
Volume 112, Number 2, March-April 2007 

Journal of Research of the National Institute of Standards and Technology 

[J. Res. Natl. Inst. Stand. Technol. 112, 75-94 (2007)] 

He Thermophysical Properties: New Ab Initio 
Calculations 

Volume 112 Number 2 March-April 2007 

John J. Hurly 

National Institute of Standards 
and Technology, 
Gaithersburg, MD 20899-8360 

and 

James B. Mehl 

K T Consulting, Inc., 
P.O. Box 307, Orcas, WA 98280 

john.hurly@nist.gov 
jmehl@rockislancl.com 

Since 2000, atomic physicists have 
reduced the uncertainty of the helium-heli- 
um "ab initio" potential; for example, from 
approximately 0.6 % to 0.1 % at 4 bohr, 
and ftom 0.8 % to 0.1 % at 5.6 bohr. These 
results led us to: (1) construct a new inter- 
atomic potential ^gy, (2) recalculate values 
of the second virial coefficient, the viscos- 
ity, and the thermal conductivity of He 
from 1 K to 10,000 K, and (3), analyze the 
uncertainties of the thermophysical proper- 
ties that propagate from the uncertainty of 
0Q7 and from the Bom-Oppenheimer 
approximation of the electron-nucleon 
quantum mechanical system. We correct 
minor errors in a previous publication [J. 
J. Hurly and M. R. Moldover, J. Res. Nat. 

Inst. Standards Technol. 105, 667 (2000)] 
and compare our results with selected data 
published after 2000. The ab initio results 
tabulated here can serve as standards for 
the measurement of thermophysical prop- 
erties. 
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1.    Introduction 

In 2000, Hurly and Moldover published a compre- 
hensive report on the application of fundamental 
physics to the calculation of the thermophysical proper- 
ties of low-density helium [1]. The present paper is an 
extension to and update of parts of that paper. We 
developed a new model potential for the interaction of 
helium atoms, ^f)^{r), based on the most recent theoret- 
ical values of ^r). This potential was used to calculate 
several important properties of'^He: The density virial 
coefficient B{T) and its first two temperature deriva- 
tives, the zero-density viscosity, and the zero-density 
thermal conductivity. 

Our improved potential and calculations have signif- 
icantly reduced the uncertainty of the thermophysical 
properties of helium. For example, at 300 K, the uncer- 
tainty of the second virial coefficient is now 1/7 of that 

reported in Ref. [1] and the uncertainty of the thermal 
conductivity is 1/3 of that reported in Ref. [1]. 

The new potential includes the diagonal correction to 
the Bom-Oppenheimer model (DBOC). In addition to 
the use of this correction, recent discussions of the adi- 
abatic model [2,3] recommend the use of atomic, rather 
than nuclear, masses in the calculations of atomic inter- 
actions. We have examined the sensitivity of the ther- 
mophysical properties to this replacement, as well as to 
the DBOC and to the uncertainties of the theoretical 
calculations of 0. 

In the temperature range 3 K to 933 K, helium gas 
thermometry [4] played a leading role in the formation 
of the internationally accepted temperature scale, ITS- 
90. Subsequently, improved gas thermometry has 
measured T- Tt^, the differences between the thermo- 
dynamic temperature and ITS-90. Thus improved gas 
thermometry [5] may lead to a future, improved tem- 
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perature scale. Each form of gas thermometry (constant 
volume, dielectric, acoustic) requires the extrapolation 
of measured gas properties to zero pressure, where 
gases become "ideal." In this work, we use fundamen- 
tal principles to calculate the second density virial coef- 
ficient of helium B{T) and the second acoustic virial 
coefficient of helium j3„(T) with smaller uncertainties 
than can be achieved by direct measurements. Our tab- 
ulated values for B{T) and fiJJ) can be used to con- 
strain the extrapolations to zero pressure; thereby lead- 
ing to more accurate values of the thermodynamic tem- 
perature. Acoustic gas thermometry also requires accu- 
rate values of the thermal conductivity, which we have 
tabulated for helium. Recently, May et al. [6] have 
shown how to combine ab initio values of the viscosity 
of helium with comparatively simple viscosity-ratio 
measurements to obtain values of the thermal conduc- 
tivity of argon that are more accurate than can be 
achieved by direct measurements. Thus, our tabulation 
of the viscosity of helium will also facilitate more accu- 
rate argon-based acoustic thermometry. Finally, we 
mention programs to redetermine the Boltzmann con- 
stant [7] and to develop an atomic standard of pressure 
[8] based on accurate measurements of the dielectric 
constant of helium at the temperature of the triple point 
of water {1-^^ = 213.16 K). Both of these programs 
will benefit from the reduced uncertainties of B{T). 

In the following sections, we first describe the poten- 
tial and the way it was developed. We summarize the 
quantum-statistical formulas used for calculating the 
thermophysical properties of interest, then describe the 
numerical procedures used for the calculations. We 
conclude with some comparisons of our theoretical 
thermophysical properties with recent experimental 
results. 

Standard notation conventions are followed in this 
paper. All quantum-mechanical formalism is expressed 
in atomic units except when noted otherwise. 
Interaction potentials are expressed in hartrees in the 
formalism, but converted to temperature units (K) for 
comparison with relevant literature. The CODATA- 

2002 values of the fundamental constants [9] were used 
in all calculations. 

