
**DES 07-60** 

Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement

Volume 1: Chapters 1, 2, & 3

December 2007







# United States Department of the Interior

### BUREAU OF LAND MANAGEMENT Washington, D.C. 20240 http://www.blm.gov

December 21, 2007

Dear Reader,

This letter transmits the Draft Oil Shale and Tar Sands Resource Management Plan (RMP) Amendments to Address Land Use Allocations in Colorado, Utah, and Wyonning and Programmatic Environmental Impact Statement (PEIS) for your review and comment. This document was prepared by the BLM in consultation with cooperating agencies, and in accordance with the National Environmental Policy Act of 1969 (NEPA), the Federal Land Policy and Management Act of 1976 (FLPMA), implementing regulations, the BLM's land use planning handbook (H-1601-I), and other applicable laws.

This PEIS examines alternatives for making BLM-administered lands available for application for future commercial leasing of both oil shale and tar sands resources. The study area for the oil shale resources includes the most geologically prospective resources of the Green River Formation located in the Piceance, Ulnta, Green River and Washakie Basins. The oil shale planning area consists of about 3,538,038 acres of land, which includes about 2,138,361 acres of public lands and 158,566 acres of split state lands.

The study area for tar sands includes those locations designated as Special Tar Sand Areas in the geologic reports prepared by the United States Geological Survey in 1980 and formalized by Congress in the Combined Hydrocarbon Leasing Act of 1981 (P.L. 97-78). The tar sands planning area consists of about 1,026,266 acres of land, which includes about 574.357 acres of public lands and 82,148 acres of split estate lands.

The overall intent of the PEIS is to develop a land use plan that will guide the management of public lands administered by the BLM into the future. When approved, this PEIS will amend the Glenwood Springs, Grand Junction, White River, Books Cliffs, Diamond Mountain, Great Divide, Green River, Kemmerer, San Rafael Resource Area, and San Juan Resource Area Resource Management Plans and the Henry Mountain and Price River Resource Area Management Framework Plans. The Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and supporting information are available on the project Web site at osts, anl.gov.

The BLM encourages the public to provide information and comments pertaining to the analysis presented in the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement. Of particular importance is feedback concerning the adequacy and accuracy of the proposed alternatives, the analysis of their respective management decisions, and any new information that would help the BLM produce a Proposed Plan. In developing the Proposed RMP/Final PEIS, which is the next phase of the planning process, the decision maker may select various management decisions from each of the alternatives analyzed in the RMP PEIS for the purpose of creating a management strategy that best meets the needs of the resources and values in this area under the multiple use and sustained yield mandate. As a member of the public, your timely comments will help formulate the Proposed RMP/Final PEIS. Comments will be accepted for ninety (90) calendar days following the U.S. Environmental Protection Agency's (EPA's) publication of its Notice of Availability in the Federal Register. The BLM can best utilize your comments and resource information submissions if received within the review period.

Comments may be submitted electronically at osts.anl.gov. Comments may also be submitted by mail to BLM Oil Shale and Tar Sands PEIS, Argonne National Laboratory EVS/900, 9700 S. Cass Avenue, Argonne, IL 60439. To

facilitate analysis of comments and information submitted, we strongly encourage you to submit comments in an electronic format.

Your review and comments on the content of this document are critical to the success of this planning effort. If you wish to submit comments on the Draft PEIS/Plan Amendment, we request that you make them as specific as possible. Comments will be more helpful if they include suggested changes, sources, or methodologies, and reference to a section or page number. Comments containing only opinions or preferences will be considered and included as part of the decision-making process, although they will not receive a formal response from the BLM.

Before including your address, phone number, e-mail address, or other personal identifying information, you should be aware that your entire comment, including your personal identifying information, may be made publicly available at any time. While you can ask us in your comment to withhold your personal identifying information from public review, we cannot guarantee that we will be able to do so.

Public Open Houses for the purpose of providing the public an overview of the document and a response to questions about the PEIS will be scheduled throughout the area covered by the PEIS and will be announced through the public media in the near future.

Copies of the Draft PEIS/Plan Amendment have been sent to affected federal, state, and local government agencies. Copies of the Draft RMP PEIS are available for public inspection at the following BLM locations:

- Colorado State Office, 2850 Youngfield Street, Lakewood, Colorado 80215
- Utah State Office, 440 West 200 South, Suite 500, Salt Lake City, Utah 84101
- Wyoming State Office, 5353 Yellowstone, Chevenne, Wyoming 82009
- Vernal Field Office, 170 South 500 East, Vernal, Utah 84078
- Price Field Office, 125 South 600 West, Price, Utah 84501
- Richfield Field Office, 150 East 900 North, Richfield, Utah 84701
- Monticello Field Office, 435 North Main, P.O. Box 7, Monticello, Utah 84535
- White River Field Office, 220 E. Market Street, Meeker, Colorado 81641
- Glenwood Springs Field Office, 2425 S. Grand Ave., Suite 101, Glenwood Springs, Colorado 81601
- Grand Junction Field Office, 2815 H Road, Grand Junction, Colorado 81506
- Kemmerer Field Office, 312 Highway 189 North, Kemmerer, Wyoming 83101
- Rawlins Field Office, at 1300 North Third, P.O. Box 2407, Rawlins, Wyoming 82301
- Rock Springs Field Office, 280 Highway 191 North, Rock Springs, Wyoming 82901.
- Thank you for your continued interest in the Draft 0il Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement. We appreciate the information and suggestions you have contributed to the planning process. For additional information or clarification regarding this document or the planning process, please contact Sherri Thompson, Project Manager, Bureau of Land Management, Colorado State Office, 2850 Youngfield St., Lakewood, CO, 80215-7093, or visit the Web site at osts an Legov.

/[//

Sincerely

Michael D. Nede Assistant Director Minerals, Realty, and Resource Protection DES 07-60

7D 195 .04 L352 2007 V.1

Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement

Volume 1: Chapters 1, 2, & 3

U.S. Department of the Interior Bureau of Land Management

December 2007



### MISSION STATEMENT

It is the mission of the Bureau of Land Management (BLM), an agency of the Department of the Interior, to manage BLM-administered lands and resources in a manner that best serves the needs of the American people. Management is based upon the principles of multiple use and sustained yield taking into account the long-term needs of future generations for renewable and nonrenewable resources.

BLM-WO-GI-08-005-3900

DOI No. DES 07-60

### Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement

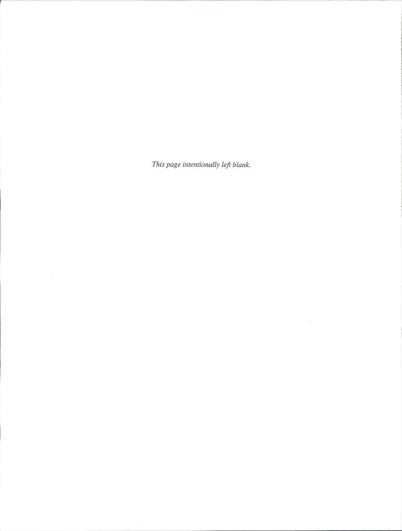
Lead Agency: U.S. Department of the Interior, Bureau of Land Management

### Cooperating Agencies:

National Park Service
Bureau of Reclamation
U.S. Forest Service
U.S. Fish & Wildlife Service
State of Colorado, Department of Natural Resources
State of Utah
State of Wyoming

Garfield County, Colorado Mesa County, Colorado Rio Blanco County, Colorado Duchesne County, Utah Uintah County, Utah City of Rifle, Colorado Town of Rangely, Colorado

Location: Northwestern Colorado, Eastern Utah, and Southwestern Wyoming


Abstract: The Bureau of Land Management (BLM) proposes to amend 12 land use plans to describe the most geologically prospective areas administered by the BLM where oil shale and tar sands resources are present, and to designate which of these areas will be open for application for commercial leasing, exploration, and development. There are approximately 2.3 million acres of BLM-administered lands within this area that are the subject of this programmatic environmental impact statement (PEIS). There are three alternatives considered in the PEIS and the BLM has selected Alternative B as the Preferred Alternative. The Preferred Alternative would make approximately 2 million acres of lands containing oil shale resources available for application for commercial leasing and approximately 430,000 acres available for tar sands. Alternative A, the no action alternative, would not amend land use plans to identify lands as available for application for lease. Alternative C, which is similar to the Preferred Alternative, would amend land use plans to identify areas available for application for lease but would make approximately 830,000 acres containing oil shale resources available for application for commercial leasing and approximately 230,000 acres available for tar sands. This PEIS has been developed to analyze the direct, indirect, and cumulative environmental, cultural, and socioeconomic impacts of the three alternatives. While the BLM has determined that there are no environmental impacts associated with the amendment of land use plans, it is intending to establish a commercial leasing program to facilitate future development and has included a programmatic-level analysis of the potential impact of oil shale and tar sand development technologies as they are currently known.

Contacts: For further information about this PEIS, you may contact Sherri Thompson, Project Manager, BLM Colorado State Office, 2850 Youngfield St., Lakewood, CO 80215-7093; (303) 239-3758.

Comments: The public will have 90 days to review and comment on the document from the date the U.S. Environmental Protection Agency files the Notice of Availability for the PEIS in the Federal Register. For the most recent information on document filing status or for additional information regarding the PEIS, please see the project Web site at ostseis.anl.gov.

#### Responsible Official:

Mike Nedd
BLM Assistant Director
Minerals, Realty, and Resource Protection
1849 "C" Street N.W.
Washington, D.C. 20240



#### DOCUMENT CONTENTS

#### VOLUME 1

**Executive Summary** 

Chapter 1: Introduction

Chapter 2 Descriptions of Alternatives Chapter 3: Affected Environment

### VOLUME 2

Chapter 4: Effects of Oil Shale Technologies

Chapter 5: Effects of Tar Sands Technologies

Chapter 6: Impact Assessment for Oil Shale and Tar Sands Technologies

#### VOLUME 3

Chapter 7: Consultation and Coordination

Chapter 8: List of Preparers

Chapter 9: Glossary
Appendix A: Oil Shale Development Background and Technology Overview

Appendix B: Tar Sands Development Background and Technology Overview Appendix C: Proposed Land Use Plan Amendments Associated with Alternatives B

and C for Oil Shale and Tar Sands

Appendix D: Federal, State, and County Regulatory Requirements Potentially Applicable

to Oil Shale and Tar Sands Development Projects

Appendix E: Threatened and Endangered Species within the Oil Shale and Tar Sands

Study Area

Appendix F: Proposed Conservation Measures for the Preferred Alternative

Appendix G: Socioeconomic and Environmental Justice Analysis Methodologies

Appendix H: Approach Used for Interviews of Selected Residents in the Oil Shale

and Tar Sands Study Area



### VOLUME 1 CONTENTS

| NC | TATI | ON      |                                                                                              | xvii  |
|----|------|---------|----------------------------------------------------------------------------------------------|-------|
| EN | GLIS | H/METR  | IC AND METRIC/ENGLISH EQUIVALENTS                                                            | xxiii |
| EX | ECUI | IVE SUN | MMARY                                                                                        | ES-1  |
| 1  | INTI | RODUCT  | TON                                                                                          | 1-1   |
|    | 1.1  | Purpose | e and Need                                                                                   | 1-2   |
|    | 1.2  | Scope o | of the Analysis                                                                              | 1-3   |
|    | 1.3  |         | ating Agencies                                                                               |       |
|    | 1.4  |         | nship of the Proposed Action to Other BLM and Cooperating                                    |       |
|    |      |         | Programs, Policies, and Plans                                                                | 1-9   |
|    |      | 1.4.1   | BLM's Oil Shale Research, Development, and                                                   |       |
|    |      |         | Demonstration Program                                                                        | 1-9   |
|    | *    | 1.4.2   | Combined Hydrocarbon Leasing Program                                                         |       |
|    |      | 1.4.3   | Existing BLM Land Use Plans, Ongoing Planning Activities,                                    |       |
|    |      |         | and Resource Management Plan Revisions                                                       | 1-11  |
|    |      | 1.4.4   | Cooperating Agency Plans and Programs                                                        |       |
|    |      | 1.4.5   | BLM and USFS Energy Corridor Designation                                                     |       |
|    | 1.5  | Referen | nces                                                                                         |       |
| 2  | DES  | CRIPTIC | ONS OF ALTERNATIVES                                                                          | 2-1   |
|    |      |         |                                                                                              | 2-1   |
|    | 2.1  |         | ctiong Statutory Requirements and BLM Policies Potentially                                   | 2-1   |
|    | 2.2  |         | able to Oil Shale and Tar Sands Development                                                  | 2-1   |
|    |      |         |                                                                                              |       |
|    |      | 2.2.1   | Existing Relevant Statutory Requirements                                                     |       |
|    |      | 2.2.2   | Existing Relevant BLM Policies and Mitigation Guidance  Management of BLM-Administered Lands |       |
|    | 0.0  | 2.2.3   |                                                                                              |       |
|    | 2.3  |         | ale                                                                                          |       |
|    |      | 2.3.1   | Potential Commercial Oil Shale Development Technologies                                      |       |
|    |      | 2.3.2   | Alternative A, No Action Alternative                                                         |       |
|    |      | 2.3.3   | Commercial Oil Shale Leasing Program Alternatives                                            | 2-19  |
|    |      |         | 2.3.3.1 Alternative B for a Commercial Oil Shale                                             | 2.22  |
|    |      |         | Leasing Program                                                                              | 2-22  |
|    |      |         | 2.3.3.2 Alternative C for a Commercial Oil Shale                                             | 0.05  |
|    |      | _ ~     | Leasing Program                                                                              |       |
|    | 2.4  |         | nds                                                                                          |       |
|    |      | 2.4.1   | Potential Commercial Tar Sands Development Technologies                                      |       |
|    |      | 2.4.2   | Alternative A, No Action Alternative                                                         |       |
|    |      | 2.4.3   | Commercial Tar Sands Leasing Program Alternatives                                            | 2-39  |

|   |     |         | 2.4.3.1      | Alternative B for a Commercial Tar Sands               |      |
|---|-----|---------|--------------|--------------------------------------------------------|------|
|   |     |         |              | Leasing Program                                        | 2-43 |
|   |     |         | 2.4.3.2      | Alternative C for a Commercial Tar Sands               |      |
|   |     |         |              | Leasing Program                                        | 2-46 |
|   | 2.5 | Alterna | atives and I | ssues Considered but Eliminated from Detailed Analysis | 2-50 |
|   |     | 2.5.1   | Alternati    | ves Approving Issuance of Commercial Leases            | 2-50 |
|   |     | 2.5.2   | Alternati    | ves That Preclude Oil Shale and Tar Sands Leasing      |      |
|   |     |         |              | opment                                                 | 2-51 |
|   |     | 2.5.3   |              | ves Considering Alternate Energy Sources and Carbon    |      |
|   |     |         | Sequestr     | ation                                                  | 2-51 |
|   |     | 2.5.4   | Alternati    | ves That Prohibit Leasing in Specific Areas            | 2-52 |
|   |     | 2.5.5   | Off-Site     | Processing of Oil Shale                                | 2-52 |
|   |     | 2.5.6   | Establish    | ment of Federal Subsidies                              | 2-53 |
|   |     | 2.5.7   | Carrying     | -Capacity Thresholds                                   | 2-53 |
|   |     | 2.5.8   | Establish    | ment of Trust Funds                                    | 2-53 |
|   | 2.6 | Compa   | rison of Al  | ternatives                                             | 2-53 |
|   | 2.7 | Refere  | nces         |                                                        | 2-85 |
| 3 | AFF | ECTED I | ENVIRON!     | MENT                                                   | 3-1  |
|   | 3.1 | I and I | Ice          |                                                        | 3-1  |
|   | 5.1 | 3.1.1   | RIMIa        | nd Use Plans within the Study Area                     | 3-1  |
|   |     | 5.1.1   | 3.1.1.1      | Glenwood Springs Field Office, Colorado                | 3-1  |
|   |     |         | 3.1.1.2      | Grand Junction Field Office, Colorado                  | 3-3  |
|   |     |         | 3.1.1.3      | White River Field Office, Colorado                     |      |
|   |     |         | 3.1.1.4      | Grand Staircase–Escalante National Monument, Utah      | 3-8  |
|   |     |         | 3.1.1.5      | Monticello Field Office, Utah                          | 3-11 |
|   |     |         | 3.1.1.6      | Drice Field Office, Utah                               | 3-13 |
|   |     |         | 3.1.1.7      | Price Field Office, Utah                               | 3-14 |
|   |     |         | 3.1.1.8      | Richfield Field Office, Utah                           | 3-18 |
|   |     |         | 3.1.1.9      | Vernal Field Office, Utah                              | 3-25 |
|   |     |         | 3.1.1.10     | Kemmerer Field Office, Wyoming                         | 3-31 |
|   |     |         | 3.1.1.10     | Rawlins Field Office, Wyoming                          | 3-38 |
|   |     | 3.1.2   |              | Rock Springs Field Office, Wyoming                     | 3-39 |
|   | 3.2 |         | Recreation   | nal Land Use in the Three-State Study Area             | 3-41 |
|   | 3.2 | 3.2.1   | Diagona      | ces and Seismic Setting                                | 3-42 |
|   |     | 3.2.1   | 3.2.1.1      | Basin                                                  | 3-42 |
|   |     |         | 3.2.1.1      | Physiography                                           | 3-42 |
|   |     |         |              | Geologic Setting                                       | 3-42 |
|   |     |         | 3.2.1.3      | Soils                                                  | 3-45 |
|   |     |         | 3.2.1.4      | Seismology                                             | 3-45 |
|   |     | 222     | 3.2.1.5      | Mineral Resources                                      | 3-45 |
|   |     | 3.2.2   |              | in                                                     | 3-46 |
|   |     |         | 3.2.2.1      | Physiography                                           | 3-46 |

|     |         | 3.2.2.2     | Geologic Setting                           | 3-46 |
|-----|---------|-------------|--------------------------------------------|------|
|     |         | 3.2.2.3     | Soils                                      | 3-47 |
|     |         | 3.2.2.4     | Seismology                                 | 3-47 |
|     |         | 3.2.2.5     | Mineral Resources                          | 3-47 |
|     | 3.2.3   | Green Riv   | ver Basin and Washakie Basin               | 3-48 |
|     |         | 3.2.3.1     | Physiography                               | 3-48 |
|     |         | 3.2.3.2     | Geologic Setting                           | 3-48 |
|     |         | 3.2.3.3     | Soils                                      | 3-49 |
|     |         | 3.2.3.4     | Seismology                                 | 3-49 |
|     |         | 3.2.3.5     | Mineral Resources                          | 3-49 |
|     | 3.2.4   | Special T   | ar Sand Areas                              | 3-50 |
|     |         | 3.2.4.1     | Physiography                               | 3-50 |
|     |         | 3.2.4.2     | Geologic Setting                           | 3-50 |
|     |         | 3.2.4.3     | Soils                                      | 3-50 |
|     |         | 3.2.4.4     | Seismology                                 | 3-51 |
|     |         | 3.2.4.5     | Mineral Resources                          | 3-51 |
| 3.3 | Paleont | ological Re | esources                                   | 3-52 |
|     | 3.3.1   |             | Basin                                      | 3-53 |
|     | 3.3.2   | Uinta Bas   | sin                                        | 3-59 |
|     | 3.3.3   | Green Ri    | ver and Washakie Basins                    | 3-59 |
|     | 3.3.4   | Special T   | ar Sand Areas                              | 3-59 |
| 3.4 | Water F |             |                                            | 3-59 |
|     | 3.4.1   | Legal Fra   | amework of the Upper Colorado River Basin  | 3-60 |
|     |         | 3.4.1.1     | Water Allocation                           | 3-60 |
|     |         | 3.4.1.2     | Basin Salinity and Surface Water Quality   | 3-60 |
|     |         | 3.4.1.3     | Impaired Streams under the Clean Water Act | 3-62 |
|     |         | 3.4.1.4     | Water Use                                  | 3-62 |
|     | 3.4.2   | Piceance    | Basin                                      | 3-74 |
|     |         | 3.4.2.1     | Groundwater Resources                      | 3-74 |
|     |         | 3.4.2.2     | Surface Water Resources                    | 3-77 |
|     | 3.4.3   | Uinta Ba    | sin                                        | 3-79 |
|     |         | 3.4.3.1     | Groundwater Resources                      | 3-79 |
|     |         | 3.4.3.2     | Surface Water Resources                    | 3-81 |
|     | 3.4.4   | Green Ri    | iver Basin and Washakie Basin              | 3-84 |
|     |         | 3.4.4.1     | Groundwater Resources                      | 3-84 |
|     |         | 3.4.4.2     | Surface Water Resources                    | 3-87 |
|     | 3.4.5   | Special T   | Far Sand Areas                             | 3-89 |
|     |         | 3.4.5.1     | Groundwater Resources                      | 3-89 |
|     |         | 3.4.5.2     | Surface Water Resources                    | 3-89 |
| 3.5 | Air Qu  | ality and C | limate                                     | 3-93 |
|     | 3.5.1   | Climate.    |                                            | 3-93 |
|     |         | 3.5.1.1     | Meteorology                                | 3-93 |
|     |         | 3.5.1.2     | Global Climate Change                      | 3-95 |

|     | 3.5.2    | Existing     | Emissions                                       | 3-98  |
|-----|----------|--------------|-------------------------------------------------|-------|
|     | 3.5.3    | Air Quali    | ty                                              | 3-101 |
| 3.6 | Existing | Acoustic !   | Environment (Noise)                             | 3-106 |
| 3.7 | Ecologi  | cal Resource | ces                                             | 3-107 |
|     | 3.7.1    | Aquatic F    | Resources                                       | 3-107 |
|     |          | 3.7.1.1      | Oil Shale Basins                                |       |
|     |          | 3.7.1.2      | Special Tar Sand Areas                          | 3-120 |
|     | 3.7.2    | Plant Cor    | nmunities and Habitats                          | 3-121 |
|     |          | 3.7.2.1      | Piceance Basin                                  |       |
|     |          | 3.7.2.2      | Uinta Basin                                     |       |
|     |          | 3.7.2.3      | Green River and Washakie Basins                 |       |
|     |          | 3.7.2.4      | Special Tar Sand Areas                          |       |
|     | 3.7.3    | Wildlife.    | 1                                               |       |
|     |          | 3.7.3.1      | Amphibians and Reptiles                         |       |
|     |          | 3.7.3.2      | Birds                                           |       |
|     |          | 3.7.3.3      | Mammals                                         |       |
|     |          | 3.7.3.4      |                                                 | 3-146 |
|     | 3.7.4    | Threatene    | ed and Endangered Species                       |       |
|     |          | 3.7.4.1      | Species Listed under the Endangered Species Act |       |
|     |          | 3.7.4.2      | Species That Are Candidates for Listing under   | 5 150 |
|     |          |              | The Endangered Species Act                      | 3-172 |
|     |          | 3.7.4.3      | BLM-Designated Sensitive Species and            | 5-172 |
|     |          |              | State-Listed Species                            | 3-174 |
|     |          | 3.7.4.4      | Other Species of Concern                        | 3-175 |
| 3.8 | Visual R |              | s and appears of Concern                        |       |
|     | 3.8.1    |              |                                                 | 3-176 |
|     | 3.8.2    |              | Areas                                           | 3-178 |
|     |          | 3.8.2.1      | Piceance Basin                                  | 3-178 |
|     |          | 3.8.2.2      |                                                 | 3-179 |
|     |          | 3.8.2.3      | Green River Basin.                              |       |
|     |          | 3.8.2.4      |                                                 | 3-182 |
|     | 3.8.3    |              | ar Sand Areas                                   | 3-182 |
|     | 01010    | 3.8.3.1      |                                                 | 3-182 |
|     |          | 3.8.3.2      | Asphalt Ridge STSA                              |       |
|     |          | 3.8.3.3      |                                                 | 3-183 |
|     |          | 3.8.3.4      |                                                 | 3-184 |
|     |          | 3.8.3.5      |                                                 | 3-184 |
|     |          | 3.8.3.6      | Raven Ridge STSA                                |       |
|     |          | 3.8.3.7      | San Rafael Swell STSA                           |       |
|     |          | 3.8.3.8      | Sunnyside STSA                                  |       |
|     |          | 3.8.3.9      | Tar Sand Triangle STSA                          | 2 107 |
|     |          | 3.8.3.10     | White Canyon STSA                               |       |
|     |          | 2.0.2.10     | THE Carryon of the                              | 2-188 |

| 3.9  | Cultural Resources |            |                                                     |       |  |
|------|--------------------|------------|-----------------------------------------------------|-------|--|
|      | 3.9.1              | Piceance : | Basin                                               | 3-190 |  |
|      |                    | 3.9.1.1    | Prehistoric Context for Archaeological Sites,       |       |  |
|      |                    |            | Features, and Structures                            | 3-190 |  |
|      |                    | 3.9.1.2    | Historic Context for Archaeological Sites,          |       |  |
|      |                    |            | Features, and Structures                            | 3-191 |  |
|      |                    | 3.9.1.3    | Ethnohistoric Context and Traditional               |       |  |
|      |                    |            | Cultural Properties                                 | 3-192 |  |
|      |                    | 3.9.1.4    | Surveys and Sites in the Study Area                 | 3-193 |  |
|      | 3.9.2              | Uinta Bas  | in                                                  | 3-194 |  |
|      |                    | 3.9.2.1    | Prehistoric Context for Archaeological Sites,       |       |  |
|      |                    |            | Features, and Structures                            | 3-194 |  |
|      |                    | 3.9.2.2    | Historic Context for Archaeological Sites,          |       |  |
|      |                    |            | Features, and Structures                            | 3-195 |  |
|      |                    | 3.9.2.3    | Ethnohistoric Context and Traditional               |       |  |
|      |                    |            | Cultural Properties                                 | 3-195 |  |
|      |                    | 3.9.2.4    | Surveys and Sites in the Study Area                 |       |  |
|      | 3.9.3              | Green Riv  | ver and Washakie Basins                             |       |  |
|      |                    | 3.9.3.1    | Prehistoric Context for Archaeological Sites,       |       |  |
|      |                    |            | Features, and Structures                            | 3-197 |  |
|      |                    | 3.9.3.2    | Historic Context for Archaeological                 |       |  |
|      |                    |            | Sites, Features, and Structures                     | 3-197 |  |
|      |                    | 3.9.3.3    | Ethnohistoric Context and Traditional               |       |  |
|      |                    |            | Cultural Properties                                 | 3-198 |  |
|      |                    | 3.9.3.4    | Surveys and Sites in the Study Area                 |       |  |
|      | 3.9.4              |            | ar Sand Areas in East-Central and Southeastern Utah |       |  |
|      |                    | 3.9.4.1    | Prehistoric Context for Archaeological Sites,       |       |  |
|      |                    | 5151111    | Features, and Structures                            | 3-201 |  |
|      |                    | 3.9.4.2    | Historic Context for Archaeological Sites,          |       |  |
|      |                    | 5.52       | Features, and Structures                            | 3-202 |  |
|      |                    | 3.9.4.3    | Ethnohistoric Context and Traditional               |       |  |
|      |                    | 5151115    | Cultural Properties                                 | 3-203 |  |
|      |                    | 3.9.4.4    | Surveys and Sites in the Study Area                 |       |  |
| 3.10 | Socioeconomics     |            |                                                     |       |  |
| 5.10 | 3.10.1             |            | Shale Development                                   |       |  |
|      | 3.10.2             |            | Conditions.                                         |       |  |
|      | 011012             | 3.10.2.1   | Economic Environment                                |       |  |
|      |                    | 3.10.2.2   | Social Environment.                                 |       |  |
|      | 3.10.3             |            | n Economy                                           |       |  |
|      | 2.10.0             | 3.10.3.1   | Visitation Statistics                               |       |  |
|      |                    | 3.10.3.2   | Economic Impact of Recreational Activities          |       |  |
|      | 3.10.4             |            | tation                                              |       |  |
|      | 2.10.1             | 3.10.4.1   | Colorado                                            |       |  |
|      |                    |            |                                                     |       |  |

|         | 3.10.4.2 Utan                                                                                                                                                                                                                             |       |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|         | 3.10.4.3 Wyoming                                                                                                                                                                                                                          | 3-235 |
| 3.11    | Environmental Justice                                                                                                                                                                                                                     | 3-235 |
| 3.12    | References                                                                                                                                                                                                                                | 3-243 |
|         | FIGURES                                                                                                                                                                                                                                   |       |
| 1.2-1   | Most Geologically Prospective Oil Shale Resources within the Green River Formation Basins in Colorado, Utah, and Wyoming                                                                                                                  | 1-4   |
| 1.2-2   | Special Tar Sand Areas in Utah                                                                                                                                                                                                            | 1-5   |
| 2.3-1   | Green River Formation Basins in Colorado, Utah, and Wyoming; the Most Geologically Prospective Oil Shale Resources; the Areas Where the Overburden above the Oil Shale Resources Is $\leq$ 500 ft; and Locations of the Six RD&D Projects | 2-11  |
| 2.3-2   | Locations of the Six RD&D Tracts and Associated Preference<br>Right Lease Areas                                                                                                                                                           | 2-13  |
| 2.3.3-1 | Lands Proposed To Be Available under Alternative B for Application for Leasing Commercial Oil Shale Development within the Most Geologically Prospective Areas in Colorado                                                                | 2-23  |
| 2.3.3-2 | Lands Proposed To Be Available under Alternative B for Application for Leasing for Commercial Oil Shale Development within the Most Geologically Prospective Areas in Utah                                                                | 2-24  |
| 2.3.3-3 | Lands Proposed To Be Available under Alternative B for Application                                                                                                                                                                        | 2-26  |
| 2.3.3-4 | Lands Proposed To Be Available under Alternative C for Application for Leasing for Commercial Oil Shale Development within the Most Geologically Prospective Areas in Colorado                                                            | 2-29  |
| 2.3.3-5 | Lands Proposed To Be Available under Alternative C for Application for Leasing for Commercial Oil Shale Development within the Most Geologically Prospective Areas in Utah                                                                | 2-30  |

# FIGURES (Cont.)

| 2.3.3-6  | Lands Proposed 10 Be Available under Alternative C for Application for Leasing for Commercial Oil Shale Development within the Most Geologically Prospective Areas in Wyoming | 2-31 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.4-1    | Special Tar Sand Areas in Utah                                                                                                                                                | 2-35 |
| 2.4.3-1  | Lands Proposed To Be Available under Alternative B for Application for Leasing for Commercial Tar Sands Development within the STSAs in Utah                                  | 2-44 |
| 2.4.3-2  | Lands Proposed To Be Available under Alternative C for Application for Leasing for Commercial Tar Sands Development within the STSAs in Utah                                  | 2-47 |
| 3.1.1-1  | Distribution of BLM-, USFS-, and NPS-Administered Lands with Respect to Oil Shale and Tar Sands Resources                                                                     | 3-4  |
| 3.1.1-2  | BLM Planning Areas in Colorado Where Oil Shale Resources Are Located                                                                                                          | 3-6  |
| 3.1.1-3  | White River RMP Decisions Related to Oil Shale Leasing and Development                                                                                                        | 3-10 |
| 3.1.1-4  | Portions of the Grand Staircase—Escalante National Monument<br>and the Monticello and Richfield Field Offices Where Tar Sands<br>Resources Are Located                        | 3-12 |
| 3.1.1-5  | Areas with Wilderness Characteristics in the Monticello Field Office in the Vicinity of the White Canyon STSA                                                                 | 3-15 |
| 3.1.1-6  | Price Field Office RMP Planning Area                                                                                                                                          | 3-17 |
| 3.1.1-7  | Areas with Wilderness Characteristics in the Price Field Office That Overlap with Oil Shale and/or Tar Sands Deposits                                                         | 3-19 |
| 3.1.1-8  | Potential ACECs in the Price Field Office That Overlie Oil Shale and Tar Sands Deposits                                                                                       | 3-23 |
| 3.1.1-9  | WSAs and Potential ACECs in the Richfield Field Office That<br>Overlie the Tar Sand Triangle STSA                                                                             | 3-24 |
| 3.1.1-10 | Areas with Wilderness Characteristics in the Richfield Field Office That Overlap with Tar Sand Triangle STSA                                                                  | 3-26 |

### FIGURES (Cont.)

| 5.1.1-11 | Vernal Field Office RMP Planning Area                                                                                              | 3-2   |
|----------|------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3.1.1-12 | Split Estate Lands within the Hill Creek Extension of the Uintah and Ouray Reservation                                             | 3-2   |
| 3.1.1-13 | Wilderness Characteristics in the Vernal Field Office That Overlap with the Most Geologically Prospective Oil Shale Area and STSAs | 3-32  |
| 3.1.1-14 | Potential ACECs in the Vernal Field Office                                                                                         | 3-30  |
| 3.1.1-15 | BLM Planning Areas in Wyoming Where Oil Shale Resources Are Located                                                                | 3-3   |
| 3.4.2-1  | Yellow and Piceance Creeks and Their Tributaries in the Piceance Basin                                                             | 3-78  |
| 3.4.3-1  | Major Rivers and Their Tributaries in the Uinta Basin                                                                              | 3-82  |
| 3.4.4-1  | Major Rivers and Their Tributaries in the Green River and Washakie Basins $\ldots$                                                 | 3-88  |
| 3.4.5-1  | Green River and Dirty Devil River Basins Drainage Map                                                                              | 3-9   |
| 3.5.1-1  | Wind Roses at the 33-ft Level for Selected Meteorological Stations around the Study Area, 2000–2005                                | 3-94  |
| 3.5.1-2  | Annual Mean Temperature Change for Northern Latitudes                                                                              | 3-98  |
| 3.7.2-1  | Ecoregions and Oil Shale Basin of Northwestern Colorado                                                                            | 3-122 |
| 3.7.2-2  | Ecoregions and Special Tar Sand Areas of Southeastern Utah                                                                         | 3-127 |
| 3.7.2-3  | Ecoregions and Special Tar Sand Areas of Northeastern Utah                                                                         | 3-128 |
| 3.7.2-4  | Ecoregions and Oil Shale Basins of Southwestern Wyoming                                                                            | 3-130 |
| 3.7.3-1  | North American Migration Flyways                                                                                                   | 3-140 |
| 3.7.3-2  | Distribution of Wild Horse Herd Management Areas within the Oil Shale and Tar Sands Study Area                                     | 3-148 |
| 3.8.2-1  | Landscape in the Piceance Basin                                                                                                    | 3-179 |
| 3.8.2-2  | Landscape in the Uinta Basin                                                                                                       | 3-180 |
| 3.8.3-1  | View from Wedge Overlook, San Rafael Swell near Castledale, Utah                                                                   | 3-186 |

### FIGURES (Cont.)

| 3.8.3-2  | White Canyon Bridge on State Route 95, San Juan County, Utah                                                                                                                                                                                             | 3-188 |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3.10.2-1 | State ROIs for Oil Shale and Tar Sands Development Areas                                                                                                                                                                                                 | 3-212 |
| 3.11-1   | Minority Population Concentration in Census Block Groups within Oil Shale Resource Areas and Associated 80-km (50-mi) Buffer                                                                                                                             | 3-239 |
| 3.11-2   | Low-Income Population Concentration in Census Block Groups within Oil Shale Resource Areas and Associated 80-km (50-mi) Buffer                                                                                                                           | 3-240 |
| 3.11-3   | Minority Population Concentration in Census Block Groups within Tar Sands Resource Areas and Associated 80-km (50 mi) Buffer                                                                                                                             | 3-241 |
| 3.11-4   | Low-Income Population Concentration in Census Block Groups within Tar Sands Resource Areas and Associated 80-km (50 mi) Buffer                                                                                                                           | 3-242 |
|          | TABLES                                                                                                                                                                                                                                                   |       |
| 2.2.3-1  | Existing ACECs Intersecting Oil Shale or Tar Sands Areas                                                                                                                                                                                                 | 2-8   |
| 2.3-1    | Total Size in Acres of the Green River Formation Basins, Most Geologically Prospective Oil Shale Areas, and Acres of BLM-Administered and Split Estate Lands within the Most Prospective Areas in each State                                             | 2-12  |
| 2.3-2    | Summary Information for the Six Oil Shale RD&D Projects To Be Considered under Alternative A, No Action Alternative                                                                                                                                      | 2-14  |
| 2.3.2-1  | Summary of Activities and Conditions Assumed for Each of the Oil Shale Alternatives                                                                                                                                                                      | 2-17  |
| 2.3.3-1  | Estimated Acres Potentially Available in Each State for Application for Leasing for Commercial Oil Shale Development under Alternative B                                                                                                                 | 2-27  |
| 2.3.3-2  | Estimated Acres Potentially Available in Each State for Leasing for Commercial Oil Shale Development under Alternative C                                                                                                                                 | 2-32  |
| 2.3.3-3  | Resources Covered by Stipulations and Restrictions in Place for Oil and Gas Leasing in Each State That Are Being Used To Identify Lands That Would Not Be Available for Application for Leasing for Commercial Oil Shale Development under Alternative C | 2-33  |

| 2.4"1   | and Split Estate Lands within Each STSA                                                                                                                                                                                                                                                                                                 | 2-36 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.4.2-1 | Summary of Activities and Conditions Assumed for Each of the Tar Sands Alternatives                                                                                                                                                                                                                                                     | 2-40 |
| 2.4.3-1 | Estimated Acres Potentially Available for Leasing in Each STSA for Commercial Tar Sands Development under Alternative B                                                                                                                                                                                                                 | 2-45 |
| 2.4.3-2 | Estimated Acres Potentially Available for Leasing in each STSA for Commercial Tar Sands Development under Alternative C                                                                                                                                                                                                                 | 2-48 |
| 2.4.3-3 | Resources Covered by Stipulations and Restrictions in Place for Oil and Gas Leasing in the STSAs That Are Being Used To Identify Lands That Would Not Be Available for Application for Commercial Tar Sands Development Leasing under Alternative C                                                                                     | 2-49 |
| 2.6-1   | Summary Comparison of Potential Environmental Impacts of Amending Land Use Plans to Identify Lands Available for Application For Leasing for the Commercial Development of Oil Shale in Colorado, Utah, and Wyoming, and Environmental Impacts of Future Construction and Operation of Commercial Projects under the Three Alternatives | 2-55 |
| 2.6-2   | Summary Comparison of Potential Environmental Impacts of Amending Land Use Plans to Identify Lands Available for Application for Leasing for the Commercial Development of Tar Sands in Colorado, Utah, and Wyoming, and Environmental Impacts of Future Construction and Operation of Commercial Projects under the Three Alternatives | 2-71 |
| 3.1.1-1 | BLM Field Offices and Administrative Units, Existing Land Use Plans, and Estimated Surface Acreages Overlying the Most Geologically Prospective Oil Shale Resources and STSAs                                                                                                                                                           | 3-2  |
| 3.1.1-2 | Glenwood Springs Field Office ACECs That Overlap with Oil Shale Resources                                                                                                                                                                                                                                                               | 3-7  |
| 3.1.1-3 | White River Field Office ACECs That Overlap with Oil Shale Resources                                                                                                                                                                                                                                                                    | 3-11 |
| 3.1.1-4 | Areas Recognized as Having Wilderness Characteristics in the Monticello Field Office That Overlap with the White Canyon STSA                                                                                                                                                                                                            | 3-16 |
| 3.1.1-5 | Price Field Office WSAs and ACECs That Overlap with Tar<br>Sands Resources                                                                                                                                                                                                                                                              | 3-20 |

| 3.1.1-6  | Areas Recognized as Having Wilderness Characteristics in the Price Field Office That Overlap with Oil Shale and Tar Sands Deposits                                  | 3-21 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3.1.1-7  | Potential ACECs in the Price Field Office Area That Meet R&I Criteria and Overlap with Oil Shale and Tar Sands Deposits                                             | 3-22 |
| 3.1.1-8  | Vernal Field Office WSAs and ACECs That Overlap with Oil Shale and Tar Sands Resources                                                                              | 3-30 |
| 3.1.1-9  | Areas Recognized as Having Wilderness Characteristics in the<br>Vernal Field Office That Overlap with the Most Geologically<br>Prospective Oil Shale Area and STSAs | 3-33 |
| 3.1.1-10 | Potential ACECs in the Vernal Field Office Area That Meet R&I Criteria and Overlap with Oil Shale and/or Tar Sands Resources                                        | 3-34 |
| 3.1.1-11 | Rock Springs Field Office, WCAs, WSAs, and ACECs That Overlap with Oil Shale Resources                                                                              | 3-40 |
| 3.1.2-1  | Federal and State Recreation Areas within a 50-Mi Radius of the Most Geologically Prospective Oil Shale Areas and STSAs                                             | 3-43 |
| 3.3-1    | Summary of Programmatic-Level Paleontological Sensitivities of Geologic Units within the Piceance, Uinta, and Greater Green River Basins                            | 3-55 |
| 3.4.1-1  | Water-Impaired Streams in Oil Shale Basins and STSAs in 2006                                                                                                        | 3-63 |
| 3.4.1-2  | Colorado Water Demand and Consumptive Use in 2000 and 2030                                                                                                          | 3-66 |
| 3.4.1-3  | Utah Water Demand and Consumptive Use in 2000, 2020, and 2050                                                                                                       | 3-68 |
| 3.4.1-4  | Wyoming Water Consumptive Use in 2000 and 2030                                                                                                                      | 3-70 |
| 3.4.1-5  | Upper Colorado Basin Depletion Projections                                                                                                                          | 3-74 |
| 3.4.5-1  | Groundwater Data within or near STSAs                                                                                                                               | 3-90 |
| 3.5.1-1  | Temperature and Precipitation Summaries at Selected Meteorological Stations in and around the Study Area                                                            | 3-96 |
| 3.5.2-1  | Annual Air Pollutant Emissions for Counties within the Study Area, 2002                                                                                             | 3-99 |

| 3.5.3-1 | Applicable Ambient Air Quality Standards and Prevention of Significant Deterioration Increments for the Study Area                               | 3-102 |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3.5.3-2 | Background Concentration Levels Representative of the Study Area                                                                                 | 3-104 |
| 3.5.3-3 | PSD Class I and State Category I Areas Located within 50 mi of the Study Area                                                                    | 3-106 |
| 3.7.1-1 | Fishes of the Upper Colorado River Basin                                                                                                         | 3-109 |
| 3.7.3-1 | Number of Wildlife Species Occurring within the Oil Shale and Tar Sands Study Area                                                               | 3-137 |
| 3.7.3-2 | Wild Horse Herd Management Areas within the Oil Shale and Tar Sands Study Area                                                                   | 3-147 |
| 3.7.4-1 | Federally and State-Listed Species According to Taxonomic Group That Occur in Counties with the Potential for Oil Shale or Tar Sands Development | 3-151 |
| 3.7.4-2 | Federally and State-Listed Species That Occur within Oil Shale Basins or STSAs That Have the Potential for Development                           | 3-152 |
| 3.7.4-3 | Occurrence of Species Listed or Candidates for Listing under the Endangered Species Act in Oil Shale Basins and STSAs                            | 3-153 |
| 3.9.1-1 | Site Types of Known Archaeological Sites in the Piceance Basin, Colorado                                                                         | 3-193 |
| 3.9.1-2 | Eligibility Status of Known Archaeological Sites in the Piceance Basin, Colorado                                                                 | 3-194 |
| 3.9.2-1 | Site Types of Known Archaeological Sites in the Uinta Basin, Utah                                                                                | 3-196 |
| 3.9.2-2 | Eligibility Status of Known Archaeological Sites in the Uinta Basin, Utah                                                                        | 3-197 |
| 3.9.3-1 | Site Types of Known Archaeological Sites in the Green River and Washakie Basins, Wyoming                                                         | 3-200 |
| 3.9.3-2 | Eligibility Status of Known Archaeological Sites in the Green River and Washakie Basins, Wyoming                                                 | 3-201 |
| 3.9.4-1 | Site Types of Known Archaeological Sites in the 11 Special Tar Sand<br>Areas Utah                                                                | 3-205 |

| 3.9.4-2   | Sand Areas, Utah                                                              | 3-206 |
|-----------|-------------------------------------------------------------------------------|-------|
| 3.10.2-1  | Jurisdictions Included in Each ROI                                            | 3-213 |
| 3.10.2-2  | ROI Total Employment                                                          | 3-213 |
| 3.10.2-3  | State and ROI Unemployment Data                                               | 3-214 |
| 3.10.2-4  | State and ROI Employment by Industry, 2004                                    | 3-215 |
| 3.10.2-5  | State and ROI Personal Income                                                 | 3-217 |
| 3.10.2-6  | ROI Population                                                                | 3-221 |
| 3.10.2-7  | State and ROI Housing Characteristics                                         | 3-222 |
| 3.10.2-8  | State and ROI Public Service Expenditures                                     | 3-224 |
| 3.10.2-9  | State and ROI Government Employment, 2006                                     | 3-225 |
| 3.10.2-10 | State and ROI Public Health Employment, 2003                                  | 3-226 |
| 3.10.2-11 | State and ROI Education Data, 2004                                            | 3-226 |
| 3.10.2-12 | State and ROI Crime Rates                                                     | 3-230 |
| 3.10.2-13 | State Indices of Social Change                                                | 3-231 |
| 3.10.3-1  | ROI Recreation Sector Activity, 2004                                          | 3-232 |
| 3.10.4-1  | Baseline Average Daily Traffic Data for Project Area Roads                    | 3-234 |
| 3.11-1    | Minority and Low-Income Populations in the Oil Shale Resource Area and Buffer | 3-237 |
| 3.11-2    | Minority and Low-Income Populations in the Tar Sands Resource Area and Buffer | 3-238 |

 ${\it This page intentionally left blank}.$ 

#### NOTATION

The following is a list of acronyms and abbreviations, chemical names, and units of measure used in this document. Some acronyms used only in tables may be defined only in those tables.

### GENERAL ACRONYMS AND ABBREVIATIONS

ACEC Area of Critical Environmental Concern
AGFD Arizona Game and Fish Department
AGR aboveground retort
ANFO ammonium nitrate and fuel oil

API American Petroleum Institute

APLIC Avian Power Line Interaction Committee

APP Avian Protection Plan
AQRV air quality related value
ARCO Atlantic Richfield Company
ATP Alberta Taciuk Process

AWEA American Wind Energy Association

BA biological assessment
BCD barrels per calendar day
BLM Bureau of Land Management
BMP best management practice
BO biological opinion

BOR U.S. Bureau of Reclamation

BPA Bonneville Power Administration

BSD barrels per stream day

CAA Clean Air Act

CAPP Canadian Association of Petroleum Producers
CARB California Air Resources Board
CASTNET Clean Air Status and Trends NETwork

CBOSC Cathedral Bluffs Oil Shale Company
CCW coal combustion waste

CDOT Colorado Department of Transportation

CDPHE Colorado Department of Public Health and Environment

CDW Colorado Division of Wildlife
CEQ Council on Environmental Quality
CFR Code of Federal Regulations
CHL combined hydrocarbon lease

CIRA Cooperative Institute for Research in the Atmosphere

CPC Center for Plant Conservation

CRBSCF Colorado River Basin Salinity Control Forum

CRS Colorado Revised Statutes

CRSCP Colorado River Salinity Control Program
CSS cyclic steam stimulation

CSS cyclic steam stimulation
CSU Controlled Surface Use
CWA Clean Water Act

CWCB Colorado Water Conservation Board

DOD U.S. Department of Defense
DOE U.S. Department of Energy
DOI U.S. Department of Interior
U.S. Department of Labor
DOT U.S. Department of Transportation

EA environmental assessment

EGL EGL Resources, Inc.

EIA Energy Information Administration
E-ICP bare electrode in situ conversion process
EIS environmental impact statement

EMF electric and magnetic fields E.O. Executive Order

EOR enhanced oil recovery
EPA U.S. Environmental Protection Agency

EPRI Electric Power Research Institute
EQIP Environmental Quality Incentives Program
ESA Endangered Species Act of 1973

EUB Alberta Energy and Utilities Board

FHWA Federal Highway Administration

FLPMA Federal Land Policy and Management Act of 1976

FONSI Finding of No Significant Impact

FR Federal Register

FTE full-time equivalent FY fiscal year

GCR gas combustion retort GHG greenhouse gas

GIS geographic information system

GSENM Grand Staircase-Escalante National Monument

HAP hazardous air pollutant HAZCOM hazard communication HMA Herd Management Area

HMMH Harris Miller Miller & Hanson, Inc.

I-70 Interstate 70

IARC International Agency for Research on Cancer

ICP in situ conversion process

IEC International Electrochemical Commission
IPPC Intergovernmental Panel on Climate Change

ISA Instant Study Area

ISWS Illinois State Water Survey

JMH CAP Jack Morrow Hills Coordinated Activity Plan

KOP key observation point

KSLA Known Sodium Leasing Area

LAU Lynx Analysis Unit
LPG liquefied petroleum gas
Ldn day-night average sound level
Lea equivalent sound pressure level

M&I municipal and industrial MFP Management Framework Plan modified in situ recovery MIS MLA. Mineral Leasing Act MMC. Multi Minerals Corporation MMTA Mechanically Mineable Trona Area MOU Memorandum of Understanding MSHA Mine Safety and Health Administration

MSL mean sea level MTR military training route

NAAQS National Ambient Air Quality Standards NADP National Atmospheric Deposition Program

NAGPRA Native American Graves Protection and Repatriation Act

NCA National Conservation Area NCDC National Climate Data Center

NEC National Electric Code

NEPA National Environmental Policy Act of 1969 NHPA National Historic Preservation Act of 1966 NLCS National Landscape Conservation System NMFS National Marine Fisheries Service

NNHP Nevada Natural Heritage Program

NOI Notice of Intent

NORM naturally occurring radioactive materials

NOSR Naval Oil Shale Reserves

NPDES National Pollutant Discharge Elimination System

NPS National Park Service NRA National Recreation Area

NRHP National Register of Historic Places

NSC National Safety Council

NSO No Surface Occupancy

NWCC National Wind Coordinating Committee

OHV off-highway vehicle

OOSI Occidental Oil Shale, Inc.

OPEC Organization of Petroleum Exporting Countries

OSEC Oil Shale Exploration Company

OSHA Occupational Safety and Health Administration

OTA Office of Technology Assessment

PA Programmatic Agreement

PADD Petroleum Administration for Defense District

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

PEIS programmatic environmental impact statement

PFYC Potential Fossil Yield Classification

P.L. Public Law

PM particulate matter

PM<sub>2.5</sub> particulate matter with a mean aerodynamic diameter of 2.5 µm or less PM<sub>10</sub> particulate matter with a mean aerodynamic diameter of 10 µm or less

PPE personal protective equipment

PSD Prevention of Significant Deterioration

R&I relevance and importance

RBOSC Rio Blanco Oil Shale Company

RCRA Resource Conservation and Recovery Act of 1976

RD&D research, development, and demonstration

RF radio frequency

RMP Resource Management Plan

ROD Record of Decision ROI region of influence

ROW right-of-way

SAGD steam-assisted gravity damage

SDWA Safe Drinking Water Act of 1974 SFC Synthetic Fuels Corporation

SHPO State Historic Preservation Office(r)
SIP State Implementation Plan

SIP State Implementation Plan
SMA Special Management Area
SMP suggested management practice

SPR Strategic Petroleum Reserve SRMA Special Recreation Management Area

SSI self-supplied industry

STSA Special Tar Sand Area

SWCA SWCA, Inc., Environmental Consultants SWPPP Stormwater Pollution Prevention Plan

TDS total dissolved solids
THAI toe to head air injection
TIS true in situ recovery
TMDL Total Maximum Daily Load

TOSCO The Oil Shale Corporation

TSCA Toxic Substances Control Act of 1976 TSDF treatment, storage, and disposal facility

UDEQ Utah Department of Environmental Quality
UDNR Utah Department of Natural Resources
UDWR Utah Division of Wildlife Resources
USACE U.S. Army Corps of Engineers
USC United States Code
U.S. Department of Agriculture

USFS U.S. Forest Service
USFWS U.S. Fish and Wildlife Service
USGS U.S. Geological Survey

VCRS Visual Contrast Rating System VOC volatile organic compound VRI visual resource inventory VRM Visual Resource Management

WDEQ Wyoming Department of Environmental Quality

WGFD Wyoming Game and Fish Department
WRAP Western Regional Air Partnership
WRCC Western Regional Climate Center
WSA Wilderness Study Area

WSR Wild and Scenic River
WTGS wind turbine generator system
WYCRO Wyoming Cultural Records Office

#### CHEMICALS

 $NO_v$ nitrogen oxides CH<sub>4</sub> methane CO carbon monoxide ozone Oз carbon dioxide Pb lead CO2 sulfur dioxide H<sub>2</sub>S hydrogen sulfide SO2 NH<sub>3</sub> ammonia  $SO_x$ sulfur oxides NO<sub>2</sub> nitrogen dioxide

### UNITS OF MEASURE

| ac-ft           | acre foot (feet)             | kWh             | kilowatt-hour(s)           |
|-----------------|------------------------------|-----------------|----------------------------|
| bbl             | barrel(s)                    | L               | liter(s)                   |
| Btu             | British thermal unit(s)      | lb              | pound(s)                   |
| °C              | degree(s) Celsius            | m               | meter(s)                   |
| cfs             | cubic foot (feet) per second | m <sup>2</sup>  | square meter(s)            |
| cm              | centimeter(s)                | m <sup>3</sup>  | cubic meter(s)             |
|                 |                              | mg              | milligram(s)               |
| dB              | decibel(s)                   | mi              | mile(s)                    |
| dB(A)           | A-weighted decibel(s)        | mi <sup>2</sup> | square mile(s)             |
|                 |                              | min             | minute(s)                  |
| °F              | degree(s) Fahrenheit         | mm              | millimeter(s)              |
| ft              | foot (feet)                  | $mm^2$          | square micrometers         |
| $ft^2$          | square foot (feet)           | MMBtu           | thousand Btu               |
| ft <sup>3</sup> | cubic foot (feet)            | mph             | mile(s) per hour           |
|                 |                              | MW              | megawatt(s)                |
| g               | gram(s)                      |                 |                            |
| gal             | gallon(s)                    | Pa              | pascal(s)                  |
| GJ              | gigajoule(s)                 | ppm             | part(s) per million        |
| gpd             | gallon(s) per day            | psi             | pound(s) per square inch   |
| gpm             | gallon(s) per minute         | _               |                            |
| GW              | gigawatt(s)                  | rpm             | rotation(s) per minute     |
| GWh             | gigawatt hour(s)             |                 | •                          |
|                 |                              | S               | second(s)                  |
| h               | hour(s)                      | scf             | standard cubic foot (feet) |
| ha              | hectare(s)                   |                 |                            |
| Hz              | hertz                        | t               | metric ton(s)              |
| in.             | inch(es)                     | W               | watt(s)                    |
| K               | degree(s) Kelvin             | $vd^2$          | square yard(s)             |
| kcal            | kilocalorie(s)               | yd <sup>3</sup> | cubic yard(s)              |
| kg              | kilogram(s)                  | yr              | year(s)                    |
| km              | kilometer(s)                 |                 | •                          |
| km <sup>2</sup> | square kilometer(s)          | μg              | microgram(s)               |
| kPa             | kilopascal(s)                | μm              | micrometer(s)              |
| kV              | kilovolt(s)                  | μm <sup>2</sup> | square micrometer(s)       |
| kW              | kilowatt(s)                  | μm <sup>3</sup> | cubic micrometer(s)        |
|                 |                              |                 |                            |

### ENGLISH/METRIC AND METRIC/ENGLISH EQUIVALENTS

The following table lists the appropriate equivalents for English and metric units.

| Multiply                             | Ву       | To Obtain                            |
|--------------------------------------|----------|--------------------------------------|
| English/Metric Equivalents           |          |                                      |
| acres                                | 0.4047   | hectares (ha)                        |
| cubic feet (ft3)                     | 0.02832  | cubic meters (m3)                    |
| cubic yards (yd3)                    | 0.7646   | cubic meters (m3)                    |
| degrees Fahrenheit (°F) -32          | 0.5555   | degrees Celsius (°C)                 |
| Feet (ft)                            | 0.3048   | meters (m)                           |
| gallons (gal)                        | 3.785    | liters (L)                           |
| gallons (gal)                        | 0.003785 | cubic meters (m3)                    |
| inches (in.)                         | 2.540    | centimeters (cm)                     |
| miles (mi)                           | 1.609    | kilometers (km)                      |
| miles per hour (mph)                 | 1.609    | kilometers per hour (kph)            |
| pounds (lb)                          | 0.4536   | kilograms (kg)                       |
| short tons (tons)                    | 907.2    | kilograms (kg)                       |
| short tons (tons)                    | 0.9072   | metric tons (t)                      |
| square feet (ft <sup>2</sup> )       | 0.09290  | square meters (m <sup>2</sup> )      |
| square vards (yd2)                   | 0.8361   | square meters (m <sup>2</sup> )      |
| square miles (mi <sup>2</sup> )      | 2.590    | square kilometers (km <sup>2</sup> ) |
| yards (yd)                           | 0.9144   | meters (m)                           |
|                                      |          |                                      |
| Metric/English Equivalents           | 0.000    |                                      |
| centimeters (cm)                     | 0.3937   | inches (in.)                         |
| cubic meters (m <sup>3</sup> )       | 35.31    | cubic feet (ft <sup>3</sup> )        |
| cubic meters (m <sup>3</sup> )       | 1.308    | cubic yards (yd3)                    |
| cubic meters (m <sup>3</sup> )       | 264.2    | gallons (gal)                        |
| degrees Celsius (°C) +17.78          | 1.8      | degrees Fahrenheit (°F)              |
| hectares (ha)                        | 2.471    | acres                                |
| kilograms (kg)                       | 2.205    | pounds (lb)                          |
| kilograms (kg)                       | 0.001102 | short tons (tons)                    |
| kilometers (km)                      | 0.6214   | miles (mi)                           |
| kilometers per hour (kph)            | 0.6214   | miles per hour (mph)                 |
| liters (L)                           | 0.2642   | gallons (gal)                        |
| meters (m)                           | 3.281    | feet (ft)                            |
| meters (m)                           | 1.094    | yards (yd)                           |
| metric tons (t)                      | 1.102    | short tons (tons)                    |
| square kilometers (km <sup>2</sup> ) | 0.3861   | square miles (mi <sup>2</sup> )      |
| square meters (m <sup>2</sup> )      | 10.76    | square feet (ft <sup>2</sup> )       |
| square meters (m <sup>2</sup> )      | 1.196    | square yards (yd <sup>2</sup> )      |

This page intentionally left blank.

#### EXECUTIVE SUMMARY

#### ES.1 BACKGROUND TO THE PEIS

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law (P.L.) 109-58. In Section 369 of this Act, also known as the "Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005," Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. To support this declaration of policy, Congress directed the Secretary of the Interior (the Secretary) to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of the principle directions was for the Secretary to "...Complete a programmatic environmental impact statement for a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado. Utah, and Wyoming."

In furtherance of this direction, the U.S. Bureau of Land Management (BLM) proposes to amend 12 land use plans in the three states to describe the most geologically prospective areas administered by the BLM in these states where oil shale and tar sands resources are present, and to decide which of those areas will be open for application for commercial leasing, exploration, and development. The analyses in this programmatic environmental impact statement (PEIS) are being developed to analyze the direct, indirect, and cumulative environmental, cultural, and socioeconomic impacts of the proposed action and its alternatives. Preparation of this PEIS will comply with the requirements of the Federal Land Policy and Management Act; the National Environmental Policy Act of 1969 (NEPA); the President's Council on Environmental Quality's (CEQ's) NEPA implementing regulations; the BLM's land use planning regulations contained in Part 1600 of Title 43 of the Code of Federal Regulations (43 CFR Part 1600); the BLM's Land Use Planning Handbook (H-1601-1) (BLM 2005); and the BLM's NEPA Handbook (H-1790-1) (BLM 1988a).

#### ES.2 DESCRIPTION OF THE PLANNING AREA

The study area for the oil shale resources includes the most geologically prospective area of the Green River Formation located in the Piceance, Uinta, Green River, and Washakie Basins. The BLM has identified the most geologically prospective areas for oil shale development on the basis of the grade and thickness of the deposits within the Green River Formation. There are approximately 2.3 million acres of BLM-administered lands within this area that are the subject of this PEIS. For the tar sands resources, the study area includes those locations in Utah designated as Special Tar Sand Areas (STSAs) in the geologic reports (minutes) prepared by the U.S. Geological Survey in 1980 (USGS 1980a–k) and formalized by Congress in the Combined Hydrocarbon Leasing Act of 1981 (P.L. 97-78). The STSAs contain approximately 656,000 acres of land administered by the BLM. The PEIS study areas for both oil shale and tar sands include public lands administered by the BLM. The PEIS study areas for both oil shale not the sands include public lands administered by the BLM.

the surface estate and subsurface mineral rights. In addition, BLM-administered lands where the federal government owns the subsurface mineral rights but the surface estate is owned by Tribes, states, or private parties (i.e., split estate lands) are included in the scope of this analysis.

#### ES.3 SCOPING PROCESS

The BLM published the Notice of Intent (NOI) to prepare the Oil Shale and Tar Sands Resources Leasing PEIS in the Federal Register (T0 FR 238) on December 13, 2005 (the name has subsequently been changed to the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement). The NOI identified planning criteria, initiated the public scoping process, and invited interested members of the public to provide comments on the scope and objectives of the PEIS and to identify issues to be addressed in the planning process. The BLM conducted scoping from December 13, 2005, through January 31, 2006. During that period, the BLM invited the public and interested groups to provide information on resource use, land allocations, and development and protection opportunities for consideration in preparation of the PEIS. Comments were received in the broad categories of environmental concerns, socioeconomics, resource and technology concerns, stakeholder involvement, alternatives, land use planning, cumulative impacts, mitigation and reclamation, and policy. It is estimated that approximately 5,000 people participated in the scoping process by attending public meetings, providing comments, requesting information, or visiting the project Web site.

The BLM published a scoping report (BLM 2006) that summarizes and categorizes the major themes, issues, concerns, and comments expressed by private citizens, government agencies, private firms, and nongovernmental organizations. These comments were considered in developing the alternatives in this PEIS, and the significant issues identified have been analyzed. Copies of the scoping report, individual letters, electronic comments, and other written comments received during scoping are available on the Oil Shale and Tar Sands PEIS Web site (http://ostseis.anl.gov).

#### ES.4 COOPERATING AGENCIES

This PEIS has been prepared in cooperation with 14 federal, state, and local governmental organizations. Interactions with the cooperating agencies have included notification of the opening of the scoping period, briefings and discussions on the draft alternatives, review of preliminary, internal drafts of the PEIS, and informal meetings and discussions. In addition, the BLM has consulted with the U.S. Environmental Protection Agency on the PEIS.

The BLM has been working collaboratively with our cooperating agencies throughout the process. The BLM initially intended the final PEIS to provide the NEPA analysis not only for the amendment of land use plans but also for the issuance of leases for the commercial development of both oil shale and tar sands resources. The BLM developed and circulated among cooperating agencies, an internal draft PEIS. Based on their review of the document, many of the cooperating

agencies commented that the lack of information about specific technologies and their impacts caused BLM's analysis to be too speculative at this time to support a decision to issue any leases. As a result, the BLM has elected not to issue leases for commercial development of oil shale on the basis of this PEIS.

# ES.5 FACTORS COMMON TO BOTH OIL SHALE AND TAR SANDS

Once the PEIS has been completed and additional information becomes available, the BLM will conduct NEPA analyses, including consideration of direct, indirect, and cumulative effects, reasonable alternatives, and possible mitigation measures, as well as what level of development may be anticipated. On the basis of this NEPA analysis to be conducted at the lease stage, the BLM will consider further amendment of one or more plans, including, but not limited to, the establishment of general lease stipulations and best management practices.

In both of the programmatic action alternatives, leasing would occur utilizing a lease-byapplication process. Under this process, the BLM would issue a call for applications for commercial leases. In response, companies would be required to identify the specific lands that they are interested in as part of their lease application package. It is also possible that the BLM would identify specific tracts to be leased in the call for applications. This process requires that NEPA analyses be conducted prior to lease issuance. Information collected as part of the lease application process would be incorporated into the NEPA analyses. Applicants would be required to identify key information regarding aspects of the proposed development needed to support a complete NEPA review (e.g., technologies to be employed, level of planned development, anticipated off-site impacts, and strategies to comply with regulatory requirements). During this NEPA review, the BLM would identify and establish appropriate lease stipulations to mitigate anticipated impacts. In addition, the subsequent approval of projectspecific plans of development would require NEPA review to (1) consider site-specific and project-specific factors and (2) identify and require appropriate mitigation measures as needed to control impacts beyond those established in the lease stipulations. The NEPA review for the plan of development may be incorporated into the NEPA review conducted for the lease application, if adequate operational data are provided by the applicant(s).

#### ES.6 OIL SHALE AND TAR SANDS ALTERNATIVES

Tables ES-1 and ES-2 summarize the main components of the three alternatives for both oil shale and tar sands. The BLM has identified Alternative B as the Preferred Alternative for both oil shale and tar sands because it would make the largest amount of potential oil resources available for application for leasing, while still providing for an environmentally sound program, and would provide the greatest flexibility in locating future development. The BLM's current approach is designed to ensure that oil shale technologies can operate at economic and environmentally acceptable levels before the agency authorizes full-scale commercial leasing on public lands.

TABLE ES-1 Summary of the Oil Shale Alternatives, Colorado, Utah, and Wyoming<sup>a</sup>

| Condition                                                             | Alternative A,<br>No Action                                                                                                                                    | Programmatic Alternative B,<br>Preferred Alternative                                                                                                                                                                                                                                                                                                                                                                                                 | Programmatic Alternative C                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Potential area<br>made<br>available for<br>application for<br>leasing | 960 acres leased for<br>6 RD&D projects<br>(160 acres each),<br>including 5 projects<br>in Colorado and<br>I project in Utah.<br>No land use plans<br>amended. | Including the 6 RD&D projects, 1,991,222 acres would be made available for application for commercial leasing: Colorado, 399,798 acres Utah, 630,971 acres Wyoming, 1,000,453 acres Wyoming, 1,000,453 acres Amend 9 existing land use plans. Potential shale oil resource present. <sup>b</sup> Colorado — 16 billion bbl Utah — 28 billion bbl Wyoming — 17 billion bbl                                                                            | Including the 6 RD&D projects, 830,296 acres would be made available for application for commercial leasing: Colorado, 40,325 acres Utah, 490,460 acres Wyoming, 299,511 acres Amend 9 existing land use plans. Potential shale oil resource present. <sup>b</sup> Colorado — 2 billion bbl Utah — 21 billion bbl Wyoming — 8 billion bbl Wyoming — 8 billion bbl |
| Technologies<br>considered                                            | 5 in situ projects in<br>Colorado,<br>1 underground mine<br>with surface retort in<br>Utah.                                                                    | In situ processes<br>Underground mine with surface retort<br>Surface mine with surface retort (only<br>in Utah and Wyoming in areas where<br>the overburden is 0 to 500 ft thick)                                                                                                                                                                                                                                                                    | Same as Alternative B.                                                                                                                                                                                                                                                                                                                                            |
| Lands<br>excluded from<br>commercial<br>leasing                       | Not applicable; no commercial leasing would occur under this alternative.                                                                                      | Wilderness Areas, WSAs, and other areas that are part of the NLCS. Existing ACEOs that are currently closed to mineral development. The Mechanically Mineable Trona Area (MMTA) in Wyoming. Segments of rivers determined to be eligible for WSR status by virtue of a WSR inventory. Historic trails. Monument Valley Management Area in Wyoming. Management Area 3, Jack Morrow Hills Planning Area in Wyoming. Hocroprosted town and city limits. | Same as Alternative B.                                                                                                                                                                                                                                                                                                                                            |

TABLE ES-1 (Cont.)

| Condition                                          | Alternative A,<br>No Action                                                        | Programmatic Alternative B, Preferred Alternative                                                                                                         | Programmatic Alternative C                                                                                                                                                                                                                                                                             |
|----------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Additional<br>location-<br>specific<br>limitations | Not applicable; no<br>commercial leasing<br>would occur under<br>this alternative. | None                                                                                                                                                      | All existing ACECs would be excluded from application for commercial leasing. All lands where surface-disturbance restrictions or seasonal limitations are in place in existing land use plant in order to protect known sensitive resources would be excluded from application for commercial leasing |
| Regulatory<br>and<br>operational<br>constraints    | Not applicable; no commercial leasing would occur under this alternative.          | All commercial development would be<br>conducted in compliance with federal,<br>state, and local regulatory requirements<br>and established BLM policies. | Same as Alternative B.                                                                                                                                                                                                                                                                                 |

a Abbreviations: ACEC = Area of Critical Environmental Concern; NLCS = National Landscape Conservation System; RD&D = research, development, and demonstration; WSA = Wilderness Study Area

#### ES.7 ANALYSIS OF IMPACTS IN THE PEIS

The BLM has determined that the amendment of land use plans to designate lands as available for application for commercial leasing would have no impact on the environment. Further, amendments do not commit the BLM to a particular course of action since they merely allow the BLM to consider granting leases for oil shale or tar sands development in the future. Nevertheless, Alternatives B and C are both intended to facilitate the establishment of a long-term program of commercial leasing, and as such, their potential for future impacts on the environment have been analyzed at the programmatic level with the understanding that future leasing and development will require site-specific NEPA evaluation. As part of this PEIS, potential impacts of currently known technologies also have been described at the programmatic level to aid decision makers and readers in understanding the potential effects of future development.

#### ES.7.1 Alternative A for Oil Shale

This no action alternative includes only the development approved in the existing RD&D leases. No land use plans would be amended to allow for additional development outside the

b These are minimum estimates intended to show the potential magnitude of the resource within the geologically prospective areas in each state.

TABLE ES-2 Summary of the Tar Sands Alternatives, Utah

| Condition                                                             | Alternative A,<br>No Action                                                           | Programmatic Alternative B,<br>Preferred Alternative                                                                                                                                                                                    | Programmatic Alternative C                                                                                                                                                                                                               |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Potential<br>area made<br>available for<br>application<br>for leasing | No tar sands<br>development<br>projected.<br>No land use plans<br>amended.            | 431,224 acres would be made available for application for commercial lease.                                                                                                                                                             | 229,038 acres would be made available for application for commercial lease.                                                                                                                                                              |
| Technologies<br>considered                                            | No tar sands<br>development<br>projected.                                             | Surface mine with surface retort<br>Surface mine with solvent extraction<br>In situ steam injection<br>In situ combustion                                                                                                               | Same as Alternative B.                                                                                                                                                                                                                   |
| Lands<br>excluded<br>from<br>commercial<br>leasing                    | Not applicable;<br>no commercial<br>leasing would<br>occur under this<br>alternative. | Wilderness Areas, WSAs, other areas that are part of the NLCS. All existing ACECs. The Circle Cliffs STSA. Segments of rivers determined to be eligible for WSR status by virtue of a WSR inventory. Incorporated town and city limits. | Same as Alternative B.                                                                                                                                                                                                                   |
| Additional<br>location-<br>specific<br>limitations                    | Not applicable;<br>no commercial<br>leasing would<br>occur under this<br>alternative. | None                                                                                                                                                                                                                                    | All lands where surface-disturbance<br>restrictions or seasonal limitations are<br>in place in existing land use plans in<br>order to protect known sensitive<br>resources would be excluded from<br>application for commercial leasing. |

current leases. The PEIS has incorporated findings from analyses from previous environmental documents and has conducted some additional analysis. Impacts are largely restricted to the six 160-acre parcels on which approved activities will occur with exceptions where off-lease roads or power lines may be required. Some minor impacts on sensitive species, air quality, and visual resources may occur off-site. The environmental analyses completed previously by the BLM on the projects resulted in Findings of No Significant Impact.

#### ES.7.2 Alternative A for Tar Sands

Under this no action alternative, no land use plans would be amended to identify lands that would be available for application for commercial leasing and development of tar sands. In addition, there is no projected development of tar sands under this alternative.

# ES.7.3 Programmatic Alternatives B and C for Oil Shale and Tar Sands

The actions evaluated in both Alternative B and C are to amend existing land use plans to designate lands that would be open for application for commercial oil shale or tar sands leasing. Chapter 6 of the PEIS contains the analysis of the impacts of each of the alternatives, compares the alternatives, and places them in the context of other, ongoing developments within the study area.

The potential direct and indirect impacts of technologies likely to be employed in commercial development that would be made possible by the proposed land use plan amendments are discussed in Chapters 4 and 5 of the PEIS. The PEIS contains sections that identify the potential impact-producing factors associated with individual commercial projects, considering existing technologies and their associated activities. The impact-producing factors describe what each project might involve, given an assumed production level or scale of operations, and include factors such as the amount of land disturbed, amount of water used, and number of employees. The PEIS describes how resources present in the study area (and beyond, in some cases) could be impacted by a commercial technology and presents information about potential mitigation measures that could be applied to reduce impacts at the site-specific level. The magnitude of impacts and the applicability and effectiveness of mitigation measures cannot be assessed at the programmatic level and will need to be evaluated on a project-by-project basis with consideration of site-specific factors (e.g., existing land use, presence of paleontological and cultural resources, proximity to surface water, groundwater conditions, existing ecological resources, and proximity to visual resources) and project-specific factors (e.g., which technologies would be used, size of operations, water consumption and wastewater generation, air emissions, number of employees, and development time lines).

#### ES.8 REFERENCES

BLM, 1988, National Environmental Policy Act Handbook, BLM Handbook H-1790-1, Washington, D.C., Oct.

BLM, 2005, Land Use Planning Handbook, BLM Handbook H-1601-1, Washington, D.C., March

BLM, 2006, Summary of Public Scoping Comments for the Oil Shale and Tar Sands Resources Leasing Programmatic Environmental Impact Statement, prepared by Argonne National Land Management, Solid Minerals Group, Washington, D.C., Jan.

USGS (U.S. Geological Survey), 1980a, Argyle Canyon–Willow Creek, Utah Tar Sand Leasing Minutes No. 9, Minutes of the Mineral Land Evaluation Committee, Nov. 10.

USGS, 1980b, Asphalt Ridge—Whiterocks and Vicinity, Utah Tar Sand Leasing Minutes No. 3, Minutes of the Mineral Land Evaluation Committee, Sept. 23.

USGS, 1980c, Circle Cliffs East and West Flanks, Utah Tar Sand Leasing Minutes No. 5, Minutes of the Mineral Land Evaluation Committee. Sept. 23.

USGS, 1980d, Hill Creek, Utah Tar Sand Leasing Minutes No. 6, Minutes of the Mineral Land Evaluation Committee, Nov. 10.

USGS, 1980e, Pariette, Utah Tar Sand Leasing Minutes, Minutes of the Mineral Land Evaluation Committee, Nov. 10.

USGS, 1980f, P.R. Spring, Utah Tar Sand Leasing Minutes, Minutes of the Mineral Land Evaluation Committee, Sept. 23.

USGS, 1980g, Raven Ridge–Rim Rock and Vicinity, Utah Tar Sand Leasing Minutes No. 8, Minutes of the Mineral Land Evaluation Committee. Nov. 10

USGS, 1980h, San Rafael Swell, Utah Tar Sand Leasing Minutes No. 7, Minutes of the Mineral Land Evaluation Committee, Nov. 10.

USGS, 1980i, Sunnyside and Vicinity, Utah Tar Sand Leasing Minutes No. 4, Minutes of the Mineral Land Evaluation Committee, Sept. 23.

USGS, 1980j, *Tar Sand Triangle, Utah Tar Sand Leasing Minutes No.* 2, Minutes of the Mineral Land Evaluation Committee, Sept. 23.

USGS, 1980k, White Canyon, Utah Tar Sand Leasing Minutes No. 11, Minutes of the Mineral Land Evaluation Committee, Nov. 10.

#### 1 INTRODUCTION

The U.S. Department of the Interior (DOI), Bureau of Land Management (BLM), proposes to amend 12 resource management plans (RMPs) to designate public lands managed by the BLM in Colorado, Utah, and Wyoming as being available for application for commercial leasing for oil shale and tar sands development. This programmatic environmental impact statement (PEIS) evaluates the potential effects of amending these RMPs to make these designations. Prior to issuance of any commercial leases on lands that may be designated as available for these uses, additional environmental analysis will be required to analyze the impacts of the proposed technology and of any reasonable known alternative technologies for development of the oil shale or tar sands resources. Another review under the National Environmental Policy Act (NEPA) would be undertaken before approval of a plan of development, which would include approval of particular activities at the specific locations where such development would take place. Appropriate stipulations and mitigation measures would also be identified through these additional environmental analyses.

The BLM administers approximately 258 million acres of public lands and 700 million acres of subsurface mineral estate in the United States. This administrative responsibility must address stewardship, conservation, and resource use, including the development of energy resources in an environmentally sound manner. Management of these public lands must be conducted in accordance with the requirements of the Federal Land Policy and Management Act of 1976 (FLPMA) (United States Code, Title 43, Section 1701 et seq. [43 USC 1701 et seq.]) and many other public laws. FLPMA requires the BLM to develop land use plans, also called RMPs, to guide the management of the public lands it administers. In order for a commercial leasing program to occur on the public lands, the land use plans for where such leasing would occur must be amended to provide for the leasing. This PEIS is being developed to support the amendment of the land use plans covering those areas where commercial leasing may eventually be proposed.

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law (P.L.) 109-58. In Section 369 of this Act, also known as the "Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005," Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior (the "Secretary") to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. In summary, Congress directed that the Secretary shall:

 "...Complete a programmatic environmental impact statement for a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming";

- "...Not later than 6 months after completion of the programmatic environmental impact statement... the Secretary shall publish a final regulation establishing such program";
- "...Consult with the Governors of States with significant oil shale and tar
  sands resources on public lands, representatives of local governments in such
  States, interested Indian tribes, and other interested persons, to determine the
  level of support and interest in the States in the development of tar sands and
  oil shale resources": and
- "If the Secretary finds sufficient support and interest exists in a State, the Secretary may conduct a lease sale in that State under the commercial leasing program."

In addition, Section 369(n) of the Energy Policy Act of 2005 requires the Secretary to consider and give priority to the use of land exchanges to facilitate the recovery of unconventional fuels. The Act states "... to facilitate the recovery of oil shale and tar sands, especially in areas where Federal, State, and private lands are intermingled, the Secretary shall consider the use of land exchanges where appropriate and feasible to consolidate land ownership and mineral interests into manageable areas." The Act also dictates that any land exchange undertaken shall be implemented in accordance with Section 206 of FLPMA.

#### 1.1 PURPOSE AND NEED

The BLM proposes to amend 12 land use plans in Colorado, Utah, and Wyoming to describe the most geologically prospective areas administered by the BLM in these states where oil shale and tar sands resources are present, and to decide which of those areas will be open to application for commercial leasing, exploration, and development. The BLM proposes to amend these land use plans to provide the opportunity for leasing. The analyses in this PEIS are being developed to analyze the effects of this proposed action and its alternatives. With the exception of the White River and Book Cliffs RMPs, the land use plans currently in place do not address development of oil shale resources. In Utah, the current land use plans do not address the development of tar sands separate and apart from combined hydrocarbon leases (CHLs). Therefore, a plan amendment(s) would be a prerequisite to establishing commercial lease, exploration, and development of these resources.

This Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS is being prepared to meet the requirements established by Congress in Section 369 of the Energy Policy Act of 2005. Preparation of this PEIS will comply with the requirements of FLPMA; the National Environmental Policy Act of 1969 (NEPA); the President's Council on Environmental Quality's (CEO's) NEPA implementing regulations; the BLM's land use planning regulations contained in

Part 1600 of Title 43 of the Code of Federal Regulations (43 CFR Part 1600); the BLM's Land Use Planning Handbook (H-1601-1) (BLM 2005); and the BLM's NEPA Handbook (H-1790-1) (BLM 1988a).

Section 369 of the Energy Policy Act of 2005 also requires that BLM publish regulations establishing an oil shale and tar sands commercial leasing program. The BLM considered whether to include an analysis of the potential environmental effects of the establishment of such regulations in this PEIS but determined not to do so, because development of the regulations involved different issues, was proceeding according to a different schedule, and would be better served by an environmental analysis prepared specifically to consider the rulemaking itself. The analysis in this PEIS will help inform that initiative, in part by providing the basis for a framework for establishing application requirements.

#### 1.2 SCOPE OF THE ANALYSIS

The Notice of Intent (NOI) to prepare the Oil Shale and Tar Sands Resources Leasing PEIS was published in Volume 70, pages 73791–73792, of the Federal Register (70 FR 73791–73792) on December 13, 2005 (the title has subsequently been changed to the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS). As stated in the NOI, this PEIS evaluates the potential impacts of designating lands as available for commercial leasing of oil shale and tar sands resources that are located on public lands in Colorado, Utah, and Wyoming (Figures 1.2-1 and 1.2-2). The scope of the analysis includes an assessment of the direct, indirect, and cumulative environmental, cultural, and socioeconomic impacts associated with commercial leasing of these resources under a range of alternatives.

Specifically, the study area for the oil shale resources includes the most geologically prospective resources of the Green River Formation located in the Piceance, Uinta, Green River, and Washakie Basins. I The BLM has identified the most geologically prospective areas for oil shale development on the basis of the grade and thickness of the deposits. For the purposes of this PEIS, the most geologically prospective oil shale resources in Colorado and Utah are those deposits that yield 25 gal of shale oil per ton of rock (gal/ton) or more and are 25 ft thick or greater. In Wyoming, where the oil shale resource is not of as high a quality as it is in Colorado and Utah, the most geologically prospective oil shale resources are those deposits that yield 15 gal/ton or more shale oil and are 15 ft thick or greater. Figure 1.2-1 shows the oil shale basins,

<sup>1</sup> The Piceance Basin is not referred to or described consistently in published literature. Some publications describe the Piceance Basin as an area encompassing more than 7,000 mi<sup>2</sup> and consisting of a northern province and a southern province, which are roughly separated by the Colorado River and Interstate 70 (I-70). Other publications refer to the southern province as the Grand Mesa Basin. Oil shale is present in both provinces, with the richest oil shale deposits in the north, and smaller, isolated deposits in the south. Various authors have used the terms "Piceance Basin" and "Piceance Creek Basin" to refer to either the overall basin or the northern area. In this PEIS, the focus is on the northern province, where the richest and thickest reserves are located, and the study area will be referred to as the "Piceance Basin."

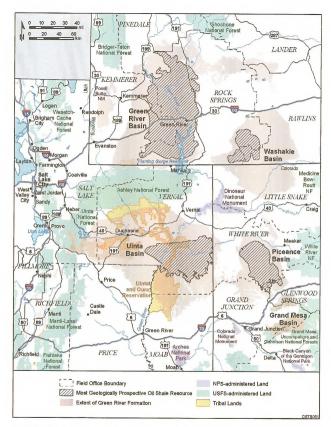



FIGURE 1.2-1 Most Geologically Prospective Oil Shale Resources within the Green River Formation Basins in Colorado, Utah, and Wyoming

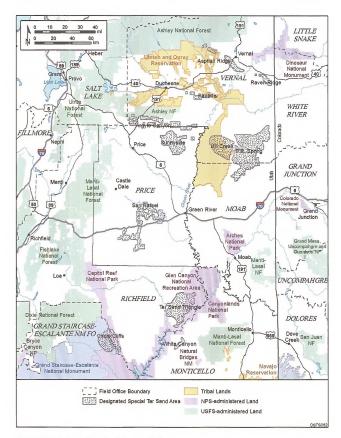



FIGURE 1.2-2 Special Tar Sand Areas in Utah

that were mapped on the basis of the extent of the Green River Formation and the most geologically prospective oil shale resources within those basins.<sup>2</sup>

For the tar sands resources, the study area includes those locations designated as Special Tar Sand Areas (STSAs) in the geologic reports (minutes) prepared by the USGS in 1980 (USGS 1980a-k) and formalized by Congress in the Combined Hydrocarbon Leasing Act of 1981 (P.L. 97-78). Eleven STSAs were identified across different sedimentary provinces in Utah (Figure 1.2-2): Argyle Canyon–Willow Creek (hereafter referred to as Argyle Canyon), Asphalt Ridge–Whiterocks and Vicinity (hereafter referred to as Asphalt Ridge), Circle Cliffs East and West Flanks (hereafter referred to as Circle Cliffs), Hill Creek, Pariette, P.R. Spring, Raven Ridge–Rim Rock and Vicinity (hereafter referred to as Raven Ridge), San Rafael Swell, Sunnyside and Vicinity (hereafter referred to as Sunnyside), Tar Sand Triangle, and White Canyon.

The oil shale and tar sands resources that fall within the defined study areas are located within the jurisdiction of 12 separate BLM Field Offices or administrative units. These include the Glenwood Springs, Grand Junction, and White River Field Offices in Colorado; the Moab, Monticello, Price, Richfield, and Vernal Field Offices and the Grand Staircase—Escalante National Monument (GSENM) in Utah; and the Kemmerer, Rawlins, and Rock Springs Field Offices in Wyoming, 4 With the exception of the GSENMS, 5 this PEIS will evaluate the alternatives that would include the amending of existing BLM land use plans in these units to designate lands as available for application for commercial leasing. The subsequent Record of Decision (ROD) will modify the decisions in the land use plans, as appropriate

The scope of this PEIS includes public lands administered by the BLM where the federal government owns both the surface estate and subsurface mineral rights. In addition,

Numerous sources of information were used to define the boundaries of the Green River Formation basins and the most geologically prospective oil shale resources. The basin boundaries were defined by digital data provided by the U.S. Geological Survey (USGS) taken from Green (1992), Green and Drouillard (1994), and Hintze et al. (2000). The most geologically prospective oil shale resources in the Piceance Basin were defined on the basis of digital data provided by the USGS taken from Pitman and Johnson (1978), Pitman (1979), and Pitman et al. (1989). In Wyoming, the most geologically prospective oil shale resources were defined on the basis of detailed analyses of available oil shale assay data (Wiig 2006a,b). In Utah, the most geologically prospective oil shale resources were defined by digital data provided by the BLM Utah State Office.

The boundaries of the designated STSAs were determined by the Secretary of the Interior's orders of November 20, 1980 (45 FR 76800–76801) and January 21, 1981 (46 FR 6077–6078).

<sup>4</sup> Although the P.R. Spring STSA extends into the Moab Field Office boundary, this area is administered by the Vernal Field Office under a Memorandum of Understanding (MOU) with the Moab Field Office. Under this agreement, the Vernal Field Office administers all resources and programs, including land use planning, for the entire P.R. Spring STSA.

<sup>5</sup> Like other National Monuments, the GSENM in Utah, which overlies the Circle Cliffs STSA, will be excluded from future leasing for tar sands development. However, at this time, there are two pending conversion leases within the GSENM that could potentially be converted to CHLs and developed under the Combined Hydrocarbon Leasing Program. For more information about the Combined Hydrocarbon Leasing Program and pending conversion leases for tar sands development, see Section 1.4.2. Because there will be no future tar sands leasing within the GSENM, the impacts of commercial tar sands leasing and development in the Circle Cliffs STSA are not evaluated in this PEIS.

BLM-administered lands where the federal government owns the subsurface mineral rights but the surface estate is owned by Tribes, states, or private parties (i.e., split estate lands) are included in the scope of this analysis. Tribal lands on which both the surface estate and subsurface mineral estate are owned by the Tribe are not included in the scope of analysis of this PEIS.

The BLM has determined that certain lands within the oil shale and tar sands resource areas are excluded from commercial leasing on the basis of existing laws and regulations, Executive Orders, administrative land use plan designations as noted below, or withdrawals. As a result, commercial leasing is excluded from all designated Wilderness Areas, Wilderness Study Areas (WSAs), other areas that are part of the National Landscape Conservation System (NLCS) administered by the BLM (e.g., National Monuments, National Conservation Areas (NCAs), Wild and Scenic Rivers (WSRs), and National Historic and Scenic Trails), and existing Areas of Critical Environmental Concern (ACECs) that are currently closed to mineral development. As discussed in Chapter 2, additional areas are closed and will not be available for the future opportunity to lease for oil shale and tar sands on the basis of local planning decisions.

This Draft Oil Shale and Tar Sands PEIS is being prepared to meet the requirements established by Congress in Section 369 of the Energy Policy Act of 2005 and to meet the requirements of NEPA. It will amend 12 RMPs to designate lands as available for application for commercial leasing for oil shale and tar sands development on public lands in Colorado, Utah, and Wyoming managed by the DOI's BLM. Nine land use plans will be amended to designate lands as being available for commercial oil shale leasing, and six land use plans will be amended to designate lands as being available for commercial tar sands leasing. Three of the plans that are to be amended contain both oil shale and tar sands resources. Thus, a total of 12 plans will be amended.

The oil shale and tar sands alternatives are described in Chapter 2, including a summary table comparing the alternatives. Chapter 3 describes the affected environment of the study area. The potential impacts of commercial oil shale and tar sands development are described in Chapters 4 and 5, respectively. Chapter 6 assesses the impacts of the different alternatives evaluated in this PEIS, provides a comparison of the alternatives, and provides an assessment of cumulative impacts. Appendices A and B provide overviews of the oil shale and tar sands technologies that might be used over the next 20 years. Appendix C details the proposed land use plan amendments associated with the proposed alternatives. Appendix D summarizes the potentially applicable federal, state, and county regulatory requirements for oil shale and tar sands development. Appendices E and F contain relevant biological data for the three-state study area and the proposed conservation measures for the preferred alternative. Appendix G details the methodology used for the socioeconomics assessment, and Appendix H describes the approach used for interviewing selected residents of the oil shale and tar sands project area.

The analysis conducted in preparation of this PEIS was based on available and credible scientific data. As a programmatic evaluation, conducted in support of land use plan amendments, this PEIS does not address site-specific issues associated with individual oil shale or tar sands development projects. A variety of location-specific factors (e.g., soil type, watershed, habitat, vegetation, viewshed, public sentiment, the presence of threatened or

endangered species, and the presence of cultural resources) will vary considerably from site to site. In addition, the variations in extraction and processing technologies and project size will greatly determine the magnitude of the impacts from given projects. The combined effects of these location-specific and project-specific factors cannot be fully anticipated or addressed in a programmatic analysis. As a result, additional, site-specific NEPA analyses will be conducted prior to the issuance of commercial leases and the approval of specific plans of development. The BLM would invite other federal, state, local, and Tribal agencies to participate as cooperating agencies on these site-specific project-level NEPA documents.

In accordance with Section 369(n) of the Energy Policy Act of 2005, the BLM will consider and give priority to the use of land exchanges where appropriate and feasible to consolidate land ownership and mineral interests within the oil shale basins and STSAs. If the current BLM land use plan does not allow for exchanges, it may be amended to include specific language allowing land exchanges to facilitate commercial oil shale or tar sands development. However, because the possible locations for such future exchanges are unknown at this time, the scope of this PEIS does not include evaluations of potential impacts of such exchanges, and leasing for commercial development on these lands would be subject to additional NEPA review.

#### 1.3 COOPERATING AGENCIES

The scope of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS is of interest to numerous federal, Tribal, state, and local governments. The BLM invited 50 agencies to participate in preparation of the PEIS as cooperating agencies. Fourteen agencies expressed an interest in participating as cooperating agencies, and MOUs between these agencies and the BLM were established. The following agencies are participating as cooperating agencies in the preparation of this PEIS:

- · National Park Service (NPS):
- Bureau of Reclamation (BOR);
- U.S. Forest Service (USFS);
- · U.S. Fish and Wildlife Service (USFWS);
- State of Colorado, Department of Natural Resources and Department of Public Health and the Environment:
- · State of Utah:
- · State of Wyoming;
- · Garfield County, Colorado;

- · Mesa County, Colorado;
- · Rio Blanco County, Colorado;
- · Duchesne County, Utah;
- · Uintah County, Utah;
- · City of Rifle, Colorado; and
- · Town of Rangely, Colorado.

The roles and responsibilities of these cooperating agencies, and the extent of interactions between them and the BLM, are discussed in Chapter 7.

# 1.4 RELATIONSHIP OF THE PROPOSED ACTION TO OTHER BLM AND COOPERATING AGENCY PROGRAMS, POLICIES, AND PLANS

# 1.4.1 BLM's Oil Shale Research, Development, and Demonstration Program

On June 9, 2005, pursuant to its authority under Section 21 of the Mineral Leasing Act (MLA) (30 USC 241), the BLM initiated an oil shale research, development, and demonstration (RD&D) program under which small tracts of land could be leased in support of activities to demonstrate the technical and economic feasibility of oil shale extractive technologies (70 FR 33753-33759). The BLM solicited the nomination of parcels, not to exceed 160 acres, to be used for oil shale RD&D activities. Applicants also were allowed to identify an additional contiguous 4,960 acres of land to be reserved as a preference right lease for future commercial development to be awarded following (1) demonstration that the applicant's technology tested in the original lease of up to 160 acres has the ability to produce shale oil in commercial quantities; (2) evaluation pursuant to the NEPA that concludes that commercial-scale operations of the applicant's technology at that site does not result in significant adverse environmental or social impacts; (3) provision of adequate bond to cover all costs associated with reclamation and abandonment of the expanded lease area; and (4) consultation with state and local governments on a strategy to mitigate socioeconomic impacts, including, but not limited to, the infrastructure needed to accommodate the required workforce. The 160-acre RD&D leases were issued for 10-year terms with an option to extend them up to another 5 years. Prior to beginning RD&D activities, the lessees also must obtain permits from the BLM and other governmental agencies (e.g., state-issued air quality permits).

The BLM received and reviewed a total of 20 nomination packages. Ultimately, six projects were selected for further consideration, including preparation of environmental assessments (EAs) under NEPA. The projects that were selected included five projects in the Piceance Basin, Colorado (one each submitted by Chevron Shale Oil Company and EGL Resources, Inc., and three submitted by Shell Frontier Oil & Gas), and one project in the Uinta

Basin, Utah (submitted by Oil Shale Exploration Company [OSEC]). The RD&D leases for the five Colorado projects were issued January 1, 2007; the lease for the Utah project was issued in June 2007. As discussed in Section 2.3.2, activities on the 160-acre RD&D leases are ongoing and are considered as part of the baseline under Alternative A, the no action alternative, for oil shale. More information about these RD&D projects is provided in Section 2.3 and Appendix A.

## 1.4.2 Combined Hydrocarbon Leasing Program

The Combined Hydrocarbon Leasing Act of 1981 (P.L. 97-78) amended the MLA to authorize the Secretary to issue CHLs in areas containing substantial deposits of tar sands, which were to be designated as STSAs. This Act further specified that a CHL was the only type of lease that could be offered in these STSAs, provided for the conversion of existing oil and gas leases or tar sands claims in these areas to CHLs, and established the maximum lease size as 5,120 acres. Eleven STSAs were designated in 1980 and 1981. The BLM published regulations implementing the leasing provisions of this Act in February 1983 at 43 CFR Part 3140. Subsequently, the BLM prepared the *Utah Combined Hydrocarbon Leasing EIS* (BLM 1984). Tar sands resources located outside of these STSAs were not subject to the requirements of 43 CFR Part 3140 and are available for development under oil and gas leases.

On October 7, 2005, in response to Section 350 of the Energy Policy Act of 2005, which amended the MLA to allow separate oil and gas leases and tar sands leases in designated STSAs, the BLM issued an interim final rule on leasing in STSAs (70 FR 58610-58516). The interim final rule authorizes the BLM to issue separate leases for exploration for and extraction of tar sands, separate leases for exploration for and development of oil and gas, and CHLs for any area that contains any combination of tar sands and oil or gas (or both). Under the proposed rule, all three types of leases would have primary terms of 10 years; CHLs and oil and gas leases would remain in effect as long thereafter as oil or gas is produced in commercial quantities; tar sands leases would remain in effect after the 10-year term as long as tar sands are produced in commercial quantities. The interim final rule increases the maximum acreage of CHLs or tar sands leases in a STSA from 5,120 to 5,760 acres, establishes the minimum acceptable bid for tar sands leases at \$2.00 per acre, and requires that tar sands leases be issued by competitive processes only. In addition, under the interim final rule, leasing STSAs in NPS units is allowed only where mineral leasing is permitted by law and where the lands are open to mineral resource disposition in accordance with any applicable Minerals Management Plan. The NPS Regional Director also must find that leasing within an NPS unit would not result in any significant adverse impacts on the NPS unit or any contiguous unit.

Under the authority of the Combined Hydrocarbon Leasing Act, six CHLs were issued in the mid-1980s within the Pariette and P.R. Spring STSAs in the Vernal Field Office; these leases remain in existence. Also in the mid-1980s, a number of operators holding oil and gas leases or tar sands claims within the designated STSAs applied to convert their leases to CHLs. In most instances, the conversion of these leases has not been completed; thus a number of pending conversion applications remain within the study area, specifically within the Circle Cliffs, Tar Sand Triangle, and P.R. Spring STSAs. The BLM is currently engaged in adjudication of these applications. Decisions in the ROD resulting from this PEIS regarding the availability of lands

within the STSAs for future commercial leasing and the constraints under which such future leases would be issued will not affect or be affected by the requirements established for tar sands leasing in the new interim final rule.

# 1.4.3 Existing BLM Land Use Plans, Ongoing Planning Activities, and Resource Management Plan Revisions

The BLM develops land use plans to guide activities, establish management goals and approaches, and establish land use allocations within a planning area. Current land use plans are called Resource Management Plans (RMPs); in the past, such plans were called Management Framework Plans (MFPs) and some MFPs are still in use. Decisions in existing BLM land use plans were incorporated into the analyses conducted in preparation of this Draft PEIS and are discussed in Section 3.1.1. The BLM is currently engaged in a number of initiatives to revise, amend, or replace land use plans within the study area. The existing plans within the PEIS study area include the following:

#### Colorado

- Glenwood Springs RMP (BLM 1988b, as amended by the 2006 Roan Plateau Plan Amendment [BLM 2006a, 2007])
- Grand Junction RMP (BLM 1987)
- White River RMP (BLM 1997a, as amended by the 2006 Roan Plateau Plan Amendment [BLM 2006a, 2007])

#### Utah

- Book Cliffs RMP (BLM 1985)
- Diamond Mountain RMP (BLM 1994)
- Grand Staircase–Escalante National Monument RMP (BLM 1999)<sup>6</sup>
- Henry Mountain MFP, issued 1982
- Price River Resource Area MFP, as amended (BLM 1989)
- San Rafael Resource Area RMP (BLM 1991a)
- San Juan Resource Area RMP (BLM 1991b)

#### Wvoming

- Great Divide RMP (BLM 1990)
- Green River RMP (BLM 1997b, as amended by the Jack Morrow Hills
- Coordinated Activity Plan [BLM 2006b])
- Kemmerer RMP (BLM 1986)

With the exception of the RMP for the GSENM, these existing BLM land use plans will be amended on the basis of the decisions contained in the ROD. The proposed land use plan amendments are discussed in Chapter 2 and Appendix C.

As noted in Section 1.2, lands within National Monuments, including the GSENM, will be excluded from future leasing for tar sands development. However, because one of the STSAs is located underneath the GSENM, the existing RMP is listed here and discussed in Section 3.1.

In evaluating which lands should be designated as open for application for leasing for commercial development, existing BLM mitigation guidance documents (including policy guidance, manuals, BLM regulations, and existing standard stipulations) and their applicability to activities that will be conducted in concert with oil shale and tar sands development were considered. For example, these include guidance documents on road construction, pipeline and transmission line installation, sensitive species habitat management, cultural resource management, hazardous materials and waste management, and pesticide use.

# 1.4.4 Cooperating Agency Plans and Programs

As discussed in Section 1.3, this PEIS has been prepared in cooperation with 14 federal, state, and local governmental organizations. Management plans and programs established by these cooperating agencies have been considered in the preparation of this PEIS on the basis of information provided by the agencies.

# 1.4.5 BLM and USFS Energy Corridor Designation

In accordance with Section 368 of the Energy Policy Act of 2005, the BLM and USFS are working with the U.S. Department of Energy (DOE) and U.S. Department of Defense (DoD) to prepare a PEIS to evaluate issues associated with the designation of energy corridors on federal lands in 11 Western states, including Colorado, Utah, and Wyoming. On the basis of this Draft West-wide Energy Corridors PEIS (DOE 2007), the BLM and USFS may amend their respective land use plans to designate a series of energy corridors across the western states. These potential amendments may include the planning areas that are included within the scope of this Oil Shale and Tar Sands Resources Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS. In addition, the potential designation of energy corridors is likely to impact energy development throughout the western United States, including commercial oil shale and tar sands development, because the location of energy corridors may facilitate development by removing administrative and planning barriers for potential pipelines, electric transmission lines, and associated infrastructure. Development of the Draft West-wide Energy Corridors PEIS is underway at this time; information regarding the PEIS, including its scope and schedule, is available at http://corridoreis.anl.gov.

#### 1.5 REFERENCES

BLM (Bureau of Land Management), 1984, *Utah Combined Hydrocarbon Leasing Regional Final EIS, Volume I: Regional Analyses*, Utah State Office, Salt Lake City, Utah, June.

BLM, 1985, Record of Decision and Rangeland Program Summary for the Book Cliffs Resource Management Plan, Vernal District Office, Utah, May.

BLM, 1986, Record of Decision for the Kemmerer Resource Management Plan and Rangeland Program Summary Document, Kemmerer Resource Area, Rock Springs District, Wyo., June.

- BLM, 1987, Grand Junction Resource Area Resource Management Plan and Record of Decision, Grand Junction District, Colo., Jan.
- BLM, 1988a, National Environmental Policy Act Handbook, BLM Handbook H-1790-1, Washington, D.C., Oct.
- BLM, 1988b, Record of Decision and Resource Management Plan, Glenwood Springs Resource Area, Grand Junction District, Colo., June.
- BLM, 1989, Decision Record and Finding of No Significan Impact for Amendment to the Management Framework Plan for the Price River Resource Area, Moab District, Price River Resource Area, Utah, June.
- BLM, 1990, Great Divide Resource Area Record of Decision and Approved Resource Management Plan, Rawlins District Office, Great Divide Resource Area, Wyo., Nov.
- BLM, 1991a, San Rafael Final Resource Management Plan, Moab District, San Rafael Resource Area, Utah, May.
- BLM, 1991b, Resource Management Plan Record of Decision and Rangeland Program Sumnary for the San Juan Resource Area, Moab District, Utah, prepared by the Bureau of Land Management, Utah, March.
- BLM, 1994, Diamond Mountain Resource Area Resource Management Plan and Record of Decision, Vernal District Office, Utah.
- BLM, 1997a, White River Record of Decision and Approved Resource Management Plan, White River Resource Area, Craig District, Meeker, Colo., July.
- BLM, 1997b, Record of Decision and Green River Resource Management Plan, Green River Resource Area, Rock Springs District Office, Wyo., Oct.
- BLM, 1999, Grand Staircase-Escalante National Monument Approved Management Plan Record of Decision, Grand Staircase-Escalante National Monument, Cedar City, Utah, Nov.
- BLM, 2005, Land Use Planning Handbook, BLM Handbook H-1601-1, Washington, D.C., March.
- BLM, 2006a, Roan Plateau Planning Area, Including Former Naval Oil Shale Reserves Numbers 1 & 3, Resource Management Plan Amendment & Environmental Impact Statement, Final, Colorado State Office, Aug. Available at http://www.blm.gov/rmp/co/roanplateau/final eis document.htm.
- BLM, 2006b, Record of Decision and Jack Morrow Hills Coordinated Activity Plan/Proposed Green River Resource Management Plan Amendment, Rock Springs Field Office, Wyo. July.

BLM, 2007, Record of Decision for the Approval of Portions of the Roan Plateau Management Plan Amendment and Environmental Impact Statement, Glenwood Springs Field Office, Colo., Inne.

DOE (U.S. Department of Energy), 2007, Programmatic Environmental Impact Statement, Designation of Energy Corridors on Federal Land in the 11 Western States, DOE/EIS-0386, Oct.

Green, G.N., 1992, *The Digital Geologic Map of Colorado in ARC/INFO Format*, U.S. Geological Survey, Open-File Report 92-0507, scale 1:500,000.

Green, G.N., and P.H. Drouillard, 1994, The Digital Geologic Map of Wyoming in ARC/INFO Format, U.S. Geological Survey, Open-File Report 94-0425, scale 1:500,000.

Hintze, L.F., et al., 2000, Digital Geologic Map of Utah, Utah Geological Survey, Map 179DM compact disc, scale 1:500,000.

Pitman, J.K., 1979, Isopach, Structure Contour, and Resource Maps of the R-6 Oil Shale Zone, Green River Formation, Piceance Creek Basin, Colorado, U.S. Geological Survey, Miscellaneous Field Investigations Map MF-1069.

Pitman, J.K., and R.C. Johnson, 1978, Isopach, Structure Contour, and Resource Maps of the Mahogany Oil-Shale Zone, Green River Formation, Piecance Creek Basin, Colorado, U.S. Geological Survey. Miscellaneous Field Investigations Map MF-958.

Pitman, J.K., et al., 1989, Thickness, Oil-Yield, and Kriged Resource Estimates for the Eocene Green River Formation, Piceance Creek Basin, Colorado, U.S. Geological Survey, Oil and Gas Chart OC-132.

USGS (U.S. Geological Survey), 1980a, Argyle Canyon–Willow Creek, Utah Tar Sand Leasing Minutes No. 9. Minutes of the Mineral Land Evaluation Committee, Nov. 10.

USGS, 1980b, Asphalt Ridge—Whiterocks and Vicinity, Utah Tar Sand Leasing Minutes No. 3, Minutes of the Mineral Land Evaluation Committee, Sept. 23.

USGS, 1980c, Circle Cliffs East and West Flanks, Utah Tar Sand Leasing Minutes No. 5, Minutes of the Mineral Land Evaluation Committee. Sept. 23.

USGS, 1980d, *Hill Creek, Utah Tar Sand Leasing Minutes No.* 6, Minutes of the Mineral Land Evaluation Committee, Nov. 10.

USGS, 1980e, Pariette, Utah Tar Sand Leasing Minutes, Minutes of the Mineral Land Evaluation Committee. Nov. 10.

USGS, 1980f, P.R. Spring, Utah Tar Sand Leasing Minutes, Minutes of the Mineral Land Evaluation Committee, Sept. 23.

USGS, 1980g, Raven Ridge—Rim Rock and Vicinity, Utah Tar Sand Leasing Minutes No. 8, Minutes of the Mineral Land Evaluation Committee, Nov. 10

USGS, 1980h, San Rafael Swell, Utah Tar Sand Leasing Minutes No. 7, Minutes of the Mineral Land Evaluation Committee, Nov. 10.

USGS, 1980i, Sunnyside and Vicinity, Utah Tar Sand Leasing Minutes No. 4, Minutes of the Mineral Land Evaluation Committee, Sept. 23.

USGS, 1980j, *Tar Sand Triangle, Utah Tar Sand Leasing Minutes No.* 2, Minutes of the Mineral Land Evaluation Committee, Sept. 23.

USGS, 1980k, White Canyon, Utah Tar Sand Leasing Minutes No. 11, Minutes of the Mineral Land Evaluation Committee, Nov. 10.

Wiig, S., 2006a, personal communication from Wiig (BLM Rock Springs Field Office, Wyo.) to P. Perlowitz (BLM Wyoming State Office, Cheyenne), June 13.

Wiig, S., 2006b, personal communication from Wiig (BLM Rock Springs Field Office, Wyo.) to K.P. Smith (Argonne National Laboratory, Lakewood, Colo.), June 27.

This page intentionally left blank.

#### 2. DESCRIPTIONS OF ALTERNATIVES

#### 2.1 INTRODUCTION

Future oil shale and tar sands commercial development on public lands in Colorado, Utah, and Wyoming would be conducted pursuant to regulations to be promulgated by the BLM, subsequent to the issuance of this Oil Shale and Tar Sands PEIS. The NEPA process for the development of the regulations will tier from this PEIS.

This PEIS examines alternatives for making BLM-administered lands available for application for future commercial leasing of both oil shale and tar sands resources. For oil shale and tar sands, there are three alternatives each. Alternative A (the no action alternative) does not establish new commercial leasing programs. Alternatives B and C propose different management approaches to amending RMPs to designate certain lands as being available for application for future commercial leasing and development. The BLM has identified Alternative B as the Preferred Alternative for both oil shale and tar sands because it would make the largest amount of potential oil resources available for application for leasing while still providing for an environmentally sound program and would provide the greatest flexibility in locating future development. The BLM's current approach is designed to ensure that oil shale technologies can operate at economic and environmentally acceptable levels before the agency authorizes full-scale commercial leasing on public lands.

This chapter presents information on each of the oil shale and tar sands alternatives examined in this PEIS. Specifically, the following sections describe the existing requirements and BLM policies potentially applicable to oil shale and tar sands development, the oil shale and tar sands resources, the suite of technologies included in the scope of this PEIS, the constraints evaluated in each alternative, and the comparison of alternatives. In addition, this chapter discusses the alternatives and issues considered by the BLM in preparing this PEIS that were eliminated from detailed analysis or from further consideration at this time.

# 2.2 EXISTING STATUTORY REQUIREMENTS AND BLM POLICIES POTENTIALLY APPLICABLE TO OIL SHALE AND TAR SANDS DEVELOPMENT

Commercial development of oil shale or tar sands resources on public lands will be subject to existing federal, state, and local laws and regulatory requirements as well as established BLM policies. The purpose of including the following information is to convey that management of public lands is subject to a wide array of requirements that are over and above decisions that will be made in the ROD for this PEIS. These requirements are not subject to decisions in the ROD but serve as sideboards for those decisions. The standard operating procedures that have been developed by the BLM and other governmental agencies for implementing these requirements are not necessarily reproduced in this document unless there is a particular reason to do so.

# 2.2.1 Existing Relevant Statutory Requirements

This section discusses, in very general terms, the major laws, Executive Orders (E.O.s), and policies that may provide environmental protection and compliance requirements for oil shale or tar sands development projects on public lands in Colorado, Utah, and Wyoming. Because these projects would vary on the basis of design, size, specific activities, and location, the requirements described here may not apply to all projects. Lists of specific Executive Orders and federal and state laws are provided in Appendix D.

Section 21 of the MLA authorizes the Secretary of the Interior to lease deposits of oil shale and the surface of public lands containing the deposits, or lands adjacent thereto, as may be required for the extraction and reduction of the lease minerals. Under the MLA, the lease may not exceed 5,120 acres and may be of an indeterminate period. The Secretary of the Interior may impose conditions on the lease, including convents relative to methods of mining, prevention of waste, and productive development.

The BLM conducts its operations in accordance with FLPMA and with numerous statutes, regulations, and standards regarding environmental protection. In addition, E.O. 12088, "Federal Compliance with Pollution Control Standards" (U.S. President 1978), requires federal agencies (including the BLM) to comply with applicable administrative and procedural pollution control standards established by, but not limited to, the Resource Conservation and Recovery Act of 1976 (RCRA), Toxic Substances Control Act of 1976 (TSCA), Clean Air Act of 1990 (CAA), Noise Control Act of 1972 (NCA), Clean Water Act of 1987 (CWA), and Safe Drinking Water Act of 1974 (SDWA). Other compliance requirements may include the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA), hazardous material transportation laws, ecological resources requirements (e.g., Endangered Species Act of 1973 [ESA]), and cultural and paleontological resources requirements.

The BLM also conducts its operations in compliance with applicable land use laws, including the Wild and Scenic Rivers Act of 1968, the National Trails System Act of 1968, and the Wilderness Act of 1964. In addition, any leasing of public lands for oil shale or tar sands development that may impinge on NPS lands would require the BLM to analyze potential impacts on the park lands, including the potential to impair park resources addressed in the National Park Service Organic Act of 1916.

Several other land use laws may guide development of a leasing plan for commercial oil shale or tar sands development. As discussed in Chapter 1, the BLM has authority pursuant to FLPMA, the Federal Land Exchange Facilitation Act of 1994, and the Federal Land Transaction Facilitation Act of 2000 to exchange public land or interests in it for nonfederal land or interests when the exchange serves the public good.

Oil shale and tar sands development projects may require rights-of-ways (ROWs) on or across public land for project facilities. A ROW grant is the authorization to use a particular parcel of public land for specific facilities for a definite time period. FLPMA authorizes the BLM to issue ROW grants for uses such as roads and electrical power generation, transmission, and distribution systems. The MLA authorizes the agency to issue ROW grants for oil and gas

gathering and distribution pipelines and related facilities not already authorized through a lease, and oil and natural gas transmission pipelines and related facilities. ROW grants carry conditions that require compliance with applicable environmental protection standards.

State and county laws and regulations also are applicable to oil shale or tar sands development projects. In some cases, states have adopted federal laws as their own; in other cases, they have modified them (although the states' modified requirements must meet or exceed the federal requirements). States and counties also have developed laws to address concerns specific to their locations and resources with which federally approved projects must comply.

The potentially applicable laws have been divided into general categories, as described alphabetically below. Although the following descriptions often cite federal laws, state and county laws can also fall into these categories. Appendix D provides a list of federal, state, and county laws and E.O.s by category.

- Air quality. Air emissions from a development project are subject to the CAA, as amended. The CAA provides that each state must develop and submit for approval to the U.S. Environmental Protection Agency (EPA) a State Implementation Plan (SIP) for controlling air pollution and air quality in that state, and that each state must develop its own regulations to monitor, permit, and control air emissions within its boundaries. The CAA also requires that federal actions conform to the appropriate SIPs. Under Section 112(r) of the CAA, owners and operators of facilities that produce, process, handle, or store specific hazardous substances above threshold quantities must meet certain requirements for planning and reporting and risk management planning requirements. The EPA has retained primacy over air quality within the boundaries of the Uintah and Ourav Reservation.
- Cultural resources. Cultural resources that may be affected by federal
  undertakings are subject to various requirements for identification and
  consideration in consultation with Tribal, state, and/or federal entities, and
  mitigation actions may be required. Under the auspices of the 1997 national
  Programmatic Agreement (PA) and individual state protocols, the BLM has
  an agency-specific process for complying with Section 106 of the National
  Historic Preservation Act of 1966 (NHPA).
- Energy projects. Project operations and facilities may require construction of facilities such as pipelines, gathering lines, transmission lines, or generation facilities. Depending on the nature of these facilities, siting will be subject to all applicable legal requirements.
- Floodplains and wetlands. The locations of project facilities will be subject to statutory requirements and regulations for protection of wetlands or floodplains, such as Section 404 of the CWA.

- Groundwater, drinking water, and water rights. The provision of drinking
  water from wells or surface water to a transient noncommunity water system
  at project facilities would require compliance with the SDWA. In addition, the
  withdrawal of surface or groundwater for industrial or drinking water
  purposes may require state and/or local approvals or permits.
- Hazardous materials. Hazardous materials may be used in the construction and operation of a project. Storage and use of fuels, petroleum, oils, lubricants, and other hazardous materials at approved project facilities are subject to numerous federal and state regulations.
- Hazardous waste and polychlorinated biphenyls (PCBs). Hazardous wastes
  (e.g., used solvents and paints) generated by a project must be accumulated,
  collected, transported, and disposed of in accordance with RCRA. If PCBs are
  used during the construction and operation of a project, they would have to be
  managed in accordance with the TSCA.
- Noise. The EPA issued guidelines for outdoor noise levels that are consistent
  with the protection of human health and welfare against hearing loss,
  annoyance, and activity interference (EPA 1974). Such guidelines state that
  annoyance and undue interference with activity will not occur if outdoor
  levels of noise are maintained at an energy equivalent of 55 decibels (dB).
  However, these levels are not to be construed as legally enforceable standards
  at this time.
- Pesticides and noxious weeds. Pesticide application during the construction
  and operation of a project must comply with the Federal Insecticide,
  Fungicide, and Rodenticide Act of 1974 and equivalent state requirements. In
  addition, sites will be subject to federal provisions to control noxious weeds
  and invasive species and may be subject to regulations governing stateestablished control areas.
- Solid wastes. Solid wastes generated during the construction, operation, and decommissioning of a project must be managed in accordance with the Solid Waste Disposal Act of 1976 and state and local requirements for solid waste accumulation, collection, transportation, and disposal.
- Source water protection. Under Part C of the SDWA, Protection of
  Underground Sources of Drinking Water, each state is to establish a wellhead
  protection program to delineate wellhead protection areas, identify potential
  sources of contamination, and establish control measures to prevent
  contamination of drinking water sources. If hazardous chemicals or materials
  are used during the construction or operation of a project that is located within
  a wellhead protection area, reporting or control measures may apply.

