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On the 13th of December, 1847, while walking on the 
South Circular Road, near the Richmond Penitentiary, about 
II o'clock at night, he observed a remarkable meteor; it first 

appeared in the west, very brilliant, and about 30' above the 
horizon; it moved rapidly towards the observer, passing 
between him and the above-named building, in an easterly 
direction; disappeared about 500 yards off, and a slight noise 
from it was distinctly heard as it passed. 

The evening was rather cloudy; wind southierly. 

Barometer, .29.716 
Thermometer, .530 

Sir William Rowan Hamilton gave an account of some 
applications of Quaternions to questions connected with the 
Rotation of a Solid Body. 

I. It was shown to the Academy in 1845, among other 

applications of the Calculus of Quaternions to the fundamental 
problems of Mechanics, that the composition of statical couples, 
of the kind considered by Poinsot, as well as that of ordinary 
forces, admits of being expressed with great facility and sim 
plicity by the general methods of this Calculus. Thus, the 
general conditions of the equilibrium of a rigid system are 
included in the following formula, which will be found num 
bered as equation (20) of the abstract of the Author's com 
munication of December 8, 1845, in the Proceedings of the 
Academy for that date: 

X. a3 =c. (1) 

In the formula thus cited, a is the vector of application of 
a force denoted by the other vector 9; and the scalar symbol, 
- c, which is equated to the sum af3 + aft' +.. of all the qua 
ternion products af3, a3(3',.. of all such pairs of vectors, or 

directed lines a and (3, is, in the case of equilibrium, indepen. 

dent of the position of the point from which all the vectors 
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a, ac.. are drawn, as from a common origin, to. the points of 
application of the various forces, j3, 3', . . This requires 
that the two following conditions should be separately satisfied, 

xj=O; XV.af3=O; (2) 

which accordingly coincide with the two equations marked 
(18) of the abstract just referred to. The former of these two 
equations, xj3 = 0, expresses that the applied forces would 
balance each other, if they were all transported, without any 

changes in their intensities or directions, so as to act at any 
one common point, such as the origin of the vectors a; andl 

the latter equation, S V. a3 = 0, expresses that all the couples 

arising from such transport of the forces, or from the introduc 
tion of a system of new and opposite forces, - 3, all acting at 

the same common origin, would also balance each other: the 
axis of any one such couple being denoted, in magnitude and 
in direction, by a symbol of the form V. af3. When either of 
these two vector-sums, 5j3, IV. af3, is different from zero, 
the system cannot be in equilibrium, at least if there be no 

fixed point nor axis; and in this case, the quaternion quotient 
which is obtained, by dividing the latter of these two vector 
sums by the former, has a remarkable and simple signification. 
For, if this division be effected by the general rules of this cal 
culus, in such a manner as to give a quotient expressed under 

the original and standard form of a quaternion, as assigned 
by Sir William R. Hamilton in his communication of the 13th 
of November, 1843; that is to say, if the quotient of the two 

vectors lately mentioned be reduced by those general rules to 

the fundamental quadrinomial form, 

XV.af 
=p 

w + zx +jy + kz, (3) 

where i,j,k are the Author's three co-ordinate imaginaries, or 

rectangular vector-units, namely, symbols satisfying the equa 

tions, 
i2 j22-=ijk--l, (4) 
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which have already been often adduced and exemplified by 
him, in connexion with other geometrical and physical re 
searches; then the four constituent numbers, w, x, y, z, of 
this quaternion (3), will have, in the present question, the 

meanings which we are about to state. Tie algebraically real 
or scalar part of the quaternion (3), namely, the number 

w = S(XV. a3 . MP3), (5) 

which is indepenident of the imaginary or symbolic coefficients 
i,j, k, will denote the (real) quotient which might be otherwise 
obtained by dividing the moment of the principal resultant 
couple by the intensity of the resultantforce; with the known 
direction of which force the axis of this principal (and known) 
couple coincides, being the line which is known by the name 
of the central axis of the system. And the three other numeri 
cal constituents of the same quaterniion (3), namely, the three 
real numbers x, y, z, which are multiplied respectively by those 
symbolic coefficients i, j, k, in the algebraically imaginary or 
vector part of that quaterniiotn, iianaely, in the part 

