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Abstract

The present study involves two semi-infinite homogeneous, isotropic, linearly elastic

plates perfectly bonded end to end. The plates have dissimilar material properties (e.g.

copper and aluminum). Incident on the interface are both the lowest symmetric and the

lowest antisymmetric Rayleigh-Lamb eigenmodes. The resulting transmitted and reflected

fields contain contributions from all of the real, imaginary and complex plate modes which

are active at the given excitation frequency. A study of the distribution of energy among the

various reflected and transmitted Rayleigh-Lamb eigenmodes over a range of frequencies

is undertaken for a number of material combinations of the bimaterial plate.



I. Introduction

Much of the motivation behind the development of theoretical response curves for

structures has to do with the nondestructive characterization of their components, and

in particular, those undergoing fatigue loading and slow crack growth. Early detection of

insipient flaws through studies of the scattering of high frequency elastic waves has received

considerable attention in recent years (Ensminger(1988)).

The forced response of homogeneous plates to surface and buried sources has been

reported in numerous papers (Ceranoglu et al (1981), Weaver et al (1983), Va-

sudevan et al (1985)). Detailed analyses have also been carried out on plane layered

systems including plates and half-spaces (Kennet (1983), Harkrider (1964), Haskell

(1953)). These studies have shown that the dynamic response of a structure is primarily

affected by the nature of the source and by the dispersive wave motion induced by the

geometry of the structure. Early references regarding infinite and semi-infinite plates can

be found in the monograph by Miklowitz (1978) and the two volume work of Auld
(1973).

Recently, the technique of eigenfunction expansions has been exploited in the papers

of Gregory and Gladwell (1983,1984). These authors successfully tackled problems re-

lating to semi-infinite plates by expanding the unknown displacement and stress fields into

infinite series of eigenmodes appended with unknown coefficients. The coefficients were

found by employing a biorthogonality relationship (Fraser(1976)) between the eigen-

modes.

In this paper, a similar procedure is used to study the elastodynamic response of two

dissimilar semi-infinite plates welded along their lateral boundaries. Working in the fre-

quency domain, the spectral response is found by representing the unknown displacements

and stress fields in each plate as infinite sums of Rayleigh-Lamb modes. Numerical results

are presented for the case of an incident field composed of both the lowest symmetric

and the lowest antisymmetric Rayleigh-Lamb modes. The distribution of energy among
the modes in the reflected and transmitted fields is numerically studied over a range of

excitation frequencies.



II. Formulation and Theory

Shown in figure (la) are two elastic plates of uniform thickness 2h welded at x = 0,

with P-wave speeds ai,a 2 ;
S-wave speeds /?i,/?2 5

densities p\,p2\ and shear moduli /ii,j/2-

The problem addressed is essentially a two dimensional, plane strain scattering problem. A
given incident field propagates towards the interface from left to right, which upon striking

the interface, generates transmitted and reflected wavefields. The objective of the present

analysis is to study the modal contributions to these fields. For an infinite homogeneous

plate the only field present should be the incident field. However, when the two plates

differ in material properties, waves incident on the interface boundary at x = produce

reflections which combined with the incident waves yield the total field for x < 0. This

field must match that of the transmitted field (x > 0) along the interface at x = 0. In all

of the following equations, the time dependence (e~ tut
), has been suppressed.

For a general type of source the incident field can be expanded in the form,

oo oo

(1) u«(«, y) = Y* PnV$\y)eik»* + ]T Qn \J
{^(y)e^ x

n=l n=l

where U^" (y)e tknI is the displacement field of the n symmetric Rayleigh-Lamb mode of

the plate, and the wave number kn is a root of the symmetric Rayleigh-Lamb frequency

equation. The boldface lettering of U signifies that it is a two-vector. In a similar fashion,

the subscript -45 refers to the antisymmetric modes of the plate and the wave number qn

is a root of the antisymmetric Rayleigh-Lamb frequency equation. The expressions for the

mode shapes as well as that for the frequency equations are stated in Appendix A. It is

presumed that the homogeneous problem can be solved and thus the coefficients Pn and Q n

are known. The first series in the expression for ir'^ of equation (1) will excite symmetric

modes while the second series will excite only antisymmetric modes. For the purposes of

the present study, all coefficients of the incident field are zero except the first term in each

series which is identically one. However, the mathematical formulation presented below is

applicable for an arbitrary source field.