2.   Model Potential 0„7 

The potential model is expressed as the sum of a 
repulsive term and an attractive term 

^mi.r)-- 
Wrep(''o)+</'a,.('"oX       0 < T < r„ , 

</'rep('') = ^eXp it'''] 
.('-)=-^S f2nir)C2„ 

(1) 

(2) 

(3) 

In these equations the cut-off radius TQ = 0.3 bohr is 
chosen to exclude the unphysical behavior of the poten- 
tial model at small r; A= I hartree (E,,) defines the 
units; the a„ and d are fit parameters; the C2„ are fixed 
parameters; and the functions/^„ account for relativistic 
retardation. The attractive part of the potential is the 
sum of multipole attractive terms multiplied by the uni- 
versal damping functions of Tang and Toennies [10]. 

The dipole-dipole and higher multipole parameters 
C„ for « < 10 (Table 1) are fixed at the values calculat- 
ed by Zhang et al. [11]. The coefficients C„ for helium 
with the mass of '^He were used in all calculations 
except those which investigated corrections to the 
Bom-Oppenheimer model. The coefficients C2,, for n > 
5 were estimated using the three-term recursion formu- 
la of Thakkar [12]. 

Zhang et al. [11] include an extensive tabulation of 
previous calculations for comparison. The fractional 
differences between the fixed-nucleon parameters of 
Zhang et al. and those of Bishop and Pipin [13] are 

Table 1. Attractive interaction coefficients [11] for helium atoms with  He and infinite mass 
nucleii 

^e He 

Q (hartree-bohr ) 
Co (hartree-bohr*) 

10 CiQ (hartree-bohr  ) 
C12 (hartree-bohr  ) 
Cj4 (hartree-bohr  ) 
Cig (hartree-bohr  ) 

1.462122853192 
14.12578806 
183.781468 
3267.13274 
76501.2887 
2277412.86 

1.460977837725 
14.11785737 
183.691075 
3265.256092 
76571.26764 
2276292.717 
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2.6 X 10"* for Q, 1.7 x 10"' for Q, and -9.5 x 10"' for 
Cio. If these fractional differences are taken as esti- 
mates of uncertainties, the total uncertainty in the 
potential is less than 3x10"* K, and the total fractional 
uncertainty is less than 5x10"*, for r > 10 bohr. 

A further, and more significant, source of uncertain- 
ty is the extrapolation formula used to estimate Cj,, for 
« > 5 from the lower-« values of C2„. Thakkar [12] rec- 
ommends the use of either his Eqs. (29) or (33), with 
the latter more appropriate for helium (based on the 
value of QCio/Cg ). With the alternative formula, the 
estimated values of Qj, C14, and C^, are 1.3 %, 5.2 %, 
and 13 % larger. If these differences are used as esti- 
mates of the uncertainties of the corresponding poten- 
tial contributions, the total uncertainty in the potential 
is less than 4 x 10"' K, and the total fractional uncer- 
tainty is less than 6x10"', for r > 10 bohr. 

In principle, the use of the Tang-Toennies damping 
terms [10] is an additional source of uncertainty. 
However, these fiinctions differ from unity only for r ~ 
10 bohr and below, where the quality of the fit potential 
can be judged directly by comparison with theoretical 
potentials. (See Fig. 2.) 

The retardation functions/^,y8, and/m have been cal- 
culated by Chen and Chung [14]. Their results forff, are 
in excellent agreement with the calculations of 
Jamieson et al. [15], whose results differ from those of 
Chen and Chung by a maximum fraction 1.5 x 10"'. 
The retardation functions satisfyy^„(0) = \;f(, decreases 
to V2 for r = 500 and approaches 328.47/r for large r,f^ 
decreases to V2 for r = 660 and approaches 420.62/r for 
large r; and/m decreases to Vi for r = 810 and approach- 
es 508.43/r for large r. The functionsy^„ have the effect, 
for example, of converting the dipole-dipole interaction 
from a l/r' dependence to a Mr' dependence. 
Retardation has, at most, a marginal effect on all terms 
except the dipole-dipole term. At r = 660 bohr, the ratio 
Cgfi/r* to 007 is less than 3 x 10"'; similarly, at r = 810 
bohr, the ratio of Cio/io/r'" to ^o, is less than 4 x 10"'". 
Accordingly, the factors /12, /14, and /ig, were safely 
approximated as unity. The code for computing the 
potential uses cubic spline interpolation of the results of 
Chen and Chung [14] forff,,/^, and/m. 

Table 2. Variable (fit) potential coefilcients 

The parameters S and Oj, -2<j <2 were determined 
by fitting the potential model (l)-(3) to selected theo- 
retical values weighted to account for their estimated 
uncertainties. The retardation functions/^,, were set to 
unity in these fits. Several fits were made. The first was 
to the selected data set described below, and will be 
referred to as ^07. The second and third fits accounted 
for the uncertainties of the theoretical values, also 
described below. The corresponding potentials are des- 
ignated 0o7±- An additional fit was made to the potential 
values without applying the diagonal Born- 
Oppenheimer correction [16]. The corresponding 
potential is ^n^o^. The values of d and the a, determined 
by these fits are listed in Table 2. 

2.1    Theoretical Values of 0 

Table 3 lists values of the potential 0 and their uncer- 
tainties based on our review of the recent literature 
[17-26]. The values selected for determination of 0o7(r) 
represent a compromise based on availability of calcu- 
lations at each r, the uncertainty claimed by the authors, 
and the internal agreement of various calculations for 
nearby r. The theoretical values were obtained within 
the Bom-Oppenheimer model for fixed nuclear separa- 
tions. Uncertainties were assigned to each of the select- 
ed values. When only a single datum was available, the 
authors' uncertainty estimate was used, provided that it 
was consistent with neighboring values; otherwise the 
uncertainty was adjusted upward. When several values 
were available at an r-value, generally the unweighted 
mean and standard deviation of the more recent calcu- 
lations was used. The upper-bound potentials of 
Komasa [19] were used only at small r, where they are 
in excellent agreement with the quantum-Monte-Carlo 
calculations of Ceperley and Partridge [17], which have 
much larger uncertainties. 

