

- 30L

NAVAL POSTGRADUATE SCHOOL
Monterey, California

^Lf^^^f-^a

AN AUTONOMOUS

PLATFORM SIMULATOR (APS)

by

Larry R. Shannon and William A. Teter

June 1989

Thesis Advisor: Robert B. McGhee

Approved for public release; distribution is unlimited

T244326

[classified

:uritv Classification of this page

REPORT DOCUMENTATION PAGE
Report Security Classification

UNCLASSIFIED
lb Restrictive Markings

Security Classification Authority

Declassification/Downgradmg Schedule

3 Distribution Availability of Report

Approved for public release; distribution is unlimited.

Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

Name of Performing Organization

Naval Postgraduate School

6b Office Symbol

(7/ Applicable)

52

7a Name of Monitoring Organization

Naval Postgraduate School

Address (city, state, and ZIP code)

Monterey, CA 93943-5000
7 b Address (city, slate, and ZIP code)

Monterey, CA 93943-5000
Name of Funding/Sponsoring Organization 8b Office Symbol

(If Applicable)

9 Procurement Instrument Identification Number

Address (city, slate, and ZIP code) 10 Source of Funding Numbers

IVogram Elemeru Number Project No Task No Work L'rui Accession No

Title (Include Security Classification)

AN AUTONOMOUS PLATFORM SIMULATOR (APS)

Personal Author(s)

Larry R. Shannon and William A. Teter

t Type of Report

Master's Thesis
13b Time Covered

From To

14 Date of Report (year, month, da\)

June 1989
1 5 Page Count

202

Supplementary Notation

The views expressed in this thesis are those of the authors and do not reflect the official policy or position of

the Department of Defense or the U.S. Government.

Cosati Codes

Id Group Subgroup

18 Subject Terms (continue on reverse if necessary and identify by block number)

Moving Platform Simulators, Visual Simulators, Real-Time Graphics,

Distributed Processing. Line-of-Sicht, Real-Time Path Planning

Abstract (continue on reverse if necessary and identify by block number

The development of an intelligent autonomous vehicle, that can perform high risk missions or operate in

vironments too hazardous for humans, has been a long standing quest of the military' community. The
itonomous Platform Simulator (APS) uses the flexibility and power of realistic graphical simulation to provide a

v cost testbed for the study of real-time path planning algorithms and control strategies without the commitment
resources involved in building a prototype system. It is a bridge between the theoretical study of an abstract AI
:h planning problem and applied research, producing concrete performance measurements under realistic

nditions.

APS consists of one or more vehicle simulators, each implemented on a Silicon Graphics IRIS/4D-70GT
iphics workstation. One vehicle simulator is linked with an AI agent path planner, implemented on a pair oa
mbolics AI workstations using the Automated Reasoning Tool development shell.

System trails demonstrated that APS was able to achive real-time path planning and guidance of a realistically

picted ground vehicle navigating using digitized data of actual terrain. Communication bottlenecks currently

lit the ability to make direct comparisons between human and machine control, but the system holds promise to

the gap as a pre-prototype autonomous platform simu ator.

Distribution/Availability of Abstract

X] unclassified/unlimited same as report DT1C users

21 Abstract Security Classification

UNCLASSIFIED
i Name of Responsible Individual

Prof. Rober B. McGhee
22b Telephone (Include Area code)

(408) 646-2449
22c Office Symbol

Code 52Mz
FORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

security classification of this page

Unclassified

Approved for public release; distribution is unlimited.

AN AUTONOMOUS
PLATFORM SIMULATOR (APS)

by

Larry Richard Shannon

Captain, United States Marine Corps

B.S., University of Washington, 1981

and

William Albert Teter

Major, United States Army
M.M.A.S., U.S. Army Command & General Staff College, 1986

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

ABSTRACT

The development of an intelligent autonomous vehicle that can perform high risk

missions or operate in environments too hazardous for humans has been a long

standing quest of the military community. The Autonomous Platform Simulator

(APS) uses the flexibility and power of realistic graphical simulation to provide a low

cost testbed for the study of real-time path planning algorithms and control strategies

without the commitment of resources involved in building a prototype system. It is a

bridge between the theoretical study of an abstract AI path planning problem and

applied research, producing concrete performance measurements under realistic

conditions.

APS consists of one or more vehicle simulators, each implemented on a Silicon

Graphics IRIS/4D-70GT graphics workstation. One vehicle simulator is linked with

an AI agent path planner, implemented on a pair of Symbolics AI workstations using

the Automated Reasoning Tool development shell.

System trials demonstrated that APS was able to achieve real-time path planning

and guidance of a realistically depicted ground vehicle navigating using digitized data

of actual terrain. Communication bottlenecks currently limit the ability to make direct

comparisons between human and machine control but the system holds promise to fill

the gap as a pre-prototype autonomous platform simulator.

in

/ /<_^v

^33</&4

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PROBLEM STATEMENT 1

B. THESIS ORGANIZATION 2

II. BACKGROUND 4

A. VEHICLE SIMULATORS 4

B. AUTONOMOUS VEHICLES 7

C PATH PLANNING 8

D. EXPERT SYSTEM SHELLS 11

E. COMMUNICATIONS 12

F. DEVELOPMENT SYSTEM DESCRIPTION 13

1. IRIS Graphics System 13

a. SGI IRIS/4D-70GT Graphics Workstation

Description 13

b. Software 13

2. SYMBOLICS 14

a. Symbolics 3600 14

b. Software 14

3. Network 14

in. METHODOLOGY AND ASSUMPTIONS 16

A. DEFINITIONS 16

B. VEHICLE SIMULATOR 16

1. Assumptions 17

2. Coordinate Systems 17

3. Platform Rotation Angles 18

4. Coordinate System Transformations 19

IV

5. Physics of Motion 21

a. Friction and Coasting 22

b. Braking 24

c. Acceleration 24

d. Slope Calculations 25

e. Effects of Slope 26

f. Suspension Oscillation - "Bounce" 27

6. Simulation Time Interval 29

7. Paths 30

8. Guidance States 33

9. Autopilot 35

C. PATH PLANNING 36

D. AUTONOMOUS vice MANUAL CONTROL 44

E. COMMUNICATIONS 47

F. PERFORMANCE MEASURES 50

G. SUMMARY 51

IV. SYSTEM DESCRIPTION 52

A. TERRAIN DATABASE 52

B. VEHICLE SIMULATOR 53

1. Capabilities 53

2. APS Environment 54

3. Graphics Drawing Cycle 55

4. Input 55

5. Model Update 57

6. Platform Position and Viewing Parameter Update 58

7. Network Communications 59

8. Simulation Time 64

9. Simulating Weapon Systems 64

10. Module Descriptions 69

a. Program Control Flow 69

b. Supporting Routines 69

c. Data Structures 69

d. Turning/Steering Module 69

e. Velocity Module 70

f. Bounce Module 70

g. Math Module 71

h. Path Operations Menu 71

i. Path Module 72

j. Autopilot Module 73

C. RULE-BASED PATH PLANNER 73

D. SUMMARY 79

V. SIMULATION RESULTS 80

A. VEHICLE SIMULTOR 80

B. PLANNER 81

C. COMBINED SYSTEM 82

VI. SUMMARY AND CONCLUSIONS 84

A. LIMITATIONS 84

B. AREAS FOR FURTHER STUDY 84

C. SUMMARY 89

APPENDIX A VEHICLE SIMULATOR MODULE DESCRIPTIONS 90

APPENDIX B PATH PLANNER CODE 123

APPENDIX C USER INTERFACE 167

VI

APPENDIX D DATA COLLECTION FORM 186

APPENDIX E KNOWN BUGS 187

LIST OF REFERENCES 189

INITIAL DISTRIBUTION LIST 193

vu

ACKNOWLEDGEMENTS

We take this opportunity to thank the people who provided assistance or in-

spiration. We thank Professor Robert McGhee for getting us started, keeping us go-

ing, and serving as referee. Bill Breden for providing the code to run Professor

Kwak's wavefront search program with terrain slope data developed by Dennis Fel-

hoelter. Professor Kwak provided invaluable help with the communications and wave-

front search programs, for which he wrote the original code. Professor Michael Zyda

for letting us follow in his wake as he pushed the leading edge of real-time computer

graphics. Mark Christian for his realistic Cobra helicopter. John Yurchak, a program-

mer's programmer, for patiently leading us through the labyrinthine world of C and

UNIX. We thank our fellow students, for the daily stimulus of working along side

bright, innovative people, never too enamored of their own projects to stop and lend a

hand.

Ron Ross spent untold hours explaining some of the fine points of path plan-

ning, and terrain representation. For his time, effort, and expertise we are thankful.

We especially thank Albert Wong and the rest of the Technical Support Staff,

Computer Science Department, Naval Postgraduate School for their help in under-

standing the workings of the department computer systems.

Finally, we thank our families for providing support and understanding and

keeping us nurtured with hope.

vm

I. INTRODUCTION

A. PROBLEM STATEMENT

The development of a truly autonomous vehicle is a long sought after goal

[DODSCI83, WEISN&89]. The more autonomy and intelligence such a vehicle has,

the more it can replace humans for the performance of hazardous, strenuous, or repeti-

tive tasks. Research in autonomous vehicles has largely focused on the development

of control systems that totally replace human direction and move human interaction to

higher levels of generalization and abstraction. Yet no broad comparison has been

done of the performance of a human operator with varying levels of automated sup-

port, versus purely autonomous control. The objective of this research is to create an

Autonomous Platform Simulator (APS) in order to provide a facility for such compari-

sons. Performance measurements, taken under varying combinations of human and

AI agent control over a simulated vehicle navigating a tactical cross-country route,

provide the yardstick to compare the studied modes of operation.

One of the major tasks that an autonomous vehicle must perform is to plan a

path to reach its goal and then navigate along that path. There are many algorithms

for calculating (planning) an optimal path based on some traversal cost criteria

[RJCHBG87 contains an excellent survey of path planning methods]. In the

construction of an autonomous vehicle prototype, one methodology is usually chosen

and then frozen by the investment in the implementation. Another aim of the APS

system is to provide a means for comparing the performance of path planning

algorithms in a practical setting using real world terrain data. The replacement of an

actual vehicle with a realistic graphical simulation is desirable for this research

because different algorithms, hybrid control configurations, and other features can be

studied without the cost of building a physical system, the risk of damage to an actual

vehicle, or the risk of injury to a human driver. For this research effort, the physical

vehicle and its onboard navigation and control systems are simulated on a Silicon

Graphics IRIS/4D-70GT graphics workstation.

In the APS system the simulated vehicle navigates along a pre-determined path

toward a known goal. The path is produced by either an AI agent or a human planner

from global terrain data, such as a map, which does not contain the location of obsta-

cles, such as minefields, which may force a deviation from the original path. Various

performance measures are monitored to evaluate different combinations of autonomous

and human control. The AI agent planner is implemented on a dedicated AI worksta-

tion, a Symbolics 3650. The expert system shell used in this study is ART, produced

by Inference Corporation [INFRNC85].

In developing an autonomous vehicle simulation with selectable modes of vehi-

cle control and path planning, four distinct modes of operation are implemented charac-

terized by whether a human operator or AI agent is performing the function. The four

combinations studied are:

1 - Human path planning and a human driver.

2 - Human path planning with an autopilot capable of following the calculated path.

3 - Path planning by an expert system with a human driver controlling the vehicle

based on received path points.

4 - Total autonomous (hands-off) control.

The hierarchy involved in these tasks recognizes another level above the two so

far discussed, that of mission planning, which designates the vehicle's final objective or

goal point of the path. In APS, the output of the mission planning process is considered

a given and is always entered by the human commander.

B. THESIS ORGANIZATION

The work done in this thesis breaks down into two major areas: vehicle simula-

tion and path planning. Work done in the vehicle simulation arena was performed by

Teter. Work done in the path planning arena was performed by Shannon. The commu-

nications work was completed by both authors.

Chapter II contains an overview of previous work done in path planning, communi-

cations, and real-time vehicle simulation that relate to this study. Chapter III con-

tains a detailed discussion of the development of the algorithms and simulator

software developed during this study. This chapter also covers the simulator vehicle

environment, the characteristics that allow the simulated vehicle to react realistically,

and detailed discussions of path planning algorithms. Chapter IV contains discus-

sions on the final system implementation. Chapter V examines the final APS system.

Finally, Chapter VI contains the authors' views regarding the limitations of this study

and possible areas for future research.

H. BACKGROUND

This chapter provides a survey of previous work in graphical vehicle simulators

and path planning with special emphasis on research done at the Naval Postgraduate

School that laid the foundation for the APS project.

A. VEHICLE SIMULATORS

The vehicle simulator component of the APS system evolved out of an effort to

enhance the Moving Platform Simulator (MPS) [FICHTN&88], a real-time visual

simulation of the Fiber Optically Guided Missile (FOGM), ground vehicles, and three

dimensional terrain, which was itself the result of a continuing series of real-time

visual simulations of ground, sea, and air platforms constructed by students at the

Naval Postgraduate School [OLIVER&87, SMITHD&87, MCNKLE&88,

WINN&89].

APS was first implemented using the Firing Platform Simulator, FPS, a close

cousin of MPS. FPS was a class project which added multiple independent views and

ground vehicles that could engage each other with weapons systems. Since MPS is

the direct ancestor of both APS and FPS, its description provides an understanding of

the context upon which the vehicle simulator was built.

1. The Moving Platform Simulator

The Moving Platform Simulator [FICHTN&88] was developed at the Na-

val Postgraduate School on a Silicon Graphics, Inc. IRIS 4D/70-GT graphics worksta-

tion. MPS allows a user to select a view from either a ground vehicle or FOGM

missile and guide the platform over a three-dimensional view of a 10x10 kilometer ar-

ea of Fort Hunter-Liggett, California. The FOGM missile is able to target, track, and

destroy vehicles on the ground. The elevation data for the simulation was provided by

the U. S. Army's Combat Developments Experimentation Center (CDEC) at Fort

Ord, California. MPS accepts standard digital map data for other areas of the world.

Ground vehicles in MPS are controlled by dials on a peripheral input de-

vice. Control response is immediate. Changes in vehicle course and speed, for exam-

ple, are effective during the next display cycle, making them essentially

instantaneous. The major portions of MPS adopted unchanged for APS are the dis-

play routines, terrain representation, window manager interface, FOGM modeling,

and the overall program structure.

2. The Firing Platform Simulator

The Firing Platform Simulator was a class project that enhanced the

ground platform capabilities in MPS by adding a more realistic image of a tank

(Figure 2-1), multiple independent viewing axes, and engagement between ground

vehicle weapon systems. A set of driver's controls were added using a mouse to let

the user manipulate the throttle, brakes, and steering.

3. Vehicle Motion Modeling

Realistically simulating the response of vehicles to controls, such as

throttle and steering, and to changes in the terrain, is often neglected in a graphical

simulation because a complete model of the physics of motion would be both

analytically complex and computationally expensive. Complete modeling of the

mechanics of vehicle motion is a complex proposal [BARNAC64]. Much of the

modeling effort of engineers has therefore focused on analyzing a smaller subproblem

such as the characteristics of a vehicle subsystem like the steering or suspension.

Past work at NPS, such as that of Tan [TAN86], has studied various control

algorithms for an autonomous vehicle following a curving road at constant velocity. In

Tan's study vehicle mechanics were modeled by numerically integrating second order

equations of motion for an idealized point mass. Numerical integration provides for

accurate answers to vehicle motion equations, but at the cost of extensive

computation. The modeling requirements of APS are both more general and more

constrained: more general in realistically modeling the effects of control inputs and the

?SS§e§55SSKS!

Figure 2-1 Depiction of Ml Tank

effects of vehicle interaction with varying terrain - more constrained by not being able

to afford an increase in the computational burden from modeling because of the effect

on overall performance.

Real-time graphical moving platform simulations often consume most of

the computing resources of a graphics system in realistically depicting terrain and ve-

hicles [FICHTN&88: pg 72]. Many graphics researchers shy away from more realis-

tically modeling of the effects of steering and terrain in the belief that the problem is

too hard and the necessary code would be too slow. What is sought for APS is a sim-

plified model of vehicle motion and control response designed for a class of ground

platforms moving off-road across varying terrain. An interesting candidate vehicle

model was developed by Ross at NPS [ROSS89]. Ross's work provided a thorough

but computationally simple model of vehicle-terrain interaction and energy costs

while traversing varied terrain regions. Unfortunately, his model's assumption of con-

stant velocity and its requirement for homogeneous terrain patches make it unsuitable

as a basis for the APS vehicle simulator. However, his work has great potential as

an alternate cost function for path planning.

B. AUTONOMOUS VEHICLES

Research in autonomous vehicles received great impetus in recent years from

DoD's Strategic Computing Initiative [DODSCI83] which called for a push of

"machine intelligence technology" in applied research. One of its three demonstration

projects is the Autonomous Land Vehicle program. Much of the work generated on

autonomous vehicles has focused on vision systems, local obstacle avoidance, such

as FMC Corporation's Autonomous Vehicle [NTTAO&88], and road following

guidance, such as Martin Marietta's ALV [LOWRIE85]. Since APS doesn't have

local obstacles to avoid or roads to follow, such research, while stimulating, lacks

direct applicability. The autonomous vehicle prototypes do, however, provide insight

into the functional decomposition of the problem of autonomous vehicle navigation and

control. For example, both autonomous vehicles mentioned above separate path

planning from vehicle navigation and control, to the extent of having different

hardware perform those functions.

The most productive source of techniques for modeling vehicle motion and

response turned out to be basic physics texts such as Marion's Classical Dynamics

[MARION70] or the late Richard Feynman's Physics Lecture Series [FEYNMN63].

Robotics applications [FRANK69] also provide some usable techniques. Starting

then, from the solid ground of physics, albeit with several simplifying assumptions,

the iterative nature of the graphics drawing loop can be used to break vehicle motion

into small enough increments so that all equations of motion can be modeled with

functions of no higher than first order terms and without numeric integration. More on

this topic is presented in Chapter III.

C. PATH PLANNING

The task of planning a path across a known region has been classified as a

weighted-region problem [RICHBG87: pg 15]. The weighted-region problem requires

finding the optimal-cost path between two known points given an appropriate area-

cost map. The area-cost map is described as a two dimensional region that is divided

into sub-regions containing a value of traversal for each sub-region. Solving the

weighted-region problem requires searching this two dimensional region. There are

many strategies that can be applied to this problem of path planning. Each strategy

has unique characteristics that determine its suitability. Two areas that have a major

impact on path planning are terrain representation and search methods.

1. Terrain Representation

Natural terrain is generally not discrete nor clearly defined by regular

boundaries. A variety of terrain models are used to depict natural terrain. The choice

of terrain representation affects the choice of the search method used, and conversely

the choice of a particular search method limits the terrain representations that can be

used.

a. Cartesian Grids

Regular geometric grids are used to divide the terrain into small regu-

lar cells that are used to classify some aspect of the terrain. In work done by Felhoe-

lter, [FELHOE88: pg 36-37] slope data derived from a DMA source file of Fort

Hunter-Liggett is used to classify each cell of the region. A wavefront search method

can then applied to this type of region representation to find the optimal path between

two points [ROWE&88: pg 2].

b. Hierarchical Models

A hierarchical terrain representation, as used by Metea and Tsai

[METEA&87], is a variation of the Cartesian method used above, and is used to di-

vide terrain into increasingly fine geometric grid cells. The lowest level contains the

highest resolution data. Each cell within a level contains a single number that is asso-

ciated with the cost of traversal. At the lowest level, this number is normally a direct

representation of some aspect of the patch of terrain represented. At each succeeding

level, the values of the cells of the preceding level that are contained in a cell of the

next level are used to calculate the value of that cell.

Alternative forms of hierarchical terrain representation [KUAN84,

ROSS89] move away from the Cartesian grid representation. These models group re-

gions from a lower level that have similar representational value into larger regions at

succeeding levels. The salient point of this approach is that hierarchical terrain mod-

els group terrain information from a lower level into larger regions at higher levels.

c. Homogeneous Model

Homogeneous terrain representation [ROSS89] groups contiguous

points, with identical costs of traversal, within an arbitrary convex polygon. The ho-

mogeneous terrain model allows large areas of terrain to be grouped and stored effi-

ciently in the terrain data base. It also removes the directional biases imposed on the

terrain by Cartesian terrain models. This representation is required for certain types

of path planning techniques. One such technique involving Snell's law uses the princi-

ples of optics to find paths across homogeneous regions[ROWE87, ROWE&88].

2. SEARCH METHODS

The backbone of any path planner is the search algorithm used. The choice

of which search algorithm to use is based on many factors. One key factor already dis-

cussed above is the terrain representation used. The following search methods are

discussed briefly with emphasis on the impact of the choice of terrain model.

a. Wavefront

Wavefront planning needs a terrain model that divides the search ar-

ea into uniformly sized cells, typically Cartesian grid cells, where each cell contains

its cost of traversal. This technique uses a modified breadth first search where ex-

pansion is accomplished according to the cost of traversing a cell instead of simply ex-

panding from one level of cells to another [RICHBG87]. Disadvantages to this

approach are as follows:

(1) The terrain is cut up into uniform pieces no matter what the

lay of the land is. This is of concern because the resolution of the search region is a di-

rect reflection of the resolution of the cells that make up the search region.

(2) The wavefront algorithm investigated in this thesis expands

to the 8 neighbors of a square grid cell, causing motion to be restricted to straight

lines, in the vertical, horizontal, and diagonal directions, between a cells.

(3) Finally there is a certain amount of waste associated with

the propagation of a wave. The entire wave must be expanded instead of just follow-

ing the most likely path. This same problem of an ever expanding agenda is associat-

ed with a pure breadth first search.

The major advantages of this algorithm are that it is guaranteed to

find the optimal path and it is well understood.

10

b. Depth-First

A depth-first search is used by Goodpasture [GOODPA87] to pro-

vide motion planning for a computer simulation of an autonomous walking machine.

The depth-first search algorithm is guaranteed to provide a path if one exists. It how-

ever, does not guarantee finding an optimal path. The first path found is the path cho-

sen. The algorithm used simply explores neighboring nodes that have not been

explored or are not obstacles. A node is chosen that is closest to the goal. This strat-

egy is followed until the goal is reached or the trail ends. If the trail ends, the algo-

rithm backtracks the path, marking the used nodes as obstacles, until it finds an

unexplored node to follow. If an unexplored node is found the search is continued as

before. If the start point is returned to, and no unexplored nodes are available, the

search fails. That is, no path is possible. The depth-first search is best used where

"go" "no-go" terrain features are used.

c. A Star (A*)

The A* search combined with Snell's law is used to solve long range

path planning problems, where the terrain is divided into homogeneous-cost regions.

Variations of Snell's law are used to find possible paths to the goal, across the homo-

geneous-cost regions. Then the A* search is performed using evaluation values de-

veloped from the A* search [RICHBG87].

D. EXPERT SYSTEM SHELLS

Technology has advanced beyond the days of using a general purpose computer

merely to relieve humans of the tedious tasks of redundant mathematical calculations

or the endless searching of records. It is now possible to undertake more complex

tasks with improved accuracy. Specifically, the growing complexity of model

representation combined with a limited understanding of the processes of human

thought and reasoning, have led to the use of logic oriented languages to help

represent rules used in human decision making. Two such logic oriented languages

11

are LISP and Prolog. But these languages require the researcher to be very closely

tied to the machine environment. With these languages, the programmer is directly

involved in the detailed management of rules and facts. The desire to remove the

burden of rule and fact management has lead in part to the development of expert

system shells.

The use of expert system shells as logical programming environments provides

an arena for the development of computer programs to solve problems otherwise

difficult to formulate. These environments or shells provide such features as backward

chaining, forward chaining, inheritance, and fact and rule management. Backward and

forward chaining control strategies provide one of the critical features of expert

system shells, since these strategies constitute inference engines. The ideal

inference engine allows rules to fire independently of the order with which the

programmer places the rules in the program control structure. Actual inference

engines contained in expert system shells may fall short of this ideal, but such shells

provide a tool that allows programmers to think of rules as independent islands of

action waiting for the ocean of knowledge around them to provide the preconditions for

their firing. The expert systems shells available at the Naval Postgraduate School are

KEE by Intellicorp [INTEL86], and ART by Inference Corporation [INFRNC85].

E. COMMUNICATIONS

The real time control of a visual simulation can involve the use of more than one

type of architecture. The ability to transmit and receive control information and

working data between processes implemented with different architectures was

investigated by Barrow [BARROW88]. The medium of communication between the

various architectures was TCP/IP using the Ethernet. The principal forms of

communication investigated were I/O stream and broadcast.

Broadcast datagrams were used by Barrow to communicate between IRIS

workstations. They provided a convenient way to send discrete messages without

12

connecting hosts or requiring a specific host address. This method of communication

was not supported between UNIX TCP/IP systems and the Symbolics CHAOSNET,

so stream communications were used. The package of routines developed supported

messages containing a single character or number with the UNIX side of the

connection required to act as the connection server.

F. DEVELOPMENT SYSTEM DESCRIPTION

1. IRIS Graphics System

a. SGI IRISI4D-70GT Graphics Workstation Description

The IRIS/4D GT is a line of high performance graphics workstations

with extensive hardware support for graphics modeling that can support the real-time

3D drawing of the large number of polygons necessary in a realistic vehicle simulator

[ZYDA&88]. This system has the following performance characteristics:

10 MIPS cpu (MIPS, Inc. R2000 RISC Processor).

40,000 10 X 10 pixel quadrilaterals per second (lighted & Gouraud shaded).

24-bit Z-buffer.

Parallel modeling matrix operations.

Hardware transformation matrix stack.

b. Software

The following software products were used in the development of the

APS system:

• SGI C (MIPS) compiler.

• UNIX system V Operating System with TCP/IP Network extensions.

• SGI 4Sight™ Window Manager. 4Sight manages screen and I/O resources of

the IRIS workstation. It supports graphics clients using the SGI graphics li-

brary as well as programs written for NeWS and XWindows[SGI4UG88].
APS runs as a client under the 4Sight server using the graphics library inter-

face for maximum performance. This gives APS the flexibility of running in a

window of arbitrary size and location. The window manager also provides the

popup menu services used extensively by APS. 4Sight also provides a font

13

manager to scale and render text fonts in prompts, legend text and displayed

messages.

2. Symbolics

a. Symbolics 3600

Symbolics 3600 workstations were chosen to perform the path plan-

ning tasks of APS. The Symbolics family of symbolic processing machines are de-

signed with a proprietary CPU, which allows these systems to have LISP and other

symbolic programming languages implemented more efficiently and effectively than

conventional computers. Much of the efficiency and effectiveness of the Symbolics

workstations is obtained through hardware implementation of some system manage-

ment schemes. Some of the special architecture features used in the Symbolics work-

stations includes: tagged architecture, multiple caches, hardware stack pointers,

pipelined instruction cycles, and parallel processing [SYMBOL88].

b. Software

The following software products were used in the development of the

path planner for the APS system:

Symbolics Operating System, Genera 7.1, provided a consistent background

for the programming environments.

The Automated Reasoning Tool (ART) by Inference Corporation is the princi-

ple control language for the AI Agent. This rule-based, symbolic programming

language is implemented on Symbolics workstation SYM4.

• Symbolics Common LISP is used to provide access to existing path planning

search algorithms and communications code.

3. Network

Computer systems in the NPS Computer Science Department are linked

through an Ethernet local area network connecting some 76 stations. Average day-

time traffic is 25 packets/second or 30% peak utilization in worst 20 second period .

Based on a 24-hour test period during January 1989.

14

The portion of the network used by APS is shown in Figure 2-1. The vehicle simula-

SYMBOLICS

IRISs

vyvxvvyYyvvvvyvyvvvvyvvvvvv-yv-»v»

ETHERNET (10 MB/sec)

1 2
•

1 4

rr

muliiport network interconnect

Figure 2-1 Network Physical Topology

tors (commander and driver) are connected directly to the main Ethernet cable seg-

ment. The Symbolics AI workstations are connected to the network through a

mulirport network interconnect, a Digital Equipment DELNI. The flow of communica-

tions as seen by APS is shown in Figure 2-2.

ART
AI

AGENT

Client Server

TCP/IP Stream
Vehicle

Simulator Driver

^™ "^^

X CHAOSNET A BROADCAST
W DATAGRAMS

PATH

PLANNER
Vehicle
Simulator

Commander

Figure 2-2 Network Logical Topology

15

in. METHODOLOGY AND ASSUMPTIONS

In this chapter, different candidate methodologies and algorithms are explored

and the rationale behind the ones chosen discussed. The goal is to explain why cer-

tain design decisions were made and how previous work was utilized. Small seg-

ments of code or ART rules are included to show the flow from theory to application.

A. DEFINITIONS

The following terms are defined here either because they are either used in a

non-standard manner or are key to the concepts presented in this thesis.

Slope Angle - The magnitude (absolute value) of the angle between the planar

terrain polygon and the horizontal plane.

Local Platform - A platform added at the driver's vehicle simulator.

Net Platform - A platform added at a remote vehicle simulator and updated

over the network. If a network platform is selected to operate, only the viewing

controls are active. Other vehicle parameters are controlled by its home simulator.

NOGO Terrain - Terrain classified as having a trafficability of zero.

Path - A list of two or more terrain points. The first point on the path is its

start, the last point is its goal.

Terrain Polygon - Planar polygon having uniform slope. In APS these are

triangles, one half of a terrain grid defined by the four elevations at the vertices.

Trafficability - The relative speed at which a vehicle can traverse a class of

terrain due to roughness, obstacle density, soil conditions, etc. In APS trafficability is

purely a function of the magnitude of the slope angle.

B. VEHICLE SIMULATOR

The vehicle simulator portion of APS provides for a realistic depiction of a tacti-

cal platform, its control response, and its interaction with the terrain in a graphical

16

simulation without the overhead of completely modeling the full suite of time consum-

ing and complex physical motion and dynamics.

1. Assumptions

The vehicles and terrain simulated in this study are assumed to have the

following characteristics:

• Tracked or wheeled tactical vehicle travelling offroad, capable of traversing

60% slope.

• Trafficability of slope limits vehicle speed before stability limit is reached.

• Trafficability of slope limits vehicle speed before engine power.

• Single gear ratio modeled. (Although different gears could be modeled by us-

ing an array of time constants).

