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In the healthcare sector, the production of bioactive silver
nanoparticles (AgNPs) with antimicrobial properties is of great
importance. In this study, a novel bacterial strain, Paenibacillus
sp. MAHUQ-63, was identified as a potential candidate for
facile and rapid biosynthesis of AgNPs. The synthesized
AgNPs were used to control the growth of human pathogens,
Salmonella Enteritidis and Candida albicans. The bacterial culture
supernatant was used to synthesize the nanoparticles (NPs).
Field emission transmission electron microscope examination
showed spherical-shaped NPs with 15–55 nm in size. Fourier
transform-infrared analysis identified various functional groups.
The synthesized AgNPs demonstrated remarkable activity
against S. Enteritidis and C. albicans. The zones of inhibition for
100 µl (0.5 mg ml−1) of AgNPs against S. Enteritidis and
C. albicans were 18.0 ± 1.0 and 19.5 ± 1.3 mm, respectively. The
minimum inhibitory concentrations were 25.0 and 12.5 µg ml−1

against S. Enteritidis and C. albicans, respectively. Additionally,
the minimum bactericidal concentrations were 25.0 µg ml−1
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against both pathogenic microbes. The field emission scanning electron microscopy analysis showed

that the treatment of AgNPs caused morphological and structural damage to both S. Enteritidis
and C. albicans. Therefore, these AgNPs can be used as a new and effective antimicrobial agent.
ietypublishing.org/journal/rsos
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Sci.10:230796
1. Introduction
Nanobiotechnology is a rapidly expanding field in biological sciences that has various applications in the
health sector, particularly for the production of bioactive nanomaterials such as nanoparticles (NPs) and
nanoconjugates for controlling several diseases. Green nanotechnology-based NPs and nanoconjugates
have attracted huge interest because of their extensive biomedical applications [1–3]. NPs have shown
promising results as alternative drugs for human diseases, including cancer, diabetes, wound healing
and infectious diseases [4–9]. Various physical, chemical and biological methods are commonly used for
synthesizing different types of NPs [10,11]. Among different chemical and physical methods, chemical
reduction, electrochemical, physiochemical and microwave irradiation are usually used for the
production of NPs [11]. The synthesis of NPs using macro- and micro-organisms, such as extracts of
plant parts, bacteria, algae and fungi, is known as biosynthesis of NPs [11–13]. The biological method is
considered a safe and cost-effective method and does not have any toxic effects on the environment. By
contrast, chemical and physical approaches have various hazardous effects on the environment due to
the use of toxic chemicals and the production of toxic byproducts [14]. Biosynthesized NPs have several
advantages, including less toxicity and high stability [11,15,16]. Moreover, the biosynthesized NPs
show a wide range of biomedical applications such as antioxidant, antimicrobial, anti-inflammation and
anti-cancer agents as well as promising carriers for various drug delivery systems [1–5].

Among variousNPs, biosynthesized silver nanoparticles (AgNPs) have gained significant attention from
researchers due to their numerous applications, particularly in the medical field [17,18]. Microbe-mediated
synthesis of bioactive AgNPs is a facile and eco-friendly approach [11]. Among different microorganisms,
bacteria have gained more attention from researchers for the synthesis of AgNPs due to their ease of
handling and manipulation, which make them perfect for the large-scale synthesis of NPs. Bacteria secrete
numerous bioactive compounds in the culture supernatant, including enzymes, proteins, hormones, ions,
polysaccharides and pigments, which play an important role during NP synthesis [11,19]. Nicotinamide
adenine dinucleotide (NADH)-dependent reductases, as well as sulfur-containing proteins, play an
essential role in the reduction and stabilization of NPs [19–21]. Several bacteria have been reported for the
biosynthesis of AgNPs, including Microvirga rosea [22], Bacillus sonorensis [23], Terrabacter humi [24], etc.
There are many recent reports regarding the potent antimicrobial effect of biosynthesized AgNPs against
human pathogens [25–27]. Due to the strong antimicrobial action of AgNPs, they are used in the
development of footwear, cosmetics, wound dressings and other medical devices [19].