For x < the reflected field can be expressed as:

oo oo

(2) u<'>(*, y) = Y/
Rn tJ

i

s\y)e-
iknZ + £ S.uS&y)*-'*",

n=l n=l

which represents leftward travelling waves (the overbar indicates complex conjugation).

The coefficients Rn and Sn axe to be determined from the continuity conditions valid at

the interface.

The transmitted field for the region x > 0, takes the form :

oo oo

(3) u«>(*,y) = £ AnUg,)
(y)c-

4— + £ S^U^y^"*,



where the 'hat' symbol is used to indicate that there is a different set of elastic constants

to be considered for x > 0.

All of the mode shapes in equations (2-3) satisfy traction free boundary conditions

on the free surfaces of the plates (y = ±h). For a perfectly welded interface, the total

displacement and stress fields in the two plates must be continuous across x = 0.

The symmetric and antisymmetric portions of the fields are split with continuity being

imposed on each separately. In what follows, only the determination of the coefficients for

the symmetric case is given. A similar procedure can be performed to determine coefficients

for the antisymmetric modes. Enforcing stress and displacement continuity across the

boundary at x = yields:

(4a) y p-ui
n)
+ E R « v*

n)
= E k » tJ

*
n

n= 1 n — 1 n=l

(4b, £p„^ + £/f„c;-» = £i?n ^"'

n= l n=l n=l

oo oo oo

(4c) to y PnSg +^Y **%* =^E K»s*n
*

n— 1 n=l n=l

(4d) to Y P«5*? + K E R^V = ^ E k^v-y
n= l n—1 n=l

In equations (4a-d) Ux and Uy
are the x and y components of the displacement vector

Us while Sxx and Sxy are the corresponding components of the symmetric stress vec-

tor S5 (given in the appendix). The complex conjugates of the displacement and stress

components satisfy the following relations:

(5a) Ux
n) = -V {

x

n)
- U {

y

n) = U (

y

n)

(5b) si
n
J = s<;>; s$ = -s<;>

Using the above relations, equation (4) is rewritten as:

00 oc

(6a) Y(Pn- R^U*
n)
= Y,*nU*

n)

n=l n = l

5



(6b) £(Pn + Rn)UW =£ RnU™
n=l n=l

(6C) Hi £(P„ + JRJSSJ = to J2 RnS£
n=l n=l

(6d) ah £(Pn - fl„)5<»> = ^ 2£ £nS#y
n=l n=l

The infinite systems of equations (6a-d) must be satisfied for —h<y<h. A procedure

to eliminate the thickness variable (y) from equations (6a-d) employs a biorthogonality

relation valid for elastic plates. This relation is stated in Appendix A as equation (9A).

Equation (6a) is multiplied by H\SX x (where the superscript (m) refers to the m th mode)

and added to equation (6d) multiplied by —Uy . The resulting equation is then integrated

with respect to y from —h to +h. In similar fashion, equation (6b) is multiplied by ^Sxy ,

equation(6c) is multiplied by —Ux
m

and the two are added and integrated over the plate

thickness. The biorthogonality relation reduces the resulting pair of equations to the form

(7) (Rm — Pm)Jm = 2_^ RnKmn
n= l

oc

(8) 2 A^n "*" Rn)Lmn = RmQm-
n= \

In the above,

(9a) Kmn = jf (-p2Ul
m)SM + mUin)

Si?)dy

(9b) Lmn = -Knm

In order to cast equations (7) and (8) into tensor form diagonal matrices Jij and Q t} are

introduced and defined in equations (12a,b). The quantities Jm and Qm in equations (7,8)

are the nonzero diagonal entries defined in equation(12). Notice that whereas Jm and Qm
involve only the properties of the left and right hand side of the plates respectively, the

coefficient Kmn is a coupling term that combines the properties of both materials.



Equations (7) and (8) constitute an infinite system of equations for the infinite number
of unknowns Rm and Rm . To proceed with the numerical calculations, the infinite series

is truncated after N terms. Ideally, the value of N should be chosen in such a way that

the magnitude of the truncated terms is smaller than a specified tolerance. In the present

case a practical procedure was adopted. If an increase in the value of N was found to to

have an indiscernible effect on the output, that value of N was chosen as final. In physical

terms truncation implies that the influence of higher modes is relatively small. Rewriting

the truncated equations (7-8) in tensor notation yields:

(10) JijR-j — KjjRj — «J»jP;

(11) L,jRj — QtjRj — — L,jPj

where J i; and Q, ;
are NxN diagonal matrices involving material properties from the left

and right plates respectively;

(12a)

»Vi
JtJ = ' -*

J-h
i = j

(12b) Qa =
* # 3

H2
J-h

and K,
;
and L tJ are NxN full complex matrices given in equations (9a-b). The quantities

R and R are N dimensional vectors containing the unknown reflection and transmission

coefficients respectively. The right hand side of equations (10,11) involve the vector P
which contains the known incident field coefficients. Letting Z = Jt;P; and Z = —L,jPj,

equations (10) and (11) can be written as a 2Nx2N matrix equation as follows:

J LT

L -Q.