The diagonal Bom-Oppenheimer correction calcula- 
tions of Komasa, Cencek and Rychlewski [16] were 
interpolated using a cubic spline and added to the fixed- 
nucleon potentials. 

Relativistic [27] (+15.4 mK) and radiative [28] (-1.3 
mK) corrections to the potential have recently been 

Potential 
"-^n a-i «0 ai "2 d 

(bohr) (bohr) (-) (bohr"') (bohr"^) (bohr"') 

007 0.081212 -0.28755 2.14735 -1.97272 -0.051787 1.992657 

007- 0.097486 -0.32441 2.17654 -1.98206 -0.050505 2.006175 

007+ 0.065002 -0.25089 2.11837 -1.96343 -0.053050 1.980020 

0nboc 0.072490 -0.26814 2.13133 -1.96754 -0.052524 1.985551 
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Table 3. Theoretical potential values used to determine 0o7. The model potential 0o7 was fit to the stmi 
of the theoretical potential (j) and the diagonal Bom-Oppenheimer correction A(^BOC with weighting 
equal to the inverse square of the uncertainty (7(0). When a single source is listed, the uncertainty is gen- 
erally that stated in the source. When multiple sources are cited, the unweighted mean and standard devi- 
ation of the set is used. In some cases, indicated by an asterisk, the uncertainty was adjusted upward to 
account for disagreement with neighboring values. 

r (bohr) 0(K) (7(0) (K) ^^^DBOC (K) Source(s) 

1 286435 25 158 [19] 
1.5 104320 20 36 [19] 
2 36144.6 10 11.8 [19] 
2.5 11962.0 1.0 4.1 [19,23]* 
3 3786.0 20 1.37 [17,19,23,24] 
3.5 1111.0 1.0 0.41 [19,20,23]* 
4 292.64 0.10 0.10 [20-23,25,26] 
4.5 58.400 0.10 0.009 [19,20,23,24] 
5 -0.500 0.10 -0.013 [19,20,23,24] 
5.1 ^.534 0.025 -0.014 [20,23] 
5.6 -10.991 0.011 -0.012 [20-26] 
6 -9.671 0.009 -0.011 [20,23]* 
6.5 -6.887 0.005 -0.008 [23] 
6.6 -6.340 0.020 -0.007 [20,24] 
7 ^.619 0.007 -0.005 [26] 
7.5 -3.073 0.005 -0.004 [20,23,25]* 
8 -2.066 0.002 -0.002 [23]* 
9 -0.989 0.001 -0.002 [25] 

10 -0.5130 0.0002 -0.001 [23]* 
12 -0.166 0.0010 0.000 [25] 
15 -0.0423 0.0002 0.000 [25] 

evaluated only at r = 5.6 bohr. Without additional 
results at other r we decided, for consistency, to omit 
these corrections from the determination of 0o7. The 
sum of these corrections is small compared with the 
scatter of the r = 5.6 bohr potentials in Fig. 3, but of the 
same order as the assigned uncertainty. 

The model potential defined by Eqs. (l)-(3) was fit 
to the sum of two quantities, the selected potentials and 
the corresponding DBOC. The input potentials were 
weighted by the inverse squares of the uncertainties 
(7(0) in the fit. The coefficients determined in the fit are 
listed in Table 2. The variance of the fit residuals in the 
determination of ^o, was 0.6. 

The upper part of Fig. 1 shows the potential 0o7 and 
the selected data used in its determination. The lower 
part of Fig. 1 and Fig. 3 show fractional differences 
between many recent theoretical potentials and 0o7. 
Figure 2 shows the normalized residuals (0 - 0o7)/C/(0). 

To assess the uncertainty of 0o7 and the propagation 
of this uncertainty into computed thermophysical prop- 
erties, the potentials 0o7+ and 0o7- were developed. The 
potential was refitted to theoretical potentials shifted by 
their uncertainties, that is, to 0 + A^goc =*= ^(0)- 
Similarly, the effects of the diagonal Born- 
Oppenheimer correction were assessed by determining 

the potential (l>„j^ through fits to the theoretical 0 values 
without adding the correction. 

The uncertainty of 0o7 is difficult to quantify. Figure 
2 shows that all but one of the theoretical potentials 
used in fitting 0Q7 differs from 0o7 by less than the cor- 
responding uncertainty, consistent with the fit variance 
of 0.6. Figure 3 shows that all of the theoretical values 
at r = 4 bohr and r = 5.6 bohr that were used in the fit 
either fall in the range between 0Q7_ and 0o7+ or have 
uncertainties overlapping this range. These observa- 
tions suggest that the uncertainty in 0Q7 should be inter- 
preted as having a large coverage factor [29] k^,~2. 
Table 4 summarizes the properties of the potentials 
used in this work, and the bound state energies (for 
angular momentum index ^ = 0) determined from the 
potential. 