2. Coordinate Systems

The SGI graphics software library uses a three-dimensional (3D) graphics

world coordinate system (Figure 3-1) in which the Z axis represents depth, distance

from a plane perpendicular to the eye, rather than altitude or elevation. Another coor-

dinate system is used when planning a route across terrain, corresponding to a two-

dimensional (2D) view of the terrain from directly above. This is the Universal Trans-

verse Mercator Projection, (UTM) coordinate system and is used for path planning,

as in a military map, and is the coordinate system used for the terrain database. In

the UTM system each point is represented by a Grid Zone Designator, a distance in

meters North from the Grid Zone origin (a northing), and a distance in meters East

from Grid Zone origin (an easting). The UTM coordinates of a point (x,y,z) defined in

the graphics world coordinate system can be found by:

utm_x= x + (x_grld* 10.0);

utm_y = -z + (y_grld * 10.0);

17

Y(ELEVATION)

Z (NORTH)

APS objects

drawn in this

area

X (EAST)

Figure 3-1 Graphics World Coordinate System

3. Platform Rotation Angles

In order to model moving objects, a convention must be established for the

rotation of the body (platform) axes in relation to the graphics world axes. Normally

a platform's direction or heading is given as counterclockwise degrees from North.

Weapon systems such as artillery pieces are also aimed or "laid" using an azimuth,

an angle that follows the same convention for direction but a uses a different unit of

angular measure, mils (milliradians). The SGI graphics system and APS follow a dif-

ferent convention. Rotation angles are measured as counterclockwise angles from the

positive axis. Thus a vehicle heading due North would have an azimuth (rotation

about the world Y axis) of 1.57 radians or 90 degrees 1
. Other rotation angles follow

normal right-hand rule conventions except in the case of roll. With body axes as-

signed as in Figure 3-2, the following conventions are established for APS:

Graphics primitives use degrees but the C library functions use radians. All angles in APS are stored as radians and converted as

necessary.

18

azimuth - Rotation about the Y-axis is in the right-hand sense, from the

positive X-axis, Counterclockwise as an observer looks along the

positive Y-axis toward the origin. Also called platform's course or

orientation.

pitch - Rotation about the Z-axis is in the right-hand sense, from the

positive the X-axis, Counterclockwise as an observer looks along the

positive Z-axis toward the origin. Angle between ground (X-Z) plane

and body X-axis.

roll - Rotation about the X-axis is opposite to the right-hand sense from

the positive Z-axis. Here the rotation is Clockwise as an observer

looks along the positive X-axis toward the origin.

heading - Compass course is a Clockwise angle in degrees between

north (world minus Z-axis) and vehicle X-axis. Not used internally in

the model, but it is used to display platform azimuth to the user.

Body Y

World Y

World Z

Body X

World X

Body Z

Figure 3-2 Body vs World Rotation Axes

4. Coordinate System Transformations

Since the user's viewpoint is fixed with respect to the vehicle or body axis,

and the graphics software requires such points in terms of its own world unrotated ax-

is, there is a requirement to transform points between coordinate systems. The posi-

tion of a coordinate in a rotating coordinate system with respect to a fixed or reference

coordinate system can be represented by a 3 X 3 rotation matrix MR0T . The rotation

19

angles are known as "Euler" angles. The rotation matrix representing rotations about

Euler angles, called yaw (\\f), pitch (9), and roll (<})), in that order is:

MROT = RZ, roll
R
Y, pitch

RX, yaw FU&87: P§ 2^ =

cos\|/cos6 cos\|/sin9sin<j> - simj/cos<J) cos\|/sin9cos({) + simj/sin<{)

sinycosG sinysin9sin<j) + cos\j/cos(}) sinysinScosy - cos9sin((>

-sin9 cos9sin<)) cos9cos(j)

(3-D

The transformation of a three dimensional vector representing the body off-

set to the fixed reference is achieved by pre-multiplying1 MRQT by the vector or:

PW = P
B
MROT <3

"2>

This transformation requires the following operations:

3 sin function calls

3 cos function calls

16 + 9 floating point multiplications

4 + 6 floating point add/subtract

Fortunately the overhead of these operations can be avoided by solving a

more general problem that includes translation and scaling during the transformation.

Such a transformation from body to world coordinates is normally done by means of a

4X4 homogenous transformation matrix. This matrix represents the location of a ro-

tated and/or translated coordinate system (body), with respect to a fixed coordinate

A A A
system (world). Symbolically then, the transformation is Pw = P

B
MRQT , where P

represents the 4 X 1 homogenous coordinate vector.

The geometry engine of the IRIS is designed to perform these type of

transformations using 4X4 matrix operations efficiendy. The world coordinates of

Note that in graphics a body offset is transformed to where it would appear in world coordinates so the rotation matrix is pre-mul-

tiplied by the position vector. In robotics where objects actually move the rotation matrix is post-multiplied by the position vector.

20

the eye position vector, for example, can be calculated by having the IRIS hardware

perform rotations as if the body were an object about to be drawn and pre-multiplying

the rotation sub-matrix of the result by the offset vector. The result is the world coor-

dinate offset position. Figure 3-3 is an extract of transform_body_to_world that per-

forms these operations using the IRIS hardware.

/* Do rotations in reverse gimbal order */

rotate((Ang1e)(azimuth*RTOD_X_10), 'Y'); /* azimuth */

rotate((Angle)(elevation*RTOD_X_10),'Z'); /* pitch */

rotate((AngIe)(-roll*RTOD_X_10), 'X'); /* roll */

getmatrix(offsetmx); /* Get accumulated rotation matrix */

*eye_x = dx*offset_mx[0][01 + dy*offset_mx[l][0] + dz*offset_mx[2][0];

*eye_y = dx*offset_mx[0][l] + dy*offset_mx[l][l] + dz*offset_mx[2][l];

*eye_z = dx*offset_mx[0][2] + dy*offset_mx[l][2] + dz*offset_mx[2][2];

Figure 3-3 Transforming Body Offsets to World Coordinates

5. Physics of Motion

Vehicle motion and control response is modeled as changes in the vehicles

velocity vector v, with changes in its magnitude being acceleration or braking, and

changes in its direction being steering. The model treats control inputs as changes to

the normal constant velocity equilibrium state on level ground. The vehicle engine, at

a particular throttle setting, provides sufficient force to overcome all resistance forces

and maintain a certain speed corresponding to equilibrium between propelling and

resistance forces. If the propelling force is increased then the vehicle will accelerate

up to a new equilibrium velocity. If throttle is decreased then it will "coast" down to a

new equilibrium velocity. The vehicle velocity corresponding to maximum throtde is a

program constant, MAX_GNDSPEED = 45 MPH. 1
. Braking is modeled as

In APS there is one set of model constants. All types of vehicles react and "feel" the same to the driver. A jeep accelerates

no faster than a tank. However, these constants could fairly easily be expanded to an array of constants indexed by vehicle

type.

21

deceleration at a variable but velocity independent rate. Steering response is

modeled as an exponential function of time.

a. Friction and Coasting

A vehicle of mass m, and velocity vector ~v*, travelling on a level sur-

face, has momentum mTf At equilibrium, the only forces opposing motion are frictional

resistance forces, FR . Frictional rolling resistance is largely fluid friction and comes

from air resistance, lubricant fluid resistance in bearings and gears, tire deformation

while rotating, soil deformation, etc. For each resistance force

FR = -kmv11
~vfv (3-3)

Different resistance forces have different exponents for v. For exam-

ple, for air resistance at low speeds (< 24 meters/sec), n = 1 [MARION70: pg 53].

In fact for all resistance forces at the range of speeds dealt with in this study, n < 1 is

assumed. For simplicity a convenient approximation is made that the force contribu-

tion from all sources of resistance can be combined into one resistance force with n =

1, with some combined constant k.

Looking at just at the magnitude of the resistance force and remem-

bering that it is always opposite the direction of motion, (3-3) becomes:

FR = ma = mdv/dt = -kmv (3-4)

Eliminating constant mass and integrating over time this becomes:

\dv/v = -kjdt (3-5)

which has a solution of the form:

In v = -kt + C (3-6)

Using the initial condition v(t=0) = v
o
means C = In v

o
. Taking the exponential of both

sides gives:

e
lnv = (?

(-k/ + lnvo)
(3_?)

22

v = e
-kt. ^Invo

(3 _g)

v = v
o
e

"kr
(3-9)

Let t = 1/k. Then v = v
o
e = v

o
* l/e = vj 2.718. The quantity 1/k is called a time

constant and corresponds to the time it takes the velocity to decrease to = one third of

its original value. This time constant, i, can therefore be used to calculate an average

rate of change per unit time or:

v = v
o
-(f

o
dt/t) (3-10)

Note that this equation depends only on the time interval and velocity at the begin-

ning of the time interval. It also avoids calculating the exponential function. The con-

stant x controls how quickly the vehicle coasts to a stop or lower equilibrium speed.

A large value of T corresponds to a streamlined, wheeled vehicle on hard pavement,

as opposed to a small value of T which might represent a track laying vehicle in mud-

dy soil. The coasting function (3-10) is coded as: coast_vel = currvel - (currvel /

COASTING_TIMECONSTANT * elapsedsec);.

An analysis of a typical case shows how well this code fragment pro-

duces the same result as equation (3-9). For COASTING_TIMECONSTANT = 10.0,

elapsedsec = 0.5, and currvel = 40 MPH, after 10 seconds elapsed time, (3-9) yields

14.72 MPH while the code produces 14.34 MPH. In APS the final velocity for coasting

need not be zero. It could be a lower equilibrium velocity. The exponential nature of

the decrease in velocity means that the new velocity would be approached asymptoti-

cally, never actually reaching the target velocity (variable cmdvel). Therefore there is

a cutoff in the procedure veloclty_model, to wit:

If (fabs(cmdvel - currvel) < TO_MPS) return(cmdvel);

This returns the selected velocity as the current velocity if it is already within 1 MPH.

23

b. Braking

Deceleration due to braking can be modeled as a variable resistance

force that is independent of velocity. For a braking factor b, 0.0 < b < 1.0,

FBRAKE ~ ma = m b dvldt = *BRAKE m b O'U)

Eliminating constant mass and rearranging, the new velocity is given by:

v = v
o
+ dv = v

o
+ (*BRAKE b dt) (3-12)

or, in code:

newvel = currvel + (MAXDECELERATION * brakefactor * elapsedsec);

where MAX_DECELERATION is a constant representing the maximum rate of deceler-

ation before skidding (shear force between vehicle and ground > frictional force) and

brake_factor represents the input to the model from the vehicle controls, a value of 0.0

representing no braking down to -1.0 or 100% braking. This control input can come

from dials, the mouse or be calculated by an autopilot.

c. Acceleration

Acceleration corresponds to advancing the throttle position to a new

velocity position, vT , causing engine output to exceed the propelling force necessary to

overcome the current rolling resistance. It assumes linear engine power output. Sub-

tracting equilibrium forces at the current velocity, v
o , gives:

FA =mdv/dt = k
A (vT

- v
o) m (3-13)

rfv = kA (v
T

- v
o) dt (3-14)

rfv=l/x(vT
- v

o
) dt (3-15)

Where 1 is again a time constant = 1 / k.. Equation (3-15) is implemented as:

newvel = currvel + ((cmdvel - currvel)
* dt / ACCELERATION_TIMECONSTANT;

For ACCELERATION_TIMECONSTANT = 10 seconds and cmdvel = 40 MPH, this

gives:

=$ 20 MPH in 6 seconds

24

30 MPH in 1 1 seconds

=> 40 MPH in 21 seconds

This compares well with the nominal acceleration for the US Ml Tank of => 20

MPH in 7 seconds [JANES87: pg 122].

d. Slope Calculations

Elevation is a function of UTM coordinates, h(x,y). The gradient of h

is a vector in the ground (X-Z) plane that points in the direction of greatest increase

of altitude.

V/2 = dy I dx, dy I dz (3-16)

This model is not so concerned with the direction of the gradient vector as with its

magnitude and the magnitude of the slope angle \\f
h
which is the angle between a tan-

gent to the elevation function and the X-Z plane.

Vh = tan
-l (dy/dx)2 + (dyldiY

111

(3-17)

Fortunately, it is not necessary to calculate the slope angle directly. It can be calculat-

ed from the terrain polygon patch surface normal unit vector N which is already avail-

able for each terrain polygon from the lighting model calculations. Call \yN the angle

between N and the X-Z plane, which is also the map ground plane. Since N, with

components xN , yN , z^, is perpendicular to the terrain polygon, I yN I + I
vj/
A I

= tc /

2. Now \jfN = tan"
1

(yN / (xN + z^ y
112

), and since tan(n I 2 - 9) = cot() and

tan(6) = 1 / cot(), then

V/,
= tan"

1
((xN + zN

.)* 1/2 /yN) (3-18)

25

In the vehicle simulator, this result is produced by the function

convert_normal_to_slope which returns \|/^ in radians.

If the surface normal of the terrain polygon is not readily available

(perhaps because vertex normals are being used), the effective slope of the vehicle

can be calculated from its pitch and roll. These body angles are used to calculate the

world coordinates of a body normal, a normal vector which points out the roof of the

vehicle, using another math function transform_body_to_world, shown in Figure 3-4.

float normal[3], slope;

transform_body_to_world(platform->cse,

platform->base_pitch,

platform->base_roll,

0.0,1.0,0.0,

&normal[0],

&normal[1],

&normaI[2]);

slope = convert_normal_to_slope(normal);

Figure 3-4 Calculating Effective Slope Using Platform Orientation

Finally, vehicle pitch alone can be used as effective slope to limit

speed, since, stability factors aside, pitch angle is the slope resistance the engine

must overcome.

e. Effects of Slope

Instead of directly modeling the effect of acceleration forces on a vehi-

cle due to gravity when travelling on sloping terrain, the model assumes that the traf-

ficability of sloping terrain limits vehicle speed before engine power would be

insufficient to maintain a set speed. Maximum vehicle speed is limited by a slope

governor that decreases maximum speed as a function of slope. This slope governor

26

function is shown in Figure 3-5 where MAX_GNDSPEED is the maximum speed a

Speed (MPH)
MAX_GNDSPEED ,^^

MIN_MANEUVER_SPEED

r\0 <ynO
u z/ Slope (degrees)

Figure 3-5 Slope Governor Function

vehicle can achieve on level ground and MAXSLOPE (27°) is the maximum slope tra-

versable by the vehicle. Since limited speed could go to zero in untrafficable terrain,

the vehicle would be stuck, unmovable, if it ever entered a NOGO terrain patch. A

low "maneuver" speed is allowed for the driver to carefully and slowly work his way

out of such a situation.

/. Suspension Oscillation - "Bounce"

When a vehicle crosses a bump or other change in terrain slope, it

induces an oscillation in the spring-mass suspension system. This oscillation

continues until it is damped by the shock absorbers and friction of the vehicle

suspension moving parts. This motion can be quite difficult to model due to the

complex geometry of a vehicle suspension system. However, by limiting oscillations

to changes in vehicle pitch angle only, this motion is easily modeled as simple

damped harmonic oscillation along a single axis (the vehicle pitch angle) as shown in

Figure 3-6. This transient pitch is then added to the base vehicle pitch caused by the

27

slope of the terrain. Two additional fields in the vehicle data structure are created to

handle this effect, bounce_amplitude and bounce_time.

dPltcF

Pitch Amplitude

=^

TIME

Transient Pitch Offset

Figure 3-6 Damped "Bounce" Oscillations

The equation for damped harmonic motion [MARION70 :pg 371] is:

y = yo e~^
1
costco^ + o) (3-19)

amplitude oscillation

where P = b I 2m, b is the damping force, m is the mass of the vehicle, and co
o

is the

frequency of undamped oscillations of the system. Assume coD
= G)

q
. Choose a time

constant I, which is equal to the time interval when amplitude of the oscillations has

decreased to 1 / e of its original value, which is x = 2m I b. Equation (3-19) can then

be written as:

y«[yo-(y *<*/t)] * cos(wDo (3-20)

If the displacement y is the suspension travel at the front wheels then 8 =

tan (y / wheelbase). For relatively small displacements, the damped harmonic oscil-

lations can be calculated direcdy using the pitch angle 9 and (3-20) becomes:

28

=[0
o
-(0

o
*A/t)]*cos(©Dt) (3-21)

This can be broken up into two code steps for each cycle of the update loop:

1) Calculate the current angular oscillation value.

bounce_pltch = bounce_amplitude *

COS(OSCILLATION_FREQUENCY * TWOPI * tOtal_time);

2) Calculate new bounce amplitude based on damping effect.

bounce_amplitude = bounce_amplitude -

(bounce_amplltude * dt / DAMPING_TIMECONSTANT);

With DAMPING_TIMECONSTANT set to (1 - 1/e) / T.

Empirically, equation (3-21) and its code can be shown to approxi-

mate the results of (3-19). Considering a typical case1 and comparing just the de-

cline in amplitude after 3.0 seconds, equation (3-21) yields 5.5° (converted from y

displacement), while the code gives 4.8°. Only a small part of this difference (app

0.1°) comes from oscillating the pitch angle directly instead of oscillating the displace-

ment and then converting, 5.5° versus 5.6°. The total error is small enough that

"tuning" the constants can bound this error well within the difference detectable in a

moving visual simulation.

6. Simulation Time Interval

The model time interval, or dt, using Leibnitz notation, is the elapsed time

required to complete one processing loop in simulation time. Since the rates of

change of most of the processes are non-linear, the linear approximation used is only

a good approximation if dt is small, « 1 second. The second problem that results if dt

is not small enough comes from delayed control feedback. For example, if steering a

vehicle in a turn and dt is of the order of 1 second then the driver will tend to over-

shoot control corrections, making it difficult to steer onto a desired course or avoid ob-

stacles. This lower bound is due to control response and depends on many factors,

For DAMPING_CON'STANT = 3.0, dt = 0.25 seconds, wheelbase = 2.0 meters, initial displacement of 5 meters = 15 degrees, and

total time = 3.0 seconds.

29

including platform velocity, control responsiveness, complexity of maneuvers, etc. Re-

sponsiveness for an aircraft travelling at hundreds of MPH must be greater than for a

ground tactical vehicle travelling cross country at speeds typically < 25 MPH. For

such ground vehicles, a subjective lower bound appears to be 3-4 frames or cycles per

second.

7. Paths

Paths in APS resemble the military concept of a "route" with an SP (Start

Point), RP (Release Point) or goal, and a CP (Check Point) at turning points or criti-

cal points. Figure 3-7 shows the path data structure. The SP of the path is its first

point and the RP is the last point on the path. Each platform data structure

(Appendix A) contains a pointer to a path and a pointer to the next point along the

path. Path manipulation routines are contained in module path.c.

Paths are created and maintained separately from platforms. When a vehi-

cle is "assigned" a path to traverse, a copy of the path is made for the platform and a

pointer to the platform is added to the list of platforms assigned to that path. Thus

several platforms can be assigned to traverse a path and navigate along it indepen-

dently. Also, if a point on the original path is altered, all affected platforms can be no-

tified. On the other hand, if a platform must deviate from the path to avoid an

obstacle, intermediate points can be inserted in the platform's copy of the path with-

out affecting the original.

30

Utm_point

double x double y

PTNODE

Utm_point point

nextpt ->• PTNODE

PATH

int pathid

char[80] name

int numpts

platforms -> PLATFORM_NODE

ptlist -» PTNODE

lastpt -> PTNODE

nextpath —> PATH

Figure 3-7 Path Format

A platform being guided by an external agent by receiving one point at a

time is actually following a path that consists solely of a periodically updated goal.

As new guide points are received, the goal point is replaced. The autopilot module

can then navigate a platform along a path by heading successively toward each point

on the path list. Figure 3-8 shows a tank approaching the goal point, which is drawn

as a tall, pyramid marker on the terrain. The paths are maintained as a linked list

managed using four global variables:

pathlist - pointer to first path on path list.

pathllstend - pointer to last path on path list.

31

Figure 3-8 Driving a Tank Toward Its Goal

32

numpaths - number of paths currently on pathlist.

path_pickld - unique identifier for graphics picking.

Path manipulation is accomplished by selecting the "PATH OPERA-

TIONS" entry in the main menu. The path operations menu is then constructed and

displayed, providing for the selection of up to four functions:

1 - Display Paths - ON/OFF

2 - Construct a Path

3 - Delete a Path

4 - Assign Vehicle to a Path

The first option toggles the display of paths on the 2D terrain map. Figure 3-9 shows

the display used to manipulate paths. Paths are displayed by default but may be

turned off to reduce screen clutter. Menu option 3 is only presented if there is at least

one path defined. Option 4 is only presented under the additional condition that at

least one platform is defined. At present, all platforms except FOGM can be as-

signed to a path. A path, once defined, is stored in a file containing all currently de-

fined paths. When APS is started, it searches for a file "aps_paths.dat" in the

following directories, in order: the current (default) directory, the directory containing

the APS executable, and the "DTED" directory. If the file is found, APS loads the

paths it contains. Each time a path on the path list is created or destroyed, the file is

updated.

8. Guidance States

The current control state of each platform is reflected by the combination of

two fields in each platform record:

control - MANUAL or AUTOPILOT

ext_guidance - ON or OFF

The slot ext_guidance determines whether platform guide points are taken from in-

coming message or an assigned path. The slot control determines whether course

33

Figure 3-9 Terrain Map Used for Path Planning

34

commands are calculated by the autopilot or are provided from the vehicle controls

(dials or the mouse joystick).

9. Autopilot

The autopilot determines the commanded course and speed for each local

platform that has its control field set to AUTOPILOT and has a path defined. Since

external guidance messages update the platform's local path record, the autopilot

functions irrespective of the source of the path data. The autopilot calculates an azi-

muth to the current guide point. The current guide point is automatically updated to

its successor on the path (if there is one) when the platform is within VICINITY

meters of the way point. If the platform gets within ARRIVED_DISTANCE of the

guide point then the guide point must be the last point on the path, i.e. the path goal.

If so then the autopilot applies the brakes to bring the platform to a halt without over-

running the goal. Figure 3-10 shows the relationship of these distances. Precise

VICINITY

ARRIVED
DISTANCE

Figure 3-10 Autopilot Control

control would require both these distances be variables that are a function of the plat-

form's speed, instead of constants, so that a platform starts to brake or turn in the

time necessary to stop or turn exacdy over the guide point. This level of precision

would be necessary to navigate a platform through a field of obstacles and would re-

quire projecting ahead the platform's location so as to issue the proper commands at

35

the correct time. However, the simpler algorithm presently used is adequate to halt a

platform travelling at maximum ground speed (MAX_GNDSPEED) before reaching

the goal.

B. PATH PLANNING

1. Introduction

The path planning process for this study simulates the actions of the vehi-

cle commander in planning paths, and issuing waypoints for a controlled vehicle. The

commander starts out with the following facts:

Which vehicle is being controlled.

Start point and goal locations are known.

A terrain map of the region to be traversed is available.

The terrain map contains cost of traversal information for the region.

Vehicle speed.

Vehicle course.

Vehicle guidance mode.

Vehicle location in UTM coordinates.

Current simulation time.

The commander uses this information to plan a path to the goal, selecting

the quickest path between the start point and the goal point. In selecting a path, the

commander chooses prominent terrain features as guiding waypoints for the driver.

Once the path is selected, the commander issues commands to the driver to proceed

to the first waypoint as indicated by the commander. The commander continues to is-

sue new waypoints as the driver pilots the vehicle close to the last waypoint. As the

simulation continues, the commander needs to be informed of changes to the vehicles

status as indicated here.

• Vehicle ID.

• Vehicle speed.

• Vehicle course.

• Vehicle guidance mode.

36

• Vehicle location in UTM coordinates.

• Current waypoint location in UTM coordinates.

2. Path Planner Control Program

The path planning simulation of the commander is divided into two major

areas, the overall controlling program and the actual search algorithm that does the

path planning. The term path planner is used to describe the combined AI processes

that make up the AI simulation of the path planning commander. The path planner is

kept separate from the graphics simulation of the vehicle and implemented on the

Symbolics AI workstations. Two reasons for this are: first, a great deal of path plan-

ning work done at the Naval Postgraduate School is done using AI workstations, and

second, a substantial amount of the program code produced is done in LISP and Pro-

log that can be easily ported between the different AI workstations.

The path planner control program is separated from the actual search por-

tion of the path planner for three reasons. The first is to allow modularization of the

code. The communication costs associated with this approach do not appear to over-

ride the benefits of being able to substitute different search algorithms. The second

reason for the separation was to allow the path planner control program the exclusive

use of a workstation. Expert system shells require considerable system resources,

and it is felt that the overhead of running the expert system shell would put an exces-

sive load on a single workstation when combined with running real time path planning

searches. Finally, this separation should allow more than one search program to

work simultaneously.

a. The Expert System Shell

High turnover and short learning curves predominate much of the frus-

tration associated with thesis work. Therefore, since one of the major goals in this

study was to provide a test platform that could be used to study the relationships as-

sociated with the application of artificial intelligence techniques to the control of au-

tonomous vehicles, it would be advantageous to have the path planner controller

37

written in a high level symbolic programming language. The use of such a language al-

lows a researcher to examine problems at a much higher level of abstraction than with

LISP or Prolog.

One of the criteria in the selection of an expert system shell was the

desire to have the path planner control program continuously monitor the knowledge

database and react to changes therein. Forward chaining control strategies facilitate

this continuous flow within the rule based system by simply keeping fresh facts as-

serted. In ART and KEE, the forward chaining mechanism is self contained in the in-

ference engine of the shell. There are forward chaining control implementations

written for both LISP [MCNKLE&88] and Prolog [ROWE88], but abstracting the re-

searcher away from the mechanics of forward chaining produces code which is easier

to understand.

ART was chosen over KEE in part because it appeared easier to ex-

amine the workings of the rules in ART. ART allows direct manipulation of the rules

through Symbolics' ZMACS editor, and through the use of ART's ability to watch and

record the firing of rules, and the assertion and retraction of facts.

b. How ART Works as a Process Controller

ART is a rule-based, expert system shell, containing the ability to

forward chain and backward chain. The principle inference engine is the forward chain-

er. As stated in Chapter II, an ideal inference engine within a shell would provide an

uncluttered view of the rules and knowledge base used in a problem. In reality, there

are inherent limits on the inference engine implemented within ART. One important

limit is that an artificial structure and order are imposed on rule firing. A simple exam-

ple of this is the difference between the firing of two rules that require identical pre-

conditions. One rule must fire first. The engine must decide. The choice could be as

simple as choose the rule that appears first in the program structure, or choose the

shortest rule. And though the choice may be arbitrary it must be consistent. ART ap-

pears to choose the first rule in the program structure.

38

(1) Rule Structure. ART's rule structure provides a straightforward

way of declaring the complete predicate logic for a given rule. A sample rule extracted

from the path planner control program is presented in Figure 3-11 below. The left side

of the rule contains the preconditions necessary for the rule to fire. The right side of the

rule carries out actions. These actions can be controlled by binding temporary facts and

by examining states through the use of conditional statements. The parts of the rule

are clearly shown in Figure 3-11. Here the rule is fired when the fact (menu one) is

asserted. The right side of the rule can request the operator to perform some action

(defrule MENU1
(schema sym

(one?s1)

(two ?s2)

(three ?s3))

?a <- (menu one)

=>

(printout 1 1 "Where is the path planner located?")

(pnntout 1 1 "Your choices are the following, chose one by it's letter.
"

fa" ?s1

t "b " ?s2

t "c " ?s3

t "NOTE— Please ensure that the path planning software is running"

t)

(bind ?b (read))

(if (or (eq ?b 'a)

(eq?B'A))

then

(assert (sym-link ?s1)

(menu two)

else

(retract ?a)

(assert (menu one)))

)

)

(retract ?a)

)

Figure 3-11 MENU1 Code Fragment

such as choose the Symbolics machine where the search control program resides. The

operator's response is then checked to ensure a valid response, and facts are asserted

that enable the Symbolics communications start up rule to fire and start

39

communications with the appropriate Symbolics workstation. Of special note here is

that a fact in ART must be retracted before it is reasserted. If the fact is asserted

before it is retracted, the assertion will be lost. This is because ART keeps only one

copy of identical facts. The Path Planner Control Program contained in Appendix B

provides a more detailed look at the code.

(2) Continuous Forward Chaining. A rule firing control mechanism is

needed that allows the path planner control program to continuously monitor the

knowledge base and the communications sub-process. This is accomplished with

continuous forward chaining by cycling through a base set of rules. The rules chosen

for this cycling are the interface with the vehicle clock and the calls to the system's

communications ports. These rules are selected because they are the most likely

routes for new facts to enter the knowledge base of the commander. The Symbolics

read-char-no-hang stream read method is used in the communications rules to ensure

that the communications calls do not wait if there is no data on the lines. Rule cycling

begins when a rule has met all of its enabling preconditions. A rule fires when all of

its enabling facts are met. The rule check-comm-llnks-iris retracts its enabling fact,

and asserts the facts (check-comm iris), (check-comm sym), and (clock-update yes).

Order of assertion is important here because the last fact asserted will be pursued

first, as explained in Paragraph c. below. If no information is available from the IRIS

communications link, the clock is updated, the Symbolics' communications link is

checked, and finally ART cycles back through the checking of the IRIS

communications link.

(3) Rule Precedence. Actions by a human commander are taken

according to some precedence or order imposed by the commander's judgement. It is

desired to duplicate the human's ability to judge and separate actions that need to

happen immediately from those that could be postponed. Assigning rules an order of

precedence allows more important rules to be examined first. Rule precedence is

accomplished by the use of ART's salience function. Salience values are from -10000

40

(lowest precedence) to 10000 (highest precedence). A rules salience value is

assigned at compile time. If the rule's salience is not declared, a value of is

assigned. Rules of the same salience are loaded onto a stack as they become ready to

fire. Rules thus grouped are fired according to their salience value first, then

according to their position on the stack. It is useful to think of ART as having a

separate stack for each salience value, and always firing rules off the stake with the

highest salience value. At each level of precedence, the rule loaded to the stack last

is fired first. This provides a mechanism to mimic the human ability to pursue what

should be done first. Rules must be written such that more important things have

higher saliences than less important things. The consequences of this stack action

effectively imposes a most recent fact following algorithm. A side effect of a most

recent fact following algorithm is that it can lead to indefinite postponement of rules.