R
R = Z

z
(13)

The task of determining the symmetric reflection and transmission coefficients is re-

duced to solving equation (13), or, as is done in the present work, solving equations (10)

and (11). A similar process yields the antisymmetric coefficients.

Having obtained the coefficients, an analysis of the stress and displacement fields in

either plate can be undertaken. Of particular interest is the fraction of the incident energy

flux carried away by each real reflected and transmitted mode. Following Gregory and



Gladwell(1983), the fraction of energy flux carried by each real eigenmode at a particular

frequency is given by :

(14a) ^^l/mC^O/MJOIII^II2
,

for reflected, and

(14b) Ej
= \ImiQJ)/ImiJ1 )\\\Rs \\

i

for transmitted modes respectively. "Edge"modes corresponding to Rayleigh-Lamb eigen-

values with nonzero imaginary components transmit no energy and therefore their energy

fractions are set to zero. It must be kept in mind however, that while the imaginary and

complex modes do not transport energy they affect the magnitude of the coefficients R
and R and therefore the energy partitioning.



III. Numerical Procedure

In order to set up the matrix equations (10-11) of the previous section it is necessary to

calculate the roots of the Rayleigh-Lamb frequency equation, from which the mode shapes

can be determined and ultimately the matrix entries. In the present work a method
which closely parallels that of Gregory and Gladwell (1983) is adopted which tracks

a prescribed number of roots over a range of frequencies. These root rinding routines (for

both anti-symmetric and symmetric modes) are called intermittently by a main program

which solves the matrix equations (10-11) and calculates the fractional amount of energy

transported by each real mode using equations (14a,b).

Initially the roots of the following two equations:

(15) sinh(2kn h) ± 2kn h =

are found for a prescribed number of modes. The equation with the "plus"sign is associated

with the symmetric roots of the Rayleigh- Lamb frequency equation as the frequency ap-

proaches zero, while the equation with the negative sign corresponds to the anti-symmetric

Rayleigh-Lamb equation.

As the frequency is increased, updated values of k n are found by employing a Newton
iteration scheme when k n is complex and a bisection algorithm if kn is either purely

imaginary or purely real. When the real or imaginary parts of k n change sign, the value

of kn becomes purely real or purely imaginary. In such instances, a left hand turn rule has

been adopted to ensure that modes propagating with the correct group velocity have been

selected.

Figures (lb, lc) illustrate the paths taken in tracking a few of the lowest symmetric

and anti-symmetric modes of a plate of glass which has a Poissons' ratio of nearly .25.

Each of the curves have been labelled with a number (signifying the mode) and a letter

(identifying that portion of the curve as complex, real, or imaginary).The base axis on

the right is the real axis, while that on the left is the imaginary axis. The vertical axis is

frequency in megahertz. While the vertical axis is labelled up to 1 megahertz, the curves

do not have data points beyond .738 megahertz for the antisymmetric roots, and .696

megahertz for the symmetric roots. In addition, curves extending beyond the boundaries

of the graph have been truncated.

Rather than give a detailed explanation and description for each curve, attention will

be focused on the third symmetric root since it displays as complicated a route as can be

seen in any of the remaining curves. The third symmetric root (£3) is initially complex.

At .275 megahertz £3 intersects the real plane and becomes purely real. At this point, the

third mode has a negative phase velocity and a positive group velocity. At .291 megahertz,

which agrees with the theoretical value of the first cutoff, £3 intersects the imaginary plane

and becomes purely imaginary. It makes a loop in the imaginary plane, intersecting the

real plane at .336 and becomes purely real (this value corresponds to the second theoretical

cutoff).



Numerical Results and Discussion

In each numerical simulation left to right travelling symmetric(S) and antisymmet-

ric AS) fundamental modes with unit energy flux are incident upon the bimaterial plate

interface. The unknown amplitude coefficients in equations (2-3) are found by solving the

matrix equations (10-11), from which the energy fractions can be computed using equations

(14a,b).