3.    Atomic Interactions 

The thermophysical properties of helium can be 
evaluated using the formalism of quantum statistical 
mechanics. In particular, the virial coefficient of the 
equation of state, the viscosity, and the thermal conduc- 
tivity can be expressed in terms of the phase shifts 
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T   (bohr) 

Fig. 1. Top: The model potential 0o7 (solid line) and theoretical values of 0 (open circles) used in its determination. 
(The vertical scale is proportional to sinh" (50/K), which is approximately logarithmic for large 0 and linear for small 
|0|.) Bottom: Fractional differences between theoretical values of 0 and the model potential 0Q7, with error bars as 
assigned by the authors (when available). The data sources are D [17], * [18], x [19], + [20], A [23], O [24], T 
[25], V [26]. The potentials 0o7± and 0QQ [1] are shown as solid lines. 
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Fig. 2. Differences between the theoretical potential values used in fitting (JIQJ and the potential, divided 
by the uncertainties of the potential values (See Table 3). 
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Fig. 3. Comparisons of theoretical values of 0 with the (unretarded) model potential 0Q7. The 
plotted values, arranged chronologically by date of publication, are from the following sources: 
* [18], X [19] (upper bound), + [20], D [21], ▲ [22], A [23], T [25], V [26]. The dotted lines 
represent 0Q7±. These bounds encompass the eight values of (^r) published since 1999 
[19-23,25,26], or overlap the authors' k^ = 1 uncertainty estimates. The values of (pQj less the 
diagonal Bom-Oppenheimer correction are (292.64 ± 0.13) K at 4 bohr and (-10.996 ± 0.015) K 
at 5.6 bohr. 
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Table 4. The potential minima 0„j„ = ^r„) for the potentials used in this work, and the corresponding 
bound-state energies. (The retardation corrections/2„ were included in these calculations.) 

Potential 0min(K) r„ (bohr) He mass ■S^bound (mK) 

007 -10.999 5.608 Atomic -1.555 

007- -10.983 5.608 Atomic -1.667 

007+ -11.014 5.607 Atomic -1.438 

0nboc -10.985 5.608 Atomic -1.550 

007 -10.999 5.608 Nuclear -1.520 

associated with the interaction of a pair of hehum 
atoms. The theory and equations used in determining 
the thermophysical properties are summarized in Sec. 
3.1. The following section 3.2 describes the computa- 
tional techniques used to determine the thermophysical 
properties. 

Xt = KrA,[cos5, ■ jf (Kr) -sin d, ■ y,(Kr)], (7) 

where jr{^) andyd^) are spherical Bessel and Neumann 
fiinctions. For large Kr the asymptotic form of ;^f. is 

Xi   ^^^>AfSm{Kr-f.K/2+5i), (8) 

3.1    Formalism 

The interaction of two atoms with a spherically sym- 
metric potential 0(r) is described by a quantum 
mechanical wave function ^'i{r)Y,„,lr, where r is the 
separation distance and Y;.^ is a spherical harmonic. The 
radial function satisfies 

dr^ 
■^^-^[#r)-£]^^,(r)=0, (4) 

m„ 

where ji is the reduced mass of the He-He system, m^ is 
the electron mass, lengths are expressed in units of the 
Bohr radius Qf^, and energies are expressed in units of 
hartree (£/,). 

The solutions to Eq. (4) fall into three ranges. For 
small r, where the potential is much larger than the 
angular-momentum term, the solutions must be deter- 
mined numerically. In the second region of intermedi- 
ate r, the potential is negligible but the angular momen- 
tum term is significant, so Eq. (4) takes the form 

dr'        r" 
XAr)=(), (5) 

where 

K'={llllm^)E, (6) 

that is, K is just the wave number k = K/OO in atomic 
units. The general solution of Eq. (5) is 

which can be recognized as the solution to Eq. (4) in the 
third region, where both the potential and the angular 
momentum term are negligible. The thermophysical 
properties of interest depend on the phase shifts 5^(£). 
The virial coefficient of '*He depends on the sum 

S(K)=     £    {2i+\)5,{K). (9) 
<=0,2,4,... 

The convergence of this sum is discussed in the next 
section. The viscosity and thermal conductivity depend 
on the quantum cross-sections [30] which are expressed 
in terms of much more rapidly converging sums. 

3.2    Numerical Teciiniques 

Numerical solutions of the radial equation (4) were 
determined with Numerov's method using an integra- 
tion step size 

K =2x10" (10) 

This step size was determined empirically to insure that 
phase shifts obtained with step sizes hjl or h(jA did not 
differ from those determined with step size \ within 
the error criterion |A5f| < 10"'. Calculations were made 
for a series of discrete energies in the range 10~" < 
ElEj, < 1. The discrete energies were distributed uni- 
formly on a logarithmic scale. 

For each discrete energy, Eq. (4) was integrated 
upward in r, for ^ = 0, 2, . . . £i. A series of nodes of 
*Ff (r) were found at coordinates r„, « = 1, 2, . . . . The 
phase shifts at node n, Sc^„, defined by 
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tan5,„=7,(KT„)/j,(KTj. (11) 

were determined successively. The asymptotic phase 
shift as r„ —> c>o was obtained when the phase shifts 
evaluated at a series of nodes agree to within the preset 
convergence criterion. Convergence was accelerated by 
using the semi-classical (JWKB) approximation 
[31,32]. The convergence criterion was that the stan- 
dard deviation of three successive values of 5f „ was 
less than 10"'. The maximum angular momentum index 
£i was the minimum of either 1000 or the index when 
\df} became less than 10"'. 

Equation (11) only determines the phase shift within 
an additive multiple of n. Two conditions were used to 
get the total phase shifts needed in the sum (9). (1) The 
limiting values were lim£_^5o(^) = ^ ^"d lim£_^o5, (E) = 
0 for ^ > 0; and (2) 5( (E) is a continuous function of £" 
[33]. 