ix+ jy t kz = V(2 V. aj ' 2p), (6) 

are the three real and rectangular co-ordiniates of the foot of 
the perpendicular let fall fron the assumed origin (of vectors 
or of co-ordinates) on the centtrcal axis of the system. These 
co-ordinates vanish, if the origin be takeni on that axis; and 

then the direction of the resultant force coincides with that of 
the axis of the resultant couple: a coincidence of which the 

conidition may accordingly be expressed, in the notation of this 

Calculus, by the formula 

0= =F(XV. aj3 X. ); (7) 

whlereas the second member of this formula (7) is in general a 

vector-symbol, which denotes, in length and in direction, the 

perpendicular let fall as above. In the case where it is pos 
sible to reduce the system of forces to a single resultantt force, 

unaccompanied by anly couple, the scalar part of the same 
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quaternion (3) vanishes; so that we may write for this case 
the eqdation, 

0 = S(X V. a/3 +. ,!3); (8) 

which agrees with the equation (19) of the abstract of Decem 
ber, 1845, and in which the second member is in general a 
scalar symbol, denoted lately by w, and having the significa 
tion already assigned. When the resultant force vanishes, with 
out the resultant couple vanishing, then the denominator or 
divisor Xj3 becomes null, in the fraction or quotient (3), while 
the numerator or dividend, S V. a3, continues different from 
zero; and when both force and couple vanish, we fall back on 

the equations (18) of the former abstract just cited, or on those 
marked (2) in the present communication, as the conditions of 
equilibrium of a free but rigid system. Finally, the scalar 
symbol 

c=-X,S.ra3, (9) 

which enters with its sign changed into the second member of 
the formula (l), and which, when the resultant X,j3 of the 
forces (3 vanishes, receives a value independent of the assumed 
origin of the vectors a, has also a simple signification; for 
(according to a remark which was made on a former occasion), 

there appears to be a propriety in regarding this scalar symbol 

c, or the negative of the sum of the scalar parts of all the 

quaternion products of the form a3, as an expression which 

denotes the total tension of the system. In the foregoing 

formule the letters S and V are used as characteristics of the 

operations of taking respectively the scalar and the vector, 

considered as the two parts of any quaternion expression; 

which parts may still be sometimes called the (algebraically) 

real and (algebraically) imaginary parts of that expression, 

but of which both are always, in this theory, entirely and 

easily interpretable: and in like manner, in the remainder of 

this Abstract, the letters T anid U shall indicate, where they 

occur, the operatioIns of taking separately the tensor and the 
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versor, regarded as the two principal factors of any such qua 

ternion. 

I. To apply to problems of dynamics the foregoing 
statical formulae, we have only to introduce, in conformity 
with a well-known principle of mechanics, the consideration 
of the equilibrium which must subsist between the forces lost 
and gained. That is, we are to substitute for the symbol ,3, 

in the equations (1) or (2), the expression 

p=m (e -t2 (10) 

where m denotes the mass of that part or element of the sys 

tem which, at the time t, has a for its vector of position, and 

d2a 
consequently dt2 for its vector of acceleration; while the new 

vector-symbol ep denotes the accelerating force, or mq, denotes 
the moving force applied, direction as well as intensity being 
attended to. Thus, instead of the two statical equations (2), 

we have now the two following dynamical equations, for the 

motion of a free but rigid system: 

d-2a 

d2a 
z?qmV. 

