HYDRO - ELECTRIC DEVELOPMENT ON THE SNAKE RIVER, OREGON

W. J. BAER
H. ROSENTHAL
H. MOYSES
F. O. GODFREY

ARMOUR INSTTTUTE OF TECHNOLOGY
1910

Hitinois lnstitute
of Technology
UNIVERSITY LUBRARIES

AT 169
Baer, W. J.
Hydro-electric development on the Snake River at Oxen

For Uss in Lhrory Only

HYDRO-ELEC'PRIC DEVELOPMENT ON
 THE SNAKE RIVER
 AT
 OXBOW BEND, OREGON

 A THESIS

 A THESIS}

WALTER J. BIER
HARRY MOYSES

HENRY ROSENTHAL.
FRANK O. GODFREY

TO THE
PRESIDENT AND FACULTY
of

ARMOUR INSTITUTE OF TECHNOLOGY

FOR THE DEGREE OF
BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

HAVING COMPLETED THE PRESCRIBED COURSE OF STUDY IN
ELECTRICAL ENGINEERING
MAY゙. 1910

ILLINOIS INSTITUTE OF TECHNOLOGY PAUL V. GAN: hORARY 35 WEST SOTO STREET CiHCAGO, IL 60616

BI BIIOGREXHI.

Electric Transmission of Tater Pover.	Adame.
Hydro-Eloctric Plants and Dosigns of Dams	Boardsloy.
Hydraulics,	Dunkersloy.
Water Power,	Frizoll.
Lone Nistaneo Fower ${ }^{\text {cheansmission }}$	Hutchinson.
Hydro Electric Power Plants	Koester.
Development and Electric Distribution, of water Power	Lyndon.
Hydro-Eloctric Practice	Schon'von.
Reservoirs for Irrogation, Wator Supply otc.	Schuyler.
Alternating Current Machines,	(Sheldon, (13ason \& (Man mañn.
Desjogn and Construction of Dams	'Vegmann.
Power Plart Engineering	Toingroen.

22145

HYDRO-ELECTRIC DEVELOPMENT ON THE SNAKE RIVER

AT OX BOW BEND, OREGON.

Tho western part of the United States contains a large percentage of the total water power of this country. That portion, which requirod little money for development and which was near to a market, has been made use of. 'Tho greater part, however, is located at large distances from the populous manufacturing centers.

Ono of the large undeveloped water powers is at Ux Bow Bend on the Snake River. There is little market for the energy in this locality and hence the development of a hydroelectric plant was considored impractical. However, during the last few years, great strides have been made in high tension power transmission and it is now possible to economically carry power large distances to a market. hus, the output of a plant at ox Bow den bo transmitted to a market at Boise.

At ux Bow, the Snake River तescribes a huge bond Which has the shape of an ox yoke. The water is to be backed up at this point to create a head of 52 foot, and delivere: to the wheels at the lower end of the bond through a tunnel across the narrow neck of land inside of the bend.

A gate is to be placed at the entrance to the tunnel and a settling basin will be located at the discharge end. The minimum stream flow of the Snake River at this point is 6,500 cubic feet per second, so that the minimum theoretical power will be $38,200 \mathrm{H} . \mathrm{P}$. This is determined from the following equation:

$$
\text { H.P. }=\frac{r h q}{550}
$$

where r 些 veight of $1 \mathrm{cu} . f t$. of water in lbs. $=62.5$ $\mathrm{h}=$ hoad in feet.
$q=$ discharge in cu. ft. per second.
The station has been designed for $37,200 \mathrm{H}$. P. at the ater wheols. It is proposed to install six units, each consisting of two twin turbines direct connected to a $3,750 \mathrm{~K} . \mathrm{V} . \mathrm{A} ., 60$ cyclo, three phase alternator. Tho water wheols which dovelope $6,200 \mathrm{H}$. P. at full gate opening are controlled by oil pressure governors. The power factor of the system is estimated at 85%. From the above it is seen that the capacity of the water wheals is about 50% gfeater than the generator. This is due to the fact that a turbine can not stand the overload which the alternator can. The excitation for the generators is to be furniehed by two water wheel driven exciters. Lither of these exciters, which are of 300 it.W. capacity, is capable of supplying all the direct
current required by the alternators, control circuits and auxiliary apparatus. The voltage of the exciters is 125. The water wheels are 500 H . P. in oapacity and are placed in separate bulk heads. The intake gates are motor operated but in case of emergency can be controlled by hand.