The emergence of multi-drug-resistant (MDR) microorganisms poses a severe threat to global public
health [28]. With the growing resistance of various pathogenic microorganisms to conventional antibiotics,
there is a critical need for novel and effective antimicrobial agents. Salmonella Enteritidis causes serious
foodborne illness in humans [29,30]. Previous studies have reported the drug resistance of S. Enteritidis
[30]. Candidiasis, a fungal infection commonly caused by Candida albicans, poses a significant challenge to
human health due to the emergence of drug-resistant strains [31,32]. Candida albicans is responsible for a
wide range of infections in humans, such as genital yeast infections, oral infections and skin infections, etc.

In the present study, a novel bacterial strain Paenibacillus sp. MAHUQ-63 was isolated from a
pumpkin garden and employed for the eco-friendly synthesis of bioactive AgNPs. The synthesized
AgNPs were characterized using various instruments such as UV–visible (UV–Vis) spectrophotometer,
field emission transmission electron microscope (FE-TEM), X-ray diffraction (XRD), dynamic light
scattering (DLS), Fourier transform-infrared (FTIR), etc. Furthermore, the AgNPs were evaluated for
their antibacterial and antifungal activity against S. Enteritidis and C. albicans.
2. Material and methods
2.1. Materials
The pathogenic strains S. Enteritidis [ATCC 13076] and C. albicans [KACC 30071] were obtained from
ATCC and KACC, respectively. All standard antibiotics discs were bought from Oxoid Ltd, England.
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2.2. Isolation and molecular identification

In this study, a bacterial strain capable of producing AgNPs was isolated from soil sample of a pumpkin
garden in Anseong, South Korea. The isolation process involved serial dilution of the soil sample in
sterile NaCl solution (0.8%), plating the dilutions onto R2A agar plates and incubating them at 30°C
for 72 h. Colonies were then cultured in R2A broth and treated with AgNO3 solution for 48 h at 30°C.
The strain MAHUQ-63 which showed strong reduction efficacy was selected for further analysis and
identified as Paenibacillus sp. MAHUQ-63 by constructing a phylogenetic tree using the MEGA6
program and neighbour-joining algorithm based on the 16S rRNA gene sequence [33–35].

2.3. Cultural, physiological and biochemical characterization of strain MAHUQ-63
The growth characteristics of strain MAHUQ-63 were studied using various methods. To determine the
optimal growth conditions, strain MAHUQ-63 was grown on several agar media at 30°C for 3 days. The
optimal growth temperature was determined by incubating strain MAHUQ-63 on R2A agar at different
temperatures. The optimal pH for growth was determined using R2A broth medium. Cell morphology,
including shape and size, was examined using transmission electron microscopy (TEM). The strain’s
oxidase, catalase, urease and DNase activities, as well as its ability to hydrolyse starch, casein, gelatine
and Tween 80, were evaluated using the methods described by Huq et al. [36]. The API kits
(bioMérieux) were used to assess additional physiological and biochemical characteristics of strain
MAHUQ-63, following the manufacturer’s instructions.

2.4. Green synthesis of silver nanoparticles
The strain MAHUQ-63 was cultured in R2A broth medium (100 ml) with shaking (180 r.p.m.) for 3 days
at 30°C. AgNPs were synthesized by adding silver nitrate solution (final concentration 1.5 mM) to the
culture supernatant. The reaction mixture was kept in the dark at 33°C with constant agitation
(180 r.p.m.) for 2 days. The synthesis of AgNPs was monitored by observing colour changes and UV–
Vis spectrophotometer analysis. The synthesized AgNPs were collected through centrifugation and
washed with deionized water [13].

