
Young Won Lim
5/31/18

Automata Theory (2A)

Young Won Lim
5/31/18

 Copyright (c) 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

mailto:youngwlim@hotmail.com

Automata Theory (2A) 3 Young Won Lim
5/31/18

Automata

https://en.wikipedia.org/wiki/Automata_theory

The word automata (the plural of automaton)

comes from the Greek word α τόματαὐ ,

which means "self-acting".

Automata Theory (2A) 4 Young Won Lim
5/31/18

Automata Informal description (1) – Inputs

https://en.wikipedia.org/wiki/Automata_theory

An automaton runs when it is given some sequence of
inputs in discrete (individual) time steps or steps.

An automaton processes one input picked from a set of
symbols or letters, which is called an alphabet.

The symbols received by the automaton as input at any
step are a finite sequence of symbols called words.

Automata Theory (2A) 5 Young Won Lim
5/31/18

Automata informal description (2) – States

https://en.wikipedia.org/wiki/Automata_theory

An automaton has a finite set of states.

At each moment during a run of the automaton, the
automaton is in one of its states.

When the automaton receives new input it moves to
another state (or transitions) based on a function that
takes the current state and input symbol as parameters.

This function is called the transition function.

Automata Theory (2A) 6 Young Won Lim
5/31/18

Automata informal description (3) – Stop

https://en.wikipedia.org/wiki/Automata_theory

The automaton reads the symbols of the input word one
after another and transitions from state to state according
to the transition function until the word is read completely.

Once the input word has been read, the automaton is said
to have stopped.

The state at which the automaton stops is called the final
state.

Automata Theory (2A) 7 Young Won Lim
5/31/18

Automata informal description (4) – Accept / Reject

https://en.wikipedia.org/wiki/Automata_theory

Depending on the final state, it's said that the automaton
either accepts or rejects an input word.

There is a subset of states of the automaton, which is
defined as the set of accepting states.

If the final state is an accepting state,
then the automaton accepts the word.

Otherwise, the word is rejected.

Automata Theory (2A) 8 Young Won Lim
5/31/18

Automata informal description (5) – Language

https://en.wikipedia.org/wiki/Automata_theory

The set of all the words accepted by an automaton is
called the "language of that automaton".

Any subset of the language of an automaton is
a language recognized by that automaton.

Automata Theory (2A) 9 Young Won Lim
5/31/18

Automata informal description (6) – Decision on inputs

https://en.wikipedia.org/wiki/Automata_theory

an automaton is a mathematical object
that takes a word as input
and decides whether to accept it or reject it.

Since all computational problems are
reducible into the accept/reject question on inputs,
(all problem instances can be represented
in a finite length of symbols),
automata theory plays a crucial role
in computational theory.

Automata Theory (2A) 10 Young Won Lim
5/31/18

Class of Automata

https://en.wikipedia.org/wiki/Automata_theory

● Combinational Logic
● Finite State Machine (FSM)
● Pushdown Automaton (PDA)
● Turing Machine

Automata Theory (2A) 11 Young Won Lim
5/31/18

Class of Automata

https://en.wikipedia.org/wiki/Automata_theory

Finite State Machine (FSM) Regular Language

Pushdown Automaton (PDA) Context-Free Language

Turing Machine Recursively Enumerable Language

Automaton Formal Languages

Automata Theory (2A) 12 Young Won Lim
5/31/18

Definition of Finite State Automata

https://en.wikipedia.org/wiki/Automata_theory

A deterministic finite automaton is represented formally

by a 5-tuple <Q, Σ, δ,q
0
,F>, where:

Q is a finite set of states.

Σ is a finite set of symbols, called the alphabet of the automaton.

δ is the transition function, that is, δ: Q × Σ → Q.

q
0
 is the start state, that is, the state of the automaton

 before any input has been processed, where q
0

 Q.∈

F is a set of states of Q (i.e. F Q) called ⊆ accept states.

Automata Theory (2A) 13 Young Won Lim
5/31/18

Pushdown Automaton

https://en.wikipedia.org/wiki/Automata_theory

a type of automaton that employs a stack.

The term "pushdown" refers to the fact that
the stack can be regarded as being "pushed down"
like a tray dispenser at a cafeteria,
since the operations never work on elements
other than the top element.

