIDIOUS 2, Mean as custard, TomT0m, John lindgren, EmausBot, Orphan Wiki, Nima1024, Nutsnbolts222, Cogiati, Iuliatoyo, H3llBot,
Karthikndr, Swatiri, Jguy, Noodleki, Carmichael, BioPupil, DASHBotAV, ClueBot NG, A520, Mesoderm, Asukite, Snickel11, Danim,
Helpful Pixie Bot, DBigXray, Krenair, Kangaroopower, Wiki13, MusikAnimal, J991, Compfreak7, Loriendrew, Nbrothers, Thoma-
suniko, Usman&muzammal, Teammm, Bobbygammill, Amitkumargarg88, Dexbot, Rezonansowy, Majilis, Damian.rouson, Steamerandy,
Kooginup, Seanhalle, Vanamonde93, Thetimperson, Grouphardev, Carrot Lord, François Robere, Wiki4Blog, Olmerta, Tentinator, Captain
Conundrum, Komarov om, Alhade, Ginsuloft, Inaaaa, Danielmask, Lucky7-phool, Fastdrummer, Monkbot, Theanimalover, Abdallasyam,
Wildkrat52, Whikie, Malistomailie, TheMacroChip, Papapasan, Bridgetlane, Lee Ann Dickerson and Anonymous: 727

• History of programming languages Source: http://en.wikipedia.org/wiki/History%20of%20programming%20languages?oldid=
650213951 Contributors: Sabre23t, Rp, Fuzheado, Greenrd, Zoicon5, Phoebe, RedWolf, Altenmann, Rursus, Ancheta Wis, Pgan002,
Duncandewar, Beland, Marc Mongenet, Ukexpat, Yuriz, Discospinster, Huffers, Lulu of the Lotus-Eaters, Ben Standeven, Danakil, Reeve,
Szyslak, Sietse Snel, Smalljim, John Vandenberg, R. S. Shaw, Mdd, Jumbuck, Tablizer, Gerweck, Diego Moya, Sligocki, Mr700, Jost
Riedel, Tony Sidaway, Zawersh, Djsasso, Mahanga, Firsfron, Ruud Koot, Wikiklrsc, Marudubshinki, Icey, Schmettow, Cassowary, Scep-
tre, Hairy Dude, Piet Delport, Rsrikanth05, Jpbowen, Moe Epsilon, GraemeL, JLaTondre, Banus, Rwwww, SmackBot, Skizzik, Chris
the speller, Bluebot, UdayanBanerjee, Rheostatik, Ashawley, KevM, Pwjb, Lambiam, Lakinekaki, DiarmuidPigott, Aljullu, Kpengboy,
JMK, DEddy, Pi, Pgr94, Cydebot, Valodzka, Indeterminate, Torc2, Juhovuori, Michael Fourman, Thijs!bot, Wikid77, Mojo Hand, Aca-
ciz, Dylan Lake, Arch dude, IanOsgood, Antic-Hay, PhilKnight, Abcarter, VoABot II, B3tamike, Sammi84, Gwern, STBot, Macaldo,
Entropy, Funandtrvl, VolkovBot, TXiKiBoT, T-bonham, Clarince63, Arohanui, Cnilep, Nibios, Monty845, Logan, SieBot, Malcolmxl5,
Jrm2007, Happysailor, Oxymoron83, KoshVorlon, CharlesGillingham, The Thing That Should Not Be, Skäpperöd, DragonBot, Excirial,
Hotcrocodile, MystBot, Totlmstr, Id1337x, Quinntaylor, Addbot, Mortense, Ghettoblaster, Chamal N, Griffin700, AnomieBOT, 1exec1,
Jim1138, Materialscientist, Citation bot, Capricorn42, DSisyphBot, GrouchoBot, RibotBOT, FrescoBot, Alexanderaltman, Soxey6, Num-
berByColors, December21st2012Freak, Andrzejsliwa, Sinbadbuddha, Raees Iqbal, Gf uip, EmausBot, Bgeron, Tommy2010, Wikipelli,
Cleme263, Vb4ever, ZéroBot, Tolly4bolly, Noodleki, Donner60, Denbosch, ClueBot NG, Jack Greenmaven, Hossein bardareh, Skolastika,
ISTB351, PhnomPencil, Pankaj.nith, Kooku10, ChrisGualtieri, Christophe.billiottet, Khazar2, RaLusch, Jasssonpet, Nvourvachis, Epic-
genius, I am One of Many, Jrgdelrisco, Tentinator, Paulo torrens, Babitaarora, Ugog Nizdast, Simmonsandrew75, Monkbot, Axiarchist,
Anonymouscherrycake and Anonymous: 191