a 
Xt- .mV. a+; (12) 

of which the former contains the law of motion of the centre 

of gravity, and the latter contains the law of the description 

of areas. If the rigid system have one point fixed, we may 

place at this point the origin of the vectors a; and in this case 

the equation (11) disappears from the statement of the ques 

tion, but the equation (12) still remains: while the condition 

that the various points of the system are to preserve unaltered 

their distances from each other, and from the fixed point, is 

expressed by the formula 
da _ 

= .1Ga (13) 
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where the vector-symbol i denotes a straight line drawn in 
the direction of the axis of momentary rotation, and having a 
length which represents the angular velocity of the system; 
so that this vector L is generally a function of the time t, but 
is always, at any one instant, the same for all the points of the 

body, or of the rigid system here considered. The equation 
(12) thus gives, by an immediate integration, the following 
expression for the law of areas: 

X. maV. ta =y + s. m 
VfaOdt; (14) 

where y is a constant vector; and if we operate on the same 

equation (12) by the characteristic 2 SJfdt, we obtain an ex 
pression for the law of living forces, under the form 

I . m(V. ta)2 -h2?+ 2x . m Sjta#dt; (15) 

where i is a constant scalar. The integrals with respect to 
the time may be conceived to begin with t = 0; and then the 
vector y will represent the axis of the primitive couple, or of 
the couple resulting from all the moving forces due to the 
initial velocities of the various points of the body; and the 
scalar h will represent the square root of the primitive living 
force of the system, or the square root of the sum of all the 

living forces obtained by multiplying each mass into the square 
of its own initial velocity. Again, the equation (13) gives, by 
differentiation, 

d2a da dt di 
dta V. dt t dt 

a=tV.ta- V.a 
dt (16) 

and for any two vectors a and L, we have, by the general rules 

of this Calculus, the transformations, 

V. a(QV. ta) = V. t(aV. a) = 4V. (ia)2 
-S. a . V. a 4V. i(ata) __V. a(taQ); ( 

therefore, by (12) and (14), 

X. mnaV a dt + mV. ao = V. ix.mavjf ( Ia 
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Hence also the time t, elapsed between any two successive 

stages of the rotation of the body, may in various ways be 

expressed by a definite integral; we may, for example, write 
generally, 

t= 2E.rnia V. adi (9 

f y. m( (ta)2 + 2a)' 
(19) 

the scalar element dt of this integral being thus expressed as 
the quotient of a vector element, divided by another vector; 
before finding an available expression for which scalar quotient 
it will, however, be in general necessary to find previously the 
geometrical manner of motion of the body, or the law of the 

succession of the positions of that body or system in space. It 

may also be noticed here, that the comparison of the integrals 
(14) and ( 15) gives generally the relation: 

S. ty + h? = E . m Sjta#dt. (20) 

Ill. When no accelerating forces are applied, or when 

such forces balance each other, we may treat the vector c as 

vanishiing, in the equations of the last section of this abstract; 
which thus become, for the unaccelerated rotation of a solid 
body about a fixed point, the following: 

X . m a V. ta =-y; (21) 

, - 
M(/. ia)' 

=s _ 
h2 ; (22) 

X . maV. adt = V. rydt; (23) 

which result from (14) (15) (18), by supposing p= 0, or, more 
generally 

E. 
r V. a =0, (24) 

that is, by reducing the differential equation (12) of the second 
order, for the motion of the rigid system, to the form 

d2a 
Y, -MV.m a = 0. (25) 

At the same time the general relation (20) reduces itself to 

the following: 
S.y-+=h2=; (26) 
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which may accordingly be obtainled by a combination of the 

integrals (21) and (22); and the vector part of the quaternion 

ry, of which the scalar part is thus - , may be expressed by 
meaIns of the formula: 

2V. ey = V2. m(a)2= V. 1 . mata; (27) 

which gives, by one of the transformations (17), 

V. vy=V.t2.maS.a; (28) 

so that we have, by (13) and (23), 

2 . ma V. adu = 2. mda S. at. (29) 

But also, by (21), because S. tda 0, we have 

2. ma V. adt= - 2. mda V. at + 2 . Matda; 

we ought, therefore, to find that 

2 . m(da . at - at. da) 0 O, 

or that 
0 = V2. m(V. ea. da); (30) 

which accordingly is true, by (13), and may serve as a verifi 

cation of the consistency of the foregoing calculations. 