Figure 4 shows the dependence of the phase shifts on 
£ and E. It is clear that for small E, the sum (9) is dom- 
inated by the £ = 0 term. For larger E many terms con- 
tribute to the sum. The Bom approximation 

2^K- 
{r)[j,{Kr)fr'dr (12) 

(see, e.g. Eq. (38.14) of Ref [34]) for the phase shift is 
useful in considering the rate of convergence. For small 
Kr the spherical Bessel function can be approximated 
by the leading term in the Taylor series, (Kr)'i{2£ + 1)!!. 
The contribution to the integral in Eq. (12) for small r 
thus decreases rapidly with I. The spherical Bessel 
function has a maximum for Kr near £+ \. For larger £ 
the Bom approximation thus becomes dependent main- 
ly on the weaker attractive part of ^r) The contribu- 
tions from power-law potential terms have a simple 
form: 

h.^\'°^[J,{Kr)f'''''dr, 

which has the values 

he 
ZJIK' 

(2t-3){2£ -1)(2^ +1)(2^ +3)(2^ +5) 

(13) 

(14) 

and 

-'fy 

4K-" 

15(^-2)(^-l)^(^+l)(^+2)(^+3) 
(15) 

100 

-   10-4 

10"^ 

10-^ 

10-10 

- 

1         1         1         1 1         1         1         1         1 

- 

*             * I   .''   /   '*    /   •' \/ 
/ /    '     /'   •'   y - /             * .•   -'    *    /   /   / 

/ /  /   •■    /   /  /   j. 

_ 
/ 

/ 
t             *                i 

'' /   ,-    ./   /   /    / 
/      *'        ■•'     / 

/       •■        •'     / /    *'   /    / 
- /'   / /'" /  /       - 

/      .•       .'     / /    •   /    / 
- / /  / / / /   .'  / 

t\      J \     ..■■ 1  /     1,- K        /I      /    1      /     1             1 

10- 10- 10- 10- 

E (Ha) 

Fig. 4. Representative phase shifts as functions of energy. The phase shifts are all positive for small E; 
Sg has a zero-£ limit of Ji, otherwise 5/0) = 0. The lines represent, from left to right, (! = 0, 2, 4, 10, 20, 
40, 100,200,400, and 1000. 
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for the dipole-dipole interaction with and without retar- 
dation. The infinite sums of these terms are 

4^,(A+l)(A+2)(A+3) 
i even a even 

I 4 

l>nK' 

45(2^,+l)(2^,+3)(2^,+5) 
i even 

(16) 

(17) 

These can be used to get upper and lower limits for the 
contributions of the Q/^/r' term to the truncation error 
of the sum (9). The following test was made to check 
the summation error. For £"> 0.001 hartree, Eq. (12) 
was used to obtain phase shifts for ^i = 1000 < i<ii_ = 
3000, and the corresponding contributions to the sum 
(9) were evaluated numerically. Equations (16) and 
(17) were then used with -> , to estimate the trunca- 
tion error of these numerical sums. The results so 
obtained were then compared directly with upper and 
lower limits based on Eqs. (16) and (17). The numeri- 
cal sums were found to lie very close to the product of 
Q and the right-hand side of Eq. (16). The reason is 
that asymptotic phase shifts for i = 1000 are obtained 
when r is some multiple of 27:/K'beyond the first zero 
of the spherical Bessel fiinction7iQQo(K"r), which occurs 
near r = 1000.5/K-» 11.7/V£. For E > 0.001 hartree this 
is reached before retardation is significant. For smaller 
E, the nodes r„ where Eq. (11) is evaluated occur at 
larger radii where retardation may be important, but the 
phase shifts decline sufficiently rapidly with increasing 
i that convergence is obtained for i <?: 1000. 

4.   Virial Coefficients 

The second virial coefficient of'*He is [33] 

where 

B^^=-2N,K'aIJ{nT), 

B-.,^,=-NA'l\6, 

B       =-N A^\e''^ -W -"bound '-^A^^  L<^ ij; 

/^=[°°e-«'^''^S(K-)K-""'c/K-, 
Jo 

(18) 

(19) 

(20) 

(21) 

(22) 

a = {mJm^;){EjKg). 

In these equations, A = '•ilXj, where 

h 
Aj. 

^Im^JigT 

(23) 

(24) 

is the thermal de Broglie wavelength, and -T^ is the 
bound state energy in K (Table 4). The temperature 
derivatives of B{T) can be evaluated directly from Eqs. 
(18)-(24). Numerical evaluation of the derivatives 
requires the integrals /j and I4 in addition to IQ. 

The thermal contributions BJ(T) require numerical 
integration over K. The integrals could formally be 
written with E as the integration variable. However, the 
dependence of the sum terms in the integrand for small 
fcwas found to be approximately linear in K"O= ^/E, so a 
better spline approximation was obtained by using K'as 
the independent variable. 

Formally, the upper limit of integration is infinite. In 
practice, the phase shifts become increasingly difficult 
to calculate at higher energies. Calculations were made 
only up to £" = 1 hartree. The argument of the exponen- 
tial factor in the integrand, -aK^/T, has a maximum 
value at £■ = 1 hartree equal to -3.16 x 10^ K/T, so the 
integrand is vanishingly small at K^^^, even at T = 
10000 K (exp(-31.6) « 1.9 x lO""*). The upper limit of 
integration can thus be safely set at K"„^. 

Numerical integrations were required for the inte- 
grals IQ, I2, and I^. For each case, the sum S{K) was 
approximated by cubic splines. The number of knots 
per decade of energy E was 40 for all except E > 0.1, 
where 80 knots were required in order to resolve the 
rapid dependence of the phase shifts. The integrals 
were calculated as the sum of a series of integrals with 
K--limits 0-0.01, 0.01-0.1, 0.1-1, 1-10, and 10-K;^. 

This procedure insures sufficient sampling of the inte- 
grands, whose peak values depend strongly on T. 

Figures 5-7 and Table 5 show the virials and the first 
two temperature derivatives as calculated in this work. 
Note that the effects of 0o7± on the results is approxi- 
mately symmetrical. Half of the difference of each cal- 
culated property, as computed with 0Q7+ and 0o7_, was 
chosen as a conservative (A:„ = 2) estimate of the uncer- 
tainty U{x) of property x. These uncertainty estimates 
are well-represented by flinctions of the form 

kJJ{x) = 1 cm mol     exp £c„[in(r//0]" (25) 

and 
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Table 5. Thermophysical properties of He calculated in this work. Calculated quantities are printed with at least one 
excess figure as an aid in smooth interpolation; for the uncertainties of i? and its derivatives use Eqs. (25) and Table 6; 
for the uncertainties of 77 and A use Eq. (37). 