11.12.2 Images
• File:8bit-dynamiclist.gif Source: http://upload.wikimedia.org/wikipedia/commons/1/1d/8bit-dynamiclist.gif License: CC-BY-SA-3.0
Contributors: Own work Original artist: Seahen

• File:Ambox_important.svg Source: http://upload.wikimedia.org/wikipedia/commons/b/b4/Ambox_important.svg License: Public do-
main Contributors: Own work, based off of Image:Ambox scales.svg Original artist: Dsmurat (talk · contribs)

http://en.wikipedia.org/wiki/History%2520of%2520programming%2520languages?oldid=650213951
http://en.wikipedia.org/wiki/History%2520of%2520programming%2520languages?oldid=650213951
http://upload.wikimedia.org/wikipedia/commons/1/1d/8bit-dynamiclist.gif
//commons.wikimedia.org/wiki/User:Seahen
http://upload.wikimedia.org/wikipedia/commons/b/b4/Ambox_important.svg
//commons.wikimedia.org/wiki/File:Ambox_scales.svg
//commons.wikimedia.org/wiki/User:Dsmurat
//commons.wikimedia.org/wiki/User_talk:Dsmurat
//commons.wikimedia.org/wiki/Special:Contributions/Dsmurat

11.12. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES 69

• File:Android_4.2_on_the_Nexus_4.png Source: http://upload.wikimedia.org/wikipedia/en/a/af/Android_4.2_on_the_Nexus_4.png Li-
cense: ? Contributors:
http://images.derstandard.at/2012/11/29/1353250019206.png Original artist:
Google

• File:Apple_Macintosh_Desktop.png Source: http://upload.wikimedia.org/wikipedia/en/5/50/Apple_Macintosh_Desktop.png License:
? Contributors:
unknown
Original artist: ?

• File:Bangalore_India_Tech_books_for_sale_IMG_5261.jpg Source: http://upload.wikimedia.org/wikipedia/commons/1/19/
Bangalore_India_Tech_books_for_sale_IMG_5261.jpg License: CC BY-SA 3.0 Contributors: Own work Original artist: Victorgrigas

• File:Bus_icon.svg Source: http://upload.wikimedia.org/wikipedia/commons/c/ca/Bus_icon.svg License: Public domain Contributors: ?
Original artist: ?

• File:Classes_and_Methods.png Source: http://upload.wikimedia.org/wikipedia/commons/d/d0/Classes_and_Methods.png License: CC
BY-SA 3.0 Contributors: Using SublimeText Original artist: Bobbygammill

• File:Command_line.png Source: http://upload.wikimedia.org/wikipedia/commons/a/aa/Command_line.png License: GPL Contributors:
Own work Original artist: The GNU Dev team, and the Arch Linux Dev team (for the Pacman command in the example)

• File:Commons-logo.svg Source: http://upload.wikimedia.org/wikipedia/en/4/4a/Commons-logo.svg License: ? Contributors: ? Original
artist: ?