- Water bodies and wastewater. The discharge of wastewater (e.g., sanitary wastewater treatment systems or rinse/test waters) or the discharge of spent shale leachate into waters of the United States or waters of a state may require a National Pollutant Discharge Elimination System (NPDES) permit or the state equivalent. According to administrative and judicial interpretation, the navigable waters of the United States encompass any body of water whose use, degradation, or destruction would or could affect interstate or foreign commerce. These bodies of water include, but are not limited to, interstate and intrastate lakes, rivers, streams, wetlands, playa lakes, prairie potholes, mudflats, intermittent streams, and wet meadows. In addition, the CWA requires an NPDES permit or the state equivalent for certain stormwater discharges. Spill Prevention, Control, and Countermeasure plans may also be required to prevent oil spills from reaching navigable waters, adjoining shorelines, intermittent streams, or wet meadows, but only if these are hydrologically connected to the navigable waters of the United States. Discharges of dredged or fill material into waters of the United States or any work in, over, or under navigable waters will require a Section 404 or Section 410 permit, respectively, from the U.S. Army Corps of Engineers (USACE).
- Water quality. The EPA enacted a regulation in December 1974 that set forth
  a basinwide salinity control policy for the Colorado River Basin. In 1975, the
  Colorado River Basin Salinity Control Forum (CRBSCF) proposed, the Basin
  States adopted, and the EPA approved water quality standards to control
  salinity increases in the Colorado River. These standards, including the
  numeric criteria and plan of implementation, are reviewed every 3 years.
- Wildlife and plants. The BLM manages public lands to protect and improve habitat for all federally listed species, BLM-designated sensitive species (i.e., the list published by the BLM state office of species occurring on public lands whose populations or habitats are rare or in significant decline), statelisted species, and wild horse and burro herds. The BLM evaluates all projects and activities occurring on public lands to ensure that they will not contribute to the need to list species as threatened or endangered.

In addition to these categories, the construction and operation of an oil shale or tar sands development project on public land that has valid mining claims must not materially interfere with the claimants' rights to mine, remove, or sell the minerals from the claim (30 USC 26). Projects may also be subject to the health and safety standards of the Federal Mine Safety and Health Act of 1970 and the Occupational Safety and Health Act of 1970.

Requirements to consider impacts of leasing land for oil shale or tar sands development on local populations, including E.O. 12898, "Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations" (U.S. President 1994), and E.O. 13045, "Protection of Children from Environmental Health Risks and Safety Risks"

(U.S. President 1997) may arise, depending on the activities, location, and other circumstances of the lease.

## 2.2.2 Existing Relevant BLM Policies and Mitigation Guidance

The BLM has developed many program-specific policies and guidance documents that establish requirements that may be relevant and/or applicable to oil shale or tar sands development. For example, in 1968 the Office of the Secretary imposed stipulations on oil and gas leases for lands in oil shale areas in Colorado, Utah, and Wyoming (DOI 1968). These policies and guidance documents exist in a variety of forms, including BLM plans, manuals, handbooks, instruction memoranda, technical references, best management practices (BMPs), standards, directives, and other such documents. The applicability of specific policies and guidance documents is discussed to varying degrees in this PEIS but is best assessed at the project-specific level.

While none of the existing BLM policies directly address commercial oil shale or tar sands development, many elements establish requirements that are relevant and applicable to these types of development projects. Examples of policies that will be applicable to oil shale or tar sands development include BLM policies regarding the management of sensitive species and visual, cultural, and paleontological resources.

Similarly, while the existing BLM guidance documents are not specific to oil shale or tar sands development, many of them address environmental issues that are relevant to such development and may provide appropriate mitigation measures. The topics covered by these documents that are relevant include land use planning, NEPA, oil and gas development, pipeline construction and waterway crossings, road construction and maintenance, wildlife management, wild horse and burno herd management, ACECs, hazardous materials and waste management, pesticide use and integrated pest management, cultural resource management, Tribal consultations, visual resource management, and occupational health and safety. A comprehensive review of these BLM program-specific mitigation documents is beyond the scope of this PEIS, although discussion of many of these documents is included in the impact analyses sections. Readers are advised to obtain the complete guidance documents if they seek more information. Electronic copies of some of the BLM directives, manuals, and handbooks are available at http://www.blm.gov/nhp/efoia/.

# 2.2.3 Management of BLM-Administered Lands

The BLM manages public lands within the affected field offices for a variety of land uses, including recreation, mining, oil and gas leasing, livestock grazing, wild horse and burro herd management, communication sites, and ROW corridors (e.g., roads, pipelines, and transmission lines). These BLM-administered lands are managed within a framework of numerous laws, the most comprehensive of which is FLPMA (43 USC 1701 et seq.). Under FLPMA, the BLM manages the public lands by using principles of multiple use and sustained yield to provide for the protection and the use of myriad resources found on the public lands. In

accordance with the requirements of FLPMA, the BLM prepares RMPs to identify the resources within each planning area and to establish land use allocations, management goals, and prescriptions for the planning area. I The RMPs are prepared to be consistent with the plans of state and local governments to the maximum extent feasible and consistent with federal law. These plans are developed with significant public involvement and are reviewed by the governors of each state for consistency with state and local planning objectives. Under FLPMA, the BLM is required to maintain, amend, and revise its RMPs to ensure that they reflect the current conditions and management goals within the planning area.

FLPMA, and in many cases specific authorizing legislation or proclamations, guides the BLM in its management of lands included in the NLCS. The NLCS lands include NCAs, National Monuments, Wilderness Areas, WSAs, WSRs, and National Historic and Scenic Trails. Other conservation designations within the NLCS are Instant Study Areas (ISAs), Forest Reserves, National Recreation Areas (NRAs), Research Natural Areas, and Outstanding Natural Areas.

FLPMA directs the BLM to give priority to the designation of ACECs. Designated ACECs include public lands where special management attention and direction are needed to protect and prevent irreparable damage to important historic, cultural, and scenic values, fish, or wildlife resources or other natural systems or processes; or to protect human life and safety from natural hazards. The BLM designates ACECs through land use plans that outline management objectives and prescriptions for each ACEC. Table 2.2.3-1 identifies all of the existing ACECs that intersect oil shale and tar sands areas.

Wilderness Areas are designated by Congress as part of the National Wilderness Preservation System to ensure preservation and protection of their natural conditions. They are generally 5,000 acres or more in size (or of sufficient size to make administration as wilderness practicable); offer outstanding opportunities for solitude or primitive and unconfined types of recreation; and may contain ecological, geological, or other features that have scientific, scenic, r historical value. WSAs are areas identified by a federal land management agency (i.e., the BLM, USFS, NPS, or USFWS) as having wilderness characteristics, thus making them worthy of consideration by Congress for wilderness designation. While Congress considers whether to designate the WSAs as permanent Wilderness Areas, the federal agency managing the WSA does so in a manner to prevent impairment of the area's suitability for wilderness designation.

Since WSAs were established in the late 1970s and 1980s, designation of wilderness lands has been extensively debated, and additional BLM lands have been identified by the public as having wilderness characteristics. In 1999, the Secretary of the Interior directed the BLM to evaluate such lands to determine whether they possess wilderness characteristics. According to BLM policy, indicators of an area's naturalness include the extent of landscape modifications, the presence of native vegetation communities, and the connectivity of habitats. Outstanding opportunities for solitude or primitive and unconfined types of recreation may be experienced when the sights, sounds, and evidence of other people are rare or infrequent; in locations where

<sup>1</sup> Current land use plans are called Resource Management Plans (RMPs); however, in the past such plans were called Management Framework Plans (MFPs), and some MFPs are still in use.

TABLE 2.2.3-1 Existing ACECs Intersecting Oil Shale or Tar Sands Areas

| ACEC Name                    | Field Office(s)               | Total<br>ACEC<br>Acres | ACEC<br>Acres<br>within Oil<br>Shale Areas | ACEC Acres<br>within<br>STSAs |
|------------------------------|-------------------------------|------------------------|--------------------------------------------|-------------------------------|
| Colorado                     |                               |                        |                                            |                               |
| Duck Creek                   | White River                   | 3,425.8                | 3,425,8                                    | 0.0                           |
| Dudley Bluffs                | White River                   | 1,628.2                | 1,628,2                                    | 0.0                           |
| East Fork Parachute Creek    | Glenwood Springs              | 6,566.1                | 1,289.4                                    | 0.0                           |
| Northwater Creek             | Glenwood Springs              | 1,961.9                | 1,591.9                                    | 0.0                           |
| Ryan Gulch                   | White River                   | 1,436.4                | 1,436.4                                    | 0.0                           |
| Trapper Creek                | Glenwood Springs, White River | 2,844.0                | 1,418.1                                    | 0.0                           |
|                              | oremote springs, white rever  | 17,862.4               | 10,789.7                                   | 0.0                           |
| Utah                         |                               | 17,00211               | 10,703.7                                   | 0.0                           |
| Copper Globe                 | Price                         | 128.6                  | 0.0                                        | 128.6                         |
| Dark Canyon                  | Monticello                    | 59,755.3               | 0.0                                        | 14.4                          |
| I-70 Scenic Highway          | Price                         | 45,631.3               | 0.0                                        | 4,369,3                       |
| Lears Canyon                 | Vernal                        | 1,377.8                | 0.0                                        | 889.7                         |
| Lower Green River            | Vernal                        | 9,430.2                | 7,683.6                                    | 0.0                           |
| Nine Mile Canyon             | Vernal                        | 48,151.0               | 539.2                                      | 12,562.8                      |
| Pariette Wetlands            | Vernal                        | 10,635.2               | 6,523.1                                    | 2,254.6                       |
| San Rafael Canyon            | Price                         | 54,144.7               | 0.0                                        | 22,227.6                      |
| San Rafael Reef              | Price                         | 84,084,6               | 0.0                                        | 4,760.6                       |
| Scenic Highway Corridor      | Monticello                    | 13,554.1               | 0.0                                        | 1,105.5                       |
| Sid's Mountain               | Price                         | 61,430.5               | 0.0                                        | 215.0                         |
| Temple Mountain              | Price                         | 2,446.0                | 0.0                                        | 2,439.3                       |
|                              |                               | 1,522,274.8            | 199,521.1                                  | 328,938.2                     |
| Wyoming                      |                               |                        | ,                                          | -                             |
| Greater Red Creek            | Rock Springs                  | 175,240.0              | 44,656.9                                   | 0.0                           |
| Greater Sand Dunes           | Rock Springs                  | 41,644.2               | 256.5                                      | 0.0                           |
| Pine Springs                 | Rock Springs                  | 6,054.9                | 6,054.9                                    | 0.0                           |
| Special Status Plant Species | Rock Springs, Kemmerer        | 1,009.9                | 140.3                                      | 0.0                           |
| White Mountain Petroglyphs   | Rock Springs                  | 21.7                   | 21.7                                       | 0.0                           |
|                              |                               | 223,970.6              | 51,130.3                                   | 0.0                           |

visitors can be isolated, alone, or secluded from others; where the use of the area is through nonmotorized, nonmechanical means; and where no or minimally developed recreation facilities are encountered. A number of areas in the PEIS study area have been recognized by the BLM as having wilderness characteristics. Processes are underway in some of the BLM field offices where such lands have been identified to determine appropriate management requirements, if any, for these areas. Decisions regarding management of these areas will be made at the field office level as part of the local land use planning process, not as part of this PEIS.

A river or river section may be designated as a WSR by Congress or the Secretary of the Interior under the authority of the Wild and Scenic Rivers Act of 1968. Land management agencies conduct inventories of rivers and streams within their jurisdictions and make recommendations to Congress regarding the potential inclusion of suitable rivers into the WSR system as part of their land use planning process. These special areas are managed to protect outstanding scenic, recreational, geologic, fish and wildlife, historic, cultural, or other values, and to preserve the river or river section in its free-flowing condition. WSR boundaries are established to include a corridor of land along either side of the river as determined to be appropriate for protection of the river's values. The law recognizes three classes of rivers: wild, scenic, and recreational. It is the BLM's policy to manage potentially eligible and suitable<sup>2</sup> WSRs in a manner to prevent impairment of the river's suitability for WSR designation until Congress or the Secretary makes a final determination regarding the river's status. During this interim period, a corridor extending at least 0.25 mi from the "high water" mark on each bank of the river is established.

National Historic and Scenic Trails are designated by Congress under the National Trails System Act of 1968. National Historic Trails follow as closely as possible the original trails or routes of travel with national historical significance. Such designation identifies and protects historic routes and their historic remnants and artifacts for public use and enjoyment. National Scenic Trails are extended trails that offer maximum outdoor recreational potential and provide enjoyment of the various qualities (e.g., scenic, historical, natural, and cultural) in the areas through which they pass.

BLM-administered lands support a wide array of recreational activities important to growing numbers of local, regional, and national users. While unstructured or "dispersed" recreation uses are common on public lands, developed recreation sites, Special Recreation Management Areas (SRMAs), and off-highway vehicles (OHVs) are all use areas found within the PEIS study area.

As discussed in Chapter 1, Section 369(n) of the Energy Policy Act of 2005 required the Secretary to consider and give priority to the use of land exchanges to facilitate the recovery of unconventional fuels. The Act dictates that any land exchange undertaken shall be implemented in accordance with Section 206 of FLPMA. The BLM's policy for land exchanges under Section 206 recognizes that land exchanges are a common-sense tool that enables the BLM and other landowners to improve land management and consolidate ownership. Therefore, where it can be demonstrated that the public interest will be well served, land exchanges will be considered on a case-by-case basis when the result will consolidate ownership and improve management of natural resources. Land exchanges, however, are not completed on an acre-foracre basis, but instead are completed on an equal-value basis. One of the more challenging aspects of the land exchange process is developing an exchange proposal where the appraised

A number of land use plans are currently undergoing revision, and as part of that process WSR inventories have been undertaken. Where a river or river segment has been found to be "eligible" for inclusion in the WSR system as part of one of these inventories, the BLM has an obligation to protect the lands along the eligible segment until a "suitability" determination has been made as part of the land use planning process. If the river or river segment is found to be "non-suitable," the lands along the river then would be available for other uses. If a river or river segment is determined to be suitable for inclusion in the WSR system, the BLM will forward that recommendation to Congress for action and will continue to protect the lands along the river for a 3-year period. If at the end of 3 years Congress has not designated the river as part of the WSR system, it would be deemed to be "non-suitable" and lands along the river would rever to the management uses designated in the land use plan.

values of the federal and nonfederal lands are equal. Given the complexities of achieving equalvalue land exchanges, especially recognizing the difficulty in valuing a commodity like oil shale or tar sands, a viable exchange proposal may be difficult to achieve. The initial basis for considering land exchange opportunities lies within existing land use plans.

#### 2.3 OIL SHALE

Oil shale is a term used to cover a wide range of fine-grained, organic-rich sedimentary rocks. Oil shale does not contain liquid hydrocarbons or petroleum as such but organic matter derived mainly from aquatic organisms. This organic matter, kerogen, may be converted to oil through destructive distillation or exposure to heat. The most prospective oil shale deposits in the United States are contained within sedimentary deposits of the Green River Formation in the greater Green River Basin (including Fossil Basin and Washakie Basin) in southwestern Wyoming and northwestern Colorado, the Piceance Basin in northwestern Colorado, and the Uinta Basin in northeastern Utah. As discussed in Section 1.2, the analyses in this PEIS focus on the most geologically prospective oil shale resources in these basins (i.e., the oil shale study area) shown in Figure 2.3-1. In Colorado and Utah, these are defined as those deposits that are expected to yield 25 gal/ton or more of shale oil and that are 25 ft thick or greater. In Wyoming, where the oil shale resource is not of as high a quality as it is in Colorado and Utah, the most geologically prospective oil shale resources are those deposits that yield 15 gal/ton or more shale oil and that are 15 ft thick or greater. Figure 2.3-1 shows the Green River Formation basins and the most geologically prospective oil shale resources within those basins. Table 2.3-1 lists the total size in acres of the Green River Formation basins and the most geologically prospective oil shale resources by state, along with the total number of acres of BLM-administered and split estate lands within the most geologically prospective area within each state.

Currently, there is no commercial production of oil from oil shale being undertaken in the United States. Considerable interest exists, however, as reflected by the numerous research and development (R&D) efforts underway, including the BLM's ongoing oil shale RD&D program. As discussed in Section 1.4.1, under the BLM's oil shale RD&D program, five RD&D leases have been issued in the Piceance Basin of Colorado (one each awarded to Chevron Shale Oil Company and EGL Resources, Inc., and three awarded to Shell Frontier Oil & Gas), and one RD&D lease has been issued in the Uinta Basin, Utah (awarded to OSEC). The locations of the six RD&D projects are shown in Figure 2.3-1 and, in greater detail, in Figure 2.3-2. RD&D activities that will occur on these leases are considered to be a part of Alternative A (the no action alternative). Table 2.3-2 briefly describes the six RD&D projects; more detailed descriptions of these projects are contained in Appendix A.

# 2.3.1 Potential Commercial Oil Shale Development Technologies

This section briefly describes the oil shale development technologies that the BLM believes may be used commercially in the 20-year time frame assessed in this PEIS. The BLM has chosen a 20-year time frame because that is the customary time frame used in resource management planning cycles. Appendix A provides a more detailed discussion of potential

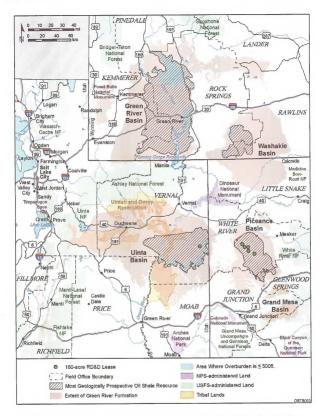



FIGURE 2.3-1 Green River Formation Basins in Colorado, Utah, and Wyoming; the Most Geologically Prospective Oil Shale Resources; the Areas Where the Overburden above the Oil Shale Resources Is £500 ft; and Locations of the Six RD&D Projects

TABLE 2.3-1 Total Size in Acres of the Green River Formation Basins, Most Geologically Prospective Oil Shale Areas, and Acres of BLM-Administered and Split Estate Lands within the Most Prospective Areas in each State-M

| State                    | Total Size of<br>Basin | Total Size of<br>Most<br>Geologically<br>Prospective<br>Area | Total BLM-<br>Administered<br>Lands in Most<br>Geologically<br>Prospective<br>Area | Total Split Estate Lands in Most Geologically Prospective Area |  |
|--------------------------|------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------|--|
| Colorado                 |                        |                                                              |                                                                                    |                                                                |  |
| Piceance Basin           | 1,185,700              | 503,342                                                      | 319,710                                                                            | 41,940                                                         |  |
| Utah                     |                        |                                                              |                                                                                    |                                                                |  |
| Uinta Basin <sup>c</sup> | 2,977,900              | 840,213                                                      | 560,972                                                                            | 77,220                                                         |  |
| Wyoming                  |                        |                                                              |                                                                                    |                                                                |  |
| Green River and          |                        |                                                              |                                                                                    |                                                                |  |
| Washakie Basins          | 4,506,200              | 2,194,483                                                    | 1,257,680                                                                          | 39,406                                                         |  |
| Total                    | 8,669,800              | 3,538,038                                                    | 2,138,361                                                                          | 158,566                                                        |  |

- Totals may not be exact because of rounding. These estimates were derived from geographic information system (GIS) data compiled for the PEIS. The GIS data may contain errors; therefore, these estimates should be considered to be only representative of the size of the oil shale resources and the distribution of BLM-administered and split estate lands.
- b Split estate lands include areas where the federal government owns, and the BLM administers, the subsurface mineral rights, but the surface estate is owned by Tribes, states, or private parties.
- c The split estate lands in the Hill Creek STSA include 57,705 acres of split estate lands within the Hill Creek Extension of the Unitah and Ouray Reservation on which the surface rights are owned by the Ute Indian Tribe.

technologies that may be used over the next 20 years, along with a history of oil shale development. Information presented in this section and Appendix A regarding technologies that could be used is taken from the best available published data. Because commercial oil shale development technologies are still largely in an R&D phase, many details regarding the specific technologies that would be used in the future to produce oil from oil shale are unknown. In the absence of complete and definitive information about the technologies that may be deployed, a number of assumptions have been made. These assumptions are discussed in Section 4.1.

Development of oil shale resources occurs in three major steps: (1) recovery or extraction from the natural setting, (2) processing to separate organic and inorganic constituents, and (3) upgrading the organic components in anticipation of further refining into conventional fuels. The physical and chemical features of oil shale deposits and other circumstantial factors associated with their deposition dictate the most appropriate development schemes. Typical development schemes always involve each of the above major steps, although many permutations of these steps are possible and many interim steps may also be necessary. In addition, all oil shale development projects also must stabilize and dispose of waste by-products.

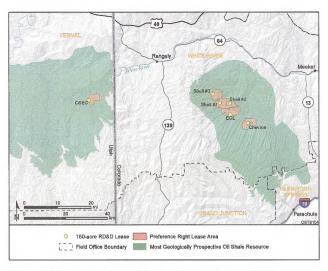



FIGURE 2.3-2 Locations of the Six RD&D Tracts and Associated Preference Right Lease Areas

For mining technologies, spent shale is a significant waste management concern. Appendix A provides a detailed discussion of each of the individual technologies, some of the possible permutations, and some of the possible combinations of technologies.

In very simple terms, the recovery or extraction technologies can be divided into direct and indirect recovery methods. Direct recovery methods include both surface mining and underground mining technologies wherein the oil shale is removed from its physical location for processing for recovery of the hydrocarbon constituents. Indirect recovery methods recover the hydrocarbon constituents from the oil shale without requiring the excavation of the oil shale itself. Such processes can include in situ processing technologies, as well as some other enhanced oil recovery technologies developed primarily for the recovery of conventional oil and gas, in varying combinations.

Processing technologies to separate the organic and inorganic constituents typically use retorting technologies that apply heat to the oil shale to pyrolyze the kerogen. Chemical

| <b>TABLE 2.3-2</b> | Summary Information for the Six Oil Shale RD&D Projects To Be |
|--------------------|---------------------------------------------------------------|
| Considered u       | nder Alternative A. No Action Alternative <sup>a</sup>        |

| Project <sup>b</sup> | Technology                           | Design Basis<br>for Facility<br>(bbl/day) | Total Annual<br>Production<br>(thousand<br>bbl/yr) | Total<br>Acreage<br>Impacted |
|----------------------|--------------------------------------|-------------------------------------------|----------------------------------------------------|------------------------------|
| Shell Project 1      | In situ conversion process (ICP)     | 500-1,500                                 | 180-550                                            | 160                          |
| Shell Project 2      | Two-step ICP                         | 500-1,500                                 | 180-550                                            | 160                          |
| Shell Project 3      | Electric ICP                         | 500-1,500                                 | 180-550                                            | 160                          |
| Chevron              | In situ processes                    | 20-50                                     | 7.3-18.25                                          | 100                          |
| EGL                  | In situ processes                    | 240                                       | 87.6                                               | 90                           |
| OSEC                 | Underground mine with surface retort | 60-3,900                                  | 23-1,400                                           | 120                          |

- a bbl = barrel; 1 bbl oil = 42 gal.
- b Chevron = Chevron U.S.A., Inc; EGL = EGL Resources, Inc.; OSEC = Oil Shale Exploration Company; Shell = Shell Frontier Oil and Gas.

treatment processes also may be applied. Aboveground retorting technologies are used to process mined oil shale; the retorting processes are typically preceded by a variety of pretreatment activities, including crushing, sizing, and sorting. A number of AGR technologies have been designed in the past and are considered to be potentially applicable for future commercial oil shale development. These technologies include the Union B retort, The Oil Shale Corporation (TOSCO) II retort, Paraho retort (both direct and indirect modes), Lurgi-Ruhrgas process, Superior Oil's circular grate retort, and the Alberta Taciuk Process (ATP) technology. The indirect recovery methods mentioned above involve in situ processing to separate the organic and inorganic constituents of the oil shale. These processes typically involve the application of high temperatures to achieve pyrolysis of the kerogen and allow its in situ recovery. Information from the BLM's ongoing oil shale RD&D projects that involve in situ processes is the primary source for defining the potential in situ technologies that may be used in the future.

Irrespective of the resource recovery and retorting technologies employed, kerogen pyrolysis products are likely to require further processing or upgrading before becoming attractive to oil refineries as feedstocks for conventional fuels. Upgrading crude shale oil at commercial project sites could consist of any or all of the following steps: separation of extraneous materials from the feedstock (e.g., water, suspended solids); separation of the crude oil fractions by their boiling points in atmospheric and/or vacuum distillations; coking or cracking to thermally decompose large molecules into smaller molecules; chemical treatment (e.g., catalytic or thermal hydrocracking, hydrotreating, desulfurization, or hydrogenation); and removal of other contaminants.

This PEIS evaluates the potential impacts of commercial oil shale technologies in three primary categories:

Surface mining projects with surface retort facilities;

- Underground mining projects with surface retort facilities; and
- · In situ processing projects.

While many hypothetical development scenarios could be constructed for each of these three technology categories, it is not possible to project or analyze all of them in this PEIS. Instead, the PEIS considers the components of current technologies that could be implemented in order to analyze the range of potential impacts that could occur. It is likely that operators would consolidate a number of systems, such as power generation facilities, equipment maintenance, product storage and load-out facilities, steam and hot water production, water and wastewater treatment and recycling, and waste management, to achieve greater efficiencies and economies at a given project location.

In this PEIS, the BLM has limited its evaluation of the impacts of surface mining to those areas within the most geologically prospective oil shale areas where the overburden ranges in thickness from 0 to 500 ft. This limitation was based, in large part, on the assumption that 500 ft is about the maximum amount of overburden where surface mining can occur economically, using today's technologies. As shown in Figure 2.3-1, the areas within the most geologically prospective oil shale areas where the overburden is 0 to 500 ft thick are limited to part of the Unita Basin in Utah and parts of the Green River and Washakie Basins in Wyoming. In Utah, about 133,194 acres of land within the most geologically prospective oil shale area have an overburden thickness of 0 to 500 ft; all of these lands fall within the Book Cliffs RMP planning area. In Wyoming, the corresponding area includes about 380,220 acres within the Green River RMP planning area. Within the most geologically prospective oil shale area defined in the Piceance Basin in Colorado, the areas where the overburden is 0 to 500 ft thick are very limited, and it would be difficult to assemble a logical mining unit. As a result, this PEIS considers making land available for lease for surface mining only in those areas shown in Figure 2.3-1 in Utah and Wyoming.

As explained in Chapter 1, this PEIS analyzes the amendment of 12 land use plans to open certain public lands for the opportunity to lease oil shale and tar sands for commercial development. The BLM initially intended the Final PEIS to provide the NEPA analysis and documentation not only for the amendment of the land use plans to add the development of oil shale resources to the allowable uses of the public lands in these areas, but also for the issuance of leases for the commercial development of oil shale. The BLM circulated a 15-project development scenario to the cooperating agencies for review and comment. The BLM developed the 15-project scenario by assuming that all 6 of the RD&D leases would convert to commercial oil shale productions, and that there would be 3 additional commercial oil shale leases issued in each of the states mentioned in Section 369 of the Energy Policy Act of 2005: Colorado (two using in situ and one underground mine and surface retort); Utah (one in situ, one underground mine and surface mine and surface retort); and Wyoming (one in situ, one underground mine and surface retort, and surface retort). The cooperating

<sup>3</sup> The areas within the most geologically prospective oil shale areas where the overburden is 0 to 500 ft thick were mapped on the basis of a variety of sources of information. In Colorado, the area was defined on the basis of data published in Donnell (1987). In Utah, the area was mapped on the basis of data provided by the Utah Geological Survey (Tabet 2007). In Wyoming, the area was mapped on the basis of data provided by Wiig (2006a,b).

agencies commented that the BLM's analysis would be too speculative at this point to support a decision to issue any leases on the basis of this 15-project scenario.

Similarly, the BLM considered whether to present a development scenario of six projects, corresponding to the six RD&D projects currently leased, under the assumption that these RD&D projects would become viable commercial enterprises. These leases authorize research projects that will yield additional valuable insight as to the technological requirements for, and the impacts associated with commercial development of oil shale resources; however, the BLM concluded that trying to undertake this analysis at this time in order to anticipate a certain level of development would be too speculative, as well.

As a result, the BLM has elected not to attempt to issue leases for commercial development of oil shale on the basis of this PEIS. Rather, as explained in Section 2.5.1, below, this Draft PEIS is being developed to analyze the proposed action to amend 12 existing land use plans to designate certain public lands as open for the opportunity for future oil shale and tar sands leasing. Therefore, this PEIS includes descriptions and analyses not of particular levels of development, but of the possible impacts of each type of technology currently under consideration and research, so far as this information is available to the BLM at this time. Analysis of this information will allow the BLM to determine whether or not to designate certain public lands where the resources are known to be located as open for application to lease these resources in the future.

If and when applications to lease are received and additional information becomes available, the BLM will conduct NEPA analyses, including consideration of direct, indirect, and cumulative effects, reasonable alternatives, and possible mitigation measures, as well as what level of development may be anticipated. On the basis of this NEPA analysis to be conducted at the lease stage, the BLM will consider further amendment of one or more plans, including, but not limited to, the establishment of general lease stipulations and BMPs.

#### 2.3.2 Alternative A. No Action Alternative

Alternative A is the no action alternative. Under this alternative for oil shale, no land use plans would be amended; however, it is assumed that the six RD&D projects would move forward on the 160-acre leases described in Table 2.3-2 and shown in Figure 2.3-2. Alternative A includes only the RD&D activities at these sites; it does not evaluate future commercial leasing at these or any other locations. Each of the six projects has an identified preference right lease area for future potential commercial development, as shown in Figure 2.3-2. The current leases require additional site-specific NEPA analyses before the RD&D operators are granted use of the preference right lease area for commercial development. Table 2.3.2-1 provides a summary of the activities and constraints assumed to occur under Alternative A.

Under Alternative A, land use plans would not be amended to allow for leasing for commercial development of oil shale. As a result, decisions embedded in the plans in the study area would not be modified by the ROD on this PEIS and, therefore, would not identify the most geologically prospective resources, specific exclusion areas, land available for application for

TABLE 2.3.2-1 Summary of Activities and Conditions Assumed for Each of the Oil Shale Alternatives

| Condition                                                          | Alternative A<br>(No Action)                                                                                               | Alternative B                                                                                                                                                                                                                                                                                                                                                                  | Alternative C                                                                                                                                                                               |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Potential area<br>made available<br>for application<br>for leasing | 960 acres leased for 6 RD&D<br>projects (160 acres each),<br>including 5 projects in<br>Colorado and 1 project in<br>Utah. | 1,991,222 acres, including the 6 RD&D projects, would be made available for application for commercial lease.  Colorado, 359,798 acres  Utah, 630,971 acres  Wyoming, 1,000,453 acres                                                                                                                                                                                          | 830,296 acres, including the 6 RD&D projects<br>would be made available for application for<br>commercial lease.<br>Colorado, 40,325 acres<br>Utah, 490,460 acres<br>Wyoming, 299,511 acres |
| Technologies<br>considered                                         | 5 in situ projects in Colorado<br>1 underground mine with<br>surface retort in Utah                                        | In situ processes Underground mine with surface retort Surface mine with surface retort (only in Utah and Wyoming in areas where the overburden is 0 to 500 ft thick)                                                                                                                                                                                                          | Same as Alternative B.                                                                                                                                                                      |
| Lands excluded<br>from<br>commercial<br>leasing                    | Not applicable; no commercial leasing would occur under this alternative.                                                  | Wilderness Areas, WSAs, and other areas that are part of the NLCS. Existing ACECs that are currently closed to mineral development. The MMTA in Wyoming. Segments of rivers determined to be eligible for WSR status by virtue of a WSR inventory. Historic trails. Monument Valley Management Area in Wyoming. Management Area 3, Jack Morrow Hills Planning Area in Wyoming. | Same as Alternative B.                                                                                                                                                                      |

TABLE 2.3.2-1 (Cont.)

| Condition                                      | Alternative A<br>(No Action)                                                                                                                                                                                                                         | Alternative B                                                                                                                                                      | Alternative C                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Additional<br>location-specific<br>limitations | Not applicable; no commercial leasing would occur under this alternative.                                                                                                                                                                            | None                                                                                                                                                               | All existing ACECs would be excluded from application for commercial leasing. All lands where surface-disturbance restrictions or seasonal limitations are in place in existing land use plans in order to protect known sensitive resources would be excluded from application for commercial leasing (see Section 2.3.3.2). |
| Regulatory and operational constraints         | Not applicable; no commercial leasing would occur under this alternative.                                                                                                                                                                            | All commercial development would be conducted in<br>compliance with existing federal, state, and local<br>regulatory requirements and established BLM<br>policies. | Same as Alternative B.                                                                                                                                                                                                                                                                                                        |
| Additional<br>NEPA<br>requirements             | Additional NEPA analyses<br>would be required before any<br>leases for commercial<br>development can be issued.<br>Site-specific NEPA analyses<br>also would be conducted<br>during the review and approval<br>of project plans of develop-<br>ment. | Same as Alternative A.                                                                                                                                             | Same as Alternative A.                                                                                                                                                                                                                                                                                                        |

lease, and so forth. For commercial oil shale development to occur in the future, specific land use plans would need to be amended to analyze areas for potential leasing. Such leasing would be subject to additional NEPA analyses and the oil shale regulations to be promulgated by the BLM.

## 2.3.3 Commercial Oil Shale Leasing Program Alternatives

The BLM has developed two programmatic alternatives for identifying lands available for application for commercial leasing and for establishing a commercial oil shale leasing program. Alternatives B and C are summarized in Table 2.3.2-1. Under each of these alternatives, the BLM proposes to make certain lands within the most geologically prospective oil shale areas available for application for commercial leases. Also, under both alternatives, additional NEPA analyses would be conducted prior to the issuance of commercial leases. In addition, site-specific NEPA analyses would be conducted during evaluation and approval of plans of development during the project development phase. These site-specific analyses would identify potential project-specific impacts and define appropriate lease stipulations and required mitigation measures. The potentially applicable mitigation measures discussed in the Chapter 4 impact analyses would be applied during the site-specific analyses, as appropriate.

As discussed in Section 1.2, the BLM has determined that certain lands within the most geologically prospective oil shale resource areas are excluded from commercial leasing, under all alternatives, on the basis of existing laws and regulations, Executive Orders, land use plan designations, and other administrative designations or withdrawals. As a result, commercial leasing is excluded from all designated Wilderness Areas, WSAs, and other areas that are part of the NLCS administered by the BLM (e.g., National Monuments, NCAs, WSRs, and National Historic and Scenic Trails), existing ACECs that are currently closed to mineral development, and lands within incorporated town and city limits. The BLM has also determined that additional areas would be closed and would not be available for future opportunity to lease for commercial development of oil shale resources under both programmatic alternatives. These additional areas include:

- Mechanically Mineable Trona Area (MMTA). This area, which is located in the Green River Basin in Wyoming, falls within a portion of the Known Sodium Leasing Area (KSLA) that encompasses the world's largest known trona deposits.<sup>4</sup> Trona leases have been issued within this area, and production occurs from a number of underground mines. The BLM has determined that the MMTA would be excluded from oil shale leasing until technology or other factors exist to allow development of the oil shale resource without jeopardizing the safe operation of underground trona mines.
- Segments of rivers that have been determined to be potentially eligible for WSR status by virtue of a WSR inventory. These river segments and a corridor

-

<sup>4</sup> Trona is a hydrous sodium carbonate mineral that is refined into soda ash, sodium bicarbonate, sodium sulfite, sodium tripolyphosphate, and chemical caustic soda.

extending at least 0.25 mi from the high water mark on either side of these segments would be excluded from commercial leasing.

- Historic trails. Historic trails identified by the BLM Wyoming State Office and a corridor extending at least 0.25 mi on either side of the trail would be excluded from commercial leasing.<sup>5</sup>
- Monument Valley Management Area. Oil shale development within this
  management area, which is located in the Rock Springs Field Office area, is
  prohibited in the Green River RMP (BLM 1997a). Specifically, the RMP
  directs that these lands remain withdrawn from oil shale development until a
  comprehensive study of the area has been conducted, including an assessment
  of the potential designation of this area as an ACEC on the basis of the need to
  protect cultural and paleontological resources.
- Management Area 3, Jack Morrow Hills Planning Area. In accordance with
  the Jack Morrow Hills Coordinated Activity Plan (BLM 2006a), extensive
  restrictions on surface-disturbing activities have been established for Area 3
  within the Jack Morrow Hills Planning Area because of the presence of
  sensitive natural and cultural resources. The portion of Area 3 that overlaps
  with the most geologically prospective oil shale resources in the Green River
  Basin is restricted to No Surface Occupancy (NSO) and has been excluded
  from future leasing on the basis of input from the field office.
- Expansion Areas Around Rock Springs and Green River, Wyoming. The BLM
  has determined that it will not issue leases within the "expansion areas"
  agreed upon with the cities of Rock Springs and Green River, Wyoming.

Leasing would occur utilizing a lease-by-application process. Under this process, the BLM would issue a call for applications for commercial leases. In response, companies would be required to identify the specific lands that they are interested in as part of their lease application package. It is also possible that the BLM would identify specific tracts to be leased in the call for applications. This process would require that NEPA analyses be conducted prior to lease issuance. Information collected as part of the lease application process would be incorporated into the NEPA analysis. Applicants would be required to identify key information regarding aspects of the proposed development needed to support a complete NEPA review (e.g., technologies to be employed, level of planned development, anticipated off-site impacts, strategies to comply with regulatory requirements, and so forth). During this NEPA review, the BLM would identify and establish appropriate lease stipulations to mitigate anticipated impacts. In addition, the subsequent approval of project-specific plans of development would require NEPA review to (1) consider site-specific and project-specific factors and (2) identify and require appropriate mitigation measures as needed to control impacts beyond those established in the lease stipulations. The NEPA review for the plan of development may be incorporated into

For the purposes of analysis in this PEIS, the centerline of trails mapped in the GIS was used to define the .25 mi buffer.

the NEPA review conducted for the lease application, if adequate operational data are provided by the applicant(s).

Under both programmatic alternatives, the BLM would require that the operator conduct commercial development in compliance with existing federal, state, and local regulatory requirements and established BLM policies, as discussed in Section 2.2 and Appendix D. This compliance would include, as appropriate, obtaining and complying with all required permits (e.g., air, water, and waste management) as required by regulatory agencies; operating within the permit constraints; completing consultation with the USFWS under Section 7 of the ESA; completing consultation with State Historic Preservation Officers (SHPOs), Tribal Historic Preservation Officers, and other consulting parties under Section 106 of the NHPA (P.L. 89-665); and compliance with any other relevant and applicable requirements. Compliance-related conditions would be developed on a project-by-project basis during site-specific analyses.

Under both programmatic oil shale alternatives, in Colorado, lands within the Multimineral Zone identified in the White River RMP (BLM 1997b) would be made available for application for commercial lease only if the applicant can demonstrate that it would use technologies that allow recovery of oil shale resources without preventing the recovery of or otherwise destroying other minerals (i.e., nahcolite and dawsonite). This is consistent with existing decisions in the White River RMP. However, the BLM has determined that other decisions in the White River RMP relevant to oil shale leasing would be modified under both programmatic alternatives. The decisions that would be modified include the (1) designation of specific areas as available for commercial oil shale leasing, (2) designation of a subset of this area as available for commercial oil shale leasing, (2) designation of a subset of this area as available for commercial of shale leasing, (2) designation of a subset of this area as available for commercial of shale leasing, (2) designation of a subset of this area as available for commercial of shale leasing, (2) designation of a subset of this area as available for commercial of shale leasing, (2) designation of a subset of this area as available for commercial of shale leasing, (2) designation of a subset of this area as available for commercial of shale area due to potential conflicts with oil and gas development, and (4) the decision requiring that all leasing for oil shale development be subject to specified carrying-capacity thresholds for air quality, socioeconomic impacts, big game, and water quality. Specific information about the White River RMP decisions relevant to oil shale are discussed in ereater detail in Section 3.1.1.3 and shown in Figure 3.1.1-3.

Under both programmatic oil shale alternatives, nine land use plans would be amended to (1) identify the most geologically prospective oil shale resources within each planning unit, (2) designate lands within these most geologically prospective areas available for application for leasing, (3) identify any technology restrictions, (4) stipulate requirements for future NEPA analyses and consultation activities, and (5) specify that the BLM will consider and give priority to the use of land exchanges to facilitate commercial oil shale development pursuant to Section 369(n) of the Energy Policy Act of 2005. The plans that would be amended to address commercial oil shale leasing and development include the following:

#### Colorado

- Glenwood Springs RMP (BLM 1988, as amended by the 2006 Roan Plateau Plan Amendment [BLM 2006b, 2007a])
- Grand Junction RMP (BLM 1987)
- White River RMP (BLM 1997b, as amended by the 2006 Roan Plateau Plan Amendment (BLM 2006b, 2007al)

- Utah
  - Book Cliffs RMP (BLM 1985)
  - Diamond Mountain RMP (BLM 1994)
  - Price River Resource Area MFP, as amended (BLM 1989)

## · Wyoming

- Great Divide RMP (BLM 1990)
- Green River RMP (BLM 1997a, as amended by the Jack Morrow Hills
  - Coordinated Activity Plan [BLM 2006a])
- Kemmerer RMP (BLM 1986).

The following sections describe the programmatic alternatives evaluated in this PEIS. The sections identify the additional leasing exclusions that the BLM has identified for each alternative and the proposed land use plan amendments. The specific land use plan amendments are discussed in greater detail in Appendix C.

# 2.3.3.1 Alternative B for a Commercial Oil Shale Leasing Program

Under Alternative B, the BLM proposes to designate a total of 1,991,222 acres<sup>6</sup> available for application for commercial oil shale leasing by amending nine land use plans. Specifically, the lands that would be available for application include all lands within the most geologically prospective oil shale areas that are either BLM-administered lands or split estate lands where the federal government owns the mineral rights except those lands described in Section 2.3.3. The lands that would be available for application for lease are shown in Figures 2.3.3-1, 2.3.3-2, and 2.3.3-3 for Colorado, Utah, and Wyoming, respectively. Table 2.3.3-1 lists the approximate number of acres of federal mineral estate available for application for commercial leasing under Alternative B by state. <sup>7</sup> The BLM has estimated that under Alternative B, approximately 16 billion bbl of oil would be available from Colorado, 28 billion bbl from Utah, and 17 billion bbl from Wyoming.

As shown in Figure 2.3.-2, split estate lands within the Hill Creek Extension of the Unitah and Ouray Reservation are included in the lands proposed to be available for leasing under Alternative B. These lands encompass 57,657 acres.

Also, as discussed in Section 2.3.1, commercial leases for surface mining projects would be allowed only on those lands where the overburden is 0 to 500 ft thick. In Utah, under Alternative B, lands available for application for leasing for surface mining projects total about

<sup>6</sup> This amount includes the 960 acres of RD&D leases.

<sup>7</sup> The maps and acreage estimates were constructed by applying the leasing restrictions discussed in the text to the best available geographic information system (GIS) datasets available to the BLM. These maps and acreage estimates may contain errors and should be considered to be only representative of the proposed leasing area for this alternative. As specific areas are considered for commercial leasing, a detailed evaluation of land status would be required.

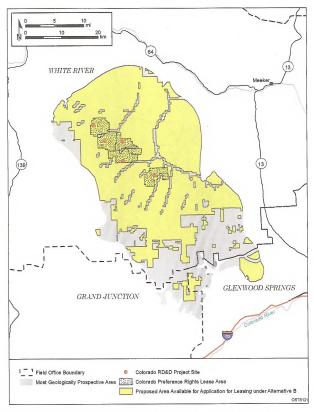



FIGURE 2.3.3-1 Lands Proposed To Be Available under Alternative B for Application for Lessing Commercial Oil Shale Development within the Most Geologically Prospective Areas in Colorado

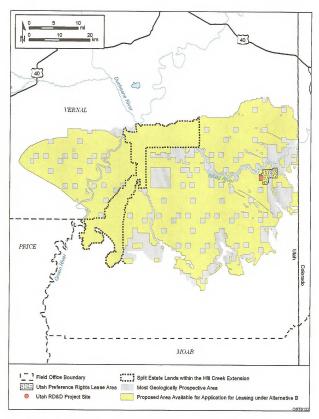



FIGURE 2.3.3-2 Lands Proposed To Be Available under Alternative B for Application for Leasing for Commercial Oil Shale Development within the Most Geologically Prospective Areas in Utah

85,640 acres in the Book Cliffs RMP planning area. In Wyoming, under Alternative B, these lands total about 248,000 acres in the Green River RMP planning area.

As shown in Figures 2.3.3-1, 2.3.3-2, and 2.3.3-3, under Alternative B, the preference right lease areas for the five RD&D projects in Colorado coincide entirely with the area proposed to be available for application for commercial leasing. For the OSEC RD&D project in Utah, however, portions of the preference right lease area are not available for application for commercial leasing under Alternative B because of the presence of a potentially eligible WSR, Evacuation Creek (see Section 2.3.3).8 Under the terms of the RD&D program, the federal government has a commitment to grant the RD&D companies leases for commercial development within the preference right lease areas, provided that all conditions of the program are met (see Section 1.4.1). As a result, all lands within the preference right lease areas would be available for issuance of commercial leases to the RD&D companies under Alternative B if they meet all conditions of the program. For commercial oil shale development to occur on lands excluded, the Book Cliffs RMP would need to be amended to consider the excluded area for potential leasing. The federal government is not under an obligation to grant leases for commercial development within these areas to any other applicants.

Under Alternative B, land use plans in the study area would be amended to adopt the conditions and constraints discussed above. Specifically, the plans would be amended to:

- Identify the most geologically prospective oil shale areas within the planning unit;
- Designate 1,991,222 acres of land within the most geologically prospective oil shale area as available for application for leasing for commercial oil shale development in accordance with applicable federal and state regulations and BLM policies;
- Identify that surface mining technologies will be allowed only in areas where the overburden is 0 to 500 ft thick;
- For the White River RMP, specify that some of the existing decisions related to oil shale leasing will be modified;
- Specify that additional NEPA analyses will be required before leases will be issued for commercial development;
- Specify that approval of project-specific plans of development will require additional NEPA review to consider site-specific and project-specific factors; and

<sup>8</sup> Although a power line will cross Evacuation Creek at two locations as part of the RD&D project development, OSEC will not be able to locate other surface facilities within 0.25 mi of the creek during commercial operations if the creek has been determined to be suitable for designation as a WSR at the time the commercial lease is issued.

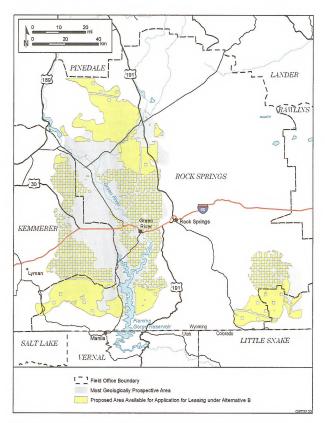



FIGURE 2.3.3-3 Lands Proposed To Be Available under Alternative B for Application for Leasing for Commercial Oil Shale Development within the Most Geologically Prospective Areas in Wyoming

TABLE 2.3.3-1 Estimated Acres Potentially Available in Each State for Application for Leasing for Commercial Oil Shale Development under Alternative B<sup>a</sup>

| State                   | BLM-Administered<br>Lands | Split Estate<br>Lands | Total     |
|-------------------------|---------------------------|-----------------------|-----------|
| Colorado                | 317,882                   | 41,916                | 359,798   |
| Utah <sup>b</sup>       | 554,977                   | 75,995                | 630,971   |
| Wyoming                 | 992,682                   | 7,771                 | 1,000,453 |
| Total for Alternative B | 1,865,542                 | 125,681               | 1,991,222 |

- a Totals may not be exact because of rounding. These estimates were derived from GIS data compiled for the PEIS. The GIS data may contain errors; therefore, these estimates should be considered to be only representative of the proposed leasing area.
- b The split estate lands in Utah include 57,657 acres of split estate lands within the Hill Creek Extension of the Uintah and Ouray Reservation on which the surface rights are owned by the Ute Indian Tribe.
- Specify that the BLM will consider and give priority to the use of land exchanges, where appropriate and feasible, to consolidate land ownership and mineral interests within the oil shale basins.

#### 2.3.3.2 Alternative C for a Commercial Oil Shale Leasing Program

Alternative C is largely similar to Alternative B except that additional lands are excluded from the area made available for application for commercial leasing. Under Alternative C, the BLM proposes to designate a total of 830,296 acres 9 available for application for commercial oil shale leasing by amending nine land use plans, as opposed to 1,991,222 acres under Alternative B. The lands that would be available for application under Alternative C include some of the lands that are available under Alternative B, but exclude lands that are identified as requiring special management or resource protection in existing land use plans. The BLM has estimated that under Alternative C, approximately 2 billion bbl of oil would be available from Colorado, 21 billion bbl from Utah, and 8 billion bbl from Wyoming.

To identify those lands that would be excluded on the basis of existing land use plan decisions, the BLM considered the possible impacts associated with individual commercial oil shale development projects. On the basis of these impact analyses, described in Chapter 4, it was determined that commercial oil shale development could be in conflict with existing land use

<sup>9</sup> This amount includes the 960 acres of RD&D leases.

plan decisions that require surface-disturbance restrictions or seasonal limitations on activities in order to adequately protect a specific resource. It was decided to exclude from Alternative C all lands where such surface-disturbance and seasonal limitations are in place to protect known sensitive resources. The BLM made the determination that the most effective means of identifying lands that should be excluded on this basis was to exclude those lands within each field office where stipulations for no surface-disturbance or seasonal limitations are in place for oil and gas leasing. Under this alternative, the BLM would place a priority on protecting known sensitive resources within each field office by excluding certain lands from application for leasing.

The lands that would be available for application for leasing under Alternative C are shown in Figures 2.3.3-4, 2.3.3-5, and 2.3.3-6 for Colorado, Utah, and Wyoming, respectively. Table 2.3.3-2 lists the approximate number of acres of federal mineral estate available for application for commercial leasing under Alternative C by state. <sup>10</sup> Table 2.3.3-3 identifies the types of stipulations and restrictions in place for oil and gas leasing in each state that are being used to identify those lands that would not be available for application for leasing for commercial oil shale development under Alternative C.

As shown in Figures 2.3.3-4, 2.3.3-5, and 2.3.3-6 and reflected in Table 2.3.3-2, a large amount of land (i.e., 1,160,926 acres) available for application for leasing under Alternative B is excluded under Alternative C. In addition, particularly in Colorado and Wyoming, a large portion of the lands proposed to be available for application for leasing is composed of relatively small, isolated tracts of land. These factors could result in limiting the amount of commercial oil shale development to some level below that which might be realized under Alternative B.

Also, as discussed in Section 2.3.1, commercial leases for surface mining projects would be allowed only on those lands where the overburden is 0 to 500 ft thick. In Utah, under Alternative C, lands available for application for leasing for surface mining projects total about 46,900 acres in the Book Cliffs RMP planning area. In Wyoming, under Alternative C, these lands total about 68,200 acres in the Green River RMP planning area.

Although the White River and Book Cliffs RMPs allow commercial leasing for oil shale development, as shown in Figures 2.3.3-4, 2.3.3-5, and 2.3.3-6, under Alternative C, portions of three of the five preference right lease areas for the Colorado RD&D leases are not available for application for commercial leasing. These include portions of the areas associated with the Chevron, EGL, and Shell Site 2 RD&D projects. For the other two Colorado RD&D projects, Shell Sites 1 and 3, none of the preference right lease areas coincide with the area available for application for commercial leasing. As with Alternative B, for the OSEC RD&D project in Utah, portions of the area are not available for application for commercial leasing under Alternative C

<sup>10</sup> The maps and acreage estimates were constructed by applying the leasing restrictions discussed in the text to the best available GIS datasets available to the BLM. These maps and acreage estimates may contain errors and should be considered to be only representative of the proposed leasing area for this alternative. As specific areas are considered for commercial leasing, a detailed evaluation of land status would be required.

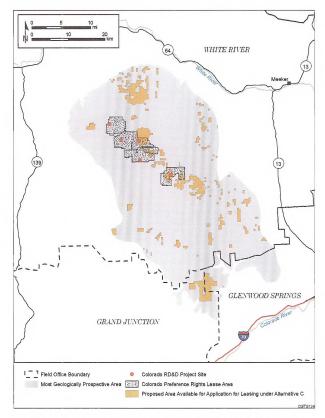



FIGURE 2.3.3-4 Lands Proposed To Be Available under Alternative C for Application for Leasing for Commercial Oll Shale Development within the Most Geologically Prospective Areas in Colorado



FIGURE 2.3.3-5 Lands Proposed To Be Available under Alternative C for Application for Leasing for Commercial Oll Shale Development within the Most Geologically Prospective Areas in Utah

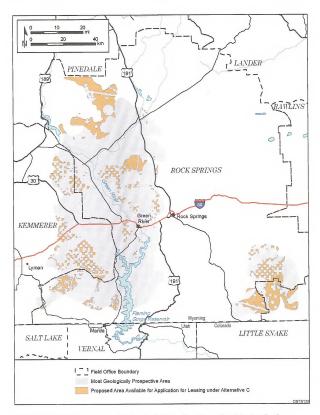



FIGURE 2.3.3-6 Lands Proposed To Be Available under Alternative C for Application for Leasing for Commercial Oil Shale Development within the Most Geologically Prospective Areas in Wyoming

TABLE 2.3.3-2 Estimated Acres Potentially Available in Each State for Leasing for Commercial Oil Shale Development under Alternative Ca

| State                   | BLM-Administered<br>Lands | Split Estate<br>Lands | Total   |
|-------------------------|---------------------------|-----------------------|---------|
| Colorado                | 26,109                    | 14,217                | 40,325  |
| Utah                    | 472,443                   | 18,017                | 490,460 |
| Wyoming                 | 297,434                   | 2,077                 | 299,511 |
| Total for Alternative C | 795,986                   | 34,311                | 830,296 |

a Totals may not be exact because of rounding. These estimates were derived from GIS data compiled for the PEIS. The GIS data may contain errors; therefore, these estimates should be considered to be only representative of the proposed leasing area.

because they are excluded due to the presence of a potentially eligible WSR, Evacuation Creek (see Section 2.3.3). <sup>11</sup> Under the terms of the RD&D program, the federal government has a commitment to grant the RD&D companies leases for commercial development within the preference right lease areas, provided that all conditions of the program are met (see Section 1.4.1). As a result, all lands within the preference right lease areas would be available for issuance of commercial leases to the RD&D companies under Alternative C if they meet all conditions of the program. For commercial oil shale development to occur on lands excluded by Alternative C, the specific land use plans would need to be amended to consider the excluded area for potential leasing. The federal government is not under an obligation to grant leases for commercial development within these areas to any other applicants.

Under Alternative C, land use plans in the study area would be amended to adopt the conditions and constraints discussed previously. Specifically, the plans would be amended to:

- Identify the most geologically prospective oil shale areas within the planning unit;
- Designate 830,296 acres of land within the most geologically prospective oil shale area as available for application for leasing for commercial oil shale development in accordance with applicable federal and state regulations and BLM policies;

<sup>11</sup> Although a power line will cross Evacuation Creek at two locations as part of the RD&D project development, OSEC will not be able to locate other surface facilities within 0.25 mi of the creek during commercial operations if the creek has been determined to be suitable for designation as a WSR at the time the commercial lease is issued.

TABLE 2.3.3-3 Resources Covered by Stipulations and Restrictions in Place for Oll and Gas Leasing in Each State That Are Being Used To Identify Lands That Would Not Be Available for Application for Leasing for Commercial Oil Shale Development under Alternative C

#### Colorado

Slopes and fragile/erosive soils

Riparian zones and wetlands

Sage grouse leks and nesting habitat

Rantor nests, roosts, fledgling habitat, and concentration areas

Wildlife habitata

Colorado River cutthroat trout habitat

Listed, proposed, or candidate threatened or endangered and BLM-designated sensitive species

Sensitive plants and remnant vegetation associations

Wild horses and wild horse management areas Visual Resource Management (VRM) Class II areas

v Isuai Rosc

Paleontological and cultural resources

#### Utah

Erosive soils

Floodplains, watersheds, and live water

Sage grouse leks and nesting habitat

Raptor nests and habitat

Wildlife habitata

Black-footed ferret habitat

Special status plants

ACECs

Paleontological resources

Otherb

#### Wyoming

Slopes and fragile/erosive soil

Sage grouse and greater sage grouse leks and nesting habitat

Raptor nests and concentration areas

Wildlife habitata

Sensitive species

VRM Class I and II areas

Historic trails

ACECs

Cultural resources

Otherb

- a Wildlife habitat includes a combination of winter range, crucial winter range, summer range, and calving areas for antelope, deer, elk, and moose, as well as seclusion areas for other wildlife.
- b Other resources include special management areas, recreation areas, and areas restricted from leasing for reasons not specified in the GIS data.

- Identify that surface mining technologies will be allowed only in areas where the overburden is 0 to 500 ft thick;
- For the White River RMP, specify that some of the existing decisions related to oil shale leasing will be modified;
- Specify that additional NEPA analyses will be required before leases will be issued for commercial development:
- Specify that approval of project-specific plans of development will require additional NEPA review to consider site-specific and project-specific factors; and
- Specify that the BLM will consider and give priority to the use of land exchanges, where appropriate and feasible, to consolidate land ownership and mineral interests within the oil shale basins.

#### 2.4 TAR SANDS

Tar sands are sedimentary rocks containing bitumen, a heavy hydrocarbon complex. Lighter, more volatile hydrocarbons once present in these rocks have escaped to the environment, leaving the heavier, less volatile bitumen in place. Because of the very viscous nature of the bitumen, tar sands cannot be processed by normal petroleum production techniques.

More than 50 tar sands deposits occur in Utah. Limited data are available on many of these deposits, and most of the known bitumen occurs in just a few of the deposits. The deposits that are being evaluated in this PEIS are those classified in the 11 sets of geologic reports (minutes) prepared by the USGS in 1980 (USGS 1980a-k) and formalized by Congress in the Combined Hydrocarbon Leasing Act of 1981 (P.L. 97-78). 12 The 11 STSAs, which define the tar sands study area, are shown in Figure 2.4-1 and listed in Table 2.4-1, along with their total size in acros and the number of acres of BLM-administered and split estate lands within each STSA.

Although no tar sands development is currently taking place on public lands in Utah, in the mid-1980s, a number of CHLs were issued in the Pariette and P.R. Spring STSAs under the authority of the Combined Hydrocarbon Leasing Act (P.L. 97-78). These include four leases in the Pariette STSA and two leases in the P.R. Spring STSA; these leases remain in existence. Also in the mid-1980s, a number of operators holding oil and gas leases or tar sands claims within designated STSAs applied to convert their leases to CHLs. In most instances, the conversion of these leases has not been completed; thus, a number of pending conversion applications remain within the study area, specifically within the Circle Cliffs, Tar Sand

<sup>12</sup> The boundaries of the designated STSAs were determined by the Secretary of the Interior's orders of November 20, 1980 (45 FR 76800–76801), and January 21, 1981 (46 FR 6077–6078).

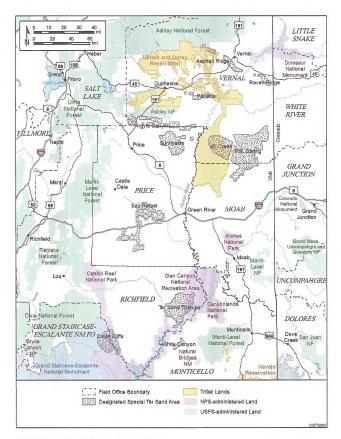



FIGURE 2.4-1 Special Tar Sand Areas in Utah

TABLE 2.4-1 Total Size in Acres of the 11 STSAs and Acres of BLM-Administered and Split Estate Lands within Each STSA<sup>a,b</sup>

| STSA                       | Total Size | Total BLM-<br>Administered<br>Lands within<br>STSA | Total Split<br>Estate Lands<br>within STSA |
|----------------------------|------------|----------------------------------------------------|--------------------------------------------|
| Argyle Canyon              | 22,259     | 1,224                                              | 11.869                                     |
| Asphalt Ridge              | 39,151     | 5,323                                              | 128                                        |
| Circle Cliffs <sup>c</sup> | 91,303     | 51,226                                             | 6,707                                      |
| Hill Creek <sup>d</sup>    | 106,795    | 19,923                                             | 36,583                                     |
| Pariette                   | 22,622     | 12,337                                             | 78                                         |
| P.R. Spring                | 273,922    | 184,558                                            | 8,192                                      |
| Raven Ridge                | 16,533     | 14,352                                             | 16                                         |
| San Rafael Swell           | 130,737    | 115,667                                            | 0                                          |
| Sunnyside                  | 157,406    | 78,657                                             | 18,575                                     |
| Tar Sand Triangle          | 155,049    | 83,040                                             | 0                                          |
| White Canyon               | 10,490     | 8,050                                              | 0                                          |
| Total                      | 1,026,266  | 574,357                                            | 82,148                                     |

- <sup>a</sup> Totals may not be exact because of rounding. These estimates were derived from GIS data compiled for the PEIS. The GIS data may contain errors; therefore, these estimates should be considered to be only representative of the size of the STSAs and the distribution of BLM-administered and split estate lands.
- b Split estate lands include areas where the federal government owns, and the BLM administers, the subsurface mineral rights, but the surface estate is owned by Tribes, states, or private parties.
- <sup>c</sup> The Circle Cliffs STSA is included for information purposes only; it has been excluded from consideration for being designated as open to application for leasing in this PEIS. The BLM-administered lands fall entirely within the GSENM.
- d The split estate lands in the Hill Creek STSA include 35,472 acres of split estate lands within the Hill Creek Extension of the Uintah and Ouray Reservation on which the surface rights are owned by the Ute Indian Tribe.

Triangle, and P.R. Spring STSAs. $^{13}$  The BLM is currently engaged in adjudication of these leases. $^{14}$  Tar sands deposits outside the areas designated by the Secretary of the Interior in the

<sup>13</sup> While the Circle Cliffs STSA is a designated STSA, the BLM-administered portion of it falls entirely within the GSENM and has been excluded from consideration for being designated as open to application for leasing in this PEIS.

<sup>14</sup> Decisions in this PEIS and its accompanying ROD regarding the availability of lands within the STSAs for future commercial leasing and the constraints under which such future leases would be issued would not affect the existing CHLs or any of the pending anoplications that are converted to CHLs.

11 sets of minutes are not available for leasing under the CHL Program, but are available for development under a conventional oil and gas lease.

Potential tar sands development could occur on the existing CHLs or on pending conversion leases should they be converted to CHLs. However, because there has been no tar sands development to date on any of the CHLs and no project proposals have been submitted, the BLM cannot reasonably foresee any development of tar sands on public lands within the STSAs over the next 20 years under the CHL Program.

## 2.4.1 Potential Commercial Tar Sands Development Technologies

This section briefly describes the tar sands development technologies that have been considered in the scope of the PEIS analyses. Appendix B provides a more detailed discussion of potential technologies that may be used over the next 20 years and includes a discussion of oil sands development in Canada. Information presented in this section and Appendix B on technologies that might be used is taken from the best available published data. Because commercial tar sands development is still evolving, many details regarding the specific technologies that will be used in the future to produce oil from tar sands are unknown. In the absence of complete and definitive information about the technologies that may be deployed, a number of assumptions have been made. These assumptions are discussed in Section 5.1.

Commercial development of a tar sands resource occurs in three major steps: (1) recovery of the bitumen in its natural setting, (2) processing of the bitumen to extract it from the inorganic matrix (largely sand and silt) in which it occurs, and (3) upgrading of the bitumen to produce a synthetic crude oil suitable as a feedstock for a conventional refinery. The physical and chemical features of the tar sands deposits and other circumstantial factors associated with their deposition dictate the most appropriate development schemes. Typical development schemes always involve each of the above major steps, although many permutations of these steps are possible and many interim steps may also be necessary.

Recovery methods can be categorized as either mining activities or in situ processes, although some techniques involve a combination of recovery methods. Mining consists of using surface or subsurface mining techniques to excavate the tar sands with subsequent recovery of the bitumen by washing, flotation, or retorting. <sup>15</sup> In situ techniques recover the bitumen without physically excavating the tar sands. In situ recovery is sometimes further categorized as true in situ or modified in situ. True in situ methods generally involve either heating the tar sands (referred to as in situ combustion) or injecting materials (e.g., steam, hot water, gas, or solvents) into them to mobilize the bitumen for recovery. Modified in situ methods involve either fracturing the deposit in place to increase its permeability or combining true in situ processes in combination with subsurface mining techniques. Depending on production costs and the price of the synthetic crude produced, surface mining operations are generally cost-effective only where

<sup>15</sup> The PEIS does not evaluate the application of underground mining technologies for the commercial development of tar sands because, at this time, underground mining to develop tar sands does not appear to be commercially viable.

the overburden is no more than about 45 m (150 ft) (Meyer 1995). In situ processes requiring high pressures are generally considered to require a thick overburden of about 150 m (500 ft) to contain the pressure. Between these depths, bitumen must be recovered by other means.

The choice of recovery method affects which extraction and processing operations are used. In mining operations, the mined bitumen must be processed to recover or separate it from the inorganic matrix (largely sand, silt, and clay) in which it occurs. Nonmining recovery methods produce bitumen mixed with water, steam, other gases, or solvent from which it must be separated. If combustion recovery is used, the viscosity of the recovered bitumen may need to be reduced prior to further processing. If steam, water, or gas injection is used, the injection fluid would need to be separated from the bitumen. In all cases, the viscosity of the bitumen might need to be changed prior to further processing and upgrading (BLM 1984). Depending on the recovery method, mining operations may also need to perform similar separations. The recovery processes evaluated in this PEIS include those discussed in Appendix B: the hot water process, cold water process, solvent extraction process, and thermal recovery processes, including retorting.

Irrespective of the recovery and processing technologies employed, it is assumed that at most commercial projects the recovered bitumen would need to be upgraded in order for it to be accepted by oil refineries as feedstocks for conventional fuels. Although there are variations between different production operations, four main processes are used to upgrade bitumen: coking (thermal conversion), catalytic conversion, distillation (fractionation), and hydrotreating.

Four technology combinations are evaluated in this PEIS for commercial tar sands development:

- · Surface mining projects with surface retorting,
- · Surface mining projects with solvent extraction,
- · In situ steam injection projects, and
- · In situ combustion projects.

While many hypothetical development scenarios could be constructed for various technology combinations, it is not possible to project or analyze all of them in this PEIS. This PEIS is being developed in support of the amendment of 12 land use plans to open certain public lands for the opportunity to lease oil shale and tar sands for commercial development.

For the same reasons the BLM has elected not to attempt to issue leases on the basis of this PEIS (see Section 2.5.1, below), this Draft PEIS does not include analysis of a particular development scenario. Because the tar sands industry in the United States still lacks a commercially viable technology, the BLM concluded that trying to anticipate a certain level of development would be too speculative.

Therefore, this PEIS includes description and analysis not of a particular level of development, but of the possible impacts of each type of technology that has been considered and researched, so far as this information is available to the BLM at this time.

If and when applications to lease are received and additional information becomes available, the BLM will conduct NEPA analyses, including consideration of direct, indirect, and cumulative effects, reasonable alternatives, and possible mitigation measures, as well as what level of development may be anticipated. On the basis of that NEPA analysis to be conducted at the lease stage, the BLM will consider further amendment of one or more plans, including, but not limited to, the establishment of general lease stipulations and BMPs.

This PEIS considers the components of current technologies that could be implemented in order to analyze the range of potential impacts that could occur. The scope of the PEIS analyses is intended to be broad enough to include the potential array of technologies that might be used to commercially develop tar sands resources on public lands. It is possible, however, that additional technologies may be identified as viable in the next 20 years. The application of such technologies on public lands may be allowed by the BLM; however, these technologies would need to be evaluated on a case-by-case basis.

#### 2.4.2 Alternative A. No Action Alternative

Alternative A is the no action alternative. Under this alternative for tar sands, the BLM has assumed that there would be no commercial leasing or development of tar sands on public lands. As discussed in Section 2.4, although a number of CHLs were issued in the mid-1980s (and there are additional pending applications to convert oil and gas leases or tar sands claims to CHLs), there has been no tar sands development on public lands in the last 20 years or more. Furthermore, at the time this Draft PEIS was prepared, no commercial tar sands project proposals had been submitted to the BLM. On this basis, the BLM has determined that it is unlikely that commercial tar sands development would occur under the existing CHL Program. Under Alternative A, land use plans would not be amended to allow for leasing for commercial tar sands development under any program other than the CHL Program. Table 2.4.2-1 provides a summary of the activities and conditions assumed to occur under Alternative A.

#### 2.4.3 Commercial Tar Sands Leasing Program Alternatives

The two separate alternatives that the BLM has developed for establishing a commercial tar sands leasing program are summarized in Table 2.4.2-1. These programmatic alternatives, labeled Alternatives B and C, consist of different management approaches to future commercial tar sands leasing. Under each programmatic alternative, the BLM proposes to make certain lands within the STSAs available for application for commercial leases. Under both alternatives, additional NEPA analyses would be conducted prior to the issuance of commercial leases. In addition, site-specific NEPA analyses would be conducted during evaluation and approval of plans of development during the project development phase. These site-specific analyses, which potentially could be combined into a single NEPA evaluation, would identify potential

TABLE 2.4.2-1 Summary of Activities and Conditions Assumed for Each of the Tar Sands Alternatives

| Condition                                                 | Alternative A<br>(No Action)                                                                                                                                                                                                                                                                                                                                              | Alternative B                                                                                                                                                                                                                                                                                                                                                 | Alternative C                                                                                                                                                                                                                                   |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Potential area made available for application for leasing | 431,224 acres would be made available for application for commercial lease. Argyle Canyon: 11,226 acres Asphalt Ridge: 5,435 acres Circle Cliffs: 0 acres Hill Creek: 56,506 acres Pariette: 10,161 acres P.R. Spring: 153,003 acres Raven Ridge: 14,364 acres San Rafael: 70,475 acres Sunnyside: 78,116 acres Tar Sand Triangle: 24,938 acres White Canyon: 7,001 acres | 229,038 acres would be made available for application for commercial lease. Argyle Canyon: 0 acres Asphalt Ridge: 1,464 acres Circle Cliffs: 0 acres Hill Creek: 19,934 acres Pariette: 830 acres P.R. Spring: 56,728 acres Raven Ridge: 9,950 acres San Rafael: 54,492 acres Sunnyside: 62,741 acres Tar Sand Triangle: 22,511 acres White Canyon: 386 acres |                                                                                                                                                                                                                                                 |
| Technologies considered                                   | No tar sands development projected.                                                                                                                                                                                                                                                                                                                                       | Surface mine with surface retort<br>Surface mine with solvent extraction<br>In situ steam injection<br>In situ combustion                                                                                                                                                                                                                                     | Same as Alternative B.                                                                                                                                                                                                                          |
| Lands excluded<br>from<br>commercial<br>leasing           | Not applicable; no commercial leasing would occur under this alternative.                                                                                                                                                                                                                                                                                                 | Wilderness Areas, WSAs, other areas that are part of the NLCS. All existing ACECs. The Circle Cliffs STSA. Segments of rivers determined to be eligible for WSR status by virtue of a WSR inventory. Incorporated town and city limits.                                                                                                                       | Same as Alternative B.                                                                                                                                                                                                                          |
| Additional<br>location-specific<br>limitations            | Not applicable; no<br>commercial leasing would<br>occur under this<br>alternative.                                                                                                                                                                                                                                                                                        | None                                                                                                                                                                                                                                                                                                                                                          | All lands where surface-disturbance restrictions or seasonal limitations are in place in existing land use plans in order to protect known sensitive resources would be excluded from application for commercial leasing (see Section 2.4.3.2). |

|                                        | Alternative A<br>(No Action)                                                                                                                                                                                                                               | Alternative B                                                                                                                                             | Alternative C          |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Regulatory and operational constraints | Not applicable; no commercial leasing would occur under this alternative.                                                                                                                                                                                  | All commercial development would be conducted in compliance with existing federal, state, and local regulatory requirements and established BLM policies. | Same as Alternative B. |
| Additional<br>NEPA<br>requirements     | Additional NEPA<br>analyses would be<br>required before any leases<br>for commercial<br>development could be<br>issued. Site-specific<br>NEPA analyses also<br>would be conducted<br>during the review and<br>approval of project plans<br>of development. | Same as Alternative A.                                                                                                                                    | Same as Alternative A. |
| Applicable<br>leasing<br>regulations   | Leasing would be conducted pursuant to the CHL regulations contained in 43 CFR Part 3140.                                                                                                                                                                  | Leasing would be conducted pursuant to the interim final rules for tar sands leasing in STSAs published in 70 FR 58610–58516.                             | Same as Alternative B. |

project-specific impacts and define appropriate lease stipulations and required mitigation measures. The potentially applicable mitigation measures discussed in the Chapter 5 impact analyses would be applied during the site-specific analyses, as appropriate.

As discussed in Section 1.2, the BLM has determined that certain lands within the STSAs are excluded from commercial leasing under all alternatives, on the basis of existing laws and regulations, Executive Orders, land use plan designations, and other administrative designations or withdrawals. As a result, commercial leasing is excluded from all designated Wilderness Areas, WSAs, and other areas that are part of the NLCS administered by the BLM (e.g., National Monuments, NCAs, WSRs, and National Historic and Scenic Trails). Leasing also would be excluded from all existing ACECs and lands within incorporated town and city limits. The BLM has also determined that additional areas would be closed and would not be available for future opportunity to lease for commercial development of tar sands resources under both programmatic alternatives. These additional areas include:

- Circle Cliffs STSA. Most of the Circle Cliffs STSA falls entirely within the GSENM and Capitol Reef National Park. The issuance of new leases for mineral development within each of these units is prohibited. Also, a small portion of the Circle Cliffs STSA underlies the Glen Canyon NRA; this area is part of the "Natural Zone" within which mineral leasing and development are prohibited.
- Segments of rivers that have been determined to be potentially eligible for WSR status by virtue of a WSR inventory. These river segments and a corridor extending at least 0.25 mi on either side of these segments would be excluded from commercial leasing.

Leasing would occur utilizing a lease-by-application process. Under this process, the BLM would issue a call for applications for commercial leases. In response, companies would be required to identify the specific lands that they are interested in as part of their lease application package. It is also possible that the BLM would identify specific tracts to be leased in the call for applications. This process would require that NEPA analyses be conducted prior to lease issuance. Information collected as part of the lease application process would be incorporated into the NEPA analysis. Applicants would be required to identify key information regarding aspects of the proposed development needed to support a complete NEPA review (e.g., technologies to be employed, level of planned development, anticipated off-site impacts, strategies to comply with regulatory requirements, and so forth). During this NEPA review, the BLM would identify and establish appropriate lease stipulations to mitigate anticipated impacts. In addition, the subsequent approval of project-specific plans of development would require NEPA review to (1) consider site-specific and project-specific factors and (2) identify and require appropriate mitigation measures as needed to control impacts beyond those established in the lease stipulations. The NEPA review for the plan of development may be incorporated into the NEPA review conducted for the lease application, if adequate operational data are provided by the applicant(s).

Under both programmatic alternatives, the BLM would ensure that the operator conducts commercial development in compliance with existing federal, state, and local regulatory requirements and established BLM policies, as discussed in Section 2.2 and Appendix D. This compliance would include, as appropriate, obtaining all required permits (e.g., air, water, and waste management) as required by regulatory agencies; operating within the permit constraints; completing consultation with the USFWS under Section 7 of the ESA; completing consultation with SHPOs, Tribal Historic Preservation Officers, and other consulting parties under Section 106 of the NHPA; and compliance with any other relevant and applicable requirements. Compliance-related conditions would be developed on a project-by-project basis during site-specific analyses.

Under both programmatic tar sands alternatives, six land use plans in Utah would be amended to (1) designate lands within the STSAs available for application to lease, (2) stipulate requirements for future NEPA analyses and consultation activities, and (3) specify that the BLM will consider and give priority to the use of land exchanges to facilitate commercial tar sands development pursuant to Section 369(n) of the Energy Policy Act of 2005. The plans that would be amended to address commercial tar sands leasing and development include the following:

- · Book Cliffs RMP (BLM 1985);
- · Diamond Mountain RMP (BLM 1994);
- · Henry Mountain MFP, issued 1982;
- · Price River Resource Area MFP, as amended (BLM 1989);
- · San Rafael Resource Area RMP (BLM 1991a); and
- San Juan Resource Area RMP (BLM 1991b).

The following sections describe the programmatic alternatives evaluated in this PEIS. The sections identify the additional leasing exclusions that the BLM has identified for each alternative and the proposed land use plan amendments. The specific land use plan amendments are discussed in greater detail in Appendix C.

## 2.4.3.1 Alternative B for a Commercial Tar Sands Leasing Program

Under Alternative B, the BLM proposes to designate a total of 431,224 acres available for commercial tar sands leasing by amending six land use plans. Specifically, the lands that would be available for application include all lands within the STSAs that are either BLM-administered lands or split estate lands where the federal government owns the mineral rights except those lands described in Section 2.4.3. The lands that would be available for application for lease are shown in Figure 2.4.3-1. Table 2.4.3-1 lists the approximate number of acres of

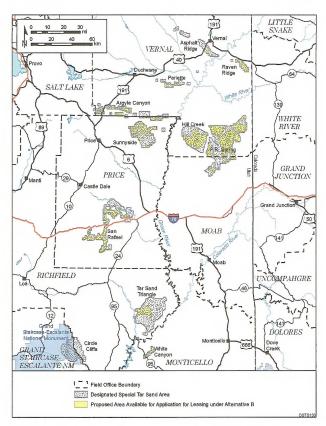



FIGURE 2.4.3-1 Lands Proposed To Be Available under Alternative B for Application for Leasing for Commercial Tar Sands Development within the STSAs in Utah

TABLE 2.4.3-1 Estimated Acres Potentially Available for Leasing in Each STSA for Commercial Tar Sands Development under Alternative Ba

| STSA                    | BLM-Administered<br>Lands | Split Estate<br>Lands | Total   |
|-------------------------|---------------------------|-----------------------|---------|
| Argyle Canyon           | 1.022                     | 10,204                | 11,226  |
| Asphalt Ridge           | 5,310                     | 125                   | 5,435   |
| Circle Cliffsb          | 0                         | 0                     | 0       |
| Hill Creek <sup>c</sup> | 19,923                    | 36,583                | 56,506  |
| Pariette                | 10,083                    | 78                    | 10,161  |
| P.R. Spring             | 145,922                   | 7,081                 | 153,003 |
| Raven Ridge             | 14,348                    | 16                    | 14,364  |
| San Rafael              | 70,475                    | 0                     | 70,475  |
| Sunnyside               | 61,093                    | 17,023                | 78,116  |
| Tar Sand Triangle       | 24,938                    | 0                     | 24,938  |
| White Canyon            | 7,001                     | 0                     | 7,001   |
| Total for Alternative B | 360.115                   | 71,110                | 431,224 |

- Totals may not be exact because of rounding. These estimates were derived from GIS data compiled for the PEIS. The GIS data may contain errors; therefore, these estimates should be considered to be only representative of the proposed leasing area.
- Leasing for commercial tar sands development in the Circle Cliffs STSA is excluded under all alternatives because it falls entirely within the GSENM and units managed by the NPS on which mineral leasing and development are prohibited.
- <sup>c</sup> The split estate lands in the Hill Creek STSA include 35,472 acres of split estate lands within the Hill Creek Extension of the Uintah and Ouray Reservation on which the surface rights are owned by the Ute Indian Tribe.

federal mineral estate available for application for commercial leasing under Alternative B by STSA 16

As indicated in Table 2.4.3-1, split estate lands within the Hill Creek Extension of the Unitah and Ouray Reservation are included in the lands proposed to be available for leasing under Alternative B. These lands encompass 35,472 acres.

Under Alternative B, land use plans in the study area would be amended to adopt the conditions and constraints discussed above. Specifically, the plans would be amended to:

<sup>16</sup> The maps and acreage estimates were constructed by applying the leasing restrictions discussed in the text to the best available GIS datasets available to the BLM. These maps and acreage estimates may contain errors and should be considered to be only representative of the proposed leasing area for this alternative. As specific areas are considered for commercial leasing, a detailed evaluation of land status would be required.

- Designate 431,224 acres of land within the STSAs as available for application for leasing for commercial tar sands development in accordance with applicable federal and state regulations and BLM policies;
- Specify that additional NEPA analyses will be required before leases will be issued for commercial development;
- Specify that approval of project-specific plans of development will require additional NEPA review to consider site-specific and project-specific factors; and
- Specify that the BLM will consider and give priority to the use of land exchanges where appropriate and feasible to consolidate land ownership and mineral interests within the STSAs.

## 2.4.3.2 Alternative C for a Commercial Tar Sands Leasing Program

Alternative C is similar to Alternative B except that additional lands are excluded from the area made available for application for commercial leasing. Under Alternative C, the BLM proposes to identify a total of 229,038 acres available for application for commercial tar sands leasing by amending six land use plans, as opposed to 431,224 acres under Alternative B. The lands that would be available for application under Alternative C include some of the lands that area available under Alternative B, but exclude lands that are identified as requiring special management or resource protection in existing land use plans.

To identify those lands that would be excluded on the basis of existing land use plan decisions, the BLM considered the possible impacts associated with individual commercial tar sands development projects. On the basis of these impact analyses, described in Chapter 5, it was determined that commercial tar sands development could be in conflict with existing land use plan decisions that require surface-disturbance restrictions or seasonal limitations on activities in order to adequately protect a specific resource. It was decided to exclude from Alternative C all lands where such surface-disturbance and seasonal limitations are in place to protect known sensitive resources. The BLM made the determination that the most effective means of identifying lands that should be excluded on this basis was to exclude those lands within each field office where stipulations for no surface-disturbance or seasonal limitations are in place for oil and gas leasing. Under this alternative, the BLM would place a priority on protecting known sensitive resources within each field office by excluding certain lands from application for leasing.

The lands that would be available for application for lease under Alternative C are shown in Figure 2.4.3-2. Table 2.4.3-2 lists the approximate number of acres of federal mineral estate

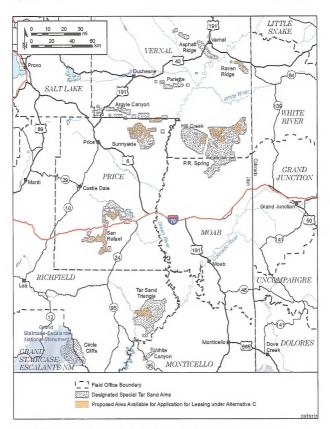



FIGURE 2.4.3-2 Lands Proposed To Be Available under Alternative C for Application for Leasing for Commercial Tar Sands Development within the STSAs in Utah

TABLE 2.4.3-2 Estimated Acres Potentially Available for Leasing in each STSA for Commercial Tar Sands Development under Alternative C<sup>a</sup>

| STSA                       | BLM-Administered<br>Lands | Split Estate<br>Lands | Total   |
|----------------------------|---------------------------|-----------------------|---------|
| Argyle Canyon              | 0                         | 0                     | 0       |
| Asphalt Ridge              | 1,372                     | 93                    | 1,464   |
| Circle Cliffs <sup>b</sup> | 0                         | 0                     | 0       |
| Hill Creek                 | 19,455                    | 480                   | 19,934  |
| Pariette                   | 830                       | 0                     | 830     |
| P.R. Spring                | 50,727                    | 6,001                 | 56,728  |
| Raven Ridge                | 9,935                     | 16                    | 9,950   |
| San Rafael                 | 54,492                    | 0                     | 54,492  |
| Sunnyside                  | 48,731                    | 14,010                | 62,741  |
| Tar Sand Triangle          | 22,511                    | 0                     | 22,511  |
| White Canyon               | 386                       | 0                     | 386     |
| Total for Alternative C    | 208,438                   | 20,600                | 229,038 |

- Totals may not be exact because of rounding. These estimates were derived from GIS data compiled for the PEIS. The GIS data may contain errors; therefore, these estimates should be considered to be only representative of the proposed leasing area.
- b Leasing for commercial tar sands development in the Circle Cliffs STSA is excluded under all alternatives because it falls entirely within the GSENM and units managed by the NPS on which mineral leasing and development are prohibited.

available for application for commercial leasing under Alternative C by STSA.<sup>17</sup> Table 2.4.3-3 identifies the types of stipulations and restrictions in place for oil and gas leasing in each state that are being used to identify those lands that would not be available for application to lease for commercial tar sands development under Alternative C.

As shown in Figure 2.4.3-2 and reflected in Table 2.4.3-2, a large amount of land (i.e., 202,186 acres) available for application for leasing under Alternative B is excluded under Alternative C; several STSAs become entirely unavailable for application for lease. In addition, in some of the STSAs, a large portion of the lands proposed to be available for leasing is composed of relatively small, isolated tracts of land. These factors could result in limiting the amount of commercial tar sands development to some level below that which might be realized under Alternative B.

<sup>17</sup> The maps and acreage estimates were constructed by applying the leasing restrictions discussed in the text to the best available GIS datasets available to the BLM. These maps and acreage estimates may contain errors and should be considered to be only representative of the proposed leasing area for this alternative. As specific areas are considered for commercial leasing, a detailed evaluation of land status would be required.

TABLE 2.4.3-3 Resources Covered by Stipulations and Restrictions in Place for Oil and Gas Leasing in the STSAs That Are Being Used To Identify Lands That Would Not Be Available for Application for Commercial Tar Sands Develonment Leasing under Alternative C

Slopes and erosive/critical soils
Floodplains, watersheds, and live water
Sage grouse leks and nesting habitat
Raptor nests and habitat
Wildlife habitat
Special status plants and relict vegetation
VRM Class II areas and other high-quality visual resources
ACECs
Paleontological resources
Other<sup>b</sup>

- Wildlife habitat includes a combination of winter range, crucial winter range, summer range, and calving areas for antelope, bighorn sheep, deer, and elk, as well as seclusion areas for other wildlife.
- b Other resources include special management areas, recreation areas, and areas restricted from leasing for reasons not specified in the GIS data.

Under Alternative C, land use plans in the study area would be amended to adopt the conditions and constraints discussed above. Specifically, the plans would be amended to:

- Designate 229,038 acres of land within the STSAs as available for application for leasing for commercial tar sands development in accordance with applicable federal and state regulations and BLM policies,
- Specify that additional NEPA analyses will be required before leases will be issued for commercial development.
- Specify that approval of project-specific plans of development will require additional NEPA review to consider site-specific and project-specific factors, and
- Specify that the BLM will consider and give priority to the use of land exchanges where appropriate and feasible to consolidate land ownership and mineral interests within the STSAs.

# 2.5 ALTERNATIVES AND ISSUES CONSIDERED BUT ELIMINATED FROM DETAILED ANALYSIS

During the initial public comment period regarding the scope of the PEIS (see Section 7.1), a number of comments were submitted regarding the analysis of specific alternatives or issues. A number of the suggestions for specific alternatives were incorporated into alternatives assessed in the PEIS. These include suggestions regarding the development of (1) a credible no action alternative against which leasing alternatives could be assessed, (2) alternatives that would consider delaying decisions regarding leasing until definitive information is available describing what commercial development will entail, (3) alternatives that would consider the full range of alternate uses of public lands and the total impacts of proposed RMP amendments, and (4) an alternative that avoids impacts on wetlands or other waters of the United States. The BLM believes that one or more of the alternatives assessed for oil shale or tar sands leasing incorporate these concerns.

As discussed below, some of the suggested alternatives and key issues were determined to be either outside the scope of the PEIS, inconsistent with the requirements established for the BLM by the Energy Policy Act of 2005, or inappropriate to incorporate as recommended in the comment. As a result, these alternatives and issues were eliminated from detailed analysis in the PEIS. In addition, the BLM, during initial stages of the PEIS process, formulated several alternatives that ultimately were not analyzed in the Draft PEIS in detail. The following sections discuss these alternatives and issues, why they were eliminated, and, where applicable, how parts of the PEIS process address the general points raised by commentors.

## 2.5.1 Alternatives Approving Issuance of Commercial Leases

The BLM initially considered alternatives that would approve the issuance of commercial leases on the basis of analyses included in the PEIS. This intent was presented to the cooperating agencies and public stakeholders during the initial discussions and scoping meetings. A number of leasing alternatives were considered but, ultimately, the BLM concluded that critical information on which to assess potential impacts, define required mitigation measures, and approve commercial leasing is not available at this time. Specifically, the BLM determined that it does not have, at this time, adequate information on the (1) magnitude of commercial development and pace of that development, (2) potential locations for commercial leases, (3) technologies that will be employed, (4) size or production level of individual commercial projects, and (5) development time lines for individual projects to support decisions about lease issuance.

Published information defining both oil shale and tar sands commercial development is dated (i.e., mostly dating back to the mid-1980s or earlier) and unlikely to accurately describe future commercial technologies. Although the BLM potentially could construct scenarios for commercial oil shale development on the basis of the information available for the six RD&D projects underway, conversations with the companies holding the RD&D leases provided little definitive information about future commercial development beyond the locations of the preference right lease areas. For example, the companies are uncertain exactly what processes

commercial development will involve, what the power requirements are for individual components of their technologies, whether there are ways to generate needed power on-site via the commercial process itself, how much water will be required per barrel of shale oil produced, how many employees will be required during the construction and operations phases, and how much land will be disturbed during different phases of development. Without this information, it is not possible to define what related impacts will be, such as how power needs will be met, where water resources will come from, and where employees will be housed.

The BLM considered constructing development scenarios for both oil shale and tar sands by developing assumptions in the absence of available information. It concluded, however, that the amount of information that was available was too meager, that analyses would have to be based on an unacceptably large number of assumptions, and that such analyses would be unreliable and possibly misleading. Initial analyses indicated that, on the basis of certain conservative assumptions, potential impacts on many resources, especially air, water, and socioeconomic conditions, could be significant depending upon the location and number of commercial projects and the pace of development. The uncertainty associated with the preliminary analyses indicated that BLM should defer approving the issuance of commercial leases until adequate information is available to define what the development will entail. This PEIS only analyzes the impacts of amending RMPs to make public lands available for application for leasing. The BLM must defer more detailed and site-specific analyses until the time of leasing and/or review and approval of a project-specific plan of development.

## 2.5.2 Alternatives That Preclude Oil Shale and Tar Sands Leasing or Development

Several comments were received during the public scoping process that suggested that the BLM should not move forward to establish commercial leasing programs for oil shale or tar sands development on public lands. A variety of concerns were cited as reasons for not establishing commercial programs, including concerns regarding (1) the sensitivity of specific resources within the three-state study area, such as lands with wilderness characteristics, visual resources, ecological resources, and cultural resources; (2) the lack of definitive information about the technologies that will be employed in commercial operations; (3) the need for the nation to focus on alternative sources of energy, such as renewable resources; and (4) in the case of oil shale, the potential recurrence of adverse socioeconomic impacts resulting from a possible boom/bust cycle of development. The BLM has determined that Section 369 of the Energy Policy Act of 2005 requires the agency to evaluate establishment of commercial leasing programs for oil shale and tar sands development. The no action alternatives for oil shale and tar sands (Alternatives A) effectively are no leasing alternatives. Any other alternatives in the PEIS that did not evaluate opening public lands for commercial leasing would not be consistent with the Energy Policy Act.

## 2.5.3 Alternatives Considering Alternate Energy Sources and Carbon Sequestration

Several comments were received during public scoping that suggested that the BLM should evaluate the development of alternate energy sources, including renewable energy

(e.g., wind and solar power systems), nuclear energy, and conventional oil and gas resources instead of or in comparison with the development of oil shale or tar sands. In addition, several comments suggested that the BLM should evaluate ways to displace the nation's dependence on oil through conservation and market- and innovation-based strategies. The BLM has determined that such evaluations, although worthwhile with respect to national energy policy development, do not fulfill the purpose of this PEIS, which is to evaluate opening public lands for commercial oil shale and tar sands development.

In addition, several comments suggested that the BLM should evaluate oil shale and tar sands technologies that incorporate carbon sequestration. The BLM believes this is an issue that would be best examined in detail at the time of site-specific NEPA analyses of a specific plan of development.

## 2.5.4 Alternatives That Prohibit Leasing in Specific Areas

A number of scoping comments requested that the BLM develop alternatives prohibiting commercial leasing in specific areas, including all NPS units, the GSENM, existing WSAs, and wilderness-quality lands in Utah. Since the scoping meetings were conducted, the BLM has determined that the scope of this PEIS will be limited to BLM-administered lands only and will not evaluate commercial leasing on NPS-administered lands.

As discussed in Sections 2.3.3 and 2.4.3, Wilderness Areas, WSAs, other lands within the NLCS (including National Monuments), and existing ACECs currently closed to mineral development are excluded from consideration for leasing under all alternatives in the PEIS.

The BLM has not explicitly excluded leasing within lands it believes may have one or more characteristics of wilderness under any of the alternatives. Processes are underway in each of the field offices where such lands have been identified to determine appropriate management requirements for these areas. The PEIS identifies the location of such lands in Chapter 3 (see Section 3.1) and, in general terms, assesses the impacts of development in these lands in Chapters 4 and 5. When future site-specific NEPA analyses are conducted on the issuance of commercial leases, the presence of any lands with wilderness characteristics will be taken into account.

#### 2.5.5 Off-Site Processing of Oil Shale

At least one comment suggested that the BLM develop an alternative that examines off-site processing of oil shale in locations where environmental impacts may be mitigated by site-specific factors. The BLM has concluded that it does not have the authority to require that such steps be taken by lessees. In addition, constructing adequate scenarios that could evaluate all the possible locations and site-specific factors contributing to the magnitude (or mitigation) of impacts would be speculative and, potentially, misleading. Such considerations might be appropriate at the site-specific level when more information is known about the project location,

specific technologies, and other factors. Potential mitigation opportunities could be incorporated into the project plan of development at that time.

#### 2.5.6 Establishment of Federal Subsidies

Several comments suggested that the BLM evaluate the potential for federal subsidies and the level of subsidy required to facilitate leasing and development. This suggestion was considered to be outside the scope of the PEIS and BLM's authority, and beyond the mandate established by the Energy Policy Act of 2005.

# 2.5.7 Carrying-Capacity Thresholds

A number of commentors suggested that the BLM consider the potential impacts of oil shale development within the context of the carrying capacity of the regional and local environment and economies. The carrying capacity of a system is the maximum level of activity that can be sustained within a specific area without significant, detrimental impact. The White River RMP (BLM 1997b) established carrying-capacity thresholds specific to oil shale development and potential impacts on air quality, socioeconomic impacts, big game habitat, and water quality. Carrying-capacity thresholds have not been established anywhere else within the three-state study area. Although the programmatic alternatives do not explicitly consider carrying-capacity thresholds nor propose that commercial leasing levels be constrained in the future by these thresholds, they do require that additional site-specific NEPA analyses be conducted prior to the issuance of commercial leases. At that time, when complete information is available defining the location of the commercial development, technologies to be employed, scale of operations, and time line for development, analyses can more reliably define appropriate carrying-capacity thresholds and evaluate potential impacts.

# 2.5.8 Establishment of Trust Funds

Several commentors requested that the PEIS consider the establishment of a trust fund to provide financial support to local communities early in the development process. While the PEIS socioeconomic impact analyses consider the potential benefits of a trust fund in terms of impact mitigation, establishment of such a fund is beyond the jurisdiction of the BLM and, therefore, is not included in any of the alternatives. If an applicant proposes such a fund as part of its plan of development, perhaps as potential mitigation for socioeconomic impacts, the BLM would analyze it in site-specific NEPA analyses of the plan of development.

### 2.6 COMPARISON OF ALTERNATIVES

The alternatives presented in this PEIS were evaluated for potential environmental impacts associated with the amendment of land use plans to identify BLM lands in Colorado, Utah, and Wyoming that would be made available application for leasing for commercial oil

shale or tar sands development. The PEIS also identifies the types of environmental impacts that could occur with commercial development of future oil shale and tar sands projects in the lease available lands. Because the proposed actions are the amendment of land use plans to identify lands available for application for leasing and not the construction and operation of commercial projects, only a qualitative evaluation can be provided of the types of impacts that could result from future projects, regardless of project location. The PEIS does identify the resources that could be affected by commercial development under each of the alternatives, and, where possible, provides quantitative estimates of potentially affected resources. More quantitative impact analyses, including the identification of the magnitude and extent of potential impacts on specific social, cultural, economic, and natural resources, can only be conducted at the project level. This would be done in the future if the BLM receives an application for leasing and commercial development.

Table 2.6-1 summarizes the impacts of amending land use plans to identify lands available for application for leasing for commercial oil shale development (presented in Section 6.1), while Table 2.6-2 summarizes the impacts of amending land use plans for tar sands leasing (presented in Section 6.2). Both tables also summarize the types of impacts that could occur with commercial oil shale (identified in Chapter 4) or tar sands (identified in Chapter 5) development, as well as the resources that could be affected by future commercial oil shale or tar sands development under each alternative.

TABLE 2.6-1 Summary Comparison of Potential Environmental Impacts of Amending Land Use Plans to Identify Lands Available for Application For Leasing for the Commercial Development of Oil Shale in Colorado, Utah, and Wyoming, and Environmental Impacts of Future Construction and Operation of Commercial Projects under the Three Alternatives

| Resource | Alternative A: No Action <sup>a</sup>                                                                                                                                                                                                                                                              | Alternative B: Amend Land Use Plans to<br>Identify 1,991,222 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                                                                              | Alternative C: Amend Land Use Plans to<br>Identify 830,296 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                             |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land Use | No land use plans would be amended to identify lands available for application for leasing for commercial oil shale development.                                                                                                                                                                   | Land use on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                                                                                                                                                                                                            | Land use on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                                                                                                                                                         |
|          | Approximately 960 acres of BLM land (800 acres in Colorado and 160 acres in Utah) currently support six RD&D                                                                                                                                                                                       | Potential impacts on land use from the six RD&D projects would be the same as those identified for Alternative A.                                                                                                                                                                                                                                                                                                                                                      | Potential impacts on land use from the six<br>RD&D projects would be the same as those<br>identified for Alternative A.                                                                                                                                                                                                                                                                                             |
|          | oran cancella supports as August as August and operations are not expected to affect land operations are not expected to affect land use on adjacent parcels except where vehicular traffic, noise, and construction and operations activities could alter the quality of recreational activities. | Current land uses such as grazing, irrigated agriculture, recreation, oil and gas production, and mineral extraction would be affected at locations where commercial oil shale projects (and supporting infrastructure) would be located within the approximately 2 million acres proposed lease area. These lands include 10 ACECs totaling 23,000 acres, approximately 185,000 acres of potential ACECs, and 170,000 acres of lands with wilderness characteristics. | Potential impacts of commercial development would be similar to the impacts identified for commercial development under Alternative B, but excludes 23,000 acres of existing ACECs; would have less impact on oil and gas activities, especially in the Piceance Basin; and would include 110,000 acres of lands with wilderness characteristics and 137,000 acres of lands with potential for designatio as ACECs. |
|          |                                                                                                                                                                                                                                                                                                    | Additional land use changes would occur<br>on nonfederal lands where project support<br>infrastructure (e.g., power plants and<br>employer-provided housing) would be<br>constructed.                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Resource                       | Alternative A: No Action <sup>a</sup>                                                                                                                                                                                                                                | Alternative B: Amend Land Use Plans to<br>Identify 1,991,222 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                                                                                             | Alternative C: Amend Land Use Plans to<br>Identify 830,296 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup> |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soil and Geologic<br>Resources | No land use plans would be amended to<br>identify lands available for application for<br>leasing for commercial oil shale<br>development.                                                                                                                            | Soil and geologic resources on federal and<br>nonfederal lands would not be impacted<br>by land use plan amendments.                                                                                                                                                                                                                                                                                                                                                                  | Soil and geologic resources on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                          |
|                                | Geologic resources could be affected by construction and operation activities at the six 160-acre RD&D locations and at areas where support infrastructure (e.g., utility                                                                                            | Potential impacts on soil and geologic resources from the six RD&D projects would be the same as those identified for Alternative A.                                                                                                                                                                                                                                                                                                                                                  | Potential impacts on soil and geologic resources from the six RD&D projects would be the same as those identified for Alternative A.                                                                    |
|                                | ROWs and access roads) would be located.                                                                                                                                                                                                                             | Future commercial oil shale development<br>could affect soil and geologic resources in<br>the Alternative B lease areas and at                                                                                                                                                                                                                                                                                                                                                        | Potential project impacts from future project<br>development would be similar to those<br>identified for Alternative B, but could occur                                                                 |
|                                | Impacts on soil and geologic resources at the RD&D locations would be associated with soil removal and compaction, subsurface disturbance of geologic resources during drilling and mining, and increased erosion potential of exposed soils and geologic materials. | locations on nonfederal lands where project-related infrastructure (e.g., power plants and employer-provided housing) would be located. Potential impacts would be associated with the construction and operation of project facilities and related infrastructure and would include soil disturbance, soil removal and compaction, subsurface disturbance of geologic resources during drilling and mining, and increased crosion potential of exposed soils and geologic materials. | at fewer locations and in less geologically sensitive locations.                                                                                                                                        |

| Resource                     | Alternative A: No Action <sup>s</sup>                                                                                                           | Alternative B: Amend Land Use Plans to<br>Identify 1,991,222 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                  | Alternative C: Amend Land Use Plans to<br>Identify 830,296 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                            |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paleontological<br>Resources | No land use plans would be amended to identify lands available for application for leasing for commercial oil shale development.                | Paleontological resources on federal and<br>nonfederal lands would not be impacted<br>by land use plan amendments.                                                                                                                                                                                                                                                                                         | Paleontological resources on federal and<br>nonfederal lands would not be impacted by<br>land use plan amendments.                                                                                                                                                                                                 |
|                              | The construction and operation of the RD&D projects is not expected to significantly impact paleontological resources in the six project areas. | Potential impacts on paleontological resources from the six RD&D projects would be the same as those identified for Alternative A.                                                                                                                                                                                                                                                                         | Potential impacts on paleontological resources from the six RD&D projects would be the same as those identified for Alternative A.                                                                                                                                                                                 |
|                              | resources in the six project meas.                                                                                                              | About 1.8 million acres of the proposed lease areas have the potential to contain important paleontological resources, and future commercial oil shale development could affect paleontological resources in these areas. Project-related impacts would be associated with construction and mining activities and could result in the damage or destruction of resources in or near the development areas. | Potential impacts of commercial project development on paleontological resources in these areas would be similar to those identified for Alternative B but could occur in fewer locations. About 750,000 acres of the Alternative C lease areas have the potential to contain important paleontological resources. |
|                              |                                                                                                                                                 | Commercial oil shale development could<br>impact paleontological resources at<br>locations on nonfederal lands where<br>project-related infrastructure (e.g., power<br>plants and employer-provided housing)<br>would be located.                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |

| Resource        | Alternative A: No Action <sup>a</sup>                                                                                                                                                                                                                                                          | Alternative B: Amend Land Use Plans to<br>Identify 1,991,222 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Alternative C: Amend Land Use Plans to<br>Identify 830,296 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water Resources | No land use plans would be amended to identify lands available for application for leasing for commercial oil shale development.                                                                                                                                                               | Water resources on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Water resources on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | Water resources could incur localized impacts as a result of construction and operation activities of the six RD&D                                                                                                                                                                             | Potential impacts on water resources from<br>the six RD&D projects would be the same<br>as those identified for Alternative A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Potential impacts on water resources from<br>the six RD&D projects would be the same a<br>those identified for Alternative A.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | projects. Surface disturbance at the sites could lead to increased erosion and subsequent runoff and sedimentation to local streams, while groundwater could be affected by dewatering or contamination from accidental releases of hazardous materials (e.g., fuels and industrial solvents). | Commercial oil shale development could impact water resources in the Alternative B lease areas and at locations on nonfederal lands where project-related infrastructure (e.g., power plants and employer-provided housing) would be located. The Alternative B lease areas include about 248 m in perennial streams and 45,000 acres of lands with sensitive hydrologic features, which could be affected by the future construction and operation of commercial oil shale facilities in the lease areas. Potential project-related impacts may include reduced water quality due to erosion and sedimentation, dewatering of local aquifers, modification of surface water or groundwater by accidental releases of hazardous materials. | Potential impacts from future construction and operation of commercial oil shale projects would be similar to those identified for Alternative B. Alternative C includes only 65 mi of perennial streams that could be affected by commercial project development. In addition, Alternative C discludes land that the are currently identified in BLM land use plans as having steep slopes and/or fragile or highly erosive soils included in Alternative B. Thus, there is a reduced potential for erosion-related impacts with commercial oil shale development under this Alternative. |

| Resource    | Alternative A: No Action <sup>a</sup>                                                                                                                                               | Alternative B: Amend Land Use Plans to<br>Identify 1,991,222 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Alternative C: Amend Land Use Plans to<br>Identify 830,296 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air Quality | No land use plans would be amended to identify lands available for application for leasing for commercial oil shale development.                                                    | Air quality on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Air quality on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                           |
|             | Air quality is not expected to be adversely affected by the construction and operation of the six RD&D projects. Minor,                                                             | Potential impacts on air quality from the six RD&D projects would be the same as those identified for Alternative A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Potential impacts on air quality from the six<br>RD&D projects would be the same as those<br>identified for Alternative A.                                                                                                                                                               |
|             | localized impacts could result from vehicle emissions, fugitive dust generation from construction and mining areas and along some access roads, and oil shale processing emissions. | Commercial oil shale development could impact air quality in the Alternative B lease areas and at locations on nonfederal lands where project-related infrastructure would be located. The construction and operation of future commercial oil shale projects could result in local and regional impacts on air quality. Local impacts could result from vehicle emissions, fugitive dust generation from construction and mining areas and along some access roads, and oil shale processing emissions. Because of the need for project- and site-specific information, it is not possible to identify the nature and magnitude of regional air quality impacts from commercial development within the Alternative B lease areas. | Potential impacts on air quality would be similar to those identified for Alternative B. However, Alternative C has approximately 1.2 million fewer acres of land than Alternative B where future commercial oil shale development could occur and affect local or regional air quality. |

| Resource | Alternative A: No Action <sup>a</sup>                                                                                                                        | Alternative B: Amend Land Use Plans to<br>Identify 1,991,222 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                | Alternative C: Amend Land Use Plans to<br>Identify 830,296 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                              |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Noise    | No land use plans would be amended to<br>identify lands available for application for<br>leasing for commercial oil shale<br>development.                    | Noise levels on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                          | Noise levels on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                      |
|          | Localized noise impacts (i.e., increased<br>noise levels) could occur at each of the<br>RD&D project locations as a result of                                | Potential impacts on local noise levels<br>from the six RD&D projects would be the<br>same as those identified for Alternative A.                                                                                                                        | Potential impacts on local noise levels from<br>the six RD&D projects would be the same as<br>those identified for Alternative A.                                                                                                                                    |
|          | construction activities, mining, operating machinery (e.g., crushers and conveyors) and other equipment (generators and compressors), and vehicular traffic. | Commercial oil shale development could affect noise levels in the Alternative B lease areas and at locations on nonfederal lands where project-related infrastructure (e.g., power plants and employer-provided housing) would be located.               | Potential noise impacts would be similar to those identified for Alternative B. However, Alternative C has approximately 1.2 million fewer acres of land than Alternative B where future commercial oil shade development could occur and affect local noise levels. |
|          |                                                                                                                                                              | Local noise levels could be affected by operating construction, mining and processing equipment, pipeline compressor stations, and vehicle traffic. Such impacts could occur within the Alternative B lease areas wherever a project would be developed. |                                                                                                                                                                                                                                                                      |

| Resource                                                         | Alternative A: No Action <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                           | Alternative B: Amend Land Use Plans to<br>Identify 1,991,222 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                                                                         | Alternative C: Amend Land Use Plans to<br>Identify 830,296 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecological Resources<br>(resource subgroups<br>summarized below) | No land use plans would be amended to<br>identify lands available for application for<br>leasing for commercial oil shale<br>development.                                                                                                                                                                                                                                                       | Ecological resources on federal and<br>nonfederal lands would not be impacted<br>by land use plan amendments.                                                                                                                                                                                                                                                                                                                                                     | Ecological resources on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                                                |
|                                                                  | Ecological resources could be affected at each of the six RD&D locations, RD&D project-related impacts may include                                                                                                                                                                                                                                                                              | Potential impacts on ecological resources<br>from the six RD&D projects would be the<br>same as those identified for Alternative A.                                                                                                                                                                                                                                                                                                                               | Potential impacts on ecological resources<br>from the six RD&D projects would be the<br>same as those identified for Alternative A.                                                                                                                                                                                    |
|                                                                  | indice-tented impacts hay include wildlife disturbance, habitat loss, exposure to accidental releases of hazardous materials, the spread or establishment of invasive species, and the loss or injury of biota within physically disturbed areas related to the projects (e.g., utility ROWs and access roads).                                                                                 | Commercial oil shale development could impact ecological resources in the Alternative B lease areas and at locations on nonfederal lands where project-related infrastructure (e.g., power plants and employer-provided housing) would be located.                                                                                                                                                                                                                | Commercial oil shale development within the Alternative C lease areas would adversely affect ecological resources in these areas in the same manner as in Alternative B but would occur on 1.2 million fewer acres of land, some of which has been excluded because of the presence of sensitive ecological resources. |
| Aquatic Resources                                                | Aquatic resources could be affected by changes in water quality due to erosion and runoff and accidental releases of hazardous materials from project areas. Some aquatic biota could be impacted as a result of the physical disturbance of aquatic habitats during construction and by utility and ROW crossings. Project-related ROWs could also increase public access to aquatic habitats. | The Alternative B lease areas include 37 perennial streams totaling 248 mi, and the construction and operation of commercial oil shale projects within the lease areas could adversely affect aquatic resources in these streams. Potential types of impacts would be similar to those identified for Alternative A and could result in habitat loss or degradation, which could affect the abundance and distribution of aquatic biota in the affected habitats. | The Alternative C lease areas include 18 perennial streams totaling 65 mi, and aquatic resources in these streams could be impacted by commercial oil shale development. Potential impacts would be similar in nature to those identified for Alternative B, but could occur in fewer locations.                       |

| Resource                          | Alternative A: No Action <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Alternative B: Amend Land Use Plans to<br>Identify 1,991,222 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                                                            | Alternative C: Amend Land Use Plans to<br>Identify 830,296 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                                                                                  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plant Communities and<br>Habitats | The construction and operation of the six RD&D projects could affect plant communities and habitats at and in the vicinity of these project sites and in areas where associated infrastructure would be located. Impacts could include direct loss of vegetation from site clearing and grading (affecting about 700 acres of habitat); reduced habitat quality due to soil compaction, dewatering, or accidental releases of hazardous materials; and the introduction or spread of invasive species. Utility and access road ROWs could also result in the fragmentation of some habitats. | The construction and operation of commercial oil shale projects could impact plant communities and habitats that are present in about 2 million acres of the Alternative B lease areas. The lease areas include about 14,000 acres that have been identified for protection because of sensitive plants and populations. Potential impacts would be similar in nature to those identified for Alternative A, but could occur in many more locations. | The construction and operation of commercial oil shale projects could impact plant communities and habitats that occur in about 830,000 acres of Alternative C lease areas. The areas where commercial development could occur do not include the 14,000 acres of land currently identified for protection for sensitive plants and populations. Potential impacts would be similar in nature to those identified for Alternative B, but could occur in fewer locations. |

| Resource | Alternative A: No Action <sup>a</sup>                                                                                                                                                                                                                                                                                 | Alternative B: Amend Land Use Plans to<br>Identify 1,991,222 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Alternative C: Amend Land Use Plans to<br>Identify 830,296 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wildlife | The construction and operation of the six RD&D projects would eliminate about 666 acres of wildlife habitat as a result of clearing activities at each of the six sites. Construction and operation activities could also disturb wildlife in nearby locations and also fragment habitats along project-related ROWs. | The construction and operation of commercial oil shale projects could disturb wildlife and their habitats where individual projects are located within the approximately 2 million acres identified as available for leasing. Wildlife habitats present within the lease areas that could be affected by project development include more than 500,000 acres of sage grouse habitat, 147,000 acres of frage proper habitat, 920,000 acres of big game habitat, and 654,000 acres of big game habitat, and 654,000 acres of wild horse Herd Management Areas (HMAs). Potential impacts on these habitats and their wildlife would be associated with site clearing and grading, operational noise and activities, accidental releases of hazardous materials, and increased human access to some habitats, and could result in reduced abundance and distribution of affected species. | The construction and operation of commercial oil shale projects could disturb wildlife and their habitats where individual projects are located within the approximately 830,000 acres identified as available for leasing. Habitats present within the lease areas where project development could affect wildlife include about 355,000 acres of sage grouse habitat, 190,000 acres of pig game habitat, and 248,000 acres of wild horse IMAs. Potential impacts on wildlife and their habitats would be similar in nature to those identified for Alternative B, but could occur in fewer locations. |

| Resource                             | Alternative A: No Action <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Alternative B: Amend Land Use Plans to<br>Identify 1,991,222 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                          | Alternative C: Amend Land Use Plans to<br>Identify 830,296 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                            |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Threatened and<br>Endangered Species | Six threatened and endangered species may occur in the vicinity of the six RD&D projects. Impacts on these species from the construction and operation of the six RD&D projects would be similar in nature to those identified for wildlife. Impacts on threatened and endangered species would be similar to or the same as those described for impacts on aquatic resources, plant communities and habitats, and wildlife. Specific impacts associated with development would depend on the locations of projects relative to species populations and the details of project development. | Fourteen federally listed threatened and endangered species are known to or may occur within the Alternative B lease areas and thus could be affected by commercial oil shale development. Potential types of impacts would be similar to those for Alternative A. | Fourteen federally listed threatened and endangered species are known to or may occur within the Alternative C lease areas and thus could be affected by commercial oil shale development. Potential types of impacts would be similar to those for Alternative A. |
| Visual Resources                     | No land use plans would be amended to<br>identify lands available for application for<br>leasing for commercial oil shale<br>development.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Visual resources on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                | Visual resources on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                |
|                                      | The construction and operation of the six RD&D projects would have visual impacts at each project location. Short-                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Potential impacts on visual resources from<br>the six RD&D projects would be the same<br>as those identified for Alternative A.                                                                                                                                    | Potential impacts on visual resources from<br>the six RD&D projects would be the same as<br>those identified for Alternative A.                                                                                                                                    |
|                                      | and long-term visual impacts may result<br>with the construction and operation of the<br>projects and would be associated with                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Commercial oil shale development could impact visual resources on the Alternative B lease areas and at locations                                                                                                                                                   | Potential impacts from project construction<br>and operation would be similar to those<br>identified for Alternative B. Visual impacts                                                                                                                             |

| - | 1  | 7 |  |
|---|----|---|--|
|   | 0  |   |  |
|   | 3  |   |  |
| 1 | 10 |   |  |
|   | 2  | 2 |  |
|   | Ì  |   |  |

| Resource                    | Alternative A: No Action <sup>a</sup>                                                                                                                                                                                                                                                                                                                        | Alternative B: Amend Land Use Plans to<br>Identify 1,991,222 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Alternative C: Amend Land Use Plans to<br>Identify 830,296 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                                                                                                                 |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Visual Resources<br>(Cont.) | construction activities at each site and along associated ROWs. Additional visual impacts may be associated with the presence of site facilities within viewsheds and with lighting pollution.  Construction impacts would be short-term, while impacts associated with facility presence and site lighting would continue through the life of each project. | on nonfederal lands where project-related infrastructure (e.g., power plants and employer-provided housing) would be located. Potential impacts from project construction and operation would be similar to those identified for Alternative A. Visually sensitive areas within the proposed lease areas include 10 ACECs, 10 potential ACECs, and 2 river segments eligible for WSR designation. Sensitive areas occurring within 5 mi of the proposed lease areas include 7 WSAs, 11 ACECs, 13 potential ACECs, 9 WSR-eligible river segments, 1 National Scenic Highway, and 9 National Historic Trails. These visually sensitive areas could be affected by future commercial oil shale development within the Alternative B lease areas. | from commercial project development could occur, depending on individual project location, within the 830,000 acres made available for leasing under Alternative C. Visually sensitive areas within the proposed lease areas include 10 potential ACECs, while sensitive areas within 5 mi of the lease areas include 12 ACECs, while sensitive areas within 5 mi of the lease areas include 17 WSAs, 12 ACECs, WSR-eligible river segments, 1 National Scenic Highway, and 9 National Historic Trails. |

| Resource           | Alternative A: No Action <sup>8</sup>                                                                                                                   | Alternative B: Amend Land Use Plans to<br>Identify 1,991,222 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                  | Alternative C: Amend Land Use Plans to<br>Identify 830,296 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                            |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cultural Resources | No land use plans would be amended to identify lands available for application for leasing for commercial oil shale development.                        | Cultural resources on federal and<br>nonfederal lands would not be impacted<br>by land use plan amendments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cultural resources on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                              |
|                    | The six RD&D sites have been surveyed for cultural resources, and two of the sites contain cultural resources. Because                                  | Potential impacts on land use from the six<br>RD&D projects would be the same as<br>those identified for Alternative A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Potential impacts on land use from the six RD&D projects would be the same as those identified for Alternative A.                                                                                                                                                                                  |
|                    | mitigation is required for these sites, the construction and operation of the six projects are not expected to significantly impact cultural resources. | Commercial oil shale development could impact cultural resources in the Alternative B lease areas and at locations on nonfederal lands where project-related infrastructure (e.g., power plants and employer-provided housing) would be located. Approximately 1.6 million acres that would be available for leasing have the potential to contain important cultural resources. Some of these resources could be affected by construction and operation of commercial projects within the lease areas. Potential impacts may include damage or destruction, and increased potential for vandalism or theft due to increased human access. | Approximately 719,000 acres have the potential to contain important cultural resources. Potential impacts on these resources from commercial oil shale development within the Alternative Clease areas would be similar to those identified for Alternative B, but could occur in fewer locations. |

Alternative C: Amend Land Use Plans to

Identify 830,296 Acres of Federal Land

in Colorado, Utah, and Wyoming as

| Resource       | Alternative A: No Action <sup>a</sup>                                                                                                                                | Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                 |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Socioeconomics | No land use plans would be amended to identify lands available for application for leasing for commercial oil shale development.                                     | No socioeconomic impacts on federal and<br>nonfederal lands would occur from<br>amending land use plans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No socioeconomic impacts on federal and<br>nonfederal lands would occur from<br>amending land management plans.                |
|                | Construction and operation of the six<br>RD&D projects would have small impacts<br>on employment, income, population and<br>housing in the region of influence (ROI) | Potential impacts on socio-economic factors from the six RD&D projects would be the same as those identified for Alternative A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Potential impacts on socioeconomic factors from the six RD&D projects would be the same as those identified for Alternative A. |
|                | in each state. Rapid increases in population in-migration in parts of each ROI could impact quality of life and potentially cause minor social disruption.           | Construction and operation associated with individual oil shale technologies would have small to moderate impacts on employment, income, population, housing, public finances, and public service employment in the ROI in each state. Small to moderate impacts on property values and recreation would also occur, and water diversions would also affect agriculture. Rapid increases in population in-migration in parts of each ROI could impact quality of life, in particular requiring a transition from traditional rural, to more urban lifestyles, and potentially cause large social disruption impacts. | Potential project impacts would be similar to those identified for Alternative B.                                              |

Alternative B: Amend Land Use Plans to

Identify 1,991,222 Acres of Federal Land

in Colorado, Utah, and Wyoming as

| Resource                                       | Alternative A: No Action <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                       | Alternative B: Amend Land Use Plans to<br>Identify 1,991,222 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                                                                                                                                                                                      | Alternative C: Amend Land Use Plans to<br>Identify 830,296 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup> |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hazardous Materials<br>and Waste<br>Management | No land use plans would be amended to identify lands available for application for leasing for commercial oil shale development.                                                                                                                                                                                                                                                                                                            | No hazardous materials and wastes would<br>be used or generated as a result of land use<br>plan amendments.                                                                                                                                                                                                                                                                                                                                    | No hazardous materials and wastes would be used or generated as a result of land use plan amendments.                                                                                                   |
|                                                | The six RD&D projects would use and generate similar types of hazardous materials and wastes. Hazardous materials would include fuels for equipment and                                                                                                                                                                                                                                                                                     | The use and generation of hazardous materials and wastes from the six RD&D projects would be the same as those identified for Alternative A.                                                                                                                                                                                                                                                                                                   | The use and generation of hazardous materials and wastes from the six RD&D projects would be the same as those identified for Alternative A.                                                            |
|                                                | heating, lubricating oils, solvents, and other industrial chemicals, as well as materials produced during oil shale processing. Herbicides may also be used to clear and/or control vegetation at project locations and along utility ROWs. Waste materials would also be similar among the six RD&D projects; these would include solids such as construction debris. Liquid wastes would include both sanitary and industrial wastewater. | Future commercial oil shale development within the Alternative B lease areas would use and generate similar types of hazardous materials and wastes as in Alternative A. Spent shale may also be generated in large quantities if development by mining occurs; the shale would require management as a waste. The specific types and amounts and their handling and treatment would depend on the specific design of each commercial project. | The types and amounts of hazardous materials and wastes that could be used and generated during commercial oil shale development would be the same as those identified for Alternative B.               |

| Resource          | Alternative A: No Action <sup>a</sup>                                                                                                                                                        | Alternative B: Amend Land Use Plans to<br>Identify 1,991,222 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                                                                            | Alternative C: Amend Land Use Plans to<br>Identify 830,296 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Oil Shale Development <sup>b</sup>                               |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Health and Safety | The construction and operation of the six<br>RD&D projects could result in health and<br>safety impacts on workers. These impacts<br>would be associated with accidents                      | No health and safety impacts would occur<br>on federal and nonfederal lands from land<br>use plan amendments.                                                                                                                                                                        | No health and safety impacts would occur<br>on federal and nonfederal lands from land<br>use plan amendments.                                                                                                                         |
|                   | causing injuries and fatalities, possible<br>hearing loss from high noise levels, and<br>inhalation of particulates and/or volatiles<br>emitted from the facilities. Injuries from           | Potential health and safety impacts from<br>the six RD&D projects would be the same<br>as those identified for Alternative A.                                                                                                                                                        | Potential health and safety impacts from the six RD&D projects would be the same as those identified for Alternative A.                                                                                                               |
|                   | all RD&D projects are estimated at about 75 per year during construction and 40 per year during operations; less than 1 fatality per year is estimated for both construction and operations. | The commercial development of oil shale projects in the Alternative B lease areas would have the same types of health and safety impacts as Alternative A, but the potential incidence of those impacts would be greater. Commercial oil shale development of a single project under | Potential health and safety impacts from project construction and operation would be similar to those identified for Alternative B, and identical for projects with identical Plans of Development and located in common lease areas. |
|                   |                                                                                                                                                                                              | Alternative B is estimated to result in less than I fatality per year, and about 125 injuries per year.                                                                                                                                                                              |                                                                                                                                                                                                                                       |

a The adverse impacts of the RD&D projects will be addressed through mitigation measures described in the EAs for those projects. All the EAs resulted in Findings of No Significant Impact (BLM 2006c-j; 2007b,c).

b Under both Alternatives B and C, the nature, magnitude, and extent of project-related impacts of commercial development on all resource areas would depend on the type, location, and design of the individual projects.