This can happen in two different ways. First, if high precedence rules are continually

added to the agenda stacks, low precedence rules will never fire. A second and more

subtle way a rule could be indefinitely postponed is by asserting a fact that activates

a rule of the same precedence as the postponed rule. Since all newly asserted rules

are loaded to a stack, the most recent rule is looked at first, thus postponing the older

rule. This indefinite postponement is easily handled in Prolog by using an assertz

command. Using ART, the programmer must control rule firing by sequentially

activating rules, and ensuring that all sequences of rule firings lead back to the lowest

level.

(4) LISP Calls. LISP calls are used where it is more convenient to

perform an action on LISP data structures or to use existing LISP functions. LISP

calls can be made only on the right hand side of rules, and are delineated by #L

immediately before the LISP code. ART can make direct use of LISP symbols and

values, but is clumsy at manipulating LISP lists. Therefore, LISP lists are converted

to ART facts and schemas that use relations within ART to link related facts. An

example of this, in Appendix B, is the rule process-waypoints. In this rule, the

41

incoming waypoints are stored with the vehicle and their sequence number from the

list they came from. ART also fails to recognize the strings produced by calls to the

LISP communications packages. Here Common LISP provides the intern function to

convert a string into a symbol. This symbol is then fed to ART. As can be seen in

Figure 3-12 below, the intern command requires a prefix that designates which

Symbolics package the LISP function is defined in. The ART package does not have

all of the Symbolics' Common LISP functions available.

(bind ?b #L(sd:intem (scl:send talk-i :check-iris 3)))

(if (eq ?b '»>) then

Figure 3-12 Code Excerpt from the Rule read-update

3. Path Planning and Search Algorithms

The second portion of the path planner is the search algorithm. The require-

ments for the algorithm are that it accept as input the following data:

• Start point

• Goal point

• Vehicle ID

UTM coordinates of the lower left hand corner of the 10 KM grid window.

The output requirements are waypoints passed individually with the corresponding

sequence number and vehicle ID.

a. Search Region Representation

Planning a path across real or simulated terrain requires some criteri-

on be established that will allow the path planner to choose between routes. Slope is

a common terrain feature used as a simple distinguishing factor [ROWE&881. The

greater the slope, the greater the cost of traversal. This criterion has some interesting

properties that are not in accord with the physical environment. In APS, effective

slope is an absolute value independent of the direction of traversal. In traversing an

42

actual physical region a given incline has varying degrees of relative slope depending

on the traversal angle. Since the major goal in this study is to build a test platform

that would allow the testing of search algorithms and their interfaces with simulated

vehicles, this discrepancy is accepted in the interest of simplifying the problem. An in-

teresting result of this simplification is that bidirectional searches can be performed,

because the cost of traversal is independent of the direction of travel across a given

region with a given slope.

Discrete geometric cells were used because of the simplicity of

conversion from the graphics elevation data to the slope data used by the wavefront

path planner. The use of the wavefront search technique was based on the

construction of the elevation and slope data files and the ease of implementation of

the wavefront algorithm. The slope data files produced by Felhoelter's methods were

designed to contain all of the information about a given search region [FELHOE88].

This information included the boundary information that ensured the search algorithm

would not overflow the search region. This boundary information was otherwise

unrelated to slope information of the region. The stripping off of this boundary

information was trivial and could be accomplished while building the slope files or

after they were complete. However it became apparent that the use of slope data

files containing one by one to ten by ten kilometers of slope data would prove difficult.

Using files built in this manner would have required the use of 1225 to 625 separate

slope data files for a 35 KM by 35 KM map that covered the same region as the map

used by the IRIS based vehicle simulator. It would have also required either

predefining the area to be searched or some other way of selecting the appropriate file

for a given run. Initially a 35 KM by 35 KM slope data file was used, but it was found

that the time to read in the data took as long as six minutes. This long read-in time

occurred because each record of the file had to be read in sequentially until all of the

data for a given map was read in. This read-in time was reduced to one minute by

converting the text file to a binary file and using the Symbolics LISP file-position

43

function, which is Symbolics' equivalent to the Iseek function of C. Finally, the slope

files were recomputed using the graphical methods developed on the IRIS

workstations. This was done because the methods used by Felhoelter produced

significantly different slope data than that produced on the IRIS workstations. This

difference appears to be based on the fact that the vehicle simulator uses the slope

calculated from the lower left triangle of a one hundred meter square in the graphics

simulation. These triangles were used because they form the planar surfaces used in

the graphical displays on the IRIS workstations, and the drawing routines provide

normals to the surface from which slope can be easily calculated. These methods

were described earlier in this chapter. The only significant difference between the two

methods is when the slope calculations are performed. The slope information for the

Symbolics processes is calculated before the simulation is begun, while the slope

information is produced at system run-time by the vehicle simulator.

C. AUTONOMOUS vs. MANUAL CONTROL

The guidance and control states of APS have been previously described. What

follows contains a fuller explanation of what is involved in the transition between

these states. The states were designed to be as independent and flexible as possi-

ble, to allow switching in and out of autopilot control while being guided by an exter-

nal agent and, conversely, to allow switching external guidance on and off while

remaining under autopilot or manual control. Ideally, the source of external guidance,

human or AI agent, would be transparent to the guidance system. Unfortunately, the

methodology used for human control introduced asymmetries into the design. An ex-

ternally guided vehicle is controlled by a remote human path planner on another graph-

ics workstation differently than it is guided by the remote AI agent. The human

commander designates a path for a remote platform vehicle just as if it were a local

platform. The path is then transmitted across the network in its entirety. Thereafter

the vehicle driver navigates as if the path had been generated locally. On the other

44

hand, the AI agent transmits one path point (guide point) at a time, successively up-

dating them as the vehicle gets near. The source of this lack of symmetry lies in the

greater functionality of the AI agent. It was designed to calculate a new path if the

controlled vehicle encountered unforeseen obstacles or deviated too far from the calcu-

lated path. This cannot be done in advance. This dual role of global and local planner

was never envisioned for the remote human commander except in the case of replac-

ing one global path with a new one. In essence then, the external guidance state be-

comes one of exclusive AI agent control and the methods used for the transitions

back and forth between external and internal guidance are designed to accommodate

the different models of guidance and preserve the transparency to the rest of the vehi-

cle simulator.

A platform's external guidance can be toggled ON or OFF either locally by a

popup menu selection from the driving menu or remotely by network message. This

network message is generated by a remote human commander making the same

menu selection as would the local operator. If the selection is made locally, the mode

transition is made. If the selection is made remotely, the message is transmitted.

Actions on the local platform are the same regardless of the source of the command.

At present, no authentication or permission system is used, nor is there a local lock-

out or override provided.

External Guidance OFF —> ON causes the following actions:

1) Set ext_guidance toggle ON.

2) Send an INITIALIZE control message to the AI agent containing the UTM

coordinates in meters of the origin of the current ten kilometer box, vehicle identifier,

start and goal points of the path, and current simulation time (If no AI agent is con-

nected the message is discarded). Note that the start point sent is the platform's

current guide point which may not be the SP of the originally assigned path. If the

platform had partially navigated a path under internal guidance, then the guide point

will be the next point in the remainder of the path.

45

3) Set up the platform to receive guide points by making the platform's current

location its guide point and deleting the remainder of its path. This is done so that the

autopilot, if engaged, will simply bring the platform to a stop instead of heading out di-

rectly for the goal. The portion of the path traversed so far is preserved on the front of

the list.

4) Finally a position update message is sent over the network on both broad-

cast and stream channels. Currendy it is this UPDATE message, with its guidance

field set to ON, which triggers the AI agent to calculate an optimal path based on glo-

bal terrain cost data. However, there is nothing in the vehicle simulator to prevent

the AI agent from choosing the start and goal points by itself, sending a message to

turn guidance ON, and then sending guide points from a calculated path.

External Guidance ON --> OFF causes the following actions:

1) The platform's external guidance flag is set to OFF. This causes any incom-

ing guide point messages for this platform to be ignored.

2) The platform's path is deleted.

3) Its original assigned path, if any, is reloaded.

4) The platform's guide point is set to the point on the original path closest to

the platform's current location. In this way, a platform taken off external guidance af-

ter navigating a portion of a path would not go all the way back to the start point, but

can complete the remainder of the path. Note that the closest path point is not neces-

sarily the best path point pick to minimize travel time or some other performance mea-

sure. Locating the best path point is a non-trivial problem in itself. In some cases

the simple method used will guide the platform back to a previously passed path point

or directly to the goal point Generally however, when assigned a path with many

fairly short segments, backtracking and loss of time will be limited to one half the

length of the current path segment.

46

5) Finally, a position update message is sent over both broadcast and stream

channels. The guidance field of this message reflects its new state and directs the AI

agent to stop sending guide points.

D. COMMUNICATIONS

The amount and sequence of data that must be passed over the network is de-

termined by the functions to be performed. For communications between vehicle sim-

ulators, sufficient data is needed to display the platform on a remote simulator as well

as model its movement. Information flow with the AI agent is determined by the divi-

sion of labor between the vehicle simulator and the commander, human or machine.

Updates are sent between vehicle simulators or to the AI agent only when a state

variable such as speed, course, weapon firing, etc., changes. In general, in communi-

cating with other vehicle simulators on the network, the vehicle simulators PUSH in-

formation over the network using broadcast datagrams to any others who might be

listening. Only upon initialization does the system poll for a response.

There are usually several methods to chose from when communicating between

applications over a LAN. In the case of the APS development environment, TCP/IP

supports byte streams, which require dedicated connections, and datagrams, which

may be connectionless, and even addressless in the case of broadcast datagrams, or

may be sent between connected hosts. The vehicle simulator's use of a PUSH broad-

cast system to communicate with other vehicle simulators is adequate for the amount

and types of messages needed by that portion of APS. It would have been simpler if

this same approach could have been used for communicating with the AI agent.

Broadcast datagrams provide for reliable 1 transmission of discrete messages over a

LAN. This means that specific addresses need not be hard coded or determined at

1 Datagrams are not usually considered "reliable" because there ii no receiver acknowledgement. If communication between host*

ia entirely intra-network then the underlying protocol, in this case Ethernet's CSMA7CD, guarantees delivery to each host and,

barring buffer overflow or process termination, the message will reach each process properly attached to the addressed port

47

run time and that each read will return zero or one complete discrete message

(provided the message fits within the network maximum size). However, this proved

not to be feasible primarily due to the limitations of the Symbolics' implementation of

support for TCP/IP network services. The only arrangement that worked during this

research was a pair of halfduplex stream connections, with the further limitation that

the vehicle simulator must act as the server and the Symbolics as the client. For con-

sistency, communications between AI processors also use stream connections.

The only remaining design decision for the vehicle simulator end of the communi-

cations link was then whether to have the simulator poll the incoming stream connec-

tion for input using a non-blocking read or to spawn a sub-process to continuously

monitor the connection and communicate with the main simulator process through

semaphores and a shared memory buffer to hold messages.

A separate subprocess carries the additional complexity of implementing sema-

phores and shared memory plus the computational overhead of a context switch. Al-

so, during development, when system aborts are common, special care must be taken

not to leave orphan subprocesses when the main process terminates. The main ad-

vantages are immediate response to incoming messages and message preprocess-

ing. The subprocess issues a normal blocking read on the connection, which sleeps

until input is present. This is more efficient than constantly polling. The second plus

is the ability to respond immediately to some query while the main processes may be

tied up in computation and graphics processing.

The polling approach is simpler. In fact, in APS even the initial acceptance of a

connection request is done by polling. On a single processor system, one CPU still

must run both the main and subprocesses so no real time is being gained by running

them in parallel. There may be some concern that the input buffer may overflow

between polls, which in APS happen once each drawing cycle. However, under UNIX,

the receive buffer can be made practically as large as desired (currently 40K bytes) or

at least as large as the shared memory buffer is likely to be, so the risk of overflow

48

between cycles is the same. The system network daemon basically does the same

job as the subprocess, and hopefully, it is more efficient at it than user written code

would be. Tests using dummy AI agent programs which send messages at ten times

the normal rate have not produced evidence of a lost message.

Communications with the Symbolics AI agent are performed as follows:

1) Upon initialization, the vehicle simulator establishes a stream socket, sets it

to non-blocking operations, increases its receive buffer size, and creates a connection

queue as a stream server.

2) Thereafter, during each graphics cycle, the socket is polled by issuing a non-

blocking ACCEPT command. If a stream client, in this case the Symbolics, is waiting

for a connection, two stream sockets are cloned, one for receiving messages from the

Symbolics and a separate one for sending messages to it.

3) If a working connection is established, then a non-blocking read is issued on

the receive stream socket. Messages from the AI agent, comprised of character

strings with punctuation character delimiters are extracted from the stream and re-

turned as whole messages to the simulator which takes the appropriate action. The

specifics of how this is implemented are contained in Chapter IV. If the stream con-

nection is broken by the AI agent, then a flag is set and the system returns to polling

for a connection instead of polling for data to read.

At the Symbolics AI agent, the path planner needs to monitor the progress of

the vehicle, independent from the vehicle simulator updates. This means that calls to

the communications system can not be allowed to wait for data. For this reason com-

munications at the Symbolics AI agent is done using the read-char-no-hang method

to read the input stream. This allows reads from the I/O stream to return nil.

Messages are identified and delineated by non alphanumeric characters. Non al-

phanumeric message delimiters were chosen to reduce the chance of processing par-

tial messages. This could occur if the first part of a message were lost over the

network. It is assumed that a properly delineated message is complete and correct.

49

The use of a data stream requires that the formats of the messages be known in

advance, and that each message be identified as to type. This is accomplished by the

use of non alphanumeric delimiters as mentioned above. A further precaution that en-

sures messages are not lost forever should one message arrive without its leading

delimiters is the use of different length delimiters on the front and back of messages.

The front delimiter is longer than the back delimiter. This is done to prevent a mes-

sage that has lost its front delimiter from starting a cycle of reads that could pass

over the correct first delimiter. The algorithm that receives the messages on the Sym-

bolics workstations checks for the first delimiters, and then reads in a prespecified

number of characters, based on the message type. The last few characters make up

the ending delimiter. It should be noted that the sending process supplies a null char-

acter between messages. If the ending delimiter were the same length as, or longer

than the beginning delimiter, the ending delimiter could be interpreted as the begin-

ning. Since the rest of the message is not evaluated until the ending delimiter is

checked, message traffic could remain out of synchronization indefinitely once broken.

E. PERFORMANCE MEASURES

In order to make quantitative comparisons among path planning algorithms or

human-machine control arrangements, some numerical figure of merit must be cho-

sen. For tactical vehicles travelling cross-country, some candidates are: transit time,

fuel consumption, enemy exposure, weapons line-of-sight, etc. In this study transit

time was chosen because it can be tied directly to the terrain data base and platform

characteristics.

For each platform experiment or trial, there is a global planning time and a

transit time. In a sense, the planning time represents a fixed investment cost and

transit time operating cost. An experiment may compare total time (planning and

transit time) or analyze them separately. As an example of the type of trade-off

study that might be made, consider the current path planning algorithm used. Such a

50

wavefront or breadth-first algorithm may not represent the fastest way to produce an

optimal global path. However, its nature as a neighbor-based algorithm means that

each path step is calculated only on LOCAL cost data. Then, assuming the agenda is

preserved, when a small piece of the data changes, such as the discovery of an

obstacle, only a small region need be recalculated. Its overall performance in the

presence of constantly changing local data might be superior.

This research makes no attempt to produce a definitive measure of effective-

ness. Rather a mechanism is sought that will provide a basis of comparison for oth-

ers to use in measuring the effectiveness of path planning systems.

F. SUMMARY

This chapter provides an examination of the source, thought process, and evolu-

tion of the design of APS. The development of the vehicle motion model and control

response of the vehicle simulator are discussed along with the knowledge base of the

rule-based path planner and path planning algorithms. This chapter concentrated on

the why. The next chapter will delineate the how.

51

IV. SYSTEM DESCRIPTION

This chapter describes how the methodology and algorithms were implemented,

including the function and structure of some of the main programs and rule sets. Data

structure definitions along with some code listings are contained in Appendix A.

A. TERRAIN DATABASE

APS uses terrain data that is a subset of a vegetation and elevation database in

12.5 meter increments for an area of Ft Hunter Liggett, California, provided by

CDEC. This database is preprocessed into 100 meter resolution data by sampling ev-

ery eighth point and then stored in a separate file that is read by APS. Each data

point is 16 bits (2 bytes). The 3 most significant bits form a vegetation code which is

used to color terrain polygons in a shade of green for the 3D view. If the vegetation

code indicates light or no vegetation, or no vegetation data is available, then the ter-

rain polygon is colored according to its elevation using the currently designated color

map, usually shades of brown. The remaining 13 bits contain the elevation in feet.

This elevation is used to draw the 3D terrain, calculate normals for the lighting model,

and calculate slope used by the path planning cost function.

APS is currently limited to the 35 KM by 35 KM area for which preprocessed

data is available. In UTM 10 meter grid coordinates, this area extends from

10SFQ4 1006000 to 10SFQ77009500. A basic terrain surface patch is formed by the

four elevations of the vertices of a 100 meter square. These points are not

necessarily planar. Since the IRIS cannot quickly render filled non planer polygons,

this polygon is divided along a NW to SE diagonal into two planar triangles which are

rendered as filled shaded triangles. This basic terrain patch is shown in Figure 4-1.

52

The lower left (SW) triangle is called the lower triangle and the upper right (NE)

triangle is the upper triangle.

z>

lower triangle

/"T~ZU . upper triangle

7vn l

\ //
\ / /

i /

1/ X

Figure 4 - 1 Terrain Patch

The elevation of each triangle vertex is stored, along with its X and Z offsets in

a floating point array (the upper left and lower right points are duplicated) consisting

of 72 bytes (3 X 6 X 4bytes) per 100 meter square. In addition, a surface normal 3D

vector is calculated and stored for each triangle. One square kilometer of terrain data

thus consumes 9600 bytes (10 X 10 X 96bytes). The entire 35 KM by 35 KM area

consumes over 1 1 Mbytes of memory. To maintain performance, only the vertex and

normal data for a 10 KM by 10 KM area selected by the user are kept in memory.

B. VEHICLE SIMULATION

1. Capabilities

The capabilities of the Autonomous Vehicle Simulator include:

Acceleration due to changes in engine throttle (thrust).

Deceleration due to coasting and braking.

Change in vehicle pitch due to acceleration or braking proportional to the mag-

nitude of the change of velocity.

Vehicle roll due to centrifugal force while turning.

Linear steering controls with exponential steering response.

Damped vehicle oscillations due to changes in vehicle pitch as vehicle travels

over varying terrain.

Change in vehicle velocity due to terrain slope.

53

An autopilot that will navigate a platform along a designated path.

• The ability to handle vehicle control inputs from either local driver controls, lo-

cal/remote autopilot steering commands or remote autopilot/commander path

commands.

• Models multiple vehicles, with selectable independent views from each vehicle

representing weapon sights, commander's station view, etc.

• Multiple independent viewing axis and viewing positions.

• Multiple independent weapon system axis maintained to provide for stabilized

weapon/sighting systems.

• Utilizes graphics hardware for fast coordinate system transformations.

• The ability to sight, range, and fire weapon systems, including stabilized

weapon systems. The following platforms and weapons are implemented:

tank with main gun SABOT and HEAT rounds, open jeep, closed top jeep,

TOW jeep, truck, Cobra attack helicopter with TOW weapon, and FOGM.

• ANSI C standard source code.

• Broadcast networking to allow multiple simulations to operate together on dif-

ferent IRIS workstations.

A complete discussion of the user interface for APS can be found in Appendix C.

2. APS Environment

The vehicle control and motion model requires an interface with its simula-

tor environment in four areas: maintenance of and access to terrain data structures;

timing; control inputs; and display of results. From the terrain data structures, it

needs the elevation of an arbitrary point in world coordinates. This is provided by the

function gndjevel. It also requires the surface normals for each terrain polygon. Tim-

ing is provided by the routines in module simtime (Appendix A). Control inputs are

provided by reading the mouse position, reading dial positions, or receiving commands

from a remote guidance system. Displaying the results, which after all is the main

thrust of the simulation, is accomplished by drawterrain after the model "positions"

the vehicle for drawing and sets up the viewing parameters and the projection trans-

formation.

54

3. Graphics Drawing Cycle

Typically, window-based graphics programs operate in a drawing cycle

with an INPUT-UPDATE-DISPLAY loop. A representation for this cycle in the vehi-

cle simulator is shown in Figure 4-2. The platform modeling routines operate in the

update portion of this cycle. They operate on the platform data structure which is then

initialize terrain, graphics, and I/O

while (state variable)

<

update simulation timer
-

while input in input queue

{

read queued input device

dt handle input

}

handle network input messages

update guide points and controls (autopilot)

update vehicle model

update vehicle position

draw objects

send network update messages

}

Figure 4 - 2 Structure of Main Drawing Loop in event^driving

passed on to the display cycle. The only parameters usually required for model rou-

tines are a pointer to the platform and the elapsed time since the last update cycle

was completed.

4. Input

As discussed earlier, control inputs can have several sources, can be set

to override each other, and can be turned on or off depending on the internal state of

the simulator. The source of control inputs is largely irrelevant to the design of the

motion model except for steering. Two ways of modeling steering correspond to two

types of physical control systems. In one, the steering wheel or control device is

55

directly connected to the wheels, tracks or control surfaces of the vehicle (Figure 4-

3). External course commands then must be processed into signals to a

servomechanism which physically moves the steering control just as a human

operator would manipulate it.

COURSE
COMMANDS

COMMAND
PROCESSOR

MANUAL
CONTROL

SERVO
STEERING CONTROL

EFFECTOR

Figure 4 - 3 Manual and Automatic Steering Control

Another arrangement is "fly-by-wire" (Figure 4-4) where manual control

generates a signal which is perhaps one of several input signals to a steering control

system which in turn activates physical control surfaces such as wheels, tracks, or ai-

MANUAL ^
CONTROL

COURSE ^
COMMANDS

CONTROL

PROCESSOR ^ CONTROL
EFFECTOR

Figure 4-4 "Fly-by-Wire" Steering Control

lerons.

APS currently uses the first system. Course commands are converted in-

to a turnrate. This turnrate is then used by model routines steering_model and turn-

ing_model without caring if it came from the steering wheel or remote commands.

Thus the modeling of turning is independent of the source of the turning commands.

56

5. Model Update

The update phase (Figure 4-5) is actually split into two sub-phases. In

the first phase, the new velocity and course are calculated. In addition, any transient

pitch or roll caused by a change in velocity is calculated.

COMMAND COURSE
CURRENT COURSE
COMMAND TURNRATE
CURRENT TURNRATE —^^-
COMMAND VELOCITY
CURRENT VELOCITY

DT

MODEL

COURSE^ VELOCITY
•^ TRANS PITCH

TRANS ROLL

Figure 4 - 5 Vehicle Model Update Phase

Once the model has updated the platform data structure, it is passed on to

the routine update_veh_pos which "moves" the platform to its new location and calcu-

lates orientation angles based on the slope of the terrain. Any oscillations or

"bounce" in vehicle transient pitch angle is calculated by handle_bounce. This is

based on the change in vehicle base pitch angle exceeding some threshold or mini-

mum change. At this point, an interplay exists between attempting to smooth abrupt

pitch changes between adjoining terrain patches and simulating bounce. Because the

terrain is represented by patches, the flat tops of hills or ridges that are less wide

than the terrain cell size are "missed" by the data base. Consequently cresting a hill

and going down the other side is portrayed as an instantaneous change from positive

to negative slope as the line separating the two adjoining patches is crossed. To

smooth out this sharp transition the length of the baseline to the front of the vehicle

used to calculate base pitch was extended forward about 20 meters. This results in

the pitch change being spread over smaller increments as the reference point moves

down the far slope as the vehicle is coming up the near side. Unfortunately this

smoothing can also "smooth" oscillations out of existence. Only experimentation

57

with the constants pltchbase_distance and bounce_threshold can produce a realistic

compromise.

6. Platform Position and Viewing Parameter Update

APS updates the vehicle position and orientation variables whether or not

the vehicle is currently selected as the viewing platform, the driven vehicle. In MPS

the viewer's position was not fixed with respect to the driven vehicle coordinate sys-

tem. It was a constant Y offset from the vehicle's graphical center in world, not body

coordinates. On fairly level terrain this works well, but as the vehicle pitches and

rolls when travelling over rough or sloping terrain the viewpoint or eye position ap-

pears to bounce around inside the vehicle. This movement is disorienting and in some

cases may even result in viewing the terrain from underneath the terrain polygons.

One solution to this problem is simply to not draw the driven vehicle. However, the

viewer then looses the frame of reference the vehicle outiine provides, especially

when the view angle is not direcdy to the front. A more satisfactory solution is to de-

fine the viewpoint as an offset from the vehicle origin in vehicle (body) coordinates

and transform the viewpoint into the graphics (world) coordinates required to estab-

lish the viewing perspective. Such a transformation also allows the viewpoint to be

placed at an arbitrary point in the vehicle which could represent, the gunner's sight,

commander's cupola, etc. Setting the viewing perspective is then done as shown in

Figure 4-6 where eye_x, y, z is the sum of vehicle position coordinates and the view-

perspective(fov, 1.0, 0.1, MAXLOOKDIST);

lookat(eye_x, eye_y, eye_z,

local_px, local_py, local_pz, (Angle)(vlewroll*RTOD_X_l0));

Figure 4 - 6 Setting Projection Parameters

ing point offset in transformed world coordinates.

The IRIS graphics software also requires a viewing "target" (local_px, y,

z), for the lookat perspective routine. The homogeneous transform again provides a

58

means for calculating this visual target since it is simply a constant displacement

along the body X-axis of the viewer. This corrects simplifications in MPS that ne-

glect cant or body roll in determining point of view. This precision becomes important

when a weapon system is modeled because the point of view is also the point of aim.

A one degree error in azimuth caused by cant corresponds to a 18 meter error at a

range of 1000 meters. Therefore, the MPS routine update_look_pos was modified to

use this procedure.

7. Network Communications

As described in Chapter III, communications among vehicle simulators is

handled differently than communications with the AI agent. Messages among vehicle

simulators, whether each is functioning as a peer or a remote human commander, are

passed over the network using broadcast datagrams, while the vehicle simulator and

the AI agent communicate using a stream.

Communication routines are divided into two levels: the APS message lev-

el and the network service level. These levels and the modules that contain level

routines are:

APS message level check_for_packets (receive)

network (send)

message-stream management network_IO

network system services netstream_services

broadcast_services

a. Vehicle Simulator Communications

(1) Initialization. Two network sockets, a transmit socket and a

receive socket, are initialized for each vehicle simulator. The receive socket is bound

to an address containing the APS broadcast port number. This port number is

arbitrary, but must be unique to avoid interference with other network services such

as "mail" and "rwho" and must be the same for all vehicle simulators. In APS, the

broadcast port number is a program constant (DEFAULT_BRDCAST_PORT in

59

network.h). An alternative method of assigning a port is by defining a "service" in the

network system file "/etc/services". The system service getservbyname can then be

used to determine the port number at run time. This method has the advantage of

allowing changes in the port number without recompiling the program should the port

assignment interfere with some other network application. However, each system

running a vehicle simulator must have the same service definition for APS. Finally,

each socket is set to BROADCAST mode, non-blocking I/O, and has its buffer size

increased to RECV_BUFSIZE (currently 40K bytes). Since the most common

broadcast message is an UPDATE packet with a size of 180 bytes, each vehicle

simulator can normally receive = 220 packets before the buffer overflows. In

communication tests, no such loss of message traffic has yet been observed.

After the sockets are established, each vehicle simulator sends a

polling message to synchronize itself with any other already running simulators. A

response to this initialization message sets the initial 10 KM terrain box to that area

already being viewed by a running simulator.

(2) Sending Messages. Messages are sent as character strings

divided into a header string that identifies the type of message and a varying length

data string. The first character in the header string is a message token, a character

that uniquely determines the message type. The rest of a message is the formatted

output of a sprint command containing from one to thirteen fields. All messages are

built and sent by routines in module network(). This routine is called with one

argument indicating the type of message that is requested. Message types are

shown in TABLE 1. The function network() also contains several local static variables

which contain data used in building a message. For example, to send an UPDATE

message the routine set_cntlmsg_platform(platform_pointer) is called to set the

60

vehicle then network(SEND_UPDATE_PACKET) is invoked to build and dispatch the

message.

TABLE 4-1 VEHICLE SIMULATOR MESSAGE TYPES

TYPE

INTT MESSAGE

ANS MESSAGE

UPDATE PACKET

END PACKET

FIRE MESSAGE

FIELDS

x_grid, y_grid

vehicle id, type,

UTM x,y, course,

speed, weapon azimuth,

weapon elevation,

transient pitch, transient

roll, control mode,

external guidance.

base id number

DESCRIPTION

Polls for other vehicle simulators.

Answers INIT_MESSAGE and

sets origin of 10KM box.

Updates platform data on remote

vehicle simulators.

Tells remote vehicle simulators to

delete all platforms belonging to

this host.

firer x,y,z, target x,y,z, Sends a weapon system firing

weapon azimuth, event. The flight of the projectile

weapon elevation is then modeled on each

simulator.

LOCK_ON_MESSAGE vehicle id

LOCK_OFF_MESSAGE

DESTROY_MESSAGE vehicle id

CRASH MESSAGE

Sends id of platform that is/is not

being tracked by FOGM.

Sends message notifying remote

simulators that platform has been

destroyed.

(3) Receiving Messages. Since datagrams contain discrete APS

messages, the type of an incoming message is determined by matching the first

character of the header string with a character token. The data string is then

disassembled by a formatted string read (sscanf in C) and the appropriate action taken.

This message handling occurs in module check_for_packets(). Once during each

61

drawing loop this routine is called. It loops handling messages until no input is

available.

b. Vehicle Simulator - AI Agent Communications

(1) Initialization. The communications stream is set up by initializ-

ing a stream socket, setting it to non-blocking I/O, increasing its buffer size to

RECV_BUFSIZE bytes, and establishing a connection queue by calling the listen

system service. The socket is then polled once each drawing cycle using a non-block-

ing accept system service. Two sockets are then cloned to handle the receive and

transmit streams and a global flag, control_connected, is set indicating a connection

with the AI agent has been established.