The three phase current from the alternators is stepped up from 2,300 volts to 66,000 volts by theee single phase transformers. Both sides of the transformers are connected in delta. Only the high side of the transformers are paralleled since all of the energy is to be serit out of tho station at the high voltage. An extra transformer is available for use in case of breakdow. Blectrolytic lighting arresters are used to prevent trouble due to storms and other static disturbancas.

All the apparatus in the station is controlled from a switch board placed upon the gallery. The board is of the bench type and is very compact.

DAM.

In the design and construction of a hydro-olectric project, the dum is of great importance. Upon its stability dopends not only the continuous operation of the plant but also the lives and property of the people living the villoy below. The financial succoss of the enterprise, too, depends to a considerablo extent upon the amount of money exponded in daming up the stream. For these roasons, the dam should be carefully looked into and a type and design selected that will insure maximum safoty at tho minimum oxpense.

Of the many types of dams which have been built, the most common form of a permanent type is a solid masonry structure. With an abundance of good stone near at hand and high freight charges on steel, this class of dam mill probably bo as cheap as the reinforced type which is of lighter section.

The solid section has proven very reliable, for of all those that have been built, only a few have failto stand the test of time and floods. Of the failures, most can be attributed to one of two faults in desien. Either tho dam was overturned because the spillway section was not large enough to take care of an unusual flood, or it was floated away bocause improper foundation allowod soopage underneath the dam.

To dosign a dam at $0 x$ Bow Bend it is necessary to know the maximum stream flow of the Snako River at this point. A record of the principal rivers of the United States is kopt by the United States Geological Survey. From this rocord, tho maximum flow over a period of years was determined to be about 70,000 cubic feet per second. 'The maximum amount of water used by the turbines is $6,500 \mathrm{cu}$. ft. per socond. On account of this vast quantity of water to be wastod, it was decided to build the entire dam a spillway. The main spillway which is 393 foet Iong will take care of the total 70,000 seconds feet, and a shorter spillmay at one side will act as a factor of safety in case of an unusual flood. It is essential to look out for floods in the Snake River Valley as the trees which help hold back the sprine freshets are fast being romoved, due to forest fires and lumbering. An earth retaining section, with a concreto core, has been construce ed to prevont seepa.ge at the end of the dam.

With the assumption that the 393 feet of main spillway takes caro of the 70,000 cubic feet per second, the water will rise to the height of 1.4 .2 feet above the dam. This is determined by Francis' formula

$$
Q=3.33 \operatorname{Ln}^{3} \frac{3}{2}
$$

$=$

$$
\begin{aligned}
& h^{3}=\frac{Q}{3.33} \mathrm{~L}
\end{aligned}=\frac{70,000}{3.33}=593.50
$$

Whero h is tho hoad of water above the dam, in foet Q is the flow in cubic feet per second L is the length of the overflow section, in feet. Lo obtain the smallest amount of action on the dam by the falling water and to obtain an extra amount of head in draught times, the section of the spillway should be the natural curve of water running over a sharp edged weir. This section is shown in figure I. Curve $A B$ is an ellipse having a major axis equal to $\frac{h}{2}=7.1$ feet, and a minor axis equal to $\frac{h}{4}=3.55^{\prime}$. Curve BC is a parabola the equation of which is

$$
\begin{aligned}
& x^{2} & =2 p y \\
\text { where } \quad & p & =.99 \mathrm{~h} \\
\text { so } & x^{2} & =2 \times .99 \times 14.3 y=28.1 \mathrm{y}
\end{aligned}
$$

\therefore Olvine this equation the following valuos of X and y mere determined.

X	Y
0	0
5	.89
10	3.56

X	Y
15	8
20	14.2
25	$22 . ?$
30	32
35	43.6

The next portion of the curve is a straight line, $C D$, dram tangent to the parabola through the point M. K is one extremity of the base of the dam and it is so located that the length of the base MM is equal to 75% of tho maximur head of water above this base. The last portion of the curve of the section is a circle $D E$ drawn tangent to the line $C M$. Its purpose is to direct the water horizontally and its radius may bo any convonient distance. It was chosen at thirty feot.