TABLE 2.6-2 Summary Comparison of Potential Environmental Impacts of Amending Land Use Plans to Identify Lands Available for Application for Leasing for the Commercial Development of Tar Sands in Colorado, Utah, and Wyoming, and Environmental Impacts of Future Construction and Operation of Commercial Projects under the Three Alternatives

| Resource | Alternative A: No Action                                                                                                                                | Alternative B: Amend Land Use Plans to<br>Identify 431,224 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Alternative C: Amend Land Use Plans to<br>Identify 229,038 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land Use | No land use plans would be amended<br>under Alternative A to identify lands<br>available for lease application for<br>commercial tar sands development. | Land use on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Land use on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                         | Future commercial tar sands development could affect current land use in the Alternative B lease areas. Current land uses such as grazing, irrigated agriculture, recreation, oil and gas production, and mineral extraction would be affected at locations where commercial tar sands projects (and supporting infrastructure) would be located. Additional land use changes would occur on nonfederal lands where project support infrastructure (e.g., employer-provided housing) would be constructed. The areas available for application for lease include approximately 180,000 acres of potential ACECs, and 100,000 acres of pands with wilderness characteristics. | Potential impacts on land use from commercial development would be similar to those identified for Alternative B but would be restricted to about 200,000 fewer acres of federal land. The lands available I lease application under Alternative C include approx 85,000 acres of potential ACECs and approx 68,000 acres identified as having wilderness characteristics. |

| Resource                       | Alternative A: No Action                                                                                                                                | Alternative B: Amend Land Use Plans to<br>Identify 431,224 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                       | Alternative C: Amend Land Use Plans to<br>Identify 229,038 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soil and Geologic<br>Resources | No land use plans would be amended<br>under Alternative A to identify lands<br>available for lease application for<br>commercial tar sands development. | Soil and geologic resources on federal and<br>nonfederal lands would not be impacted<br>by land use plan amendments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Soil and geologic resources on federal and<br>nonfederal lands would not be impacted by<br>land use plan amendments.                                                                                                                                     |
|                                |                                                                                                                                                         | Future commercial tar sands development could affect soil and geologic resources in the Alternative B lease areas and at locations on nonfederal lands where project-related infrastructure (e.g., employer-provided housing) would be located. Potential impacts would be associated with the construction and operation of project facilities and related infrastructure and would include soil disturbance, soil removal and compaction, subsurface disturbance of geologic resources during drilling and mining, and increased crosion potential of exposed soils and geologic materials. | Potential impacts soil and geologic resources from commercial tar sands development would be similar to those identified for Alternative B, but under Alternative C impacts could occur at fewer locations and in less geologically sensitive locations. |

| Resource                     | Alternative A: No Action                                                                                                                                | Alternative B: Amend Land Use Plans to<br>Identify 431,224 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                                                | Alternative C: Amend Land Use Plans to<br>Identify 229,038 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                            |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paleontological<br>Resources | No land use plans would be amended<br>under Alternative A to identify lands<br>available for lease application for<br>commercial tar sands development. | Paleontological resources on federal and<br>nonfederal lands would not be impacted<br>by land use plan amendments.                                                                                                                                                                                                                                                                                     | Paleontological resources on federal and<br>nonfederal lands would not be impacted by<br>land use plan amendments.                                                                                                                                                                                                                 |
|                              | connecta at saids de copineta.                                                                                                                          | About 335,000 acres of the proposed lease areas have the potential to contain important paleontological resources, and future commercial tar sands development could affect paleontological resources in these areas. Project-related impacts would be associated with construction and mining activities and could result in the damage or destruction of resources in or near the development areas. | Potential impacts on paleontological resources from commercial project development in these areas would be similar to those identified for Alternative B but could occur in significantly fewer locations. About 148,000 acres of the Alternative C lease areas have the potential to contain important paleontological resources. |
|                              |                                                                                                                                                         | Commercial tar sands development could<br>impact paleontological resources in the<br>Alternative B lease areas and at locations<br>on nonfederal lands where project-related<br>infrastructure (e.g., employer-provided<br>housing) would be located.                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                    |

|   |   | 4 |  |
|---|---|---|--|
| į | ì | 1 |  |
| į | 7 |   |  |
| į |   |   |  |
|   | 0 |   |  |
| į |   | ٥ |  |
|   | > | ₹ |  |

| Resource        | Alternative A: No Action                                                                                                                                | Alternative B: Amend Land Use Plans to<br>Identify 431,224 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                             | Alternative C: Amend Land Use Plans to<br>Identify 229,038 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water Resources | No land use plans would be amended<br>under Alternative A to identify lands<br>available for lease application for<br>commercial tar sands development. | Water resources on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Water resources on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                                                                                                                                                         | Commercial tar sands development could impact water resources in the Alternative B lease areas and at locations on nonfederal lands where project-related infrastructure (e.g., employer-provided housing) would be located. Potential project-related impacts may include reduced water quality due to erosion and sedimentation, dewatering of local aquifers, and contamination of surface water or groundwater by accidental releases of hazardous materials.  The Alternative B lease areas include about 28 mi of perennial streams that could be affected by commercial project development. | Potential impacts on water resources from future construction and operation of commercial tar sands projects in the Alternative C lease areas would be similar to those identified for Alternative B. Alternative C excludes from lease application about 200,000 acres of land that is currently identified in BLM land use plans as having steep slopes and/or fragile or highly crossive soils and included under Alternative B. Thus, there is a reduced potential for erosion-related impacts with commercial tar sands development under Alternative C. Alternative C lease areas include about 19 mi of perennial streams that could be affected by commercial project development. |

| Resource    | Alternative A: No Action                                                                                                                       | Alternative B: Amend Land Use Plans to<br>Identify 431,224 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alternative C: Amend Land Use Plans to<br>Identify 229,038 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>8</sup>                                                                                                                                                                                                                                                   |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air Quality | No land use plans would be amended under Alternative A to identify lands available for lease application for commercial tar sands development. | Air quality on federal and nonfederal lands would not be impacted by land use plan amendments.  Commercial tar sands development could impact air quality in the Alternative B lease areas and at locations on nonfederal lands where project-related infrastructure (e.g., employer-provided housing) would be located. The construction and operation of future commercial tar sands projects could result in local and regional impacts could result prometical emissions, fugitive dust generation from construction and mining areas and along some access roads, and tar sands processing emissions. Because of the need for project- and site-specific information, it is not possible to identify the nature and magnitude of regional air quality impacts from commercial development within the Alternative B lease areas. | Air quality on federal and nonfederal lands would not be impacted by land use plan amendments.  Potential impacts on air quality from the construction and operation of commercial tar sands projects would be similar to those identified for Alternative B. However, Alternative C has approximately 202,000 fewer acres of land than Alternative B where ruture commercial tar sands development could occur and affect local or regional air quality. |

| Resource                                                         | Alternative A: No Action                                                                                                                                | Alternative B: Amend Land Use Plans to<br>Identify 431,224 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                                                                                                                            | Alternative C: Amend Land Use Plans to<br>Identify 229,038 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                     |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Noise                                                            | No land use plans would be amended<br>under Alternative A to identify lands<br>available for lease application for<br>commercial tar sands development. | Noise levels on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                                                                                                                                                                                                                    | Noise levels on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                                                             |
|                                                                  |                                                                                                                                                         | Commercial tar sands development could affect noise levels in the Alternative B lease areas and at locations on nonfederal lands where project-related infrastructure (e.g., employer-provided housing) would be located. Local noise levels could be affected by operating construction, mining and processing equipment, pipeline compressor stations, and vehicle traffic. Such impacts could occur within the Alternative B lease areas wherever a project would be developed. | Potential noise impacts from commercial tar<br>sands development would be similar to those<br>identified for Alternative B. However,<br>Alternative C has approximately<br>202,000 fewer acres of land than<br>Alternative B where future commercial tar<br>sands development could occur and affect<br>local noise levels. |
| Ecological Resources<br>(resource subgroups<br>summarized below) | No land use plans would be amended<br>under Alternative A to identify lands<br>available for lease application for<br>commercial tar sands development. | Ecological resources on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                                                                                                                                                                                                            | Ecological resources on federal and nonfederal lands would not be impacted by land use plan amendments.                                                                                                                                                                                                                     |
|                                                                  | ,                                                                                                                                                       | Commercial tar sands development could<br>impact ecological resources in the<br>Alternative B lease areas and at locations<br>on nonfederal lands where project-related<br>infrastructure (e.g., employer-provided<br>housing) would be located.                                                                                                                                                                                                                                   | Commercial tar sands development would<br>be similar to those identified for<br>Alternative B but would occur on<br>202,000 fewer acres of land, some of which<br>has been excluded because of the presence<br>of sensitive ecological resources.                                                                           |

| Resource                          | Alternative A: No Action                                                                                                                                | Alternative B: Amend Land Use Plans to<br>Identify 431,224 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                             | Alternative C: Amend Land Use Plans to<br>Identify 229,038 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                                                                       |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aquatic Resources                 | No land use plans would be amended<br>under Alternative A to identify lands<br>available for lease application for<br>commercial tar sands development. | The Alternative B lease areas include 9 perennial streams totaling about 28 mi, and the construction and operation of commercial tar sands projects within the leases areas could adversely affect aquatic resources in these streams. Potential impacts could result in habitat loss or degradation, affecting the abundance and distribution of aquatic biota in the affected habitats.                                                                                                                                                                                                                                           | The Alternative C lease areas include 8 perennial streams totaling about 19 mi, and aquatic resources in these streams could be impacted by the commercial tar sands development. Each of these streams also occurs within the Alternative B areas. Thus, potential impacts from commercial development would be similar to those identified for Alternative B.                                                               |
| Plant Communities and<br>Habitats | No land use plans would be amended under Alternative A to identify lands available for lease application for commercial tar sands development.          | The construction and operation of commercial tar sands projects could impact plant communities and habitats that are present in the Alternative B lease areas. The lease areas include about 2,100 acres that have been identified for protection because of sensitive plants and populations. Impacts could include direct loss of vegetation from site clearing and grading; reduced habitat quality due to soil compaction, dewatering, or accidental releases of hazardous materials; and the introduction or spread of invasive species. Utility and access road ROWs could also result in the fragmentation of some habitats. | The construction and operation of commercial tar sands projects could impact plant communities and habitats that occur in Alternative C lease areas. The areas where commercial development could occur do not include land currently identified for protection for sensitive plants and populations. Potential impacts would be similar in nature to those identified for Alternative B, but could occur in fewer locations. |

| Resource                             | Alternative A: No Action                                                                                                                                | Alternative B: Amend Land Use Plans to<br>Identify 431,224 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Alternative C: Amend Land Use Plans to<br>Identify 229,038 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wildlife                             | No land use plans would be amended under Alternative A to identify lands available for lease application for commercial tar sands development.          | The construction and operation of commercial tar sands projects could disturb wildlife and their habitats where individual projects are located within the approximately 431,000 acres identified as available for leasing. Wildlife habitats present within the lease areas that could be affected by project development include more than 225,000 acres of sage grouse habitat, 3,000 acres of raptor habitat, 250,000 acres of big game habitat, and 76,000 acres of wild horse HMAs. Potential impacts on these habitats and their wildlife would be associated with site clearing and grading, operational noise and activities, accidental releases of hazardous materials, and increased human access to some habitats, and could result in reduced abundance and distribution of affected species. | The construction and operation of commercial tar sands projects could disturb wildlife and their habitats where individual projects are located within the 229,000 acres identified as available for leasing. Potential impacts would be similar to those identified for Alternative B, but could occur in fewer locations. Habitats present within the lease areas where project development could affect wildlife include about 101,000 acres of sage grouse habitat, 140,000 acres of wild borse HMAs. Thus, while impacts on wildlife and their habitats would be similar in nature to those identified for Alternative B, they could occur in fewer locations. |
| Threatened and<br>Endangered Species | No land use plans would be amended<br>under Alternative A to identify lands<br>available for lease application for<br>commercial tar sands development. | Twenty federally listed threatened and endangered species are known to or may occur within the Alternative B lease areas and thus could be affected by commercial tar sands development. Impacts on threatened and endangered species would be similar to or the same as those described for impacts on aquatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Twenty federally listed threatened and endangered species are known to or may occur within the Alternative Clease areas and thus could be affected by commercial tar sands development. Potential types of impacts on these species, which are the same identified for Alternative B, would be similar to those for Alternative B.                                                                                                                                                                                                                                                                                                                                  |

| Resource                                        | Alternative A: No Action                                                                                                                                | Alternative B: Amend Land Use Plans to<br>Identify 431,224 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Alternative C: Amend Land Use Plans to<br>Identify 229,038 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Threatened and<br>Endangered Species<br>(Cont.) |                                                                                                                                                         | resources, plant communities and habitats,<br>and wildlife. Specific impacts associated<br>with development would depend on the<br>locations of projects relative to species<br>populations and the details of project<br>development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Visual Resources                                | No land use plans would be amended<br>under Alternative A to identify lands<br>available for lease application for<br>commercial tar sands development. | Visual resources on federal and nonfederal lands would not be impacted by land use plan amendments.  Commercial tar sands development could impact visual resources in the Alternative B lease areas and at locations on nonfederal lands where project-related infrastructure (e.g., employer-provided housing) would be located. Short- and long-term visual impacts may result with the construction and operation of the projects and would be associated with construction activities at each site and along associated ROWs. Additional visual impacts may be associated with the presence of site facilities within viewsheds and lighting pollution. Visually sensitive areas within the proposed lease areas include 11 potential ACECs, I river segment eligible for WSR designation. | Visual resources on federal and nonfederal lands would not be impacted by land use plan amendments. Visually sensitive areas within the proposed lease areas include 11 ACECs and 1 WSR-eligible river segment. Sensitive areas within 5 mi of the lease areas include 18 WSAs, 13 ACECs, 18 potential ACECs, 18 WSR-eligible river segments, 1 National Park, 1 NRA, and 2 scenic highways. Because of the similarity in sensitive visual resource areas within and near each proposed lease area, potential impacts from commercial project development would be similar to those identified for Alternative B. |

| Resource                    | Alternative A: No Action                                                                                                                                | Alternative B: Amend Land Use Plans to<br>Identify 431,224 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Alternative C: Amend Land Use Plans to<br>Identify 229,038 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>8</sup>                                                                                                                                                                                                                                               |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Visual Resources<br>(Cont.) |                                                                                                                                                         | areas occurring within 5 mi of the proposed lease areas may include as many as 19 WSAs, 11 ACECs, 18 potential ACECs, 18 WSR-eligible river segments, 1 National Park, 1 NRA, and 2 national scenic highways. These visually sensitive areas could be affected by future commercial tar sands development within the Alternative B lease areas.                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cultural Resources          | No land use plans would be amended<br>under Alternative A to identify lands<br>available for lease application for<br>commercial tar sands development. | Cultural resources on federal and nonfederal lands would not be impacted by land use plan amendments.  Commercial tar sands development could impact cultural resources in the Alternative B lease areas and at locations on nonfederal lands where project-related infrastructure (e.g., employer-provided housing) would be located. Approximately 221,000 acres of the land that would be available for leasing have the potential to contain important cultural resources. Some of these resources could be affected by construction and operation of commercial projects within the lease areas. Potential impacts may include damage or destruction and increased potential for vandalism or theft due to increased human access. | Cultural resources on federal and nonfederal ands would not be impacted by land use plan amendments.  Approximately 97,000 acres that would be available for lease application have the potential to contain important cultural resources. Potential impacts on these resources from commercial tar sands development within the Alternative C lease areas would be similar to those identified fo Alternative B, but could occur in fewer locations. |

| Resource       | Alternative A: No Action                                                                                                                                | Alternative B: Amend Land Use Plans to<br>Identify 431,224 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                      | Alternative C: Amend Land Use Plans to<br>Identify 229,038 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup> |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Socioeconomics | No land use plans would be amended<br>under Alternative A to identify lands<br>available for lease application for<br>commercial tar sands development. | No socioeconomic impacts would occur<br>on federal and nonfederal lands from<br>amending land use plans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No socioeconomic impacts would occur on federal and nonfederal lands from amending land use plans.                                                                                                      |
|                |                                                                                                                                                         | Construction and operation associated with individual tar sands technologies would have small to moderate impacts on employment, income, population, housing, public finances, and public service employment in the ROI. Small to moderate impacts on property values and recreation would also occur, and water diversions would also affect agriculture. Rapid increases in population in-migration in the ROI could impact quality of life, in particular requiring a transition from traditional rural, to more urban lifestyles, and potentially cause large social disruption impacts. | Potential project impacts would be similar to those identified for Alternative B.                                                                                                                       |

| Resource              | Alternative A: No Action                                                                                                                                | Alternative B: Amend Land Use Plans to<br>Identify 431,224 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Alternative C: Amend Land Use Plans to<br>Identify 229,038 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup> |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental Justice | No land use plans would be amended<br>under Alternative A to identify lands<br>available for lease application for<br>commercial tar sands development. | Minority or low-income populations on<br>federal and nonfederal lands would not<br>incur any impacts from amending land use<br>plans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minority or low-income populations on federal and nonfederal lands would not incur any impacts from amending land use plans.                                                                            |
|                       |                                                                                                                                                         | Tar sands project construction and operation would disproportionately impact minority and low-income populations depending on their location. Changes in quality of life caused by rapid inmigration of population into rural communities would likely occur, thereby undermining local community social structures and requiring a transition to more urban life styles. Social disruption would also occur. The impacts of facility operations on air and water quality and on the demand for water for agriculture in the region could also cause environmental justice impacts. Land use and visual impacts would depend on the location of land parcels impacted by tar sands projects, their importance for subsistence, their cultural and religious significance, and possible alternate economic uses. | Potential project impacts would be similar to those identified for Alternative B.                                                                                                                       |

| Resource                                       | Alternative A: No Action                                                                                                                                | Alternative B: Amend Land Use Plans to<br>Identify 431,224 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                                                                                                                                                                                                                        | Alternative C: Amend Land Use Plans to<br>Identify 229,038 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>            |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hazardous Materials<br>and Waste<br>Management | No land use plans would be amended<br>under Alternative A to identify lands<br>available for lease application for<br>commercial tar sands development. | No hazardous materials and wastes would<br>be used or generated as a result of land use<br>plan amendments.                                                                                                                                                                                                                                                                                                                    | No hazardous materials and wastes would be used or generated as a result of land use plan amendments.                                                                                                              |
|                                                |                                                                                                                                                         | Future commercial tar sands development within the Alternative B lease areas would use and generate similar types of hazardous materials and wastes. Spent tar sands may also be generated in large quantities if development by mining occurs; the shale would require management as a waste. The specific types and amounts and their handling and treatment would depend on the specific design of each commercial project. | For individual projects, the types and amounts of hazardous materials and wastes that could be used and generated during commercial tar sands development would be the same as those identified for Alternative B. |

TABLE 2.6-2 (Cont.)

| Resource          | Alternative A: No Action                                                                                                                                | Alternative B: Amend Land Use Plans to<br>Identify 431,224 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>8</sup>                                                                                                                                                                                                                                                    | Alternative C: Amend Land Use Plans to<br>Identify 229,038 Acres of Federal Land<br>in Colorado, Utah, and Wyoming as<br>Available for Application for<br>Commercial Tar sands Development <sup>a</sup>                              |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Health and Safety | No land use plans would be amended<br>under Alternative A to identify lands<br>available for lease application for<br>commercial tar sands development. | No health and safety impacts would occur<br>on federal and nonfederal lands from land<br>use plan amendments.                                                                                                                                                                                                                                                                                                                                              | No health and safety impacts would occur<br>on federal and nonfederal lands from land<br>use plan amendments.                                                                                                                        |
|                   |                                                                                                                                                         | Commercial tar sands project development<br>may result in worker injuries or fatalities<br>from accidents, possible hearing loss from<br>high noise levels, and inhalation of<br>particulates and/or volatile compounds.<br>The commercial development of a single<br>commercial tar sands facility is estimated<br>to result in less than 1 fatality and about<br>100 injuries per year during construction<br>and 30 injuries per year during operation. | Potential health and safety impacts from project construction and operation would be similar to those identified for Alternative B and identical for projects with identical Plans of Development and located in common lease areas. |

a Under both Alternatives B and C, the nature, magnitude, and extent of project-related impacts of commercial development on all resource areas would depend on the type, location, and design of the individual projects.

#### 2.7 REFERENCES

- BLM (Bureau of Land Management), 1984, Utah Combined Hydrocarbon Leasing Regional Final EIS: Volume I. Regional Analyses, Richfield District Office, Richfield, Utah, June.
- BLM, 1985, Record of Decision and Rangeland Program Summary for the Book Cliffs Resource Management Plan, Vernal District Office, Utah, May.
- BLM, 1986, Record of Decision for the Kemmerer Resource Management Plan and Rangeland Program Summary Document, Kemmerer Resource Area, Rock Springs District, Wyo., June.
- BLM, 1987, Grand Junction Resource Area Resource Management Plan and Record of Decision. Grand Junction District, Colo., Jan.
- BLM, 1988, Record of Decision and Resource Management Plan, Glenwood Springs Resource Area. Grand Junction District, Colo., June.
- BLM, 1989, Decision Record and Finding of No Significant Impact for Amendment to the Management Framework Plan for the Price River Resource Area, Moab District, Price River Resource Area Utah, June.
- BLM, 1990, Great Divide Resource Area Record of Decision and Approved Resource Management Plan, Rawlins District Office, Great Divide Resource Area, Wyoming, Nov.
- BLM, 1991a, San Rafael Final Resource Management Plan, Moab District, San Rafael Resource Area, Utah, May.
- BLM, 1991b, Resource Management Plan Record of Decision and Rangeland Program Summary for the San Juan Resource Area, Moab District, Utah, prepared by the Bureau of Land Management, Utah, March.
- BLM, 1994, Diamond Mountain Resource Area Resource Management Plan and Record of Decision, Vernal District Office, Utah.
- BLM, 1997a, Record of Decision and Green River Resource Management Plan, Green River Resource Area, Rock Springs District Office, Wyo., Oct.
- BLM, 1997b, White River Record of Decision and Approved Resource Management Plan, White River Resource Area, Colo., Craig District, Meeker, Colo., July.
- BLM, 2006a, Record of Decision and Jack Morrow Hills Coordinated Activity Plan/Proposed Green River Resource Management Plan Amendment, Rock Springs Field Office, Wyo., July.

- BLM, 2006b, Roan Plateau Planning Area, Including Former Naval Oil Shale Reserves Numbers 1 & 3, Resource Management Plan Amendment & Environmental Impact Statement, Final, Colorado State Office, Aug. Available at http://www.blm.gov/rmp/co/roanplateau/final eis document.htm.
- BLM, 2006c, Environmental Assessment, Chevron Oil Shale Research, Development & Demonstration, CO-110-2006-120-EA, White River Field Office, Meeker, Colo., Nov.
- BLM, 2006d, Finding of No Significant Impact and Decision Record, COC 69165, Chevron U.S.A. Oil Shale Research, Development and Demonstration, for Environmental Assessment CO-110-2006-120-EA, White River Field Office, Meeker, Colo., Nov. 9.
- BLM, 2006e, Environmental Assessment, EGL Resources, Inc., Oil Shale Research, Development and Demonstration Tract, CO-110-2006-118-EA, White River Field Office, Meeker, Colo., Oct.
- BLM, 2006f, Finding of No Significant Impact and Decision Record, COC 69169, EGL Resources, Inc., Oil Shale Research, Development and Demonstration Tract, for Environmental Assessment CO-110-2006-118-EA, White River Field Office, Meeker, Colo., Nov. 9.
- BLM, 2006g, Environmental Assessment, Shell Oil Shale Research, Development and Demonstration Projects, Rio Blanco County, Colorado, CO-110-2006-117-EA, White River Field Office, Meeker, Colo., Nov.
- BLM, 2006h, Finding of No Significant Impact/Decision Record, Site 1, COC-69167, Oil Shale Test Site, Shell Frontier Oil and Gas Inc., Oil Shale Research, Development and Demonstration Pilot, for Environmental Assessment CO-110-2006-117-EA, White River Field Office, Meeker, Colo., Nov. 9.
- BLM, 2006i, Finding of No Significant Impact/Decision Record, Site 2, COC-69166, Oil Shale Test Site, Shell Frontier Oil and Gas Inc., Oil Shale Research, Development and Demonstration Pilot, for Environmental Assessment CO-110-2006-117-EA, White River Field Office, Meeker, Colo., Nov. 9.
- BLM, 2006j, Finding of No Significant Impact/Decision Record, Site 3, COC-69194, Oil Shale Test Site, Shell Frontier Oil and Gas Inc., Oil Shale Research, Development and Demonstration Pilot, for Environmental Assessment CO-110-2006-117-EA, White River Field Office, Meeker, Colo., Nov. 9.
- BLM, 2007a, Record of Decision for the Approval of Portions of the Roan Plateau Management Plan Amendment and Environmental Impact Statement, Glenwood Springs Field Office, Colo., June.
- BLM, 2007b. Environmental Assessment, Oil Shale Research, Development and Demonstration Project, White River Mine, Uintah County, Utah, UT-080-06-280, Vernal Field Office, Vernal, Utah, April.

- BLM, 2007c, Finding of No Significant Impact/Decision Record, Oil Shale Exploration Company, Oil Shale Research, Development and Demonstration Project, UTU-84087, Location: White River Mine, Untah County, Utah, for Environmental Assessment UT-080-06-280-EA, Vernal Field Office, Vernal, Utah, April 30.
- DOI (U.S. Department of the Interior), 1968, "Oil and Gas Leases for Lands in Oil Shale Areas," Federal Register. Vol. 33, No. 193, Oct. 2.
- Donnell J.R., 1987, "Storehouse of Energy Minerals in the Piceance Basin," in Oil Shale, Water Resources, and Valuable Minerals of the Piceance Basin, Colorado: The Challenge and Choices of Development, O.J. Taylor (editor), U.S. Geological Survey Professional Paper 1310.
- EPA (U.S. Environmental Protection Agency), 1974, Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety, EPA 550/9-74-004, Office of Noise Abatement and Control, Washington, D.C., March.
- Meyer, R., 1995, "Bitumen," in *Encyclopedia of Energy Technology and the Environment*, Vol. 1, A. Bisio and S. Boots (editors), John Wiley & Sons, New York, N.Y.
- Tabet, D., 2007, personal communication from Tabet (Utah Geological Survey, Salt Lake City, Utah) to S.J. Thompson (Bureau of Land Management, Washington, D.C., Office), Dec. 14.
- U.S. President, 1978, "Federal Compliance with Pollution Control Standards," Executive Order 12088, Federal Register 43: 47707, Oct. 17.
- U.S. President, 1994, "Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations," Executive Order 12898, Federal Register 59:7629, Feb. 11.
- U.S. President, 1997, "Protection of Children from Environmental Health Risks and Safety Risks," Executive Order 13045, Federal Register 62:19883–19888, April 23.
- USGS (U.S. Geological Survey), 1980a, Argyle Canyon–Willow Creek, Utah Tar Sand Leasing Minutes No. 9, Minutes of the Mineral Land Evaluation Committee, Nov. 10.
- USGS, 1980b, Asphalt Ridge—Whiterocks and Vicinity, Utah Tar Sand Leasing Minutes No. 3, Minutes of the Mineral Land Evaluation Committee, Sept. 23.
- USGS, 1980c, Circle Cliffs East and West Flanks, Utah Tar Sand Leasing Minutes No. 5, Minutes of the Mineral Land Evaluation Committee, Sept. 23.
- USGS, 1980d, Hill Creek, Utah Tar Sand Leasing Minutes No. 6, Minutes of the Mineral Land Evaluation Committee, Nov. 10.
- USGS, 1980e, Pariette, Utah Tar Sand Leasing Minutes, Minutes of the Mineral Land Evaluation Committee, Nov. 10.

USGS, 1980f, P.R. Spring, Utah Tar Sand Leasing Minutes, Minutes of the Mineral Land Evaluation Committee, Sept. 23.

USGS, 1980g, Raven Ridge-Rim Rock and Vicinity, Utah Tar Sand Leasing Minutes No. 8, Minutes of the Mineral Land Evaluation Committee, Nov. 10

USGS, 1980h, San Rafael Swell, Utah Tar Sand Leasing Minutes No. 7, Minutes of the Mineral Land Evaluation Committee, Nov. 10.

USGS, 1980i, Sunnyside and Vicinity, Utah Tar Sand Leasing Minutes No. 4, Minutes of the Mineral Land Evaluation Committee, Sept. 23.

USGS, 1980j, *Tar Sand Triangle, Utah Tar Sand Leasing Minutes No.* 2, Minutes of the Mineral Land Evaluation Committee, Sept. 23.

USGS, 1980k, White Canyon, Utah Tar Sand Leasing Minutes No. 11, Minutes of the Mineral Land Evaluation Committee, Nov. 10.

Wiig, S., 2006a, personal communication from Wiig (BLM Rock Springs Field Office, Wyo.) to P. Perlewitz (BLM Wyoming State Office, Cheyenne, Wyo.), June 13.

Wiig, S., 2006b, personal communication from Wiig (BLM Rock Springs Field Office, Wyo.) to K.P. Smith (Argonne National Laboratory, Lakewood, Colo.), June 27.

#### 3 AFFECTED ENVIRONMENT

This PEIS provides an assessment of environmental, social, and economic issues at a programmatic level and not at the site-specific level. The descriptions of the affected environment presented in this chapter do not provide detailed information about conditions at specific project locations. These descriptions provide the level of detail needed to assess the range of potential impacts that may occur because of future oil shale or tar sands resource leasing and development on BLM-administered lands.

#### 3.1 LAND USE

This section describes the wide range of land uses that occur on BLM-administered lands and other lands within the study area. General information about the management of BLM-administered lands is presented in the context of each BLM field office and administrative unit that has jurisdiction over the oil shale and tar sands resources evaluated in this PEIS. Additional information is presented about other federal lands that coincide with oil shale and tar sands resources, and general information is presented about the use of other federal and state lands in the area. A description of the management of BLM-administered lands is presented in Section 2.2.3.

### 3.1.1 BLM Land Use Plans within the Study Area

Table 3.1.1-1 lists the BLM field offices and administrative units with jurisdiction over areas containing the oil shale and tar sands resources evaluated in this PEIS. The table includes the names of the existing land use plans and estimates of the total acreage of BLM-administered and split estate lands that coincide with the most geologically prospective oil shale areas and STSAs being evaluated in this PEIS. As discussed in Section 1.4.3, management decisions contained in these existing BLM land use plans have been incorporated into the analyses conducted in this draft PEIS. In turn, the ROD resulting from the final PEIS will amend these land use plans to incorporate management decisions related to making land available for application for commercial leasing and development of oil shale and tar sands resources. Figure 3.1.1-1 shows the distribution of public lands administered by the BLM within the region where the oil shale and tar sands resources are located.

The following sections provide an overview of each administrative unit and corresponding land use plan that falls within the PEIS study area. Information about ongoing planning activities and the status of each land use plan is presented. In addition, information about specially designated areas and land uses (e.g., energy and mineral development activities, grazing, recreational use, and ROW authorizations) is presented for those areas that coincide with the oil shale or tar sands resources or could be impacted by their commercial leasing and development. Some of these activities, such as grazing and recreational use, are widespread and dispersed across any given planning area. Similarly, ROW authorizations are extensive in some planning areas. The information presented in these sections is not exhaustive; individual land use plans provide more complete descriptions of land use.

TABLE 3.1.1-1 BLM Field Offices and Administrative Units, Existing Land Use Plans, and Estimated Surface Acreages Overlying the Most Geologically Prospective Oil Shale Resources and STSAs

|                                                             |                                                                                                           | Estimated Surface Overlying the Reso (acres) <sup>a</sup> |                 | sources |                 |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------|---------|-----------------|
|                                                             |                                                                                                           | Oil S                                                     | Shale           | Tar S   | Sands           |
| Field Office                                                | Existing Land Use Plan                                                                                    | BLM                                                       | Split<br>Estate | BLM     | Split<br>Estate |
| Colorado                                                    |                                                                                                           |                                                           |                 |         |                 |
| Glenwood Springs                                            | Glenwood Springs RMP (BLM 1988, as amended by the Roan Plateau Plan Amendment [BLM 2006a, 2007a])         | 10,442                                                    | 3,715           | 0       | 0               |
| Grand Junction                                              | Grand Junction RMP (BLM 1987a)                                                                            | 181                                                       | 3,843           | 0       | 0               |
| White River                                                 | White River RMP (BLM 1997a, as amended by the Roan<br>Plateau Plan Amendment [BLM 2006a, 2007a])          | 309,086                                                   | 34,382          | 0       | 0               |
| Colorado total                                              |                                                                                                           | 319,710                                                   | 41,940          | 0       | 0               |
| Utah                                                        |                                                                                                           |                                                           |                 |         |                 |
| Grand Staircase–Escalante<br>National Monument <sup>b</sup> | Grand Staircase—Escalante National Monument Management<br>Plan (BLM 1999a)                                | 0                                                         | 0               | 51,226  | 6,707           |
| Monticello <sup>c</sup>                                     | San Juan Resource Area RMP (BLM 1991b)                                                                    | 0                                                         | 0               | 8,050   | 0               |
| Price <sup>c</sup>                                          | Price River Resource Area MFP (BLM 1989)<br>San Rafael Resource Area RMP (BLM 1991a)                      | 107                                                       | 0               | 194,324 | 18,575          |
| Richfield <sup>c</sup>                                      | Henry Mountain MFP, issued 1982                                                                           | 0                                                         | 0               | 83,040  | 0               |
| Vernal <sup>c,d,e</sup>                                     | Book Cliffs RMP (BLM 1985a)<br>Diamond Mountain RMP (BLM 1994a)                                           | 560,864                                                   | 77,220          | 237,717 | 56,866          |
| Utah total                                                  |                                                                                                           | 560,972                                                   | 77,220          | 574,357 | 82,148          |
| Wyoming                                                     |                                                                                                           |                                                           |                 |         |                 |
| Kemmererc                                                   | Kemmerer RMP (BLM 1986c)                                                                                  | 221,358                                                   | 2,313           | 0       | 0               |
| Rawlinsc                                                    | Great Divide RMP (BLM 1990)                                                                               | 80,492                                                    | 0               | 0       | 0               |
| Rock Springs                                                | Green River RMP (BLM 1997c, as amended by the Jack<br>Morrow Hills Coordinated Activity Plan [BLM 2006b]) | 955,829                                                   | 37,093          | 0       | 0               |
| Wyoming total                                               |                                                                                                           | 1,257,680                                                 | 39,046          | 0       | 0               |

- a Estimated acreages were calculated from GIS data compiled to support the PEIS analyses.
- b Although lands within the GSENM would be excluded from future leasing for tar sands development, it is included in this table because it overlies the Circle Cliffs STSA. Potential commercial tar sands leasing and development in the GSENM, however, is not assessed in the PEIS.
- c Planning efforts are underway to revise or replace the plan(s) in this field office.
- d A portion of the P.R. Spring STSA extends south from the Vernal Field Office boundary into the Moab Field Office boundary; however, this area is administered by the Vernal Field Office under a MOU with the Moab Field Office. Under this agreement, the Vernal Field Office administers all resources and programs, including land use planning, for the entire P.R. Spring STSA. Therefore, the Moab Field Office plan is not impacted by this PEIS.
- c Split estate lands within the Hill Creek Extension of the Uintah and Ouray Reservation coincide with oil shale and tar sands resources in the Vernal Field Office. The split estate acreage estimate for oil shale in the Vernal Field Office includes approximately 57,705 acres of lands within the Hill Creek Extension. The split estate acreage estimate for tar sands in the Vernal Field Office includes approximately 35,472 acres of lands within the Hill Creek Extension.

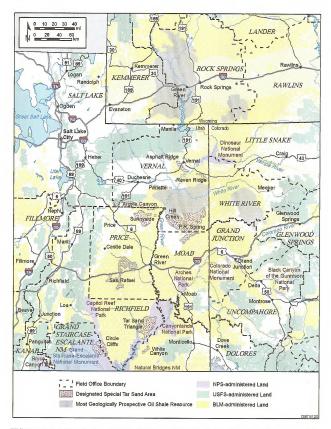



FIGURE 3.1.1-1 Distribution of BLM-, USFS-, and NPS-Administered Lands with Respect to Oil Shale and Tar Sands Resources

#### 3.1.1.1 Glenwood Springs Field Office, Colorado

The Glenwood Springs RMP (BLM 1988) was first issued in 1984, revised in 1988, and has been amended numerous times. The BLM administers approximately 566,000 acres within the planning area encompassed by this RMP (Figure 3.1.1-2). The oil shale resources are located within the Piceance Basin; no tar sands resources are located within the jurisdiction of this field office.

In 2001, the Glenwood Springs RMP was amended to revoke previous decisions to withdraw deposits of oil shale and public lands containing such deposits from leasing or other disposal, in order to protect the oil shale resource pending further study and classification (BLM 2001a). The withdrawals were no longer considered necessary because existing regulations, policies, and land use decisions were adequate to manage the oil shale resources.

Other energy and mineral development on lands managed by the Glenwood Springs Field Office includes oil and gas and coal. In the 1988 version of the RMP, most of the lands in the field office region were designated as open to mineral leasing and development. Of these, only oil and gas resources overlap the oil shale resources being evaluated in this PEIS. In 1991 and again in 1999, in response to increased oil and gas development activities, the RMP was amended to facilitate orderly, economic, and environmentally sound exploration and development of these resources. Under the 1999 amendment (BLM 1999b), lands within WSAs (27,760 acres) were closed to all oil and gas leasing. In addition, No Surface Occupancy (NSO), Timing Limitation (TL), and Controlled Surface Use (CSU) stipulations to be attached to oil and gas leases were identified to protect specific areas or resources, such as riparian and wetlands areas, rivers, sensitive species, viewsheds, and watersheds.

The Department of Defense Authorization Act of 1998 (P.L. 105-85) transferred Naval Oil Shale Reserves (NOSR) 1 and 3 from the U.S. Department of Energy (DOE) to the BLM, A total of 55,354 acres of land were involved in the transfer, including 36,362 acres in NOSR 1 and 18,992 acres in NOSR 3. The Act required the DOI to make these lands available for leasing for oil and gas development, and stipulated that leasing occur within the developed track of NOSR 3 within one year. The 1999 RMP amendment (BLM 1999b) addressed leasing on 12,029 acres of land within NOSR 3. The Roan Plateau RMP Amendment, for which a Final EIS was issued in 2006 (BLM 2006a), was prepared to develop an integrated management strategy that incorporates the transferred NOSR into the remainder of BLM-administered land in the planning area and establishes a unified set of goals, objectives, and land use or management actions. The RMP amendment, which was partially approved by a ROD issued in 2007 (BLM 2007b), establishes the Roan Plateau Planning Area as an area of 127,007 acres, encompassing NOSR 1 and 3 (55,354 acres), other BLM-administered lands (18,248 acres of federal surface and split estate lands), and nonfederal lands (53,405 acres) (Figure 3,1,1-2). While a portion of the Roan Plateau Planning Area extends into the White River Field Office boundary, the Glenwood Springs Field Office will have jurisdiction over management of the entire planning area.

The Glenwood Springs Field Office administers grazing on allotments that cover a significant portion of the planning area. Recreation sites have been established in areas of heavy recreational use; larger areas of dispersed but heavy recreational use have been identified and

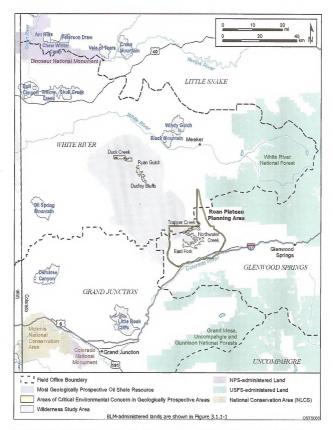



FIGURE 3.1.1-2 BLM Planning Areas in Colorado Where Oil Shale Resources Are Located

designated as SRMAs. None of the designated recreation sites or SRMAs, are located in areas overlying the oil shale resources being evaluated in this PEIS. ROW authorizations exist within the planning area and may be located in the area that may be authorized by the oil shale leases.

Several WSAs have been designated in the planning area; however, they are located in the eastern part of the area, away from the oil shale resources. A number of ACECs have been designated within the Glenwood Springs Field Office boundary (Figure 3.1.1-2). Four of these ACECs are located within the Roan Plateau Planning Area, as defined by the Roan Plateau Plan Amendment (BLM 2006a). <sup>1</sup> Two of them overlap with the oil shale resources being evaluated in this PEIS (Table 3.1.1-2). In addition, the Roan Plateau Plan Amendment and ROD (BLM 2006a, 2007b) establishes the Parachute Creek Watershed Management Area, encompassing an area of 33,575 acres, on top of the plateau. In accordance with the Roan Plateau RMP Amendment, stipulations restricting surface-disturbance activities will be established for portions of these ACECs and the watershed management area (BLM 2006a). Other ACECs within the planning area do not overlap with oil shale resources.

The BLM has identified rivers and corridors within the Roan Plateau Planning Area as being eligible for designation as WSRs (BLM 2006a). Portions of the eligible Trapper Creek, Northwater Creek, and East Fork Parachute Creek, shown in Figure 3.1.1-2, overlie the oil shale study area.

#### 3.1.1.2 Grand Junction Field Office, Colorado

The Grand Junction RMP (BLM 1987a) was first issued in 1987 and has been amended numerous times. The BLM administers approximately 1.2 million acres within the planning area encompassed by this RMP; however, only a small portion of the planning area overlaps with the oil shale resources being evaluated in this PEIS (Figure 3.1.1-2). The oil shale resources are

TABLE 3.1.1-2 Glenwood Springs Field Office ACECs That Overlap with Oil Shale Resources

| ACEC                      | R&I Criteria <sup>a</sup>                     | Acreageb |
|---------------------------|-----------------------------------------------|----------|
| East Fork Parachute Creek | Scenic values, fisheries, and plant resources | 6,571    |
| Trapper/Northwater Creek  | Fisheries and plant resources                 | 4,810    |

a R&I = relevance and importance.

b Acreage estimates represent the entire unit (not just the portion overlying the oil shale resources) and were derived from the Roan Plateau RMP Amendment (BLM 2006a).

<sup>1</sup> The Roan Plateau ROD issued in 2007 only approved portions of the proposed plan amendments in BLM 2006a. A second ROD finalizing establishment of these ACECs is still pending.

located within the Piceance Basin; no tar sands resources are located within the boundaries of this field office.

In 2001, the Grand Junction RMP was amended to revoke previous decisions to withdraw deposits of oil shale and public lands containing such deposits from leasing or other disposal, in order to protect the oil shale resource, pending further study and classification (BLM 2001a). The withdrawals were no longer considered necessary because existing regulations, policies, and land use decisions were adequate to manage the oil shale resources.

Oil and gas and mineral development activities occur within the Grand Junction RMP boundary on both public and nonfederal lands. About 8% of the planning area is closed to oil and gas leasing; of the remaining area, almost 43% is open to leasing with standard lease terms, 9% has NSO stipulations, and the remaining 38% has other stipulations attached to leasing. Approximately 390,000 acres of the Book Cliffs potential coal development area are considered acceptable for further coal leasing consideration. The Palisade municipal watershed and the Colorado River corridor through DeBeque Canyon are closed to coal development.

Other principal uses of public land within the boundary of the field office include grazing and recreation. Recreational use is varied and dispersed throughout the planning area. A number of areas are managed as SRMAs; however, none of them coincide with the oil shale resources being evaluated in this PEIS. ROW authorizations exist within the planning area and may be co-located with the oil shale resources.

Several WSAs and ACECs are located within the planning area; however, none of these areas overlap with the oil shale resources. The McInnis Canyons NCA, managed by the BLM, and Colorado National Monument, managed by the NPS, are located within the Grand Junction Field Office boundary, but both are more than 35 mi from the oil shale resources being evaluated in this PEIS.

## 3.1.1.3 White River Field Office, Colorado

The White River RMP was first issued in 1997 (BLM 1997a) and has been amended several times. The BLM administers approximately 1.46 million acres of surface estate and an additional 365,000 acres of split estate lands within the planning area encompassed by this RMP (Figure 3.1.1-2). The oil shale resources are located within the Piceance Basin; no tar sands resources are located within the boundary of this field office.

In 2001, the White River RMP was amended to revoke previous decisions to withdraw deposits of oil shale and public lands containing such deposits from leasing or other disposal, in order to protect the oil shale resource, pending further study and classification (BLM 2001a). The withdrawals were no longer considered necessary because existing regulations, policies, and land use decisions were adequate to manage the oil shale resources.

As discussed in Section 3.1.1.1, the Roan Plateau RMP Amendment and ROD (BLM 2006a, 2007b) establish the Roan Plateau Planning Area as an area incorporating NOSR 1

and 3, other BLM-administered lands, and nonfederal lands. A small portion of this new planning area overlaps with the White River Field Office. The proposed amendment defines an integrated management strategy for the entire area, although management decisions are applicable only to the BLM-administered lands. While a portion of the Roan Plateau Planning Area extends into the White River Field Office boundary, the Glenwood Springs Field Office will have jurisdiction over management of the entire planning area.

The White River RMP contains a number of decisions related to oil shale development in the Piceance Basin that were carried forward from the 1985 Piceance Basin RMP (BLM 1985b) that it replaced. Accordingly, under the existing RMP, lands within the "Piceance dome area" are currently closed to leasing for oil shale because of conflicts with oil and gas development and an "unfavorable geologic setting." A total of 223,860 acres of land are available for oil shale leases, of which 39,140 acres are available for surface mining (e.g., open pit) development. An additional 70,820 acres are available for leasing for multimineral development (i.e., development of oil shale, naheolite, and dawsonite) inside the so-called Multimineral Zone (Figure 3.1.1-3). Per the RMP, multimineral development will be allowed only if recovery technologies are implemented to ensure that each of these minerals can be recovered without preventing recovery of the others. The White River RMP also allows for the issuance of leases for oil shale research activities. Additional NEPA analysis is also required for oil shale leasing according to the 1997 RMP.<sup>2</sup>

Oil and gas and other mineral development is intensive within the White River Field Office boundary on both public and nonfederal lands, and much of this development is coincident with the oil shale resources. More than 1.5 million acres of land are available for oil and gas leasing with special stipulations, and an additional 168,486 acres are available for leasing under standard lease terms. Oil and gas transport and feeder pipelines cross the oil shale resources being evaluated in this PEIS.

Oil and gas development is projected to increase significantly on the lands managed by the White River Field Office. A number of projects are currently under consideration to expand existing development and the associated infrastructure. In June 2006, the BLM initiated preparation of an EIS to evaluate the proposed amendment of the existing RMP to address the potential impacts of significant increases in oil and gas development in the area. In the last plan revision in 1997, the BLM anticipated the potential development of 1,100 oil and gas wells (at a rate of about 55 wells/yr), most of which were to be drilled south of Rangely, Colorado. The oil and gas industry is now projecting that more than 21,000 wells could be drilled in the planning area over the next 20 years (Hollowed 2007).

The White River RMP states that 172,700 acres of land within the planning area are underlain by recoverable coal reserves; 11,470 acres were found to be unsuitable for coal mining; 43,380 acres were found to be suitable for underground mining only; and 117,850 acres were found to be suitable for both surface and underground mining. Approximately 610,000 acres are available for mining of locatable minerals.

<sup>2</sup> This PEIS will not satisfy, completely, the requirement for additional analysis identified in the White River RMP.

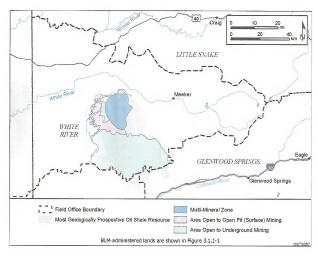



FIGURE 3.1.1-3 White River RMP Decisions Related to Oil Shale Leasing and Development

The White River Field Office administers grazing on allotments that cover a significant portion of the planning area, including the area where the oil shale resources are located. The entire field office area has been designated as the White River Extensive Recreation Management Area; no SRMAs have been designated. The Piceance-East Douglas Creek Wild Horse Herd Management Area (HMA) overlaps with the oil shale resources (see Section 3.7.3.4 for more information on wild horses and burros). ROW authorizations exist within the planning area and may be co-located with the oil shale resources.

Several WSAs have been designated within the White River Field Office region; however, they are all located to the northeast and northwest of the oil shale resources being evaluated in this PEIS. A number of ACECs have been designated within the White River Field Office boundary. Figure 3.1.1-2 shows those located within the geologically prospective area for oil shale. The ACECs that overlap with the oil shale resources being evaluated in this PEIS are listed in Table 3.1.1-3. One of these ACECs, the Trapper/Northwater Creek ACEC, is located within the Roan Plateau Planning Area.

Draft: OSTS PEIS 3-11 December 2007

TABLE 3.1.1-3 White River Field Office ACECs That Overlap with Oil Shale Resources

| ACEC                     | R&I Criteria                                            |        |
|--------------------------|---------------------------------------------------------|--------|
| Duck Creek               | Threatened and endangered plant and cultural resources  | 3,430  |
| Ryan Gulch               | Threatened and endangered plant resources               | 1,440  |
| Dudley Bluffs            | Threatened and endangered and sensitive plant resources | 1,630  |
| Trapper/Northwater Creek | Fisheries and plant resources                           | 4,810b |

- a Acreage estimates represent the entire unit (not just the portion overlying the oil shale resources) and were derived from the White River RMP (BLM 1997a) unless otherwise noted.
- b Acreage estimates were derived from the Roan Plateau RMP Amendment (BLM 2006a).

A portion of Dinosaur National Monument, which is managed by the NPS, falls within the White River Field Office boundary; however, it does not overlie any of the oil shale resources within the Piceance Basin being evaluated in this PEIS (Figure 3.1.1-2). At its closest point, the Monument is more than 25 mi from the oil shale resources being evaluated within the Piceance Basin.

#### 3.1.1.4 Grand Staircase-Escalante National Monument, Utah

The GSENM was established by Presidential Proclamation in September 1996. The GSENM Management Plan, published in 1999, became effective in February 2000 (BLM 1999a). The GSENM encompasses about 1.87 million acres of federal lands and is surrounded primarily by federal lands, including the Dixie National Forest, Capitol Reef National Park, Glen Canyon NRA, Bryce Canyon National Park, and other BLM-administered lands (Figure 3.1.1-4). The GSENM overlies the western portion of the Circle Cliffs STSA. The eastern portion of this STSA extends into Capitol Reef National Park. According to available maps, a small portion of the Circle Cliffs STSA extends to the south into the Glen Canyon NRA. No oil shale resources are located within the Monument.

Currently, 8,921.36 acres within the Circle Cliffs STSA are held under two pending conversion leases for tar sands development (see Section 1.4.2). When the GSENM was established, all federal lands and interests within the Monument were withdrawn from additional entry, location, selection, sale, leasing, or other disposition, including mineral leasing. No new federal mineral leases can be issued, nor can new mining claims be located within the Monument. However, a number of oil and gas leases, mineral leases, and mining claims were in place at the time the Monument was established. While there are 68 federal mining claims covering about 2,700 acres, 85 federal oil and gas leases covering more than 136,000 acres, and 18 federal coal leases on about 52,800 acres, the BLM will verify whether "valid existing rights" are present on a case-by-case basis (BLM 1999a). This adjudication process to determine the valid existing rights for pending conversion leases in the Circle Cliffs STSA is currently underway.

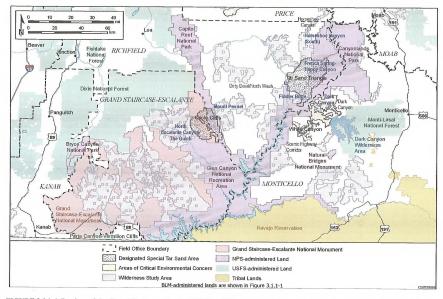



FIGURE 3.1.1-4 Portions of the Grand Staircase—Escalante National Monument and the Monticello and Richfield Field Offices Where Tar Sands Resources Are Located

Some of the lands within the GSENM are designated as WSAs. Of these, the North Escalante Canyons/Gulch Instant Study Area (ISA) overlaps with the southwestern portion of the Circle Cliffs STSA (Figure 3.1.1-4), encompassing some of the lands included in the pending conversion leases. These lands fall within the Primitive Zone that has been designated within the GSENM; this zone is designated to provide visitors undeveloped and primitive experiences without motorized and mechanized access (BLM 1999a). A portion of the Circle Cliffs STSA, including lands within pending conversion leases, falls within the Outback Zone designated within the GSENM; this zone is designated to provide visitors undeveloped and primitive experiences while accommodating motorized and mechanized access (BLM 1999a). There are no ACECs designated within the GSENM.

#### 3.1.1.5 Monticello Field Office, Utah

The San Juan Resource Area RMP was issued in 1991 and replaced several MFPs addressing subunits of the planning area (BLM 1991a). The Monticello Field Office is in the process of developing a new Monticello RMP that will replace the San Juan Resource Area RMP. The BLM administers more than 1.7 million acres of surface estate and an additional 763,000 acres of split estate lands within the planning area encompassed by this RMP (Figure 3.1.1-4). Tar sands are located within the White Canyon STSA; no oil shale resources are located in the lands managed by this field office.

Currently, the White Canyon STSA is available for tar sands or oil and gas development only through CHLs, subject to appropriate stipulations. No CHLs have been issued within this STSA.

According to the Monticello Field Office Mineral Potential Report (BLM 2006c), the other energy and mineral resources with a history of interest and development include oil and gas, coal, potash and salt, uranium-vanadium, copper, placer gold, sand and gravel, clay, and stone. Most of these resources, however, are not located in proximity to the White Canyon STSA. Unless otherwise noted, the following information about energy and mineral resources is from BLM (2006c).

The BLM administers more than 576,000 acres of federal leases for oil and gas development, including leases within the Glen Canyon NRA, Manti-LaSal National Forest, Navajo Indian Reservation, Indian Trust Lands, and split estate lands (BLM 1991b). Approximately 508 oil or gas wells are currently in production within the Monticello Planning Area (Vanden Berg 2005). This oil and gas development is located in the eastern portion of the planning area.

Coal deposits exist in the eastern portion of the field office region and were mined for several decades for local consumption. However, at this time there are no active coal mines. This is attributed to the low quality, thinness, and low heat value of the deposits. While potash and salt deposits are extensive across the eastern portion of the planning area, the only Known Potash Leasing Areas are in the northeastern corner of the field office region. Regarding the locatable minerals, uranium-vanadium, copper, and gold deposits and related mining claims occur within

the Monticello Field Office, some in proximity to the White Canyon STSA. Salable Mineral Disposal Areas (for sand, gravel, clay, etc.) also have been established in the field office but not in proximity to the White Canvon STSA.

The Monticello Field Office administers grazing on allotments that cover a significant portion of the planning area. Recreational use is varied and dispersed throughout the planning area. None of the designated recreation sites or SRMAs are located in areas overlying the tar sands resources in the White Canyon STSA. ROW authorizations exist within the planning area and may be co-located with the White Canyon STSA.

Several WSAs are located in the general vicinity of the White Canyon STSA. The Mancos Mesa and Cheesebox Canyon WSAs are located within 8 to 10 mi of the STSA, and the Dark Canyon WSA lies adjacent to the STSA to the northeast (Figure 3.1.1-4). Available maps indicate that the Dark Canyon WSA may overlap with the STSA in a very small area. In addition, a number of areas that overlap White Canyon STSA, or are located within a 10-mi radius, have been recognized as having wilderness characteristics. These areas are shown in Figure 3.1.1-5; the areas that overlap with White Canyon STSA are described in Table 3.1.1-4.

The BLM also has designated a number of ACECs within the field office, most of which are located away from the White Canyon STSA. One exception is the Scenic Highway Corridor ACEC, which runs along Utah Highway 95 and bisects the STSA (Figure 3.1.44). This ACEC is open for mineral leasing subject to review and stipulations. In addition, the Dark Canyon ACEC is located adjacent to the White Canyon STSA and overlaps in a small area, according to available maps.

Other lands with special designations are located within the boundaries of the Monticello Field Office. NPS lands in the vicinity of the White Canyon STSA include Natural Bridges National Monument and portions of the Glen Canyon NRA and Canyonlands National Park. The Manti-La Sal National Forest and the Dark Canyon Wilderness Area are located about 8 mi to the east of the White Canyon STSA.

#### 3.1.1.6 Price Field Office, Utah

Resources present in the Price Field Office are managed in accordance with two plans: the Price River Resource Area MFP (BLM 1989) and the San Rafael Resource Area RMP (BLM 1991a). The BLM is currently preparing a single plan for the field office that will replace these two plans. A draft of the new Price Field Office RMP was released for public review and comment in 2004 (BLM 2004a). A supplement to the draft RMP was released in September 2007 specifically to address non-WSA lands with wilderness characteristics in the Price Field Office planning area (BLM 2007b). The BLM administers more than 2.5 million acres of surface estate and an additional 2.8 million acres of split estate lands within this planning area (Figure 3.1.1-6). The tar sands are located within the San Rafael and Sunnyside STSAs; only a small portion of the oil shale resources included in the study area falls within this field office. An oil shale withdrawal is currently in place under E.O. 5327 (U.S. President 1930), which would need to be modified or revoked before oil shale leasing could occur.

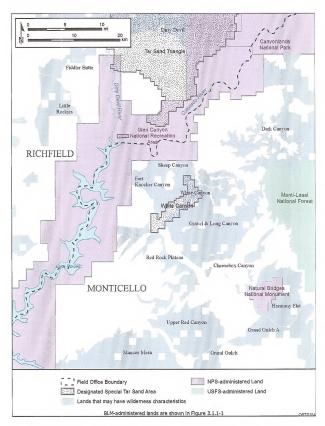



FIGURE 3.1.1-5 Areas with Wilderness Characteristics in the Monticello Field Office in the Vicinity of the White Canyon STSA

TABLE 3.1.1-4 Areas Recognized as Having Wilderness Characteristics in the Monticello Field Office That Overlap with the White Canyon STSAa,b

| Name of Area with<br>Wilderness Characteristics | Total Size of Area<br>(acres) | Amount of Overlag<br>(acres) |  |
|-------------------------------------------------|-------------------------------|------------------------------|--|
| Dark Canyon                                     | 66,374                        | 227                          |  |
| Fort Knocker Canyon                             | 12,418                        | 243                          |  |
| Gravel and Long Canyon                          | 36,910                        | 2,240                        |  |
| Red Rocks Plateau A                             | 17,023                        | 69                           |  |
| White Canyon                                    | 9,086                         | 2,750                        |  |

- <sup>a</sup> The key characteristics of wilderness that may be considered in land use planning include an area's appearance of naturalness and the existence of outstanding opportunities for solitude or primitive and unconfined types of recreation.
- b Acreage estimates were derived from GIS data.

Currently, the San Rafael and Sunnyside STSAs are available for tar sands or oil and gas development only through CHLs, subject to appropriate stipulations. No CHLs have been issued within these STSAs.

According to the Mineral Potential Report for Price Field Office, Carbon and Emery Counties, Utah (BLM 2002a), the other energy and mineral resources that have been developed within the field office's region include oil and gas, coal, uranium, gypsum, potash and salt, sand and gravel, clay, and stone. Some of these resources are located in close proximity to the STSAs.

Unless otherwise noted, the following information about energy and mineral resources is from BLM (2002a).

Approximately 489,125 acres of land are included in about 895 active (or recently active) oil and gas leases. There are no active leases in the vicinity of the San Rafael STSA and, while some portions of these lands are open to leasing under standard lease terms, other portions are closed to leasing for oil and gas development because they fall within WSA boundaries. The potential for future oil and gas development because they fall within WSA boundaries. The potential for future oil and gas development in the vicinity of the San Rafael STSA is considered to be low. A considerable number of active leases exist adjacent to the Sunnyside STSA, and this area is projected to have a high potential for development. Most of the lands around the Sunnyside STSA are leased, with seasonal or other minor constraints. Although currently there is no coalbed natural gas production in the vicinity of the Sunnyside STSA, the area is considered to have potential for future coalbed natural gas production within the Book Cliffs Coalbed Methane Play.

Currently, there are about 673,389 acres of land included in 106 coal leases on lands managed by the field office. None of these leases are located near the San Rafael STSA. Only a few areas are leased to the west of the Sunnyside STSA within the Book Cliffs coal field.

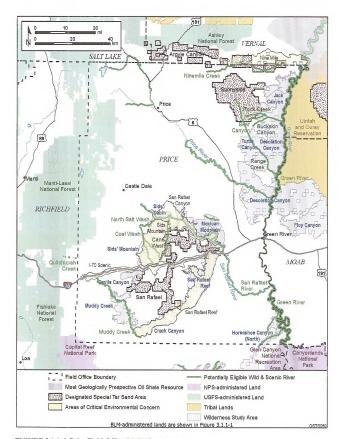



FIGURE 3.1.1-6 Price Field Office RMP Planning Area

Mining claims involve about 32,000 acres of land in the field office's region. Historic production of uranium has occurred in the vicinity of the San Rafael Swell in areas adjacent to the San Rafael STSA, although continued development of this resource is considered unlikely over the next 15 years. The prospects for other metal mining are relatively low throughout the field office area and in the vicinity of the STSAs. Production of gypsum, clay, sand and gravel, and stone has occurred in the vicinity of the San Rafael STSA or has the potential to occur in the future.

The Price Field Office administers grazing allotments on the basis of historical use and the availability of forage and water. These allotments cover the majority of the planning area and are categorized on the basis of their resource production potential and resource use conflicts. Most of the STSAs within the planning area coincide with grazing allotments. Several SRMAs have been established within the planning area, some of which are co-located with the STSAs, including the Desolation Canyon, San Rafael Swell, Nine Mile Canyon, and Range Creek SRMAs. The Muddy Creek, Sinbad, and Range Creek Wild Horse HMAs overlap with some of the tar sands resources, as does the Sinbad Wild Burro HMA (see Section 3.7.3.4 for more information on wild horses and burros). ROW authorizations exist within the planning area and may be co-located with the tar sands resources.

Several WSAs and ACECs have been designated in the Price Field Office. The WSAs and ACECs that overlap with an STSA and/or the most geologically prospective oil shale area are shown in Figure 3.1.1-6 and are listed in Table 3.1.1-5. In addition, portions of several rivers have been determined to be eligible for potential designation as a WSR (see Appendix 3 of BLM 2004a). Those portions that overlie oil shale and/or tar sands deposits are shown in Figure 3.1.1-7 and include portions of the Green River, San Rafael River, Cane Wash, Range Creek, Rock Creek, and Bear Canyon.

A number of areas that overlie both the San Rafael STSA and the Sunnyside STSA, and the most geologically prospective oil shale area have been recognized as having wilderness characteristics. These areas are shown in Figure 3.1.1-7; the areas that overlap with the STSAs are described in Table 3.1.1-6. These areas are discussed in greater detail in the supplement to the draft RMP (BLM 2007b).

As part of the ongoing effort to develop the new Price Field Office RMP, the BLM has conducted a review of a number of potential ACECs (BLM 2006d). Table 3.1.1-7 lists the potential ACECs that have been determined to meet relevance and importance (R&I) criteria; this list includes the existing ACECs, some of which have changed in size per submitted proposals. Figure 3.1.1-8 shows the locations of the potential ACECs.

### 3.1.1.7 Richfield Field Office, Utah

The Henry Mountain MFP covers public lands within the Richfield Field Office boundary that contain tar sands resources. This MFP was first issued in 1982 and has been amended multiple times. The Richfield Field Office is in the process of developing a new Richfield RMP that will replace the Henry Mountain MFP, along with several other land use

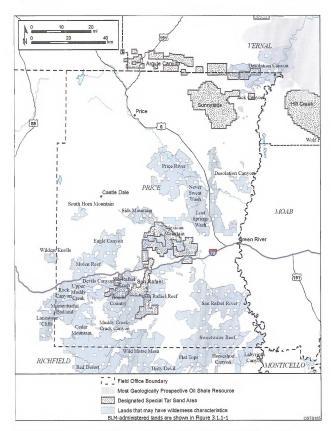



FIGURE 3.1.1-7 Areas with Wilderness Characteristics in the Price Field Office That Overlap with Oil Shale and/or Tar Sands Deposits

TABLE 3.1.1-5 Price Field Office WSAs and ACECs That Overlap with Tar Sands Resources

| Area                   | R&I Criteria                           | Acreage <sup>a</sup> |
|------------------------|----------------------------------------|----------------------|
| Desolation Canyon WSA  | NAb                                    | 229,860              |
| Jack Canyon WSA        | NAb                                    | 7,735                |
| Mexican Mountain WSA   | NAb                                    | 59,930               |
| San Rafael Reef WSA    | NAb                                    | 63,007               |
| Sid's Mountain WSA     | NAb                                    | 78,718               |
| Devil's Canyon WSA     | NAb                                    | 9,111                |
| Crack Canyon WSA       | NAb                                    | 26,640               |
| Link Flats ISA         | NAb                                    | 855                  |
| I-70 Scenic ACEC       | Scenic resources                       | 45,463               |
| San Rafael Canyon ACEC | Scenic resources                       | 54,102               |
| San Rafael Reef ACEC   | Scenic resources and relict vegetation | 84,018               |
| Sid's Mountain ACEC    | Scenic resources                       | 61,380               |
| Temple Mountain ACEC   | Historic resources                     | 2,444                |
| Copper Globe ACEC      | Historic resources                     | 128                  |

a Acreage estimates represent the entire unit (not just the portion overlying the tar sands resources) and were derived from GIS data.

plans that fall within the field office boundary. The field office region includes the Tar Sand Triangle STSA, portions of which extend into the Glen Canyon NRA and Canyonlands National Park (Figure 3.1.1-4). The eastern portion of the Circle Cliffs STSA also falls within the field office boundary, with the western portion extending into the GSENM (see Section 3.1.1.4).

Where the Circle Cliffs STSA is located within the Richfield Field Office boundary, it lies inside Capitol Reef National Park. No oil shale resources are located under lands managed by this field office.

Currently, the Tar Sand Triangle STSA is available for tar sands or oil and gas development only through CHLs, subject to appropriate stipulations. At this time, there are no CHLs in this STSA; there are, however, seven pending conversion leases, totaling 41,254.16 acres. Four of these pending conversion leases, totaling 20,442.20 acres, fall within the Glen Canyon NRA. The BLM is engaged in an adjudication process to determine the status of these pending conversion leases and whether or not to convert them to CHLs.

According to the *Mineral Potential Report* prepared for the Richfield Field Office (BLM 2005a), a wide variety of other energy and mineral resources are located on lands managed by the field office. However, the only other resources that are located in the immediate vicinity of the two STSAs with moderate or higher occurrence potential are oil and gas, coal, coalbed natural gas, gypsum and salt, uranium-vanadium, gold, other metals, clay, and stone.

b NA = not applicable.

TABLE 3.1.1-6 Areas Recognized as Having Wilderness Characteristics in the Price Field Office That Overlap with Oil Shale and Tar Sands Deposits<sup>a,b</sup>

| Name of Area with Wilderness<br>Characteristics | Total Size of Area with<br>Wilderness Characteristics<br>(acres) | Amount of Overlap<br>(acres) |
|-------------------------------------------------|------------------------------------------------------------------|------------------------------|
| Overlapping Most Geologically P.                | rospective Oil Shale Area                                        |                              |
| Desolation Canyon                               | 87,359                                                           | 85                           |
| Overlapping San Rafael STSA                     |                                                                  |                              |
| Devils Canyon                                   | 10,904                                                           | 989                          |
| Hondu Country                                   | 20,121                                                           | 4,209                        |
| Mexican Mountain                                | 40,968                                                           | 15,676                       |
| Muddy Creek - Crack Canyon                      | 176,567                                                          | 10,904                       |
| San Rafael Knob                                 | 17,449                                                           | 5,415                        |
| San Rafael Reef                                 | 45,953                                                           | 6,025                        |
| Sids Mountain                                   | 34,619                                                           | 6,170                        |
| Overlapping Sunnyside STSA                      |                                                                  |                              |
| Desolation Canyon                               | 87,359                                                           | 6,883                        |

a The key characteristics of wilderness that may be considered in land use planning include an area's appearance of naturalness and the existence of outstanding opportunities for solitude or primitive and unconfined types of recreation.

Numerous wells have been drilled within and in the vicinity of the Tar Sand Triangle STSA for oil and gas development. All but two of these wells, however, have been plugged and abandoned, and there is no active production near either the Tar Sand Triangle or Circle Cliffs STSA (BLM 2005a). These areas are located within geologic provinces that have active production in areas outside the Richfield Field Office region (BLM 2005b); thus production of oil or gas in the future is possible. Both the Tar Sand Triangle and Circle Cliffs STSA are located in portions of the planning area considered to have a high potential for the occurrence of oil in the tar sand deposits (BLM 2005a).

The Henry Mountains coal field is located to the east of the Circle Cliffs STSA. There are no coal resources in the vicinity of the Tar Sand Triangle STSA.

The Richfield Field Office administers grazing allotments that cover a significant portion of the planning area. Some of the grazing allotments in the vicinity of the Tar Sand Triangle STSA are not being grazed by livestock currently, and a portion of the STSA does not have grazing allotments associated with it. There are no specific recreation sites or SRMAs in the vicinity of the Tar Sand Triangle STSA. The Canyon Lands Wild Burro HMA overlaps with some of the tar sands resources (see Section 3.7.3.4 for more information on wild horses and burros). ROW authorizations exist within the planning area and may be co-located with the tar sands resources.

b Acreage estimates were derived from GIS data.

TABLE 3.1.1-7 Potential ACECs in the Price Field Office Area That Meet R&I Criteria and Overlap with Oil Shale and Tar Sands Deposits<sup>a</sup>

| Potential ACEC                    | R&I Criteria                                  | Total Size<br>of Area<br>(acres) | Amount of<br>Overlap<br>(acres) |
|-----------------------------------|-----------------------------------------------|----------------------------------|---------------------------------|
| Overlapping Most Geologically Pro | spective Oil Shale Area                       |                                  |                                 |
| Nine Mile Canyon ACEC             | Cultural resources                            | 125,798                          | 85                              |
| Overlapping San Rafael STSA       |                                               |                                  |                                 |
| I-70 Scenic ACEC                  | Scenic resources                              | 53,193                           | 4,296                           |
| San Rafael Canyon ACEC            | Scenic resources                              | 90,813                           | 22,228                          |
| San Rafael Reef ACEC              | Scenic resources and relict vegetation        | 81,352                           | 4,761                           |
| Sid's Mountain ACEC               | Scenic resources                              | 87,429                           | 215                             |
| Heritage Sites ACECb              | Historic resources                            | 2,568                            | 2,568                           |
| Uranium Mining District ACECc     | Historic resources                            | 893                              | 577                             |
| Wild Horse ACEC <sup>d</sup>      | Cultural resources                            | 3,006                            | 670                             |
| Overlapping Sunnyside STSA        |                                               |                                  |                                 |
| Nine Mile Canyon ACEC             | Cultural resources                            | 125,798                          | 28,130                          |
| Desolation Canyon ACEC            | Scenic, cultural, and ecological resources    | 152,089                          | 8,033                           |
| Range Creek ACEC                  | Cultural resources and natural process values | 74,054                           | 1,320                           |

- a Acreage estimates were derived from GIS data.
- b Heritage Sites ACEG includes a number of small areas: of these, Copper Globe, Sheperds End, and Temple Mountain overlie the oil shale resources being evaluated in this PEIS. The acreage estimate includes only the Copper Globe, Sheperds End, and Temple Mountain areas.
- c The Uranium Mining District ACEC includes a number of small areas; of these the Lucky Strike area overfies the oil shale resources being evaluated in this PEIS. The acreage estimate includes only the Lucky Strike area
- d The Wild Horse ACEC is part of the Rock Art Potential ACEC, which includes 13 total sites.

Several WSAs are located in the general vicinity of the Tar Sand Triangle STSA (Figure 3.1.1-9). The Fiddler Butte and French Spring–Happy Canyon WSAs overlap with portions of the Tar Sand Triangle STSA. According to available maps, a very small portion of the Horseshoe Canyon and Dirty Devil WSAs also may overlap with this STSA. The Mount Pennel WSA is situated immediately to the east of the Circle Cliffs STSA, abutting in some places with Capitol Reef National Park. In addition, portions of several rivers have been determined to be eligible for potential designation as a WSR (BLM 2005c). Of these river segments (Figure 3.1.1-9), only a portion of one, the Dirty Devil River, coincides with the Tar Sand Triangle STSA.

None of the existing ACECs that have been designated within the Henry Mountain MFP planning area overlap with the designated STSAs. However, as part of the ongoing effort to develop the new Richfield RMP, the BLM has conducted a review of a number of potential ACECs (BLM 2005d). Two of the potential ACECs that have been determined to meet R&I

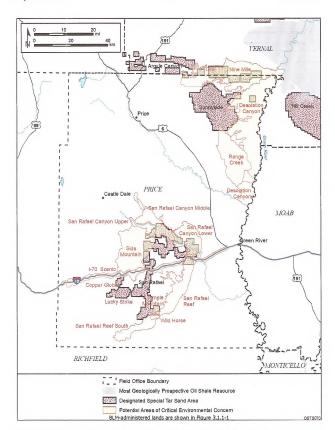



FIGURE 3.1.1-8 Potential ACECs in the Price Field Office That Overlie Oil Shale and Tar Sands Deposits

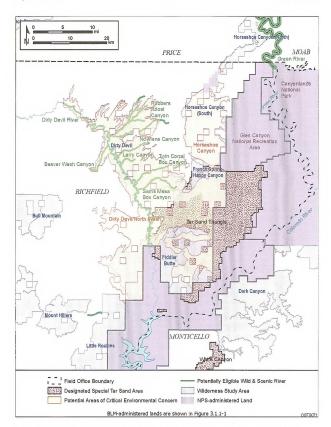



FIGURE 3.1.1-9 WSAs and Potential ACECs in the Richfield Field Office That Overlie the Tar Sand Triangle STSA

criteria overlap with the Tar Sand Triangle STSA: the Horseshoe Canyon Potential ACEC (with scenic and cultural values) and the Dirty Devil–North Wash Potential ACEC (with scenic, cultural, and wildlife values) (Figure 3.1.1-9). The Horseshoe Canyon Potential ACEC is 40,935 acres in size and overlaps with the STSA by 248 acres; the Dirty Devil–North Wash Potential ACEC is 205,500 acres in size and overlaps the STSA by 57,944 acres.

A tract of land overlying the Tar Sand Triangle STSA has been recognized as having wilderness characteristics. This area, named the Dirty Devil–French South area, is shown on Figure 3.1.1-10. On the basis of available GIS data, this area has a total size of 133,202 acres; about 24,255 acres of this area overlap with the STSA.

#### 3.1.1.8 Vernal Field Office, Utah

Resources present in the Vernal Field Office are managed in accordance with two plans: the Diamond Mountain RMP (BLM 1994a) and the Book Cliffs RMP (BLM 1985a). The BLM is currently preparing a single plan for the field office that will replace these two plans. A draft of the new Vernal Field Office RMP was released for public review and comment in 2005 (BLM 2005e). A supplement to the draft RMP was released in October 2007. The supplement identifies non-WSA lands the BLM has found to possess wilderness characteristics. A new alternative included in the supplement emphasized managing those lands to protect and preserve their wilderness characteristics. The BLM administers almost 1.7 million acres of land within this planning area (Figure 3.1.1-11). Tar sands resources are located within the Hill Creek, P.R. Spring, Raven Ridge, Asphalt Ridge, Pariette, Sunnyside, and Argyle Canyon STSAs within the field office boundary.<sup>3</sup> The field office is located within the Uinta Basin and also contains oil shale resources. Currently, an oil shale vithdrawal is in place under E.O. 5327, which would need to be modified or revoked before oil shale leasing could occur.

Most of the Uintah and Ouray Indian Reservation falls within the area managed by the Vernal Field Office. Lands within the reservation on which the subsurface mineral estate is owned by the Northern Ute Tribe will not be opened for leasing under this PEIS and are not included in the scope of analysis. The subsurface mineral estate underlying about 188,500 acres within the Hill Creek Extension of the Uintah and Ouray Reservation is owned by the federal government, and leasing of these lands for oil shale and/or tar sands development is evaluated in this PEIS (Figure 3.1.1-12). Of these split estate lands, approximately 57,705 acres overlie the oil shale resources within the Uinta Basin, and approximately 35,472 acres overlie the Hill Creek STSA.

Currently, the tar sands resources within the STSAs are available for tar sands or oil and gas development only through CHLs, subject to appropriate stipulations. Six existing CHLs are located within the Vernal Field Office region; 1,066.41 acres are held under four leases in the

<sup>3</sup> A portion of the P.R. Spring STSA extends south from the Vernal Field Office boundary into the Moab Field Office boundary; however, this area is administered by the Vernal Field Office under a MOU with the Moab Field Office. Under this agreement, the Vernal Field Office administers all resources and programs, including land use planning, for the entire P.R. Spring STSA.

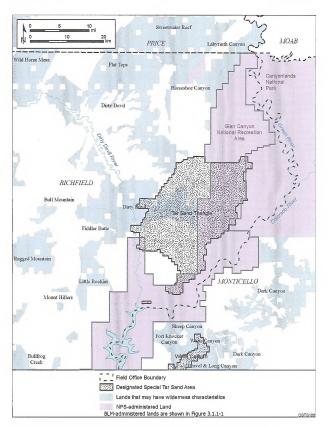



FIGURE 3.1.1-10 Areas with Wilderness Characteristics in the Richfield Field Office That Overlap with Tar Sand Triangle STSA

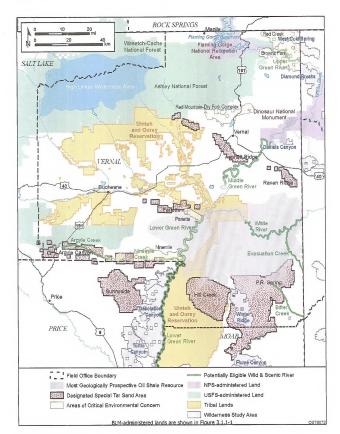



FIGURE 3.1.1-11 Vernal Field Office RMP Planning Area

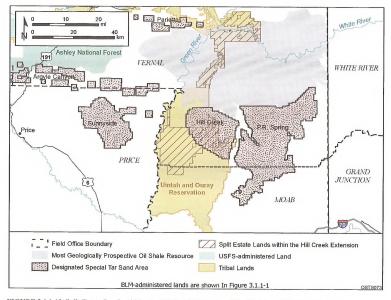



FIGURE 3.1.1-12 Split Estate Lands within the Hill Creek Extension of the Uintah and Ouray Reservation

Pariette STSA, and 6,080.30 acres are held under two leases in the P.R. Spring STSA. In addition, there are eight pending conversion leases in the P.R. Spring STSA, totaling 27,668.04 acres. The BLM is engaged in an adjudication process to determine the status of these pending conversion leases and whether or not to convert them to CHLs. Although there currently is no tar sands development underway on BLM-administered lands, there are four permitted tar sands surface mining operations in the Vernal Field Office planning area, all in Uintah County (BLM 2006c).

According to the Mineral Potential Report for the Vernal Planning Area (BLM 2002b), the other energy and mineral resources located within the field office region include oil and gas, coalbed natural gas, coal, gilsonite, 4 phosphate, uranium, gold, gypsum, sand and gravel, clay, and stone. Some of these resources are located in close proximity to the STSAs and oil shale resources. Unless otherwise noted, the following information about energy and mineral resources is from BLM (2002b).

About 2,800 active oil and gas wells are located within the Vernal Field Office planning area, and more than 1.8 million acres of land are available for leasing (for both conventional oil and gas and coalbed natural gas development), including about 188,500 acres of split estate lands within the Hill Creek Extension of the Uintah and Ouray Indian Reservation (BLM 2005e). Conventional oil and gas production occurs and is projected to continue in the future within six development areas, four of which include either tar sands or oil shale resources or both. Specifically, the Tabiona-Ashley Valley development area overlaps with the Asphalt Ridge and Rayen Ridge STSAs. The Monument Butte-Redwash development area overlaps with the Rayen Ridge and Pariette STSAs, as well as the oil shale resources within the Uinta Basin. The West Tavaputs Plateau development area overlaps with the Sunnyside and Argyle Canyon STSAs and some of the oil shale resources. And, the East Tayaputs Plateau development area overlaps with the Hill Creek and P.R. Spring STSAs as well as some of the oil shale resources. Existing oil and gas development is relatively limited in the Tabiona-Ashley Valley development area and is expected to remain low over the next 15 years. Conversely, development is extensive in the remaining three development areas and is expected to be relatively high in the next 15 years, especially in the Monument Butte-Redwash area where 1,700 oil wells and 3,100 gas wells are projected. Although currently there is no coalbed natural gas production in the field office region, the potential exists within a small portion of the West Tavaputs Plateau area within the Uinta Basin-Book Cliffs Play near the Argyle Canyon STSA. Coalbed natural gas potential also exists within the East Tavaputs Plateau development area within the Uinta Basin Sego Play where the P.R. Spring STSA is located.

Coal mining has not occurred on public lands within the Vernal Field Office boundary because of lack of demand and poor quality of the deposits. Deposits in the Vernal coal field are co-located with the Asphalt Ridge and Raven Ridge STSAs, but development is considered unlikely in the next 15 years.

<sup>4</sup> Gilsonite is a black, homogeneous, solid hydrocarbon that is mined and used in the production of varnishes, lacquers, paints, some plastics, ink, and drilling muds.

Gilsonite occurs in the Vernal Field Office planning area as vein-type deposits throughout much of the oil shale area being evaluated in the PEIS as well as the Pariette and P.R. Spring STSAs. Authorized leases and pending permit applications exist within the oil shale boundary, Gilsonite production is expected to continue over the next 15 years as demand from the oil and gas industry for this drilling mud additive is expected to continue. Limited phosphate deposits are located within the Vernal Field Office boundary; they then overlap with the western portion of the Asphalt Ridge STSA. Currently, there is no phosphate production on federal lease areas although the potential exists. Sand and gravel and stone mining occur throughout the Vernal Field Office planning area and are expected to continue. Mining claims for locatable minerals, including gold, uranium, and gypsum, are limited because of the low quality and quantity of these deposits.

Within the Vernal Field Office, designated livestock grazing allotments encompass more than 1.69 million acres of BLM-administered land. Approximately, an additional 545,000 acres of other lands (e.g., private, state, tribal) are included within these allotments. These allotments cover the majority of the planning area and are categorized on the basis of their resource production potential and resource use conflicts. Several SRMAs have been established within the planning area, some of which are co-located with the tar sands and oil shale resources, including the White River, Book Cliffs, and Nine Mile Canyon SRMAs. The Hill Creek Wild Horse HMA overlaps with some of the oil shale and tar sands resources (see Section 3.7.3.4 for more information on wild horses and burros). ROW authorizations exist within the planning area and may be co-located with the tar sands or oil shale resources.

Several WSAs and ACECs have been designated in the Diamond Mountain and Book Cliffs RMPs in the vicinity of the STSAs. The WSAs and ACECs that overlap with tar sands and/or oil shale resources are shown in Figure 3.1.1-11 and are listed in Table 3.1.1-8. In addition, portions of several rivers have been determined to be eligible for potential designation as a WSR (see Appendix C of BLM 2005e). Those portions that overlie oil shale and/or tar sands

TABLE 3.1.1-8 Vernal Field Office WSAs and ACECs That Overlap with Oil Shale and Tar Sands Resources

| Area                   | R&I Criteria                                                                | Acreage <sup>a</sup> |
|------------------------|-----------------------------------------------------------------------------|----------------------|
| Winter Ridge WSA       | NAb                                                                         | 43,339               |
| Pariette Wetlands ACEC | Wetlands resources and special status bird<br>habitat and plant communities | 10,635               |
| Lears Canyon ACEC      | Relict plant communities                                                    | 1,378                |
| Lower Green River ACEC | Riparian habitat and scenic values                                          | 9,430                |
| Nine Mile Canyon ACEC  | Cultural and scenic resources and special status<br>plant communities       | 48,151               |

a Acreage estimates represent the entire unit (not just the portion overlying the oil shale and/or tar sands resources) and were derived from GIS data.

b NA = not applicable.

deposits are shown in Figure 3.1.1-11 and include portions of the Green River, Argyle Creek, Nine Mile Creek, White River, Evacuation Creek, and Bitter Creek.

A number of areas that overlie the most geologically prospective oil shale area, as well as several STSAs, have been recognized as having wilderness characteristics. These areas are shown in Figure 3.1.1-13; the areas that overlap with the oil shale area and the STSAs are described in Table 3.1.1-9.

As part of the ongoing effort to develop the new Vernal Field Office RMP, the BLM has conducted a review of a number of potential ACECs (see Appendix G of BLM 2005e). Table 3.1.1-10 lists the potential ACECs that have been determined to meet R&I criteria; this list includes the existing ACECs, some of which have changed in size per submitted proposals. Figure 3.1.1-14 shows the locations of the potential ACECs.

Other lands with special designations are located within the boundaries of the Vernal Field Office (Figure 3.1.1-11). A portion of Dinosaur National Monument, which is managed by the NPS, falls within the Vernal Field Office boundary; however, it does not overlie any of the oil shale or tar sands resources being evaluated in this PEIS. At its closest point, the Monument is just under 7 mi from the Rayen Ridge STSA, 8.5 mi from the Asphalt Ridge STSA, and 17 mi from the oil shale resources being evaluated within the Uinta Basin. The Ashley National Forest and Wasatch-Cache National Forest both fall within the Vernal Field Office boundary. Lands within the Ashley National Forest overlie the Asphalt Ridge, Argyle Canyon, and Sunnyside STSAs. In addition, lands within the Flaming Gorge NRA, which is administered by the Ashley National Forest, overlie oil shale resources identified in the Green River Basin in Wyoming. The BLM is not considering making allocation decisions for areas within the Ashley National Forest. The High Uintas Wilderness Area, which is located within both the Ashley and Wasatch-Cache National Forests, does not overlie the oil shale or tar sands resources being evaluated in this PEIS. This Wilderness Area is more than 13 mi from the Asphalt Ridge STSA, the closest STSA, and more than 13.5 mi from the nearest oil shale resources being evaluated within the Green River Basin in Wyoming.

# 3.1.1.9 Kemmerer Field Office, Wyoming

The Kemmerer Field Office is in the process of revising the Kemmerer RMP, which was completed in 1986 (BLM 1986c). The BLM administers 1.4 million acres of surface lands and 1.6 million acres of federal mineral estate within the planning area encompassed by this RMP (Figure 3.1.1-15). The oil shale resources are located within the Green River Basin; no tar sands resources are located within the boundaries of this field office. Currently, an oil shale withdrawal is in place under E.O. 5327, which would need to be modified or revoked before oil shale leasing could occur.

According to the Kemmerer Field Office Planning Area Mineral Assessment Report (BLM 2004b), the other energy and mineral resources of note located within the field office

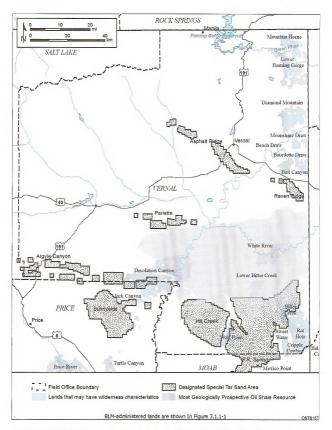



FIGURE 3.1.1-13 Wilderness Characteristics in the Vernal Field Office That Overlap with the Most Geologically Prospective Oil Shale Area and STSAs

TABLE 3.1.1-9 Areas Recognized as Having Wilderness Characteristics in the Vernal Field Office That Overlap with the Most Geologically Prospective Oil Shale Area and STSAs<sup>a,b</sup>

| Name of Area with<br>Wilderness Characteristics | Total Size of Area<br>(acres) | Amount of Overlag<br>(acres) |
|-------------------------------------------------|-------------------------------|------------------------------|
| Tradition Characteristics                       | (ucres)                       | (ucres)                      |
| Overlapping Most Geologic                       | ally Prospective Oil S        | hale Area                    |
| Bitter Creek                                    | 33,375                        | 1,218                        |
| Desolation Canyon                               | 87,359                        | 31,083                       |
| Lower Bitter Creek                              | 11,417                        | 11,417                       |
| White River                                     | 21,314                        |                              |
|                                                 |                               | 21,314                       |
| Overlapping Hill Creek STS                      | SA.                           |                              |
| Wolf Point                                      | 11,807                        |                              |
|                                                 |                               | 937                          |
| Overlapping P.R. Spring ST                      | SAC                           |                              |
| Bitter Creek                                    | 33,375                        | 12,936                       |
| Hideout Canyon                                  | 1,113                         | 993                          |
| Lower Bitter Creek                              | 11,421                        | 514                          |
| Mexico Point                                    | 1,277                         | 739                          |
| Wolf Point                                      | 11,807                        |                              |
|                                                 |                               | 5,147                        |
| Overlapping Sunnyside STS                       | A                             |                              |
| Desolation Canyon                               | 87,359                        | 2,819                        |

- a The key characteristics of wilderness that may be considered in land use planning include an area's appearance of naturalness and the existence of outstanding opportunities for solitude or primitive and unconfined types of recreation.
- b Acreage estimates were derived from GIS data.
- c Lands in the Hideout Canyon and Mexico Point areas fall within the Moab Field Office.

include oil and gas, coalbed natural gas, coal, trona, <sup>5</sup> uranium, bentonite, sand, gravel, and decorative stone. Some of these resources are located in close proximity to the oil shale resources. Unless otherwise noted, the following information about energy and mineral resources is from BLM (2004b).

More than 1 million acres of land are currently leased for oil and gas development in the jurisdiction of this field office, including most of the federal subsurface mineral estate that coincides with the oil shale resources. Production in the Green River Basin is associated with gas fields located in and adjacent to the La Barge Platform-Moxa Arch trend. Coalbed natural gas

<sup>5</sup> Trona is a hydrous sodium carbonate mineral that is refined into soda ash, sodium bicarbonate, sodium sulfite, sodium tripolyphosphate, and chemical caustic soda.

TABLE 3.1.1-10 Potential ACECs in the Vernal Field Office Area That Meet R&I Criteria and Overlap with Oil Shale and/or Tar Sands Resources  $^{\rm a}$ 

| Potential ACEC                        | R&I Criteria                                                                                                                | Total Size of<br>Area (acres) | Amount of<br>Overlap<br>(acres) |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|
|                                       |                                                                                                                             |                               |                                 |
| Overlapping Most Geologically Prospec |                                                                                                                             | 70.167                        | 5.015                           |
| Bitter Creek ACEC                     | Significant old growth forest, cultural<br>and historic resources, watershed, and<br>critical ecosystem for migratory birds | 72,167                        | 7,917                           |
| Bitter Creek/P.R. Spring ACEC         | Significant old growth forest, cultural<br>and historic resources, watershed, and<br>critical ecosystem for migratory birds | 81,371                        | 2,856                           |
| Coyote Basin-Coyote Basin ACEC        | Critical ecosystem for white-tailed<br>prairie dog                                                                          | 26,656                        | 19,270                          |
| Coyote Basin-Kennedy Wash ACEC        | Critical ecosystem for white-tailed<br>prairie dog                                                                          | 10,148                        | 8,692                           |
| Coyote Basin-Myton Bench ACEC         | Critical ecosystem for white-tailed<br>prairie dog                                                                          | 38,112                        | 25,403                          |
| Four Mile Wash ACEC                   | High-value scenery, riparian system, and<br>special status fish                                                             | 50,325                        | 32,569                          |
| Lower Green River ACEC                | Riparian habitat and scenic values                                                                                          | 11,075                        | 9,588                           |
| Main Canyon ACEC                      | Cultural and historic resources and<br>natural systems                                                                      | 107,612                       | 17,134                          |
| Pariette Wetlands ACEC                | Wetlands resources and special status<br>bird habitat and plant communities                                                 | 10,635                        | 6,523                           |
| White River ACEC                      | Unique geologic formations, high-value<br>scenic vistas, and riparian ecosystem                                             | 56,358                        | 55,423                          |
| Overlapping Argyle Canyon STSA        |                                                                                                                             |                               |                                 |
| Nine Mile Canyon ACEC                 | Cultural resources                                                                                                          | 93,344                        | 873                             |
| Overlapping Hill Creek STSA           |                                                                                                                             |                               |                                 |
| Main Canyon ACEC                      | Cultural and historic resources and<br>natural systems                                                                      | 107,612                       | 5,648                           |
| Overlapping Pariette STSA             |                                                                                                                             |                               |                                 |
| Coyote Basin-Myton Bench ACEC         | Critical ecosystem for white-tailed<br>prairie dog                                                                          | 38,112                        | 3,612                           |
| Pariette Wetlands ACEC                | Wetlands resources and special status<br>bird habitat and plant communities                                                 | 10,635                        | 2,255                           |
| Overlapping P.R. Spring STSA          |                                                                                                                             |                               |                                 |
| Bitter Creek ACEC                     | Significant old growth forest, cultural<br>and historic resources, watershed, and<br>critical ecosystem for migratory birds | 72,167                        | 24,408                          |
| Bitter Creek/P.R. Spring ACEC         | Significant old growth forest, cultural<br>and historic resources, watershed, and                                           | 81,371                        | 48,361                          |
| Main Canyon ACEC                      | critical ecosystem for migratory birds<br>Cultural and historic resources and<br>natural systems                            | 107,612                       | 77,669                          |

#### TABLE 3.1.1-10 (Cont.)

| Potential ACEC               | R&I Criteria                                       | Total Size of<br>Area (acres) | Amount of<br>Overlap<br>(acres) |
|------------------------------|----------------------------------------------------|-------------------------------|---------------------------------|
| Overlapping Raven Ridge STSA |                                                    |                               |                                 |
| Coyote Basin-Snake John ACEC | Critical ecosystem for white-tailed<br>prairie dog | 30,648                        | 6,780                           |
| Overlapping Sunnyside STSA   | -                                                  |                               |                                 |
| Nine Mile Canyon ACEC        | Cultural resources                                 | 93,344                        | 22,508                          |

a Acreage estimates were derived from GIS data.

wells have been drilled in the Kemmerer Field Office and, while production is currently low, more development is expected in the future.

Coal reserves in the Kemmerer Field Office area occur in two major regional coal fields: the Hams Fork Coal Field and the western portion of the Green River Coal Field. Coal production is currently occurring only in the Hams Fork Coal Field, which does not coincide with the oil shale resources located in the Green River Basin. There are no existing coal leases in the Green River Coal Field, which overlaps with the oil shale resources.

The world's largest known trona deposits exist within an area defined as the KSLA, which extends into the eastern portion of the Kemmerer Field Office region. Trona leases have been issued within this area, and production occurs from a number of underground mines. The BLM has designated a portion of the KSLA as the MMTA (Figure 3.1.1-15) and determined that this area will be excluded from oil shale leasing until technology or other factors exist to allow development of the oil shale resource without jeopardizing the safe operation of underground trona mines.

The Kemmerer Field Office administers grazing on allotments that cover a significant portion of the southern half of the planning area, including most of the area where oil shale resources are located. Recreational use of BLM-administered lands is dispersed throughout the planning area. The BLM has designated some areas to be managed specifically to protect their recreation potential; except for the areas adjacent to historic trails, most of these areas do not coincide with the oil shale resources. ROW authorizations exist within the planning area and may be co-located with the oil shale resources.

One WSA and one ACEC have been designated within the planning area; neither of these units overlap with the oil shale resources (Figure 3.1.1-15). Several historic trails cross the area where oil shale resources are located (see Section 3.9.3). Lands within the Wasatch-Cache National Forest at the southern edge of the planning area are adjacent to but do not overlap with the oil shale resources.

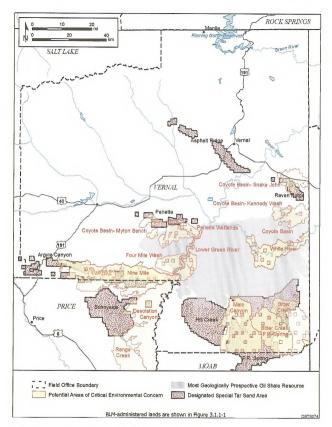



FIGURE 3.1.1-14 Potential ACECs in the Vernal Field Office

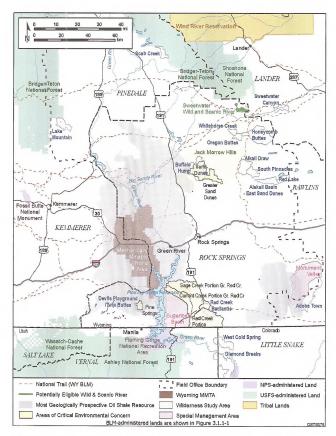



FIGURE 3.1.1-15 BLM Planning Areas in Wyoming Where Oil Shale Resources Are Located

### 3.1.1.10 Rawlins Field Office, Wyoming

The Rawlins Field Office is in the process of revising the Great Divide RMP, which was issued in 1990 (BLM 1990). A draft Rawlins RMP EIS was released for public review and comment in 2004 (BLM 2004e). The BLM administers 3.5 million acres of surface lands and 4.5 million acres of federal mineral estate within the planning area encompassed by this RMP (Figure 3.1.1-15). The oil shale resources are located within the Washakie Basin; no tar sands resources are located within the boundaries of this field office. Currently, an oil shale withdrawal is in place under E.O. 5327, which would need to be modified or revoked before oil shale leasing could occur.

Other energy and mineral resources of note located within the field office include oil and gas, coalbed natural gas, coal, and uranium. Most of these resources are not located in close proximity to the oil shale resources. Unless otherwise noted, the following information about energy and mineral resources is from the Draft Rawlins RMP EIS (BLM 2004e). The majority of the oil and gas fields are located in the western portion of the planning area but to the east or north of the oil shale resources. Oil and gas development is increasing significantly in the region; the greatest level of development in the Rawlins Field Office is concentrated in the Great Divide Basin, which is largely to the north of the oil shale resources. While there has been little coalbed natural gas production in this area, interest is increasing. There are six coal fields in the Rawlins Field Office, but all are located to the east of the oil shale resources.

The Rawlins Field Office administers grazing on allotments that cover a significant portion of the western half of the planning area, including most of the area where oil shale resources are located. Recreation is one of the major uses of BLM-administered lands within this planning area. Recreation sites have been established in areas of heavy recreational use; larger areas of dispersed but heavy recreational use also have been identified and designated as SRMAs. None of the designated recreation sites or SRMAs are located in areas overlying the oil shale resources. The Adobe Town Wild Horse HMA overlaps with some of the oil shale resources (see Section 3.7.3.4 for more information on wild horses and burros). ROW authorizations exist within the planning area and may be co-located with the oil shale resources.

Only one WSA, the Adobe Town WSA, overlaps with the oil shale resources in the Rawlins Field Office region (Figure 3.1.1-15). None of the ACECs designated in the planning area overlap with the oil shale. One historic trail, the southern route of Cherokee Trail, crosses the area where oil shale resources are located (see Section 3.9.3). One river unit, the Skull Creek Waterway Unit, has been designated as potentially eligible for WSR designation in the Draft RMP.EIS (BLM 2004e); this unit overlies the oil shale resources being evaluated in this PEIS and is located entirely within the Adobe Town WSA.

One area recognized by the BLM as having wilderness characteristics overlaps with the most geologically prospective oil shale resources in the Washakie Basin. This area is called the Adobe Town fringe. It is about 31,510 acres in size and is located adjacent to the Adobe Town WSA. Only a portion of the western end of the Adobe Town fringe area overlaps with the oil shale resources.

### 3.1.1.11 Rock Springs Field Office, Wyoming

The Green River RMP was issued in 1997 (BLM 1997c), and several maintenance changes have been implemented over time. The BLM administers about 3.6 million acres of public land surface and 3.5 million acres of federal mineral estate (Figure 3.1.1-15). Oil shale resources are located within both the Green River and Washakie Basins; no tar sands resources are located within the boundaries of this field office. Currently, an oil shale withdrawal is in place under E.O. 5327, which would need to be modified or revoked before oil shale leasing could occur.

Other energy and mineral resources of note located within the field office include oil and gas, coalbed natural gas, coal, geothermal resources, and trona. In 2006, the Green River RMP was amended by the Jack Morrow Hills Coordinated Activity Plan (JMH CAP) (BLM 2006b). The JMH CAP projects that 205 oil and gas exploration and production wells and 50 coalbed natural gas wells will be drilled in this area, for a total reasonably foresceable development of 255 wells. The JMH CAP addresses issues associated with increased levels of oil and gas and coalbed development in the Jack Morrow Hills area, and it amended the Green River RMP by establishing two new Special Management Areas (SMAs); expanding an existing ACEC; establishing visual resource management classes; defining allowable uses and restrictions; designating OHV areas; establishing surface use restrictions and designating availability of lands for oil and gas leasing, locatable minerals, and salable mineral disposal; and designating ROW exclusion and avoidance areas. A small portion of the Jack Morrow Hills area overlaps with oil shale resources in the Green River Basin being evaluated in this PEIS, including some areas that are now under NSO and CSU stipulations.

About 422,000 acres of lands within the Coal Occurrence and Development Potential Area are open to further consideration for coal leasing and development. This area is located to the east of the oil shale resources being evaluated in this PEIS.

As discussed in Section 3.1.1.9, the world's largest known trona deposits exist within the KSLA, which extends into the western portion of the Rock Springs Field Office region. Trona leases have been issued within this area, and production occurs from a number of underground mines. The BLM has designated a portion of the KSLA as the MMTA (Figure 3.1.1-15) and determined that this area will be excluded from oil shale leasing until technology or other factors exist to allow development of the oil shale resource without jeopardizing the safe operation of underground trona mines.

The Rock Springs Field Office administers grazing on allotments that cover almost the entire planning area, including most of the areas where oil shale resources are located. Recreation sites have been established in areas that coincide with the oil shale resources in the Green River Basin, and several SRMAs and SMAs have been designated. The SMAs that overlap with the oil shale resources include the Monument Valley and Sugarloaf Basin SMAs. The Adobe Town, Little Colorado, Salt Wells Creek, and White Mountain Wild Horse HMAs overlap with some of the oil shale resources (see Section 3.7.3.4 for more information on wild horses and burros). ROW authorizations exist within the planning area and may be co-located with the oil shale resources.

Several WSAs and ACECs have been designated within the planning area. A number of them overlap with the oil shale resources being evaluated in this PEIS, as shown in Figure 3.1.1-15 and listed in Table 3.1.1-11 In addition, several historic trails cross the area where oil shale resources are located (see Section 3.9.3). The BLM also has established stipulations restricting surface-disturbance activities within the two SMAs that overlap the oil shale resources being evaluated in this PEIS and in Area 3 of the Jack Morrow Hills area (BLM 2006b). These areas also are shown in Figure 3.1.1-15 and listed in Table 3.1.1-11.

Several areas recognized by the BLM as having wilderness characteristics overlap with the most geologically prospective oil shale resources. These wilderness characteristic areas (WCAs) are listed in Table 3.1.1-11.

The Flaming Gorge NRA, a unit within the Ashley National Forest, falls within the Rock Springs Field Office boundary and overlaps in part with the oil shale resources in the Green River Basin being evaluated in this PEIS. The BLM is not considering making allocation decisions for this area. The High Uintas Wilderness Area, which is located within both the

TABLE 3.1.1-11 Rock Springs Field Office, WCAs, WSAs, and ACECs That Overlap with Oil Shale Resources

| Area                              | R&I Criteria                                                                                                                                              | Acreage <sup>6</sup> |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Devils Playground/Twin Buttes WSA | $NA^b$                                                                                                                                                    | 23,070               |
| Buffalo Hump WSA                  | NA                                                                                                                                                        | 9,480                |
| Adobe Town WSA                    | NA                                                                                                                                                        | 54,330               |
| White Mountain Petroglyphs ACEC   | Cultural values of national significance                                                                                                                  | 209                  |
| Greater Red Creek ACEC            | Fragile soils; unique ecological features; watershed<br>and cultural values; and sensitive species of<br>regional, national, and international importance | 131,890              |
| Pine Springs ACEC                 | Cultural values of national significance                                                                                                                  | 6,0309               |
| Greater Sand Dunes ACEC           | Outstanding geologic features; prehistoric and<br>historic values of national significance; and<br>recreation values of regional/national importance      | 38,650               |
| Special Status Plant Species ACEC | Natural processes, fragile plant species                                                                                                                  | 9009                 |
| Monument Valley Management Area   | NA                                                                                                                                                        | 98,308               |
| Sugarloaf Basin Management Area   | NA                                                                                                                                                        | 92,962               |
| Jack Morrow Hills Area 3          | NA                                                                                                                                                        | 233,350              |
| Buffalo Hemp WCA                  | NA                                                                                                                                                        | 11,151               |
| Kinney Rim North WCA              | NA                                                                                                                                                        | 57,063               |
| Kinney Rim South WCA              | NA                                                                                                                                                        | 77,392               |
| Sand Dunes WCA                    | NA                                                                                                                                                        | 2,535                |

a Acreage estimates represent the entire unit (not just the portion overlying the oil shale resources) and were derived from GIS data, unless otherwise noted.

b NA = not applicable.

c Acreage estimate was derived from the Green River RMP (BLM 1997c).

Ashley and Wasatch-Cache National Forests in northern Utah, is more than 13.5 mi at its closest point from the oil shale resources being evaluated within the Green River Basin in Wyoming.

### 3.1.2 Recreational Land Use in the Three-State Study Area

Recreational use of BLM-administered lands within the three-state study area is varied and dispersed. Specific recreational sites and use areas have been designated by the BLM throughout the region. To facilitate and manage OHV use, existing land use plans within the study area identify areas that are designated as either closed, open, or limited to OHV use.

Generally, the BLM provides recreational opportunities where they are compatible with other authorized land uses, while minimizing risks to public health and safety and maintaining the health and diversity of the land. The Recreation Opportunity Spectrum (ROS) is one of the means that the BLM uses to inventory, plan, and manage recreational use. Seven elements provide the basis for inventorying and delineating recreational settings: access, remoteness, naturalness, facility and site management, visitor management, social encounters, and visitor impacts. Based on these elements, the BLM (1981) utilizes six ROS classes to describe management goals:

- 1. Primitive. Large areas of about 5,000 acres (2,023 ha) or more located at least 3 mi (5 km) from the nearest point of motor vehicle access;
- Semiprimitive nonmotorized. Areas of about 2,500 acres (1,012 ha) located at least 0.5 mi (0.8 km) from the nearest point of motor vehicle access;
- Semiprimitive motorized. Areas of about 2,500 acres (1,012 ha) located within 0.5 mi (0.8 km) of primitive roads and two-track vehicle trails;
- 4. Roaded natural. Areas near improved and maintained roads;
- Rural. Areas characterized by a substantially modified natural environment; and
- Urban. Areas located near paved highways where the landscape is dominated by human modification.

The BLM also distinguishes recreational use on the basis of the level of use and management requirements. Areas designated as SRMAs require recreation activity plans and a major investment in facilities or supervision of more intensive activities. Areas designated as extensive SRMAs, however, offer mostly unstructured, dispersed, and low-intensity recreational opportunities that require a minimum amount of facilities and management. These designations are made through the land use planning process. Both SRMAs and extensive SRMAs are found within the study area.