The values of N are fixed at 21 for symmetric and 20 for antisymmetric modes in each

of the numerical experiments reported below. Greater values of N than those chosen were

found to produce indiscernible changes in the amounts of energy fractions as displayed in

the graphs to follow. The choices for N were determined from a sensitivity analysis of the

output to varying N. Results of this analysis are presented in tables I and II, where the

two materials are aluminum and steel (corresponding to the first numerical experiment

described in detail below). The tables include the energy partitions of the antisymmetric

reflected and transmitted modes at two frequencies (results for the symmetric case show

equivalent convergence). The higher frequency corresponds to a Rayleigh wavelength of

about 1/3 of the plate thickness and the lower frequency about twice that. Tabulated are

the energy fractions for the first four modes found by taking N equal to 2, 6, 10 and 20 in

the calculations. Notice from the tables that there is not a substantial difference between

the convergence at 10 and 20 modes with between two to four significant digits remaining

unchanged.

It should be noted that in the following table as well as for all of the results presented,

the sum of the energy fractions equal 1 to at least five places (for symmetric as well as

antisymmetric cases) for each value of N and at every frequency point for which the energy

was evaluated. This provides a small measure of confidence in the numerical calculations

as well as indicating that energy conservation cannot be used in determining convergence

of the eigenfunction expansion series.

The first pair of materials considered are Aluminum and Steel with the incident wave

originating in Aluminum. In all of the examples considered the plate thickness is taken to

be 1 cm. The elastic properties of Aluminum used are: a P-wave speed of 6.15 Km/sec, an

S-wave speed of 3.10 Km/sec, and a density of 2.5 gm/cc. Aluminum is soft in comparison

with Steel for which the P-wave speed, S-wave speed, and density are taken to be: 5.76

Km/sec, 3.16 Km/sec, and 7.8 gm/cc. In figures 2 and 3 are shown the fraction of incident

energy carried away by each mode for the symmetric and antisymmetric excitations re-

spectively. The upper plot in each of the following figures represents the reflected field and

the lower plot the transmitted field. The upper limit of frequency chosen is high enough

to include the effect of up to 4 real modes in either plate material.

A noteworthy feature of the behaviour of the lowest S mode in figure 2 is the sharp

maximum in the reflected field in Aluminum just beyond the point denoted by Ri and

the corresponding minimum in transmission just beyond T\. This sharp maximum in

reflection also marks the beginning of the negative phase velocity branch of the third S

mode for steel shown by the dashed curve. The next prominent feature for the lowest

mode occurs near i?2^2 which marks the beginning of the cutoff of the third S mode
for Aluminum. The peak in the dashed curve near R2 corresponds to the local minimum
near T2 in the fundamental mode in transmission. Shortly thereafter the third real mode

10



for Steel becomes activated causing the transmission curve for the first S mode to rise

again. The next fluctuation in the curves occurs in the region of R^.T^. Again, observe

that the fourth S mode for Aluminum is activated before its counterpart in Steel. Hence

there is first an increase in the reflection curve for all four modes in Aluminum. Soon

thereafter the fourth S mode in Steel becomes active causing a rise in transmission with

a corresponding drop in reflection. This feature is characteristic of all the curves where a

maxima in the reflected energy corresponds to a minima in the transmitted curve or vice

versa since the total energy must add up to the incident flux. A general feature of figure 2

is that one sees a blip on the curves for either material at the cutoffs of the other material.

This indicates that as a new energy bearing real mode becomes activated in one of the

materials there is seen a fluctuation in the energy curve of the other material. This is

because of a redistribution of energy among the real modes. Similar features are observed

in the subsequent plots.

In figure 3 is shown the results for the antisymmetric case. Once again the cutoff for

the second AS mode in Aluminum occurs before that in Steel. Thus there is first a rise

in reflected energy followed by a drop as the second cutoff for Steel becomes activated.

This phenomenon is somewhat easier to observe in figure 3 than in figure 2 because the

negative phase velocity branch for the AS case occurs in the fourth mode. However, for

the AS case this negative phase velocity region is present only for a very small range

of frequencies as opposed to the third S mode where it is far more conspicuous. The
points i?2<72 denote the activation of the third mode and Rz,T$ the activation of the

fifth mode. Clearly visible are the windows in the frequency domain where reflection and

transmission are approximately uniform followed by steep drops in the neighbourhood of

the cutoffs. It appears from these curves that the transmission of energy is done primarily

by lowest fiexural mode. The higher order AS modes which incorporate most of the

shearing deformation is poorly transmitted. A similar feature is observed in the AS case

for other combinations of materials.

