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It is of interest to fabricate curved surfaces in three dimensions
from homogeneous material in the form of flat sheets. The aim
is not just to obtain a surface which has a desired intrinsic
Riemannian metric, but to get the desired embedding in R3

up to translations and rotations. In this paper, we demonstrate
three generic methods of moulding a flat sheet of thermo-
responsive plastic by selective contraction induced by targeted
heating. These methods do not involve any cutting and
gluing, which is a property they share with origami. The first
method is inspired by tailoring, which is the usual method for
making garments out of plain pieces of cloth. Unlike usual
tailoring, this method produces the desired embedding in R3.
The second method just aims to bring about the desired
new Riemannian metric via an appropriate pattern of local
contractions, without directly controlling the embedding. The
third method is based on triangulation, and seeks to induce
the desired local distances. This results in getting the desired
embedding in R3. The second and the third methods, and also
the first method for the special case of surfaces of revolution,
are algorithmic in nature. We explain these methods and
show examples.
1. Introduction
Common materials such as steel, paper, plastic and cloth are
usually produced as flat sheets. More complicated curved and
folded shapes have to be fashioned out of such flat sheets. For
example, dresses are tailored for the human form out of a cloth
which is flat, or globes of the earth with maps are fashioned
from printed flat sheets. Footballs are often made by stitching
together a very large number of small flat pentagonal and
hexagonal pieces of leather.

All these curved surfaces are made by cutting out various
shapes from a flat sheet and then gluing, welding or stitching
together some of the resulting pairs of edges. In contrast to this,
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in nature there are situations where a surface in R3 is either generated or gets modified because of local

contractions and expansions of a flat sheet or some other prior shape, without any cutting or gluing [1–3].
This raises the question of how to mould a desired curved shape from a flat sheet by using selective local
expansion and contraction, but without any cutting and gluing [4–6]. One may compare this question
with those approaches of moulding that are inspired by the art of origami, which is to approximate
three-dimensional shapes from a flat sheet of paper by folding but without cutting or gluing [7–13]
For us, folding is to be replaced by selective local expansions/contractions. Such expansions/
contractions appear to be more intrinsic to the surface—and therefore more natural—than folds, as
folds need to be implemented from the outside by an external agent.

In this paper, we discuss three methods of making such curved surfaces from a plastic material which
contracts on heating and remains contracted after returning to room temperature. It will be clear from §2
that there is no loss of generality in confining ourselves to contractions alone (instead of using both
contractions and expansions) because of a certain idea that we call the c-trick, which essentially consists
of starting with appropriately larger sheets, so that further expansions are not needed, and contractions
alone suffice. Similarly, we could have worked with materials which only expand, by a modified c-trick
which amounts to starting with appropriately smaller sheets so that local expansions alone suffice to get
the desired shape. It is also possible to work with materials whose expansions or contractions are
temporary, so that the moulded surfaces return to their original flat state after some time. Examples of
such materials include liquid crystalline elastomer [4,14], thermo-responsive polymer gels [5,6] and
hygroscopic surfaces [15]. In this paper, we use a material that contracts, so we will focus on this case,
and not make any more comments about expansions. The first method, which we call the contraction-
tailoring method, is directly inspired by the usual tailoring of clothes. The second method, which we
call Riemannian metric moulding, endeavours to produce a surface which has a prescribed Riemannian
metric. It should, however, be noted that the Riemannian metric on a surface in general does not
correspond to a unique equivalence class of embeddings of the surface in R3 up to Euclidean isometries
of R3. This is related to the somewhat subtle issue of rigidity of Riemannian embeddings, which is
discussed later. The third method, which we call the shape moulding method, endeavours to produce a
surface which has a prescribed shape in R3, where by shape we mean an equivalence class of
embeddings under Euclidean isometric transformations of the ambient R3. Of course, achieving a
desired shape ensures in particular that the desired intrinsic Riemannian metric is obtained. All three
methods depend only on contractions, and do not involve any cutting and gluing.

In what follows, we first recall some geometric concepts relevant to the problem. Then we discuss
some basic theoretical aspects and limitations of the above three moulding methods. Finally, we report
on our practical implementations of these methods where the material is a flat sheet of thermo-
responsive plastic which contracts on heating.

Some earlier experiments reported in the literature aimed at obtaining curved surfaces in R3 from flat
surfaces relied on modifying the flat Riemannian metric of the starting planar surfaces [4,5,16–18]. This
involved stretching, contracting and rotating pre-designated patches on the starting surface to get the
desired new Riemannian metric. However, as we discuss later, this does not uniquely determine the
embedding class (shape) of the resulting surface into R3. While one of our three methods aims to get
the target Riemannian metric and has a similar weakness, our other two methods give us better
control over the embedding into R3.
2. Geometric aspects of the moulding problem
Let R3 denote the three-dimensional Euclidean space, with Cartesian coordinates x, y, z. The Euclidean

distance between two points P1 = (x1, y1, z1) and P2 = (x2, y2, z2) in R3 is given by the Pythagorean formula

kP1 � P2k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x1 � x2)

2 þ (y1 � y2)
2 þ (z1 � z2)

2
q

. A related structure on R3 is its Riemannian metric,

given by the formula ds2 = dx2 + dy2 + dz2, which measures the squared lengths of infinitesimal
displacements of tangent vectors.

If M is a surface embedded in the three-dimensional Euclidean space R3, then the two kinds of
metrics on the ambient R3 (‘distance metric’ and ‘Riemannian metric’) induce corresponding
structures on M. The Riemannian metric induced on M can be locally expressed as ds2 =E du2 +
2F du dv+G dv2 in terms of a local coordinate patch (u, v) on M, where E, F, G are functions of u, v.
For P, Q∈M, the induced distance metric ‖P−Q‖ is simply the straight line distance between P and
Q in the ambient R3 (which may be much shorter than the geodesic distance between these points onM).
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Our aim is to fashion a surface M , R3 by deforming a flat piece D of plastic, which has its starting

intrinsic distance and Riemannian metric induced by its inclusion in the Euclidean plane R2. Note that D
can be any suitable domain in R2, for example, a disc or a rectangle or an annulus. Such a fashioning
corresponds to a sufficiently smooth continuous map w from D into R3 which maps D
homeomorphically onto M. Note that such a w is far from unique; that is, if one such w exists, then
there are uncountably many other such w’s possible. We want a method of moulding D which will,
for a desired M , R3 which is abstractly homeomorphic to D, first choose a suitable embedding
w :D ! R3 whose image is M (up to an isometry of R3 ), and then bring it about physically. Note that
the distance metrics of D and M (as subspaces of R2 and R3, respectively) are different, and moreover
w will not usually carry the intrinsic Riemannian metric of D into that of M, though there are
exceptional cases such as rolling a flat sheet into a portion of a cone or a cylinder where the distance
metric changes but the Riemannian metric remains the same. As our method of moulding is by
thermal contraction, it is necessary for us that w should everywhere be a contraction in terms of the
original flat Riemannian metric on D.

We now precisely formulate the condition that w : D→M is everywhere a local contraction. Let X, Y
be Cartesian coordinates on D and let x, y, z be Cartesian coordinates on R3. Let

w(X, Y) ¼ (w1(X, Y), w2(X, Y), w3(X, Y)) [ R3: (2:1)

Then the Riemannian metric dx2 + dy2 + dz2 on R3 pulls back under w to the Riemannian metric E dX2 +
2F dX dY+G dY2 on D where

E(X, Y) ¼ @w1

@X

� �2

þ @w2

@X

� �2

þ @w3

@X

� �2

,

F(X, Y) ¼ @w1

@X
@w1

@Y
þ @w2

@X
@w2

@Y
þ @w3

@X
@w3

@Y

and G(X, Y) ¼ @w1

@Y

� �2

þ @w2

@Y

� �2

þ @w3

@Y

� �2

: (2:2)

The condition that w is a contraction at (X, Y ) means both the eigenvalues of E F
F G

� �
are ≤1 at (X, Y ),

that is, (Eþ Gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(E� G)2 þ 4F2

p
)=2 � 1 at (X, Y ).