• File:Complex-adaptive-system.jpg Source: http://upload.wikimedia.org/wikipedia/commons/0/00/Complex-adaptive-system.jpg Li-
cense: Public domain Contributors: Own work by Acadac : Taken from en.wikipedia.org, where Acadac was inspired to create this graphic
after reading: Original artist: Acadac

• File:Computer-aj_aj_ashton_01.svg Source: http://upload.wikimedia.org/wikipedia/commons/c/c1/Computer-aj_aj_ashton_01.svg
License: CC0 Contributors: ? Original artist: ?

• File:Crystal_kpackage.png Source: http://upload.wikimedia.org/wikipedia/commons/4/40/Crystal_kpackage.png License: LGPL Con-
tributors: All Crystal icons were posted by the author as LGPL on kde-look Original artist: Everaldo Coelho (YellowIcon)

• File:Desktop-Linux-Mint.png Source: http://upload.wikimedia.org/wikipedia/commons/4/41/Desktop-Linux-Mint.png License: CC
BY-SA 4.0 Contributors: Own work Original artist: Benjamintf1

• File:Dolphin_FileManager.png Source: http://upload.wikimedia.org/wikipedia/commons/5/51/Dolphin_FileManager.png License:
GPL Contributors: http://www.kde.org/applications/system/dolphin/ Original artist: KDE

• File:Edit-clear.svg Source: http://upload.wikimedia.org/wikipedia/en/f/f2/Edit-clear.svg License: Public domain Contributors: The
Tango! Desktop Project. Original artist:
The people from the Tango! project. And according to the meta-data in the file, specifically: “Andreas Nilsson, and Jakub Steiner (although
minimally).”

• File:First_Web_Server.jpg Source: http://upload.wikimedia.org/wikipedia/commons/d/d1/First_Web_Server.jpg License: CC-BY-SA-
3.0 Contributors: Own work Original artist: User:Coolcaesar at en.wikipedia

• File:Flowchart-template.jpg Source: http://upload.wikimedia.org/wikipedia/en/4/4d/Flowchart-template.jpg License: PD Contributors:
I (Wtshymanski (talk)) created this work entirely by myself. Original artist:
Wtshymanski (talk)

• File:Flowgorithm_Editor.png Source: http://upload.wikimedia.org/wikipedia/commons/1/10/Flowgorithm_Editor.png License: CC
BY-SA 4.0 Contributors: Own work Original artist: DevinCook

• File:Folder_Hexagonal_Icon.svg Source: http://upload.wikimedia.org/wikipedia/en/4/48/Folder_Hexagonal_Icon.svg License: Cc-by-
sa-3.0 Contributors: ? Original artist: ?

• File:Graceful_Degradation_of_Transparency.png Source: http://upload.wikimedia.org/wikipedia/commons/d/da/Graceful_
Degradation_of_Transparency.png License: CC BY-SA 3.0 Contributors: Own work Original artist: Shlomi Tal

• File:IBM360-65-1.corestore.jpg Source: http://upload.wikimedia.org/wikipedia/commons/6/6a/IBM360-65-1.corestore.jpg License:
CC-BY-SA-3.0 Contributors: Originally from en.wikipedia; description page is/was here. Original artist: Original uploader was
ArnoldReinhold at en.wikipedia

• File:Internet_map_1024.jpg Source: http://upload.wikimedia.org/wikipedia/commons/d/d2/Internet_map_1024.jpg License: CC BY
2.5 Contributors: Originally from the English Wikipedia; description page is/was here. Original artist: The Opte Project

• File:KDE_4.png Source: http://upload.wikimedia.org/wikipedia/commons/5/54/KDE_4.png License: GPL Contributors: Self-made
screenshot Original artist: KDE

• File:Kernel_Layout.svg Source: http://upload.wikimedia.org/wikipedia/commons/8/8f/Kernel_Layout.svg License: CCBY-SA 3.0Con-
tributors: Own work Original artist: Bobbo

• File:LampFlowchart.svg Source: http://upload.wikimedia.org/wikipedia/commons/9/91/LampFlowchart.svg License: CC-BY-SA-3.0
Contributors: vector version of Image:LampFlowchart.png Original artist: svg by Booyabazooka

• File:Mac_OSX_Lion_screen.png Source: http://upload.wikimedia.org/wikipedia/en/8/80/Mac_OSX_Lion_screen.png License: Fair
use Contributors:
Screenshot
Original artist: ?