Other federal and state agencies also manage a wide variety of recreational areas in the region, and recreational use is a significant part of the regional economy. Table 3.1.2-1 provides at least a partial listing of the many recreational areas and other areas that may provide recreation opportunities located within about a 50-mi radius of the oil shale and tar sands resources evaluated in this PEIS. This information was derived from various Internet sites and may not be all-inclusive; it does not include recreation sites and areas, WSAs, or ACEC that are managed by the BLM and also occur in the area (many of these are discussed in Section 3.1.1). The intent of the table is to demonstrate the overall importance of recreational land use and the large variety of recreation areas in the region.

#### 3.2 GEOLOGICAL RESOURCES AND SEISMIC SETTING

Extensive work has been conducted in the study area to describe the geologic setting (e.g., Cashion 1964; Culburtson and Pitman 1973; Dyni 2003; Blackett 1996). In addition, Chapter 2 and Appendices A and B provide general information regarding oil shale and tar sands resources and geology, respectively. A brief summary of the geologic setting for each major basin and STSA is presented in this section.

#### 3.2.1 Piceance Basin

## 3.2.1.1 Physiography

The Piceance Basin is located mainly in the Colorado Plateau physiographic province (Figure 1.2-1). The Piceance Basin is simultaneously a structural, depositional, and drainage basin. The structural basin is downwarped and surrounded by uplifts resulting from the Laramide Orogeny. This tectonic activity created a depositional basin that filled with sediments from the surrounding uplands, mainly during the Tertiary period. The Piceance Basin is not referred to or described consistently in the published literature. Some publications describe the Piceance Basin as an area encompassing more than 7,000 mi² and consisting of a northern province and a southern province that are separated approximately by the Colorado River and I-70. Other publications refer to the southern province as the Grand Mesa Basin. Oil shale is present in both provinces, with the richest oil shale deposits in the north, and smaller, isolated deposits in the south.

# 3.2.1.2 Geologic Setting

Within the Piceance Basin, the upper bedrock stratigraphy consists of a series of basin-fill sediments from the Tertiary period (Topper et al. 2003). The uppermost unit is the Uinta Formation, which consists of up to 1,400 ft of Eocene-age sandstone, siltstone, and maristone. Below the Uinta Formation is the Eocene Green River Formation, which can be up to 5,000 ft thick and includes four members: the Parachute Creek (keragenous dolomitic maristone and shale), the Anvil Points (shale, sandstone, and maristone), the Garden Gulch (claystone, siltstone,

TABLE 3.1.2-1 Federal and State Recreation Areas within a 50-Mi Radius of the Most Geologically Prospective Oil Shale Areas and STSAs

| Recreation Area <sup>a</sup>                       | Managing Agency |
|----------------------------------------------------|-----------------|
| Colorado                                           |                 |
| Black Ridge Canyons Wilderness Area                | BLM             |
| Brown's Park National Wildlife Refuge              | USFWS           |
| Canyon Pintado National Register Historic District | BLM             |
| Colorado National Monument                         | NPS             |
| Dinosaur Diamond National Scenic Byway             | DOT             |
| Dinosaur National Monument                         | NPS             |
| Elkhead Reservoir                                  | CSP             |
| Flat Tops Wilderness Area                          | USFS            |
| Grand Mesa National Forest                         | USFS            |
| Grand Mesa Scenic and Historic Byway               | DOT             |
| Harvey Gap State Park                              | CSP             |
| Highline Lake State Park                           | CSP             |
| James M. Robb-Colorado River State Park            | CSP             |
| McInnis Canyons National Conservation Area         | BLM             |
| Maroon Bells Wilderness Area                       | USFS            |
| Rabbit Valley Research Natural Area                | BLM             |
| Raggeds Wilderness Area                            | USFS            |
| Routt National Forest                              | USFS            |
| Horsethief Canyon State Wildlife Area              | BOR             |
| Rifle Falls State Park                             | CSP             |
| Rifle Gap Reservoir and State Park                 | BOR and CSP     |
| Sweitzer Lake State Park                           | CSP             |
| Vega Reservoir and State Park                      | BOR and CSP     |
| White River National Forest                        | USFS            |
| Yampa River State Park                             | CSP             |
| Utah                                               |                 |
| Anasazi Indian State Park                          | USPR            |
| Arches National Park                               | NPS             |
| Ashley National Forest                             | USFS            |
| Bryce Canyon National Park                         | NPS             |
| Box-Death Hollow Wilderness Area                   | USFS            |
| Canyonlands National Park                          | NPS             |
| Capitol Reef National Park                         | NPS             |
| Cleveland-Lloyd Dinosaur Quarry                    | BLM             |
| Dark Canyon Wilderness Area                        | USFS            |
| Dead Horse Point State Park                        | USPR            |
| Dinosaur Diamond National Scenic Byway             | DOT             |
| Dinosaur National Monument                         | NPS             |
| Dixie National Forest                              | USFS            |
| Edge of the Cedars State Park                      | USPR            |
| Escalante State Park                               | USPR            |
| Fantasy Canyon                                     | BLM             |
| Fishlake National Forest                           | USFS            |
| Flaming Gorge National Recreation Area             | USFS            |

TABLE 3.1.2-1 (Cont.)

| Recreation Area <sup>a</sup>                                 | Managing Agency |
|--------------------------------------------------------------|-----------------|
| Utah (Cont.)                                                 |                 |
| Flaming Gorge-Uintas Scenic Byway                            | DOT             |
| Glen Canyon National Recreation Area                         | NPS             |
| Grand Staircase-Escalante National Monument                  | BLM             |
| Green River State Park                                       | USPR            |
| Goblin Valley                                                | USPR            |
| High Uintas Wilderness Area                                  | USFS            |
| Huntington North Reservoir and Huntington State Park         | BOR and USPR    |
| Joes Valley Reservoir                                        | BOR             |
| Kodachrome Basin State Park                                  | USPR            |
| Manti-La Sal National Forest                                 | USFS            |
| Millsite State Park                                          | USPR            |
| Moon Lake Reservoir                                          | BOR             |
| Mt. Nebo Wilderness Area                                     | USES            |
| Ouray National Wildlife Refuge                               | USFWS           |
| Palisade State Park                                          | USPR            |
| Red Fleet Reservoir and State Park                           | BOR and USPR    |
| Scoffeld Reservoir and State Park                            | BOR and USPR    |
| Starvation Reservoir and State Park                          | BOR and USPR    |
| Steinaker Reservoir and State Park                           | BOR and USPR    |
| Uinta National Forest                                        | USFS            |
| Upper Stillwater Reservoir                                   | BOR             |
| Wasatch-Cache National Forest                                | USFS            |
| Wyoming                                                      |                 |
| Bear River State Park                                        | WSPCR           |
| Bridger National Forest                                      | USFS            |
| Bridger Wilderness Area                                      | USFS            |
| Cokeville Meadows National Wildlife Refuge                   | USFWS           |
| Fitzpatrick Wilderness Area                                  | USFS            |
| Flaming Gorge National Recreation Area                       | USFS            |
| Fort Bridger State Park                                      | WSPCR           |
| Fossil Butte National Monument                               | NPS             |
| Medicine Bow National Forest                                 | USFS            |
| Oregon, Mormon, Pioneer, California, and Pony Express Trails | BLM             |
| Popo Agie Wilderness Area                                    | USFS            |
| Seedskadee National Wildlife Refuge                          | USFWS           |
| Shoshone National Forest                                     | USFS            |
| Wasatch-Cache National Forest                                | USFS            |

a Includes areas that are within or partially within an approximately 50-mi radius.

Sources: federal recreation areas, Recreation.gov (2006); Colorado State Parks (2006a); Utah State Parks and Recreation (2006); Wyoming Division of State Parks and Historic Sites (2006).

b Abbreviations: BLM = Bureau of Land Management; BOR = Bureau of Reclamation; CSP = Colorado State Parks; DOT = U.S. Department of Transportation; NPS = National Park Service; USFS = U.S. Forest Service; USFS = USHs and Wildlife Service; USFR = Ulah State Parks and Recreation; WSPCR = Wyoming Department of State Parks and Cultural Resources.

clay-rich oil shale, and marlstone), and the Douglas Creek (siltstone, shale, and sandstone) members. The Eocene-Paleocene Wasatch Formation underlies the Green River Formation. The Wasatch is a shale and sandstone formation. Below the Wasatch is the Cretaceous Mesaverde Group (sandstone and shale), the Cretaceous Mancos Shale, and older sedimentary formations atop Precambrian rock.

The main oil shale members of interest in the Piceance Basin are the Parachute Creek and Garden Gulch Members. The grade of oil shale varies with location and depth, but the Parachute Creek Member has the richest material and includes the Mahogany Zone.

Quaternary alluvium of varying thickness is present in the significant drainages of the basin. The alluvium can provide sand and gravel resources for construction projects, and the alluvium aquifers are often important sources of groundwater.

## 3.2.1.3 Soils

Soils vary in the Piceance Basin in their thickness and character (DOI 1973). On upland areas, soils are generally rocky with shallow depth to bedrock. Slopes in these areas are typically 10 to 60%. Eolian deposits (silt) may blanket the upland surface. Deep alluvial soils are found in drainageways and in valleys, with slopes less than 10%. Locally, valleys may contain colluvium from the side slopes. Erosion occurs mainly along roads and trails and in stream valleys. Intermittent creeks show head cutting, bank cutting, and deep gullying. Summer storms may cause bridge washouts and flash floods with extensive sheet erosion.

On upland ridges and cliffs, soil formation is minimal because of steep slopes and strong winds. Erosion is mainly by wind where overgrazing has exposed thin loamy soils. Gullying is possible in small drainageways, as is mass wasting of weathered soil and rock.

# 3.2.1.4 Seismology

Seismic risk in the Piceance Basin is fairly low according to the USGS, with a peak acceleration of about 5% of gravity with a 10% probability of exceedance in 50 years (Frankel et al. 2002).

Landslide risk has been mapped by the USGS (Radbruch-Hall et al. 1982). In the Piceance Basin, the susceptibility of the landscape to landslides is generally high, though the incidence of landslides in the basin is low (less than 1.5% of the area involved) in most of the basin.

# 3.2.1.5 Mineral Resources

In addition to oil shale, the Piceance Basin contains the sodium minerals halite, dawsonite, and nahcolite, which are intermingled with the oil shale. Nahcolite is sodium

bicarbonate and may be used as soda ash, to remove sulfur from industrial air emissions, and as a cattle feed supplement. It occurs in the Parachute Creek Member at proportions generally less than 5% by weight; however, in the lower oil shale zone it may average more than 30% by weight (DOI 1973). Dawsonite is dihydroxy sodium aluminum carbonate and is found in the lower portion of the northern province of the Piceance Basin. It is a source of alumina, and some intervals contain up to 3% by weight of equivalent extractable alumina (DOI 1973). Interbedded halite and oil shale are found in a sequence in the northern province of the Piceance Basin. The halite beds range from 1 to 30 ft in thickness (DOI 1973). Recoverable amounts of these minerals are estimated by the BLM (1983a) for several individual tracts of land within the basin. An area near the northern edge of the Piceance Basin that measures more than 100 mi² is referred to as the Multimineral Zone. Here, the BLM does not allow oil shale development without suitable recovery of sodium minerals. In a surrounding area set aside for sodium leasing, sodium mineral extraction is not allowed to damage oil shale units.

Oil, natural gas, and coal are also present in the Piceance Basin (DOI 1973). The most productive zone is at the base of the Green River Formation. Other productive sandstones are up to 6,000 ft deeper than the Green River Formation. Extensive natural gas drilling is occurring in the southern portion of the northern Piceance province. Coal underlies essentially the entire basin (DOI 1973).

#### 3.2.2 Uinta Basin

### 3.2.2.1 Physiography

The overall Uinta Basin has an area of about 7,000 mi², bounded by the Uinta Mountains on the north, the Wasatch Range on the west, the Roan Cliffs on the south, and the Douglas Creek Arch on the east (Cashion 1967). The basin is almost entirely in Utah, with a small portion of the overall basin extending into Colorado. The Uinta Basin is a structural, depositional, and topographic/drainage basin. This description focuses on the study area located in the east-central portion of the Uinta Basin, where the expected oil shale reserves are more than 25 ft thick and can produce more than 25 gal/ton of shale oil (Figure 1.2-1). This region is primarily in Uintah County, Utah, with a small western extension into Duchesne County, Utah.

# 3.2.2.2 Geologic Setting

The Uinta Basin contains a thickness of up to 15,000 ft of lacustrine and fluvial sedimentary rock of Eocene age above older sedimentary formations (Cashion 1967).

The uppermost bedrock unit is the Duchesne River Formation of fluvial sandstone and shale. Below this formation is the Uinta Formation of similar lithologies. Below the Uinta is the Green River Formation, which is composed of four members. The uppermost is the Evacuation Creek Member, which is composed mainly of marlstone and siltstone and which interfingers with the overlying Uinta Formation. The underlying Garden Gulch and Parachute Creek

Members are of similar lithologies. The Parachute Creek Member is the main oil shale-bearing member, and it includes the rich Mahogany Zone. The Douglas Creek Member is composed of mixed lithologies, including sandstone, siltstone, and limestone, and it interfingers with the overlying Garden Gulch and Parachute Creek Members and the underlying Wasatch Formation. The Wasatch is also an Eocene-age basin-fill unit and is composed of sandstone and shale.

Quaternary alluvium is present along the Uinta Basin's major stream valleys. The alluvium can provide sand and gravel resources for construction projects, and the alluvium aquifers are often important sources of groundwater.

#### 3.2.2.3 Soils

Soils in the Uinta Basin are in two general groupings on the basis of the geomorphological setting (DOI 1973). Most of the basin's flat areas are covered with shallow soils over weathered bedrock. These soils are typically either fine loam or silt over silty or clayey subsoils, or sandy or coarse loamy soils. Shale and/or sandstone bedrock is usually about 20 in. deep. Erosion is high during summer storms.

Along the floodplains and terraces of major rivers are deep loamy or silty soils over coarser subsoils. Erosion through stream cutting is high during high flow periods.

Overall, the basin's erosion potential is critically high, though some areas are in the slight to moderate range, and some areas have erosion potential that is considered severe.

Biological soil crusts occur on undisturbed soils in some portions of Utah and may be found in the study area. The crusts are made of various algae, bacteria, mosses, and fungi. These crusts reduce wind and water erosion of the soils, fix atmospheric nitrogen, and contribute to soil organic matter (BLM 2002c).

# 3.2.2.4 Seismology

Seismic risk in the Uinta Basin is fairly low according to the USGS, with a peak acceleration of about 6 to 7% of gravity, with a 10% probability of exceedance in 50 years (Frankel et al. 2002).

Landslide risk has been mapped by the USGS (Radbruch-Hall et al. 1982). In the Uinta Basin, the susceptibility of the landscape to landslides is low, as is the incidence of landslides (less than 1.5% of the area involved).

#### 3,2,2,5 Mineral Resources

Gilsonite, a black, brittle natural petroleum residue, is found in the Uinta Basin; it occurs as miles-long vertical veins up to 18 ft wide (Cashion 1967). Along the southern portion of the

study area are areas that overlap with two STSAs—Hill Creek and P.R. Spring. Oil and gas have been produced from the lower part of the Green River Formation, the Wasatch Formation, and deeper Mesozoic-age rocks.

#### 3.2.3 Green River Basin and Washakie Basin

## 3.2.3.1 Physiography

The Green River and Washakie Basins are located in the Wyoming Basin Physiographic Province of the Rocky Mountain Region. The oil shale areas are surrounded by the Wasatch, Green, Uintah, and Seminoe Mountains and by the Wind River and Medicine Bow Ranges. The overall basin has an area of about 6,700 mi<sup>2</sup>. This description focuses on the study areas located within the Green River and Washakie Basins (Figure 1.2-1).

The Green River Basin is mainly bounded by escarpments of the Green River and Wasatch Formations (Mason and Miller 2004). The Washakie Basin is a synclinal structure with faulting mainly along its southern and western edges. Its central portion has few faults (DOI 1973). The rim of the basin is formed by rock of the Green River Formation (Mason and Miller 2004).

# 3.2.3.2 Geologic Setting

The Green River and the Washakie Basins are separated by the Rock Springs uplift. Each contains sedimentary rock with thicknesses more than 20,000 ft.

In the Green River Basin, the uppermost unit is the Bridger Formation of fluvial and paludal (marsh) origin. The underlying Green River Formation is mostly lacustrine basin-fill rock. The Wasatch Formation underlies the Green River Formation and is mostly fluvial and paludal material. The Green River Formation intertongues with both the overlying Bridger Formation and the underlying Wasatch Formation, and it is replaced by these formations, and, in some locations around the basin, by the fluvial Battle Spring Formation boundary (Rochler 1992).

In the Washakie Basin, the stratigraphy is similar; however, the uppermost unit is referred to as the Washakie Formation rather than the Bridger Formation (Roehler 1992). The Green River Formation here is composed of four units. The Laney Member is up to 1,300 ft thick and consists of sandstone, siltstone, and mudstone, with generally low-grade oil shale zones. The Wilkins Peak Member is about 400 ft thick. Its upper portion is mudstone, siltstone, and sandstone, with minor amounts of oolitic and algal limestone and thin beds of low-grade oil shale. The lower portion is mainly low-grade to moderate-grade oil shale with algal limestone and siltstone. The Tipton Member is about 200 ft thick and is made up of low- to moderate-grade oil shale with some algal limestone and siltstone. The Luman Tongue is about 300 ft thick and is the lowermost unit of the Green River Formation. Its upper half is mainly low-grade oil shale

with some limestone. The lower half is interbedded siltstone, sandstone, mudstone, low-grade oil shale, thin units of moderate-grade oil shale, limestone, shale, and coal.

#### 3.2.3.3 Soils

The soils of the Green River and Washakie Basins are developed on the Green River, Bridger, and Wasatch Formations (DOI 1973). The soils' textures range from sandy to loamy to clayey. The soil surfaces are mainly level or moderately sloping, though roughly 20% of the area has steep slopes. Sixty percent of the basin area has shallow soil, with the bedrock within 20 in. of the surface. Erosion rates are generally moderate to high. Because of the aridity, wind erosion is greater than water erosion.

## 3.2.3.4 Seismology

Seismic risk in the Green River Basin is fairly low according to the USGS, with a peak acceleration of about 5% of gravity with a 10% probability of exceedance in 50 years (Frankel et al. 2002). In the Washakie Basin, the seismic risk is also fairly low, with a peak acceleration value of about 7 to 8% of gravity.

Landslide risk has been mapped by the USGS (Radbruch-Hall et al. 1982). In the Green River Basin, the susceptibility of the landscape to landslides is low in most areas, but high along the edges of the Flaming Gorge Reservoir and in an area northeast of the City of Green River. The incidence of landslides in the basin is low (less than 1.5% of the area involved) in most areas, but moderate (1.5 to 15% of the area) in a portion of the basin near the City of Green River and in a small zone in the southwestern portion of the basin. The Washakie Basin's susceptibility to landslides is approximately evenly split between low and moderate areas. The incidence of landslides is low (less than 1.5% of the area).

### 3.2.3.5 Mineral Resources

According to the DOI (1973), sodium minerals have not been discovered in the Washakie Basin. The central Green River Basin, however, has economic deposits of trona and halite in the Wilkins Peak Member of the Green River Formation (Roehler 1992). Approximately 500 m² in the central Green River Basin are designated as the MMTA. Oil and natural gas are present in the Wasatch, Fort Union, and Mesaverde Formations and have been produced in commercial quantities at locations surrounding the Washakie Basin (DOI 1973). These formations underlie the basin at depths several thousand feet below the lowermost Green River Formation oil shales. Coal is also present below the oil shale in the Green River and Washakie Basins (DOI 1973; Mason and Miller 2004).

### 3.2.4 Special Tar Sand Areas

### 3.2.4.1 Physiography

Seven of the STSAs (Argyle Canyon, Asphalt Ridge, Hill Creek, Pariette, P.R. Spring, Raven Ridge, and Sunnyside) are located in the Uinta Basin (Figure 1.2-2). The physiographic setting in Section 3.2.2.1 applies to these sites.

The four STSAs in southeast-central Utah (San Rafael, Circle Cliffs, Tar Sand Triangle, and White Canyon) are in the Canyonlands section of the Colorado Plateau physiographic province (BLM 1984b) (Figure 1.2-2). San Rafael is located on the San Rafael Swell; White Canyon is on the northwest flank of the Abajo Mountains; Circle Cliffs is an upland area between the Aquarius Plateau and the Henry Mountains; and the Tar Sand Triangle is located at the southern end of the San Rafael Desert.

## 3.2.4.2 Geologic Setting

The seven northern STSAs (Argyle Canyon, Asphalt Ridge, Hill Creek, Pariette, P.R. Spring, Raven Ridge, and Sunnyside) are located in the Uinta Basin, and most are in Tertiary-age sedimentary rocks. The geologic description in Section 3.3.2.2 applies to most of these sites. The exception is Asphalt Ridge, which is partially in the Cretaceous Mesa Verde Formation (BLM 1984b). The rock units containing the tar are mostly fluvial sandstones, though some are lacustrine sediments. The bitumen is usually concentrated in the coarser facies of the sediments.

The four southern STSAs (San Rafael, Circle Cliffs, Tar Sand Triangle, and White Canyon) have bedrock of Permian and Triassic ages (BLM 1984b). The Tar Sand Triangle is in the Permian White Rim Sandstone, which may be dune sand or shallow marine sand deposits. Bitumen varies at the STSA along with the variations in sand texture and permeability. The Circle Cliffs and San Rafael STSAs are located in the lower Moenkopi Formation. This unit is a large deltaic deposit of fine- to medium-grained, moderately well-sorted sandstone of Triassic age. The White Canyon STSA occurs in the Hoskininni Sandstone, a Triassic shallow marine deposit.

### 3.2.4.3 Soils

Soils at the 11 STSAs have a wide range of thicknesses and character because of spatially varying factors such as parent material, climate, topography, and vegetation. Data compiled by the BLM (1984b) indicate general conditions in mountainous areas (moist, dark or light) and valley or mesa areas (dry, light-colored). The soils are developed from sandstone, shale, and siltstone bedrock and have corresponding textures, (e.g., sandy soils near more resistant ridges, clayey soils near shale outcrops). Alluvial fan soils are loamy and bouldery. Slopes vary within individual STSAs and among different STSAs.

The BLM (1984b) has evaluated the erosion potential of the STSA soils in terms of sediment yield classification. Overall, the largest category of the STSA land area is that of moderate sediment yield (0.2 to 0.5 ac-ft/mi²/yr), followed by high sediment yield (0.5 to 1.0 ac-ft/mi²/yr). The San Rafael STSA had the only significant amount of land area (18%) at a very high sediment yield (1.0 to 3.0 ac-ft/mi²/yr).

Biological soil crusts occur on undisturbed soils in some portions of Utah and may be found in the study area. The crusts are made of various algae, bacteria, mosses, and fungi. These crusts reduce wind and water erosion of the soils, fix atmospheric nitrogen, and contribute to soil organic matter (BLM 2002c).

#### 3.2.4.4 Seismology

Seismic risk among the STSAs varies with location, with the westernmost STSAs having higher risk than the others. Argyle Canyon, San Rafael, and Circle Cliffs have peak acceleration of roughly 10% of gravity with a 10% probability of exceedance in 50 years (Frankel et al. 2002). At the other eight STSAs, the seismic risk is lower, with peak acceleration values ranging from about 4 to 7% of gravity.

Landslide risk varies among the 11 STSAs. At most of the northern STSAs (Argyle Canyon, Pariette, Sunnyside, Hill Creek, P.R. Spring, and Raven Ridge), the susceptibility to landslides is low, and the incidence of landslides is low (less than 1.5% of the area) (Radbruch-Hall et al. 1982). The other northern STSA, Asphalt Ridge, is the same, except along its northern edge, where the incidence is moderate (1.5 to 15% of the land). At the San Rafael Swell, the incidence is low, and the susceptibility is approximately half-low and half-moderate across the scattered parcels of land. The Circle Cliffs STSA has low incidence in most of its area, but high incidence (more than 15% of the mapped area) in narrow bands along the western and eastern edges of the STSA. Landslide susceptibility here, however, is low. The White Canyon STSA's land area is a mix of low, moderate, and high incidence, and low-to-moderate susceptibility. The Tar Sand Triangle STSA has low landslide incidence but mostly moderate landslide susceptibility.

#### 3.2.4.5 Mineral Resources

Other geologic resources are present or possibly present at the 11 STSAs (BLM 1984b).

Oil and gas are present at P.R. Spring and Pariette, and are likely at Hill Creek and Raven Ridge.

Oil and gas are possible, though not highly likely, at Argyle Canyon, Asphalt Ridge, Circle

Cliffs, and White Canyon.

Oil shale of significant thickness and yield overlies the tar sands deposits along the northern edge of the P.R. Spring and Hill Creek STSAs. The Mahogany Oil Shale Zone is

<sup>6</sup> An acre-foot is the volume of water that covers 1 acre (43,560 ft) to a depth of 1 ft (0.3 m).

present at the Pariette and Raven Ridge STSAs; however, these oil shale deposits are not included in the oil shale study area defined for this PEIS.

Coal is of commercial thickness and quality and is below the Sunnyside STSA; however, it is at a depth that would require underground rather than surface mining. Coal is possible in Cretaceous rocks below Hill Creek and P.R. Spring. Coal of poor quality is possibly below the tar sands at Asphalt Ridge.

Uranium may occur locally above the Moenkopi Formation in the Shinarump Conglomerate Member of the Chinle Formation at the Circle Cliffs, Tar Sand Triangle, and White Canyon STSAs, and at the San Rafael STSA.

Copper occurs locally at the San Rafael STSA.

#### 3.3 PALEONTOLOGICAL RESOURCES

Paleontological resources are fossilized remains, imprints, and traces of plants and animals preserved in rocks and sediments. Greater attention is often given to vertebrate fossils than to invertebrate fossils because of their rarity; however, some plant and invertebrate fossils are also rare. The rarity of such specimens and the unique information that can be gleaned from these items emphasize their scientific value and the need to protect them.

The large number of productive fossil-bearing geological landforms found on federal land in the American West has encouraged the BLM to provide guidance on protesting this resource. The 2000 report by the Secretary of the Interior on Fossils on Federal Land (DOI 2000) provides guidance on the treatment of paleontological resources. Further guidance is provided in the BLM Manual 8270—Paleontological Resource Management (BLM 1998). Procedures for managing these resources are identified in an attachment to BLM Manual 8270, the Paleontological Resources Handbook H-8270-1—General Procedural Guidance for Paleontological Resources Management. The goal of the BLM program is to locate, evaluate, manage, and protect paleontological resources on public lands. (See Section 3.1 of this PEIS, Land Use, for a description of designated ACECs, some of which are designated specifically to protect paleontological resources.)

To date, no comprehensive inventory of fossils and no systematic inventory of fossil-bearing areas on BLM-administered lands have been conducted. Most assessments and inventories of paleontological resources on public lands are conducted on a project-by-project basis. Some BLM field offices, along with various museums, geologic surveys, and other partners, maintain records of the paleontological finds made on the lands that they manage. Often this information is held by the primary state repository for fossil finds in that area. Site-specific information regarding paleontological resources would need to be collected to define the affected environment for an individual project.

Occurrences of paleontological resources are closely related to the geological units that contain them. Therefore, the potential for finding important paleontological resources can be

predicted by the presence of the relevant geological units. A paleontological overview report describing, in general, the types of resources known to be present in the oil shale and tar sands study areas has been prepared in support of this PEIS. This overview is summarized below for each of the oil shale basins and STSAs (Murphey and Daitch 2007). The BLM's former classification system for paleontological sensitivity is presented in BLM Manual 8270 (BLM 1998) and involves the ranking of areas on the basis of their potential to meet certain criteria known as Conditions 1, 2, and 3. The BLM, however, recently adopted an alternate classification system, known as the Potential Possil Yield Classification (PFYC), developed originally by the USFS, to promote consistency among agencies (DOI 2007). (See the text boxes that follow for summaries of the two classification systems.) Table 3.3-1 provides a summary of the programmatic-level sensitivity of geologic units within each of the basins that could potentially be affected by oil shale or tar sands development. Sensitivity maps (1:500,000 scale) have been prepared for the overview; the maps show the areas with the highest potential of containing significant paleontological resources and are available in the paleontological overview report (Murphey and Daitch 2007). The BLM is developing maps with a finer scale.

#### 3.3.1 Piceance Basin

Several geologic units dating from the Paleocene/Early Eocene to the Middle Eocene (approximately 66 to 40 million years ago) within the Piceance Basin have the highest potential to contain significant paleontological resources and warrant consideration for assessing and mitigating potential impacts related to oil shale development. These units, as listed in Table 3.3-1, include the Uintah Formation, the Parachute Member of the Green River Formation, and the Atwell Gulch, Molina, and Shire Members of the Debeque (or Wasatch) Formation.

#### **BLM Classification System**

Condition 1: Areas that are known to contain vertebrate fossils or noteworthy occurrences of invertebrate or plant fossils. Consideration of paleontological resources will be necessary if the field office review of available information indicates that such fossils are present in the area.

Condition 2: Areas with exposures of geological units or settings that have high potential to contain vertebrate fossils or noteworthy occurrences of invertebrate or plant fossils. The presence of geologic units from which such fossils have been recovered elsewhere may require further assessment of these same units where they are exposed in the area of consideration.

Condition 3: Areas that are very unlikely to produce vertebrate fossils or noteworthy occurrences of invertebrate or plant fossils on the basis of their surficial geology, igneous or metamorphic rocks, extremely young alluvium, colluvium, or eolian deposits, or the presence of deep soils. However, if possible, it should be noted at what depth bedrock may be expected in order to determine if fossiliferous deposits may be uncovered during surface-disturbing activities.

Source: BLM (1998).

#### Potential Fossil Vield Classification

Class 1: Geologic units that are not likely to contain recognizable fossil remains. This includes units that are igneous or metamorphic in origin (but excludes tuffs), as well as units that are Precambrian in age or older. Management concern for paleontological resources in Class 1 units is negligible or not applicable. No assessment or mitigation is needed except in very rare circumstances. The occurrence of significant fossils in Class 1 units is nonexistent or extremely rare.

Class 2: Sedimentary geologic units that are not likely to contain vertebrate fossils or scientifically significant nonvertebrate fossils. This includes units in which vertebrate or significant nonvertebrate fossils are unknown or very rare, units that are younger than 10,000 years before present, units that are eolian in origin, and units that exhibit significant diagenetic alteration. The potential for impacting vertebrate fossils or uncommon invertebrate or plant fossils is low. Management concern for paleontological resources is low, and management actions are not likely to be needed. Localities containing important resources may exist but would be rare and would not influence the classification.

Class 3: Fossiliferous sedimentary geologic units where fossil content varies in significance, abundance, and predictable occurrence, or sedimentary units of unknown fossil potential. These units are often marine in origin with sporadic known occurrences of vertebrate fossils. Vertebrate fossils and uncommon nonvertebrate fossils are known to occur inconsistently, and predictability is known to be low. Class 3 includes units that are poorly studied and/or poorly documented, so that the potential yield cannot be assigned without ground reconnaissance. Management concern for paleontological resources in these units is moderate or cannot be determined from existing data. Surface-disturbing activities may require field assessment to determine a further course of action.

Class 4: Class 4 units are Class 5 geologic units (see below) that have lowered risks of humancaused adverse impacts and/or lowered risk of natural degradation. They include bedrock units with extensive soil or vegetative cover, bedrock exposures that are limited or not expected to be impacted, units with areas of exposed outcrop that are smaller than two contiguous acres, units in which outcrops form cliffs of sufficient height and slope so that impacts are minimized by topographic effects, and units where other characteristics are present that lower the vulnerability of both known and unidentified fossil localities.

Class 5: Highly fossiliferous geologic units that regularly and predictably produce vertebrate fossils or uncommon invertebrate or plant fossils and that are at risk of human-caused adverse impacts or natural degradation. These include units in which vertebrate fossils or uncommon invertebrate or plant fossils are known and documented to occur consistently, predictably, or abundantly. Class 5 pertains to highly sensitive units that are well exposed with little or no soil or vegetative cover, units in which outcrop areas are extensive, and exposed bedrock areas that are larger than two contiguous acres.

Source: Murphey and Daitch (2007).

TABLE~3.3-1~Summary~of~Programmatic-Level~Paleontological~Sensitivities~of~Geologic~Units~within~the~Piceance,~Uinta,~and~Greater~Green~River~Basins

| Geologic Unit                                                                                     |                               |                                                                                                                                                                                                         | BLM<br>Designation | PFYC<br>Designation |
|---------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| landslide deposits,                                                                               |                               |                                                                                                                                                                                                         | Condition 3        | Class 2             |
| Alluvium, colluvium,<br>landslide deposits,<br>and glacial drift                                  | Pleistocene                   | Scattered vertebrates,<br>invertebrates, and plants occur<br>locally                                                                                                                                    | Condition 2        | Class 2             |
| Uinta Formation                                                                                   | Middle Eocene                 | Localized occurrences of<br>vertebrates (mammals, reptiles),<br>invertebrates (mollusks), and<br>plants (leaves and wood)                                                                               | Condition 1        | Class 4/5           |
| Green River<br>Formation: Parachute<br>Creek Member                                               | Middle Eocene                 | Locally abundant vertebrates<br>(fishes, amphibians, reptiles, birds,<br>and mammals), invertebrates<br>(insects, arthropods, and<br>mollusks), plants (leaves, flowers,<br>and wood), and ichnofossils | Condition 1        | Class 4/5           |
| Green River<br>Formation: Anvil<br>Points and Garden<br>Gulch Members                             | Early Eocene                  | Vertebrates (mostly fish),<br>invertebrates (mollusks), and<br>plants (leaves)                                                                                                                          | Condition 2        | Class 3             |
| DeBeque (Wasatch<br>Formation), Atwell<br>Gulch, Molina and<br>Shire Members                      | Paleocene and<br>Early Eocene | Locally abundant vertebrates<br>(fishes, amphibians, reptiles, birds,<br>and mammals), invertebrates<br>(mollusks), and plants                                                                          | Condition 1        | Class 4/5           |
| Uinta Basin Alluvium, colluvium, landslide deposits, pediment deposits, glacial outwash, and till | Holocene                      | None in deposits of Holocene age unless reworked from older sediments                                                                                                                                   | Condition 3        | Class 2             |
| Alluvium, colluvium,<br>landslide deposits,<br>pediment deposits,<br>glacial outwash, and<br>till | Pleistocene                   | Scattered vertebrates,<br>invertebrates, and plants occur<br>locally                                                                                                                                    | Condition 2        | Class 2             |
| Duchesne River<br>Formation: Brennan<br>Basin and Lapoint<br>Members                              | Middle Eocene                 | Vertebrate (mammal) fossil accumulations occur locally but are uncommon                                                                                                                                 | Condition 2        | Class 4/5           |

# TABLE 3.3-1 (Cont.)

|                                                                                                                          |                                                                                                                      |                                                                                                                                                                                                         | BLM         | PFYC                                                               |  |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------|--|
| Geologic Unit                                                                                                            | Age                                                                                                                  | Typical Fossils                                                                                                                                                                                         | Designation | Designation                                                        |  |
| Uinta Basin (Cont.) Duchesne River Formation: Dry Gulch Creek and Starr Flat Members                                     | Middle Eocene Vertebrate (mammal) fossils rare<br>in Dry Gulch Member; no records<br>of fossils in Starr Flat Member |                                                                                                                                                                                                         | Condition 2 | Class 3                                                            |  |
| Uinta Formation:<br>Wagonhound and<br>Myton Members                                                                      | Vagonhound and (mammals, reptiles), invertebrates                                                                    |                                                                                                                                                                                                         | Condition 1 | Class 4/5                                                          |  |
| Green River<br>Formation: Parachute<br>Creek Member                                                                      | Middle Eocene                                                                                                        | Locally abundant vertebrates<br>(fishes, amphibians, reptiles, birds,<br>and mammals), invertebrates<br>(insects, arthropods, and<br>mollusks), plants (leaves, flowers,<br>and wood), and ichnofossils | Condition 1 | Class 4/5                                                          |  |
| Green River<br>Formation: Douglas<br>Creek Member                                                                        | Early and<br>Middle Eocene                                                                                           | Scarce vertebrates (mostly fish but<br>also reptiles and uncommon<br>mammals), vertebrate trackways,<br>locally common invertebrates<br>(mollusks) and plants (leaves)                                  | Condition 2 | Class 3<br>(Class 4/5 at<br>Raven Ridge<br>and Nine<br>Mile Canyon |  |
| Wasatch Formation:<br>Renegade Tongue                                                                                    | Middle Eocene                                                                                                        | Scattered, poorly preserved<br>vertebrates and plants (leaves and<br>wood)                                                                                                                              | Condition 2 | Class 3                                                            |  |
| Wasatch Formation:<br>main body                                                                                          | Paleocene and<br>Early Eocene                                                                                        | Locally abundant vertebrates<br>(fishes, amphibians, reptiles, birds,<br>and mammals), invertebrates<br>(mollusks), and plants                                                                          | Condition 1 | Class 4/5                                                          |  |
| Mesaverde Group                                                                                                          | Late<br>Cretaceous<br>(Santonian and<br>Campanian)                                                                   | Moderately abundant terrestrial<br>and marine vertebrates (fish,<br>amphibians, reptiles, including<br>dinosaurs, mammals), invertebrates<br>(mollusks), and terrestrial plants                         | Condition 1 | Class 4/5                                                          |  |
| Greater Green River Ba                                                                                                   | sin                                                                                                                  |                                                                                                                                                                                                         |             |                                                                    |  |
| Alluvium, colluvium,<br>landslide deposits,<br>sand dune deposits,<br>pediment deposits,<br>and alluvial fan<br>deposits | Holocene                                                                                                             | None in deposits of Holocene age<br>unless reworked from older<br>sediments                                                                                                                             | Condition 3 | Class 2                                                            |  |

TABLE 3.3-1 (Cont.)

| Geologic Unit                                                                                                                     | Age                                                      | Typical Fossils                                                                                                                                                           | BLM<br>Designation | PFYC<br>Designation |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| Greater Green River Bas                                                                                                           | in (Cont.)                                               |                                                                                                                                                                           |                    |                     |
| landslide deposits,                                                                                                               |                                                          | Scattered vertebrates, invertebrates, and plants occur locally                                                                                                            | Condition 2        | Class 2             |
| Browns Park<br>Formation                                                                                                          | srowns Park Middle and Vertebrates (mammals and turtles) |                                                                                                                                                                           | Condition 2        | Class 3             |
| Bishop Conglomerate                                                                                                               | Late Oligocene                                           | Rare unidentified mammal bone<br>fragments, reworked Paleozoic<br>invertebrates                                                                                           | Condition 3        | Class 2             |
| Washakie Formation:<br>Kinney Rim and<br>Adobe Town<br>Members                                                                    | Middle Eocene                                            | Vertebrates (fishes, amphibians,<br>reptiles, and mammals) locally<br>abundant in both members;<br>invertebrates (mollusks) and plants<br>(wood) locally common           | Condition 1        | Class 4/5           |
| Bridger Formation:<br>Blacks Fork, Twin<br>Buttes, Turtle Bluff<br>Members                                                        | Middle Eocene                                            |                                                                                                                                                                           |                    | Class 4/5           |
| Green River<br>Formation: Laney and<br>Fossil Butte Members                                                                       | Early and<br>Middle Eocene                               | Vertebrates (fishes, amphibians, reptiles, birds, and mammals) locally abundant; invertebrates (insects, arthropods, and mollusks), plants, ichnofossils locally abundant | Condition 1        | Class 4/5           |
| Green River<br>Formation: Luman<br>Tongue, Fontenelle<br>Tongue, Tipton Shale<br>Member, Wilkins<br>Peak Member,<br>Angelo Member | Early and<br>Middle Eocene                               | Uncommon but locally present<br>vertebrates (fishes, reptiles, and<br>mammals), scattered plants, locally<br>common invertebrates (mollusks<br>and ostracods)             | Condition 2        | Class 3             |

TABLE 3.3-1 (Cont.)

| Geologic Unit                                                                                                                                 | Age                                   | Typical Fossils                                                                                                                                 | BLM<br>Designation | PFYC<br>Designation |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| Greater Green River Bas                                                                                                                       | in (Cont.)                            |                                                                                                                                                 |                    |                     |
| Wasatch Formation: LaBarge Member, New Fork Tongue, Niland Tongue, Main Body, Upper Member, Cathedral Bluffs Tongue, Hiawatha Member          |                                       | Locally abundant vertebrates<br>(fishes, amphibians, reptiles, birds,<br>and mammals), plants,<br>invertebrates (mollusks), and<br>ichnofossils | Condition 1        | Class 4/5           |
| STSAs Alluvium, colluvium, slope wash, and landslide deposits                                                                                 | Holocene                              | None in deposits of Holocene age<br>unless reworked from older<br>sediments                                                                     | Condition 3        | Class 2             |
| Alluvium, colluvium,<br>slope wash, and<br>landslide deposits                                                                                 | Pleistocene                           | Scattered vertebrates,<br>invertebrates, and plants occur<br>locally                                                                            | Condition 2        | Class 2             |
| Chinle Formation:<br>Temple Mountain,<br>Shinarump, Monitor<br>Butte, Moss Back,<br>Petrified Forest, Owl<br>Rock, and Church<br>Rock Members | Upper Triassic                        | Locally occurring vertebrates (fishes, amphibians, and reptiles), plants, and invertebrates                                                     | Condition 2        | Class 4/5           |
| Moenkopi Formation:<br>Black Dragon and<br>Torrey and Moody<br>Canyon Members                                                                 | Lower and<br>Middle Triassic          | Locally occurring vertebrates (fishes, amphibians, and reptiles), plants, and invertebrates                                                     | Condition 2        | Class 3             |
| Moenkopi Formation:<br>Sinbad Limestone<br>Member                                                                                             | Lower Triassic                        | Locally abundant marine invertebrates                                                                                                           | Condition 3        | Class 2             |
| Kaibab Limestone                                                                                                                              | Upper Permian                         | Locally abundant marine invertebrates                                                                                                           | Condition 3        | Class 2             |
| Cutler Group, Cutler<br>Formation undivided,<br>Halgaito Formation                                                                            | Upper<br>Pennsylvanian<br>and Permian | Locally occurring vertebrates<br>(fishes, amphibians, and reptiles),<br>plants, and invertebrates                                               | Condition 2        | Class 3             |
| Organ Rock<br>Formation: Cutler<br>Group, Cedar Mesa<br>Sandstone, White<br>Rim Sandstone,<br>De Chelly Sandstone                             | Upper<br>Pennsylvanian<br>and Permian | Condition 2                                                                                                                                     | Class 2            |                     |

Source: Adapted from Murphey and Daitch (2007).

#### 3.3.2 Uinta Basin

Several geologic units dating from the Late Cretaceous to the Middle Eocene (approximately 87 to 40 million years ago) within the Uinta Basin have the highest potential to contain significant paleontological resources and warrant consideration for assessing and mitigating potential impacts related to oil shale development. These units, as listed in Table 3.3-1, include the Brennan Basin and LaPoint members of the Duchesne River Formation, Wagonhound and Myton Members of the Uinta Formation, the Parachute Creek Member of the Green River Formation, the Douglas Creek Member of the Green River Formation at Raven Ridge and Nine Mile Canyon, the main body of the Wasatch Formation, and the Mesaverde Group.

### 3.3.3 Green River and Washakie Basins

Several geologic units dating to the Early and Middle Eocene (approximately 55 to 40 million years ago) within the Greater Green River Basin (including the Washakie Basin) have the highest potential to contain significant paleontological resources and warrant consideration for assessing and mitigating potential impacts related to oil shale development. These units, as listed in Table 3.3-1, include the Kinney Rim and Adobe Town Members of the Washakie Formation; Blacks Fork, Twin Buttes, and Turtle Bluff Members of the Bridger Formation; Laney and Fossil Butte Members of the Green River Formation; and LaBarge Member, New Fork Tongue, Niland Tongue, Main Body, Upper Member, Cathedral Bluffs Tongue, and Hijawatha Member of the Wasach Formation.

# 3.3.4 Special Tar Sand Areas

Several geologic units dating to the Upper Triassic (approximately 200 to 230 million years ago) within the STSAs have been classified as having the highest potential to contain significant paleontological resources and warrant consideration for assessing and mitigating potential impacts related to tar sands development. These units, as listed in Table 3.3-1, include the Temple Mountain, Shinarump, Monitor Butte, Moss Back, Petrified Forest, Owl Rock, and Church Rock Members of the Chinle Formation.

#### 3.4 WATER RESOURCES

The oil shale basins and STSAs in this PEIS are located within the Upper Colorado River Basin. Specifically, the oil shale is present in the White River hydrologic basin in Colorado, the Uinta Basin in Utah, and the Green River Basin in Wyoming. The STSAs are situated in the Uinta and West Colorado River Basins in Utah. The Colorado's Piceance Basin, where the oil shale occurs, is located in the White River hydrologic basin. Similarly, the geologic Green River and Washakie Basins are in the hydrologic Green River Basin.

Water use in the Colorado River Basin is highly regulated. In describing the water resources related to oil shale and tar sands development, it is appropriate to describe the Upper Colorado River Basin as a whole, with emphasis on hydrologic basins where the oil shale and tar sands are located. This is because intra- and interbasin water transfers are common in the region, and water allocation of the Upper Colorado River Basin Compact is prescribed by state and not by hydrologic basin. In the following subsections, important aspects of the legal framework related to water resources are introduced. The existing groundwater and surface water resources, water quality, current water uses, and resource constraints within each oil shale basin or STSA are described.

# 3.4.1 Legal Framework of the Upper Colorado River Basin

#### 3.4.1.1 Water Allocation

The use of the Colorado River Basin water is shared by many states and Mexico. On the basis of the Colorado River Compact of 1922, the Colorado River Basin is divided into the Upper Colorado River Basin and Lower Colorado River Basin at Lee's Ferry (just below the confluence of the Paria River and the Colorado River near the Utah-Arizona boundary). The upper basin and the lower basin were each apportioned a consumptive use of 7.5 million ac-ft of water annually, based on an assumption of 15 million ac-ft of totally available water for the Colorado River. The assumption was demonstrated to be an overestimate and reduced to 12 million ac-ft in a hydrologic study by the BOR (CWCB 2004). The 12 million ac-ft is assumed for analyses in this PEIS. In the Upper Colorado River Basin Compact of 1948, the water of the Upper Colorado River Basin was further allocated among the states of Arizona, Colorado, New Mexico, Utah, and Wyoming. Arizona has a fixed allocation of 50,000 ac-ft annually. The remainder is shared by Colorado (51.75%), New Mexico (11.25%), Utah (23%), and Wyoming (14%) (DOI 2005).

# 3.4.1.2 Basin Salinity and Surface Water Quality

Salinity is a key water quality issue in the basin. The major sections of the CWA that relate to salinity control are Section 302 (Water Quality Related Effluent Limitations), Section 303 (Water Quality Standards), Section 313 (Federal Facilities Pollution Control), Section 401 (State Certification of Federal Permits), Section 402 (NPDES), and Section 404 (Permits for Dredged or Fill Material). In 1973, to support compliance with Section 303 requirements to establish water quality standards and implementation plans, the Colorado River Basin Salinity Control Forum (CRBSCF) was formed, including the Basin States of Arizona, California, Colorado, Nevada, New Mexico, Utah, and Wyoming, In 1974, Congress enacted the Colorado River Basin Salinity Control Act (P.L. 93-320). In addition, in 1974, the EPA enacted a regulation setting forth the basinwide salinity control policy for the Colorado River Basin. In 1975, the CRBSCF proposed, the Basin States adopted, and the EPA approved water quality standards for the Colorado River Basin, including numeric criteria, and a plan of implementation to control salinity increases in the Colorado River. In 1984, Congress amended the Colorado

River Basin Salinity Control Act (P.L. 98-569) and directed the BLM to implement a comprehensive program to minimize salt loading in the Colorado River Basin.

In 1995, P.L. 104-20 authorized the BOR to implement a basinwide approach to salinity control throughout the Colorado River Basin in its Salinity Control Program. The new authorities also allow the BOR to respond quickly to time-sensitive opportunities provided by other cost-sharing partners (states and federal agencies), resulting in the implementation of more cost-effective measures for salinity control. Since 1995, the BOR has solicited proposals and awarded funds in 1996, 1997, 1998, 2001, and 2004 to various salinity control projects under its Basinwide Salinity Control Program.

The BLM coordinates salinity control activities with the CRBSCF, the Basin States, the BOR, and the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS). These agencies receive Congressional funding for salinity control. Other federal agencies that have a stake and participate in the CRBSCF Work Group meetings include the EPA. USFWS. and the USGS.

The BLM has conducted ongoing salinity control activities to minimize salt loading from BLM-administered lands within the Upper Colorado River Basin since 1973. Point-source controls were implemented beginning in fiscal year (FY) 1974. The BLM created a four-person salinity team to evaluate landscape processes and land management actions relevant to the Colorado River Basin salinity during the period 1975 to 1984. Non-point-source control activities began in 1980, following intensive studies of salt occurrence and salt behavior on arid rangelands (BLM 1987c). In addition, prior to 1984, the USDA conducted salinity control activities as part of the Agricultural Conservation Program administered by the Agricultural Stabilization and Conservation Service and the Soil Conservation Service. P.L. 98-569 authorized the USDA Colorado River Salinity Control Program (CRSCP) through mid-1996. The 1996 Farm Bill, P.L. 104-127, combined the CRSCP into the Environmental Quality Incentives Program (EQIP). In the 2002 Farm Bill (P.L. 107-171), EQIP was reauthorized through 2007. The goals of these programs are to minimize salt loading in the Colorado River Basin and to offset the effects of additional water development (DOI 2005).

Salinity has long been recognized as one of the major problems of the river (CRBSCF 2005). The river carries an average salt load of approximately 5.2 million tons annually past Lees Ferry, Arizona. It is estimated that the BLM-administered lands in the Upper Colorado River Basin contribute about 700,000 tons of salt a year from surface runoff. The remaining 4.5 million tons are contributed primarily by groundwater inflow and saline springs, and runoff from other federal, Tribal, state, and private land (DOI 2005).

The sources of salinity in the basinwide Colorado River were estimated to be 47% from natural sources, 37% from irrigation, 12% from reservoir leaching, and 4% from municipal and industrial activities. In 2004, the salinity control programs for the BOR, USDA, and the BLM prevented a total of 1,072,000 tons of salts from entering the river. A goal has been set to prevent an additional 728,000 tons/yr from entering the river by 2025 basinwide (DOI 2005).

The quality of the surface water in the four oil shale basins generally declines from their headwaters in the mountain areas to the basins. As the Colorado River reaches the basins where sedimentary rocks dominate, more soluble minerals containing sodium, sulfate, and chloride become available, resulting in an increase of dissolved salt and sediment (USGS 1968). Urban development in the basins and heavy agricultural uses of surface water in areas underlain by shaley sedimentary rocks also contribute to the increase of dissolved salt and sediment content in surface water bodies (Spahr et al. 2000).

The BLM's efforts to reduce salt loading due to activities conducted on BLM-administered lands would be applicable to future oil shale and tar sands development activities. The agency has developed a strategy to be implemented through its RMPs that primarily relies on best management of the basic resource base, including identifying targeted watersheds with high salt loading, improving vegetation cover to influence surface runoff and soil erosion on rangelands, and proper land uses. In addition, the BLM has developed a water source inventory to identify saline springs in the basin (DOI 2005).

# 3.4.1.3 Impaired Streams under the Clean Water Act

Under the CWA, each state is required to establish and maintain water quality standards to protect, restore, and preserve its water quality. In addition to numerical water quality standards, states also establish narrative criteria that include designated, specific chemical and biological criteria necessary for protecting designated uses, and an antidegradation policy. When a lake, river, or stream fails to meet the narrative criteria, Section 303(d) of the CWA directs the state to place the water body on a list, the 303(d) list of "impaired" waters. Water quality criteria called Total Maximum Daily Load (TMDL) are developed for impaired waters. A TMDL establishes the maximum amount of a pollutant allowed in the water while maintaining all of its designated beneficial uses.

Table 3.4.1-1 lists the impaired water bodies located in the target oil shale basins and STSAs in 2006. In general, no impaired streams are reported in the White River, Yampa River, and Green River Basins in Colorado. Impaired streams in the oil shale and tar sands areas in Utah have problems with meeting the total dissolved solids (TDS) water quality standard. Streams in the Indian Canyon Creek subbasin also have elevated levels of selenium and boron. Fecal coliform is the major impairment in the Green River Basin in Wyoming; the source remains unknown.

## 3.4.1.4 Water Use

Data for water use provided by the states and the BOR are generally organized by watersheds or hydrologic basins. The boundaries of these hydrologic basins do not necessarily coincide with the geologic basins (such as the Piceance Basin, Green River Basin, Uinta Basin, and Washakie Basin), though the same names are used. Generally, the geologic Piceance Basin is inside the hydrologic White River Basin. The oil shale Uinta Basin is within the hydrologic Uinta Basin. The hydrologic Green River Basin covers an area that includes both the geologic

TABLE 3.4.1-1 Water-Impaired Streams in Oil Shale Basins and STSAs in 2006

| Hydrologic Basin             | Subbasin                 | Hydrologic<br>Unit Code | Stream                              | Location                                                                 | Cause of Impairment                 |
|------------------------------|--------------------------|-------------------------|-------------------------------------|--------------------------------------------------------------------------|-------------------------------------|
| Oil Shale                    |                          |                         |                                     |                                                                          |                                     |
| Colorado                     | No streams in the Wh     | ite River/Yampa Rive    | er/Green River hydrologic ba        | sin requiring TMDLs.                                                     |                                     |
| Utah                         |                          |                         |                                     |                                                                          |                                     |
| Uinta Basin                  | Duchesne River - 1       | UT14060003-001          | Duchesne River and<br>tributaries   | Confluence Green River to Randlett                                       | TDS                                 |
|                              | Duchesne River -2        | UT14060003-002          | Duchesne River                      | Randlett to Myton                                                        | TDS                                 |
|                              | Antelope Creek           | UT14060003-005          | Antelope Creek and tributaries      | Confluence Duchesne River to headwaters                                  | TDS                                 |
|                              | Indian Canyon<br>Creek   | UT14060004-002          | Indian Canyon Creek and tributaries | Confluence Strawberry River to headwaters                                | TDS                                 |
|                              | Pariette Draw Creek      | UT14060005-002          | Pariette Draw Creek and tributaries | Confluence Green River to headwaters                                     | Selenium, boron, and TDS            |
|                              | Willow Creek             | UT14060006-001          | Willow Creek and tributaries        | Confluence Green River to Meadow Creek confluence (excluding Hill Creek) | TDS                                 |
| Wyoming<br>Green River Basin | Blacks Fork              | 14040107                | Blacks Fork                         | From confluence with Ham's Fork upstream                                 | Fecal coliform                      |
|                              | Subbasin                 |                         |                                     | to an undetermined distance above Smiths<br>Fork                         |                                     |
|                              |                          |                         | Smiths Fork                         | From confluence with Blacks Fork an undetermined distance upstream.      | Habitat degradation, fecal coliform |
|                              | Bitter Creek<br>Subbasin | 14040105                | Bitter Creek                        | From Green River up to Killpecker Creek                                  | Chloride, fecal coliform            |

TABLE 3.4.1-1 (Cont.)

| Hydrologic Basin      | Subbasin                 | Hydrologic<br>Unit Code | Stream                                 | Location                                                                    | Cause of Impairmen       |
|-----------------------|--------------------------|-------------------------|----------------------------------------|-----------------------------------------------------------------------------|--------------------------|
| Special Tar Sand Area | s (only with impaired st | reams are listed)       |                                        |                                                                             |                          |
| Utah (in Uinta Basin) |                          |                         |                                        |                                                                             |                          |
| P.R. Spring           | Willow Creek             | UT14060006-001          | Willow Creek and<br>tributaries        | Confluence Green River to Meadow Creek<br>confluence (excluding Hill Creek) | TDS                      |
| Hill Creek            | Willow Creek             | UT14060006-001          | Willow Creek and tributaries           | Confluence Green River to Meadow Creek confluence (excluding Hill Creek)    | TDS                      |
| Pariette              | Pariette Draw Creek      | UT14060005-002          | Pariette Draw Creek and tributaries    | Confluence Green River to headwaters                                        | Selenium, boron, and TDS |
| Sunnyside             | Nine Mile                | UT14060005-003          | Nine Mile Creek and<br>tributaries     | Confluence Green River to headwaters                                        | Temperature              |
| Argyle Canyon         | Indian Canyon<br>Creek   | UT14060004-002          | Indian Canyon Creek and<br>tributaries | Confluence Strawberry River to headwaters.                                  | TDS                      |
|                       | Antelope Creek           | UT14060003-005          | Antelope Creek and<br>tributaries      | Confluence Duchesne River to headwaters                                     | TDS                      |

Sources: WDEQ (2006b); CDPHE (2006b); UDEQ (2007).

Green River Basin and the Washakie Basin. The STSAs are located within the hydrologic Uinta Basin and the West Colorado River Basin in Utah.

In the following discussion, the water uses in each hydrologic basin of the Upper Colorado River Basin are provided by state for the municipal and industrial (M&I), self-supplied industry (SSI), and agricultural sectors. These data are useful because the water allocation in the Upper Colorado River Compact is based on individual states. Water demand and consumptive use, as well as availability by state, can then be compared. In addition, major streamflows within the areas where the oil shale is located are also listed. The streamflow data can be used to compare with the possible water needs for oil shale or tar sands development (see Sections 4.5 and 5.5), and to demonstrate whether interbasin water transfer is likely to occur. The water use data listed in this section cover 2000 as the base year and projected water use in 2030 for Colorado and Wyoming, and in 2050 for Utah, 7 taking into account population and industrial growth and changes in the agricultural landscape.

Tables 3.4.1-2 to 3.4.1-4 display the water demand and the water consumption in Colorado, Utah, and Wyoming in the Upper Colorado River Basin. These tables do not include instream uses or water needs of ESA-listed fishes. The data for water demand from water bodies or groundwater wells are from state agencies (CWCB 2004; SWWRC 2001a,b; UDNR 1999, 2000a, 2000b, and 2001; BOR 2004).

Water diversion is the amount of water withdrawn from a water body (stream or reservoir) or a well (groundwater). The amount of water diverted in the Upper Colorado River Basin is commonly much larger than the amount of water actually consumed, since a portion of the diverted water is lost during delivery through evaporation to the air and leakage to the subsurface, and some also returns to the water body as return flow. Consumptive use is defined as the portion of the diverted water that does not return to the stream system. In general, consumptive use is assumed in the calculations for apportioning water in the Upper Colorado River Basin Compact.

The M&I sector indicates residential, commercial, institutional, and industrial uses in Colorado. M&I water demand is closely related to the size of the human population. In urban areas, diverted M&I water is used, creating wastewater, with the wastewater being treated before being discharged back to a water body. The water actually consumed is less than the water delivered. In Colorado, the ratio (consumptive use rate) for M&I is about 35% (CWCB 2004).

Industries in the SSI sector, such as power plants or mining companies, could consume a large amount of water. The SSI industries generally have their own water supplies. In some instances, SSIs may use M&I water in addition to their own primary water supply. In the oil shale basins of Colorado and Wyoming, power generating plants and soda mining are important SSI industries that contribute relatively high consumptive use rates. In power generating plants, a large amount of water is used for cooling. The amount used depends on the cooling system of the power generating plants and may vary considerably. The consumptive use rate for SSI in Moffat

<sup>7</sup> The water availability is projected to different years based on the availability of projection data from the three states.

TABLE 3.4.1-2 Colorado Water Demand and Consumptive Use in 2000 and 2030 (ac-ft/yr)

|                                             |           | Demand    |                  | Co        | onsumptive Use | 2              |
|---------------------------------------------|-----------|-----------|------------------|-----------|----------------|----------------|
|                                             |           | 20        | )30 <sup>b</sup> |           | 203            | 0 <sub>p</sub> |
| Location                                    | 2000      | Low       | High             | 2000      | Low            | High           |
| Colorado Basin                              |           |           |                  |           |                |                |
| M&I and SSI <sup>a</sup>                    | 73,975    | 100,975   | 145,193          | 25,891    | 35,341         | 50,818         |
| Agriculture <sup>a,c</sup>                  | 1,764,000 | 1,644,000 | 1,706,000        | 582,120   | 542,520        | 562,980        |
| Export <sup>d</sup>                         | 759,800   | 759,800   | 759,800          | 759,800   | 759,800        | 759,800        |
| Dolores/San Juan/San Miguel                 |           |           |                  |           |                |                |
| M&I and SSI <sup>a</sup>                    | 23,629    | 33,369    | 46,030           | 5,900     | 11,679         | 16,111         |
| Agriculture <sup>a,c</sup>                  | 953,000   | 948,000   | 962,000          | 368,200   | 312,840        | 317,460        |
| Export <sup>d</sup>                         | -176200   | -176200   | -176200          | -176,200  | -176,200       | -176,200       |
| Gunnison Basin                              |           |           |                  |           |                |                |
| M&I and SSI <sup>a</sup>                    | 20,688    | 29,044    | 38,849           | 7,241     | 10,165         | 13,597         |
| Agriculture <sup>a,c</sup>                  | 1,705,000 | 1,640,000 | 1,689,000        | 562,650   | 541,200        | 557,370        |
| Export <sup>d</sup>                         | 0         | 0         | 0                | 0         | 0              | (              |
| Yampa/White/Green                           |           |           |                  |           |                |                |
| M&I and SSI <sup>a</sup>                    | 29,408    | 45,262    | 56,880           | 17,800    | 28,830         | 36,230         |
| Agriculture <sup>a,c</sup>                  | 642,000   | 627,000   | 852,000          | 194,000   | 206,910        | 281,160        |
| Export <sup>d</sup>                         | 1,800     | 1,800     | 1,800            | 1,800     | 1,800          | 1,800          |
| Total reservoir evaporatione                | 389,575   | 389,575   | 389,575          | 389,575   | 389,575        | 389,575        |
| Grand total                                 | 6,186,675 | 6,042,625 | 6,470,927        | 2,738,777 | 2,664,460      | 2,810,700      |
| Legally available <sup>f</sup>              |           |           |                  | 3,079,125 | 3,079,125      | 3,079,125      |
| % of legally available allocated to sectors |           |           |                  | 88.9      | 86.5           | 91.3           |
| Water surplus                               |           |           |                  | 340,348   | 414,665        | 268,425        |

Footnotes on following page.

- b Assumes irrigated acreage change in 2030 ranges from -2,600 acres (due to urbanization of irrigated lands) to +39,000 acres (assumes a firm supply of water and funding sources provided).
- <sup>c</sup> The consumptive use factors for M&I and agricultural are 0.35 and 0.33, respectively. The factors were derived from year 2000 data from BOR (2004) and CWCB (2004).
- d Diversion was measured: a negative value means import, a positive value means export. Include Gunnison and the Dolores Rivers (BOR 2004). Assumes export does not change in 2030.
- e Evaporation from main stem reservoirs of the Upper Colorado River Basin and the reservoirs in northwestern Colorado (using last 10 years average).
- f Assumes 6,000,000 ac-ft/yr available for Upper Colorado River Upper Basin.

Sources: CWCB (2004); BOR (2004).

TABLE 3.4.1-3 Utah Water Demand and Consumptive Use in 2000, 2020, and 2050 (ac-ft/yr)

|                                         |                        | Demand    |           | Cc                     | nsumptive Us | se        |
|-----------------------------------------|------------------------|-----------|-----------|------------------------|--------------|-----------|
| Location                                | 1996/2000 <sup>b</sup> | 2020      | 2050      | 1996/2000 <sup>b</sup> | 2020         | 2050      |
| Southeastern Colorado River Basin       |                        |           |           |                        |              |           |
| M&I and SSIa,c                          | 8,740                  | 10,000    | 12,000    | 5,990                  | 6800         | 8160      |
| Agricultural <sup>d</sup>               | 73,000                 | 73,000    | 72,000    | 43,255                 | 42295        | 41095     |
| Uinta Basin                             | 2000                   | 2020      | 2050      | 1995/2000              | 2020         | 2050      |
| M&I and SSI <sup>b</sup>                | 15,830                 | 20,360    | 30,850    | 8450                   | 10870        | 16210     |
| Agricultural <sup>d,e</sup>             | 745,000                | 744000    | 741,000   | 387400                 | 386880       | 385320    |
| Export                                  | 150,400                | 150,400   | 150,400   | 150,400                | 150,400      | 150,400   |
| Western Colorado River Basin            | 1996/2000b             | 2020      | 2050      | 1996/2000 <sup>b</sup> | 2020         | 2050      |
| M&I and SSI <sup>a</sup>                | 55,168                 | 70,300    | 79,300    | 43,400                 | 56200        | 62200     |
| Agricultural <sup>d,f</sup>             | 284,000                | 283,000   | 281,000   | 156,200                | 181120       | 179000    |
| Export/Import <sup>c</sup>              | 4,640                  | 79,640    | 160,280   | 4,640                  | 79,640       | 160,280   |
| Groundwater Sourceg                     | -17,871                | -17,871   | -17,871   | -17,871                | -17,871      | -17,871   |
| Evaporation <sup>h</sup>                |                        |           |           | 53,250                 | 53,250       | 53,250    |
| Main Stem Reservoir Evaporationi        |                        |           |           | 137,402                | 137,402      | 137,402   |
| Total water use (ac-ft/yr)              | 1,318,907              | 1,412,829 | 1,508,959 | 972,516                | 1,086,986    | 1,175,446 |
| Legally available                       |                        |           |           | 1,368,500              | 1,368,500    | 1,368,500 |
| Projected use in % of legally available |                        |           |           | 71.1                   | 79.4         | 85.9      |
| Water surplus                           |                        |           |           | 395,984                | 281,514      | 193,054   |

a Sources: UDNR (1999; 2000a,b).

Footnotes continued on following page.

b In the southeastern and western Colorado River Basin, M&I and SSI from 1996 data and agricultural water from 2000 data; in Uinta Basin, agricultural water from 1995 data, while M&I and SSI from 2000 data (Source: UDNR 2000a).

- <sup>c</sup> Consumptive use in 2020 and 2050 was estimated by multiplying the demand by a factor of 0.68. The factor was derived from the 1996 data.
- d Agricultural water use information is from UDNR (2001). Southeastern Colorado River Basin includes 24,825 ac-ft of Flaming Gorge Water Right; exports of 50,000 ac-ft from water right on the Fremont River in Wayne County and 25,000 ac-ft near Green River in Emery and Grand Counties, 5,400 ac-ft from Price River drainage to the Sevier River Basin; 70,000 ac-ft of water from Lake Powell to Washington County, and 6,000 ac-ft from Lake Powell to Kane County.
- e The consumptive use was estimated by multiplying the demand by a factor of 0.52. The factor was derived from data provided in UDNR (1999).
- $^{\rm f}$  The consumptive uses were estimated by multiplying the demand by factors of 0.55, 0.64, and 0.64 for 2000, 2020, and 2050. The factors were derived from data provided in UDNR (2000b).
- g Yield of the West Colorado River Basin is 630,000 ac-ft/yr; the Navajo Sandstone Aquifer may store several million ac-ft of groundwater.
- h Based on average of 10 years evaporation for Utah in the Upper Colorado River Basin.
- 1 23% of the average of 10 years main stem evaporation. The main stem evaporation includes major reservoirs shared by several states.
- j Assumes 6,000,000 ac-ft/yr available for Upper Colorado River Upper Basin, Utah's share is 23% of 5,950,000 ac-ft. Sources: UDNR (1999; 2000a,b; 2001).

TABLE 3.4.1-4 Wyoming Water Consumptive Use in 2000 and 2030 (ac-ft/yr)

|                                              |             | Consumpt | ive Use           |         |                  |
|----------------------------------------------|-------------|----------|-------------------|---------|------------------|
|                                              |             |          | 2030 <sup>b</sup> |         | Consumptive Usec |
| Location                                     | 2000        | Low      | Moderate          | High    | 2000             |
| Green River Basin                            |             |          |                   |         |                  |
| Surface Water                                |             |          |                   |         |                  |
| Municipal                                    | 6,542       | 6,628    | 8,059             | 10,068  |                  |
| SSI (power generation+soda ash+others)       | 66,460      | 77,960   | 106,400           | 166,300 |                  |
| Municipal and Industrial                     |             |          |                   |         | 45,900           |
| Agricultural <sup>a</sup>                    | 401,000     | 408,000  | 423,000           | 438,000 | 326,700          |
| Export <sup>d</sup>                          | 17,200      | 22,700   | 22,700            | 22,700  | 17,200           |
| Evaporation from state water bodies          | 32,300      | 32,300   | 32,300            | 32,300  | 32,300           |
| Main stem reservoir evaporatione             | 83,636      | 83,636   | 83,636            | 83,636  | 83,636           |
| Surface Water Subtotal                       | 607,138     | 631,224  | 676,095           | 753,004 | 505,736          |
| Legally available <sup>f</sup>               | 833,000     | 833,000  | 833,000           | 833,000 | 833,000          |
| Projected use in % of legally available      | 72.89       | 75.78    | 81.16             | 90.40   | 60.71            |
| Vater Surplus                                | 225,862     | 201,776  | 156,905           | 79,996  | 327,264          |
| Groundwater Use                              |             |          |                   |         |                  |
| Municipal                                    | 811         | 927      | 1,065             | 1,140   |                  |
| Domestic                                     | 1,940-3,880 | 2,100    | 3,600             | 5,080   |                  |
| SSI (oil and gas, coal bed methane, mining)g | 0           | 0        | 0                 | 0       |                  |
| Groundwater subtotal                         | 2,751-4,691 | 3,027    | 4,665             | 6,220   |                  |

a Depletion is used for agricultural consumptive use, resulting in a higher number than the BOR's estimate. Source: SWWRC (2001a).

Footnotes continued on following page.

b Low growth scenario depends on cattle price (or foliage price), population growth, and industrial growth. Sources: BOR (2004); SWWRC (2001b).

# TABLE 3,4,1-4 (Cont.)

- c Source: BOR (2004).
- d A diversion from the upper Little Snake River Basin to the City of Cheyenne. Source: SWWRC (2001b).
- c Assumes 14% of 597,400 ac-ft (yearly average of the last 10 years of 4 major reservoirs).
- f Assumes 6,000,000 ac-ft/yr available for Upper Colorado River Upper Basin.
- g The groundwater pumped by these industries is returned to the subsurface, no consumptive use.

Sources: SWWRC (2001a,b), BOR (2004).

County in northwestern Colorado (primarily from two power generating plants and the soda mining industry) is about 76%. The rate is derived by comparing the amount of water diverted with actual water consumption data in 2000 provided by the state (CWCB 2004) and BOR (2004).

In the agricultural sector, the irrigated water is the water delivered to irrigated areas. Reported consumptive use (to support the calculations apportioning water in the Upper Colorado River Compact) is calculated differently in Colorado and Utah han in Wyoming. Colorado and Utah report consumptive use as the water that does not return to surface water bodies. However, Wyoming reports irrigation depletion as the irrigated water (return water not considered), and thus may overestimate actual consumptive use due to irrigation. Irrigation depletion and consumptive use are calculated by models with input of acreages of agricultural land, types of crop. and weather data.

Generally, water demand in the Upper Colorado River Basin cannot be totally met because the availability of water is limited by physical streamflow conditions, water rights (physically and legally available water, respectively), and lack of storage facilities. In addition, infrastructure for storage (reservoirs) and delivery systems is required to send physically and legally available water to end users. In many agricultural areas, the lack of financial resources often limits the construction of infrastructure, thereby reducing potential agricultural water use. This results in a disparity between high water demand and relatively lower consumptive water use. The infrastructure also dictates water supply availability.

Both intra- and interbasin water transfers are common in Colorado and Utah. Water from the upper reaches of the Colorado River is transferred to the South Platte and Arkansas hydrologic basins (or Front Range) to support metropolitan and agricultural water needs. Similarly, water from the Unta Basin is transferred to central Utah. Because the water is exported to outside the Upper Colorado River Basin, the total amount exported is considered to be a consumptive use.

Evaporation of water from reservoirs and other water bodies contributes a large portion of consumptive water use in the Upper Colorado River Basin. The evaporation is from four major reservoirs (Flaming Gorge, Blue Mesa, Morrow Point, and Lake Powell) along the main stem of the river, and from smaller reservoirs, stock ponds, and streams within each state.

Although groundwater is commonly used in the four basin areas, most of the groundwater is drawn from alluvium adjacent to the major streams (Repplier et al. 1981). In Colorado, water from the shallow alluvial aquifer is considered part of the surface water (tributary water). For deeper aquifers (nontributary water), withdrawal of groundwater, if it is not returned to the subsurface, is considered to be consumptive use (BOR 2004). Environmental and recreation water use to maintain instream flows are not considered consumptive water use.

As shown in Table 3.4.1-2, the demand for water in Colorado in the Upper Colorado River Basin was more than 6,000,000 ac-ft in the year 2000. The projected demands for the year 2030 also exceed 6,000,000 ac-ft. The projected demands are based on projected population decrease or growth in the region as well as the transfer of part of the agricultural water to the

M&I sector, with an assumption that water conservation practices remain at existing levels. The state used two scenarios to project future use to 2030. The low water use projection is based on an assumed 5% reduction of water use per capita, 5% reduction of population, and 10% water conservation in those counties with identified self-supplied water. The high water use projection, instead, assumes a 5% increase of water use per capita, 5% increase in population, and 10% increase of water use in those counties with identified self-supplied water use. Both the 2000 and projected future water demands well exceed the legally allocated water of 3.079,125 ac, for specified in the Upper Colorado River Compact of 1948. On the other hand, the existing and projected consumptive uses of water in the 2000 and 2030 range from 2,664,000 to 2,810,000 ac-ft, or about 87 to 91% of the legally allocated water. The projected values do not include the water demand for oil shale and/or tar sands development.

In Utah, projected water use data provided by the state's water plan are for 2020 and 2050 rather than 2030. Table 3.4.1-3 lists existing and projected water demands and consumptive uses, not considering the water use of any oil shale and/or tar sands development. A comparison of the water demands and Utah's allocated water under the Upper Colorado River Basin Compact shows that the projected demands in 2020 and 2050 are less than the allocated water. The projected consumptive use of water potentially reaches about 79% and 86% of the allocated water in the 2020 and 2050, respectively.

In Wyoming, water data for consumptive use are provided by the state and BOR (Table 3.4.1-4). In the state estimates, the consumptive agricultural water use is defined as the total irrigated water (i.e., return flow water was not subtracted from the irrigated water, resulting in a higher amount of consumptive use water estimated by the state than by the BOR, see Table 3.4.1-4, year 2000 data). Nevertheless, the projected consumptive use water is less than 90% of the allocated water specified by the Upper Colorado River Basin Compact of 1948. The low, moderate, and high water use scenarios in Table 3.4.1-4 are based on the scenarios of cattle price, population growth, and industrial growth.

In 2005, the BOR's Quality of Water Colorado River Basin Progress Report No. 22 (DOI 2005) also estimated the depletion of the water due to full basin development for the main stem of the Upper Colorado River Basin. The projections were made in consultation with individual states and the Upper Colorado River Commission. The remaining amount of water available and the percentages of state share available for development are shown in Table 3.4.1-5. The projected water consumption of each state by the BOR is much larger than that projected by the states.

Although a certain amount of water is calculated to be available in Wyoming and Utah and to a lesser extent in Colorado, this does not imply that the water is readily or physically available for development. Oil shale basins and STSAs are situated in much smaller areas. Hydrologic basins enriched with surplus water resources are not necessarily coincident with the oil shale basins and STSAs. Storage infrastructures and delivery systems have to be built to capture water for use. Also, water rights and water storage rights (for reservoirs) have to be transferred or purchased before the water can be used for development, as most of the water and storage rights have been claimed in the Upper Colorado River Basin. Finally, water use for the development must meet different state and federal regulations, including requirements to protect

TABLE 3.4.1-5 Upper Colorado Basin Depletion Projections (1,000 ac-ft/yr)<sup>a</sup>

| Year                             | 2010  | 2020  | 2030  | 2040  |
|----------------------------------|-------|-------|-------|-------|
| Colorado                         |       |       |       |       |
| State share                      | 3,079 | 3,079 | 3,079 | 3,079 |
| Remaining available              | 204   | 158   | 109   | 81    |
| Percent of state share available | 7     | 5     | 4     | 3     |
| Utah                             |       |       |       |       |
| State share                      | 1,369 | 1,369 | 1,369 | 1,369 |
| Remaining available              | 240   | 194   | 120   | 72    |
| Percent of state share available | 18    | 14    | 9     | 5     |
| Wyoming                          |       |       |       |       |
| State share                      | 833   | 833   | 833   | 833   |
| Remaining available              | 244   | 225   | 189   | 145   |
| Percent of state share available | 29    | 27    | 23    | 17    |

a States do not necessarily concur with the projections adopted by the BOR for planning purposes.

Source: DOI (2005).

instream flows for endangered Colorado River fishes in the basin. All in all, whether enough water is available for development depends on the results of intensive negotiations between various parties, including water right owners, state and federal agencies, and municipal water providers as well as the developers.

# 3.4.2 Piceance Basin

#### 3.4.2.1 Groundwater Resources

As discussed in Section 3.2.1, within the Piceance Basin, the upper bedrock stratigraphy consists of a series of basin-fill sediments from the Tertiary period. Hydrogeologically, the Tertiary units are grouped into two aquifers and two confining units (Czyzewski 2000; Topper et al. 2003). The Uinta Formation and the upper portion of the Parachute Creek Member compose the Upper Piceance Basin Aquifer. The middle of the Parachute Creek Member, however, is considered the Mahogany confining unit. This Mahogany Zone is the richest oil shale zone in the basin. The lower Parachute Creek Member is the Lower Piceance Basin Aquifer, while the Garden Gulch, Douglas Creek, and Anvil Points Members, combined, constitute another confining unit. Local variations in lithology occur at various scales and may result in permeable zones in units that are predominantly confining units and impermeable zones in units that are predominantly aquifers. The Cretaceous Mesaverde Group composes the Mesaverde Aquifer, while the deeper Mancos Shale is a confining unit unit unit is described to the deeper Mancos Shale is a confining unit.

Permeability within the Upper Piceance Basin Aquifer is attributable to the primary porosity of the sandstone and fractured siltstone of the Uinta Formation and the fractured and dissolution-enhanced fractures of the Parachute Creek Member of the Green River Formation. The upper aquifer's hydraulic conductivity is approximately 1 ft/day. The aquifer's thickness is generally 250 to 1,000 ft in most of the basin. Well yields are 1 to 900 gpm; a yield of 100 gpm is common (Czyzewski 2000).

The Mahogany confining unit has an average thickness of 160 ft, but ranges up to 225 ft. Its horizontal hydraulic conductivity is reported as <0.01 ft/day. Fractures within the Mahogany Zone permit some vertical flow between the upper and lower aquifers (Czyzewski 2000). The vertical hydraulic conductivity is estimated to be about 0.37 ft/day.

The Lower Piceance Basin Aquifer's permeability is attributable to the fractured marlstone of the lower Parachute Creek Member. The lower aquifer's hydraulic conductivity is also approximately 1 ft/day, and its thickness is 500 to 1,000 ft in most of the basin. Well yields in the lower aquifer range from 1 to 1,000 gpm; yields of 200 to 400 gpm are typical (Czyzewski 2000).

Exploratory drilling in the basin has shown that groundwater in the Upper and Lower Piceance Basin Aquifers is typically contained in intervals 0.5 to 20 ft thick composed of fractured or vuggy marlstone, lean oil shale, or sandstone. In the basin, 90% of the water wells are completed to a depth of 300 ft or less, and the median reported well yield is 11 gpm.

The lower Green River Formation's confining unit separates the Lower Piceance Basin Aquifer from the Mesaverde Aquifer. This confining unit is 1,000 to 6,000 ft thick in the basin. The Mesaverde Aquifer has a saturated thickness of 500 to 2,000 ft. It is underlain by the Mancos Shale, which ranges up to 7,000 ft thick.

The Colorado Water Quality Control Commission established an aquifer classification system of five categories of groundwater based on chemical concentration standards and TDS. These include domestic use quality (meets state human health standards and TDS concentrations are below 10,000 mg/L), agricultural use quality (meets state agricultural health standards and TDS concentrations are below 10,000 mg/L), surface water protection quality (guards against proposed or existing activities impacting groundwater such that water quality standards for classified surface water bodies will be exceeded), potentially useable quality (TDS below 10,000 mg/L and potential future use), and limited use and quality (TDS above 10,000 mg/L) (Topper et al. 2003).

Most recharge to the basin's aquifers takes place as winter precipitation in the surrounding areas of higher elevation (Czyzewski 2000; Topper et al. 2003). In summer, high evapotranspiration rates allow little to no infiltration. The estimated total recharge to the Piceance Basin Aquifer system north of the Colorado River is about 30,400 ac-ft/yr (Topper et al. 2003).

In the northern province, groundwater discharge from the upper and lower aquifers in the Piceance and Yellow Creek drainage basins is generally as upward flow either into alluvial

valley fill along creeks or as springs in the shallow valleys. In the Roan and Parachute Creek drainage basins, discharge generally occurs as springs in deep canyon walls (Czyzewski 2000; Topper et al. 2003). In the southern province, similar discharge scenarios are assumed, dependent upon local relationships among topography, hydrogeology, and water levels.

In Colorado's Piceance Basin, the principal aquifer is alluvium along major rivers (Topper et al. 2003). However, in the counties composing the basin, water use is dominated by surface water, which accounts for approximately 97% of the water usage (Topper et al. 2003). An exception is in Rio Blanco County, where groundwater is approximately 10% of the water use. In this county, which includes most of the Piceance Basin, the total average annual groundwater withdrawal from bedrock and alluvial aquifers is estimated as 15,000 ac-ft, of which 88% is used in mining activities (coal, oil, and gas). Other groundwater uses in northwestern Colorado include domestic purposes, livestock watering, industrial, and irrigation supplies.

The alluvial aquifer along the White River in Colorado is mainly used for domestic purposes and for watering livestock (Topper et al. 2003). The annual amount of water pumped from this alluvium is about 1,000 ac-ft (Hatton 2000). Well yields range from 2 to 600 gpm, with an average of 50 gpm (Topper et al. 2003).

Sparse data on the White River alluvial aquifer's water chemistry suggest fair quality, with TDS from 200 to 2,500 mg/L and hardness ranging from 160 to 1,400 mg/L (Hatton 2000; Topper et al. 2003). Water with TDS levels below 1,000 mg/L is generally suitable for domestic supply, while water with TDS values below 3,000 mg/L is generally suitable for agricultural purposes (Hranac 2000). The water chemistry is calcium bicarbonate or sodium sulfate.

The Upper Piceance Basin Aquifer north of the Colorado River increases in TDS from the recharge areas (about 500 mg/L) to the discharge areas (about 1,000 mg/L). The water chemistry varies from calcium carbonate to sodium carbonate, with large concentrations of sulfate. The Lower Piceance Basin Aquifer has TDS that increase from 1,000 to 10,000 mg/L along its flowpaths. The water chemistry is sodium bicarbonate.

Surface water in the basin receives base flow from alluvial aquifers. Groundwater discharge from bedrock to alluvium, therefore, indirectly provides a portion of the water used by surface water systems (Hatton 2000).

Total groundwater storage in the northern province of the Piceance Basin is estimated as 5 million ac-ft (Czyzewski 2000). The White River alluvium between the towns of Meeker and Rangely contains an estimated 103,000 ac-ft of groundwater (Topper et al. 2003). In 1995, the total groundwater withdrawal for the overall Piceance Basin's five counties amounted to nearly 46,000 ac-ft. Groundwater is possibly being mined (i.e., overdrawn) in the basin, resulting in depletion of the aquifer system. Because of adequate surface water supplies, however, demand is unlikely to change (Hatton 2000).

Aquifers below the Green River Formation aquifers are generally not viable because of poor water quality and high costs associated with drilling and pumping (Czyzewski 2000).

Essentially the only groundwater users in the northern province of the Piceance Basin (apart from the White River alluvium) are ranchers. An exception during the 1970s and early 1980s was oil shale exploration; the brevity of the development period, however, left the groundwater resources essentially untouched (Czyzewski 2000). Here and elsewhere in the Piceance Basin, the Tertiary bedrock may be the only practical water resource away from rivers, significant creeks, and major alluvial aquifers.

Topper et al. (2003) list common sources of groundwater contaminants from Colorado mining operations and their associated drinking water standards. These include selenium (0.05 mg/L), iron (0.3 mg/L), manganese (0.05 mg/L), and arsenic (0.01 mg/L). Uranium is also listed as a potential contaminant resulting from mining.

# 3.4.2.2 Surface Water Resources

Two major rivers drain the Piceance Basin in the study area: the White River and its tributaries on the north and the Colorado River and its tributaries on the south (Repplier et al. 1981). The White River and Colorado River are administered by two different Water Districts in Colorado. Each has its own authority to administer and distribute waters, promulgate rules and regulations, and collect data on water supply. The Recovery Program for Endangered Fish of the Upper Colorado River Basin is designed to protect flow conditions needed by native endangered fishes in the Basin.

Precipitation varies greatly within the Piceance Basin and is closely related to topography. Annual precipitation, in the form of rain and snow, ranges from less than 10 in. in the Colorado River valley in western Colorado to 48 in. near the top of mountains surrounding the basin (Topper et al. 2003). Streamflows fluctuate seasonally, with the highest flow occurring in the spring as a result of snowmelt from April to June, and the minimum flow occurring in early winter. Because of rugged terrain, summer storms can result in occasional flash floods in rivers. Since agricultural lands are well developed in the valley of the Colorado River, reservoirs have been constructed for better distribution of irrigation water. Therefore, the streamflows of many rivers in the Piceance Basin are regulated.

Computed average annual lake evapotranspiration is roughly 30 to 36 in./yr in the basin (Topper et al. 2003). The calculated water balance, determined by subtracting the average annual lake evaporation from the average annual precipitation, ranges from a loss of 12 in./yr or more in the low, western portion of Rio Blanco County to a gain of 4 in./yr or more in mountainous eastern Rio Blanco County. In most of the county and the basin, however, the water balance ranges from a loss of 12 in./yr to a loss of 4 in./yr (Topper et al. 2003).

Several tributaries of the White River, including Yellow Creek and Piceance Creek, drain the study area (Figure 3.4.2-1) between the upstream town of Meeker and the downstream town of Rangely. Two reservoirs, the Rio Blanco Lake Reservoir and the Kenny Reservoir (or Taylor Draw Reservoir), are present along this segment of the river.

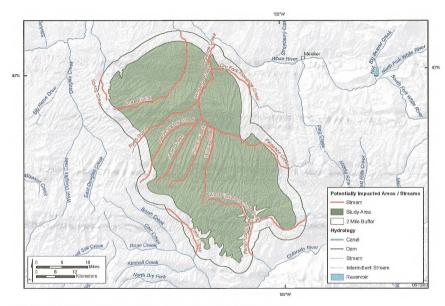



FIGURE 3.4.2-1 Yellow and Piceance Creeks and Their Tributaries in the Piceance Basin

The streamflow of the White River fluctuates seasonally. High flows occur between April and July. The minimum and maximum recorded flows below the town of Meeker are 85 cubic feet per second (cfs) (in 1977) and 6,060 cfs (in 1983), respectively. The average discharge based on 58 years of record near the town of Meeker is 633 cfs (USGS 1968). The river flows west into the Green River in Utah. The average annual flow leaving the state at the Colorado-Utah border is 590,100 ac-ft (Topper et al. 2003). During low-flow seasons, groundwater discharge contributes to part of the streamflow (Tobin 1987).

The White River Basin is sparsely populated. Management of the waters in the White River Basin is under the jurisdiction of Colorado Water District 6. The major water use in the White River Basin is irrigation. Groundwater use is minimal. On the main stem of the White River, water has been available for appropriation. However, water rights calls occur on Piceance Creek where irrigation demands can exceed streamflows (CWCB 2002).

Several tributaries of the Colorado River drain the Piceance Basin between the towns of Rifle and Meeker. From the east to the west, they are Parachute Creek, Roan Creek, Plateau Creek, Big Salt Wash, East Salt Creek, and West Salt Creek (Figure 3.4.2-1). A major reservoir, the Vesas Reservoir, is present along Plateau Creek.

Snowmelt runoff dominates the streamflow of the upper Colorado River and is typically highest in the spring and lowest in the winter (Spahr et al. 2000). The mean annual streamflow (based on 1970 to 1993 data) near Cameo is about 3,000 cfs (Spahr et al. 2000). However, the maximum annual streamflow is much higher. During low-flow seasons, groundwater discharge contributes part of the streamflow (Tobin 1987).

Management of the waters in the Colorado River Basin is under the jurisdiction of Colorado Water District 5. Irrigation accounts for 97% of the water use in the upper Colorado River: 99% of the water used is derived from surface water sources (Topper et al. 2003).

Large amounts of dissolved salts and sediment crode into this segment of the Colorado River (USGS 1968) because local bedrock and the derived soil have relatively high contents of soluble salts. Heavy irrigation in this area also promotes the leaching process in soils, thereby releasing salts, sediments, nutrients (e.g., nitrogen and phosphorus), pesticides, and herbicides into the river (Spahr et al. 2000). Between 1914 and 1957, the Colorado River water near Cameo had weighted-average concentrations of dissolved solids of 387 parts per million (ppm) and suspended sediment of 2,300 ppm (USGS 1968). Although their concentrations are typically low, pesticides are commonly detected in streams in agricultural areas (Topper et al. 2003).

#### 3.4.3 Uinta Basin

## 3.4.3.1 Groundwater Resources

Section 3.2.2 describes the overall geologic framework of the Uinta Basin. Key aquifers in the basin include the alluvium, the Uinta-Duchesne Aquifer, the Parachute Creek Member of

the Green River Formation (including the "Bird's Nest Aquifer"), and the Douglas Creek Aquifer of the Green River Formation.

The alluvial aquifers are recharged by infiltration of surface water and by discharge of bedrock aquifers. The average thickness of the alluvial fill in the White River and Evacuation Creek drainages is 30 ft; in the Bitter Creek drainage and elsewhere, the alluvium is about 100 ft thick. Maximum well yields are less than 1,000 gpm. Water type is typically sodium sulfate, and TDS concentrations vary from 480 to 27,800 mg/L. Most alluvial wells are along the White River, near Bonanza, where the water is used to support gilsonite mining (Holmes and Kimball 1987).

The Uinta Formation and Duchesne River Formation act as a single hydrologic unit (Glover 1996). The combined thickness of the Uinta-Duchesne Aquifer, where both units are present, is about 8,000 ft. Well yields are typically 30 to 40 gpm, but range from less than 1 gpm to as much as about 300 gpm in fractured zones. Recharge to the aquifer is mainly from infiltration of precipitation and surface water in the western extent of the formations in Duchesne and Wasatch Counties. Flow is generally to the east across the study area, with discharge to perennial streams. TDS levels range from <500 to >3,000 mg/L (Glover et al. 1998).

The Parachute Creek Aquifer is recharged by stream infiltration and leakage from the overlying Uinta Formation. It discharges to Bitter Creek and the White River. The aquifer thickness ranges from 90 to 205 ft. Water generally moves to the west from recharge areas along Evacuation Creek, and from the south and north toward the lower reaches of Bitter Creek. The "bird's nest" zone is named because in outcrops it resembles a wall of sparrows' nests. This zone contains solution cavities up to 2 ft in diameter caused by the natural removal of soluble nahcolite. Connection of the cavities has resulted in a highly permeable zone within the Parachute Creek Member. Properties of the Parachute Creek Aquifer vary greatly with location and the degree of dissolution of the nahcolite. Well yields vary also and are as high as 5,000 gpm. Water type is generally sodium sulfate to sodium bicarbonate. TDS levels range from 870 to 5,810 mg/L (Holmes and Kimball 1987).

The Douglas Creek Aquifer receives recharge mainly by infiltration of precipitation and surface water in its outcrop area, with little leakage from underlying bedrock aquifers. It discharges locally to springs in the outcrop area and to alluvium along major drainageways such as the Green and White Rivers. In the study area, flow is generally to the north and northwest. The unit is roughly 500 ft thick, although in the center of the Uinta Basin it is as thick as 1,000 ft. Maximum well yields are less than 500 gpm. Water type is typically sodium sulfate to sodium bicarbonate. TDS levels range from 640 to 6,100 mg/L (Holmes and Kimball 1987).

Groundwater in Utah is classified according to water quality and importance (State of Utah 2006). Class IA groundwater is pristine, with TDS levels less than 500 mg/L and no contaminant exceedances. Class IB groundwater is irreplaceable as a public supply source because it is a sole source of adequate quality, quantity, and economics. Class IC is ecologically important groundwater that discharges to a wildlife habitat. Class II is drinking water quality, with TDS between 500 and 3,000 mg/L and no contaminant exceedances. Class III is limited-use groundwater, with TDS between 3,000 and 10,000 mg/L and one or more contaminants

exceeding groundwater quality standards. Class IV groundwater is saline, with TDS above  $10,000 \, \text{mg/L}$ .

Lindskov and Kimball (1984) estimated the recoverable groundwater in storage in three main aquifers (alluvium, Parachute Creek, and Douglas Creek) in the broader southeastern Uinta Basin (an area two to three times the size of the study area) to be 18 million ac-ft. They also estimated the practical limit to groundwater withdrawal in this area as about 20,000 ac-ft/vr.

Hood and Fields (1978) provide information on water usage in the northern portion of the Unita Basin. This area includes the northeastern part of the study area. It is assumed that their study area and the study area of this PEIS have similar water uses. They note that irrigation is the dominant water use in the region, with domestic and industrial uses being relatively small. Irrigation water for livestock and crops amounted to 575,000 ac-ft/yr from surface water and 6,000 ac-ft/yr from groundwater. Their 1974 estimates of population and water use were 28,700 persons in northern Uinta Basin counties and 12,700 ac-ft/yr of domestic use. This domestic water was almost all from wells and springs. Wells were also used to supply the industrial needs of 4,900 ac-ft/yr.

Groundwater quality in the Uinta Basin decreases with increased travel distance from recharge locations and with increasing depth. Concentrations of TDS in the basin show a range that affects the potential use of the water. In many locations, the water is marginally useful or even unsuitable for domestic use or irrigation.

#### 3.4.3.2 Surface Water Resources

The Uinta Basin is bounded by the Uinta Mountains on the north and the Roan Plateau on the south. The basin is dissected by the deeply incised southward-flowing Green River, the largest tributary of the Colorado River. The Green River is joined by two major tributaries, the Duchesne and White Rivers, near Ouray, Utah (Figure 3.4.3-1). The combined flow of the White, Duchesne, and Green Rivers near Ouray averages about 5,900 cfs, based on records from 1965 to 1979 (Lindskov and Kimball 1982). About 4 million ac-ft of water per year enters the basin (via the Duchesne, Green, and White Rivers) and leaves (via the Green River) (Lindskov and Kimball 1984). Most of the flow is attributed to water entering the basin by the White and Green Rivers.

The Uinta Basin can be divided into the northern and southern Uinta Basin by using the Strawberry, Duchesne, and White Rivers in Utah and Colorado as a divide (Figure 3.4.3-1). The northern area includes two major drainages, the Strawberry and Duchesne, with a combined drainage area of 4,250 mi². The oil shale considered in the study area of this PEIS lies mostly in the southern Uinta Basin and in a small area in the southern part of the northern Uinta Basin within the Duchesne drainage.

Most of the tributaries of the Duchesne drainage begin on the south slope of the Uinta Mountains. Major tributaries to the Duchesne River include the Whiterocks River, Uinta River, Dry Gulch Creek, Lake Fork River, Rock Creek, Ashley Creek, North Fork and West Fork

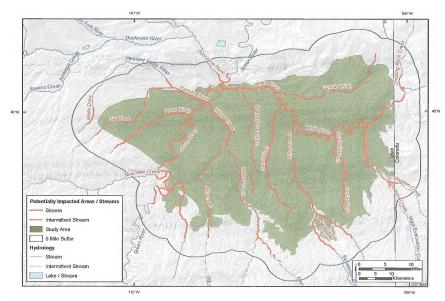



FIGURE 3.4.3-1 Major Rivers and Their Tributaries in the Uinta Basin

Duchesne Rivers, Red and Currant Creeks, and the Strawberry River. The Duchesne River flows to the east and joins the Green River near Ouray. Utah.

The average annual volume of precipitation on the northern Uinta Basin is estimated to be 4.87 million ac-ft on the basis of data from 1941 to 1970. The average annual transbasin inflow includes 3.03 million ac-ft in the Green River and 521,000 ac-ft in the White River. About 4.27 million ac-ft are consumed annually by evapotranspiration (Hood and Fields 1978), and 190,000 ac-ft/yr are exported to the southern Uinta Basin and Great Basin. The average outflow of the Green River from the northern Uinta Basin is about 3.95 million ac-ft/yr (Hood and Fields 1978).

The southern Uinta Basin lies south of the Strawberry, Duchesne, and White Rivers in Utah and Colorado, draining an area about 4,900 mi<sup>2</sup>. Most of the major streams on the southern Uinta Basin originate from the Roan Plateau and flow northward to the Duchesne and White Rivers (Price and Miller 1975). Major perennial and intermittent streams west of the Green River include the Pariette Draw, Petes Wash, Indian and Lake Canyons, and the Avintaquin, Antelope, Sowers, and Nine Mile Creeks. Streams east of the Green River include the Willow, Bitter, and Evacuation Creeks, and the Asphalt, Sand, and Coyote Washes.

The average annual volume of precipitation on the southern Uinta Basin is estimated to be 3.1 million ac-ft on the basis of data from 1941 to 1970. Another 80,000 ac-ft/yr are transported into the basin from the northern Uinta Basin. The estimated annual runoff from the southern Uinta Basin is 134,000 ac-ft (Price and Miller 1975; Hood and Fields 1978). The subbasins that may be developed to provide sustainable water supply are Evacuation, Willow, Nine Mile, Range, and Avintaquin Creek, with a total estimated mean annual runoff of 55,000 ac-ft/yr (Price and Miller 1975).

The climate of most of the Uinta Basin below an elevation about 8,000 ft is arid to semiarid. Average annual precipitation ranges from less than 8 in. near the bottom of the basin at altitudes below 5,000 ft, to 26 in. in the western part of the Roan Plateau. Most of the precipitation is from snow in the winter and rainstorms in the late summer (Price and Miller 1975; Hood and Fields 1978; Lindskov and Kimball 1982).

The streamflow in the basin is extremely variable. Annual runoff varies from year to year and over periods of months, weeks, and days (Lindskov and Kimball 1984). Streams are typically perennial in the higher altitudes of the mountains and plateaus. They become intermittent and ephemeral in areas where annual precipitation is less than 10 in. and evapotranspiration is high (Lindskov and Kimball 1984). Evapotranspiration is estimated to be 94 to 98% of the precipitation in the basin (Price and Miller 1975; Lindskov and Kimball 1982). High streamflow occurs during snowmelt from March to June and during rainstorm activities in July, August, and September. The flows in the Green, Duchesne, and White Rivers are moderated by reservoirs built along the rivers.

The Duchesne River and its tributaries have been extensively affected by water development projects. Construction of a system of transbasin tunnels, canals, and reservoirs began in 1915. The Duchesne River is currently undergoing four separate federal water projects

as part of the Central Utah Project (BOR 2006). Flow of the Duchesne River has been reduced, and the river channel has been substantially changed in the last 50 years. The daily average streamflow measured near Randlett is 634 cfs (USGS 2006a). The minimum and maximum daily mean flows were 13 cfs and 7,000 cfs, respectively, based on 62 years of record (USGS 2006a). The maximum recorded peak discharge was 11,500 cfs. The USFWS (Modde and Keleher 2003) recommended a minimum flow of 115 cfs in the lower river between March 1 and June 30 and 50 to 115 cfs for the remainder of the year for endangered fish needs.

Dissolved salt in the rivers is a major concern in the Uinta Basin. The salts originate from marine and lacustrine sedimentary rocks and their derived soils that have high salt content. Surface runoff, irrigation return flow, saline groundwater discharges, and evapotranspiration are the major causes of the elevated TDS concentrations in the surface water (Price and Miller 1975). The concentrations of dissolved salt in streams generally are low near headwater areas, but increase dramatically near the lower reaches of the streams. This is magnified during low-flow periods. For major rivers such as the Green, White, and Duchesne Rivers, the concentrations of dissolved salts are moderated by reservoirs. Recorded concentrations in the Green River generally are less than 1,000 mg/L throughout the year. During low flow in the White River, the TDS concentration is about 1,000 mg/L. The concentrations in the lower reach of the Duchesne River, however, commonly exceed 1,000 mg/L and occasionally exceed 2,000 mg/L during late irrigation and low-flow periods (Price and Miller 1975; Lindskov and Kimball 1984; UDEQ 2006b).

Agricultural irrigation accounts for the largest use of water in the Uinta Basin, almost all of which is obtained from streams (Price and Miller 1975; Hood and Fields 1978). Irrigation water is applied mainly to lands that support the livestock and dairy industry.

#### 3.4.4 Green River Basin and Washakie Basin

# 3.4.4.1 Groundwater Resources

Section 3.2.3 contains a description of the geological setting of both the Green River and Washakie Basins. Hydrogeological data for the basins are available in Mason and Miller (2004). Unconsolidated alluvial aquifers along major drainages generally have poor water quality. Alluvial thicknesses range up to 50 ft, and some portion of the alluvium may be saturated. Mason and Miller (2004) assembled historical well-yield data from across the basins and describe yield as less than 1 gpm to about 30 gpm in alluvium. Samples collected and analyzed during their study were found to have high concentrations of at least one of the following: TDS, nitrate, chloride, fluoride, sulfate, arsenic, boron, manganese, molybdenum, selenium, and uranium. Overall, less than 25% of the sampled alluvial groundwater was suitable for domestic use, but most was suitable for livestock.

In the Bridger-Washakie Formation, data from wells or springs were sparse. Samples represented a range of water types, and many were high in one or more water quality parameters such as sulfate, TDS, manganese, pH, boron, iron, or uranium. The samples varied in their

suitability for domestic, livestock, or irrigation uses. The potential for groundwater development in these formations is not well known but probably poor. Well yields were not provided. The highest spring flow value presented was only 2.25 gpm.

In the Green River Formation, the water quality varies among the various formation members, but is mainly dependent on well depth and distance from groundwater recharge areas.

Data summarized by Mason and Miller (2004) for the Laney Member in the Green River Basin suggest well yields from 1 to 75 gpm. Information for the Washakie Basin suggests that well yields in the Washakie range up to 200 gpm, with TDS concentrations from 500 to 900 mg/L. Mason and Miller (2004) summarized water quality data for wells completed in the Laney Member in both basins. Half the samples were sodium-sulfate type; the remaining ones were mixed. The water quality of the samples was generally marginal to poor because of sulfate and TDS, which ranged from 311 to 53,700 mg/L, with a median of 2,080 mg/L. TDS concentrations increased with well depth and were significantly increased for wells more than 1,000 ft deep. Spring sampling showed a median TDS concentration of 2,200 mg/L. Some water well or spring samples were high in fluoride, boron, or manganese.

A small number of samples were reviewed or collected by Miller and Mason (2004) from the Wilkins Peak Member of the Green River Formation. These were all from recharge locations within the Green River Basin. The samples were of mixed water chemistry, with high sulfate and TDS concentrations. The water was suitable for livestock watering, and some of the samples represented water acceptable for irrigation or domestic use. Miller and Mason (2004) summarized prior studies on the Wilkins Peak water quality, in which the water was of very poor quality, and suggested that the water quality worsens rapidly with distance traveled. Well yields in the Wilkins Peak were reported to be less than 30 gpm.

To address the Tipton Shale Member, Miller and Mason (2004) reviewed and collected groundwater sample data. Water chemistry was found to be either sodium bicarbonate or mixed. The samples had TDS levels that made them marginally suitable for domestic use, but they were acceptable for livestock watering. However, a few of the samples were high in boron or fluoride. These samples were from wells in the Green River Basin, which were in use for livestock watering or other purposes; they were, therefore, not of poor quality. A review of historical reports on other water samples in the Green River Basin found groundwater in the Tipton Shale to be of good quality in portions of the Green River Basin, but poorer in other parts of the basin. Yields from nine wells in the Tipton Shale ranged from 10 to 170 gpm. The potential for groundwater development in the Washakie Basin is considered to be low.

No data are available for the Luman Tongue of the Green River Formation. The aquifer can probably produce enough groundwater for livestock or domestic use, provided the well is close to a recharge area (Mason and Miller 2004).

A review of wells completed in the Wasatch showed yields from less than 1 to 1,300 gpm, with most less than 500 gpm (Mason and Miller 2004). Samples from 84 Wasatch water wells and springs were completed by Mason and Miller (2004). The water type ranged from sodium bicarbonate to sodium sulfate to mixed water types. Concentrations of TDS, sulfate,

and fluoride were generally high, and boron was high in some locations. Of 84 samples from water wells and springs, many were at least marginally acceptable for domestic use; almost all were acceptable for livestock, but only half were suitable for irrigation use. Fifty produced water samples had TDS concentrations ranging from 1,050 to 130,000 mg/L, with a median of 13,000 mg/L. Most were sodium chloride type. Deeper samples had higher TDS concentrations, with wells more than 2,000 ft deep generally unsuitable for domestic, irrigation, or livestock use.

Wyoming classifies its aquifers according to standards designed to protect groundwater of a given classification from anthropogenic degradation, so that the water quality is suitable for its intended use or potential future use (WDEQ 2005). Three categories have been defined on the basis of ionic concentrations and other water quality parameters, including TDS. The Class I aquifers are those for domestic use and have TDS concentrations up to 500 mg/L. The Class II aquifers are for agricultural use and have TDS concentrations from 500 to 2,000 mg/L. The Class III aquifers are for livestock watering and have TDS concentrations from 2,000 to 5,000 mg/L. Class IV aquifers have TDS concentrations above 5,000 mg/L and may be used by industry.

Recharge to the aquifers in Sweetwater County occurs as infiltration in aquifer outcrop areas (including snowmelt infiltration at high elevations), losing streams, and even irrigation water infiltration (Mason and Miller 2004). Overall areal recharge is less than 0.5 in./yr. The bulk of groundwater discharge out of the county takes place as bedrock aquifer flow and alluvial underflow, with minor amounts of well withdrawals (Mason and Miller 2004).

The Green River and Washakie Basins are sparsely populated. In Sweetwater County, Wyoming, which contains most of the basins, the estimated mean daily water use in 2000 was 170 million gpd (Mason and Miller 2004). The largest water use is irrigation, at an estimated mean daily rate of 92 million gpd, of which 90% was surface water. Groundwater, though relied on as a resource to a much smaller degree than surface water, is the sole source of water in many areas. The second largest water use in Sweetwater County was mining (41 million gpd), for which essentially all water was saline groundwater. The predominant mining water use was for trona mining and oil and gas production (Mason and Miller 2004).

Population centers in the Wyoming basins are located in the Green River Basin, with the cities of Rock Springs and Green River composing more than 80% of the Sweetwater County population (Mason and Miller 2004). These cities, as well as the town of Granger, rely on surface water for municipal supply, with Granger along Blacks Fork, Rock Springs at the confluence of Bitter Creek and Killpecker Creek, and Green River along the Green River itself.

Groundwater use by irrigation, public supply, industry, and domestic wells is essentially negligible (Mason and Miller 2004). Mining operations have constituted the only significant use of groundwater in Sweetwater County.

Groundwater quality in the basins decreases in quality with increased travel distance from recharge locations and with increasing depth (Mason and Miller 2004). TDS concentrations are moderately saline to briny in aquifers a few thousand feet deep, but locally even shallow groundwater can have moderate salinity. In Sweetwater County, which contains most of the

Green River and Washakie Basins' oil shale, shallow groundwater is available in most places (Mason and Miller 2004). However, high TDS concentrations in many locations cause the water to be marginally useful or even unsuitable for domestic use or irrigation. Water of livestockwatering quality is generally available in the county.

In addition to having high TDS concentrations, groundwater from some aquifers in Sweetwater County exceeds EPA drinking water standards for sulfate, fluoride, boron, iron, and manganese (Mason and Miller 2004).

Water quality in alluvial aquifers in Sweetwater County is generally poor because of high TDS concentrations (Mason and Miller 2004). Tertiary bedrock aquifers, although of variable quality, have the most abundant groundwater in the Sweetwater County vicinity and are the most widely used (Mason and Miller 2004).

#### 3.4.4.2 Surface Water Resources

The Green River Basin in Wyoming is part of the Colorado River Basin. Major tributaries of the Green River in the basin include the New Fork, Hams Fork, Big Sandy, Blacks Fork, and Henry's Fork Rivers, and Bitter Creek (Figure 3.4-4-1).

Annual rainfall within the basin varies with altitude, ranging from less than 8 in. on the basin floor to more than 50 in. in the surrounding mountain ranges (Hahn and Jessen 2001). The Fontenelle and Flaming Gorge Reservoirs are two major reservoirs on the Green River. In addition, there are many smaller reservoirs constructed along the major tributaries of the Green River.

The streamflow pattern in the basin is highlighted by spring snowmelts, with high flow from April to July. The streamflow is also moderated by reservoirs built along the rivers. For the Green River below the Fontenelle Reservoir in Wyoming, the mean annual flow was 1,780 cfs for the 1965 to 1984 period. The minimum and maximum annual flows were 690 cfs and 2,780 cfs, respectively. Near the town of Green River, Wyoming, the mean, maximum, and minimum annual flows of the Green River were 1,800, 3,010, and 689 cfs, respectively (Peterson 1988).

The water quality of the streams near mountains is generally good but deteriorates as the streams flow across the basin. The degradation of the water quality is caused by both natural and man-made sources (Strohman 2000). The Green River drainage above Fontenelle Reservoir and the Green River itself above Flaming Gorge Reservoir contain less than 500 mg/L TDS. The water at the Flaming Gorge Reservoir has a median TDS concentration at or slightly above 500 mg/L. The water quality of many streams originating in the low areas is rated as fair to poor in the capacity to support nongame fish, or the water does not have the potential to support fish (Strohman 2000).

Agricultural irrigation is the largest use of surface water in the basin. The most common use of irrigation is in the growth of grass hay for harvest and pasture. The BOR reported that for

FIGURE 3.4.4-1 Major Rivers and Their Tributaries in the Green River and Washakie Basins

42°N

the 1986 to 1990 period, irrigation depletions in Wyoming's Green River Basin averaged 399,000 ac-ft, or about 79% of total depletions. Livestock and domestic and municipal uses account for the other uses of the surface water in the basin (SWWRC 2001a).

The oil shale area in the Washakie Basin of Wyoming is drained by the tributaries of the Little Snake River. Alkali Creek and Vermillion Creek are two perennial rivers draining the basin. Most of other creeks in the basin, such as Sand Creek, Shell Creek, and Barrow Spring Draw, are ephemeral.

Annual precipitation varies with elevation, ranging from less than 10 in. near the bottom of the basin to more than 18 in. near the summit of Pine Mountain in the southwestern part of the basin. For most streams in the basin, high flow occurs during periods of snowmelt and rainstorms, and low flow occurs during the fall and early winters. Extended periods of no flow are common for ephemeral streams. Most ephemeral streams are also losing streams (Mason and Miller 2004).

# 3.4.5 Special Tar Sand Areas

### 3.4.5.1 Groundwater Resources

The BLM (1984) compiled groundwater information for each STSA, including estimates of well yields, spring flows, and ranges of TDS values (Table 3.4.5-1). In cases where sufficient data are available, wide ranges of values are noted for each parameter. Water quality is affected by the geochemistry of the unconsolidated and bedrock aquifers. Groundwater quality is typically better from shallower sources.

Groundwater at or near the 11 STSAs is likely used for a combination of mining, stock watering, irrigation, domestic, municipal, and industrial uses. Local withdrawals at each STSA are dependent upon mining activities, population density, and agricultural land use.

### 3.4.5.2 Surface Water Resources

Precipitation varies across the STSAs with elevation. Higher-elevation STSAs, such as Argyle Canyon and Sunnyside, receive 30 or more in/yr of precipitation (BLM 1984b). Most of the STSAs, however, receive less than 8 in./yr. At San Rafael, annual precipitation is less than 6 in.

Except for San Rafael Swell, Tar Sand Triangle, Circle Cliffs, and White Canyon, most of the STSAs are located in the Uinta Basin. The hydrology of the Uinta Basin is described in Section 3.4.3.2. Figure 3.4.5-1 shows the streams and intermittent streams draining the STSAs.

The STSAs in the northern Uinta Basin that are drained by perennial and intermittent streams include the Raven Ridge and Asphalt Ridge. The Asphalt Ridge STSA is crossed by the

TABLE 3.4.5-1. Groundwater Data within or near STSAs.

| STSA                                  | Water Source                        | Well Yield or Spring<br>Flow (gpm)        | TDS (mg/L)                        | Formation(s)                                                                                                                  |
|---------------------------------------|-------------------------------------|-------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Argyle Canyon<br>and Sunnyside        | Wells and springs                   | <1-350                                    | 190-67,800                        | Alluvium, Green River,<br>Uinta, and others                                                                                   |
| Asphalt Ridge                         | Wells                               | 0.1-503                                   | 149-2,420                         | Duchesne River, and others                                                                                                    |
| Asphalt Ridge                         | Springs                             | 36-83,250                                 | 69-742                            | From Chinle Formation,<br>possibly others                                                                                     |
| Circle Cliffs                         | Wells, including<br>mine dewatering | NAª                                       | 188-8,510                         | NA                                                                                                                            |
| Hill Creek and<br>P.R. Spring         | Springs                             | Up to 50, though<br>most are less than 10 | 297–6,110                         | Alluvium, Bird's Nest<br>Aquifer of the Parachute<br>Creek Member and<br>Douglas Creek Member of<br>the Green River Formation |
| Pariette                              | Wells                               | 3-60                                      | 116-4,480                         | Uinta                                                                                                                         |
| Raven Ridge                           | Wells                               | 0.1-200                                   | 221-118,000                       | Uinta, Green River,<br>Wasatch, and others                                                                                    |
| San Rafael Swell                      | Wells                               | 2.8-200                                   | NA                                | Navajo, Moenkopi, and<br>others                                                                                               |
| San Rafael Swell                      | Springs                             | <1-200                                    | NA                                | Navajo, Moenkopi, and<br>others                                                                                               |
| Tar Sand Triangle<br>and White Canyon | Wells                               | Up to 70, most are <50                    | 318-85,500                        | Navajo, Wingate, and<br>Coconino                                                                                              |
| Tar Sand Triangle<br>and White Canyon | Springs                             | 360-450                                   | 179-6,530<br>(most are<br><2,400) | Navajo, Wingate, and<br>Coconino                                                                                              |

a NA = data not available.

Source: BLM (1984b).

Twelve Mile Wash, which flows south and discharges into the Green River. The Raven Ridge STSA is crossed by the Powder Springs Wash, which flows westward into the Green River (Blackett 1996). Both the Twelve Mile Wash and the Powder Springs Wash are intermittent streams.

The STSAs in the southern Uinta Basin that are drained by perennial and intermittent streams within a distance of 0.25 mi include the P.R. Spring and Hill Creek STSAs east of the Green River, and the Pariette Draw, Sunnyside, and Argyle Canyon STSAs west of the Green River (Figure 3.4.5-1).

Pariette Draw and its tributaries drain the area near the Pariette STSA. Pariette Draw is a perennial stream, discharging to the Green River.