(2) Sending Messages. Messages are sent as a continuous string

of characters with no imbedded "white space" characters such as spaces, tabs, or

linefeed. All numeric fields must be zero filled. Each message is preceded by a fixed

number of a unique delimiter token characters, usually a punctuation character, {,?,@,

etc.. The variable length data string follows. A message is terminated by a number

of delimiter characters, one less than at the front of the message. Since stream I/O

implies an unbroken flow of data, these front and read delimiter characters serve to

identify the type of message and provide begin and end message markers at the pro-

gram level. This additional framing allows resynchronization should a portion of a

message be lost or garbled. It also allow recognition of different type messages by a

simple finite state machine. Messages to the AI agent are built and sent by calling

62

routine control_message(message_type) contained in the module network. The types

of messages sent to the AI agent are contained in Table 2:

TABLE 4-2 VEHICLE SIMULATOR to AI AGENT MESSAGE TYPES

TYPE FIELDS DESCRIPTION

INITIALIZE UTM x,y of 10KM box Tells AI agent which platform to

origin, vehicle id, plan path for and what part of

path stan x,y goal x,y, terrain database to load.

simulation time

UPDATE vehicle id, vehicle Updates platform data. Initial

location UTM x,y, guidance ON message triggers

simulation time, path calculation.

guidance flag

OBSTACLE obstacle vertices Sends coordinates of vertices of

detected obstacle.

CONTROL vehicle id,

simulation time,

control code

Sends status and control flags.

(3) Receiving Messages. Routine check_for_packets() also

handles incoming stream messages by calling recv_control_message(). If no AI agent

is connected, it polls for a connection. If it can form a valid APS message from

characters in an internal buffer, then it returns TRUE otherwise it returns FALSE.

Messages are recognized using a finite state machine. Incoming characters are

returned to recv_control_message() by get_msgchar(), which returns the next

character in the block buffer and keeps the buffer filled as necessary by reading the

stream. If the stream read returns 0, then the client has broken the connection so the

63

current message, if any, is discarded and the flag is set to begin polling for a

reconnection. Message types received from the AI agent are contained in Table 4-3.

TABLE 4-3 AI AGENT to VEHICLE SIMULATOR MESSAGE TYPES

TYPE FIELDS DESCRIPTION

GUIDEPT vehicle id, If external guidance is set for plat-

path point UTM x,y form matching vehicle id, then the

platform's guide point is replaced

by the incoming point. If recv_path

is set for platform then incoming

point is added to path being built.

CONTROL vehicle id, Turns guidance ON/OFF,
simulation time, recv_path ON/OFF, or

control code autopilot ON/OFF.

8. Simulation Time

It is often desirable to change the speed at which the simulation runs by

modifying the ratio between real (clock) time and simulation time. This is done by fil-

tering calls to the system clock through the simtime module. This allows, for example,

simulation time to be suspended while menus are displayed. The routines available are

shown in Figure 4-7.

9. Simulating Weapon Systems

Platforms in APS can be equipped with weapon systems by defining the

weapon's characteristics, ammunition types, and sight reticle. A platform with a weap-

on system can engage and destroy any other platform, local or remote. Figure 4-8

shows the view through a TOW weapon sight looking at an attack helicopter. Weapon

data structure definitions are contained in "weapons.h" which is reproduced in Appen-

dix A. Current weapons include tank main gun with SABOT and HEAT rounds and the

TOW antitank weapon system.

64

startsimtimeO - Starts simulation time at 0.

stop_simtlme() - Halts simulation time from advancing,

i.e. freezes time.

restart_simtime() - Restarts simtime when halted.

change_simspeed(float ratio) - Changes the ratio of

simulation time / real time. That Is, a ratio value

of 0.3 will cause simulation to run 3 times slower

than real time, or 3 seconds of real time will elapse

for every 1 second of simulation time.

float read_simtimer() - Returns the current time since start_simtime

was called in simulation seconds.

void set_time_mark(void)
- sets a time mark by storing current value

of simtimer in local static "package" variable.

float elapsed_time_wreset(void)
• returns elapsed time in seconds

since time mark and resets time mark.

Figure 4-7 Simulation Timer Module Routines

65

Figure 4 - 8 View Through TOW Weapon Sight

66

Weapon system data structures are as general purpose as possible, to fa-

cilitate addition of other types of weapon systems and munitions. Each platform con-

tains an array of pointers to onboard weapon systems, one of which is selected as the

current weapon. Each weapon system is represented by an instance variable which

contains data specific to that platform and pointers to class variables which contain

generic data for that type of weapon or munition. The tank, for example, has a pointer

to its weapon class variable and a pointer to the munition class variable for the partic-

ular type of round currendy selected. Which sight reticle is drawn is determined by

looking into the weapon class variable of the currently selected weapon for the cur-

rently selected platform. Presently tank main gun, binoculars, and TOW sight reticles

are available1
.

Target ranging is also simulated for those weapons that normally have

such a capability. The tank, for example, simulates a LASER range-finder by doing a

gselect (similar to a graphic pick) on a three degree field-of-view along the firer's

line-of-sight (LOS). The select list is examined for platform identifiers, except that

of the firer, and returns the range to the closest one. This range is displayed in the

weapon sight reticle. Platforms which no weapon system, such as jeeps, of course

have no range-finding capability. They have, however, been provided with variable

power binoculars selectable from the main driving menu.

Although range-finding with a LASER happens quickly enough so that it

can be completed in a single iteration of the drawing loop, actions such as the flight of

a round extend over multiple drawing cycles. In order to support such transient

events without congesting every possible drawing loop in APS, an event handler

which is called once each drawing loop was implemented. Events, such as a round in

flight, are implemented as a linked list of event data structures (described in

"weapons.h") with a common part containing a time stamp, delete flag, and pointer to

Data is unclassified hypothetical data representing the generic characteristics of the represented item and is not intended to

exactly match any actual system.

67

a function which can process this type of event. Each event also contains a variant

pan containing type-specific event data fields. Once each drawing loop the event

handler is called. It traverses the event linked list. If an event is not marked for dele-

tion, a call is made to its processing function via the pointer, with the address of the

event record as the parameter. This allows the event processing function access to

the type-specific data. Types of events currently implemented are:

1) round_in_fllght - flies ballistic trajectory.

2) reset_safety - timeout to reset weapon safety after reload time.

3) message - displays message on screen for set period of time.

4) splash - draw splash of round miss for specified amount of time.

5) flash - draw expanding flash at impact of round with platform.

6) bounce - varies vehicle pitch based on elapsed time since going over

bump in the terrain.

Firing a weapon in APS results in the simulation of the projectile's flight

until impact with the ground, another platform, or maximum range is exceeded. The

system assumes that the weapon system has some type of ballistic computer that

will provide elevation to the weapon based on the range to the target, type of ammuni-

tion, etc.. This allows the position of the round along its ballistic path to be computed

from a table of offsets in the Y (UP) direction, called its ballistic table, by scaling the

offset using the current range from the point the round was fired. This produces an or-

dinate for the current range. A cylindrical viewing volume is then constructed along

the LOS at the time the weapon was fired offset by the ordinate. LOS guided muni-

tions such as the TOW are processed the same way, except that their ordinate is al-

ways zero and the flight volume is based on the firing platform's current LOS not the

LOS at the time of firing. The near and far clipping planes are set to the starting and

ending position of the round during the increment of time since the last update. This

cylindrical volume is "swept" using gselect and the closest target to the firing vehicle

is destroyed, if it is hit. If no target is in the volume, the round is checked for impact

68

with the ground and a splash drawing event is added to the event list. Finally, if the

round flies beyond the edges of the terrain box, or exceeds its maximum range, it is

terminated.

10. Module Descriptions

This section presents a brief description of the main modeling and simula-

tion modules.

a. Program Control Flow

Program control flow is determined by state variables modified by the

user through input from the dials, mouse, or menu system. Program structure is elab-

orated in Appendix A and the user interface including the menu system in Appendix C.

b. Supporting Routines

Supporting routines that perform a single function are too numerous

to fully describe here. A listing of all modules is contained in Appendix A. Due to the

incremental development of MPS, some modules overlap in function.

c. Data Structures

The data used to model vehicle motion is kept in the platform data

structure defined in the "aps.h" (Appendix A). The platform data structure contains

several state variables and toggles which are implemented as C enumerated types or

a locally defined Boolean type. These state variables could be combined into a single

variable using bit fields which would be more space efficient. This was not done due

to the additional complexity of accessing bit fields and because bit fields are perhaps

the least portable feature in ANSI C.

d. Turning/Steering Module

Steering is modeled using three routines:

float convert_course_to_turnrate(Vehicle *platform)
- Converts command

course to turnrate which can be fed to the turning model. If the platform

viewing mode is driver, the input is coming from the dials or the autopilot.

This input is in the form of a commanded course or azimuth and the turnrate

to direct the vehicle onto this course must be computed. This computed

69

turnrate is stored in the cmdjurnrate field of the platform record. This

routine is implemented using the following rules:

1) If the difference between the command course and current course is

less than a small delta, CSE_WANDER, then make them the same.

2) If the difference is less than AUTO_TURNRATE, then use difference

as turnrate. Note that this may cause oversteer if the update time in-

terval is greater than one second.

3) Otherwise use AUTO_TURNRATE.

• update_platform_steering_model(Vehicle 'platform, float elapsedsec,

Boolean *network_packet_needed) - This

routine first calls turnlng_model to calculate the current turnrate. It then ap-

plies the current turnrate and time interval to calculate a new course. Final-

ly, the viewing angles in the platform record are adjusted so that the view

azimuth changes with the course.

• float turning_modeI(float elapsedsec,

float curr_turnrate,

float cmdjurnrate) - Returns exponential steering re-

sponse if command turnrate is greater than current turnrate. If straightening

out then centrifugal force is assisting so turnrate change is immediate.

e. Velocity Module

Consists of the routine float velocity_model(float dt, float slope,

float currvel, float cmdvel, float 'pitch, Boolean *network_packet_needed). This rou-

tine returns the new platform speed using methods described in Chapter III. It also

calculates and updates the transient vehicle pitch due to acceleration or braking. This

transient pitch simulates the torque on the vehicle body during sudden velocity

change as the vehicle body is constrained by the suspension system.

/. Bounce Module

Vehicle bounce due to changing terrain slope is started by routine

update_veh_pos which sets the initial transient pitch angle amplitude if there is a

change in vehicle pitch greater than BOUNCE_THRESHOLD (currendy two degrees).

Routine handle_bounce calculates a new transient pitch angle and updates the bounce

amplitude field in the vehicle record. If the bounce amplitude has fallen below

PITCH_STEADY then it is set equal to zero.

70

g. Math Module

Contains various general purpose math routines.

• float convert_normal_to_slope(float normal[3]) - Returns the slope angle of

a terrain polygon in radians based on surface normal.

• transform_body_to_world(float azimuth, elevation, roll,

float dx, dy, dz,

float *eye_x, *eye_y, *eye_z)
- Transform body

coordinates to world coordinates.

• float calc_azimuth(float xl, float yl, float zl, float x2, float y2, float z2)
-

Returns azimuth in radians from the positive X axis for a course from point 1

to point2.

h. Path Operations Menu Module

This module (contained in do_pathops.c) contains the high level func-

tions to create and delete a path, assign a platform to a path, and toggle the display of

paths on and off. When called by selecting the "PATH OPERATIONS" option from

the main driving menu, in module do_driving_menu, a popup menu is constructed and

displayed. If a valid menu choice is made then the function selected is performed by

calling one of the routines:

• bulld_path - Displays instructions, initializes a path structure, adds a point

to the path and redraws the new path each time the left mouse button is

pressed, prompts for a path name when right mouse button is pressed, adds

path to path list, and updates path data file to add new path.

select_and_remove_path - Displays instructions, when right mouse is

pressed uses pick to determine which path was selected, deletes path from

path list, saves remaining paths in path data file.

• asslgn_veh_to_path - Displays instructions, when right mouse is pressed

uses pick to determine which vehicle icon was selected, makes cursor into

vehicle icon, when icon cursor is moved over any point on a path and right

mouse is pressed uses pick to determine which path is selected, makes copy

of path for platform and sets platform's guide point to first point on the path.

If platform is not local sends path over network to home simulator.

This module also contains functions to pick and display paths:

• draw_path - Draws a single path as a black line with a blue box around the

first point and a red circle around the goal. Paths are drawn in overlay bit

71

planes so that it would not be necessary to redraw the entire 2D map each

time a point is added to a path.

• display_paths - Displays all paths in normal drawing or pick mode depend-

ing upon its argument and returns the path identifier of the picked path.

• pick_path - Calls display_paths in pick mode and returns pointer to the path

selected or NULL if no valid path is selected.

i. Path Module

This module (contained in "path.c") is a package which contains the

low-level functions that operate on paths. The path data structure was shown in Fig-

ure 3-7. Paths are only manipulated using the functions in this module. Function pro-

totypes are declared in "pathfunc.h". Since most of these functions operate on a

specific path, most have a pointer to a PATH structure as one of the input arguments.

Path points are kept as UTM coordinates and are converted to graphic system world

coordinates as necessary. The following functions are supported:

addpt - Adds a path point to the end of an existing path.

• addpath - Adds a path to the end of the path linked list.

• at_goal - Returns TRUE if path point has the same coordinates as the last

point on a path.

• copypath - Copies path points from one path to another.

• delete_path - Deletes path structure and frees up space.

delete_list_path - Deletes path from path list.

• delete_veh_path - Deletes platform copy of path.

• init_path - Returns pointer to a new path structure.

• load_paths - Loads paths from data file.

• nextpt_on_path - Returns pointer to the next point on a path.

• reset_platform_path - Clears platform path and reloads path originally as-

signed if any. Calls start_down_path to set initial guide point to path point

nearest platform's current location.

• save_paths - Writes out all currently defined paths to binary file in the cur-

rent default directory. The file structure description is contained in

"pathdata.h".

• set_guldept - Replaces the platform's current guide point with input argu-

ments and discards remaining path points.

72

• start_down_path - Returns pointer to path point closest to the input argu-

ment point (usually platform's current location).

• update_guldept - If platform is within VICINITY meters of current guide

point and that guide point has a successor, set the platform's guidept field to

point to next point on the path.

j. Autopilot Module

The autopilot works by setting the platform's commanded course and

speed to follow its assigned path. For each local platform that has its control field set

to AUTOPILOT and has a non-NULL guidept (i.e., it has a point to head towards)

the autopilot performs the following functions:

1) Update the guide point if within a prescribed distance.

2) Handles obstacles (currently not implemented).

3) Update the platform's cmdcse to the azimuth from the platform's current lo-

cation to its current guide point.

4) Sets commanded speed depending upon the current distance to the guide

point. If the platform is so close that it might overshoot the guide point then braking

is applied by setting cmdvel = -1.0. The platform's course is also frozen to avoid

turning if the autopilot is engaged while the platform is near a guide point. Note that

the current implementation does not control the platform with sufficient precision to

navigate an obstacle field.

B. RULE-BASED PATH PLANNER

The path planner is implemented as three distinct levels. The top level is re-

ferred to as the path planner control program. It is through this program that overall

control of the path planner is accomplished. The intermediate level consists of the

search control program, which is implemented on a separate Symbolics workstation.

The search control program controls access to the implemented search algorithm. Fi-

nally, at the lowest level is the implemented search algorithm. It is located on the

same Symbolics workstation as its control program.

73

1. Path Planner Control Program

The path planner control program is located on the Symbolics workstation,

SYM4. It is implemented using ART, a rule-based, expert system shell. The rules in

this program control the action of all subordinate processes. There are 24 rules,

grouped into the following seven categories.

Setup

Communications

Clock actions

Vehicle monitoring

Vehicle and Path control

Search control

Fact clean up

This grouping of rules is used for conveyance of explanation, and does not

necessarily have any bearing on the firing order of the rules. Appendix B contains a

listing of the code.

a. Set Up Rules

The location of the vehicle simulation program and the search are

variable as stated in Chapter in. This requires that the user input the location of

these processes at the start up of the path planner control program. Two menu rules,

menul and menu2, are used for this. These in turn enable two communications start

up rules, start-iris-comm-links and start-sym-comm-links. These communications

rules open a TCP/IP I/O stream to the vehicle simulator process on the appropriate

IRIS workstation, and a CHAOSNET I/O stream to the search control program on the

appropriate Symbolics workstation. Program start up is the only time any of these set

up rules are fired.

b. Communications Rules

The heart of the path planner control program's ability to monitor the

actions of other processes on other machines is its ability to receive information. This

74

information is received via seven communications rules. Two of these rules, check-

comm-Iinks-iris and check-comm-Iinks-sym are used to continuously check the I/O

streams for incoming messages. These are the only communications rules in the path

planner control program that are cyclic in nature. These rules are at the lowest active

precedence level, and therefore do not cause any problem with indefinite postpone-

ment of other rules. The set up rules have a lower salience value but are only fired at

program start up. These rules are cyclic because between the two of them they either

assert facts that cause themselves to fire again, or cause rules to fire that in turn

cause these two rules to fire again. These rules continue this cyclic action as long as

there are no incoming messages.

When an incoming message arrives, one of the two previously mentioned rules

asserts a fact indicating the type of message that arrived. Once this fact is asserted,

one of four message handling rules reads in the message from the appropriate I/O

stream and updates the knowledge base. These rules are: read-init-in, read-update-

in, read-map-ready-in, and read-waypoint-in. The messages read in are as follows:

• Vehicle initialization message

• Vehicle update message

• Search map ready message

• Incoming waypoint message

c. Clock Rules

Each vehicle following a path computed by the path planner has a real

time clock associated with it. The vehicle's clock is initially set to the time contained

on the initialization message. This is done via the set-clock rule. When subsequent

messages contain a time the vehicle's clock is reset to the message's time using the

reset-clock rule. If no messages arrive over the networks the vehicle's clock is

updated via the update-clock rule. This last rule enables the path planner control

program to calculate a projected new position for the vehicle.

75

d. Vehicle Monitoring Rules

When a message arrives carrying vehicle update information, the up-

date-vehicle rule modifies that vehicle's schema to reflect the new location, course,

velocity, time and guidance mode. If no message arrives to update the vehicle's

record, the update-clock rule gives the vehicle's delta-time fact a value. If the value

of the vehicle's delta-time fact is positive, the change-position rule calculates the

distance traveled, updates the vehicle's location, resets the vehicle's delta-time fact

to 0, and indicates to the knowledge base that the vehicle has moved.

e. Vehicle and Waypoint Control Rules

When either the update-vehicle rule or the change-position rule fire,

the knowledge base is updated to indicate that the vehicle has moved. This change to

the vehicle's schema within the knowledge base fires the check-for-new-waypoint

rule. This rule calculates the vehicle's current distance to the vehicle's current way-

point. If the distance to this waypoint is less than 200 meters, the vehicle's control

schema is modified with the fact, (new-waypoint yes). When the knowledge data-

base contains the control schema for a vehicle with the fact, (new-waypoint yes), the

send-new-waypoint rule fires sending a new waypoint to the vehicle simulator. In

this implementation, every other waypoint is skipped to mimic more closely the hu-

man commander's capability of skipping over 100 meter grid squares in his path plan-

ning.

/. Search Control Rules

After a vehicle has been initialized in the path planner control pro-

gram's knowledge base, the load-map rule is fired. This rule tells the search control

program to load a 10 KM by 10 KM map, with the specified lower left hand comer's

UTM coordinates. After the map has been loaded and the search control program

sends a message indicating that the search map is ready, the start-path rule fires.

This rule gives the search control program the start point, goal point, and the vehi-

cle's ID.

76

g. Fact Clean Up Rules

In order to prevent false firing of rules, used facts and schemas are

cleaned out of the knowledge base whenever possible. The clean-up-iris-msg and

clean-up-sym-msg rules clean up unclaimed waiting message facts. These facts are

asserted by the check-comm-links-iris and the check-comm-links-sym rules when

there is a message out of synchronization or spurious characters in the I/O stream.

The clean-up-waypoints and clean-up-vehicle rules are fired when a vehicle goes

out of guidance mode on the vehicle simulator. These rules remove all references to

the vehicle from the path planner control program's knowledge base. This ensures

that the next time the vehicle requests a path, an old path is not given.

2. Search Control Program

The search control program can be run from any Symbolics workstation, ex-

cept SYM4 where the path planner control program resides. The search control pro-

gram directly monitors the search algorithm and keeps track of which vehicles have

maps and paths. The search control program receives two types of messages from the

path planner control program. The first message requests that a 10 KM by 10 KM

search map be loaded into a map array. This message specifies the vehicle and the

UTM from the lower left hand comer of the 10 KM by 10 KM area to be searched. The

second message requests that an optimal path be found from the start to the goal.

This message specifies the vehicle, the start point's UTM, and the goal point's UTM.

The map-array is a 102 by 102 grid. The size of this array is chosen to allow a search

map with a resolution of 100 meter squares to be loaded into the map-array, including

a border of non-traversable cells, to bound the search algorithm.

a. Loading the Map

When a message is received that requests a map be loaded, the

search control program checks to see if that map has ever been loaded before. This is

accomplished by first converting the map UTM and vehicle ID information, contained

77

as strings in the message, to LISP symbols and stored in veh-map and current-veh.

The *maps* list is then checked to see if the newly generated map symbol is on the

list. If the symbol is on the list, a message is sent to the path planner control

program indicating that the map is loaded and ready to be searched. Alternatively the

search control program builds a map-array with slope data from the data file used by

the search algorithm. Finally, the symbol value of veh-map is then stored to the

symbol value of the symbol stored in current-veh. The symbol value of current-veh is

then added to the list *vehs*.

b. Searching the Map

After the map is loaded, the search control program receives a mes-

sage requesting a search be done for an optimal path. The message received contains

the vehicle's ID, the desired path's start and goal points in UTM coordinates, as well

as the map's lower left hand comer UTM coordinates. The UTM coordinates are con-

verted to coordinates used by the wavefront search algorithm. The wavefront search

algorithm is called with the appropriate map-array selected from the *vehs* list. The

returned list of points is converted back to UTM coordinates. During this conversion a

random number generator is used to move the waypoints around inside their 100

meter by 100 meter grid. This is done to simulate the commander's selection of a path

from a low resolution map. Since the goal point may be a specific point, it is appended

to the end of the list. Each waypoint is also tagged with the requesting vehicles ID

and a sequence number. The sequence number is used by the path planner control pro-

gram to keep track of waypoints.

c. Returning Waypoints

Waypoints are sent to the path planner control program one at a time

for each path. This is accomplished through the send-waypoints function. The function

is sent the list *wave-paths*, every time the search-controller function cycles

through its do loop. This list, that is sent to the send-waypoints function, contains, as

separate lists, the remaining waypoints for every vehicle that has requested a path.

78

Each list is stripped of the first element, and this element, a waypoint, is sent to the

path planner control program. This cycling continues until all of the waypoints have

been transmitted.

D. SUMMARY

This chapter contains the description of the implementation of APS. The most

salient modules and structures of the vehicle simulator are described with specific ex-

planations of key code fragments and routines. The rules and control flow of the path

planner is also described with a thumbnail sketch of each family of rules. This chapter

explains how APS works while the following chapter describes the results of running

the system.

79

V. SIMULATION RESULTS

APS achieves a large part of its research goals. A platform, depicted with a fair

degree of realism, can be guided along a path, which is calculated in real-time, to its

goal. However, direct comparisons of human and machine path planning are not pos-

sible due to a bottleneck in communications between the vehicle simulator and ma-

chine path planner. Also, due to time constraints, some capabilities were not

implemented. The most important shortfall is local obstacles and obstacle avoidance.

A. VEHICLE SIMULATOR

The vehicle simulator achieves all the design capabilities listed in Chapter IV.

Most importantly, it is able to support navigation of a platform along a designated

path, under various combinations of manual and autonomous control. The path can be

designated by a remote human commander or an AI machine. The remote commander

can also turn the platform's autopilot and external guidance controls on and off, even

while traversing a path under AI agent control.

The network communications supports connected multiple vehicle simulators

with real time interaction supporting command and control and combat "dogfighting"

capabilities. Simultaneous control of multiple platforms by different sources was dem-

onstrated allowing local control of some platforms while others are controlled remote-

ly by the AI agent.

The current vehicle simulator drawing cycle speed hovers near 4 frames a sec-

ond. This speed produces jerky scene changes on the visual display and makes pre-

cise vehicle control difficult. However, it remains sufficiendy realistic to support

navigation over calculated paths. Run-time analysis indicates that steady state per-

formance is bound by graphics operations and not computational load
1

.

CPU utilization was 50%-70% with the CPU waiting predominately for graphics calculations or drawing.

80

B. PATH PLANNER

Two key research goals of the path planner were to provide an easily under-

stood interface between the vehicle simulation and the path planning algorithm, and to

provide the mechanism for easy integration of search algorithms at the control inter-

face level. The AI path planning program developed for this thesis has been tested in

real time. The path planner supports the major goals of this thesis. It provides a func-

tional interface whereby different search strategies can be evaluated and tested

against a human planner. The AI path planner provided optimal paths for the driver of

the simulated vehicle, using a wavefront search algorithm.

The path planner spends between one and one half to five minutes finding an op-

timal path. After the path is found the path planner control program begins returning

waypoints. The issuance of waypoints along the path is not sufficiently fast enough to

compete with the human planner. This is mainly due to the fact that the human plan-

ner issues an entire path to the vehicle at the beginning of the path, while the AI path

planner is only allowed to issue one waypoint at a time. The AI path planner must ap-

parently wait on buffered network communications. A "work around" exists to force

the AI path planner to send the entire path as soon as the path is found. This howev-

er, would remove the path planner's ability to react to changes in the terrain as the

vehicle travels along the path.

A rule-based path planner control program, written in ART, controls the flow of

path requests and the issuance of waypoints. More than one simulated vehicle can be

guided along a path at the same time. The path planner control program allows multi-

ple vehicles to be guided as long as each has a unique vehicle ID.

The randomly generated offsets to the waypoints that are used to simulate a

human path planner's waypoint selection within a one hundred meter square grid do

not adequately simulate the way a human path planner selects waypoints along a

path. The human planner generally chooses a path that transitions smoothly from grid

to grid, except where demanded by terrain. The use of random numbers to select the

81

position of waypoints within the designated one hundred meter squares causes these

waypoints to be unnaturally placed along the path. This can cause the simulated

vehicle to make sharp changes in direction for no apparent reason.

The skipping of waypoints to provide a more reasonable next waypoint for the

driver only appears natural in terrain that is typified by gradual changes in slope.

Where the terrain changes slope frequently and drastically, the skipping of waypoints

can cause the vehicle to traverse areas of extreme high cost. This occurs when the

path planner has planned a route around a finger of a hill, but the waypoint avoiding

the finger is skipped.

C. COMBINED SYSTEM

Obstacles, obstacle avoidance and local path planning were not implemented.

Therefore, path transit time was purely a function of vehicle speed and an actual opti-

mal path directly calculable from the global terrain data.

Several trials were run over identical routes (2-7 KM long) under human and AI

agent path planning. Human path planning is relatively quick and accurate when there

is distinctive terrain such as steep hills and flat valleys; that is, when the best route

is fairly obvious. When terrain is mixed and the trade-off between going straight over

steeper terrain or making a detour is more subtle, the visual decision becomes more

difficult.

Since there were no obstacles, most trials were run with the autopilot. The au-

topilot always tries to maintain maximum speed, so a correctly calculated optimal

path traversed on autopilot should result in a minimum transit time. Unfortunately, di-

rect comparison between human and AI agent planned paths was not possible due to

the inability of the Symbolics system to keep up with the vehicle simulator. Instead

of the AI agent updating guide points when the vehicle was within 200 meters, so

that there would be no break in speed, the vehicle would often reach a guide point and

come to a stop before receiving the next guide point. When such a delayed guide

82

point was received, an additional time penalty was incurred as the vehicle simulator

accelerated up to the maximum speed allowed by the terrain. As a result of this delay

in receiving new guide points, transit times under the Symbolics AI agent control

were 2-3 times longer than transit times for human planned paths. Consideration

was given to working around this problem by having the AI agent send the entire path

once calculated. However, this would eliminate the capability for the AI agent to dy-

namically modify the path, based on obstacles or other detours, so this option was re-

jected.

83

VI. SUMMARY AND CONCLUSIONS

A. LIMITATIONS

1. Vehicle Simulator

The APS vehicle simulator is currently limited in the following ways:

Applies only to tactical vehicles travelling off-road.

Models single gear transmission vehicle for acceleration.

Operates in a single terrain database.

Has simplified vehicle-terrain interaction model.

Simulates joystick driving controls with a mouse.

There are some features of the vehicle simulator that don't work correctly

or fail to work under certain special circumstances. A list of such features, the nature

of the fault and all other known bugs is contained in Appendix D.

2. Path Planner

The AI path planner is currently limited in the following ways:

• The path planner does not take into account local obstacle avoidance.

• A vehicle can be run on an AI generated path only once.

• Only one Symbolics workstation is available to run the path planner control

program written in ART.

• The terrain slope data file must be preprocessed into the correct format.

• The planned path is limited within a ten kilometer region.

B. AREAS FOR FURTHER STUDY

The most pressing need for further development is to remove the bottleneck at

the AI agent end of the communications and to add obstacles and obstacle avoidance.

Breaking the path planner's message processing logjam would allow direct

comparisons between the actual transit time of human and machine planned paths, a

major goal of this research. Obstacles would add the global-local dimension to

functional assignment trade-offs between human and machine planners, another

84

unexplored area. Other areas for further study lie in increased realism and added

functionality for the vehicle simulator with multiple algorithms the focus for the path

planner.

3. Vehicle Simulator

The most fruitful areas for further study of the vehicle simulator are simula-

tor realism, graphics performance, local autonomous operations, and program struc-

ture/software engineering issues.

a. Program Structure I Software Engineering

The vehicle Simulator program consists of =37,000 lines of source

code in 238 files. About 7500 lines are pure drawing code, that is, polygons and fig-

ures. The majority of the source files contain a single function. This flat program

structure in such a large program doesn't provide the modularity or encapsulation nec-

essary to manage the rapid modification and maintenance necessary in a system sub-

ject to the constant flux of research. For example, to add a new platform type, say an

Armored Personnel Carrier (APC), would necessitate modifying more than 20 files,

even if its graphical object definition, material definitions, and vehicle characteristics

were already available. A requirement to modify the platform modeling or control for

this new vehicle type would entail even more extensive and treacherous changes.