2.5. Characterization of synthesized silver nanoparticles
UV–Vis spectrophotometer was used to assess the kinetic behaviour of the synthesized AgNPs.
The biosynthesized AgNPs were scanned from 300 to 800 nm to determine their absorbance. The
morphology, size, purity, distribution and elemental composition of the biosynthesized NPs were
analysed using FE-TEM. FE-TEM imaging was performed on air-dried biosynthesized AgNPs
suspension on a grid. XRD analysis was carried out to determine the crystallinity of the synthesized
AgNPs using CuKα radiation. The XRD analysis was carried out using a diffractometer in the range
of 30–80° (2θ). The surface chemistry of the synthesized AgNPs was checked by FTIR spectroscopy.
Additionally, the hydrodynamic diameters and polydispersity index of Paenibacillus sp. MAHUQ-63-
mediated synthesized AgNPs were determined using DLS with deionized water as the dispersal
medium. The DLS analysis was performed at 25°C with a scattering angle of 12° using Malvern
Zetasizer Nano ZS90.

2.6. Antimicrobial activity
The antimicrobial potential of biosynthesized AgNPs was examined against two pathogens, S. Enteritidis
and C. albicans, by the disc diffusion method [37,38]. Briefly, both pathogens were cultured overnight in
Mueller–Hinton (MH) broth medium and 100 µl of each culture was spread on MH agar plates.
A solution of 1 mg of biosynthesized AgNPs in 2 ml of autoclaved distilled water was prepared.
Paper discs were soaked with 50 and 100 µl of AgNPs solution, and placed on the surface of the agar
plates. To compare the effectiveness of the AgNPs, six different antibiotics, namely novobiocin
(30 µg disc−1), penicillin G (10 µg disc−1), erythromycin (15 µg disc−1), oleandomycin (15 µg disc−1),
vancomycin (30 µg disc−1) and lincomycin (15 µg disc−1), were also tested against S. Enteritidis and
C. albicans as controls. The MH agar plates were then incubated at 37°C for 24 h, and the zone of
inhibition (ZOI) was measured in mm [39,40].
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2.7. Minimum inhibitory concentration and minimum bactericidal concentration

The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were
evaluated for both pathogenic strains, S. Enteritidis and C. albicans. The MIC of AgNPs was determined
using broth microdilution assay in 96-well ELISA plates. The pathogenic strains were cultured in MH
broth, and the AgNPs concentrations ranged from 1.56 to 100 µg ml−1. The lowest concentration of
AgNPs that inhibited microbial growth was recorded as the MIC. MBC was identified by streaking 10 µl
of each set from the 96-well plates onto MH agar plates and incubating at 37°C for 24 h. The AgNP
concentration at which no visible bacterial or fungal growth was observed was considered as the
MBC. The antimicrobial activity of biosynthesized AgNPs was also determined using the disc diffusion
method, where the ZOI was measured. Six different antibiotics were used as controls against S.
Enteritidis and C. albicans. The experimental methods followed previous studies [37,39,41,42].

2.8. Morphological evaluation
To observe the antibacterial and antifungal mechanisms of biosynthesized AgNPs against S. Enteritidis
and C. albicans, the cells of both pathogens were treated with and without biosynthesized AgNPs at
MIC and observed under field emission scanning electron microscopy (FE-SEM). The cells of both
pathogens were cultured overnight in MH broth and adjusted to a concentration of 1 × 107 colony-
forming units (CFU) ml−1. The cells were washed using a buffer and fixed by glutaraldehyde (2.5%)
and osmium tetroxide (1%). The fixed cells were dehydrated using ethanol at different concentrations
and dried using a desiccator. The morphological and structural changes of S. Enteritidis and C.
albicans were observed by FE-SEM [40,43].
3. Results
3.1. Molecular identification of silver nanoparticles producing bacteria
The 16S rRNA gene sequencing was conducted on strain MAHUQ-63, which resulted in a 1465 bp
sequence. The sequence was submitted to the GenBank/EMBL/DDBJ database with an accession
number MW487995. The 16S rRNA gene sequence revealed that strain MAHUQ-63 showed high
similarity (98.7%) to Paenibacillus pocheonensis Gsoil 1138T. The phylogenetic analysis assured the close
relationship between the strain MAHUQ-63 and the members of the genus Paenibacillus and formed a
monophyletic clade with P. pocheonensis Gsoil 1138T (figure 1). The deposited accession number of strain
MAHUQ-63 is KACC 22244.