The P.R. Spring and Hill Creek STSAs are incised by intermittent and perennial streams, forming a dendritic drainage pattern. The P.R. Spring STSA is drained by Bitter Creek, Sand

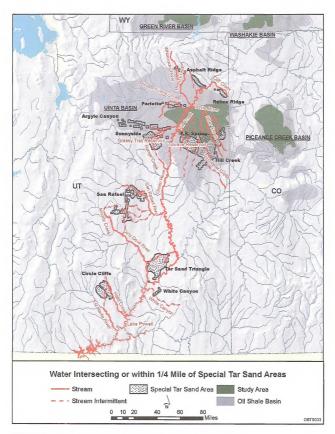



FIGURE 3.4.5-1 Green River and Dirty Devil River Basins Drainage Map

Wash, and Willow Creek and their tributaries. The Hill Creek STSA is drained by the Hill Creek and Tabyago Canyon and their tributaries (Blackett 1996). The Sunnyside STSA is dissected by tributaries of Dry Creek and Cotton Wood Canyon, and the upper reach of Range Creek. Dry Creek and Cotton Wood Canyon are two major tributaries of Nine Mile Creek. The upper reach of Range Creek is an intermittent stream. Both Nine Mile Creek and Range Creek discharge to the Green River (Blackett 1996).

The Argyle Canyon STSA is exposed along the valley of Argyle Creek that flows eastward to join Minnie Maude Creek and Nine-Mile Creek, forming the main stem of Nine-Mile Creek.

The San Rafael Swell STSA is primarily drained by the San Rafael River and its tributaries in a desert environment. The river is part of the West Colorado drainage, draining to the Green River. The main stem of the San Rafael River is a perennial river, while most of the tributaries that cross the STSA are intermittent streams. Based on 68 years of record, the annual runoff of the San Rafael River near Green River, Utah, is 374 cfs (USGS Gage 09328500), with a minimum and maximum flow of 1.2 cfs and 2,760 cfs, respectively (USGS 2006b).

The Tar Sand Triangle STSA is in the lowlands within the lower Dirty Devil River Basin, Utah (Figure 3.4.5-1). The Green and Colorado Rivers flow on the east side of the deposit, and the Dirty Devil River on the west. The Dirty Devil River is a tributary of the Colorado River and is formed by the confluence of Muddy Creek and the Fremont River. From Hanksville downstream, the Dirty Devil River has no perennial tributaries (Hood and Danielson 1981). Based on 49 years of record, the annual runoff of the Dirty Devil River near Hanksville, Utah (USGS Gage 09333500), is 98.6 cfs, with a minimum and maximum flow of 0 cfs and 975 cfs, respectively (USGS 2006c). The Dirty Devil River joins the Colorado River at the Lake Powell Reservoir.

About 96% of the precipitation in the lower Dirty Devil River Basin is consumed by evapotranspiration. The long-term average annual inflow and outflow of the Dirty Devil River is estimated to be 1.6 million ac-ft (Hood and Danielson 1981). High streamflow is expected in spring and occasionally during summer rainstorms. The water quality of the Dirty Devil River near the Colorado River is slightly saline.

No perennial streams are present in the Circle Cliffs STSA, which is crossed by several intermittent streams of Hall Creek and the Escalante River. Both Hall Creek and the Escalante River are tributaries of the Colorado River. The main stem of the Escalante River is located about 6 mi southwest of the deposit (Glassett and Glassett 1976).

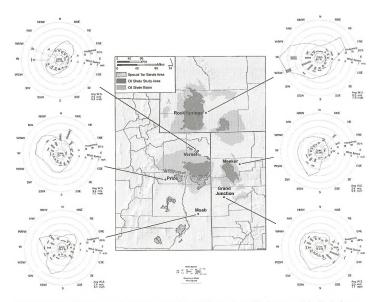
The White Canyon STSA is crossed by White Canyon, an intermittent stream discharging to the Colorado River. Surface water resources in this STSA are very limited. Lake Powell (Reservoir) on the Colorado River is located more than 7 mi west of the area.

The BLM (1984b) compiled information on surface water flow rates, water quality, and water uses for rivers and streams near the 11 STSAs. Average flows at various stations along the major rivers (Duchesne, White, Green, and Colorado) ranged from hundreds of thousands to

millions of ac-ft/yr. Smaller rivers (Strawberry, Price, Escalante, and Dirty Devil) had flows in the tens of thousands of ac-ft/yr. Creeks typically had flows in the thousands of ac-ft/yr. Most TDS concentrations for the surface waters ranged from about 500 to 7,000 mg/L. Bitter Creek, near the Hill Creek and P.R. Spring STSAs, was the sole location above this range; its TDS concentrations ranged to a high of 15,500 mg/L.

At the Argyle Canyon, Sunnyside, and Asphalt Ridge STSAs, surface water is used for irrigation, livestock, domestic, municipal, and industrial supplies (BLM 1984b). At the Circle Cliffs STSA, surface water is used for irrigation and livestock. Water at the Hill Creek and P.R. Spring STSAs is used for irrigation, gilsonite mining, livestock, and oil development. Minimal surface water use takes place at the Pariette and Raven Ridge STSAs. At the San Rafael STSA, surface water, including reservoir water, is used for irrigation and for the Huntington Power Plant. At the Tar Sand Triangle and White Canyon STSAs, water is used for livestock, mining, irrigation, and domestic supplies.

#### 3.5 AIR OUALITY AND CLIMATE


# 3.5.1 Climate

### 3.5.1.1 Meteorology

Because of wide variations in elevation, topographic features, and latitude within the study area, meteorological conditions vary considerably among specific locations. Other than a highland climate in mountainous areas, the study areas have a semiarid mid-continental climate characterized by abundant sunshine, low humidity, low precipitation, and cold, snowy winters. Strong, outgoing terrestrial radiation provides cool nights. In midwinter, air temperatures are often low, but strong solar radiation and dry air combine to provide generally pleasant conditions.

The local climate is strongly influenced by microclimatic features such as slope, aspect, and elevation. The local surface wind patterns and vertical temperature profiles are almost entirely dependent upon topography. Predominantly westerly winds provide additional moisture on the western mountain slopes, with drier conditions on the lee side (often referred to as "rain shadows").

The predominant prevailing wind direction aloft over the region is from the west and southwest as in most of the United States; however, surface air movement patterns are greatly modified by local terrain and ground cover. Wind roses (which graphically display the distribution of wind speed and direction classifications from which the winds originate) at the 33-ft level for selected meteorological stations around the study area for the 6-year period (2000–2005) are shown in Figure 3.5.1-1 (NCDC 2006a). As shown in the figure, although most locations display westerly winds, prevailing wind directions are different from site to site (most obviously for Grand Junction, Colorado, located just southwest of the Book Cliffs). Average



FIGURE~3.5.1-I~Wind~Roses~at~the~33-ft~Level~for~Selected~Meteorological~Stations~around~the~Study~Area,~2000-2005~(Source:~NCDC~2006a)

wind speeds range from 5 to 8 mph in Colorado and Utah, with the highest speed of nearly 11 mph measured at the Rock Springs, Wyoming, airport, which is situated on a mesa at an elevation of nearly 6,700 ft. Stations located in the valleys typically experience nocturnal drainage flow of denser cold air at higher elevations into the valley floor. This condition causes poor dispersion and stagnation, which tend to trap air pollutants within the valley. A higher occurrence of low wind speeds or calm conditions is typically measured at these sites. The Vernal, Meeker, and Moab surface stations show very high occurrences of stagnant conditions (i.e., calm periods occur more than 20% of the time).

Temperatures in the region vary widely with elevation, latitude, season, and time of day. Historical annual average temperatures measured at selected meteorological stations in and around the study area range from 36°F in Big Piney, Wyoming (just east of the Wyoming Range at an elevation of 6,800 ft), to 54°F in Hanksville, Utah (in a desert setting), as presented in Table 3.5.1-1 (WRCC 2006). Typically, January is the coldest month, ranging from -5°F to 16°F, and July is the warmest month. ranging from 80°F to 99°F.

Although limited monitoring occurs mostly in lower elevation towns, the average precipitation around the study area ranges from around 6 in. in Hanksville, Utah, to about 16 in. in Meeker, Colorado (WRCC 2006). Much higher values are expected in mountainous locations. At lower elevations, precipitation is greatest in spring and fall, and generally low in winter months; at higher elevations, precipitation is relatively evenly distributed. Snowfall is quite variable by location (ranging on average from about 6 in. in Hanksville, Utah, to more than 69 in. in Meeker, Colorado), with the snowiest months being December through February. In general, snowfall tends to increase with increasing latitude and elevation, while precipitation has a weak relationship with respect to latitude and elevation.

Complex terrain typically disrupts the mesocyclones associated with tornado-producing thunderstorms; thus, tornadoes are less frequent and destructive in this region. For example, tornado frequencies in counties within the oil shale study area in Colorado are about two orders of magnitude lower than those in the rest of the state. Since January 1950 to April 2006, 67 tornadoes were reported in the counties within the study area, with 2,263 reported for all of Colorado, Utah, and Wyoming combined (NCDC 2006b). Most tornadoes that occurred in the study area were relatively weak, mostly F0 or F1 on the Fujita tornado scale<sup>8</sup> (except for three F2s and one F3); statewide, most (71%) tornadoes were reported in Colorado, with categories F0, F1, and F2 and above, each accounting for about 62, 30, and 8%, respectively, of the combined states' total.

# 3.5.1.2 Global Climate Change

Ongoing scientific research has identified the potential effects of so-called "greenhouse gas" (GHG) emissions (including carbon dioxide [CO<sub>2</sub>], methane [CH<sub>4</sub>]; nitrous oxide, water vapor; and several trace gasses) on global climate. Through complex interactions on a regional

Fujita scale F0, F1, F2, through F5 tornadoes are classified with wind speeds of 40 to 72 mph, 73 to 112 mph, 113 to 157 mph, and up to 261 to 318 mph, respectively.

 $TABLE\ 3.5.1-1\ Temperature\ and\ Precipitation\ Summaries\ at\ Selected\ Meteorological\ Stations\ in\ and\ around\ the\ Study\ Area$ 

|                |       | County     | Temperature (°F) <sup>a</sup> |                               |       |                                    |                   |                       |
|----------------|-------|------------|-------------------------------|-------------------------------|-------|------------------------------------|-------------------|-----------------------|
| Station        | State |            | Average<br>Monthly<br>Minimum | Average<br>Monthly<br>Maximum | Meanb | Precipitati Total Water Equivalent | on (in.) Snowfall | Period of Record      |
| Grand Junction | CO    | Mesa       | 16.0                          | 92.7                          | 51.8  | 8.70                               | 21.6              | 1/1/1900 - 12/31/2005 |
| Meeker         | CO    | Rio Blanco | 6.9                           | 85.7                          | 45.4  | 16.41                              | 69.5              | 1/1/1900 - 12/31/2005 |
| Rifle          | CO    | Garfield   | 9.4                           | 90.2                          | 47.8  | 11.61                              | 38.6              | 9/9/1910 - 12/31/2005 |
| Hanksville     | UT    | Wayne      | 12.3                          | 98.7                          | 53.5  | 5.56                               | 5.8               | 7/1/1948 - 12/31/2005 |
| Price          | UT    | Carbon     | 13.4                          | 90.0                          | 50.0  | 9.42                               | 20.4              | 9/1/1968 - 12/31/2005 |
| Vernal         | UT    | Uintah     | 4.8                           | 89.8                          | 46.2  | 8.30                               | 15.2              | 1/1/1928 - 12/31/2005 |
| Big Piney      | WY    | Sublette   | -5.3                          | 80.0                          | 35.8  | 7.46                               | 28.6              | 8/1/1948 - 12/31/2005 |
| Rawlins        | WY    | Carbon     | 12.6                          | 83.7                          | 44.1  | 9.08                               | 51.9              | 3/6/1951 - 12/31/2005 |
| Rock Springs   | WY    | Sweetwater | 11.4                          | 83.2                          | 41.8  | 8.84                               | 43.6              | 8/1/1948 - 12/31/2005 |

a "Average Monthly Minimum" denotes the monthly average of daily minimum values during the period of record, which normally occurs in January. "Average Monthly Maximum" denotes the monthly average of daily maximum values during the period of record, which normally occurs in July.

Source: WRCC (2006).

b NCDC 1971 to 2000 monthly normals.

and global scale, these GHG emissions cause a net warming effect of the atmosphere, making surface temperatures suitable for life on earth, primarily by decreasing the amount of heat energy radiated by the earth back into space. Although GHG levels have varied for millennia, with corresponding variations in climatic conditions, recent industrialization and burning of fossil carbon sources have caused  $\rm CO_2$  concentrations to increase dramatically, and are likely to contribute to overall climatic changes, typically referred to as global warming. Increasing  $\rm CO_2$  concentrations also lead to preferential fertilization and growth of specific plant species.

The assessment of GHG emissions and climate change is in its formative phase, and it is not yet possible to know with confidence the net impact on climate. Observed climatic changes may be caused by GHG emissions or may reflect natural fluctuations, but the Intergovernmental Panel on Climate Change (IPCC) (2007) recently concluded that "Warming of the climate system is unequivocal" and "Most of the observed increase in globally average temperatures since the mid-20<sup>th</sup> century is very likely due to the observed increase in anthropogenic [manmade] greenhouse gas concentrations."

Global mean surface temperatures have increased nearly 1.0°C (1.8°F) from 1890 to 2006 (Goddard Institute for Space Studies 2007). However, both observations and predictive models indicate that average temperature changes are likely to be greater in the Northern Hemisphere (especially the Arctic.) Figure 3.5.1-1 demonstrates that northern latitudes (above 24° N, which includes all of the United States) have exhibited temperature increases of nearly 1.2°C (2.1°F) since 1900, with nearly a 1.0°C (1.8°F) increase since 1970 alone. Without additional meteorological monitoring systems, it is difficult to determine the spatial and temporal variability and change of climatic conditions, but increasing concentrations of GHG are likely to accelerate the rate of climate change.

In 2001, the IPCC indicated that by the year 2100, global average surface temperatures will rise 1.4 to 5.8°C (2.5 to 10.4°F) above 1990 levels. The IPCC also concluded the combined effects of melting glaciers, melting ice caps, and sea water expansion due to warmer ocean temperatures would cause the global average sea level to rise 100 to 900 cm (4 to 36 in.) during this same time period.

The National Academy of Sciences (2006) has confirmed these findings, but also indicated that there are uncertainties how climate change will affect different regions. Computer model predictions indicate that increases in temperature will not be equally distributed, but are likely to be accentuated at higher latitudes, such as in the Arctic, where the temperature increase may be more than double the global average. Warming during the winter months is expected to be higher than during the summer. Northern areas may also experience increased precipitation. However, neither the state of the science, nor current monitoring systems are adequate to indicate what influence global climate change may have throughout the study area.

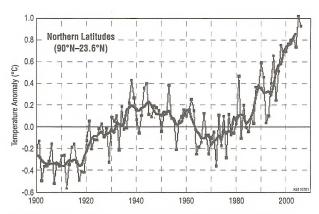



FIGURE 3.5.1-1 Annual Mean Temperature Change for Northern Latitudes (24–90° N) (Source: Goddard Institute for Space Studies 2007)

# 3.5.2 Existing Emissions

Table 3.5.2-1 presents annual emission inventory data for criteria pollutants and volatile organic compounds (VOCs) for 2002 and for  $CO_2^9$  (one of the most prominent greenhouse gases) for 2001 for counties within the air quality modeling analysis domain in Colorado, Utah, and Wyoming (WRAP 2006; EPA 2006e). The emission inventory is based on six categories: area, biogenic, fire, nonroad, onroad, and point air pollutant emission sources, including existing transportation, mining, manufacturing, and oil and gas emission sources.

In Colorado, fire, including wildfire, prescribed fire, and agricultural burning, was a major contributor to total emissions of carbon monoxide (CO) and particulate matter (PM  $_{10}$  and PM $_{2.5}$  [particulate matter with a mean aerodynamic diameter of  $10~\mu m$  or less, or  $2.5~\mu m$  or less, respectively]. Stationary "point" sources accounted for about 72% of the sulfur oxides (SO $_X$ ) emissions and 41% of the nitrogen oxides (NO $_X$ ) emissions. "Biogenic" sources (e.g., naturally occurring emissions from vegetation, including trees, plants, and crops) accounted for most of the VOC emissions. "Onroad" sources and "area" sources were secondary contributors to NO $_X$  and CO emissions and PM $_{10}$  and PM $_{10}$  and PM $_{20}$  emissions, respectively. "Nonroad" sources were minor

<sup>9</sup> Currently, CO<sub>2</sub> emissions at the county level are not available; their emissions were estimated from available state total emissions based on population distribution.

TABLE 3.5.2-1 Annual Air Pollutant Emissions for Counties within the Study Area, 2002

|          |            | County    | Contains: | Emission Rate (tons/yr) |                 |           |         |                  |                   |                       |  |
|----------|------------|-----------|-----------|-------------------------|-----------------|-----------|---------|------------------|-------------------|-----------------------|--|
| State    | County     | Oil Shale | Tar Sands | SO <sub>x</sub>         | NO <sub>x</sub> | CO        | VOC     | PM <sub>10</sub> | PM <sub>2.5</sub> | CO2ª                  |  |
| Colorado | Chaffee    | No        | No        | 125                     | 1,009           | 11,931    | 17,286  | 850              | 321               | $3.63 \times 10^{5}$  |  |
|          | Delta      | Yes       | No        | 107                     | 1,800           | 17,276    | 25,417  | 1,785            | 723               | $6.23 \times 10^{5}$  |  |
|          | Dolores    | No        | No        | 10                      | 854             | 5,330     | 21,228  | 866              | 207               | $4.13 \times 10^{4}$  |  |
|          | Eagle      | No        | No        | 201                     | 4,901           | 44,646    | 24,212  | 2,396            | 884               | $9.32 \times 10^{5}$  |  |
|          | Garfield   | Yesb      | No        | 1,749                   | 15,937          | 293,869   | 67,861  | 26,434           | 21,641            | $9.80 \times 10^{5}$  |  |
|          | Grand      | No        | No        | 130                     | 2,007           | 15,170    | 25,268  | 1,455            | 391               | $2.78 \times 10^{5}$  |  |
|          | Gunnison   | No        | No        | 69                      | 1,311           | 20,044    | 36,498  | 1,534            | 778               | $3.12 \times 10^{5}$  |  |
|          | Jackson    | No        | No        | 17                      | 574             | 6,108     | 28,565  | 259              | 140               | $3.53 \times 10^{4}$  |  |
|          | La Plata   | No        | No        | 923                     | 8,870           | 154,403   | 38,107  | 15,062           | 12,152            | $9.83 \times 10^{5}$  |  |
|          | Lake       | No        | No        | 57                      | 2,027           | 25,328    | 10,824  | 668              | 217               | $1.75 \times 10^{5}$  |  |
|          | Mesa       | Yes       | No        | 2,441                   | 7,813           | 61,436    | 52,093  | 5,417            | 1,683             | $2.60 \times 10^{6}$  |  |
|          | Moffat     | Yes       | No        | 10,781                  | 23,563          | 75,183    | 47,140  | 8,530            | 5,116             | $2.95 \times 10^{5}$  |  |
|          | Montezuma  | No        | No        | 98                      | 2,328           | 23,540    | 35,141  | 1,518            | 724               | $5.33 \times 10^{5}$  |  |
|          | Montrose   | No        | No        | 1,606                   | 3,225           | 22,456    | 30,354  | 3,568            | 1,136             | $7.48 \times 10^{5}$  |  |
|          | Pitkin     | No        | No        | 67                      | 1,134           | 13,352    | 19,902  | 456              | 199               | $3.33 \times 10^{5}$  |  |
|          | Rio Blanco | Yesb      | No        | 325                     | 7.100           | 61,452    | 51,235  | 5,283            | 4,113             | $1.34 \times 10^{4}$  |  |
|          | Routt      | No        | No        | 4,075                   | 14.610          | 202,581   | 48,283  | 20,677           | 15,989            | $4.40 \times 10^{4}$  |  |
|          | San Miguel | No        | No        | 902                     | 4,152           | 156,094   | 25,826  | 15,006           | 12,573            | $1.48 \times 10^{4}$  |  |
|          | Subtotal   |           |           | 23,683                  | 103,215         | 1,210,199 | 605,240 | 111,764          | 78,987            | $9.95 \times 10^6$    |  |
| Utah     | Carbon     | Yesb      | Yes       | 8,218                   | 7,540           | 40,095    | 28,722  | 2,484            | 1,665             | $6.22 \times 10^{5}$  |  |
|          | Daggett    | Yes       | No        | 318                     | 2,288           | 55,378    | 21,731  | 5,122            | 4,323             | $2.81 \times 10^{4}$  |  |
|          | Emery      | Yes       | Yes       | 21,126                  | 34,110          | 35,385    | 49,557  | 3,618            | 1,583             | $3.31 \times 10^{6}$  |  |
|          | Garfield   | No        | Yes       | 296                     | 1,643           | 45,902    | 68,986  | 3,158            | 2,449             | $1.44 \times 10^{5}$  |  |
|          | Grand      | Yes       | Yes       | 913                     | 6,076           | 160,774   | 61,092  | 13,680           | 11,595            | $2.58 \times 10^{5}$  |  |
|          | Juab       | No        | No        | 338                     | 4,934           | 61,703    | 41,426  | 1,272            | 462               | $2.51 \times 10^{5}$  |  |
|          | Kane       | No        | No        | 106                     | 999             | 19,289    | 74,159  | 374              | 182               | $1.84 \times 10^{5}$  |  |
|          | Piute      | No        | No        | 93                      | 483             | 15,443    | 18,492  | 1,065            | 756               | $4.40 \times 10^{6}$  |  |
|          | San Juan   | No        | Yes       | 1,780                   | 3,681           | 57,213    | 101,074 | 3,989            | 2,641             | $4.39 \times 10^{-6}$ |  |
|          | Sanpete    | No        | No        | 512                     | 1,853           | 25,230    | 28,421  | 1,885            | 805               | $6.93 \times 10^{5}$  |  |

| State        |            | County Co |           |        | Emission Rate (tons/yr) |           |           |                  |                   |                        |
|--------------|------------|-----------|-----------|--------|-------------------------|-----------|-----------|------------------|-------------------|------------------------|
|              | County     | Oil Shale | Tar Sands | $SO_X$ | NO <sub>x</sub>         | СО        | VOC       | PM <sub>10</sub> | PM <sub>2.5</sub> | CO <sub>2</sub> a      |
| Utah (Cont.) | Sevier     | No        | No        | 633    | 3,002                   | 49,156    | 29,446    | 3,197            | 2,018             | 5.74 × 10 <sup>5</sup> |
|              | Uintah     | Yesb      | Yes       | 1,192  | 11,915                  | 30,010    | 73,930    | 2,735            | 1,559             | $7.68 \times 10^{5}$   |
|              | Wayne      | No        | Yes       | 162    | 469                     | 8,778     | 35,508    | 341              | 72                | $7.64 \times 10^{4}$   |
| Subtota      | Subtotal   |           |           | 35,687 | 78,993                  | 604,356   | 632,544   | 42,920           | 30,110            | $4.41 \times 10^{6}$   |
| Wyoming      | Carbon     | Yes       | No        | 4,362  | 13,614                  | 32,885    | 81,356    | 2,370            | 832               | 2.17×10 <sup>6</sup>   |
|              | Sweetwater | Yesb      | No        | 35,107 | 65,380                  | 71,694    | 104,410   | 19,140           | 7,269             | $5.23 \times 10^{6}$   |
| Subtotal     | Subtotal   |           |           | 39,469 | 78,994                  | 104,579   | 185,766   | 21,510           | 8,101             | $7.40\times10^6$       |
| Region       | Total      |           |           | 98,839 | 261,202                 | 1,919,134 | 1,423,550 | 176,194          | 117,198           | $2.18 \times 10^{7}$   |

a Emission data for the year 2001. Currently, CO<sub>2</sub> emissions at the county level are not available; thus, their emissions were estimated from available state-total CO<sub>2</sub> emissions based on population distribution.

Source: WRAP (2006); EPA (2006e).

b Counties with the most geologically prospective areas with 25+ gal/ton and 25+ ft thick for Colorado and Utah, and 15+ gal/ton and 15+ ft thick for Wyoming.

contributors to all pollutants in Colorado. For Utah, major and secondary contributors were similar to those in Colorado, although the levels of emissions were different. In Wyoming, stationary "point" sources were a major contributor to total emissions of  $SO_X$ ,  $NO_X$ ,  $PM_{10}$  and  $PM_{2.5}$ , while onroad emissions accounted for about half of the CO emissions. Biogenic sources to  $PM_{10}$  and  $PM_{2.5}$  emissions, while nonroad and fire were minor contributors in Wyoming.

# 3.5.3 Air Quality

Table 3.5.3-1 presents the National Ambient Air Quality Standards (NAAQS) and the State Ambient Air Quality Standards (SAAQS) for Colorado, Utah, and Wyoming for six criteria pollutants—sulfur dioxide (SO<sub>2</sub>), nitrogen dioxide (NO<sub>2</sub>), CO, ozone (O<sub>3</sub>), PM<sub>10</sub> and PM<sub>2.5</sub>, and lead (Pb) (40 CFR Part 50; CDPHE 2006a; EPA 2006a; UDEQ 2006a; WDEQ 2006a). In Utah, the standards are equivalent to the NAAQS for each pollutant. Colorado has more stringent standards than the NAAQS for SO<sub>2</sub> and Pb. In addition, the State of Wyoming has adopted standards for hydrogen sulfide (H<sub>2</sub>S), suspended sulfates, fluorides, and odors, as well as more stringent standards for SO<sub>2</sub>.

The existing air quality of the study area is in attainment with all ambient air quality standards, as demonstrated by the relatively low concentration levels presented in Table 3.5.3-2. No major population centers or industrial complexes occur within the study area. Accordingly, all counties containing oil shale and/or tar sands resources are currently in attainment for all criteria pollutants (40 CFR 81.306, 81.345, 81.351; EPA 2006b). One exception is Utah County, in which a small portion of tar sands resources are located, which is currently designated as a nonattainment area for PM $_{10}$ . A request for redesignation of Utah County to an attainment area is pending EPA approval, since significant emission reductions from one steel plant have resulted in improved air quality.

Routine monitoring of criteria air pollutant concentrations is not currently conducted in the study area. Background concentrations representative of the study area are summarized in Table 3.5.3-2 for each state based on intermittent monitoring studies and routine monitoring data (Chick 2006; EPA 2006c; Orth 2006). On the basis of limited monitoring data, air quality in the region is expected to be good (i.e., concentration levels for most criteria pollutants [except  $O_3$ ] are well below their applicable standards). Although no  $O_3$  violations have been documented, some measurements are near the 8-hour  $O_3$  standard of 157  $\mu$ g/m³.

The Prevention of Significant Deterioration (PSD) regulations (40 CFR 52.21), which are designed to limit the growth of air pollution in "clean" areas, apply to all new sources within attainment and unclassified areas. PSD regulations limit the amount of additional air pollution above legally established baseline levels of SO<sub>2</sub>, NO<sub>2</sub>, and PM<sub>10</sub>, as shown in Table 3.5.3-1. Incremental increases in PSD Class I areas are strictly limited, while those in Class II areas allow for moderate emission growth. Most of the oil shale and tar sands resource areas are classified as PSD Class II, except for the tar sands area in or around Arches, Canyonlands, and Capitol Reef National Parks in Utah, and the oil shale area immediately upwind of the Flat Tops Wilderness Area in Colorado. The PSD Class I and Colorado Category I areas located within 50 mi of the

TABLE 3.5.3-1 Applicable Ambient Air Quality Standards and Prevention of Significant Deterioration Increments (µg/m³) for the Study Area

| Pollutant <sup>a</sup> |                   | National <sup>b</sup> |                               |          | PSD Increment <sup>d</sup> |         |         |          |
|------------------------|-------------------|-----------------------|-------------------------------|----------|----------------------------|---------|---------|----------|
|                        | Averaging<br>Time | Standard<br>Value     | Standard<br>Type <sup>c</sup> | Colorado | Utah                       | Wyoming | Class I | Class II |
| SO <sub>2</sub>        | 3 hours           | 1,300                 | S                             | 700      | 1,300                      | 1,300   | 25      | 512      |
|                        | 24 hours          | 365                   | P                             | _e       | 365                        | 260     | 5       | 91       |
|                        | Annual            | 80                    | P                             | -        | 80                         | 60      | 2       | 20       |
| $NO_2$                 | Annual            | 100                   | P, S                          | 100      | 100                        | 100     | 2.5     | 25       |
| CO                     | 1 hour            | 40,000                | P                             | 40,000   | 40,000                     | 40,000  | _       | _        |
|                        | 8 hours           | 10,000                | P                             | 10,000   | 10,000                     | 10,000  | -       | -        |
| O <sub>3</sub>         | 1 hour            | 235 <sup>f</sup>      | P. S                          | 235      | _                          | _       | _       | _        |
|                        | 8 hours           | 1578                  | P, S                          | -        | 157                        | 157     | -       | -        |
| PM <sub>10</sub>       | 24 hours          | 150                   | P, S                          | 150      | 150                        | 150     | 8       | 30       |
|                        | Annual            | Revokedh              | P, S                          | 50       | 50                         | 50      | 4       | 17       |
| PM <sub>2.5</sub>      | 24 hours          | 35 <sup>i</sup>       | P, S                          | _        | 65                         | 65      | _       | _        |
|                        | Annual            | 15.0 <sup>j</sup>     | P, S                          | -        | 15                         | 15      | -       | -        |
| Pb                     | Calendar quarter  | 1.5                   | P, S                          | _        | 1.5                        | 1.5     | _       | _        |
|                        | One month         | -                     |                               | 1.5      | _                          | _       | _       | _        |

<sup>&</sup>lt;sup>a</sup> CO = carbon monoxide; NO<sub>2</sub> = nitrogen dioxide; O<sub>3</sub> = ozone; Pb = lead; PM<sub>2.5</sub> = particulate matter ≤ 2.5 µm; PM<sub>10</sub> = particulate matter ≤ 10 µm; SO<sub>2</sub> = sulfur dioxide.

Footnotes continued on following page.

b Refer to 40 CFR Part 50 for detailed information on attainment determination and reference method for monitoring.

c P = primary standards, which set limits to protect public health; S = secondary standards, which set limits to protect welfare.

d All NEPA analysis comparisons to the Prevention of Significant Deterioration (PSD) increments are intended to evaluate a threshold of concern and do not represent a regulatory PSD Increment Consumption Analysis.

A dash indicates that no standard exists.

f The EPA's revised O<sub>3</sub> standards replaced the 1-hour standard. As of June 15, 2005, the EPA revoked the 1-hour O<sub>3</sub> standard in all areas except the fourteen 8-hour O<sub>3</sub> nonattainment Early Action Compact (EAC) Areas (EPA 2007).

To attain this standard, the 3-year average of the fourth highest daily maximum 8-hour average O<sub>3</sub> concentrations measured at each monitor within an area over each year must not exceed 0.08 ppm (157 µm<sup>3</sup>).

<sup>&</sup>lt;sup>h</sup> Because of a lack of evidence linking health problems to long-term exposure to coarse particle pollution, the EPA revoked the annual PM<sub>10</sub> standard in 2006 (effective December 17, 2006).

# TABLE 3.5.3-1 (Cont.)

- To attain the NAAQS, the 3-year average of the 98th percentile of 24-hour concentrations at each population-oriented monitor within an area must not exceed 35 µg/m³ (effective December 17, 2006).
- <sup>j</sup> To attain this standard, the 3-year average of the weighted annual mean PM<sub>2.5</sub> concentrations from single or multiple community-oriented monitors must not exceed 15.0 µg/m<sup>2</sup>.

Sources: 40 CFR Part 50; 40 CFR 52.21; CDPHE (2006a); EPA (2006a); UDEQ (2006a); WDEQ (2006a).

study area are listed in Table 3.5.3·3.<sup>10</sup> Predominant wind direction aloft is from the southwest in the region; thus, potential air quality for the Class I areas located northeast of the study area would be affected.

The Clean Air Act Amendments of 1977 gave Federal Land Managers an affirmative responsibility through the New Source Review permitting process to protect the "air quality related values" (AQRVs), such as visibility and acid deposition, from the adverse impacts of air pollution. The Interagency Monitoring of PROtected Visual Environments (IMPROVE) monitoring program was established in 1985 to aid in the creation of federal and state implementation plans for the protection of visibility in mandatory federal PSD Class I areas (CIRA 2006). Continuous visibility-related data representative of PSD Class I areas (e.g., Canyonlands National Park and Flat Tops Wilderness Area) have been collected within the oil shale and tar sands study area. Visibility in the region is currently the best of the contiguous United States (2004 annual standard visual range of 185 to 220 km [114–137 mi]). The Clean Air Status and Trends NETwork (CASTNET) is the nation's primary source for data on dry acidic deposition and ground-level ozone and has been operating since 1987 to provide information for evaluating the effectiveness of national emission control strategies (EPA 2006d). Sample stations around the study area include Gothic, Colorado; Canyonlands National Park, Utah; and Pinedale, Wyoming.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) is a nationwide network of precipitation chemistry monitoring sites (NADP 2006). Monitoring sites collect precipitation samples, which are analyzed at a central laboratory (including pH, cation/anion concentrations, etc.) (ISWS 2006). Sampling sites around the study area include Sand Spring, Ripple Creek Pass, Sunlight Peak, and Four Mile Park in Colorado; Green River and Canyonlands National Park in Utah; and Pinedale in Wyoming. In addition, the USGS also measures individual lake chemistry throughout the study area.

<sup>10</sup> Although the area is not a designated PSD Class I area, it has been designated as a Category I area by the State of Colorado, with SO<sub>2</sub> increments equivalent to those applicable in a federal Class I area.

TABLE 3.5.3-2 Background Concentration Levels Representative of the Study Area<sup>a,b</sup> (µg/m³)

| State    | Pollutant        | Averaging<br>Time | Applicable<br>Standard <sup>c</sup> | Concentrationd | Note                                                                                                     |
|----------|------------------|-------------------|-------------------------------------|----------------|----------------------------------------------------------------------------------------------------------|
| Colorado | SO <sub>2</sub>  | 3 hours           | 700                                 | 23 (3%)        | Unocal, 1983-1984                                                                                        |
| Commun   | 302              | 24 hours          | 365                                 | 13 (4%)        | Choun, 1900-1901                                                                                         |
|          |                  | Annual            | 80                                  | 5 (7%)         |                                                                                                          |
|          |                  | Aimagi            | 00                                  | 5 (170)        |                                                                                                          |
|          | NO <sub>2</sub>  | Annual            | 100                                 | 15 (15%)       | Rural default based on Southern Ute stations near Ignacio                                                |
|          | CO               | 1 hour            | 40,000                              | 1,140 (3%)     | American Soda, Piceance, 2003-2004                                                                       |
|          | -                | 8 hours           | 10,000                              | 1,110 (11%)    | , , , , , , , , , , , , , , , , , , , ,                                                                  |
|          |                  | 0.110.110         | 10,011                              | -, ()          |                                                                                                          |
|          | O <sub>3</sub> ° | 1 hour            | 235                                 | 172 (73%)      | Based on Mesa Verde, 2003                                                                                |
|          |                  | 8 hours           | 157                                 | 145 (93%)      | Based on CASTNET (Clean Air Status<br>and Trends NETwork) in Mesa Verde,<br>Canyonlands, and Gothic      |
|          | $PM_{10}$        | 24 hours          | 150                                 | 41 (27%)       | American Soda, Piceance, 2003-2004                                                                       |
|          | 1 141 10         | Annual            | 50 <sup>f</sup>                     | 11 (22%)       | Intervent book I recented, and a second                                                                  |
|          |                  |                   |                                     |                |                                                                                                          |
|          | $PM_{2.5}$       | 24 hours          | 65 <sup>g</sup>                     | 18 (28%)       | Based on 515 Patterson in Grand                                                                          |
|          |                  | Annual            | 15                                  | 8 (53%)        | Junction, Mesa County                                                                                    |
|          | $Pb^h$           | Calendar          | 1.5                                 | 0.04 (3%)      | Industrial, urban in Grand Junction,                                                                     |
|          | ro               | quarter           | 1.5                                 | 0.04 (370)     | Mesa County, 2001                                                                                        |
|          |                  | quarter           |                                     |                | ,,,                                                                                                      |
| Utah     | $SO_2$           | 3 hours           | 1,300                               | 28 (2%)        | Rural default based on the                                                                               |
|          |                  | 24 hours          | 365                                 | 12 (3%)        | Intermountain Power Plant in Delta,                                                                      |
|          |                  | Annual            | 80                                  | 4 (5%)         | 2001                                                                                                     |
|          | $NO_2$           | Annual            | 100                                 | 20 (20%)       | Rural default for areas with significant<br>number of coal-fired power plants and<br>oil/gas development |
|          | CO               | I hour            | 40,000                              | 1,140 (3%)     | EPA Region VIII rural default,                                                                           |
|          | CO               | 8 hours           | 10,000                              | 1,110 (11%)    | 2003–2004                                                                                                |
|          |                  |                   |                                     |                |                                                                                                          |
|          | $O_3$            | 1 hour            | 235                                 | 172 (73%)      | Based on Mesa Verde, 2003                                                                                |
|          |                  | 8 hours           | 157                                 | 145 (93%)      | Based on CASTNET in Mesa Verde,                                                                          |
|          |                  |                   |                                     |                | Canyonlands, and Gothic                                                                                  |
|          | $PM_{10}$        | 24 hours          | 150                                 | 72 (48%)       | Sevier Power, 2002-2003                                                                                  |
|          | 11110            | Annual            | 50 <sup>f</sup>                     | 29 (58%)       |                                                                                                          |
|          | D) (             | 241               | 658                                 | 10 (2007)      | Paradam 515 Paramana in Carada                                                                           |
|          | $PM_{2.5}$       | 24 hours          | 658                                 | 18 (28%)       | Based on 515 Patterson in Grand                                                                          |
|          |                  | Annual            | 15                                  | 8 (53%)        | Junction, Mesa County                                                                                    |
|          | Pb               | Calendar          | 1.5                                 | 0.08 (5%)      | Residential, suburban in Magna, Salt                                                                     |
|          |                  | quarter           |                                     |                | Lake County, 2005                                                                                        |

TABLE 3.5.3.2 (Cont.)

| State   | Pollutant         | Averaging<br>Time   | Applicable<br>Standard <sup>c</sup> | Concentrationd | Note                                                     |
|---------|-------------------|---------------------|-------------------------------------|----------------|----------------------------------------------------------|
| Wyoming | $SO_2$            | 3 hours             | 1,300                               | 65 (5%)        | Desert, rural in Riverton, Fremont                       |
|         |                   | 24 hours            | 260                                 | 16 (6%)        | County, 2004                                             |
|         |                   | Annual              | 60                                  | 6 (10%)        |                                                          |
|         | $NO_2$            | Annual              | 100                                 | 6 (6%)         | Desert, rural in Sublette County, 2005                   |
|         | CO                | 1 hour              | 40,000                              | 3,540 (9%)     | Forest, rural (Grand Teton National                      |
|         |                   | 8 hours             | 10,000                              | 1,330 (13%)    | Park), Teton County, 2003                                |
|         | O <sub>3</sub>    | I hour              | 235                                 | 141 (60%)      | Desert, rural in Sublette County, 2005                   |
|         |                   | 8 hours             | 157                                 | 130 (83%)      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                  |
|         | $PM_{10}$         | 24 hours            | 150                                 | 64 (43%)       | Residential, urban in Rock Springs,                      |
|         |                   | Annual              | 50 <sup>f</sup>                     | 26 (52%)       | Sweetwater County, 2001                                  |
|         | PM <sub>2.5</sub> | 24 hours            | 65 <sup>g</sup>                     | 42 (65%)       | Residential, suburban in Lander,                         |
|         |                   |                     |                                     |                | Fremont County, 2004                                     |
|         |                   | Annual              | 15                                  | 9.6 (64%)      | Residential, suburban in Lander,<br>Fremont County, 2002 |
|         | Pb                | Calendar<br>quarter | 1.5                                 | NAi            | NA                                                       |

- a Monitored concentrations are the highest arithmetic mean for calendar-quarter Pb; 2nd highest for 3-hour and 24-hour SO<sub>2</sub>, 1-hour and 8-hour CO, 1-hour O<sub>3</sub>, and 24-hour PM<sub>10</sub>; 4th highest for 8-hour O<sub>3</sub>; 98th percentile for 24-hour PM<sub>2,5</sub>; and arithmetic mean for annual SO<sub>2</sub>, NO<sub>2</sub>, PM<sub>10</sub>, and PM<sub>3.5</sub>; and arithmetic mean for annual SO<sub>2</sub>, NO<sub>2</sub>, PM<sub>10</sub>, and PM<sub>3.5</sub>;
- b Background concentrations for Colorado and Utah are estimates of air pollution in the study area recommended by the Colorado Department of Public Health and Environment (CDPHE) and Utah Department of Environmental Quality (UDEQ), respectively. On the basis of the EPA's AirData 2000 to 2005 monitoring database, background concentrations for Wyoming representative of the study area were selected by considering proximity, land use, and/or environmental setting. For some pollutants, no monitored values representative of the study area are available (e.g., CO). However, monitored values considered to be relatively representative of the study area are presented to demonstrate compliance.
- c Most restrictive national or state standard.
- d Values in parentheses are monitored concentrations as a percentage of the applicable standard.
- e One-hour O<sub>3</sub> standard is applied to Early Action Compact area in Colorado only.
- f Effective December 17, 2006, the EPA revoked the annual PM<sub>10</sub> standard of 50 μm<sup>3</sup>.
- g Effective December 17, 2006, the EPA revised the 24-hour PM<sub>2.5</sub> standard from 65 µm<sup>3</sup> to 35 µm<sup>3</sup>.
- h Colorado has a more stringent standard for Pb; however, monitored data are reported per the calendar-quarter average national standard.
- i NA = not available.

Sources: Chick (2006); EPA (2006c); Orth (2006).

TABLE 3.5.3-3 PSD Class I and State Category I Areas Located within 50 mi of the Study Area

| Classification | Sensitive Receptor Name               | Managing<br>Agency <sup>a</sup> | Area<br>(Acres) | State | Distance<br>(mi) <sup>b</sup> |
|----------------|---------------------------------------|---------------------------------|-----------------|-------|-------------------------------|
| PSD Class I    | Arches National Park                  | DOI-NPS                         | 65,098          | UT    | 32                            |
| Areas          | Bridger Wilderness Area               | USDA-USFS                       | 428,169         | WY    | 30                            |
| . Memb         | Bryce Canyon National Park            | DOI-NPS                         | 35,832          | UT    | 47                            |
|                | Canyonlands National Park             | DOI-NPS                         | 337,570         | UT    | 0                             |
|                | Capitol Reef National Park            | DOI-NPS                         | 221,896         | UT    | 0                             |
|                | Flat Tops Wilderness Area             | USDA-USFS                       | 235,230         | CO    | 27                            |
|                | Fitzpatrick Wilderness Area           | USDA-USFS                       | 198,525         | WY    | 48                            |
|                | Maroon Bells-Snowmass Wilderness Area | USDA-USFS                       | 71,060          | CO    | 45                            |
| Category I     | Colorado National Monument            | DOI-NPS                         | 20,500          | CO    | 34                            |
| Areasc         | Dinosaur National Monument            | DOI-NPS                         | 210,000         | CO/UT | 7                             |

a DOI = U.S. Department of the Interior; NPS = National Park Service; USDA = U.S. Department of Agriculture; USFS = U.S. Forest Service.

## 3.6 EXISTING ACOUSTIC ENVIRONMENT (NOISE)

Any variation of air pressure detectable by the human ear can be defined as sound. Noise is defined as "unwanted sound." Sound pressure levels are measured in units of decibels (dB). <sup>11</sup> The perceived pitch of a sound, a psychological property characterized by the highness or lowness of the sound, is determined by its frequency; the normal audible range for a healthy young person is approximately 20 to 20,000 Hz.

Various scales are used to measure sound. In considering noise, only sounds in the range of human hearing are of interest. The A-weighted scale, denoted by dBA or dB(A), approximates the range of human hearing and correlates well with subjective reactions to noise, thereby deemphasizing the very low and very high components of a sound. Most noise standards, guidelines, and ordinances use the A-weighted scale.

b Shortest distance between the potential lease area and the sensitive area.

c Federal Class II area under the CAA, but it has been designated as a Category I area by the State of Colorado.

<sup>11</sup> The decibel scale is logarithmic. Scales for measuring most familiar quantities such as length, distance, and temperature are linear. Logarithmic scales compress the values of the measurements and are useful for measuring quantities like sound levels that can vary over a large range. For example, two linear measurements of 100 units and 1,000,000,000 units might correspond to values of 1 and 9, respectively, on a logarithmic scale. Logarithmic units also add differently than do linear units. For example, if one object is 6f 1 tong and a second is twice as long, the second object is 12 ft long. For sounds, however, if one sound level is 50 dB and a second is twice as loud, the second sound level will be 60 dB, not 100 (50 + \$50) ft 000 (50 + \$50).

Background noise is the noise from all sources other than the source of interest. The background noise level can vary considerably depending on the location. Background noise levels in a noisy urban setting can be as high as 75 dBA during the day. In isolated outdoor locations with no wind, vegetation, animals, or running water, background noise may be under 10 dBA. Typical noise levels in rural settings are about 40 dBA during the day and 30 dBA during the night; in wilderness areas, they are on the order of 20 dBA (Harris 1991). Noise levels in areas of low population density would be under 35 dBA as day-night average sound level (L<sub>dn</sub>) (Miller 2002).

While no information is available defining existing noise levels on BLM-administered land in areas of oil shale or tar sands resources, these areas are largely undeveloped, sparsely populated, and remote, and would be expected to have background noise levels of about 35 dBA or less as  $L_{\rm dn}$ . In addition to natural background, noise sources could include agricultural activities, oil and gas development, low-density traffic on rural roads, recreational activities, and aircraft overflights. The identification of specific noise sources, noise levels, and sensitive receptors, such as residences, schools, and hospitals, requires site-specific analyses.

# 3.7 ECOLOGICAL RESOURCES

This section presents information on ecological resources in potential oil shale and tar sands study areas. To the extent possible, descriptions are provided for specific study areas (oil shale basins and STSAs) on the basis of known resource distributions. In some cases, resources status and distributions are less well known and county-level or regional information is used. Descriptions are provided for aquatic resources (Section 3.7.1); plant communities and habitats (Section 3.7.2); wildlife (Section 3.7.3); and threatened, endangered, and sensitive species (Section 3.7.4).

# 3.7.1 Aquatic Resources

Aquatic habitats include perennial and intermittent streams, springs, and flatwater (lakes and reservoirs) that support fish or other aquatic organisms through at least a portion of the year. The oil shale and tar sands study areas considered within this PEIS fall within the Upper Colorado River Basin hydrographic area, as identified in Section 3.4. Aquatic habitats of the Upper Colorado River Basin in Colorado, Utah, and Wyoming include more than 300,000 acres of natural lakes and impoundments and more than 10,000 miles of perennial streams of these approximately 36,000 acres of reservoir habitat (Flaming Gorge Reservoir); about 650 miles of perennial stream habitat occur within the geologically prospective portions of the oil shale and tar sands study area.

The condition of aquatic habitats is related to hydrologic conditions of associated upland and riparian areas that contribute to a specific stream or water body, and to stream channel characteristics. Aquatic habitat quality typically varies by location and orientation to geographic landforms and vegetation. Riparian vegetation moderates water temperatures, adds structure to the banks to reduce erosion, provides instream habitat for fish and other aquatic organisms, and

provides organic material for aquatic macroinvertebrates. Vegetated floodplains dissipate stream energy, store water for later release, provide areas of infiltration for groundwater, and provide rearing areas for juveniles of some fish species. The ranges of water temperature, turbidity, and dissolved oxygen within aquatic habitats largely define the areas that are suitable for use by different aquatic organisms. On the basis of these characteristics, aquatic communities within the potentially affected areas are broadly categorized as coldwater or warmwater, although there is actually a continuum of conditions.

Coldwater communities in the study areas typically include fish species in the family Salmonidae, such as mountain whitefish or trout. Conditions that support such species are usually found in ponds, lakes, or reservoirs at higher elevations and in the headwaters of selected rivers and streams that provide cool, clear waters with relatively high dissolved oxygen levels. Because hypolimnetic releases from dams on some large, deep reservoirs can introduce cold, clear waters into some rivers, coldwater assemblages may also become established in sections of warmwater rivers located immediately downstream of dams (i.e., tailwaters). In contrast, warmwater assemblages typically occur at lower elevations, where waters tend to be warmer and more turbid. Warmwater fish communities within the study areas normally include species such as minnows (family Cyprinidae), suckers (family Catostomidae), sunfishes (family Centrarchidae), and catfishes (family Ictaluridae).

Historically, only 12 species of fish were native to the Upper Colorado River Basin (Table 3.7.1-1), including 5 minnow species, 4 sucker species, 2 salmonids, and the mottled sculpin. Four of these native species (humpback chub, bonytail, Colorado pikeminnow, and razorback sucker) are now federally listed as endangered, and critical habitat for these species has been designated within the Upper Colorado River Basin (Section 3.7.4). In addition to native fish species, more than 25 non-native fish species are present in the basin (Table 3.7.1-1), often as a result of intentional introductions (e.g., for establishment of sport fisheries). While most of the trout species found within the Upper Colorado River Basin are introduced non-natives (e.g., rainbow, brown, and some strains of cutthroat trout), mountain whitefish and Colorado River cutthroat trout are native to the basin. Although it was once common within the upper Green River and upper Colorado River watersheds, the Colorado River cutthroat trout is now found only in isolated subdrainages in Colorado, Utah, and Wyoming (Behnke 1992; Hirsch et al. 2006).

The following subsections provide additional detail about aquatic resources within the vicinity of each of the oil shale basins and STSAs.

#### 3.7.1.1 Oil Shale Basins

The principal hydrologic subbasins that could potentially receive waters from the four oil shale basins are the Great Divide-Upper Green River subbasin, the White-Yampa River subbasin, the Colorado Headwaters subbasin, and the Lower Green River subbasin. The major rivers draining these subbasins include the Green River, the White River, the Yampa River, and the Colorado River. The only major reservoir that falls within the potentially affected areas is

TABLE 3.7.1-1 Fishes of the Upper Colorado River Basin

| Family and<br>Common Name | Scientific Name              | Origin     | Present Distribution in the Upper Colorado River Basin and Comments <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|---------------------------|------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Cyprinidae (Carps and M   | (innows)                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Grass carp                | Ctenopharyngodon idella      | Introduced | Incidental in the Colorado River and in the lower Green River. Normally occurs in warm, large rivers with moderate diversity of habitats. May also be present in some warmwater impoundments within the Upper Colorado River Basin.                                                                                                                                                                                                                                                                                                                                                                   |  |
| Red shiner                | Cyprinella lutrensis         | Introduced | Widespread, common to abundant. Its principal distribution is in middle and lower sections of larger rivers having warm and usually turbid water. It inhabits perennial or ephemeral riverine habitats and is tolerant of environmental extremes.                                                                                                                                                                                                                                                                                                                                                     |  |
| Common carp               | Cyprinus carpio <sup>b</sup> | Introduced | Widespread, common to abundant. It is locally abundant in warmwater impoundments, slack-water riverine habitats, and seasonally flooded habitats. It prefers sheltered habitats with an abundance of aquatic vegetation in warmwater lakes, reservoirs, and rivers.                                                                                                                                                                                                                                                                                                                                   |  |
| Utah chub                 | Gila atraria                 | Introduced | Incidental to rare in the Colorado River, Green River downstream of Flaming Gorge Dam, the lower Yampa River, Duchesne River drainage, and the Price River. It is abundant in Flaming Gorge Reservoir. It prefers littoral and pelagic zones of reservoirs and is generally not found in larger rivers.                                                                                                                                                                                                                                                                                               |  |
| Humpback chub             | Gila cypha                   | Native     | Federally listed as endangered (see Section 3.7.4). Population concentrations located in Black Rocks and Westwater Canyon in the Colorado River, Desol, and Gray Canyons of the Green River, and Yampa Canyon in the Yampa Riv The fish is incidental in the Green River in Whirlpool and Split Mountain Ca in the Yampa River in Cross Mountain Canyon; in the lower Little Snake Riv and in the lower Gunnison River. It is highly adapted to life in canyon environments. Adult habitat includes deep pools and shoreline eddles; young occupy warm, quiet habitats such as backwaters and eddles. |  |
| Bonytail                  | Gila elegans                 | Native     | Federally listed as endangered (see Section 3.7.4). It is considered to have been extirpated from the Green and Colorado River systems but may persist in extremely low numbers in the main stem. Stocking programs are currently in place to reintroduce this species. It is considered adapted to main-stem rivers, where it has been observed in pools and eddies.                                                                                                                                                                                                                                 |  |

TABLE 3.7.1-1 (Cont.)

| Family and<br>Common Name | Scientific Name                      | Origin     | Present Distribution in the Upper Colorado River Basin and Comments <sup>a</sup>                                                                                                                                                                                                                                                                                                                    |  |
|---------------------------|--------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Cyprinidae (Carps and Mi  | innows) (Cont.)                      |            |                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Roundtail chub            | Gila robusta                         | Native     | Widespread in the Green and Colorado River systems, found in streams and rivers with warmer water. It is generally rare in the middle and extreme lower Green and Colorado Rivers; common to abundant elsewhere. Adult habitat includes riffles, runs, pools, eddies, and backwaters with silt-coble substrate and adjacent to higher-velocity areas. Young occupy low-velocity shoreline habitats. |  |
| Sand shiner               | Notropis stramineus                  | Introduced | Common to abundant in the middle and lower sections of the Colorado and Green Rivers and the warmwater reaches of other tributaries. It prefers small- to large-sized streams and rivers with permanent flow, seasonally warm water, slow to moderate water velocities, and clear to turbid water.                                                                                                  |  |
| Fathead minnow            | Pimephales promelasb                 | Introduced | Widespread, common to abundant in middle and lower sections of larger rivers having warm and usually turbid water. It inhabits a variety of habitats in ponds, lakes, reservoirs, streams, and rivers.                                                                                                                                                                                              |  |
| Colorado pikeminnow       | Ptychocheilus lucius                 | Native     | Federally listed as endangered (see Section 3.7.4). Although rare, it is widely distributed in warmwater reaches of the Colorado and Green Rivers and lower sections of larger tributaries. Adult habitat includes deep, low-velocity runs, prand eddies or seasonally flooded lowlands. Young occupy low-velocity, shallo shoreline habitats.                                                      |  |
| Speckled daceb            | Rhinichthys osculu <sup>b</sup>      | Native     | Widespread, common to abundant. It occupies permanent or intermittent cool- or warmwater streams and rivers and small to large lakes. In streams and rivers, adults are generally found in shallow runs and rifles with rocky substrates. Young occupy low-velocity shortline or seasonally flooded habitats.                                                                                       |  |
| Redside shiner            | Richardsonius balteatus <sup>b</sup> | Introduced | Rare to common in the Yampa River and upper sections of the Green and Duchesne Rivers. It prefers cool water and is found in a variety of habitats. In streams, it may occur in slow to swift, clear to turbid water and over cobble, gravel sand, clay, or mud substrates; it is frequently found associated with vegetation.                                                                      |  |
| Creek chub                | Semotilus atromaculatus              | Introduced | Incidental to rare with a very sporadic distribution in the Upper Colorado River<br>Basin. It prefers small streams with clear, cool water, moderate to high gradients,<br>gravel substrate, and well-defined riffles and pools with abundant cover.                                                                                                                                                |  |

| Family and<br>Common Name             | Scientific Name          | Origin     | Present Distribution in the Upper Colorado River Basin and Comments <sup>a</sup>                                                                                                                                                                                                                                                                                   |  |
|---------------------------------------|--------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Catostomidae (Suckers)<br>Utah sucker | Catostomus ardens        | Introduced | Rare, occurs primarily in the Strawberry and Duchesne River drainages. It prefers reservoirs or quiet waters in rivers with cobble or gravel substrates and emergent vegetation.                                                                                                                                                                                   |  |
| Longnose sucker                       | Catostomus catostomus    | Introduced | Locally common in the upper portions of the Gunnison River and cool, clear tributaries of the upper Colorado River drainage. It is found in both lakes and streams.                                                                                                                                                                                                |  |
| White sucker                          | Catostomus commersoni    | Introduced | Rare to common in reaches of the Yampa River and in upper and middle section of the Green River; abundant in Flaming Gorge Reservoir; common to abundant the Gunnison River. It is a habitat generalist found in lakes, reservoirs, streams, and rivers. In streams and rivers, it prefers deep riffles, pools, and shallow runs over gravel or cobble substrates. |  |
| Bluehead sucker                       | Catostomus discobolus    | Native     | Widespread, common to abundant. It is found in a variety of habitats, ranging fre cool, clear streams to warm, turbid rivers. Adults prefer deep riffles or shallow re over rocky substrates. Young occupy low-velocity shoreline or seasonally floode habitats.                                                                                                   |  |
| Flannelmouth sucker                   | Catostomus latipinnis    | Native     | Widespread, common to abundant. It is found in warmwater reaches of larger river channels. Adults typically occupy pools and deeper runs, eddies, and shorelines. Young occupy low-velocity shoreline or seasonally flooded habitats.                                                                                                                              |  |
| Mountain sucker                       | Catostomus platyrhynchus | Native     | Incidental to rare in the Green River upstream of the Yampa River confluence and in headwaters of the Yampa and White Rivers; common in tributaries of the Duchesne, Price, and San Rafael Rivers. It prefers cool, clear streams with rocky substrates.                                                                                                           |  |

TABLE 3.7.1-1 (Cont.)

| Family and<br>Common Name | Scientific Name                  | Origin     | Present Distribution in the Upper Colorado River Basin and Comments <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|---------------------------|----------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Catostomidae (Suckers)    | (Cont.)                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Razorback sucker          | Xyrauchen texanus                | Native     | Federally listed as endangered (see Section 3.7.4). It is found in warmwater reaches of the Green and Colorado Rivers and lower portions of major tributaries; it primarily occurs in flat-water sections of the middle Green River between the Duchesne and Yampa Rivers and between Palisade and Loma in the Colorado River. Adult habitat includes runs, pools, eddies, and seasonally flooded lowlands. Young presumably require nursery habitat with quiet, warm, shallow water such as tributary mouths, backwaters, and especially floodplain wetlands. |  |
| Ictaluridae (Bullheads a  | and Catfishes)                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Black bullhead            | Ameiurus melas <sup>b</sup>      | Introduced | Sporadic distribution in middle and lower sections of the Green, Yampa, Duche and White Rivers. It is incidental to rare in main-channel habitats and common tabundant in inundated floodplain habitat adjacent to the middle Green River. It if found in turbid backwaters, seasonally flooded habitats, impoundments, and low-gradient river reaches with muddy bottoms.                                                                                                                                                                                     |  |
| Channel catfish           | Ictalurus punctatus <sup>b</sup> | Introduced | ed Widespread, common to abundant in middle and lower sections of larger rive<br>optimum riverine habitat has warm water and a diversity of velocities, depths<br>structural features that provide cover and feeding areas. In the Green and Yan<br>Rivers, it is most abundant in rocky, turbulent, high-gradient canyon habitats.                                                                                                                                                                                                                            |  |
| Esocidae (Pikes)          |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Northern pike             | Esox lucius                      | Introduced | Occurs in several rivers and impoundments but is infrequently collected, except in reaches of the Yampa River and middle Green River, where it is often caught during spring sampling for adult Colorado pikeminnow and razorback suckers. It primarily inhabits vegetated ponds, marshes, and larger lakes; deep pools, eddies, mouths of tributaries; and seasonally flooded habitats of larger rivers.                                                                                                                                                      |  |

# TABLE 3.7.1-1 (Cont.)

| Family and<br>Common Name                           | e Scientific Name Origin Present Distribution in the Upper Colorado River Basin an |                                    | Present Distribution in the Upper Colorado River Basin and Comments <sup>a</sup>                                                                                                                                                                                                                                                                       |  |  |
|-----------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Salmonidae (Trouts)<br>Cutthroat trout <sup>c</sup> | Oncorhynchus clarkt <sup>e</sup>                                                   | Native and introduced <sup>e</sup> | Rare to common in certain upstream river reaches (e.g., Green River downstream of Flaming Gorge Dam; stocked in tailwaters) or impoundments. It prefers cold, clear headwater streams. Native Colorado River cutthroat troat are present mostly as remnant populations in isolated high-elevation tributaries.                                         |  |  |
| Rainbow trout                                       | Oncorhynchus mykiss                                                                | Introduced                         | Common to abundant in the Green River upstream of the Yampa River conflue<br>(stocked in Flaming Gorge Reservoir and tailwaters), incidental to rare<br>downstream, and common to abundant in upper sections of the Yampa, Duches<br>and White River drainages. It prefers pools, eddies, runs, and riffles in streams<br>gravel or cobble substrates. |  |  |
| Kokanee (landlocked<br>form of Sockeye<br>salmon)   | Oncorhynchus nerka                                                                 | Introduced                         | Common in Fontenelle and Flaming Gorge Reservoirs on the Green River and the Aspinall Reservoirs on the Guunison River; rare in tailwaters, where it is a probable escapee from the reservoirs. It prefers pelagic zones of reservoirs.                                                                                                                |  |  |
| Mountain whitefish                                  | Prosopium williamsoni                                                              | Native                             | Incidental to rare in the Green River upstream of the Yampa River confluence an in lower sections of the Yampa and White Rivers; common in upper sections of t Yampa, White, and Duchesne Rivers. It prefers streams and rivers with cool, swi water and gravel or rubble substrates.                                                                  |  |  |
| Brown trout                                         | Salmo trutta                                                                       | Introduced                         | 1 Common in cool- and cold-water reaches of the Colorado River, rare to commo<br>the Green River upstream of the Yampa River confluence and in upper sections<br>the Duchesne River drainage, and rare in the Yampa and White Rivers. It prefer<br>deep pools, riffles, and runs with sand or cobble substrates and moderate to fast<br>current.       |  |  |
| Brook trout                                         | Salvelinus fontinalis                                                              | Introduced                         | Rare to common in the Green River upstream of the Yampa River confluence (stocked in Flaming Gorge Dam tailwaters) and in Soldier Creek and Strawberry Reservoirs; found in headwater areas of tributaries. It prefers clear headwater streams with gravel substrate.                                                                                  |  |  |
| Lake trout                                          | Salvelinus namaycush                                                               | Introduced                         | Present in Flaming Gorge and Fontenelle Reservoirs on the Green River and in<br>Blue Mesa Reservoir on the Gunnison River. Prefers cold, deep waters of large<br>lakes and reservoirs.                                                                                                                                                                 |  |  |

TABLE 3.7.1-1 (Cont.)

| Family and                 |                   |            |                                                                                                                                                                                                                                                                                                   |  |
|----------------------------|-------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Common Name                | Scientific Name   | Origin     | Present Distribution in the Upper Colorado River Basin and Comments <sup>a</sup>                                                                                                                                                                                                                  |  |
| Gadidae (Cods)             |                   |            |                                                                                                                                                                                                                                                                                                   |  |
| Burbot                     | Lota lota         | Introduced | Relatively new introduction and abundance status is unclear. Present in the Green River, including Flaming Gorge and Fontenelle Reservoirs. The burbot prefers cold waters in streams and lakes and impoundments and usually occurs near the bottom.                                              |  |
| Cyprinodontidae (Killifish | es)               |            |                                                                                                                                                                                                                                                                                                   |  |
| Plains killifish           | Fundulus kansae   | Introduced | Locally common in some warmwater ponds and in some river backwaters in the Colorado River subbasin.                                                                                                                                                                                               |  |
| Poeciliidae (Livebearers)  |                   |            |                                                                                                                                                                                                                                                                                                   |  |
| Western mosquitofish       | Gambusia affinis  | Introduced | Locally common in some warmwater ponds and in some river backwaters in t<br>Colorado River subbasin; incidental to rare, very sporadic distribution in the C<br>River subbasin. It prefers warm, slack-water areas.                                                                               |  |
| Gasterosteidae (Sticklebae | ks)               |            |                                                                                                                                                                                                                                                                                                   |  |
| Brook stickleback          | Culaea inconstans | Introduced | Incidental in the upper Yampa River drainages and in the middle Green River between Jensen and Ouray, Utah (almost exclusively in floodplain habitat). It prefers clear, cool, densely vegetated waters of slow-flowing small streams or ponds.                                                   |  |
| Cottidae (Sculpins)        |                   |            |                                                                                                                                                                                                                                                                                                   |  |
| Mottled sculpin            | Cottus bairdi     | Native     | Rare to common in the portions of the Colorado and Green Rivers, and in the Gunnison, Yampa, Duchesne, Price, and San Rafael Rivers. It prefers cool-water riffles and deep runs with rocky substrates in streams and rivers.                                                                     |  |
| Bear Lake sculpin          | Cottus extensus   | Introduced | Naturally endemic to Bear Lake, on the Utah-Idaho border. It has been introduced and become established in Flaming Gorge Reservoir. It is listed as a sensitive species by the Utah Division of Wildlife Resources. It prefers bottom lake habitat and spawns among tocks close to the shoreline. |  |

TABLE 3.7.1-1 (Cont.)

| Family and<br>Common Name                  | Scientific Name        | Origin     | Present Distribution in the Upper Colorado River Basin and Comments <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                          |  |
|--------------------------------------------|------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Centrarchidae (Sunfishes)<br>Green sunfish | Lepomis cyanellus      | Introduced | Common to abundant in some warmwater lakes and ponds. Generally rare in the middle Green and lower Yampa, Duchesne, and White Rivers; locally common in the Green River near the confluences of the Duchesne and White Rivers and in adjacent inundated floodplain babitat; locally common to abundant in some areas of the Gunnison and Colorado Rivers. It prefers backwater areas of warmwater streams or weed beds in warmwater lakes and reservoirs. |  |
| Bluegill                                   | Lepomis macrochirus    | Introduced | Incidental in riverine habitats, but locally common in some warmwater ponds a reservoirs. It prefers shallow, warm lakes and ponds or slow-moving areas of cl streams with abundant aquatic vegetation.                                                                                                                                                                                                                                                   |  |
| Smallmouth bass                            | Micropterus dolomieui  | Introduced | d Present in some cool and warmwater lakes, ponds, and reservoirs. Common al<br>rocky shorelines in Flaming Gorge Reservoir. Generally rare along the Green<br>in Utah but locally common in areas near the confluences of the Duchesne and<br>White Rivers; locally common in some areas of the middle and lower Yampa<br>River. It prefers clear, wide, fast-flowing runs and flowing pools with gravel or<br>rubble substrates.                        |  |
| Largemouth bass                            | Micropterus salmoides  | Introduced | ed Present in some warmwater lakes and ponds and in the Colorado and Gunnisor<br>Rivers. Locally common in the lower Yampa River and in the Green River<br>downstream of the Yampa River confluence; rare in Flaming Gorge Reservoir,<br>prefers clear, quiet waters in rivers with aquatic vegetation or vegetated littoral<br>zones in lakes and reservoirs.                                                                                            |  |
| Black crappie                              | Pomoxis nigromaculatus | Introduced | Present in some warmwater lakes and ponds; incidental in lower portions of the Colorado River and in the Green River near the confluences of the Duchesne and White Rivers. It inhabits clear, warm, quiet waters of ponds, lakes, and backwaters of larger rivers; it is generally found where there is abundant aquatic vegetation.                                                                                                                     |  |

| Family and<br>Common Name     | Scientific Name             | Origin     | Present Distribution in the Upper Colorado River Basin and Comments <sup>a</sup>                                                                                                                                                                                                                              |
|-------------------------------|-----------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Percidae (Perches)<br>Walleye | Sander vitreus <sup>b</sup> | Introduced | Incidental to rare in the Duchesne River, incidental in the Yampa and middle Green Rivers, and incidental in the lower Colorado River. It prefers large streams, rivers, and lakes with moderately deep, clear water, often found in slow, shallow runs, usually associated with emergent or bank vegetation. |

- a Abundant = occurring in large numbers and consistently collected in a designated area; common = occurring in moderate numbers and frequently collected in a designated area; rare = occurring in low numbers, either in a restricted area or having a sporadic distribution over a larger area; incidental = occurring in very low numbers and known from only a few collections.
- b The Kendall Warm Springs dace (Rhinichthys osculus thermalis) is a federally listed endangered subspecies restricted to Kendall Warm Springs in the upper Green River drainage, Wyoming (see Section 3.7.4).
- c Includes native Colorado River cutthroat trout (Oncorhynchus clarki pleuriticus), non-native Snake River Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri), and non-native Bear Lake Bonneville cutthroat trout (Oncorhynchus clarki utah).

Sources: Behnke et al. (1982); Tyus et al. (1982); Miller and Hubert (1990); Muth and Nesler (1993); Muth et al. (2000); Lentsch et al. (1996); Modde and Haines (1996); McAda (2003); Woodling (1985).

Flaming Gorge Reservoir. In addition, several smaller rivers and streams, as well as a number of small natural lakes and impoundments, occur within the potentially affected areas.

3.7.1.1.1 Green River Oil Shale Basin. Riverine habitats within the Green River Oil Shale Basin are associated with portions of the main stem of the Green River in Wyoming, between Fontenelle Reservoir and Flaming Gorge Reservoir, and with various perennial and intermittent tributaries to the upper Green River. In total, there are approximately 205 mi of perennial stream habitat located within the geologically prospective portion of the Green River Oil Shale Basin. The upstream half of Flaming Gorge Reservoir (approximately 36,000 acres) and a number of small reservoirs, lakes, and ponds also fall within the potentially affected area. The oil shale areas are located at least 0.5 mi from Fontenelle Reservoir.

A significant trout fishery exists in the portion of the main stem of the Green River within this region; the fishery includes target species such as rainbow, brown, brook, and cutthroat trout. The Wyoming Game and Fish Department (WGFD) manages the fishery through the use of various regulations, including creel limits, size limits, and tackle restrictions. On the basis of surveys conducted in April 2005, the main stem of the Green River in the vicinity of Seedskadee National Wildlife Refuge was estimated to have high densities of catchable-sized trout (more than 190 trout per mile of river) (WGFD 2006).

The fish community in Flaming Gorge Reservoir consists primarily of introduced species, including lake trout, brown trout, rainbow trout, cutthroat trout, kokanee, white sucker, smallmouth bass, channel catfish, common carp, Utah chub, redside shiner, and the Bear Lake sculpin. It also supports small numbers of native fish species, including flannelmouth sucker, mountain whitefish, and the mottled sculpin.

Rainbow trout have been annually stocked in Flaming Gorge Reservoir since it was filled, and this species provides the bulk of the angler harvest. Kokanee were stocked during the mid-1960s and have developed naturally reproducing fisheries. After rainbow trout, kokanee are typically second in harvest and popularity with anglers. Other sport fish occasionally stocked in the reservoir include brown trout and channel catfish. Lake trout entered Flaming Gorge Reservoir from the upper Green River drainage and have also become established as a wild population. Smallmouth bass were introduced into Flaming Gorge Reservoir in the 1960s to promote growth of rainbow trout by reducing the Utah chub population (Teuscher and Luecke 1996), and now occur in rocky shoreline habitat throughout Flaming Gorge Reservoir.

Burbot (also called ling), a member of the cod family, were illegally introduced into the Green River in 2005 and have now become established in Flaming Gorge and Fontenelle Reservoirs as well as the connecting portion of the Green River and some tributaries (WGFD 2006). These fish are aggressive predators that feed on other fish and invertebrates, and there are concerns that this species could negatively affect both game and nongame fish populations in the upper Green River subbasin.

None of the four endangered Upper Colorado River fish species occur in the Flaming Gorge Reservoir or in the upstream portions of the Green River subbasin. Historically, the

Colorado pikeminnow probably occurred in the upper Green River as far as Green River, Wyoming, and records indicate that the humpback chub and the bonytail were present upstream of the current location of Flaming Gorge Dam (Muth et al. 2000). Historic occurrence of the razorback sucker upstream of the location of Flaming Gorge Dam is less likely (Muth et al. 2000).

3.7.1.1.2 Washakie Oil Shale Basin. Two perennial streams (totaling less than 17 mi of stream habitat) pass through the portion of the Washakie Oil Shale Basin where extraction from the oil shale deposits is considered feasible. Approximately 7 mi of Vermillion Creek and 10 mi of Alkali Creek pass through the area. No significant fisheries are known to occur within these portions of these streams, although trout habitat exists in portions of the North Fork of the Vermillion River, located upstream of the prospective oil shale extraction areas. Historically, approximately 56 mi (0.3%) of the Vermillion Creek watershed were occupied by Colorado River cutthroat trout, although none of the historically occupied habitat currently contains Colorado River cutthroat trout (Hirsch et al. 2006).

Another perennial stream, Bitter Creek, is located within 0.25 mi of the potentially affected area. This stream drainage did not historically support Colorado River cutthroat trout (Hirsch et al. 2006), but does support a warmwater native fish assemblage identified by the WGFD as having a high conservation potential (WGFD 2006). Native species in this stream include flannelmouth sucker, speckled dace, and mountain sucker.

3.7.1.1.3 Uinta Oil Shale Basin. Aquatic habitats within the Uinta Oil Shale Basin are primarily associated with the Green River watershed, although some small perennial and intermittent tributaries of the upper Colorado River subbasin are present in the southeastern portion of the oil shale basin. In total, approximately 193 mi of perennial stream habitat falls within the geologically prospective area of the Uinta Oil Shale Basin. The portion of the Uinta Oil Shale Basin from which extraction is considered feasible neighbors approximately 70 mi of the middle Green River downstream from Ouray, Utah. In addition, a substantial portion of the lower White River, a significant tributary to the middle Green River, falls within the potentially affected area. Several reservoirs, ponds, and small lakes also fall within the Uinta Oil Shale Basin.

The portions of the Green River and the White River within and adjacent to the Uinta Oil Shale Basin are predominantly inhabited by warmwater native and non-native fishes. Fish species likely to be present within these two rivers and associated tributaries belong to families Cyprinidae (minnows), Cattosomidae (suckers), Cottidae (sculpins), Centrachidae (sunfishes), and Ictaluridae (catfishes). This section of the Green River is a concentration area for federally endangered Colorado pikeminnow and razorback sucker; bonytail and humpback chub could also occur in this area (Section 3.7.4), although less commonly. Colorado pikeminnow have also been reported from the White River within this oil shale basin (Lentsch et al. 2000).

Bitter Creek and Evacuation Creek are intermittent through or adjacent to the study area and do not continually support populations of fish. Speckled dace and mountain sucker could be

found within that portion of Bitter Creek flowing through the study area during high flow periods, although the stream frequently dries up during hot, dry summers. No fish species are known to use the streams or ponds emanating from springs or flowing wells in the Asphalt Wash drainage (BLM 2006f).

Pariette Draw, a tributary to the Green River in the northwestern portion of the study area is used to supply water to the Pariette Wetlands. These wetlands, which are managed primarily for waterfowl, contain a number of small warmwater ponds.

3.7.1.1.4 Piceance Basin. As identified in Section 3.4, the Piceance Oil Shale Basin is drained by three major river systems: (1) the White River basin to the north, (2) the Colorado River basin through the central portion, and (3) the Gunnison River basin to the south. However, the Gunnison River subbasin does not fall within the portion of the Piceance Basin that is considered feasible for extraction of oil shale resources. In total, approximately 128 ml of perennial Stream habitat occur within this oil shale basin.

Although the White River itself does not fall within the study area, two principal tributaries to the upper White River, Yellow Creek and Piceance Creek, are within the study area, along with several of their tributaries (Corral Gulch, Ryan Gulch, Black Sulphur Creek, Hunter Creek, and Willow Creek). Two small tributaries to Parachute Creek (East and West Forks of Parachute Creek) are located within or adjacent to the study area; Parachute Creek is a tributary to the upper Colorado River. Because the conditions in these streams represent a transition between cold- and warmwater streams, fish species include trout, as well as some species of suckers and minnows.

Conditions in private and state-owned portions of Piceance Creek just outside the study area are heavily influenced by summer-long irrigation use for hay production and livestock use, including winter feeding and spring calving activities (BLM 2006e). Although seasonally constrained, Piceance Creek continues to support populations of native fish, including flannelmouth suckers and speckled dace. Occasional trout that appear in collections are likely stocked fish that have escaped from privately owned upstream ponds (BLM 2006f).

Although no endangered fish occur within the study area, Colorado pikeminnow occupy the lower White River below Taylor Draw dam, located approximately 25 mi west of the study area. The White River and its 100-year floodplain below Rio Blanco Lake have been designated as critical habitat for the Colorado pikeminnow. Martinez et al. (1994) reported that the Colorado pikeminnow has been extirpated upstream of Taylor Draw Dam.

The upstream portion of Black Sulphur Creek within the study area supports a selfsustaining population of Colorado River cutthroat trout, although there is evidence of hybridization with rainbow trout. Because it is a relatively remote location with barriers to movement from downstream locations (i.e., physical barriers and water diversions), this stream has been identified as having potential as a reintroduction location for genetically pure strains of Colorado River cutthroat trout.

## 3.7.1.2 Special Tar Sand Areas

The Asphalt Ridge, Raven Ridge, Pariette, Hill Creek, and P.R Spring STSAs are all within areas that eventually drain to the Green River. Warmwater aquatic communities, similar to those described previously for the Uinta Oil Shale Basin occur within these areas. Many of the drainages within these areas are intermittent. However, the Asphalt Ridge area is adjacent to the Green River itself. Other perennial tributaries of the Green River within these STSAs include Ashley Creek, Cliff Creek, and Pariette Draw. While no endangered fishes would be expected to occur directly within these STSAs, they could occur in nearby areas of the Green River (Section 3.7.4). In total, approximately 107 mi of perennial stream habitat occur within the STSAs.

The Sunnyside STSA is drained by portions of Dry Creek, Cottonwood Canyon, and Nine Mile Creek, which eventually drain to the Green River via Nine Mile Creek. No significant fisheries are known to occur within these areas, although warmwater fish communities would be expected to occur in these drainages. In addition, an intermittent drainage, Range Creek, occurs within this area. Range Creek provides habitat for small populations of brown and cutthroat trout.

The Argyle Canyon STSA is within the vicinity of a single drainage, the South Fork of Avintaquin Creek. This creek, which is a tributary of the Strawberry River, may support trout, although information is limited. Hirsch et al. (2006) identify this creek as having poor habitat for Colorado River cutthroat trout.

In addition to being drained by a number of intermittent drainages, the San Rafael STSA surrounds a portion of the San Rafael River. Fish in the San Rafael River, which is a tributary to the lower Green River, include a high proportion of warmwater native fishes (approximately 70%), including bluehead sucker, flannelmouth sucker, roundtail chub, speckled dace, and Colorado pikeminnow (Tyus and Saunders 2001). The San Rafael River is also used by endangered fishes. Colorado pikeminnow have been captured in the lower 35 mi of the San Rafael River, and larval and a small population of razorback suckers occur in the Green River near the mouth of the San Rafael River (Muth et al. 2000; Tyus and Saunders 2001).

The Tar Sand Triangle STSA is drained by Big Water and Horse Canyons to the northeast and by French Spring Fork, Happy Canyon, and the Dirty Devil River to the northwest and west. Big Water and Horse Canyons are perennial tributaries to the Colorado River; French Spring Fork and Happy Canyon are ephemeral or intermittent drainages that enter the Dirty Devil River. The Dirty Devil River itself is a perennial stream that drains into the northern end of Lake Powell and supports a warmwater fish community. The Dirty Devil arm of Lake Powell is included in designated critical habitat for the razorback sucker (59 FR 13374), and small numbers of razorback suckers have been found in Lake Powell near the mouth of the Dirty Devil River (Section 3.7.4).

The Circle Cliffs and White Canyon STSAs both are also drained by intermittent or ephemeral tributaries that eventually drain to Lake Powell. Because these areas do not contain perennial flows, the presence of aquatic communities is likely limited. However, portions of the tributaries draining the Circle Cliffs and White Canyon areas may contain warmwater fish assemblages.

### 3.7.2 Plant Communities and Habitats

#### 3.7.2.1 Piceance Basin

The Piceance Basin lies within the Colorado Plateau ecoregion. An ecoregion is an area in which ecosystems have a general similarity; an ecoregion is characterized by the spatial pattern and composition of biotic and abiotic features. Colorado ecoregions are described by Chapman et al. (2006) and are shown in Figure 3.7.2-1. The Colorado Plateau ecoregion is characterized by a rugged tableland of mesas, plateaus, mountains, and canyons, often with abrupt changes in local relief.

Within this ecoregion, the northern portion of the basin, primarily located in Rio Blanco County, is included in the Semiarid Benchlands and Canyonlands subregion. Broad benches and mesas in alternating areas of high and low relief support grassland, shrub, and woodland vegetation types. Escarpments, hillslopes, cuestas, alluvial fans, and narrow canyons, are also characteristic of this region. A few isolated peaks also occur. Elevations range from 5,400 to 9,200 ft, with local relief up to 1,000 ft. Deep soils of fine sand support sagebrush steppe with warm season grasses (i.e., galleta grass [Pleuraphis jamesii] and blue grama [Bouteloua gracilis]) and shrubs (primarily black sagebrush [Artemisia nova], winterfat [krascheninnikovia lanata], mormon tea [Ephedra viridis], fourwing saltbush [Atriplex canescens], and shadscale [Atriplex confertifolia]). Shallow stony soils support pinyon-juniper woodlands of two-needle pinyon pine (Pinus edulis) and Utah juniper (Juniperus osteosperma). Scattered woodlands of gambel oak (Quercus gambelii) occur at the higher elevations. Woodlands have expanded beyond their original range because of fire suppression and erosion. The average annual precipitation is about 10 to 18 in. in lower areas and 20 to 25 in. at the highest elevations. This subregion has a moderate to long growing season with 60 to 120 mean annual frost-free days. Vegetation is generally not as sparse as in the drier ecoregions.

The southern portion of the Piceance Basin, in Garfield County, lies within the Escarpments subregion. Extensive cliff-bench complexes characterize this region and ascend to the forested mountain rim. High, deeply dissected cliffs, escarpments, and mesa tops are typical of this region. Elevations range from 6,000 to 9,000 ft, with local relief up to 3,000 ft. The Book Cliffs and Roan Cliffs are major scarp slopes in the region, and the region is prone to landslides. The average annual precipitation is 15 to 25 in., with up to 32 in. at higher elevations. This subregion has a short to moderate growing season with 60 to 90 mean annual frost-free days. Lower drier sites in the region support desert and semidesert grassland or shrubland, while steep, north-facing slopes at higher elevations support Douglas fir (*Pseudotsuga menziesii*) forest with mountain mahogany (*Cercocarpus sp.*) and aspen (*Populus sp.*). The predominant vegetation type of shallow soils on escarpments and benches is pinyon-juniper woodland. Mountain mahogany and aspen woodlands are additional vegetation types.

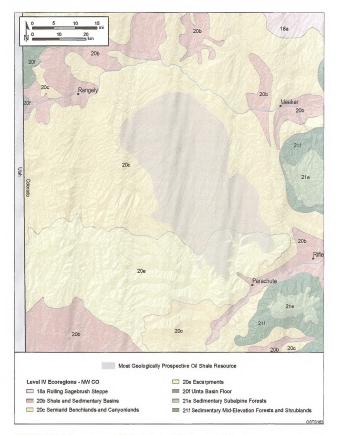



FIGURE 3.7.2-1 Ecoregions and Oil Shale Basin of Northwestern Colorado

The majority of the Piceance Basin lies within the White River Resource Area. Pinyon-juniper woodland is the predominant vegetation community, composing 46% of the resource area and occurring at elevations from about 5,200 to 8,000 ft (BLM 1997a). Pinyon pine and Utah juniper are the dominant species; however, common juniper and one-seed juniper may also occur. This community is frequent on dry ridgetops with shallow soils. Utah juniper is dominant on drier sites, such as lower elevations and south or west exposures, while pinyon pine is dominant on locations with higher soil moisture. The canopy ranges from open to closed, with understory shrub and herbaceous vegetation density subsequently ranging from high to low. The sagebrush vegetation type composes 21% of the resource area and includes various sagebrush species with a mixed short-to-tall growth. The shrub density ranges from open to closed with a corresponding high-to-low density of understory species. Big sagebrush (Artemisia tridentata) is the dominant species below 7,000-ft elevations, and associates may include shadscale and winterfat, Herbaceous associates include squirreltail (Elymus elymoides), Indian ricegrass (Achnatherum hymenoides), Colorado wildrye (Leymus ambiguus), needle-and-thread (Hesperostipa comata), goldenweed (Haplopappus sp.), and scarlet globemallow (Sphaeralcea coccinea). Sagebrush communities at higher elevations typically include species associated with mountain shrub communities, including wheatgrasses (Agropyron spp.), bluegrasses (Poa spp.), needlegrasses (Stipa spp.), bromegrasses (Bromus spp.), arrowleaf balsamroot (Balsamorhiza sagittata), and penstemons (Penstemon spp.).

Mountain shrub communities include medium-sized to large tree-like shrubs. These communities generally occur at upper elevations on east, west, and north slopes. The shrub canopy is open to dense, with some areas of open canopy having the highest levels of herbaceous species production and diversity of any plant association in the resource area. This community type covers only 11% of the resource area; however, it covers 41% of the NOSR 1, which includes the southern portion of the Piceance Basin. Quaking aspen (Populus tremuloides) communities occur at elevations above 7,000 ft on northern to northeastern exposures. The canopy ranges from open to dense, with open stands having a higher production and diversity of grasses and forbs, and dense stands supporting a thick understory of woody species. Aspen communities occupy less than 5% of the resource area, but about 12% of the NOSR 1. Greasewood shrub communities occur on drainage bottoms with poorly drained soils from 5,200 to 6,600 ft in elevation. Many drainages in the resource area, including the White River and Yellow Creek drainages, support extensive greasewood (Sarcobatus vermiculatus) stands. Dense stands have a sparse growth of short annual herbaceous species, while open stands include a mixture of other shrubs with perennial and annual grasses and forbs. Additional vegetation communities in the resource area include grasslands, saltbush-salt desert shrub, gambel oak woodlands, and above 7,000 ft, coniferous forest and woodlands of blue spruce (Picea pungens), Engelmann spruce (Picea engelmannii), Douglas fir, or subalpine fir (Abies lasiocarpa). Barren areas of barren rock, rock outcrops, cliffs, talus slopes, and erosion pavements cover 9% of the resource area. These areas are sparsely vegetated or unvegetated and support many endemic and rare plant species.

The southwestern portion of the Piceance Basin lies within the Grand Junction Resource Area. Arid grassland terraces in the resource area support galleta, cheatgrass (Bromus tectorum), saline wildrye (Leymus salinus), and broom snakeweed (Gutierrezia sarothrae) (BLM 1987a). A number of shrubland communities occur in the resource area. Saltbush communities on benches

include shadscale, galleta, broom snakeweed, and cheatgrass. Dominant species on eroded land include Nuttall's salfbush (Atriplex nuttallii), shadscale, and saline wildrye. Greasewood communities on uplands include black greasewood, cheatgrass, and burr buttercup (Ranunculus testiculatus). Associates of black greasewood in washes include perfoliate pepperweed (Lepidium perfoliatum) and cheatgrass. Sagebrush communities in valleys include big sagebrush, cheatgrass, wheatgrasses, and bluegrasses. Associates of big sagebrush on mesas include black sagebrush, galleta, and blue grama; associates on highlands include columbia needlegrass (Achnatherum nelsonii), lupines (Lupinus sp.), and gambel oak. Blackbrush (Coleogyne ramosissima) communities on slopes and terraces include prickly pear (Opuntia sp.) and blue grama.

Pinyon-juniper woodland occurs in the Grand Junction Resource Area at elevations from 4,800 to 7,500 ft. Pinyon pine is dominant at the higher elevations within that range, while Utah juniper dominates at the lower elevations. Associated species on arid mesas include big sagebrush and black sagebrush; gambel oak and big sagebrush occur on mesic mesas. Associated species on arid slopes include galleta and true mountain mahogany (Cercocarpus montanus); true mountain mahogany and serviceberry (Amelanchier sp.) occur on mesic slopes. Douglas fir forest generally occurs on steep side slopes at elevations between 7,000 and 9,000 ft. Associates include snowberry (Symphoricarpos sp.) and serviceberry. Quaking aspen woodland occurs above 7,000 ft on soils with relatively high moisture, such as north and northeast facing slopes. Associates include mountain snowberry (Symphoricarpos oreophilus), elk sedge (Carex geyeri), and aspen pea-vine (Lathyrus laetivirens).

The southeastern corner of the Piceance Basin lies within the Glenwood Springs Resource Area. Pinyon-juniper woodland composes 39% of the public land in the resource area, with juniper predominating in the western portions (BLM 1988). Mountain shrub communities cover 20% of the resource area and are primarily composed of oakbrush and serviceberry and include mountain mahogany, bitterbrush (Purshia tridentata), willow (Salix sp.), and alder (Alnus sp.). Semidesert shrub communities compose 27% of the public land; however, this type occurs primarily on low elevations below the Roan Plateau. The dominant shrubs are sagebrush species, including big sagebrush, low sagebrush (Artemisia arbuscula), and black sagebrush, as well as other sagebrush species. Additional semidesert shrub species include black greasewood, winterfat, shadscale, mat (Atriplex corrugata), and fourwing saltbush, as well as other saltbush species, and rabbitbrush (Chrysothamnus sp.). Aspen stands, conifer forest, and grassland habitat compose smaller portions of the resource area. Aspen is a short-lived, fast-growing, pioneer species that is eventually replaced by shade-tolerant conifers such as Engelmann spruce or subalpine fir. Harvesting promotes the perpetuation of aspen stands by stimulating root sprouting and regrowth. Conifer forest includes Douglas fir forest and Engelmann spruce-subalpine fir forest. Forest management promotes a balanced age class distribution that includes stands of all ages.

Noxious and invasive weeds can adversely affect native ecosystems. These aggressive, exotic plant species often displace native plants, thereby altering the species composition and community structure of native plant communities (BLM 2006a). They can contribute to increased soil erosion, reduced species diversity and structural diversity, and loss of habitat. The following noxious weed species occur in the White River Resource Area: leafy spurge

(Euphorbia esula); houndstongue (Cynoglossum officinale); knapweeds — Russian, spotted, and diffuse (Acroptilon repens, Centaurea stoebe, and C. diffusa); musk thistle (Carduus nutans); Canada thistle (Cirsium arvense); yellow toadflax (Linaria vulgaris); whitetop/hoary cress (Cardaria draba); and tall whitetop/perennial pepperweed (Lepidium latifolium).

The Duck Creek ACEC (3,430 acres), Ryan Gulch ACEC (1,440 acres), and Dudley Bluffs ACEC (1,630 acres) are located in the northern portion of the Piceance Basin (Figure 3.1.1-2). The resource values associated with these ACECs include several federally and state-listed threatened plant species and candidate species. Additional ACECs are located outside of the geologically prospective area. Upper Greasewood Creek (in two units), Lower Greasewood Creek, and Yanks Gulch ACECs are located near the northern boundary of the basin and south of the White River. The White River Riparian ACEC is composed of numerous small blocks along the river, north of the basin and continuing downstream. Coal Draw, South Cathedral Bluff, and East Douglas Creek ACECs are also located near the basin to the west, and Deer Gulch is near the eastern boundary. (The Lower Colorado River Cooperative Management Area ACEC, located downstream of the basin to the south, is designated for the protection of riparian and wildlife values [BLM 1988].)

Two ACECs occur in the southeastern portion of the Piceance Basin. The Eastfork Parachute Creek proposed ACEC includes three rare plants: the hanging garden sullivantia (Sullivantia hapemanii var. purpusii), Utah fescue (Festuca dasyclada), and southwest stickleaf (Mentzelia argillosa) (BLM 2006a). In addition, three rare plant communities occur in the planning area. The montane riparian forest is predominantly composed of Colorado blue spruce and redosier dogwood (Cornus sericea). The boxelder riparian forest is primarily composed of boxelder (Acer negundo), narrowleaf cottonwood (Populus angustifolia), and redosier dogwood. The western slope grassland community, which occurs on south-facing slopes of shale or mudstone soils, is a shale barrens dominated by Indian ricegrass. The Trapper/Northwater Creek proposed ACEC includes two rare plants, hanging garden sullivantia and Utah fescue. Two rare plant communities also occur in this ACEC—sagebrush bottomland shrubland and western slope grassland.

Moist meadow wetlands occur at the headwaters of drainages on the Roan Plateau (BLM 2006a). These wetlands are dominated by herbaceous species. Riparian shrub communities occur along the bottoms of major drainages. These communities include willow (Salix sp.), elderberry (Sambucus sp.), gooseberry (Ribes sp.), and riparian grasses. Lower reaches of the main drainages on the plateau support a narrow zone of coniferous woodland, composed primarily of blue spruce and Engelmann Spruce with interspersed shrubs. A number of streams on the plateau support deciduous woodlands along their margins. These woodlands are composed of narrowleaf cottonwood, boxelder, and shrubs. Hanging gardens occur along canyon walls, predominantly north-facing walls where Green River shale beds are exposed, where seeps provide consistent moisture throughout the year.

In the Grand Junction Resource Area, nonwooded riparian areas support saltcedar (*Tamarix sp.*), saltgrass (*Distichlis spicata*), rush (*Juncus sp.*), and bulrush (*Scirpus sp.*); species of wooded riparian areas include cottonwood, boxelder, skunkbrush (*Rhus trilobata*), and willow (BLM 1987a). Along some rivers, fire has resulted in the removal of some Fremont cottonwood

(Populus fremontii) stands greater than the rate of replacement. Overgrazing has impacted many riparian areas. Riparian and wetland habitats in the Glenwood Springs Resource Area include grassland with sedge (Carex sp.) and rush species (BLM 1988). Riparian habitats in this resource area also support cottonwood and willow, along with associated grasses and forbs. In this resource area, riparian habitats have been greatly impacted by such factors as road construction, gravel extraction, water diversions, and livestock grazine.

### 3.7.2.2 Uinta Basin

The Uinta Basin lies within the Colorado Plateau ecoregion. Ecoregions in Utah are described by Woods et al. (2001). The Colorado Plateau ecoregion is characterized by a dissected tableland of benches, buttes, mesas, plateaus, salt valleys, cliffs, and canyons (Figures 3.7.2-2 and 3.7.2-3).

Within this ecoregion, the Uinta Basin Floor subregion includes much of Uintah County and portions of Duchesne County. This region lies in a large, arid, synclinal basin with alluvial terraces, outwash terraces, floodplains, hills, and ridges; in some areas, mesas and benches alternate with lower arable land. Elevations mostly range from 4,300 to 6,400 ft, with local relief up to 1,200 ft. The basin receives a large amount of stream runoff from the adjacent mountains. The average annual precipitation is about 5 to 8 in., and the growing season is moderate to long, with 115 to 140 mean annual frost-free days. Vegetation is predominantly a saltbush-greasewood association with shadscale, Wyoming big sagebrush, fourwing saltbush, winterfat, Indian ricegrass, galleta, and needle-and-thread: black sagebrush may also be present.

The Semiarid Benchlands and Canyonlands subregion includes portions of Uintah, Duchesne, and Carbon Counties. Broad benches and mesas in alternating areas of high and low relief support grassland, shrub, and woodland vegetation types. Escarpments, hillslopes, cuestas, alluvial fans, and narrow canyons, are also characteristic of this region. Elevations mostly range from 5,000 to 7,500 ft, with local relief up to 2,000 ft. A few isolated peaks of higher elevation also occur. Bare rock is common. Deep soils of fine sand over most of the region support sagebrush steppe with warm season grasses (i.e., galleta grass and blue grama) and shrubs (primarily black sagebrush, big sagebrush, blackbrush, winterfat, mormon tea, and fourwing saltbush). Shallow stony soils support pinyon-juniper woodlands of two-needle pinyon pine and Utah juniper. Sage parkland or mountain brush occurs on higher elevations. Woodlands have expanded beyond their original range because of fire suppression and erosion. The average annual precipitation is about 8 to 14 in. in lower areas and 20 to 25 in. at the highest elevations. This subregion generally has a moderate to long growing season with 80 to 160 mean annual frost-free days, but less than 50 days on the highest areas. Vegetation is generally not as sparse as in the drier ecoregions.

Large areas of the Uinta Basin lie within the Uinta Basin Floor subregion of the Colorado Plateau ecoregion. Streams have high levels of dissolved solids and suspended sediments; riparian areas support cottonwood trees and Russian olive (Elaeagnus angustifolia), an invasive exotic tree (Woods et al. 2001).

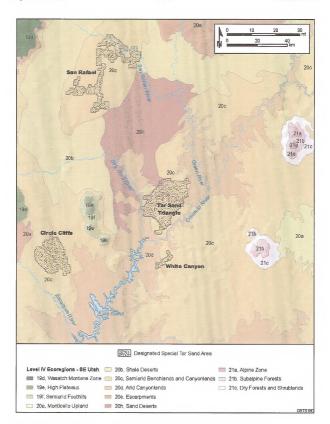



FIGURE 3.7.2-2 Ecoregions and Special Tar Sand Areas of Southeastern Utah

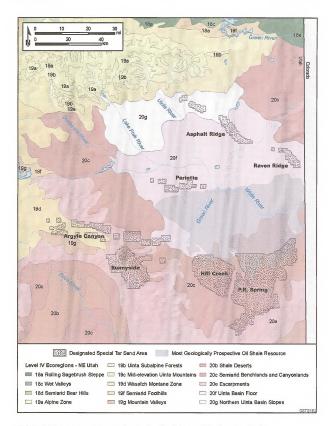



FIGURE 3.7.2-3 Ecoregions and Special Tar Sand Areas of Northeastern Utah

The Pariette Wetlands ACEC lies in the northwestern portion of the Uinta Basin. This ACEC is also adjoined with the Lower Green River ACEC, which includes riparian habitat and special status animal species. The Nine Mile ACEC is located at the southwestern margin of the basin and is also adjoined by the Lower Green River ACEC. The Raven Ridge-Addition ACEC is located in Colorado near the northeastern boundary of the basin. This ACEC is designated for the protection of federally listed plant species.

### 3.7.2.3 Green River and Washakie Basins

The Green River Basin lies within the Wyoming Basin ecoregion. Ecoregions in Wyoming are described by Chapman et al. (2004). The Wyoming Basin ecoregion occupies a broad arid basin with scattered hills and low mountains (Figure 3.7.2-4). The climate in the basin is influenced by the surrounding mountain ranges. The predominant vegetation types are grasslands and shrublands. The Rolling Sagebrush Steppe subregion is the predominant subregion within the Green River Basin, with large areas of the Salt Desert Shrub Basins subregion scattered throughout much of the basin. In addition, the Foothill Shrublands and Low Mountains subregion occurs in the southern and eastern portions of the basin. This region is characterized by isolated, dry mountain ranges and foothill slopes and includes alluvial fans, hills, ridges, and valleys. Elevations in foothills range from 5,000 to 7,000 ft, and more than 9,000 ft in some mountain ranges. Local relief can be up to 800 ft. The average annual precipitation is about 14 to 20 in., and the growing season is short to moderate with 75 to 100 mean annual frost-free days. Fine-textured soils occur at lower elevations and primarily support sagebrush steppe and grassland with big sagebrush, rabbitbrush (Chrysothamnus sp.), prickly pear, bluebunch wheatgrass (Pseudoroegneria spicata), and Idaho fescue (Festuca idahoensis), while rocky outcrops support woodlands of Rocky Mountain juniper (Juniperus scopulorum), Utah juniper, and mountain mahogany. Higher elevations support Rocky Mountain juniper, lodgepole pine (Pinus contorta), limber pine (Pinus flexilis), aspen, Douglas fir, and ponderosa pine (Pinus ponderosa) forests.

The Washakie Basin lies within the Wyoming Basin ecoregion. The Rolling Sagebrush Steppe is the predominant subregion within the Washakie Basin. This subregion is a wide semiarid area of rolling plains with hills, mesas, cuestas, and nearly level floodplains and terraces. Footslopes, ridges, rolling alluvial fans, and outwash fans occur near the mountains. The average annual precipitation is 6 to 16 in., with a moderate growing season with 75 to 100 mean annual frost-free days. Elevations range from 4,900 to 7,200 ft. Local relief can be up to 400 ft. Sagebrush steppe shrubland is the predominant vegetation type, with mixed grass prairie predominating in the far eastern portions. The dominant shrub species is Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis). Silver (Artemisia cana) and black sagebrush occur in the lowlands, and mountain big sagebrush (Artemisia tridentata ssp. vaseyana) occurs at higher elevations. Associated species of Wyoming big sagebrush include western wheatgrass (Pascopyrum smithii), needle-and-thread, blue grama, Sandberg bluegrass (Poa secunda), junegrass (Koeleria macrantha), rabbitbrush, and fringed sage (Artemisia frigida). The sagebrush steppe has been affected by frequent fires and in some areas has been replaced by European annual grasses, Smaller areas of the Salt Desert Shrub Basins subregion are scattered throughout the Washakie Basin. This arid plains subregion is characterized by disjunct playas

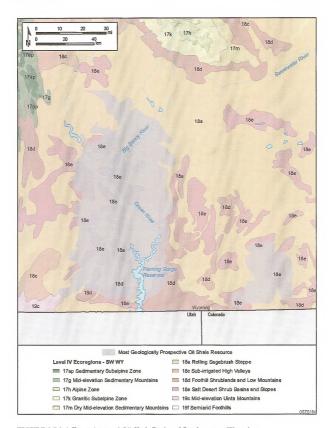



FIGURE 3.7.2-4 Ecoregions and Oil Shale Basins of Southwestern Wyoming

and sand dunes, nearly level floodplains and terraces, and rolling alluvial fans. Elevations range from 5,800 to 7,200 ft. The average annual precipitation is 6 to 10 in., with a moderate growing season with 75 to 100 mean annual frost-free days. Soils are more alkaline and less permeable than in the Rolling Sagebrush Steppe. Vegetation is sparse, consisting of desert shrublands with alkaline-tolerant shrubs and grasses. Shrubs include shadscale, greasewood, Gardner saltbush (Atriplex gardneri), bud sage (Picrothannus desertorum), and big sagebrush. Stabilized sand dunes, which have greater moisture, higher permeability, and lower alkalinity, support a higher diversity of plant species, primarily alkali cordgrass (Spartina gracilis), indian ricegrass, blowout grass (Redfieldia flexuosa), alkali wildrye (Leymus simplex), and needle-and-thread. Non-native species, such as Russian thistle (Salsola tragus), cheatgrass, and halogeton (Halogeton glomeratus), may become established as a result of grazing pressure.

Riparian vegetation communities occur along rivers, perennial and intermittent streams, lakes, reservoirs, and at springs (BLM 1987a, 1988). These communities generally form a vegetation zone along the margin or in the stream channel of upper drainages, distinct from the adjacent upland area in species composition and density. Riparian communities are dependent on the streamflows or reservoir levels and are strongly influenced by the hydrologic regime, which affects the frequency, depth, and duration of flooding or soil saturation. Peak flows on major streams generally occur in May and June as a result of snowmelt, with low flows in winter. Peak flows on smaller streams are often due to summer thunderstorms. Intermittent streams generally intersect the water table and have seasonal flow from groundwater discharge at seeps and springs, or they may have a surface water source. Ephemeral streams are directly dependent on precipitation, having a water table located below the soil surface, and having flow only during spring runoff and following intense summer storms (BLM 1997a, 2004g). Ephemeral streams often do not support riparian vegetation.

Wetland areas are typically inundated, or have saturated soils for a portion of the growing season, and support plant communities that are adapted to saturated soil conditions. Unvegetated wetlands include mudflats, gravel beaches, and rocky shores (Cowardin et al. 1979). Riparian communities may include wetlands; however, the upper margins of riparian zones may be only infrequently inundated. Wetlands are generally associated with perennial water sources, such as springs, perennial segments of streams, or lakes and ponds. Functions of riparian and wetland areas include (1) erosion reduction and water quality improvement by dissipation of stream energy associated with high flows; (2) filtration of sediments and promotion of floodplain development; (3) improvement of floodwater retention and groundwater recharge of alluvial aquifers; (4) stabilization of stream banks by rootmass development; (5) provision of habitat, water depth, duration, and temperature for fish production, waterfowl breeding, and other wildlife uses, by development of diverse ponding and channel characteristics; and (6) support of greater biodiversity (BLM 1997a).

Large areas of the Green River and Washakie Basins lie within the Rolling Sagebrush Steppe subregion of the Wyoming Basin ecoregion. Within this subregion, streams and rivers with mountain headwaters have a moderate gradient with granite or limestone cobble substrates (Chapman et al. 2004). Streams with headwaters in the Wyoming Basin center have a low gradient with finer gravel substrates of shades and are more incised. Small streams in the subregion are weakly intermittent or ephemeral, with substrates of sand or platy shale. Within the

Salt Desert Shrub Basins subregion, streams are ephemeral or weakly intermittent; many are incised and flow into playas, which are seasonal with high levels of soluble salts (Chapman et al. 2004). Substrate is typically fine-textured or platy shale gravels. Within the Foothill Shrublands and Low Mountains subregion, streams originate in the nearby Rocky Mountains or are spring-fed streams originating on the higher ranges of the basin (Chapman et al. 2004). They generally have a steep gradient with riffle/run habitats and plunge pools. Streams generally have limestone or granite cobble or boulder substrates.

In the sand dunes area on the northeastern corner of the Green River Basin, ephemeral ponds fed by meltwater flockets are ecologically important wetlands because of their early season production of invertebrates and nesting habitat for waterfowl (BLM 2004d). In the northeastern corner of the Green River Basin, seeps and springs occur within the Jack Morrow Hills Planning Area (BLM 2004d).

Wetlands associated with high levels of soil moisture in typically arid areas support herbaceous species such as Baltic rush (Juncus arcticus ssp. littoralis). Nebraska sedge (Carexnebrascensis), water sedge (Carex aquatilis), and tufted hairgrass (Deschampsia caespitosa), with occasional species along the margin, including mountain iris (Iris missouriensis), sandbar willow (Salix interior), and narrowleaf cottonwood (BLM 2006g). Areas that are seasonally wet include Kentucky bluegrass (Poa pratensis), tufted hairgrass, foxtail barley (Herdeum jubatum), redtop (Agrostis gigantea), northern reedgrass (Calamagrostis stricta ssp. inexpansa), slender wheatgrass (Elymus trachycaulus), basin wildrye (Leymus cinereus), field horsetail (Equisetum arvense), wood rose (Rosa woodsii), shrubby cinquefoil (Dasiphora fruticosa ssp. floribunda), silver sage, basin big sagebrush (Artemisia tridentata ssp. tridentata), greasewood, and willows. Ephemeral washes may support a community of salttolerant herbaceous species, including inland saltgrass and western wheatgrass, along with greasewood and basin big sagebrush. Riparian areas often consist of a lower zone of sedges and willows, where soil is saturated more frequently, and an upper zone of silver sagebrush with basin wildrye, Kentucky bluegrass, streambank wheatgrass (Elymus lanceolatus ssn. lanceolatus), redtop, Baltic rush, clover (Trifolium sp.), checkermallow (Sidalcea sp.), aster (Aster sp.), and, in some areas, cottonwood and willow.

Basin big sagebrush is found as a dominant species along valley bottoms, canyons, and epenterral streams. Greasewood shrublands occur along playas, desert lakes, ponds, and desert streams, often on terraces above wetter areas of silver sagebrush or basin big sagebrush. Associated species typically include shadscale, Gardner saltbush, alkali sagebrush (Artemisia arbuscula ssp. longiloba), basin big sagebrush, inland saltgrass, western wheatgrass, alkali sacaton (Sporobolus airoides), bottlebrush squirreltail, Sandberg bluegrass, biscultroot (Lomatium sp.), pepperweed (Lepidium sp.), and sea blight (Suaeda moquinit).

Wetland and riparian areas generally are herbaceous wetlands, herbaceous riparian areas, and shrub-dominated riparian areas. Sedges, rushes, cattails (Typha 3pp.), and willows dominate wetter areas. In addition to margins of streams and bodies of open water, wetlands occur as open meadows that collect moisture in winter and spring. Many wetland areas are seasonally dry and infrequently inundated. Alkaline conditions can occur in areas of limited drainage. Riparian area along major streams on nonirrigated, nonfederal land support woodlands of plains cottonwood

(Populus deltoides ssp. monilifern), narrowleaf cottonwood, Fremont cottonwood, Geyer willow (Salix geyeriana), sandbar willow, and yellow willow (Salix lutea). Areas of shallow soil along the riparian margin or in rocky areas support predominantly herbaceous communities composed of riparian woodland understory species such as slender wheatgrass, thickspike wheatgrass (Elymus lanceolatus), smooth brome (Bromus inermis), tufted hairgrass, meadow foxtail (Alopecurus sp.), timothy (Phleum pratense), mountain ris, horsetail, gooseberry, currant (Ribes sp.), buffaloberry (Shepherdia sp.), and basin big sagebrush. Riparian habitats in foothills and mountain areas generally have high moisture levels throughout the growing season. The dominant species are generally willows with an understory of sedges, rushes, spikerush (Eleocharis sp.), and grasses. Open meadows and marshes support communities composed of these understory species.

Within the Green River Basin, the Greater Red Creek ACEC, composed of 131,890 acres located in the southeastern corner of the basin, is intended to protect unique ecological features, including Colorado River cutthroat trout (BLM 1997b). This ACEC includes the watersheds of Sage Creek and Currant Creek, which are tributaries of Red Creek. Management objectives include improving riparian habitats to achieve proper functioning condition throughout the ACEC, and improving watershed condition to improve channel stability, vegetation diversity, vegetation abundance, and water quality. The Special Status (Candidate) Plant Species ACEC, consisting of 900 acres on 58 sites, a number of which are located in the southwestern corner of the Green River Basin, is intended to protect populations of four plant species—Fremott County rockcress (Arabis pusilla), precocious milkvetch (Astragalus proimanthus), mountain tansymustard (Descurainia torulosa), and hairy greenthread (Thelesperma pubescens) (BLM 1997b). Management objectives include preventing the destruction or loss of the plant communities and important habitat supporting the special status species, enhancing or expanding such habitat, and providing sufficient protection to the species to prevent their listing as threatened or endangered.

One location of the Special Status (Candidate) Plant Species ACEC occurs in the northwestern portion of the Washakie Basin. In addition, the Hells Canyon ACEC in Moffat County, Colorado, is located approximately 5 km (3 mi) south of the Washakie Basin.

# 3.7.2.4 Special Tar Sand Areas

A large number of plant communities are present in the STSAs and vary considerably according to moisture availability and elevation. Even within individual STSAs, a wide range of habitats may occur. Rare plant communities, such as remnant vegetation associations, and rare or endemic plant species occur near the STSAs, and potentially within them. The canyonlands area, which includes the three southernmost STSAs (San Rafael, Tar Sand Triangle, and White Canyon), contains a particularly large number of endemic plant species (BLM 1984b).

The STSAs lie primarily within the Colorado Plateau ecoregion; however, most of the Argyle Canyon STSA and a small portion of the Sunnyside TSA lie within the Wasatch and Uinta Mountains ecoregion.

- The Argyle Canyon STSA is primarily located in the Wasatch Montane Zone subregion of the Wasatch and Uinta Mountains ecoregion, with a small portion in the Mountain Valleys subregion of that ecoregion. The Escarpments subregion of the Colorado Plateau ecoregion intersects the northeastern corner of the STSA.
- The Asphalt Ridge STSA is located in the Uinta Basin Floor and North Uinta Basin Slopes subregions of the Colorado Plateau ecoregion.
- The Hill Creek STSA is located entirely in the Semiarid Benchlands and Canyonlands subregion of the Colorado Plateau ecoregion.
- · The Pariette STSA is located entirely in the Uinta Basin Floor subregion.
- The P.R. Spring STSA is located primarily in the Semiarid Benchlands and Canyonlands subregion, with a small portion in the Escarpments subregion of the Colorado Plateau ecoregion.
- · The Raven Ridge STSA is located entirely in the Uinta Basin Floor subregion.
- The San Rafael STSA is located entirely in the Semiarid Benchlands and Canyonlands subregion.
- The Sunnyside STSA is located primarily in the Escarpments and Semiarid Benchlands and Canyonlands subregions, with the northeastern corner intersecting the Unita Basin Floor subregion. The Wasatch Montane Zone crosses a small portion of the northwestern corner of the STSA.
- The Tar Sand Triangle STSA is located mostly in the Semiarid Benchlands and Canyonlands subregion, with smaller portions in the Arid Canyonlands and Sand Deserts subregions.
- The White Canyon STSA is located mostly in the Semiarid Benchlands and Canyonlands subregion, with a smaller portion in the Arid Canyonlands subregion.

The Colorado Plateau ecoregion includes the following subregions: Semiarid Benchlands and Canyonlands, Arid Canyonlands, Escarpments, Uinta Basin Floor, North Uinta Basin Slopes, and Sand Deserts. Utah ecoregion descriptions are from Woods et al. (2001).

The Semiarid Benchlands and Canyonlands subregion includes all or portions of six STSAs, more than any other subregion. It includes pinyon-juniper woodland, with pinyon pine and Utah juniper, on shallow or stony soils, grassland, big sagebrush and black sagebrush shrubland, with sage parkland and mountain brush at the higher elevations. Additional species include winterfat, Mormon tea, fourwing saltbush, blackbrush, and warmseason grasses such as galleta and blue grama. Areas of unvegetated or sparsely vegetated exposed bedrock are

common. Annual precipitation is generally 8 to 14 in., with 20 to 25 in. at the upper elevations. The mean number of frost-free days is mostly 80 to 160, with less than 50 at higher elevations.

The Arid Canyonlands subregion contains the inner gorge of the Colorado River and tributaries. Annual precipitation is only 5 to 8 in. Plant communities include blackbrush and saltbush-greasewood shrublands. Additional species include shadscale, galleta, indian ricegrass, fourwing saltbush, blue grama, mat saltbush, sand dropseed, sand sagebrush, and bud sagebrush. Blackbrush is common in deep canyons, and tamarisk, an invasive species, forms extensive stands in riparian zones in some areas. The mean number of frost-free days is 160 to 220 or more, and winters are mild.

The Escarpments subregion includes a wide range of habitats and elevation gradients with steep slopes. Scrubland, woodland, and Douglas fir forest are the predominant habitat types. Douglas fir forest occurs on northern upper elevation slopes. Desert and semidesert grassland and shrubland occur at low elevations. Pinyon-juniper woodland is often a dominant habitat on shallow soils. Additional habitats include high-elevation forests of Engelmann spruce, subalpine fir, Douglas fir, and Arizona pine forest, and mountain mahogany/oak scrub. Annual precipitation ranges from 8 to 30 in. The mean number of frost-free days is 40 to 150.

The Uinta Basin Floor subregion is arid, with only 5 to 8 in. of annual precipitation. The predominant habitat type is saltbush-greasewood shrubsteppe. Additional species present include grasses (indian ricegrass, galleta, and needle-and-thread) and shrubs (shadscale, Wyoming big sagebrush, four-wing saltbush, winterfat, and black sagebrush). This subregion receives abundant streamflows from the adjacent mountains. Common species in riparian areas are cottonwood and Russian olive, an invasive species. Irrigation has contributed to salinity levels in the Green River and tributaries. The mean number of frost-free days is 115 to 140, with cold winters.

The North Uinta Basin Slopes subregion includes numerous perennial streams originating from the adjacent mountains. Pinyon-juniper woodland is the most common habitat type in this subregion, with some sagebrush steppe. Upper elevations support mountain brush communities. Cottonwood, willow, ponderosa pine, and shrubs occur in canyons. Annual precipitation is 8 to 18 in., and the mean number of frost-free days is 100 to 130.