If an initially chosen mathematical candidate map w : D→M is not everywhere a contraction, then we
can systematically modify D and w by the following trick, which we call the c-trick. We first choose a
constant c≥ 1, such that at any point of D, the infinitesimal linear amplification made by the map w is
bounded above by c, that is

max
D

Eþ Gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(E� G)2 þ 4F2

p
2

� c2: (2:3)

Now letD� be a new flat piecewhich is c timesD (the linear dimensions ofD� are c times the corresponding
linear dimensions D). Let the map ψ : D� →D be the homeomorphism which is an isotropic contraction
by the factor c. Let X�, Y� be Cartesian coordinates on D� with X=X�/c, Y� =Y/c. Then w� =w ○ψ is
everywhere a contraction on D�, as the old E, F, G are now replaced by

E�(X�, Y�) ¼ E(X�=c, Y�=c)
c2

,

F�(X�, Y�) ¼ F(X�=c, Y�=c)
c2

and G�(X�, Y�) ¼ G(X�=c, Y�=c)
c2

: (2:4)

With this, we get maxD� ((E� þ G� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(E� � G�)2 þ 4F�2

p
)=2) � 1. Thus, replacing the original candidate

(D, w) as the starting point for moulding by the pair (D�, w�) ensures that the modification is
everywhere a contraction.

The possibility of replacing (D, ϕ) by (D�, ϕ�) shows that there is no loss of generality in limiting our
methods to contraction alone, without the need for any expansion.
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2.1. Surfaces of the form z= f (x, y)

If a surface M is given by an equation z= f(x, y) defined on D , R2, then the inverse of the vertical
projection on the x,y-plane gives a function w : D→M. In terms of the induced curvilinear coordinates
x, y on M the metric on M takes the form ds2 ¼ (1þ f2x ) dx

2 þ 2fxfy dxdyþ (1þ f2y ) dy
2. If grad( f ) is 0

at (x, y)∈D, then both the eigenvalues are 1 as the vertical projection is an isometry infinitesimally
near the point. In general, the two eigenvalues are 1 and 1+ ( fx)

2 + ( fy)
2≥ 1, corresponding to

eigenvectors grad( f )⊥ and grad( f ). Hence, in this case, we can take any c such that

max
D

(1þ f2x þ f2y ) � c2: (2:5)

The transformations w : D→M and w� : D� →M, in the case where w is the inverse of a vertical
projection M→D, are illustrated in figure 1. We have w� =w ○ψ where ψ : D� →D is the contraction by c.
R.Soc.open
sci.7:200011
3. Moulding by contraction
We use a thermo-responsive polymer sheet commercially known as Shrinky Dink [17,19–21], a material
that contracts when heat is applied, as our plain sheet D from which the curved shape M is to be
moulded. If heated uniformly by painting it black and exposing it to infrared light for a few minutes,
a free-standing piece of this material contracts isotropically by a multiplicative factor γ of 0.4, and
becomes approximately 6∼ 1/(0.4)2 times thicker. If only a part of a piece of the material is painted
black, then the result is more complicated as it depends on the unheated boundary which retains its
original length. On heating, a painted strip bends more towards the blackened side which is hotter,
just as a bi-metallic strip bends because of differential contraction [19]. The three methods of
moulding described here are not particularly limited to the kind of thermo-responsive polymer sheet
chosen for the experiments presented in the paper. These methods are general and should also apply
to other suitable materials [5,6,13–15,22–27].

In our experiment, the heating responded nonlinearly to the degree of shading intensity, with a
negligible response below a certain threshold and a nearly full response above it. This made it more
convenient to use a tiled pattern of black and white regions instead of smoothly varying shading. For
such tiled patterns to be effective, we found that the black (white) regions should not be too small,
otherwise they lose (gain) too much heat to (from) the surroundings.

3.1. Experimental details
The thermo-responsive polymer sheets thatweused inour experimentswere commercially sourced andwere
of the brand ‘Shrinky Dink’ These sheets are 0.25mm thick and they contract when heated to temperatures
greater than 100°C. The three protocols of moulding as described in the paper require us to selectively heat
specific portions of the sheet. This was achieved by printing black patches on the sheet using an office laser
printer [20].We used a 150Winfrared incandescent bulb as a heating source. The black patches selectively get
hot and contract as they absorbmore radiation. To ensure uniform coverage of radiation, the plastic pieces of
the material were kept at a distance of ≈16 cm from the bulb, and the pieces were continuously rotated. The
distance between the bulb and the piece of thematerialwas suitably chosen to obtain a homogeneous level of
radiationwhichwould heat a blackened disc of 10 cmdiameter to about 100°C in a fewminutes. To avoid the
substrate from getting hot, the shrinkable polymer piece was placed on a flat Teflon sheet. Teflon does not
absorb the radiation efficiently and hence remains relatively cold (≈45°C). This ensures that there is no
significant heating by conduction, which would affect the white (non-printed) parts also. The duration of
heating was set by visual inspection of the emerging moulded shape. The temperature of the sheet was
monitored using an infrared camera (FLIR A600).

The implementation of the metric moulding and the distance moulding via triangulation involves
extended exposure of the material to the radiation. To prevent the white portions from getting soft by
thermal conduction we reinforce the white portion by selectively printing a 0.5mm coating of ABS
plastic on it using a three-dimensional printer.

3.1.1. Features of the practical implementation

(i) The black regions soften (elastic modulus is of the order of 1MPa) and contract on exposure to
thermal radiation. For our fixed regime of thermal exposure that is detailed above, we define a



j* = j �y

j

y

M

D

D*

Figure 1. The figure shows a schematic of the maps w : D→M, ψ : D� → D and the composite map w� =w ○ψ.
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dimensionless quantity γ, which we call the contraction coefficient as the ratio

g ¼ the length of a black region after contraction
its original length

¼ b0

b
: (3:1)

The factor γ depends on the original length b of the black region. This dependence is graphically
depicted in figure 2a. As can be seen from the graph, γ is approximately constant ≈0.5 for b≥ 4
mm. Below 4mm, the contraction coefficient approaches 1 because of the heat loss to the
neighbouring white region. The exact nature of the curve in figure 2a is dependent on the
extent of the white region that surrounds the black region.

(ii) When our experimental protocol was applied to identical pieces of plastic, each of which was
uniformly painted to a different degree of blackness varying from white to shades of grey to
black, it was observed that the contraction coefficient γ responded nonlinearly to the degree of
shading intensity, with a negligible response below a certain threshold. This made it more
convenient to use a tiled pattern of black and white regions instead of smoothly varying
shading. As explained earlier, the black and white regions should not be too small so that the
undesired effect of thermal conduction is kept limited.

(iii) On exposure to radiation, the printed side heats more and therefore, whenever possible, the sheet
bends towards the printed side much as a bi-metallic strip bends, because of differential
contraction. This effect, though unintended, can be put to use as explained in §5. One of the
uses is to choose a particular chirality for the moulded shape. Geometrically speaking, a flat
plastic disc or rectangle D in R2 has no physically preferred orientation (chiral structure). On
the other hand, a surface M in R3, though diffeomorphic to D, can have a chirality (for
example, a rectangular strip can become a winding spiral ramp, which could be right-handed
or left-handed). The question arises whether the black and white pattern can be so given to
produce the desired chirality. This is indeed possible by selectively painting on one side or
other on different locations on D which converts D into an a-chiral object (its mirror image is
not obtainable from itself by just a translation and a rotation in R3—see the appendix in the
arXiv version-1 of Ghosh et al. [28] for a relevant discussion on chirality. This appendix is not
included in the published version of the paper [29]).

(iv) Because of imperfections and lack of uniformity of heating, it can happen that chiral symmetry
can get broken in unintended ways, which we may call a spontaneous breaking of chiral
symmetry. An example of this is shown in figure 2c. The figure shows a twisted shape that is
generated by heating a strip with a pattern that is shown in the inset of the figure. The sense
(chirality) of the twists are not determined by the pattern of blackening, but arises out of
spontaneous breaking of chiral symmetry.

(v) It is not desirable to have a large black region surrounded by a white region, as the middle of the
black region thins on heating, with the material migrating to the boundary. This happens
because the temperature in the central part of the black region becomes higher making the
material there softer, and therefore susceptible to the contracting elastic pull exerted by the
boundary which is anchored to the surrounding colder and hence more rigid white region.
The thermal images and the temperature profiles that bear the above point are shown in
figure 2e,f. An extreme example of this phenomenon is that when subjected to overheating
induced by prolonged exposure, a mechanical tear develops in the middle of a black region
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Figure 2. Panel (a) shows the variation of the width b0 of a black strip after contraction by heating, as a function of its initial width
b. The inset in the top shows the variation of the contraction coefficient γ= b0/b as a function of b. The bottom inset to (a) shows
that on heating the plastic bends towards the black region. The panel (b) show that the deformations do not penetrate much into
the closed white regions that are entirely surrounded by black regions. (c) The figure shows the twisting of a 1 cm wide strip of
plastic on which the pattern in the inset is printed (entirely on one side). While the printed strip is achiral, on heating it gets twisted
into a structure in which the sense of the twist (marked by the circular arrows) changes along the length, demonstrating a
spontaneous breaking of chiral symmetry. The panels in (d ) show the thermo-graphs of a printed disc (6 cm in diameter) of
plastic for different durations of heating. These thermographs were obtained using a infrared camera (FLIR A600). (e) The
graphs show the variation of temperature as a function of time for locations on the disc marked by (i), (ii) and (iii) in the
inset. The green line and the magenta line, respectively, show the temperature variation at the centre of the black printed
region and in the white region. The blue line shows the temperature variation of the Teflon piece on which the material is
kept. The photograph in (e) shows the deformation and rupture of a black region that is completely surrounded by a white
region, when exposed to infrared light. ( f ) The figure shows the temperature variation in the centre of the black patches of
different sizes.
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which is surrounded by a white region. This can be seen in the inset of figure 2e, in which the
black material has moved closer to the nearest edge, leading to the creation of multiple thick
and thin regions. Prior to overheating, the sheet develops a small negative Gaussian
curvature, which disappears when the centre of the black region develops some tears.