3.2. Cultural, physiological and biochemical characterization of strain MAHUQ-63
The morphology and biochemical characteristics of strain MAHUQ-63 were investigated. The cells of
strain MAHUQ-63 were observed to be rod-shaped, as shown in figure 2. On R2A agar medium, the
colonies of strain MAHUQ-63 grew well from 28 to 30°C temperature at pH 7.0. Strain MAHUQ-63
exhibited positive results for both catalase and oxidase activities. The strain showed weak activity for
the hydrolysis of urea and gelatine. The ability of strain MAHUQ-63 to reduce nitrate to nitrite was
observed, but it was unable to ferment glucose. Strain MAHUQ-63 demonstrated various enzyme
activities, including positive for lipase (C14), α-galactosidase and β-galactosidase, esterase lipase (C8),
napthol-AS-BI-phosphohydrolase, acid phosphatase, β-glucuronidase and α-fucosidase, and negative
for esterase (C4), leucine arylamidase, trypsin and α-mannosidase, etc. Strain MAHUQ-63 can
assimilate D-glucose, D-maltose, D-mannose, gluconate, D-mannitol, triosodium citrate and malic acid
as a source of carbon.

3.3. Biosynthesis of silver nanoparticles
The biosynthesis of AgNPs was indicated by the sequential colour change of the bacterial culture
supernatant and AgNO3 mixture from watery yellow to dark brown during the incubation
period (figure 3a,b) [26,44]. In this study, the extracellular method was used, which is a cost-effective,
eco-friendly and easy approach compared with physical and chemical methods [45,46]. It is well-
documented that microbial cells secrete various biomolecules such as amino acids, proteins,
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Figure 1. Phylogenetic tree of the isolated strain Paenibacillus sp. MAHUQ-63.
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enzymes, pigments, flavonoids and carbohydrates for the biosynthesis of NPs [11,47]. The reductase
enzymes secreted by microorganisms play a vital role in the synthesis of metal NPs through
the reduction of metal ions [11,48,49]. Thus, the culture supernatant of Paenibacillus sp. MAHUQ-63
has the potential to reduce Ag+ ions to AgNPs, which was confirmed by the colour change observed in
this study.
3.4. Characterization of synthesized silver nanoparticles
The confirmation of AgNP formation was made using UV–Vis absorbance spectra, which showed a
specific peak at 440 nm (figure 3c) [24]. This specific peak was sharper and narrower than previously
reported in other studies [13,50], suggesting high-quality AgNP formation [51].

TEM images of the biosynthesized AgNPs using Paenibacillus sp. MAHUQ-63 culture supernatant
showed that the particles were spherical in shape and ranged in size from 15 to 55 nm. Moreover, the
synthesized AgNPs were uniformly distributed without agglomeration, indicating their good stability
(figure 3d–f ). Previous reports have also shown the biosynthesis of AgNPs using bacteria such as
Arthrobacter bangladeshi, Pseudomonas sp. and B. sonorensis with varying sizes ranging from 12 to 50, 10
to 40 and 13 to 50 nm, respectively [19,23,38].

The synthesized nanomaterial was characterized by energy dispersive X-ray (EDX) to determine its
elemental composition and distribution. The results showed that silver was the major element in the
nanomaterial (figure 4a–c). The characteristic peak of silver was observed at 3 keV in the EDX
spectrum (figure 4a). Table 1 summarizes the elemental percentages obtained by EDX analysis.