T B TB' fB" n A 
(K) (cm mol" ) (cm'mol"') (cm'mol"') (A(Pa-s) (mWm"'K"') 

1.0 ^75.05 669.19 -1790.42 0.3292 2.632 
1.2 -369.75 495.66 -1294.92 0.3405 2.720 
1.4 -301.99 388.71 -986.65 0.3583 2.845 
1.6 -254.99 318.11 -783.24 0.3844 3.033 
1.8 -220.53 268.92 -642.77 0.4183 3.283 
2.0 -194.14 233.07 -542.07 0.4586 3.588 
2.25 -168.70 200.19 -451.94 0.5161 4.030 
2.5 -148.92 175.86 -387.37 0.5791 4.519 
2.75 -133.07 157.15 -339.36 0.6457 5.037 
3.0 -120.06 142.28 -302.48 0.7141 5.569 
3.5 -99.90 120.06 -249.71 0.8511 6.637 
4.0 -84.96 104.14 -213.73 0.9834 7.666 
4.5 -73.42 92.10 -187.46 1.1078 8.636 
5.0 -64.23 82.63 -167.31 1.2239 9.542 
6.0 -50.48 68.63 -138.19 1.4339 11.184 
7.0 ^0.683 58.72 -117.98 1.6209 12.650 
8.0 -33.346 51.328 -103.05 1.7919 13.992 
9.0 -27.646 45.582 -91.55 1.9514 15.244 
10 -23.090 40.984 -82.39 2.1023 16.427 
11 -19.366 37.216 -74.93 2.2463 17.556 
12 -16.267 34.069 -68.73 2.3846 18.641 
14 -11.407 29.105 -58.988 2.6472 20.699 
16 -7.776 25.358 -51.679 2.8947 22.638 
18 ^.965 22.423 -45.981 3.1299 24.481 
20 -2.729 20.060 -41.408 3.3550 26.244 
22 -0.911 18.113 -37.653 3.5715 27.939 
23 -0.125 17.262 -36.014 3.6768 28.764 
24 0.592 16.479 -34.509 3.7804 29.575 
25 1.250 15.757 -33.121 3.8824 30.374 
26 1.855 15.088 -31.837 3.9828 31.160 
28 2.928 13.888 -29.537 4.1795 32.700 
30 3.850 12.841 -27.534 4.3709 34.199 
35 5.663 10.729 -23.496 4.8301 37.793 
40 6.986 9.123 -20.432 5.2659 41.204 
45 7.985 7.860 -18.024 5.6828 44.466 
50 8.758 6.838 -16.077 6.0837 47.603 
60 9.860 5.286 -13.117 6.8465 53.570 
70 10.586 4.1591 -10.967 7.5673 59.208 
80 11.0827 3.3033 -9.329 8.2549 64.585 
90 11.4314 2.6306 -8.038 8.9149 69.746 
100 11.6795 2.0876 -6.994 9.5519 74.726 
120 11.9830 1.2650 -5.403 10.7689 84.240 
140 12.1311 0.6715 -4.2464 11.9245 93.272 
160 12.1903 0.2235 -3.3667 13.0310 101.919 
180 12.1956 -0.1262 -2.6743 14.0968 110.248 
200 12.1673 -0.4063 -2.1150 15.1284 118.308 
225 12.1026 -0.6863 -1.5506 16.3769 128.062 
250 12.0183 -0.9096 -1.0953 17.5862 137.510 
273.16 11.9301 -1.0791 -0.7458 18.6765 146.027 
275 11.9228 -1.0913 -0.7205 18.7620 146.695 
298.15 11.8289 -1.2315 -0.4280 19.8245 154.994 
300 11.8212 -1.2418 -0.4065 19.9084 155.649 
325 11.7167 -1.3680 -0.1398 21.0288 164.400 
350 11.6113 -1.4752 0.0893 22.1260 172.970 
375 11.5063 -1.5671 0.2883 23.2024 181.375 
400 11.4026 -1.6465 0.4626 24.2598 189.633 
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Table 5. Thermophysical properties of He calculated in this work. Calculated quantities are printed with at least one 
excess figure as an aid in smooth interpolation; for the uncertainties of S and its derivatives use Eqs. (25) and Table 6; 
for the uncertainties of 77 and A use Eq. (37)—continued. 

T B TB' r-B" ri A 
(K) (cm mol" ) (cm'mol"') (cm'mol"') (A(Pa-s) (mWm"'K"') 

450 11.2008 -1.7763 0.7531 26.3241 205.753 
500 11.0082 -1.8771 0.9850 28.3298 221.413 
600 10.6523 -2.0209 1.3306 32.1959 251.596 
700 10.3332 -2.1157 1.5740 35.9049 280.550 
800 10.0462 -2.1802 1.7529 39.4880 308.517 
900 9.7867 -2.2251 1.8887 42.9671 335.670 
1000 9.5505 -2.25660 1.9943 46.3584 362.135 
1200 9.1354 -2.29376 2.1455 52.924 413.367 
1400 8.7804 -2.31003 2.2454 59.256 462.771 
1600 8.4715 -2.31430 2.3139 65.402 510.71 
1800 8.1990 -2.31131 2.3617 71.395 557.46 
2000 7.9559 -2.30378 2.39552 77.259 603.20 
2500 7.4448 -2.27457 2.44221 91.470 714.02 
3000 7.03314 -2.23916 2.45852 105.185 820.95 
3500 6.69073 -2.20239 2.45921 118.527 924.97 
4000 6.39902 -2.16616 2.45129 131.578 1026.70 
4500 6.14591 -2.13125 2.43847 144.394 1126.60 
5000 5.92310 -2.09794 2.42281 157.018 1224.99 
6000 5.54615 -2.03623 2.38740 181.810 1418.18 
7000 5.23652 -1.98063 2.35026 206.135 1607.72 
8000 4.97538 -1.93035 2.31346 230.116 1794.54 
9000 4.75070 -1.88461 2.27786 253.835 1979.31 
10000 4.55433 -1.84276 2.24378 277.355 2162.52 