As the gravel which foms the river bottom is a layer of very great depth, it would make the aam of enormous cost if the foundation were taken to bed rock. l'o provent erosion at the toe of the dam, a very long apron is carried out. As seopage is likely to occur with a gravel foundation two shoet pile cut offs were decidod upon, one at the end of the apron and the other at the toe of the dam. A concrete cut off was also placed at the heel.

The stability of vertical mall against water pressure on one side depends upon three things, for proper security.

First, the resultant of the water pressure, acting horizontally through the center of pressure, and the weight of the dam, acting vertically through the center of gravity, must fall within the middle third of the base.

Socond, the maximum pressure per cent area on the base must not exceed a safe value.

Third, the water pressure must be loss than the sliding friction on the baso.

In a dam of the solid type, the weight of the dam, and the area of the base must be of such a magnitude, if the first condition holds, that the third condition will be absolutoly safe, so that it is unnecessary to investigate the strength against sliding.

To determine the line of pressure in the dam the following method was used. The dam was first divided into seven soctions, six of which were ten feot each, and the seventh was 7.2 feet high. Tho center of rravity of the dam was then dotermined, first for tho wholo section, then with section 1 removed, thon "ith sections 1 and 2 remover and so
\qquad -

- 1 0 1 \qquad yerlinent
\qquad

\qquad
,
on until only soction 7 remained. The line of proseuro with no water in the roservoir can be determined by projocting the conters of gravity for the different soctions upon the base line of those sections and then connecting points. It was found that the rosultant line of pressure lay well within the middle third of the dam.

To determine tho line of pressure with any water behind the dam it is necessary first to determine the woights of the different sections. This was done by drawing the section to scale and measuring the area with a planimeter. The following results were obt:ined with the dam drawn to a scalo of 1 inch equal to ten feet.

Area sq. in. Wol. of sect. Wt.of sect.

Section	(by planimeter)	ft. wide. (cu.ft)	1 ft. . 1 de .
$1-7$	34.12	2412	361,500
$2-7$	18.68	1868	280,900
$3-7$	13.86	1386	207,900
$4-7$	9.53	953	142,950
$5-7$	6.05	605	60,750
$6-7$	3.12	312	46,800
7	.93	93	13,950

The material of the dam which is granite was assumed to weigh 150 pounds per cubic foot. The forces show in the fourth column represent the weights of the var ious sections acting down through the centers of gram vity of the respective sections. It is now necessary to obtain the force and the point of application of the force due to the mater. The center of pressure, X_{c}, was determined by the equation

$$
x_{c}=\frac{2}{3} \frac{h_{2}^{3}-H_{1}^{3}}{h_{2}^{2}-h_{1}^{2}}
$$

The force, 1 , due to tho water acting at X_{C}, was determined by the equation

$$
P=\frac{1}{2} b h_{3} r
$$

r is the weight of one cubic foot of water and is equal to $62.5^{4}, b$ is the width of the section and was taken as one foot. The remaining terms are explained by figure II.

FIE. II.

The following results were obtained.
Sect. $h_{1} h_{2} \quad X_{c} \quad h \quad h_{3} \quad P$

$1-7$	14.2	75.2	51.6	44.5	61	84,800
$2-7$	14.2	71.4	49.1	42.6	57.2	76,100
$3-7$	14.2	61.4	42.6	37.6	47.2	56,700
$4-7$	14.2	51.4	36.2	32.6	37.2	36,700
$5-7$	14.2	41.4	30	27.6	27.2	23,500
$6-7$	14.2	31.4	23.8	22.6	17.2	12,150
7	14.2	21.4	18.0	17.6	7.2	3,960

By combining P acting horizontally thru C and tho weight of the dam acting vertically thru the conter of gravity as previously determined, the resultant pressurc may be determindd for oach section. By connocting the points where this pressure acts on the Wases of the respective sections, the line of resultant prossures may be obtained. This line vas found to be very close to the center of the dam.

It is now necessary to determine the maximum

 pressure acting on the base of the dam.

Fig. III.