(vi) While being heated under our experimental protocol, the temperature at a point on the sheet
decreases as we move away from the black region into the white region. It drops below 90°C
in about 4mm from the boundary of the black region. There is no discernible contraction at
temperatures below 90°C, so as one moves away from the black region into the white region,
the contraction coefficient rises from 0.5 to 1 within 4mm. This tells us that to be a non-
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contracting region, the width of a white patch or strip which has a large neighbouring black

region has to be considerably more than 4mm. However, this limitation can be overcome by
coating the white region by a rigid material before heating. In our experiments, we have used
a 0.5mm coating of ABS plastic as the rigid material.

(vii) If the boundary of a small closed region is darkened but its interior is kept white, then even after
heating the interior region remains flat w.r.t. the ambient Euclidean 3-space, while the exterior
may acquire a curvature w.r.t. the ambient Euclidean 3-space depending on the design pattern,
including the pattern further outside (figure 2b(i)(ii)). It is noteworthy that this kind of pattern
enables us to fold the material along a closed curve. Surfaces so moulded are shown in figure 2b.
Such folds along curves are possible with our method because of the induced deformations in the
metric, in contrast to folds in the style of traditional origami, which are necessarily only along
intrinsic straight lines (geodesics) on a sheet of paper, as the intrinsic metric remains unchanged
in origami. (There are modifications to origami designed to overcome this restriction [30].)

(viii) The thickness of the material that we presently use makes it difficult to go below sizes smaller
than a few millimetre (figure 7d,e) but this is not a fundamental limitation. Indeed, thinner
thermo-responsive materials could be used after solving the problem of how to deposit the
needed heat-responsive patterns. However, the problem of undesired thermal conduction is
likely to become more acute as the size becomes smaller.

(ix) It follows from the electronic supplementary material, figure S3 that the stresses exerted by the
contraction of the black regions are greater than 0.5MPa. This stress is sufficient to bend the
white regions. Once the designed contraction has taken place the heating is switched off. This
leads to a rapid rise in the elasticity (from the order of 1MPa to the order of 1GPa) of the
black region which had turned soft during the heating. With the restoration of the elasticity,
the stresses created by the altered geometry hold the various regions in their new bent shapes.

3.2. Additional remarks on practical implementation
It is desirable to transfer heat very rapidly (flash heating), which has the twin advantages that the change
of shape, which happens more slowly compared with the time scale of rapid heating, does not interfere
with the scheme of heating by radiation and the white (non-radiated) region remain cold, which would
otherwise have heated up by conduction during a longer process of heating by lower intensity radiation.
One should note that a curved object with a different global topology than that of a flat sheet will have to
be made by cutting and gluing together individual curved pieces moulded by the above method. The
reader’s attention is invited to the electronic supplementary material where the degree to which we
succeed in getting the desired shapes is quantified for some examples.
4. One-dimensional moulding
Before we come to moulding surfaces, it is useful to consider a simplified one dimensional version of the
problem. Suppose that we wish to convert a one-dimensional strip of length L0 into a strip of length L1
after contracting an appropriately chosen part of it by a constant coefficient γ (0 < γ<1), where we must
assume that γL0≤ L1≤ L0. If L0 is made up of a white portion of length w which does not contract and a
black portion of length b that contracts by the coefficient γ, then we get the system of simultaneous
equations w+ b= L0, w+ γb=L1. Solving this gives the unique solution

w ¼ L1 � gL0
1� g

and b ¼ L0 � L1
1� g

: (4:1)

In a one-dimensional moulding problem, we can divide L0 into any sequence of white and black
segments such that the total white length is w and total black length is b, and then heat it to get the
length L1. The actual arrangement of these segments does not matter.

4.1. The case of a periodic one-dimensional moulding (figure 3)
We include here the following one-dimensional calculation which will be important for later use in §§6
and 7. Suppose that we want the one-dimensional black and white pattern along a long strip to be
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Figure 3. The figure schematically shows a one-dimensional periodic pattern of black and white patches (a) and the result after
heating (b). The black patches contract in length by the multiplier γ while the white patches retain their length.
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periodic with period ℓ. This means there will exist a real number α with γ≤ α≤ 1 such that each segment
of length ℓwill contract to give a segment of length αℓ after moulding, and the result after moulding will
be periodic with period αℓ. The value α= γ corresponds to an entirely black pattern, and the value α= 1
corresponds to an entirely white pattern. Suppose that the pattern in a basic segment [0, ℓ] is as follows.
There are numbers δ and b such that

0 ,
d

2
,

‘� b
2

,
‘þ b
2

, ‘� d

2
, ‘, (4:2)

and the three black segments are [0, δ/2], [(ℓ− b)/2, (ℓ+ b)/2], [ℓ− δ/2, ℓ], and the remaining two
segments [δ/2, (ℓ− b)/2] and [(ℓ+ b)/2, ℓ− δ/2] are white. The value of δ is the smallest width of a
black portion for which the heating is effective, without too much loss by conduction, which is
approximately 4mm for our experimental set-up. We want the length of the middle black segment to
be ≥δ, which means

b � d: (4:3)

Also, ℓ≥ b+ δ, so we have

b � ‘� d: (4:4)

The end black portion of length δ/2 in one basic segment is contiguous with the beginning black portion
of length δ/2 in the next basic segment, so together they have a contractible length δ. As the total black
portion in the basic segment has length b+ δ, which contracts to γ(b+ δ) on heating, the basic segment
contracts to a new length ℓ− b− δ+ γ(b+ δ) =ℓ− (1− γ)b− (1− γ)δ. Hence we must have

‘� (1� g)b� (1� g)d
‘

¼ a, (4:5)

which on solving for b gives

b ¼ 1� a

1� g

� �
‘� d: (4:6)

.
As we must have δ≤ b≤ℓ− δ, this gives

g � a � 1� 2(1� g)
d

‘
: (4:7)

We can change the original problem by changing α to α/c, which is the result of a c-trick. Hence if the
original α does not satisfy the above inequalities, we choose a c such that α/c satisfies them, that is, we
must choose a value of c such that

c [
" a

1� 2(1� g)
d

‘

,
a

g

#
: (4:8)

Such a value of c exists as the above interval is non-empty, which follows from inequality (4.6).
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In the case where we want α to vary from one lattice segment [nℓ, (n+1)ℓ] to other, then b will vary

across these lattice segments. In order that a common constant c exists, we must have

amax

1� 2(1� g)
d

‘

� amin

g
: (4:9)

This can be satisfied by taking δ/ℓ to be sufficiently small provided we have

amin

amax
� g: (4:10)

The above inequality needs to be satisfied by our moulding problem for the given physical material
which has contraction coefficient γ.
rsos
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5. Contraction tailoring
The standard tailoring method to produce an approximately curved surface from a cloth is to cut out and
discard curvilinear wedges (darts) from the cloth and then to stitch together two of the resulting edges
[31]. Sometimes, a piece shaped like an eye is cut out, and the two edges are stitched together. Instead of
cutting out the wedges, one can sometimes form folds in the style of origami [32,33], or ‘pleats’ as in
many common garments [31], to achieve a somewhat similar result, but with the presence of folds.

It is to be noted that tailoring does not affect the Gaussian curvature1 κ of the cloth away from the
stitches, where it remains flat (means κ remains 0). In a tailored garment, the curvature is
concentrated near the stitches, where the material deforms a bit, and also there are singularities such
as vertices of cones and edges of pleats, where the intrinsic or extrinsic2 curvatures get concentrated.
The process of cutting out darts and bringing two edges close can be approximated by the contraction
produced by selective heating of a pattern of darts. The stiffness of plastic (in contrast to the
floppiness of cloth) allows us to use tailoring to fashion a shape in R3, i.e. to have a prescribed
embedding in R3 up to isometries of R3.