IV. We propose now briefly to point out a few of the 

geometrical consequences of the formulhe in the foregoing sec 
tion, and therebv to deduce, in a new way, some of the known 
properties of the rotation to which they relate; and especially 
to arrive anew at some of the theorems of Poinsot and Mae 

Cullagh. And first, it is evident on inspection that the equa. 
tion (22) expresses that the axis i of instantaneous rotation 

is a semidiarneter of a certain ellipsoid,f ied in tie body, but 

moveahle with it; and having this property, that if the con 
stant living force h 2 be divided by the square of the length of 

any such semidiameter t, the quotient is the moment of inertia 
of the body with respect to that semidiameter as an axis: since 
the general rules of this calculus, when applied to the formula 
(22), give for this quotientt the expression, 

E.m (TV. a U)2 -h2 e-2 =h2TO; (31) 
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where TV. a U denotes the length of the perpendicular let 

fall, on the axis c, from the extremity of the vector a, that is, 
from the point or eletnent of the body of which the mass is m. 
In the next place, the equation (26), whjich is of the first de 

gree in e, may be regarded as representing the tangent plane 
to the ellipsoid (22), at the extremity of the semidiameter i; 
because this equation is satisfied by that semidiameter or vec 
tor t, when we attribute to it the same value (in length and 

in direction) as before; and because if we change this vector 
L to any infinitely near vector L + &t, consistent with the equa 

tion (22) of the ellipsoid, this near value of the vector will 

also be compatible with the equation (26) of the plane; for 

when the variation of the equation (22) is thus taken (by the 
rules of the present calculus), and is combined with the equa 
tion (21), it agrees with the equation (26) in giving 

$. ya O=. (32) 
But the plane (26) isfixed in space, on account of the con 

stant vector y and the constant scalar h, which were intro 

duced by integration as above; consequently the ellipsoid (22) 
rolls (without gliding) on thefixedplane (26), carrying with it 
the body in its motion, and having its centre fixed at the fixed 
point of that body, or system, while the semidiameter of con 
tact t represents, in length and in direction, the axis of the 

momentary rotation. This is only a slightly varied form of 
a theorem discovered by Poinsot, which is one of the most 
beautiful of the results wherewith science has been enriched 
by that geometer: for the ellipsoid (22), which has here present 
ed itself as a mode of constructing the integral equation which 

expresses the law oflivingforce of the system, and which might 

for that reason be called the ellipsoid of living force, is easily 

seen to be concentric with, and similar to, the central ellipsoid 
of Poinsot, and to be similarly situated in the body. It may, 

however, be regarded as a somewhat remarkable circumstance, 
and one characteristic of the present method of calculation, 

that it has not been necessary, in the foregoing process, to 



47 

make any use of the three axes of inertia, nor even to assume 

any knowledge of the existence of those important axes ; nor to 

make any other reference to any axes of co-ordinates whatsoever. 

The result of the calculation might be expressed by saying 
that "c the ellipsoid of living force rolls on a plane parallel to 

the plane of areas ;" and nothing farther, at this stage, might 

be supposed known respecting that ellipsoid (22), or respect 
ing any other ellipsoid, than that it is a closed surface repre 

sented by an equation of the second degree. With respect to 
the path of the axis of momentary rotation L, within the body, 

it is evident, from the equations (21), (22), that this path, 
or locus, is a cone of the second degree, which has for its equa 

tion the following: 

y2 
. 
m(V. ta)2 42(2 . maV 

La)2; (33) 

where the symbol 9, by one of the fundamental principles of 
the present calculus, is a certain negative scalar, namely, the 
negative of the square of the number which expresses the 
length of the vector y, and which (in the present question) 
is constant by the law of the areas. Thus, according to ano 
ther of Poinsot's modes of presenting to the mind a sensible 
image of the motion of the body, that motion of rotation may 
be conceived as the rolling of a cone, namely, of this cone 
(33), which is fixed in the body, but moveable therewith, on 

a certain other cone, which is the fixed locus in space of the 
instantaneous axis c. 