In figures 4 and 5 are shown the symmetric responses for Aluminum to Copper and

Copper to Aluminum respectively. The properties for Copper are a P-wave speed of 4.17

Km/sec, an S-wave speed of 2.15 Km/sec and a density of 9.8 gm/cc. Copper is a denser

but softer material than Aluminum.

An interesting feature of these curves is that the transmission curve for the lowest

mode is exactly identical whether the transmission is from Copper to Aluminum or vice

versa. Figures 6 and 7 show that the same is true for the lowest AS mode as well. In

Appendix B we provide an outline of the proof of this 'reciprocity
1

for any pair of elastic

materials. It must be kept in mind that the input excitation consists of the lowest mode
and hence the 'reciprocity' is observed only for the lowest transmitted mode.

Since the cutoffs for Copper and Aluminum are well separated, one can observe the

phenomena discussed earlier in a somewhat clearer manner. What is particularly remark-

able in figure 5 is the large reflection (about 60 percent) in the third S mode (dashed

curve) for Aluminum. In figure 4, however, the transmitted energy is largely in the first

and second symmetric modes of copper. The blips observed on either the reflection or

transmission curve are usually stronger at the thickness shear cutoffs as opposed to the

thickness stretch cutoffs. This is true in transient loading problems as well, where the

11



singularities at the thickness shear cutoffs dominate over their dilatational counterparts.

In this case, there is a spectral window ranging from about 0.2 to 0.3 Mhz in Copper where

transmission in the second S mode is quite strong. The blips at i?4 , T4 , R3 , T3 , i?5 , T5 occur

at the cutoffs of either material. These represent a sudden surge of energy followed by a

drop or vice versa once again due to the repartitioning of energy.

In figures 6 and 7 is shown the response to an antisymmetric excitation. As discussed

earlier there is little transmission in the higher modes. In figure 7 the dotted and dashed

curves display a strong reflectivity. The same is true for figure 6 where the cutoffs (in

Aluminum) occur at higher frequencies than those in Copper.

For the problem of transmission of energy across an infinite boundary, 'mechanical

impedance' (the product of density and wave speed) is sometimes used as a measure of

mismatch between bonded materials. Roughly speaking, this quantity is a qualitative

measure of one material's ability to let energy enter or exit into a second material to which

it is bonded.

In figures 8 and 9 are shown the results for Aluminum-Glass. These two materials

are remarkably well matched in terms of their mechanical impedances. For Glass the

wave speeds chosen are: a P-wave speed of 5.80 Km/sec and an S-wave speed of 3.35

Km/sec, while the density is taken to be 2.5 gm/cc. Near perfect transmission can be

observed in figure 8 except near the negative phase velocity region of the third S mode for

Glass. Almost all the transmitted energy is carried by the fundamental mode for both the

symmetric and antisymmetric excitations. The reflection is a thousand times smaller than

transmission with the peak occuring in the negative phase region of the third S mode in

figure 8. For the antisymmetric case, the transmission is still better in the fundamental

mode. The higher modes for both the S and AS cases transmit negligibly tiny fractions of

energy.

One of the basic features observed in the foregoing discussion is the interplay between

the modes in their energy carrying capabilities. As real modes become activated in the

two materials there are corresponding increments or drops in the energy levels in reflection

with exactly the opposite being true for transmission. One can view the activation of a

new mode as an enhancement in the energy transport capabilities of a given plate material.

A second feature of the results presented is the appearance of windows in the frequency

domain where a nearly uniform behaviour in energy transmission in certain modes can

be seen. More work needs to be done to clarify all of the observed features in the plots

presented here. The goal for future work is to obtain solutions to the transient loading

problem in bimaterial plates which are of particular relevance to NDE. The technique

described in this paper can be easily extended to the case of multiple sandwich sections

which may be of interest in waveguide analysis. Work along these lines is currrently in

progress.