An Object Oriented Programming (OOP) Language would provide an

order of magnitude simplification of the program structure and code. Encapsulation

would limit the effects of code modifications reducing debugging and retesting of work-

ing components ensure the containment of side effects. Inheritance would eliminate

duplicating code that performs essentially the same thing but in slighdy varying

ways. For example, this would allow each platform to be an instantiation of a general

class containing methods for control, modeling, and display. These methods would

then operate on class and local data structures to provide the required function.

85

Since the vehicle simulator is written in C and currently C seems to

have the most thorough and efficient interface to the SGI graphics library, a C based

OOP language such as C++ or ObjectiveC would be appropriate candidates for such a

conversion, with a low risk that performance penalties might eliminate its advantages.

Another alternative is Ada. Encapsulation and inheritance can also

be implemented through Ada "packages". In addition Ada is expressive enough to

serve as a program design language (PDL) and is, after all, the DoD "standard" lan-

guage.

b. Realism

Current research at NPS has produced some capabilities that could

enhance realism without a large performance penalty. The realism of the 3D depiction

of terrain can be improved by increasing the resolution of the terrain data. This

shrinks the size of the near view terrain polygons making them seem more natural. In

addition, the terrain display could be made more realistic by adding "features" such as

roads, structures, lakes, and vegetation. Winn and Strong [WINN&89] have demon-

strated a terrain drawing system that, utilizing IRIS hardware support, increases the

terrain resolution, helps realism through better shading techniques and boosts perfor-

mance. They also developed a real-time line-of-sight system that could be useful as

a alternative or additional cost function for path planning. Adoption of a standard

graphical object definition language such as Pixar's Renderman or Object File Format

(OFF), the language developed at NPS [MUNSON89] would create access to a

large library of realistic images of platforms and other objects.

Vehicle realism could be enhanced by including the following features:

Multiple gear transmissions.

Realistic slope effects.

Sound.

Different model constants by vehicle type.

Adding vehicle stability effects; i.e., turn over or crash.

Energy/Fuel consumption.

86

c. Increased Capability

APS is currently limited to preprocessed terrain data for one 35

square kilometer area of the world. Drummond and Nizolak [NIZOLK&89] in FOST

modified the original MPS terrain representation system to accept standard format

DTED files, available for many parts of the world.

Additional path planning cost functions, such as exposure to enemy

observation, energy or fuel consumption, tactical maneuver advantage, etc., could be

used as alternate or combined figures of merit to evaluate the quality of the product of

the path planner in differing environments.

The trafficability model could be expanded from a simple function of

slope magnitude to consider soil conditions, vehicle traction, and anisotropic slope ef-

fects such as those contained in the vehicle-terrain interaction model of Ross

[ROSS89].

The unimplemented simulated vision system, planned to provide in-

put on local conditions to the obstacle avoidance system, was modeled after the laser

terrain scanning system of the Adaptive Suspension Vehicle [BIHARI&89: pg 61].

There is an interesting interaction between the range and resolution of the vision sys-

tem, the speed of the obstacle avoidance process and the maximum safe speed of the

vehicle. Simply put, the vehicle cannot safely go faster than its sensing and naviga-

tion system can react and respond. Were local obstacles and obstacle avoidance im-

plemented, this simulator could be used to compare the overall performance of vision

systems by varying the sensing system parameters: range, resolution, field-of-view,

and speed; and then navigating real terrain.

d. Performance

Vehicle performance in terms of frames per second is of concern in the

vehicle simulator only insofar as it effects realism. Other researchers at NPS have

looked specifically at performance and found no magic algorithm that promises orders

of magnitude improvement due to software changes [FICHTN&88]. That does not

87

mean that performance comparisons are unimportant or that efficiency can be ignored,

simply that performance is not directly germane to this research.

4. Path Planner

Two key research goals of the path planner used in this thesis were first,

to provide an easily understood interface between the vehicle simulation and the path

planning algorithm, and to provide the mechanism whereby search algorithms could be

easily interchanged at the control interface level. This implementation of the path

planner is a prototype that needs to be refined and expanded. Areas of research that

would provide significant improvements on this study are as follows:

Incremental route planning

• Selection of route planning algorithms depending on requirements

• Comparisons of expert system shells

• Comparisons of search algorithms using real terrain data and simulated vehi-

cles

• Improved communications

a. Search Algorithms

The wavefront search algorithm used in this study is well understood

and provides a standard by which other search algorithms can be judged. There are

many other algorithms available that provide capabilities unique to each. The decision

to use a particular search algorithm may be based on the constraints of the path and

mission. An area for further study is to select appropriate search algorithms, depen-

dent on the terrain and mission to be planned. Another area of study is the use of a

preprocessing algorithm that would allow the vehicle to start along the path before

the path is completed and still get reasonable results.

b. Expert System Shells

The path planner was implemented in ART which provides a high lev-

el symbolic programming environment that allows predicate representation of rules.

This representation allows the path planner written in ART to be understood by any-

88

one who has a grasp of predicate logic. ART however is not currently supported on

the next generation of Symbolics workstations, nor is ART code easily converted to

some common language and then transported to some other LISP machine. This last

area of research is particularly interesting as graphics machines are beginning to in-

corporate LISP processors as an integral part of the architecture.

c. Communications

The path planner has not been able to keep up with the vehicle simu-

lation. There appears to be a problem with the buffering of messages in the Symbolics

workstations. The path planner could also be improved by the addition of algorithms

that would check for the most recent update message instead of filtering down

through the messages that have arrived and backed up in the buffer.

C. SUMMARY

APS provides a testbed for the study of real-time path planning and control

strategies and algorithms without the cost of building actual hardware. It serves as a

bridge between the theoretical study of a simplified abstract problem to applied re-

search producing concrete performance under realistic conditions. The conclusions of

this study show the feasibility and advantages of such as system in settling perfor-

mance debates with empirical results.

89

APPENDIX A. VEHICLE SIMULATOR MODULE DESCRIPTIONS

A. DATA DESCRIPTIONS

Data structure definitions and program constants are contained in C "header

files" which normally have an "h" suffix. A list of all APS header files is contained in

Table A-l. The main data structures used in APS are contained in "aps.h" (Figure A-

1) and "weapons.h" (Figure A-2). Global variable declarations are contained in

"global.h" which is included at compile time in the APS main module "aps.c".

B. MODULE ORGANIZATION AND PROGRAM CONTROL FLOW

The top level APS function malnQ (Figure A-3) is contained in the file "aps.c".

This module initializes the system, runs the simulator by calling eventQ, and cleans

up during program termination. Module event() (Figure A-4) initializes the

simulator, displays introductory screens, gets a user selection of a 10 Kilometer area

to work in, handles the main menu selections and calls either of the two main drawing

loops: event_driving() (Figure A-5) or event_flylng() (Figure A-6). If the user

selects RETURN TO MAIN MENU from the driving menu or the platform he is

operating is destroyed, control returns to eventQ, the 10 Kilometer 2D map is

displayed, and the main menu is presented to renew the cycle. If the user selects

EXIT THE PROGRAM from the driving menu control then the program is terminated

by returning control through eventQ to malnQ. The remaining modules contain

functions which are either sub-packages under one of the main routines or general

support functions that are called to do some task from several places. These

modules, the functions contained in each one, and a brief description of what they do

are listed in Table A-2.

90

TABLE A-l APS HEADER FILES

aps.h Main global data structures and constants.

Cobra_data.h Cobra object data.

Cobra_inside_pt.h Object data for Cobra inside view.

color_scheme.h Program RGB color array indexes.

controls.

h

Constants for controls.

event_status.h Main loop state definitions

files.

h

System data file names

flamedata.h Object data for wreck (burning jeep flames).

global.

h

Global variable declarations.

gundata.h Tank main gun object data.

jeepdata.h Jeep object data.

legend.

h

Positioning constants for legend windows

lightcons.h Material definition constants.

lightdefs.h Lighting array declarations.

macros.

h

Copy of system header file that defines C

macros without bug.

Main_rotor_data.h Object data for Cobra main rotor.

math_utility.h Math_utility function prototypes.

missiledata.h FOGM object data.

Mrotor_inside_pt .h Object data for tip of main rotor seen from

inside Cobra cockpit.

network.h Network message delimiters, types and

formats.

91

TABLE A-l APS HEADER FILES - CONTINUED

network_services.h Network function prototypes.

openjeepdata.h Open jeep object data.

pathdata.h Path data structures definitions.

pathfunc.h Path function prototypes.

popups.h Popup menu names and return values.

rollerdata.h Tank roadwheel object data.

Rotdat.h Cobra rotor rotation rates.

Tail_pipe_data.h Cobra BR suppressor object data.

Tail_rotor_data.h Cobra tail rotor object data.

tankdata.h Tank object data.

terrain.h Terrain 3D display constants.

tiredata.h Wheeled vehicle tire object data.

Tpipe_inside_pt.h Cobra ER. suppressor object data.

trackdata.h Tank track object data.

trackdata2.h More tank track object data.

Trotor_inside_pt.h Cobra tail rotor data.

truckdata.h Truck object data.

turitdata.h Tank turret object data.

vehmodel.h Platform motion modeling constants.

weapons.

h

Weapons system data structures and

constants.

92

#include "gl.h"

include " fmclient .
h" /* inherit font manager de finitions */

include "pathdata.h"

/* pathdata.h required because there are ptrs to paths in Vehicle

data structure

.

*/

#ifndef NULL

define NULL

#endif

/* defines for manipulating the terrain data f ile */

define ELEV MASK Oxlfff

define KD

define WR 1

/* defines for polygon computations */

define X /* X coordinate */

define Y 1 /* Y */

define Z 2 /* Z */

define L /* LOWER triangle */

define U 1 /* UPPER triangle */

/* defines for polygon orientation */

define MAXCOORDS 8

define MAXLOOKDISTF 32808.0

/* define maximum size for pickbuffer */

define PICK_BUFFER_SIZE 512

/* define default range for rangefinder */

define RANGE_DEFAULT 9999

Figure A-l APS.H Main Header File

93

/* defines for conversions */

#def ine TO MPS 0.447039

#define FEET TO METERS 0.3048

/* defines for useful constants */

#define TENTHKM 100.0

define TWOTENTHKM 200.0

#def ine HALFKM 500.0

#def ine ONEKM 1000.0

define TWOKM 2000.0

define TENKM 10000.0

define MAXLOOKDIST 5943.6 /* 5943.6 meters = 19500 feet */

define MAXELEV 1134 /* 1134 meters = 3720 feet */

define MINELEV /* meters = feet */

define NUMXGRIDS 100

define NUMZGRIDS 100

define X DATA PTS 101

define Z DATA PTS 101

define TANKGNDHT 1.6612

define TRUCKGNDHT 1.6764

define JEEPGNDHT 0.6857

define OPENJEEPGNDHT 0. 6857

define TOWGNDHT 1.0

define ATKHELHT 1.0

define MAXVEH 999

/* Maximum number of LOCAL platforms allowed */

define MAXVEH_NUMBITS 10

/* Number of bi ts to shift host id to make room for MAXVEH

ids */

define VEHID_MASK OxFFFFF

/* Mask to get positive local base platform id */

define MAXDEFAULTS 9

define FOGM INIT HT 50.0

Figure A-l APS.H Main Header File - Continued

94

/* defines for miscellaneous trig operations */

define QTR PI 0.785398163

#define HALFPI 1.570796327

define THREE QTR PI 2.35619449

define PI 3.141592654

define FIVE QTR PI 3.926990817

define THREE HALVES PI 4.71238898

define SEVEN QTR PI 5.4977871

define TWOPI 6.283185307

define RTOD 57.29577951

define RTOD X 10 572.9577951

define DTOR 0.017453292

/* defines for cursor related stuff */

define ARROW

define TANKCURSOR 1

define TRUCKCURSOR 2

define JEEPCURSOR 3

define FOGMCURSOR 4

define WRECKCURSOR 5

define OPENJEEPCURSOR 6

define COBRACURSOR 7

define CROSSHAIR 8

define XCURSOR 9

define BOXCURSOR 10

define BLANKCURSOR 11

define HRGLASSCURSOR 12

define STEERCURSOR 13

/* platform types */

define NUMVEHTYPES 8

define TANK

define TRUCK 1

define JEEP 2

define FOGM 3

define WRECK 4

define OPENJEEP 5

Figure A-l APS.H Main Header File - Continued

95

#define TOWVEH 6

#define ATKHEL 7

/* upper limit on weapon types per platform */

define MAXWEAPONS 2

define MAX_RDTYPES_PER_WEAPON 2

/* defines for the arrows drawn on the 2D terrain map */

define ARROW_LENGTH 30.0

define ARROW_WING_LENGTH 10.0

define ARROW_WING_ANGLE 25.0

/* defines for window ids */

define BILLBOARDWIN

define MAPWIN 1

define MENUWIN 2

define NAVWIN 3

define INDWIN 4

/* Overdraw color defines */

define CLEAROVERDRAW

define BLACKOVERDRAW 1

define REDOVERDRAW 2

define BLUEOVERDRAW 3

/* defines for networking */

define PACKET_SIZE 512

/****** Data type definitions *******/

typedef float time f; /* time , in floating point seconds */

/* enumerated variable to indi cate which viewing mode driven vehicle

is in */

typedef enum { normal view = o,

driver,

binoculars,

wpn sight } View modes ;

Figure A-l APS.H Main Header File - Continued

96

/* Define enumerated type for global variable to indicate current

platform control mode.

*/

typedef enum { MANUAL = 0,

AUTOPILOT } Control type;

typedef enum { LOCAL = 0, NET } Vehowner; /* Origin of platform,

local or network. */

typedef enum { OFF = 0, ON } Toggle; /* Indicates whether

something is on or off. *'/

/* type definitions for platform data structure */

typedef struct vehicle {

int net_id; /* PLATFORM ID NUMBER FOR NETWORKING PURPOSES*/

short pick_id; /* PICK ID NUMBER FOR TARGETING PURPOSES */

Vehowner owner; /* indicates whether platform is local or net */

Control type control; /* Indicates how this platform is controlled.*/

View modes view_mode; /* Indicates desired view from vehicle */

Toggle ext_guidance; /* Indicates whether external guidance

is ON or OFF. */

Toggle recv_path; /* Indicates whether incoming guidepts

should be added onto existing path */

Boolean send_update; /* Flag indicating whether update should

be sent out over network for this

platform.

*/

/* PLATFORM TYPE */

/* X TRANSLATION */

/* Y TRANSLATION */

/* Z TRANSLATION */

/* UTM Coordinates of platform to meter */

/* veh heading, (rotation about Y axis)

from positive X-axis, in radians. Must

be converted to compass degrees for I/O. */

Figure A-l APS.H Main Header File - Continued

short t;

Coord x;

Coord y;

Coord z ;

double utm x,

utm y;

float cse;

97

float cmdcse; /* Desired (directed) vehicle course */

float turnrate; /* psi dot - current turning rate */

float cmd turnrate; /* desired psi dot - either manually input

through driving controls or calculated

when change of course received from

remote controller.

*/

float base pitch; /* veh pitch (tilt) around Z axis, due to

slope

.

*/

float trans_pitch; /* transient vehicle pitch offset due to

acceleration, vehicle bounce, etc.

*/

float base roll; /* veh roll angle, around X axis (cant), due

to slope.

V
float trans roll; /* transient vehicle roll induced by centrifugal

force when turning.

float bounce_amplitude; /* amplitude of platorm pitch oscillations */

float bounce_time; /* accumulated time in seconds since bounce

started. */

float wpnaz; /* weapon system azimuth, radians from X axis */

float wpnelev; /* weapon system elevation from horizontal */

float viewaz; /* viewer's angle of view from X axis in radians */

float viewelev; /* viewer's elevation angle (tilt) */

float vel; /* VELOCITY IN METERS PER SECOND */

float cmdvel; /* Platform control setting */

/* Represents the velocity commanded for the

platform either by an outside controller or

by setting the throttle control at a certain

setting. A positive difference cmdvel - vel

means acceleration and a negative difference

means coasting to new lower velocity.

A negative value for cmdvel is interpreted

Figure A-l APS.H Main Header File - Continued

98

as a braking factor, range -1.0 <= v < 0.0.

*/

float alt; /* ALTITUDE IF IT IS A FOG-M MISSLE */

Boolean track_flag; /* IF TYPE IS A GROUND PLATFORM THEN */

/* FALSE = NOT BEING TRACKED */

/* TRUE = IS BEING TRACKED */

/* IF TYPE IS A FOGM MISSILE THEN */

/* FALSE = NOT CURRENTLY TRACKING */

/* TRUE = IS TRACKING */

Struct vehicle *track; /* IF TYPE IS A GROUND PLATFORM THEN */

/* IT IS A POINTER TO THE FOGM, OTHERWISE */

/* IT POINTS TO THE GROUND PLATFORM */

/* WARNING: Following is ANSI C "incomplete structure definition" of

structure contained in weapons. h. Such forward declarations MAY

not be supported in non-ANSI C compilers.

*/

struct weapon_record *wpnptr [MAXWEAPONS] ; /* AVAILABLE WEAPONS */

struct weapon_record *wpn_selected; /* CURRENT WEAPON */

/* Fields containing pointer to associated path and the current

guide point being used to navigate vehicle.

*/

PATH *path;

PTNODE *guidept;

struct vehicle *next; /* NEXT NODE IN THE LIST */

} Vehicle

/* type definition for fired weapon event */

typedef struct {

int firer_id;

Coord fired_x, fired_y, fired_z;

Coord tgt_x, tgt_y, tgt_z;

float wpnaz, wpnelev;

} FIRE_EVENTS;

/* declare extern functions (alphabetical order) */

extern float arcsineO;

Figure A-l APS.H Main Header File - Continued

99

extern float calc distance! Coord xl, Coord yl, Coord zl,

Coord x2, Coord y2, Coord z2)

;

extern void center string map (char *str, long linenum);

extern void center string menu (char *str, long linenum);

extern float compass degrees to radian angle (float deg)

;

extern float convert to dec hr () ;

extern short convert to hr min();

extern time f elapsed time wreset (void)

;

extern Vehicle *find platform(int netid) ; /* in

check for packets . c */

extern float gnd level (Coord x, Coord z) ;

extern mousescreentoutm (short sx, short sy,

double *utmx, double *utmy,

short mousew)

;

extern mouseutmtoscreen (double utmx, double utmy,

short *sx, short *sy,

short window)

;

extern

*tz) ;

extern

mouseutmtoterrain (double utmx, double utmy, float *tx, float

mouseterraintoutm (float tx, float tz, double *utmx, double

*utmy)

;

extern float radian angle to compass degrees (float angle) ;

extern time f read simtimerf);

extern float restrict angle to first revolution (float angle)

;

/* radians only */

extern float sincos (float angle, float *cosine)

;

extern Vehicle * switch veh () ;

extern short tot num ground veh();

extern short tot num veh () ;

extern double vecdotp ()

;

extern double vecmag ()

/* declare very common global variables */

extern Vehicle *vehlist, *vehlistend, *driven;

extern Boolean networking;

extern int color scheme index;

Figure A-l APS.H Main Header File - Continued

100

extern int guidance_signal

;

extern float eye_position [NUMVEHTYPES] [3]

;

/* offset of eye from center of veh */

extern long centerx, centery; /* screen coord of center of MAPWIN */

extern Boolean control_connected; /* flag indicating remote process is

connected to server.

V

/* Font handles - Initialized in initiris */

extern fmfonthandle Helv, HelvB, TimesRm, TimesRmB;

extern fmfonthandle scaled_TimesRm, scaled_TimesRmB,

scaled_Helv, scaled_HelvB;

/* Make UTM coordinates of lower left corner of 10 KM box global */

extern double LL_tenkmutm_x, LL_tenkmutm_y,

UR tenkmutm x, UR tenkmutm y;

/* Coord of Lower left of zoomed box */

extern double zoomed LL x, zoomed LL y;

Figure A-l APS.H Main Header File - Continued

/A***.

NAME weapons .

h

CALLED BY

CALLS

MODIFIED 12/14/88

PERSON Bill Teter

PURPOSE Contains record and type definitions for weapons,

ammunit ion types, and sight reticles for weapons systems. Uses some

types from MPS.H so it must follow it in include statements.

•a**/

/ * * * * 5 ight Types ****/

define NORMAL

define M1TANK_MG 1

Figure A-2 WEAPONS Header File

101

#define BINOS 2

#define TOW 3

#define DRAGON 4

define IFV_SBT 5

#define IFV_HEI 6

#define IFV_TOW 7

tdefine COBRA_TOW 8

#define COBRA_20MM 9

fdefine APACHE_HF 10

#define APACHE_25 11

tdefine TANKFIRE_INTERVAL 6.0

/* Reload time for generic tank system */

/* Define FOV and ASPECT to set perspective when detecting hit by

picking. */

tdefine ROUND_FOV 3

/* .3 degrees or 6 mils */

tdefine ROUND_ASPECT 0.8

tdefine SPLASH_DURATION 4.0

/* How long to display target miss ground splash */

tdefine FIRING_TBL_INC 100.0

/* Range increments in firing tables */

tdefine FIRING_TBL_LENGTH 10

/* Number of entries in ballistic tables */;

typedef struct worldcoord_2D (float x,y; } WCOORD2;

typedef struct worldcoord_3D { float x,y,z; } WCOORD3;

typedef struct screencoord { short x,y; } VCOORD;

typedef short Colorvector_S [3]

;

typedef long Colorvector_L [3]

;

typedef float Colorvector F[3];

Figure A-2 WEAPONS Header File - Continued

102

/

— Define record for class of ammunition or type of round —

+

1

+

tra jectory_type (ENUM) |

1
warhead (ENUM) 1

1
round_name (STRING [10]) |

1
speed (meters/sec > 1

1
minrange (meters) 1

1

maxrange (meters) 1

*/

typedef enum gdtyp e (BALLISTIC, GUIDED_ LOS } TYPE FLIGHT ;

typedef enum ammo type (INERT, CHEMICAL , NUKE, FASCAM,

SUBMUNITION } TYPE_WARHEAD ;

typedef stru ct muni tion type {

TYPE FLIGHT trajectory type; /* type of trajectory */

TYPE WARHEAD warhead; /* type of warhead */

char round name [10]; /* string name of munition */

float speed; /* meters/second */

float minrange, /* minimum arming range */

maxrange; /* maximum effective range */

float ballistic_table[ll]

;

} MUNITION CLASS;;

/ *
/

— Define structure for sight reticle —

Figure A-2 WEAPONS Header File - Continued

103

1
type

1

1
name - STRING

1

1
magnification

I

1
numlines - # lines in reticle

1

1
lines — > HAIRLINE (array)

1

1
safe light 1

1
range posn (posn of range string) 1

1

round posn (posn of round string) 1

*/

typedef int CHAR POSN[2]; /* X, Y tuple defines origin o £ text */

/* Lower left and upper right, dimensions of a rectangle *

/

typedef struct

float

rect type 2D {

11 x, 11 y, ur x, ur y;

} RECTANGLE2D;

typedef struct

float

hairline record { /* reticle hairline start

start[2], end[2];

- end */

} HAIRLINE;;

typedef struct reticle record {

int type; /* code for type of reticle */

char name [10]

;

/* string containing weapon/reticle name */

short magnification; /* normal magnification of sight */

int numlines; /* count of number of hairlines in reticle */

HAIRLINE *lines ; /* pointer to any array of HAIRLINE */

RECTANGLE2D saf e light; /* rectangle coordinates for safety light */

CHAR_POSN range posn; /* origin of range string */

CHAR_POSN round posn; /* origin of round name string */

} RETICLE;

Figure A-2 WEAPONS Header File - Continued

104

/ -

— Define structure to represent fired round while in flight —
• /

typedef struct RIF types {

WCOORD3 fire posn, /* location of platform when

round was fired. */

posn, /* location at last update */

pt of aim; /* world coord pt of aim */

float fired range, /* range data used when fired */

fired dist; /* current distance from pt where

fired */

float angle,

elev;

Vehicle *firer; /'* ptr to platform that fired

the round*/

MUNITION CLASS *ammo; /* type of round */

} ROUND IN FLIGHT;

;

/ * — _
/

— Define structure for class of weapon systems. There will be —
— one of these records for each type of weapon system. —

I
name - STRING 1

| sight — > RETICLE |

I
reload time (time) I

|
ammo types (array of — > MUNITION CLASS) |

| basic load (array of int) 1

*/

Figure A-2 WEAPONS Header File - Continued

105

typedef struct weapon type {

char name [20]; /* name of weapon sys, ex: MITank MG */

RETICLE *sight; /* sight picture used for this weapon type */

time f reload time; /* Minimum time between firings */

/* Array of pointers to posible munitions for this weapon sys */

MUNITION CLASS *ammo types [MAX_RDTYPES_PER_WEAPON]

;

/* Array holding starting quantities for avail munitions */

int basic_load [MAX_RDTYPES_PER_WEAPON]

;

} WEAPONS ;

/ * .

/

— Define structure to represent weapon system carried by a —
— platf orm. —

+ +

1
wpn class —> WEAPONS |

1
range reading

I

1
safety on (re fire FLAG) |

1
round select — > MUNITION CLASS |

1
last fired (time) |

1
rounds remaining [] (array by type round) |

*/

typedef struct weapon record { /* instance of weapon */

/* class variable */

WEAPONS *wpn class; /* ptr to weapon type record */

Figure A-2 WEAPONS Header File - Continued

106

/* instance variables */

float range reading; /* current reading in rangefinder */

Boolean safety on; /* flag whether weapon safety is on or off */

/* ptr to selected round, type of munition currently selected */

MUNITION CLASS *round_select

;

/* time system was last fired, if never fired. */

time f last fired;

/* array of rounds of each type of munition remaining on plat form */

int rounds remaining [MAX_RDTYPES_PER_WEAPON]

;

) WEAPON;

/ +
/

— Define record structure for timed events

+ +

I
delete (FLAG) 1

I
start time (time) I

| last update (time) I

I
process event — > func (

—>event) 1

I
next event —> event 1

I
variant (UNION) I

*/;

/* Record for event variant part to reset something on a weap on a fter

a certain amount of elapsed time. */

typedef struct weapon timeout {

time f duration;

WEAPON *wpnptr;

Figure A-2 WEAPONS Header File - Continued

107

} WPNJTIMEOUT;

typedef struct mag type {

time f duration;

char message [40]

;

} MESSAGE TYPE;

typedef struct splash record (

Coord x,y,z; /* Where to draw round splash */

} SPLASH EVENT;

typedef struct flash record (

short colornum;

Ve h i c 1

e

*hitvehicle

;

} FLASH EVENT;

typedef struct { /* Record for vehicle "b<Dunce" */

Vehicle *vehptr ;

float bounce amplitude;

} BOUNCE EVENT;

typedef union type events {

ROUND_IN_FLIGHT round aloft;

WPNJTIMEOUT wpntimeout

;

MESSAGE TYPE letter;

SPLASH_EVENT splash;

Figure A-2 WEAPONS Header File - Continued

108

FLASH_EVENT flash;

BOUNCE_EVENT bounce;

/* add other timed event types here */

} EVENT_UNION; /* end union */

typedef struct event_record {

Boolean delete; /* Flag indicating expired event */

time_f start_time, /* time event was initiated */

last_update; /* time when event was last

updated */

int (* process_event) (struct event_record *)

;

/* pointer to function to handle this event */

struct event_record *next_event;

EVENT_UNION variant; /* variant part of record */

} EVENTS; /* end struct event_record */

/*

— Declare global variables to contain the values for actual —
— WEAPONS, RETICLE, and MUNITION_CLASS classe

*/

extern WEAPONS ml_tankmg_sabot

,

ml_tankmg_heat

,

bincs_class,

tow_class

;

extern RETICLE mltank_gunner__reticle,

binos_reticle,

tow_reticle;

extern MUNITION_CLASS ml_105sabot,

ml_105heat,

tow_standard;

extern WEAPON binos;

Figure A-2 WEAPONS Header File - Continued

109

INITIALIZE

getpath
3ecode_arguements
definecursors
initiris

setcolor initialize

billboard"

light_modGl

inrt months
maKepopups
load_paths

RUN event

TERMINATE cleanup_on_exrt
exit simulator

Figure A-3 MAIN Module Program Flow

110

do_intros

I

(Display Intro screens,
display 35 KM map, &

••feet 10KM area)

display_big_map
draw_box around_current_arGa

do select area

(Initialize to 10KM terrain data base)

read_data
calc_ground_plane

maketerrain
initialize ;terrain mat

terraTnnormaTs

(Display 10KM map &
dispatch main menu operations)

displayjegendfornavbox
display_map
mapoverlay

display_paths

do main (Main menu options)

event_driving

Figure A-4 Module event() Control Flow

111

control input loop

set_queue
setcontrols

do_drrving menu
setup_for_drrving

handI©controls

handle network input check_for_packets

update guide points and controls autopilot

update vehicle model for each platform update_veh_model

update vehicle position for each platform update_veh_pos

draw 3D view

viewbounds
display_nav
display_firebox

display_indbox
drawterrain

display_data
displaytrackeddata

send network update messages network

Figure A-5 Display Loop in event_driving

112

control input loop

set_queue
setcontrols_fogm
do_flying_menu
handiecontrols partial

handlecontrol_Fogms

handle network input check_for_packets

check if FOGM tracking a target handle_trackingl

update vehicle position for each platform
update_veh_pos
viewbounds
update_look_pos_fogm

draw 3D view

display_nav
displayindboxfogm
drawterrain

displaydata
displayslider

send network update messages network

Figure A-6 Display Loop in event_flying

113

TABLE A-2 SUPPORT FUNCTIONS

addflash .

c

Adds round impact flash event to the

event list

addmessage .

c

Adds message display event to event

list

addsplash .

c

Adds round splash event to event list

addveh .

c

Adds platform

aps . c Main routine

arcsine .

c

Returns arcsine of input parameters

autopilot .

c

Computes course and speed for

platform (s)

billboard .

c

Displays rotating billboard screen

bounce .

c

Computes oscillation due to terrain

irregularities

broadcast services.

c

Contains low-level network routines

for broadcast messages

calc eye off set.

c

Calculates world position of viewer

calc ground plane .

c

Place ground plane under terrain

calc look parameters.

c

Calculates viewer position and view

point -of-aim

calcwindows .

c

Calculates windows sizes and stores

in an array

center cursor.

c

Positions cursor in the center of a

window

center string map .

c

Prints a centered string in the MAP

window

center string menu .

c

Prints a centered string in the MENU

window

check for packets.

c

Handles the reception and processing

of network messages

check round in f light.