• File:Manchester_Mark2.jpg Source: http://upload.wikimedia.org/wikipedia/en/d/d8/Manchester_Mark2.jpg License: Fair use Contrib-
utors:
http://www.computer50.org/mark1/ip-mm1.mark1.html Original artist: ?

http://upload.wikimedia.org/wikipedia/en/a/af/Android_4.2_on_the_Nexus_4.png
http://images.derstandard.at/2012/11/29/1353250019206.png
http://upload.wikimedia.org/wikipedia/en/5/50/Apple_Macintosh_Desktop.png
http://upload.wikimedia.org/wikipedia/commons/1/19/Bangalore_India_Tech_books_for_sale_IMG_5261.jpg
http://upload.wikimedia.org/wikipedia/commons/1/19/Bangalore_India_Tech_books_for_sale_IMG_5261.jpg
//commons.wikimedia.org/wiki/User:Victorgrigas
http://upload.wikimedia.org/wikipedia/commons/c/ca/Bus_icon.svg
http://upload.wikimedia.org/wikipedia/commons/d/d0/Classes_and_Methods.png
//commons.wikimedia.org/w/index.php?title=User:Bobbygammill&action=edit&redlink=1
http://upload.wikimedia.org/wikipedia/commons/a/aa/Command_line.png
http://upload.wikimedia.org/wikipedia/en/4/4a/Commons-logo.svg
http://upload.wikimedia.org/wikipedia/commons/0/00/Complex-adaptive-system.jpg
//commons.wikimedia.org/wiki/User:Acadac
//commons.wikimedia.org/wiki/User:Acadac
//commons.wikimedia.org/wiki/User:Acadac
http://upload.wikimedia.org/wikipedia/commons/c/c1/Computer-aj_aj_ashton_01.svg
http://upload.wikimedia.org/wikipedia/commons/4/40/Crystal_kpackage.png
http://www.kde-look.org/usermanager/search.php?username=everaldo&action=contents
http://www.yellowicon.com/
http://upload.wikimedia.org/wikipedia/commons/4/41/Desktop-Linux-Mint.png
//commons.wikimedia.org/w/index.php?title=User:Benjamintf1&action=edit&redlink=1
http://upload.wikimedia.org/wikipedia/commons/5/51/Dolphin_FileManager.png
http://www.kde.org/applications/system/dolphin/
http://upload.wikimedia.org/wikipedia/en/f/f2/Edit-clear.svg
http://tango.freedesktop.org/Tango_Desktop_Project
http://tango.freedesktop.org/The_People
http://upload.wikimedia.org/wikipedia/commons/d/d1/First_Web_Server.jpg
//en.wikipedia.org/wiki/User:Coolcaesar
http://upload.wikimedia.org/wikipedia/en/4/4d/Flowchart-template.jpg
//en.wikipedia.org/wiki/User:Wtshymanski
//en.wikipedia.org/wiki/User_talk:Wtshymanski
//en.wikipedia.org/wiki/User:Wtshymanski
//en.wikipedia.org/wiki/User_talk:Wtshymanski
http://upload.wikimedia.org/wikipedia/commons/1/10/Flowgorithm_Editor.png
//commons.wikimedia.org/wiki/User:DevinCook
http://upload.wikimedia.org/wikipedia/en/4/48/Folder_Hexagonal_Icon.svg
http://upload.wikimedia.org/wikipedia/commons/d/da/Graceful_Degradation_of_Transparency.png
http://upload.wikimedia.org/wikipedia/commons/d/da/Graceful_Degradation_of_Transparency.png
http://upload.wikimedia.org/wikipedia/commons/6/6a/IBM360-65-1.corestore.jpg
http://en.wikipedia.org/
http://en.wikipedia.org/w/index.php?title=Image%253AIBM360-65-1.corestore.jpg
//en.wikipedia.org/wiki/User:ArnoldReinhold
http://en.wikipedia.org/
http://upload.wikimedia.org/wikipedia/commons/d/d2/Internet_map_1024.jpg
//en.wikipedia.org/wiki/en:Image:Internet_map_1024.jpg
//commons.wikimedia.org/w/index.php?title=Barrett_Lyon&action=edit&redlink=1
http://upload.wikimedia.org/wikipedia/commons/5/54/KDE_4.png
http://upload.wikimedia.org/wikipedia/commons/8/8f/Kernel_Layout.svg
//commons.wikimedia.org/w/index.php?title=User:Bobbo&action=edit&redlink=1
http://upload.wikimedia.org/wikipedia/commons/9/91/LampFlowchart.svg
//commons.wikimedia.org/wiki/File:LampFlowchart.png
//commons.wikimedia.org/wiki/User:Booyabazooka
http://upload.wikimedia.org/wikipedia/en/8/80/Mac_OSX_Lion_screen.png
http://upload.wikimedia.org/wikipedia/en/d/d8/Manchester_Mark2.jpg
http://www.computer50.org/mark1/ip-mm1.mark1.html