12



Tables I and II

Antisymm-Reflectetl Field

2 Modes

Mhz Mode 1 Mode 2 Mode 3 Mode 4

0.767 0.0794 0.0326 0.0000 0.0000

0.393 0.1060 0.0017 0.0000 0.0000

6 Modes

0.767 0.3120 0.0003 0.0559 0.1220

0.393 0.1510 0.0058 0.0000 0.0000

10 Modes

0.767 0.1900 0.0181 0.0369 0.0438

0.393 0.1510 0.0057 0.0000 0.0000

>0 Modes

0.767 0.1920 0.0179 0.0369 0.0454

0.393 0.1510 0.0057 0.0000 0.0000

Antisymm -Transmits d Field

2 Modes

Mhz Mode 1 Mode 2 Mode 3 Mode 4

0.767 0.8870 0.0010 0.0000 0.0000

0.393 0.8870 0.0051 0.0000 0.0000

6 Modes

0.767 0.3570 0.0364 0.0102 0.1060

0.393 0.8360 0.0071 0.0000 0.0000

10 Modes

0.767 0.6550 0.0120 0.0039 0.0405

0.393 0.8360 0.0072 0.0000 0.0000

20 Modes

0.767 0.6490 0.0123 0.0038 0.0418

0.393 0.8360 0.0072 0.0000 0.0000

13



Appendix A

For a uniform, isotropic plate there exist both symmetric and antisymmetric Rayleigh-

Lamb modes which independently satisfy traction free boundary conditions on each surface

of the plate (y = ±h). The displacement can be written in vector form as follows:

(1A) u (n) =\J (n)
{y)e

,knX e- ,ut

where the U ( "^(y) are either the symmetric or antisymmetric modes. For example, the

symmetric modes are given by,

f0A s fll*)(,A - ( lknch(jn y) + 6nBn ch(Sn y) \
1 } [V) "

\lnsh(yny)-iknBnsh(6ny)J

The symbols sh and ch refer to the hyberbolic sine and cosine respectively. The quantity kn

which is related to the horizontal component of the wavenumber satisfies a transcendental

equation called the Rayleigh-Lamb frequency equation which for symmetric modes can be

written,

•2\2
(3A) (2k;, - K'ych(7n )sh(6n ) - 4ki ln Sn sh( ln )ch(6 n ) =

where

(4A) 7n = (*£ - *2 )
1/2

(5A) 6n = (k
2
n -K2

)

1'2

(CA) B„ = (2JbJ - K2 )ch(yn )/2ikn6nch(6n ).

In the above. A' and K are the compression and shear wave numbers respectively. The

corresponding stress vert or for the n th eigenmode is:

(7A) (jj%) =
/iS^(y)e

i*» xc- iw<

where again the S^ n) can be either the stress resulting from the symmetric or antisymmetric

displacements. For the symmetric case it is given by:

,ftA x S(n)/,A /-(21 2+A' 2
)c/i(7ny) + 2 ll-nBn<sn c/J («5ny)\

U
'

[y) "
V 2»*„7n^(7ny) + (2*2 - K 2 )Bn sh(Sn y) J

The bi-orthogonality condition for the in-plane problem can now be simply stated as

+ /»

(9A) fi

I ^
(S^U^ - Ui

m) S^)dy =
° m ^ n

m = n

Here the subscripted forms of S and U represent components of each vector. Notice that

tin biorthogonality relation involves an integration over the thickness of the plate.
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Appendix B

Following is a short argument proving the reciprocity between transmitted fundamen-

tal modes of a bimaterial plate noted in the results section of the paper.

In the absence of body forces, the reciprocity theorem (Achenbach et al (1982))
between two elastic states (A and B) can be written:

(Bl) J(u?Tt

A
J
-u?r

t

B
J
)n

J
dA = 0.

For the 2D plane strain bimaterial plate problem with plate thickness 2/x, the above integral

becomes:

(B2) / (ufT$-u?Tg)tmidy= f (ufr£ - itfr*),.-,^,
J-h J-h

where the interface between the two plates is at x = 0.

For elastic states A and B consider transmitted and reflected fields (expressed in terms

of Rayleigh-Lamb eigenmodes of the appropriate plate) resulting from incident displace-

ments

(B3) u I

A = U^(y)e lk^/J1

(B4) u£ = 6
(1

W»*/Qi

where J\ and Q\ are given in equations (12a-b). By substitution of the above incident and

resulting reflected and transmitted fields into equation (B2) one finds that the coefficients

of the leading terms in the transmitted fields of each elastic state are equal.

It should be noted that if the incident field involved additional modes the reciprocity

relationship would involve a combination of the corresponding transmitted modes.
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