c

Updates round position, handles

round impact with platform or ground

clearwindow .

c

Clears a window to input color

cobra normals.

c

Calculates normals for Cobra

helicopter

collision detection.

c

Detects collision between any two

platforms

compute slope.

c

Computes the slope of a line

compute start stop.c Computes information for drawterrain

114

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

compute sun location. c Computes sun (light source) location

based on month and hour

compute x bounds .

c

Computes x drawing limit for

drawterrain

compute z bounds .

c

Computes z drawing limit for

drawterrain

convert to dec hr .

c

Converts to decimal hour

convert to hr min.c Converts to hours and minutes

decode arguments.

c

Handle command line arguments when

aps in started

define cursors.

c

Sets up cursor shapes

delete veh.c Deletes a platform and frees space

display big map .

c

Displays 35KM 2D map

display data.c Displays current system parameters

to user

display elapsed time. c Converts floating point seconds into

HMS formatted string

display firebox.

c

Displays mouse legend for platform

with weapon system active

display icon .

c

Displays all platform icons

display indbox.c Displays mouse legend for platform

without weapon system active

display indbox fogm.c Displays mouse legend for FOGM

platform

display intro screen. c Displays program instructions

display legend for bi.g map . c Displays color gradation for

elevation on 35KM map

display legend for navbox .

c

Displays color gradations for slope-

colored 2D 10KM map used for path

planning

display map .

c

Draws 10KM 2D map

display nav.c Draws blue course arrow and field-of-

view limits

display slider.

c

Displays tracking controls for FOGM

platform

display tracked message.

c

Displays tracking message on the

screen

115

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

do capture.

c

Handles storing platforms into data

file

do change speed.

c

Allows user to set the speed of all

platforms

do char .

c

Displays a character in file name

window

do driving menu.c Displays driving menu and handles

selection

do flying menu.c Displays flying menu and handles

selection

do intros .

c

Handles selection to display user

instruction window

do main .

c

Builds and displays main menu and

handles selection

do main reset, c Clears all windows and displays 2D

terrain map

do pathops.c Builds and displays path operations

menu and handles selections

do quitting.

c

Handles program exit selection from

any menu

do resize .

c

Handles resize selection from any

menu

do select area.c Handles menu selection of a 10KM

operational area on the 35KM map

do the add .

c

Handles menu selection of adding a

platform

do the defaults.

c

Handles menu selection of adding a

default set of platforms

do the delete.

c

Handles menu selection of deleting

one or all platforms

do the_select.c Handles the selection of a platform

draw box around current area.c Draws red box around current 10KM

area on large map

draw cobra.

c

Draws the main body of the attack

helicopter

draw guidept .

c

Draws a guide point as a marker on

the terrain

116

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

draw in cobra .

c

Draws the cockpit framework when

looking from inside the attack

helicopter

draw main rotor.

c

Draws

blade

attack helicopter main rotor

draw projectile.

c

Draws round in flight

draw reticle.

c

Draws weapon sight picture

draw tail pipe .

c

Draws attack helicopter IF. suppressor

draw tail rotor.

c

Draws attack helicopter tail rotor

drawf lame .

c

Draws flame from tail of FOGM

drawflash .

c

Draws flash when round impacts a

platform

drawgridbox .

c

Draws a box in the map window

drawgun .

c

Draws the tank barrel and bore

evacuator

drawicon .

c

Draws the icon for each type of

platform

draw jeep . c Draws the jeep

drawmissile . c Draws the FOGM

drawopen jeep .

c

Draws the open jeep

drawroller . c Draws the tank rollers

drawsplash .

c

Draws the ground splash when a

projectile impacts the ground

drawtank .

c

Draws the body of the tank

drawterrain .

c

Main terrain and platform drawing

routine

drawtire .

c

Draws a tire

drawtrack .

c

Draws a tank track

drawtruck .

c

Draws the truck body

drawturit .

c

Draws the tank turret

drawwreck .

c

Draws a burning wreck

error handler.

c

Centralized error handler, just

prints error message and returns

event .

c

Main drawing cycle dispatch routine

event driving.

c

Ground platform drawing cycle

event flying.

c

FOGM drawing cycle

exit simulator.

c

Cleans up on exit

117

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

explosion .

c

Flashes screen when current platform

is destroyed

fire blast .

c

Flashes screen when weapon fires

fire weapon.

c

Handles weapon firing

flamenormals .

c

Computes normals for the FOGM flame

gen wildman defaults.

c

Generates a default set of platforms

get curr fps .

c

Calculates current drawing rate in

frames per second

get mouse xy.c Gets current location of mouse cursor

get name .

c

Opens window for user to enter file

name

gnd level .

c

Computes ground level of input world

coordinates

gnd level UTM.c Computes ground level of input UTM

coordinates

guidance .

c

Contains routines to handle

transition between guidance states

gunnormals .

c

Computes normals for tank barrel

handle crash.

c

Handles collision of two platforms

handle events.

c

Event handler package

handle tracking.

c

Handles FOGM tracking ground platform

handlecont rols .

c

Handles mouse and dial inputs when

driving a ground platform

handlecontrols fogm.c Handles dial inputs when flying the

FOGM

handlecontrols partial.

c

Handles mouse inputs when flying the

FOGM

highlitegrid .

c

Highlights the 1 X 1 KM grids that

contain any platforms for zooming

init fonts .

c

Initializes fonts and scales them to

window size

init months.

c

Initialize month and lighting

init network.

c

Set up network sockets and stream

server connection queue

init weapons .

c

Initializes any weapon systems on

board a platform

initialize terrain mat .

c

Defines materials for terrain

polygons based on current color map

118

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

initiris .

c

Initializes graphics system

initveh .

c

Adds platforms from a file

jeepnormals .

c

Computes normals for a jeep

letter .

c

Draws a letter on the billboard

light model initialize.

c

Initializes lighting model and

lighting viewer definition

lightdef s .

c

Defines materials, lights, and

lighting model

limit cursor pick.c Limits cursor for targeting attempt

by FOGM

limit value .

c

Limits value between upper and lower

bound

loadunit .

c

Loads a unit matrix onto the stack

makepopups .

c

Builds static menus

maketank .

c

Builds polygon arrays for tank

maketerrain .

c

Fills the terrain elevation and

terrain polygon normal arrays

maketrack .

c

Makes tank track polygons

mapoverlay .

c

Draws the platform icons on the 2D

10 KM map

math utility.

c

Package of math utility functions

missile norma Is .

c

Calculates normals for the FOGM

missile

mousescreentoutm.

c

Converts screen (pixel) coordinates

to UTM coordinates

mouse screentowor Id .

c

Converts from screen coordinates to

world graphics coordinates

mouseterraintoutm.

c

Converts from 10KM coordinates to

UTM coordinates

mouseutmtoscreen .

c

Converts from UTM coordinates to

point on the screen

mouseutmtoterrain .

c

Converts from UTM coordinates to

10KM coordinates

mouseworldtoscreen .

c

Converts from 2D world coordinates

to screen coordinates

netstream services.

c

Package containing routines to

manage stream connections

network .

c

Builds messages and sends them

19

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

network 10.

c

Package of message level network

communication routines

normalorient .

c

Computes normal and reorganizes

vertices of polygons

npoly orient.

c

Orients polygon vertices for

backface method of hidden surface

removal

obstacles . c Stub module for obstacles package

open jeepnormals c Computes normals for open jeep

path .

c

Package of routines to manage paths

placewindow sizes, c Sets aspect and size for billboard

window

placewindows .

c

Calculates the position of all

windows and opens them

popwindow .

c

Fops a window into full view

positionwindows c Positions windows under window

manager

range finder.

c

Simulates a laser rangefinder and

calculates the range to nearest

platform in weapon sight crosshairs

read data .

c

Reads elevation and vegetation data

from file

reset tilt f .

c

Resets FOGM tilt angle after

releasing tracking mode

reticles .

c

Variable definitions for sight

reticle arrays

ring the bell .

c

Rings the terminal bell

rollernormals .

c

Computes normals for tank rollers

select an area.c Handles selection of an area on 35KM

map

select grid square.

c

Handles selection of 1 X 1 KM grid

square

select sight.

c

Displays viewing mode menu and

handles selection

set driven view c Sets viewing parameters for

perspective and eye geometry

set popup color c Sets the color of the popup menus

set queue .

c

Queues up dials and mouse

120

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

set unqueue.c Unqueues dials and mouse

setcolor .

c

Sets current RGB color based on

values in RGB color array

setcolor initialize.

c

Initializes RGB color array

setcontrols .

c

Sets up controls for driving

setcontrols fogm.c Sets controls for flying the FOGM

missile

setcursorcolor.c Sets the current color of the cursor

setup for driving.

c

Sets up for driving using mouse

joystick

setup navwin .

c

Draws small 2D 10KM map in

navigation window

setwindow .

c

Puts focus into a window

setworldcoord.

c

Saves world coordinates of window

simtime .

c

Package containing routines to

manage simulation time

sincos .

c

Returns interpolated table lookup

values for sine and cosine functions

switch veh . c Returns pointer to platform selected

with mouse

tanknormals .

c

Computes normals for a tank

terrainnormals .

c

Computes normals for the terrain and

stores them in an array

tirenormals .

c

Computes normals for a tire

tot num ground veh .

c

Returns total number of ground

platforms

tot num veh .

c

Returns total number of platforms

tracking check.

c

Performs check of FOGM tracking

system

tracknormals .

c

Computes normals for tank tracks

trucknormals .

c

Computes normals for truck

turitnormals . c Computes normals for tank turret

update look pos.c Calculates position that viewer is

looking at for ground platform

update look pos fogm.c Calculates position that viewer is

looking at for FOGM missile

update veh pos.c Moves platform to new position

vecdotp .

c

Computes vector dot product

121

TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

vecmag .

c

Computes magnitude of a vector

vehmodel .

c

Package containing vehicle motion

modeling routines

viewbounds .

c

Computes viewing limits for

drawterrain

122

APPENDIX B PATH PLANNER CODE

;;
-*- Mode: LISP; Package: USER; Syntax: Common-lisp -*-

Title: clock functions

Author: Shannon

Date: 12 Apr 1989

Discription: This program provides for the timming of clocks used in the Path Planner Control Program

(defflavor myclock ((start-ins-time 0)

(start-sym-time 0)

(last-iris-time 0)

(last-sym-time 0)

(delta-time 0)

)

:initable-instance-vanables)

(defmethod (set-start-time myclock) (iris-time)

(let* ()

(serf last-iris-time iris-time)

(serf start-ins-time ins-time)

(serf start-sym-time (zltime))

(serf last-sym-time start-sym-time)

(setf delta-time 0)

)

)

(defmethod (reset-last-time myclock) (iris-time)

(let* ((deltal 0.0) (delta2))

(progn

(setf last-sym-time (zltime))

(setf last-iris-time iris-time)

(setf deltal (- iris-time start-ins-time))

(setf delta2 (- last-sym-time start-sym-time))

)

)

)

(defmethod (:get-time myclock) ()

(+ delta-time (/ (+ 0.0 (time-difference (zl:time) last-sym-time)) 60) last-iris-time)

(defmethod (:get-all-times myclock) ()

(princ start-iris-time)

(princ start-sym-time)

(princ last-iris-time)

123

(princ last-sym-time)

(princ delta-time)

124

;;
-*- Mode LISP; Syntax: Common-lisp; Package: USER -*-

Title: chaosflavor.lisp

Author. Kwak

Modified by: Shannon

Date: 19 Apr 1989

Discription:This code performs the communications between Symbolics computers using a character stream.

(load "comm-functions")

(defflavor mychaos ((host-name 'syml)

(contact-name "user-chaos")

(contact nil)

(userstream nil)

)

:initable-instance-variables)

(defmethod (set-host-name mychaos)

(name-of-host)

(setf host-name name-of-host))

(defmethod (set-contact-name mychaos) (name)

(setf contact-name name))

(defmethod (:set-contact mychaos) (con)

(setf contact con))

(defmethod (set-stream mychaos) (str)

(setf userstream str))

(defmethod (start-user mychaos) (hostname contactname)

(progn

(send self :set-host-name hostname)

(send self :set-contact-name contactname)

(send self :set-contact (chaos :connect hostname contactname 13 72000))

(send self :set-stream (chaos:make-stream contact direction bidirectional))

(terpri)

(princ "host name "
) (princ host-name)

(terpri)

(pnnc 'contact name ") (princ contact-name)

(terpri)

"A conversation using chaos has been established"))

(defmethod (:start-server mychaos) (contactname)

(progn

125

(send self :set-contact-name contactname)

(send self :set-contact (chaos :listen contactname))

(chaos :accept contact)

(send self :set-stream (chaos:make-stream contact :direction :bidirectional))

(terpri)

(princ "host name "
) (princ host-name)

(terpri)

(princ "contact name ") (princ contact-name)

(terpn)

"A conversation using chaos has been established"))

(defmethod (:put mychaos)

(object)

(send userstream :line-out object)

(send userstream force-output)

)

(defun read-stnng-sym (stream num-chars)

(let ((out-stnng ""))

(dotimes (i num-chars)

(setf out-string (string-append out-stnng (read-char-no-hang stream)))

)

out-stnng

)

)

(defmethod (check-sym mychaos) (size-io)

(let* ((typebuffer

)

)

(progn

(setq typebuffer

(read-stnng-sym userstream size-io))

)

)

)

(defmethod (put-ready mychaos)

(object)

;From path-planner to art

(let* ((buffer "!!!!"))

(setf buffer (string-append (string-append buffer object) "!!!"))

(progn

(send userstream :line-out buffer)

(send userstream force-output)

•t

)

126

)

)

(detmethod (:put-waypoint mychaos)

(object)

;from path-planner to art

(let* ((buffer *@@@@"))

(setf buffer (string-append

(string-append buffer (convert-number-to-string object))

"@@@"))

(progn

(send userstream :line-out buffer)

(send userstream force-output)

't

)))

(defmethod (load-map mychaos)

(utm-e utm-n veh-id)

;From art to path planner

(let* ((buffer"!!!!"))

(setf buffer (string-append

(string-append buffer

(convert-number-to-stnng (+ (* utm-e 1000000000000000)

(* utm-n 10000000000)

veh-id

)

)

)

)

(progn

(send userstream line-out buffer)

(send userstream force-output)

't

)))

(defmethod (:put-path mychaos)

(org-utm-e org-utm-n start-utm-e start-utm-n goal-utm-e goal-utm-n veh-id)

;from art to path-planner

(let* ((buffer "@@@@")

(string-org-e (convert-number-to-string org-utm-e))

(string-org-n (convert-number-to-string org-utm-n))

(string-start-e (convert-number-to-stnng start-utm-e))

(string-start-n (convert-number-to-string start-utm-n))

(string-goal-e (convert-number-to-string goal-utm-e))

(string-goal-and-id (convert-number-to-stnng

127

(+ (* goal-utm-n 10000000000)

veh-id

)

)

)

)

(setf buffer (string-append

(string-append

(string-append

(string-append

(string-append

(string-append

(string-append buffer

string-org-e

)

string-org-n

)

string-start-e

)

string-start-n

)

string-goal-e

)

string-goal-and-id

)

@@@"
)

)

(progn

(send userstream line-out buffer)

(send userstream :force-output)

't

)

)

)

(defmethod (:stop mychaos)

(send userstream :dose :abort))

128

;;
-*- Mode: LISP; Syntax: Common-lisp; Package: USER -*-

Title: irisflavor3 lisp

Author: Kwak

Modification Author: Shannon

Modification Date: 20 May 1989

Discription: This code provides communications functions to the symbolics workstation, whereby it can

communicate to the Iris

(defmacro loopfor (var init test expl &optional exp2 exp3 exp4 exp5)

'(prog ()

(setq ,var ,init)

tag

,exp1

,exp2

,exp3

,exp4

,exp5

(setq ,var (1+ ,var))

(if (= ,var .test) (return t) (go tag))))

(load 'comm-functions")

(defvar "ins-port1* 1061) ; this is the send port

(defvar *iris-port2* 1 06 1

)

; this is the receive port

(defvar *local-talk-port* 1500) ; this is the local send

port

(defvar *local-listen-port* 1501) ; this is the local

receive port

(defflavor conversation-with-ins ((talking-port-number *ins-port1*)

(listening-port-number *iris-port2*)

(locaJ-talk-port-number *local-talk-port*)

(local-listen-port-number

local-listen-port)

(talking-stream)

(listening-stream)

(destination-host-object)

)

initable-instance-vanables)

(defmethod (init-destination-host conversation-with-iris)

(name-of-host)

(setf destnation-host-object (net:parse-host name-of-host)))

129

(defmethod (start-iris conversation-with-iris) ()

(setf talking-stream

(tcp:open-tcp-stream destination-host-object

talking-port-number

local-talk-port-number))

(setf listening-stream

(tcp:open-tcp-stream destination-host-object

listening-port-number

local-listen-port-number))

"A conversation with the ins machine has been established")

(defun read-string (stream num-chars)

(let ((out-string ""))

(dotimes (i num-chars)

(setf out-string (string-append out-stnng (read-char-no-hang stream))))

out-string))

(defmethod (check-iris conversation-with-iris) (size-io)

(let* ((typebuffer)

)

(progn

(setf typebuffer

(read-string listening-stream size-io)

)

)

)

)

(defvar *step-var* 0)

(defun my-wnte-string(stnng stream)

(let* ((num-chars (length stnng)))

(dotimes (i num-chars)

(write-char (aref string i) stream)

)

)

)

(defmethod (put-waypoint conversation-with-iris)

(veh-id utm-e utm-n)

(let* ((buffer (stnng-append

"III
I

"

130

(string-append

(convert-number-to-string veh-id)

(string-append

(string-append

(convert-number-to-string utm-e)

(string-append

(string-append

(convert-number-to-string utm-n)

////*

)

)

)

)

)

)

)

(buffer-length (length buffer))

(lengthbuffer (convert-number-to-string buffer-length))

)

(progn

(my-write-string buffer talking-stream)

(send talking-stream force-output)

)

)

)

(defmethod (stop-iris conversation-with-iris)

(progn (send talking-stream close)

(send listening-stream close)))

131

;;;
-*- Mode: LISP; Syntax: Common-lisp: Package: USER -*-

;title comm functions

;author Kwak

:discnption This program provides functions to the communications progarams that convert to and from strings

; and numbers.

(defun convert-number-to-string (n)

(princ-to-string n))

(defun convert-string-to-integer (str &optional (radix 10))

(do((j0(+j1))

(n (+ (* n radix) (digit-char-p (char str j) radix))))

((=j (length str)) n)))

(defun find-period-index (str)

(catch 'exit

(dotimes (x (length str) nil)

(if (equal (char str x) (char "." 0))

(throw 'exit x)))))

(defun get-leftside-of-reai (str Soptional (radix 10))

(do ((jO(Uj))

(n (+ (* n radix) (digit-char-p (char str j) radix))))

((or (null (digit-char-p (char str j) radix)) (= j (length str))) n)))

(defun get-nghtside-of-real (str Soptional (radix 10))

(do ((index (1+ (find-period-index str)) (1+ index))

(factor 10 (* factor 10))

(n 0.0 (+ n (* factor (digit-char-p (char str index) radix)))))

((= index (length str)) n)))

(defun convert-stnng-to-real (str Soptional (radix 10))

(+ (float (get-leftside-of-real str radix)) (get-nghtside-of-real str radix)))

132

;;
-*- Mode: LISP; Package: USER; Syntax: Common-lisp -*-

Title define-packege-mterface

Author Shannon

Date 24 May 1 989

Discription Defines the interface between programs running in different Symbolics packages

#L(defpackage cl-user

(:export

conversation-with-iris

mychaos

mydock

convert-number-to-string

convert-string-to-reai

convert-string-to-integer

string-append

princ-to-string))

133

;;; %%% -*- Mode: ART; Syntax: Common-lisp; Base: 10.; Package: ART-USER -*-

Title: Path Planner Control Program

author: Shannon

Date: 11 June 1989

Discription: This program provides the over all control logic for finding a path and the sending that path to

the vehide simulation.

#L(load "irisflavor3")

#L(load "chaosflavor")

#L(load def-interface
-

)

#L(load "dockflavor*)

#L(defvar talk-s)

#L(defvar talk-i)

#L(setf talk-i (scl:make-instance 'user:conversation-with-ins))

#L(setf talk-s (scl:make-instance 'usermychaos))

(defschema counter

(seq 0)

)

(defschema obsticle

(instance-of counter)

(nw-utm-e 000)

(nw-utm-n 000)

(sw-utm-e 000)

(sw-utm-n 000)

(se-utm-e 000)

(se-utm-n 000)

(ne-utm-e 000)

(ne-utm-n 000)

(seq 000)

(seq-ord last)

)

(defschema obj-type

(type unk)

)

(defschema location

(utm-e 000)

(utm-n 000)

)

(defschema id

(veh-id 000)

)

134

(defschema map-state

(ready not-yet)

)

(defschema clock

(dock-id new)

(time 000)

)

(defschema control-conditions

(new-goal no)

(quit-all no)

(broke-down no)

(pause no)

(whole-path no)

(new-time no)

(new-waypoint no)

(old-time 0)

)

(defschema initial-map-points

(org-utm-e 000)

(org-utm-n 000)

(start-utm-e 000)

(start-utm-n 000)

(goal-utm-e 000)

(goal-utm-n 000)

)

(defschema control

(instance-of clock)

(instance-of obj-type)

(instance-of id)

(instance-of counter)

(instance-of control-conditions)

)

(defschema map

(instance-of obj-type)

(instance-of location)

(instance-of id)

(instance-of map-state)

)

(defschema init

(instance-of obj-type)

(instance-of id)

135

(instance-of initial-map-points)

)

(defschema veh

(cse 0)

(vel 0)

(guide 0)

)

(defschema veh-change

(delta-time 0)

(new-position no)

)

(defschema msg-state

(current no)

)

(defschema veh-state

(instance-of obj-type)

(instance-of veh)

(instance-of id)

(instance-of location)

(instance-of veh-change)

)

(defschema veh-msg

(instance-of dock)

(instance-of obj-type)

(instance-of veh)

(instance-of id)

(instance-of location)

(instance-of msg-state)

)

(defschema machine-type

(one one)

(two two)

(three three)

(four four)

(five five)

)

(defschema sym

(instance-of machine-type)

(one syml)

(two sym2)

136

(three

)

sym3)

(defschema ins

(instance-of machine-type)

(one gravyl)

(two gravy2)

(three gravy3)

(four gravy4)

(five gravy5)

)

(defrelation msg-sym (?type))

(defrelation msg-ins ('type))

(defrelation start-ins-comm (?t-or-f))

(defrelation start-sym-comm (?t-or-f))

(defrelation menu
(
?one-or-two))

(defrelation sym-on ('yes))

(defrelation check-comm (?ins-and-sym))

(defrelation clock-update (?yes))

(defrelation sym-link ('code))

(defrelation iris-link ('code))

(deffacts initialization

(menu one)

)

(defrule menul

(declare (salience -1000))

(schema sym

(one ?s1)

(two ?s2)

(three ?s3)

)

?a <- (menu one)

=>

(printout 1 1 "Where is the path planner located?')

(pnntout 1 1 "Your choices are the following, chose one by it's letter.

137

t"a"?s1

t "b " ?s2

t "c " ?s3

t "NOTE—Please ensure that the path planning software is running"

t)

(bind ?b (read))

(if (or (eq ?b 'a)

(eq ?B A))

then

(assert (sym-link 9s1)

(menu two)

(start-sym-comm yes)

)

else

(if (or (eq ?b 'b)

(eq ?b B))

then

(assert (sym-link ?s2)

(menu two)

(start-sym-comm yes)

)

else

(if (or (eq ?b c)

(eq ?b C))

then

(assert (sym-link ?s3)

(menu two)

(start-sym-comm yes)

)

eise

(retract ?a)

(assert (menu one))

)

)

)

(retract ?a)

)

(defrule menu2

(declare (salience -1000))

(schema iris

(one ?i1)

(two ?i2)

(three ?i3)

(four ?i4)

(five ?i5)

)

138

?a <- (menu two)

=>

(printout 1 1 "Where is the vehicle simulator located?")

(printout 1 1 "Your choices are the following, chose one by it's letter.

t "a " ?i1

t "b " ?i2

t "c " ?i3

t "d " ?i4

t "e " ?i5

t "NOTE—Please ensure that the simulator is running"

t)

(bind ?b (read))

(if (or (eq ?b 'a)

(eq ?b 'A))

then

(assert (ins-link ?i1))

(assert (start-ins-comm yes))

else

(if (or (eq ?b 'b)

(eq ?b B))

then

(assert (ins-link ?i2))

(assert (start-ins-comm yes))

else

(if (or (eq ?b 'c)

(eq ?b 'O)

then

(assert (ins-link ?i3))

(assert (start-ins-comm yes))

else

(if (or (eq ?b d)

(eq ?b "D))

then

(assert (iris-link ?i4))

(assert (start-ins-comm yes))

else

(if (or (eq ?b e)

(eq ?b 'E)>

then

(assert (iris-link ?i5))

(assert (start-ins-comm yes))

else

(retract ?a)

(assert (menu two))

)

)

)

139

)

)

(retract ?a)

)

(defrule start-iris-comm-links

(declare (salience -1000))

(iris-link ?iris-machine)

?a <- (start-iris-comm yes)

=>

#L(scl:send talk-i init-destination-host 'iris-machine)

#L(scl:send talk-i :start-iris)

(retract ?a)

(assert (check-comm iris)

)

)

(defrule start-sym-comm-links

(declare (salience -1000))

(sym-link ?sym-machine)

'a <- (start-sym-comm yes)

=>

#L(scl:send talk-s :start-user ?sym-machine "path")

(retract ?a)

(assert (sym-on yes)

)

)

(defrule check-comm-links-iris

(declare (salience 500))

?a <- (check-comm iris)

=>

(bind ?b #L(sd:intern (schsend talk-i check-iris 1)))

(if (eq ?b NIL) then

(retract 'a)

(assert

(check-comm iris)

(check-comm sym)

(dock-update yes)

)

else

(retract ?a)

(assert (msg-iris ?b))

)

)

140

(defrule check-comm-links-sym

(declare (salience 500))

(schema 9any

(or (ready sent)

(ready ready)

)

)

?a <- (check-comm sym)

=>

(bind ?b #L(sd:intern (scl:send talk-s :check-sym 1)))

(if (eq ?b NIL) then

(retract ?a)

(assert (check-comm iris))

else

(retract ?a)

(assert (msg-sym ?b))

)

(defrule read- update- in

(declare (salience 1000))

?msg <- (msg-ins ?a)

(test (eq ?a '>))

=>

(bind ?b #L(scl:intern (scl:send talk-i :check-iris 3)))

(if (eq ?b '»>) then

(bind ?veh-id #L(scl:send talk-i :check-ins 10))

(bind ?utm-e #L(scl:send taik-i check-ins 10))

(bind ''utm-n #L(sd send talk-i :check-iris 10))

(bind ?cse #L(sd send talk-i check-ins 10))

(bind ?vel #L(scl:send talk-i check-iris 10))

(bind ?time #L(sd send talk-i :check-iris 10))

(bind ?guide #L(scl:send talk-i check-iris 1))

(bind ''b #L(sd intern (scl send talk-i :check-iris 3)))

(if (eq ?b '»>) then

(bind ?msg-id *MSG")

(bind ?msg-id #L(scl:intern (userstnng-append ?msg-id 7veh-id)))

(bind ?veh-id #L(user:convert-stnng-to-integer ?veh-id))

(bind ?utm-e #L(floor (user;convert-string-to-real ?utm-e)))

(bind ?utm-n #L(floor (user:convert-string-to-real ?utm-n)))

(bind ?cse #L(user:convert-string-to-real 7cse))

(bind ?vel #L(user:convert-stnng-to-real ?vel))

(bind ^time #L(user:convert-string-to-reaJ ?time))

(bind ?guide #L(user:convert-stnng-to-integer ?guide))

(modify (schema ?msg-id

(veh-id ?veh-id)

(utm-e ?utm-e)

141

(utm-n ?utm-n)

(cse ?cse)

(vel ?vel)

(time ?time)

(guide ?guide)

(current yes)

)

)

(retract ?msg)

(assert (check-comm ins)

(check-comm sym)

(clock-update yes)

)

)

(defrule read-init-in

(declare (salience 1000))

?msg <- (msg-iris ?a)

(test (eq ?a '<))

=>

(bind ?b #L(sd:intern (scl send talk-i check-iris 3)))

(if (eq ?b '«<) then

(bind ?org-utm-e #L(scl:send talk-i :check-iris 10))

(bind ?org-utm-n #L(scl:send talk-i check-iris 10))

(bind ?veh-id #L(scl:send talk-i check-iris 10))

(bind ?start-utm-e #L(scl:send talk-i :check-iris 10))

(bind ?start-utm-n #L(scl:send talk-i check-ins 10))

(bind ''goal-utm-e #L(scl send talk-i :check-iris 10))

(bind ?goal-utm-n #L(scl:send talk-i check-iris 10))

(bind ?time #L(scl:send talk-i check-iris 10))

(bind ?b #L(sd intern (scl:send talk-i :check-iris 3)))

(if (eq ?b '<«) then

(bind ?init "INIT")

(bind ?init #L(sd:intern (user:string-append ?init ?veh-id)))

(bind ?map "MAP")

(bind ?map #L(scl:intern (userstring-append ?map ?veh-id)))

(bind ?cont "CONTROL")

(bind ?cont#L(scl:intem (user:string-append ?cont ?veh-id)))

(bind ?veh "VEH")

(bind ?veh #L(sd:intem (user:string-append ?veh ?veh-id)))

(bind ?msg-id "MSG")

(bind ?msg-id #L(scl:intern (user:string-append ?msg-id ?veh-id)))

(bind ?org-utm-e #L(floor (user:convert-string-to-real ?org-utm-e)))

(printout 1 1 ?org-utm-e)

(bind ?org-utm-n #L(floor (user:convert-string-to-real 'org-utm-n)))

142

(printout 1 1 9org-utm-n)

(bind ?veh-id #L(user:convert-string-to-integer ?veh-id))

(bind ?start-utm-e #L(floor (user:convert-string-to-real

?start-utm-e)))

(bind ?start-utm-n #L(floor (user:convert-string-to-real

?start-utm-n)))

(bind ?goal-utm-e #L(fioor (user:convert-string-to-real

?goal-utm-e)))

(bind ?goal-utm-n #L(floor (user:convert-string-to-real

?goal-utm-n)))

(bind ?time #L(user:convert-string-to-real ?time))

(bind ?clock-id #L(scl:make-instance usermyclock))

#L(scl:send ?clock-id :set-start-time ?time)

(assert (schema ?init

(instance-of init)

)

(schema 7map

(instance-of map)

)

(schema ?cont

(instance-of control)

)

(schema 9veh

(instance-of veh-state)

)

(schema ?msg-id

(instance-of veh-msg)

)

)

(modify (schema ?init

(org-utm-e ?org-utm-e)

(org-utm-n ?org-utm-n)

(veh-id ?veh-id)

(start-utm-e ?start-utm-e)

(start-utm-n ?start-utm-n)

(goal-utm-e ?goai-utm-e)

(goaJ-utm-n ?goaJ-utm-n)

(type init)

)

(schema ''map

(veh-id ?veh-id)

(utm-e ?org-utm-e)

(utm-n ?org-utm-n)

(ready send)

(type map)

)

(schema ?cont

143

(new-goal yes)

(time ?time)

(old-time ?time)

(veh-id ?veh-id)

(dock- id ?clock-id)

(type cont)

(seq 1)

)

(schema ?veh

(veh-id ?veh-id)

(utm-« ?start-utm-e)

(utm-n ?start-utm-n)

(type veh)

)

(schema ?msg -id

(type msg)

(current no)

)

)

)

)

(retract ?msg)

(assert

(check-comm sym)

(clock-update yes)

)

)

(defrule process-map-loaded-msg

(declare (salience 1000))

?msg <- (msg-sym ?a)

(test (eq ?a '!))