70 CHAPTER 11. HISTORY OF PROGRAMMING LANGUAGES

• File:Mergefrom.svg Source: http://upload.wikimedia.org/wikipedia/commons/0/0f/Mergefrom.svg License: Public domain Contributors:
? Original artist: ?

• File:Nuvola_apps_ksim.png Source: http://upload.wikimedia.org/wikipedia/commons/8/8d/Nuvola_apps_ksim.png License: LGPL
Contributors: http://icon-king.com Original artist: David Vignoni / ICON KING

• File:PC_DOS_1.10_screenshot.png Source: http://upload.wikimedia.org/wikipedia/commons/f/f9/PC_DOS_1.10_screenshot.png Li-
cense: Public domain Contributors: Originally uploaded as “PC DOS Command Window.gif” on 21 May 2006 by Alexzero77. This new
version is in the PNG format and is exactly the same quality as the original but with a smaller file size. Transferred from en.wikipedia to
Commons by User:Leyo using CommonsHelper. Original artist: Remember the dot at en.wikipedia (PNG)

• File:Priv_rings.svg Source: http://upload.wikimedia.org/wikipedia/commons/2/2f/Priv_rings.svg License: CC-BY-SA-3.0 Contributors:
Transferred from en.wikipedia to Commons. Original artist: Hertzsprung at English Wikipedia

• File:Python_add5_parse.png Source: http://upload.wikimedia.org/wikipedia/en/a/ac/Python_add5_parse.png License: PD Contributors:
? Original artist: ?

• File:Python_add5_syntax.svg Source: http://upload.wikimedia.org/wikipedia/commons/e/e1/Python_add5_syntax.svg License: Copy-
righted free use Contributors: http://en.wikipedia.org/wiki/Image:Python_add5_syntax.png Original artist: Xander89

• File:Question_book-new.svg Source: http://upload.wikimedia.org/wikipedia/en/9/99/Question_book-new.svg License: Cc-by-sa-3.0
Contributors:
Created from scratch in Adobe Illustrator. Based on Image:Question book.png created by User:Equazcion Original artist:
Tkgd2007

• File:ROM_BIOS.jpg Source: http://upload.wikimedia.org/wikipedia/commons/3/3d/ROM_BIOS.jpg License: Public domain Contribu-
tors: ? Original artist: ?

• File:Symbol_list_class.svg Source: http://upload.wikimedia.org/wikipedia/en/d/db/Symbol_list_class.svg License: Public domain Con-
tributors: ? Original artist: ?

