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The measurements of the J/ψ → γpp decays by the BES Collaboration indicate an enhancement at the pp

threshold which, however, is not present in the J /ψ decays into ωpp and into πpp. Here, two processes for
describing the decays J/ψ → Bpp where B = γ,ω are presented in some detail and the cases B = φ,π are
briefly touched on. The first one, applied not only to the radiative decay to reproduce the threshold peak but also
to the ωpp decay channel to improve the description of the spectrum, postulates a direct emission of the boson
before the baryon pair is formed. The second process assumes that the boson B is emitted from the baryon pair
following the J/ψ decay and includes for the decays into γpp a final-state nucleon-antinucleon interaction based
on the Paris NN potential. The reproduction of the pp distribution in the J/ψ → ωpp decays needs a final-state
interaction involving a N (2050) 3/2− resonance. The photon- and meson-emission rates are reproduced in a
semiquantitative way.
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I. INTRODUCTION

The J/ψ decays with a proton-antiproton (pp) pair in the
final state are interesting for at least two reasons:

(1) They are related to the searches for exotic states in
the nucleon-antinucleon (NN ) systems. Such searches
have been pursued for a few decades, but significant
results have been obtained only recently.

(2) They are closely related to the pp reactions, planned at
FAIR [1], aiming at the formation of the J/ψ in atomic
nuclei.

The first topic is discussed in this paper but the model
developed here may be useful to describe the second one.
Indication of exotic states below the NN threshold may be
given by scattering lengths for a given spin and isospin state.
However, a clear separation of quantum states in scattering
experiments is not easy. Equivalent measurements of the x-ray
transitions in the antiproton hydrogen atoms could also select
some partial waves if the fine structure of atomic levels is
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resolved. So far, only partial selections have been achieved
[2]. On the basis of the existing data, the present authors have
argued that even averaged fine-structure atomic level widths
in the lightest atoms indicate the existence of quasibound NN
states [3]. Full resolution of the hyperfine structures should be
the purpose of future experiments.

To reach specific states, one can also use formation experi-
ments. For instance, in the radiative J/ψ decay,

J/ψ → γpp, (1)

an enhancement close to the pp threshold has been observed by
the BES1 Collaboration [4,5]. We note that both the J/ψ and
the photon have JPC = 1−−. There are three final pp states
allowed by parity, P , and charge-conjugation, C, conservations
in the γpp channel: 1S0,

3P 1, and 3P 0. Tables I and II indicate
the allowed pp states, denoted by 2S+1LJ or 2I+1,2S+1LJ ,
where S,L,J denote the spin, angular momentum, and total
momentum of the pair, respectively, and I indicates the isospin.
Two isospin states, I = 0,1, enter the pp system. A first
indication that the system is in an I = 0 state was obtained
in a simple quark model in Ref. [6]. In Ref. [7], a unified
picture and a limited description of the radiative decays has
been achieved in a semiquantitative way. It suggests that
the final γpp state is dominated by the 11S0 partial wave.

1Beijing Electron Spectrometer.
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TABLE I. The states of low-energy pp̄ pairs allowed in the
J/ψ → γpp and J/ψ → π 0pp decays. The first column gives
decay modes and specifies the internal states of the pp pair. Both
the J/ψ meson and the photon have J PC = 1−−. The second column
gives J PC for the pp system, and the last column gives the relative
angular momentum of the photon or pion vs the pp pair.

Decay mode J PC(pp) Relative l

γpp(1S0) 0−+ 1
γpp(3P 0) 0++ 0
γpp(3P 1) 1++ 0
π 0pp(31P 1) 1+− 0
π 0pp(33S1) 1−− 1

In this partial wave, the Paris potential generates a 52-MeV
broad quasibound state at 4.8 MeV below threshold [8]. The
conclusion that a near-threshold peak is formed in the 1S0 wave
has been reached by the Jülich group, although the Bonn-Jülich
potential does not generate a bound state in this wave [9],2

and by Chen et al. [12] in the framework of an effective
NN interaction model. Another study of the near-threshold
enhancement performed in Ref. [13] finds a quasibound state
to be the explanation. The Bonn-Jülich group found recently a
good description of the threshold behavior in all mesic channels
with a chirally motivated NN potential [11]. The conclusion
reached is similar to that obtained with the Paris potential:
The near-threshold enhancement indicates the presence of a
quasibound state.

To understand better the nature of the pp states in-
volved, one should look directly into the subthreshold energy
region. This may be achieved in the antiproton-deuteron or the
antiproton-helium reactions at zero or low energies. Another
way to look below the threshold is the detection of NN decay
products. The specific decay mode

J/ψ → γπ+π−η′ (2)

has been studied by the BES Collaboration [14]. This reaction
is attributed by BES to an intermediate pp configuration in
the JPC(pp) = 0−+ state which corresponds to spin singlet S
wave. The peak observed in the invariant mass of the mesons
has been interpreted as a new baryon state and named X(1835).

Under the assumption that all mesons are produced in
relative S waves, reaction (2), if attributed to an intermediate
pp state, is even more restrictive than reaction (1). It allows
only one intermediate state, the pp 1S0, which coincides with
the previous findings. The intermediate pp state in reaction (2)

2For completeness, we want to mention that earlier in Ref. [10] this
group had claimed that within a Watson-Migdal approach they could
reproduce the near-threshold spectrum with an I = 1 state. Also, later
in Ref. [11], using for the NN interaction a potential derived within
chiral effective field theory fitted to results of a partial-wave analysis of
pp scattering data, the authors claim that the near-threshold spectrum
observed in various decay reactions can be reproduced simultaneously
and consistently by their treatment of thepp fsi and that the interaction
in the isospin-1 1S0 channel, required to fit the decay J/ψ → γpp,
predicts an NN bound state.

TABLE II. Experimental branching fractions for some decay
modes of the J/ψ meson into channels implying NN pairs and
the corresponding allowed states of the NN pair. All data are from
Ref. [21] but for the ppφ channel recently measured in Ref. [22].

Decay Experimental NN allowed
mode branching fractions states

ppπ 0 1.19(0.08) × 10−3 33S1,
31P 1

pnπ− 2.12(0.09) × 10−3 33S1,
31P 1

ppγ 3.8(1.0) × 10−4 1S0,
3P 1,

3P 0

ppω 9.8(1.0) × 10−4 11S0,
13P 1,

13P 0

ppφ 5.23(0.34) × 10−5 11S0,
13P 1,

13P 0

pp 2.120(0.029) × 10−3 13S1

nn 2.09(0.16) × 10−3 13S1

is possible but not warranted. In Ref. [15], a more consistent
interpretation is obtained with the dominance of the 11S0 state
which is a mixture of pp and nn̄ pairs. It has been argued that
the peak is due to an interference of a quasibound, isospin-0,
NN state with a background amplitude. This quasibound state
was found by Loiseau and Wycech [7] to be responsible for
the threshold enhancement in reaction (1). A recent BES III
experiment [16] has studied the radiative decay J/ψ → γ γφ
and observes a broad bump in the M(γφ) invariant mass
distribution. The shape of this bump is consistent with that
observed in the absorptive NN amplitude obtained in Ref. [15].
A related strong enhancement of the absorption is observed in
the light antiprotonic atoms. The comparison of atomic level
widths in a series of atoms (H,2H,3H,3He,4He) allows us to test
the absorption of antiprotons on more strongly bound protons
up to subthreshold energies of Epp down to − 40 MeV [3].
The enhancement of absorption below the pp threshold is
consistent with both results from Refs. [16] and [3]. This, in
our view, provides evidence that the X(1835) meson is due to
attraction in the NN system.

A similar decay mode

J/ψ → π0pp (3)

displays no near-threshold enhancement [4]. Recent BES III
experiments [17,18] have extended these measurements to the
reaction

J/ψ → ωpp. (4)

No clear near-threshold enhancement is found although
Haidenbauer et al. [19] claim the existence of a small signal
above phase space very close to this threshold. Beyond, a
depression at low pp energies is seen in the data. These two
reactions indicate a strong P -wave dominance in reaction (3)
and a sizable P wave in reaction (4). Both find a natural
explanation in the model developed in the present work. Recent
experiments find no pp threshold structure in the

ψ ′ → γpp (5)

decay [5,20]. This result is puzzling as final pp̄ states in
this process are the same as the final states in J/ψ → γpp
decay. Within the model discussed here, we find a qualitative
explanation for this difference (see Sec. V A).

065206-2



PHOTON OR MESON FORMATION IN J/ψ DECAYS … PHYSICAL REVIEW C 97, 065206 (2018)

Different experimental branching fractions for the J/ψ
decay modes implying a pp pair based on Fermi Laboratory
[21] and BES experiments [17,18,21,22] are shown in Table II.
One notable fact from this table is that the radiative decay is
comparable to the decay into strongly interacting mesons. We
will see that this is due to a balance among the phase space (see
Appendix A), the coupling constants, strong NN interactions,
and a direct emission process.

The purpose of the present work is to discuss and correlate
the physics of NN states produced in the J/ψ decays. The
main assumption is that the bosons (photon and mesons) are
emitted after the NN baryons have been produced. In this way,
one obtains branching ratios�(NNB)/�(NN ) consistent with
experimental data for the π0,π−, and φ mesons formation,
listed in Table II. One free parameter R0 (the size of initial NN
source) enters this model and it comes out with a reasonable
value of 0.28 fm. On the other hand, to obtain the invariant
pp mass spectra in the decays and in particular to generate the
threshold peak, it is necessary to include an additional mech-
anism for the photon emission before the baryon formation
phase. The peak of interest arises as a result of pp̄ final-state
interaction in the way described in Refs. [7,9]. The rate of this
decay enters as another free parameter.

The content of this paper are as follows. Section II recalls
briefly the derivation of the width of the J/ψ → pp decay
mode. Section III develops a model for radiative decay which
assumes the photon to be emitted at an early stage of the
process. This internal emission model explains the two maxima
in the final pp̄ spectrum; one is due to baryonium while the
other represents a shape resonance in the pp̄ interaction. It can
be extended to the case of emission of any meson. Section IV
discusses the photon or meson (ω,φ,π ) emission from the final
baryon currents, i.e., once the baryons are formed following the
decay of the J/ψ . Section V collects the results. In the case of
the J/ψ → ωpp decay, the description of the pp spectrum re-
quires final-state interactions with a N∗(3/2−) resonance while
that of the ωp spectrum requires a contribution of the mecha-
nism of ω emission before the baryon pair formation occurs.
A brief summary together with some outlook are given in Sec.
VI. Finally, appendixes tackle a number of technical questions.

II. THE J/ψ → p p AMPLITUDE AND ITS WIDTH

Let the initial J/ψ wave function in momentum space ψi

be normalized as

ψi(P) = 1√V0
(2π )3δ(3)(P), (6)

where V0 is the normalization volume. In the rest frame of the
J/ψ , the amplitude ANN (q1,q2) that describes the J/ψ →
(NN )I=0 reaction is given by

ANN (q1,q2) = 〈N (q1) N (q2)|ÂNN |ψi〉

= (2π )3 δ(3)(q1 + q2)
1√V0

FJ/ψ (qr ), (7)

where FJ/ψ denotes the source function associated to the
creation of the NN pair from the initial J/ψ meson and
where q1 and q2 denote the momenta of the nucleon and the
antinucleon respectively. This source function is assumed to

depend only on the relative NN momentum qr

qr = q1 − q2

2
. (8)

We postulate furthermore the following smooth phe-
nomenological form for the source function

FJ/ψ (qr ) = FJ/ψ (qr ) = F0 exp
(− q2

r R
2
0/2

)
, (9)

where R0 is the radius of the source for the formation of the
NN pair and F0 is a normalization constant.

The probability for the J/ψ → pp decay channel can be
written as

�(pp) = 1

2

∫
dq1

(2π )3

dq2

(2π )3

δ(MJ/ψ − E(q1) − E(q2))
2E(q1) 2E(q2)

×|App(q1,q2)|2, (10)

where we have taken into account the probability to find pp in
the isospin 0 state, |〈I = 0|pp〉|2 = 1/23. Using Eq. (7) and
the relation (2π )3δ(3)(0) = V0, one gets

�(pp) = 1

2

δ(3)(0)

V0

∫
dq

δ(MJ/ψ − 2E(q))
[2E(q)]2

|FJ/ψ (q)|2

= 1

4π2

∫
q2 dq

δ(MJ/ψ − 2E(q))
[2E(q)]2

|FJ/ψ (q)|2

= 1

16π2

qm

MJ/ψ

|FJ/ψ (qm)|2, (11)

where the δ function has provided q = qm =
1
2

√
M2

J/ψ − 4 m2, where MJ/ψ denotes the mass of the
J/ψ meson and m is the nucleon mass. This derivation
is recalled here to ascertain that the same factors are used
for the particle B formation reactions J/ψ → pp̄B. The
corresponding decay rates will be referred to the prime
J/ψ → pp̄ rate.

III. DIRECT (INTERNAL) EMISSION AMPLITUDES

The essence of this approach is presented in Fig. 1, where
we illustrate the processes at stake in the case of the photon.
The photon is emitted before the pp pair is formed. It has been
shown in Refs. [7] and [9] that this assumption allows us to
reproduce the near-threshold enhancement in the pp invariant
mass (Mpp) distribution. This enhancement is due to the final-
state interaction of the two protons. The interactions, Paris
potential in Ref. [7] and Bonn-Jülich potential in Ref. [9], are
strongly attractive. In the Paris potential case, a quasibound
state is generated while none appears in the Bonn potential
case. An extension of these calculations to larger values of
Mpp is presented below.

3The isospin structure of the NN states, following the convention
used in the Paris potential model, is given by |I = 0〉 = (|pp〉 −
|nn〉)/√2 and |I = 1〉 = (|pp〉 + |nn〉)/√2, so that one has

〈0|pp〉 = 〈1|pp〉 = 〈1|nn〉 = 1/
√

2 and 〈0|nn〉 = −〈0|pp〉.
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FIG. 1. Photon emission from the J/ψ : the left panel (a) corresponds to the Born term while the right one (b) includes final-state corrections.
The nucleon (antinucleon) line is denoted N (N ) with respective momenta q′ − k (−q′) while p (p) represents a proton (antiptroton) propagating
with momentum q − k (−q). The wavy line is associated to the photon of momentum k.