Figure III represents the trapezoid of pressure on the base of the dam.

$$
\begin{aligned}
& W=\text { the total pressure acting on } a b \\
& W=\text { the distance of } W \text { from the nearer edge, } b \\
& p=\text { the maximum intensity of pressure } \\
& p^{l}=\text { the minimum intensity of pressure } \\
& l
\end{aligned}=\text { the width of the base ab } \quad \begin{aligned}
& g=\text { the chG. of the triangle coed. } \\
& \text { Trapezoid abce }=\text { the reaction of tho foundation } \\
&=\text { abed }- \text { cedi } \\
&=p l-\frac{l}{2}\left(p-p^{I}\right)
\end{aligned}
$$

Since $: 8$ and the reaction of the foundation are in equilibrium, the algebraic sum of their moments about any point must bo equal to zero. Taking moments about, we find the moment of ed $=0$.

$$
\begin{aligned}
& \frac{1^{2} n}{6}-i\left(\begin{array}{l}
2 \\
\text { 券 } 1-\%)
\end{array}=0\right. \\
& p=\frac{3 \mathrm{~m}}{1}\left(\Omega-\frac{2 \mathrm{~W}}{1}\right) \\
& =361,5001=58.8 \quad \mathrm{~W} \quad 3.4 \\
& p=\frac{n x^{3} 61,500}{58.8} \frac{(2-3 x 28.4)}{58.8} \\
& =10300 \times .55 \text { 6760 }{ }^{t} \text { per sq. It. }
\end{aligned}
$$

This value is within the safe limit for coarse gravel which forms the foundation of the dam.

It $w: s$ previously determined that the lino of pressure, mith the reservoir both ompty and full, was well Within the middlo third of the dam. As the unit preseure is found to be within the safe working limit of the material of the foundation, the dam will be safe in ovory respect.

TRANSMISSION LINE.

Tho line is one of the most important parts of the system, for on it doponde the continuity of service without which the best apparatus is useless. On this account it is important to consider carefully not only electrical dotails, but also methods of construction.

In the dosign of a transmission systom, the lino must be considered, first, in its general relations to tho plant, second, as a spocial problem in ongineering, third, as a mechanical structure. The first has to do with the proper proportioning of the line as a part of the system, its function as a distributing conductor, and its bearing on the general efficiency of the plant of which it is a part. In connection with this, it must be remembered that much dopends on the type and adjustrent of the station spearatus in controlling the line voltage, loss and porer factor. The second doals with the electrical difficulties, and the third with the materials of construction and mothods of applying them.

In the passing of enorgy ovor a line there is first the loss due to resistance. The two conductors with the air between them act as a condonser.

This condenser action tends to cause the generator voltage to rise, while the inductance of the line has the opposite effoct.
'lhe charging current is constant and, flows as long as voltage is applied to the linn. its importance diminishos as the load increases for when the load is heavy, it is not only overcome by the lagging current of the load, but is also rendered unimportant by the prosenco of a large current in place with the - . m, f.

In the caso of large excess lagging current, the offect on the capacity and regulation of the generator is well known. The lagging load current can bo balanced by synchronous machines. Where synchronous machines are not used, a large line capacity current may be desirable. The capacity may be increased by dividing the conductors into two or more wires, separated from each other, but mounted on the same insulator or adjacent insulators. This will at the ame time decrease the inductance.

The line which it is proposed to construct in cannection with the generating station at Ox Bow Bend will be approxinately one hundred and seventy-fivo miles lone.

The voltage has been fixed at 66000 eince this is the standard in this locality and it is probablo that in the future this station will be tied in with some of the existing plants.

The main line will be run in duplicate on steel towers to insure continuity of service. Three-phase transmission has been decided upon, since it is the most economical in the amount of line wire required. The line side of the transformers will be connected in delta to prevont trouble from harmonics.

The location and capacity of the sovoral substathons hame boen determined from estimations made on the amount of power which cen be cold in the several towne. There Will be eight substations ranging in capacity from 150 K. \%. to $5000 \mathrm{~K} . \mathrm{H}_{\text {. }}$. It is proposed to construct a spocial line six miles in leneth to a mino which will require $3000 \mathrm{~K} . \%$. This line will be of similar construction to the main line, and will be operated at 66000 volts, for it is believed that this line will ultimately be extended. Two short lines from Boise will be operated at 66000 volts for this same reason. The substations on those lines are small, and the income from thom will not justify a steel tower construction with duplicate lines. Wooden poles mill be used, and only one line constructod.

TRANSMISSION LINE.

Section 1. Oxbow to "eiser.
The power to be transmitted at present is 7400 กิ. W., but we shall design the line to carry double this amount allow for future growth.