• File:Symbol_neutral_vote.svg Source: http://upload.wikimedia.org/wikipedia/en/8/89/Symbol_neutral_vote.svg License: Public domain
Contributors: ? Original artist: ?

• File:Television_remote_control.jpg Source: http://upload.wikimedia.org/wikipedia/commons/7/7f/Television_remote_control.jpg Li-
cense: Public domain Contributors: ? Original artist: ?

• File:Text_document_with_red_question_mark.svg Source: http://upload.wikimedia.org/wikipedia/commons/a/a4/Text_document_
with_red_question_mark.svg License: Public domain Contributors: Created by bdesham with Inkscape; based upon Text-x-generic.svg
from the Tango project. Original artist: Benjamin D. Esham (bdesham)

• File:Time_between_failures.svg Source: http://upload.wikimedia.org/wikipedia/commons/9/92/Time_between_failures.svg License:
Public domain Contributors: Own work by uploader, based on Andjohn2000, Time_between_failures.jpg Original artist: Ferdna And-
john2000

• File:Ubuntu_12.04_Final_Live_CD_Screenshot.png Source: http://upload.wikimedia.org/wikipedia/commons/b/b9/Ubuntu_12.04_
Final_Live_CD_Screenshot.png License: GPL Contributors: Live CD screenshot Original artist: Canonical Ltd

• File:Unix_Timesharing_UW-Madison_1978.jpeg Source: http://upload.wikimedia.org/wikipedia/commons/3/34/Unix_Timesharing_
UW-Madison_1978.jpeg License: CC BY-SA 2.0 Contributors: https://www.flickr.com/photos/scriptingnews/4013029780 Original artist:
Dave Winer

• File:Virtual_memory.svg Source: http://upload.wikimedia.org/wikipedia/commons/6/6e/Virtual_memory.svg License: CC BY-SA 3.0
Contributors: Own work Original artist: Ehamberg

• File:Wikibooks-logo.svg Source: http://upload.wikimedia.org/wikipedia/commons/f/fa/Wikibooks-logo.svg License: CC BY-SA 3.0
Contributors: Own work Original artist: User:Bastique, User:Ramac et al.

• File:Wikidata-logo.svg Source: http://upload.wikimedia.org/wikipedia/commons/f/ff/Wikidata-logo.svg License: Public domain Con-
tributors: Own work Original artist: User:Planemad

• File:Wikinews-logo.svg Source: http://upload.wikimedia.org/wikipedia/commons/2/24/Wikinews-logo.svg License: CC BY-SA 3.0
Contributors: This is a cropped version of Image:Wikinews-logo-en.png. Original artist: Vectorized by Simon 01:05, 2 August 2006 (UTC)
Updated by Time3000 17 April 2007 to use official Wikinews colours and appear correctly on dark backgrounds. Originally uploaded by
Simon.

• File:Wikiquote-logo.svg Source: http://upload.wikimedia.org/wikipedia/commons/f/fa/Wikiquote-logo.svg License: Public domain
Contributors: ? Original artist: ?

• File:Wikiversity-logo-Snorky.svg Source: http://upload.wikimedia.org/wikipedia/commons/1/1b/Wikiversity-logo-en.svg License: CC
BY-SA 3.0 Contributors: Own work Original artist: Snorky

• File:Wikiversity-logo.svg Source: http://upload.wikimedia.org/wikipedia/commons/9/91/Wikiversity-logo.svg License: CC BY-SA 3.0
Contributors: Snorky (optimized and cleaned up by verdy_p) Original artist: Snorky (optimized and cleaned up by verdy_p)

• File:Wiktionary-logo-en.svg Source: http://upload.wikimedia.org/wikipedia/commons/f/f8/Wiktionary-logo-en.svg License: Public do-
main Contributors: Vector version of Image:Wiktionary-logo-en.png. Original artist: Vectorized by Fvasconcellos (talk · contribs), based
on original logo tossed together by Brion Vibber