A stack automaton, by contrast, does allow
access to and operations on deeper elements.

Automata Theory (2A) 14 Young Won Lim
5/31/18

Deterministic Finite State Machine

https://en.wikipedia.org/wiki/Automata_theory

A deterministic finite state machine or
acceptor deterministic finite state machine is
a quintuple (Σ, S, s

0
, δ, F), where:

● Σ is the input alphabet (a finite, non-empty set of symbols).
● S is a finite, non-empty set of states.
● s

0
 is an initial state, an element of S.

● δ is the state-transition function: δ : S × Σ → S
● F is the set of final states, a (possibly empty) subset of S.

Automata Theory (2A) 15 Young Won Lim
5/31/18

Deterministic Pushdown Automaton

https://en.wikipedia.org/wiki/Pushdown_automaton

A PDA is formally defined as a 7-tuple:

M = (Q, Σ, Γ, δ, q
0
, Z, F) where

Q is a finite set of states
Σ is a finite set which is called the input alphabet
Γ is a finite set which is called the stack alphabet
δ is a finite subset of Q×(Σ {ε})×Γ×Q×Γ∪ ∗, the transition relation.
q

0
 Q is the ∈ start state

Z Γ is the ∈ initial stack symbol
F Q is the set of ⊆ accepting states

Automata Theory (2A) 16 Young Won Lim
5/31/18

Turing Machine

https://en.wikipedia.org/wiki/Turing_machine

Turing machine as a 7-tuple M = Q, Γ, b, Σ, δ, q⟨
0
, F where⟩

Q is a finite, non-empty set of states;
Γ is a finite, non-empty set of tape alphabet symbols;
b Γ is the ∈ blank symbol
Σ Γ { b } is the set of ⊆ ∖ input symbols in the initial tape contents;
q

0
 Q is the ∈ initial state;

F Q is the set of ⊆ final states or accepting states.
δ : (Q F) × Γ → Q × Γ × { L , R } is ∖ transition function,

where L is left shift, R is right shift.

The initial tape contents is said to be accepted by M if it eventually
halts in a state from F .

 ∖ set minus

Automata Theory (2A) 17 Young Won Lim
5/31/18

Deterministic PDA (1) – transition relation

https://en.wikipedia.org/wiki/Pushdown_automaton

An element (p, a, A, q, α) δ is a ∈ transition of M.

It has the intended meaning that M, in state p Q, ∈
on the input a Σ { ε } and ∈ ∪
with A Γ as ∈ topmost stack symbol,

may read a, change the state to q, pop A,

replacing it by pushing α Γ∈ ∗.

The (Σ { ε }) component of the transition relation ∪
is used to formalize that the PDA can

either read a letter from the input,

or proceed leaving the input untouched.

Automata Theory (2A) 18 Young Won Lim
5/31/18

Deterministic PDA (2) – transition function

https://en.wikipedia.org/wiki/Pushdown_automaton

δ is the transition function,

mapping Q × (Σ {ε}) × Γ ∪

into finite subsets of Q × Γ∗

Here δ (p, a, A) contains all possible actions in state p

with A on the stack, while reading a on the input.

One writes for example δ(p, a, A) = { (q, BA) }

precisely when (q, BA) { (q, BA) }, (q, BA) δ∈ ∈ (p, a, A)

Because ((p, a, A), {(q, BA)}) δ∈ .

Note that finite in this definition is essential.

 δ(p, a, A) → (q,α)

 δ(p, a, A) → (q,α)

Automata Theory (2A) 19 Young Won Lim
5/31/18

Deterministic PDA Example (1) – description

https://en.wikipedia.org/wiki/Pushdown_automaton

The following is the formal description of the PDA
which recognizes the language { 0n1n n ≥ 0 } by final state:∣

M = (Q, Σ, Γ, δ, q
0
, Z, F), where

states: Q = {p, q, r}
input alphabet: Σ = {0, 1}
stack alphabet: Γ = {A, Z}
start state: q