with coefficients listed in Table 6. The table also 
includes an uncertainty calculation for the acoustic vir- 
ial 

p^=2B + 2{y,-\)TBfH7,-\fT'lflY„      (26) 

where % = 5/3 for helium. Equation (25) represents the 
uncertainties of S, TB', and T^B" within 2 %, 3 %, and 
2 % (rms), respectively, and with a maximum error less 
than 10 %. The uncertainty of j8„ is represented within 
2 % (rms) with a maximum error of 5 %. As noted pre- 
viously, the uncertainty of ^o, has a large coverage fac- 
tor k^,~2; a similar coverage factor applies to the 
uncertainties expressed in Eq. (25) and Table 6. 

Figures 5-7 show that that the effects of neglecting 
the diagonal Bom-Oppenheimer correction are no larg- 
er than the uncertainties so assigned, and that the effect 
of using nuclear rather than atomic masses is less than 
the uncertainties except at the highest temperatures. 
The differences between values of B{T) calculated with 
007 and 000 [1] differ by less than the combined uncer- 
tainties (Eq. (25), Table 6 of Ref [1]). 

As noted above, the integrals required for B^ and its 
temperature derivatives were done numerically. The 
automatic integration routine was controlled by speci- 

fying an error criterion, which was set sufficiently low 
that errors in B and its derivatives due to the numerical 
integrations were negligible. This process only insures 
that the spline-approximated integrand is integrated 
accurately. It is of more interest to insure that the 
approximation of the sum term by a spline does not 
introduce a significant error into the calculation. To 
estimate this, the number of knots was reduced by elim- 
inating alternate knots, and recalculating B{T) and its 
derivatives with the cruder spline approximation. The 
absolute fractional differences of the two evaluations of 
B{T) was less than 3x10"' except near the zero of B{T). 
The maximum absolute fractional differences of the 
two evaluations of TB'{T) was 4 x 10"', and the maxi- 
mum absolute fractional differences of the two evalua- 
tions of T^B'XT) was 2x10^. 

We recommend the use of cubic spline interpolation 
for estimation of B(T) between temperatures listed in 
Table 5. Our tests of such interpolations indicate that 
the fractional interpolation error is generally much less 
than 10"* except at the temperature extremes. 
(Interpolation near the extremes can be improved by 
using the tabulated higher derivatives to set the end 
conditions.) 
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Table 6. Coefficients in Eq. (25) for estimating the uncertainty of B(T) and its temperature derivatives. 

Property CQ CJ CJ CJ C^ 

B 0.1341 -1.4474 0.0960 -0.00327 - 
TB' 0.6612 -1.8415 0.2173 -0.02476 0.00128 
T^B" 1.8238 -2.2109 0.3379 -0.04263 0.002166 
/3„ 0.2661 -1.4560 0.1134 -0.00479 - 

5.    Viscosity and Thermal Conductivity 

The kinetic coefficients depend on the quantum 
cross-sections [30] defined by 

a ,(2) 8;r^ (2^ + 1X^+2)  . , 

^§       2^ + 3       "" ^'' -''-^' (27) 

2{l + \){l + 2){2e +61-3) 

{2i-\){2i+2,){2i+l) 

(^ + 1)(^ + 2)(^-F3)(^+4)   .  2 

sin'(5, -5f^^) 

(21 + 2,){21+5){21+1) 
sin {5f -df^J (28) 

and 

^6) _S?ry 
2    ^^ 

i5(e+i)(i+2)(e +6r +r -24^+9) 

(2^-3)(2/-l)(2/+3)(2^+7)(2^+9) 
sin (5,-5,^,) 

3(<' + l)(/ + 2)(/+3)(^+4)(2r+10^-5)   . 
+ sm (6,-df^J 

(2/-l)(2/ + 3)(2^+5)(2^+7)(2^+ll) 

(e +1)(/ + 2)(/+3)(^ +4)(^ +5)( e +6) 

(2/ + 3)(2^ + 5)(2^ + 7)(2<'+9)(2C+ll) 
sin (5,-5,^J (29) 

Equations (27)-(29) converge rapidly; numerical 
evaluation was straightforward. The collision integrals 
needed for computation of kinetic coefficients are 
expressed in terms of normalized cross sections, 
defined for even « > 0 by 

Q' 
,(«)* Q' 

i(«) 

7tr^„n/{n + l) 
(30) 

where r„ (actually an arbitrary length) is the radial posi- 
tion of the potential minimum. The collision integrals 
are defined as 

Q 
is+mkjy^'    ' (31) 

mal conductivity [35]. The collision integrals were cal- 
culated by using cubic spline representations of the col- 
lision integrals, and dividing the integrals in Eq. (31) 
into 11 sub-intervals, with limits 0-10"'", lO-'^-lO"', 
. . . 0.1-1. This division insured adequate sampling of 
the integrands, whose peak locations vary rapidly with 
temperature. (The errors introduced by truncating the 
infinite integral are neglibible.) 