11.12.3 Content license
• Creative Commons Attribution-Share Alike 3.0

http://upload.wikimedia.org/wikipedia/commons/0/0f/Mergefrom.svg
http://upload.wikimedia.org/wikipedia/commons/8/8d/Nuvola_apps_ksim.png
http://icon-king.com/
http://upload.wikimedia.org/wikipedia/commons/f/f9/PC_DOS_1.10_screenshot.png
//en.wikipedia.org/wiki/User:Alexzero77
http://en.wikipedia.org/
//commons.wikimedia.org/wiki/User:Leyo
http://tools.wikimedia.de/~magnus/commonshelper.php
//en.wikipedia.org/wiki/User:Remember_the_dot
http://en.wikipedia.org/
http://upload.wikimedia.org/wikipedia/commons/2/2f/Priv_rings.svg
http://en.wikipedia.org/
//en.wikipedia.org/wiki/User:Hertzsprung
http://upload.wikimedia.org/wikipedia/en/a/ac/Python_add5_parse.png
http://upload.wikimedia.org/wikipedia/commons/e/e1/Python_add5_syntax.svg
http://en.wikipedia.org/wiki/Image:Python_add5_syntax.png
//commons.wikimedia.org/wiki/User:Xander89
http://upload.wikimedia.org/wikipedia/en/9/99/Question_book-new.svg
//en.wikipedia.org/wiki/File:Question_book.png
//en.wikipedia.org/wiki/User:Equazcion
//en.wikipedia.org/wiki/User:Tkgd2007
http://upload.wikimedia.org/wikipedia/commons/3/3d/ROM_BIOS.jpg
http://upload.wikimedia.org/wikipedia/en/d/db/Symbol_list_class.svg
http://upload.wikimedia.org/wikipedia/en/8/89/Symbol_neutral_vote.svg
http://upload.wikimedia.org/wikipedia/commons/7/7f/Television_remote_control.jpg
http://upload.wikimedia.org/wikipedia/commons/a/a4/Text_document_with_red_question_mark.svg
http://upload.wikimedia.org/wikipedia/commons/a/a4/Text_document_with_red_question_mark.svg
//commons.wikimedia.org/wiki/User:Bdesham
//commons.wikimedia.org/wiki/File:Text-x-generic.svg
//commons.wikimedia.org/wiki/User:Bdesham
http://upload.wikimedia.org/wikipedia/commons/9/92/Time_between_failures.svg
//commons.wikimedia.org/w/index.php?title=User:Ferdna&action=edit&redlink=1
http://upload.wikimedia.org/wikipedia/commons/b/b9/Ubuntu_12.04_Final_Live_CD_Screenshot.png
http://upload.wikimedia.org/wikipedia/commons/b/b9/Ubuntu_12.04_Final_Live_CD_Screenshot.png
http://upload.wikimedia.org/wikipedia/commons/3/34/Unix_Timesharing_UW-Madison_1978.jpeg
http://upload.wikimedia.org/wikipedia/commons/3/34/Unix_Timesharing_UW-Madison_1978.jpeg
https://www.flickr.com/photos/scriptingnews/4013029780
http://upload.wikimedia.org/wikipedia/commons/6/6e/Virtual_memory.svg
//commons.wikimedia.org/w/index.php?title=User:Ehamberg&action=edit&redlink=1
http://upload.wikimedia.org/wikipedia/commons/f/fa/Wikibooks-logo.svg
//commons.wikimedia.org/wiki/User:Bastique
//commons.wikimedia.org/wiki/User:Ramac
http://upload.wikimedia.org/wikipedia/commons/f/ff/Wikidata-logo.svg
http://upload.wikimedia.org/wikipedia/commons/2/24/Wikinews-logo.svg
//commons.wikimedia.org/wiki/File:Wikinews-logo-en.png
//commons.wikimedia.org/wiki/User:Simon
//commons.wikimedia.org/wiki/User:Time3000
//commons.wikimedia.org/wiki/User:Simon
http://upload.wikimedia.org/wikipedia/commons/f/fa/Wikiquote-logo.svg
http://upload.wikimedia.org/wikipedia/commons/1/1b/Wikiversity-logo-en.svg
//commons.wikimedia.org/wiki/User:Snorky
http://upload.wikimedia.org/wikipedia/commons/9/91/Wikiversity-logo.svg
//commons.wikimedia.org/wiki/User:Snorky
//commons.wikimedia.org/wiki/User:Verdy_p
//commons.wikimedia.org/wiki/User:Snorky
//commons.wikimedia.org/wiki/User:Verdy_p
http://upload.wikimedia.org/wikipedia/commons/f/f8/Wiktionary-logo-en.svg
//commons.wikimedia.org/wiki/File:Wiktionary-logo-en.png
//commons.wikimedia.org/wiki/User:Fvasconcellos
//commons.wikimedia.org/wiki/User_talk:Fvasconcellos
//commons.wikimedia.org/wiki/Special:Contributions/Fvasconcellos
//commons.wikimedia.org/wiki/User:Brion_VIBBER
http://creativecommons.org/licenses/by-sa/3.0/