In this approach, which will be referred to as the direct
emission (DE) model, the direct internal emission process
arises either from the charmed cc quark pair or from the
quark rearrangement stage of the process and its rate is hard to
calculate. Here, this rate is fixed by an optimal description of
the ratio �(ppγ )/�(pp) and of the magnitude of the threshold
peak. The spectrum is generated by a Born operator, ÂB,DE

ppγ , and

final-state interactions (FSI) summed in the operator Â
FSI,DE
ppγ

and collected into the full internal emission operator ÂDE
ppγ

which can be formally written as

ÂDE
ppγ = Â

B,DE
ppγ + ÂFSI,DE

ppγ = Â
B,DE
ppγ [1 + G+

0,NNγ
T[NN ](ENN )]

= [1 + T[NN ](ENN )G+
0,NNγ

] Â
B,DE
ppγ , (12)

where G+
0,NNγ

is the free NN propagator at the energy ENN

in the presence of the photon of momentum k and T[NN ](ENN )
is the NN scattering T operator. This operator can act in both
I = 0 and I = 1 states, which occurs for the NN pair in the
diagram representing the final-state interactions [right panel in
Fig. (1)] and will be written when necessary T[NN]I (ENN ). The

Born operator Â
B,DE
NNγ

is factorized into two contributions: the

NN pair creation from the J/ψ meson described through the
operator ÂNN and the direct photon emission from the J/ψ
meson given by the operator V̂ DE

γ

Â
B,DE
NNγ

= ÂNN V̂ DE
γ . (13)

The direct photon emission operator V̂ DE
γ has to conserve

the charge-conjugation-parity, CP , symmetry. In momentum
space, one has three vectors available: k, ξ (the initial orien-
tation of the J/ψ spin), and the vector product ξ ∧ k to be
combined with the polarization vector of the photon of helicity
λ, ε∗(λ). The matrix element of the operator V̂ DE

γ associated
to a transition to reach a 1S0 state should then be of the form

V DE
γ (k) = gDE ε∗(λ) · (ξ ∧ k), (14)

where the constant gDE is a free parameter.
The initial J/ψ meson at rest is described by the momentum

space wave function ψi given in Eq. (6) and the Born amplitude

A
B,DE
ppγ (qr ,k) is given by the relations

〈p(q1) p(q2) γ (k)|ÂB,DE
ppγ |ψi〉

= (2π )3 δ(3)(q1 + q2 + k)AB,DE
ppγ (qr ,k),

A
B,DE
ppγ (qr ,k) = 1√V0

FJ/ψ (qr ) V DE
γ (k). (15)

The semirelativistic three-particle free NNγ propagator
matrix elements read here

〈q1 q2 k|G+
0,NNγ

|q′
1 q′

2 k〉
= (2π )6 δ(3)(q1 − q′

1) δ(3)(q2 − q′
2)G+

0,NNγ
(q1,q2,k),

(16)

where

G+
0,NNγ

(q1,q2,k) = 1

ENN + iε −
√

q2
1 + m2 −

√
q2

2 + m2
,

(17)

with ENN = MJ/ψ − k being the NN pair energy and k = |k|
being the emitted photon energy. In the evaluation of the
final-state interaction contribution, the NN pair may be in
either isospin I = 0 or I = 1 state. Thus we may write this
contribution as

〈p(q1) p(q2) γ (k)|T[NN]I (ENN ) G+
0,NNγ

Â
B,DE
[NN ]I γ

|ψi〉

= 1√V0

∫
〈q1 q2|T[NN ]I (ENN )|q′

1 q′
2〉 (2π )3 δ(3)

×(q′
1 + q′

2 + k)

×dq′
1 dq′

2

(2π )6

1

ENN + iε −
√

q′2
1 + m2 −

√
q′2

2 + m2

×FJ/ψ (|q′
r |) V DE

γ (k), (18)

where q′
r = (q′

1 − q′
2)/2 = q′ − k/2 with q′

1 = q′ − k and
q′

2 = −q′. Since

〈q1 q2|T[NN]I (ENN )|q′
1 q′

2〉
= (2π )3 δ(3)(q′

1 + q′
2 − q1 − q2)TI (qr ,q′

r ,ENN ), (19)
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we finally arrive at the loop integral that yields the contribution
of final-state interactions for the direct photon emission process

〈p(q1) p(q2) γ (k)|T[NN]I (ENN ) G+
0,NNγ

Â
B,DE
ppγ |ψi〉

= (2π )3 δ(3)(q1 + q2 + k) A
FSI,DE
ppγ (qr ,k,ENN ), (20)

where

AFSI,DE
ppγ (qr ,k,ENN )

= 1√V0
V DE

γ (k)
∑
I=0,1

∫
dq′

2

(2π )3
TI

(
qr , − q′

2 − k
2
,ENN

)

× 1

ENN + iε −√
(q′

2 + k)2 + m2 −
√

q′2
2 + m2

×FJ/ψ

(
|q′

2 + k
2
|
)

, (21)

qr being defined in Eq. (8). Then the full amplitude for the
direct photon emission reads

〈p(q1),p(q2),γ (k)|ÂDE
ppγ |ψi〉

= (2π )3 δ(3)(q1 + q2 + k) ADE
ppγ (qr ,k,ENN )

= (2π )3 δ(3)(q1 + q2 + k)
[
A

B,DE
ppγ (qr ,k)

+A
FSI,DE
ppγ (qr ,k,ENN )

]
, (22)

where A
B,DE
ppγ (qr ,k), given by Eq. (15), corresponds to the Born

amplitude while the effect of final-state interactions is given by
the loop integral AFSI,DE

ppγ (qr ,k,ENN ) of Eq. (21). These results
can be similarly extended for the internal emission of a vector
meson B where one has simply to replace the potential V DE

γ (k)
by an appropriate potential.

The isospin symmetry is violated by the “internal photon”
and, as we wrote above in this section, the intermediate state
of the baryon pair in Fig. 1(b) is a superposition of I = 0 and
I = 1 NN states or of pp and nn ones. However, the nn → pp
transition is weak as the nn → pp cross section is smaller by a
factor of the order of 1/15 as compared to the pp → pp cross
section; see Ref. [8] for comparison. Hence, in our calculation,
the small correction due the nn interaction is neglected.

To complete this phenomenological approach, we will
assume in addition that, in this process, the source radius has a
weak energy dependence on the pp invariant mass that reads

Mpp =
√

(MJ/ψ − k)2 − (q1 + q2)2

= √
MJ/ψ (MJ/ψ − 2 k). (23)

We thus write, with masses expressed in units of fm−1,

R(Mpp) = R0 + β
√

Mpp − 2m

= R0 + β

√
MJ/ψ

(
1 − 2k

MJ/ψ

)1/2

− 2m. (24)

The values R0 = 0.28 fm and β = 0.175 fm3/2 are found to
represent the data fairly well. This expression (24) can also
be reinterpreted as a modification of the functional form of
the source function FJ/ψ (qr ) [see Eq. (9)]. We stay with

FIG. 2. The invariant Mpp mass distribution calculated within the
direct emission DE model for different values of the parameter β. The
data (histogram) is extracted from Fig. 1 in Ref. [5].

this parametrization as it indicates a physical effect indicated
below.

By calculating the related loop integral and averaging the
probability over the phase space (see Appendixes B and E),
one obtains the Mpp spectrum plotted in Fig. 2 for different
values of β. This spectrum has several interesting features
summarized in Table III and described below.

(1) It displays two peaks. The narrow peak that arises at the
threshold is related to the near pp threshold (ENN =
−4.8 MeV, 52-MeV broad Paris-potential quasibound
11S0 state [8]). The other broad peak is formed at Mpp 	
2130 MeV. It corresponds to a shape resonance at which
the wavelength equals the size of the pp potential well
in the Paris potential for the 11S0 state [8]. The isospin 0
part of the potential well that generates such structures
and the corresponding energy-dependent absorptive
part are shown in Fig. 3.

(2) Figure 2 shows the expansion from the initial radius
R0 = 0.28 fm to some radius Rf , i.e., when the prob-
ability of the photon emission falls to zero and when
the pp pair is well formed. One sees from the curve on
Fig. 2 that the limiting radius Rf varies from 0.28 fm
to Rf ≈ 0.61 fm with the invariant Mpp mass varying
from 2.90 to 2.60 Gev/c2 when β varies from 0.0 to
0.25 fm3/2.

(3) The first minimum moves very slowly to slightly
increasing invariant M(pp) mass but remains below
the experimental value at about 1.97 GeV/c2.

(4) The broad maximum in the spectrum moves to de-
creasing values of Mpp as β increases, i.e., when β
goes from 0 to 0.25 fm3/2, the maximum moves from
2.15 to 2.01 GeV/c2 when the experiment displays a
maximum around 2.13 GeV/c2. Furthermore, the ratio
of the height of the second maximum over the height of
the first minimum decreases and goes to 1 as β reaches
the value of 0.25 fm3/2; for larger values of β there is
neither a minimum nor a maximum.
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TABLE III. Position and values of first minimum and second maximum of the direct emission (DE) spectra, all normalized at first maximum
value of 2450 events per 0.02 GeV/c2.

DE / β in fm3/2 0 0.05 0.075 0.10 0.15 0.175 0.20 0.25 exp

First min Position 1.945 1.945 1.955 1.955 1.955 1.9645 1.9645 1.974 1.97
Height 628 782 834 869 897.7 896.4 883 836 1040

Second max Position 2.15 2.12 2.11 2.10 2.067 2.058 2.04 2.01 2.13
Height 1547 1457 1369 1274 1097 1021 953 849 1350

Ratio max/min 2.46 1.86 1.64 1.47 1.22 1.14 1.08 1.02 1.3

Becomes negligible at 2.90 2.85 2.80 2.75 2.70 2.67 2.65 2.60

We will see further on that the contribution of the baryon
current in this process shows a maximum at values of Mpp

slightly above 2.15 GeV.
This internal emission model can be extended to the case

of a vector meson emission: The main change comes in the
definition of the energy ENN , i.e., ENN = MJ/ψ −

√
m2

B + k2,
where mB is the mass of the emitted boson.

IV. BARYON CURRENT AMPLITUDES

This calculation is based on a model suggested in Ref. [7]
(similar ideas have been developed quantitatively by Barnes
et al. in Ref. [23]). The initial assumption is that the mesons
are emitted after the NN pair has been formed. In the decay
process, the initial heavy cc quarks in the J/ψ state of
JPC = 1−− have to disappear and form another qq pair. The
easiest way to do that is a three-gluon intermediate state [24]
which generates a pair of the same JPC . Next, this system
generates two extra qq̄ pairs from the vacuum, e.g., by the
3P 0 mechanism. This leads to the formation of a 3S1 state.
The emission of γ,π,φ, or ω is assumed to happen after the
baryons have been formed. It turns out that this assumption
yields a generally consistent description of the mesonic decays.
Yet, in the case of the γ or ω bosons, it represents only a

sizable fraction of the decay rate and has to be completed by
the contribution of the direct (internal) process just described
in the preceding section for the photon case. The mechanism
is visualized in Fig. 4 and to quantify it one needs three basic
ingredients:

(1) A wave function to describe the initial NN state. It is
generated by the cc transition to the 3S1 NN state of
relative momentum qr .

(2) A mechanism that describes the emission of a boson
B from the initial 3S1 to a final or intermediate NN
system.

(3) A method to describe NN final-state interactions.

The boson B is emitted with momentum k from either
the nucleon or the antinucleon of final momenta q1 and q2,
respectively [see Eq. (8)]. The decay amplitude ABC

ppB(q1,q2,k)
can then be expressed as

ABC
ppB(q1,q2,k)

= 〈p(q1) p(q2) B(k)|ÛB G+
0,NN

ÂNN |ψi〉
= 〈p(q1) p(q2) B(k)| ÛB |(NN)I=0〉

×G+
0,NN

〈(NN )I=0|ÂNN |ψi〉, (25)

FIG. 3. The left panel (a) displays the real part while the right one (b) displays the absorptive part of the Paris NN potential in the isospin
0 isosinglet S wave. The deep well and the barrier are due to the interplay of theoretical one- and two-pion exchange forces supplemented with
a short-range phenomenological attraction. The well and barrier structure have the support of 4000 data but the detailed shape of the kink is an
artifact of the phenomenological part and it cannot be determined very precisely [8]. The existence of the barrier is nevertheless indicated by
the scattering data, in particular those of the n̄p total cross sections.
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FIG. 4. Photon emission from intermediate baryons: The left graph (a) is associated to the Born term while the right one (b) includes
final-state corrections. The various labels have been defined in Fig. 1. Similar diagrams for the emissions from antibaryons are not drawn.

where we assume the initial state to be an I = 0 state. We
will refer to this as the baryon current (BC) model. The boson
emission operator ÛB includes final state interactions, G+

0,NN

is the NN Green’s function before the emission of the boson,
and ψi is the wave function of the J/ψ meson at rest.

The amplitude in Eq. (25) is built up from three factors: the
last one, 〈(NN )I=0|ÂNN |ψi〉, corresponds to the creation of the
NN pair in an isospin 0 state; the middle one, G+

0,NN
describes

its propagation; while the first one, 〈 ppB| ÛB |(NN)I=0〉,
describes the emission of the boson of momentum k, final-state
interactions included, and can be written formally as

〈ppB|ÛB|(NN )I=0〉
= 〈ppB|Û 0

B [1 + G+
0,NNB T[NN ]]|(NN)I=0〉

= 〈ppB|[T[NN] G+
0,NNB + 1] Û 0

B |(NN)I=0〉, (26)

where G+
0,NNB denotes the free three-body Green’s function

[similar to Eq. (17) in the photon case].
The intermediate NN pair being in an isospin I = 0 state,

the lowest order (Born) amplitude in the absence of final-state
interaction (left panel of Fig. 4) is given, since in that case one
has only an intermediate pp pair, formally by

〈p(q1) p(q2) B(k)|Û 0
B|(pp)I=0〉G+

0,pp 〈(pp)I=0|Âpp|ψi〉

=
∫

dq′
1

(2π )3
〈p(q1) p(q2) B(k)|Û 0

B |[p(q′
1)p(−q′

1)]I=0〉

× (2π )3

√V0
δ(3)(−q′

1 + q2)
FJ/ψ (q ′

1)

MJ/ψ + iε − 2
√

qq′2
1 + m2

= (2π )3 δ(3)(q1 + q2 + k) Ã
B,BC
ppB (q2,k), (27)

where

Ã
B,BC
ppB (q2,k) = G̃pp(q2) U 0

ppB(q2,k) with

G̃pp(q2) = 1√V0

FJ/ψ (q2)

MJ/ψ + iε − 2
√

q2
2 + m2

. (28)

In these equations, the photon (meson) is emitted from the
nucleon of momentum q1 and the antinucleon is the spectator
with momentum q2 such that q2 = −q, q1 = −q2 − k = q −
k and qr = q − k/2.