0
 = p

start stack symbol: Z
accepting states: F = {r}

Automata Theory (2A) 20 Young Won Lim
5/31/18

Deterministic PDA Example (2) – instructions

https://en.wikipedia.org/wiki/Pushdown_automaton

The transition relation δ consists of
the following six instructions:

 (p, 0, Z, p, AZ) 0; Z/AZ, p→p
 (p, 0, A, p, AA) 0; A/AA, p→p
 (p, , Z, q, Z)ϵ , Z/Z, p→qϵ
 (p, , A, q, A)ϵ , A/A, p→qϵ
 (q, 1, A, q,)ϵ 1, A/ , q→qϵ
 (q, , Z, r, Z)ϵ , Z/Z, p→rϵ

the instruction (p, a, A, q, α) by an edge from state p to state q
labelled by a ; A / α (read a; replace A by α).

Automata Theory (2A) 21 Young Won Lim
5/31/18

Deterministic PDA Example (3) – instruction description

https://en.wikipedia.org/wiki/Pushdown_automaton

in state p any time the symbol 0 is read,
one A is pushed onto the stack.
Pushing symbol A on top of another A is
formalized as replacing top A by AA
(and similarly for pushing symbol A on top of a Z)

at any moment the automaton may move
from state p to state q.

in state q, for each symbol 1 read,
one A is popped.

the machine may move from state q
to accepting state r
only when the stack consists of a single Z.

 (p, 0, Z, p, AZ) ,
 (p, 0, A, p, AA),

 (p, , Z, q, Z),ϵ
 (p, , A, q, A),ϵ

 (q, 1, A, q,), ϵ

 (q, , Z, r, Z). ϵ

Automata Theory (2A) 22 Young Won Lim
5/31/18

Deterministic PDA Computation (1) – ID

https://en.wikipedia.org/wiki/Pushdown_automaton

to formalize the semantics of the pushdown automaton

a description of the current situation is introduced.

Any 3-tuple (p , w , β) Q × Σ∈ ∗ × Γ∗ is called

an instantaneous description (ID) of

M = (Q, Σ, Γ, δ, q
0
, Z, F) which includes

the current state,

the part of the input tape that has not been read, and

 the contents of the stack (topmost symbol written first).

Automata Theory (2A) 23 Young Won Lim
5/31/18

Deterministic PDA Computation (2) – step-relation

https://en.wikipedia.org/wiki/Pushdown_automaton

The transition relation δ defines

the step-relation ⊢
M
 on instantaneous descriptions.

For instruction (p, a, A, q, α) δ ∈

there exists a step (p , ax, Aγ) M (q, x , αγ), ⊢

for every x Σ∈ ∗ and every γ Γ∈ ∗ .

p, q : states

ax, x : inputs

Ay, αγ : stack elementes

Automata Theory (2A) 24 Young Won Lim
5/31/18

Deterministic PDA Computation (3) – non-deterministic

https://en.wikipedia.org/wiki/Pushdown_automaton

Nondeterministic :

in a given instantaneous description (p, w, β)

there may be several possible steps.

Any of these steps can be chosen in a computation.

Automata Theory (2A) 25 Young Won Lim
5/31/18

Deterministic PDA Computation (4) – pop operation

https://en.wikipedia.org/wiki/Pushdown_automaton

With the above definition in each step always

a single symbol (top of the stack) is popped,

replacing it with as many symbols as necessary.

As a result no step is defined when the stack is empty.

Automata Theory (2A) 26 Young Won Lim
5/31/18

Deterministic PDA Computation (5) – initial description

https://en.wikipedia.org/wiki/Pushdown_automaton

Computations of the pushdown automaton are

sequences of steps.

The computation starts in the initial state q
0

with the initial stack symbol Z on the stack,

and a string w on the input tape,

thus with initial description (q
0
, w, Z).

Automata Theory (2A) 27 Young Won Lim
5/31/18

Deterministic PDA Computation (6) – acceptance modes

https://en.wikipedia.org/wiki/Pushdown_automaton

There are two modes of accepting.

either accepts by final state,

which means after reading its input the automaton
reaches an accepting state (in F)

uses the internal memory (state)

or it accepts by empty stack (ε),

which means after reading its input the automaton
empties its stack.

uses the external memory (stack).