	Operating system
	Types of operating systems
	Single- and multi-tasking
	Single- and multi-user
	Distributed
	Templated
	Embedded
	Real-time

	History
	Mainframes
	Microcomputers

	Examples of operating systems
	Unix and Unix-like operating systems
	Microsoft Windows
	Other

	Components
	Kernel
	Networking
	Security
	User interface

	Real-time operating systems
	Operating system development as a hobby
	Diversity of operating systems and portability
	Market share
	See also
	References
	Further reading
	External links

	System software
	See also
	References
	External links

	Firmware
	Origin of the term
	Personal computers
	Consumer products
	Automobiles
	Examples
	Flashing
	Firmware hacking
	HDD firmware hacks

	Security risks
	See also
	References
	External links

	Computer multitasking
	Multiprogramming
	Cooperative multitasking
	Preemptive multitasking
	Real time
	Multithreading
	Memory protection
	Memory swapping
	Programming
	See also
	References

	Time-sharing
	History
	Batch processing
	Time-sharing
	Development
	Time-sharing business
	The computer utility
	Security

	Notable time-sharing systems
	See also
	References
	Further reading
	External links

	Real-time computing
	History
	Criteria for real-time computing
	Real-time in digital signal processing

	Real-time and high-performance
	Near real-time
	Design methods
	See also
	References
	Further reading
	External links
	Technical committees
	Scientific conferences
	Journals
	Research groups
	Technical papers

	Fault tolerance
	Terminology
	Components
	Redundancy
	Criteria
	Requirements
	Replication
	Disadvantages
	Examples
	Related terms
	See also
	References
	Bibliography
	External links

	Mean time between failures
	The Overview
	Formal definition of MTBF
	Variations of MTBF
	MTTF and MTTFd calculation

	Notes
	See also
	References
	External links

	Flowchart
	Overview
	History
	Flowchart building blocks
	Symbols
	Data-flow extensions

	Types of flowchart
	Software
	Diagramming
	Programming

	See also
	References
	Further reading
	External links

	Programming language
	Definitions
	History
	Early developments
	Refinement
	Consolidation and growth

	Elements
	Syntax
	Semantics
	Standard library and run-time system

	Design and implementation
	Specification
	Implementation

	Usage
	Measuring language usage

	Taxonomies
	See also
	References
	Further reading
	External links

	History of programming languages
	Early history
	First programming languages
	Establishing fundamental paradigms
	1980s: consolidation, modules, performance
	1990s: the Internet age
	Current trends
	Prominent people
	See also
	References
	Further reading
	External links
	Text and image sources, contributors, and licenses
	Text
	Images
	Content license