The FSI contribution contains the formal expression

〈ppB|TNN G+
0,NNB Û 0

B |(NN)I=0〉

=
∑

I

〈ppB|(NN)I 〉 〈(NN )I |T[NN]I

×G+
0,NNB|(NN )I 〉 〉(NN )I |Û 0

B |(NN)I=0〉 (29)

where the sum over the isospin I is restricted to I = 0,1. We
may then write explicitly

A
FSI,BC
ppB (q1,q2,k) = 〈p(q1) p(q2) B(k)|TNN G+

0,NNB Û 0
B |(NN )I=0〉 G+

0,NN
〈(NN )I=0|ÂNN |ψi〉

=
∑
I=0,1

∫
〈p(q1) p(q2) B(k)|T[NN]I G+

0,NNB| [N (q′
1) N (q′

2)]I B(k′)〉 dq′
1

(2π )3

dq′
2

(2π )3

dk′

(2π )3

× 〈[N (q′
1) N (q′

2)]I B(k′)| Û 0
B |(NN)I=0〉 G+

0,NN
〈(NN )I=0|ÂNN |ψi〉

=
∑
I=0,1

∫
〈p(q1) p(q2) B(k)|T[NN]I |[N (q′

1) N (q′
2)]I 〉 G+

0,NNB(q′
1,q

′
2,k)

× dq′
1

(2π )3

dq′
2

(2π )3
(2π )3 δ(3)(q′

1 + q′
2 + k) A

B,BC

NNB (q′
2,k). (30)
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Then, from Eqs. (19), (27), and (28), we obtain

A
FSI,BC
ppB (q1,q2,k) = (2π )3 δ(3)(q1 + q2 + k) Ã

FSI,BC
ppB (qr ,k),

ÃFSI,BC
ppB (qr ,k) =

∑
I

∫
dq′

2

(2π )3
TI (qr , − q′

2 − k
2
,ENN ) G+

0,NNB(−q′
2 − k,q′

2,k) A
B,BC
NNB(q′

2,k), (31)

where

G+
0,NNB(−q′

2 − k,q′
2,k) = 1

MJ/ψ + iε − EB(k) −
√

(q′2
2 + k)2 + m2 −

√
q′2

2 + m2
, (32)

with EB(k) =
√

k2 + m2
B. The FSI amplitude (31) requires

integrations over the corresponding loop momenta and its
detailed form will be discussed in the appendixes. Finally, the
amplitude in the BC + FSI model is given by

ABC
ppB(q1,q2,k) = (2π )3 δ(3)(q1 + q2 + k)

[
Ã

B,BC
ppB (qr ,k)

+ ÃFSI,BC
ppB (qr ,k)

]
, (33)

with Ã
B,BC
ppB (qr ,k) given by Eq. (28) and ÃFSI,BC

ppB (qr ,k) by
Eq. (31). One has to add a similar contribution for the emis-
sion from the antinucleon. This specific final-state interaction
correction will be evaluated with the half off-shell scattering
matrix [15] arising from the Paris potential [8]. It will be
applied in what follows to the cases of the photon and of
the ω meson. The explicit expression of the amplitude for the
photon emission is calculated in Appendix C 1. The lowest
order amplitude is enhanced by the NN final-state interactions
and the effect is significant in the spin singlet S wave. As
indicated by the summation over the isospin I states, it involves
also radiation of magnetic photons from the intermediate NN
pairs and generates a delicate interference pattern. Since the
intermediate states involve I = 0, this amplitude is expected
to determine, or contribute significantly, to the shape of the
threshold peak in the invariant pp mass distribution.

A. The initial N N state

In the two models describing the pp threshold peak [7,9], it
was assumed that in the course of radiative process the pp
final state is formed in the spin singlet 1S0 state [15]. The
near-threshold enhancement arises as a result of the I = 0, pp
final-state interaction. However, in order to understand the
full energy spectrum and mesonic emission rates, one needs
a better description of the formation mechanism. We go one
step further; in addition to the state indicated above, the initial
NN state is assumed to inherit the spin and isospin quantum
numbers of the J/ψ, S = 1,I = 0, and hence it is a 3S1 state.

Before the emission of the photon, the process is given by
the matrix element:

〈[N (q1)N (q2)]I=0|G+
0,NN

ÂNN |ψi〉
= (2π )3 δ(3)(q1 + q2) G̃NN (q2), (34)

where G̃NN (q2) is given by Eq. (28) with, in theJ/ψ rest frame,
q1 = −q2 = qr = q. This free Green’s function becomes sin-
gular when the momentum approaches its on-shell value. This
singularity leads, in the case of electric photon emissions, to

the well-known infrared catastrophe. The effect of infrared
enhancement should be seen in the experimental data as a
peak at the end of the spectrum, that is, in the soft photon
limit. However, it is also clear [4,5] that contributions from the
infrared photons (k < 50 MeV/c) have been effectively cut out
from the data. We refer the reader to the discussion at the end
of Sec. V A.

B. The emission vertices

The electromagnetic current associated to the photon emission
from the nucleon is given by

〈q ′|Jν |q〉 = e u(q ′)
[
γν + κ

2im
σμν(q ′ − q)μ

]
u(q)

= e u(q ′)
[
γν + i

κ

2m
σμνk

μ

]
u(q), (35)

where

σμν = i

2
[γμ,γν],

e is the unit of charge and κ is the anomalous magnetic moment
of the nucleon (κp = 1.793 for the proton and κn = −1.913 for
the neutron). The final nucleon four-momentum q ′ is related
to the initial four-momentum q by q ′ = q − k where k is the
emitted boson four-momentum. The corresponding current for
the photon emission from the antinucleon will be given by the
substitution e → −e and q → −q.

More generally, the emission of a vector particle by a
nucleon is described by the operator

L = gV γνε
ν∗(λ) + i

gT

2m
σμνk

μεν∗(λ), (36)

where the four-vector ε∗(λ) denotes the polarization vector of
the emitted particle, λ is its helicity, while gV and gT = κ gV

are the vector and tensor coupling constants, respectively.
The final photon or vector meson may be produced in

a magnetic or an electric transition. The relevant formation
amplitudes are obtained from the transition matrix elements of
the operator (36) reducing bispinors u to spinors χS . We have

u(q ′)Lu(q) = χ
†
S ′Û

0
BχS, (37)

where S and S ′ denote the initial and final nucleon spin, and
one obtains the vertex coupling in the two-dimensional spin
space

Û 0
B = gV ÂV + i

gT

2m
ÂT . (38)
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The explicit expressions for the vector ÂV and the tensor ÂT

parts are derived in Appendix C [see Eqs. (C11) and (C17),
respectively].

1. The photon case

The full photon potential operator, U 0
γ (k,q), combining the

photon emission from either baryon, is given by Eqs. (C22)
and (C23). The magnetic terms in U 0

γ (k,q), proportional to

σ · [k ∧ ε∗(λ)], change the 3S1 state of the initial NN system
to the final 1S0 state. Electric terms in U 0

γ (k,q) proportional to
q · ε∗(λ), change the 3S1 state to final 3P states. Relativistic
corrections generate additional terms, most of these cancel
in the pp system, some spin operators bilinear in q lead to
D waves but contribute corrections only on 1% level and are
not included in the calculations. As discussed in Appendix C,
the two basic couplings add coherently for the proton and the
antiproton. Thus, the summary coupling of photons to the pp
system becomes

U 0
γ (q,k) = VE,γ + VM,γ (39)

with

VE,γ = e

2m
[CE q · ε∗(λ)], (40)

VM,γ = i
e

2m
{CM · [k ∧ ε∗(λ)]}, (41)

which are still operators in the spin-isospin space and where
[see Eqs. (D14) and (D19)]

CE = −
{
ζ + ζ + 1

ζ
+ 1

ζ

}
+ κ

k

2m

{
ζ + ζ − 1

ζ
− 1

ζ

}
+ κ

k2

2m�

{
1

ζ
+ 1

ζ

}
,

CM = r− (σ 1 − σ 2) + r+ (σ 1 + σ 2), (42)

with

r− = 1

2

{(
1

ζ
+ 1

ζ

) (
1 + κ

k

2m

)
+ κ

�

2m
(ζ + ζ )

}
,

r+ = 1

2

{(
1

ζ
− 1

ζ

) (
1 + κ

k

2m

)
+ κ

�

2m
(ζ − ζ )

}
. (43)

The energies �,�′ and the coefficients ζ, ζ are defined in
Appendix C [Eqs. (C6), (C9), and (C13)]. The approximation
leading to Eqs. (40)–(43) may be acceptable close to the central
region of the Mpp distribution (see Fig. 6). It is too crude in
the threshold region where k/m ≈ 1 and at the other extremity
where q/m ≈ 1. Nevertheless, some coefficients in U 0

γ (k,q)
[Eqs. (C22) and (C23)] display remarkable stability. This, in
particular, concerns the terms ζ + ζ , ζ + 1/ζ, ζ + 1/ζ, ζ +
1/ζ which are approximately 2 within 1% over all the phase
space. On the other hand, there are a number of terms involving
more complicated combinations of the spin and momenta
which are less stable, but small due to other reasons. The

terms

ie

2m

κ

2m�

[(
σ 1

ζ
− σ 2

ζ̄

)
· (k ∧ q)

]
[q · ε∗(λ)],

ie

2m

κ

2m�
q · k

{
σ 1

ζ
− σ 2

ζ̄

}
· [q ∧ ε∗(λ)],

and

ie

2m

κ

2m�
q · [k ∧ ε∗(λ)]

(
σ 1

ζ
− σ 2

ζ̄

)
· q,

involve a spin flip transition. According to CP conservation
(see Table I), these terms lead predominantly to final spin
singlet S-wave state. The resulting contribution would give an
average 〈qiqj 〉 = q2/3 and would mainly contribute at large
k, i.e., in the threshold region where corrections will be of the
order of q2/12m2, i.e., about 2%. The term proportional to
q ∧ ε∗(λ) in Eq. (C22) reads

[g(q,k) σ 1 + ḡ(q,k) σ 2] = [r̃− (σ 1 − σ 2) + r̃+ (σ 1 + σ 2)]

= 2 (r̃− σ− + r̃+ σ+), (44)

with

r̃− = 1

2

{(
ζ − ζ

)(
1 − κ

k0

2m

)
−
(

1

ζ
− 1

ζ

)
×
(

1 + κ
k0

2m

)(
1 + k0

�

)}
,

r̃+ = 1

2

{(
ζ + ζ

)(
1 − κ

k0

2m

)
−
(

1

ζ
+ 1

ζ

)
×
(

1 + κ
k0

2m

)(
1 + k0

�

)}
. (45)

It involves a dominant σ+ · [q ∧ ε∗(λ)] combination which
generates spin triplet P -wave states. It could be contributing
as much as 20% of the dominant electric term. However, it is
only important close to the threshold region where

r̃+ ≈ −k0

�

[
1 + κ

�

m

(
1 + k0

2�

)]
, (46)

but where the P -wave contributions are strongly suppressed
by the phase space.

In practical calculations, it is sufficient to neglect small
corrections of the order of k2/4m2 which contribute about 3%
to the electric rate, and about 1% to the total rate. On the other
hand, a sizable, i.e., of the order of 10%, relativistic correction
is due to the κ/2m term affecting the anomalous magnetic
moment in Eq. (43). Note that in the limit k/2m � 1, to order,
k2/4m2, Eq. (39) reduces to the simple expression

U 0
γ (q,k) ≈ e

2m

{
− 4 q · ε∗(λ) + i

(
1 + κ�

2m

)
(σ 1 − σ 2)

·[k ∧ ε∗(λ)]

}
. (47)

2. The vector meson case

The emitted ω meson has a negative G parity and couplings
to the proton or the antiproton differ in sign (this also applies
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to the case of the π meson emission). Again the emission by
a baryon or an antibaryon is predominantly coherent as this
sign is compensated by the momentum and/or spin involved
in the vertices. In the case of the ω meson, the tensor coupling
is known to be consistent with zero and the main contribution
comes from the vector coupling [25]. From Eqs. (C25), one
infers that the first ε∗

0 (λ) = k · ε∗(λ)/k0 term [Eq. (C3)] almost
disappears, by the G-parity rule, when the emissions from
nucleon and antinucleon are added. By retaining only the
dominant pieces in Eq. (C26), that is, neglecting terms of the
order of k2/2�Eq or k2/4m2, one obtains, with k0 defined in
Eq. (C24) and Eq in Eq. (C7),

U 0
ω(q,k) ≈ −gV ω

2m

[
4 q · ε∗(λ) + 2

k · q
Eq

k · ε∗(λ)

k0

− i(σ1 − σ2) · {k ∧ ε∗(λ)}
]
, (48)

which implies that one neglects the following contributions:

−i
gV ω

2m�

[
k · q
Eq

{(σ1 − σ2) · [q ∧ ε∗(λ)]}

+ k · ε∗(λ)

k0
{(σ1 + σ2) · (k ∧ q)}

]
(49)

in addition to a term that disappears since it contains the
expression

1 − 2
Eq

�
+ q2

�2
= 0.

The first term in Eq. (49)

i
gV ω

2m�

k · q
Eq

[(σ1 − σ2) · {q ∧ ε∗(λ)}]

has to be compared to the basic magnetic contribution

i
gV ω

2m
[(σ1 − σ2) · {k ∧ ε∗(λ)}],

since they both lead to S-wave magnetic transitions. For
average momenta of the order of 500 MeV/c, the neglected
term is of the order of 0.1 of the dominant one. Taking into
account the interference contribution in the probability reduces
further this contribution, justifying its neglect.

The second term in Eq. (49)

i
gV ω

2m�

k · ε∗(λ)

k0
{(σ1 + σ2) · (k ∧ q)},

which gives rise to 3P waves, has to be compared to the basic
electric contribution

−4
gV ω

2m
q · ε∗(λ),

and, in the absence of any interference contribution, leads to a
very small contribution on the order of 10−3 of the basic decay
rate.