The Sand Deserts subregion is arid with only 5 to 8 in. of annual precipitation. The sandy soils have a low water-holding capacity. Vegetation is generally sparse or absent and is typically composed of desert or semidesert grasses, desert shrubs, and annual forbs. Galleta-three awn (Aristida purpurea) shrubsteppe is the most common habitat type, with saltbush-greasewood shrubsteppe and pinyon-juniper woodland also present. Grasses include indian ricegrass, sand dropseed, galleta, and three awn; shrubs include blackbrush in southern areas, and sandsage. Yucca (Yucca angustissma) is also present. This subregion includes areas of unstabilized sand dunes and exposed bedrock. The mean number of frost-free days ranges from 130 to 180.

The Wasatch and Uinta Mountains ecoregion includes the Wasatch Montane Zone and Mountain Valleys subregions. The predominant habitat type in the Wasatch Montane Zone subregion is Douglas fir forest. Forests of Engelmann spruce-subalpine fir are found mostly to the south. Aspen parkland, which includes big sagebrush, snowberry, elderberry, mountain

grasses, and scattered Douglas fir, also occurs in this subregion. This subregion includes many good quality perennial streams. Willow and birch occur along streams. Annual precipitation is 16 to 50 or more in., the east side being drier than the west side. The mean number of frost-free days ranges from less than 40 to 80, with long, cold winters.

The Mountain Valleys subregion is unforested. The predominant habitat type is Great Basin sagebrush steppe, with pinyon-juniper woodland also present. Cottonwood, Russian olive, and invasive species are found in riparian areas. Annual precipitation is 5 to 24 in. The mean number of frost-free days is 70 to 100.

A number of existing and potential ACECs intersect with the STSAs. Many of these ACECs contain riparian habitats, wetlands, remnant vegetation associations, and/or endemic plant species.

- Argyle Canyon STSA intersects with Nine Mile Canyon Expansion ACEC, which includes populations of special status plant species, and Lears Canyon ACEC, with relict plant communities and special status plant species.
- Asphalt Ridge STSA is located near the Red Mountain—Dry Fork Complex ACEC, which supports two relic vegetation communities.
- · Hill Creek STSA intersects with Main Canyon ACEC.
- Pariette STSA intersects with Coyote Basin—Myton Bench ACEC and Pariette Wetlands ACEC, which includes special status and listed plant species and extensive wetlands.
- P.R. Spring STSA intersects with Main Canyon, Bitter Creek-P.R. Spring, and Bitter Creek ACECs.
- Raven Ridge STSA intersects with Coyote Basin-Snake John ACEC and is located near the Raven Ridge Addition ACEC.
- San Rafael STSA intersects with San Rafael Canyon, San Rafael Reef, which
  includes relict vegetation communities, Sids Mountain, Lucky Strike, Wild
  Horse, and I-70 Scenic Highway ACECs, and is located near the Muddy
  Creek ACEC, which has important riparian vegetation habitat.
- Sunnyside STSA intersects with Nine Mile Canyon, Nine Mile Canyon Expansion, Desolation Canyon, and Range Creek ACECs.
- Tar Sand Triangle STSA intersects with Horseshoe Canyon and Dirty Devil—North Wash ACECs.

 White Canyon STSA intersects with Scenic Highway Corridor ACEC and Dark Canyon ACEC, which is managed for protection of wildlife habitat, among other resources.

### 3.7.3 Wildlife

As discussed in Section 3.7.2, the various ecoregions encompassed by the oil shale and tar sands study area (i.e., counties within which commercial-scale development may occur) include a diversity of plant communities and species which, in turn, provide a wide range of habitats that support diverse assemblages of terrestrial wildlife (including wild horses [Equus caballus] and wild burros [E. asinus]). 12 Table 3.7.3-1 lists the number of wildlife species that occur within the oil shale and tar sands study area. The wildlife species that may be associated with any particular project would depend on the specific location of the project and on the plant communities and habitats present at the site.

The BLM has active wildlife and wild horse management programs within each of its field offices. Wildlife management programs are largely aimed at habitat protection and improvement. The general objectives of wildlife management are to (1) maintain, improve, or enhance wildlife species diversity while ensuring healthy ecosystems, and (2) restore disturbed or altered habitat with the objective of obtaining desired native plant communities, while providing for wildlife needs and soil stability (BLM 1997c). The BLM is primarily responsible

TABLE 3.7.3-1 Number of Wildlife Species Occurring within the Oil Shale and Tar Sands Study Area

| State    | Amphibians           | Reptiles | Birds     | Mammals  |
|----------|----------------------|----------|-----------|----------|
| Colorado | 18 (18) <sup>a</sup> | 49 (56)  | 290 (477) | 82 (130) |
| Utah     | 9 (17)               | 23 (57)  | 264 (428) | 76 (134) |
| Wyoming  | 6 (12)               | 10 (27)  | 318 (419) | 96 (120) |

a Numbers in parentheses are the number of species within the state

Sources: CDW (2006); Colorado Field Ornithologists (2006); Colorado Herpetological Society (2000, 2006); Lepage (2006); UDWR (2006); WGFD (2005).

<sup>12</sup> Wild horses and burros are not considered to be, nor are they managed as, "wildlife" on BLM-administered lands. They are managed as a separate resource management category under the Wild Free-Roaming Horses and Burros Act. However, because wild horses and burros would be impacted by oil shale and tar sands development in a similar manner to that experienced by other large mammals, and since the consideration of site-specific impacts is not practicable within this PEIS, they are addressed under wildlife for ease of discussion.

for managing habitats, while state agencies (i.e., Colorado Department of Natural Resources [CDNR], Utah Division of Wildlife Resources [UDWR], and Wyoming Game and Fish Department [WGFD]), in cooperation with the BLM, are responsible for managing the big game, small game, and nongame wildlife species that are nonmigratory. The USFWS has oversight of migratory bird species and of all federal threatened, endangered, or candidate species. BLM guidelines for the management of threatened and endangered species are provided in Section 3.7.4.

Consumptive and nonconsumptive recreational uses are associated with wildlife within BLM-administered lands. These include hunting of big game, small game, upland game birds, and fur trapping; wildlife viewing; and antler hunting (BLM 2004b).

The Wild Free-Roaming Horses and Burros Act passed by Congress in 1971 gave the BLM the responsibility to protect, manage, and control wild horses and burros. The general management objectives for wild horses and burros are to (1) protect, maintain, and control viable, healthy herds with a diverse age structure, while retaining their free-roaming nature; (2) provide adequate habitat for wild horses through principles of multiple use and environmental protection; (3) maintain a thriving natural ecological balance with other resources; (4) provide opportunities for the public to view wild horses; and (5) protect them from unauthorized capture, branding, harassment, or death (BLM 1991a, 1996, 1997c, 2005e).

The following discussions present general descriptions of the wildlife species and of wild horses and burros that may be affected by oil shale and tar sands projects on BLM-administered lands within the study area.

## 3.7.3.1 Amphibians and Reptiles

The counties within the three states in which oil shale and tar sands development may occur on BLM-administered land support a wide variety of amphibian (frogs, toads, and salamanders) and reptile (turtles, lizards, and snakes) species (Table 3.7.3-1). The number of amphibian species reported from the oil shale and tar sands study areas within these states ranges from 6 in Wyoming to 18 in Colorado, while the number of reptile species ranges from 10 in Wyoming to 49 in Colorado.

Common amphibian species include the tiger salamander (Ambystoma tigrinum). Great Basin spadefoot (Spea intermontana), northem leopard frog (Rana pipiens), and Woodhousei's toad (Bufo woodhousi). Reptile species common or widely distributed within the study areas include common gartersnake (Thamnophis sirtalis), racer (Coluber constrictor), gopher snake (Pituophis catenifer), midget faded rattlesnake (Crotalus oreganus), striped whipsnake (Masticophis taeniatus), western terrestrial garter snake (Thamnophis elegans), common sideblotched lizard (Uta stansburiana), eastern collared lizard (Crotaphytus collaris), eastern fence lizard (Sceloporus undulatus), and short-horned lizard (Phrynosoma douglassii). In Colorado, larval tiger salamanders, bullfrogs (Rana catesbeiana), snapping turtles (Chelydra serpentina), and prairie rattlesnakes (Crotalus viridis) are classified as game species, while all others are

classified as nongame wildlife (CDW 2001). Threatened, endangered, and protected amphibian and reptile species are addressed in Section 3.7.4.

### 3.7.3.2 Birds

Several hundred species of birds have been reported from the three states where oil shale and tar sands development may occur: 290 for Colorado, 264 for Utah, and 318 for Wyoming (Table 3.7.3-1). These species totals were derived from county lists for Garfield and Rio Blanco Counties in Colorado (Colorado Field Omithologists 2006), gap analysis mapping for eastern Utah (UDWR 2006), and general distributions for southwestern and southcentral Wyoming (WGFD 2004). Therefore, the number of species listed for each state, particularly Utah, do not imply that all species could be found in a potential oil shale or tar sands development area. For example, a number of bird species in Utah may occur only within the southern tar sands areas or within the northern oil shale and tar sands areas. Also, some species may be restricted to small areas within the oil shale area (e.g., only within the corridor of the Green River).

Many of the bird species identified from the three states are seasonal residents within individual states and exhibit seasonal migrations. These birds include waterfowl, shorebirds, raptors, and neotropical songbirds. The area where commercial-scale oil shale and tar sands development may occur on BLM-administered lands falls primarily within the Central Flyway (Figure 3.7.3-1). Birds migrating north from wintering areas to breeding areas use this flyway in the spring, and birds migrating southward to wintering areas use it in the fall. The flyway encompasses a broad geographic area and includes a number of specific routes that would be an important parameter for identifying site-specific concerns related to migratory birds.

The Central Flyway includes the Great Plains-Rocky Mountain routes (Lincoln et al. 1998). These routes extend from the northwestern Arctic coast southward between the Mississippi River and the Rocky Mountains and encompass all or most of Colorado and Wyoming and portions of Utah. The flyway is relatively simple; the majority of the birds make direct north and south migrations between northern breeding grounds and southern wintering areas (Birdnature.com 2001).

The following discussion describes important groups of birds that (1) have key habitats within or near the areas that could be developed for oil shale and tars sands, (2) are important to humans (e.g., waterfowl and upland game species), and/or (3) are representative of other species that share important habitats. Threatened, endangered, and protected bird species are addressed in Section 3.7.4.

3.7.3.2.1 Waterfowl, Wading Birds, and Shorebirds. Waterfowl (ducks, gesse, and swans), wading birds (herons and cranes), and shorebirds (plovers, sandpipers, and similar birds) are among the more abundant groups of birds from the three states. Many of these species exhibit extensive migrations from breeding areas in Alaska and Canada to wintering grounds in Mexico and southward (Lincoln et al. 1998). Most are ground-level nesters, and many forage in flocks (sometimes relatively large) on the ground or water. Within the study area, migration routes for

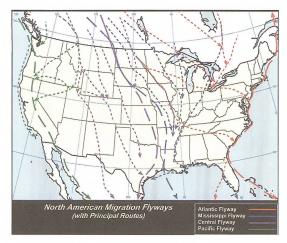



FIGURE 3.7.3-1 North American Migration Flyways (coarse dashed lines are major flyways, medium dashed lines are principal migratory routes, fine dashed lines are merging routes; used with permission of birdnature.com, June 7, 2006)

these birds are often associated with riparian corridors and wetland or lake stopover areas (BLM 2005e).

Common to abundant waterfowl and shorebird species that occur within the oil shale and tar sands study area include Canada goose (Branta canadensis), green-winged teal (Anas crecca), mallard (Anas platyrhynchos), northern shoveler (Anas clypeata), gadwall (Anas strepera), ring-necked duck (Aythya collaris), great blue heron (Ardea herodias), killdeer (Charadrius vociferous), spotted sandpiper (Actitis macularius), and Wilson's phalarope (Phalaropus tricolor) (BLM 1996). Major waterfowl species harvested in the three states include mallard and Canada goose. Other species commonly harvested include gadwall, American widgeon (Anas americana), teal (Anas spp.), northern pintail (Anus acuta), northern shoveler, and snow goose (Chen caerulescens) (USFWS 2003). A hunting season also occurs for sandhill crane (Grus canadensis).

3.7.3.2.2 Neotropical Migrants. Neotropical migrants (also referred to as songbirds, passerines, or perching birds) of the order Passeriformes represent the most diverse category of birds; the warblers (family Parulidae) and sparrows (family Emberizidae) represent the two most diverse families of passerines. The BLM is a participant in Partners in Flight, a cooperative effort involving federal, state, and local government agencies, philanthropic foundations, professional organizations, conservation groups, industry, the academic community, and private individuals that focuses on the conservation of landbirds and other bird species that require terrestrial habitats. Specific biological objectives and recommendations for landbirds are presented in the Bird Conservation Plan for each state (Beidleman 2000 [Colorado]; Nicholoff 2003 [Wyoming]; Parrish et al. 2002 [Utah]).

The neotropical migrants exhibit a wide range of seasonal movements; some species are year-round residents in some areas and migratory in other areas, while other species migrate hundreds of miles or more (Lincoln et al. 1998). Many of the neotropical migrants utilize riparian areas and corridors for nesting and migration purposes (BLM 2005e). Nesting occurs in vegetation from near ground level to the upper canopy of trees. Some species, such as shrushes and chickadees, are relatively solitary throughout the year; other species, such as swallows and blackbirds, may occur in small to large flocks at various times of the years. Foraging may occur in flight (e.g., swallows and swifts), in vegetation, or on the ground (e.g., warblers, finches, and thrushes).

Neotropical migrants common to the area include dusky flycatcher (Empidonax oberholseri), Say's phoebe (Sayornis saya), cliff swallow (Petrochelidon pyrrhonota), pinyon jay (Gymnorhinus cyanocephalus), American crow (Corvus brachyrhynchos), canyon wren (Catherpes mexicanus), Bewick's wren (Thryomanes bewickii), Mountain bluebird (Sialia currucoides), blue-headed vireo (Vireo solitarius), yellow warbler (Dendroica petechia), western tanager (Piranga ludoviciana), black-headed grosbeak (Pheucicus melanocephalus), Brewer's sparrow (Spizella breweri), chipping sparrow (Spizella passerine), Brewer's blackbird (Euphagus cyanocephalus), and brown-headed cowbird (Molothrus ater).

3.7.3.2.3 Upland Game Birds. Upland gamehirds that are native to the study area include blue grouse (Dendragapus obscurus), ruffed grouse (Bonasa umbellus), greater sagegrouse (Centrocercus urophasianus), and mourning dove (Zenaida macroura); introduced species include ring-necked pheasant (Phasiamus colchicus), chukar (Alectoris chukar), gray partridge (Perdix perdix), and wild turkey (Meleagris gallopavo). All of the upland game bird species within the study area are year-round residents. Ring-necked pheasants and greater sagegrouse have experienced long-term declines because of the degradation and loss of important sagebrush steppe and grassland habitat (BLM 2005e). Most concerns over upland game in the West have focused on the greater sage-grouse because of its dependence on sagebrush.

Sage-Grouse. Populations of greater sage-grouse can vary from nonmigratory to migratory and can occupy an area that exceeds 1,040 mi<sup>2</sup> on an annual basis. The distance between leks (strutting grounds) and nesting sites can exceed 12.4 mi (Connelly et al. 2000). However, the greater sage-grouse has a high fidelity to a seasonal range (Connelly et al. 2000).

The greater sage-grouse requires contiguous, undisturbed, high-quality habitats during the year during (1) breeding, (2) summer-late brooding and rearing, (3) fall, and (4) winter (Connelly et al. 2000). The greater sage-grouse occurs at elevations ranging from 4,000 to 9,000 ft. It is omnivorous and consumes primarily sagebrush and insects. More than 99% of its diet in winter consists of sagebrush leaves and buds. Sagebrush is also important as roosting cover, and the greater sage-grouse cannot survive where sagebrush does not exist (USFWS 2006i).

Leks are generally areas supported by low, sparse vegetation or open areas surrounded by sagebrush that provide escape, feeding, and cover. They can range in size from small areas of 0.1 to 10 acres to areas of 100 acres or more (Connelly et al. 2000). The lek/breeding period occurs March thru May, with peak breeding occurring from early to mid-April. Nesting generally occurs 1 to 4 mi from lek sites, although it may range up to 11 mi (BLM 2004d). The nesting/early brood-rearing period occurs from March through July. Sagebrush at nesting/early brood-rearing habitat is 12 to 32 in. above ground with 15 to 25% canopy cover. Tall, dense grass combined with tall shrubs at nest sites decreases the likelihood of nest depredation. Hens have a strong year-to-year fidelity to nesting areas (BLM 2004d). The late brood-rearing period occurs from July thru October. Sagebrush at late brood-rearing habitat is 12 to 32 in. tall with a canopy cover of 10 to 25% (BLM 2004d). The greater sage-grouse occupies winter habitat from November through March. Suitable winter habitat requires sagebrush 10 to 14 in. above snow level with a canopy cover ranging from 10 to 30%. Wintering grounds are potentially the most limiting seasonal habitat for greater sage-grouse (BLM 2004d).

While no single or combination of factors has been proven to have caused the decline in greater sage-grouse numbers over the past half-century, the decline in greater sage-grouse populations is believed to be the result of a number of factors, including drought, oil and gas wells and their associated infrastructure, power lines, predators, and a decline in the quality and quantity of sagebrush habitat (due to livestock grazing, range management treatments, and development activities) (Connelly et al. 2000; Crawford et al. 2004). West Nile virus is also a significant stressor of greater sage-grouse (Naugle et al. 2004).

The BLM manages a larger amount of greater sage-grouse habitat than any other entity; therefore, it has developed a National Sage-Grouse Habitat Conservation Strategy for BLM-administered public lands to manage public lands in a manner that will maintain, enhance, and restore greater sage-grouse habitat while providing for multiple uses of BLM-administered public lands (BLM 2004e). The strategy is consistent with the individual state sage-grouse conservation planning efforts. The purpose of the strategy is to set goals and objectives, assemble guidance and resource materials, and provide more uniform management directions for the BLM's contributions to the multistate sage-grouse conservation effort being led by state wildlife agencies (BLM 2004e).

3.7.3.2.4 Raptors. The birds of prey include the raptors (hawks, falcons, eagles, kites, and osprey), owls, and vultures (hereafter referred to collectively as raptors). Many of these species represent the top avian predators. Common species include the turkey vulture (Cathartes aura), sharp-shinned hawk (Accipiter striatus), red-tailed hawk (Buteo jamaicensis), northern

harrier (Circus cyaneus), Swainson's hawk (Buteo swainsoni), American Kestrel (Falco sparvenus), golden eagle (Aquila chrysaetos), great horned owl (Bubo virginianus), and short-eared owl (Asio flammeus). The raptors vary considerably among species with regard to their seasonal migrations; some species are nonmigratory, others may be migratory in the northern portion of their ranges and nonmigratory in the southern portions, and others are migratory throughout their ranges. Species that nest in the study area include the golden eagle, prairie falcon (Falco mexicanus), peregrine falcon (Falco peregrinus), red-tailed hawk, ferruginous hawk (Buteo regalis), American Kestrel, Coopers hawk (Accipiter cooperii), sharp-shinned hawk, northern goshawk (Accipiter gentilis), great horned owl, northern saw-whet owl (Aegolius acadicus), and burrowing owl (Athene cunicularia) (BLM 2004a,c.e).

Depending on the species, the raptors consume a variety of prey, including small mammals, reptiles, other birds, fishes, invertebrates, and carrion. They typically perch on trees or man-made structures that provide a view of the surrounding topography; they may soar for extended periods of time at relatively high altitudes. Raptors typically forage from either a perch or on the wing (depending on the species). While generally nocturnal, some owl species may be active during the day (Owl Research Institute 2004). The other raptor species forage during the day.

### 3.7.3.3 Mammals

More than 75 species of mammals have been reported from each of the three states where oil shale and tar sands development may occur on BLM-administered lands (82 from Colorado, 76 from Utah, and 96 from Wyoming) (Table 3.7.3-1). Wild horses, as well as feral cats (Felis catus) and dogs (Canis familiaris), also occur in the study area. The following discussion emphasizes big game and small mammal species that (1) have key habitats within or near the study area that could be developed for oil shale and tar sands, (2) are important to humans (e.g., big game species), and/or (3) are representative of other species that share important habitats. Wild horses are discussed in Section 3.7.3.4, while threatened, endangered, and protected mammal species are addressed in Section 3.7.4.

3.7.3.3.1 Big Game. Big game species within the study area include elk (Cervus elaphus), mule deer (Odoccoileus hemionus), pronghorn (Antilocarpra americana), bighorn sheep (Ovis canadensis), moose (Alces americanus), American black bear (Ursus americanus), and mountain lion (Felis concolor). The elk and mule deer are generally the most abundant, widely distributed, intensely managed, and sought-after big game in the region (BLM 2004c). A number of the big game species make migrations when seasonal changes reduce food availability, when movement becomes difficult (e.g., due to snowpack), or where local conditions are not suitable for calving or fawning. Established migration corridors for these species provide an important transition range between seasonal ranges and provide food for the animals during migration (Feeney et al. 2004). Water availability is a major factor affecting the distribution of big game species (BLM 2004d).

Elk. Elk are mostly migratory between their summer and winter ranges (BLM 2004a). although some herds do not migrate (i.e., occur within the same general area year-round) (UDWR 2005). Summer range occurs at higher elevations. Aspen and conifer woodlands provide security and thermal cover, while upland meadows, sagebrush-mixed grass, and mountain shrub habitat types are used for forage. Winter range occurs at mid to lower elevations where they forage in sagebrush-mixed grass, big sagebrush-rabbitbrush, and mountain shrub habitat types (BLM 2004c). Elk are highly mobile within both summer and winter ranges in order to find the best forage conditions. In winter, they will congregate into large herds of 50 to more than 200 individuals (BLM 2004a). Crucial winter range is considered to be the part of the local elk range, where about 90% of the local population is located during an average of 5 winters out of 10 from the first heavy snowfall to spring greenup (BLM 2005e). Elk calving generally occurs in aspen-sagebrush parkland vegetation and habitat zones during late spring and early summer (BLM 2004a). Calving areas are mostly located where cover, forage, and water are in close proximity (BLM 2005e). Elk require water on all seasonal ranges and generally occur within 0.5 mi of a water source, although some herds will travel longer distances for water (UDWR 2005). Elk are susceptible to chronic wasting disease (BLM 2004a).

Mule Deer. Mule deer occur within most ecosystems within the region but attain their highest densities in shrublands characterized by rough, broken terrain with abundant browse and cover (BLM 2005e). Some populations of mule deer are resident (e.g., occur in the same location throughout the year), but those in mountainous areas are generally migratory between their summer and winter ranges (BLM 2004a). Summer range occurs at higher elevations that contain aspen and conifer and mountain browse vegetative types. Fawning occurs during the spring while they are migrating to their summer range. This normally occurs in aspen-mountain browse intermixed vegetation types (BLM 2004a). Mule deer have a high fidelity to specific winter ranges where they will congregate within a small area at a high density. Winter range occurs at lower elevations within sagebrush and pinyon-juniper vegetation types. Winter forage is primarily sagebrush with true mountain mahogany, fourwing saltbush, and antelope bitterbrush also being important. Pinyon-juniper provides emergency forage during severe winters (BLM 2004a). Overall, mule deer habitat is characterized by areas of thick brush or trees (used for cover) interspersed with small openings (for forage and feeding areas); they do best in habitats that are in the early stage of succession (UDWR 2003). Prolonged drought and other factors can limit mule deer populations. Several years of drought can limit forage production. which can substantially reduce animal condition and fawn production and survival. Severe drought conditions were responsible for declines in the population size of mule deer in the 1980s and early 1990s (BLM 2004a). In arid regions, they seldom occur more than 1.0 to 1.5 mi from water (BLM 2004d). Mule deer are also susceptible to chronic wasting disease. When present, up to 3% of a herd population can be affected by this disease. Some deer herds in Colorado and Wyoming have experienced significant outbreaks of chronic wasting disease (BLM 2004a).

Pronghorn. Pronghorn inhabit open vegetated areas such as desert, grassland, and sagebrush habitats (BLM 2005e). Herd size can commonly exceed 100 individuals, especially during winter (BLM 2004a). They consume a variety of forbs, shrubs, and grasses, with shrubs being most important in winter (BLM 2004a). Some pronghorn are year-long residents and do

not have seasonal ranges. Fawning occurs throughout the species range. However, some seasonal movement within their range occurs in response to factors such as extreme winter conditions and water or forage availability (BLM 2004a,c). Other pronghorn are migratory. Most herds range within an area of 5 mi or more in diameter, although the separation between summer and winter ranges has been reported to be as much as 99 mi or more (NatureServe 2006). For example, in western Wyoming, pronghorn migrate 116 to 258 km (72 to 160 mi) between ranges (Sawyer et al. 2005). Severe winters with deep, crusted snow and below-zero temperatures can cause high pronghorn mortalities (BLM 2004d). Pronghorn populations have also been adversely impacted in some areas by historic range degradation and habitat loss and by periodic drought conditions (BLM 2004a,d; 2005g).

Bighorn Sheep. Rocky Mountain bighorn sheep (Ovis c. canadensis) and desert bighorn sheep (O. Canadensis nelsoni) are considered to be year-long residents within their ranges; they do not make seasonal migrations like elk and mule deer (BLM 2004a). However, they do make vertical migrations in response to the increasing abundance of vegetative growth at higher elevations in the spring and summer and when snow accumulation occurs in high-elevation summer ranges (NatureServe 2006). Also, ewes do move to reliable watercourses or sources during the lambing season; lambing occurs on steep talus slopes within 1 to 2 mi of water (BLM 2004a). Bighorn sheep prefer open vegetation types such as low shrub, grassland, and other treeless areas with steep talus and rubble slopes (BLM 2004c). Their diet consists of shrubs, forbs, and grasses (BLM 2004a). In the early 1900s, bighorn sheep experienced significant declines because of disease, habitat degradation, and hunting (BLM 2005e). Bighorn sheep are very vulnerable to viral and bacterial diseases carried by livestock, particularly domestic sheep. Therefore, the BLM has adopted specific guidelines regarding domestic sheep grazing in or near bighorn sheep habitat (BLM 2004a). In appropriate habitats, reintroduction efforts, coupled with water and vegetation improvements, have been conducted to restore bighorn sheep to their native habitat (BLM 2005e).

Moose. Although moose range widely among habitat types, they are mainly associated with boreal forests and riparian areas. Their preferred habitat is generally associated with early stages of seral development and shrub growth (BLM 2005e). Moose also will make use of dense stands of conifers for shelter in winter and for thermoregulation in summer (UDWR 2000). They are primarily browsers upon trees and shrubs such as willow, fir, and quaking aspen; although grasses, forbs, and aquatic vegetation make up a large portion of the summer diet (BLM 2005e). Moose habitat is thought to be improved by annual flooding and habitat management techniques such as prescribed burning (BLM 2005e). They generally occur singly or in small groups. Some moose make short elevational or horizontal migrations between summer and winter habitats (NatureServe 2006). In addition to predation, snow accumulation may have a controlling effect on moose populations. Habitat degradation resulting from a large number of moose can lead to population crashes (NatureServe 2006).

Mountain Lion. Mountain lions (cougars) inhabit most ecosystems in the study area but are most common in the rough, broken terrain of foothills and canyons, often in association with

montane forests, shrublands, and pinyon-juniper woodlands (BLM 2005e). Their annual home range can be more than 560 mi<sup>2</sup>, while densities are usually not more than 10 adults/100 mi<sup>2</sup> (NatureServe 2006). The mountain lion is generally found where its prey species (especially mule deer) are located (BLM 2004a). They also prey upon most other mammals (which sometimes include domestic livestock) and some insects, birds, fishes, and berries (CDW 2006). They are active year-round and are hunted on a limited and closely monitored basis (BLM 2004a).

Black Bear. American black bears are found mostly within forested or brushy mountain environments and woody riparian corridors (BLM 2005e). They are omnivorous and feed on fruits, insects, small vertebrates, and carrion (CDW 2006; UDWR 2006). Breeding occurs in June or July; the young are born in January or February (UDWR 2006). American black bears have a period of winter dormancy from November to April (BLM 2005e). The home range of the American black bear depends on the area in which it lives and the bear's gender; its range has been reported to be from about 1,250 to nearly 32,000 acres (NatureServe 2006).

3.7.3.3.2 Small Mammals. Small mammals include small game, furbearers, and nongame species. Small game species that commonly occur within the oil shale and tar sands study area include black-tailed jackrabbit (Lepus californicus), desert cottontail (Sylvilagus audubonii), mountain cottontail (Sylvilagus nuttallii), snowshoe hare (Lepus americanus), white-tailed jackrabbit (Lepus townsendii), and yellow-bellied marmot (Marmota flaviventris). Common furbearers include American badger (Taxidea taxus), American beaver (Castor canadensis), American marten (Martes americana), bobcat (Lynx rufus), common muskrat (Ondara zibethicus), coyote (Canis latrans), red fox (Vulpes vulpes), striped skunk (Mephitis mephitus), and weasels. Nongame species include bats, shrews, mice, voles, chipmunks, and other rodent species.

### 3.7.3.4 Wild Horses and Burros

The BLM establishes HMAs for the maintenance of wild horse and burro herds in compliance with the Wild Free-Roaming Horses and Burros Act (BLM 2004d). Herd population management is important for balancing herd numbers with forage resources and with other uses of the public and adjacent private lands (BLM 2004a,d). Wild horses and burros that are found outside of HMAs are considered excess and are subject to removal (BLM 2004d). Generally, their annual home range varies between 25 and 300 km² (NatureServe 2006). Because wild horse herds can increase up to 25% annually, they can affect the condition of their range and increase competitive pressure among wild horses, livestock, and wildlife. Therefore, wild horse and burro herd size is maintained through gathers that are conducted every 3 to 5 years. Gathered horses and burros are placed for adoption through the Adopt-a-Horse Program or otherwise placed in long-term holding facilities. The BLM is currently researching the use of immunocontraceptives to slow the reproductive rate of wild horses (BLM 2004a).

Wild horses generally occur in common social groups of several females that are tended by a dominant male. Young males are expelled from the social group when they are 1 to 3 years old and form bachelor groups (NatureServe 2006). They feed on grass and grasslike plants and also browse on shrubs in winter. They visit watering holes daily and may dig to water in dry river beds (NatureServe 2006).

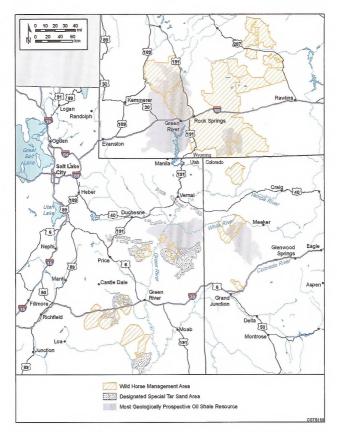

Wild burro males control a small territory during the breeding season. When not with females, older males are generally solitary. Females tend to be either alone with their foal or in groups with other females and foals (NatureServe 2006). The home range for the wild burro can range from 4 to 97 km² (2 to 37 mi²). They feed on grasses, sedges, forbs, and browse. Table 3.7.3-2 lists the wild horse and burro HMAs within or near the areas where oil shale or tar sands may be developed. Horse and burro populations that occurred within the HMAs during FY 2006 are also provided. Figure 3.7.3-2 shows the distribution of the wild horse HMAs within the oil shale and tar sands study area.

TABLE 3.7.3-2 Wild Horse Herd Management Areas within the Oil Shale and Tar Sands Study Area (FY 2006)

|                                                        |           | nagement<br>Size | Population <sup>a</sup> |          |  |  |
|--------------------------------------------------------|-----------|------------------|-------------------------|----------|--|--|
| Herd Management Area Name<br>(County)                  | BLM Acres | Other Acres      | Horse                   | Burro    |  |  |
| Colorado                                               |           |                  |                         |          |  |  |
| Piceance-East Douglas Creek<br>(Rio Blanco)            | 158,281   | 31,741           | 349 (235)               | 0 (0)    |  |  |
| Utah                                                   |           |                  |                         |          |  |  |
| Canyon Lands (Wayne)                                   | 77,253    | 10,448           | 0 (0)                   | 76 (100) |  |  |
| Hill Creek (Uintah)                                    | 54,245    | 32,919           | 310 (195)               | 0 (0)    |  |  |
| Muddy Creek (Emery)                                    | 168,853   | 21,879           | 57 (50)                 | 0 (0)    |  |  |
| Range Creek (Carbon)                                   | 54,630    | 24,010           | 133 (125)               | 0 (0)    |  |  |
| Sinbad (Emery)                                         | 203,767   | 26,830           | 52 (50)                 | 93 (70)  |  |  |
| Wyoming                                                |           |                  |                         |          |  |  |
| Little Colorado (Sweetwater,<br>Sublette, and Lincoln) | 527,307   | 105,020          | 101 (100)               | 0 (0)    |  |  |
| White Mountain (Sweetwater)                            | 207,981   | 185,092          | 295 (300)               | 0 (0)    |  |  |
| Salt Wells Creek (Sweetwater)                          | 688,632   | 483,993          | 1,133 (365)             | 0 (0)    |  |  |
| Adobe Town (Sweetwater)                                | 444,321   | 34,757           | 692 (800)               | 0 (0)    |  |  |

a Numbers in parentheses are the appropriate management level (i.e., number of wild horses and burros that the HMA can support).

Source: BLM (2007c).



 $FIGURE\ 3.7.3-2\ Distribution\ of\ Wild\ Horse\ Herd\ Management\ Areas\ within\ the\ Oil\ Shale\ and\ Tar\ Sands\ Study\ Area$ 

## 3.7.4 Threatened and Endangered Species

This section addresses species that are federally or state-listed and are included in one of the following categories:

- Species listed as threatened or endangered, proposed for listing as threatened or endangered, or considered a candidate for listing as threatened or endangered by the USFWS. These species are protected under the ESA.
- Species listed as sensitive by the BLM in Colorado, Utah, or Wyoming.
- Species listed as threatened, endangered, or of special concern by the states of Colorado, Utah, or Wyoming.

The following definitions apply to species listed under the ESA:

- Endangered: Any species that is in danger of extinction throughout all or a significant portion of its range.
- Threatened: Any species that is likely to become endangered within the foreseeable future throughout all or a significant part of its range.
- Proposed: Any species that has been formally proposed for listing as threatened or endangered by the USFWS by notice in the Federal Register.
- Candidate: Any species for which the USFWS has sufficient information on its biological status and threats to propose it for listing as endangered or threatened under the ESA, but for which development of a listing regulation is precluded by other, higher-priority listing activities. Candidate species receive no statutory protection under the ESA, but by definition these species may warrant future protection under the ESA.
- Critical habitar: Specific areas within the geographical area occupied by the
  species at the time it is listed, on which are found physical or biological
  features essential to the conservation of the species and which may require
  special management considerations or protection. Except when designated,
  critical habitat does not include the entire geographical area that can be
  occupied by the threatened or endangered species.

On the lands that it administers, the BLM is required under FLPMA to manage plant and wildlife species. For species that are listed or proposed for listing under the ESA, the BLM is to ensure its actions do not jeopardize those species nor adversely modify or destroy proposed or designated critical habitat. ESA requirements pertinent to BLM activities are addressed in BLM Manual 6840—Special Status Species Management (BLM 2001c), which establishes Special Status Species policy for plant and animal species and the habitats on which they depend. The Special Status Species policy refers not only to species listed under the ESA, but also to those

designated by the BLM State Director as "sensitive." BLM Manual 6840 defines a sensitive species as a species that could easily become endangered or extinct in the state. The list of BLM-designated sensitive species varies from state to state, and the same species can be considered sensitive in one state but not in another.

The states of Colorado, Utah, and Wyoming have identified species that are of special concern. In addition, the State of Colorado maintains a list of species that are considered threatened or endangered in that state. The BLM's current policy is to manage candidates for federal listing, BLM-designated sensitive species, state-listed species, and state species of special concern to prevent future federal listing as threatened or endangered.

A total of 210 plant and animal species are either federally (USFWS and BLM) or statelisted (Colorado, Utah, and Wyoming) and occur or could occur in counties within oil shale basins or STSAs. These species and their habitats are presented in Table E-1 of Appendix E. Table 3.7.4-1 gives the number of these species in different taxonomic groups and according to listing category. In the study areas, 32 species are listed or candidates for listing by the USFWS under the ESA; 78 species are listed as sensitive by the BLM; 24 are listed by the State of Colorado; 33 are listed by the State of Utah; and 121 are listed by the State of Wyoming.

Table 3.7.4-2 gives the number of species, by listing category, that could occur within oil shale basins or STSAs where development could occur. The largest number of species listed or candidates for listing by the USFWS under the ESA potentially occurs within STSAs, but this reflects the more dispersed nature of these areas and consequently, the larger overall area and potential for a wider range of habitats.

### 3,7,4,1 Species Listed under the Endangered Species Act

Species listed by the USFWS under the ESA have the potential to occur in all oil shale basins and STSAs. The likelihood of occurrence in study areas cannot be fully determined at this time because actual project locations and footprints will not be determined until some later date. A complete evaluation of listed species in the study areas will be made at that time, before project activities begin. Listed species that could occur in the study areas (based on state and federal records) are discussed in this section and presented in alphabetical order. Basic information is provided on life history, habitat needs, and threats to populations. Included is the likelihood of their presence within oil shale basins and STSAs (Table 3.74-3).

3.7.4.1.1 Autumn Buttercup. The autumn buttercup is a perennial herbaceous plant that is endemic to the Sevier River Valley in western Garfield County, Utah (UDWR 2006). Currently, only two small autumn buttercup populations are known. Its habitat is low, herbaceous wet meadow communities on drier peat hummocks, or in open areas of these communities; it is found at elevations of about 1,940 to 1,980 m (6,365 to 6,496 ft). Sagebrush-dominated plant communities typically are found surrounding wetland communities. The presence of freshwater seeps and lack of livestock grazing seem to be important habitat elements needed for species survival (NatureServe 2006).

TABLE 3.7.4-1 Federally and State-Listed Species According to Taxonomic Group That Occur in Counties with the Potential for Oil Shale or Tax Sands Development

|                                            | Taxonomic Group |               |      |            |          |       |         |       |
|--------------------------------------------|-----------------|---------------|------|------------|----------|-------|---------|-------|
| Status                                     | Plants          | Invertebrates | Fish | Amphibians | Reptiles | Birds | Mammals | Total |
| USFWS                                      |                 |               |      |            |          |       |         |       |
| Endangereda                                | 6               | 1             | 4    | 0          | 0        | 2     | 1       | 14    |
| Threatened                                 | 10              | 0             | 0    | 0          | 0        | 2     | 2       | 13    |
| Candidate                                  | 3               | 0             | 0    | 0          | 0        | 1     | 0       | 4     |
| Experimental,<br>nonessential <sup>a</sup> | 0               | 0             | 0    | 0          | 0        | 1     | I       | 2     |
| Total                                      | 19              | 1             | 4    | 0          | 0        | 5     | 3       | 32    |
| BLM                                        |                 |               |      |            |          |       |         |       |
| Sensitive                                  | 41              | 1             | 6    | 5          | 2        | 13    | 10      | 78    |
| State of Colorado                          |                 |               |      |            |          |       |         |       |
| Endangered                                 | 0               | 0             | 1    | 1          | 0        | 2     | 4       | 8     |
| Threatened                                 | 0               | 0             | 1    | 0          | 0        | 2     | 0       | 8     |
| Special concern                            | 0               | 0             | 2    | 1          | 2        | 7     | 1       | 13    |
| Total                                      | 0               | 0             | 4    | 2          | 2        | 11    | 5       | 24    |
| State of Utah                              |                 |               |      |            |          |       |         |       |
| Special concern                            | 0               | 4             | 1    | 2          | 4        | 10    | 12      | 33    |
| State of Wyoming                           |                 |               |      |            |          |       |         |       |
| Special concern                            | 72              | 0             | 6    | 4          | 0        | 24    | 15      | 121   |
| Total species <sup>b</sup>                 | 117             | 5             | 10   | 7          | 6        | 38    | 26      | 210   |

a The black-footed ferret is listed as endangered or experimental, nonessential in different portions of the project area.

The autumn buttercup was listed as federally endangered on July 21, 1989 (S4 FR 20550), and a recovery plan was prepared on September 16, 1991 (USFWS 1991a). The recovery plan had a goal of preventing extinction and establishing populations in unoccupied suitable habitat. Criteria for successful recovery included increasing the current population to about 1,000 plants on 10 acres, preserving the species under greenhouse conditions, and establishing additional populations of at least 20,000 individuals.

The Center for Plant Conservation (CPC 2006a) reports that a survey of the only known autumn buttercup population in 1982 indicated a total of 400 plants. By 1988, the population had dropped to only 10 to 20 individual plants. A 44-acre parcel supporting this population was purchased by the Nature Conservancy in 1989 and was named the Sevier Valley Preserve. An

b Totals represent the total number of listed species within oil shale basins and STSAs and do not represent the sum of row values. Species can be listed by both state and federal governments.

TABLE 3.7.4-2 Federally and State-Listed Species That Occur within Oil Shale Basins or STSAs That Have the Potential for Development

|                                         | Oil Shale Basins and STSAs |          |          |       |       |       |  |
|-----------------------------------------|----------------------------|----------|----------|-------|-------|-------|--|
| Status                                  | Green River                | Washakie | Piceance | Uinta | STSAs | Total |  |
| USFWS                                   |                            |          |          |       |       |       |  |
| Endangered <sup>b</sup>                 | 1                          | 2        | 3        | 8     | 14    | 14    |  |
| Threatened                              | 1                          | 0        | 4        | 5     | 11    | 13    |  |
| Candidate                               | 0                          | 0        | 3        | 1     | 1     | 4     |  |
| Experimental, nonessential <sup>b</sup> | 0                          | 1        | 2        | 1     | 1     | 2     |  |
| Total                                   | 2                          | 3        | 12       | 15    | 27    | 32    |  |
| BLM                                     |                            |          |          |       |       |       |  |
| Sensitive                               | 47                         | 37       | 38       | 29    | 43    | 78    |  |
| State of Colorado                       |                            |          |          |       |       |       |  |
| Endangered                              | 0                          | 0        | 8        | 0     | 0     | 8     |  |
| Threatened                              | 0                          | 0        | 3        | 0     | 0     | 3     |  |
| Special concern                         | 0                          | 0        | 13       | 0     | 0     | 13    |  |
| Total                                   | 0                          | 0        | 24       | 0     | 0     | 24    |  |
| State of Utah                           |                            |          |          |       |       |       |  |
| Special concern                         | 0                          | 0        | 0        | 19    | 33    | 33    |  |
| State of Wyoming                        |                            |          |          |       |       |       |  |
| Special Concern                         | 120                        | 88       | 0        | 0     | 0     | 121   |  |
| Total species <sup>c</sup>              | 129                        | 97       | 56       | 54    | 94    | 212   |  |

<sup>&</sup>lt;sup>a</sup> Totals equal the number of species within listing categories and do not represent the sum of column values. Listed species can occur in more than one basin or STSA.

additional population of about 200 plants was found shortly after the land was purchased (CPC 2006a). The Nature Conservancy has fenced the 44-acre parcel to exclude livestock grazing in an attempt to protect the autumn buttercup and increase its chances of reproduction. By 1990, the total population was estimated to be 200 individuals with 42 plants producing flowers (USFWS 1991a). The following year researchers counted 488 plants, a substantial increase since previous years (NatureServe 2006). Many of these plants were discovered in the vicinity of the population of 200 counted in 1990. No data were found on population results for subsequent years.

b The black-footed ferret is listed as endangered or experimental, nonessential in different portions of the project area.

<sup>&</sup>lt;sup>c</sup> Totals represent the total number of listed species within oil shale basins and STSAs and do not represent the sum of row values. Species can be listed by both state and federal governments.

TABLE 3.7.4-3 Occurrence of Species Listed or Candidates for Listing under the Endangered Species Act in Oil Shale Basins and STSAs

| Species                        | Scientific Name                     | Listing<br>Status <sup>a</sup> | Presence in Oil Shale Basins and STSAsb |          |          |       |      |
|--------------------------------|-------------------------------------|--------------------------------|-----------------------------------------|----------|----------|-------|------|
|                                |                                     |                                | Green River                             | Washakie | Piceance | Uinta | STSA |
| Autumn buttercup               | Ranunculus aestivalis               | E                              | _                                       | _        | _        | _     | _    |
| Barneby reed-mustard           | Schoenocrambe barnebyi              | E                              | -                                       | -        | -        | -     | ×    |
| Barneby ridge-cress            | Lepidium barnebyanum                | E                              | _                                       | -        | -        | -     | -    |
| Black-footed ferret            | Mustela nigripes                    | E, XN                          | ×                                       | ×        | ×        | ×     | ×    |
| Bonytail                       | Gila elegans                        | E                              | _                                       | -        | -        | ×     | ×    |
| California condor              | Gymnogyps californianus             | E                              | _                                       | -        | -        | -     | ×    |
| Canada lynx                    | Lynx canadensis                     | T                              | ×                                       | -        | ×        | ×     | ×    |
| Clay reed-mustard              | Schoenocrambe argillacea            | T                              | _                                       | _        | -        | ×     | ×    |
| Colorado pikeminnow            | Ptychocheilus lucius                | E                              | -                                       | _        | ×        | ×     | ×    |
| Debeque phacelia               | Phacelia scopulina var. submutica   | C                              | -                                       | -        | ×        | _     | _    |
| Dudley Bluffs bladderpod       | Lesquerella congesta                | T                              | -                                       | -        | ×        | -     | -    |
| Dudley Bluffs twinpod          | Physaria obcordata                  | T                              | -                                       | -        | ×        | -     | -    |
| Humpback chub                  | Gila cypha                          | E                              | -                                       | _        | -        | ×     | ×    |
| Jones cycladenia               | Cycladenia humilis var. jonesii     | T                              | -                                       | -        | -        | _     | ×    |
| Last chance townsendia         | Townsendia aprica                   | T                              | -                                       | _        | -        | -     | ×    |
| Maguire daisy                  | Erigeron maguirei                   | T                              |                                         | -        | -        | _     | ×    |
| Mexican spotted owl            | Strix occidentalis lucida           | T                              | _                                       | _        | -        | ×     | ×    |
| Navajo sedge                   | Carex specuicola                    | T                              | -                                       | -        | -        | _     | -    |
| Parachute beardtongue          | Penstemon debilis                   | C                              | -                                       | _        | ×        |       | -    |
| Razorback sucker               | Xyrauchen texanus                   | E                              | -                                       | -        | ×        | ×     | ×    |
| San Rafael cactus              | Pediocactus despainii               | E                              | -                                       | -        | -        | _     | ×    |
| Shrubby reed-mustard           | Schoenocrambe suffrutescens         | E                              | -                                       | -        | -        | ×     | ×    |
| Southwestern willow flycatcher | Empidonax traillii extimus          | E                              | -                                       | -        | ×        | ×     | ×    |
| Uinta Basin hookless cactus    | Sclerocactus glaucus                | T                              | _                                       | -        | ×        | ×     | ×    |
| Utah prairie dog               | Cynomys parvidens                   | T                              | -                                       | -        | -        | -     | _    |
| Ute ladies'-tresses            | Spiranthes diluvialis               | T                              | -                                       | -        | -        | ×     | ×    |
| Western yellow-billed cuckoo   | Coccyzus americanus occidentalis    | C                              | -                                       | -        | -        | ×     | ×    |
| White River beardtongue        | Penstemon scariosus var. albifluvis | C                              | _                                       | -        | ×        | ×     | ×    |

TABLE 3.7.4-3 (Cont.)

| Species                | Scientific Name        |                                | Presence in Oil Shale Basins and STSAsb |          |          |       |       |  |
|------------------------|------------------------|--------------------------------|-----------------------------------------|----------|----------|-------|-------|--|
|                        |                        | Listing<br>Status <sup>a</sup> | Green River                             | Washakie | Piceance | Uinta | STSAs |  |
| Whooping crane         | Grus americana         | XN                             | -                                       | -        | ×        | _     | _     |  |
| Winkler cactus         | Pediocactus winkleri   | T                              |                                         | _        | -        | -     | ×     |  |
| Wright fishhook cactus | Sclerocactus wrightiae | E                              | -                                       | _        | _        | _     | ×     |  |

 $<sup>^{</sup>a}$  C = candidate; E = endangered; T = threatened; XN = experimental, nonessential population.

 $<sup>^{</sup>b}$  A dash = not present;  $\times$  = present.

The autumn buttercup grows to a height of 1 to 2 ft and usually flowers in July and August with 6 to 10 yellow flowers per plant (USFWS 1991a). Seed production occurs in late July and is completed by early September.

Potential threats to the autumn buttercup include livestock grazing on areas suitable for introduction of new populations, herbivory by voles and other small mammals, limited habitat available, and interspecies competition (NatureServe 2006). The UDWR (2006) also suggests that habitat has been altered from presettlement times by water being diverted for irrigation and introduction of domestic livestock.

Within potential development areas, the autumn buttercup occurs only in a small area of the Sevier River Valley in western Garfield County, Utah. This area is located in the southeastern portion of Garfield County. There are no known autumn buttercup populations in this area of the county or in the Tar Sand Triangle STSA in the extreme northeastern portion of the county. No populations of this species are known to occur in potential oil shale development areas.

3.7.4.1.2 Barneby Reed-Mustard. The Barneby reed-mustard is a perennial herb that is endemic to the Colorado Plateau in Emery and Wayne Counties in Utah (UDWR 2006). It occurs on steep, north-facing slopes on red, fine-textured soils that are rich in selenium and gypsum, on the Moenkopi and Chinle Formations at elevations between 1,460 and 1,985 m (4,790 and 6,512 ft). The Barneby reed-mustard grows in mixed desert shrub and pinyon-juniper communities. Common plants growing in these communities are sagebrush (Artemisia sp.), rabbitbrush (Chrysothamnus nauseosus), and Mormon tea (Ephedra spp.) (USFWS 1994a).

The Barneby reed-mustard was federally listed as endangered on January 14, 1992 (57 FR 1398). The USFWS prepared a recovery plan that laid out goals for recovery and management of this species and two closely related mustard species (USFWS 1994a).

Population estimates have varied from about 1,000 individual plants in the two remaining populations in 1992 to about 2,000 individuals in 2000 (CPC 2006b). One of the known populations is on BLM-administered land near Muddy Creek in the southern portion of the San Rafael Swell. The other population is in Capitol Reef National Park in the Fremont River drainage west of Fruita (USFWS 1994a).

The Barneby reed-mustard grows to heights of 10 to 25 cm (4 to 10 in.) from a branched woody base. About 5 to 20 white- or lilac-colored flowers grow on racemes at the end of the plant's leafy stems. Flowers develop in late April through June (UDWR 2006), with seed production occurring during this period and continuing into July.

Potential threats to the Barneby reed-mustard include uranium mining activities near the population in the San Rafael Swell and foot traffic by park visitors in Capitol Reef National Park (USFWS 1994a). The range of the Barneby reed-mustard occurs near the San Rafael STSA. 3.7.4.1.3 Barneby Ridge-Cress. The Barneby ridge-cress is a perennial plant that occurs in Duchesne County, Utah. The USFWS determined that the entire known population occurs on the Uintah and Ouray Reservation of the Ute Indian Tribe (USFWS 1993a). It was first listed as endangered on September 28, 1990, and is endangered in its entire range (USFWS 2006c).

The Barneby ridge-cress occurs as a series of disjunct populations on marly shale barrens of the Uinta Formation on the three ridges at elevations between 1,890 and 1,980 m (6,201 and 6,496 ft) on both sides of Indian Creek south of the town of Duchesne (USFWS 1993a). It grows in isolated stands in desert shrub and pinyon-juniper woodland communities dominated by pinyon pine (*Pinus edulis*) and Utah juniper (*Juniperus osteosperma*), and in association with other species that can tolerate the white shale barrens habitats situated as "islands" within unsuitable soil types from other geologic substrates. An estimated 5,000 individuals are known to grow in an area of about 200 ha (494 acres) (Nature Serve 2006). Flowering occurs in April and May, seed formation in late May and June, and seed shed in June and July.

Potential threats to the Barneby ridge-cress include a variety of ground-disturbing activities such as oil and gas exploration, drilling and production, and OHV use. The USI-WS determined that the entire population is underlain by petroleum deposits that were being developed as of 1993 (USFWS 1993a), although listing the species as endangered has protected it by deterring development of petroleum resources in occupied habitats. Within potential development areas, the range of the Barneby ridge-cress occurs about 25 km (16 mi) from the Pariette STSA and the Uinta Basin.

3.7.4.1.4 Black-Footed Ferret. The black-footed ferret is a small, nocturnal mammal. Its historic range and habitat requirements are closely tied to prairie dogs (Cynomys spp.); it lives almost exclusively in prairie-dog colonies in open grassland and uses prairie-dog burrows as dens and for shelter (USFWS 1998a). The ferrets also hunt prairie dogs, which are their principal prey.

The primary cause of the black-footed ferret population decline was the reduction in prairie dogs during the nineteenth century. Widespread poisoning of prairie dogs to improve livestock forage, loss of habitat by conversion to agriculture, and disease greatly reduced prairie-dog populations. Other threats to black-footed ferrets included predator-control programs and diseases such as canine distemper and plague.

When the black-footed ferret was listed as an endangered species, few wild populations were known to exist. When the last known wild population disappeared in 1974, the species was thought to be extinct (USFWS 1998a). However, a small population was discovered in Wyoming in 1981. Subsequent declines in this population prompted capture of the remaining ferrets in 1986 and 1987. Currently, the only known wild populations are the result of reintroductions in Arizona, Colorado, Montana, South Dakota, Utah, and Wyoming. Populations in Uintah and Duchesne Counties, Utah; Moffat and Rio Blanco Counties, Colorado; and a portion of Sweetwater County, Wyoming, are designated as nonessential, experimental populations (USFWS 1998a). Designation as nonessential, experimental populations saures that endangered

species are fully protected from intentional harm, but keeps their presence from restricting current and future land management practices.

3.7.4.1.5 Bonytail. The bonytail is endemic to the Colorado River Basin and was historically common to abundant in warmwater reaches of larger rivers of the basin from Mexico to Wyoming. The species experienced a dramatic, but poorly documented, decline starting in about 1950 (USFWS 2002a). Critical habitat has been designated for the species in the large rivers of the Upper Colorado River Basin (USFWS 1994b).

Currently, no self-sustaining populations of bonytail are known to exist in the wild, and very few individuals have been caught anywhere within the basin. Releases of hatchery-reared adults into riverine reaches in the Upper Colorado River Basin have resulted in low survival, with no evidence of reproduction or recruitment.

Bonytail can live up to about 50 years (Rinne et al. 1986). Their habitat requirements are poorly understood (USFWS 2002a). On the basis of observations of closely related species, it is expected that bonytail in rivers probably spawn in spring over rocky substrates. It has been recently hypothesized that flooded bottomlands may provide important bonytail nursery habitat. Adult bonytail captured in Cataract, Desolation, and Gray Canyons were sympatric with humpback chub in shoreline eddies among emergent boulders and cobble, and adjacent to swift current (Valdez 1990).

The bonytail could occur only in portions of the Uinta Basin (Green River watershed) and in the Asphalt Ridge, Hill Creek, Pariette, Raven Ridge, Sunnyside, Tar Sand Triangle, and White Canyon STSAs (Green River and Colorado River watersheds).

3.7.4.1.6 California Condor. The California condor is an opportunistic scavenger that has been reintroduced into portions of its original range since nearing extinction in the 1970s. Prior to settlement by the pioneers in the mid-1800s, its range extended along the entire Pacific Coast from British Columbia to Baja California (USFWS 2006a). By the 1940s, the species distribution was limited to the coastal mountains of Southern California, with nesting sites located mainly in rugged, chaparral covered mountains. Foraging was mostly in the foothills and grasslands of the San Joaquin Valley at that time. The total species size numbered only 22 in 1982, and in 1985, the USFWS decided to capture all remaining condors for safety and to start a captive breeding program (Behrens and Brooks 2000). After a captive breeding program, the first condors were released in 1992 in the Sespe Condor Sanctuary managed by the Hopper Mountain National Wildlife Refuge (USFWS 2006b). At that time the population size was 63 individuals, all in captivity. Other reintroductions have taken place in south-central California and the Grand Canyon area of northern Arizona. The goal of the California Condor Recovery Plan completed in 1975 by the USFWS and numerous other agencies and societies was to establish two populations each with about 150 individuals and a minimum of 15 breeding pairs (Behrens and Brooks 2000). As of April 2000, the California condor population had increased to 157, of which 62 were released into the wild. The total population is estimated to be about 200 individuals today (National Parks Conservation Association 2006).

The diet of California condors consists of carcasses of dead animals, including deer, cattle, marine mammals, and the remains of field-dressed game (USFWS 2006a). Rock pools are important as bathing sites that condors use after feeding.

California condors nest in caves or crevices in rock formations, or rarely in cavities of giant sequoia trees (Sequoia giganteus). Courtship and breeding occur from December through the spring months in California. Incubation by both parents lasts about 56 days. Chicks fledge at 2 to 3 months of age but they remain near the nest site for another 3 months. First flight occurs at about 6 months and juveniles remain with adult condors until the following year. Condors do not breed until about 6 years of age (USFWS 2006a).

Potential threats to the continued existence of the California condor include injury or death from collisions with power lines, human homes being built in mountainous areas occupied by the condors, consuming carrion containing pesticide residues, lead poisoning from eating carrion containing shot gun pellets, and illegal shooting (Behrens and Brooks 2000; USFWS 2006a). The large size of adults [about 10 kg (20–22 lb)] and long wingspan (about 9 ft) make the condor vulnerable to collisions with power lines, resulting in injury or death from electrocution. The range of the California condor includes the Tar Sand Triangle and White Canyon STSAs.

3.7.4.1.7 Canada Lynx. The Canada lynx is a medium-sized cat. It is federally listed as endangered only in the contiguous United States. Critical habitat has not been designated for this species. Threats to the Canada lynx include habitat loss and modification from logging, fire suppression, and fragmentation, and isolation of suitable habitat; hunting and trapping resulting in severe population reductions; and increased human access into occupied habitat resulting in increased human disturbance. Competition with, and displacement by, the coyote and bobcat can also occur when these species move into occupied Canada lynx habitat (USFWS 1997b). The alteration of forests by human activities or the use of motorized vehicles, including snowmobiles, in lynx habitat may allow for the movement of coyotes into that habitat (USFWS 1998b).

The primary habitat of the Canada lynx for denning and shelter in western states is mature mesic coniferous forest, primarily composed of spruce and fir, with downed logs and windfalls, particularly those at montane and subalpine elevations. Suitable denning stands are at least 1 ha (2.5 acres) in size, provide minimal human disturbance, and are near foraging habitat (USFWS 1998b). The snowshoe hare (Lepus americanus), the principal prey of the Canada lynx, prefers early successional forests with a shrubby understory. Thus, lynx depend on a mosaic of mature and early successional forest stands, a landscape habitat structure that was typically maintained by forest fires (USFWS 1997b). Lynx populations often rise and fall with those of the snowshoe hare. Other species, including red squirrels, other small mammals, and birds, are also taken by lynx. Populations in the contiguous United States have a greater reliance on these alternative prey species than northern populations (Ruediger et al. 2000). Canada lynx in shrub-steppe habitats prey on jackrabbits and ground squirrels.

Contiguous forest is important for connectivity between habitat blocks; however, dispersal may occur through nonforested habitats that are otherwise unattractive to lynx. Within

these communities, riparian systems and relatively high ridge systems may be particularly important for landscape connectivity (Ruediger et al. 2000).

Although Canada lynx still occur in Colorado, Utah, and Wyoming, they are extremely rare (USFWS 1997b). In Utah, lynx are thought to occur in remote areas of the Uinta Mountains, particularly along the Wyoming border (USFWS 1998b). A self-sustaining resident population does not likely exist in Utah, but individuals may be present. Lynx habitat in Colorado is located within the Southern Rocky Mountains region, which also includes southeastern Wyoming, and is separated from the Northern Rocky Mountain region (which includes Utah) by natural barriers such as the Wyoming Basin and the Green River (USFWS 2000b). Few if any lynx remained in Colorado until reintroductions into the southwestern part of the state began in 1999.

The Canada lynx could occur in the Green River, Piceance, and Uinta Basins and in the vicinity of the Asphalt Ridge STSA.

3.7.4.1.8 Clay Reed-Mustard. Clay reed-mustard is a perennial herbaceous plant that occurs in the Uinta Basin of Uintah County, Utah (UDWR 2006). It grows on clay soils rich in gypsum overlain with talus derived from shales and sandstones in the zone of contact between the Uinta and Green River geologic formations (USFWS 1994a). The UDWR characterized the species as growing on the Evacuation Creek Member of the Green River Formation, on substrates consisting of bedrock at the surface, on scree, and on fine-textured soils on north-facing slopes at elevations from about 1,440 to 1,770 m (4,724 to 5,807 ft) (UDWR 2006; NaureServe 2006).

Clay reed-mustard is known from only three populations and totals about 6,000 individuals. All populations occur on lands administered by the BLM within an area about 30 km (19 mi) wide from the west side of the Green River to the east side of Willow Creek in southwestern Uintah County (USFWS 1994a). This species occurs in mixed desert shrub communities. Flowering occurs from April to May, with seed production in May and June.

The clay reed-mustard was listed as threatened on January 14, 1992 (57 FR 1398). Subsequently, the USFWS prepared a recovery plan for the clay reed-mustard and two other related mustard species in 1994 (USFWS 1994a). One of the top priority goals defined in the recovery plan was to conduct inventories of suitable habitat for the clay reed-mustard. No additional information on the results of inventories that further describe any new populations or abundance data is known at this time.

Potential threats to the clay-reed mustard include a variety of ground-disturbing activities, such as oil and gas exploration and development (its entire habitat is underlain by oil shale), building stone removal, and OHV use (USFWS 1994a). The clay reed-mustard potentially occurs in the Uinta Basin and the Asphalt Ridge, Hill Creek, Pariette, P.R. Spring, and Raven Ridge STSAs

3.7.4.1.9 Colorado Pikeminnow. The Colorado pikeminnow is endemic to the Colorado River Basin. Colorado pikeminnow persist in the San Juan, Colorado, and Green Rivers and their tributaries; however, populations are severely reduced in all but the Green River (Platania et al. 1991; Tyus 1991; Osmundson and Burnham 1996). Critical habitat designated for Colorado pikeminnow occurs in the upper Colorado, Duchesne, Green, White, Gunnison, and Yampa Rivers. In designated river reaches, critical habitat includes both the river and its 100-year floodplain.

Colorado pikeminnow are long-lived fish (up to 40 years) and become sexually mature at 5 to 7 years of age (Vanicek and Kramer 1969; Hamman 1981; Tyus 1991). Adults are the most widely distributed of the pikeminnow life stages and move to spawning areas in spring. Eggs deposited on gravel spawning bars hatch within 5 to 7 days. Once they emerge, larvae are swept downstream, sometimes for long distances (Hamman 1981; Haynes et al. 1984; Nesler et al. 1988; Bestgen and Williams 1994; Bestgen et al. 1998). Larvae drift to relatively low-gradient river reaches where low-velocity, shallow, channel-margin habitats (e.g., backwaters) are common, and they remain there throughout the summer (Vanicek and Kramer 1969; Tyus and Haines 1991; Muth and Snyder 1995).

The Colorado pikeminnow is known to occur in portions of the Uinta Basin (Green, Duchesne, and White Rivers), Piccance Basin (White River), and in the vicinity of the Asphalt Ridge, Hill Creek, Pariette, Raven Ridge, Sunnyside, Tar Sand Triangle, and White Canyon STSAs (Green, San Juan, and Colorado Rivers).

3.7.4.1.10 Dudley Bluffs Bladderpod. The Dudley Bluffs bladderpod is a perennial herbaceous plant that occurs in Rio Blanco County, Colorado. It grows on white shale outcrops of the Green River (Thirteen Mile Creek Tongue) and Ulinta Formations, along areas exposed through the deepening of stream cuts at elevations of 6,000 to 6,700 ft (CPC 2006c; USFWS 1993b), and is found mostly on BLM-administered lands. Much of the habitat is located on lands with oil shale resources.

The Dudley Bluffs bladderpod was listed as threatened on February 6, 1990 (55 FR 4152). The USFWS prepared a recovery plan in 1993 that called for habitat protection and inventory work on suitable habitat in the vicinity of known populations (USFWS 1993b).

Dudley Bluffs bladderpod is a small herb measuring only about 2 cm (1 in.) across and is difficult to see. It produces bright yellow flowers in dense clusters during April and May, with semispherical fruits forming in May or June (CPC 2006c). The total species distribution is believed to be in five populations on about 50 acres over a range of 10 mi (USFWS 1993b). The two largest known populations of about 10,000 individuals each were found growing together at the junction of Piceance Creek and Ryan Gulch about 2 mi north of Dudley Bluffs. The Center for Plant Conservation notes that there are 7 known locations of Dudley Bluffs bladderpod in this same 10-mi-long area (CPC 2006c).

Potential threats to continued survival of the Dudley Bluffs bladderpod include oil shale development and other surface-disturbing activities. This species is so small that it was subjected

to destruction during the annual monitoring of existing populations to such an extent, that the USFWS suggested that the schedule and procedures for future monitoring activities by researchers be carefully assessed (USFWS 1993b).

The Dudley Bluffs bladderpod is known to occur in the Piceance Basin in Rio Blanco County, Colorado.

3.7.4.1.11 Dudley Bluffs Twinpod. The Dudley Bluffs twinpod is a small, herbaceous perennial that grows on white outcrop and steep slopes along exposed stream cuts. It is restricted to the Thirteen Mile Creek Tongue and Parachute Creek Member of the oil shale-bearing Green River Formation in Rio Blanco County, Colorado (USFWS 1993b). The Dudley Bluffs area also supports another federally listed threatened species (Dudley Bluffs bladderpod) in the same general area. Remnants of pinyon pine, Utah juniper woodlands, and cold desert shrub plant communities occur on mesas and along the slopes where Dudley Bluffs inprop grows (USFWS 1993b; Colorado State Parks 2006b). The Dudley Bluffs area is designated as an ACEC. This designation means that the BLM will develop a habitat management plan that gives priority consideration to rare plant species (in this case) when considering the impacts of future activities approved by the BLM in the ACEC.

The USFWS listed the Dudley Bluffs twinpod as threatened on February 6, 1990 (55 FR 4152), and published a recovery plan in 1993 (USFWS 1993b). The recovery plan laid out objectives for future studies and protective measures for the species. The habitat for this species is on the surface of oil shale deposits that are suitable for either underground mining or surface mining of oil shale.

Dudley Bluffs twinpod is named for its distinct heart-shaped fruits. It flowers in May and June and produces fruits in June and July. There are 5 large populations on about 101 ha (250 acres) (USFWS 1993b). In total, about 10,000 individual plants occur in 12 sites 2 mi north of Dudley Bluffs near the junction of Piceance Creek and Ryan Gulch (CPC 2006d).

Potential threats to continued existence of the Dudley Bluffs twinpod include oil shale development activities and other surface disturbance (USFWS 1993b). The Dudley Bluffs twinpod occurs in the Piceance Basin in Rio Blanco County, Colorado.

3.7.4.1.12 Humpback Chub. The humpback chub is endemic to the Colorado River Basin. The species occurs primarily in relatively inaccessible canyon areas (Tyus 1998). The known historic distribution of the humpback chub includes portions of the main stem of the Colorado River and four of its tributaries, the Green, Yampa, White, and Little Colorado Rivers (USFWS 1990a). Critical habitat designated for humpback chub includes portions of the upper Colorado, Green, White, Gunnison, and Yampa Rivers.

Humpback chub complete their entire life cycle in canyons with deep water, swift currents, and rocky substrates (USFWS 2002b). Spawning occurs from April to June over cobble bars and shoals that are adjacent to low-velocity shoreline eddies as flow decreases from the

annual spring peak (USFWS 2002b). Emerging humpback chub larvae do not drift long distances, but instead remain in the general vicinity of spawning areas (Valdez et al. 1982; Robinson et al. 1998; Chart and Lentsch 1999). Young require low-velocity shoreline habitats (including eddies and backwaters) that are more prevalent under base-flow conditions. Humpback chubs mature in 2 to 3 years and may live 20 to 30 years (Valdez et al. 1992; Hendrickson 1993).

The humpback chub occurs in the vicinity of potential development areas in the Uinta Basin and the Asphalt Ridge, Hill Creek, Sunnyside, Tar Sand Triangle, and White Canyon STSAs.

3.7.4.1.13 Jones Cycladenia. The Jones cycladenia is a perennial herb that occurs in the canyonlands region of the Colorado Plateau (UDWR 2006). It grows on gypsum-laden soils derived from the Summerville, Cutler, and Chinle Formations that are shallow, fine textured, and mixed with rock fragments. This species typically is found in mixed desert shrub, pinyon-juniper, and Eriogonum-ephedra (wild buckwheat-mormon tea) plant communities at elevations from about 1.220 to 2.075 m (4,002 to 6,808 ft).

Jones cycladenia is a long-lived perennial that overwinters as belowground rhizomes. It grows to heights of 10 to 15 cm (4 to 6 in.) and produces pinkish-rose colored flowers from mid-April to early June (CPC 2006e). Seed production does not seem to be as important for reproduction as asexual means by sending up new plants from the roots.

Potential threats to this species include surface-disturbing activities such as oil and gas development activities and OHV use. The Jones cycladenia occurs in Emery, Garfield, Grand, and Kane Counties in Utah. It could occur in the vicinity of projects in the Uinta Basin and the Hill Creek, Pariette, P.R. Spring, and San Rafael STSAs.

3.7.4.1.14 Last Chance Townsendia. The last chance townsendia is a perennial herb that occurs in Emery, Sevier, and Wayne Counties in Utah (UDWR 2006). It grows on barren, silty, silty clay, or gravelly clay soils of the Mancos Shale Formation at elevations ranging from 1,686 to 2,560 m (5,531 to 8,399 ft). Most plants grow on soils derived from a shale lens with a fine silty texture and high alkalinities, and are distributed as isolated pockets (USFWS 1993c). This species is found in desert shrub and pinyon-juniper communities.

The last chance townsendia flowers from April to May, and fruiting occurs in May and June (USFWS 1993c). Fifteen populations were known in 1993, each with a range numbering from 6 to about 2,000 individuals over an area of about 1 acre. The total population as of 1994 was estimated at 6,000 individuals. No recent information was available on population numbers within the known distribution range. Most of the populations of the last chance townsendia are on BLM-administered lands and in Capitol Reef National Park (USFWS 1993c). All known populations are in a band less than 5 mi wide and 30 mi long in southwestern Emery County and southeastern Sevier County, Utah.

The USFWS prepared a recovery plan in 1993 (USFWS 1993c). The last chance townsendia was listed as threatened on August 21, 1985 (50 FR 33734). It was given a rating with a high degree of threat and low recovery potential. The recovery plan set goals of maintaining a documented population of 30,000 individuals and maintaining 20 populations with at least 500 individuals each. The plan also called for formal land management designations on known populations to ensure the existence of long-term habitat.

Potential threats to continued existence of the last chance townsendia include disturbance or loss of habitat from mineral and energy development, road construction, and trampling by livestock. Future coal mining at the Emery coal field could eliminate populations if protective measures are not in place. The last chance townsendia could occur in the vicinity of the San Rafael STSA.

3.7.4.1.15 Maguire Daisy. The Maguire daisy is a small (up to 5 in. in height) perennial her that occurs on sand- and detritus-weathered surfaces of the Navajo, Wingate, and Chinle Sandstone Formations in mountain shrub, Douglas-fir, ponderosa pine, and juniper woodland plant communities at elevations of 1,600 to 2,500 m (5,249 to 8,202 ft). Plants grow on slickrock crevices, ledges, and bottoms of washes. It is found in locations in Emery, Garfield, and Wayne Counties in Utah (UDWR 2006).

The Maguire daisy was originally listed as endangered but was downlisted to threatened status in 1996 on the basis of DNA evidence of what was thought to be two separate varieties (CPC 2006f). At the time of reclassification to threatened, the total population was believed to total about 3,000 individuals from 12 locations within the 3-county area that composed its known distribution.

Flowering occurs from mid-June through July. Plants typically have 1 to 5 flower heads with white to pinkish ray flowers around a yellow center that grows from a branched woody base (BLM 2006h). Seed formation likely occurs in July and August, although no specific information on the time of seed shed was found.

Potential threats to continued existence of the Maguire daisy include loss of habitat and genetic viability, trampling by hikers and livestock, OHVs, and mineral and energy exploration and development (CPC 2006f). The Maguire daisy could occur in the vicinity of the San Rafael STSA.

3.7.4.1.16 Mexican Spotted Owl. The Mexican spotted owl occurs from southern British Columbia, Canada, to central Mexico. It is a rare permanent resident in the southern and eastern parts of Utah on the Colorado Plateau (UDWR 2006). The primary habitat of the spotted owl in Utah is steep rocky canyons, although forested areas are also important habitat in Utah and elsewhere in the spotted owl's range. The spotted owl occupies closed canopy forests in steep canyons with uneven-aged tree stands with high basal area, with an abundance of snags and downed logs. The State of Utah shows the Mexican spotted owl distribution to include sizeable portions of San Juan, Wayne, Garfield, Kane, and Iron Counties in Utah as well as a small area

of extreme eastern Carbon County and extreme east-central Uintah County (UDWR 2006). The latter area is located near the Raven Ridge STSA.

The Mexican spotted owl was listed as threatened on March 16, 1993 (58 FR 14248). Critical habitat was designated on June 5, 1995 (63 FR 14378), but several court rulings resulted in the USFWS removing the critical habitat designation on March 25, 1998 (63 FR 14378). In March 2000, the USFWS was ordered by the courts to propose critical habitat that resulted in the current designation that includes 4.6 million acres in Arizona, Colorado, New Mexico, and Utah on federal lands (USFWS 2006e). A recovery plan for the Mexican spotted owl was published in December 1995 (USFWS 1995a). At the time of federal listing in 1993, the total population of Mexican spotted owls was estimated at 2.100.

A total of 2,252,857 acres in five areas of southern Utah were designated as critical habitat. Critical habitat within the study areas includes two parcels in Utah designated as CP-14 and CP-15. Area CP-15 is along the west side of the Green River and includes land north and south of the border between Carbon and Emery Counties (USFWS 2006e). Area CP-14 is farther south and includes lands on both sides of the Colorado River in portions of San Juan, Wayne, and Garfield Counties.

The Mexican spotted owl feeds mainly on rodents but also consumes rabbits, birds, reptiles, and insects. Nest sites are either in trees (typically those with broken tops), tree trunk cavities, and cliffs along canyon walls (BLM 2006h). Breeding takes place in the spring (March), with egg-laying in late March or early April. After a 30-day incubation period, hatching occurs and fledging takes place in 4 to 5 weeks. The young depend on the adults for food in the summer and eventually disperse from the nesting area in the fall (USFWS 2006f).

Potential threats to the Mexican spotted owl include habitat loss from logging of old growth forest, disturbance of owls by recreational use on federal lands, overgrazing, loss of habitat and disturbance of owls from road development within canyons, and habitat loss from catastrophic fires.

Within potential project areas, the Mexican spotted owl is likely to occur only in southern Utah (UDWR 2006). All areas in Colorado where the species occurs and where critical habitat has been designated are located well south of development areas (e.g., >160 km [100 mi]). The Mexican spotted owl could occur in the vicinity of the Raven Ridge, Tar Sand Triangle, and White Canyon STSAs. The range is within 5 km (3 mi) of the Uinta Basin.

3.7.4.1.17 Navajo Sedge. The Navajo sedge is a perennial plant that is restricted to shady seep pockets or alcoves in hanging garden habitats in Navajo Sandstone at elevations ranging from about 1,150 to 1,820 m (1,150 to 5,971 ft) (UDWR 2006). These habitats are characteristic of the deep, sheer-walled canyons of the Colorado Plateau. The Navajo sedge is known from San Juan and Kane Counties in Utah and on the Navajo Indian Reservation in Arizona (Coconino, Navajo, and Apache Counties) (AGFD 2006; CPC 2006g).

The Navajo sedge was federally listed as threatened on May 8, 1985, and critical habitat was described also in that listing (50 FR 10370). A recovery plan was approved on September 24, 1987. Critical habitat is on the Navajo Indian Reservation in Coconino County; the habitat contains three springs near Inscription House Ruins (50 FR 19370).

The Navajo sedge grows to a height of 25 to 40 cm (10 to 16 ft) and has grass-like leaves that droop downward. Flowers are arranged in spikes, with two to four spikes per stem, and develop during late June and July; seeds are produced in July and August (CPC 2006g; UDWR 2006).

Potential threats to continued existence of the Navajo sedge include groundwater pumping, water diversion projects, and livestock grazing (AGFD 2006). Sheep grazing and groundwater pumping are considered to be the greatest threats to the species in Utah (UDWR 2006).

The Navajo sedge occurs in San Juan County, Utah, with a very small portion of its range in extreme northern Kane County (UDWR 2006); these populations do not occur in the vicinity of any potential oil shale or tar sands development.

3.7.4.1.18 Razorback Sucker. The razorback sucker, endemic to the Colorado River Basin, was once widely distributed in warmwater reaches of larger rivers of the basin from Mexico to Wyoming (Muth et al. 2000). Today, the species is one of the most imperiled fishes in the Colorado River Basin and exists naturally as only a few disjunct populations or scattered individuals (Minckley et al. 1991; Bestgen et al. 2002). Although the largest riverine population is in the middle Green River (Tyus 1987; Modde et al. 1996), the most recent estimate indicates that this population has been declining, that it has little or no recruitment, and that only about 100 individuals remain (Bestgen et al. 2002). The lack of recruitment has been attributed mainly to the cumulative effects of habitat loss and modification caused by water and land development and predation on early life stages by non-native fishes (Muth et al. 2000).

Habitats used by adult razorback suckers include deeper runs, eddies, backwaters, and flooded off-channel habitats in spring; runs and pools over submerged sandbars in summer; and low-velocity runs, pools, and eddies in winter (Tyus 1987; Osmundson and Kaeding 1989; Valdez and Masslich 1989; Tyus and Karp 1990; Modde 1997; Modde and Wick 1997; Modde and Irving 1998). Young razorback suckers require nursery environments with quiet, warm, shallow water, such as tributary mouths, backwaters, or inundated floodplain habitats (Taba et al. 1965; Gutermuth et al. 1994; Modde 1996, 1997; Muth et al. 1998).

Razorback suckers make annual spawning runs to specific river areas (Minckley 1973). Larval razorback suckers emerge from spawning substrates and are transported downstream into off-channel nursery habitats with quiet, warm, shallow water (e.g., tributary mouths, backwaters, and inundated floodplain habitats). The most important of these habitats are located in the middle Green River within Ouray National Wildlife Refuge. The razorback sucker occurs in the vicinity of the Uinta Basin (Duchesne and Green Rivers), Piceance Basin (White River), and the Asphalt Ridge, Hill Creek, Pariette, Raven Ridge, Sunnyside, Tar Sand Triangle, and White Canyon STSAs (Green and Colorado Rivers). Critical habitat designated for razorback sucker occurs in the upper Colorado, Duchesne, Green, and White Rivers. In designated river reaches, critical habitat includes both the river and its 100-year floodplain.

3.7.4.1.19 San Rafael Cactus. The San Rafael cactus is a perennial species that grows on fine-textured soils rich in calcium derived from the Carmel Formation and the Sinbad Member of the Moenkopi Formation. It occurs on benches, hilltops, and gentle slopes in open pinyon-juniper woodland and mixed desert shrub grassland communities at elevations ranging from 1.450 to 2.080 m (4.757 to 6.824 ft) (UDWR 2006).

The USFWS listed the San Rafael cactus as endangered on September 16, 1987 (52 FR 349917). A recovery plan was prepared in 1995 (USFWS 1995b). A major focus of the recovery plan was to conduct additional surveys in Emery County, Utah, in an attempt to identify new populations. Identifying at least five separate populations that are viable at the population level and maintaining these populations were set forth as important goals to realize recovery of the species.

The San Rafael cactus is extremely small, growing to a height of only about 1.5 to 2.0 in. and has a diameter ranging from 1.2 to 3.8 in. (USFWS 1995b). Flowering occurs during April and May, and fruiting occurs in May and June.

In 1995, the total size of the San Rafael cactus population was estimated to be about 20,000, located in three separate populations, all within the San Rafael Swell north of the San Rafael River in Emery County (USFWS 1995b; BLM 2006h). The estimated population had dropped to 6,000 in 1998.

Potential threats to the continued existence of the San Rafael cactus include habitat destruction from OHVs, trampling by hikers and livestock, oil and gas exploration activities, and from exploration and mining for gypsum and other minerals (USFWS 1995b).

The San Rafael cactus occurs in Emery County, Utah, and a small area in the northern extreme of Wayne County (UDWR 2006). There is a potential for the species to be present in the vicinity of the San Rafael STSA.

3.7.4.1.20 Shrubby Reed-Mustard. Shrubby reed-mustard is a perennial herb that is endemic to semibarren white shale layers of the Evacuation Creek Member of the Green River Formations in the Uinta Basin of Utah (NatureServe 2006; UDWR 2006). It grows in xeric, thin, fine-textured soils that overlay oil shale fragments at elevations ranging from 1,555 to 2,042 m (5,101 to 6,699 ft) (UDWR 2006). Plant communities where the shrubby reed-mustard occurs are mixed desert shrub and pinyon-juniper woodlands. The primary land use in the range of the shrubby reed-mustard is winter sheep grazing.

Currently, there are eight known populations totaling about 3,000 individual plants (NatureServe 2006). In 1994, the USFWS reported only three known populations (USFWS 1994a). The entire range of the shrubby reed-mustard is underlain by oil shale and conventional oil and gas deposits. It has a clump-forming growth form and produces yellow flowers during May and June (NatureServe 2006).

The shrubby reed-mustard was listed as endangered on October 6, 1987. A recovery plan for this species and two closely related mustard species was prepared by the USFWS (1994a). Some disagreement remains over the taxonomy of this species; some taxonomists consider it the sole member of the genus Glaucocarpum (NatureServe 2006).

Potential threats to continued existence of the species include ground-disturbing activities such as oil shale development, grazing, habitat destruction from collection of building stone, and oil and gas exploration and development (NatureServe 2006). The shrubby reed-mustard could occur within or in the vicinity of development areas in the Uinta Basin and the Hill Creek, Pariette, P.R. Spring, and Sunnyside STSAs (UDWR 2006).

3.7.4.1.21 Southwestern Willow Flycatcher. The southwestern willow flycatcher is a small, neotropical migrant bird. Its breeding range includes the southern portion of Utah, southwestern Colorado, western Texas, New Mexico, Arizona, southern Nevada, southern California, and northwestern Mexico. It depends on riparian vegetation for nesting, foraging, and migratory habitat. The southwestern willow flycatcher historically nested primarily in willows, with a scattered overstory of cottonwoods. It now also nests in non-native tamarisk and Russian olive (USFWS 1997a). Nesting habitat is characterized by dense riparian shrubs, about 4 to 7 m (13 to 23 ft) tall, often with a high percentage of canopy cover, sometimes with a scattered overstory of cottonwood. Preferred nesting habitat seems to be associated with standing water, exposed sand bars, or nearby fluvial marshes. The southwestern willow flycatcher forages for insects within and occasionally above riparian vegetation.

Once common along rivers of the Southwest, the southwestern willow flycatcher population size is estimated to be between 1,200 and 1,300 pairs (USFWS 1997a). Population declines have been attributed to the loss, degradation, and fragmentation of its riparian habitat, and parasitism by brown-headed cowbirds (*Molothrus ater*). Suitable riparian habitats tend to be rare and widely separated. Impacts on its riparian habitat have resulted from urban, recreational, and agricultural development; fires; water diversion and impoundment; channelization; livestock grazing; and displacement of native shrubs by exotic species (USFWS 1997a).

The southwestern willow flycatcher is known to occur only in portions of the Uinta Basin, Piceance Basin, and in the vicinity of the P.R. Spring, San Rafael, Tar Sand Triangle, and White Canyon STSAs. Critical habitat has not been designated for this species in the vicinity of potential development areas.

3.7.4.1.22 Uinta Basin Hookless Cactus. The Uinta Basin hookless cactus is a perennial species that occurs in Duchesne and Uintah Counties in Utah and in Delta, Garfield, Mesa, and

Montrose Counties in Colorado (UDWR 2006). In Utah it is found growing on river benches, valley slopes, and rolling hills along the Duchesne River, Green River, and Mancos Formations. The Uinta Basin hookless cactus grows on xeric, fine-textured soils that have cobbles and pebbles on the surface at elevations from 1,360 to 2,000 m (4,461 to 6,562 ft) (UDWR 2006) and is typically found in salt desert shrub and pinyon-juniper plant communities. It is most abundant on south-facing slopes of about 30% grade. Other common plant species in communities where the Uinta Basin hookless cactus occurs include shadscale (Atriplex confertifolia), galleta (Hilaria jamesii), black sagebrush (Artemisia nova) and Indian rice grass (Stipa hymenoides) (USFWS 1990b).

The Uinta Basin hookless cactus flowers in April and May; fruiting occurs in May and June (USFWS 1990b). Seeds are typically small and are spread by gravity, water flow, and insects or birds. Total population numbers in Utah for the Uinta Basin hookless cactus are believed to be lower than the 10,000 estimate listed in the recovery plan prepared by the USFWS in 1990 (NatureServe 2006). Current population total numbers in Colorado are estimated at 10,000 individual plants.

Potential threats to the continued existence of this species include ground-disturbing activities, such as oil and gas exploration, drilling and removal, oil shale and tar sands mining, sand and gravel quarrying, building stone collection and quarrying, OHV use, road construction, parasitism by termite and beetle larvae, and moderate grazing by livestock resulting in trampling of cactus (USFWS 1990b; NatureServe 2006; UDWR 2006).

Within potential development areas, the Uinta Basin hookless cactus occurs mostly in Uintah County, Utah, with a smaller portion of the distribution range in eastern Duchesne County, south of the Duchesne River, and in southeastern Duchesne County along Nine Mile Creek. It occurs in Uintah County along the Green and White Rivers and on the Ouray National Wildlife Refuge just north of the town of Ouray (USFWS 1990b). The species could occur within or in the vicinity of development areas in the Piceance and Uinta Basins and the Asphalt Ridge, Hill Creek, Pariette, P.R. Spring, Raven Ridge, and Sunnyside STSAs.

3.7.4.1.23 Utah Prairie Dog. The Utah prairie dog occurs in grasslands, level mountain valleys, and in areas with deep well-drained soils with low-growing vegetation that allows for good visibility. It is one of three prairie dog species in the southwestern part of Utah (UDWR 2006). Utah prairie dogs are diurnal herbivores that live in colonies and spend much of their time underground. They are inactive or torpid during the winter months in severe winter weather (NatureServe 2006). Adults emerge from mid-March to early April. Breeding occurs in the spring, and young emerge from the burrows during May and early June. Adults are often dormant from mid-July to mid-August and are not often seen above ground during this period. Juveniles enter dormancy during October and November.

The Utah prairie dog feeds primarily on grasses and various seeds and flowers of shrubs and insects when available (NatureServe 2006). Common plant species consumed include alfalfa, leafy aster, European glorybind, and wild buckwheat seeds. Home range size of the Utah

prairie dog varies from 1.2 to 8.2 ha (3 to 20 acres) and depends on habitat quality (NatureServe 2006).

The population size of the Utah prairie dog has varied considerably during historic times. In 1920, and prior to programs to control the Utah prairie dog, the total population was estimated at 95,000. Shooting and poisoning by ranchers, and likely periodic reductions from the plague, led to a decrease in population size, which was estimated at about 3,700 by 1984. By the spring of 1989, the adult population reached 9,200. The USFWS in its Report to Congress (as cited in NatureServe 2006) reported that this size was considered at risk of a population crash from a plague outbreak.

The Utah prairie dog was first listed as endangered in 1973. In 1984, it was reclassified as threatened by the USFWS and is currently the subject of a five-year status review to determine if listing the species as endangered is warranted. A recovery plan was prepared (USFWS 1991b) that described the current extent of existing populations and laid out management goals for continued survival of the species. A major goal was to improve the chances of long-term survival of the species in the following areas: West Desert in southern Beaver and Iron Counties, Paunsaugunt in western Garfield County, eastern Iron County and extreme northwestern Kane County, and the Awapa Plateau that extends from Sevier County southward through western Wayne and Piute Counties into northern Garfield County. The recovery plan also described plans to transplant Utah prairie dogs to unoccupied habitats and defined procedures to monitor transplants.

The 90-day finding on the petition to reclassify the Utah prairie dog from threatened to endangered (USFWS 2007a) acknowledged that impacts on Utah prairie dogs can occur as a result of many of the factors listed by the petitioners (e.g., loss of land conversion; livestock grazing; roads and OHV use; oil, gas, and mineral development; seismic exploration; and sylvatic plague). However, the USFWS determined that the petition did not identify or present substantial new information indicating that the level of threats to the species had changed significantly since its reclassification to threatened in 1984. The agency further stated that the current number of active colonies, and the number of Utah prairie dogs counted in 2005 (5,381) continues to be within the range of observed variation since 1976.

The Utah prairie dog occurs in Wayne and Garfield Counties in Utah. STSAs in these counties are in the northeastern and central portions of Garfield County and in southeastern portions of Wayne County. These areas are all east of known populations of the Utah prairie dog, on the basis of information presented in the recovery plan (USFWS 1991b).

3.7.4.1.24 Ute Ladies'-Tresses. The Ute ladies'-tresses is a perennial orchid. Flowering generally occurs from late July through August. Ute ladies'-tresses appears to have a very low reproductive rate. Individuals may require 10 years to reach reproductive maturity and thereafter do not flower every year. The percentage of flowering individuals in a population can range from 23 to 79% (Ward and Naumann 1998).

Ute ladies'-tresses typically occurs on sandy or loamy alluvial soils mixed with gravels in mesic to very wet meadows along streams and abandoned stream meanders, riparian edges, gravel bars, and near springs, seeps, and lakeshores, generally at elevations ranging from 1,300 to 2,000 m (4,265 to 6,561 ft) (USFWS 1992; NNHP 2001; UDWR 2002; NatureServe 2006). Threats to populations of Ute ladies'-tresses include modification of riparian habitats by urbanization, stream channelization and other hydrologic changes, conversion of lands to agriculture and development, heavy summer livestock grazing, and hay mowing. Most populations are small and vulnerable to extirpation by habitat changes or local catastrophic events (USFWS 1992). Many appear to be relict populations. Several historic populations in Utah and Colorado appear to have been extirpated.

The Ute ladies'-tresses is known to occur within Duchesne, Garfield, Uintah, and Wayne Counties, Utah, and could, therefore, occur within or in the vicinity of development areas located in the Uinta Basin and the Asphalt Ridge, Hill Creek, Pariette, P.R. Spring, and Raven Ridge STSAs.

3.7.4.1.25 Whooping Crane. The whooping crane could only occur as a rare migrant in the study area. It is considered extirpated from Wyoming and Utah, and populations west of the Rocky Mountains are considered experimental and nonessential (USFWS 1997c).

Whooping crane populations declined from about 1,400 in 1860 to a low of 16 individuals in 1941 (Whooping Crane Conservation Association 2006). Captive breeding, reintroductions, and habitat protection by participants in the Whooping Crane Recovery Program have enhanced the species chances of long-term survival. The number of whooping cranes has increased about 4% per year, with about 470 individuals in existence at the end of 2004 (Cornell Laboratory of Ornithology 2006), including 213 in the wild. An experiment to establish a second breeding population in Gray's Lake National Wildlife Refuge in southeastern Idaho was initiated in 1975. Whooping crane eggs were transferred to nests of sandhill cranes, which were intended to be used as foster parents that would raise the whooping cranes and lead them to the sandhill's wintering habitat at Bosque del Apache National Wildlife Refuge in south-central New Mexico. The experiment was unsuccessful because whooping cranes failed to bond with each other but instead paired with sandhill cranes. The program was discontinued in 1989 (Cornell Laboratory of Ornithology 2006).

Subsequent experiments to reintroduce whooping cranes involved the use of ultralight aircraft. In 1996, researchers successfully led imprinted sandhill cranes from their summer breeding habitat in southern Ontario to wintering grounds in Virginia. In 1997, sandhill cranes from Idaho that were imprinted on an ultralight aircraft and four whooping cranes flew to the Bosque del Apache National Wildlife Refuge. The whooping cranes survived the winter and returned on their own to Idaho the following spring (Whooping Crane Conservation Association 2006). During their spring and fall migrations, these whooping cranes and any offspring could pass over oil shale and STSA development areas of eastern Utah and western Colorado.

Grain fields, shallow lakes, and saltwater marshes compose the typical winter habitat. Grain fields, mud flats around reservoirs, and marshes are also important habitats during stopovers in the spring and fall migrations. Whooping cranes consume a variety of plants and animals, including mollusks, crustaceans, insects, fish, frogs, and waste grain in agricultural fields (Cornell Laboratory of Ornithology 2006).

Potential threats to the continued existence of the whooping crane are predation, collisions with power lines, and shooting by hunters who mistakenly identify them as sandhill cranes, which can be legally hunted in some states. A concerted effort is being made by the International Whooping Crane Recovery Team to establish new breeding populations.

Within potential development areas, and only in project areas in Colorado, the whooping crane could only occur as a rare migrant during the spring and fall migration periods. No breeding populations are known in the study area.

3.7.4.1.26 Winkler Cactus. The Winkler cactus is a small cactus that grows on fine-textured, mildly alkaline soils derived primarily from siltstones and shales of the Dakota Formation and also from the Brushy Basin Member of the Morrison Formation (BLM 2006h; UDWR 2006). It occurs on benches, hill tops, and gentle slopes (most commonly on south-facing slopes) on barren areas in salt desert shrub communities at elevations of 1,450 to 2,010 m (4,757 to 6,594 ft).

The Winkler cactus was listed as threatened on August 20, 1998 (161 FR 44587). The recovery plan for this species was published together with a related species, the San Rafael cactus (USFWS 1995b). In 1998, the USFWS estimated the total size of the Winkler cactus population at 20,000 individuals in four populations in Wayne and Emery Counties, Utah. Three of the four populations are distributed in an arc that extends from Notom in central Wayne County to the vicinity of Last Chance Creek in southwestern Emery County, Utah. The fourth population is located near Ferron, Utah, in western Emery County. Most populations occur on scattered sites along an area about 36 mi long and 0.3 mi wide. About two-thirds of the populations occur on BLM-administered land, and the remaining populations occur on Capitol Reef National Park. Its distribution range converges with that of the San Rafael cactus in Emery County (63 FR 44587).

Flowering of the Winkler cactus occurs from May to June; fruit formation occurs in June and July. Late winter and spring moisture conditions and temperature determine the actual time of flowering and fruit production in any given year.

Potential threats to the Winkler cactus include illegal collecting and loss of habitat or damage to individuals from trampling by hikers, mining activities, and oil and gas development (USFWS 1995b; BLM 2006h). Within the study area, the range of the Winkler cactus occurs about 10 km (6 mi) to the west of the San Rafael STSA in central Emery County. The population in Wayne County is located in the central portion of the county and about 70 km (43 mi) to the west of the Tar Sand Triangle STSA located in the southeastern part of the county (UDWR 2006),

3.7.4.1.27 Wright Fishhook Cactus. The Wright fishhook cactus occurs in portions of Emery, Sevier, and Wayne Counties, Utah (UDWR 2006). It is found growing on soils that range from clays to sandy silts to fine sands, typically on sites with well-developed biological soil crusts. This cactus grows in scattered pinyon-juniper and desert shrub plant communities at elevations ranging from 1,305 to 1,963 m (4,281 to 6,440 ft). The Wright fishhook cactus grows to heights of 6 to 12 cm (2 to 5 in.) and produces pink to white flowers in late April and May (BLM 2006h). Fruiting occurs in June and seed shed is in July.

Wright fishhook cactus was listed as endangered on October 11, 1979, and a recovery plan was published in 1985. The total population is estimated at fewer than 3,000 individuals on the basis of recent surveys (NatureServe 2006).

Potential threats to the Wright fishhook cactus include oil, coal, and gas exploration; OHV traffic; trampling of plants by livestock; road construction and maintenance; collection; and infestation by cactus-borer beet

The Wright fishhook cactus is known from Wayne County, southwestern Emery County and southeastern Sevier County in Utah (UDWR 2006). The species occurs within the vicinity of the San Rafael and Tar Sand Triangle STSAs.

## 3.7.4.2 Species That Are Candidates for Listing under The Endangered Species Act

Species that are candidates for listing as threatened or endangered under the ESA are presented in this section. Their occurrence within oil shale basins and STSAs is presented in Table 3.7.4-3.

3.7.4.2.1 Debeque Phacelia. The Debeque phacelia is a small summer annual that grows in only one area of western Colorado. Its distribution is within 10 mi of the town of DeBeque, south of South Shale Ridge and southwest of the Roan Plateau in Garfield County, Colorado (Center for Native Ecosystems 2006a). This species grows on sparsely vegetated, steep slopes in the mud cracks of chocolate brown or gray clay soil. No information was found on the time of flowering and seed set for this species.

Within its known range, there have been 27 occurrences of Debeque phacelia. Population size varies widely from year to year, most likely because of variation in precipitation between years. Its association with a very specific geologic substrate and habitat type make it unlikely for a range extension to occur (NatureServe 2006).

Potential threats to the Debeque phacelia include a variety of ground-disturbing activities, such as oil and gas drilling, oil shale development, and OHV use. Because it is an annual species, it depends on a healthy production of seeds in the top few centimeters of the soil to survive from year to year (Center for Native Ecosystems 2006a).

The Debeque phacelia occurs within the Piceance Basin in Garfield County, Colorado.

3.7.4.2.2 Parachute Beardtongue. The Parachute beardtongue is a perennial herbaceous mat-forming species that grows on steep, oil shale outcrop slopes of white shale talus at 8,000 to 9,000 ft in elevation on the southern escarpment of the Roan Plateau (USFWS 2006j) in Garfield County, Colorado. It is known from six locations that occupy a total of about 200 acres. The Parachute beardtongue is restricted to the Piceance Basin and is found only in the Parachute Creek Member of the Green River Formation.

There are only four populations considered viable by the Colorado Rare Plant Technical Committee, and three of these are on land owned by an energy company. The other population occurs on BLM land (USFWS 2006j). Potential threats to this species include ground-disturbing activities, such as oil shale development, recreational use, and natural gas development (Center for Native Ecosystems 2006c; NatureServe 2006). The Parachute beardtongue occurs in Garfield County, Colorado, in the southern portion of the Piceance Basin.

3.7.4.2.3 Western Yellow-Billed Cuckoo. The western yellow-billed cuckoo became a candidate for federal listing on July 25, 2001 (USFWS 2001). The listing of this species as endangered was determined to be warranted but was precluded by higher-priority listing actions. The yellow-billed cuckoo was historically widespread and locally common in portions of its range. but was generally uncommon to rare in the study area (USFWS 2000a, 2001).

The western yellow-billed cuckoo is a neotropical migrant bird. It depends on large blocks of intact riparian habitat for nesting, especially woodlands of cottonwoods and willows, with a dense understory of shrubs (USFWS 2001). It is mostly insectivorous, with cicadas, katydids, and caterpillars forming the bulk of its diet.

The western yellow-billed cuckoo has faced significant population declines because of loss or degradation of riparian habitat, increased use of pesticides, reduced food supply, and low colonization rates (Hughes 1999; USFWS 2001). Habitat degradation and loss have been attributed to conversion to agriculture, grazing, dams and river regulation, bank protection and channelization for flood control, and invasion by exotic plants such as tamarisk. Additional impacts identified in the project area include recreation and oil and gas drilling (Howe and Hanberg 2000).

Suitable yellow-billed cuckoo habitat (cottonwood forest) occurs along the major rivers of the area, including the Colorado, Green, and White Rivers. The species could occur within or in the vicinity of development areas located in the Green River, Piceance, Uinta, and Washakie Basins and the Asphalt Ridge STSA.

3.7.4.2.4 White River Beardtongue. The White River beardtongue is a perennial herbaceous plant that occurs in the Green River Formation in the Uinta Basin of northeastern Utah and Colorado. Existing populations occur in Duchesne and Uintah Counties in Utah and in Rio Blanco County, Colorado (UDWR 2006). It is found on semibarren areas on soils that are dry, shallow, and fine textured with fragmented shale. It can be found at elevations ranging from 1,500 to 2,040 m (4,921 to 6,693 ft) on dry substrates near the bottom of the Uinta Basin to

upper slopes and ridge crests. White River beardtongue typically grows in pinyon-juniper, desert shrub, and mixed desert shrub communities, and flowers in late May and early June (USFWS 2006g).

The species range is composed of small scattered populations extending from Raven Ridge near the White River in Rio Blanco County, Colorado, westward into southern Uintah County, Utah, in the area of Evacuation Creek over a distance of about 30 km (20 mi) (USFWS 2006g). Of the estimated population of 22,780 individual plants in Utah in 1995, about 16,600 occurred on BLM-administered land within the Vernal Field Office (USFWS 2006g). As of 1998, only two populations totaling about 50 plants were known from Colorado in the vicinity of Raven Ridge.

Potential threats to the species include ground-disturbing activities such as oil and gas development, oil shale mining, OHV use, and impacts from livestock grazing. Several interstate gas and oil pipelines exist in the vicinity of known populations (USFWS 2006g). With such a small range and the fragmented population structure over the 20-mi range of the species, any habitat destruction poses a threat to the White River beardtongue.

The White River beardtongue could occur in or in the vicinity of development areas in the Uinta Basin and the Asphalt Ridge, Hill Creek, Pariette, P.R. Spring, and Raven Ridge STSAs.

## 3.7.4.3 BLM-Designated Sensitive Species and State-Listed Species

The BLM and the states of Colorado, Utah, and Wyoming maintain lists of sensitive plant and animal species. Many of these species have restricted distributions within the states, limited population sizes, and specialized habitat requirements that make them particularly vulnerable to human or natural perturbations. Special status provides a measure of protection through consideration in planning processes and is intended, at least in part, to avoid the need for federal listing under the ESA. The BLM manages BLM-listed sensitive species and state-listed species as if they were candidates for federal listing under the ESA. The species and their habitats that could occur in potential development areas are presented in Table E-1 of Appendix E.

There are 78 BLM-listed sensitive species that occur in counties of potential development areas. Of these, 48 potentially occur in the Green River, 38 in the Washakie, 39 in the Piceance, and 29 in the Ulnta Basins; 43 potentially occur in STSAs (Table 3.7.4-2). Of these BLM-listed species, 42 are plants, 1 is an invertebrate, 6 are fish, 5 are amphibians, 2 are reptiles, 12 are birds, and 10 are mammals (Table 3.7.4-1). Forty-seven of the BLM-listed sensitive species are also listed by at least one of the states as species of special concern.

Within study area counties, 156 species are listed by 1 or more states. Many of these (115) are also federally listed under the ESA or are considered sensitive by the BLM. State-listed species not listed by either the USFWS or the BLM include 4 by Colorado, 21 by Utah, and 79 by Wyoming.

# 3.7.4.4 Other Species of Concern

In addition to the species discussed in Section 3.7.4.1, there are four species that potentially occur in oil shale and tar sands areas and for which the USFWS has developed conservation measures. These species are the bald eagle, Colorado River cutthroat trout, Graham beardtongue, and the sage-grouse. These species have either been recently removed from the list of threatened and endangered species list (bald eagle) or have recently undergone a formal status review by the USFWS, but listing was determined to be not warranted at this time (Colorado River cutthroat trout, Graham beardtongue, and the sage-grouse). The Colorado River cutthroat trout is discussed in Section 3.7.1 and 3.7.2, and the sage-grouse is discussed in Section 3.7.3.2.3. The bald eagle and Graham beardtongue are discussed in this section.

The southern bald eagle was federally listed as endangered on March 11, 1967 (USFWS 1967). In 1978, bald eagle populations in all but five of the coterminous United States were listed as endangered; in the remaining five states, bald eagles were listed as threatened. The listing status throughout the conterminous United States was changed to threatened on July 12, 1995, and the bald eagle was proposed for delisting on July 6, 1999 (USFWS 1999). The bald eagle was removed from the list of endangered and threatened wildlife on August 8, 2007 (USFWS 2007b). The current U.S. range of the bald eagle includes all of the 48 conterminous states, plus Alaska and the District of Columbia.

Bald eagles typically nest in areas free of human disturbance, especially in large trees near water and occasionally on cliffs. The nesting season is about 6 months long. Most bald eagles migrate long distances to wintering areas. Wintering sites, which may attract large numbers of bald eagles, are generally near open water and include large trees for perching and night roosting. In potential development areas, bald eagles are most commonly seen along the major rivers such as the Colorado, Green, and White Rivers; they could occur in all of the oil shale basins and STSAs. Fish are the primary food source, although waterfowl, other birds, prairie dogs, and carrion are also eaten.

The Graham beardtongue is a perennial herbaceous plant that occurs in small populations along a narrow band (approximately 80 mi long by 5 mi wide) from Raven Ridge, west of Rangely, in Rio Blanco County, Colorado, westward to a point where Carbon, Duchesne, and Uintah Counties meet in Utah's Uinta Basin (USFWS 2006d). Typical habitat consists of exposed raw shale knolls and slopes derived from the Parachute Creek and Evacuation Creek Members of the Green River Formation. Most populations occur on the surface of oil shale Mahogany ledge (71 FR 19158).

Graham beardtongue has 1 to 3 stems that arise from a taproot and grows to a height of 7 to 18 cm (3 to 7 in.). Plants have leathery leaves and large, light- to deep-colored tubular lavender flowers that develop in late May and early June. The UDWR (2006) describes Graham beardtongue sites occurring at elevations ranging from 1,430 to 2,600 m (4,692 to 8,530 ft) in pinyon-juniper and desert shrub plant communities. The Center for Native Ecosystems (2006b) reported in November 2003 that, of the 36 known sites of Graham beardtongue, one-fourth were composed of less than 10 plants.

The USFWS published a proposed rule to determine whether Graham beardtongue should be listed as threatened under the ESA (71 FR 3158) and to designate critical habitat for the species. The USFWS withdrew the proposed rule on December 19, 2006 (71 FR 76023), stating that listing is not warranted because threats to the species are not significant and are not likely to threaten or endanger the species in the foreseeable future.

Potential threats to this species include oil and gas exploration (both drilling and field development), tar sands and oil shale mining, OHV use, livestock and wildlife grazing, and overutilization for horticultural purposes. The Graham beardtongue could occur in the Uinta Basin and in the Hill Creek, Pariette, P.R. Spring, and Raven Ridge STSAs.

### 3.8 VISUAL RESOURCES

### 3.8.1 Introduction

Visual resources refer to all objects (man-made and natural, moving and stationary) and features (e.g., landsforms and water bodies) that are visible on a landscape. These resources add to or detract from the scenic quality of the landscape, that is, the visual appeal of the landscape.

The BLM's responsibility for managing visual (scenic) resources of public lands is established by law. NEPA requires that measures be taken to "assure for all Americans ... aesthetically pleasing surroundings," and FLPMA states that "public lands will be managed in a manner which will protect the quality of scenic values of these lands."

The BLM conducts visual inventories and analyses within the guidelines established in its Visual Resource Management (VRM) System (BLM 1984a; 1986a,b). The BLM uses the VRM procedures and methods to support decision making for planning activities and reviews of proposed developments on BLM-administered lands.

The VRM system consists of three phases: (1) inventory of scenic values and assignment of visual resource inventory (VRI) classes; (2) designation of BLM management classes for all public lands using the RMP process; and (3) use of the Visual Contrast Rating System (VCRS) to evaluate the compatibility of a proposed project with the existing VRM Class for the proposed project location, and to determine the nature and extent of visual impacts associated with the project. If the project is subsequently implemented, design considerations and impact mitigation measures may be used to minimize the visual impacts of the project.

A visual resource classification is based on the intrinsic scenic quality of a view, the level public concern (sensitivity) to changes in that view, and the distance between viewers and the view. The final result of the VRM process is the assignment of a VRM Class that provides the

<sup>13</sup> A visual impact is the creation of an intrusion or perceptible contrast that affects the scenic quality of a landscape. A visual impact can be perceived by an individual or group as either positive or negative, depending on a variety of factors or conditions (e.g., personal experience, time of day, and weather/seasonal conditions).

## BLM VRM System: Inventory of Scenic Values and Assignment of Management Classes

Scenie Quality Evaluation. BLM inventory guidelines rate the apparent scenic quality of discrete areas of land as A, B, or C on the basis of their landform, vegetation, water, color, adjacent scenery, scarcity, and cultural modifications (BLM 1986a). A-rated areas have outstanding or distinctive diversity or interest, B-rated areas have common or average diversity or interest, and C-rated areas have minimal diversity or interest.

Sensitivity Level Analysis. Sensitivity levels measure public concern for scenic quality. Areas are assigned a high, medium, or low sensitivity level by analyzing indicators of public concern: types of users, amount of use, public interest, adjacent land uses, special areas, and other factors that may be indicators of visual sensitivity. Special areas such as Wilderness Study Areas, Wild and Scenic Rivers, and Scenic Roads or Trails require special consideration for protection of their scenic quality.

Distance Zone Delineation. The visual impact of a particular project will become less perceptible with increasing distance between the viewer and the project. The BLM VRM system uses three distance zones to account for this effect. It looks at likely viewing locations such as nearby highways, rivers, scenic overlooks, or other locations from which most viewers would observe a particular site. The foreground-middleground zone includes areas at a distance of less than 3 to 5 mi from the viewer. Areas viewed beyond the foreground-middleground zone but usually less than 15 mi from the viewer are in the background zone. Areas hidden from view in the foreground-middleground zone or background zone are in the seldom-seen zone.

Visual Resource Inventory Classification. Through an overlay analysis, areas are assigned to one of four visual resource inventory classes based on the scenic quality, visual sensitivity, and distance zones. Inventory classes are informational in nature and provide the basis for considering visual values in the RMP process.

Visual Resource Management Classification. Visual resource management classes are assigned through the RMP process by considering the visual resource inventory and management goals for the area. Areas are assigned to one of four management classes; the management objectives are as follows:

- Class I Objective: Preserve the existing character of the landscape. The level of change should be very low and must not attract attention.
- Class II Objective: Retain the existing character of the landscape. Allow a low level of change that should not attract the attention of a casual observer.
- Class III Objective: Partially retain the existing character of the landscape. Allow a
  moderate level of change that may attract attention without dominating the view of a
  casual observer.
- Class IV Objective: Provide for management activities that require major
  modifications of the existing character of the landscape. The level of change may be
  high and may dominate the view and be the major focus of viewer attention.

basis for the consideration of visual resources in the BLM's resource management planning process. The text box that follows describes the BLM's VRM system for inventorying scenic values and assigning management classes. Designation of VRM classes is done through the RMP process and takes into account both the scenic qualities and potential uses of an area. Changes to VRM classes are also accomplished through the RMP process and may result from changes in scenic values over time, or as a result of land use decisions.

When a project is proposed, potential visual impacts are evaluated relative to an RMP's visual management objectives for the affected area with the use of the VCRS. The VCRS is a systematic process to analyze potential visual impacts of proposed projects and activities (BLM 1986b). Contrast rating assesses the visual contrast between a project and the existing landscape. Contrast is assessed by comparing project features (explained in a detailed project description) with the major features of the existing landscape (contained in the VRM classes/objectives) in terms of the basic design elements of form, line, color, and texture. Comparisons are made on the basis of views from key observation points, critical viewpoints, typical views of representative landscapes, and views of special features. Combining the assessment of a proposed project's impact on an area's visual resources with the VRM objectives from the RMP may result in project modifications and/or the development of mitigation measures. Visual contrasts inconsistent with the VRM class objectives for the affected area are prohibited.

#### 3.8.2 Oil Shale Areas

#### 3.8.2.1 Piceance Basin

The oil shale area in Colorado, commonly referred to as the Piceance Basin, is largely contained within the Roan Plateau (see Figure 1.2-1). The Roan Plateau is composed of two major landform types: the extensive, deeply dissected, cliff-bench complexes and steep cliff formations of the Roan and Book Cliffs on the southern end of the plateau, and the grass-, shrub-, and woodland-covered benches and mesas of the Piceance Creek watershed to the north (Chapman et al. 2006) (Figure 3.8.2-1). Elevations range from approximately 5,200 ft above mean sea level (MSL) along the Colorado River to nearly 9,300 ft above MSL atop the plateau. The top of the plateau slopes generally northward and is dissected by tributaries of Parachute Creek and Piceance Creek. The eastern, southern, and western edges of the plateau are defined by steep slopes and prominent cliffs, known as the Roan Cliffs; the Book Cliffs extend farther westward along the south face of the Plateau into Utah (BLM 2004c).

The Roan and Book Cliffs are major scarp slopes that rise dramatically (3,000 to 4,000 ft) from the Colorado River valley to the forested plateau rim. Vegetation found on the escarpments and benches includes Douglas fir forest at higher elevations, to grassland or shrubland on lower, drier sites. Pinyon-juniper woodland often dominates escarpments and benches that are covered by shallow soils (Chapman et al. 2006).

The Roan and Book Cliffs are highly sensitive visual resources. The Roan Cliffs are visible from the communities of Parachute, Battlement Mesa, Rifle, Silt, and New Castle and to travelers on I-70 and State Highway 13. The massive forms of the steep cliffs dominate views from the valley floor and the I-70 corridor, providing dramatic color contrasts to the heavily vegetated upper slopes. Human-caused visual impacts are minimal, but some road cuts are visible on the face of the Roan Cliffs, Public sensitivity to alterations in these landscapes is high (BLM 1983b; 2004c), and most of the area is managed as VRM Class II. The faces of the Book Cliffs, the Roan Creek Area, and the I-70 corridor have also been identified as high-value scenic



FIGURE 3.8.2-1 Landscape in the Piceance Basin

areas (BLM 1985c), as have NOSR 1 and 3, and the East Fork Parachute Creek Canyon, a regionally significant visual resource (BLM 2004c). Some segments of tributaries of Parachute Creek are eligible for WSR status because of their outstandingly remarkable scenic value (BLM 1994b). The Dinosaur Diamond National Scenic Byway (also known as the Dinosaur Diamond Prehistoric Highway) passes within approximately 7 mi of the western boundary of the oil shale area.

The northern portion of the plateau is characterized by broad, grass-, shrub-, and woodland-covered benches and mesas, with areas of high relief alternating with areas of low relief. On floodplains and terraces, some irrigated cropland occurs. Oil and natural gas wells are also present (Chapman et al. 2006). Scenic values are lower than for the Roan and Book Cliffs areas on the southern edge of the Roan Plateau. Many of the public lands in the area are managed as VRM Class III (BLM 1994b).

#### 3.8.2.2 Uinta Basin

The oil shale area within the Uinta Basin is located in the Uinta Basin Floor ecoregion, an arid, saucer-shaped synclinal basin. The area contains mountain-fed streams, alluvial terraces, outwash terraces, floodplains, hills, and ridges. Mesas and benches alternate with lower, more

arable land (Chapman et al. 2006). The area is dissected by several rivers, including the Green River, the White River, and their tributaries. Vegetation consists primarily of desert shrubs and grasses, but cottonwood and introduced Russian olive trees may be found in riparian areas.

Visual impacts from existing human activities in the area are abundant. They include impacts associated with intensive energy development in the area's major oil and gas fields, mining, irrigated agriculture, and grazing. Impacts associated with energy development include oil and gas wells, pipelines, pump and meter stations, roads (mostly unpaved), landing strips, and transmission lines. Streams are often diverted for irrigation, both for crops (such as alfalfa, small grain, and corn) on arable, gently sloping terraces and valley floors, and for pasture on stonier soils. Nonirrigated areas are used for livestock grazing (Chapman et al. 2006). OHV use has also resulted in significant visual impacts north of the White River (BLM 2005f) (Figure 3.8.2-2).