Lenth of section - 65 miles.
Current to be carried at an assumed pomer factor of 85%.

$$
\begin{aligned}
I & =\frac{75,000,000}{\sqrt{3 \times 66,000 \times \cdot 85}} \\
& =155 \text { amperes. }
\end{aligned}
$$

For this section we shall use \#l copper B. \& s. equivalent aluminum standard cablo.

Aroa in circular miles $=132,300$
Diameter $=.42$ inch
Area $=.1039$ square inch
Weight por mile $\quad=640.6$ pounds
Resistance per mile to 60 cycle current $=.7034$ ohms Elastic limit $=1450$ pounds.
Inductance per wire per mile $=\left(30.5+740 \log \left(\frac{d}{R}\right)\right) \times 10^{-6}$
$\mathrm{d}=\mathrm{distance}$ botween wires $=(80.5+740 \times 0.6) \times 10^{-6}$
$=84$ inches $=.003$ henry.
$K=$ radius of wire
$=.21$ inch.

Capacity betmoon conductors per mile $=\frac{.0388}{3 \log \frac{t}{R}}=.0075 \mathrm{~m} . f$.
A convenient method of calculating the regulation of a three-phaso circuit is to consider it as two single phase circuits, having the same size conductors, same voltage and spacing, and each carrying ono half of tho total power transmitted.

We shall consider this portion of the line as two singlo phaso linos, each transmitting $3750 \mathrm{~K} . \mathrm{V}$. Inductance from oxbow to Weiser $=65 \times$? $\times .00$?

$$
=.26 \text { henry }
$$

Roactance

$$
\begin{aligned}
w L & =2 \pi \times 60 \times \cdot 26 \\
& =92 \text { ohms. }
\end{aligned}
$$

Capacity iotwoen lines from Oxbow to Weiser $=65 \mathrm{x} .0075$
WC

$$
\begin{aligned}
& =.49 \text { micoofarad. } \\
& =377 \times .49 \times 10^{-6} \\
& =.000185 \\
& =65 \times 3 \times .703 \\
& =91.5 \text { ohms. }
\end{aligned}
$$

In order to calculate the regulation, we shall divide the line into ten sections.

For each section:
$\mathrm{L}=.036$ honry $\quad \mathrm{L}=9.2 \mathrm{hms}$.
$C=.049$ microfarad ${ }^{v} C=.0000185$
$\mathrm{K}=9.15$ ohms.
Let us assume the drop is 10%
Voltago at Oxbow $=66,000$
Voltage at veiser $=59,400$.
At present wo shall confine ourselves to the regulation of the line when carrying the present load. (7400 K .7 . or 3700 K . . on each single phase line.) Current in section $1=73$ amperes. Resistance drop in section 1, R.I. $=9.15 \times 73=668$ volts. Inductive drop in section 1, X.I. $=9 . ? \times 73=67$? volts. Voltage at end of eoction $1, \mathrm{I}_{1}=\sqrt{(59400+668)^{2}+(672)^{2}}$. $=6007$? volts.

Effect of charging current.
The maximum charging current will be that in section 10 where the voltage is 66,000.

$$
\begin{aligned}
\mathbb{I}_{\mathrm{C}} & =3 \pi \mathrm{CE} . \\
& =.0000185 \times 66,000 \\
& =1.29 .
\end{aligned}
$$

kesultant current $=\sqrt{(73)^{2}+(1.22)^{2}}$

$$
=73.09 .
$$

The error in neglecting the effoct of charging current Will be $\frac{.09}{73} \times 100=.12$ of ono per cent.

Hence Te will neglect the charging current.
Since 've have decided to nogloct the charging curront, the resistance and reactive drops will be the oame in all octions.
$E_{2}=\sqrt{(6007 ?+668)^{2}+(672)^{2}}$
$=60743$ volts.
$-3=\sqrt{(60743+683)^{2}+(672)^{2}}$
$=61413$ volts.
$E_{4}=\sqrt{(61413+668)^{2}+(672)^{2}}$
$=62083$ volts.
$E_{5}=\sqrt{(62083+668)^{2}+(670)^{2}}$
$=62753$ volts.
$\mathrm{E}_{6}=\sqrt{(62753+668)^{2}+(673)^{2}}$
$=63434$ volts.
$E_{7}=\sqrt{(63424+668)^{2}+(672)^{2}}$
$=64095$ volts.
$E_{8}=\sqrt{(64005+663)^{2}+(673)^{2}}$
$=64765$ volts.
$L_{9}=65046$ volts.
$E_{10}=\sqrt{(65346+368)^{2}+(672)^{2}}$
$=60107$ volts.