Apart from the magnitude of the coupling constant, there
is one important difference with respect to the photon. The
magnetic coupling is weak in comparison to the electric
one. The reverse was true in the γ case due to the large

proton magnetic moment. This is the basic reason making the
transition to the final 1S0 state small (about 1/10 of the total).

3. The pion case

For π mesons, we use the standard γ5 coupling

U 0
π (q,k) ≈ gπ σ ·

[
q − k

Eq−k + m
− q

Eq + m

]
τ · ϕπ

	 − gπ

2m
(σ · k) (τ · ϕπ ). (50)

In this case, the emission requires a spin flip and a change of
nucleon angular momentum leading to the final pp in the 31P 1

state. This mechanism eliminates the possibility of 1S0 states
and does not produce any threshold enhancement as indicated
by the BES experiments [4,5,17,18].

C. The N N final-state interactions

The emission of a magnetic photon from the nucleon in the
reaction

J/ψ → γpp (51)

generates, within our model, the final spin-0 state in the pp̄
system. The corresponding operator in spin space is denoted,
in the small k/2m limit and up to the relativistic correction
κ�/2m, by [see Eq. (47)]

VM,γ (q,k) ≈ ie

2m
(σ 1 − σ 2) · [k ∧ ε∗(λ)]. (52)

It shows no dependence on the nucleon momentum before
emission q. The Born amplitude associated to this approxi-
mation of the magnetic contribution reads then in spin space,
using Eqs. (27) and (28) with q2 = −q,

A
M,(B,BC)
ppγ (q,k) = (2π )3 δ(3)(q1 − q + k) VM,γ (q,k) G̃pp(q).

(53)

We consider the 3S1 → 1S0 transition in the pp system.
As read from Eq. (52) and discussed in Appendix C, the
radiation from both baryons is described by σ 1 − σ 2. The
related transition matrix element may be expressed in terms
of the direction of spin in the triplet state, ξ . Then, the relation

〈0 0| 1
2 (σ 1 − σ 2)|1 ξ〉 · [k ∧ ε∗(λ)] = ξ · [k ∧ ε∗(λ)] (54)

leads to a formula which may be used in the case of the limit
defined by Eq. (52) for a transition from the 3S1 → 1S0 state.
Indeed, from Eqs. (39), (47), and (53), we obtain

〈1S0|AM,(B,BC)
ppγ (qr ,k)|3S1〉

= (2π )3 δ(3)(q1 − q + k) G̃pp(qr )〈1S0|VM,γ |3S1〉
= (2π )3 δ(3)(q1 − q + k) Ã

M,(B,BC)
ppγ (qr ,k), (55)

with

Ã
M,(B,BC)
ppγ (qr ,k) = ie

m
ξ · [k ∧ ε∗(λ)] G̃pp(qr ). (56)

The electric contribution to the amplitude is

A
E,(B,BC)
ppγ (q,k) = (2π )3 δ(3)(q1 − q + k) VE,γ (q) G̃pp(q).

(57)
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with the electric potential given in Eq. (40). In the same limit
(k/2m � 1 and up to the relativistic correction κk2/�m), the
approximate electric potential reads

VE,γ (q,k) ≈ − e

2m
4 q · ε∗(λ). (58)

It leads to transitions from the 1S0 state to 3P states. However,
final-state interactions in the P wave state are weak, at least in
the Paris potential model, and they are therefore neglected.

On the other hand, in the magnetic transitions the scalar
amplitude A

M,(0,BC)
ppγ (q,k) has to be corrected and these correc-

tions turn out to be very important. They are described by the
loop integral [see Eq. (31)]

Ã
M,(FSI,BC)
ppγ (qr ,k) =

∑
I=0,1

∫
dq′

(2π )3
TI (qr ,q′ − k/2,ENN )

× G+
0,NNγ

(q′,k) Ã
M,(B,BC)
ppγ (q′,k), (59)

calculated with the recent Paris potential [8], in a way described
in Ref. [15]. On shell, thisT matrix element is normalized to the
scattering length. The numerical evaluation of the loop integral
in the presence of two singular propagators has to be done with
considerable care. The procedure is described in Appendix E.
The full amplitude for magnetic transitions becomes

A
M,BC
ppγ (q1,q2,k) = (2π )3 δ(3)(q1 + q2 + k)

[
Ã

M,(B,BC)
ppγ (qr ,k)

+ Ã
M,(FSI,BC)
ppγ (qr ,k)

]
, (60)

with q2 and qr given in Eq. (8).
For the results presented in the following section, the

amplitude (60) has been evaluated with the potential VM,γ (q,k)
given in Eq. (41) including the κ/2m relativistic correction but
dropping the r+ (σ 1 + σ 2) since this term generates spin triplet
P waves only important close to the threshold region where
they are strongly suppressed by the phase space.

V. THE RESULTS

A. The radiative decays

The M(pp) data in the region of high photon energy are
dominated by a peak, as can be seen in Figs. 5 and 6. The
explanation is related to strong nucleon-antinucleon attraction
essentially in NN the isospin-spin singlet 11S0 state but to a
certain extent also in the isotriplet spin singlet the 31S0. Now,
with the radiation due to baryonic currents, this peak is strongly
suppressed due to interference of the intermediate pp, nn
channels and the cancellations of the magnetic moments
involved.

The various contributions to the Mpp spectrum plotted in
Fig. 5 together with the experimental data have been obtained
with the following procedure:

(a) |F0| is the overall normalization that is fixed by the
J/ψ → pp decay rate.

(b) Magnetic and electric amplitudes are calculated inde-
pendently for the DE and BC emission modes.

(c) The emission rates are added and the normalizations
of the DE and BC rates are fixed to reproduce the

FIG. 5. The M(pp) spectra obtained with the DE and baryon
emission BC + FSI models. The peak at 3 GeV attributed to the
sequential J/ψ → ηcγ decays is discussed in the text. Histogram as
in Fig. 2; data extracted from Ref. [5].

experimental ratios shown in Table IV and the invariant
mass distribution.

We are not able at present to evaluate the phase difference
between the amplitudes associated to the DE and BC mecha-
nisms. However, the interference effects are most likely fairly
weak for two reasons:

(a) In the low-Mpp region, characterized by magnetic pho-
tons, the contribution of the DE mechanism dominates
largely the contribution of the BC mechanism.

(b) In the high-Mpp region, a similar, although less striking,
dominance is attributed to the electric photons, whereas
there is practically no contribution any more of the DE
mechanism.

The experimental data, displayed in Fig. 5, indicate possible
interference effects in the region between 2.3 and 2.6 GeV.
However, in view of the quality of the data, we hesitated to

FIG. 6. As in Fig. 5 but for the near-threshold region. Note the
small P -wave renormalized electric contribution.
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TABLE IV. Ratio R = �(pp̄γ )/�(pp̄) in % units with con-
secutive steps of improvement. The experimental ratio R = 18(5)
is evaluated from the experimental branching fractions displayed in
Table II. The first column indicates the involved mechanism: BC for
the first line and BC + DE for the second. The other columns give the
different contributions in these mechanisms (see text). The additional
DE radiation arises from the quark phase and is fitted to the magnitude
of the near-threshold peak.

Mechanism Electric Magnetic (BC) Magnetic (BC + FSI) Total

BC 4.38 1.65 1.97 6.35
BC + DE 5 6.51 12.86

include an additional parameter beyond the many parameters
already introduced in our description. Thus, we have neglected
the possible interferences and have simply added the contribu-
tions of the DE and BC mechanisms on the probability level.

The emission from final baryons (BC; see Table IV)
generates about half of the experimental rate and misses the
full strength of the threshold enhancement. Photons may be
emitted also by exchange currents related to charged mesons
exchanged between baryons. Such processes are known and
well described in the NN systems, but to the best of our
knowledge, have not been discussed in the NN systems.
Calculations have been performed. We found effects of about
10% which do not change the overall picture in any significant
way. The BC model has to be supplemented by the other
internal emission DE mechanism discussed in Sec. III. The
relative strength of the later is a free parameter which is set
to try to reproduce the two peaks in M(pp) spectrum (see
Figs. 5 and 6). In this way, the total branching ratio becomes
consistent with the data. The direct emission is characterized by
different NN final-state interactions; in particular, there is no
cancellation of p and n magnetic moments during the emission
process. Hence, the interaction in the 11S0 wave is stronger and
the two resonances at threshold and at M(pp) ≈ 2170 MeV
are more distinct. As discussed previously in Sec. III, the first is
due to the quasibound state and the second is a shape resonance.
Both are generated by the Paris potential model [8].

Now, a comparison of radiative decays J/ψ → γpp and
ψ(2S) → γpp could be discussed qualitatively. The baryon
current emission does not depend on the internal structure of
the J/ψ → γpp and ψ(2S) → γpp mesons. What is shown
in the present work is that the near-threshold peak is suppressed
by the difference in the proton and neutron magnetic moments.
On the other hand, the probability of internal photon radiation
does depend on the internal structure. As a consequence, the
relative weight of the two modes depends on the internal wave
function, which is nodeless in the J/ψ case and has a node in
the relative cc coordinate in the ψ(2S) case. We are not able to
calculate this wave function. Our qualitative argument is that
the internal emission from the ψ(2S) meson (that yields a peak)
has to be small. Apparently, this node suppresses the magnetic
radiative transitions via the DE mode and no peak is generated.
We see some argument, although not fully convincing, for this
suppression mechanism in the experimental γpp branching
ratios equal to 3.8(1.0) × 10−4 for J/ψ and 3.9(0.5) × 10−5

for ψ(2S) (Ref. [21]).

a. The end of pp̄ spectrum. The origin of the experimental
peak at the end of spectrum is the sequential decay

J/ψ → ηcγ and ηc → pp, (61)

which generates a peak at the invariant mass M(pp) =
M(ηc) = 2983.4 MeV. The decay rates are known experi-
mentally and J/ψ → ηcγ is 1.7 (0.4) × 10−2 of the total
while ηc → pp is 1.50 (0.16) × 10−3 of its decay rate [21].
The dotted line in Fig. 5 results from the modulus squared
of the following relativistic Breit-Wigner amplitude for the
description of the ηc,

Aηc
= −fηc

mηc
�el

M2
pp − m2

ηc
+ i mηc

�tot

, (62)

with �tot = 31.8 (0.8) MeV and �el/�tot = 1.50 (0.16) ×
10−3. In the energy range of this ηc contribution, the interfer-
ence of the Aηc

amplitude with the very small magnetic S-wave
is neglected and for the curve shown in Fig. 5 the free parameter
fηc

is fixed at the value 23.2 × 103 events / 0.02 (GeV/c2).
Together, the expected area under the end peak would amount
to 2 × 10−5 of the total decay rate, i.e., about 5% of the ppγ
decay rate. The first experimental result of Ref. [4] indicated
a 1% effect but more recent measurements yield comparable
results [5].

In addition to the ηc peak, another peak arises within the
BC model. It is related to the infrared enhancement in the
intermediate-statepp propagator. The real infrared catastrophe
does not occur since the initial J/ψ has a finite width.
This effect produces an enhancement in the region M(pp) >
2820 MeV and a narrow bump at the end 3090 < M(pp) <
3100 MeV. The area under this enhancement amounts to 3% of
the rate Rγ calculated with the baryon emission model. That is
about 0.7% of the experimental rate. The experimental check
is not easy as the errors in the photon energy determination
(σE) are large in this region and these two effects overlap. The
BES detector offers [4]

σE

E
= 21%√

E/GeV
, (63)

and in the region of interest σE ≈ E ≈ 100 MeV and thus
the position of the peak is not well determined. With a better
resolution, the magnitude and shape of the infrared bump
would be a check for decay models.

As indicated in Sec. IV A, in the comment below Eq. (34),
the BES data [5], where a k < 50 Mev/c cut is applied,
does not display the contribution of the infrared photon
contribution. Thus, in the present work, the Mpp infrared
pole is eliminated by introducing a smooth nonrelativistic
Breit-Wigner function. In other terms, a phenomenological
final-state interaction correction is applied to the P -wave
electric amplitude A

E,(B,BC)
ppγ (q,k) given by Eq. (57). Hence,

the short-dashed line in Fig. 5 is the result of the renormalized
electric photon amplitude where the Mpp = MJ/ψ pole has
been eliminated:

Ã
E,(B,BC)
ppγ (q,k) = fr A

E,(B,BC)
ppγ (q,k), (64)

fr =
∣∣∣∣NE

MJ/ψ − Mpp

MJ/ψ − Mpp − i�E

∣∣∣∣. (65)
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TABLE V. Calculated ratios �(pp meson)/�(pp) of channel widths allowed in the J/ψ decays. The errors correspond to uncertainties of
the pp meson coupling g. Values of Rexp calculated from the experimental branching fractions listed in Table II.

Meson Rexp R[BC] R[BC,FSI] R[BC,FSI,DE] g2/(4π )

pp̄π 0 0.575 (0.05) 0.43 13.8 [27]
pn̄π− 0.966 (0.06) 0.85 13.8 [27]
pp̄ω 0.507 (0.07) 0.87 (0.16) 0.67 (0.13) 8.1 (1.5) [26]
pp̄ω 0.507 (0.07) 0.40 0.33 0.39 4.16 [29]
pp̄φ 0.0247 (0.0016) 0.023 5.5 this work

The free parameters are fixed at the respective values �E =
500 MeV for the width and NE = 3.5 for the normalization.

Despite the Breit-Wigner form, we do not suggest that there
is a new resonant mechanism involved. This form is used only
for a parametrization that serves two purposes:

(1) removing the infrared enhancement since it is removed
in the experimental data and

(2) enhancing the electric photon emission approximately
by a factor 3 to reach consistency with the data.

Although a new resonance is a possibility, we are inclined to
view fr in Eq. (65) as a result of another DE mechanism. This
possibility is discussed in the next subsection devoted to the ω
emission and where, indeed, the broad bump in the spectrum is
due to the DE decay mode and not to an intermediate resonance.
A quantitative analysis may be performed in the ω emission
case as more data exist. It is not feasible in the radiative
decay mode and we limit the analysis to the phenomenological
formula (64).