Within the Uinta Basin oil shale area, the highest scenic quality is found in the Bitter Creek Drainage and along portions of the White and Green River corridors (Bartel 2002). The Winter Ridge WSA, at the southern end of the oil shale area, is currently managed as VRM Class I. Areas managed as VRM Class II are Nine Mile Canyon (at the far western edge of the oil shale area), the White River Corridor, and the Upper Green River. The proximity of intense exploration and development near areas of high scenic quality and the increasing number of people seeking recreation are creating resource use conflicts, particularly in the White River corridor (BLM 2005f). The remainder of the oil shale area is managed as either VRM Class III or VRM Class IV. The Lower Green River has been found to be suitable for WSR designation



FIGURE 3.8.2-2 Landscape in the Uinta Basin

(in part for outstandingly remarkable scenic values), and portions of the White River are proposed for WSR designation (in part for outstandingly remarkable scenic values), under some alternatives in the Vernal Field Office Draft RMP (BLM 2005e). The Dinosaur Diamond National Scenic Byway passes within approximately 5 mi of the northeastern boundary of the oil shale area.

#### 3.8.2.3 Green River Basin

The Green River Basin oil shale area includes the Green River Basin and lands to the east of it, including the Jack Morrow Hills, and it extends about 30 mi east of the eastern edge of the Jack Morrow Hills. Except for the extreme southern portion of the oil shale area (south of the Green River Basin), the area consists primarily of rolling sagebrush steppe, hills and low mountains, dunes, and playas, with shrub and grass vegetation. The landscape is varied and characterized by highly erodible soils and multicolored, horizontally layered sedimentary bedrock. Colorful badlands landscapes are common. Riparian vegetation is found along perennial streams, intermittent surface water locations, and rivers; sparser vegetation is located on side slopes and hillsides; and alkaline vegetation is found in some areas (BLM 2004e).

At the edges of the basin, elevations are higher, and some pinyon-juniper is found. The far southern portion of the oil shale area includes the northern slopes of the Uinta Mountains, characterized by mountain slopes with steep canyons, ponderosa and lodgepole pine, Douglas fir, and aspen woodlands. The Green River, its tributaries, and other permanent and intermittent streams drain the basin, generally southward (Chapman et al. 2006). Flaming Gorge Reservoir is a large water body in an area of deep canyons.

Although much of the Green River Basin oil shale area is relatively flat, featureless plains or rolling hills, there are several areas of high visual sensitivity. The Green River has been identified as an important scenic resource (BLM 2003). Many National Historic and Scenic Trails pass through the Green River Basin, including the Oregon Trail (and several cutoffs), the Overland Trail, the Mormon Pioneer Trail, the Northern and Southern Cherokee Trails, the Pony Express Trail, and the California Trail. The Devil's Playground/Twin Butte WSA is located within the southern portion of the Green River Basin oil shale area. ACECs within or partially within the Green River Basin oil shale area include the Currant Creek portion and Sage Creek portion of the Red Creek Badlands ACEC, Special Status Plant Species ACEC, and the Pine Springs ACEC. VRM Class II lands within the basin include areas within 2 to 3 mi of the Green River, Hams Fork, and the Flaming Gorge Reservoir; smaller areas along selected perennial streams (Smith and Blacks Forks); an area south of Meadow Springs Wash; and the area surrounding the Red Creek Badlands WSA. The Flaming Gorge Uintas National Scenic Byway passes within approximately 6 mi of the southern boundary of the oil shale area.

East of the Green River Basin, the Jack Morrow Hills area contains a variety of unusual landforms and several historical sites and roads, as well as landscapes of significance to Native Americans (BLM 2004d). The oil shale area includes portions of the Greater Sand Dunes ACEC and the Buffalo Hump WSA.

Cultural modifications within the basin include oil and gas production (such as well facilities, pipelines, roads, and power distribution lines), mining (including soda ash and coal), and livestock grazing operations and associated structures (such as fences and water developments) (BLM 2004e), as well as a number of small towns.

#### 3.8.2.4 Washakie Basin

The Washakie Basin is an area of rolling sagebrush steppe, essentially a plain with hills, dunes, and playas, and with shrub and grass vegetation (BLM 2004e; Chapman et al. 2006). At the edges of the basin, elevations are higher, and some pinyon-juniper is found. A few, mostly intermittent, streams drain the basin.

The Washakie Basin is an area of active energy development, including oil and gas, coalbed methane, and other products. Visual disturbances associated with these types of activities, including roads, wells, pipelines, compressor stations, and meter stations, are found in the basin.

VRM classes in the basin are generally Class III and IV in the eastern portion (BLM 1990), but with Class I assigned to the Adobe Town WSA, and Class II assigned to the proposed Monument Valley ACEC (BLM 1997c). A small area of VRM Class II designation is found approximately 12 mi west of the Monument Valley ACEC. Just north of the oil shale area, the historic Overland Trail runs generally east-west through the northern portion of the Washakie Basin, and a BLM backcountry byway, Ft. Lacede Loop, is located in the northern portion of the basin. The Southern Route of the Cherokee Trail passes east to west through the basin, near the Colorado state line.

## 3.8.3 Special Tar Sand Areas

## 3.8.3.1 Argyle Canyon STSA

The Argyle Canyon STSA has a variety of landforms, including ridges, benches, and steep canyons. The area is dissected by numerous intermittent streams and a few perennial streams, and it has rugged, high-relief terrain, with local relief ranging from about 660 to 1,300 ft (USGS 1980b).

Scenic quality in the Argyle Canyon STSA varies, but is generally high, because of the variety of both landform and vegetation, which ranges from Douglas fir and Aspen at higher elevations to big sagebrush—grass communities and riparian areas along Argyle Creek (BLM 1984b). Most of the STSA is managed as VRM Class III.

Argyle Canyon is an area of the STSA of particular concern for visual values. Argyle Creek is eligible for WSR status because of its outstandingly remarkable scenic value (BLM 2005a). Much of the BLM portion of the STSA is bordered by a USFS roadless area to the

north that includes small portions of the STSA. The Dinosaur Diamond National Scenic Byway passes through the eastern portion of the Argyle Canyon STSA. The Energy Loop: Huntington/Eccles Canyons National Scenic Byway passes within approximately 7 mi of the western boundary of the STSA.

## 3.8.3.2 Asphalt Ridge STSA

The three areas that compose the Asphalt Ridge STSA vary in scenic quality. The largest area closest to Vernal (Asphalt Ridge) is a cuesta or asymmetrical ridge, with mostly gently sloping topography. Vegetation consists primarily of pinyon-juniper and mixed shrubs.

The Asphalt Ridge portion of the STSA is generally of low scenic quality (BLM 1984b). It is in close proximity to the towns of Masser, Vernal, and Naples, with urbanized areas that contain numerous visual intrusions visible from portions of the ridge. Cultural modifications that have existing visual impacts in the STSA include roads (e.g., State Highway 40), power lines, and industrial facilities. Some crops and pastureland are found in the far eastern portions of the STSA. The Asphalt Ridge portion of the STSA is proposed for VRM Class IV under all alternatives considered in the Vernal Draft EIS and RMP (BLM 2005e). The Dinosaur Diamond National Scenic Byway (State Highway 40) passes through the Asphalt Ridge portion of the STSA.

The two western portions of the STSA (north-northeast of Whiterocks) are areas of generally higher scenic quality than the Asphalt Ridge portion (BLM 1984b). These portions compose a dissected plain. The part closest to the Asphalt Ridge portion (primarily on the Uintah and Ouray Reservation) is proposed for VRM Class III under some alternatives considered in the Vernal Draft EIS and RMP (BLM 2005e). The westernmost portion of the STSA (on the Ashley National Forest) is an area of high scenic quality and sensitivity, with stone outcrops and riparian views along the White Rocks River, which provide pleasing visual contrasts with the predominant gray-green pinyon-juniper and shrub vegetation (BLM 1984b). Both areas abut USFS roadless areas on their northern and/or eastern boundaries.

## 3.8.3.3 Hill Creek STSA

The Hill Creek STSA is a well dissected, deeply incised, rugged upland. The entire area is a north-sloping cuesta in which the plateau surface slopes toward the north. The landform is generally rolling desert topography with deeply incised canyons and rocky buttes. Vegetation is generally sparse at lower elevations and more dense at higher elevations. Two north-flowing perennial streams drain the central and eastern portions of the STSA (USGS 1980c).

The scenic quality in the Hill Creek STSA is moderate; the STSA is managed as VRM Class III and Class IV. The STSA is visible from Big Pack Mountain to the north (BLM 1984b), and the Winter Ridge WSA (managed as VRM Class I) is less than 0.5 km (0.3 mi) from the eastern border of the Hill Creek STSA. Cultural modifications include roads, trails, and landing strips.

## 3.8.3.4 Pariette STSA

The Pariette STSA is a gently sloping dissected plain that includes low mesas and buttes, ranging up to about 300 ft maximum local relief, with relief generally less than 100 ft. The area is drained predominantly eastward by Pariette Draw and Castle Peak Draw.

Scenic quality in the Pariette STSA is low; the landscape is visually homogenous, with cold desert shrubs and flat to rolling landform with occasional low hills and ridges, which are common in the region (BLM 1984b). Cultural modifications with existing visual impacts in the STSA include roads and trails, a pipeline and meter station, and some croplands along the northern border of the STSA. Gas processing plants are located along the southern border of the STSA, with an electrical substation nearby. The Pariette STSA is proposed for VRM Class IV under all alternatives considered in the Vernal Draft EIS and RMP (BLM 2005e). The Pariette Wetlands ACEC overlaps portions of the STSA. The Dinosaur Diamond National Scenic Byway passes within approximately 2 mi northwest of the extreme western boundary of the STSA.

## 3.8.3.5 P.R. Spring STSA

The P.R. Spring STSA is located on the East Tavaputs Plateau to the immediate east of the Hill Creek STSA. The southern edge of the P.R. Spring STSA borders the Book Cliffs–Roan Plateau divide. Like the Hill Creek STSA, the plateau surface slopes northward. The area is drained by perennial streams that run generally north and northwest (USGS 1980d). The terrain consists of long ridges running generally northwest to southeast, separated by canyons 820 to 1,475 ft deep. Vegetation consists primarily of mountain shrub and pinyon-juniper, with stands of Douglas fir and other conifers on east- and north-facing slopes (BLM 1984b).

The scenic quality of the STSA is generally low; most of it is managed as VRM Class IV. High-quality panoramic views of the Book Cliffs and other distant landforms, however, are available from the top of the Roan Cliffs along the southeastern boundary of the STSA (BLM 1984b). Cultural modifications include oil and gas development and associated structures, roads, trails, and landings strips. Much of the Winter Ridge WSA (managed as VRM Class I) is located within the western portion of the P.R. Spring STSA, and the far southern part of the STSA overlaps a small portion of the Flume Canyon WSA.

# 3.8.3.6 Raven Ridge STSA

The Raven Ridge STSA consists primarily of two parallel hogback ridges (Raven Ridge and Squaw Ridge) running northwest to southeast. The ridge extends beyond the Colorado state line to the southeast. The southwestern portion of the STSA is a slightly dissected plain. The ridge is drained by intermittent washes (USGS 1980a).

The scenic quality for this STSA is generally low; vegetation is cold desert shrubs, and the landform (rolling hills with sparse vegetation, except for the ridge itself) is relatively common in the region. Cultural modifications with existing visual impacts in the STSA include

roads and trails, power lines, pipelines, and a natural gas facility. The Raven Ridge STSA is proposed for VRM Class IV under all alternatives considered in the Vernal Draft EIS and RMP (BLM 2005e). Portions of the STSA are visible from Dinosaur National Monument (BLM 1984b), the closest portion of which is located approximately 7 mi north of the northernmost portion of the STSA. The Dinosaur Diamond National Scenic Byway passes within approximately 1/8 mi of the northeastern boundary of the STSA. Raven Ridge is an area of high OHV use, with resultant visual impacts (BLM 2005e).

#### 3.8.3.7 San Rafael Swell STSA

The San Rafael Swell STSA is located within the San Rafael Swell, a northeast-to-southwest trending dome approximately 70 mil long by 50 mil wide. An open, gently domed area (Sinbad Country) about 40 mil long and 10 mil wide occupies the central part of the swell and contains most of the STSA. Sinbad Country is bordered on the east and southeast by the spectacular sandstone hogbacks of the San Rafael Reef. I-70 passes through the middle of the Swell and the STSA. The southwest and west sides of Sinbad Country are well dissected, and they feature many "castles," irregular mesas, and benches, as much as 700 ft above the general level of the swell. The land surface south of I-70 is not deeply dissected and is primarily gently rolling plain with isolated buttes and knolls. North of I-70, the relief is greater, with deeply dissected canyons and escarpments carved by the San Rafael River and its tributaries. Relief is greatest near the San Rafael River, where it is up to 1,700 ft (USGS 1980e).

The vegetation of the San Rafael Swell includes pinyon-juniper and Douglas fir near water sources. Cottonwood trees are found in areas along the perennial streams. Greasewood, sagebrush, and rabbitbrush are found along washes, and sparse grass and prickly pear are common (Williams 2002).

The San Rafael Swell area offers outstanding scenic quality and is one of the region's most well-known and popular scenic attractions. Within the San Rafael Swell, features such as the Wedge Overlook (Figure 3.8.3-1), San Rafael Reef, Mexican Mountain, Temple Mountain, and Buckhorn Draw attract high levels of recreation visitation, as does the 1-70 corridor. The 1-70 Scenic Corridor ACEC is managed to maintain the scenic qualities of the San Rafael Swell, where the interstate bisects the area. Old uranium mines, dirt roads, livestock improvements, and simple recreation facilities are evident in some locations, as are petroglyphs, pictographs, and some historic structures (BLM 2001b). Other scenic attractions include riparian areas along the San Rafael River and Muddy Creek. The Dinosaur Diamond National Scenic Byway passes within approximately 6.5 mi of the northeastern boundary of the STSA.

The STSA overlaps several ACECs, including four (the I-70 Scenic Corridor ACEC, San Rafael Canyon ACEC, San Rafael Reef ACEC, and Sid's Mountain ACEC) designated for scenic value. Significant portions of some STSA parcels not only cross the I-70 Scenic Corridor ACEC but overlap or are immediately adjacent to six WSAs, which are primarily designated as VRI Class II but are managed as VRM Class I in accordance with the 1991 San Rafael RMP. Major portions of the STSA are visible from the I-70 Scenic Corridor (BLM 1984b). Portions of STSA parcels outside the WSAs are mostly designated VRI Class III and IV and are managed as



FIGURE 3.8.3-1 View from Wedge Overlook, San Rafael Swell near Castledale, Utah

VRM Class III and IV, with some smaller VRI and VRM Class II areas. The Muddy Creek and Segers Hole ACECs are located approximately 2 and 10 mi south of the southwestern boundary of the STSA, respectively; both ACECs contain outstandingly remarkable scenic values.

## 3.8.3.8 Sunnyside STSA

The Sunnyside STSA is characterized by numerous rugged, mountainous forested areas and canyons, perennial streams, and mountaintop vistas. Bands of red rock cliffs are ubiquitous throughout and extend along most of the ridges. Many ridges extend downward off the plateaus, creating a sequence and layering of ridges that add much visual variety and spatial definition to the project area. Cliffs are often broken up and of varying heights. Vegetation consists of pinyon-juniper clumps, junipers, and firs, intermixed with sagebrush and grasses on the upper ridges and plateaus; sagebrush, rabbitbrush, greasewood, and grasses with groupings of aspens, cottonwoods, willows, tamarisks, and associated riparian species dominate the canyon floors (BLM 2004f).

The STSA and surrounding areas have very high scenic quality and have been described as offering "outstanding visual values" (BLM 1984b). The STSA lands are managed as VRM Class II and Class III, reflecting the high scenic values and sensitivity of the landscape to modification; portions of the STSA are visible from U.S. Highway 6, and to residents of Wellington, Price, and other local communities.

Nine Mile Canyon and the Nine Mile Canyon ACEC, an area of the STSA of particular concern for visual values, are managed as VRM Class II (BLM 2005e). The ACEC designation recognizes the scenic values of the canyon area. Nine Mile Canyon contains dramatic topography of high canyon walls, with steep side canyons, and with isolated buttes, mesas, and outcrops. A lush riparian zone of willow and cottonwood is found on the canyon bottom. Water features include the stream and beaver ponds. Farms and ranches provide a rural appearance to an otherwise natural-looking landscape. Other cultural modifications include roads, trails, and pipelline. The canyon walls contain numerous petroglyphs and other cultural resource sites visible from the county road that follows the canyon bottom. Within Nine Mile Canyon is the greatest concentration of rock art sites in the United States. The Nine Mile Canyon Scenic Byway, a State Scenic Byway and a BLM Backcountry Byway, follows the length of Nine Mile Canyon (BLM 2004a). Nine Mile Creek has been determined to be eligible for WSR designation, in part because of its outstandingly remarkable scenic value (BLM 2005a; BLM 2004b).

The far western portion of the Sunnyside STSA overlaps the Lears Canyon ACEC. The far eastern portion of the main Sunnyside STSA parcel includes small portions of the Jack Canyon and Desolation Canyon WSAs. A small STSA parcel is located entirely within the two WSAs. Part of the BLM portion of the STSA is bordered by a USFS roadless area to the north.

# 3.8.3.9 Tar Sand Triangle STSA

The Tar Sand Triangle STSA is located in an area characterized by flat-topped mesas and steep-walled canyons. Elevation ranges from 4,800 to nearly 7,000 ft. The margins have stairstep topography, with mesas and buttes beyond the cliffs. The area is remote and very rugged, with relief up to 3,700 ft. Vegetation is sparse, with some desert shrubs and grasses, as well as scattered pinyon-juniper (BLM 1984b).

The high-quality scenic and recreational resources in and around the STSA are nationally significant (BLM 1984b). A significant portion of the STSA is in Glen Canyon NRA, and small portions are in Canyonlands National Park. More than half of the remainder of the STSA overlays the Fiddler Butte and French Spring—Happy Canyon WSAs. Scenic attractions in the STSA and the surrounding area constitute a major attraction for recreational users. Scenic attractions include unique landforms resulting from erosion, with flat-topped mesas, buttes, rugged cliffs, and canyons and slickrock formations. Mesas throughout the STSA offer views of the surrounding canyons and mountain ranges, such as the dramatic colorful landforms of the Maze portion of Canyonlands National Park and Glen Canyon NRA, the varied landforms of the deeply incised canyons of the Colorado and Dirty Devil Rivers, and Lake Powell. Panoramic views of the Colorado River canyons from the Orange Cliffs on the eastern edge of the STSA are particularly noteworthy, as is the staircase of terraces and vertical cliffs from the mesa tops to the bottom of Happy Canyon. Detached, sculptured buttes, monuments, and minarets are also found within the STSA (BLM 1984b).

Much of the BLM-managed public land in the STSA has been inventoried as VRI Class III or Class IV, except Happy Canyon and French Spring, which are VRI Class II. Smaller areas inventoried as VRI Class II are located south of Happy Canyon. In this case, the VRI classes correspond roughly to the designated VRM classes shown in the Henry Mountains MFP (BLM 1982).

## 3.8.3.10 White Canyon STSA

Much of the White Canyon STSA is a mesa incised by White Canyon (Figure 3.9.3-2). The southern portion of the STSA has bench and slope topography. Around the tar sands deposits, the ground slopes to the west, with elevations ranging from approximately 6,100 ft on the northeast end of the STSA to about 4,800 ft on the southwestern end. White Canyon is about 6 mi wide where it bisects the STSA, but much of the STSA is in Short Canyon (a side canyon of White Canyon) (BLM 1984b). Vegetation is sparse; a mixture of desert shrubs on the benches and scattered cottonwood riparian communities in the canyons.

The scenic value of the STSA is high. The STSA contains highly scenic canyon landforms, eroded through colorful sandstone layers that contrast pleasingly with the shrub and pinyon-juniper vegetation. The southern portion of the STSA is crossed by the Bicentennial Scenic Byway (a segment of Highway U-95, designated as a Utah State Scenic Byway) in the Scenic Highway Corridor ACEC. This ACEC includes a portion of the White Canyon viewshed (BLM 1984b). White Canyon is managed as VRM Class II (BLM 1987b). A portion of the Dark Canyon WSA is adjacent to the northwest boundary of the White Canyon STSA. At its closest point, Glen Canyon NRA is approximately 2 mi from the STSA.

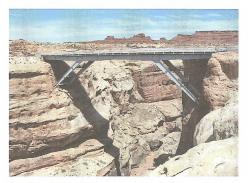



FIGURE 3.8.3-2 White Canyon Bridge on State Route 95, San Juan County, Utah

## 3.9 CULTURAL RESOURCES

Cultural resources include archaeological sites and historic structures and features that are addressed under the NHPA, as amended (P.L. 89-665). Cultural resources also include traditional cultural properties, that is, properties that are important to a community's practices and beliefs and that are necessary for maintaining the community's cultural identity. Cultural resources refer to both man-made and natural physical features associated with human activity and, in most cases, are finite, unique, fragile, and nonrenewable. Cultural resources that meet the eligibility criteria for listing on the National Register of Historic Places (NRHP) are historic properties (see text box). Federal agencies must take into consideration the effects on such properties of any undertakings under their direct or indirect jurisdiction before they approve expenditures or issue licenses.

Cultural resources on BLM-administered land are managed primarily through the application of the laws identified in Appendix D. As required by Section 106 of the NHPA, BLM offices work with land use applicants to inventory and evaluate cultural

## National Register Criteria for Evaluation (36 CFR 60.4)<sup>a</sup>

The quality of significance in American history, architecture, archeology, engineering, and culture is present in districts, sites, buildings, structures, and objects that possess integrity of location, design, setting, materials, workmanship, feeling, and association, and

- that are associated with events that have made a significant contribution to the broad patterns of our history; or
- B. that are associated with the lives of persons significant in our past; or
- C. that embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or
- that have yielded or may be likely to yield, information important in prehistory or history.

a Additional criteria considerations are also provided in 36 CFR 60.4.

resources in areas that may be affected by proposed development. The BLM has established a cultural resource management program as identified in its 8100 Series manuals and handbooks (see Section D.2 in Appendix D). The goal of the program is to locate, evaluate, manage, and protect cultural resources on public lands. (See Section 3.1, Land Use, for a description of designated ACECs, some of which are designated specifically to protect cultural resources.) Guidance on how to apply the NRHP criteria to evaluate the eligibility of sites located on public lands is provided in numerous documents prepared by the NPS and in the BLM 8100 Series manuals and handbooks. Further guidance on the application of cultural resource laws and regulations is provided through the 1997 BLM National Programmatic Agreement (PA) and State Protocols developed among the BLM, the National Council of SHPOs, and the Advisory Council on Historic Preservation, and through state-specific PAs concerning cultural resources.

Although site-specific information regarding cultural resources would need to be collected to define the affected environment of an individual project, the types of sites listed on the NRHP in the broad project area for this PEIS include archaeological sites, historic buildings, bridges, historic trails, prehistoric dwellings, historic districts, water features (e.g., canals and ditches), and cultural landscapes. (See also Section 3.8 for a brief discussion of National Historic and Scenic Trails and other conservation areas established under the NLCS with a visual or

scenic component.) A Class I cultural resource overview describing, in general, the types of resources known to be present in the oil shale and tar sands study area has been prepared in support of this PEIS and is summarized below for each of the oil shale basins and STSAs (O'Rourke et al. 2007).

Traditional cultural properties and other areas of concern to Native Americans and other cultural groups can include a wide range of tangible and intangible resources (e.g., archaeological sites, funerary objects, medicinal plants, and sacred landscapes). Government-to-government consultation provides a means of identifying the affected environment for a particular site-specific project. It is difficult, if not impossible, to place boundaries on locations of traditional significance. Where boundaries might be defined, Tribal members may not be willing to disclose such information for a variety of reasons. Cultural sensitivity to the need to protect important places is required. Types of valued traditional resources may include, but are not limited to, archaeological sites, burial sites, traditional harvest areas, trails, certain prominent geological features that may have spiritual significance (i.e., sacred landscapes), and viewsheds of sacred locations (including all of the above). An ethnographic overview also has been prepared to describe, in general, the lifeways and traditional property types of Native Americans who either currently live or previously lived in the region covered by this PEIS (Bengston 2007); this information is also summarized in Sections 3.9.1.3, 3.9.2.3, 3.9.3.3, and 3.9.4.3.

#### 3.9.1 Piceance Basin

# 3.9.1.1 Prehistoric Context for Archaeological Sites, Features, and Structures

There is archaeological and ethnographic evidence to suggest that the Piceance Basin was inhabited and visited on a regular basis by human populations for more than 12,000 years. Abundant native faunal and floral resources were available to early human populations as part of a seasonal round of subsistence. Permanent seasonal water sources within the area attracted numerous animal species, including mule deer.

The cultural history for northwestern Colorado is divided chronologically into four major time periods, or eras, as defined by Reed and Metcalf (1999). These eras include the Paleoindian era (11,450 to 6,400 B.C), the Archaic era (6,400 to 400 B.C.), the Formative era (400 B.C. to A.D. 1300), and the Protohistoric era (A.D. 1300 to 1880). Each time period yields distinctive sets of artifacts and archaeological features. Large lanceolate points used for hunting bison and other big game are characteristic artifacts of Paleoindian Period sites and are usually found as isolated artifacts or in association with later period sites. The Archaic era represents a shift in diet and settlement patterns from a highly mobile hunting lifestyle to a greater reliance on gathering wild plant foods and hunting smaller game.

During the Formative era, there was a shift from the seasonal hunter-gatherer subsistence strategy toward that of early farming practices. However, hunting and gathering continued to play a major role in the economy, and use of the bow and arrow was introduced during this

period. In northwestern Colorado, the Formative era is represented by two distinct traditions, the Fremont and Aspen. The development of horticulture is unique to the Fremont. The main crop was corn, with some evidence of beans and squash. The Fremont is also associated with the introduction of pottery and the appearance of unique rock art and modeled clay figurines. The Fremont sites in the Piceance Basin and vicinity would most closely relate to a Plains-influenced variant of the Fremont known as the Uinta Fremont. Important characteristics of the Uinta variant include the presence of shallow pit-houses and freestanding structures, and the complete absence of Fremont clay figurines. Fremont sites include rock art sites, open and sheltered artifact scatters, and architectural sites. According to Reed and Metcalf (1999), no confirmed Fremont pit-houses have been found in the project area. Contemporaneous with the Fremont culture, the Aspen Tradition is assigned to nonhorticultural groups residing in the region during the Formative era; the sites are similar with the two exceptions of no evidence of farming and no Fremont-style pottery. It is not expected that the prehistoric populations practiced horticulture in the Piceance Basin per se, because of the relatively short growing season and inadequate soil conditions. However, horticultural sites are found very near to the basin to the west and northwest.

The Protohistoric era is defined by what appears to be a gradual ending to the Fremont horticultural lifeways and the adoption of a more mobile, hunter-gatherer life style similar to that of the earlier Archaic era. The cause of this shift is unknown, but it is speculated that either an outside group migrated in replacing or mixing with the Fremont and Aspen groups, or the Fremont chose to abandon horticulture. Most structures found at Protohistoric sites are wikiups, or brush structures. In the later portion of the Protohistoric era (after 1650), the horse is introduced and tipi rings appear in the archaeological record replacing the traditional wikiup structures. The Protohistoric hunter-gather groups were ancestral Ute, who resided in the vicinity until their removal to reservations in the 1880s.

## 3.9.1.2 Historic Context for Archaeological Sites, Features, and Structures

The historic context for northwestern Colorado is presented in the Class I Cultural Resource Overview (O'Rourke et al. 2007) and is summarized briefly here. Historic period sites in this region broadly follow some general themes, notably early exploration and fur trade, ranching and settlement, and mining. Exploration of this region of Colorado began with two Spanish missionaries (Franciscan friars Dominguez and Escalante) in 1776 looking for a new route from New Mexico to California missions that avoided resistance from Hopi Indians in Arizona. They found no new route, and the area was not visited again until the 1820s when the fur trade began to flourish in the region. In addition to the use of the area by trappers, a number of explorers surveyed the area, but their descriptions of northwestern Colorado are limited to references to its being dry and useless. However, the discovery of gold in the Denver area in 1859 brought many prospectors to Colorado. A subsequent survey of the northwestern region a decade later indicated that while the area could not support agriculture without large-scale irrigation, it could support ranching. This in effect opened up the area to ranching, an economic practice that continues today. As more and more ranches and small settlements were being established, pressures with the existing bands of Ute Indians began to escalate as traditional Ute

hunting territory was being encroached upon. Several treaties were established between 1849 and 1868 and culminated in the placement of the Ute bands into reservations.

Large-scale open range cattle ranching was at its peak in the region between 1880 and the early 1900s. Sheep herding was also getting a start as a local industry. "Sheep wars" broke out between 1890 and 1920 as the sheep started to encroach on cattle country. This prompted a reorganization of grazing rights in Colorado and the introduction of land allotments in 1934 through the establishment of the Taylor Grazing Service to control land use. These events essentially ended open range cattle grazing and significantly slowed down the process of additional homesteading in this area. It also eventually resulted in the formation of the BLM, which controls grazing rights through the issuance of permits to this day.

Coal and oil were known to be present in the region as early as 1870 and 1890, respectively. Most of the coal mining was conducted east and south of the Piceance Basin. It was not until World War II that the demand for oil sparked sufficient interest to get the industry underway in this region. In addition to the oil, oil shale deposits present in the Piceance Basin, particularly in the Mahogany Zone, were getting attention from industry, as different companies experimented with various recovery techniques. By 1920, DeBeque, Colorado, was known as the shale oil capitol of the United States. However, no economical technique was discovered to recover the oil from the shale, and the industry experienced a series of ups and downs as experimentation continued. In the late 1970s and early 1980s, there was a surge in interest, but this too was short-lived and resulted in some serious economic issues for the region.

## 3.9.1.3 Ethnohistoric Context and Traditional Cultural Properties

Ute oral tradition indicates an extensive presence of Ute people in Colorado and Utah and partially in New Mexico. Although they organized and identified themselves according to band membership, this membership appears to have been fairly fluid and interchangeable. Approximately nine different Ute bands are thought to have inhabited the three-state study area (Bengston 2007). The area was likely used by all of the Ute bands at one time or another for hunting, gathering, trading, or socializing. Seasonal migrations of Ute families involved traveling to deserts and valleys in the winter and up into the mountains in summer to meet their subsistence needs. The Ute families relied heavily on meat, particularly from big game, and the gathering of a wide variety of plant foods for subsistence. Families would gather at certain times of the year for communal hunting, ceremonial dances, or other social activities. The introduction of the horse prompted more distant traveling to hunt buffalo.

The Ute bands today are organized into four separate tribal entities, primarily located on three reservations. The Ute Indian Tribe lives on the Uintah and Ouray Reservation in eastern Utah. The Southern Ute Tribe lives on the Southern Ute Reservation and the Ute Mountain Ute Tribe lives on the Ute Mountain Ute Indian Reservation, both in western Colorado. The White Mesa Band of the Ute Mountain Ute Tribe is a semiautonomous entity that is part of the Ute Mountain Ute Tribe. The Ute Indian Tribe and the Ute Mountain Ute Tribe have expressed some interest in this PEIS, and consultation between the BLM and the Ute is ongoing at this time.

Traditional cultural properties are not indicated in the site data files of the Colorado SHPO. Although some archaeological sites recorded in the database may be considered traditional cultural properties by the Tribes, a traditional cultural property may not contain cultural materials at all. The presence of traditional cultural properties may be based more on specific geographic locations or visual features than attributable to specific archaeological features present on or buried under the ground surface. These places could include religious sites associated with oral tradition and oral stories; traditional gathering areas; offering areas. including altars and shrines; vision quest and other individual use sites; group ceremonial sites. such as sweat lodges and ceremonial dance grounds; ancestral habitation sites; petroglyphs and pictographs; individual burials and massacre sites; observatories and calendar sites; and other geographic features. Identification of these places occurs through government-to-government consultation with the contacted Native American Tribes and a careful and thorough ethnographic and ethnohistoric assessment. Other than the ethnohistoric overview conducted in support of this PEIS, no previous ethnographic overviews have been completed for this region in Colorado, and no specific properties have been identified (Bengston 2007). Further consultation with the Tribes may be needed.

## 3.9.1.4 Surveys and Sites in the Study Area

In the most geologically prospective oil shale area of the Piceance Basin project area, a total of 1,280 different survey blocks or linear segments underwent archaeological investigation, according to the Colorado SHPO database. These investigations are predominantly Class III intensive field surveys. These investigations are documented in 479 individual survey reports. Spatial analyses of the GIS data revealed that approximately 93,700 acres in the Piceance Basin have been subjected to some level of survey.

The total number of recorded sites within the geologically prospective oil shale areas of the Piceance Basin, on the basis of GIS data provided by the Colorado SHPO in 2006, is 1,161. The number of sites that correspond to each site type is shown in Table 3,9.1-1; not all sites have been categorized as a particular site type in the database, and the totals of prehistoric and historic site types do not add up to the total number of sites. Duplicates are also inherent in this data since many sites have both prehistoric and historic components; therefore, a site total is not meaningful and is not presented in the

TABLE 3.9.1-1 Site Types of Known Archaeological Sites in the Piceance Basin, Colorado

| Site Type                                     | Number<br>of Sites |
|-----------------------------------------------|--------------------|
| Historic; Aspen art                           | 5                  |
| Historic; Architecture                        | 35                 |
| Historic; Graffitti                           | 1                  |
| Historic; Isolated feature                    | 4                  |
| Historic; Isolated find                       | 28                 |
| Historic; Road or trail                       | 13                 |
| Total historic sites and isolated finds       | 86                 |
| Isolated feature                              | 15                 |
| Isolated find                                 | 501                |
| Open architecture                             | 35                 |
| Open camp                                     | 165                |
| Open lithic                                   | 257                |
| Rock art                                      | 2                  |
| Shelter camp                                  | 11                 |
| Stone quarry                                  | 1                  |
| Total prehistoric sites and isolated features | 987                |

table. For future project-specific analyses, the data for sites in a specific project area can be collected from data in the site forms on file at the Colorado SHPO. In addition, the numbers of sites that have been attributed eligibility status and entered into the database are presented in Table 3.9,1-2.

Cultural resource sensitivity maps for each of the oil shale basins were developed on the basis of the relationships of known prehistoric sites and soil families (O'Rourke et al. 2007). High-sensitivity areas correspond to lower elevations in the central and northern portions of the Piceance Basin. Areas in the higher elevations in the southern third of the basin are considered areas of

TABLE 3.9.1-2 Eligibility Status of Known Archaeological Sites in the Piceance Basin, Colorado

| Eligibility Status       | Number<br>of Sites |
|--------------------------|--------------------|
| Eligible                 | 51                 |
| Not eligible             | 822                |
| Eligibility undetermined | 145                |
| Data not available       | 143                |
| Total number of sites    | 1,161              |

moderate site frequency, and areas that contained fewer sites than expected if site distribution were random correspond to the middle elevation ridges and valleys.

## 3.9.2 Uinta Basin

## 3.9.2.1 Prehistoric Context for Archaeological Sites, Features, and Structures

The cultural history of prehistoric populations in the Uinta Basin includes four major time periods: the Paleoindian Period (10,000 to 6,000 B.C), the Archaic Period (6,000 B.C. to A.D. 500), the Formative Period (A.D. 500 to 1300), and the Protohistoric Period (also known as the Shoshonean or Numic Era) (A.D. 1300 to 1850). Each time period yields distinctive sets of artifacts and archaeological features. Large lanceolate points used for hunting big game, such as bison and mammoth, are characteristic artifacts of Paleoindian Period sites and are usually found as isolated artifacts or in association with later period sites. The Archaic era represents a shift in diet and settlement patterns from a highly mobile hunting lifestyle to a greater reliance on gathering wild plant foods and hunting smaller game. The discussion in Section 3.9.1.1 regarding the Formative Period in Colorado also generally applies. This period is when horticulture comes into practice, as well as widespread pottery use. Modeled clay figurines, rock art, and basketry are also part of the archaeological record. The lifestyle during this period is more sedentary, and semisubterranean pit-houses are being constructed. The Uintah Fremont, also discussed in Section 3.9.1.1, is a local variant of the Fremont tradition during this period that is also present in the Uinta Basin. The Protohistoric Period refers to the period when European influence and artifacts first make an impact on native populations, including the introduction of the horse. In the Uinta Basin, as in the Piceance Basin, the populations revert to a more Archaic hunting and gathering lifestyle and cease to continue agricultural practices. Very little is known about this period in the Uinta Basin. The prehistoric context is described in greater detail in the Class I Cultural Resource Overview (O'Rourke et al. 2007) prepared in support of this PEIS.

## 3.9.2.2 Historic Context for Archaeological Sites, Features, and Structures

The historic context for the Uinta Basin is presented in the Class I Cultural Resource Overview (O'Rourke et al. 2007) and is summarized briefly here. Historic period sites in this region broadly follow the themes of early exploration and fur trade; ranching and settlement; and mining. The early history of the Uinta Basin is essentially the same as that for northwestern Colorado, regarding early Spanish exploration and the establishment of the fur trade (Section 3.9,1.2). Sites relating to these activities are relatively rare, but at least one early trading post (Fort Davy Crockett) has been located and excavated archaeologically in the area. However, unlike other parts of the west, but similar to northwestern Colorado, fur trade did not lead to settlement; it mostly led to further exploration and mapping in search of possible railroad routes through the area. The first Euroamerican settlement of the region coincides with the establishment of the Uintah and Ouray Reservation. A few small cattle ranches were established in the area, but these tended to stay close to the foothills of the Uinta Mountains in the northern portion of the basin. Also, during the latter part of the nineteenth century, Mormons began settling along the Green River. Irrigation was a necessity to the survival of any farming practices in this arid region, resulting in the construction of a network of canals and reservoirs. Sheep raising also grew to be an important industry in the early part of the twentieth century. The mining of gilsonite and oil shale, as well as oil and gas production, are the other historic industries of note within the Uinta Basin. Evidence of these practices and the roads, pipelines, and rail lines that support them are scattered throughout the area. Several gilsonite-related mining towns are now ghost towns.

## 3.9.2.3 Ethnohistoric Context and Traditional Cultural Properties

The ethnohistoric context presented in Section 3.9.1.3 is also applicable for the Uinta Basin. The Ute Indian Tribe has expressed some interest in development of oil shale and tar sands resources on reservation lands within the Hill Creek Extension of the Uintah and Ouray Reservation. Consultations between the Ute Indian Tribe and the BLM are ongoing.

Traditional cultural properties are not indicated as such in the site data files of the Utah SHPO; however, in some cases the possible cultural affiliation of a site is presented as part of the prehistoric-historic site categorization. Although some archaeological sites recorded in the database may be considered traditional cultural properties by the Tribes, a traditional cultural property may not contain cultural materials at all. The presence of traditional cultural properties may be based more on specific geographic locations or visual features than attributable to specific archaeological features present on or buried under the ground surface. These places could include religious sites associated with oral tradition and oral stories; traditional gathering areas; offering areas, including altars and shrines; vision quest and other individual use sites; group ceremonial sites, such as sweat and ceremonial adnace grounds; ancestral habitation sites; petroglyphs and pictographs; individual burials and massacre sites; observatories and calendar sites; and other geographic features. Identification of these places occurs through government-to-government consultation with the contacted Native American Tribes and a careful and thorough ethnographic and ethnohistoric assessment. Several previous ethnographic overviews have been

completed for this region in Utah (Bengston 2007). Further consultation with the Tribes may be needed

## 3.9.2.4 Surveys and Sites in the Study Area

In the most geologically prospective oil shale area of the Uinta Basin project area, a total of 11,201 different survey blocks, linear segments, and point locations underwent archaeological investigation, according to the Utah SHPO database. These investigations are predominantly Class III intensive field surveys. These investigations are documented in 2,826 individual survey reports. Spatial analyses of the GIS data reveal that approximately 158,800 acres in the Uinta Basin have been subject to some survey. These acreage numbers underestimate the amount of land surveyed because they do not account for a number of linear and point surveys that have been conducted in the region; linear surveys of approximately 2,750 mi have also been conducted in the Uinta Basin.

The total number of recorded sites within the geologically prospective oil shale areas of the Uinta Basin based on GIS data provided by the Utah SHPO in 2006 is 1,087. These sites are identified as having prehistoric and/or historic components tied to a particular period or group affiliation, unlike site data from Colorado and Wyoming, which are classified by site type or function. Details regarding prehistoric and protohistoric affiliation are not presented here. Duplicates are inherent in this data as many sites have both prehistoric and historic components; therefore, a site total is not meaningful and is not presented in Table 3.9.2-1. In addition, the numbers of sites that have been attributed eligibility status are presented in Table 3.9.2-2. There are many sites for which no data regarding site type or eligibility have been entered into the system.

Cultural resource sensitivity maps for each of the oil shale basins were developed on the basis of relationships of known prehistoric sites and soil families (O'Rourke et al. 2007). High-sensitivity areas correspond to the valley of the White River and uplands in the northeastern third of the Uinta Basin. Areas in the higher elevations of the East Tavaputs Plateau south of the

TABLE 3.9.2-1 Site Types of Known Archaeological Sites in the Uinta Basin, Utah

| Site Type                | Number of<br>Sites | Site Type         | Number of<br>Sites |
|--------------------------|--------------------|-------------------|--------------------|
| Prehistoric              |                    | Historic          |                    |
| Archaic                  | 35                 | Basque            | 1                  |
| Fremont                  | 27                 | European/American | 339                |
| Late Prehistoric         | 8                  | Mexican           | 1                  |
| Paleoindian              | 3                  | Unknown           | 32                 |
| Protohistoric            | 46                 |                   |                    |
| Unknown                  | 408                |                   |                    |
| No information available | 7                  |                   |                    |

White River and west of Two Water Creek are considered areas of moderate sensitivity. Areas that contained fewer sites than expected if site distribution were random correspond to bottomland soils on the floodplains of the Green River and White River and high-elevation areas along the southwestern edge of the basin.

#### 3.9.3 Green River and Washakie Basins

# 3.9.3.1 Prehistoric Context for Archaeological Sites, Features, and Structures

TABLE 3.9.2-2 Eligibility Status of Known Archaeological Sites in the Uinta Basin, Utah

| Eligibility Status       | Number<br>of Sites |
|--------------------------|--------------------|
| Eligible                 | 266                |
| Not eligible             | 606                |
| Eligibility undetermined | 59                 |
| Data not available       | 156                |
| Total number of sites    | 1,087              |

The cultural history of prehistoric populations in southwestern Wyoming includes four major time periods: the Paleoindian Period (10,000 to 6,500 B.C), the Archaic Period (6,500 B.C) to A.D. 0), the Late Prehistoric Period (A.D. 0 to 1500), and the Protohistoric Period (A.D. 1500) to 1800). Each time period yields distinctive sets of artifacts and archaeological features. Large lanceolate points used for hunting megafauna, such as bison and mammoth, are characteristic artifacts of Paleoindian Period sites and are usually found as isolated artifacts or in association with later period sites. Smaller dart points and early house-pits are characteristic of the subsequent and long-lived Archaic Period. The two main technological advances that mark the Late Prehistoric Period are the bow and arrow and the introduction of pottery, indicative of growing populations and a more sedentary (less mobile) lifestyle. The Protohistoric Period refers to the period when European influence and artifacts first made an impact on native populations, including the introduction of the horse. The prehistoric context is described in greater detail in the Class I Cultural Resource Overview (O'Rourke et al. 2007) prepared in support of this PLIS.

## 3.9.3.2 Historic Context for Archaeological Sites, Features, and Structures

The historic context for southwestern Wyoming is presented in the Class I Cultural Resource Overview (O'Rourke et al. 2007) and is summarized briefly here. Significant historic period sites in southwestern Wyoming broadly follow some general themes, notably fur trade; settlement and transportation; ranching; and oil and coal mining. The area was heavily used by early fur trappers, and sites relating to this activity are relatively rare (e.g., early trading posts, annual meeting, or rendezvous, locations; and individual trappers' camps). However, the trails the trappers and Native American populations used were noted, and this information was passed along to others to subsequently form the main trails for westward expansion and migration.

The trail systems and the emigrant sites associated with these trails are a very important component of the history of this region. The Oregon Trail and its various cutoffs and deviations cut across a large portion of the Green River Basin; many of these trail segments have been determined significant historic properties. Portions of this trail system also coincide with other key events (establishment of Pony Express, California Gold Rush, and Mormon settlement of Utah) that result in numerous historic sites associated with these events (e.g., camps, stage

stations, rock inscriptions, and wagon ruts). Similarly, the Overland, or Cherokee, Trail cuts across both the Washakie and Green River Basins. The first transcontinental railroad (Union Pacific) cuts across southern Wyoming following the Overland Trail route, as does the Lincoln Highway, the first road constructed for automobile use in the state. Associated with these developments are tent towns, stage stations, wagon roads, and various small related sites identifiable by a scattering of historic artifacts.

Ranching was also a significant industry in southwestern Wyoming, especially once the railroad was established and livestock could be shipped. From the main east-west rail line, ranches spread north and south, up and down the Green River and its tributaries. Cattle raising provided the single greatest impetus to settlement away from the main line of the Union Pacific and continues to be economically significant to the state. Sheep raising was also an important factor in the settlement and economic development of Wyoming. Sheep ranching rendered semiarid land economically productive and served to broaden the economic base that led to the growth and development of regional towns. Conflicts between cattle and sheep ranchers in the 1890s eventually were diminished as the open range was fenced, and later, as federal agencies regulated the use of public range lands. Numerous homesteads and ranches have been recognized as historic sites in the Green River Basin. Several irrigation ditches have been identified as potential historic engineering structures.

Sites related to the history of mining coal deposits and exploiting oil seeps are also important to the history of the region. Many of the early development sites coincide with the development of the emigrant trails. When the Overland Trail was laid out, some stage stations along the route appear to have been sited near coal outcrops specifically so that fuel would have been available for the blacksmith shops and for general heating purposes. Later, the Union Pacific rail line was routed near these readily accessible coal seams, since the fuel was needed to power the locomotives. Outlying prospecting pits, old mine shafts, and abandoned camps are some of the physical reminders of historic early mining operations in the area.

## 3.9.3.3 Ethnohistoric Context and Traditional Cultural Properties

Eastern Shoshone territory covered most of present-day western Wyoming and possibly northeastern Utah. An even larger range of land was used for hunting buffalo. The Eastern Shoshone generally wintered along the Green River (Bengston 2007). The Eastern Shoshones tended to form larger, highly militaristic groups or bands (Shimkin 1986). This was likely because of their greater dependence on the buffalo and the more frequent occurrence of warfare with the other Plains tribes. However, membership in the various bands was fluid and changeable as with other Shoshone bands (Bengston 2007; Shimkin 1947, 1986).

The lifeways of the Shoshone bands varied according to environment and whether they had horses. The bands that depended on horse and buffalo hunting, like their Plains counterparts, generally lived in Plains-style tepees. Their subsistence lifeways depended more on hunting and fishing than on plant gathering. The Shoshone bands that had horses relied on buffalo; those bands living near major rivers subsisted primarily on salmon and other fish. The Eastern

Shoshone depended mostly on faunal resources supplemented with berries, roots, and seeds (Bengston 2007).

The predominant territory of the Utes is in southeastern Colorado; however by the mid-1600s they had acquired horses and had migrated into northern Colorado and Utah and possibly southwestern Wyoming according to Ute oral tradition. The Utes also moved eastward into the Great Plains and adopted a plains lifestyle of buffalo hunting and living in tepees. Northern Arapaho also may have made use of lands in the study area, but there is less documented evidence of this. The Northern Arapaho territory expanded into eastern and northern Wyoming and Kanasa from eastern North Dakota and Minnesota after the Arapahos began using horses in the early 1700s. The Arapahos specialized in big game hunting and supplemented their diet with roots, berries, fruits, nuts, and tubers (Bengston 2007).

The Eastern Shoshone and Northern Arapaho have expressed an interest in this PEIS, and consultations between the BLM and these tribes are ongoing at this time (see Table 7.2-1).

Traditional cultural properties are not indicated in the site data files of the Wyoming SHPO Cultural Records Office (WYCRO). Although some archaeological sites recorded in the WYCRO database may be considered traditional cultural properties by the Tribes, such as some of the burials, cairns, rock alignments, and rock art sites, many traditional cultural properties may not contain archaeological materials that would indicate an archaeological site. The presence of traditional cultural properties may be based more on specific geographic locations or visual features than attributable to specific archaeological features present on or buried under the ground surface. These places could include religious sites associated with oral tradition and oral stories; traditional gathering areas; offering areas, including altars and shrines; vision quest and other individual use sites; group ceremonial sites, such as sweat lodges and ceremonial dance grounds; ancestral habitation sites; petroglyphs and pictographs; individual burials and massacre sites; observatories and calendar sites; and other geographic features. Identification of these places occurs through government-to-government consultation with the contacted Native American Tribes and a careful and thorough ethnographic and ethnohistoric assessment. Other than the ethnohistoric overview conducted in support of this PEIS, no previous ethnographic overviews have been completed for this region in Wyoming, nor have specific properties been identified (Bengston 2007). Further consultation with the Tribes may be needed.

#### 3.9.3.4 Surveys and Sites in the Study Area

Past archaeological investigations in the most geologically prospective oil shale area of the Green River Basin project area total 4,315, according to the WYCRO database. In the Washakie Basin, 535 different survey blocks or linear segments underwent archaeological investigation (predominantly Class II sampling and Class III intensive field surveys). These investigations are documented in 2,270 and 96 individual survey reports, respectively, for the two basins. Spatial analyses of the GIS data reveal that approximately 120,990 acres in the Green River Basin and approximately 21,270 acres in the Washakie Basin have been subject to some survey. These acreage numbers underestimate the amount of land surveyed because they do not account for a number of linear surveys that have been conducted in the region

The total number of recorded sites within the geologically prospective oil shale areas of the Green River and Washakie Basins based on GIS data provided by the Wyoming SHPO in 2006 is 13,598. This total includes 12,369 sites in the Green River Basin and 1,228 sites in the Washakie Basin. These numbers from the WYCRO database contain duplicate entries if the sites were evaluated more than once or the site is located within multiple township and range sections, on the actual number is smaller. In an attempt to remove duplicate entries, the estimate for known sites in the Green River Basin is 6,522, and approximately 944 sites are located in the Washakie Basin. A variety of different site types are represented. The number of sites that correspond to each site type are shown in Table 3.9.3-1. In addition, the numbers of sites that have been attributed eligibility status are presented in Table 3.9.3-2.

TABLE 3.9.3-1 Site Types of Known Archaeological Sites in the Green River and Washakie Basins, Wyoming

| Site Type                | Number of Sites<br>in Green River<br>Basin | Number of Sites<br>in Washakie<br>Basin | Total Numbe<br>of Sites in<br>Wyoming<br>Project Area |  |
|--------------------------|--------------------------------------------|-----------------------------------------|-------------------------------------------------------|--|
| Historic                 |                                            |                                         |                                                       |  |
| Exploration              | 1                                          | 0                                       | 1                                                     |  |
| General                  | 323                                        | 44                                      | 367                                                   |  |
| Irrigation               | 13                                         | 0                                       | 13                                                    |  |
| Mining                   | 4                                          | 1                                       | 5                                                     |  |
| Ranching                 | 107                                        | 22                                      | 129                                                   |  |
| Transportation           | 821                                        | 59                                      | 880                                                   |  |
| Urban                    | 9                                          | 0                                       | 9                                                     |  |
| Prehistoric              |                                            |                                         |                                                       |  |
| Activity area            | 67                                         | 12                                      | 79                                                    |  |
| Habitation               | 2,893                                      | 190                                     | 3,083                                                 |  |
| Lithic                   | 1,923                                      | 485                                     | 2,408                                                 |  |
| Open camp                | 229                                        | 93                                      | 322                                                   |  |
| Special <sup>a</sup>     | 69                                         | 13                                      | 82                                                    |  |
| Unspecified/other        | 27                                         | 9                                       | 36                                                    |  |
| Additional Site Types    |                                            |                                         |                                                       |  |
| Historic Native American | 3                                          | 0                                       | 3                                                     |  |
| Human remains            | 4                                          | 0                                       | 4                                                     |  |
| Miscellaneous            | 4                                          | 0                                       | 4                                                     |  |
| Multicomponent sites     | 12                                         | 16                                      | 28                                                    |  |
| Unknown/no information   | 13                                         | 0                                       | 13                                                    |  |
| Total number of sites    | 6,522                                      | 944                                     | 7,466                                                 |  |

<sup>&</sup>lt;sup>a</sup> The category "Special" includes rock alignments, cairns, stone circles, medicine wheels, rock art, rockshelters, buffalo and antelope kill sites, and ceremonial sites.

TABLE 3.9.3-2 Eligibility Status of Known Archaeological Sites in the Green River and Washakie Basins, Wyoming

| Eligibility Status       | Number of Sites<br>in Green River<br>Basin | Number of Sites<br>in Washakie<br>Basin | Total Number<br>of Sites in<br>Wyoming<br>Project Area |
|--------------------------|--------------------------------------------|-----------------------------------------|--------------------------------------------------------|
| Eligible                 | 1,795                                      | 339                                     | 2,134                                                  |
| Not eligible             | 3,212                                      | 319                                     | 3,531                                                  |
| Eligibility undetermined | 1,140                                      | 221                                     | 1,361                                                  |
| Data not available       | 375                                        | 65                                      | 440                                                    |
| Total number of sites    | 6,522                                      | 944                                     | 7,466                                                  |

Cultural resource sensitivity maps for each of the oil shale basins were developed on the basis of relationships of known prehistoric sites and soil families (O'Rourke et al. 2007). High-sensitivity areas in the Green River Basin correspond to soils of the dissected plains and open or somewhat broken terrain where sand dunes are present. High-sensitivity areas in the Washakie Basin correspond to soils in low elevations. No moderate areas were identified in either the Green River Basin or Washakie Basin. Low site densities occur in the most highly elevated terrain in the Green River Basin and the elevated ridge and dissected plateau in the central portion of the Washakie Basin.

## 3.9.4 Special Tar Sand Areas in East-Central and Southeastern Utah

Most of the STSAs are located within or adjacent to the geologically prospective area for oil shale development in the Uinta Basin. For these areas, the prehistoric and historic context presented in Sections 3.9.2.1 and 3.9.2.2, respectively, are applicable. The following is a summary of the contexts for those STSAs that are located farther south in central and southern Utah. Much of the discussion presented here is summarized from a highly relevant previous archaeological study conducted for a tar sands project in the 1980s (Tipps 1988). The prehistoric and historic context is described in greater detail in the Class I Cultural Resource Overview (O'Rourke et al. 2007) prepared in support of this PEIS.

## 3.9.4.1 Prehistoric Context for Archaeological Sites, Features, and Structures

The cultural history of prehistoric populations in central and southern Utah includes four major time periods: the Paleoindian Period (10,000 to 6,000 B.C), the Archaic Period (6,000 B.C. to A.D. 500), the Late Prehistoric Period (A.D. 500 to 1300), and the Protohistoric Period (also known as the Shoshonean or Numic Era) (A.D. 1300 to 1850). Each time period yields distinctive sets of artifacts and archaeological features. Large lanceolate points used for hunting big game, such as bison and mammoth, are characteristic artifacts of Paleoindian Period

sites, and are usually found as isolated artifacts or in association with later period sites. Isolated Paleoindian points have been recorded in the vicinity of the southern STSAs. The Archaic era represents a shift in diet and settlement patterns from a highly mobile hunting lifestyle to a greater reliance on gathering wild plant foods and hunting smaller game. Several rockshelters and caves in the region have been excavated and have greatly added to the regional understanding of the Archaic Period in terms of artifact typologies and chronologies.

The Late Prehistoric Period is when horticulture comes into practice, as well as widespread pottery use and use of the bow and arrow. Modeled clay figurines, rock art, and basketry are also part of the archaeological record. The lifestyle during this period is more sedentary, and storage and living structures (both pit dwellings and masonry structures) are being constructed. There is a great deal of archaeological debate concerning the various cultural traditions that have been proposed and surrounding the presence of both Fremont and Anasazi characteristics at many sites, so this description may be overly simplified. The San Rafael Fremont is a local variant of the Fremont cultural tradition found in Central Utah dating to this period; this tradition is distinct from the Uintah Fremont variant present in northeastern Utah and northwestern Colorado. The primary distinctions are the presence of stone-lined pit dwellings and adobe masonry structures and the pottery type; caves and overhangs were also used for storage and habitation. The Sunnyside and San Rafael Swell STSAs are located within the area considered to be associated with the San Rafael Fremont. Another cultural tradition of the Late Prehistoric Period that is present in the region is the Anasazi tradition linked to the Pueblo groups. This very complicated archaeological tradition with its many subperiods is used widely to describe the cultural chronology of the greater Southwest region of the United States. The Virgin, Mesa Verde, and Kayenta Anasazi are local variants of the Anasazi cultural tradition present in the southern portion of the state. The Circle Cliffs area is in a transition zone between the San Rafael Fremont and Virgin and Kayenta Anasazi cultures. The area of White Canyon and Tar Sand Triangle is most closely linked with the Kayenta and Mesa Verde Anasazi, although Fremont rock art is also common in the area. Anasazi presence does not appear to be continuous during the Late Prehistoric Period in the vicinity of these southern STSAs. The Protohistoric Period refers to the period when European influence and artifacts first make an impact on native populations, including the introduction of the horse. The inhabitants of the region are primarily Numic-speaking groups ancestral to the Ute and Pajute, although there is some evidence of Navajo presence near the White Canyon area.

## 3.9.4.2 Historic Context for Archaeological Sites, Features, and Structures

Historic period sites in this region broadly follow the themes of early exploration and fur trade, ranching and settlement, and mining. Early exploration in the region was primarily by the Spanish, followed by Euroamerican trappers and traders. Prior to Euroamerican settlement, the Old Spanish Trail was the main route through the region used by trappers, traders, Indians, and slave traders (people who peddled captured Paiute women and children). Early settlement of the area was initiated by the arrival of the Mormons in Utah. Much of the early settlement focused on cattle and sheep raising. Concurrently with Mormon settlement, government exploration in search of possible routes for a transcontinental railroad and mail delivery was also conducted throughout the region. The area became the backdrop for the Black Hawk War where southern

settlements were raided by Utes, Paiutes, and Navajos. In addition, the area was known for cattle rustling and thievery in the late nineteenth century. Butch Cassidy and the Wild Bunch are known to have hidden away in this region, and several of their presumed escape routes follow old cattle and Indian trails. By the turn of the century, there was a shift in the economy from farming and ranching in Central Utah to coal mining coincident with the availability of the Denver and Rio Grande Western rail line. Oil was also drilled near the Green River. To the south, gold, silver, and copper mining became popular for a short time, followed by the mining of radioactive ore (e.g., uranium and radium). Near White Canyon, there was a mill constructed to process uranium ore from one of the richest uranium mines on the Colorado Plateau. A small settlement was established at the mouth of White Canyon, near the mill, to support the mining activities. In the twentieth century, large tracts of public lands were set aside for reclamation projects and recreational areas, including the construction of dams and reservoirs and the establishment of several National Monuments and National Parks.

#### 3.9.4.3 Ethnohistoric Context and Traditional Cultural Properties

The ethnohistoric context presented in Section 3.9.1.3 is also applicable for several of the STSAs within or adjacent to the Uinta Basin. The Ute Indian Tribe has expressed some interest in development of oil shale and tar sands resources on reservation lands within the Hill Creek Extension of the Uintah and Ouray Reservation. Consultations between the Ute Indian Tribe and the BLM are ongoing. More southerly STSAs are located in areas of possible interest to Paiute, Navajo, and Puebloan Tribes. See Table 7.2-1 for the level of interest expressed by the various Tribes during government-to-government consultations.

Traditional cultural properties are not indicated as such in the site data files of the Utah SHPO; however, in some cases the possible cultural affiliation of a site is presented as part of the prehistoric or historic site categorization. Although some archaeological sites recorded in the database may be considered traditional cultural properties by the Tribes, a traditional cultural property may not contain cultural materials at all. The presence of traditional cultural properties may be based more on specific geographic locations or visual features than attributable to specific archaeological features present on or buried under the ground surface. These places could include religious sites associated with oral tradition and oral stories; traditional gathering areas; offering areas, including altars and shrines; vision quest and other individual use sites; group ceremonial sites, such as sweat lodges, and ceremonial dance grounds; ancestral habitation sites; petroglyphs and pictographs; individual burials and massacre sites; observatories and calendar sites; and other geographic features. Identification of these places occurs through government-to-government consultation with the contacted Native American Tribes and a careful and thorough ethnographic and ethnohistoric assessment. Several previous ethnographic overviews have been completed for this region in Utah (Bengston 2007). Further consultation with the Tribes may be needed.

## 3.9.4.4 Surveys and Sites in the Study Area

Within the 11 STSAs, a total of 2,602 different survey blocks, linear segments, and point locations underwent archaeological investigation, according to the Utah SHPO database. These investigations are predominantly Class III intensive field surveys. These investigations are documented in 533 individual survey reports. Spatial analyses of the GIS data reveal that more than 34,500 acres within the STSAs have been subject to some survey. These acreage numbers underestimate the amount of land surveyed because they do not account for a number of linear and point surveys that have been conducted in the region; linear surveys of more than 430 mi has also been conducted within the 11 STSAs.

The total number of recorded sites within the 11 STSAs based on GIS data provided by the Utah SHPO in 2006 is 679 sites. These sites are identified as having prehistoric and/or historic components tied to a particular period or group affiliation. Details regarding the prehistoric and protohistoric affiliation are not presented here. Duplicates are inherent in these data as many sites have both prehistoric and historic components; therefore, a site total is not meaningful and is not presented in Table 3.9.4-1. The number of sites that have been attributed eligibility status are presented in Table 3.9.4-2. It should be noted that there are many sites for which no data regarding site type or eligibility have been entered into the system. Also, some of the sites are the same as those recorded in the Unita Basin because of the study area overlap.

Cultural resource sensitivity maps for many of the STSAs were developed on the basis of relationships of known prehistoric sites and soil families (O'Rourke et al. 2007). However, sensitivity maps of all of the STSAs could not be developed from the soils data. Factors such as STSAs located within single soil families, archaeological surveys within STSAs limited to single soil families, and site frequencies that in some cases were not statistically different than expected for random distribution affected results for Argyle Canyon, San Rafael, Circle Cliffs, Asphalt Ridge, and Pariette STSAs. Sensitivity maps were generated for the remaining six STSAs on the basis of nonrandom associations between soil families and site frequency. In each of these STSAs, high-sensitivity areas are limited to one soil family each at White Canyon, Sunnyside, and Tar Sand Triangle STSAs, and two soil families each at Hill Creek, P.R. Spring, and Raven Ridge STSAs. The specific soil families are presented in O'Rourke et al. (2007).

TABLE 3.9.4-1 Site Types of Known Archaeological Sites in the 11 Special Tar Sand Areas, Utah

|                            |                  |                  |                  |               | Num            | ber of Sites | in Each S      | TSA                 |           |                         |                 |
|----------------------------|------------------|------------------|------------------|---------------|----------------|--------------|----------------|---------------------|-----------|-------------------------|-----------------|
| Site Type <sup>a</sup>     | Argyle<br>Canyon | Asphalt<br>Ridge | Circle<br>Cliffs | Hill<br>Creek | P.R.<br>Spring | Pariette     | Raven<br>Ridge | San Rafael<br>Swell | Sunnyside | Tar<br>Sand<br>Triangle | White<br>Canyor |
| Prehistoric Affiliation    |                  |                  |                  |               |                |              |                |                     |           |                         |                 |
| Paleoindian                | 0                | 0                | 0                | 0             | 0              | 0            | 0              | 0                   | 0         | 0                       | 0               |
| Archaic                    | 0                | 0                | 5                | 0             | 6              | 0            | 0              | 0                   | 5         | 4                       | 0               |
| Late Prehistoric (general) | 0                | 0                | 0                | I             | 2              | 1            | 0              | 0                   | 0         | 1                       | 0               |
| Anasazi                    | 0                | 0                | 3                | 0             | 0              | 0            | 0              | 0                   | 0         | 0                       | 0               |
| Fremont                    | 0                | 0                | 0                | 3             | 6              | 1            | 2              | 0                   | 79        | 0                       | 0               |
| Protohistoric              | 0                | 0                | 0                | 3             | 8              | 1            | 2              | 0                   | 2         | 1                       | 0               |
| Unknown                    | 0                | 11               | 14               | 13            | 53             | 50           | 13             | 0                   | 112       | 9                       | 1               |
| FM                         | 0                | 0                | 0                | 0             | 0              | 0            | 1              | 0                   | 0         | 0                       | 0               |
| Historic Affiliation       |                  |                  |                  |               |                |              |                |                     |           |                         |                 |
| European/American          | 1                | 1                | 9                | 1             | 14             | 12           | 4              | 0                   | 17        | 2                       | 0               |
| Unknown                    | 0                | 1                | 1                | 1             | 4              | 0            | 0              | 0                   | 8         | 0                       | 1               |

a Some definitions of the codes are currently unknown.

TABLE 3.9.4-2 Eligibility Status of Known Archaeological Sites in the 11 Special Tar Sand Areas, Utah

| Eligibility Status       | Number of Sites in Each STSA |                  |                  |               |                |          |                |                     |           |                         |                 |                             |
|--------------------------|------------------------------|------------------|------------------|---------------|----------------|----------|----------------|---------------------|-----------|-------------------------|-----------------|-----------------------------|
|                          | Argyle<br>Canyon             | Asphalt<br>Ridge | Circle<br>Cliffs | Hill<br>Creek | P.R.<br>Spring | Pariette | Raven<br>Ridge | San Rafael<br>Swell | Sunnyside | Tar<br>Sand<br>Triangle | White<br>Canyon | Total<br>Number<br>of Sites |
| Eligible                 | 0                            | 1                | 15               | 10            | 27             | 26       | 2              | 0                   | 187       | 8                       | 0               | 276                         |
| Not eligible             | 1                            | 13               | 13               | 12            | 57             | 37       | 16             | 0                   | 21        | 14                      | 0               | 184                         |
| Eligibility undetermined | 0                            | 0                | 4                | 3             | 11             | 0        | 2              | 0                   | 4         | 4                       | 1               | 29                          |
| Data not available       | 0                            | 2                | 49               | 17            | 29             | 8        | 2              | 0                   | 52        | 16                      | 15              | 190                         |
| Total number of sites    | 1                            | 16               | 81               | 42            | 124            | 71       | 22             | 0                   | 264       | 42                      | 16              | 679                         |

#### 3.10 SOCIOECONOMICS

## 3.10.1 Past Oil Shale Development

Although small quantities of oil shale were produced between 1915 and 1925, with additional exploration activities occurring in the 1950s, major attempts to develop oil shale resources did not occur until the early 1970s with the imposition of the Middle East oil embargo and the resulting attempt to reduce U.S. dependence on foreign oil supplies. The federal prototype leasing program begun in 1974 attracted bids from a number of companies. The Blanco Oil Shale Project on Yellow Creek south of Rangely in Colorado was started by Gulf Oil on tract C-a with the aim of producing 50,000 bbl/day by 1987, while TOSCO and Atlantic Richfield leased land on tract C-b, with both projects planning to use in situ processing to produce 57,000 bbl/day by 1982 (Lamm and McCarthy 1982). Sites U-a and U-b in Utah were also leased at this time by Sun Oil and Phillips Petroleum. In addition to planned developments on federal land, during this period, oil companies also bought land holdings on private land, with 14 companies having purchased land in the Piceance Basin by 1979. The largest development on private land was the Colony Project, begun by Atlantic Richfield, Shell, Ashland, Cleveland Cliffs and TOSCO in the early 1970s. Using room-and-pillar mining and surface retorting, the project extended from Parachute Creek to the Roan Plateau, and had produced 800 bbl/day by 1972, with 50,000 bbl/day planned by 1995. The Paraho Development Company also established a project using surface retorting in the U.S. Naval Oil Shale Reserve west of Rifle (Lamm and McCarthy 1982).

Despite the financial commitment by private companies, and the willingness of the federal government to lease lands for oil shale development, none of the projects begun in the 1970s were successful, and by 1976 a number of companies had withdrawn from the federal leasing program. Despite inflation in world oil markets following the 1973 Organization of Petroleum Exporting Countries (OPEC) oil embargo, no major technological breakthrough had been made to make oil shale viable on a commercial scale. In addition to economic and technological considerations, significant unresolved legal difficulties had emerged over title disputes, unpatented mining claims, and disputes over Ute Indian land claims (Lamm and McCarthy 1982). By the early 1980s, following the 1980 oil embargo, the political and economic environment for the development of synthetic fuels changed dramatically. The passing of the Energy Security Act of 1980 was intended to decrease U.S. dependency on foreign oil, and included a 5-year \$19 billion program of incentives to encourage private industry to build synfuel plants in order to produce 500,000 bbl/day by 1987, and 1 million bbl/day by 1992. Although the Act provided massive incentives for development and significantly reduced the risks of development for private companies, the plan did not receive widespread political support in the western states, with concerns over states rights, ethical questions surrounding support for energy companies, water rights, environmental laws regarding strip mining, water and air pollution, and historic preservation (Lamm and McCarthy 1982).

In spite of serious doubts from western politicians, various companies, including TOSCO, which had previously invested in the Colony Project with Exxon, received loan guarantees from the federal government, and numerous subsidy applications were made by other

companies. As a result of the Energy Security Act, several new projects were started in Colorado, including the Chevron Clear Creek project, which planned to produce 100,000 bbl/day by 1994, and the Mobil project which aimed for 100,000 bbl/day (Lamm and McCarthy 1982). In Utah, Chevron began a processing plant near Farmington; TOSCO planned a 48,000-bbl/day plant at Sand Wash in the northeastern part of the state, while Paraho announced a project to be started near Vernal in 1982. The largest development, however, was the Colony Project announced by Exxon in 1980, which envisaged production of 600,000 bbl/day by 1990, 1 million by 1995 and 8 million bbl/day by 2010 (Lamm and McCarthy 1982). In anticipation of continued increases in world oil prices, the project was to be built without the help of federal subsidies, and included the development of 80 plants in Garfield and Rio Blanco Counties. In addition to the Colony Development itself, Exxon aggressively advocated the development of the U.S. synthetic fuel industry and produced highly optimistic projections of the role of the oil shale in domestic oil production. Despite the absence of a commercially viable processing technology, the company projected the development of 150 oil shale plants over a 20-year period, with 6 massive strip mines, each 3.5 mi long, 1.75 mi wide, and 0.5 mi deep. Each mine would require 22,000 workers, with 8,000 workers at each processing plant (Gulliford 1989).

To accommodate the workforce required to produce 1 million bbl/day, Exxon began construction of a new community at Battlement Mesa, which would double the population of Garfield County. It was estimated that 700 schools, 3,000 teachers and staff, 700 police officers and firemen, and 200 doctors would be required (Gulliford 1989). Population in the Colorado River Valley would grow to 1.5 million, with 75,000 new housing units required to accommodate the new workforce. Water constraints were considered by Exxon, but, with interbasin transfers possible with sufficient state and federal political will, were not thought to place serious limitations on project development. It was suggested that 7,000 ac-flyr would be needed for one 50,000-bbl/day plant, and 350 ac-flyr for every additional 1,000 people; oil shale production of 4 million bbl/day would require almost 870,000 ac-flyr (Gulliford 1989). To satisfy water demand, Exxon planned to build a pipeline from the Missouri River in South Dakota, with three 1,000-MW power plants built to provide the energy to pump the water through the pipeline into western Colorado.

Even before the Colony Project started in 1980, there had been significant property speculation in communities associated with oil shale development, and rapid inflation in property values were experienced in many communities. In Rifle, for example, lots selling for \$12,000 in 1974 sold for \$115,000 in 1979 (Gulliford 1989). Land parcels were often bought and sold two or three times a year as business in oil shale communities grew. Building permits worth a total of \$500,000 were granted in 1976; by 1980, permits totaled \$14 million. Often land was sold to speculators who were from outside the area and were not necessarily interested in the long-term well-being of the community. There was also rapid expansion in retail sales and retail prices, which led to considerable turnover in local small businesses, with local business owners also often from outside local oil shale communities (Gulliford 1989).

According to reports in the Rifle Tribune, a local newspaper established at the beginning of the oil shale boom, oil shale development affected many aspects of community economic and social life, even before the Colony Project, with the delicate social fabric of community and neighborliness that had evolved over generations overwhelmed by large-scale in-migration of

transients from a wide range of communities outside the oil shale region, many of whom, it was perceived, had no intention of working (Gulliford 1989). Personal relationships typical of rural social life were quickly replaced by impersonal relationships based primarily on marketplace relations (see Section 3.10.2.2.5). The boom was particularly threatening to people on fixed incomes, with rapid increases in rents, grocery bills, etc. Massive increases in drug and alcohol abuse, and domestic violence were also reported, with corresponding increases in caseload for social and mental health workers. Rapid increases in poaching of elk and deer were reported, in addition to increases in off-road traffic, and little desire to buy homes. Local retailers moved quickly to supply in-migrant workers with cars, trucks, snowmobiles, boats, and a range of other smaller items, replacing goods traditionally purchased in small ranching communities. In addition to in-migrants searching for oil shale employment, there was also a large influx of professional workers looking for employment in growing oil shale community economies, resulting in considerable improvement in the availability and quality of local services. Oil shale towns were often professionally managed with sophisticated zoning and planning procedures (Gulliford 1989).

To address the emerging housing crisis, Union Oil built employee housing to the north of Parachute, with modular housing on 380 acres for 1,000 workers (Gulliford 1989). Although the employer-provided housing succeeded in keeping single, male construction workers isolated from the local community, the housing did not address the problem of low-income workers arriving without jobs, and living in campsites or in their cars. Expenses involved in evicting squatters in Garfield County led quickly to requests that Union Oil pay some of the costs associated with rapid population growth. By the time the Exxon Colony Project began, there were various stipulations included in the permit, including guaranteed housing for 80% of project workers, local road upgrades, prepayment for all water and sewer hookups and waste disposal, provision of worker transportation, and annual socioeconomic monitoring reports. The company also contributed to local education capital spending, and provided support for local fire, police, and emergency management services. Exxon also started construction on a purpose-built community at Battlement Mesa to house 25,000 people, which was to include 7,000 house and trailer spaces, a 100,000-ft<sup>2</sup> shopping center, office buildings, park, indoor recreation facility, schools, churches, and golf course (Gulliford 1989).

By early 1982, the Colony Project workforce had doubled from 3,000 in 1980, and in order to process up to 50,000 bbl/day, was expected to reach 6,992 by 1985 (Gulliford 1989). Rather than continued rapid development, however, in May 1982, Exxon decided to close the Colony Project, leaving 2,100 oil shale workers and 7,500 support workers unemployed. Within a week, an estimated 1,000 people had left Parachute and Garfield County. There were sharp changes in community expectations about growth, employment, and lifestyle, and social relationships and family ties changed radically. High-priced, former ranching land was sold back to previous owners at low prices, but was still subject to high taxes. Some farmland and drainage had been damaged by development and could not be recovered. The housing market immediately deflated with many houses for sale, and local contracts and orders for materials and supplies were cancelled. High rents for new apartment buildings in Battlement Mesa could not be recovered, thus impacting rental markets elsewhere in the region. Restaurants lost business, and office and retail space went vacant. For some time after closure, transient workers continued to arrive in Parachute, remaining a problem for the local community, which impacted social and

educational services. Churches closed or had to radically reduce their obligations to their congregations. Social services and other government departments suffered severe cutbacks and employee layoffs. Many local government departments were left with buildings and infrastructure that were too large for the remaining population, making them expensive to operate and impacting local tax rates. Although Battlement Mesa was later successfully marketed as a retirement community, to many the development represented 3,000 acres of sprawl, while Parachute was left with many older buildings in need of repair (Gulliford 1989).

The bust period lasted for multiple years after the initial announcement, Population in Mesa County fell from 94,000 in 1980 to 83,000 in 1985. Eighty-five million dollars in annual payroll was lost. Numerous businesses had been started throughout the region, and retail and transportation facilities had been built with the expectation of population and economic growth. Bankruptcies and housing foreclosures were commonplace; 200 businesses in Rifle alone had failed 18 months after the project closed, while foreclosures in Mesa County rose from 98 in 1981 to 1,042 in 1984 (Gulliford 1989). Occupancy rates in Battlement Mesa were at 35% in 1984. The closure of the Colony Project affected the entire western Colorado region, and by 1984, unemployment levels had reached 9.5%, and by 1985, 14.2% of all housing in Grand Junction was vacant. In many respects, it became apparent that preboom conditions would not return to the economy. Many businesses that had operated for generations had failed and would not be reopened. Together with the decline in the coal and oil and gas industry, the value of farm produce, and consequently ranching land, also declined. A survey identified 7,400 people that would leave in 1984, with losses in population from 1981 to 1984 representing 15 years of population growth in Mesa County. Foreclosures in Mesa County reached 1,600 by 1985. Garfield County had lost 6,472 jobs and 3,745 residents between 1981 and 1985 (Gulliford 1989).

The psychological impacts of the bust on the local community, in particular its suddenness, although not well-documented, may have been significant (see Section 3.10.2.2.5), with many financial and family decisions hinging on rapidly rising incomes and changing community social structures (Gulliford 1989). Although Exxon had promised an orderly closure, plant workers were not given advanced notice. Many workers had expected to be in the area for many years and had borrowed money, purchased houses and other expensive items, moved their families into the local community, and placed their children in local schools. Individuals and institutions had trusted Exxon, had seen the size of the capital initially invested in the project and had assumed that progress on the project would continue. Even after closure of the project, many businesses remained open, and immediate population decline was not severe. Many long-term residents and those in-migrants that had remained after closure preferred not to believe that economic collapse was possible, and instead hoped for a government buyout of oil shale infrastructure, or that another major employer would move in (Gulliford 1989). Changes in social behavior also became apparent as a result of declining incomes, as people became isolated from their neighbors; communities began looking inwardly to help each other rather than to other communities in the Colorado River Valley. Divisions also developed between existing and new residents; while surviving social networks could be relied upon by older residents, newer residents had little informal community support, which produced alienation, family and marital problems, financial problems, domestic violence, drug and alcohol abuse, and divorce (Gulliford 1989) (see Section 3.10.2.2.5).

#### 3.10.2 Current Conditions

The socioeconomic environment potentially affected by the development of oil shale and tar sands resources includes a region of influence (ROI) in each state (Colorado, Utah, and Wyoming), consisting of the counties and communities most likely impacted by development of oil shale and tar sands resources (Figure 3.10.2-1; Table 3.10.2-1). For each ROI, three key measures of economic development are described—employment, unemployment, and personal income. Five measures of social activity, population, housing, public service employment, and local government expenditures are also described. A number of measures of social well-being that may be affected by rapid population growth and "boom and bust" economic development—crime, alcoholism, drug use, divorce, and mental illness—are also described.

As it is likely that the viewpoints, perceptions, and attitudes individuals may have toward large-scale energy development form an important background to current and future conditions in each ROI, a series of interviews was conducted with key stakeholders in Garfield County and Rio Blanco County, Colorado, and Uinta County, Utah, to provide a context to the data presented in the following sections. Individuals contacted were those who provided comments as part of the project scoping process, people who have been involved from the early stages of oil shale development, including local and county planning officials, community leaders, community service providers, realtors, and individuals located in proximity to project developments likely to be impacted by specific aspects of energy development. Participants were asked about past developments, particularly those that have produced "boom-and-bust" economic and social conditions which are deemed relevant, the current situation, including the ongoing impact of oil and gas and recreation, and the likely impact of new developments that might occur alongside developments in oil and gas and in recreation (see Appendix H). Each of the following sections presents a brief summary of concerns expressed during these interviews, as a means of providing a context for the economic and social data presented for each ROI.

#### 3.10.2.1 Economic Environment

3.10.2.1.1 Employment and Unemployment. Developments in the oil and gas industry have produced rapid growth in employment in many communities in each ROI, and in the recreation sector in the Colorado ROI, meaning that there are significant labor shortages in numerous service industries, such as restaurants, car dealerships, and auto repair. Local government agencies are also experiencing staffing difficulties, where teaching, health worker, public safety, road and bridge, and fire personnel positions are currently difficult to fill.

Total wage and salary employment in the Colorado ROI in 2004 stood at almost 97,800, about 4% of all employment in the state (Table 3.10.2-2). Industries in the Utah ROI support 42,300 jobs, also about 4% of the state total, while the number of people employed in the Wyoming ROI, 45,100, represents 17% of total employment in the state. Wage and salary employment in the Colorado and Utah ROIs grew relatively rapidly over the 1990 through 2004 period. Annual average growth in the Colorado ROI was 3.1% during this period, with only a slightly smaller rate (2.4%) for the state as a whole. Employment in the Utah ROI grew at 2.0%

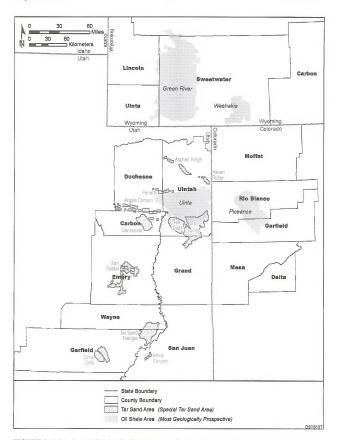



FIGURE 3.10.2-1 State ROIs for Oil Shale and Tar Sands Development Areas

TABLE 3.10.2-1 Jurisdictions Included in Each ROI

Springs, and Saratoga

| Colorado ROI     |                                                                                                                                                                                     |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Counties         | Delta, Garfield, Mesa, Moffat, and Rio Blanco                                                                                                                                       |
| Cities           | Delta, Clifton, Craig, Fruita, Glenwood Springs, Grand Junction, Parachute, Meeker,<br>Rangely, Rifle, and Silt                                                                     |
| School districts | Craig, De Beque, Delta County, Roaring Fork (Glenwood Springs), Parachute, Plateau Valley (Colbran), Meeker, Mesa County Valley (Grand Junction), Moffat County, Rangely, and Rifle |
| Utah ROI         |                                                                                                                                                                                     |
| Counties         | Carbon, Duchesne, Emery, Garfield, Grand, San Juan, Uintah, and Wayne                                                                                                               |
| Cities           | Moab, Price, Roosevelt, and Vernal                                                                                                                                                  |
| School districts | Carbon County, Duchesne County, Emery County, Garfield County, Grand County, San Juan County, Uintah County, and Wayne County                                                       |
| Wyoming ROI      |                                                                                                                                                                                     |
| Counties         | Carbon, Lincoln, Sweetwater, and Uinta                                                                                                                                              |
| Cities           | Evanston, Green River, Kemmerer, Rawlins, and Rock Springs                                                                                                                          |
| School districts | Afton, Evanston, Diamondville, Green River, Lyman, Mountain View, Rawlins, Rock                                                                                                     |

TABLE 3.10.2-2 ROI Total Employment<sup>a</sup>

|              | 1990      | 2004      | Annual Average<br>Growth<br>1990-2004 |
|--------------|-----------|-----------|---------------------------------------|
| Colorado ROI | 63,681    | 97,755    | 3.1%                                  |
| Colorado     | 1,654,843 | 2,317,759 | 2.4%                                  |
| Utah ROI     | 31,923    | 42,318    | 2.0%                                  |
| Utah         | 778,155   | 1,165,695 | 2.9%                                  |
| Wyoming ROI  | 40,109    | 45,101    | 0.8%                                  |
| Wyoming      | 212,768   | 269,651   | 1.7%                                  |

Sources: U.S. Bureau of the Census (2006d); Colorado State Demography Office (2007); Utah Governor's Office of Planning and Budget (2007).

between 1990 and 2000, with growth in the state reaching almost 3% on average over the same period. At 0.8%, growth in the Wyoming ROI has been slower than in the other ROIs, with only a slightly higher average annual rate of 1.7% in the state.

Current unemployment rates are lower in each ROI (4.2% in Colorado, 5.6% in Utah, and 3.6% in Wyoming) than they were during the period 1990 through 2005 (Table 3.10.2-3). Rates

TABLE 3.10.2-3 State and ROI Unemployment Data<sup>a</sup>

|              | Average<br>1990–2005 | Current Rate | Unemployed<br>Persons<br>(2005 Average) |
|--------------|----------------------|--------------|-----------------------------------------|
| Colorado ROI | 4.9%                 | 4.2%         | 5,667                                   |
| Colorado     | 4.6%                 | 5.0%         | 128,656                                 |
| Utah ROI     | 7.6%                 | 5.6%         | 2,760                                   |
| Utah         | 4.3%                 | 4.6%         | 53,927                                  |
| Wyoming ROI  | 5.5%                 | 3.6%         | 1,700                                   |
| Wyoming      | 4.7%                 | 4.0%         | 10,177                                  |

<sup>&</sup>lt;sup>a</sup> Current state rates are for June 2006; current rates for each ROI are the annual average for 2005.

Source: U.S. Department of Labor (2006).

for the Colorado and Wyoming ROIs are currently lower than those for the two states. With a relatively small labor force in each ROI, the number of local workers presently unemployed and potentially available for oil shale and tar sands developments is currently small.

3.10.2.1.2 Employment by Sector. Employment in each ROI is dominated by employment in services and wholesale and retail trade (Table 3.10.2-4). More than 65% of employment in the Colorado ROI is in these sectors (53,368 employed); almost 60% of employment in the Utah ROI (18,004) is in services and trade, with slightly less employed in these sectors in the Wyoming ROI (17,792). The service and trade sectors are slightly more important in each state compared with each ROI. The service sector includes employment in tourism and recreation, which has become an important part of the economy of the ROI in each state.

Although the oil and gas sector only constituted a relatively small share of total ROI employment in 2005, 0.8% in Colorado, 2.9% in Utah and 4.8% in Wyoming, the sector has seen significant growth in a number of counties in each ROI. In Colorado, oil and gas employment in Mesa County grew from 190 to 350 between 1998 and 2004, while employment in the sector in Garfield County in 2004 was 287, growing from 120 in 2002. In contrast, oil and gas employment in Rio Blanco County fell from 340 in 1998 to 120 in 2004. In Utah, oil and gas employment is concentrated in Duchesne County, with between 250 and 300 employed in the sector over the period 2000 to 2004, and in Uintah County, where employment grew steadily from 450 to 700 between 1998 and 2004. Each of the four ROI counties in Wyoming has oil and gas employment, with the largest concentrations in 2004 in Sweetwater (705 employees) and Uinta Counties (1,015), with fairly steady growth in both counties since 1998.

TABLE 3.10.2-4 State and ROI Employment by Industry, 2004

|              |             | Mininga        |       |        |              |               |                              |                         |                                           |           |       |
|--------------|-------------|----------------|-------|--------|--------------|---------------|------------------------------|-------------------------|-------------------------------------------|-----------|-------|
|              | Agriculture | Oil and<br>Gas | Coal  | Total  | Construction | Manufacturing | Transportation and Utilities | Wholesale<br>and Retail | Finance,<br>Insurance,<br>and Real Estate | Services  | Other |
| Colorado ROI | 4,435       | 786            | 735   | 1,525  | 7,881        | 3,744         | 3,259                        | 16.147                  | 4,246                                     | 37,221    | 41    |
| % of total   | 5.7         | 0.8            | 0.9   | 1.9    | 10.1         | 4.8           | 4.2                          | 20.6                    | 5.4                                       | 47.5      | 0.1   |
| Colorado     | 47,445      | 8,980          | 2,052 | 13,572 | 147,767      | 137,726       | 65,022                       | 346,128                 | 148,849                                   | 1,047,287 | 717   |
| % of total   | 2.4         | 0.4            | 0.1   | 0.7    | 7.6          | 7.0           | 3.3                          | 17.7                    | 7.8                                       | 53.6      | 0.0   |
| Utah ROI     | 3,452       | 1,220          | 1,500 | 2,999  | 2,133        | 1,008         | 2,065                        | 5,758                   | 1,089                                     | 12,246    | 6.2   |
| % of total   | 11.5        | 2.9            | 5.0   | 10.0   | 7.1          | 3.3           | 6.9                          | 19.1                    | 3.6                                       | 40.7      | 0.2   |
| Utah         | 20,966      | 3,219          | 1,529 | 6,578  | 63,944       | 111,020       | 49,017                       | 172,579                 | 62,788                                    | 468,659   | 278   |
| % of total   | 2.2         | 0.3            | 0.2   | 0.7    | 6.7          | 11.6          | 5.1                          | 18.1                    | 6.6                                       | 49.0      | 0.0   |
| Wyoming ROI  | 1,418       | 2,145          | 925   | 3,474  | 1,977        | 2,643         | 2.523                        | 5,877                   | 1,204                                     | 11.915    | 99    |
| % of total   | 4.6         | 4.8            | 3.0   | 11.2   | 6.4          | 8.5           | 8.1                          | 18.9                    | 3.9                                       | 38.3      | 0.3   |
| Wyoming      | 11,032      | 13,046         | 4,829 | 17,976 | 15,613       | 10,244        | 9,960                        | 36,590                  | 10,591                                    | 85,908    | 375   |
| % of total   | 5.6         | 4.8            | 2.4   | 9.1    | 7.9          | .2            | 5.0                          | 18.5                    | 5.3                                       | 43.3      | 0.2   |

a In addition to oil and gas extraction and coal mining, the mining total includes metals mining, nonmetallic minerals mining, and support activities for mining. Sources: U.S. Bureau of the Census (2006a); USDA (2006).

A number of industries are more important in the ROIs than at the state level, notably transportation and utilities in each state ROI (4.2% of total employment in the Colorado ROI, 6.9% of the Utah ROI, and 8.1% of the Wyoming ROI); agriculture in the Colorado ROI (5.7%) and Utah ROI (11.5% of the total); and mining in the Utah ROI (10%) and in the Wyoming ROI (11.2%). The mining sector in each of the states includes the two sectors that would be directly impacted by oil shale and tar sands development—oil and gas extraction and coal mining. Coal mining has a slightly larger share of total employment in each ROI than other activities in the mining sector.

3.10.2.1.3 Personal Income. In the Colorado and Utah ROIs, labor shortages in many nonenergy sectors and low unemployment rates described in Section 3.10.2.1.1 are partly due to an acute shortage of affordable housing (see Section 3.10.2.2.5), but also because wages paid by oil and gas companies usually attract people from these occupations into a wide range of manual labor positions requiring little or no college education. Equipment operators, according to a Colorado assistant county manager, "can make 50% more" in the oil and gas sector than in local government agencies, "with wages of \$26/hour, and despite an improved benefits package." Currently there are numerous vacant positions for these workers in Garfield and Rio Blanco Counties in Colorado.

Labor incomes in oil and gas production were significantly higher than the average in each ROI. At \$77,500, labor incomes in the sector in the Colorado ROI in 2004 were more than 70% higher than average incomes, and at \$54,300 in Utah, 30% higher, while at \$78,400, oil and gas labor incomes in Wyoming were slightly less than twice the average for all sectors in the ROI. Labor incomes in oil and gas support activities were slightly higher than the ROI average in Colorado and lower than the ROI average in Utah, while labor incomes in oil and gas drilling were slightly lower than the ROI average in Colorado, and slightly higher than the average labor incomes in the Wyoming ROI.

Total personal income in 2004 in the Colorado ROI stood at \$6.5 billion, in the Utah ROI it was \$2.3 billion, and \$2.9 billion in the ROI for Wyoming (Table 3.10.2-5). Annual average growth in personal income over the period 1990 through 2004 in the Colorado ROI was 3.8%, in the Utah ROI 2.3%, and 1.9% in the Wyoming ROI. Per capita personal income in the Colorado ROI grew from \$23,906 in 1990 to \$28,967 in 2004, from \$18,737 to \$23,162 in the Utah ROI over the same period, and from \$25,963 to \$33,330 in the ROI in Wyoming (U.S. Department of Commerce 2006). State per capita income in each state in 2004 was slightly higher than each ROI

#### 3.10.2.2 Social Environment

3.10.2.2.1 Quality of Life. Although a relatively small number of individuals directly and early 1980s remain in local communities in the vicinity of the project in the late 1970s and early 1980s remain in local communities in the vicinity of the project site, memories of the events before, during, and after the Colony development form an important part of the perception

TABLE 3.10.2-5 State and ROI Personal Income (\$ billions 2005)<sup>a</sup>

|              | 1990  | 2004  | Annual Average Growth,<br>1990–2004 |
|--------------|-------|-------|-------------------------------------|
| Colorado ROI | 3.9   | 6.5   | 3.8%                                |
| Colorado     | 100.1 | 177.9 | 4.2%                                |
| Utah ROI     | 1.7   | 2.3   | 2.3%                                |
| Utah         | 39.9  | 68.9  | 4.0%                                |
| Wyoming ROI  | 2.3   | 2.9   | 1.9%                                |
| Wyoming      | 12.6  | 18.6  | 2.8%                                |

Sources: U.S. Department of Commerce (2006).

of large-scale energy development projects in western Colorado. The experience of the "boom and bust" and the long, slow recovery period in the 1980s and 1990s are both magnified and perpetuated, with many local government officers, city managers, and professional people currently residing in the affected communities also present during each phase of development. According to a Colorado city mayor, about "a third" of current residents in Rifle remember "Black Sunday," May 2, 1982, when "Exxon closed the gates to the Colony Project." Some local residents come from families that have lived in the area for many years, while many became residents during the oil shale boom, looking for work as teachers, local government officers, and realtors during the boom years prior to 1982.

Many people living in the area apparently still remember exactly what they were doing on Black Sunday, a date which is locally accorded the same significance as the date of the Kennedy assassination and the attack on the World Trade Center. More than 2,000 workers lost their jobs with the closure of the Colony project, with many more out of work in the various supporting occupations in the economy of western Colorado, producing a "severe depression" throughout the region, according to a Colorado assistant county manager. Overnight, the housing market, which had struggled to keep pace with in-migration associated with the Colony development, with rapidly escalating prices for the few lower-priced homes that were available, collapsed. In the experience of one Colorado county manager, some properties lost "60% of their value in one week." Numerous recently constructed apartment buildings were left empty, many "businesses were lost," and banks closed, with "people standing in line to get their money" according to a Colorado assistant county manager, once the Federal Deposit Insurance Corporation had been called in. In Rifle, this signaled the beginning of a "20-year recession," with the economy of Garfield County not recovering until the mid-1990s.

Memories of the impact that the Colony project had on economic and social life in the region are still vivid for people living in the area. The "huge workforce" of 2,000 required for the project meant a large and rapid influx of workers to staff construction vacancies and people looking for work in the associated boom. With the in-migrant population growing daily, the

immediate problem associated with the project was an acute housing shortage, with, according to one Colorado city mayor, people "living in tents, under bridges and in culverts," while differences in the relative fortunes of the oil shale workers and the remainder of the working population in the local communities was clear, with the perception that in-migrant oil shale workers were "walking around with dollars dripping out of their pockets." The size and pace of oil shale development meant that community infrastructure also had to be expanded rapidly to accommodate the new workers and their families. In Parachute, the housing development built by Exxon at Battlement Mesa was "oversized" compared even to the housing demands of in-migrating oil shale workers, according to a Colorado county manager. The supporting infrastructure provided by local government (notably library, schools, roads, and sewers) was sized for a larger project than was required even at the time. Elsewhere in Garfield County, local planners had estimated infrastructure demands for the long term, with County Road 215 rebuilt to accommodate truck and car traffic for a large new development, while funding was also provided for additional public buildings.

While funding infrastructure developments to support the Colony project put local jurisdictions under enormous financial pressure, with no severance tax revenues from oil shale production available during project construction, the additional infrastructure in Parachute and elsewhere in Garfield County, it is suggested, has provided a sound basis for the diversification of the area away from extractive energy and into recreation. With the Battlement Mesa development, together with smaller developments in the area and the associated public infrastructure, the Rifle area became "an affordable housing area for the entire region" according to a Colorado city mayor, with cheaper housing in the area eventually leading to population growth and recovery from the oil shale bust.

By the end of the 1990s, developments in the oil and gas industry in Colorado and Utah had begun to place local communities under many of the same pressures they had experienced during the oil shale boom. Since 2003, the industry has created "a boom almost akin to oil shale," with "exponential growth" in population, large increases in the local working population, and higher employee income levels impacting community quality of life, according to a Colorado county manager. Many retail businesses, particularly grocery stores, have experienced problems maintaining sufficient stock to meet local demand. Beginning with the Colony oil shale project and continuing with current oil and gas development in both Colorado and Utah, patterns of retailing have changed from small, local general stores serving local retail demand, to the development of regional retail centers. Grand Junction, for example, which is 1.5 hours from Meeker, serves the region for most retail functions, with local stores limited to high-priced basic items, representing a "permanent change in life-style" that is perceived negatively by many local residents, according to a Colorado water commissioner. There is currently a single store in Meeker that sells feed, and people are prepared to drive 50 to 100 mi for large grocery purchases. Although Walmart stores have been built in Rifle and Vernal, where a Lowes has also been built, there is concern that these stores will have difficulties finding staff and will not be able to offer a range of goods at reasonable prices.

The lack of adequate transportation infrastructure has developed into a serious problem in Rio Blanco and Garfield Counties, with traffic levels on local roads particularly high during shift change times. Rapid development of oil and gas has meant that county authorities have had to "play catch up with traffic," according to a Colorado assistant county manager, with many local and county roads built only of gravel and not capable of supporting the necessary "12 to 18 80,000-lb" drilling rig and water tanker trucks required for oil and gas drilling activities. During the exploration phase, trucks are moved in and out of each well site "every 10 weeks" with older drilling technology, and "every 3 to 4 weeks" with newer production technology, according to the same county manager. A plan publicized by Exxon calls for "15,000 wells over a 15-year period." At current employment levels, there are six people in each drilling crew, with three shifts for each rig. One worker is required for every six wells once production gets underway.

The additional infrastructure in Parachute and elsewhere in Garfield County, it is suggested, has provided a sound basis for the diversification of the area away from extractive energy and into recreation. To better plan for impacts of oil and gas development, various local and county citizen oversight groups have been formed in Colorado to provide for the communication of local community concerns to oil companies. Garfield County has established an Energy Impact Board with representatives of oil companies and local citizens, and an Oil and Gas Liason Committee that receives complaint calls and has attempted to reflect the concerns of the local community by undertaking local impact studies in a number of topical areas, notably water wells, health risk, air quality, and land values. Unfortunately, not all oil companies provide representatives for meetings, leaving one Colorado mayor "disgusted." In an attempt to develop a long-term coping strategy to address dependence on one major regional source of employment, Garfield County has identified a series of sectors to be targeted for development to allow economic diversification away from energy development. An "energy village" has been established to host renewable energy developments, including bio, solar, and possibly wind energy, and it has been proposed to make Rifle a regional commercial retail center. An additional impact of high local wages in the oil and gas sector is that it affects the ability of local communities to diversify "a degradation in the college bound population," according to a Colorado county manager, with teenagers able to drop out of school and earn "\$60,000 to \$70,000" in oil and gas jobs. With large labor transfers from nonenergy into energy occupations, the perception is that the oil and gas companies only need "warm bodies" to continue to operate.

Water allocation is a significant regional problem with the development of energy production in Garfield and Rio Blanco counties, and the fact that energy companies have been buying historic water rights from ranchers is "a concern," according to a city mayor in Colorado. Often ranchers are bought out by companies and nonlocal parties, and then the land with no associated water rights is leased back to the original owners with only limited water available for stock but not for irrigated agriculture. Many apparently perceive this as a "sad" development. Often hay is the only crop still being produced on many ranches, with only "nominal involvement in agriculture" on these properties "to avoid higher property taxes," according to a Colorado water commissioner, with the perception that "there would be no agriculture in the area with commercial oil shale." In the experience of a Utah city manager, the perception is that regional water capacity "can handle" population increases from oil and gas development.

Dramatic increases in traffic with the Colony oil shale project and subsequent oil and gas development, often on roads into areas with very limited access, has often meant disruption to wildlife, in particular horse and elk herds. As a result, city government and many residents in Rifle oppose energy development on the Roan Plateau, not only because it interferes with a significant local source of income during the hunting season from September to November, but because the community in Rifle "is historically represented by hunting and fishing," according to a Colorado city mayor. To avoid the steady disappearance of agriculture in the region with the purchasing of land for historic water rights, land has been sold for conservation easements, where historic water rights remain associated with specific land parcels. Although this provides a safe haven for game and preserves the land in more traditional uses, these easements "are not popular with out-of-state hunters," according to a Colorado water commissioner, who can no longer access game. Housing shortages also affect hunting, with insufficient local capacity during hunting months. Oil and gas workers are apparently excluded from some trailer park rentals, which are held exclusively for hunters.

Attitudes toward future energy developments vary from cautious optimism in the business community, according to a Colorado city mayor, "some of whom will benefit from new development," to skepticism among those that remember the "boom and bust" associated with the Colony Project, the problems associated with housing migrant workers, the social impacts associated with temporary workers without their families, and the difficulties associated with planning public services and infrastructure. Many individuals are leery of oil shale development and do not believe that the technology is mature enough for commercial production; they are suspicious of new development given the history of the industry in the area. Some want tighter controls on development, especially housing, with infrastructure costs paid by developers. Even though Exxon received no subsidies from the federal government for the Colony project, some believe that the involvement of the Synfuel Corporation in the development of oil shale made it easier for oil companies to pull out, blaming the "boom and bust" on the end of federal subsidies. This perception stands in contrast to the current situation with oil and gas, where people apparently perceive that private companies receive no direct financial help from federal authorities. In Utah, although natural gas developments have been "immense," there is "stability compared to oil shale," according to a city manager, with people apparently sharing the view of the oil companies that there will be "long lasting and steady growth" in the area.

3.10.2.2.2 Population and Housing. After a number of years of slow population growth, by the early 1990s, counties in western Colorado began experiencing higher growth rates. Driving the growth was the proximity of the area to the fast-growing winter recreation communities in Glenwood Springs, Aspen, and Vail, while Battlement Mesa itself has become a retirement community. Although between a 70- and 90-mi drive, growth in these recreation communities, together with associated planning controls in these up-market communities, meant that there was little or no affordable housing for service workers in these resorts. As a result, Rifle and other communities in Garfield County have developed into "commuter towns," with "30,000 commuters" in the county predicted by 2025, according to a Colorado county manager. Over the past several years, population has grown rapidly in some communities hosting oil and gas developments, "at an annual rate of 4.9%, with rates of up to 7%" in Garfield County, according to a Colorado mayor. Local labor shortages have also led to an increase in the number of undocumented workers filling jobs in local service sector occupations, in the experience of a Colorado county manager.

In 2000, the population in the Colorado ROI stood at 207,050; the population in the Utah ROI was 101,019, and in the Wyoming ROI it was 87,567 (Table 3.10.2-6). The ROI population makes up a relatively small percentage of total population in Colorado (4.8%) and Utah (4.5%), and a larger percentage in Wyoming (17.7%). Population in the ROIs in each state grew relatively slowly over the 1990–2000 period. Annual average growth in the Colorado ROI was 2.5% during this period, slightly less than for the state as a whole (2.7%). In the Utah ROI, population grew at an average annual rate of 1.1% between 1990 and 2000, less than the state growth rate of 2.6% over the same period. At an annual rate of 0.1%, growth in the Wyoming ROI was slower than in the other ROIs, with only a slightly higher average annual rate of 0.9% in the state.

Housing prices have risen rapidly in areas experiencing brisk population growth associated with oil and gas development. Rifle, Colorado has witnessed "2% growth per month in the last three months," according to a Colorado mayor, and "26% over the last seven months," according to a Colorado county manager. Rental housing used by oil and gas drilling workers is "almost completely unavailable," with vacancy rates at about 2%, according to a Colorado realtor. Rental housing in Newcastle, Silt, Parachute, and Rifle is currently "all taken," and there are "no hotels" available because of the oil and gas boom, according to a Colorado county manager. Rental vacancy rates have changed significantly in the last two years, and for those able to find rental housing, rates "have doubled in the last two years." Home construction for oil and gas workers has been undertaken, often in areas annexed to smaller communities, together with speculative development of more expensive single-family homes, which are often priced at more than \$500,000. Some local ranchers are selling 3- to 4-acre parcels to small builders, with homes then marketed locally and statewide. Homes are occupied by production workers, with some executives occupying higher-priced houses. There are numerous "overpriced" houses for sale, according to a Colorado realtor, producing an artificially high overall vacancy rate in state and federal statistics. Houses with three bedrooms and two bathrooms sell for \$225,000 in Meeker, and for between \$375,000 and \$425,000 outside of town on 3 to 5 acres of land. Inflation in housing prices is "scary" to many potential buyers, according to a Colorado realtor. often meaning that houses are on the market for extended periods of time. Affordable housing

TABLE 3.10.2-6 ROI Population

|              | 1990      | 2000      | Annual Average Growth<br>1990–2000 |
|--------------|-----------|-----------|------------------------------------|
| Colorado ROI | 161,428   | 207,050   | 2.5%                               |
| Colorado     | 3,294,394 | 4,301,261 | 2.7%                               |
| Utah ROI     | 90,814    | 101.019   | 1.1%                               |
| Utah         | 1,722,850 | 2,233,169 | 2.6%                               |
| Wyoming ROI  | 86,812    | 87,567    | 0.1%                               |
| Wyoming      | 453,588   | 493,782   | 0.9%                               |

Sources: U.S. Bureau of the Census (2006c,d),

has become such "a critical issue" in Uintah County, Utah, that a housing specialist has been hired, according to a Utah city manager.

Tourism and recreation in Rio Blanco County has created additional demand for housing, with people from elsewhere buying second homes, often renting for 1 to 2 years before buying, and with some selling in response to the "harsh winters," according to a Colorado realtor. Some homes are bought by fishermen and hunters who are in search of "small town life."

In Colorado, energy development companies have begun to address housing shortages with the development of employer-provided housing. However, although only local and no state approval is required for employer-provided housing of up to 24 workers in Garfield County, state approval for larger employer-provided housing areas "has not been requested," according to a Colorado county manager. A larger housing area of 125 workers has been permitted in Rio Blanco County. Regardless of their size, worker housing areas are still likely to produce social impacts, in the opinion of local officials, some of whom would prefer more local community housing rather than employer-provided housing to take advantage of the benefits of a locally resident workforce.

Housing stock in the Colorado ROI grew at an annual rate of 2.2% over the period of 1990 through 2000 (Table 3.10.2-7), with 86,627 total housing units in 2000. The rate of growth in owner-occupied units (3.6%) was higher than the overall rate of growth in the ROI. The

TABLE 3.10.2-7 State and ROI Housing Characteristics

| Parameter      | 1990   | 2000   | Annual Average Growth,<br>1990–2000 |
|----------------|--------|--------|-------------------------------------|
|                |        |        |                                     |
| Colorado ROI   |        |        |                                     |
| Owner-occupied | 40,517 | 57,685 | 3.6%                                |
| Rental         | 21,730 | 22,714 | 0.4%                                |
| Vacant units   | 7,598  | 6,228  | -2.0%                               |
| Total units    | 69,845 | 86,627 | 2.2%                                |
| Utah ROI       |        |        |                                     |
| Owner-occupied | 21,862 | 26,187 | 1.8%                                |
| Rental         | 6,304  | 6,929  | 0.9%                                |
| Vacant units   | 9,668  | 8,853  | -0.9%                               |
| Total units    | 37,834 | 42,469 | 1.2%                                |
| Wyoming ROI    |        |        |                                     |
| Owner-occupied | 21,260 | 24,356 | 1.4%                                |
| Rental         | 8,379  | 7,967  | -0.5%                               |
| Vacant units   | 6,350  | 6,747  | 0.1%                                |
| Total units    | 36,289 | 39,070 | 0.7%                                |

Sources: U.S. Bureau of the Census (2006c.d),

annual growth in rental units was much lower at 0.4%, and the number of vacant units declined by 2% annually in the ROI during this period.

Annual growth in housing in the Utah ROI in the 1990 through 2000 period was 1.2%, with 42,469 total housing units in 2000. The annual rate of growth in owner-occupied units (1.8%) was higher than the overall rate of growth in the ROI. Annual growth in rental units was much lower at 0.9%, and there was an annual average decline of 0.9% in the number of vacant units in the ROI between 1990 and 2000.

In 2000, there were 39,070 total housing units in the Wyoming ROI. The ROI housing market grew at an annual rate of 0.7% over the 1990 through 2000 period. The rate of growth in owner-occupied units (1.4%) was higher than the overall rate of growth. The number of rental units declined during the 1990s by an average of 0.5% annually, although the number of vacant units in the ROI increased slightly.

3.10.2.2.3 Fiscal Conditions. Funding infrastructure during oil and gas development can put local jurisdictions under enormous financial pressure, and although some oil companies have contributed to the cost of new roads where there is no existing access to drilling areas, there has been little support from energy companies where existing roads need to be upgraded. With the pace of energy development, local governments are experiencing difficulties funding infrastructure improvements, with escalation in the price of construction materials, particularly of gravel, in Garfield County increasing the cost of a two-lane road "from \$1 to \$2.5 million/ mile," according to a Colorado county manager. While the county can get help from the state, which provides energy impact funds from severance tax revenues, with "\$0.5 million provided per project," the county has to provide matching funds, only some of which has come from increased property tax revenues; paying for upgraded infrastructure "can be difficult," according to a Colorado county manager. Other sources of revenues, such as sales taxes, are often dedicated to other areas, such as public libraries. Some municipalities receive recirculated state sales taxes for roads. In Colorado, severance taxes are currently distributed directly to impacted communities based on energy worker residential locations, but with many workers living in Craig and Grand Junction and bussed in every day, the problem of providing infrastructure and service where they are used is exacerbated. Recently, three new road projects were put out for bid by Garfield County, and "none were taken," which, combined with a shortage of construction workers, means that county authorities are "losing a never-ending struggle," according to a Colorado county mananger, to keep up with oil and gas development.

In Utah, mineral lease funds paid to the federal government are "distributed equitably" by the Community Impact Board to local jurisdictions, according to a Utah city manager, and are used to pay for water and sewer service, educational facilities, fire stations, recreation facilities, a shelter for women and the homeless, and administration buildings. In Vernal, the Board has not provided support for housing development to local communities, instead preferring to send dollars "to housing authorities, not us," according to a Utah city manager. Sales taxes "make up for shortfalls" from mineral lease payments. To offset the impact of energy development, mitigation plans were used during the White River oil shale boom before any royalty payments were available from energy production. Despite the flow of funds to local authorities affected by

oil and gas development in both states, planning for the mitigation of impacts in the form of infrastructure development and provision of public services does not occur until oil and gas "development levels and timing are obvious," according to a Utah city manager. Although mitigation agreements exist between gas companies and local governments, many companies "are not sharing information" on crucial issues, such as development schedules. Community Impact Board payments can go to communities that are not impacted from energy development if they have sufficient political clout, leading to "resentment" in oil and gas communities, according to a Utah city manager.

Table 3.10.2-8 shows the current expenditures by the various local government jurisdictions in each ROI and in each state.

3.10.2.2.4 Public Service Employment. In addition to problems securing adequate funding for infrastructure development with energy development and the associated rapid growth rates in local population, differences in rates of pay between energy and nonenergy occupations mean that there are significant labor shortages in numerous service industries, such as restaurants, car dealerships, and auto repair, and in local government, where teaching, health worker, public safety, road and bridge, and fire personnel positions are difficult to staff.

Tables 3.10.2-9 and 3.10.2-10 present data on levels of service (number of employees per 1,000 population) for public safety and general local government services and employment. Table 3.10.2-10 provides health and services staffing data, and Table 3.10.2-11 provides data on school district staffing and performance indicators.

3.10.2.2.5 Social Disruption. Social problems associated with rapid population growth with the development of energy extraction and power generation projects in small rural communities were first studied

TABLE 3.10.2-8 State and ROI Public Service Expenditures (\$ millions 2005)

|              | 2005   |
|--------------|--------|
| Colorado ROI | 416.8  |
| Colorado     | 39,481 |
| Utah ROI     | 215.4  |
| Utah         | 19,455 |
| Wyoming ROI  | 268.8  |
| Wyoming      | 5,638  |

## Sources:

Colorado — City of Craig (2004); City of Delta (2004); City of Fruita (2005); City of Glenwood Springs (2004); City of Grand Junction (2004); City of Rifle (2004); Colorado State Demography Office (2007); Delta County (2005); Garfield County (2004); Mesa County (2003); Moffat County (2005); Rio Blanco County (2005); Town of Meeker (2005); Town of Rangely (2004); Town of Silt (2005).

Utah—Carbon County (2004); City of Moab (2006); Duchesne County (2004); Emery County (2004); Garfield County (2004); Grand County (2004); Price Municipal Corporation (2005); San Juan County (2004); Uintah County (2004); Utah Governor's Office of Planning and Budget (2006); Vernal City Corporation (2005); Wayne County (2004).

Wyoming — Carbon County (2006); City of Evanston (2005); City of Green River (2004); City of Kemmerer (2005); City of Rawlins (2005); City of Rock Springs (2005); Lincoln County (2006); Sweetwater County (2005); Unita County (2005); Wyoming Department of Administration and Information (2006).

Overall—Standard and Poor's (2006); U.S. Bureau of the Census (2006b,d).

TABLE 3.10.2-9 State and ROI Government Employment, 2006

|              | Po     | lice     | Fir    | re <sup>b</sup> | Gen    | eral     | To      | talc     |
|--------------|--------|----------|--------|-----------------|--------|----------|---------|----------|
|              |        | Level of |        | Level of        |        | Level of |         | Level of |
|              | Number | Servicea | Number | Service         | Number | Service  | Number  | Service  |
| Colorado ROI | 400    | 1.7      | 160    | 0.7             | 3,263  | 14.1     | 3,823   | 16.6     |
| Colorado     | 13,112 | 2.8      | 5,170  | 1.1             | 66,682 | 14.4     | 167,516 | 36.3     |
| Utah ROI     | 199    | 2.0      | 5      | 0.0             | 1,254  | 13.2     | 1,458   | 15.2     |
| Utah         | 5,722  | 2.4      | 1,752  | 0.7             | 30,861 | 12.8     | 83,024  | 34.3     |
| Wyoming ROI  | 229    | 2.6      | 58     | 0.6             | 1,384  | 15.5     | 1,671   | 18.7     |
| Wyoming      | 1,967  | 3.9      | 367    | 0.7             | 5,928  | 11.7     | 26.012  | 51.3     |

a Level of service represents the number of employees per 1,000 persons in each geographic unit.

Sources: Bedont (2006); Behunin (2007); Bever (2007); Bird (2007); Chiaretta (2007); Colorado Bureau of Investigation (2006); Conant (2007); Conteras (2006); Dalpiaz (2007); Daniels (2006); Du (2006); Derragon (2006); Elfdredge (2007); Fire Departments Net (2006); Gueerro (2007); Guida (2007); Hancock (2006); Hoffmeister (2006); Hod (2006); Huntington (2006); Johnson (2007); Karsten (2007); Larson (2007); Lyon (2007); MacIntyre (2006); Mayham (2007); McClean (2007); McClure (2007); Nelson (2006, 2007); Norman (2006); Phelps (2007); Piper (2006); Nunning (2006); Smith (2006); Stewart (2006); Trus (2006); Urasscaro (2007); Utah Department of Publis Safety (2006); Wagner (2007); Wyoming Division of Criminal Investigation (2006).

b The number of firemen does not include volunteers.

<sup>&</sup>lt;sup>c</sup> Total employment does not include teachers, physicians, or health workers.