This is within. 16 of one per cent, hence the drop assumed is satief ctory.
,

THE LINE AS A MECHANICAL S'RRUCTURE.

Weight por fout of cable $=.121$ \#
Area of conductor $=.101$ square inch
Diameter of conductor $=.49$ inch
Slastic limit of cable $=1450 \#$.
To shall assume that the line is covered with $1 / 2$ inch of ice, and that the wind pressure is 15\# per square foot.
$S_{1}=$ span in feet $=500$
$D=$ sag in foot
i = weight of conductor and ice in pounde per foot
$W_{2}=$ resultant of W and wind pressure in pounds per foot $T=$ maximum allowable tension in conductor $=1450 \#$
$\mathrm{K}=$ temperature coefficient of linear expansion por degree i'ahrenhoit $=.0000128$
$t=$ temporature in degrees Fahronhoit above minimum $\left(-40^{\circ}\right)=125$.
$E_{1}=$ strotch modulus of elacticity $=9,000,000$.
$I_{8}=$ length of single span of strung cable at minimum temperature, in feot.
$I_{u}=$ length of unstressed single span of cable at minimum tomperature.
$L_{S}=S_{1}+\frac{5 I^{3} H_{1}^{2}}{24 I^{2}}$
$L_{u}=\frac{L_{S}}{1+I}$
$D^{3}-\frac{3}{\delta} \Sigma_{1}\left(I_{u}(I+K t)-S_{1}\right) D=\frac{3 S_{1}{ }^{3} I_{i 1} N_{r}}{6^{2} 4 E 1}$
$\mathrm{D}^{1}=\frac{\mathrm{DV}}{\mathrm{r}_{r}}$ vert cal sag.
Weight of ice per cubic foot $=57$ \#.

Weight of $1 / 2$ inch of ice $=\frac{19 \pi\left(\frac{(1.49)^{2}}{2}-\frac{\left.\left.(648)^{2}\right)\right)}{2} \times 57\right.}{1738}$
$=.57$ \# per foot of cable.
Height of cable and ice $=$.691苚 per foot.
Wind pressure on ice covered cable $=\frac{1.4^{?} \times 1 \text { ? } \times 15}{144}$
$=1.78$ \# per foot of cable.
Resultant, $W_{\mathrm{R}}=\sqrt{(.691)^{2}+(1.78)^{2}}$

$$
\begin{aligned}
&=1.91 \# \text { per foot of cable. } \\
& L_{s}=500+\frac{(500)^{3} \times(1.91)^{?}}{34 \times(1450)^{3}} \\
&=509.04 \mathrm{fect.} \\
& I_{u}=\frac{-1+\frac{1450}{1+90904}}{9.000,000 \times 104} \\
&=508.25 \text { feet. }
\end{aligned}
$$

$$
\begin{aligned}
& D^{3}-\frac{3 \times 500}{8}(508.25 \times 1.0016-500) D=\frac{3 \times 1500)^{3} \times 508.35 \times 1}{64 \times \cdot 104 \times 9000000} \\
& \begin{aligned}
D^{3}-1690 D & =6080 \\
D & =42.3 \text { feot. } \\
\begin{aligned}
D^{1} & =\text { vorticial sag }
\end{aligned} & =\frac{42.8 \times .691}{1.91} \\
& =15-1 / 2 \text { foot. }
\end{aligned}
\end{aligned}
$$

'ine lowest portion of tho cable must be a sufficiont height above the ground to prevent accidental contact. i'his distanco should be 20 or 25 feot. Ye shall use a tower having the lower cross arm 40 feet from the ground. The minimum clearance will thon be 24-1/2 feot.