The viscosity is [35,36] 

5Jnmk„T     , , 
(32) 

where /^*"' is obtained by solving a set of linear equa- 
tions 

B^ 

bn   K   A3   K   hi 
O21       O22       O23       t^4       t^5 

^3       K       hi       K       ^5 

hi  hi  hi   hi   hi 

rn (\\ 

4 0 

^ = 0 

4 0 

UJ 0 
V     / 

(33) 

for E,i =f^"''lbii. The components of the symmetric 
matrix B are listed in Appendix A of Ref. [35]. In par- 
ticular, since b^ = 4Q*''^**, the viscosity can be 
expressed as 

4;rr, 
(34) 

Similarly, the thermal conductivity can be determined 
from the solution of 

AC=e:, (35) 

where the components of A are defined in Appendix B 
of Ref [35], and f is a column vector with components 
Q. The thermal conductivity depends only on C,{. 

where fi = E,J{kgT). Colhsion integrals with n = 2, s = 
2, 4,... 10; « = 4; 5 = 4, 6, 8; and « = 6,5 = 6 are need- 
ed for the fifth-order calculation of viscosity and ther- 

ISkg^KinkgT 
^ ~ ~2 bl- 16OTr, 

(36) 

89 



Volume 112, Number 2, March-April 2007 

Journal of Research of the National Institute of Standards and Technology 

To insure that the complicated formulas for the com- 
ponents of B (and the corresponding matrix for the 
thermal conductivity) were transcribed accurately, the 
following procedure was followed. The formulas were 
extracted from an electronic copy of Ref [35]. These 
were further edited to conform with Fortran notation. 
Subsequently, Viehland provided Fortran codes that 
generated the Fortran code for calculating the matrices 
directly [37]. Numerical evaluations using the two 
implementations were identical within machine preci- 
sion. 

Errors in the numerical integrations required for cal- 
culating rj and X were estimated by eliminating alter- 
nate knots in the spline representations of the collision 
integrals and repeating the calculations. The two values 
of ri{T), and the two values of A(7) so determined had 
an absolute fractional difference of less than 3 x 10"* at 
r = 1 K. This difference declined with T and remained 
below 1.2 X 10-'forr>20K. 

The viscosities and thermal conductivities deter- 
mined in this work are listed in Table 5. Figure 8 and a 
nearly identical figure for AX IX show the sensitivity of 
the calculations to the choice of potential and the 
choice of nuclear instead of atomic masses. The effects 
of using potential 0o7± is nearly symmetric. Half of the 
differences between values of r\ ox X calculated with 
these two potentials approaches 0.35 % at low temper- 
ature. The differences reverse sign near 42 K. Above 
this temperature, the half-difference is bound by 
0.02 %. A reasonable estimate of the the relative uncer- 
tainty U^ in either rj or A is the minimum of 0.35 % and 
the equation 

kJJivi) = kJJiX) = 0.0002 + 0.005 YUT.       (37) 

Values of the viscosity and thermal conductivity at 
temperatures between those listed in Table 5 can be 
obtained by interpolating with cubic splines. Our tests 
indicate that cubic spline interpolation introduces a 
fractional error of less than 10"' except near the temper- 
ature extremes. 

6.   Validation of Computations 

The Fortran code used for calculating the phase 
shifts and for subsequent calculation of the thermo- 
physical properties was tested by an independent devel- 
opment of new codes by one of us (Mehl) to test the 
results of Hurly and Moldover [1]. The test demonstrat- 
ed excellent agreement of the sum (9) and the quantum 
cross-sections (27)-(29). 

The test revealed two errors in the calculation of the 
thermophysical properties reported in Ref. [1]. The first 
was an incorrect sign assigned to the bound-state con- 
tribution to the published virials, which mainly affect- 
ed the low temperature results for '^He and for ^He-'*He 
mixtures. The second was due to inconsistent units con- 
version. The code used by Hurly to calculate the ther- 
mal conductivity was based on the equivalent of Eq. 
(36) in Hirschfelder et al. [36]. Their Eq. (8.2-31) uses 
a calorie unit in a numerical prefactor. Conversion of 
this to J using a current definition of the calorie intro- 
duced a factor of 1.000545 error in the thermal conduc- 
tivity results published in Ref. [1]. The published val- 
ues are high by this factor. 

7.    Comparisons Witli Recent 
Experiments 

Hurly and Moldover [1] compared their results with 
a wide range of experimental results. Here we limit our 
comparisons to a few accurate experiments published 
since 2000. Figure 9 compares the recent second virial 
measurements of McLinden and Losch-Will [38]. The 
agreement is excellent. 

Figure 10 compares the recent measurements of the 
acoustic virial by Pitre, Moldover and Tew [5]. The 
measurements fall well within the combined (A:„ = 2) 
uncertainty of the predicted slope j3„ and the experi- 
mental uncertainty except at high temperatures, where 
the disagreement is on the order of the scatter in the 
measurements. 

Berg's high quality measurement of the viscosity 
[39,40] at 298.15 K (expressed with a ^„ = 2 uncertain- 
ty), (19.842 ±0.014) //Pa-s, and the calculated value 
(19.824 ± 0.004) ^Pa-s differ by the sum of their /r„ = 2 
uncertainties. 

8.    Concluding Remarks 

As shown in Fig. 3, multiple research groups have 
provided us with very accurate ab initio "data" at 4.0 
and 5.6 bohr. In order to fully exploit these data, it 
would be desirable to have theoretical potentials of 
similar accuracy at nearby r. The most demanding gas 
metrology is conducted near 273 K; thus, it would be 
very desirable to generate ab initio values of the poten- 
tial at, for example r = 3.89 and 4.13 bohr (correspon- 
ding to 0 = 200 K and 450 K) with uncertainties com- 
parable to those already achieved at 4.0 and 5.6 bohr. 
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