The XRD analysis revealed four peaks at 38.50°, 44.43°, 64.60° and 77.82° 2θ values, which matched
with the face-centred cubic crystal system of AgNPs (figure 5a). The XRD spectrum confirmed the
crystallinity of the biosynthesized AgNPs. These results are in agreement with previous studies of
AgNPs biosynthesized by plants and microbes [13,52]. The selected area electron diffraction (SAED)
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pattern also verified the crystallinity of AgNPs, and the inner ring in the SAED pattern corresponded to
the (111) plane, which is a typical diffraction ring of AgNPs (figure 5b). The SAED pattern results were
consistent with the XRD analysis results [53].
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Table 1. Chemical elements present in Paenibacillus sp. MAHUQ-63-mediated green synthesized AgNPs.

element weight% atomic%

Cu K 33.16 45.72

Ag L 66.84 54.28

totals 100.00 100.00
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The FTIR spectrum of biosynthesized AgNPs was investigated, and the results are shown in figure 6.
The FTIR bands at 3234.39 and 3066.56 cm−1 were assigned to the O–H stretching of alcohols and/or
N–H of primary amines. The FTIR bands at 2912.53 and 2872.48 cm–1 corresponded to the C–H
stretching of alkane. FTIR bands at 1628.90, 1508.12, 1452.94, 1381.77, 1169.85 and 1031.37 cm–1

indicated C=C (olefin), N–O (nitro compound), methyl group C–H (alkane), O–H (phenol) group,
C–O (alkyl aryl ether) group and S=O (sulfoxide) group, respectively. These various functional groups
suggested the participation of different biomolecules in the reduction and stabilization of AgNPs. The
results are consistent with previous studies that reported the existence of various biomolecules in cell
extracts that can reduce Ag+ ions and stabilize NPs [23,50]. Therefore, the FTIR analysis supports the
hypothesis that the biosynthesized AgNPs are stabilized by biomolecules, which is in line with
the findings of previous studies [23,50].

The hydrodynamic diameter of Paenibacillus sp. MAHUQ-63-mediated biosynthesized AgNPs in an
aqueous system was determined to be 91.1 nm with a polydispersity index of 0.458 (figure 7). The
observed polydisperse standard indicates that the synthesized AgNPs have a size distribution with
varying particle sizes. The larger size of the NPs observed in DLS analysis compared with the size
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calculated from FE-TEM is due to the presence of water. Previous studies also reported larger
hydrodynamic diameters compared with TEM-based measurements [45].

3.5. Antimicrobial activity
The emergence of drug-resistant microorganisms poses a serious threat to public health. The limitations of
available antibiotics in treating infectious diseases have led to an increase in resistant microorganisms,
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Figure 8. Antibacterial and antifungal effectiveness of synthesized AgNPs. Zones of inhibition against S. Enteritidis and C. albicans
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Table 2. Antibacterial impact of Paenibacillus sp. MAHUQ-63-mediated green synthesized AgNPs against S. Enteritidis and
C. albicans.

pathogenic species

ZOI (mm)

50 µl 100 µl

Salmonella Enteritidis [ATCC 13076] — 18.0 ± 1.0

Candida albicans [KACC 30071] 10.5 ± 1.2 19.5 ± 1.3
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emphasizing the urgent need for new and effective antimicrobial agents. Biosynthesized AgNPs could be
strong antimicrobial agents that possess a lethal effect against pathogenic microbes. The current study
investigated the antibacterial and antifungal activities of AgNPs synthesized by Paenibacillus sp.
MAHUQ-63 against pathogenic S. Enteritidis and C. albicans. The biosynthesized AgNPs exhibited a
significant inhibitory effect against both bacterial and fungal pathogens. Figure 8 depicts the clear ZOI.
The ZOIs against S. Enteritidis and C. albicans were 18.0 ± 1.0 mm and 19.5 ± 1.3 mm, respectively, when
treated with a 100 µl AgNPs solution at a 500 ppm concentration (table 2). Our findings suggest that
biosynthesized AgNPs can effectively control pathogenic S. Enteritidis and C. albicans.