V. But we might also inquire, what is the relative locus, 
or what is the path within the body, of the vector y, which 

has, by the law of areas, a.fixed direction, as well as afixed 

length in space: and thus we should be led to reproduce some 

of the theorems discovered by Mac Cullagh, in connexion 

with this celebrated problem of the rotation of a solid body. 
The equations (26) and (32) would give this other formula, 

S . lay =0; (34) 
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and thus would shew that the vector y is (iu the body) a va 

riable semidiameter of an ellipsoid reciprocal to that ellipsoid 
(22) of which the vector t has been seen to be a semidiameter; 

and that these two vectors y and L are corresponding- semidia 

meters of these two ellipsoids. The tangent plane to the inew 
ellipsoid, at the extremity of the semidiameter y (which ex 
tremity is fixed in space, but moveable within the body), is 
perpendicular to the axis t of instantaneous rotation, and in 
tercepts upon that axis a portion (measured from the centre) 

which has its length expressed by h2 TO1, and which is, there 

fore, iinversely proportional to the momentary and angular 
velocity (denioted here by T), as it was found by Mac Cullagh 

to be. To find the equation of this reciprocal ellipsoid we have 

onily to deduce, by the processes of this calculus, from thle 

linear equation (21), an expression for the vector y in terms 

of the vector t, and then to substitute this expression in the 

equation (26). Making, for abridgment, 

n12--2 .ma2; n2=-- X.mm'(V. aa')2; 1 

n/2 =+ 2. mm'm"(S . aa'a")2; f 

so that n, n', n", are real or scalar quantities, because the 

square of a vector is negative; and introducing a characte. 
ristic of operation a, defined by the symbolic equatioin, 

a=X .maS.a, or ci=2.maS.al; (36) 

it is not difficult to show, first, that 

(aa + n2 a + nl ) L= -2 . mm' V. aa' S. aa't (37) 

and then that the symbol a is a root of the symbolic and cubic 

equation, 
Cr3 + n2cr2+ Jcr nfl:+ n'i= ? ; (38) 

in the sense that the operation denoted by the first mem 
ber of this symbolic equation (38) reduces every vector , on 
which it is performed, to zero. But the linear equation (21) 
may be thus written: 

(v + n2) =; (39) 
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it gives, therefore, by (38), 

(n2n'2 _ n/2)t = (a2 + n0b)s (40) 

that is, by (37) and (36), 

(n/2- n2n2)c =n2 maS. ay + S. mm'V. aa'S. aa'y. (41) 

Such being, then, the solution of this linear equation (21) or 
(39), the sought equation of Mac Cullagh's ellipsoid becomes, 
by (26), 

(n2n'2 - n"2)h2 = n2. m( S . ay)2 ? S . mm'(S . a'ay)2; (42) 

and we see that the following inequality must hold good: 

n2n2 nfn/2 > 0. (43) 

If then a new and constant scalar g be determined by the con 
dition, 

(n2n'2 - n"/2)h2 +g2Y2 =0 (44) 

(where Y2 is still equal to the same constant and negative 
scalar as before), we may represent the internal conical path, 
or relative locus, of the vector y in the body, by the equa 

tion: 
o=g n272 + A'Y . m(S * a2i + -S .mm'(S . aa'Y)2. (45) 

We see then, by this analysis, that the straight line 'y which i. 

drawn through thefixed centre of rotation, perpendicular to the 

plane of areas, describes within the body another cone of the se 

cond degree: while the extremity of the same vector y, which 
is a fixed point in space, describes, by its relative motion, a sphe 

rical conic in the body, namely, the curve of intersection of the 
cone (45) and the sphere (44): which agrees with Mac Cul 
lagh's discoveries. Again, the normal to the cone (45), which 
corresponds to the side 'y, has the direction of the vector de 
termined by the following expression: 