Unlike the other methods (metric moulding and distance moulding) that we discuss later, in which
we specify an algorithm to achieve a given shape, we do not suggest a general algorithm for
contraction tailoring, except in the case of suitable surfaces of revolution.

5.1. Surfaces of revolution
Let r= (x2 + y2)1/2 denote the radial distance from the z-axis in R3. Suppose that a surface M , R3 is a
surface of revolution around the z-axis, which is topologically either a disc or an annulus. In
parametric terms, such an M can be given as follows. In the case where M is topologically a disc, it
must intersect the z-axis in a single point (0, 0, z0). In the case where M is topologically an annulus,
the inner perimeter of the annulus will correspond to a circle z= z0, (x

2 + y2)1/2 = s0 on M of radius s0 >
0. The family of planes ycosθ− xsinθ= 0 in R3, parametrized by the angle θ, will intersect M in a
family of geodesics Cθ. Let s denote the arc-length along any such geodesic, measured by starting
with the initial value s= s0. In the case where M is homeomorphic to a disc, the inner perimeter of the
annulus is just a point, and we have s0 = 0. The surface M is parametrically given by x= r(s)cosθ, y=
r(s)sinθ, and z= h(s), where r(s) and h(s) are functions of s. Let s vary from the starting value s0 to a
maximum value s1. We assume that the functions r, h : [s0, s1] ! R are sufficiently smooth. As s is the
arc-length along the radial geodesics on M we have ds2 = dr2 + dz2, hence

dr
ds

� �2

þ dh
ds

� �2

¼ 1, (5:1)

which gives us the inequality

dr
ds

����
���� � 1: (5:2)
1Recall that the Gaussian (or intrinsic) curvature κ is zero, positive or negative at a point, if the ratio of circumference to radius of a
small circle on the surface centred at that point is equal to, less than or greater than 2π, respectively.
2The extrinsic curvature is captured by the second fundamental form. Its eigenvalues κ1 and κ2 are the principal curvatures at a point,
and their product equals the Gaussian curvature, which is the intrinsic curvature κ. It is intrinsic in the sense that it depends only on the
induced Riemannian metric on the surface, and not directly on its embedding into R3.
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Note that we must have r(s) > 0 for all s0 < s≤ s1, and r(s0) is 0 or strictly positive depending on

respectively whether M is homeomorphic to a disc or an annulus. If s0 = 0, then the corresponding
point (0, 0, z0) on M (which is where M intersects the z-axis) is a singular point on M unless dh/ds=0
at s= 0.

Let D , R2 be the annulus centred at the origin with inner radius s0 and outer radius s1, which is a
disc in the case where s0 = 0. Let s denote the distance from the origin, and θ the angle, so that D has polar
coordinates (s, θ). We define w : D→M by (s, u) 7! (r(s) cos u, r(s) sin u, h(s)). This is a homeomorphism,
which takes the radii of D isometrically to the geodesics Cθ on M. The circle Γs of radius s on D
centred at the origin, which has perimeter 2πs, goes to the circle defined on M by the two equations

r ¼ r(s) and z ¼ h(s), (5:3)

whose perimeter is 2πr(s). As r(s0) = s0, and as |dr/ds|≤ 1, we must have 2πr(s)≤ 2πs. Hence each circle
Γs contracts under the map w to give the circle w(Γs) on M. In fact, unless h is a constant function on [s0, s],
we will have a strict inequality 2πr(s) < 2πs.

Being a surface of revolution, the Gaussian curvature of M is a function of s alone, given by the
formula

k(s) ¼ h0(s)h00(s)r0(s)� h0(s)2r00(s)
r(s)(h0(s)2 þ r0(s)2)2

: (5:4)

Based on the function r(s) on D (but without using the function h(s)), we now make a pattern of black
wedge-like shapes on D. The map w : D→M keeps the radial distances in D constant and reduces the
circumferential length by contraction in the angular direction by the factor r(s)/s. The circumferential
reduction can be achieved by drawing a suitable wedge-shaped pattern. The total breadth b(s) of all
the black wedges intersected with the circle Γs is then given in terms of equation (4.1) by

b(s) ¼ 2ps� 2pr(s)
1� g

: (5:5)

This approach is schematically shown in figure 4. Examples of surfaces of revolution that are fabricated
following this method is shown in figure 5.

However, it is important to notice that a surface M involves two functions r(s) and h(s), but our recipe
for tailoring it by contraction just uses the single function r(s), and so it is susceptible to the following
ambiguity as there is no direct control on h(s). Consider two functions h1, h2 : [s0, s1] ! R such that
there is a point s� ∈ (s0, s1) with the following properties:

(i) h1(s) = h2(s) for s< s�,
(ii) h1(s�) = h2(s�),
(iii) h1(s) + h2(s) = 2 h(s�) for s> s� and
(iv) (dh1/ds)(s�) = 0, (dh1/ds)(s) < 0 for s< s� and (dh1/ds)(s) > 0 for s> s�.

Consequently, (dh2/ds)(s�) = 0, (dh2/ds)(s) < 0 for s< s� and (dh2/ds)(s) < 0 for s> s�. Let surfaces M1 and
M2 be defined, respectively, by the pairs of functions (r(s), h1(s)) and (r(s), h2(s)) where r(s) is common.
Notice that if (dr/ds)2 + (dh1/ds)

2 = 1, then automatically (dr/ds)2 + (dh2/ds)
2 = 1 as dh1/ds=±dh2/ds.

These two surfaces coincide for s≤ s�, but are reflections of each other in the plane z= h1(s�) for s≥ s�.
As r(s) is common for M1 and M2, the thickness function b(s) for black wedges is the same for both
these surfaces. This raises the question of how to selectively get M1 or M2 by moulding the flat sheet
D. Also note that the Gaussian curvature for M1 and M2 is given by the same function κ(s), as both h0

and h00 change sign in formula (5.4) for κ(s).
We can resolve this ambiguity and produce M1 or M2 selectively as desired, using the following

fortunate circumstance which was discussed in §3.1.1(iii). When portions of D are painted black from
one side of D and heated, the temperature rises more on the side which is painted which makes that
side contract more, and so D has a propensity to bend—much as a bi-metallic strip—towards the
hotter side. Hence to make M1, the piece D will be painted on one side only, while to make M2, the
painting is on opposite sides for s< s� and s> s� (figure 6).

To avoid problems associated with conduction of heat between neighbouring areas, the width of any
black wedge should not be too small. On the other hand, if the width of a black region is too large, then
some undesired instabilities can result in buckling and contortions. In order to keep the widths of the
black wedges in an effective range, which is about 4–6mm, the number n(s) of wedges can be varied
with s, so that b(s)/n(s) lies in this effective range.
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Z

Figure 4. Contraction-tailoring method. The panel (a) shows a surface of revolution M, and a plane annulus D from which it is to be
fashioned. Instead of showing a number of black bands with total width b(s), the panel (b) shows for simplicity a single black band
drawn on D whose width is equal to the required total width b(s) of the black bands.

10 mm 10 mm

(a) (b)

(c) (d)

Figure 5. Panels (a,b) show the mathematical examples of surfaces of revolution. Panels (c,d) show the experimental results
obtained by contraction tailoring using the method prescribed in the text.

(a) (b)

(c) (d)

) M1
M2s0

s1
s*

s1

s*

s0

10 mm 10 mm

Figure 6. Resolution of ambiguity of embedding. As explained in the text, under certain conditions two different surfaces of
revolutions, such as the surfaces M1 and M2 shown in panels (a) and (b), correspond to the same function r(s). However, we
can mould M2 by changing the side of D that is painted starting from the critical point s= s� of h(s), while if we paint D
always on the same side then it will result in M1. The photographs of the physical realizations of M1 and M2 are shown in
panels (c) and (d ), respectively.
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Figure 7. Panels (a–c) show various surfaces which are not surfaces of revolution, that were fashioned by the contraction-tailoring
method. Panels (d,e) show a sequence of similar moulded shapes of different sizes.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:200011
12
5.2. The algorithmic procedure for moulding a surface
The algorithmic procedure for moulding a surface of revolution M has the following steps.

(i) Numerically specify the defining functions r(s) and h(s) on a specified domain [s0, s1].
These should be sufficiently smooth and have the following properties: (a) r(s0) = s0, and r(s) > 0
if s> s0, (b) (dr/ds)

2 + (dh/ds)2 = 1.
(ii) Take a piece D of plastic, which is an annulus of inner and outer radii s0 and s1, respectively. In the

special case s0 = 0, D is a disc of radius s1.
(iii) Calculate the function b(s) = 2π(s− r(s))/(1− γ) where γ is the contraction coefficient of the plastic

material of D.
(iv) Draw radial black wedges, whose number n(s) depends on b(s) by the requirement that α≤ b(s)/

n(s)≤ β, where α and β are the chosen minimum and maximum widths, respectively. The wedges
are spread uniformly along the angular parameter θ, and their total width is b(s).