Automata Theory (2A) 28 Young Won Lim
5/31/18

Computation Example (1)

https://en.wikipedia.org/wiki/Pushdown_automaton

The following illustrates
how the above PDA computes
on different input strings.

The subscript M from the step symbol
 ⊢ is here omitted.

Automata Theory (2A) 29 Young Won Lim
5/31/18

Computation Example (2)

https://en.wikipedia.org/wiki/Pushdown_automaton

input string = 0011.
There are various computations, depending on the moment
the move from state p to state q is made.
Only one of these is accepting.

(p , 0011 , Z) ⊢ (p, , Z, q, Z),ϵ
(q , 0011 , Z) ⊢ (q, , Z, r, Z).ϵ
(r , 0011 , Z)

1. (p, 0, Z, p, AZ)
2. (p, 0, A, p, AA)
3. (p, , Z, q, Z)ϵ
4. (p, , A, q, A)ϵ
5. (q, 1, A, q,) ϵ
6. (q, , Z, r, Z)ϵ

Automata Theory (2A) 30 Young Won Lim
5/31/18

Computation Example (3)

https://en.wikipedia.org/wiki/Pushdown_automaton

The final state is accepting, but the input is not accepted
this way as it has not been read.

(p , 0011 , Z) ⊢ (p, 0, Z, p, AZ)
(p , 011 , A Z) ⊢ (q, 1, A, q,) ϵ
(q , 011 , A Z)

No further steps possible.

1. (p, 0, Z, p, AZ)
2. (p, 0, A, p, AA)
3. (p, , Z, q, Z)ϵ
4. (p, , A, q, A)ϵ
5. (q, 1, A, q,) ϵ
6. (q, , Z, r, Z)ϵ

Automata Theory (2A) 31 Young Won Lim
5/31/18

Computation Example (4)

https://en.wikipedia.org/wiki/Pushdown_automaton

(p , 0011 , Z) ⊢ (p, 0, A, p, AA)
(p , 011 , AZ) ⊢ (p, 0, A, p, AA)
(p , 11 , AAZ) ⊢ (p, , A, q, A)ϵ
(q , 11 , AAZ) ⊢ (q, 1, A, q,) ϵ
(q , 1 , AZ) ⊢ (q, 1, A, q,) ϵ
(q , , Z) ϵ ⊢ (q, , Z, r, Z) ϵ
(r , , Z) ϵ

Accepting computation: ends in accepting state,
while complete input has been read.

1. (p, 0, Z, p, AZ)
2. (p, 0, A, p, AA)
3. (p, , Z, q, Z)ϵ
4. (p, , A, q, A)ϵ
5. (q, 1, A, q,) ϵ
6. (q, , Z, r, Z)ϵ

Automata Theory (2A) 32 Young Won Lim
5/31/18

Computation Example (5)

https://en.wikipedia.org/wiki/Pushdown_automaton

Input string = 00111. Again there are various computations.
None of these is accepting.

(p , 00111 , Z) ⊢ (p, , Z, q, Z)ϵ
(q , 00111 , Z) ⊢ (q, , Z, r, Z)ϵ
(r , 00111 , Z)

The final state is accepting,
but the input is not accepted
this way as it has not been read.

1. (p, 0, Z, p, AZ)
2. (p, 0, A, p, AA)
3. (p, , Z, q, Z)ϵ
4. (p, , A, q, A)ϵ
5. (q, 1, A, q,) ϵ
6. (q, , Z, r, Z)ϵ

Automata Theory (2A) 33 Young Won Lim
5/31/18

Computation Example (6)

https://en.wikipedia.org/wiki/Pushdown_automaton

(p , 00111 , Z) ⊢ (p, 0, Z, p, AZ)
(p , 0111 , A Z) ⊢ (p, , A, q, A)ϵ
(q , 0111 , A Z)

No further steps possible.