In this study, the efficacy of six commercial antibiotics (novobiocin, penicillin G, erythromycin,
oleandomycin, vancomycin and lincomycin) against S. Enteritidis and C. albicans was compared with
the biosynthesized AgNPs (table 3). The results showed that all commercial antibiotics tested were
ineffective against C. albicans, while novobiocin, penicillin G and vancomycin exhibited weak activity
against S. Enteritidis when compared with the biosynthesized AgNPs. Figure 9 shows the results of
the antibacterial activity of the commercial antibiotics. This finding is in line with previous studies



Table 3. Antimicrobial impact of tested antibiotics against S. Enteritidis and C. albicans. —, no ZOI.

pathogenic species antibiotic ZOI (mm)

Salmonella Enteritidis [ATCC 13076] oleandomycin —

penicillin G 14.5 ± 1.1

novobiocin 10.5 ± 1.2

lincomycin —

vancomycin 9.5 ± 1.0

erythromycin —

Candida albicans [KACC 30071] oleandomycin —

penicillin G —

novobiocin —

lincomycin —

vancomycin —

erythromycin —

S. Enteritidis

VA
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OL
NV

VA MY

P

E

OL
NV

C. albicans

Figure 9. ZOI of tested antibiotics against S. Enteritidis and C. albicans. P, penicillin G; E, erythromycin; NV, novobiocin; OL,
oleandomycin; VA, vancomycin; and MY, lincomycin.
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that demonstrated the effectiveness of biosynthesized AgNPs as antimicrobial agents [18,19]. The
antibacterial activities of the biosynthesized AgNPs indicate their potential as novel therapeutic agents
against MDR pathogenic microorganisms.

3.6. Minimum inhibitory concentration and minimum bactericidal concentration
To evaluate the MIC of AgNPs biosynthesized by Paenibacillus sp. MAHUQ-63 against S. Enteritidis and
C. albicans different concentrations of the biosynthesized AgNPs were used. The results revealed that the
AgNPs biosynthesized by Paenibacillus sp. MAHUQ-63 had a MIC of 12.5 and 25 µg ml−1 for C. albicans
and S. Enteritidis, respectively. These findings demonstrate that the synthesized NPs effectively inhibited
the growth of both S. Enteritidis and C. albicans (figure 10a,b). These MICs of the biosynthesized AgNPs
were less than those of many other antibacterial and antifungal agents against S. Enteritidis and
C. albicans [54,55].

The MBC against both pathogenic S. Enteritidis and C. albicans was found to be 25 µg ml−1

(figure 11a,b). These results confirmed that the AgNPs biosynthesized by Paenibacillus sp. MAHUQ-63
efficiently inhibited the proliferation of both pathogenic S. Enteritidis and C. albicans.
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Figure 10. MICs of biosynthesized AgNPs against S. Enteritidis (a) and C. albicans (b).
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3.7. Morphological evaluation
The morphological changes induced by the Paenibacillus sp. MAHUQ-63-mediated biosynthesized AgNPs
on the S. Enteritidis and C. albicans cells were investigated by FE-SEM (figure 12). The untreated S.
Enteritidis cells exhibited normal rod-shaped morphology with an intact surface (figure 12a). However,
treatment with 1 ×MBC of biosynthesized AgNPs caused irregularities, damage and deformation on the
outer surface of S. Enteritidis cells, leading to complete collapse of the cell membranes (figure 12b).
Similarly, the untreated C. albicans cells displayed normal oval-shaped morphology with an intact surface
(figure 12c). Candida albicans cells treated with AgNPs showed irregularities, damage and deformation
on the outer surface (figure 12d ). The structural changes and damage to the bacterial and fungal cell
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Figure 12. Normal S. Enteritidis (a), AgNPs-treated S. Enteritidis (b), normal C. albicans (c) and AgNPs-treated C. albicans (d ).
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walls indicate that the Paenibacillus sp. MAHUQ-63-mediated synthesized AgNPs may disrupt normal cell
functions and cause microbial cell death.
4. Discussion
The present study aimed to isolate and use a bacterial strain, Paenibacillus sp. MAHUQ-63, from a
pumpkin garden, for the facile and rapid synthesis of AgNPs. The biosynthesis process involved the
use of bacterial culture supernatant with silver nitrate solution. The optical properties of AgNPs were
examined by UV–Vis spectroscopy based on their wavelength. The biosynthesized AgNPs exhibited
an absorption peak at 440 nm, consistent with previously reported data of absorption peaks ranging
between 400 and 500 nm [11,51]. The spherical shape of AgNPs was confirmed by FE-TEM analysis
with 15–55 nm in size, similar to previous findings [19,23]. XRD analysis confirmed the crystallinity of
the biosynthesized AgNPs, consistent with the literature on AgNPs biosynthesized using plants and
microbes [13,52]. Furthermore, FTIR analysis indicated the involvement of different biomolecules in
the reduction, capping and stabilizing of AgNPs.