Forces scting on the Towers.
The main line from Oxbow to Boise will bo built in duplicate. Iwo three-phase innes arranged in delta, one on each side of the tower will be strung. Woight of conductors and ico $=6 \mathrm{x} 500 \mathrm{x} .691$

$$
=2075 \#
$$

Force due to wind on conductors $=6 \times 500 \times 1.78$

$$
=53500^{\prime \prime}
$$

Surfiace of tower exposed to wind will be about 30 square foet.

$$
\begin{aligned}
\text { Vind pressure on toier } & =30 \times 15 . \\
& =450 \frac{11}{\%} .
\end{aligned}
$$

This acts at the conter of gravity of the torer, but let us assure that 300\# acts along the Ine of the wind pressure on the conductors. Vind pressure acts through the center of gravity of the delta, about two feet above the lower conductors, or 42 feet from the ground. Total force due to wind $=5350 \%+300$ \#

$$
=5650 \% \text {. }
$$

The towers must support a weight of 2075* and a force of $5650 \#$ acting 42 foet from the ground.

SUMMARY.

Length of line - 65 miles.
Transmittod power - 7500 K. W.
Conductors - \#1 亡quivalent Aluminum Str nded Cable.
Length of sran - 500 feet.
Spacing - 7 feet.
ihaximum sag - 15-1/2 feet.
Approximate number of towers $=\frac{5280 \times 65}{500}$

$$
=690
$$

Approzinate number insulators $=690 \times 6$.

$$
=4140 .
$$

TRANSMISSION L"IE.

Section 2, Woiser to Horsoshoe Bond.
On thï line are located four substatinns, ranging in capacity from 150 K . T. to 600 K . W. Wo shall consider this section as carrying 6800 K . W., since the substations are small, and the difference between the currents in the several sections, will be slight. Length of line - 65 miles. The power to be transmitted j.g 8800 . ${ }^{W}$. $I=\frac{6300000}{5 \times 59400 \times \cdot 85} \quad 59400=$ voltage at Weiser. $=78$ arperos.

To allow for a growth of load, we shall use \#l copper 3 . S. S. equivalent aluminum standerd cable. Sine constants are the same as for section 1.

Let us assume a drop of 10%. Voltage at Horseshoe Bend $=50400$ volts.x $.9=53460$

The method of calculation followed was that used in calculating section 1 . A ten per cent drop is satisfactory.

Ne shall use the same span and towers as used on section 1 .

SUMARY゙.

Length of lino - 65 miles.
Transmitted power - $6800 \mathrm{~K} \cdot$.
Conductors - Aquivalent Aluminum Standard Cable.
Length of span - 500 feet.
Spacing - 7 foot.
Maximum sag - 15-1/2 foot.
Weight to be supported by towers 2075\%.
Force acting due to wind $=5650$ \#.
Arm of abova force $=4 ?$ feet.
Approximate number of towers $=\frac{5980 \mathrm{x} 65}{500}$

$$
=690 .
$$

Approximate number of insulators $=690 \times 5$.

$$
=4140 .
$$

RHARSMISSI iv L Nv.

Section 3. Horseshoe Bend to Boise.
The section of the transmission line from Horsoshoe bend to Boise is 26 miles lonf. Chere are no substations between Horseshoe Bend and Boise. Tho power to be transmitted at present is 5450 K . W.

We have found that at full load, the voltage will have fallen to 53460 at Horseshoo Bend. Wo shall assume 60,000 volts at Boise, then calculate the voltage at Horseshoe Bond. Requlators will be installed at Horsebhoe Bend to raise the line voltage to that renuired.

The Horseshoe Bend plant at present is of 1500 K. N. capacity. 'This plant will be operated in parallel With the Oxbous Bend station.
line curlent, $I=\frac{5450000}{\sqrt{3} \times 60000 \times .85}$
$=61$ ampores.
We shall use ${ }^{W} 3$ equivalent aluminum cable, which will allow for an increase in load of about 75%. Line Constants.
inductance per wire per mile $=.00197$ henrg.
Capacity batwenn conductors per mile $=.0073$ microfarad. Resistanco per mile per wire $=.8373 \mathrm{ohm}$. Area of cable $=.0324$ square inch.

Diamoter of cabls $=.37$ inch
Liastic limit = 1155非
Weight per foot of cable $=.0965$ \#
The result of the cnlculation of the voltare requirod at Horseshoe Bend was 62700 volts. Hence the regulator at Horseshoe Bend must raise the voltage from 53460 volts to 62700 volts.

This section of the line is to be run in बuplicate, as Wero soctions J. and ?. We shall use a span of 500 feet.

The resulte of tho calculations are shown below in the sumnary.

SLEARY.