1. (p, 0, Z, p, AZ)
2. (p, 0, A, p, AA)
3. (p, , Z, q, Z)ϵ
4. (p, , A, q, A)ϵ
5. (q, 1, A, q,) ϵ
6. (q, , Z, r, Z)ϵ

Automata Theory (2A) 34 Young Won Lim
5/31/18

Computation Example (7)

https://en.wikipedia.org/wiki/Pushdown_automaton

(p , 00111 , Z) ⊢ (p, 0, Z, p, AZ)
(p , 0111 , A Z) ⊢ (p, 0, Z, p, AZ)
(p , 111 , A A Z) ⊢ (p, , A, q, A)ϵ
(q , 111 , A A Z) ⊢ (q, 1, A, q,) ϵ
(q , 11 , A Z) ⊢ (q, 1, A, q,) ϵ
(q , 1 , Z) ⊢ (q, , Z, r, Z)ϵ
(r , 1 , Z)

The final state is accepting, but the input is not accepted
this way as it has not been (completely) read.

1. (p, 0, Z, p, AZ)
2. (p, 0, A, p, AA)
3. (p, , Z, q, Z)ϵ
4. (p, , A, q, A)ϵ
5. (q, 1, A, q,) ϵ
6. (q, , Z, r, Z)ϵ

Automata Theory (2A) 35 Young Won Lim
5/31/18

PDA and Context Free Language (1)

https://en.wikipedia.org/wiki/Pushdown_automaton

Every context-free grammar can be transformed

into an equivalent nondeterministic pushdown automaton.

The derivation process of the grammar
is simulated in a leftmost way

Where the grammar rewrites a nonterminal,
the PDA takes the topmost nonterminal from its stack
and replaces it by the right-hand part
of a grammatical rule (expand).

Where the grammar generates a terminal symbol,
the PDA reads a symbol from input
when it is the topmost symbol on the stack (match).

In a sense the stack of the PDA contains
the unprocessed data of the grammar,
corresponding to a pre-order traversal of a derivation tree.

Automata Theory (2A) 36 Young Won Lim
5/31/18

PDA and Context Free Language (1)

https://en.wikipedia.org/wiki/Pushdown_automaton

Every context-free grammar can be transformed

into an equivalent nondeterministic pushdown automaton.

The derivation process of the grammar

is simulated in a leftmost way

In a sense the stack of the PDA contains

the unprocessed data of the grammar,

corresponding to a pre-order traversal of a derivation tree.

Automata Theory (2A) 37 Young Won Lim
5/31/18

PDA and Context Free Language (2)

https://en.wikipedia.org/wiki/Pushdown_automaton

The derivation process of the grammar

is simulated in a leftmost way

Where the grammar rewrites a nonterminal,

the PDA takes the topmost nonterminal from its stack

and replaces it by the right-hand part

of a grammatical rule (expand).

Where the grammar generates a terminal symbol,

the PDA reads a symbol from input

when it is the topmost symbol on the stack (match).

I

Automata Theory (2A) 38 Young Won Lim
5/31/18

Computation Example (3)

https://en.wikipedia.org/wiki/Pushdown_automaton

Technically, given a context-free grammar, the PDA has a
single state, 1, and its transition relation is constructed as
follows.

 (1 , ε , A , 1 , α) for each rule A → α (expand)
 (1 , a , a , 1 , ε) for each terminal symbol a (match)

Automata Theory (2A) 39 Young Won Lim
5/31/18

PDA and Context Free Language (2)

https://en.wikipedia.org/wiki/Pushdown_automaton

Technically, given a context-free grammar,

the PDA has a single state, 1,

and its transition relation is constructed as follows.

 (1 , ε , A , 1 , α) for each rule A → α (expand)

 (1 , a , a , 1 , ε) for each terminal symbol a (match)

The PDA accepts by empty stack.

Its initial stack symbol is the grammar's start symbol.

Automata Theory (2A) 40 Young Won Lim
5/31/18

Turing Machine

https://en.wikipedia.org/wiki/Turing_machine

The Turing machine mathematically models a machine that
mechanically operates on a tape.
On this tape are symbols, which the machine can read and
write, one at a time, using a tape head.
Operation is fully determined by a finite set of elementary
instructions such as

"in state 42, if the symbol seen is 0, write a 1;
if the symbol seen is 1, change into state 17;
in state 17, if the symbol seen is 0,
write a 1 and change to state 6;" etc.