The emergence of resistant microorganisms has limited the use of available antibiotics against microbial
infections. Green synthesized AgNPs could be good candidates to solve this problem. There are several
factors that may have an influence on the biological activity of synthesized NPs. These factors include
size distribution, morphology, surface charge, surface chemistry, capping agents, etc. [56,57]. In this
study, bioactive AgNPs were synthesized using the culture supernatant of Paenibacillus sp. MAHUQ-63.
Green synthesized AgNPs showed remarkable antibacterial and antifungal activity against drug-resistant
strains of S. Enteritidis and C. albicans. The ZOI diameters of synthesized AgNPs against S. Enteritidis
and C. albicans were 18.0 ± 1.0 and 19.5 ± 1.3 mm, respectively, when treated with 100 µl of AgNPs
solution at 500 ppm concentration. FE-SEM analysis showed that untreated S. Enteritidis and C. albicans
cells had normal shapes and intact cell surfaces without any damage (figure 12a,c). However, after
treatment with green synthesized AgNPs, both S. Enteritidis and C. albicans cells exhibited irregular,
damaged and wrinkled surfaces (figure 12b,d). The structural changes and damage of bacterial and



damage of DNA,
enzymes and

proteins

antimicrobial
mechanisms of AgNPs

morphological and
structural changes, deform

and damage of cell wall and
cell membrane

leakage of
intracellular
molecules

generation of
reactive oxygen

species

Figure 13. Schematic figure representing the proposed antimicrobial mechanisms of AgNPs.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230796
13
fungal cell walls indicated that AgNPs synthesized by Paenibacillus sp. MAHUQ-63 might disrupt normal
cell functions and cause the death of microbial cells. AgNPs may also enter into the microbial cell and bind
to DNA, which affects normal gene expression and metabolism [58–61]. Moreover, AgNPs may induce the
formation of free radicals in microbial cells, leading to the damage of cell membranes [62,63]. AgNPs also
may cause the leakage of intracellularmolecules, and the denaturation of enzymes and proteins, and finally
lead to the death of microbial cells [16,62,63]. Figure 13 shows the schematic illustration of the proposed
antimicrobial mechanisms of AgNPs.
5. Conclusion
This is the first study to show the excellent capability of the culture supernatant ofPaenibacillus sp.MAHUQ-
63 as a reducing, capping and stabilizing agent for the green and efficient synthesis of bioactive AgNPs. The
biosynthesizedAgNPswere spherical and had sizes ranging from 15 to 55 nm. Theywere also stabilized by
different functional groups on their surface. Synthesized AgNPs exhibited potent antibacterial and
antifungal activity against drug-resistant S. Enteritidis and C. albicans. They also caused structural
damage to the microbial cell walls and membranes. From the present findings, it can be concluded that
AgNPs synthesized using the culture supernatant of Paenibacillus sp. MAHUQ-63 can be used as a novel
antimicrobial agent to control antibiotic-resistant microorganisms, especially for treating S. Enteritidis
and C. albicans infections.
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