=>

(bind ?b #L(scl:intern (scl:send talk-s check-sym 3)))

(if(eq?b !!!)then

(bind ?cond #L(scl:intem (sd:send talk-s :check-sym 5)))

(bind ?veh-id #L(scl:send talk-s check-sym 10))

(bind ?b #L(scl:intem (sd:send talk-s :check-sym 3)))

(if(and(eq?b'!!l)

(eq ?cond 'READY)) then

(bind ?map "MAP -

)

(bind ?map #L(scl:intern (user:string-append ?map ?veh-id)))

(modify (schema ?map

(ready ready)

)

)

)

144

)

(retract ?msg)

(assert (check-comm iris))

)

(defrule process-waypoint-in-msg

(declare (salience 1000))

?msg <- (msg-sym ?a)

(test (eq ?a '(§>))

=>

(bind ?b #L(scl:intern (sclsend talk-s :check-sym 3)))

(if (eq ?b @@<2>) then

(bind ?utm-e #L(scl:send talk-s :check-sym 5))

(bind ?utm-n #L(sd:send talk-s :check-sym 5))

(bind ?veh-id #L(scl:send talk-s check-sym 10))

(bind ?seq #L(scl:send talk-s :check-sym 5))

(bind 9b #L(scl. intern (sclsend talk-s check-sym 3)))

(if (eq ?b @@@) then

(bind ?way 'WAYPOINT")

(bind ?way #L(sclintern (user:string-append

(user string-append ?way

?veh-id

)

">seq

)

)

)

(bind ?utm-e #L(floor (userconvert-string-to-integer 9utm-e)))

(bind ?utm-n #L(floor (userconvert-string-to-integer ?utm-n)))

(bind ?veh-id #L(floor (user convert-string-to-integer 'veh-id)))

(bind ?seq #L(floor (user:convert-string-to-integer 'seq)))

(assert (schema ?way

(instance-of id)

(instance-of counter)

(instance-of obj-type)

(instance-of location)

(type w-point)

(utm-e ?utm-e)

(utm-n ?utm-n)

(veh-id ?veh-id)

(seq ?seq)

)

)

)

)

(if (0 = ?seq) then

#L(scl:send talk-i :put-waypoint ?veh-id ?utm-e ?utm-n)

145

)

(retract ?msg)

(assert (check-comm iris))

)

(defrule dean-up-waypoints

(declare (salience 6000))

(schema ?way

(type w-point)

(veh-id ?veh-id)

)

(schema ?msg

(type msg)

(veh-id ?veh-id)

(guide 0)

(current yes)

)

(schema 7veh

(veh-id ?veh-id)

(type veh)

(guide 1)

(retract

(schema ?way

(instance-of id)

(instance-of counter)

(instance-of ob]-type)

(instance-of location)

)

)

)

(detrule clean-up-vehicle

(declare (salience 5000))

(schema ?msg

(type msg)

(veh-id ?veh-id)

(guide 0)

(current yes)

)

(schema ?init

(veh-id ?veh-id)

(type init)

)

(schema ?map

(veh-id ?veh-id)

146

(type map)

)

(schema ?cont

(veh-id ?veh-id)

(type cont)

)

(schema ?veh

(veh-id ?veh-id)

(type veh)

(guide 1)

)

=>

(retract

(schema ?init

(instance-of init)

)

(schema ?map

(instance-of map)

)

(schema 9cont

(instance-of control)

)

(schema ''veh

(instance-of veh-state)

)

)

)

(defrule clean-up-sym-msg

(declare (salience 500))

?msg <- (msg-sym ?code)

=>

(retract ?msg)

(assert

(check-comm sym)

(check-comm iris)

(clock-update yes)

)

)

(defrule dean-up-iris-msg

(declare (salience 500))

?msg <- (msg-iris ?code)

=>

(retract ?msg)

(assert

147

(check-comm iris)

(check-comm sym)

(clock-update yes)

)

)

(details load-map

(declare (salience 1000))

(sym-on yes)

(schema ?map

(utm-e ?org-e)

(utm-n ?org-n)

(veh-id ?veh-id)

(ready send)

(type map)

)

=>

#L(scl:send talk-s load-map ?org-e ?org-n ?veh-id)

(modify

(schema ?map

(ready sent)

)

)

(assert (check-comm sym))

)

(defrule start-path

(declare (salience 5000))

(schema ?veh

(type veh)

(guide 1)

(veh-id ?veh-id)

)

(schema ? init

(org-utm-e ?org-e)

(org-utm-n ?org-n)

(start-utm-e ?start-e)

(start-utm-n ?start-n)

(goal-utm-e ?goal-e)

(goal-utm-n ?goal-n)

(type init)

(veh-id ?veh-id)

)

(schema ?map

(veh-id ?veh-id)

(type map)

(ready ready)

148

)

(schema ?control

(new-goal yes)

(veh-id ?veh-id)

(type cont)

)

=>

#L(scl:send talk-s :put-path ?org-e ?org-n ?start-e ?start-n ?goal-e ?goal-n

?veh-id)

(modify

(schema ?control

(new-goal no)

)

)

)

(defrule send-new-waypoint

(declare (salience 5000))

(schema ?any

(type w-point)

(veh-id 7veh-id)

(seq 7seq)

(utm-e ?east)

(utm-n ?north)

)

(schema 'control

(seq 'seq-num)

(veh-id ^veh-id)

(type cont)

(new-waypoint yes)

)

(test (and (?seq-num < 9seq)

(?seq-num + 3 > ?seq)

)

)

=>

#L(scl:send talk-i put-waypoint ?veh-id ?east 'north)

(modify (schema ?control

(seq ?seq)

(new-waypoint no)

)

)

(if (?seq-num = 1) then

(assert (clock-update yes))

)

)

149

(defrule update-vehicle

(declare (salience 1000))

(schema ?veh-msg

(type msg)

(veh-id ?veh-id)

(utm-e ?utm-e)

(utm-n ?utm-n)

(cse ?cse)

(vel ?vel)

(time ?time)

(guide ?guide)

(current yes)

)

(schema ?control

(type cont)

(veh-id ?veh-id)

)

(schema 'veh-current

(veh-id ?veh-id)

(type veh)

)

=>

(modify (schema 'control

(time 'time)

(new-time yes)

)

(schema 'veh-current

(utm-e 'utm-e)

(utm-n 'utm-n)

(cse ?cse)

(vel 'vel)

(guide 'guide)

(new-position yes)

)

(schema 'veh-msg

(current no)

)

)

)

(defrule update-clock

(declare (salience 500))

?test <- (clock-update yes)

(schema ?control

(veh-id ?veh-id)

(time ?time)

(clock-id ?clock-id)

150

(type cont)

)

(schema 7veh

(veh-id ?veh-id)

(type veh)

(delta-time ?delta-time)

(new-position no)

)

(test (?delta-time = 0))

=>

(bind ?current-time #L(sd:send ?clock-id :get-time))

(bind ?delta-time (?current-time - ?time))

(modify (schema 'control

(time ?current-time)

)

(schema 7veh

(delta-time ^delta-time)

)

)

(retract ?test)

)

(defrule reset-clock

(declare (salience 5000))

(schema ?control

(time 'time)

(old-time ?old-time)

(clock-id ?clock-id)

(new-time yes)

(type cont)

)

(schema 'veh

(veh-id ?veh-id)

(type veh)

(delta-time ?delta-time)

(new-position ?no)

)

=>

(if (eq ?no 'NO) then

(bind ?delta-time (?time - ?old-time))

)

#L(scl:send ?clock-id :reset-last-time ?time)

(modify (schema ?control

(old-time ?time)

(new-time no)

)

(schema 'veh

151

(delta-time ?delta-time)

(new-position no)

)

)

)

(detrule change-position

(declare (salience 5000))

(schema ?veh

(type veh)

(utm-e ?utm-e)

(utm-n ?utm-n)

(cse ?cse)

(vel ?vel)

(delta-time 9delta-time)

(new-position no)

(test (?delta-time > 0))

=>

(bind ?delta-dist (?vel * ?delta-time))

(bind ?utm-e #L(floor (+ ?utm-e (* ?delta-dist (cos ?cse)))))

(bind ?utm-n #L(floor (+ ?utm-n (* ?delta-dist (sin ?cse)))))

(modify (schema ?veh

(utm-e ?utm-e)

(utm-n ?utm-n)

(delta-time 0)

(new-position yes)

)

)

)

(defrule new-waypoint

(declare (salience 1000))

(schema ?veh

(type veh)

(veh-id ?veh-id)

(new-position yes)

(utm-e ?utm-e)

(utm-n ?utm-n)

(guide 1)

)

(schema ?control

(type cont)

(seq ?seq)

(veh-id ?veh-id)

)

(schema ?any

152

(type w-pomt)

(veh-id ?veh-id)

(seq ?seq)

(utm-e ?east)

(utm-n ?north)

)

=>

(if (200 > #L(let ((dx (- ?east ?utm-e))

(dy (- ?north ?utm-n))

)

(sqrt (+ (• dx dx) (• dy dy)))

)

)

then

(modify

(schema ?control

(new-waypomt yes)

)

)

)

(modify (schema 7veh

(new-position no)

)

)

)

153

;;
-*- Mode: LISP; Package: USER; Syntax: Common-lisp -*-

Tide: Search Control Program

Author: Shannon

Date: 5 Jun 1989

Discription: This program controls the flow of the search algonthm.

(defvar *done*)

(sett 'done* nil)

(defvar 'maps*)

(setf *maps* nil)

(defvar *vehs*)

(setf *vehs* nil)

(defvar *wave-paths*)

(setf 'wave-paths* nil)

(defun convert-to-utm (node-list map-utm-e map-utm-n)

(let ((num-nodes (length node-list)))

(dotimes (x num-nodes)

(cond

((eq x (- num-nodes 1))

(setf node-list (cdr node-list))

)

(t

(setf (car (car node-list)) (new-utm (car (car node-list)) map-utm-e))

(setf (car (cdr (car node-list))) (new-utm (car (cdr (car node-list)))

map-utm-n))

(serf node-list (append (cdr node-list) (list (car node-list))))

)

)

)

node-list

)

)

(defun send-waypomts (wave-paths)

(let ((num-waves (length wave-paths)))

(dotimes (x num-waves)

(terpri)

(cond

((null (car wave-paths))

(setf wave-paths (cdr wave-paths))

)

((cdr (cdr (car wave-paths)))

(send talk-s :put-waypoint

(+ (" (car (cdr (cdr (car (car wave-paths)))))

1 0O0OOOO0OOOO00OO0CXD0

154

)

(* (car (cdr (cdr (cdr (car (car wave-paths))))))

1000000000000000

)

(* (car (cdr (car (car wave-paths)))) 1 00000)

(car (car (car wave-paths)))

)

)

(serf wave-paths (append (cdr wave-paths)

(list (cdr (car wave-paths)))

)

)

)

(t

(send talk-s put-waypoint

(+ (* (car (cdr (cdr (car (cdr (car wave-paths))))))

1 00000000000000000000

)

(* (car (cdr (cdr (cdr (car (cdr (car wave-paths)))))))

1000000000000000

)

(* (car (cdr (car (cdr (car wave-paths))))) 1 00000)

(car (car (cdr (car wave-paths))))

)

)

(setf wave-paths (cdr wave-paths))

)

)

)

wave-paths

)

)

(defun add-id (node-list veh-id)

(let ((num-nodes (length node-list)))

(dotimes (x num-nodes)

(setf node-list (append (cdr node-list)

(list (cons veh-id (car node-list)))

)

)

)

node-list

)

)

(defun add-seq-num (node-list)

(let ((num-nodes (length node-list)) (seq 0))

155

(dotimes (x num-nodes)

(setf node-list (append (cdr node-list)

(list (cons seq (car node-list)))

)

)

(setf seq (+ seq 1))

)

node-list

)

)

(defun start-search-control

(search-control)

)

(defun search-control

(load "Ir-wave")

(load "chaosflavor")

(setf talk-s (make-instance 'mychaos))

(send talk-s :start-server "path")

(do* ((control-s (send talk-s check-sym 1)

(send talk-s check-sym 1)

)

)

((setf time-to-quit 'done')

(send taJk-s stop)

)

(cond

((equal control-s "!")

(setf next-3 (send talk-s :check-sym 3))

(cond

((equal next-3 "!!!")

(setf map-str-utm-e (send talk-s :check-sym 5))

(setf map-str-utm-n (send taJk-s :check-sym 5))

(setf veh-id (send talk-s :check-sym 10))

(setf next-3 (send talk-s :check-sym 3))

(cond

((equal next-3 "!l!")

(terpri)

(princ "loading map")

(setf map-utm-e (convert-string-to-integer map-str-utm-e))

(setf map-utm-n (convert-string-to-integer map-str-utm-n))

(setf veh-map (intern (stnng-append

(string-append "MAP"

map-str-utm-e

156

)

map-str-utm-n

)

)

)

(sett current-veh (intern (string-append "VEH" veh-id)))

(do ((maps *maps* (cdr maps)))

((or (equal veh-map (car maps))

(null (cdr maps))

)

(cond

((equal veh-map (car maps))

(send talk-s :put-ready

(stnng-append "READY"

veh-id

)

)

)

((null (cdr maps))

(setf (symbol-value veh-map) (make-array '(102 102)))

(sett "maps* (cons veh-map "maps*))

(send talk-s :put-ready

(string-append (load-map 100

map-utm-e

map-utm-n

"bin-slope da t"

(symbol-value veh-map)

)

veh-id

)

)

)

)

)

)

(setf (symbol-value current-veh) veh-map)

(do ((vehs "vehs* (cdr vehs)))

((or

(eq current-veh (car vehs))

(null (cdr vehs))

)

(cond

((null (cdr vehs)))

(setf "vehs* (cons current-veh *vehs*))

)

)

)

157

(terpri)

(princ "map loaded")

)

)

)

)

)

((equal control-s "@")

(setf next-3 (send talk-s :check-sym 3))

(cond

((equal next-3 "@@@")

(setf map-utm-e (send talk-s :check-sym 5))

(setf map-utm-n (send talk-s :check-sym 5))

(setf start-utm-e (send talk-s :check-sym 5))

(setf start-utm-n (send talk-s :check-sym 5))

(setf goal-utm-m-e (send talk-s :check-sym 5))

(setf goal-utm-m-n (send talk-s check-sym 5))

(setf veh-id-str (send talk-s :check-sym 10))

(setf next-3 (send talk-s :check-sym 3))

(cond

((equal next-3 "@@@")

(setf map-utm-e (convert-string-to-integer map-utm-e))

(setf map-utm-n (convert-string-to-integer map-utm-n))

(setf start-utm-e (convert-string-to-integer start-utm-e))

(setf start-utm-n (convert-string-to-integer start-utm-n))

(setf goal-utm-m-e (convert-string-to-integer goal-utm-m-e))

(setf goal-utm-m-n (convert-string-to-integer goal-utm-m-n))

(setf veh-id (convert-string-to-integer veh-id-str))

(setf start-utm-e (floor (/(- start-utm-e map-utm-e) 100)))

(setf start-utm-n (floor (/ (- start-utm-n map-utm-n) 100)))

(setf goal-utm-e (floor (/ (- goal-utm-m-e map-utm-e) 1 00)))

(setf goal-utm-n (floor (/ (- goal-utm-m-n map-utm-n) 100)))

(setf current-veh (intern (string-append "VEH" veh-id-str)))

(terpri)

(princ "planning path")

(terpri)

(princ start-utm-e)

(terpri)

(princ start-utm-n)

(terpri)

(princ goal-utm-e)

(terpri)

(princ goal-utm-n)

(setf "wave-paths* (cons

(add-seq-num

(add-id

(convert-to-utm

158

(append

(wave start-utm-e

start-utm-n

goal-utm-e

goal-utm-n

(symbol-value

(symbol-vale current-veh)

)

)

(list (list goal-utm-e goal-utm-n))

)

map-utm-e

map-utm-n

)

veh-id

'wave-paths*

)

)

)

)

)

)

)

)

(cond

((not (atom *wave-paths*))

(serf *wave-paths* (send-waypoints *wave-paths*))

)

)

)

)

(defun new-utm (num map-org)

(+ map-org (* num 100) (random 100))

)

159

;;
-*- Package: USER; Mode: LISP, Syntax: Common-lisp -*-

Title: Ir-wave.lisp

Author: Shannon

Date: 20 May 1989

Discription: This program is the implimentation of a wavefront search algorithm.

(wave number-of-explored-cells touched-flag)

(defvar *cost-array*)

(defvar *center-cell*)

(defvar *s-wave*)

(defvar *g-wave*)

(defvar *array-size*)

(defvar *map-loaded*)

(defvar *map-array*)

(defvar *start-loc*)

(defvar *goal-loc*)

(defvar *parent-array*)

;(setf *map-size*)

(setf 'start-loc* '(2 2))

(setf *goal-loc* '(10 10))

(defun parent-p(x y)

(aref 'parent-array* x y))

(defun set-new-cost(x y cost)

(setf (aref *cost-array* x y) cost))

(defun set-new-parent(x y parent-x parent-y)

(setf (aref 'parent-array* x y) (list parent-x parent-y)))

(defun retrieve-cost(x y)

(aref 'cost-array* x y))

(defun retrieve-parent(x y)

(aref 'parent-array* x y))

(defun get-cost-from-map(x y)

(aref 'map-array* x y))

(defun load-map (mapsize map-e map-n mapfile veh-map)

(setq input-stream (open mapfile direction :input :byte-size 8 characters nil))

(setf map-loc (+ (* (floor (/ (- map-e 41000) 1000)) 10)

(* (floor (/ (- map-n 60000) 1000)) 3500)))

(setf *array-size* (+ mapsize 2))

(setf 'map-array* veh-map)

(do ((ycoord (+ ycoord 1)))

160

((= ycoord *array-size*))

(sett (aref *map-array* ycoord) -2)

(sett (aref *map-array* (- *array-size* 1) ycoord) -2))

(do ((xcoord (+ xcoord 1)))

((= xcoord *array-size*))

(setf (aref *map-array* xcoord 0) -2)

(setf (aref *map-array* xcoord (- 'array-size* 1)) -2)

)

(do ((ycoord 1 (+ ycoord 1)))

((= ycoord (- *array-size* 1)))

(file-position input-stream map-loc)

(do ((xcoord 1 (+ xcoord 1)))

((= xcoord (- *array-size* 1)))

(setf slope (read-byte input-stream))

(setf slope (+ (/ (+ 0.0 slope) 2) 1))

(cond

((> slope 15) (setf slope -2)))

(setf (aref 'map-array* xcoord ycoord) slope)

)

(setf map-loc (+ map-loc 350))

)

(close input-stream)

(setf *map-loaded* yes)

READY"

)

(defun wave(start-e start-n goal-e goal-n veh-map)

(cond ((equal *map-loaded* 'yes)

(setf *start-loc* (list start-e start-n))

(setf *goa)-loc* (list goal-e goal-n))

(setf *map-array* veh-map)

(read-terrain-data)

(initial-expand)

(normal-expand)

(report-solution)

)

(t

'no-map-available)))

(defun report-solution()

(append (reverse (follow-link (first *center-ceH*) (second *center-cell*)))

(cdr (follow-link (first *center-cell*) (third 'center-cell*)))

)

)

(defun follow-link (posl pos2)

(cond ((equal posl pos2)

161

(list pos2))

(t

(cons posl

(follow-link

pos2

(retrieve-parent (first pos2)

(second pos2)))))))

(defun read-terrain-data()

(let ((cost) (start-x) (start-y)

(goal-x) (goal-y))

(setf 'parent-array* (make-array (list *array-size* 'array-size*)))

(setf *cost-array* (make-array (list *array-size* *array-size*)))

(copy-array-contents *map-array' *cost-array*)

(setf start-x (first *start-loc*))

(setf start-y (second *start-loc*))

(setf goal-x (first *goal-loc'))

(setf goal-y (second *goal-loc*))

(set-new-parent start-x start-y start-x start-y)

(set-new-parent goal-x goal-y goal-x goal-y)

(set-new-cost start-x start-y -1) ; wave-name

(set-new-cost goal-x goal-y 0) ;
wave-name

(pnnt 'done-terrain-classification)

))

(defun initial-expand()

(do()

((setf *s-wave* (init-expand -1 (list *start-loc*))))

)

(do()

((setf *g-wave* (init-expand (list 'goal-loc*))))

)

)

(defun init-expand(wave-name wave)

; retrun: a-wave

(first (expand-8 (car wave) wave-name)))

(defun expand-8 (pos wave-name)

(let ((x (first pos))

(y (second pos)))

(orthog-expand (- x 1) y x y wave-name

162

{orthog-expand (+ x 1) y x y wave-name

(orthog-expand x (+ y 1) x y wave-name

(orthog-expand x (- y 1) x y wave-name

(diag-expand (- x 1) (+ y 1) x y wave-name

(diag-expand (+ x 1) (+y 1) x y wave-name

(diag-expand (+ x 1)
(- y 1) x y wave-name

(diag-expand (- x 1) (- y 1) x y wave-name

(list nil 0)))))))))))

(defun normal-expand()

(do()

((or (expand-s-wave)

(expand-g-wave))

(print "wave-found))

)

)

(defun expand-s-wave()

(set-new-s-wave (cycle-thru-wave *s-wave* -1 nil)))

(defun expand-g-wave()

(set-new-g-wave (cycle-thru-wave *g-wave* nil)))

(defun set-new-s-wave(new-wave-data)

(setf *s-wave* (car new-wave-data))

(>= (second new-wave-data) 1))

(defun set-new-g-wave(new-wave-data)

(setf *g-wave* (car new-wave-data))

(>= (second new-wave-data) 1))

(defun cycle-thru-wave(wave wave-name t-wave)

(cond ((null wave)

(list t-wave nil))

(t (lef

((pos (car wave))

(x (first pos))

(y (second pos))

(a-parent (retrieve-parent x y))

(dx (- x (first a-parent)))

(dy (- y (second a-parent)))

(wave-data (sub-expand dx dy x y wave-name t-wave))

(wave-data 1

(cycle-thru-wave (cdr wave) wave-name

(add-back-to-wave pos wave-data))))

(list (first wave-datal)

163

(+ (second wave-data 1) (second wave-data))

nil)))))

(defun add-back-to-wave (pos wave-data)

(if (>= (third wave-data) 3)

(first wave-data)

(cons pos (first wave-data))))

(defun sub-expand(dx dy x y wave-name wave)

(cond ((equal dx 0)

(sub-expand 1 (+ y dy) x y wave-name wave))

((equal dy 0)

(sub-expand2 (+ x dx) x y wave-name wave))

(t

(sub-expand3 (+ x dx) (+ y dy) x y wave-name wave))))

(defun sub-expand1(ny x y wave-name wave)

(diag-expand (+ x 1) ny x y wave-name

(orthog-expand x ny x y wave-name

(diag-expand (- x 1) ny x y wave-name (list wave 0)))))

(defun sub-expand2(nx x y wave-name wave)

(diag-expand nx (- y 1) x y wave-name

(orthog-expand nx y x y wave-name

(diag-expand nx (+ y 1) x y wave-name (list wave 0)))))

(defun sub-expand3(nx ny x y wave-name wave)

(orthog-expand nx y x y wave-name

(diag-expand nx ny x y wave-name

(orthog-expand x ny x y wave-name (list wave 0)))))

(defun orthog-expand (x y px py wave-name wave-data)

(a-expand x y px py 1 .41 42 wave-name wave-data))

(defun diag-expand (x y px py wave-name wave-data)

(a-expand x y px py 1 wave-name wave-data))

(defun a-expand (x y px py amount wave-name wave-data)

(if (not (parent-p x y))

(set-new-parent x y px py))

(let ((cost (retrieve-cost x y)))

(cond

((and (equal cost-1)

(equal cost (other-wave-p wave-name)))

(setf 'center-cell*

164

(list (list xy)

(retrieve-parent x y)

(list px py)))

(list (first wave-data)

(+ (second wave-data) 1)

(+ (third wave-data) 1)))

((and (equal cost 0)

(equal cost (other-wave-p wave-name)))

(setf *center-cell*

(list (list x y)

(list px py)

(retrieve-parent x y)))

(list (first wave-data)

(+ (second wave-data) 1)

(+ (third wave-data) 1)))

((and (equal (retneve-parent x y) (list px py)) (> cost 0))

(a-expand1 x y px py (- cost amount) wave-name wave-data))

(t

(list (first wave-data)

(second wave-data)

(+ (third wave-data) 1))))))

(defun a-expand1(x y px py new-cost wave-name wave-data)

(cond ((> new-cost 0)

(set-new-cost x y new-cost)

wave-data)

(t

(my-overflow x y px py new-cost wave-name

(a-expand2 x y wave-name wave-data)))))

(defun a-expand2(x y wave-name wave-data)

(set-new-cost x y wave-name)

(list (cons (list x y) (first wave-data))

(second wave-data)

(+ (third wave-data) 1)))

(defun other-wave-p (wave-name)

(if (equaJ wave-name 0)

-1

0))

(defun my-overflow (x y px py cost wave-name wave-data)

165

(cond ((< cost 0)

(let* ((nx (+ x (- x px)))

(ny (+ y (- y py)))

(costl (retrieve-cost nx ny))

(new-cost (+ cost costl)))

(if (not (parent-p nx ny))

(set-new-parent nx ny x y))

(cond ((and (equal (retrieve-parent nx ny) (list x y)) (> costl 0))

(cond ((> new-cost 0)

(set-new-cost nx ny new-cost)

wave-data)

(t

(set-new-cost nx ny wave-name)

(my-overflow

nx ny x y new-cost wave-name

(list (cons (list nx ny) (first wave-data))

(second wave-data)

(third wave-data))))))

(t

wave-data))

))

(t

wave-data)))

166

APPENDIX C USER INTERFACE

The user interface of any application program must be designed so that novice and

experienced users alike can effectively operate the program with little or no help from

user's manuals or other users. This is achieved by a thorough and efficient design of

command line options, popup menus, dials, and the use of the mouse. This appendix

provides instructions on starting up and running APS, both the vehicle simulator and

the path planner, and navigating through the menus and operating controls of the sys-

tem.

I. VEHICLE SIMULATOR 1

The section covers the user interface to the vehicle simulator by describing

starting procedures, the menu system, and platform controls.

A. COMMAND LINE OPTIONS2

The vehicle simulator is started by typing "aps" followed by any command

line options and pressing RETURN. There are currently three options available from

the command line.

• Network mode

Test mode

• Silent mode

Selection of the network mode activates the networking capabilities of the

program. In this mode update messages are sent and received from any other vehicle

simulators as well as the path planner. Vehicle simulators operating on different

machines will be able to share information regarding the other platforms. When a

The main modifications to the MPS user interface are in the driving controls, weapon system controls and additional menu options.

The entire user interface is documented here for completeness. Where the MPS interface is unmodified, it is an extract of Appendix

Aof[FICHTN88],

2
The code that processes the command line arguments is contained in the file decode_arguments.c.

167

platform fires, changes guidance mode, or changes course, speed or altitude (FOGM

only), a message is sent to all other vehicle simulators and to the AI agent updating

the local database for the appropriate platform.

Selection of test mode bypasses some of the cosmetic portions of the pro-

gram. Currently, the only part that is bypassed is the opening billboard sequence.

Selection of silent mode turns off the bell that rings to indicate acceptance

of input from the user. This option is useful for demonstrations when the ringing

would interfere with a verbal explanation of the program.

B. POPUP MENU SYSTEM3

Popup menus are the primary source of user control over the state of the

program. There are currently 24 different popup menus that are used in various parts

of the simulation. If a selection in a menu is not allowed or meaningful when the menu

is displayed, the selection is displayed in lower case. Otherwise the selection is com-

pletely uppercase. Invalid selections are retained in the menu so that the menus al-

ways appear in the same order and format every time. If disallowed selections were

omitted completely, users would tend to be overwhelmed by the number of different

menu formats.

A menu is displayed and the selection always made by depressing the

right mouse button. Roll-off menus are expanded by moving the cursor arrow to the

right when a menu item with a roll-off submenu (such selections have a small arrow

on the right-hand side) is highlighted. The following is a detailed explanation of each

menu.

3
The code for defining all static popup menus is contained in the file makepopups.c. Code for displaying and processing menu

selections is contained in the following files: do_main.c, do_driving_menu.c, do_flying_menu.c, do_change_speed.c, do_intros.c.

do_pathops.c, do_quitting.c. do_select_area.c, do_the_add.c, do_the_defaulu.c, do_the_delete.c, do_the_select.c, and

select_sighLc.