Automata Theory (2A) 41 Young Won Lim
5/31/18

Turing Machine – Tape

https://en.wikipedia.org/wiki/Turing_machine

A tape divided into cells, one next to the other.
Each cell contains a symbol from some finite alphabet.
The alphabet contains a special blank symbol
(here written as '0') and one or more other symbols.

The tape is assumed to be arbitrarily extendable
to the left and to the right, i.e.,
the Turing machine is always supplied with
as much tape as it needs for its computation.

Cells that have not been written before are assumed
to be filled with the blank symbol.

Automata Theory (2A) 42 Young Won Lim
5/31/18

Turing Machine – Head, State Register

https://en.wikipedia.org/wiki/Turing_machine

A head that can read and write symbols on the tape and
move the tape left and right one (and only one) cell at a time.
In some models the head moves and the tape is stationary.

A state register that stores the state of the Turing machine,
one of finitely many.
Among these is the special start state
with which the state register is initialized.
These states, writes Turing, replace the "state of mind" a
person performing computations would ordinarily be in.

Automata Theory (2A) 43 Young Won Lim
5/31/18

Turing Machine – Table of Instruction

https://en.wikipedia.org/wiki/Turing_machine

A finite table of instructions that,
given the state(qi) the machine is currently in
and the symbol(aj) it is reading on the tape
(symbol currently under the head),
tells the machine to do the following in sequence
(for the 5-tuple models):

1. Either erase or write a symbol (replacing aj with aj1).

2. Move the head (which is described by dk and can have
values: 'L' for one step left or 'R' for one step right or 'N' for
staying in the same place).

3. Assume the same or a new state as prescribed
(go to state qi1).

Automata Theory (2A) 44 Young Won Lim
5/31/18

Turing Machine – unlimited amount

https://en.wikipedia.org/wiki/Turing_machine

Note that every part of the machine
(i.e. its state, symbol-collections,
and used tape at any given time) and
its actions (such as printing, erasing and tape motion) is
finite, discrete and distinguishable;

it is the unlimited amount of tape and runtime
that gives it an unbounded amount of storage space.

Automata Theory (2A) 45 Young Won Lim
5/31/18

Turing Machine – 4 tuple models

https://en.wikipedia.org/wiki/Turing_machine

In the 4-tuple models,
erasing or writing a symbol (aj1) and
moving the head left or right (dk) are
specified as separate instructions.

Specifically, the table tells the machine to (ia) erase or write
a symbol or (ib) move the head left or right, and then (ii)
assume the same or a new state as prescribed, but not both
actions (ia) and (ib) in the same instruction. In some models,
if there is no entry in the table for the current combination of
symbol and state then the machine will halt; other models
require all entries to be filled.

Note that every part of the machine (i.e. its state, symbol-
collections, and used tape at any given time) and its actions
(such as printing, erasing and tape motion) is finite, discrete
and distinguishable; it is the unlimited amount of tape and
runtime that gives it an unbounded amount of storage space.

Automata Theory (2A) 46 Young Won Lim
5/31/18

Turing Machine – head, instruction

https://en.wikipedia.org/wiki/Turing_machine

The head is always over a particular square of the tape;
only a finite stretch of squares is shown.
The instruction to be performed (q4) is shown
over the scanned square.

Automata Theory (2A) 47 Young Won Lim
5/31/18

Turing Machine – internal state, blank

https://en.wikipedia.org/wiki/Turing_machine

Here, the internal state (q1) is shown inside the head,
and the illustration describes the tape as being infinite and
pre-filled with "0", the symbol serving as blank.

The system's full state (its complete configuration) consists
of the internal state, any non-blank symbols on the tape
(in this illustration "11B"), and the position of the head
relative to those symbols including blanks, i.e. "011B".