TABLE 3.10.2-10 State and ROI Public Health Employment, 2003a

|              | Phys   | icians                           | Staffed Ho | spital Beds         |
|--------------|--------|----------------------------------|------------|---------------------|
|              | Number | Level of<br>Service <sup>a</sup> | Number     | Level of<br>Service |
| Colorado ROI | 492    | 2.2                              | 970        | 4.4                 |
| Colorado     | 12,027 | 2.6                              | 9,479      | 2.1                 |
| Utah ROI     | 86     | 0.9                              | 248        | 2.5                 |
| Utah         | 5,156  | 2.1                              | 4,406      | 1.9                 |
| Wyoming ROI  | 98     | 1.1                              | 262        | 3.0                 |
| Wyoming      | 1,008  | 2.0                              | 1,773      | 3.5                 |

a Level of service represents the number of physicians or hospital beds per 1,000 persons in each geographic unit.

Source: U.S. Bureau of the Census (2006e).

TABLE 3.10.2-11 State and ROI Education Data,  $2004^a$ 

|              | Teachers | Student-to-<br>Teacher Ratio | School<br>Dropout Rates |
|--------------|----------|------------------------------|-------------------------|
| Colorado ROI | 2,050    | 16.9                         | 27.3                    |
| Colorado     | 65,305   | 16.9                         | 30.2                    |
| Utah ROI     | 591      | 18.0                         | 21.9                    |
| Utah         | 35,238   | 15.9                         | 19.5                    |
| Wyoming ROI  | 1,196    | 13.9                         | 25.2                    |
| Wyoming      | 10,774   | 15.9                         | 27.8                    |

a The student-to-teacher ratio is the number of students per teacher; dropout rates are based on data for the last three high school grades.

Source: Standard and Poor's (2006).

extensively in the 1970s and 1980s. Gilmore and Duff (1975) and Gilmore (1976), for example, found that rapid growth led to higher divorce and school dropout rates, suicide attempts, social alienation and isolation, juvenile delinquency, and crime, while Gold (1982) found that resource developments led to a weakening of social ties in the local community. Other studies suggested that boomtown growth was responsible for deterioration in the mental health of existing long-term residents and of in-migrants (Lantz and McKeown 1977; Dixon 1978; Weisz 1979; Freudenburg et al. 1982). Increases in crime, violence, and deviance were reported by Lantz and McKeown (1977), Little (1977), and Dixon (1978). Changes in the level of community integration were also studied (Little 1977; Jirovec 1979; Boulding 1981) as were changes in community satisfaction (Murdock and Schriner 1979). Drawing on the ideas of Ferdinand Toennies on the transition of small rural communities through industrialization and urbanization (Toennies 1887), it was often suggested that these changes occurred as a result of the breakdown of established informal social structures in small rural communities and the inadequacy of new, formal social institutions to provide social integration and social control (Cortese and Jones 1977; Little 1977; Moen et al. 1981; Cortese 1982).

The relationship between rapid energy boomtown growth and social disruption came under closer scrutiny in the early 1980s. It was suggested that many of the earlier studies relied on poorly documented or unreliable data and assertions on the nature and extent of boomtown social problems, preferring to accept the presence of social disruption largely in the absence of reliable evidence (Wilkinson et al. 1982). Problems with research design in many of the earlier studies also were highlighted, in particular, the tendency to base research findings on data collected in single communities rather than in numerous communities affected by energy developments (Krannich and Greider 1984), and the use of cross-sectional rather than longitudinal data to chart community social change over time (Brown et al. 1989).

Subsequent work replaced the widespread sense of "alarmed discovery" prevalent in earlier research by more cautious and systematic approaches to the analysis of social change (Smith et al. 2001). Much of the focus became the study of multiple communities in order to separate and understand social change affecting boomtowns and those affecting communities outside energy development regions (England and Albrecht 1984; Freudenburg 1984; Krannich and Greider 1984; Greider and Krannich 1985; Brown et al. 1989; Berry et al. 1990).

Numerous studies have found that rapid growth led to certain forms of social disruption. Brown et al. (1989) found that boomtown growth led to community dissatisfaction, while England and Albrecht (1984) and Greider and Krannich (1985) found evidence of dissatisfaction with community facilities and services. Freudenburg (1986) and Brown et al. (1989) found higher fear of crime in boomtown communities than elsewhere. Brown et al. (1989) also found a reduction in local friendship ties and increases in residential transiency. Greider et al. (1991) found increased isolation, while Greider and Krannich (1985) found a decline in social support among residents of boomtown communities compared with more stable communities. The conclusions of these studies are quite different from those of earlier work on boomtowns, and indicate that periods of rapid population growth are not necessarily associated with social disruption and change in small rural communities.

In addition to studies of impacts across multiple communities, various longitudinal studies of social change also were made. Data collected in communities experiencing rapid growth indicate that divorce and crime rates did not increase significantly (Brookshire and D'Arge 1980; Wilkinson 1983; Wilkinson et al. 1984), although there were increases in delinquency during boom years (Wilkinson and Camasso 1984). Freudenburg and Jones (1991) showed increases in victimization rates in some communities, although Krannich et al. (1989) found no increases in victimization during boom years in several energy communities.

While it is clear that some level of social disruption seems to have occurred during boom years, underlying social structures may not have fundamentally changed. England and Albrecht (1984), for example, found no evidence of the replacement of informal social ties common in rural areas with formal association found in urban areas. Informal and external ties may actually strengthen with length of residence, and boomtown development may facilitate rather than diminish informal social ties. England and Albrecht (1984) found no dramatic shift in community perceptions during years of population growth, and Seyfrit and Sadler-Hammer (1988) found only a limited connection between rapid growth and changing youth attitudes toward community and family. Berry et al. (1990) suggest that interactions among neighbors during rapid growth periods are relatively stable, while Greider et al. (1991) reported no large increases in the level of distrust among neighbors, and that increasing heterogeneity accompanying rapid population growth does not significantly decrease neighboring interaction (Greider and Krannich 1985). Residents of rapidly growing communities may experience expanded opportunities for obtaining social support beyond their local neighborhood, while at the same time maintaining adequate relations with their neighbors.

Rapid population growth seems to have had differential effects across social groups. Freudenberg (1984) considered the effects of social change across different social groups and found no differences in attitudes between adults in boomtowns and in neighboring communities, but noted higher levels of dissatisfaction and alienation among boomtown adolescents. Krannich and Greider (1984) noted deterioration in perceived social integration among temporary mobile home residents in boomtown communities.

Studies of the long-term effects on community attitudes and perceptions show varying levels of community social disruption during the different phases of energy development, with examination of social disruption including the boom, decline, and post-boom recovery periods. The disruptive effects associated with boom growth may not have been permanent in some communities, dissipating in the years after the boom phase ended (Smith et al. 2001), while community satisfaction often has rebounded after declining during boom growth periods, producing an improvement in the sense of community well-being at the end of the boom period (Brown et al. 2005). The decline in the sense of community identity and solidarity during periods of instability caused by rapid population growth rebounded fairly quickly with the return to more stable growth (Greider et al. 1991).

Social Disruption Impacts in Relevant NEPA Documents. Social impacts are not considered in any detail in the various NEPA-related assessments that have been made since the early 1970s of the potential impacts of shale/tar sands projects and other relevant large-scale

energy resource developments. Consequently, there is little indication from these documents of the extent to which proposed oil shale and tar sands developments would produce social disruption in local communities located near these facilities.

In the Final Environmental Impact Statement for the Prototype Oil Shale Leasing Program (DOI 1973), it is recognized that community structures and organizations will be affected, together with community social structures and lifestyles. However, beyond a brief description of potential problems in the local community adjusting to the influx of in-migrants, and the impacts of contrasting urban and rural lifestyles and potential impacts on crime, cultural and social change are adjudged to be highly subjective in nature and therefore difficult to adequately measure. Subsequent EISs also recognize the potential social disruption associated with oil shale development. The Final Programmatic Environmental Impact Statement on Development Policy Options for the Naval Oil Shale Reserves in Colorado (DOE 1982), for example, suggests that rapid population growth and cultural differences between resident and nonresident groups may lead to social problems and social conflict. Alcoholism, drug abuse, mental illness, divorce and juvenile delinquency are mentioned as potential impacts of rapid population growth associated with oil shale development, but no data or analysis are presented.

The Final Environmental Impact Statement on Uintah Basin Synfuels Development (BLM 1983) uses evidence of social impacts associated with oil and gas development to suggest that additional development would lead to deterioration in attitudes toward quality of life, notably with respect to the management of local growth, particularly on Indian reservations. The Utah Combined Hydrocarbon Leasing Regional Environmental Impact Statement (BLM 1984b) also draws attention to potential impacts associated with changes in lifestyle with decreasing local cultural homogeneity, particularly social alienation that might be experienced on Indian reservations.

In the absence of social baseline data, a number of EISs have suggested that social disruption is likely to occur once an arbitrary population growth rate associated with oil shale development has been reached. The Green River–Hams Fork EIS (BLM 1980) assumes that an annual rate of 10% would result in a breakdown in social structures, with a consequent increase in alcoholism, depression, suicide, social conflict, divorce, delinquency and deterioration in levels of community satisfaction. In addition to population growth rates, the EIS suggests cultural similarities between existing and new residents and the perceived political helplessness of local residents also cause social disruption. The Final Supplemental Environmental Impact Statement for the Prototype Oil Shale Leasing Program (BLM 1983b) supports the growth rate approach to identifying communities likely to suffer social disruption, also indicating potential elements of social disruption that may affect small rural communities.

3.10.2.2.6 Social Change. Although an extensive literature in sociology documents the most significant components of social change in energy boomtowns, the nature and magnitude of the social impact of energy developments in small rural communities are still unclear. While some degree of social disruption is likely to accompany large-scale in-migration during the boom phase, there is insufficient evidence to predict the extent to which specific communities are likely to be impacted, which population groups within each community are likely to be most

affected, and the extent to which social disruption is likely to persist beyond the end of the boom period (Smith et al. 2001). A significant issue for local communities during oil and gas development is the lack of "commitment to the county" of many migrant workers, according to a Colorado county manager. Many construction workers do not bring family members to the area, and this has led to "social issues," requiring an additional 33 social workers in Garfield County, often to deal with "child welfare issues," in particular, the collection of child support payments, according to a Colorado county manager. There has also been an increase in the number of sheriff's deputies to combat increases in gang-related crime.

There are various measures of social change, including violent, drug-related, and juvenile crime rates, alcoholism and illicit drug use, divorce rates, and mental illness.

Crime rates vary between each ROI and between each ROI and each state (Table 3.10.2-12). Data for 2004 show that violent crime rates were lower in the Colorado and Utah ROIs than they were in Wyoming, with rates of 1.2 incidents per 1,000 population in the Colorado ROI and 1.6 per 1,000, compared with 2.3 per 1,000 in Wyoming. Rates of violent crime are higher in the state as a whole in Colorado and Utah than in the ROI in each state, while rates in Wyoming as a whole are lower than in the Wyoming ROI. Drug-related crime data are only available at the ROI level for Colorado, and show a slightly lower level in the ROI (3.9 incidents per 1,000 compared with 4.2 per 1,000 in the state). Juvenile crime is lower in each ROI than in the corresponding state, with 22.6 incidents per 1,000 in Colorado, 13.8 per 1,000 in the Utah ROI and 5.1 in the Wyoming ROI. Overall crime rates are higher in the Utah ROI (67.5 incidents per 1,000) than in Colorado (30.9) and Wyoming (27.2). Over time, it would appear that crime rates in the Colorado and Wyoming ROI are declining, with lower rates per 1,000 population in 2004 compared with 2001 for each category of crime in the Colorado ROI,

TABLE 3.10.2-12 State and ROI Crime Ratesa

|              | Violent | Crime | Drug | Crime | Juvenil | e Crime | Total | Crime |
|--------------|---------|-------|------|-------|---------|---------|-------|-------|
|              | 2001    | 2004  | 2001 | 2004  | 2001    | 2004    | 2001  | 2004  |
| Colorado ROI | 1.2     | 1.2   | 5.7  | 3.9   | 32.3    | 22.6    | 45.6  | 30.9  |
| Colorado     | 1.6     | 1.4   | 4.5  | 4.2   | 40.3    | 32.8    | 55.0  | 50.4  |
| Utah ROI     | NAb     | 1.6   | NA   | NA    | NA      | 13.8    | NA    | 67.5  |
| Utah         | NA      | 2.3   | NA   | NA    | NA      | 11.8    | NA    | 51.6  |
| Wyoming ROI  | 2.4     | 2.3   | NA   | NA    | 7.6     | 5.1     | 31.0  | 27.2  |
| Wyoming      | 1.2     | 1.0   | NA   | NA    | 10.9    | 9.3     | 525.0 | 52.7  |

a Rates are the number of crimes per 1,000 population.

Sources: Colorado Bureau of Investigation (2006); Utah Department of Public Safety (2006); Wyoming Division of Criminal Investigation (2006).

b NA = not available.

and violent, juvenile and total crime in the Wyoming ROI. Rates in the two states have also declined between the same two years.

Although statistics on alcoholism, drug use, divorce, and mental health are not available for each ROI, data for each state may provide some information on social change in each ROI. Rates of alcoholism are higher in Colorado (9.2 % of the total population with dependence or abuse of alcohol) and Wyoming (9.4%) than in the United States as a whole (7.6%), while rates in Utah (7.3%) are lower than in the other two states and in the nation (Table 3.10.2-13). Rates of drug use in Colorado (3.3% of the total population with dependence or abuse of illicit drugs) and Utah (3.5%) are slightly higher than the rate for Wyoming (2.9%), and both are higher than the national average (3.0%). Divorce rates in Colorado (4.7 per 1000 population) and Wyoming (5.4%) are slightly higher than the national average (4.1%) and the rate for Utah (4.1%). Data for mental health show that for Colorado, 11.4% of the population suffered from serious psychological stress, with slightly higher rates in Wyoming (13.3%) and Utah (14.6%), rates that were higher than in the nation as a whole (9.6%).

### 3.10.3 Recreation Economy

Large areas both within, and in the vicinity of, each oil shale and tar sands ROI in Colorado, Utah, and Wyoming are used for recreation. Federal land in these areas includes land administered by the BLM, USFWS, NPS, DOI, and BOR (see Table 3.10.3-1). Each state also has numerous State Parks in each oil shale and tar sands region that are popular for recreation.

Two approaches can be used to measure the importance of recreational activities: (1) visitation statistics and (2) economic impact of recreational activities and resources in the oil shale and tar sands region and vicinity. Visitation statistics provide useful information on the

| TABLE 3.10.2-1 | 3 State | Indices of | Social | Changea |
|----------------|---------|------------|--------|---------|
|----------------|---------|------------|--------|---------|

|          | Alcoholism | Illicit Drug Use | Divorceb | Mental Health |
|----------|------------|------------------|----------|---------------|
| Colorado | 9.2        | 3.3              | 4.7      | 11.4          |
| Utah     | 7.3        | 3.5              | 4.1      | 14.6          |
| Wyoming  | 9.4        | 2.9              | 5.4      | 13.3          |
| U.S.     | 7.6        | 3.0              | 4.1      | 9.6           |

- a Data for alcoholism, drug use, and metal health represent percent of the population over 12 years of age with dependence or abuse of alcohol, illicit drugs, or suffering from serious psychological distress. Data are for 2005.
- b Divorce rates are the number of crimes per 1,000 population. Data are for 2004.

Sources: SAMHSA (2006); CDC (2006).

TABLE 3.10.3-1 ROI Recreation Sector<sup>a</sup> Activity, 2004

| ROIb     | Employment <sup>b</sup> | Share of ROI<br>Employment<br>(%) | Income<br>(\$ million) |
|----------|-------------------------|-----------------------------------|------------------------|
| Colorado | 10.970                  | 14.0                              | 122.9                  |
| Utah     | 3,227                   | 10.7                              | 23.9                   |
| Wyoming  | 4,826                   | 15.5                              | 49.6                   |

- a The recreation sector includes amusement and recreation services, automotive rental, eating and drinking places, hotels and lodging places, museums and historic sites, recreational vehicle parks and campsites, scenic tours, and sporting goods retailers.
- b The Colorado ROI includes Delta, Garfield, Mesa, Moffat, and Rio Blanco Counties; the Utah ROI includes Carbon, Duchesne, Emery, Garfield, Grand, San Juan, Uintah, and Wayne Counties; the Wyoming ROI includes Carbon, Lincoln, Sweetwater, and Uinta Counties.

popularity of specific recreational activities or locations. However, these statistics are often incomplete and may underestimate the value of these resources. Natural resources on public lands have a value not only in terms of their recreational use but also in terms of their potential as a recreational destination for current and future users. Since no data are available on how recreational resources on public lands in the oil shale and tar sands ROIs are valued by potential users, estimates of the economic impact of recreational activities on employment and income in each ROI are presented.

#### 3.10.3.1 Visitation Statistics

The various natural, ecological, and cultural resources on federal and state land located in the oil shale and tar sands ROIs (see Table 3.10.3-1), or in the immediate surrounding areas, attract a large number of annual visitors who use these resources for a range of activities, including hunting, fishing, boating, canoeing, wildlife watching, camping, hiking, horseback riding, mountain climbing, and sightseeing. Although general visitation statistics are usually collected by the various agencies administering federal and state land, the number of visitors using public lands for recreational activities in each ROI is either not collected, available, or reported separately in federal and state agency statistics.

Statistics available at the state level show that in 2001, almost 1.2 million people participated in hunting and fishing in Colorado (of which 60% were state residents) and 1.6 million in wildlife watching (USFWS 2002c). In Utah, participation in these activities was

lower, with 517,000 fishermen and hunters (80% of whom, on average, were state residents), and 806,000 people participating in wildlife watching; in Wyoming in 2001, there were 293,000 anglers and hunters (45% of whom, on average, resided in the state) and 498,000 wildlife watchers. Data from Utah show that three facilities in the state located in the oil shale and tar sands ROI—Anasazi Indian Village State Park, Dead Horse Point State Park, and Edge of the Cedars State Park—together, were visited by 255,766 people in 1999 (Utah State Legislature 2000).

# 3.10.3.2 Economic Impact of Recreational Activities

The economic value of recreation in the oil shale and tar sands areas in each state can be estimated through the impact recreation has on the economy of the ROI in each state by identifying sectors in the ROI (see Table 3.10.3-1) economy in which expenditures on recreational activities occur. Although not all activities in these sectors are directly related to recreation on federal lands, with some activity also occurring on private land (e.g., dude ranches, golf courses, bowling alleys, and movie theaters), it could be argued that the majority of individuals drawn to recreational activities in each oil shale and tar sands area with expenditures in these sectors are primarily attracted by the prospect of visiting recreational resources located on adjacent federal land.

Expenditures associated with recreational activities form an important part of the economy of the ROIs and states in which they are located. In 2004, 10,970 people were employed in the Colorado ROI in the various sectors identified as recreation, constituting 14% of total ROI employment (Table 3.10.3-1). Recreation spending also produced almost \$123 million in income in the ROI in 2004. The recreation sector was smaller in the Wyoming ROI (4,486 persons employed, producing almost \$50 million in income), although it represents a larger share (15.5%) of total ROI employment, and in Utah (3,227 employed, and almost \$24 million in income), it contributed 10% of total ROI employment in 2004.

## 3.10.4 Transportation

#### 3.10.4.1 Colorado

U.S. Interstate 70 and Colorado State Highway 64 are the major east-west arterials bounding the general area of the Piceance Basin oil shale resource area in Colorado on the south and north, respectively. On the east side of the Basin is Colorado State Highway 13, the major north-south arterial. Rio Blanco County Roads such as 5, 24, 26, 29, 69, 85, 91, 122, and 144, which provide access to the basin interior, are accessed from State Highways 13 and 64. On the west side of the basin is north-south State Highway 139; this arterial, however, does not provide ready access to the interior of the oil shale area. There are numerous lesser gravel or dirt rural roads within the Piceance Basin that are used primarily by recreationists, ranchers, and oil and gas operators.

With the growth of the oil and gas industry in recent years, traffic in the Piceance Basin has increased markedly. Well drilling equipment, pipeline construction equipment, and construction and production traffic travel along these roads throughout the day. These roads were originally designed for rural and agricultural uses and were not intended for heavy loads and traffic volumes associated with oil and gas production and construction. The increasing traffic volume, frequency, and vehicle size on these rural roads has contributed to an increase in the costs associated with repair and maintenance of these county roads.

Table 3.10.4-1 gives average daily traffic numbers in 2005 compiled from the Colorado Department of Transportation (CDOT) and the Garfield and Rio Blanco County Road and Bridge Department for major roads in the Piceance Basin.

Repair and maintenance of county roads represents the single largest dollar impact on Rio Blanco County (Exxon Mobil 2006). These county roads, originally designed for rural and agricultural uses, are experiencing increased traffic volume, frequency of use, and size of vehicles. The commuting workforce and oversized loads typical of the oil and gas industry have contributed to the increased costs associated with repair and maintenance, particularly in the Piceance Basin area.

#### 3.10.4.2 Utah

The primary access for the Uinta Basin oil shale and tar sands resources from the north is via U.S. Highways 40 and 191, and from the south via I-70. The major routes into the basin from U.S. Highways 40 and 191 are local roads 45 and 88 south from U.S. 40. U.S. Highway 6 parallels the southwest side of the Uinta Basin, and road 123 links this highway with the interior

TABLE 3.10.4-1 Baseline Average Daily Traffic Data for Project Area Roads

| Road                                                              | Baseline Average Daily Traffic<br>(number of vehicles per day) |
|-------------------------------------------------------------------|----------------------------------------------------------------|
| Colorado Highway 13 between Rifle and the junction with the south |                                                                |
| end of Rio Blanco County (RBC) Road 5 (Piceance Creek Road)       | 2,300a                                                         |
| Colorado Highway 13 between south end of RBC Road 5 and           |                                                                |
| Colorado Highway 64 near Meeker                                   | 2,300a                                                         |
| Colorado Highway 64 between Meeker and north end of RBC Road 5    | 830 <sup>a</sup>                                               |
| Colorado Highway 64 between north end of RBC Road 5 and Colorado  |                                                                |
| Highway 139                                                       | 1,700 <sup>a</sup>                                             |
| I-70 from Rifle to Grand Junction                                 | 14,300-23,100a                                                 |
| RBC Road 5 (Piceance Creek Road)                                  | 562-1076b                                                      |

a CDOT (2004).

b Rio Blanco County Road and Bridge Department (2005). Lower traffic range was measured in May, high traffic range was measured in late October/early November, coinciding with big game hunting season.

of the basin in the vicinity of the Sunnyside STSA. Access to the San Rafael STSA is from I-70, which traverses that area. Access to the Tar Sand Triangle STSA is from Highways 24 and 95. There also are numerous other gravel or dirt rural roads within the Uinta Basin and tar sands resource areas that are used primarily by recreationists, local ranchers, and oil and gas operators.

## 3.10.4.3 Wyoming

U.S. Interstate 80 traverses the central part of the Green River Basin and crosses the northern edge of the Washakie Basin in Wyoming and provides primary access to the oil shale resources in these areas. Additional major roads passing through or near the Green River Basin are U.S. Highways 30, 189, and 191. Other major roads in the Green River Basin are Highways 28, 240, 372, 410, 412, 414, and 530. The north-south Highways 430 and 789 also provide access to the Washakie Basin. Numerous other local roads occur in the oil shale resource areas, many of which are gravel or dirt and are used primarily by recreationists, local ranchers, and oil and gas operators.

### 3.11 ENVIRONMENTAL JUSTICE

E.O. 12898, "Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations," (U.S. President 1994) formally requires federal agencies to incorporate environmental justice as part of their missions. Specifically, it directs agencies to address, as appropriate, any disproportionately high and adverse human health or environmental effects of their actions, programs, or policies on minority and low-income populations.

The analysis of the impacts of oil shale and tar sands development on environmental justice issues follows guidelines described in the CEQ's Environmental Justice Guidance under the National Environmental Policy Act (CEQ 1997). The analysis has three parts:

(1) a description of the geographic distribution of low-income and minority populations in the affected area; (2) an assessment of whether construction and operation would produce impacts that are high and adverse; and (3) if impacts are high and adverse, a determination as to whether these impacts disproportionately affect minority and low-income populations.

The analysis of environmental justice issues considers impacts at the state level in the three states—Colorado, Utah, and Wyoming. A 50-mi buffer was used to capture the effects of oil shale and tar sands development construction and operation that may occur beyond designated land.

The description of the geographic distribution of minority and low-income groups is based on demographic data from the 2000 Census (U.S. Bureau of the Census 2007). The following definitions were used to define minority and low-income population groups:

 Minority. Persons are included in the minority category if they identify themselves as belonging to any of the following racial groups: (1) Hispanic or Latino, (2) Black (not of Hispanic or Latino origin) or African American, (3) American Indian or Alaska Native, (4) Asian, or (5) Native Hawaiian or Other Pacific Islander.

Beginning with the 2000 Census, where appropriate, the census form allows individuals to designate multiple population group categories to reflect their ethnic or racial origins. In addition, persons who classify themselves as being of multiple racial origins may choose up to six racial groups as the basis of their racial origins. The term *minority* includes all persons, including those classifying themselves in multiple racial categories, except those who classify themselves as not of Hispanic or Latino origin and as White or "Other Race" (U.S. Bureau of the Census 2007).

The CEQ guidance proposed that minority populations should be identified where either (1) the minority population of the affected area exceeds 50%, or (2) the minority population percentage of the affected area is meaningfully greater than the minority population percentage in the general population or other appropriate unit of geographic analysis.

In this PEIS, both criteria were applied in using the Census Bureau data for census block groups; consideration was given to the minority population that is both more than 50% and 20 percentage points higher than in the state (the reference geographic unit).

Low Income. Individuals who fall below the poverty line are included in this
category. The poverty line takes into account family size and age of
individuals in the family. In 1999, for example, the poverty line for a family
of five with three children below the age of 18 was \$19,882. For any family
below the poverty line, all family members are considered to be below the
poverty line for the purposes of analysis (U.S. Bureau of Census 2007).

The CEQ guidance proposed that low-income populations should be identified where either (1) the low-income population of the affected area exceeds 50%, or (2) the low-income population percentage of the affected area is meaningfully greater than the low-income population percentage in the general population or other appropriate unit of geographic analysis.

In this PEIS, both criteria were applied in using the Census Bureau data for census block groups; consideration was given to the low-income population that is both more than 50% and 20 percentage points higher than in the state (the reference geographic unit).

Data in Tables 3.11-1 and 3.11-2 show the minority and low-income composition of total population located in the designated oil shale and tar sands development areas and associated 50-mi buffers in the three states (based on 2000 Census data and CEQ Guidelines). Individuals identifying themselves as Hispanic or Latino are included in the table as a separate entry.

TABLE 3.11-1 Minority and Low-Income Populations in the Oil Shale Resource Area and Buffer

|                                           | Colorado<br>Block Groups | Utah<br>Block Groups | Wyoming<br>Block Group: |
|-------------------------------------------|--------------------------|----------------------|-------------------------|
| Total population                          | 207,319                  | 72,795               | 77,966                  |
| White, non-Hispanic                       | 176,798                  | 64,089               | 69,054                  |
| Hispanic or Latino                        | 24,768                   | 4,051                | 5,195                   |
| Non-Hispanic or Latino minorities         | 5,753                    | 4,655                | 3,717                   |
| One race                                  | 3,284                    | 3,646                | 2,736                   |
| Black or African American                 | 761                      | 131                  | 369                     |
| American Indian or Alaskan Native         | 1,245                    | 3,248                | 1,929                   |
| Asian                                     | 968                      | 182                  | 356                     |
| Native Hawaiian or other Pacific Islander | 144                      | 42                   | 36                      |
| Some other race                           | 166                      | 43                   | 46                      |
| Two or more races                         | 2,469                    | 1,009                | 981                     |
| Total minority                            | 30.521                   | 8,706                | 8,912                   |
| Low-income                                | 18,765                   | 9,713                | 6,953                   |
| ROI percent minority                      | 14.7                     | 12.0                 | 11.4                    |
| State percent minority                    | 34.0                     | 19.8                 | 14.3                    |
| ROI percent low-income                    | 9.1                      | 13.3                 | 8.9                     |
| State percent low-income                  | 9.0                      | 9.2                  | 11.1                    |

Source: U.S. Bureau of the Census (2007).

However, because Hispanics or Latinos can be of any race, this number also includes individuals who identify themselves as being part of one or more of the population groups listed in the table.

On the basis of 2000 Census data, low-income and minority populations are located in each of the three states where oil shale and tar sands development may occur (Figures 3.11-1 through 3.11-4).

In Utah, there are six census block groups within 50 mi of the oil shale area where the minority population exceeds 50% of the total population in each block group; there are two block groups where the minority share of the total block group population exceeds the state average by more than 20 percentage points. This minority population is located in the northeastern part of the state in the immediate vicinity of the oil shale resource area itself, that is, in the southeastern portion of the Uintah and Ouray Indian Reservation, and in the north-central part of the state, to the east of Springville. Five census block groups within 50 mi of the oil shale area exceed the state percent low-income by more than 20 percentage points; one block group has more than

TABLE 3.11-2 Minority and Low-Income Populations in the Tar Sands Resource Area and Buffer

|                                           | Arizona<br>Block Groups | Colorado<br>Block Groups | Utah<br>Block Groups | Wyoming<br>Block Group: |
|-------------------------------------------|-------------------------|--------------------------|----------------------|-------------------------|
| Total population                          | 3,051                   | 117,465                  | 388,585              | 6,721                   |
| White, non-Hispanic                       | 58                      | 102,109                  | 337,000              | 6,252                   |
| Hispanic or Latino                        | 18                      | 11,823                   | 27,012               | 315                     |
| Non-Hispanic or Latino minorities         | 3,033                   | 3,533                    | 24,573               | 154                     |
| One race                                  | 3,009                   | 2,001                    | 19,487               | 88                      |
| Black or African American                 | 5                       | 455                      | 966                  | 11                      |
| American Indian or Alaskan Native         | 2,945                   | 734                      | 13,195               | 55                      |
| Asian                                     | 0                       | 596                      | 3,328                | 14                      |
| Native Hawaiian or other Pacific Islander | 1                       | 105                      | 1,648                | 1                       |
| Some other race                           | 0                       | 111                      | 350                  | 7                       |
| Two or more races                         | 24                      | 1,532                    | 5,086                | 66                      |
| Total minority                            | 2,993                   | 15,356                   | 51,585               | 469                     |
| Low-income                                | 1,430                   | 11,611                   | 57,014               | 531                     |
| ROI percent minority                      | 98.1                    | 13.1                     | 13.3                 | 7.0                     |
| State percent minority                    | 36.2                    | 34.0                     | 19.8                 | 14.3                    |
| ROI percent low-income                    | 46.9                    | 9.9                      | 14.7                 | 7.9                     |
| State percent low-income                  | 13.9                    | 9.0                      | 9.2                  | 11.1                    |

Source: U.S. Bureau of the Census (2007).

50% low-income. The low-income population is centered in roughly the same area as the minority population, with five block groups in the southeastern portion of the Uintah and Ouray Indian Reservation, and one located in the vicinity of Price.

Within 50 mi of the oil shale area in Colorado, there is one census block group that has a minority population exceeding 50% of the total population; it is located to the east of the oil shale area, in Carbondale. Two census block groups with a low-income population that exceeds the state average by more than 20 percentage points are located in Grand Junction. In Wyoming, there are two census block groups located in the Wind River Indian Reservation with a minority population that is more than 50% minority. One census block group with a low-income population exceeding the state average by more than 20 percentage points is also located in the Wind River Indian Reservation.

Fourteen census block groups occur within 50 mi of the tar sands resource areas in Utah where the minority population exceeds 50% of the total population in each block group, and four

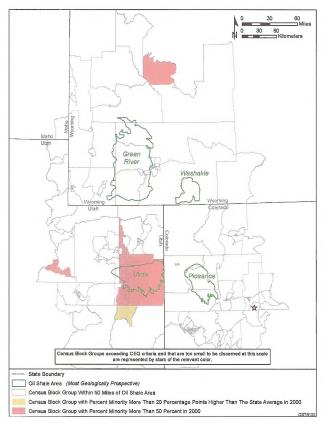



FIGURE 3.11-1 Minority Population Concentration in Census Block Groups within Oil Shale Resource Areas and Associated 80-km (50-mi) Buffer

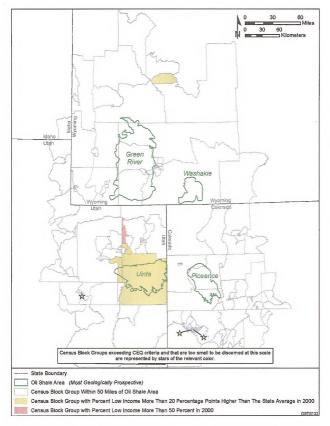



FIGURE 3.11-2 Low-Income Population Concentration in Census Block Groups within Oil Shale Resource Areas and Associated 80-km (50-mi) Buffer

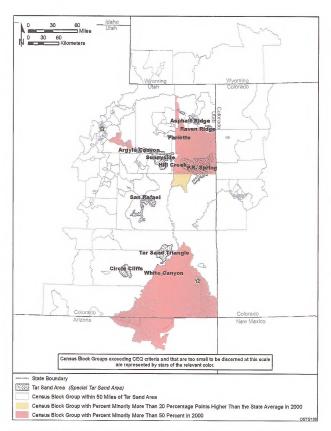



FIGURE 3.11-3 Minority Population Concentration in Census Block Groups within Tar Sands Resource Areas and Associated 80-km (50 ml) Buffer

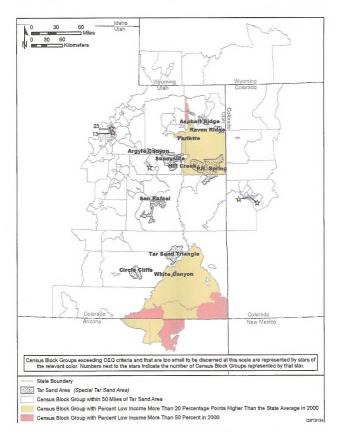



FIGURE 3.11-4 Low-Income Population Concentration in Census Block Groups within Tar Sands Resource Areas and Associated 80-km (50 mi) Buffer

block groups where the minority share of the total block group population exceeds the state average by more than 20 percentage points. These block groups are located in two separate areas in the state. In the northeastern part of the state, the minority population within 50 mi of the tar sands area is located in the southeastern portion of the Uintah and Ouray Indian Reservation, and in the north-central part of the state to the east of Springville and in Provo. In the southeastern part of the state, the minority population is located to the south of the Tar Sand Triangle and White Canyon areas and includes Blanding and the Navajo and Ute Mountain Indian Reservations. Within 50 mi of the tar sands resource areas in Utah, there are 32 block groups exceeding the state percent low-income by more than 20 percentage points; in Colorado there are 2. There are 18 block groups in Utah where the low-income population is more than 50% of the total population. These groups are centered in much the same area as the minority population, that is, in the southeastern portion of the Uintah and Ouray Indian Reservation, in the north-central part of the state to the east of Springville and in Provo, and in the area to the south of Tar Sand Triangle.

#### 3.12 REFERENCES

AGFD (Arizona Game and Fish Department), 2006, Arizona Game and Fish Department Heritage Data Management System: Plant Abstracts, Distribution, Maps and Illustrations. Available at http://www.azgfd.gov/w\_c/edits/hdms\_abstracts\_plants.shtml. Accessed July 19, 2006.

Bartel, K., 2002, personal communication between Bartel (Bureau of Land Management, Vernal Field Office, Vernal, Utah) and D. Harris (SWCA Environmental Consultants, Vernal, Utah), April 2.

Bedont, P., 2006, personal communication from Bedont (Price City Fire Department, Utah) to E. Moret (Argonne National Laboratory, Argonne, Ill.), March 3.

Behnke, R.J., 1992, Native Trout of Western North America, Monograph 6, American Fisheries Society, Bethesda, Md.

Behnke, R.J., et al., 1982, "A Survey and Analysis of Existing Information on Fishes in Northwest Colorado," Vol. 6 of Wildlife Conservation and Energy Development in Northwest Colorado, D.W. Crumpacker (editor), Ecological Services Section, Colorado Division of Wildlife, Denver, Colo.

Behrens, J., and J. Brooks, 2000, "Wind in Their Wings: The Condor Recovery Program," Endangered Species Bulletin XXV:8–9, May/June.

Behunin, R., 2007, personal communication from Behunin (Vernal City Corporation, Utah) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 16.

Beidleman, C.A., 2000, Colorado Land Bird Conservation Plan Version 1.0, Colorado Partners in Flight. Available at http://www.blm.gov/wildlife/plan/pl-co-10.pdf. Accessed Sept. 26, 2006.

Bengston, G., 2007, Bengston, G., 2007, Ethnohistoric Overview of Native American Land Use in Southwestern Wyoming, Northwestern Colorado, and Eastern Utah, prepared for the Bureau of Land Management, Colorado State Office, by Argonne National Laboratory, Argonne, Ill., Feb.

Berry, E.H., et al., 1990, "A Longitudinal Analysis of Neighboring in Rapidly Changing Rural Places," *Journal of Rural Studies* 6:175–186.

Bestgen, K.R., and M.A. Williams, 1994, "Effects of Fluctuating and Constant Temperatures on Early Development and Survival of Colorado Squawfish," *Transactions of the American Fisheries Society* 123:574–579.

Bestgen, K.R., et al., 1998, Downstream Transport of Colorado Squawfish Larvae in the Green River Drainage: Temporal and Spatial Variation in Abundance and Relationships with Juvenile Recruitment. Larval Fish Laboratory. Colorado State University, Fort Collins, Colo.

Bestgen, K.R., et al., 2002, Status of Wild Razorback Sucker in the Green River Basin, Utah and Colorado, Determined from Basinwide Monitoring and Other Sampling Programs, Larval Fish Laboratory, Colorado State University, Fort Collins, Colo.

Bever, W., 2007, personal communication from Bever (Delta County, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 20.

Bird, P., 2007, personal communication from Bird (Grand County, Utah) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 20.

Birdnature.com, 2001, North American Migration Flyways. Available at http://www.birdnature.com/flyways.html. Accessed Sept. 26, 2006.

Blackett, R.E., 1996, *Tar-Sand Resources of the Uinta Basin, Utah: A Catalog of Deposits*, Open-File Report 335, Utah Geological Survey.

BLM (Bureau of Land Management), 1980, Green River-Hams Fork Draft Environmental Impact Statement: Coal, Denver, Colo.

BLM, 1981, Planning for Recreation Resources, BLM Handbook 8320, U.S. Department of the Interior.

BLM, 1982, Hanksville-Henry Mountains Management Framework Plan, Richfield District, Utah.

BLM, 1983a, Final Supplemental Environmental Impact Statement for the Prototype Oil Shale Leasing Program, Colorado State Office, Denver, Colo., Jan.

BLM, 1983b, Final Environmental Impact Statement on the Glenwood Springs Resource Management Plan, Glenwood Springs, Colo., June.

- BLM, 1984, *Utah Combined Hydrocarbon Leasing Regional Final EIS, Volume 1: Regional Analyses*, Utah State Office, Salt Lake City, Utah, June.
- BLM, 1984a, Visual Resource Management Handbook, BLM Handbook 8400, Release 8-24, U.S. Department of the Interior, April.
- BLM, 1984b, Utah Combined Hydrocarbon Leasing Regional Final EIS: Volume I: Regional Analyses, Richfield District Office, Richfield, Utah, June.
- BLM, 1985a, Record of Decision and Rangeland Program Summary for the Book Cliffs Resource Management Plan, Vernal District Office, Utah, May.
- BLM, 1985b, Piceance Basin Resource Management Plan, White River Field Office, Colo.
- BLM, 1985c, Grand Junction Resource Area Management Plan and Environmental Impact Statement, Draft, Grand Junction District, Colo., March.
- BLM, 1986a, Visual Resource Inventory, BLM Manual Handbook 8410-1, Release 8-28, U.S. Department of the Interior, Jan. 17.
- BLM, 1986b, Visual Resource Contrast Rating, BLM Manual Handbook 8431-1, Release 8-30, U.S. Department of the Interior, Jan. 17.
- BLM, 1986c, Record of Decision for the Kemmerer Resource Management Plan and Rangeland Program Summary Document, Kemmerer Resource Area, Rock Springs District, Wyo., June.
- BLM, 1987a, Grand Junction Resource Area Resource Management Plan and Record of Decision, Grand Junction District, Colo., Jan.
- BLM, 1987b, San Juan Resource Management Plan Proposed Resource Management Plan, Final Environmental Impact Statement, Vol. 1, San Juan Resource Area, Moab District, Utah, Sept.
- BLM, 1987c, Salinity Control on BLM-administered Public Lands in the Colorado River Basin: A Report to Congress, BLM Service Center, Denver, Colo.
- BLM, 1988, Record of Decision and Resource Management Plan, Glenwood Springs Resource Area, Grand Junction District, Colo., June.
- BLM, 1989, Decision Record and Finding of No Significant Impact for Amendment to the Management Framework Plan for the Price River Resource Area, Moab District, Price River Resource Area, Utah, June.
- BLM, 1990, Great Divide Resource Area Record of Decision and Approved Resource Management Plan, Rawlins District Office, Great Divide Resource Area, Wyo., Nov.

- BLM, 1991a, San Rafael Final Resource Management Plan, Moab District, San Rafael Resource Area, Utah, May.
- BLM, 1991b, Resource Management Plan Record of Decision and Rangeland Program Summary for the San Juan Resource Area, Moab District, Utah, Utah, March.
- BLM, 1994a, Diamond Mountain Resource Area Resource Management Plan and Record of Decision. Vernal District Office, Utah.
- BLM, 1994b, White River Resource Area Draft Resource Management Plan and Environmental Impact Statement, Craig District, Colo., Oct.
- BLM, 1996, White River Resource Area Proposed Resource Management Plan and Final Environmental Impact Statement, Colorado State Office, White River Resource Area, Craig District, Colo., June.
- BLM, 1997a, White River Record of Decision and Approved Resource Management Plan, White River Resource Area, Craig District, Meeker, Colo., July.
- BLM, 1997b, Record of Decision and Green River Resource Management Plan, Green River Resource Area. Rock Springs District Office, Wyo., Oct.
- BLM, 1998, 8270—Paleontological Resource Management, Release 8-68, U.S. Department of the Interior, July 13.
- BLM, 1999a, Grand Staircase-Escalante National Monument Approved Management Plan Record of Decision, Grand Staircase-Escalante National Monument, Cedar City, Utah, Nov.
- BLM, 1999b, Glenwood Springs Resource Area Oil & Gas Leasing & Development Record of Decision and Resource Management Plan Amendment, Colorado State Office, March.
- BLM, 2001a, Environmental Assessment Record, Oil Shale Withdrawal Revocation/RMP Amendments, Grand Junction Field Office, White River Field Office, and Glenwood Springs Field Office, Nov.
- BLM, 2001b, Recreation Guide to the San Rafael Area, Price Field Office, Price, Utah. Available at http://www.blm.gov/utah/price/SanRafaelDesert.htm. Accessed June 1, 2006.
- BLM, 2001c, *BLM Manual 6840 Special Status Species Management*, Release 6-121, U.S. Department of the Interior, Jan. 17.
- BLM, 2002a, Mineral Potential Report for Price Field Office, Carbon and Emery Counties, Utah, Price Field Office, Utah, Aug.
- BLM, 2002b, Mineral Potential Report for the Vernal Planning Area, Vernal Field Office, Utah, Oct.

- BLM, 2002c, Decision Record, Finding of No Significant Impact and Environmental Assessment for 2-D Seismic Exploration by Veritas DGC Land, Inc., Uintah County, Utah, EA No. UT-080-2002-21, Vernal Field Office, Utah, Oct.
- BLM, 2003, Kemmerer Field Office Planning Area: Summary of the Management Situation Analysis. Kemmerer, Wyo., Nov.
- BLM, 2004a, Draft Resource Management Plan and Draft Environmental Impact Statement for the Price Field Office, Price Field Office, Utah, July.
- BLM, 2004b, Kemmerer Field Office Planning Area Mineral Assessment Report, Kemmerer Field Office, Wyo., Jan.
- BLM, 2004c, Draft Roan Plateau Resource Management Plan Amendment and Environmental Impact Statement, Colorado State Office, Glenwood Springs Field Office, Colo., Nov.
- BLM, 2004d, Final Environmental Impact Statement for the Jack Morrow Hills Coordinated Activity Plan, Proposed Green River Resource Management Plan Amendment, Rock Springs Field Office, Wyo., July.
- BLM, 2004e, Rawlins Resource Management Plan and Draft Environmental Impact Statement, Rawlins Field Office, Wyo., Dec.
- BLM, 2004f, Environmental Assessment for the West Tavaputs Plateau Drilling Program, Carbon and Duchesne Counties, Utah, UT-070-2004-28, Price Field Office, Price, Utah, July.
- BLM, 2005a, Mineral Potential Report, Richfield Field Office, Utah, March.
- BLM, 2005b, Reasonably Foreseeable Development Scenario for Oil and Gas, Richfield Field Office, Utah, March.
- BLM, 2005c, Wild and Scenic River Eligibility and Tentative Classification Report, Richfield Field Office, Utah, March.
- BLM, 2005d, Evaluation Report, Areas of Critical Environmental Concern, Richfield Resource Management Plan, Richfield Field Office, Utah, Jan.
- BLM, 2005e, Draft Resource Management Plan Revision and Environmental Impact Statement for the Vernal Field Office Planning Area, Vernal Field Office, Utah, Jan.
- BLM, 2005f, West Douglas Herd Area Amendment to the White River Resource Management Plan, Environmental Assessment (CO-WRFO-05-083-EA), White River Field Office, Colo., April.

- BLM, 2006a, Roan Plateau Planning Area, Including Former Naval Oil Shale Reserves Numbers 1 and 3, Resource Management Plan Amendment and Environmental Impact Statement. Colorado State Office, Aug.
- BLM, 2006b, Record of Decision and Jack Morrow Hills Coordinated Activity Plan/Green River Resource Management Plan Amendment, Rock Springs Field Office, Wyo., July.
- BLM, 2006c, Monticello Field Office Mineral Potential Report, Monticello Field Office, Utah. Available at http://www.blm.gov/rmp/ut/monticello/MFO\_MPR.htm. Accessed July 7, 2006.
- BLM, 2006d, Supplemental Information and Analysis to the Price Field Office Draft Resource Management Plan/Environmental Impact Statement for Areas of Critical Environmental Concern, Price Field Office, Utah, June.
- BLM, 2006e, Environmental Assessment: 9 APDs for Wells Piceance Creek Unit (PCU): PCU T75X-3G1, -3G2, -3G3, -3G4, -3G5, -3G6, -3G7, -3G8, & -3G9, CO-110-2006-009-EA, White River Field Office, Meeker, Colo.
- BLM, 2006f, Resource Development Group Uinta Basin Natural Gas Project: Final Environmental Impact Statement, UT-080-2003-0300V, Vernal Field Office, Vernal, Utah, May.
- BLM, 2006g, Rawlins Resource Management Plan, Rawlins Field Office, Wvo., Dec.
- BLM, 2006h, San Rafael Swell Study. Available at http://www.ut.blm.gov/sanrafaelswell/objectsofinterest/ecology.htm. Accessed July 18, 2006.
- BLM, 2007a, Record of Decision for the Approval of Portions of the Roan Plateau Management Plan Amendment and Environmental Impact Statement, Glenwood Springs Field Office, Colo., June.
- BLM, 2007b, Price Field Office Supplemental Draft Resource Management Plan and Environmental Impact Statement for Non-Wilderness Study Area (WSA) Lands with Wilderness Characteristics, Price Field Office, Utah, Sept.
- BLM, 2007c, Bureau of Land Management National Wild Horse and Burro Program, Office of Public Affairs, Washington, D.C. Available at http://www.wildhorseandburro.blm.gov/ index.php. Accessed April 6, 2007.
- BOR (Bureau of Reclamation), 2004, Colorado River System Consumptive Uses and Losses Report 1996–2000, U.S. Department of the Interior, Bureau of Reclamation, Feb.
- BOR, 2006, Duchesne River Solar-Powered Automation Network. Available at http://www.usbr.gov/uc/provo/progact/ca/proj\_duchesne.html. Accessed May 5, 2006.

Boulding, E., 1981, "Women as Integrators and Stabilizers," pp. 119–149 in Women and the Social Cost of Energy Development: Two Colorado Case Studies, E. Moen et al. (editors), Westview Press, Boulder, Colo.

Brookshire, D.S., and R.C. D'Arge, 1980, "Adjustment Issues of Impacted Communities or, Are Boomtowns Bad?" *Natural Resources Journal* 20:523–546.

Brown, R.B., et al., 1989, "Community Satisfaction and Social Integration in a Boomtown: A Longitudinal Analysis," *Rural Sociology* 54:568–586.

Brown, R.B., et al., 2005, "The Boom-Bust-Recovery Cycle: Dynamics of Change in Community Satisfaction and Social Integration in Delta, Utah," *Rural Sociology* 70:28–49.

Carbon County, Utah, 2004, Carbon County Financial Statements for the Year Ended December 31, 2004, Board of County Commissioners, Carbon County, Price, Utah.

Carbon County, Wyoming, 2006, Financial and Compliance Report, June 30, 2006.

Cashion, W.B., 1964, The Distribution and Quality of Oil Shale in the Green River Formation of the Uinta Basin, Utah-Colorado, Professional Paper 501-D, U.S. Geological Survey.

Cashion, W.B., 1967, Geology and Fuel Resources of the Green River Formation, Southeastern Uinta Basin, Utah and Colorado, Professional Paper 548, U.S. Geological Survey.

CDC (Centers for Disease Control and Prevention), 2006, Marriage and Divorce Rates by State: 1990, 1995, 1999–2002, National Center for Health Statistics, Division of Vital Statistics. Available at http://www.cdc.gov/nchs/data/nvss/mar%26div.pdf. Accessed July 2006.

CDOT (Colorado Department of Transportation), 2004, Colorado Highway System Traffic Volume Map. Available at http://www.dot.state.co.us/App\_DTD\_DataAccess/Downloads/TrafficVolumeMaps/TVMap1.pdf.

CDPHE (Colorado Department of Public Health and Environment), 2006a, Ambient Air Quality Standards, Colorado Air Quality Control Commission. Available at http://www.cdphe.state.co.us/on/regs/airregs/100114agccambientairquality.pdf, Accessed May 23.

CDPHE, 2006b, Final EPA Action of 2006 303(d) List. Available at http://www.cdphe.state.co.us/op/wqcc/SpecialTopics/303(d)/EPAfinact06303d.pdf.

CDW (Colorado Department of Wildlife), 2001, Colorado's Amphibians & Reptiles, Species Status, Regulations, Information as of January 2001, Denver, Colo. Available at http://wildlife.state.co.us/NR/rdonlyres/6C826CC3-A017-41E8-8616-E1634F79DA36/0/HerpReport.pdf. Accessed Sept. 26, 2006.

CDW, 2006, Checklist of Colorado Mammals, Denver, Colo. Available at http://wildlife.state.co.us/WildlifeSpecies/Profiles/Mammals/ChecklistofColoradoMammals.htm. Accessed June 6, 2006.

Center for Native Ecosystems, 2006a, Oil and Gas Drilling Threatens South Shale Ridge and Roan Plateau Wildflower with Extinction. Available at thtp://www.nativeecosystems.org/ newsroom/imported.2006-05-11.183224. Accessed July 7, 2006.

Center for Native Ecosystems, 2006b, Endangered Species Act Protection Finally Proposed for Wildflower. Available at http://www.nativeecosystems.org/newsroom/imported.2006-05-11. 183213-11. Accessed July 5, 2006.

Center for Native Ecosystems, 2006c, *Parachute penstemon*. Available at http://www.nativeecosystems.org/species/parachute-penstemon/. Accessed July 9, 2006.

CEQ (Council on Environmental Quality), 1997, Environmental Justice Guidance under the National Environmental Policy Act, Executive Office of the President, Washington, D.C. Available at http://www.whitehouse.gov/CEO/. Accessed July 2006.

Chapman, S.S., et al., 2004, Ecoregions of Wyoming, U.S. Geological Survey, Reston, Va.

Chapman, S.S., et al., 2006, Ecoregions of Colorado, U.S. Geological Survey, Reston, Va.

Chart, T.E., and L.D. Lentsch, 1999, Flow Effects on Humpback Chub (Gila cypha) in Westwater Canyon, Utah Division of Wildlife Resources, Salt Lake City, Utah.

Chiaretta, D., 2007, personal communication from Chiaretta (City of Parachute, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 20.

Chick, N., 2006, personal communication from Chick (Colorado Department of Public Health and Environment, Denver, Colo.) to Y.-S. Chang (Argonne National Laboratory, Argonne, Ill.), June 5.

CIRA (Cooperative Institute for Research in the Atmosphere), 2006, Interagency Monitoring of Protected Visual Environments. Available at http://vista.cira.colostate.edu/IMPROVE/. Accessed June 2006.

City of Craig, Colorado, 2003, Comprehensive Annual Financial Report, Year Ending July 31, 2003.

City of Delta, Colorado, 2004, City of Delta, Colorado, Financial Statements and Independent Auditor's Report, December 31, 2004.

City of Evanston, Wyoming, 2005, City of Evanston, Wyoming, Comprehensive Annual Financial Report, Year Ended June 30, 2005.

City of Fruita, Colorado, 2005, City of Fruita Financial Statements, Fiscal Year Ended December 31, 2005.

City of Glenwood Springs, Colorado, 2004, City of Glenwood Springs, Colorado, Financial Report, December 31, 2004.

City of Grand Junction, Colorado, 2004, compilation of financial reports for fiscal year ended Dec. 31, 2004.

City of Green River, Wyoming, 2004, City of Green River, Wyoming, Report of Independent Certified Public Accountants and Financial Statements, June 30, 2004.

City of Kemmerer, Wyoming, 2005, City of Kemmerer, Wyoming, Report of Independent Certified Public Accountants and Financial Statements, June 30, 2005.

City of Moab, Utah, 2006, City of Moab, Utah, Independent Auditors' Report, Basic Financial Statements, Year Ended June 30, 2006.

City of Rawlins, Wyoming, 2005, City of Rawlins, Wyoming, Financial Report, June 30, 2005.

City of Rifle, Colorado, 2004, City of Rifle, Colorado, Basic Financial Statements, December 31, 2004.

City of Rock Springs, Wyoming, 2005, City of Rock Springs, Wyoming, Financial and Compliance Report, June 30, 2005.

Colorado Bureau of Investigation, 2006, Crime in Colorado—Annual Report: 2003. Available at http://cbi.state.co.us/dr/cic2k3/agencylist.asp. Accessed July 2006.

Colorado Field Ornithologists, 2006, Colorado County Birding Checklists. Available at http://www.coloradocountybirding.com/checklists/index.php. Accessed Sept. 26, 2006.

Colorado Herpetological Society, 2000, County Record Tables for Colorado Amphibians and Reptiles, Lakewood, Colo. Available at http://coloherp.org/geo/index.php. Accessed June 30, 2006.

Colorado Herpetological Society, 2006, Guide to the Reptiles and Amphibians of Colorado, Lakewood, Colo. Available at http://coloherp.org/geo/comindex.php. Accessed June 6, 2006.

Colorado State Demography Office, 2007, State Demography Office. Available at http://www.dola.state.co.us/demog/. Accessed March 2007.

Colorado State Parks, 2006a, home page. Available at http://parks.state.co.us.

Colorado State Parks, 2006b, Natural Areas Program. Available at http://parks.state.co.us/cnap/Natural\_Areas/NA%20pages/dudley.htm. Accessed July 1, 2006.

Conant, L., 2007, personal communication from Conant (City of Grand Junction, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 16.

Connelly, J.W., et al., 2000, "Guidelines to Manage Sage Grouse Populations and Their Habitats," Wildlife Society Bulletin 28(4):967–985.

Contreras, M., 2006, personal communication from Contreras (Garfield County, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), July 7.

Cornell Laboratory of Ornithology, 2006, All About Birds, Bird Guide—Whooping Crane. Available at http://www.birds.cornell.edu/AllAboutBirds/BirdGuide/Whooping\_Crane\_dtl.html. Accessed July 15, 2006.

Cortese, C.F., 1982, "The Impacts of Rapid Growth on Local Organizations and Community Services." pp. 115–136 in *Coping with Rapid Growth in Rural Communities*, B. Weber and R. Howell (editors), Westview Press, Boulder, Colo.

Cortese, C.F., and B. Jones, 1977, "The Sociological Analysis of Boom Towns," Western Sociological Review 8:76–90.

Cowardin, L., et al., 1979, Classification of Wetlands and Deepwater Habitats of the United States, FWS/OBS-79, U.S. Fish and Wildlife Service.

CPC (Center for Plant Conservation), 2006a, CPC National Collection Plant Profile, Ranunculus aestivali. Available at http://www.centeroplantconservation.org/ASP/CPC\_ViewProfile.asp? CPCNum=3705. Accessed July 16, 2006.

CPC, 2006b, CPC National Collection Plant Profile, Schoenocrambe barnebyi, Available at http://www.centerforplantconservation.org/ASP/CPC\_ViewProfile.asp?CPCNum=3871. Accessed July 17, 2006.

CPC, 2006c, CPC National Collection Plant Profile, Lesquerella congesta. Available at http://www.centerforplantconservation.org/ASP/CPC\_ViewProfile.asp?CPCNum=6371. Accessed July 8, 2006.

CPC, 2006d, CPC National Collection Plant Profile, Physaria obcordata. Available at http://www.centerforplantconservation.org/ASP/CPC\_ViewProfile.asp?CPCNum=3447. Accessed July 1, 2006.

CPC, 2006e, CPC National Collection Plant Profile, Cycladenia humilis var. jonesii. Available at http://www.centerforplantconservation.org/ASP/CPC\_ViewProfile.asp?CPCNum=1204. Accessed July 8, 2006.

CPC, 2006f, CPC National Collection Plant Profile, Erigeron maguirei var. maguirei. Available at http://www.centerforplantconservation.org/ASP/CPC\_Viewprofile.asp?CPCNum=1654. Accessed July 18, 2006.

CPC, 2006g, CPC National Collection Plant Profile, Carex specuicola. Available at http://www.centerforplantonservation.org/ASP/CPC\_ViewProfile.asp?CPCNum =789. Accessed July 18, 2006.

CPC, 2006h, CPC National Collection Plant Profile, Schlerocactus wrightiae. Available at http://www.centerforplantconservation.org/ASP/CPC\_ViewProfile.asp?CPCNUM=3891. Accessed July 8, 2006.

Crawford, J.A., et al., 2004, "Ecology and Management of Sage-Grouse and Sage-Grouse Habitat," *Journal of Range Management* 57:2–19.

CRBSCF (Colorado River Basin Salinity Control Forum), 2005, 2005 Review, Water Quality Standards for Salinity, Colorado River System, Oct.

Culburtson, W.C., and Pitman, J.K., 1973, "Oil Shale in United States Mineral Resources," Professional Paper 820 in *United States Mineral Resources*, D.A. Probst and W.P. Pratt (editors), U.S. Geological Survey.

CWCB (Colorado Water Conservation Board), 2002, Yampa and White River Basin Facts. Available at http://cwcb.state.co.us/Board/Fact\_Sheets/YampaW\_fs.pdf. Accessed May 25, 2006.

CWCB, 2004, Statewide Water Supply Initiative, Colorado Department of Natural Resources, Denver, Colo., Nov.

Czyzewski, G., 2000, "The Piceance Creek Basin," pp. 63–66 in Colorado Ground-Water Atlas: Colorado Ground-Water Association, A. Aikin et al. (editors), Lakewood, Colo.

Dalpiaz, B., 2007, personal communication from Dalpiaz (Carbon County, Utah) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 20.

Daniels, J., 2006, personal communication from Daniels (City of Price, Utah) to E. Moret (Argonne National Laboratory, Argonne, Ill.), March 2.

Davenport, J., III and J.A. Davenport, 1980, "The Boom Town: Problems and Promises in the Energy Vortex," Department of Social Work, University of Wyoming, Laramie, Wyo.

Day, S., 2006, personal communication from Day (City of Meeker, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), July 6.

Delta County, Colorado, 2005, Delta County, Colorado, Basic Financial Statements, Year Ended December 31, 2005, Board of Commissioners, Delta County, Delta, Colo.

Derragon, D., 2006, personal communication from Derragon (City of Rawlins, Wyo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), July 6.

Dixon, M., 1978, What Happened to Fairbanks? The Effects of the Trans-Alaska Oil Pipeline in the Community of Fairbanks, Alaska, Westview Press, Boulder, Colo.

DOE (U.S. Department of Energy), 1982, Final Programmatic Environmental Impact Statement on Development Policy Options for the Naval Oil Shale Reserves in Colorado, Environmental Protection Assistant Secretary, Safety and Emergency Preparedness, Office of Naval Petroleum and Oil Shale Reserves

DOI (U.S. Department of the Interior), 1973, Final Environmental Statement for the Prototype Oil Shale Leasing Program, Volume I of VI, Regional Impacts of Oil Shale Development, Washington, D.C.

DOI, 2000, Report of the Secretary of the Interior: Fossils on Federal and Indian Lands, May.

DOI, 2005, "Salinity Control Program," in Quality of Water: Colorado River Basin, Progress Report No. 22, Final Draft. Available at http://www.usbr.gov/uc/progact/salinity/index.html. Accessed May 25, 2006.

DOI, 2007, "Potential Fossil Yield Classification (PFYC) System for Paleontological Resources on Public Lands," Instruction Memorandum for Implementing the PFYC System, Division of IRM Governance, Washington, D.C., Oct. 15.

Duchesne County, Utah, 2004, Duchesne County Financial Statements, Year Ending December 31, 2004, County Commissioners, Duchesne County, Duchesne, Utah.

Dyni, J.R., 2003, "Geology and Resources of Some World Oil-Shale Deposits," Oil Shale 20(3):193–252.

Eldredge, C., 2007, personal communication from Eldredge (San Juan County, Utah) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 16.

Emery County, Utah, 2004, Emery County Financial Statements December 31, 2004, Emery County Clerk/Auditor, Castle Dale, Utah.

England, J.L., and S.L. Albrecht, 1984, "Boomtowns and Social Disruption," Rural Sociology 49:230-246.

EPA (U.S. Environmental Protection Agency), 1974, Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety, EPA 550/9-74-004, Office of Noise Abatement and Control, Washington, D.C., March.

EPA, 2006a, National Ambient Air Quality Standards (NAAQS). Available at http://www.epa.gov/air/criteria.html, last updated March 2, 2006. Accessed June 4, 2006.

EPA, 2006b, Nonattainment Areas for Criteria Pollutants. Available at http://www.epa.gov/air/oaqps/greenbk/, last updated March 15, 2006. Accessed June 6, 2006.

EPA, 2006c, *AirData: Monitor Values Report—Criteria Air Pollutants*. Available at http://www.epa.gov/air/data/monvals.html?st~WY~Wyoming. Accessed June 2006.

EPA, 2006d, Clean Air Status and Trends Network (CASTNET). Available at http://www.epa.gov/castnet/. Accessed June 2006.

EPA, 2006e, Global Warming—Emissions, Energy CO<sub>2</sub> Inventories. Available at http://yosemite.pa.gov/oar%5Cglobalwarming.nsf/content/EmissionsStateEnergyCO<sub>2</sub> Inventories.html, last modified July 13, 2005. Accessed August 2006.

EPA, 2007, Early Action Compacts. Available at http://www.epa.gov/air/eac/. Accessed April 6, 2007.

Exxon Mobil, 2006, Exxon Mobil Piceance Development Project Environmental Assessment. Socioeconomic Technical Report, prepared for Bureau of Land Management, White River Field Office, May.

Feeney, D., et al., 2004, Big Game Migration Corridors in Wyoming, University of Wyoming, Wyoming Open Spaces Initiative, Laramie, Wyo. Available at http://www.uwyo.edu/openspaces/docs/MicrationCorridors.pdf. Accessed April 24, 2006.

Fire Departments Net, 2006, Fire Departments by County. Available at http://www.fire departments.net/county.html. Accessed Oct. 2006.

Frankel, A.D., et al., 2002, Documentation for the 2002 Update of the National Seismic Hazard Maps, Open-File Report 02-420, U.S. Geological Survey, Available at http://earthquake.usgs.gov/research/hazmaps/products\_data/48\_States/index.php. Accessed July 5, 2006.

Freudenburg, W.R., 1984, "Boomtown's Youth: The Differential Impacts of Rapid Community Growth on Adolescents and Adults," *American Sociological Review* 49:697–705.

Freudenburg, W.R., 1986, "The Density of Acquaintanceship: An Overlooked Variable in Community Research?" *American Journal of Sociology* 92:27–63.

Freudenburg, W.R., and R.E. Jones, 1991, "Criminal Behavior and Rapid Community Growth: Examining the Evidence," *Rural Sociology* 56:619–645.

Freudenburg, W.R., et al., 1982, "Mental Health Consequences of Rapid Growth: A Report From the Longitudinal Study of Boom Town Mental Health Impacts," *Journal of Health and Human* Resources Administration 4:334–352.

Garfield County, Utah, 2004, Garfield County, Utah, Financial Statements and Supplementary Information with Independent Auditor's Report, Year Ended December 31, 2004, Board of County Commissioners, Panequitch, Utah. Gilmore, J.S., 1976, "Boom Towns May Hinder Energy Resource Development," *Science* 191:535–540.

Gilmore, J.S., and M.K. Duff, 1975, Boomtown Growth Management, Westview Press, Boulder, Colo.

Glassett, J.M., and J.A. Glassett, 1976, The Production of Oil from Intermountain West Tar Sands Deposits, Final Report to United States Department of the Interior, Bureau of Mines, Evring Research Institute, Provo, Utah.

Glover, K.C., 1996, Ground-Water Flow in the Duchesne River-Uinta Aquifer, Uinta Basin, Utah and Colorado, Water-Resources Investigations Report 92-4161, U.S. Geological Survey.

Glover, K.C., et al., 1998, Geohydrology of Tertiary Rocks in the Upper Colorado River Basin in Colorado, Utah, and Wyoming, Excluding the San Juan Basin, Water-Resources Investigations Report 96-4105, U.S. Geological Survey.

Goddard Institute for Space Studies, 2007, Annual Mean Temperature Change for Three Latitude Bands, Datasets & Images, GISS Surface Temperature Analysis, Analysis Graphs and Plots, New York, N.Y. Available at http://data.giss.nasa.gov/gistemp/graphs/Fig.B.lrg.gif.

Gold, R.L., 1982, "Commentary on Local Social Disruption and Western Energy-Development: A Critical Review by Wilkinson, K.P. et al.," *Pacific Sociological Review* 25:349–356.

Grand County, Utah, 2004, Grand County Financial Statements for the Year Ended December 31, 2004, Grand County Council, Moab, Utah.

Greider, T., and R.S. Krannich, 1985, "Neighboring Patterns, Social Support and Rapid Growth: A Comparison Analysis from Three Western Communities," Sociological Perspectives 28:51–70.

Greider, T., et al., 1991, "Local Identity, Solidarity, and Trust in Changing Rural Communities," Sociological Focus 24:263–282.

Guererro, D., 2007, personal communication from Guererro (City of Moab, Utah) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 20.

Guida, D., 2007, personal communication from Guida (Garfield County, Utah) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 12.

Gulliford, A., 1989. Boomtown Blues: Colorado Oil Shale, 1885–1985. University of Colorado Press, Boulder, Colo.

Gutermuth, F.B., et al., 1994, "Collection of Age-0 Razorback Suckers (*Xyrauchen texanus*) in the Lower Green River, Utah," *Southwestern Naturalist* 39:389–391.

Hahn, W.F., and C.A. Jessen, 2001, Green River Basin Water Plan, Technical Memorandum: Available Ground Water Determination. Available at http://waterplan.state.wy.us/plan/green/ technemos/technemos.html. Accessed May 25, 2006.

Hamman, R.L., 1981, "Spawning and Culture of Colorado Squawfish in Raceways," *Progressive Fish-Culturist* 43:173–177.

Hancock, B., 2006, personal communication from Hancock (Roosevelt City Corporation, Utah) to E. Moret (Argonne National Laboratory, Argonne, Ill.), July 9.

Harris, C.M. (editor), 1991, Handbook of Acoustical Measurements and Noise Control, 3rd ed., McGraw-Hill Book Company, New York, N.Y.

Hatton, T., 2000, "White River Basin," pp. 41–43 in *Colorado Ground-Water Atlas*, A. Aikin et al. (editors), Colorado Ground-Water Association, Lakewood, Colo.

Haynes, C.M., et al., 1984, "Larval Colorado Squawfish (*Ptychocheilus lucius*) in the Upper Colorado River Basin, Colorado, 1979–1981," *Southwestern Naturalist* 29:21–33.

Hendrickson, D.A., 1993, Progress Report on a Study of the Utility of Data Obtainable from Otoliths to Management of Humpback Chub (Gila cypha) in the Grand Canyon, Arizona Game and Fish Department, Phoenix, Ariz.

Hirsch, C.L., et al., 2006, Range-wide Status of Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus): 2005, Colorado River Cutthroat Trout Conservation Team Report, Colorado Division of Wildlife, Ft. Collins, Colo.

Hoffmeister, S., 2006, personal communication from Hoffmeister (City of Glenwood Springs, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), March 2.

Hollowed, C., 2007, personal communication from Hollowed (Bureau of Land Management, White River Field Office, Meeker, Colo.) to J. May (Argonne National Laboratory, Lakewood, Colo.), Feb. 14.

Holmes, W.F., and Kimball, B.A., 1987, Ground Water in the Southeastern Uinta Basin, Utah and Colorado, Water Supply Paper 2248, U.S. Geological Survey.

Hood, J.W., and T.W. Danielson, 1981, Bedrock Aquifers in the Lower Dirty Devil River Basin Area, Utah, with Special Emphasis on the Navajo Sandstone, Technical Publication No. 68, Utah Department of Natural Resources.

Hood, J.W., and F.K. Fields, 1978, Water Resources of the Northern Uinta Basin Area, Utah and Colorado, with Special Emphasis on Ground-Water Supply, Technical Publication No. 62, Utah Department of Natural Resources. Hood, L., 2006, personal communication from Hood (City of Green River, Wyo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), March 6.

Howe, F.P., and M. Hanberg, 2000, Willow Flycatcher and Yellow-Billed Cuckoo Surveys along the Green and San Juan Rivers in Utah, 2000, Publication 00-31, Utah Division of Wildlife Resources, Salt Lake City, Utah.

Hranac, K., 2000, "Ground-Water Quality," pp. 9–13 in *Colorado Ground-Water Atlas*, A. Aikin et al. (editors), Colorado Ground-Water Association, Lakewood, Colo.

Hughes, J.M., 1999, "Yellow-Billed Cuckoo," in *The Birds of North America*, No. 418, A. Poole and F. Gill (editors), Cornell Laboratory of Ornithology and the Academy of Natural Sciences.

Huntington, M., 2006, personal communication from Huntington (Emery County, Utah) to E. Moret (Argonne National Laboratory, Argonne, Ill.), April 12.

IPCC (Intergovernmental Panel on Climate Change), 2007, Climate Change 2007: The Physical Basis (Summary for Policymakers), Cambridge University Press, Cambridge, United Kingdom, and New York, N.Y. Available at http://www.jpcc.ch/SPM2feb07.pdf.

ISWS (Illinois State Water Survey), 2006, National Atmospheric Deposition Program. Available at http://nadp.sws.uiuc.edu/. Accessed June 2006.

Jirovec, R., 1979, "Preparing a Boom Town for the Impact of Rapid Growth," pp. 79–90 in BoomTowns and Human Services, J. Davenport and J. Davenport (editors), University of Wyoming Press, Laramie, Wyo.

Johnson J., 2007, personal communication from Johnson (Uintah County, Utah) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 15.

Karsten, J., 2007, personal communication from Karsten (City of Delta, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 14.

Krannich, R.S., and T. Greider, 1984, "Personal Well-Being in Rapid Growth and Stable Communities: Multiple Indicators and Contrasting Results," *Rural Sociology* 49:541–552.

Krannich, R., et al., 1989, "Fear of Crime in Rapidly Changing Communities: A Longitudinal Analysis," *Rural Sociology* 54:195–212.

Lamm, R.D., and McCarthy, M., 1982. *The Angry West: A Vulnerable Land and Its Future*, Houghton Mifflin Company, Boston, Mass.

Lantz, A., and R. McKeown, 1977, "Rapid Growth and the Impact on Quality of Life in Rural Communities: A Case Study," Denver Research Institute, University of Denver, Denver, Colo.

Larson, K., 2007, personal communication from Larson (City of Craig, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.). Feb. 15.

Lentsch, L.D., et al., 1996, Options for Selective Control of Nonnative Fishes in the Upper Colorado River Basin, Publication No. 96-14, Utah Division of Wildlife Resources, Salt Lake City, Utah.

Lentsch, L.D., et al., 2000, The White River and Endangered Fish Recovery: A Hydrological, Physical, and Biological Synopsis, Publication No. 00-37, Utah Division of Wildlife Resources, Salt Lake City, Utah, Sept.

Lepage, D., 2006, Avibase—The World Bird Database. Available at http://www.bsc-eoc.org/avibase. Accessed Sept. 26, 2006.

Lincoln County, Wyoming, 2006, Lincoln County Financial Statements, June 30, 2006, Board of County Commissioners, Kemmerer, Wyo.

Lincoln, F.C., et al., 1998, Migration of Birds, U.S. Department of the Interior, U.S. Fish and Wildlife Service, Washington, D.C., Circular 16, Jamestown, N.D.: Northern Prairie Wildlife Research Center Online. Available at http://www.npwrc.usgs.gov/resource/birds/migratio/index.htm (April 2, 2002, version). Accessed Sept. 26, 2006.

Lindskov, K.L., and B.A. Kimball, 1982, *Quantity and Quality of Streamflow in the Southeastern Uinta Basin, Utah and Colorado*, Water Supply Paper 2224, U.S. Geological Survey.

Lindskov, K.L., and B.A. Kimball, 1984, Water Resources and Potential Hydrologic Effects of Oil-Shale Development in the Southeastern Uinta Basin, Utah and Colorado, Professional Paper 1307, U.S. Geological Survey.

Little, R.I., 1977, "Some Social Consequences of Boom Towns," North Dakota Law Review 53:401–425.

Lyon, C., 2007, personal communication from Lyon (City of Rock Springs, Wyo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 16.

MacIntyre, S., 2006, personal communication from MacIntyre (City of Silt, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Oct. 27.

Martinez, P. J., et al., 1994, "Fish Species Composition before and after Construction of a Mainstern Reservoir on the White River, Colorado." *Environmental Biology of Fishes* 40:227–238

Mason, J.P., and K.A. Miller, 2004, Water Resources of Sweetwater County, Wyoming, Scientific Investigations Report 2004-5214, U.S. Geological Survey, Reston, Va.

Mayham, J., 2007, personal communication from Mayham (Carbon County, Wyo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 15.

McAda, C.W., 2003, Flow Recommendations to Benefit Endangered Fishes in the Colorado and Gunnison Rivers, final report to Upper Colorado River Endangered Fish Recovery Program, July.

McClean, C.T., 2007, personal communication from McClean (Sweetwater County, Wyo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 16.

McClure, M., 2007, personal communication from McClure (City of Kemmerer, Wyo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 14.

Mesa County, Colorado, 2003, Comprehensive Annual Financial Report, Mesa County, Colorado, for the Fiscal Year Ended December 31, 2003.

Miller, A.S., and W.A. Hubert, 1990, Compendium of Existing Knowledge for Use in Making Habitat Management Recommendations for the Upper Colorado River Basin, final report of the U.S. Fish and Wildlife Service, Wyoming Cooperative Fish and Wildlife Research Unit, to the Upper Colorado River Endangered Fish Recovery Program, Denver, Colo.

Miller, N.P., 2002, "Transportation Noise and Recreational Lands," in *InterNoise 2002*, Proceedings of the 2002 International Congress and Exposition on Noise Control Engineering, Aug. 19–21, Dearborn, Mich.

Minckley, W.L., 1973, Fishes of Arizona, Arizona Game and Fish Department, Phoenix, Ariz.

Minckley, W.L., et al., 1991, "Management toward Recovery of the Razorback Sucker," in Battle against Extinction: Native Fish Management in the American West, W.L. Minckley and J.E. Deacon (editors), University of Arizona Press, Tucson, Ariz.

Modde, T., 1996, "Juvenile Razorback Sucker (*Xyrauchen texanus*) in a Managed Wetland Adjacent to the Green River." *Great Basin Naturalist* 56:375–376.

Modde, T., 1997, Fish Use of Old Charley Wash: An Assessment of Floodplain Wetland Importance to Razorback Sucker Management and Recovery, U.S. Fish and Wildlife Service, Vernal, Utah.

Modde, T., and G.B. Haines, 1996, "Brook Stickleback (*Culaea inconstans* [Kirkland 1841]), a New Addition to the Upper Colorado River Basin Fish Fauna," *Great Basin Naturalist* 56:281.

Modde, T., and D.B. Irving, 1998, "Use of Multiple Spawning Sites and Seasonal Movements by Razorback Suckers in the Middle Green River, Utah," North American Journal of Fisheries Management 18:318–326.

Modde, T., and C. Keleher, 2003, Flow Recommendations for the Duchesne River with a Synopsis of Information Regarding Endangered Fishes, U.S. Fish and Wildlife Service, Vernal, Utah.

Modde, T., and E.J. Wick, 1997, Investigations of Razorback Sucker Distribution, Movements and Habitats Used during Spring in the Green River, Utah, U.S. Fish and Wildlife Service, Vernal, Utah.

Modde, T., et al., 1996, "Population Status of the Razorback Sucker in the Middle Green River," Conservation Biology 10:110–119.

Moen, E., et al. (editors), 1981, Women and the Social Cost of Energy Development: Two Colorado Case Studies, Westview Press, Boulder, Colo.

Moffat County, Colorado, 2005, Moffat County, Colorado, Craig, Colorado, Financial Statements, December 31, 2005.

MPCA (Minnesota Pollution Control Agency), 1999, A Guide to Noise Control in Minnesota: Acoustical Properties, Measurement, Analysis, Regulation, St. Paul, Minn., revised March 1999. Available at http://www.pca.state.mn.us/programs/pubs/noise.pdf. Accessed June 15, 2006.

Murdock, S.H., and L.F. Leistritz, 1979, Energy Development in the Western United States: Impact on Rural Areas, Praeger Publishers, New York, N.Y.

Murdock, S.H., and E.C. Schriner, 1979, "Community Service Satisfaction and Stages of Community Development: An Examination of Evidence from Impacted Communities," *Journal of the Community Development Society* 10:109–124.

Murphey, P.C., and D. Daitch, 2007, Paleontological Overview of Oil Shale and Tar Sands Areas in Colorado, Utah, and Wyoming, Feb.

Muth, R.T., and T.P. Nesler, 1993, Associations among Flow and Temperature Regimes and Spawning Periods and Abundance of Young of Selected Fishes, Lower Yampa River, Colorado, 1980–1984, final report, prepared by Colorado State University Larval Fish Laboratory for Upper Colorado River Endangered Fish Recovery Program, Denver, Colo.

Muth R.T., and D.E. Snyder, 1995, "Diets of Young Colorado Squawfish and Other Small Fish in Backwaters of the Green River, Colorado and Utah," *Great Basin Naturalist* 55:95–104.

Muth, R.T., et al., 1998, Reproduction and Early Life History of Razorback Sucker in the Green River, Utah and Colorado, 1992–1996, Colorado State University Larval Fish Laboratory, Fort Collins, Colo.

Muth, R.T., et al., 2000, Flow and Temperature Recommendations for Endangered Fishes in the Green River Downstream of Flaming Gorge Dam, final report, Upper Colorado River Endangered Fish Recovery Program, Denver, Colo, Sept. NADP (National Atmospheric Deposition Program), 2006, home page. Available at http://nadp.sws.uiuc.edu/.

National Academy of Sciences, 2006, Understanding and Responding to Climate Change: Highlights of National Academies Reports, Division on Earth and Life Studies, National Academy of Sciences, Washington. Available at http://dels.nas.edu/base/Climate-HIGH.pdf.

National Parks Conservation Association, 2006, California Condor. Available at http://www.npca.org/wildlife\_protection/wildlife\_facts/condor.html. Accessed July 13, 2006.

NatureServe, 2006, NatureServe Explorer: An Online Encyclopedia of Life, Arlington, Va. Available at http://www.natureserve.org/explorer. Accessed July and Oct. 20, 2006.

Naugle, D.E., et al., 2004, "West Nile Virus: Pending Crisis for Greater Sage-Grouse," *Ecology Letters* 7:704–713.

NCDC (National Climatic Data Center), 2006a, Climate Data Online, National Oceanic and Atmospheric Administration (NOAA) Satellite and Information Service. Available at http://edo.ncdc.noaa.gov/CDO/dataproduct. Accessed May and June 2006.

NCDC, 2006b, Storm Events, National Oceanic and Atmospheric Administration (NOAA) Satellite and Information Service. Available at http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dl/ywwEynrt-Storms. Accessed June 3, 2006.

Nees, D., 2007, personal communication from Nees (Uinta County, Wyo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 20.

Nelson, T., 2007, personal communication from Nelson (Wayne County, Utah) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 20.

Nelson, W., 2006, personal communication from Nelson (City of Rifle, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), March 10.

Nesler, T.P., et al., 1988, "Evidence for Baseline Flow Spikes as Spawning Cues for Colorado Squawfish in the Yampa River, Colorado," *American Fisheries Society Symposium* 5:68–79.

Nicholoff, S.H., 2003, Wyoming Bird Conservation Plan, Version 2.0, Wyoming Partners in Flight, Wyoming Game and Fish Department, Lander, Wyo. Available at http://www.blm.gov/wildlife/plan/WY/Wyoming%20Bird%20Conservation%20Plan.htm. Accessed Sept. 26, 2006.

NNHP (Nevada Natural Heritage Program), 2001, Spiranthes diluvialis Sheviak, *Ute Ladies'-Tresses*, Rare Plant Fact Sheet.

Norman, S., 2006, personal communication from Norman (City of Evanston, Wyo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), March 2.

Olien, R.M., and D.D. Olien, 1982, "Oil Booms: Social Change in Five Texas Towns," University of Nebraska Press, Lincoln. Nebr.

O'Rourke, D., et al., 2007, Argonne National Laboratory, Argonne, Ill., unpublished information.

Orth, T., 2006, personal communication from Orth (Utah Department of Environmental Quality, Salt Lake City, Utah) to M. Lazaro (Argonne National Laboratory, Argonne, Ill.), June 21.

Osmundson, D.B., and K.P. Burnham, 1996, Status and Trends of Colorado Squawfish in the Upper Colorado River, final report, prepared by U.S. Fish and Wildlife Service, Grand Junction, Colo., for Upper Colorado River Endangered Fish Recovery Program, Denver, Colo.

Osmundson, D.B., and L.R. Kaeding, 1989, Studies of Colorado Squawfish and Razorback Sucker Use of the "15-Mile Reach" of the Upper Colorado River as Part of Conservation Measures for the Green Mountain and Ruedi Reservoir Water Sales, U.S. Fish and Wildlife Service. Colorado River Fisherv Project, Grand Junction. Colo.

Owl Research Institute, 2004, Owl Identification Guide, Identification of North American Owls, Ninepipes Center for Wildlife Research and Education, Charo, Mont. Available at http://www.owlinstitute.org/ideuide.html. Accessed Sept. 26, 2006.

Parrish, J.R., et al., 2002, Utah Partners in Flight, Avian Conservation Strategy, Version 2.0, Utah Partners in Flight Program, Utah Division of Wildlife Resources, Salt Lake City, Utah. Available at http://www.wildlife.utah.gov/publications/pdf/utah\_partners\_in\_flight.pdf. Accessed Sept. 26, 2006.

Peterson, D.A., 1988, Streamflow Characteristics of the Green, Bear, and Snake River Basins, Wyoming, through 1984, Water-Resources Investigations Report 87-4022, U.S. Geological Survey.

Phelps, O., 2007, personal communication from Phelps (City of Fruita, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), April. 4.

Piper, M., 2006, personal communication from Piper (City of Glenwood Springs Fire Department, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), March 2.

Platania, S.P., et al., 1991, "Status of Colorado Squawfish and Razorback Sucker in the San Juan River, Colorado, New Mexico, and Utah," *Southwestern Naturalist* 36:147–150.

Price Municipal Corporation, Utah, 2005, Price Municipal Corporation, Basic Financial Statements for the Year Ended June 30, 2005, Price, Utah.

Price, D., and L.L. Miller, 1975, *Hydrologic Reconnaissance of the Southern Uinta Basin, Utah and Colorado*, Technical Publication No. 49, Utah Department of Natural Resources.

Radbruch-Hall, D.H., et al., 1982, Landslide Overview Map of the Conterminous United States, Professional Paper 1183, U.S. Geological Survey. Available at http://pubs.usgs.gov/pp/p1183/ pp1183.html. Accessed July 5, 2006.

Recreation.gov, 2006, home page. Available at http://www.recreation.gov/.

Reed, A.D., and M.D. Metcalf, 1999, Colorado Prehistory: A Context for the Northern Colorado River Basin, Colorado Council of Professional Archaeologists, Denver, Colo.

Repplier, F.N., et al., 1981, Atlas of Ground Water Quality in Colorado, Colorado Geological Survey, Denver, Colo.

Rinne, J.N., et al., 1986, "The Role of Hatcheries in the Management and Recovery of Tratened and Endangered Fishes," pp. 271–285 in Fish Culture in Fisheries Management, R.H. Stroud (editor), American Fisheries Society, Bethesda, Md.

Rio Blanco County, Colorado, 2005, Summary of Levies and Values, Rio Blanco County, Colorado, 2005, Office of County Treasurer, Meeker, Colo.

Robinson, A.T., et al., 1998, "Dispersal of Larval Fishes in a Regulated River Tributary," Transactions of the American Fisheries Society 127:772–786.

Roehler, H.W., 1992, Description and Correlation of Eocene Rocks in Stratigraphic Reference Sections for the Green River and Washakie Basins, Southwest Wyoming, Professional Paper 506, U.S. Geological Survey.

Roosevelt City Corporation, Utah, 2005, Roosevelt City Corporation, Duchesne County, Utah, Annual Financial Report for the Year Ended June 30, 2005.

Ruediger, B., et al., 2000, Canada Lynx Conservation Assessment and Strategy, U.S. Forest Service, U.S. Department of Agriculture; U.S. Fish and Wildlife Service, Bureau of Land Management, and National Park Service, U.S. Department of the Interior, Missoula, Montagement, and National Park Service, U.S. Department of the Interior, Missoula, Montagement, and National Park Service, U.S. Department of the Interior, Missoula, Montagement, and National Park Service, U.S. Department of the Interior, Missoula, Montagement, and National Park Service, U.S. Department of the Interior, Missoula, Montagement, and National Park Service, U.S. Department of the Interior Missoula, Montagement, and National Park Service, U.S. Department of the Interior Missoula, Montagement, and National Park Service, U.S. Department of the Interior Missoula, Montagement, and National Park Service, U.S. Department of the Interior Missoula, Montagement, and National Park Service, U.S. Department of the Interior Missoula, Montagement, and National Park Service, U.S. Department of the Interior Missoula, Montagement, and National Park Service, U.S. Department of the Interior Missoula, Montagement, and National Park Service, U.S. Department of the Interior Missoula, Montagement, and National Park Service, U.S. Department of the Interior Missoula, Montagement, and National Park Service, U.S. Department of the Interior Missoula, Montagement, and Missoula, Missoula, Montagement, and Missoula, Missoula,

Running, L., 2006, personal communication from Running (Moffat County, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), June 26.

SAMHSA (Substance Abuse and Mental Health Services Administration), 2006, 2005 State Estimates of Substance Use and Mental Health, 2004 and 2005, Office of Applied Studies, U.S. Department of Health and Human Services. Available at: http://oas.samhsa.gov/2k5State/AppB.htm#TabB.16. Accessed August 2007.

San Juan County, Utah, 2004, San Juan County, Independent Auditor's Report, Basic Financial Statements, Year Ended December 31, 2004, San Juan County Clerk Auditor, Monticello, Utah.

Sawyer, H., et al., 2005, "Mule Deer and Pronghorn Migration in Western Wyoming," Wildlife Society Bulletin 33(4):1266–1273.

Seyfrit, C.L., and N.C. Sadler-Hammer, 1988, "Social Impact of Rapid Energy Development on Rural Youth: A Statewide Comparison," Society and Natural Resources 1:57–67.

Shimkin, D.B., 1947, Wind River Shoshone Ethnogeography, University of California Anthropological Records 5(4), Berkeley, Calif.

Shimkin, D.B., 1986, "Eastern Shoshone," pp. 308–335 in *Great Basin*, Warren L. d'Azevedo (editor), Vol. 11 of *Handbook of North American Indians*, W.C. Sturtevant (general editor), Smithsonian Institution, Washington, D.C.

Smith, M. et al., 2001, "Growth, Decline, Stability and Disruption: A Longitudinal Analysis of Social Well-Being in Four Western Communities." *Rural Sociology* 66:425–450.

Smith, L., 2006, personal communication from Smith (Rio Blanco County, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Oct. 24.

Spahr, N.E., et al., 2000, Water Quality in the Upper Colorado River Basin, Colorado, 1996–98, Circular 1214, U.S. Geological Survey.

Standard and Poor's, 2006, School Matters. Available at http://www.schoolmatters.com/. Accessed July 2006.

State of Utah, 2006, Rule R317-6, Ground Water Quality Protection. Available at http://www.rules.utah.gov/publicat/code/r317/r317-006.htm. Accessed July 6, 2006.

SWWRC (States West Water Resources Corporation), 2001a, in Chapter II of *Green River Basin Water Plan Technical Memoranda*, "Basin Water Use Profile—Agriculture." Available at http://waterplan.state.wy.us/plan/green/techmemos/techmemos.html. Accessed May 25, 2006.

SWWRC, 2001b, Green River Basin, Water Planning Process, Feb.

Stewart, L., 2006, personal communication from Stewart (Town of Rangely, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Oct. 25.

Strohman, J., 2000, "Surface Water Quality," in Chapter II of *Green River Basin Water Plan Technical Memoranda*, States West Water Resources Corporation. Available at http://waterplan.state.wy.us/plan/green/techmemos/techmemos.html. Accessed May 25, 2006.

Sweetwater County, Wyoming, 2005, Sweetwater County, Wyoming, Financial and Compliance Report, June 30, 2005, Sweetwater County Clerk, Green River, Wyo.

Taba, S.S., et al., 1965, "Notes on the Fishes of the Colorado River near Moab, Utah," *Utah Academy of Science, Arts, and Letters* 42:280–285.

Teuscher, D., and C. Luecke, 1996, "Competition between Kokanees and Utah Chub in Flaming Gorge Reservoir," *Transactions of the American Fisheries Society* 125:505–511.

Tipps, B., 1988, The Tar Sands Project: An Inventory and Predictive Model for Central and Southern Utah, Cultural Resources Series No. 22, Bureau of Land Management, Utah State Office. Salt Lake City, Utah.

Tobin, R.L., 1987, "Water Quality in the Piccance Basin," pp. 81–85 in Oil Shale, Water Resources, and Valuable Minerals of the Piccance Basin, Colorado: The Challenge and Choices of Development, O.J. Taylor (editor), Professional Paper 1310, U.S. Geological Survey.

Toennies, F., 1887, Gemeinschaft und Gesellschaft, 1988 translation, Transaction Books, New Brunswick. N.J.

Topper, R., et al., 2003, *Ground Water Atlas of Colorado*, Special Publication 53, Colorado Geological Survey, Denver, Colo.

Town of Mecker, Colorado, 2005, Town of Meeker, Colorado, Financial Statements and Independent Auditors' Report, December 31, 2005.

Town of Parachute, Colorado, 2005, Town of Parachute, Colorado, Financial Statements and Supplemental Information with Independent Auditor's Report, Year Ended December 31, 2005.

Town of Rangely, Colorado, 2004, Town of Rangely, Colorado, Financial Statements and Independent Auditors' Report, December 31, 2004.

Town of Silt, Colorado, 2005, Town of Silt, Colorado, Financial Statements, December 31, 2005.

Tracy, J., 2007, personal communication from Tracy (Mesa County, Colo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 16.

Tyus, H.M., 1987, "Distribution, Reproduction, and Habitat Use of the Razorback Sucker in the Green River, Utah, 1979–1986," Transactions of the American Fisheries Society 116:111–116.

Tyus, H.M. 1991, "Ecology and Management of Colorado Squawfish," pp. 379–402 in *Battle against Extinction: Native Fish Management in the American Southwest*, W.L. Minckley and J.E. Deacon (editors), University of Arizona Press, Tucson, Ariz.

Tyus, H.M., 1998, "Early Records of the Endangered Fish *Gila Cypha*, Miller, from the Yampa River of Colorado with Notes on Its Decline," *Copeia* 1998:190–193.

Tyus, H.M., and G.B. Haines, 1991, "Distribution, Habitat Use, and Growth of Age-0 Colorado Squawfish in the Green River Basin, Colorado and Utah," *Transactions of the American Fisheries Society* 120:79–89.

Tyus, H.M., and C.A. Karp, 1990, "Spawning and Movements of the Razorback Sucker, Xyrauchen texanus, in the Green River Basin of Colorado and Utah," Southwestern Naturalist 35:427-435. Tyus, H.M., and J.F. Saunders III, 2001, An Evaluation of the Role of Tributary Streams for Recovery of Endangered Fishes in the Upper Colorado River Basin, with Recommendations for Future Recovery Actions, Final Report, Project No. 101, prepared for the Upper Colorado Endangered Fish Recovery Program by the Center for Limnology, Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, March.

Tyus, H.M., et al., 1982, "Fishes of the Upper Colorado River Basin: Distribution, Abundance and Status," pp. 1.2-70 in Fishes of the Upper Colorado River System: Present and Future, W.H. Miller et al. (editors), Western Division. American Fisheries Society, Bethesda, Md.

UDEQ (Utah Department of Environmental Quality), 2006a, Division of Air Quality 2005 Annual Report. Available at http://www.airquality.utah.gov/Public-Interest/annual-report/Index\_2005.htm. Accessed May 23, 2006.

UDEQ, 2006b, Water Quality [Uinta Basin]. Available at http://www.waterquality.utah.gov/watersheds/uinta/water\_quality.htm. Accessed May 8, 2006.

UDEQ, 2007, "303(d) List of Impaired Waters," Vol. II in *Utah's 2006 Integrated Report*. Available at http://www.waterquality.utah.gov/documents/200\_303d\_submittal\_3-31-06.pdf. Accessed Sept. 17, 2007.

UDNR (Utah Department of Natural Resources), 1999, *Utah State Water Plan—Uinta Basin*, Division of Water Resources.

UDNR, 2000a, Utah State Water Plan-Southeast Colorado River Basin, Division of Water Resources.

UDNR, 2000b, *Utah State Water Plan-West Colorado River Basin*, Division of Water Resources.

UDNR, 2001, *Utah's Water Resources*, *Planning for the Future*, Division of Water Resources. Utah Department of Public Safety, 2006, *Crime in Utah: Preliminary Report*, 2005. Available at http://bci.utah.gov/Stats/2005p.pdf. Accessed July 2006.

UDWR (Utah Division of Wildlife Resources), 2000, Statewide Management Plan for Moose, Salt Lake City, Utah. Available at http://www/wildlife.utah.gov/hunting/biggame/pdf/moose\_plan.pdf. Accessed June 12, 2006.

UDWR, 2002, Ute Ladies'-Tresses, Spiranthes diluvialis, fact sheet.

UDWR, 2003, Statewide Management Plan for Mule Deer, Salt Lake City, Utah. Available at http://www.wildlife.utah.goy/hunting/biggame/pdf/mule\_deer\_plan.pdf. Accessed June 12, 2006.

UDWR, 2005, Statewide Management Plan for Elk, Salt Lake City, Utah. Available at http://www.wildlife.utah.gov/hunting/biggame/pdf/elk\_plan.pdf. Accessed June 12, 2006.

UDWR, 2006, *Utah Conservation Data Center*, Salt Lake City, Utah. Available at http://dwrcdc.nr.utah.gov/ucdc/. Accessed July 2006.

Uintah County, Utah, 2004, Uintah County Financial Statements for the Year Ended December 31, 2004.

Uinta County, Wyoming, 2005, Uinta County, Wyoming, Comprehensive Annual Financial Report June 30, 2005, Uinta County Auditor, Evanston, Wyo.

Urascaro, C., 2007, personal communication from Urascaro (Duchesne County, Utah) to E. Moret (Argonne National Laboratory, Argonne, Ill.), June 15.

- U.S. Bureau of the Census, 2006a, *County Business Patterns*, 2004, hypertext tables. Available at http://www.census.gov/ftp/pub/epcd/cbp/view/cbpview.html, Accessed July 2006.
- U.S. Bureau of the Census, 2006b, Federal, State, and Local Governments, Census of Governments. Available at http://www.census.gov/gov/www/index.html. Accessed July 2006.
- U.S. Bureau of the Census, 2006c, American FactFinder, Census 2000 Summary File 2 (SF 2) 100-Percent Data, Detailed Tables. Available at http://factfinder.census.gov/servlet/DTGeoSearchByListServlet?ds\_name=DEC\_2000\_SF2\_U&\_lang=en8\_ts=194177919100. Accessed July 2006.
- U.S. Bureau of the Census, 2006d, State Interim Population Projections by Age and Sex: 2004–2030. Available at http://www.census.gov/population/www/projections/projections agesex.html. Accessed July 2006.
- U.S. Bureau of the Census, 2006e, *USA Counties*. Available at http://censtats.census.gov/cgibin/usac/usatable.pl. Accessed July 2006.
- U.S. Bureau of the Census, 2007, American Fact Finder. Available at http://factfinder.census.gov/. Accessed July 2006.
- USDA (U.S. Department of Agriculture), 2006, 2002 Census of Agriculture, Volume 1, County Level Data, National Agricultural Statistics Service. Available at http://www.nass.usda.gov/census/census/20/volume! (frindex2.htm. Accessed July 2006.
- U.S. Department of Commerce, 2006, Regional Economic Accounts, Local Area Personal Income. Available at http://www.bea.gov/bea/regional/reis/default.cfm?catable=CA1-3&section=2. Accessed July 2006.
- U.S. Department of Labor, 2006, Local Area Unemployment Statistics. Available at http://www.bls.gov/lau/. Accessed July 2006.
- USFWS (U.S. Fish and Wildlife Service), 1967, "Endangered Species List," Federal Register 32:4001.

USFWS, 1990a, Humpback Chub Recovery Plan, Region 6, Denver, Colo.

USFWS, 1990b, *Uinta Basin Hookless Cactus* (Sclerocactus glaucus) *Recovery Plan*, Region 6, Denver. Colo.

USFWS, 1991a, Autumn Buttercup, Ranunculus acriformis var. aestevalis Recovery Plan, Region 6, Denver, Colo.

USFWS, 1991b, Utah Prairie Dog Recovery Plan, Region 6, Denver, Colo.

USFWS, 1992, "Final Rule to List the Plant Spiranthes diluvialis (Ute Ladies'-Tresses) as a Threatened Species," Federal Register 57: 2048–2054.

USFWS, 1993a, Barneby Ridge-Cress Recovery Plan, Region 6, Denver, Colo.

USFWS, 1993b, *Dudley Bluffs Bladderpod* (Lesquerella congesta) and *Dudley Bluffs Twinpod* (Physaria obcordata) *Recovery Plan*, Grand Junction, Colo.

USFWS, 1993c, Last Chance Townsendia Recovery Plan, Region 6, Denver, Colo.

USFWS, 1994a, Utah Reed Mustards Recovery Plan, Region 6, Denver, Colo.

USFWS, 1994b, "Endangered and Threatened Wildlife and Plants; Determination of Critical Habitat for the Colorado River Endangered Fishes: Razorback Sucker, Colorado Squawfish, Humpback Chub, and Bonytail Chub," Federal Register 59:13374—13400.

USFWS, 1995a, Recovery Plan for the Mexican Spotted Owl (Strix occidentalis lucida), Southwestern Region, Albuquerque, N.M.

USFWS, 1995b, *Utah Pediocactus: San Rafael Cactus* (Pediocactus despainii) *and Winkler Cactus* (Pediocactus winkleri) *Recovery Plan*, Region 6, Denver. Colo.

USFWS, 1997a, "Endangered and Threatened Wildlife and Plants; Final Determination of Critical Habitat for the Southwestern Willow Flycatcher," Federal Register 62:39129–39147.

USFWS, 1997b, "Endangered and Threatened Wildlife and Plants; 12-Month Finding for a Petition to List the Contiguous United States Population of the Canada Lynx," Federal Register 62:28657-28657.

USFWS, 1997c, "Endangered and Threatened Wildlife and Plants: Final Rule to Designate the Whooping Craves of the Rocky Mountains as Experimental, Nonessential and to Remove Whooping Crane Critical Habitat Designations from Four Locations," Federal Register 62:38932–30939.

USFWS, 1998a, "Endangered and Threatened Wildlife and Plants; Establishment of a Nonessential Experimental Population of Black-Footed Ferrets in Northwestern Colorado and Northeastern Utah," Federal Register 63:52823—52841.

USFWS, 1998b, "Endangered and Threatened Wildlife and Plants; Proposal to List the Contiguous United States Distinct Population Segment of the Canada Lynx, Proposed Rule," Federal Reviser 63:36993–37013.

USFWS, 1999, "Endangered and Threatened Wildlife and Plants; Proposed Rule to Remove the Bald Eagle in the Lower 48 States from the List of Endangered and Threatened Wildlife," Federal Register 64:36453–36464.

USFWS, 2000a, "Endangered and Threatened Wildlife and Plants; Notice of 90-Day Finding for a Petition to List the Yellow-Billed Cuckoo as Endangered and Commencement of a Status Review," Federal Register 65:8104-8107.

USFWS, 2000b, "Endangered and Threatened Wildlife and Plants; Determination of Threatened Status for the Contiguous U.S. Distinct Population Segment of the Canada Lynx and Related Rule." Federal Reviser 65:16052–16086.

USFWS, 2001. "Endangered and Threatened Wildlife and Plants; Twelve Month Finding for a Petition to List the Yellow-Billed Cuckoo (Coccyzus americanus) in the Western Continental United States. Federal Resister 66(143):38611–38626.

USFWS, 2002a, Bonytail (Gila elegans) Recovery Goals: Amendment and Supplement to the Bonytail Chub Recovery Plan, Region 6, Denver, Colo.

USFWS, 2002b, Humpback Chub (Gila cypha) Recovery Goals: Amendment and Supplement to the Humpback Chub Recovery Plan, Region 6, Denver, Colo.

USFWS, 2002c, 2001 National Survey of Fishing, Hunting and Wildlife Associated Recreation: State Overview, Preliminary Findings, June. Available at http://library.fws.gov/Pubs/State\_overview01.pdf. Accessed March 2007.

USFWS, 2003, Preliminary Estimates of Waterfowl Hunter Activity and Harvest during the 2001 and 2002 Hunting Seasons, Administrative Report–July 2003, Division of Migratory Bird Management, Harvest Surveys Section, Laurel, Md.

USFWS, 2006a, U.S. Fish and Wildlife Service Threatened and Endangered Species System, Life Histories. Available at http://ecos.fws.gov/docs/life\_histories/B002.html. Accessed July 3, 2006.

USFWS, 2006b, U.S. Fish and Wildlife Service, Pacific Region Hopper Mountain National Wildlife Refuge Complex. California Condor. Available at http://www.fws.gov/hopper mountain/cacondor/. Accessed July 13, 2006. USFWS, 2006c, U.S. Fish and Wildlife Service Environmental Conservation Online System, Ridge-cress, Barneby. Available at http://ecos.fws.gov/species\_profile/servlet/gov.doi.species\_profile.servlet/s.SpeciesProfile/spcode=O1XV. Accessed July 6, 2006.

USFWS, 2006d, U.S. Fish and Wildlife Service, Mountain-Prairie Region, Endangered Species Program. Available at http://mountain-prairie.fws.gov/species/plants/grahamsbeardtongue/index. htm. Accessed July 5, 2006.

USFWS, 2006e, U.S. Fish and Wildlife Service, Designated Critical Habitat for the Mexican Spotted Owl. Available at http://www.fws.gov/ifw2es/mso/critical\_habitat/critical\_habitat.htm. Accessed July 12, 2006.

USFWS, 2006f, U.S. Fish and Wildlife Service, Mexican Spotted Owl Recovery Program, General Biology and Ecological Relationships. Available at http://www.fws.gov/ifw2es/mso/ Biologv.cfm. Accessed July 12, 2006.

USFWS, 2006g, Threatened and Endangered Species Database, Beardtongue, White River. Available at http://ecos.fws.gov/species\_profile/servlet/gov.doi.species\_profile.servlets.Species Profile?spcode=O2O1. Accessed July 11, 2006.

USFWS, 2006h, U.S. Fish and Wildlife Service, Threatened and Endangered Species System, Species Assessment and Listing Priority Assignment Form. Available at http://ecos.fws.gov/ docs/candforms pdf/fi/COW6 POI.pdf. Accessed July 20. 2006.

USFWS, 2006i, Sage Grouse Fact Sheet, Region 6, Lakewood, Colo. Available at http://mountain-prairie.fws.gov/species/birds/sagegrousefactsheet.pdf. Accessed April 24, 2006.

USFWS, 2006j, U.S. Fish and Wildlife Service Species Assessment and Listing Priority Assignment Form for Penstenon debilis. Available at http://ecos.fws.gov/docs/candforms\_ pdf/fs/036W\_pol.pdf, Accessed September 14, 2007.

USFWS, 2007a, "Endangered and Threatened Wildlife and Plants: 90-day Finding on a Petition to Reclassify the Utah Prairie Dog from Threatened to Endangered and Initiation of a 5-Year Review." Federal Register 72(34):7843–7852.

USFWS, 2007b, "Endangered and Threatened Wildlife and Plants; Removing the Bald Eagle in the Lower 48 States from the List of Endangered and Threatened Wildlife, Final Rule," *Federal Register* 72(130):37345–37372.

USGS (U.S. Geological Survey), 1968, Mineral and Water Resources of Colorado, report of the USGS in collaboration with the Colorado Mining Industrial Development Board, Washington, D.C., Oct.

USGS, 1980a, Raven Ridge-Rim Rock and Vicinity, Utah Tar Sand Leasing Minutes No. 8, minutes of the Mineral Land Evaluation Committee. Nov. 10.

USGS, 1980b, Argyle Canyon-Willow Creek, Utah Tar Sand Leasing Minutes No. 9, minutes of the Mineral Land Evaluation Committee. Nov. 10.

USGS, 1980c, Hill Creek, Utah Tar Sand Leasing Minutes No. 6, minutes of the Mineral Land Evaluation Committee. Nov. 10.

USGS, 1980d, P.R. Spring, Utah Tar Sand Leasing Minutes, minutes of the Mineral Land Evaluation Committee, Sept. 23.

USGS, 1980e, San Rafael Swell, Utah Tar Sand Leasing Minutes No. 7, minutes of the Mineral Land Evaluation Committee. Nov. 10.

USGS, 2006a, USGS 09302000 Duchesne River near Randlett, Utah. Available at http://waterdata.usgs.gov/usa/nwis/uv?site\_no=09302000. Accessed May 8, 2006.

USGS, 2006b, Water Data for USGS 09328500 San Rafael River near Green River, Utah.

Available at http://waterdata.usgs.gov/usa/nwis/uv?site\_no=09328500. Accessed May 8, 2006.

USGS, 2006c, Water Data for USGS 09333500 Dirty Devil River near Hanksville, Utah.

Available at http://waterdata.usgs.gov/usa/nwis/uv?site\_no=09333500. Accessed May 8, 2006.

U.S. President, 1930, "Withdrawal of Public Oil Shale Deposits and Lands Containing Same for Classification," Executive Order 5327, April 15.

U.S. President, 1994, "Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations," Executive Order 12898, Federal Register 59:7629, Feb. 11.

Utah Governor's Office of Planning and Budget, 2006, Population Projections by County and District. Available at http://www.governor.utah.gov/DEA/Projections/06ProjCountyand District.pdf. Accessed July 2006.

Utah Governor's Office of Planning and Budget, 2007, 2002 Baseline Projections UPED Model System. Available at http://www.governor.utah.gov/dea/LongTermProjections.html. Accessed March 2007.

Utah State Legislature, 2000, State Park Funding Options, June. Available at http://www.le.state.ut.us/lfa/reports/ParksFunding.pdf.

Utah State Parks and Recreation, 2006, State of Utah Natural Resources, home page. Available at http://www.stateparks.utah.gov/index.php.

Valdez, R.A., 1990, *The Endangered Fish of Cataract Canyon*, final report, prepared by BIO/WEST, Inc., for U.S. Bureau of Reclamation, Salt Lake City, Utah.

Valdez, R.A., and W.J. Masslich, 1989, Winter Habitat Study of Endangered Fish—Green River: Wintertime Movement and Habitat of Adult Colorado Squawfish and Razorback Suckers, BIO-WEST, Inc., Logan, Utah.

Valdez, R.A., et al., 1982, "Upper Colorado River Investigation (Rifle, Colorado, to Lake Powell, Utah)," in *Colorado River Fishery Project Final Report*, Field Investigations Report 2, U.S. Fish and Wildlife Service, Salt Lake City, Utah.

Valdez, R.A., et al., 1992, Characterization of the Life History and Ecology of the Humpback Chub in the Grand Canvon, Annual Report TR 250-05, BIO-WEST, Inc., Logan, Utah.

Vanden Berg, M.D., 2005, Reasonably Foreseeable Development Scenario (RFD) for Oil and Gas, RFD for the Monticello Planning Area, prepared for the Bureau of Land Management, Monticello Field Office, July.

Vanicek, C.D., and R.H. Kramer. 1969, "Life History of the Colorado Squawfish, *Psychocheilus lucius*, and the Colorado chub, *Gila robussa*, in the Green River in Dinosaur National Monument 1964—1966," *Transactions of the American Fisheries Society* 98:193–208.

Vernal City Corporation, Utah, 2005, Vernal City Corporation Financial Statements for the Year Ended June 30, 2005.

Wagner, J., 2007, personal communication from Wagner (Lincoln County, Wyo.) to E. Moret (Argonne National Laboratory, Argonne, Ill.), Feb. 12.

Ward, J., and T. Naumann, 1998, Use Ladies'-Tresses Orchid (Spiranthes diluvialis Sheviak) Inventory, Dinosaur National Monument and Browns Park National Wildlife Refuge, Dinosaur National Monument, National Park Service.

Wayne County, Utah, 2004. Wayne County Financial Statements, December 31, 2004.

WDEQ (Wyoming Department of Environmental Quality), 2005, "Water Quality Rules and Regulations," in *Quality Standards for Wyoming Groundwaters*, adopted March 16. Available at http://deq.state.wy.us/wqd/WQDrules/Chapter\_08.pdf. Accessed June 6, 2006.

WDEQ, 2006a, "Ambient Standards," Chapter 2 in Wyoming Department of Environmental Quality, Air Quality Division, Standards and Regulations. Available at http://deq.state.wy.us/ agd/stnd/Chapter2\_2-3-05FINAL\_CILEAN.pdf. Accessed May 23, 2006.

WDEQ, 2006b, Wyoming's 2006 305(b) State Water Quality Assessment Report and 303(d) List of Waters Requiring TMDLs. Available at http://deq.state.wy.us/wqd/watershed/Downloads/ 305b/2006/2006. 305b.\_pdf. Accessed Nov. 13, 2007.

Weisz, R., 1979, "Stress and Mental Health in a Boom Town," pp. 31–47 in BoomTowns and Human Services, J. Davenport and J. Davenport (editors), University of Wyoming Press, Laramie, Wyo. WGFD (Wyoming Game and Fish Department), 2004, Atlas of Birds, Mammals, Amphibians, and Reptiles in Wyoming, Wildlife Division, Cheyenne, Wyo. Available at http://gf.state.wy.us/downloads/pdf/nongame/WYBirdMammHerpAtlas04.pdf, Accessed April 25, 2006.

WGFD, 2005, Wyoming Game and Fish Species List, Cheyenne, Wyo. Available at http://gf.state.wy.us/wildlife/nongame/SpeciesList/index.asp. Accessed June 6, 2006.

WGDF, 2006, Wyoming Game and Fish Department, Green River Region, Angler Newsletter, Green River, Wyo., spring. Available at http://gf.state.wy.us/downloads/pdf/Fish/Newsletters/GreenRiver/2006GRNewsletter,pdf.

Whooping Crane Conservation Association, 2006, Current Whooping Crane Flock Status (updated on May 5, 2006). Available at http://www.whoopingcrane.com/FLOCKSTATUS. HTM. Accessed July 13, 2006.

Wilkinson, K.P., 1983, "Divorce and Recent Net Migration into the Old West," *Journal of Marriage and the Family* 45:437–445.

Wilkinson, K.P., and M. Camasso, 1984, "Juvenile Delinquency and Energy Development in a Traditional Setting," unpublished manuscript, Department of Rural Sociology, Pennsylvania State University, State College, Pa.

Wilkinson, K.P., et al., 1982, "Local Social Disruption and Western Energy Development: A Critical Review," *Pacific Sociological Review* 25:275–296.

Wilkinson, K.P., et al., 1984, "Violent Crime in the Western Energy-Development Region," Sociological Perspectives 27:241–256.

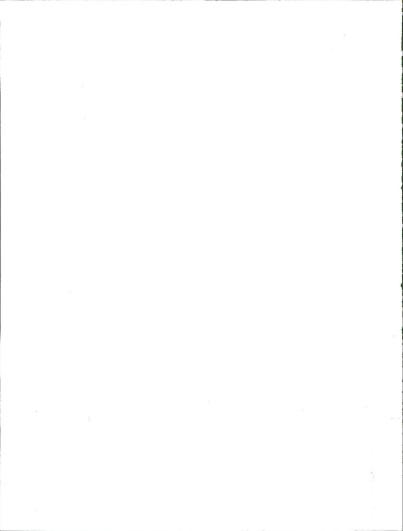
Williams, M.H., 2002, *Utah's Scenic San Rafael Introduction*. Available at http://www.arapeenatvjam.org/san\_rafael\_swell.htm. Accessed June 1, 2006.

Woodling, J., 1985, Colorado's Little Fish: A Guide to the Minnows and Other Lesser Known Fishes in the State of Colorado, Colorado Division of Wildlife, Department of Natural Resources, Denver, Colo.

Woods, A.J., et al., 2001, Ecoregions of Utah, U.S. Geological Survey, Reston, Va.

WRAP (Western Regional Air Partnership), 2006, Emissions Data Management System (EDMS). Available at http://www.wrapedms.org/default\_login.asp, Accessed June 2006.

WRCC (Western Regional Climate Center), 2006, Climatological Data Summaries (Temperature and Precipitation). Available at http://www.wrcc.dri.edu/Climsum.html. Accessed June 2006.


Wyoming Department of Administration and Information, 2006, Population for Wyoming, Counties, Cities, and Towns: 2000 to 2020. Available at http://eadiv.state.wy.us/pop/wyc&sc20.htm. Accessed March 2007.

Wyoming Division of Criminal Investigation, 2006, 2005 Annual Report: Crime in Wyoming. Available at http://attorneygeneral.state.wy.us/dci/pdf/2005%20Annual%20Published.pdf. Accessed July 2006.

Wyoming Division of State Parks and Historic Sites, 2006, home page. Available at http://wyoparks.state.wy.us/.

This page intentionally left blank.