168

1. Opening Menus

There are two menus that make up the opening menu set. These

menus are called OPENING_ONE and OPENING_TWO. Each of these menus con-

tain the same four selections as follows:

• DISPLAY INSTRUCTIONS

• GO TO SELECT AREA MENU
• EXIT THE PROGRAM
• ENTER 4SIGHT (RESIZE OPTIONS)

OPENING_ONE allows the user to select any one of these options

but OPENING_TWO disallows the first option. OPENING_TWO is displayed if the

user is currently looking at the instruction page.

The first selection displays a page of instructions onthe user inter-

face. If the instruction page is being displayed or the user wishes to bypass the in-

struction page, the GO TO SELECT AREA MENU selection will do just that. To exit

the program, the user must select EXIT THE PROGRAM and a small menu will be

displayed with the following selections:

• RETURN TO WHERE YOU WERE
• REALLY QUIT

If the user desires to resize or move the simulation's windows, the

option ENTER 4SIGHT (RESIZE OPTIONS) will allow him to accomplish it. After

selecting the option, the windows will be cleared to white and the user can click on

the menu bar and move or resize as desired using normal window manager functions.

2. Select Area Menu

The select area menu is active whenever the 35 KM 2D map is dis-

played. It contains the following options:

• SELECT AN AREA OF THE MAP
• GO TO MAIN MENU
• EXIT THE PROGRAM

169

ENTER 4SIGHT (RESIZE OPTIONS)

COLOR SCHEME - BROWN RAMP
COLOR SCHEME - MULTIPLE COLORS

COLOR SCHEME - GREY RAMP
COLOR SCHEME - RED RAMP
COLOR SCHEME - GREEN RAMP
COLOR SCHEME - BLUE RAMP
GO TO INTRODUCTION SCREEN

Selecting GO TO MAIN MENU will take the user to the main menu

which is the next logical place to go after selecting a 10KM area in which to operate.

The color scheme selections change the way the terrain is colored.

Each color scheme has eight different colors that are based on the elevation at that lo-

cation. The simulation actually uses 16 colors to create a checkerboarding effect, how-

ever the user is only shown the eight primary colors in the color ramp.

The last selection allows a user to return to the introduction screens

if he desires.

3. Main Menu

The main menu contains the following ten selections:

PLACE DEFAULT SET OF PLATFORMS

ADD A PLATFORM

DELETE A PLATFORM

SAVE PLATFORMS TO A FILE

SELECT A PLATFORM TO OPERATE
ENTER 4SIGHT (RESIZE OPTIONS)

SELECT ANOTHER AREA OF THE MAP
PERFORM PATH OPERATIONS

OBSTACLES ON/OFF =>

EXIT THE PROGRAM

170

Selecting the first option (PLACE DEFAULT SET OF PLAT-

FORMS) will display another menu called DEFAULT_MENU. This menu contains 6

selections as follows:

ENTER THE FILENAME FOR YOUR PLATFORMS

CONVOY - 10 GROUND PLATFORMS

CONVOY - 10 GROUND & 1 FOGM PLATFORM

JEEPS - 20 IN A ROW
DR. ZYDA'S CONVOY
DR. ZYDA'S WILDMAN DEFAULTS

If the user selects the first option, a small window is displayed on the

screen which prompts the user for the filename. If valid information is found in the file,

the appropriate platforms are added to the simulation. The main menu is then redis-

played.

Selection of any other option on the DEFAULT_MENU results in the

addition of predesignated platforms in predesignated locations. These selections are

useful for demonstration purposes and for persons interested in getting some plat-

forms on the screen very quickly.

The information for the default sets of platforms is contained in data

files that are read when indicated by a menu selection. The complete path for these

files is contained in the header file "files.h".

The next option on the main menu is ADD A PLATFORM. Selecting

this option displays the following menu:

ADD A COVERED JEEP

ADD AN OPEN JEEP

ADD A TRUCK
ADD A TANK
ADD A TOW VEHICLE

ADD A FOGM MISSILE

ADD AN ATTACK HELICOPTER

ADD AN OBSTACLE

171

If a moving platform is selected (jeep, truck, tank, TOW, attack heli-

copter, or FOGM), menus are displayed requesting an initial speed and direction for

the platform. If an obstacle is requested, then the speed and direction menus are by-

passed. The FOGM missile defaults to an initial altitude of 50 meters above the ter-

rain at the point where it is placed. After completing the selections, an icon is placed

in the center of the screen that resembles the selected platform or obstacle. The user

can then move the icon with the mouse and place the platform by clicking the right

mouse button. After placing the icon on the screen, the main menu is displayed once

again.

Selecting the DELETE A PLATFORM option displays the following

menu:

• DELETE A SINGLE PLATFORM
• DELETE ALL PLATFORMS ON THE SCREEN

If the user wants to delete one platform, an X cursor is displayed and

the user can click on the desired platform. If the user wants to delete all the platforms

on the screen, the following menu is displayed:

• NO, DO NOT DELETE ALL THE PLATFORMS
• YES, DELETE ALL PLATFORMS

The appropriate selection from this menu either cancels the operation

or executes it. This menu prevents a user from deleting vehicles that he may not real-

ly want to delete.

If the user has placed platforms on the screen and wishes to save

them to a file, then the main menu selection SAVE PLATFORMS TO A FILE accom-

plishes this. A window opens that prompts the user for the filename. If the path is cor-

rect, the platforms are saved to the file.

172

The next selection from the main menu is SELECT A PLATFORM

TO OPERATE. If the user selects this option, the following menu is displayed:

• ZOOM IN TO ANY LEGAL GRID SQUARE
• SELECT A PLATFORM TO OPERATE RIGHT NOW

The zoom option is usually necessary if platforms are close to each

other and the individual icons overlap. By zooming into the lxl kilometer grid square,

the user can more easily select the platform he desires. If the platform the user

wants to operate is clearly visible, then the second selection allows the user to select

a platform immediately.

The SELECT ANOTHER AREA OF THE MAP option returns to

the SELECT_AREA menu and redisplays the 35KM map.

Selecting PERFORM PATH OPERATIONS from the main menu dis-

plays a submenu containing up to four path manipulation functions. These functions

are:

• DISPLAY PATHS ON/OFF =>

• CONSTRUCT PATH
• DELETE PATH
• ASSIGN VEHICLE TO PATH

The last two options are not displayed if there are no paths to delete

or no vehicles to assign to a path. The first selection is a toggle that turns the display

of paths on the 10KM map on and off. The other selections allow manipulation of

paths. When a function is invoked by selecting it, specific instructions are displayed

in the lower right menu window.

4. Operating Menus

Operating menus are available when a platform has been selected

and is being driven by the user. They generally affect the characteristics of the 3D

terrain display or how the vehicle is being controlled.

173

a. Driving Menu. This menu is called 0PERATE_DR1VE. It

contains ten selections:

DO NOTHING

RETURN TO MAIN MENU
CHANGE ALL PLATFORMS' SPEEDS

EXIT THE PROGRAM
ENTER 4SIGHT (RESIZE OPTIONS)

POP WINDOWS
CHANGE VIEW

ADVANCED OPTIONS =>

AUTOPILOT ON/OFF =>

GUIDANCE ON/OFF =*

The first selection is provided in case the user pushes the right

mouse button and he does not desire to do anything. The second selection returns the

user to the main menu.

The third selection causes another menu to pop up that allows the us-

er to select a speed for all the platforms currently in the simulation. The allowable

speeds are from zero to 65 miles per hour. There is also a selection that will do noth-

ing and return directly to the simulation. Changing all the speeds is convenient when

the user wants to have a convoy of platforms proceed at identical speeds. Also, by se-

lecting zero miles per hour, all platforms are effectively frozen and their configuration

can be studied by viewing them from a FOGM missile or other platform.

The POP WINDOWS selection brings the four windows of the simu-

lation into view if any of them are obscured from view by other processes that are run-

ning on the machine.

If the CHANGE VIEW option is selected, a submenu containing dif-

ferent operating modes is presented. All platforms have at least three options:

• NORMAL VIEW - Normal commander's view, all dials including course and

speed are active.

174

DRIVER'S STATION - Activates mouse joystick (Figure C-l). for driving the

platform. In this mode moving the mouse move the steering cursor which

controls the steering and throttle. The corresponding course and speed di-

als are deactivated.

BINOCULARS - Gives view through a pair of variable power binoculars.

An additional selection is presented for each weapon system type

and munition combination carried by the platform, i.e., for a TOW vehicle a TOW se-

lection is displayed along with the normal three views.

The ADVANCED OPTIONS selection brings up the following menu:

• TOGGLE SINGLE/DOUBLE BUFFER MODE
• TARGETING MODE TEST (ONCE)

• TERRAIN DRAWING OPTIONS

The first selection toggles the graphics hardware between single-

buffer and doublebuffer modes. In doublebuffer mode, all drawing is done in a separate

area of memory from the display memory. When the function swapbuffersQ is called,

the pointer to this area and the pointer to the display buffer are switched, thereby

swapping the new picture for the old picture. This is how smooth motion is simulated.

If a user is interested in what order the individual picture elements are drawn on the

screen, then by selecting singlebuffer mode, he can see the pictures while they are be-

ing drawn.

ACCELERATE

TURN LEFT TURN RIGHT

BRAKE

Figure C-l Mouse Steering Cursor

175

Targeting mode test allows a user to see how the simulation deter-

mines if a target is in the crosshairs of the FOGM missile during targeting. After se-

lecting the option, the next time targeting is attempted, the view will be cleared to

white and all visible platforms will be drawn without lighting, shading, or hidden sur-

face removal. The resulting picture is displayed for three seconds and then normal op-

eration commences. This option is reset each time it is used.

The TERRAIN DRAWING OPTIONS option is a roll-off menu.

When the user moves the cursor towards the right side of the words TERRAIN

DRAWING OPTIONS, the following menu is displayed:

• DETAILED TERRAIN

• DISTANCE ATTENUATION - NORMAL
• DISTANCE ATTENUATION - BOUNDARIES DISPLAYED

The default terrain drawing option is DISTANCE ATTENUATION -

NORMAL. This drawing option establishes three zones in front of the driven platform

and reduces the number of polygons that are displayed in each zone. The zone closest

to the viewer is displayed with 100x100 meter polygons, the greatest resolution avail-

able. The next zone uses 200x200 meter polygons and the last zone uses 400x400

meter polygons. The selection DISTANCE ATTENUATION - BOUNDARIES DIS-

PLAYED draws the boundaries between zones in cyan so the user can see where

they are. The selection for DETAILED TERRAIN draws 100x100 meter polygons

throughout the three zones. Users notice a significant decrease in the frames per sec-

ond rate when this option is selected. If singlebuffer mode is also enabled during de-

tailed terrain drawing, the algorithm that is used to draw the terrain becomes more

obvious.

The GUIDANCE ON/OFF toggles the guidance mode of the current-

ly selected platform. It invokes the actions described in paragraph C of chapter three.

A indicator light in the upper right window is also toggled to reflect the current guid-

ance mode.

176

The AUTOPILOT ON/OFF option works much the same. It toggles

the platform's autopilot and its indicator light on and off.

b. Flying. There are three menus that make up the flying menu

set. These menus are called OPERATE_FLY_ONE, OPERATE_FLY_TWO, and

OPERATE_FLY _THREE. This menu contains the seven selections as follows:

DO NOTHING

DETACH/RESUME OPERATING

RETURN TO MAIN MENU
CHANGE ALL PLATFORMS' SPEEDS

EXIT THE PROGRAM
ENTER 4SIGHT (RESIZE OPTIONS)

TOGGLE TARGET TRACKING

ADVANCED OPTIONS

Many of these options are exact duplicates of the options on the driv-

ing menu. However, the DETACH/RESUME OPERATING and TOGGLE TARGET

TRACKING options are different.

The DETACH/RESUME OPERATING option allows a user to de-

tach the cursor from the simulation while flying. During flying, the cursor is restricted

to the simulation window because the mouse controls where the nose camera of the

FOGM missile is pointed. Using this option, the user can point the camera where he

wants to look and then free the mouse. To return to the simulation, the user must se-

lect the same option once again.

If the user has a ground platform in the crosshairs of the FOGM mis-

sile and he wants to target it, he must make the TOGGLE TARGET TRACKING se-

lection from the menu. If a platform was in the crosshairs, then the missile will lock on

and track the platform. If the user wants to release the missile from tracking mode

then another selection will turn off target tracking.

177

C. DIALS4

The dial box that is supplied by SGI has eight dials numbered from zero to

seven. They are organized in two columns and four rows. The numbering scheme is

from left to right, bottom to top so the lower left dial is zero, the lower right is one and

the upper right is seven.

The Autonomous Platform Simulator uses these dials in basically three

configurations; one for driving a platform that has no weapon system, a second for

driving a weapon equipped platform and a third for flying the FOGM. When the vehi-

cle i being driven using the mouse joystick, the course and speed dials are inactive.

When looking through the weapon sight of a platform dials one and three affect the az-

imuth and elevation respectfully of the weapon system. When in normal view mode

dials six and seven perform this function and the weapon is controlled independently

of vehicle course or viewing angle.

1. Driving Dial Configuration

The dials for driving (Figure C-2) are configured as follows:

DIAL - Course

DIAL 1 - Viewing direction or weapon azimuth if a sight is active

DIAL 2 - Speed

DIAL 3 - Viewing elevation or weapon elevation if a sight is active

DIAL 4 - Hour of the day

DIAL 5 - Month of the year

DIAL 6 - Traverse weapon system when not looking through sight

DIAL 7 - Elevate weapon system when not looking through sight

The course is the direction of travel of the platform which is displayed

in degrees. The viewing direction is the direction the driver's head is looking left to

right in relation to the course. When the course is changed, the viewing angle changes

accordingly. Speed is the speed of the platform in miles per hour. View elevation

4
The code for initializing the dials is contained in the following files: setcontrols.c and setcontrols_fogm.c. Code for handling input

from the dials' movements is contained in the following files: handlecontrols.c, handlecontrols_fogm.c, and handlecontrols_panial.c.

178

moves the driver's view up and down. The hour of the day and month of the year de-

termine the location, color, and intensity of the sun. Figure C-2 is a picture of the dial

box with the dials labeled for driving.

2. Flying Dial Configuration

The dials for flying are configured as follows:

DIAL - Course

DIAL 1 - Altitude

DIAL 2 - Speed

DIAL 3 - Not Used

DIAL 4 - Hour of the Day

DIAL 5 - Month of the Year

DIAL 6 - Not Used

DIAL 7 - Not Used

Many of the dials are identical to the driving dial configuration except for al-

titude which is self-explanatory. Figure C-3 is a picture of the dial box with the dials

labeled for flying.

D. Mouse5

The mouse has many uses throughout the simulation. Its use can be bro-

ken down into basically six groups:

Popup menu activation and selection

Operating area selection

Platform icon placement and selection

FOGM missile nose camera control

Mouse joystick driving control

Weapon rangefinder and firing controls

Code for handling the operations of the selections is contained in the file select_area_menu.c. Code for handling platform icon

placement is contained in the files do_the_add.c and addveh.c Code for driving using the mouse as a joystick is contained in

setup_for_driving.c. Code for handling FOGM missile nose camera control is contained in the files handlecontrols_fogm.c and

handlecontrols_partial.c.

179

TURRET

HOUR

SPEED

COURSE

GUN

MONTH

TILT

VIEWING DIR

Figure C-2 Dial Box With Dials Labeled For Driving

180

SPEED

COURSE ALTITUDE

Figure C-3 Dial Box With Dials Labeled For Flying

181

When operating a platform using the dials or mouse joystick the left and

middle mouse buttons control the magnification of the view by zooming OUT or EN re-

spectively as shown in Figure C-4. When looking through the sight of a weapon sys-

tem the left and middle mouse buttons function as a rangerfinder and trigger. This

arrangement is shown in Figure C-5.

The mouse is used throughout the simulation to activate popup menus and to se-

lect options. One of these options is to select an area from the large database. A

10x10 kilometer red square is displayed on the 35x35 kilometer database and the

mouse is used to move the square to the desired location. Platforms are placed and

selected on the screen with the mouse.

The nose camera of the FOGM missile is controlled with the movement of the

mouse. This gives the user very fine control over targeting and viewing direction.

E. Keyboard6

The keyboard is only used to accept filenames from the user. All other user

input is through the popup menus, dials, or mouse.

Code for handling filename input is contained in the files get_name.c and do_char.c.

182

rzT\ ro r M
^o

o E
M M N

I U
u N
T

I J I J

Figure C-4 Mouse Button Assignments - Normal View

(\ r~.
(\

R ' F M
A I E
N R N
G E

U
E

I J

Figure C-5 Mouse Button Assignments - Weapon Sight

183

H. PATH PLANNER

The path planner portion of APS is not a stand alone process, it requires the ve-

hicle simulator to be running. This section covers how to run the path planner portion

of the vehicle simulator by describing starting and stopping procedures.

A. INITIAL REQUIREMENTS

The path planner requires that seven files be loaded across two Symbolics

workstations. The following files are required on SYM4, where ART resides.

pp-control.art

irisflavor3.1isp

chaosflavor.lisp

comm-functions.lisp

clock-functions.lisp

def-interface.lisp

The above files do not have to be loaded to begin with, but must be available for file

access. The following files are required on another Symbolics workstation.

big-slope.bin

search-control. lisp

chaosflavor.lisp

comm-functions.lisp

lr-wave.lisp

B. START PROCEDURES

The path planner requires several preconditions to run properly. Since the

path planner is not a stand alone program, APS must be brought up first in network

mode. The path planner may be started anytime after APS has passed the initial

screen display. Starting the path planner is divided into two sections. These sections

are starting the path planner control program, and starting the search control program.

184

1. Starting the Path Planner Control Program

On SYM4, enter ART by typing the SELECT: button, then typing A.

Load pp-control.art in the ART shell. Reset ART by clicking the left mouse button on

reset. Left mouse click on run. The program will query the user as to which Symbolics

workstation the search algorithm is loaded. After ensuring that the search control pro-

gram is started on the other Symbolics workstation, select the appropriate letter. The

program will then query the user as to which IRIS graphics workstation the vehicle

simulation is running on. After ensuring that the simulation is already running in the

network mode, select the appropriate letter from the menu. The path planner is now

running on its own and needs no further user interaction.

2. Starting the Search Control Program

The search control program is loaded onto any Symbolics worksta-

tion, other than SYM4 where the path planner control program is loaded. To start the

search program, load search-control. lisp. Then in the LISP listener enter (start-

search-control). The program will respond by loading all of its communications and

search files, then initiate a wait for communications from the path planner control pro-

gram on SYM4. No further user interaction is required.

C. STOPPING THE PATH PLANNER

When the user is finished with the path planner, it is halted by using the

META, CONTROL, and ABORT keys simultaneously. Next, on SYM4, the user en-

ters the dynamic LISP listener and sets the user package to ACU (ART Common Us-

er), and clears the communications paths by entering the following:

• (scl:send talk-i :stop-iris)

• (schsend talk-s :stop)

The search control program is halted in an identical manner as the path planner

control program, but there is no need to enter a special LISP package to clear the com-

munications path. The communications path for the search control program is cleared

by entering (send talk-s :stop).

185

APPENDIX D KNOWN BUGS and SUGGESTED CODE IMPROVEMENTS

1. The timer is currently reset when a vehicle is selected/reselected to operate

from the main menu. This causes errors in timed events on the event list such as

rounds in flight, safety reset, etc..

2. The Cobra attack helicopter is controlled the same as a ground vehicle.

3. Guidance for LOS guided weapons, specifically the TOW, uses the current

weapon azimuth and elevation, not the parameters at the moment of firing like a bal-

listic round. This is correct but still fails to move the round onto the LOS at the

crosshairs of the sight reticle. In check_round_in_flight(), the round should be moved

to its new updated position by moving towards the current point of aim while being

kept within the turning limits of the missile control system.

4. A separate eye position should be added to provide additional viewpoints on

each vehicle. Each vehicle should have a eye position for: normal view (TC), driver's

view, and weapon view. This should be accomplished by adding the following data

structure:

#define TC_POSITION

#define DRIVER_POSITION 1

#define WEAPON_POSITION 2

float eye_positlon[vehtype][view_position][x,y,z]

5. The FOGM controls no longer work correctly. The pan direction is reversed

and the course is fixed at 90 degrees.

6. The network(SEND_END_MESSAGE) function causes remote simulators to

crash. Since net ids are now unique, the range of ids can no longer be calculated.

Therefore, the terminating simulator must send a delete message for each of its local

platforms when terminating.

7. In some cases, the autopilot will cause a platform to endlessly orbit the

goal. Normally a platform approaches a guide point head-on and stops or turns. If

186

the vehicle is outside the stopping distance and facing away from the goal when the

autopilot is engaged, then the vehicle can get into a situation where it passes by the

guide point before it completes its turn to head for it. This results in a circular path

around the guide point. This should be taken care of when the autopilot is made more

accurate to handle obstacle avoidance.

8. The display limiting algorithm in drawterrain doesn't work properly for the

extremely narrow field-of-view used for the 13X TOW sight. At certain angles not

enough terrain is drawn so some blue sky background shows through.

9. Calculating surface normals for 100 squares across and up requires 101 ele-

vation data points. The 101st elevation doesn't exist, resulting in bad normals along

the top row and right column. This was fixed temporarily by extending the 100th ele-

vation out to also be the 101st elevation which creates a light band of terrain in these

border areas. The algorithm should be changed to either get the 101st elevation or

extrapolate it based on 99th and 100th elevations.

10. All matching of platform ids is done by linear search through the platform

list. This is not a problem with only a handful of vehicles, but would cause serious de-

lays for a more realistic number of platforms. This should be replaced by a hash table

using platform id.

187

LIST OF REFERENCES

[BARROW&88] Barrow, Theodore H., Yurchak, John M., Zyda, Michael. J.,

Distributed Computer Communications in Support of Real-Time Visual

Simulations, Technical Report, Naval Postgraduate School, Monterey,

California, September 1988

[BIHARI&89] Bihari, Thomas E., Walliser, Thomas M., and Patterson, Mark

R., "Controlling the Adaptive Suspension Vehicle", IEEE Computer, pp 59-65,

June 1989.

[DODSCI83] U. S. Department of Defense Advanced Research Projects

Agency, Strategic Computing: New-Generation Computing Technology: A

Strategic Plan for Its Develpement and Applications to Critical Problems in

Defense, DARPA Washington DC, 23 October 1983

[FELHOE89] Felhoelter, Dennis G., A Graphics Facility for Integration,

Editing, and Display of Slope, Curvature, and Contours From a Digital Terrain

Elevation Database, M.S. Thesis, Naval Postgraduate School, Monterey,

California, June 1988.

[FEYNMN63] Feynman, Richard P., Leighton, Robert B., and Sand, Michael,

Lectures on Physiscs, v. 1, California Institute of Technology, 1963.

[FICHTN&88] Fichten, Mark A., Jennings, David H., Meaningful Real-Time

Graphics Workstation Performance Measurements, M.S. Thesis, Naval

Postgraduate School, Monterey, California, November 1988.

[FRANK&69] Frank, A. A., and McGhee, Robert B., "Some Considerations

Relating to the Design of Autopilots for Legged Vehicles", Journal of

Terramechanics, v. 6, n.l, pp 23-35, 1969.

[FU&87] Fu, K.S., Gonzales, R. C, Lee, C. S. G., Robotics: Control,

Sensing, Vision, and Intelligence, McGraw-Hill Book Company, 1987.

[GOODPA87] Goodpasture, Richard P., A Computer Simulation Study of an

Expert System For Walking Machine Motion Planning, M.S. Thesis, Naval

Postgraduate School, Monterey, California, December 1987.

[HEARN&86] Hearn, Donald and Baker, M. Pauline, Computer Graphics,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1986.

[INFRNC85] Inference Corporation, ART Reference Manual, Los Angeles,

California, 1985.

188

[INTEL86] IntelliCorp, KEE Software Development System User's Manual,

version 3.0, Mountain View, California, 1986.

[JANES87] Jane's Publishing Company Ltd., Armour and Artillery 86-87,

London, England, 1987.

[KUAN84] Kuan, D. T., "Terrain Map Knowledge Representation for

Spatial Planning", Proceedings of the IEEE Computer Security Conference on

Autonomous Vehicle Applications, 1984.

[KWAK&88] Kwak, Sehung. and McGhee, Robert. B., Rule-based Motion

Coordination for the Adaptive Suspension Vehicle, Technical Report, Naval

Postgraduate School, Monterey, California, May 1988.

[LOWRIE86] Lowrie, J., The Autonomous Land Vehicle Program, Martin

Marietta, Denver Aerospace, Denver, Colorado, December 1985.

[MARION70] Marion, Jerry B., Classical Dynamics of Particles and Systems,

Academic Press, College Park, Maryland, 1970.

[METEA&87] Metea, M. B., and Tsai, J., "Route Planning for Intelligent

Autonomous Land Vehicles Using Hierarchical Terrain Representation",

Proceedings of the IEEE Conference on Robotics and Automation, 1987.

[MCNKLE&88] McConkle, Corinne and Nelson, Andrew H., A Prototype

Simulation System for Combat Vehicle Coordination and Motion Visualization,

M.S. Thesis, Naval Postgraduate School, Monterey, California, June 1988.

[MUNSON89] Munson, Steven, Integrated Support for Manipulation and

Display of 3D Objects for the Command and Control Workstation of the Future,

M.S. Thesis, Naval Postgraduate School, Monterey, California, June 1989.

[NITAO&88] Nitao, John J. and Parodi, Alexander M., "A Real-Time

Reflexive Pilot for an Autonomous Land Vehicle", IEEE Control Systems

Magazine, pp 14-23, Febuary 86.

[NIZOLK&89] Nizolak, Joseph, P. Jr., and Drummon, William T., A Graphics

Workstation Field Artillery Forward Observer Simulator Trainer, M.S. Thesis,

Naval Postgraduate School, Monterey, California, June 1989.

[OLIVER&87] Oliver, Michael R., and Stahl, David J., Interactive, Networked,

Moving Platform Simulators, M.S. Thesis, Naval Postgraduate School,

Monterey, California, December 1987.

[RESNCK&67] Resnick, Robert, and Halliday, David, Physics, Part I, John

Wiley & Sons, Inc., 1967.

189

[RICHBG&87] Richbourg, R. E., Rowe, N. C, Zyda, M. J., and McGhee, R. B.,

"Solving Global, Two-Dimensional Routing Problems Using Snell's Law and

A* Search", Proceedings of the IEEE International Conference on Robotics and

Automation, April 1987.

[RICHBG87] Richbourg, R. F., Solving a Class of Spatial Reasoning Problems:

Minimal-Cost Path Planning in the Cartesian Plane, Doctoral Thesis, Naval

Postgraduate School, Monterey, California, June 1987.

[ROSS89] Ross, R. S., Planning Mininum-Energy Paths in an Off-Road

Environment With Anisotropic Traversal Costs and Motion Constraints,

Doctoral Thesis, Naval Postgraduate School, Monterey, California, June 1989.

[ROWE87] Rowe, Neil C, Roads, Rivers, and Rocks: Optimal Two-

Dimensional Route Planning Around Linear Features for a Mobile Agent,

Technical Report, Naval Postgraduate School, Monterey, California, June 1987.

[ROWE&88] Rowe, Neil C. and Ross, Ron S., Optimal Grid-free Path

Planning Across Arbitrarily-Contoured Terrain With Anisotropic Friction and

Gravity Effects, Technical Report, Naval Postgraduate School, Monterey,

California, November 1988.

[ROWE88B] Rowe, N. C, Artificial Intelligence Through Prolog, Prentice-

Hall, Inc, 1988.

[SGIIUG87] Silicon Graphics Inc., IRIS User's Guide, v. 1, Mountain View,

California, 1987.

[SGI4UG88] Silicon Graphics Inc., 4Sight User' s Guide, v. 1, Mountain View,

California, 1988.

[SMITHD&87] Smith, Douglas B., and Streyle, Dale G., An Inexpensive Real-

Time Interactive Three-Dimensional Flight Simulation System, M.S. Thesis,

Naval Postgraduate School, Monterey, California, June 1987.

[SYMBOL88] Symbolics, Inc., Symbolics Reference Manuals, Cambridge

Massachusetts, 1988.

[TAN86I Tan, Chaim Huat, A Simulation Study of An Autonomous

Steering System for On-Road Operation of Autonomous Vehicles, M.S. Thesis,

Naval Postgraduate School, Monterey, California, December 1986.

[WEISBN&89] Weisbin, C. R., and others, "Autonomous Mobile Robot

Navigation and Learning", IEEE Computer, pp 29-35, June 1989.

190

[WINN&89] Winn, Michael C, and Strong, Randolph P., The Moving

Platform Simulator II: A Networked Real-Time Simulator With 1ntervisibility

Displays, M.S. Thesis, Naval Postgraduate School, Monterey, California, June

1989.

[ZYDA&88] Zyda, Michael J., and others, "Flight Simulators for Under

$100,000", IEEE Computer Graphics and Applications, ppl9-27, January 1988.

191

INITIAL DISTRIBUTION LIST

Defense Technical Information Center

Cameron Station

Alexandria, VA 22304-6145

Library, Code 0142

Naval Postgraduate School

Monterey, CA 93943-5002

Dr. Robert B. McGhee
Naval Postgraduate School

Code 52, Department of Computer Science

Monterey, CA 93943-5100

Dr. Michael J. Zyda

Naval Postgraduate School

Code 52Mz, Department of Computer Science

Monterey, CA 93943-5100

Maj. William A. Teter

2 Mervine Street

Monterey, CA 93940

Cpt. Larry R. Shannon

Star Route

Entiate,WA 98801

Dr. Byron Dean

United States Army Intelligence Center and School

Attention: Scientific Advisor

Fort Huachuca, AZ 85613

U.S. Army AI Center

HQDA, DCSA, DSMA
ATTN:CSDS-AI(MAJ TETER)
Pentagon, RM 1D659

Wash, DC 20310-0200

192

8. Commandant of the Marine Corps

Code TE 06

Headquarters, United States Marine Corps

Washington, D.C. 20380-0001

9. Mr. Mike Tedeschi

United States Army Combat Developments Experimentation Center

Attention: ATEC-D
Fort Ord,CA 93941

10. Information Technology, Code 037

Naval Postgraduate School

Monterey, CA 93943-5100

193

'%• , c.

Thesis
S433424
cl

J

Shannon
An Autonomous Piar-iorm Simulator (APS)!

Thesis

S433424 Shannon

C> 1 An Autonomous Plat-

form Simulator (APS)

.

^OPE*>^