Automata Theory (2A) 48 Young Won Lim
5/31/18

Turing Machine

https://en.wikipedia.org/wiki/Turing_machine

Turing machine as a 7-tuple M = Q, Γ, b, Σ, δ, q⟨
0
, F where⟩

Q is a finite, non-empty set of states;
Γ is a finite, non-empty set of tape alphabet symbols;
b Γ is the ∈ blank symbol (the only symbol allowed to occur on the
tape infinitely often at any step during the computation);
Σ Γ { b } is the set of ⊆ ∖ input symbols, that is, the set of symbols
allowed to appear in the initial tape contents;
q

0
 Q is the ∈ initial state;

F Q is the set of ⊆ final states or accepting states. The initial
tape contents is said to be accepted by M if it eventually halts in a
state from F .
δ : (Q F) × Γ → Q × Γ × { L , R } is a partial function called the ∖
transition function, where L is left shift, R is right shift. (A
relatively uncommon variant allows "no shift", say N, as a third
element of the latter set.) If δ is not defined on the current state and
the current tape symbol, then the machine halts;

 ∖ set minus

Automata Theory (2A) 49 Young Won Lim
5/31/18

3-State Busy Beaver

https://en.wikipedia.org/wiki/Turing_machine

The 7-tuple for the 3-state busy beaver looks like this (see more
about this busy beaver at Turing machine examples):

 Q = { A , B , C , HALT } (states);
 Γ = { 0 , 1 } (tape alphabet symbols);
 b = 0 (blank symbol);
 Σ = { 1 } (input symbols);
 q 0 = A (initial state);
 F = { HALT } (final states);
 δ = see state-table below (transition function).

Initially all tape cells are marked with 0

Automata Theory (2A) 50 Young Won Lim
5/31/18

3-State Busy Beaver

https://en.wikipedia.org/wiki/Turing_machine

The 7-tuple for the 3-state busy beaver looks like this (see more
about this busy beaver at Turing machine examples):

 Q = { A , B , C , HALT } (states);
 Γ = { 0 , 1 } (tape alphabet symbols);
 b = 0 (blank symbol);
 Σ = { 1 } (input symbols);
 q 0 = A (initial state);
 F = { HALT } (final states);
 δ = see state-table below (transition function).

Initially all tape cells are marked with 0

Automata Theory (2A) 51 Young Won Lim
5/31/18

3-State Busy Beaver

https://en.wikipedia.org/wiki/Turing_machine

Automata Theory (2A) 52 Young Won Lim
5/31/18

3-State Busy Beaver

https://en.wikipedia.org/wiki/Turing_machine

Each circle represents a "state" of the table
—an "m-configuration" or "instruction".
"Direction" of a state transition is shown by an arrow.
The label (e.g. 0/P,R) near the outgoing state
(at the "tail" of the arrow) specifies the scanned symbol
that causes a particular transition (e.g. 0) followed by a slash /,
followed by the subsequent "behaviors" of the machine,
e.g. "P Print" then move tape "R Right".

Automata Theory (2A) 53 Young Won Lim
5/31/18

https://en.wikipedia.org/wiki/Turing_machine

3-State Busy Beaver

Automata Theory (2A) 54 Young Won Lim
5/31/18

n-State Busy Beaver

https://en.wikipedia.org/wiki/Turing_machine

the design specifications:

1. The machine has n "operational" states plus a Halt state,
where n is a positive integer, and one of the n states is
distinguished as the starting state.
2. The machine uses a single two-way infinite (or unbounded) tape.
3. The tape alphabet is {0, 1}, with 0 serving as the blank symbol.
4. The machine's transition function takes two inputs:
 the current non-Halt state,
 the symbol in the current tape cell,
 and produces three outputs:
 a symbol to write over the symbol in the current tape cell

(it may be the same symbol as the symbol overwritten),
 a direction to move (left or right)
 a state to transition into (which may be the Halt state).

Automata Theory (2A) 55 Young Won Lim
5/31/18

n-State Busy Beaver

https://en.wikipedia.org/wiki/Turing_machine

"Running" the machine consists of starting in the starting state,
with the current tape cell being any cell of a blank (all-0) tape, and
then iterating the transition function until the Halt state is entered
(if ever).

If, and only if, the machine eventually halts, then the number of 1s
finally remaining on the tape is called the machine's score.

The n-state busy beaver (BB-n) game is a contest to find such an n-
state Turing machine having the largest possible score
— the largest number of 1s on its tape after halting.
A machine that attains the largest possible score among all n-state
Turing machines is called an n-state busy beaver, and a machine
whose score is merely the highest so far attained (perhaps not the
largest possible) is called a champion n-state machine.

Young Won Lim
5/31/18

References

[1] http://en.wikipedia.org/
[2]

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56