(v) Heat the piece D by infrared radiation.

Remark 5.1. It is possible to mould many interesting surfaces by contraction tailoring which are not
surfaces of revolution, though we do not have a general algorithm for doing so. Figure 7a–c shows some
examples of these.

Remark 5.2. If homogeneity of the infrared illumination is maintained over large areas, this method
of moulding can be scaled and applied from a few millimetre upwards, simply by adhering to the design
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requirement that individual black or white regions should not be too large or too small. That is, if we

want to make much larger objects then instead of just scaling up the inset designs as in figure 7d,e,
we will have to further break up the black regions and spread these among the white regions, so that
the individual black or white regions do not become too large. The thickness of the material that we
presently use makes it difficult to go below sizes smaller than a few millimetres, but this is not
fundamental. Indeed, thinner thermo-responsive materials [34] could be used after solving the
problem of how to deposit the needed heat-responsive patterns.
ing.org/journal/rsos
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6. Metric moulding
In this section, we describe a method of moulding which is geared towards altering the original
Euclidean metric on the plastic sheet so that we get the desired new Riemannian metric by selective
contractions. It is possible to convert this method into an algorithmic procedure. The desired new
metric is not required to have any special symmetry (e.g. rotational symmetry).

We begin with a chosen diffeomeorphism w : D→M, which we can assume is everywhere a local
contraction (by the c-trick as explained in §2). The Riemannian metric on M is induced by the
Euclidean metric on the ambient R3. The desired new metric on D is the pullback of the metric on M
by w. Let X, Y be Cartesian coordinates drawn on the flat piece D before it is deformed. The original
metric on D prior to deformation is dS2 = dX2 + dY2. The desired new metric on D therefore
has the form ds2 =E dX2 + 2F dX dY+G dY2, where E, F, G are functions of X, Y with E>0, G> 0 and
EG− F2 > 0. The functions E, F and G are given in terms of w by equation (2.2).

Note that at any point P of D, the 2 × 2-matrix E(P) F(P)
F(P) G(P)

� �
is symmetric positive definite, so there

exists an orthonormal frame u(P), v(P) w.r.t. the flat metric dS2 at the point P which diagonalizes the
above matrix, so that u(P) and v(P) are eigenvectors with eigenvalues 0 < λ(P), μ(P). In the special case
λ(P) = μ(P), any pair of orthogonal vectors can serve as u(P), v(P). In a small enough neighbourhood of
any point, we can treat u, v, λ and μ as continuous single-valued functions of X, Y. As w was chosen
to be everywhere a local contraction, we must have λ, μ≤ 1.

Under the deformation of the flat sheet into the curved surface, a tiny square of side ℓ on D will turn
approximately into a parallelogram (which will be a rectangle in the special case when the sides of the
square are parallel to the eigenvectors). Our moulding strategy is to divide D into a lattice of small
squares, approximate the continuous functions λ, μ, u, v by piecewise constant functions that are
constant in each square, and paint each of these squares appropriately so that the resulting contraction
will change them into the corresponding small parallelograms. The idea is to make these
parallelograms fit together to give an approximation of the Riemannian metric of M.

The above idea has a problem coming from the following two mismatches: (i) the common edge
between two lattice squares gets two different contraction coefficients from the two squares as each
must turn into a parallelogram of different dimensions, and (ii) the total angle around a vertex which
is 2π to begin with now becomes the sum of the corresponding angles of the four surrounding
parallelograms, which may not add to 2π. This produces tensions which are resolved by an
interpolation if the region near the edges and vertices of the lattice squares becomes soft while
moulding. We induce such a softening by having a band of a fixed width δ/2 all along the boundary
within each lattice square. The value of δ is the minimum width for which a black patch contracts. On
the square lattice, this means that the horizontal and the vertical lattice lines are narrow black bands
of width δ. The large-scale effect of these bands is a constant isotropic contraction.

6.1. The special case where the desired new metric tensor is constant on D
If the desired new metric tensor g is constant on D, then there exists an angle θ with 0≤ θ≤ π/2 such that
the basis u= e1cosθ+ e2sinθ and v=−e1sinθ+ e2cosθ diagonalizes the new metric, with eigenvalues λ and
μ. This means that in the new metric, u and v remain perpendicular, with new lengths kukg¼

ffiffiffi
l

p
,

kvkg ¼
ffiffiffiffi
m

p
. We assume that 0 < λ, μ<1, as we desire that that change is everywhere a contraction.

Thus, to bring about the metric g, we need to contract D in the direction u by the multiplier
ffiffiffi
l

p
, and

contract D in the direction v by the multiplier
ffiffiffiffi
m

p
. Given θ, λ, μ, the corresponding g is given by

E F
F G

� �
¼ l cos2 uþ m sin2 u (l� m) cos u sin u

(l� m) cos u sin u m cos2 uþ l sin2 u

� �
: (6:1)
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A simple but basic example of a map w :R2 ! R3 for which the pullback g of the Euclidean metric is

constant is when w is an injective linear map followed by a translation. By choosing new Cartesian
coordinates on R3, we just have to consider the case when w is an invertible linear map T :R2 ! R2. Then
as a 2×2-matrix, we have g= tTTwhere tT denotes the transpose of T. If T=UA is the polar decomposition
of T, where A is a positive definite symmetric matrix and U is an orthogonal matrix with det (U) ¼ 1, then
g= tAtU UA=A2, where we have used the equalities tA=A and tU=U−1. Hence, the eigenvalues of g are
exactly the squares of the eigenvalues of the symmetric part A in the polar decomposition of T. The
orthogonal part U of the polar decomposition physically refers to how the moulded piece is placed in R2,
while the symmetric part A tells us what happens internally to D in the process of moulding. The matrix A
has the two mutually perpendicular non-zero eigenectors u, v, with eigenvalues

ffiffiffi
l

p
,

ffiffiffiffi
m

p
, so A2 has these

same eigenvectors with eigenvalues λ, μ. The internal modification of D corresponds to linear
multiplications by the factors

ffiffiffi
l

p
,

ffiffiffiffi
m

p
in the two mutually perpendicular directions u, v. It should be

noted that we need a polar decomposition of T in order to get these directions u and v and the contraction
factors

ffiffiffi
l

p
and

ffiffiffiffi
m

p
. Once again, we will only allow those T for which 0< λ, μ<1.

Let L , R2 be a lattice in R2 (means a discrete subgroup which spans R2). Suppose D is a large piece
in R2, and suppose we give it a black and white pattern that is periodic w.r.t. Λ. Then on heating, D will
become a plane piece up to small local wiggles which are periodic w.r.t. a new lattice Λ0. There will be a
linear transformation T :R2 ! R2 such that Λ0 =TΛ, and the modification in D (up to small periodic
wiggles) is given by T. If the scale of Λ is very small compared with the size of D, then we can regard
the resulting metric (after moulding) as the constant metric g= tTT.

We now choose the lattice L [ R2 to be the square lattice of sides ℓ, with lattice points (mℓ, nℓ) where
m, n are integers. The basic two-dimensional problem is that given λ, μ, θ, how to find a black and white
pattern with periodicity Λ, such that on heating the resulting contraction is described (in the large) by a
linear transformation Twhich corresponds to the given λ, μ, θ. Moreover, the pattern should be such that
the outer boundary of each lattice square is black of width δ/2 (which is, as explained above, essential for
interpolations when λ, μ, θ vary from lattice square to lattice square).

Suppose that we have a large piece D of plastic in the x, y-plane across which we have a black band B.
The sides of the band are straight lines, parallel to each other. The length of the band is much larger than
its width. On heating, the width of the band will shrink by the factor γ, pulling together the white parts
on either side, as happens in plate tectonics. The sides of the band being anchored in large white regions,
they cannot shrink. However, there will be a shrinking effect at the ends of the black band, which will
result in the these ends getting pulled inwards. Let the band B make an angle θ with the x-axis. The
shrinkage of the band is in the perpendicular direction to the band, that is, the angular direction θ±
π/2. If b is the width of the band (means the length of the intersection of the band with a line making
the angle θ+ π/2 with the x-axis), then after shrinking the width becomes γb.