B. The ω,φ, and π emission rates

1. The ω emission

Its rate seems to be easier to understand than those for the
radiative decays due to the weak tensorial coupling, which
favors strongly the electric-type transitions. The corresponding

branching fraction

Rω = �(ppω)

�(pp)
(66)

obtained with the basic final-state emission (BC) model is
shown in Table V. The electric-type transitions (E) lead to
P -wave pp̄ states with small final-state interactions. The
magnetic-type transitions (M) generate S wave states strongly
affected by the final NN interactions. In comparison to
the photon case, these interactions are stronger as isospin
conservation requires baryons to be in isospin-0 state. On the
other hand, due to large meson mass, the final p and p̄ are
less strongly oriented close to threshold and the tensor NNω
coupling is weak and consistent with zero. Hence, effects
of these final-state interactions are not very visible in the
emission rate; see Fig. 7. It is the electric transition (labeled
EE in Fig. 7) that dominates. Now, in distinction to the photon
case, the longitudinal component ε∗(λ = 0) exists and the
corresponding strength of the dominant electric transition is
given in Eq. (D30). It yields approximately (gV ωq/2m)2. One
finds that the longitudinal component gives a large contribution
to the low part of the Mpp spectrum, which is not supported
by the data.

The decay rates are given in Table V and these results
are obtained with the coupling constant g2

V (NNω)/4π =
8.1 (1.5),g2

T (NNω)/4π = 0.16 (0.46) obtained with

FIG. 7. Left panel (a): the Mpp spectrum obtained with the BC model. Right panel (b): the Mpp spectrum obtained with the BC + FSI
model. The same arbitrary normalization is used to fit the experimental shape for both graphs. The electric contribution is labeled EE. No FSI
contribution in the DE model but the weak energy dependance of the source radius [Eq. (24)] has been kept. Here R0 = 0.28 fm, g2

V ω/(4π ) = 3.8,
and gT ω = 0. Data extracted from Fig. 2 in Ref. [18].
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dispersion relations [26]; more recent values from NN
interactions are g2

V (NNω)/4π = 9.73,g2
T (NNω)/4π =

0.005 [27]. In both cases, the tensorial coupling is negligible
and it was neglected. However, the most significant parameter
is the source radius and the rates of ω (and π ) meson emissions
put very strong limits on R0. The final choice is obtained from
the best fit of Rω and Rπ is R0 = 0.28(1). The ω coupling
constants are uncertain; those indicated above are extracted
from NN scattering data. On the other hand, coupling
constants derived from semiphenomenological meson
formation data are smaller. A value g2

V (NNω)/4π = 1.19 has
been obtained in Ref. [28] with a very small tensorial coupling,
although Ref. [29] reaches a value g2

V (NNω)/4π = 4.16. In
our calculations, we have chosen g2

V (NNω)/4π = 3.8 and
gT (NNω) = 0.

The ω emission case differs strongly from the photon
emission as apparently the BC mode dominates. However, as
already shown in the BES Collaboration paper [18], the emis-
sion of ω mesons requires the involvement of excited nucleon
states N∗ and the final state involves three interacting particles.
The multiple scattering method presented here requires the
leading corrections due to N∗ to reach some 25% of the leading
order. Roughly the next (missing) order is expected to reach
about 10%. Such corrections are unlikely to be kept under
control as the quantum numbers of N∗ resonances are very
uncertain. Thus one will have to resort to more appropriate
methods than that of the simple DWBA used in the present
work to achieve more reliable results. Also, one has to keep
in mind that the basic term involves a rather uncertain NNω
coupling constant, which makes the calculations even less (if
not) reliable if this coupling turns out to be much smaller.

2. The Mp p and Mωp spectra

The BC model of meson emission from final baryons
yields a fair estimate of the decay rate, Table V, unfortunately
subject to large uncertainty in the ωNN coupling constant.
On the other hand, the spectra of the invariant masses Mpp

and Mωp pose a more difficult problem. The Mpp distribution,
plotted in the left panel of Fig. 7, requires strong reduction
in the lower mass region, which may be generated only by
a destructive interference. Such a possibility is offered by
final-state interactions involving a N (3/2−) resonant state
expected to mediate the ω-p interaction in the 2-GeV energy
region [see Fig. 9(b)]. Now, the bulk of available phase space
covers region between Mωp = 2052 MeV at pp threshold
and Mωp = 1805 MeV at the end of Mpp spectrum. Hence,
interference of the intermediate N (3/2−) and the basic decay
mode may be constructive in part and destructive in another
part of the phase space.

The related mechanism is presented only schematically
here. The Rarita-Schwinger particle propagation is given by

Gμν = γp + m3/2

m2
3/2 − p2 + im3/2�

P μν, (67)

where P μν projects on spin-3/2 states. We follow Ref. [30],
which underlines some controversies in the formulation. These
are of small concern as in the situation discussed here one finds

this particle to be nonrelativistic and [31]

P μν → P ij = 2/3[δij + i/2εijkσ
k]. (68)

This formula sets the main simplification of this final-state
interaction. In addition, we drop the second term, which leads
to spin flip, leading to no interference with the basic Born
amplitude. The calculation involves a standard loop integral
which follows the procedure of Appendix E. Three uncertain
parameters are implied: We use m3/2 = 2050 MeV, � =
300 MeV for the N (3/2−) position and width (nonessential),
and 3% for the strength of the N (3/2−) coupling to the
ω − N channel. The effect is shown in Figs. 7(b) and 10.
The resonance parameters (m3/2 = 2050 MeV, � = 300 MeV)
are close to those of the N (1875) and of the more uncertain
N (2120) 3/2− resonances (see Ref. [21]).

On the other hand, the ω spectra are not reproduced and
the Mωp and Mωp distributions miss a bump in the data at
large masses. Inspection of Fig. 10 indicates a broad structure
missing around 2 GeV. Such resonance has been already
introduced into our description of the final-state interaction.
Nevertheless, its effect is not seen in the distribution of
Mωp [18]. The formalism developed so far indicates a strong
correlation of Mωp and Mpp. The phase space region close
to the pp threshold overlaps with the region of Mωp ∼ 2.05
GeV. Thus, enhancing the high-energy tail of Mωp reduces
the low-energy end of Mpp. Within the BC + FSI approach,
it is not possible to reproduce both distributions and another
mechanism has to be found. Another option tried was J/ψ →
N (1/2−)N∗(3/2−) → NNω, but for the reason given above it
was not able to explain simultaneously the Mpp and the Mωp

spectra.
As the introduction of resonances brings no success, we

resort to another formation mechanism which was found useful
in the study of radiative decays. A fraction of ω mesons is
assumed to to be emitted internally i.e., before the baryons are
formed in a P wave state. This emission process is depicted
in Fig. 1(a), where the photon line is replaced by an ω-meson
line. Instead of the matrix element given by Eq. (14) related to
S states, that associated to P states should be of the form

V DE
ω (λ) = f ε∗(λ) · ξ , (69)

where f is a free coupling constant. In the center-of-mass
(c.m.) system of J/ψ , the bilinear form of V DE

ω averaged over
directions of ξ leads to sum over polarizations

1∑
λ=−1

∣∣〈V DE
ω (λ)〉∣∣2 = f 2

∑
λ

ε∗
i ε

i = f 2
(
3 − k2/m2

ω

)
. (70)

Now the essential point is that this coupling does not depend
on q2 in contrast to the helicity sum of |V ω

E |2(λ) in Eq. (D30).
Jointly with the assumed expansion of the system during the
decay expressed in Eq. (24), one is able to avoid the unrequired
correlation of low-energy Mpp and high-energy Mωp. Here,
final-state interactions are not introduced in the direct emission
(DE) model but the same weak energy dependance for the
source radius [Eq. (24)] as for the photon case has been
kept, i.e., R0 = 0.28 fm and β = 0.175 fm3/2. The strength of
coupling to V DE

ω is obtained by the best fit to both Mpp and Mωp

spectra. The results are given in Figs. 7 and 10. It is apparent
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FIG. 8. The Mpp spectrum as in Fig. 7(b) but for the near-
threshold region.

that the bump in the last figure is not due to a resonance but to a
different decay mode. This internal emission mode contributes
about 22% of the decay rate.

3. The π and φ emission rates

They are given in Table V. The neutral pion is emitted coher-
ently from the intermediate pp̄ system. The negatively charged
pion may be emitted from the antiproton only. However, in the
intermediate I = 0 state, one has also nn̄ component and the
π− may be emitted by the neutron. These processes are co-
herent. Therefore, the ratio �(pn̄π−)/�(pp̄π0) = 1.78 (0.22)
within error limits equals 2 minus the square of the relevant
pion-nucleon coupling constants. This indicates that pions are
emitted predominantly in the baryonic phase of decay and
that final-state interactions are not essential, the pp̄ and pn̄
interactions being different. The BES data indicate effects
of N∗ resonances in the invariant mass distribution which,
depending on the way of description, amount to some 25%
of the total rate.

The φ experimental branching ratio is small as the allowed
phase space is small. Table V shows that it may be obtained
with the value g2

V /4π = 5.5,gT = 0, which compares well
with g2

V /4π = 5.1,g2
T /4π = 0.2 obtained in Ref. [32]. The

experimental spectra obtained by the BES III Collaboration
[22] for the J/ψ → ppφ are qualitatively very close to those
obtained in the J/ψ → ppω case (see Figs. 8 and 10). So the

basic BC mode is likely to require corrections on the same
25% level as in the ω case, notwithstanding that the missing
knowledge of the φ coupling to N∗ or �∗ resonances and
uncertainties in the φNN coupling constants do not allow a
more precise discussion. The present accurate experimental
value [22] for the ratio R(ppφ)/R(pp) favors clearly the
necessity of a more elaborate approach than just relying on
the Born term of the baryon current considered in this study.
But this would be the subject of a research project by itself.

VI. SUMMARY AND OUTLOOK

A. Summary

In the present work, the J/ψ → Bpp decays where B =
γ,ω,φ,π have been studied. Two processes have been intro-
duced to describe the BES Collaboration data on the photon
[4,5] or ω meson [17,18] formation in J/ψ decays into pp.
For the radiative decays, both processes include final-state
nucleon-antinucleon interactions with S-wave half-off shell
functions [15] based on the Paris NN potential [8]. The J/ψ
source is described in momentum space by a phenomenologi-
cal Gaussian function with radius R0 [see Eq. (9)]. The value
R0 = 0.28 fm is found to be the best choice to reproduce
the different particle B decay rates as compared to that of
the J/ψ → pp decay. Before presenting some outlook, the
description of the two mechanisms and of the free parameters
for the photon and meson emissions are summarized below.

(1) Direct emission process. Here, the emission of
photons or ω mesons occurs before the final baryons
are formed. In the radiative decay, the final-state
interactions generate two distinct final resonant states
in the pp system. One close to the threshold (very
sharp peak in the pp spectra) is explained as an effect
of baryonium—a broad 52-MeV-wide quasibound
state at 4.8 MeV below threshold generated in the 11S0

wave by the Paris potential. Another—a resonant state
at 2170 MeV—is formed as a shape resonance in the
same partial wave. The Born contribution of the direct
emission process allows to achieve a good description
of the full ω spectrum at large Mpp and Mωp invariant
masses. For the γ or ω meson, it is found necessary
to introduce, for the source radius, a weak energy
dependence on Mpp [see Eq. (24)], and in both cases
the same dependence is used.

FIG. 9. Emission of the ω meson from intermediate baryons. The left graph (a) corresponds to the Born term while the right one (b) includes
final-state corrections involving the N (3/2−) nucleon resonance.
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FIG. 10. The Mωp spectrum obtained with the BC + FSI + DE
model (see Fig. 7 caption). The dash-dotted curve (Basic model) refers
to the BC + FSI calculation.

(2) Emission from baryonic current. The second mecha-
nism assumes the emission of photons (or mesons)
by the baryonic currents in the final state of the
J/ψ → pp decay. This emission occurs thus after
the initial decay of the J/ψ into an NN pair. In the
radiative decay channel, this process is not sufficient
to provide a fair reproduction of final resonant states.
This is the reason why this model has to be completed
by the direct emission model just described above.
For the ω-meson production case, the Born term of
this process is the dominant mode as it is in the π
or φ formation case. However, the ω invariant mass
distribution Mpp requires a strong reduction in the
lower mass region. This is obtained by introducing a
specific final-state interaction involving a N∗(3/2) or
N

∗
(3/2) resonance created by an ω-p (ω-p) interaction

through an ω-meson exchange between the p(p) and
p(p) pairs [see Fig. 9(b)].

(3) Free parameters for the radiative emission. For the
photon emission case, to reproduce the Mpp spectra
(see Figs. 5 and 6) and the relative decay rate (see
Table IV), seven free parameters are used: The initial
radius of the source function, R0 = 0.28 fm, the slope
parameter associated to the energy dependence of this
radius β = 0.175 fm3/2, the normalization of the direct
emission model contribution [Eq. (22)], that of the
baryon current contribution [Eq. (33)], the coefficients
�E = 500 MeV and NE = 3.5 entering the renormal-
ized electric photon amplitude [Eq. (64)] and the nor-
malization fηc

for the ηc Breit-Wigner parametrization
in Eq. (62).

(4) Free parameters for the meson emissions. In the case
of the ω-meson emission, to fit the invariant masses
Mpp and Mωp distributions (see Figs. 7 and 10) and the
relative decay rate (see Table V), five free parameters
are introduced: the normalization of the BC + FSI

model [see Eqs. (33), (48), (D30), and (D33)], the
two N (3/2−) parameters in Eq. (67), viz., m3/2 =
2050 MeV, � = 300 MeV plus the 0.3% strength of
its coupling to Nω and the direct ω-emission coupling
constant f [see Eq. (70)]. Looking at the ratio of
the decay rates R(ppω)/R(pp) given in Table V, a
g2

V ω/4π coupling between 4.16 and 8.1 would bring
this ratio closer to the experimental value. This table
also shows that the Born amplitude [Eq. (27)] allows us
to reproduce well the relative decay rates for the cases
of the π or φ emission for known values of g2(ppπ )
or g2(ppφ).

(5) Uncertainties, shortcomings. The basic mechanism for
pion emission from the baryonic currents yields decay
rates smaller than the experimental ones (see Table V).
A proper description of the proton-pion invariant mass
distribution requires at least three pion-nucleon res-
onant states and a good control over relative phases
[34]. The limitation to single dominant final partial
wave is not sufficient to describe the rather precise data.
For radiative decays, the separation of two formation
mechanisms is only approximate due to two effects:
(a) unknown relative phase of both amplitudes may
affect the region Mpp ≈ 2.45 ± 0.15 GeV where these
mechanisms give comparable rates, and
(b) there might be some presumably weak effect of the
isospin symmetry violation in the course of the internal
photon emission.
Both effects are difficult to calculate.