Length of line - 26 miles.
Transmittod porer - 5450 K . ${ }^{2}$.
Conductors - quivalent Aluminum Standar Cable.
Length of span - 500 foet.
Maximum sag - 19 foet.
Height to be supported by towers - 1910\#.
Force acting due to wind - 54.50%.
Arm of above force - 42 fet.
Approximate number of towers $=\frac{5380 \times 26}{500}-$

$$
=275 .
$$

Approximate number of insulators $=275 \times 6=1650$.

TRANGMIESICN L NR.

Section 4, Boise to Meridian.
A ten mile branch line is to be constructed from Boise to Moridian.At present the power to be transmitted is only 300 K . $\%$. The line current at 60000 volts is so small that the size of conductors used doponds on the mechanical strength required.

We shall use 4 B \& S. hard dram coppor wire. Ereaking stross - 13\%第. Diameter - . 204 inches. Woight per foot - .126非. Lesistance per 1000 foset - .3172 ohms. Irductance nor vire per mile - . 0024 bansy . Capacity betweon conductors per milo - . 00665 microfarads.

The result of the calculation of the voltage at Maridian at ful! load is 53894 volts.

Line construction.
On this part of the line we shall only run one throo-phsee line, one conductor on top of the poles, other tiro on cross arms. The results of the calculations aro eiven below in the sumary.

SUMZAis.

Length of line - 10 miles.
Trancrittoa powor - $300 \because$. \downarrow.
Conductors - $\|_{i} 4$ copper B. \& S. hard drawn wiro.
Length of span - 75 foot.
Spacing - 7 feet.
vaximum sag - 1.29 feot.
Weight to be supported by poles - 125非.
Forco acting due to wind - 483\#.
Arm of above force - 25°.
the size of pole required will be a 2,6 foot white pine pole at least 2 feet in diameter at the butt.

Approximate number of poles $=\frac{5980 \times 10}{75}$

$$
=700 .
$$

Approximate number of insulators $=700 \times 3$.

$$
=2100 .
$$

Section 5. Boise to Neal.
The distance from Boise to Ileal is tmonty-ono riles. The size of conductors are determined by the mechanical strength required as on section . The power to be transmitted is 150 K . 昨.

He, shall use 4 copper B. \& S. hard dram n wire. The line constants are the same as for section 1. Line construction is the same as for section 4 . SURA ARK.

Length of line - 21 miles.
Transmitted porer - 150 K. W.
Conductors 44 Copper B. \& S. hard dram wire. Loneth of span - 75 feet.

Spacing - 7 feet.
Maximum wag - 1.29 feet.
weight to be supported by poles - 1 ns\#.
Force acting due to wind - 485\#.
Arm of above force - 25 feet.
The poles to be used are as on section $£$.
Approximate number of poles $=\frac{5980 \times 21}{75}$

$$
=1470 .
$$

Approximate number of insulators $=1470 \times 3$.

$$
=5410 .
$$

1

TRANSMISSION LIME.

Section 6. Branch from Oxbow to Mine.
'his line is to transmit 3000 K. V. a distance of six miles. have decided to run two 66000 volt lines as on the main line. The intention is to ultimately x tond this lino hence wo are using a high vol age line and steel tower construction.

Line current $I=\frac{3000,000}{1 \times 66000 \times .85}$
$=31$ amperes.

- o shall use \#? equivalent aluminum cables.

The line conetants are as for section 3.
The line construction is the same as on section The voltage at tre mine a t full load will be 65400.

SURi:ARY.
Length of line - 6 miles.
Mransmitled rovir - 30CO K. H:
Conductor - in souivalont aluminum cable.
Length of span - 500 feet.
Spacing - 7 feet.
Maximuca sag - 18 feot.
Towers - 40 feet to lowest insulator.
Weight to be supported by towers - 1910笈.
Force acting due to wind - 5450\%.
$-30-$

Arm or above force - 42 rect.
Approximatio number of towers $=\frac{5380 \times 6=65}{50 \mathrm{C}}$
Approximate number of insulatore $=65 \times 6=300$.

	\％
$\left\lvert\, \begin{gathered} 3 \ominus \ominus \\ \theta \odot O \theta \end{gathered}\right.$	


```
(%)
*(,
(1)
    夏
    !
```


600 K.W. SUBSTATION

WEISER, IDAHE
ONTARIO, IDA.
SCALE :

Y人

$$
\cdots \cdots \cdots
$$