@ l + h2,Y-l; (46) 

and this new vector B is always situated in the plane of 
areas, and is the side of contact of that plane with another 

cone of the second degree in the body, which is reciprocal to the 
VOL. IV. E 



50 

cone (45), and was studied by both Poinsot and Mac Cullagh. 
But it would far exceed the limits of the present communica 
tion, if the author were to attempt here to call into review the 
labours of all the eminent menwho, since the time of Euler, 
have treated, in their several ways, of the rotation of a solid 
body. He desires, however, before he concludes this sketch, 
to show how his own methods may be employed to assign the 
values of the three principal moments, and the positions of 
the three principal axes of inertia; although it has not been 
necessary for him, so far, on the plan which he has pursued, 
to make any use of those axes. 

VI. Let us, then, inquire under what conditions the body 
can continue to revolve, with a constant velocity, round a per 

manent axis of rotation. The condition of such a double per 
manence, of both the direction and the velocity of rotation, is 
completely expressed, on the present plan, by the one diffe 
rential equation, 

,dt= (47) 

that is, in virtue of the formula (23), by 

V. 17= 0 (48) 

or, on account of (28) and (36), by this other equation, 

(a +1 =z -1 O,(49) 

where a is the characteristic of operation lately employed, 
and a is a scalar coefficient, which must, if possible, be so de 
termined as to allow the following symbolic expression for 
the sought permanent axis of rotation, namely, 

', = ( + )-l ?(50) 
to give a value different from zero, or to represent an actual 

vector L, and not a null one. Now if we assumed any actual 

vector ic, such that 

(a + s) - Ks (51) 
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we should find, by the foregoing Section of this Abstract, and 

especially by the equations (37) and (38), a result of the form, 

(s3 - n2s2 + On2s - nO)L = c'Ic (52) 

where &' is a new characteristic of operation, such that 

= a' -sr + s2+ 
n2(a-s) 

+ n'2, (53) 

and that, therefore, 
caK + SiSX . naV. aV I-X. mm'.Jaa'S . aaK; (54) 

so that the solution (41) of the linearequation (39) is included 
in this more general result, which gives, for any arbitrary va 

lue of the number s, the symbolic expression: 

(Cr + S)-j = (S3 _ n2s2 + n'22s' n"?)hcr (56) 

Hence the condition for the non-evanescence of the expres 
sion (50), or the distinctive character of the permanent axes 
of rotation, is expressed by the cubic equation, 

S -n2s2+n2s- nt =0. (56) 
The inequality (43) shows immediately that this equation (56) 
is satisfied by at least one real value of s, between the limits 
0 and 2n2 ; and an attentive examination of the composition 
(35) of the coefficients of the same cubic equation in s, would 

prove that this cubic has in general three real and unequal 
roots, between the same two limits; which roots we may 
denote by si, s2, S3. Assuming next any arbitrary vector K, 
and deriving from it two other vectors, ic' and ii', by the for 

mule 
. -maV. acr = c'; - I . mm' .u aa'S. a a'"c = jc; (57) 

making also 
LI = S2 K + Sj K + hK; 

12 
= 

S22C + S2K' + K"~ X(58) 

13 = S3 2C + S3C + KI j 

we shall thus have, in general, a system of three rectangular 
vectors, 11, L2, 13, in the directions of the three principal axes. 

For first they will be, by (54), the tlhree results of the form 

usc, obtained by changing s, successively and separately, to 
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the three roots of the ordinary cubic (56); but by the man 

ner of dependence (53) of the characteristic a' on a and s, 

and by the symbolic equation of cubic form (38) in a, we 

have, if s be any one of those three roots of (56), the relation 

(a+ S)atc =0; (59) 

consequently the three vectors (58) are such that 

0 = (C + si)l(C1 + 32)92 = (a + S3)L3. (60) 