Next suppose we have two mutually perpendicular black bands B1 and B2 on the plastic, as shown in
figure 8a. Let these make angles θ and θ± π/2 with the x-axis. On heating, the widths b1 and b2 of both the
bands get multiplied by γ. As a result, if we have an imaginary square R of size L×L on the plastic whose
sides are parallel to B1 and B2, through which both these bands pass, then it gets converted into a
rectangle whose sides are parallel to the original sides, but now have the modified lengths L− (1− γ)b1
and L− (1− γ)b2 (the original square and the modified rectangle are shown in green in figure 8a and b,
respectively). Next, suppose that the plastic is drawn with a criss-cross doubly periodic pattern of
mutually perpendicular bands making angles θ and θ+ π/2 with the x-axis, so that in any large
square of size L with sides parallel and perpendicular to the bands, the total width of the bands
making angle θ with the x-axis is b1 and the total width of bands making angle θ+ π/2 with the
x-axis is b2. (We do not have to assume here that the horizontal period is equal to the vertical periods
in this doubly periodic pattern.) Then on heating, such an L×L square gets converted into a rectangle
whose sides are parallel to the original sides, but now have the modified widths L− (1− γ)b1 and
L− (1− γ)b2. Thus, on a large scale (up to local variations), the effect of the shrinkage is to convert
the original metric ds2 = dx2 + dy2 on the plastic into a new metric E dx2 + 2F dx dy+G dy2, where
E= λcos2θ+ μsin2θ, F= (λ− μ)cosθsinθ and G= λsin2θ+ μcos2θ, where

l ¼ 1� (1� g)
b1
‘

� �2

and m ¼ 1� (1� g)
b2
‘

� �2

: (6:2)

This metric has eigenvectors e1sinθ− e2cosθ and e1cosθ+ e2sinθ, with eigenvalues λ and μ,
respectively. In particular, if b1/L= b2/L= β, then the outcome is a constant isotropic contraction
by the factor 1− (1− γ)β, an outcome that is independent of the angle θ.
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Figure 8. Metric moulding. Panels (a,b) show the before heating and after heating states of a large piece of plastic, respectively, on
which are painted two mutually perpendicular black bands. The widths of these bands shrink by the multiplier γ, which changes a
square with sides parallel to the bands in (a) (shaded green) into a rectangle in (b). Panel (c) shows the periodic tiling pattern
which will bring about shrinking by assigned multipliers in two mutually perpendicular directions which make a fixed angle to the
basic lattice. Each lattice square has a black border of thickness δ/2. Panel (d ) shows the rearrangement of the white pieces after
contraction. The central patch in (c) is depicted in a colour to make it visible how the white patches rearrange themselves when the
black portions contract, to give the result shown panel (d ). The heating also brings about out warping in the white region. When a
black band passes through the corner of the lattice square, it has a significant overlap with the black borders. Panel (e) shows how
to compensate for it by introducing additional black triangles in the remaining two corners.
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Remark. The individual transformations induced by two mutually perpendicular bands commute
with each other. Their order does not matter in a superposition. Also, the uniform isotropic
contractions are scalar multiples of identity, so they commute with all transformations. In this way, the
basic metric-moulding procedure is non-sequential. This contrasts with general sequential nature of
folding in origami where the outcome depends on the order of the folds.
Suppose we have present a superposition of (i) a doubly periodic pattern of mutually perpendicular
bands at angles θ and θ+ π/2 with respective average densities β1 = b1/L and β2 = b2/L, and (ii) a doubly
periodic pattern of horizontal and vertical bands of equal average densities β0, then as the effect of the
second pattern is isotropic, one may expect that the combined effect is as if the second pattern is also
at angles θ and θ+ π/2, and so the combined effect is as if we just have the first pattern modified so
that β1 and β2 are changed to β0 + β1 and β0 + β2. The problem with this is that there may be a
significant overlap between the pattern (i) and the pattern (ii), reducing their effects, as the density of
black parts will not simply add up because of the overlaps. While the overlaps between the vertical
and horizontal bands within any one pattern is not a problem, non-orthogonal overlaps between two
different patterns have to be avoided. As we will see below, our choice of a basic pattern indeed
minimizes such non-orthogonal overlaps.
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With the above analysis as its heuristic, we now specify our basic pattern for shrinking a flat piece to

bring about a new constant metric with given values of θ, λ, μ, where recall that λ and μ denote the
eigenvalues of the metric, and 0≤ θ< π/2 is the angle made by an eigenvector v= e1cosθ+ e2sinθ
corresponding to eigenvalue μ with the x-axis. Consequently, the eigenvector u= e1sinθ− e2cosθ for λ
will make the angle θ− π/2 with the x-axis.

Figure 8c shows the typical pattern. The pattern is a doubly periodic arrangement of squares, with the
same period ℓ in the x- and y-directions. A fundamental square in the pattern, which has size ℓ×ℓ, has as
its central feature two mutually perpendicular black bands, which make angles θ and θ+ π/2 with the
x-axis, where 0≤ θ< π/2. These have widths b1 and b2, respectively. Each lattice square has a black
border of width δ/2. The value of δ is chosen to be the minimum width at which thermal contraction
becomes effective (so δ=4mm in our experiments). The widths b1 and b2 are determined by equation
(4.6), taking a ¼ ffiffiffi

l
p

and a ¼ ffiffiffiffi
m

p
, respectively, which gives

b1 ¼ 1� ffiffiffi
l

p

1� g

� �
‘� 2d and b2 ¼

1� ffiffiffiffi
m

p
1� g

� �
‘� 2d: (6:3)

By using a sufficiently large value of c in the c-trick, it can be ensured that both b1 and b2 are each
greater than δ, so that these black bands contract effectively on heating. Equation (4.8) can be applied
taking α to be

ffiffiffi
l

p
or

ffiffiffiffi
m

p
to get a range of values of c. In order that a common such c exists, by equation

(4.9) we must have

max {
ffiffiffi
l

p
,

ffiffiffiffi
m

p
}

1� 2(1� g)
d

‘

� min {
ffiffiffi
l

p
,

ffiffiffiffi
m

p
}

g
(6:4)

and then c can be chosen to have any in-between value.
Inequality (6.4) can be satisfied by taking δ/ℓ to be sufficiently small provided we have

min {
ffiffiffi
l

p
,

ffiffiffiffi
m

p
}

max {
ffiffiffi
l

p
,

ffiffiffiffi
m

p
}
� g: (6:5)

The above inequality needs to be satisfied for any w for the given physical material which has contraction
coefficient γ, if the metric-moulding method is to work.

We found that empirical trial and error by varying the widths b1 and b2 of the two central black bands
of the pattern can make the moulding more accurate, which gets over the unintended effect of the overlap
of the bands B1 and B2 with the black frame of each lattice square.
6.2. The general case of a non-constant metric
To produce the colouring pattern to do the desiredmoulding,we begin bydividing the original flat piece into
a square lattice of length ℓ. As explained above, at the centre P= (a, b) of any lattice square, we have two
eigenvectors u(P) and v(P) for the metric tensor g(P) with eigenvalues 0< λ(P), μ(P) < 1. We have already
given our choice of the periodic pattern (figure 8) which, if drawn in each lattice square, will lead to a
uniform contraction corresponding to the data u(P), v(P),

ffiffiffiffiffiffiffiffiffi
l(P)

p
,

ffiffiffiffiffiffiffiffiffiffi
m(P)

p
. In the general case of a non-

constant metric, we draw this pattern only in the lattice square around P. Heating this pattern leads to
approximately the desired metric on contraction for each square. Note that the adjoining lattice squares
have different contraction ratios for the shared edge. Also the sum of the four angles around a vertex may
not equal 2π. However, the boundary regions (including the corners) in all the squares are black, and so
they become soft on heating, which enables an adjustment which interpolates between the contraction
patterns in neighbouring squares along an edge or the four squares around a vertex. If the sum of the
angles around the vertex is less than 2π, then the resulting adjustment will produce a region of positive
Gaussian curvature around the vertex. Similarly, if the sum of the angles around the vertex is greater than
2π, then the resulting adjustment will produce a region of negative Gaussian curvature around the vertex.
In the above, instead of a square lattice, we can use a regular hexagonal lattice, or any other suitable
lattice. The choice of what lattice to use also may depend on the approximate symmetry of M.
6.3. The algorithmic procedure for Riemannian metric moulding
The algorithmic procedure for moulding a surface M which has the desired Riemannian metric has the
following steps.
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(i) Choose a diffeomorphism w : D→M. One possible method of doing so would be taking the

inverse for a vertical projection from M , R3 to the x, y plane R2. This will work in various
cases. However, the steps that follow are independent of the choice of w.

(ii) Numerically specify the corresponding functions E, F and G on D.
(iii) Numerically determine the required c factor and replace D, w by the corresponding D�, w�. By this

device (c-trick), we can assume that for the subsequent steps all eigenvalues λ and μ are strictly
less than 1. We have to so choose ℓ and c such that inequalities (6.4) are satisfied, where the
minimum and maximum is now taken over all the lattice squares. It is a necessary condition
for this method to work that these inequalities are satisfied.