B. Outlook

Because the internal structures of the J/ψ and ψ(2S) are
different, the direct emission model is less likely to give a
reasonable description of the radiative decay of the ψ(2S) state.
This might explain, in a qualitative way, why no resonant states
are visible in this process.

The phenomenological part of the NN Paris potential [8]
has been determined to reproduce the NN data up to ENN ≈
200 MeV, i.e., Mpp ≈ 2.1 GeV. It is interesting to observe
that nevertheless it produces reasonable results beyond the
region tested in scattering experiments. The present approach
could also be applied with other NN scattering matrices, for
instance, that of Ref. [33]. Furthermore, with more accurate
experimental results, effects of weakly populated final NN
states might enter. In the present study, they do not seem to
give sizable contributions.

Complications were found for the ω emission channel: The
Mpp,Mωp and Mωp spectra [18] might indicate contributions
of two N∗ states. The description of these is complementary to
that of the mesic and radiative excitations of the nucleon. With
increased precision of the BES Collaboration measurements,
the extraction of the resonance parameters and nucleon-meson
coupling constants should be more accurate.

Spectra of the J/ψ → ppπ0 decays (see, e.g., Ref. [34]),
although not discussed here, indicate at least effects of es-
tablished N (1535) and N (1650) states. The description of
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these decays seems to be a pressing question which may yield
more information than those arising from the uncertain ω
case.

The infrared catastrophe is approached by the baryon
current model. It would thus be interesting to improve the
energy resolution at the end of the spectrum to validate or
disprove the photon (light meson) emission process from the
final baryons.

Finally, the present work should allow us to approach the
related pp → J/ψ + meson reaction on nuclei, which sooner
or later will be studied experimentally [1].
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APPENDIX A: PHASE SPACE

Let p = (p0,p),

p2 = p2
0 − p2, and p0 = E(p) = E(|p|) = E(p) =

√
p2 + m2.

Then the restricted two-body phase space for the J/ψ → pp decay at rest reads, with q1 and q2 denoting the four-momenta of
the nucleon and the antinucleon with masses m1 = m2 = m,

L2 = (2π )4
∫ ∏

i=1,2

d4qi

(2π )3
θ
(
q0

i

)
δ
(
q2

i − m2
i

)
δ(3)(q1 + q2) δ(MJ/ψ − E(q1) − E(q2))

= 1

4π

∫
q2 dq

E2(q)
δ(MJ/ψ − 2 E(q)) = 1

8π

√
M2

J/ψ − 4m2

MJ/ψ

, (A1)

which is numerically equal to 0.03164.
For a J/ψ at rest decaying into a ppB channel with respective four-momenta q1,q2, and k, the three-body phase space reads

L3 = (2π )4
∫ ∏

i=1,2

d4qi

(2π )3
θ
(
q0

i

)
δ
(
q2

i − m2
i

) d4k

(2π )3
θ
(
k0
i

)
δ
(
k2 − m2

B
)
δ(3)(q1 + q2 + k) δ(MJ/ψ − E(q1) − E(q2) − EB(k))

= 1

(2π )5

∫
dq1

2E(q1)

∫
dq2

2E(q2)

∫
dk

2EB(k)
δ(q1 + q2 + k) δ(MJ/ψ − E(q1) − E(q2) − EB(k))

= 1

(2π )5

∫
dq

2 E(q)

∫
dk

2 EB(k) 2 E(−q − k)
δ(f (x)) (A2)

with

x = k · q
k q

(A3)

and

f (x) = MJ/ψ − E(q) −
√

k2 + q2 + 2 kq x + m2 − EB(k). (A4)

Thus, energy conservation implies that f (x) cancels for

x = x0 = M2
pp − 2 E(q) [MJ/ψ − EB(k)]

2 k q
(A5)

and we have introduced the invariant nucleon-antinucleon invariant mass squared

M2
pp = s = [MJ/ψ − EB(k)]2 − k2. (A6)

The invariant NN mass spans the interval [2m,MJ/ψ − mB]. Then, we have

L3 = 1

(2π )3

∫ ∞

0

k2 dk

2EB(k)

∫ ∞

0

q2 dq

2E(q)

∫ 1

−1
dx

δ(f (x))√
k2 + q2 + 2 kq x + m2

= 1

(2π )3

∫ ∞

0

k dk

2EB(k)

∫ ∞

0

q dq

2E(q)

∫ 1

−1
dx δ(x − x0).

(A7)

From Eq. (A5), where one has −1 � x0 � 1, one gets 1 − x2
0 � 0 so that

4 k2 q2
(
1 − x2

0

) = −4 M2
pp E2(q) + 4 [MJ/ψ − EB(k)] E(q) M2

pp − (
M4

pp + 4 m2 k2
)
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must be positive. Hence, E(q) will lie between the two positive roots, E+ and E−, of the trinomial

E± = (MJ/ψ − EB(k)

2
± k

2 Mpp

√
M2

pp − 4m2, (A8)

where E− > m and, from Eq. (A6), k is a function of the invariant mass Mpp

k = k(Mpp) =
√[

(MJ/ψ + mB)2 − M2
pp

] [
(MJ/ψ − mB)2 − M2

pp

]
2MJ/ψ

=
√

λ
(
m2

B,M2
J/ψ ,M2

pp

)
2MJ/ψ

, (A9)

where we have introduced the standard triangle (Källen) function λ(x,y,z).4

We may now transform the remaining integrations using q dq/E(q) = dE and from Eq. (A6) changing the variable k to Mpp

to obtain

L3 = 1

(2π )3

∫ MJ/ψ−mB

2m

Mpp dMpp

4MJ/ψ

(E+ − E−) = 1

(2π )3

1

4MJ/ψ

∫ MJ/ψ−mB

2m

k(Mpp)
√

M2
pp − 4m2 dMpp (A10)

and arrive at

L3 = 1

(2π )3

1

8 M2
J/ψ

∫ MJ/ψ−mB

2m

√
λ
(
m2

B,M2
J/ψ ,M2

pp

) [
M2

pp − 4m2
]
dMpp

= 1

(2π )3

1

16 M2
J/ψ

∫ (MJ/ψ−mB)2

4m2

du

u

√
λ
(
m2

B,M2
J/ψ ,u

)
λ(m2,m2,u). (A11)

In the case where the vector particle is a photon, the integral (A11) can be calculated exactly (see, e.g., Ref. [35]) and gives

L3,γ = 1

32π3

⎧⎨⎩M2
J/ψ + 2 m2

8 MJ/ψ

√
M2

J/ψ − 4m2 − m2
(
M2

J/ψ − m2
)

M2
J/ψ

ln

⎡⎣MJ/ψ +
√

M2
J/ψ − 4m2

2 m

⎤⎦⎫⎬⎭, (A12)

which is numerically equal to 261.718 (MeV)2.

APPENDIX B: THE WIDTH FOR J/ψ → p p̄B DECAY PROCESS

Let us evaluate the decay amplitude in the Born approximation, the boson being radiated either from the proton or from the
antiproton. If we let the proton radiate, the left panel on Fig. 4 indicates that q1 = q − k denotes the momentum of the proton
after the photon emission while q2 = −q is the spectator antiproton final momentum and k is the boson momentum. Then, the
potential U 0

ppB(q1,k) can be expressed as [Eq. (38)]

U 0
ppB(q1,k) = AV,B(q1,k) + iκ

2 m
AT,B(q1,k) (B1)

with κ being the anomalous magnetic moment. From this expression, one then evaluates the associated amplitude [Eq. (28)]
A

B,BC
ppB (q1,k) which is still an operator in the spin-isospin space. From Eqs. (27) and (28), we obtain the probability for the decay

with a boson emission

�(ppB) = 1

(2π )5

∫
dq1 dq2 dk

2E(q1)2E(q2)2EB(k)
δ(MJ/ψ − E(q1) − E(q2) − k) δ(3)(q1 + q2 + k)

∣∣AB,BC
pp̄B (q2,k)

∣∣2. (B2)

For a boson emission of mass mB with an energy EB(k) =
√

m2
B + k2, we have

�(ppB) = 1

(2π )5

∫
dq dk

2E(q) 2E(|q + k|) 2EB(k)
δ(MJ/ψ − E(q) − E(|q + k|) − EB(k))

∣∣AB,BC
pp̄B (q,k)

∣∣2
= 1

(2π )4

∫
dq

2E(q)

∫
k2dk

2EB(k)

∫
dx

δ(f (x))
2E(|q + k|)

∣∣AB,BC
pp̄B (q,k,x)

∣∣2, (B3)

where x has been defined in Eq. (A3) and f (x) is given in Eq. (A4). The x integration, based on the energy conservation relation
and assuming |AB,BC

pp̄B (q,k,x)| is independent of x and depends mainly on q, i.e., |AB,BC
pp̄B (qr ,k)| ≈ |h(q)|, gives∫

δ(f (x))
∣∣AB,BC

pp̄B (qr ,k)
∣∣2 dx

E(−q − k)
≈ |h(q)|2

qk
, (B4)

4One has λ(x,y,z) = x2 + y2 + z2 − 2xy − 2yz − 2zx = (x + y − z)2 − 4xy = (−x + y + z)2 − 4yz = (x − y + z)2 − 4zx.
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where x is fixed now at the value x0 given by Eq. (A5) with the condition −1 � x0 � 1. Therefore, we have

�(ppB) = 1

32π3 MJ/ψ

∫
Mpp dMpp

∫
qdq

E(q)
|h|2. (B5)

The experimental spectrum of the pp invariant mass is rather complicated and its description is a check for the theory in
question. Since we may write the width for the emission of a vector particle as

�(ppB) =
∫

dMppS(Mpp), (B6)

where S(Mpp) denotes the spectral function, we have

S(Mpp) = Mpp

32π3 MJ/ψ

∫
qdq

E(q)
|h(q)|2 = Mpp

32π3 MJ/ψ

∫ E+

E−
dE |h(q)|2, (B7)

where the integration limits E− and E+ are given in Eq. (A8) while the invariant mass Mpp is defined by Eq. (A6) and the
emitted particle momentum k(Mpp) is read from Eq. (A9). Numerical calculations at the endpoints require care and the following
approximate expression is helpful to check the accuracy,

S(Mpp) ≈ Mpp

32π3 MJ/ψ

(E+ − E−) |h|2, (B8)

assuming further that |h|2 depends only weakly on E. From Eq. (A8), the difference E+ − E− is simply

E+ − E− = k(Mpp)

√
M2

pp − 4m2

Mpp

.

So, finally, the spectral function reads

S(Mpp) =
√

λ(M2
B,M2

J/ψ ,M2
pp) [M2

pp − 4m2]

64π3 M2
J/ψ

|h|2 (B9)

and this formula is useful to understand the end points. Close to the pp threshold, Mpp = 2m, one finds S ∼ √
kM − k where

kM = (M2
J/ψ − 4m2)/2MJ/ψ = 979.14 MeV is the maximal value of k reached at the threshold. This limit leads to k = 2q and

the partners in the pp pair run parallel in the direction opposite to the photon direction. Such a configuration enhances final-state
interactions. This dependence in kM − k determines the position of the threshold peak in S. At the other end of the spectrum,
Mpp = MJ/ψ − mB, one has S ∼ k = 0.

APPENDIX C: EXPLICIT EXPRESSIONS FOR THE ELECTROMAGNETIC OPERATORS

Let q be the initial nucleon four-momentum and q ′ = q − k that of the nucleon after emission of the boson with four-momentum
k. The following Lorentz condition applies

k · ε∗(λ) − k0ε
∗
0 (λ) = 0, (C1)

which in the case of the photon leads to

k · ε∗(λ) = 0, (C2)

and for a massive vector particle to

ε∗
0 (λ) = k · ε∗(λ)/k0. (C3)

The vector part of the current reads

AV (q ′,q,ε∗(λ)) = ū(q ′) γμεμ∗(λ) u(q) = χ
†
S ′ AV (q,k,ε∗(λ)) χS, (C4)

where χS and χS ′ denote the standard two-dimensional spin vectors. The four-dimensional spinors read

u(q) =
√

�

2 m

(
χS

σ · q
�

χS

)
, ū(q ′) = u(q ′)† γ0 =

√
�′

2 m

(
χ
†
S ′

σ · q′

�′ χ
†
S ′

)
γ0 =

√
�′

2 m

(
χ
†
S ′ − σ · q′

�′ χ
†
S ′

)
, (C5)

where the energies � and �′ are

� = m + Eq and �′ = m +
√

(q − k)2 + m2, (C6)

Eq =
√

q2 + m2, (C7)
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with m being the nucleon mass. In the following, we use the Bjorken and Drell definitions of the Pauli σ and γ matrices [36].
Hence, from Eq. (C4) for the vector term, we can write

AV (q ′,q,ε∗(λ)) = N

[(
1 + σ · q′

�′
σ · q
�

)
ε∗

0 (λ) −
(

σ · ε∗(λ) σ · q
�

+ σ · q′ σ · ε∗(λ)

�′

)]
, (C8)

with the normalization factor N :

N =
√

� �′

2m
= � ζ

2m
with ζ =

√
�′

�
. (C9)

Upon using the standard relation for any two vectors v and w,

(σ · v) (σ · w) = v · w + i σ · (v ∧ w), (C10)

the spin operator AV (k,q,ε∗(λ)) becomes

AV (q,k,ε∗(λ)) = k · ε∗(λ)

2mk0

{
�ζ + q · (q − k)

�ζ
− i

σ · (k ∧ q)

�ζ

}
− 1

2m

{(
ζ + 1

ζ

)
q · ε∗(λ) − 1

ζ
k · ε∗(λ) − i

(
ζ − 1

ζ

)
σ · [q ∧ ε∗(λ)] − i

1

ζ
σ · (k ∧ ε∗(λ))

}
. (C11)

For the emission from the antinucleon with momentum −q, we simply have to change in Eqs. (C11) and (C18) q into −q:

AV (q,k,ε∗(λ)) = AV (−q,k,ε∗(λ)). (C12)

The substitution q → −q induces ζ → ζ where

ζ =
√

�

�
with � = m +

√
(q + k)2 + m2. (C13)

The tensor piece is more elaborate:

AT (k,q,ε∗(λ)) = ū(q ′) σμν kμεν∗(λ) u(q) = χ
†
S ′ AT (k,q,ε∗(λ)) χS, (C14)

with

AT (q,k,ε∗(λ)) = �ζ

2m

(
1 − σ · q′

�′

)
σμν kμεν∗(λ)

(
1

σ · q
�

)
. (C15)

Since

σμν kμεν(λ)(k) = −i k0

(
0 σ · ε∗(λ)

σ · ε∗(λ) 0

)
+ i ε∗

0 (λ)

(
0 σ · k

σ · k 0

)
+
(

σ · [k ∧ ε∗(λ)] 0

0 σ · (k ∧ ε∗λ))

)
,

we obtain

AT (k,q,ε∗(λ)) = �ζ

2m

{
−i k0

[
σ · ε∗(λ) σ · q

�
− σ · q′ σ · ε∗(λ)

�′

]
+ i ε∗

0 (λ)

[
σ · k σ · q

�
− σ · q′ σ · k

�′

]
+σ · [k ∧ ε∗(λ)] − σ · q′

�′ σ · [k ∧ ε∗(λ)]
σ · q
�

}
. (C16)

With the repeated use of Eq. (C10) and of double vectorial product properties, we are led to the following explicit expression:

AT (q,k,ε∗(λ)) = i

2m

k · ε∗(λ)

k0

[(
ζ − 1

ζ
+ k0

� ζ

)
k · q + 1

ζ

(
k2 − k2

0

)+ i

(
ζ + 1

ζ
+ k0

� ζ

)
σ · (k ∧ q)

]
− i k0

2m
q · ε∗(λ)

[
ζ − 1

ζ
+ k2

k0 � ζ
+ i

k0 � ζ
σ · (k ∧ q)

]
+ � ζ

2m
σ · [k ∧ ε∗(λ)]

[
1 + k0

� ζ 2

]
− k0

2 m
σ · [q ∧ ε∗(λ)]

[
ζ + 1

ζ
− 1

k0 � ζ
(q − k) · k

]
− 1

2 m

1

� ζ
q · [k ∧ ε∗(λ)] σ · q, (C17)

where k0 =
√

k2 + m2
B. The tensor amplitude for the emission from the antinucleon will be obtained from the replacements

q → −q and hence ζ → ζ in Eq. (C17).
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1. The specific case of the photon

For the photon, since ε∗
0 (λ) = 0 and thus k · ε∗(λ) = 0, the vector amplitude reduces to

AV,γ (q,k,ε∗(λ)) = − 1

2 m

{(
ζ + 1

ζ

)
q · ε∗(λ) − i

(
ζ − 1

ζ

)
σ · [q ∧ ε∗(λ)] − i

1

ζ
σ · [k ∧ ε∗(λ)]

}
, (C18)

while the tensor amplitude becomes

AT,γ (q,k,ε∗(λ)) = − i k0

2m
q · ε∗(λ)

[
ζ − 1

ζ
+ k2

k0 � ζ
+ i

k0 � ζ
σ · (k ∧ q)

]
+ � ζ

2m
σ · [k ∧ ε∗(λ)]

[
1 + k0

� ζ 2

]
− k0

2 m
σ · [q ∧ ε∗(λ)]

[
ζ + 1

ζ
− 1

k0 � ζ
(q − k) · k

]
− 1

2 m

1

� ζ
q · [k ∧ ε∗(λ)] σ · q, (C19)

where, here, k0 = |k| = k. The corresponding photon amplitude for the antinucleon emission, AT,γ , will be obtained with the
replacement q → −q, which induces ζ → ζ .

The vertex coupling yields for the photon emission from the nucleon

V
γ
N (q,k) = e

(
AV,γ + i

κ

2m
AT,γ

)
= − e

2m

{(
ζ + 1

ζ

)
− κ k0

2m

[
ζ − 1

ζ
+ k0

� ζ
+ i

σ · (k ∧ q)

k0 � ζ

]}
q · ε∗(λ)

+ ie

2m

{(
ζ − 1

ζ

)
− κ k0

2m

(
ζ + 1

ζ
− q · k − k2

0

k0 � ζ

)}
σ · (q ∧ ε∗(λ))

+ ie

2m

{
1

ζ
+ κ

2m

(
� ζ + k0

ζ

)}
σ · [k ∧ ε∗(λ)] − ieκ

2m

q · [k ∧ ε∗(λ)]

2m� ζ
σ · q, (C20)

and correspondingly for the emission from the antinucleon

V
γ

N
(q,k) = −e

[
AV,γ (−q,k) + i

κ

2m
AT,γ (−q,k)

]
(C21)

obtained by making the substitutions, e → −e, q → −q and, hence, ζ → ζ .
Labeling the nucleon part by 1 and the antinucleon part by 2, we will get the potential for the photon emission, and recombining

these expressions gives

U 0
γ (q,k) = e

2m

{
f (q,k) + f̄ (q,k) + i

κ

2m�

(
σ 1

ζ
− σ 2

ζ̄

)
· (k ∧ q)

}
q · ε∗(λ)

+ ie

2m

[
g(q,k) σ 1 + ḡ(q,k) σ 2 + κ

2m�
q · k

{
σ 1

ζ
− σ 2

ζ̄

}]
· [q ∧ ε∗(λ)]

+ ie

2m
[h(q,k) σ 1 − h̄(q,k) σ 2] · [k ∧ ε∗(λ)] − ieκ

2m

q · [k ∧ ε∗(λ)]

2m�

(
σ 1

ζ
− σ 2

ζ̄

)
· q , (C22)

where we have introduced

f (q,k) = −
(

ζ + 1

ζ

)
+ kκ

2m

(
ζ − 1

ζ
+ k

�ζ

)
, g(q,k) =

(
ζ − 1

ζ

)
− kκ

2m

(
ζ + 1

ζ
+ k

�ζ

)
, h(q,k) = 1

ζ
+ kκ

2m

(
�ζ

k
+ 1

ζ

)
,

(C23)

where we have used k = k0. The bar functions are identical but with ζ → ζ̄ .

2. The case for the ω meson

For completeness, we present below the exact expressions for the ω meson emission. Only a few terms are really exploited in
the present work. With

k0 = Eω =
√

k2 + m2
ω, (C24)

where mω denotes the mass of the ω meson, and, taking into account the change of sign of the ω coupling at the N vertex because
of G parity, from Eqs. (38) and (C8), the vector piece will read

AV,ω = gV ω

k · ε∗(λ)

2mEω

[
�(ζ − ζ ) + q2

�

(
1

ζ
− 1

ζ

)
− k · q

�

(
1

ζ
+ 1

ζ

)
− i

1

�

(
σ1

ζ
+ σ2

ζ

)
· (k ∧ q)

]
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− gV ω

2m

[(
ζ + 1

ζ
+ ζ + 1

ζ

)
q · ε∗(λ) −

(
1

ζ
− 1

ζ

)
k · ε∗(λ)

− i

(
σ1

ζ
− σ2

ζ

)
· [k ∧ ε∗(λ)] − i

{(
ζ − 1

ζ

)
σ1 +

(
ζ − 1

ζ

)
σ2

}
· {q ∧ ε∗(λ)}

]
, (C25)

which to order k2/4m2 reduces to

AV,ω ≈ gV ω

2m

[
2

(
−1 + q2

2�Eq

− �

2Eq

)
k · q
�

− i

�
(σ1 + σ2) · (k ∧ q)

]
k · ε∗(λ)

Eω

−gV ω

2m

{
4 q · ε∗(λ) − i(σ1 − σ2) · [k ∧ ε∗(λ)] + i

k · q
�Eq

(σ1 − σ2) · [q ∧ ε∗(λ)]

}
, (C26)

where Eq has been defined in Eq. (C7) and � in Eq. (C6). Then we have to add the tensor piece, knowing that the coupling
constant for this part is rather ill known but most likely small:

EωAT,ω = i
gT ω

2m

{
i

([
ζ + ζ −

(
1 − Eω

�

) (
1

ζ
+ 1

ζ

)]
k · q +

(
1

ζ
− 1

ζ

) (
k2 − E2

ω

)
+ i (ζσ1 + ζσ2) · (k ∧ q) + i

(
1 + Eω

�

)(
σ1

ζ
+ σ2

ζ

)
· (k ∧ q)

)
k · ε∗(λ)

2mEω

− i
Eω

2m

([
ζ + ζ −

(
1 − k2

Eω�

)(
1

ζ
+ 1

ζ

)]
+ i

Eω�

(
σ1

ζ
− σ2

ζ

)
· (k ∧ q)

)
q · ε∗(λ)

+ �

2m

[(
ζ + Eω

�ζ

)
σ1 −

(
ζ + Eω

�ζ

)
σ2

]
· [k ∧ ε∗(λ)] − Eω

2m

[(
ζ + 1

ζ
+ Eω

�ζ
− k · q

Eω�ζ

)
σ1

+
(

ζ + 1

ζ
+ k2

Eω�ζ
+ k · q

Eω�ζ

)
σ2

]
· [q ∧ ε∗(λ)] − q · [k ∧ ε∗(λ)]

2m�

(
σ1

ζ
− σ2

ζ

)
· q
}
. (C27)

We have then

Vω = AV,ω + AT,ω. (C28)

APPENDIX D: AMPLITUDES FOR BOSON EMISSION

The boson with 3-momentum k is emitted either from the nucleon (labeled 1) or from the antinucleon (labeled 2) lines. In the
rest frame of the J/ψ , the nucleon momentum prior to the photon emission is denoted q and −q is that of the antinucleon. The
mass of the nucleon and antinucleon is denoted by m. The various variables that occur in this appendix, �,�′,�, ζ , and ζ̄ , are
given in Eqs. (C6), (C9), and (C13).

1. Photon emission

a. Vector coupling

When the photon is emitted from the nucleon line, the contribution of the vector term to the amplitude is given by Eq. (C18)
multiplied by the charge e and where the helicity λ takes the values ±1. To obtain the amplitude corresponding to the photon
emission from the antinucleon line, one has simply to substitute e → −e and q → −q. Thus, the full amplitude arising from the
vector coupling reads

AV (q,k, ε∗(λ)) = A
γ

V,a + A
γ

V,b + A
γ

V,c , (D1)

with

A
γ

V,a(q,k,ε∗(λ)) = − e

2m

[(
ζ + 1

ζ

)
+
(

ζ̄ + 1

ζ̄

)]
q · ε∗(λ), (D2)

A
γ

V,b(q,k,ε∗(λ)) = ie

2m

[(
ζ − 1

ζ

)
σ 1 · q ∧ ε∗(λ) +

(
ζ̄ − 1

ζ̄

)
σ 2 · q ∧ ε∗(λ)

]
, (D3)

A
γ

V,c(q,k,ε∗(λ)) = ie

2m

(
σ 1

ζ
− σ 2

ζ̃

)
· k ∧ ε∗(λ). (D4)
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In these equations λ = ±1 and since, for the photon, ε∗
0 (λ) = 0 and k is chosen to lie along the z axis, the orthogonality relation

k · ε∗(λ) = 0 implies

ε∗(λ = ±1) = 1√
2

(−λ, − i,0). (D5)

The A
γ

V,a amplitude contributes to the 3S1 → 3P 1 electric coupling amplitude (D19). The A
γ

V,b amplitude leads to a final 3P 0

state not included, so far, in our work. Note that it vanishes in the approximation ζ ∼ ζ̃ . The A
γ

V,c amplitude contributes to the
3S1 → 1S0 transition.

b. Tensor coupling

With the same notations as above, the exact amplitude for the tensor coupling when the photon is emitted from the nucleon
line reads

A
γ
1 (q,k,ε∗(λ)) = eκN

4m2

{
k q · ε∗(λ)

(
ζ − 1

ζ
+ k

�ζ
+ i

k�ζ
σ 1 · k ∧ q

)
+ iσ 1 · k ∧ ε∗(λ)

(
�ζ + k

ζ

)
− ikσ 1 · q ∧ ε∗(λ)

[
ζ + 1

ζ
− 1

k�ζ
(q − k) · k

]
− i

�ζ
q · [k ∧ ε∗(λ)] σ 1 · q

}
, (D6)

where κN is either κp or κn. In the following, we do not keep the terms proportional to σ 1 · q ∧ ε∗(λ) and depending on q2 as
they will contribute to final 3P 0 and D waves, respectively. These P and D wave are absent in our model. Thus, the amplitude is
reduced to

A
γ
1 (q,k,ε∗(λ)) ≈ eκN

4m2

{
k q · ε∗(λ)

(
ζ − 1

ζ
+ k

�ζ

)
+ iσ 1 · k ∧ ε∗(λ)

(
�ζ + k

ζ

)}
, (D7)

to which we have to add the part associated to the emission from the antinucleon A
γ
2 (q,k,ε∗(λ)). Thus the total tensor amplitude

in this approximation A
γ
T (q,k,ε∗(λ)) can be split into two contributions (with λ = ±1):

A
γ
T (q,k,ε∗(λ)) = A

γ
1 (q,k,ε∗(λ)) + A

γ
2 (q,k,ε∗(λ)) = A

γ
T,a(q,k,ε∗(λ)) + A

γ
T,b(q,k,ε∗(λ)), (D8)

with

A
γ
T,a(q,k,ε∗(λ)) = eκN

4m2
k

[
ζ + ζ̄ +

(
1

ζ
+ 1

ζ̄

)(
k

�
− 1

)]
q · ε∗(λ), (D9)

and

A
γ
T,b(q,k,ε∗(λ)) = eκN

4m2

[
iσ 1 · k ∧ ε∗(λ)

(
�ζ + k

ζ

)
− iσ 2 · k ∧ ε∗(λ)

(
�ζ̄ + k

ζ̄

)]
. (D10)

The amplitude (D9) will add up to the A
γ

V,a(q,k,ε∗(λ)) term (D2) to give the 3S1 → 3P 1 transition amplitude while the (D10)
together with the (D4) amplitude will contribute to the 3S1 → 1S0 transition.

c. Magnetic and electric transitions

a. 3S1 → 1S0 transitions. The 3S1 → 1S0 magnetic coupling amplitude will be given by the sum of the (D4) and (D10)
amplitudes. For any vector a, the spin matrix elements read

〈1S0|σ1 · a|3S1〉 = −〈1S0|σ2 · a|3S1〉 = 1√
3

(−i
√

2ay + az), (D11)

since the spin contents of the 1S0 and 3S1 states are, with |+〉 the 1/2 and |−〉 the −1/2 spin states, respectively,

|1S0〉 = 1√
2

[| + −〉 − | − +〉], |3S1〉 = 1√
3

[
| + +〉 + 1√

2
{| + −〉 + | − +〉} + | − −〉

]
. (D12)