Each of the vectors, 11, t29 13, is tllerefore, by (49), adapted to 

become a permanent axis of rotation of the body; while the 

foregoing analysis shows that in general no other vector 1, 

which has not the direction of one of those three vectors (58), 

or an exactly opposite direction, is fitted to become an axis of 

such permanent rotation. And to prove that these three axes 

are in general at right angles to each other, or that they 

satisfy in general the three following equations of perpen 
dicularity, 

0 =S.L1 12= S.1213= S.L3 l, (61) 

we may observe that, for any two vectors t, c, the form (36) 

of the characteristic a gives, 

Sa.catS = X.mS. KaS.at = S. LaK, (62) 

and therefore, for any scalar s, 

S. K(ar + S)l = SQt(r + s)>; (63) 

consequently the two first of the equations (60) give (by 

changingtL K, s to 12, llj 80 

(SI 
- 

S2) S.l 12 = 
O; (64) 

and therefore they conduct to the first equation of perpendi 

cularity (61), or serve to show that the two axes, tl and ?2, are 

mutually rectangular, at least in the general case, when the 

two corresponding roots, s, and s-2, of the equation (56), are 

unequal The equations (48) and (32), namely, V. 17y = 0, 

S.^8 = 0, show also that these three rectangular axes of 

inertia are in the directions of the axes of the ellipsoid (22), 
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which has presented itself as a sort of construction of the law 
of living force of the system; and a common property of these 
three rectangular directions, which in general belongs exclu 
sively to them, and to their respectively opposite directions, 

may be expressed by the rules of this calculus under the very 
simple form, 

0 = VI . m(Qa)2; (65) 

or under the following, which is equivalent thereto, 

X. mQ(a)2 = 2.m(ae)2. (66) 

With respect to the geometrical and physical significations 
of the three values of the positive scalar s, the equation (49) 
gives 

Si 12 + S. Lz-r = 0 (67) 

and consequently by (36), and by the general rules of this 
calculus, 

s = 2.m(S. a UL)2- mX2, (68) 
if x denote the perpendicular distance of the mass m from the 
plane drawn through the fixed point of the body, in a direction 
perpendicular to the axis t. We may therefore write the fol 
lowing expressions for the three roots of the cubic (56): 

4 = I.mX2; s2= .my2; S3 =Xmz2; (69) 
if xyz denote (as usual) three rectangular coordinates, of which 
the axes here coincide respectively with the directions of 

1 t2, 13; and we see that the three principal moments of in 

ertia, or those relative to these three axes, are the three sums, 

82+S3, S3+81, 81 + S2 (70) 

of pairs of roots of the cubic equation which has been em 
ployed in the present method. At the same time, the condi 
tions above assigned for the directions of those three axes take 

easily the well-known forms, 

0 X . mxy = . myz = . mzx, (71) 

if (for the sake of comparison with known results) we change 
the vectors a, a', . . of the masses m, in', . . to the expressions 
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a=ix +jy +tlz, a'= ix'+jy'+ kz',... (72) 

where xyz are the rectangular co-ordinates of m, and ijk are the 

three original and fundamental symbols of the present Calculus, 
denoting generally three rectangular vector-units, and subject 
to the laws of symbolical combination which were communi 
cated to the Academy by the author in 1843, and are included 
in the formula (4) of the present Abstract. And then, by 
(35), the coefficients of the cubic equation (56) will take the 
following forms, which easily admit of being interpreted, or 
of being translated into geometrical enunciations: 

n2 - .n(x2 + y Z2); 
n X mmIf (yz' - zy')2 + (ZX' - xz')2 + ( - y')j 

n"2 = X. mm'm" t (yz' - zy')x" +(zx ' z')y" + (xy' - yx')z"j 2. 