(iv) Draw the pattern in each lattice square which correspond to the eigenvectors and eigenvalues of
the Riemannian metric at the centre of that lattice square.

(v) Heat the piece D by infrared radiation.

If the change of metric is conformal, then λ= μ globally, and the eigenvectors u and v are indeterminate.
In such a case, we will take u= e1 and v= e2, which in particular ensures that the intersection of the bands
B1 and B2 with the lattice frame is orthogonal. By the Riemann mapping theorem, any metric on a planar
region D is conformal to the Euclidean metric on D, so one may be tempted to take w : D→M to be a
conformal transformation. However, this is not necessarily practical as the value of λ (means the
required contraction coefficient) can go outside the achievable range [γ, 1]. Moreover, the proof of the
Riemann mapping theorem does not give a recipe for concretely specifying such a conformal
transformation w. However, this works well in some examples where the conformal transformation is
known and is simple enough, such as the stereographic projection of a domain on a sphere to a
planar domain, which then may have to be combined with the c-trick which is necessarily conformal.

Instead of using a square lattice, we can use a regular hexagonal lattice in the above procedure, with
appropriate hexagonal analogues of the values of the b1 and b2 (in place of equation (6.3)) and with
appropriate bounds given by analogues of inequalities (6.4). A hexagon is qualitatively ‘more
isotropic’ than a square, so such a lattice works more uniformly when the direction θ is changing. The
hexagonal design has an additional benefit that (unlike in the case of a square design) the short black
segments at the border of any basic hexagon get terminated, instead of prolonging as system-
spanning black lines along which unintended folding can occur on heating.

6.4. The embedding of M in R3

A surface embedded in the 3-space is called rigid if the only embeddings of it into the 3-space
which induce the same Riemannian metric are the rigid translations, rotations and reflections of the
original embedding. For example, a sphere (or any dense open subset of it) is rigid. However, open
surfaces in general may or may not be rigid, in particular, there exist non-rigid open surfaces with any
constant value of Gaussian curvature κ, positive negative or zero. For example, a hemisphere (κ> 0) or
portions of a cylinder or a cone κ= 0, or surface similar to that depicted in figures 6 and 7a (κ<0) are
not rigid.

It follows that when we obtain the Riemannian metric of a rigid surface by deformation of a flat
sheet, we automatically obtain its desired shape in R3 up to translations, rotations and a possible
reflection. In particular, when trying to make a chiral object, one may end up with the opposite of the
desired chirality.

Given a surface M [ R3 and a diffeomorphism w : D→M where D , R2, let g be the pullback to D of
the Riemannianmetric ofM that is induced by its inclusion inR3. The abovemetric-mouldingmethodwill
convertD into a surfaceN , R3 which has the prescribed intrinsic Riemannianmetric g, but wemay not be
able to obtainM fromN by a rigid transformation of R3, asMwill not be rigid in general. However,Nwill
have a definite shape inR3, and this extra structure (beyond its Riemannianmetric) comes from the rigidity
or elastic properties of mainly the white parts of D. Recall that the black parts soften and so easily change
their shape during heating, and also, they contract. By contrast, the white material remains stiff
throughout, and may undergo only some elastic bending. This raises the question whether we can have
another method of moulding D, which—instead of trying to get the right Riemannian metric on M—
directly attempts to get right the embedding of M into R3, by making use of the enduring stiffness of
the white portions of D. We present such a method in the following section.

Figure 9 shows the implementation of the above algorithm to mould surfaces of positive and negative
curvature. The input pattern that needs to be printed for obtaining these two shapes is given in the
electronic supplementary material.



(a) (b)

(i) (i)

(ii) (ii)

10 mm 10 mm

Figure 9. Panels (a,b) show the photographs of two surfaces that were made using the metric-moulding method. The shape in (a)
is a part of a sphere which has a positive curvature while that in (b) is a part of a saddle that has a negative curvature. The target
shapes are given in (a(i),b(i)) while the obtained shapes are in a(ii),b(ii). The corresponding computed input patterns for (a,b) are
given in the electronic supplementary material.
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7. Distance moulding via triangulation
As before, let M , R3 be a surface, and let w : D→M be a diffeomorphism where D is a domain in R2. By
the c-trick, we can always choose the pair (D, w) in such a way that w is everywhere a contraction. Let D
be triangulated (paved) by equilateral triangles as shown in figure 10, and let T,D be a basic triangle.
Let ℓ denote the distance between any vertex Ai of T and the centroid Cijk of T. In particular, the basic
triangles have sides

ffiffiffi
3

p
‘. Let P1, P2, P3∈M be the images under w of the three vertices A1, A2, A3 of T,

let Qij∈M be the image of the midpoint Bij of the side AiAj of T, and let Rijk∈M be the image of the
centre Cijk of T. Let dij= ‖Pi−Qij‖ and dijk= ‖Pi−Rijk‖ be the distances in R3 between these points. The
corresponding distances in T are d(Ai, Bij) ¼

ffiffiffi
3

p
‘=2 and d(Ai, Cijk) =ℓ. The distances on M are smaller

than the corresponding distances on D because w is a contraction.
The task of moulding is to convert the equilateral triangle AiAjAk=T with sides

ffiffiffi
3

p
‘ into the

curvilinear triangle T0 on M which is the image of T.
Let Dij be the point on the segment AiBij such that

kAi �Dijk ¼ dij � (
ffiffiffi
3

p
=2)‘g

1� g
: (7:1)

The above distances are so chosen that (see equation (4.1)) if the segmentDijDji contracts by factor γ and the
segments AiDij and AjDji retain their original length, then the original length

ffiffiffi
3

p
‘ of the segment AiAj

contracts to become the desired length of the segmentPiPj. LetEi be the point on the segmentAiCijk such that

kAi � Eik ¼ dijk � ‘g

1� g
: (7:2)

Once again, these distances are so chosen that if the segment EiCijk contracts by the factor γ, then the
original length ℓ of the segment AiCijk contracts to become the desired length of the segment PiRijk. The
triangle T with these points is shown in figure 10, with a certain polygonal region shaded yellow, which
is the region that will be painted black before heating.

Let aij ¼ kPi �Qijk=kAi � Bijk ¼ 2dij=
ffiffiffi
3

p
‘. As the contraction factor is bounded below by γ, we must

have γ<αij. On the other hand, as contraction by heating to be reliably effective, we need to ensure that
the relevant width of the yellow region is at least δ. Within the segment AiBij which has un-contracted
original length (

ffiffiffi
3

p
=2)‘ the yellow portion DijBij is contiguous with the yellow portion DjiBij of the

segment AjBij (remember here that Bij=Bji), so each of DijBij and DjiBij needs to have length at least
δ/2. Hence we must have aij , 1� (d=

ffiffiffi
3

p
‘)(1� g). Together, we have the bounds

g , aij , 1� dffiffiffi
3

p
‘
(1� g): (7:3)

This gives a non-empty range for αij if δ/ℓ is sufficiently small.
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Figure 10. (a) The figure shows the shading pattern for a basic triangle T in D. (b) This figure shows the example of the distance-
moulding pattern for a portion of a sphere. An everywhere contracting w : D→M is obtained by combining the inverse of the
vertical projection p :R3 ! R2 and the c-trick as explain in §2. The yellow painted region on D is painted black and when heated
D moulds into M. It is noteworthy how the shading pattern changes as one moves towards the edge of D.
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Next, let αijk= ‖Pi−Rijk‖/‖Ai−Cijk‖= dijk/ℓ. In the segmentAiCijkwhich has un-contracted length ℓ, the
yellow portion CijkEi is contiguous with the yellow portion CijkBjk which has length ℓ/2, which is greater
than δ/2. Hence it is enough ifCijkEi has length >δ/2. Hencewemust have αijk< 1− (δ/2ℓ)(1− γ). This gives
the bounds

g , aijk , 1� d

2‘
(1� g): (7:4)

Again, this gives a non-empty range for αij if δ/ℓ is sufficiently small.
By replacing the original α by α/c by the c-trick, we can ensure that the above simultaneous

inequalities hold across all triangles T on D provided that c lies in the range

max

( aij

1� (1� g)dffiffiffi
3

p
‘

,
aijk

1� (1� g)d
2‘

)
� c � min

aij

g
,
aijk

g

� �
(7:5)

where the maximum and minimum are taken over all triangles T=AiAjAk in the triangulation. This
shows that we must require that

max

(
aij

1� (1� g)dffiffiffi
3

p
‘

,
aijk

1� (1� g)d
2‘

)
� min

aij

g
,
aijk

g

� �
(7:6)

so that the above range for values of c is non-empty.
Inequality (7.6) can be satisfied by taking δ/ℓ to be sufficiently small provided we have

min {aij, aijk}
max {aij, aijk}

� g: (7:7)

The above inequality needs to be satisfied for any w for the given physical material which has
contraction coefficient γ, if the distance-moulding method is to work. As the above inequalities are
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(ii) (ii) (ii)

Figure 11. Panels (a–c) show the photographs of three surfaces that were made using the metric distance method. The target
shapes are given in (a(i),b(i),c(i)) while the obtained shapes are in (a(ii),b(ii),c(ii)). The surface in (a) is a portion of a sphere. The
surface in (b) is not a portion of an embedded sphere but it has a constant positive Gaussian curvature, and its Riemannian metric is
that of a portion of a sphere. The surface in (c) is a portion of a saddle.
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satisfied for sufficiently small values of γ, a more contractable material will enable us to mould a greater
range of surfaces.