With k along the z axis, as already defined, we have (see Ref. [37], p. 62)

ε∗(λ = ±1) =
(

− λ√
2
, − i√

2
,0

)
, k ∧ ε∗(λ = ±1) =

(
ik√

2
, − λk√

2
,0

)
, (D13)

and therefore

V
γ
M (q,k,ε∗(λ))=〈1S0|[Aγ

V,c(q,k,ε∗(λ))+A
γ
T,b(q,k,ε∗(λ))]|3S1〉=− eλk

2m
√

3

{(
1+ κN k

2m

)[
1

ζ
+ 1

ζ̄

]
+ κN �

2m
(ζ +ζ̄ )

}
. (D14)
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Upon summing over λ the modulus squared we get∑
λ=±1

∣∣V γ
M (q,k,ε∗(λ)

∣∣2 = e2

4m2

2k2

3

{(
1 + κN k

2m

)[
1

ζ
+ 1

ζ̄

]
+ κN �

2m
(ζ + ζ̄ )

}2

. (D15)

Note that in the small k/2m limit, this reduces to∑
λ±1

|V γ
M (q,k,ε∗(λ)|2 ≈ 8e2

3

k2

4m2

[
1 + κN�

2m

]2

, (D16)

a small contribution indeed. Using only the vector piece of the amplitude, one would have obtained

e2

4m2

∑
λ=±1

∣∣∣∣〈1S0|
(

σ1

ζ
− σ2

ζ̄

)
· k ∧ ε∗(λ)|3S1〉

∣∣∣∣2 = 2e2

3

k2

4m2

[
1

ζ
+ 1

ζ̄

]2

. (D17)

Considering the final-state scattering contributions with intermediate pp̄ and nn̄ states (30), one obtains the following magnetic
amplitude

V
γ
M (q,k,ε∗(λ)) = − λek

4m
√

3

{(
1

ζ
+ 1

ζ̄

)
(T0 + T1) + 1

2m

[
�
(
ζ + ζ̄

)+ k

(
1

ζ
+ 1

ζ̄

)]
[T0(κp + κn) + T1(κp − κn)]

}
, (D18)

where T0,1 are the NN̄ scattering amplitudes in the corresponding I = 0,1 isospin states.
3S1 → 3P 1 transitions
The 3S1 → 3P 1 electric coupling amplitude is given by the sum of the amplitudes (D2) and (D9):

A
γ

V,a(q,k,ε∗(λ)) + A
γ
T,a(q,k,ε∗(λ)) = − e

2m
q · ε∗(λ)

{
ζ + 1

ζ
+ ζ̄ + 1

ζ̄
− kκp

2m

[
ζ + ζ̄ +

(
1

ζ
+ 1

ζ̄

)(
k

�
− 1

)]}
. (D19)

Summing the squared q · ε∗(λ) term over λ gives∑
λ=±1

|q · ε∗(λ)|2 = 1

2
�λ=±1|(−λqx + iqy)|2 = q2 [1 − cos2 θq], (D20)

where

cos θq = k · q
k q

. (D21)

Hence∑
λ=±1

|Aγ

V,a(q,k,ε∗(λ)) + A
γ
T,a(q,k,ε∗(λ))|2 = e2q2

4m2
[1 − cos2 θq]

{
ζ + 1

ζ
+ ζ̄ + 1

ζ̄
− kκp

2m

[
ζ + ζ̄ +

(
1

ζ
+ 1

ζ̄

)(
k

�
− 1

)]}2

,

(D22)

which in the small k/2m limit reduces to

4e2q2

m2
[1 − cos2 θq].

2. ω emission

For the ω meson, the polarization vector reads (see Ref. [37], p. 62)

ε∗(λ = ±1) = 1√
2

(0, − λ, − i,0), ε∗(λ = 0) = 1

mω

(k,0,0,Eω). (D23)

As before, the momentum of the emitted ω meson is assumed to lie along the z axis, so that one has

k · ε∗(λ = ±1) = 0, k · ε∗(λ = 0) = kEω

mω

, k ∧ ε∗(λ = ±1) = k√
2

(i, − λ,0), and k ∧ ε∗(λ = 0) = 0. (D24)

The Lorentz condition, kμ · ε∗(λ)μ = Eω ε∗
0 (λ) − k · ε∗(λ) = 0, implies

ε∗
0 (λ) = k · ε∗(λ)

Eω

. (D25)

Because ω tensor coupling is small, we shall neglect its contribution [27]. If the ω is emitted from the nucleon line, the exact
amplitude for the vector coupling is given by Eq. (C11) multiplied by the coupling constant gV ω. To obtain the full amplitude,
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one has to add the amplitude corresponding to the ω emission from the antinucleon given by Eq. (C12). It is given by Eq. (C25).
In addition to Eq. (D11), we have, for any vector a, the equality

〈3P 1| σ1 · a|3S1〉 = 〈3P 1| σ2 · a|3S1〉. (D26)

The dominant electric contribution for λ = ±1 will then read

V ω
E (λ = ±1) = −gV ω

2m
q · ε∗(λ ± 1)

(
ζ + 1

ζ
+ ζ̄ + 1

ζ̄

)
, (D27)

while for λ = 0, since ε∗
0 (λ = 0) = k/mω, one has

V ω
E (λ = 0) = −gV ω

2m

{
q · ε∗(λ = 0)

(
ζ + 1

ζ
+ ζ̄ + 1

ζ̄

)
+ k

mω

[
1

ζ
+ 1

ζ̄

]
k · q
�

}
, (D28)

and, thus,

V ω
E (λ = 0) = −gV ω

q cos θq

2mmω

{
Eω

(
ζ + 1

ζ
+ ζ̄ + 1

ζ̄

)
+ k2

�

[
1

ζ
+ 1

ζ̄

]}
. (D29)

This contributes to the 3S1 → 3P 1 transition. Summing over the helicity λ the squared amplitudes, we obtain

1∑
λ=−1

∣∣V ω
E (λ)

∣∣2 = g2
V ω

q2

4m2

{
(1 − cos2 θq)

[
ζ + 1

ζ
+ ζ̄ + 1

ζ̄

]2

+ cos2 θq

[
Eω

mω

(
ζ + 1

ζ
+ ζ̄ + 1

ζ̄

)
+ k2

mω�

(
1

ζ
+ 1

ζ̄

)]2
}

.

(D30)

In the small k/2m limit, this reduces to

1∑
λ=−1

∣∣V ω
E (λ)

∣∣2 ≈ g2
V ω

4q2

m2

{
(1 − cos2 θq) +

(
Eω

mω

)2

cos2 θq

[
1 + k2

Eω�

]}
,

giving rise again to a very small correction to the dominant piece 4g2
V ωq2/m2.

For the magnetic contribution, using Eqs. (D24) and (C25) we retain the dominant piece and get

V ω
M (λ = ±1) = i

gV ω

2m

{
σ1

ζ
− σ2

ζ̄

}
· [k ∧ ε∗(λ = ±1)]. (D31)

It is null for λ = 0. Then, let us thus look at the 3S1 → 1S0 magnetic transition using Eqs. (D12):

〈1S0|V ω
M (λ = ±1)|3S1〉 = i

gV ω

2m
〈1S0|

{
σ1

ζ
− σ2

ζ̄

}
· [k ∧ ε∗(λ = ±1)]|3S1〉 = −λgV ωk

2m
√

3

(
1

ζ
+ 1

ζ̄

)
. (D32)

Summing over the helicities the amplitude squared, one gets∑
λ=±1

|〈1S0|V ω
M (λ = ±1)|3S1〉|2 = g2

V ω

4m2

2k2

3

(
1

ζ
+ 1

ζ̄

)2

, (D33)

and thus about

8g2
V ω

3

k2

4m2

in the small k/2m limit, i.e., a very small contribution. Because the J/ψ and the ω are isospin 0 states, only the I = 0 component
of the pp̄ → pp̄ and nn̄ → pp̄ rescattering terms contributes. In the Paris potential, the modulus of these two components being
equal, there will be a cancellation either in the convention given by the Eqs. (22) and (23) of Ref. [8] or in that of Eqs. (49) and
(50) [there, one will have to change the sign of the Paris nn̄ → pp̄ amplitude].

APPENDIX E: NUMERICAL CALCULATION OF THE LOOP INTEGRALS

In this appendix, we outline the numerical calculation of the loop integrals in Eqs. (31) or (59) with propagators (32) and (28).
The structure of these equations is

I (q,k) =
∫

dq′

(2π )3
TNN (q − k/2,q′ − k/2,ENN ) G+

0,NNB(q′,k) G̃pp(q ′) U 0(q′,k), (E1)

where we will use the half off-shell values of the NN scattering matrix evaluated from the Paris potential.
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With k along the z axis, q in the x-z plane, and q = (q sin θq,0,q cos θq), we have

q · q′ = qq ′ (sin θq sin θ ′ cos ϕ′ + cos θq cos θ ′) and k · q′ = kq ′ cos θ ′. (E2)

Let us assume that the half off-shell dependence of the scattering matrix depends on the momentum transfer

TNN (q − k/2,q′ − k/2,ENN ) = TNN (χ ′,ENN ), (E3)

with

χ ′ =
(

q − k
2

)
−
(

q′ − k
2

)
= q − q′ so that χ ′ =

√
q2 + q ′2 − 2qq ′ (sin θq sin θ ′ cos ϕ′ + cos θq cos θ ′). (E4)

Then,

G+
0,NNB(q′,k) = 1

MJ/ψ + iε − EB(k) −
√

q′2 + m2 − E
, (E5)

where EB(k) =
√

k2 + m2
B, the energy of the emitted boson, while E is the off-shell energy of the nucleon from which the boson

B has been emitted:

E =
√

(q′ − k)2 + m2. (E6)

Using E as a variable, rather than cos θ ′, we may re-express Eq. (E1) as

I (q,k) = 1

(2π )3 k
√V0

∫ ∞

0
q ′dq ′ F(q ′)

MJ/ψ + iε − 2
√

q′2 + m2

∫ E+

E−

EdE

MJ/ψ + iε − EB(k) −
√

q′2 + m2 − E

×
∫ 2π

0
dϕ′ TNN (χ ′,ENN ) U 0(q′,k), (E7)

where we have used the relation E dE = −k q ′ d cos θ ′ and where F(q ′) denotes the source function as given by Eq. (9). The
explicit dependence on q in I (q,k) comes from the χ ′ dependence in the half off-shell scattering matrix. The limits of integration
for the E integration are

E± =
√

m2 + (k ± q ′)2. (E8)

The invariant mass squared of the NN pair, s = M2
NN

, is

s = (
√

q′2 + m2 +
√

(q′ − k)2 + m2)2 − k2, (E9)

since the total momentum of this pair is −k and the relative energy5

ENN =
√

s + k2 −
√

4m2 + k2. (E10)

Note that in the nonrelativistic limit this expression goes to

ENN ≈ s − 4m2

4m
. (E11)

At threshold ENN = 0, so that s = 4m2 and the emitted boson reaches its maximum momentum value, i.e., k = 979.9 MeV/c for
the photon and k = 742.5 MeV/c for the ω. At the other end of the spectrum, for the emitted boson k = 0 and s = (MJ/ψ − MB)2,
and we point out that there is no singularity in the integral due to this value of k = 0.

The integral over ϕ′ is performed numerically without difficulty and displays no singularity. In each of the other two integrations,
there is the presence of a pole. In the q ′ integral, the pole in q ′ lies at qp =

√
M2

J/ψ − 4m2/2 = 1231.82 MeV, as one can write

1

MJ/ψ − 2E(q ′) + iε
= − MJ/ψ + 2E(q ′)

4(q ′ − qp − iε)(q ′ + qp)
. (E12)

For practical calculation of the integral (E7), it is sufficient to integrate the q ′ variable up to the maximum value qMax = 12 fm−1

(2367.94 MeV).

5In the spirit of the Paris potential and its parametrization, the nonrelativistic approximation to this expression would read

ENN ≈ Tlab

2

{
1 −

(
Tlab

8m
+ k2

8m2

)}
with Tlab = s − 4m2

2m
.
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In Eq. (E7), there will be a pole in E at

Ep = MJ/� − EB(k) − E(q ′), (E13)

if E− � Ep � E+, i.e., if√
(q ′ − k)2 + m2 � MJ/� −

√
k2 + MB2 −

√
q ′2 + m2 �

√
(q ′ + k)2 + m2. (E14)

Study of the inequalities (E14) allows us to write the integral (E7) as

I (q,k) = I1 + I2 + I3, (E15)

with

I1 =
∫ q1

0
dq ′...(no pole in q ′)

∫ E+

E−
dE...(no pole in E), (E16)

I2 =
∫ q2

q1

dq ′...(no pole in q ′)
∫ E+

E−
dE...(pole in E), (E17)

and

I3 =
∫ qMax

q2

dq ′...(pole in q ′)
∫ E+

E−
dE...(no pole in E). (E18)

In the above integrals, I1, I2, and I3 the dots (...) are to be identified with the corresponding functions given in Eq. (E7). Defining

q± = −ks ±
√

s2(k2 + s − 4m2) − 4m2k2s

−2s
= k

2
∓ 1

2

√
(s + k2)

(s − 4m2)

s
(E19)

and

E0
NN̄

= M2
J/ψ − mB2

4(MJ/ψ − m)
− m = (MJ/ψ − 2m)2 − mB2

4(MJ/ψ − m)
, (E20)

one finds for ENN̄ � E0
NN̄

, q1 = q+, q2 = q− and for ENN̄ � E0
NN̄

, q1 = −q+, q2 = q−. For ENN̄ = E0
NN̄

, q1 = 0. The
boundary E0

NN̄
is equal to 172.48 MeV for the photon case and to 101.54 MeV for the ω one. Note that at the pp̄ threshold there

is no pole in the integrals over dE, and

I (0,k) =
∫ qMax

0
dq ′...(pole in q ′)

∫ E+

E−
dE...(no pole in E). (E21)

In the numerical program for the loop calculation, the principal value integrals in E and in q ′ are calculated using the FORTRAN

subroutine dqawce.f, a download from the quadpack-netlib website (http://www.netlib.org/quadpack/).
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