In fact, the first of these three expressions is evidently the 
sum of the three quantities (69); and it is not difficult to 

prove that, under the conditions (71), the second expression 

(73) is equal to the sum of the three binary products of those 

three quantities; and that the third expression (73) is equal 

to their continued or ternary product: in such manner as to 

give 
S61 + S + S3 =i2;f 

Si82+82&3?8381 :=,'2; (74) 

'1s2ss3 -=n'2J 

Perhaps, however, it may not have been noticed before, that 
expressions possessing so internal a character as do these 
three expressions (73), and admitting of such simple interpre 
tations as they do, without any previous reference to the axes 
of inertia, or indeed to any axes (since all is seen to depend 

on the masses and mutual distances of the several points or 
elements of the system), are the coefficients of a cubic equation 
which has the well-known sums, E . mnza, my2, 2. MZ2, re 

ferred to the three principal planes, for its three roots. In the 
method of the present communication, those expressions (73), 
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or rather the more concise but equivalent expressions (35), 
have been seen to offer themselves as coefficients of a symbolic 
equation of the third degree (38), which is satisfied by a cer 
tain characteristic of operation a, connected with the solution 
of a certain other symbolic but linear equation: and the 
Author may be permitted to mention that this is only a par 
ticular (though an important) application of a general method, 

which he has for a considerable time past possessed, for the 
solution of those linear equations to which the Calculus of 
Quaternions conducts. To those who have perused the fore 
going sections of this Abstract, and who have also read with 
attention the Abstract of his communication of July, 1846, 
published in the Proceedings of that date, he conceives that it 
will be evident thatfor anyfixed point A of any solid body (or 
rigid system), there can befound (indeed in more ways than 
one) a pair of other points B and C, which are likewise fixed 

in the body, and are such that the square-root of the moment 

of inertia round any axis AD is geometrically constructed or 
represented by the line BD, if the points A and D be at equal 

distancesfrom C. 

VII.. Finally, he desires to mention here one other theorem 
respecting rotation, which is indeed more of a geometrical than 
of a physical character, and to which his own methods have 
led him. By employing certain general principles, respecting 
powers and roots, and respecting differentials and integrals of 
Quaternions, he finds that for any system or set of diverging 
vectors, a, 3, y, . . K; A, the continued product of the square 

roots of their successive quotients may be expressed under the 
following form: 

(ep)i 
(13j .. (t' 

GY) - (cos + Ua sin)4 
(76) 

where s is a scalar which represents the spherical excess of the 
pyramidal angle formed by the diverging vectors; or the 
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spherical opening of that pyramid; or the area of the spheri 
cal polygon, of which the corners are the points where the vec 
tors a, 3, 'y, . . Ic, A, meet the spheric surface described about 

their common origin with a radius equal to unity. And by 

combining this result with the general method stated to the 
Academy by the Author* in November, 1844, for connecting 
quaternions with rotations, it is easy to conclude that if a 
solid body be made to revolve in succession round any 

number of different axes, all passing through one fixed point, 
so as first to bring a line a inlto coincidence with a line J3, by 

a rotation round an axis perpendicular to both; secondly, to 

bring the line ,3 into coincidence with a line 'y, by turning 
round an axis to which both J3 and y are perpendicular; and 

so on, till, after bringing the line ic to the position A, the 
line X is brought to the position a with which we began; then 

the body will be brought, by this succession of rotations, into 

the same final position as if it had revolved round the first or 

last position of the line a, as an axis, through an angle of 

finite rotation, which has the same numerical measure as the 

spherical opening of the pyramid (a, j3, y, .. ic, A) whose 

edges are the successive positions of that line. 

* 
The same connexion between the Author's principles, and geometrical 

or algebraical questions, respecting the rotation of a solid body, or respect 

ing the closely connected subject of the transformation of rectangular co 

ordinates, was independently perceivedHby Mr. Cayley ; who inserted a com 

munication on the subject in the Philosophical Magazine for February, 1845, 
under the title, 

" Results respecting Quaternions." It is impossible for the 

Author, in the present sketch, to do more than refer here to Mr. Cayley's 

important researches respecting the Dynamics of Rotation, published in the 

Cambridge and Dublin MathematicalJournal. An account of the speculations 
and results of the late Professor Mac Cullagh on this subject may be found 

in part viii. of the Proceedings of the Royal Irish Academy ; and a summary 
of the views and discoveries of Poinsot has been given by that able author 

in his very interesting tract, entitled, Theorie Nouvelle de la Rotation des Corps, 

Paris, 1834. 