If a plastic copy of the equilateral triangle T, with the yellow region painted black and the rest
kept white (or coated with a thick polymer) is heated, then the black region shrinks and consequently
the white regions are drawn together. While this happens, the triangle T cannot easily bend by
folding along the lines AiBjk because the presence of the white quadrilateral regions AiDijCijkDik which
remain stiff. The triangle T thereby assumes a new shape which is an approximation of the curvilinear
triangle T0 =PiPjPk (figure 10), with sides which are approximately of the desired lengths. The middle
of the triangle comes out (or goes in: an effect influenced by the bi-metallic strip effect discussed
earlier) by approximately the desired extent because of the control of the distances ‖PiRijk‖. The
approximation becomes more accurate when instead of a single triangle, we have a lattice of triangles,
each of which is given a pattern following the above method. The reasons for this are as follows.
(i) Adjacent triangles prevent a shrinkage of the black portion DijDji of the shared border of the
triangles towards the centre of any one of the two triangles, as the adjacent triangle will exert
an opposite contracting force, while along the segment AiAj the two contractions match.

(ii) The large number of irregular white regions come in the way of system-spanning long black lines
along which unintended folding may occur.
Note that the six white regions around a vertex Ai fit together seamlessly into a polygonal shape
with 12 sides, whose 12 vertices are at prescribed distances from the centre Ai, which are the same
as the distances from Pi to the 12 corresponding points on M. When contracted, these polygons
get drawn together to the appropriate extent, and the resulting surface approximates the original
surface M.

Figure 11 shows instances of shapes that were made using the distance moulding via triangulation
method. The surface in (a) is a part of the sphere. The surface in (b) is a part of a spindle which has a
constant Gaussian curvature κ. This surface is parametrically defined by x(t) =R cos t, y=0 and

z(t) ¼ Ð t
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=k� R2 sin2 u

q
du for |t|≤ π/2. Here R , 1=

ffiffiffiffi
K

p
. The surface in (c) is a part of a saddle

given by the function z= x2− y2. The corresponding computed input patterns for (a), (b) and (c)
generated by the algorithm described above are given in the electronic supplementary material. This
method of moulding produces satisfactory results at a large enough scale, which is possible when the
shape to be moulded is of a size that is much greater than the size of the basic triangle.
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8. Additional comments

8.1. Limitations on moulding
The fact that the constant γ is not zero imposes limitations on what can be moulded. For the metric-
moulding and distance-moulding methods, the moulding function w : D→M needs to satisfy certain
inequalities (namely (4.10), (6.5) and (7.7)) which have the generic form

minimum multiplier
maximum multiplier

� g, (8:1)

which are necessarily satisfied when γ is very small. In fact, if γ is not 0, there are limitations on what any
hypothetical contraction-moulding method can achieve. For example, suppose that we want to mould a
portion of the sphere S2R of radius R defined in R3 by the equation x2 + y2 + z2 =R2. If γ=0, then it is
possible to mould the surface M ¼ S2R � {P}, which is the complement of a single point (say the north
pole P) on the sphere S2R. Now suppose γ>0, and we apply the tailoring method to mould M, which
is the surface of revolution x2 + y2 + z2 =R2, z≠R. The map ϕ : D→M produced by the tailoring
method will begin with a D a disc. Let O∈D denote the centre of D, and let (s, θ) denote polar
coordinates on D. The map w sends (s, θ)∈D to the point

R sin
s
R

� 	
cos u, R sin

s
R

� 	
sin u, � R cos

s
R

� 	� 	
[ M: (8:2)

The above formula for w shows that the circle with centre O and radius s in D maps to a circle of
radius r(s) =Rsin (s/R) in M , R3. This contracts its circumference by the factor

r(s)
s

¼ sin (s=R)
s=R

: (8:3)

For such a contraction to be practically possible with the given physical material which has contraction
coefficient γ, we should have r(s)/r≥ γ, and so we must have

sin (s=R)
s=R

� g: (8:4)

If γ< 1, then this inequality is satisfied at s=0 and at sufficiently small values of s, but it puts an upper
bound F(γ) on s/R defined by the equality sin (F(γ))/F(γ) = γ, where F is the inverse function of t 7! sin t=t
(see the footnote3). This shows that the radius of D can be at most F(γ)R. Therefore, the area of w(D) on the
sphere will be at most

A(g) ¼ 2p(1� cos F(g))R2: (8:5)

As the sphere S2R of radius R has Gaussian curvature R−2, this shows that the integral of the curvature
over w(D) is at most A(γ)/R2 = 2π(1− cos F(γ)). This is a function of γ, independent of R. For γ=0, it takes
its maximum value 4π.

For γ=0.5 as in our experiment, we get s/R≤ F(0.5) = 1.89. Hence the tailoring method, which can at
the most give the portion ofMwhose area is (1− cos F(γ))/2 times the area of S2R, gives us (1− cos (1.89))/
2 = 0.65 times the area of the sphere.

The interesting point is that any conceivable method of contraction moulding cannot achieve a better
result in the sense of being able to mould a strictly larger portion of the above sphere. To see this, we
argue by contradiction as follows. If possible, let D0 be another flat piece of plastic, with the same
constant γ, which is contraction-moulded by some other hypothetical method to produce a part of S2R
that contains in its interior the part of S2R produced by the above method. Let c :D0 ! S2R be the
corresponding moulding function. By assumption ψ(D0) properly contains the portion of S2R where z≤
−R cos (F(γ)), which is the image of the disc of radius F(γ)R by the function w used by the tailoring
method. Hence there is a circle C defined by z= k0 on S2R where k0 >−R cos (F(γ)), which is covered by
the image of ψ. Note that the radius of C is ≤sin F(γ), so the perimeter of C is ≤2πsin F(γ). Let O0 ∈D0

be the point that is mapped by ψ to the south pole (0, 0, � R) [ S2R. As ψ can only contract, the disc
around O0 of radius s in D0 has to go inside the portion of S2R where z=−Rcos (s/R)≤ s, which is the
image of the disc in D of radius s by the function w used by the tailoring method. Hence the inverse
3Consider the function f : [0, π]→ [0, 1] defined by f (0) = 1 and f (t) = sin t/t for t≠ 0. This is a monotonically decreasing function, with
f (0) = 1 and f (π) = 0. Hence it admits an inverse function F : [0, 1]→ [0, π], with F(0) = π and F(1) = 0.



25 mm

Figure 12. Patterned surface. The picture shows a textured plane, obtained by heating a flat piece of plastic which has a black and
white pattern (can be doubly periodic as in this example). We can ensure that there is no large-scale bending by loosely
sandwiching between two flat panes of glass while being exposed to radiation.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:200011
22
image C0 ,D0 of the circle ψ(C ) in D0 is a curve that lies entirely outside the circle in D0 of radius F(γ)R
centred at O0. This shows that the perimeter of the curve C0 is strictly greater that 2πF(γ)R. Hence the
contraction factor (length of C/length of C0) is strictly less that sin (F(γ))/F(γ) = γ. This is physically
impossible, as the contraction factor has to be ≥γ>0.

8.2. Comparison between the moulding methods
A special feature of the tailoring method is that the painting pattern in tailoring usually involves long
(system-sized) white bands. As these bands retain their lengths, this gives a degree of long-range
control on the moulding process. This is quite unlike the other two methods which are based on the
combined effects of a large number of local deformations arising out of a patterned lattice, where the
statistical variations add up to produce greater uncertainties.

8.3. Moulding textured surfaces
Besides fashioning curved surfaces in R3, the method of selective heating and contraction can also be
used to fashion textured planar surfaces. An example of this is shown in figure 12.

Data accessibility. The physical and thermal characterization of the material used in the paper are provided in electronic
supplementary material figures S1–S3. The input patterns of all the shapes moulded in the paper are provided in the
electronic supplementary material. The Matlab programs used to generate the various printed patterns are available
for download at https://github.com/harshjn/GeometricMoldingByContraction.
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