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For a waveguide that is invariant in one of the horizontal
directions, this paper presents a mathematically exact partial-
wave decomposition of the wavefield for assessment of multiple
scattering by horizontally displaced medium anomalies. The
decomposition is based on discrete coupled-mode theory and
combination of reflection/transmission matrices. In particular,
there is no high-frequency ray approximation. Full details are
presented for the scalar case with plane-wave incidence from
below. An application of interest concerns ground motion
induced by seismic waves, which may be severely amplified by
local medium anomalies such as alluvial valleys. Global
optimization techniques are used to design an artificial medium
termination at depth for a normal-mode representation of the
field. A derivation of a horizontal source array to produce an
incident plane wave gives, as a by-product, an extension of a
previous Fourier-transform relation involving Bessel functions.
Like purely numerical methods, such as finite differences and
finite elements, the method can handle all kinds of (two-
dimensional) anomaly shapes.
1. Introduction
As a complement to purely numerical methods, analytical and
semi-analytical techniques are of interest for giving physical insight
and for providing bench-mark solutions to wave-propagation
problems. This paper presents a semi-analytical method that can
separate multiply scattered wavefield components and aid physical
interpretation in connection with laterally displaced medium
anomalies in a 2D (two-dimensional) waveguide. A discrete
coupled-mode method, based on local modes and modal reflection
matrices in a medium that is invariant in one of the horizontal
directions, is developed for this purpose. The method has the
same flexibility concerning anomaly shapes as purely numerical
methods. With an artificial medium termination at depth, the
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wavefield is expanded in terms of normal modes in each of a number of laterally homogeneous strip regions

with vertical boundaries. For simplicity, full details and examples are only given for the scalar case with
plane-wave incidence from below.

The coupled-mode method has been applied to wave-propagation problems in various disciplines such
as acoustics, seismology, electromagnetics, etc.; see [1] for a brief review. For definiteness, seismic waves are
considered in the present paper. The discrete variant of the method, with local modes, i.e. modes adapted to
the local structure, has been common in underwater acoustics for a long time [2–5]. It is easy to implement
numerically using matrix algebra to solve a two-point boundary-value problem for modal expansion
coefficients. For the related continuous variant, without discretization of the medium into laterally
homogeneous regions, the corresponding boundary-value problem involves coupled differential
equations for the modal expansion coefficients [6]. In surface-wave seismology, the continuous variant
has been developed for reference modes, i.e. modes for a reference structure [7] as well as local modes
[8,9]. Maupin [10] gives a good review of both alternatives. With a sloping boundary, the continuous
variant involves field expansion with modes that do not fulfil the correct boundary conditions. The
implied slow convergence of the mode series can be improved by including artificial boundary modes [1,11].

To avoid issues with numerical stability, the two-point boundary-value problem can be recast as an
initial-value problem for generalized modal R/T (reflection/transmission) matrices using invariant
embedding. For the continuous coupled-mode variant, this has been done, involving differential
equations of Riccati type, for reference modes [7] as well as local modes [12]. There are other ways to
achieve numerical stability, e.g. [13], but modal R/T matrices are crucial in the present paper to separate
wavefield components. Hence, the invariant embedding technique is adapted here for discrete coupled
local modes using matrix algebra. Explicit computation of transmission matrices is avoided by stabilized
back-propagation of modal expansion-coefficient vectors. Mode matching is applied across vertical strip-
region boundaries by a mathematically exact Galerkin approach, while, e.g. [14] applies approximate
mode matching invoking Snell’s law in each of a number of horizontal sections.

An advantage with the discrete variant of coupled local modes is that the modes need not be tracked
carefully as functions of horizontal position to avoid mixing them up. To alleviate this problem for the
continuous variant, in the acoustic case with a lossy medium, Pannatoni [15] suggests expansion in terms
of local modes for the corresponding lossless medium.

Together with the coupled-mode method, addition rules for R/T matrices, as developed in [16, Sec.
6.1] and sometimes called Redheffer star products, are used to achieve the desired separation of multiply
scattered wavefield components. In essence, known techniques are combined and adapted to treat
multiple scattering among laterally displaced medium anomalies in a 2D waveguide.

The application examples connect to recent seismic hazard research concerning amplification of
incident plane SH (shear horizontal) waves, and related dynamic stress concentration, caused by 2D
medium anomalies close to the surface. Single and multiple inclusions of various types have been
considered [17–19], as well as topography irregularities [20] and alluvial valleys [21–23]. Numerical
methods like the boundary-element method (BEM), which is used in several of the mentioned papers,
are very flexible concerning variations of anomaly shape and type. Ba & Yin [24] present a multidomain
BEM for complex local sites, such as a multilayered half-space with inclusions. They decompose the
half-space into suitable regions and set up a linear equation system to solve for densities of fictitious
uniformly distributed loads on the region boundaries. Shyo & Teng [21] and Kara [22] apply hybrid
methods involving finite elements and finite differences, respectively. The spectral element method is
another attractive numerical technique that can be applied in this context [25,26].

Special (semi-)analytical methods have been developed for several different kinds of anomalies. There
are papers concerning, for example, canyons [27,28], partially filled alluvial valleys [29], hills [30–32] and
lined tunnels [33,34]. Media with several anomalies are considered, for example, in [35] (cavities), [36]
(canyon and two hills), [37] (hill and cavity), [38] (hill, canyon and tunnel), [39,40] (canyon and
cavity/tunnel/inclusion), [41] (alluvial valleys), [42] (hill and canyon), [43] (hills) and [44] (canyon
and idealized building). Typically, the wavefield is expanded in terms of appropriate mathematical
wave functions in suitable (auxiliary) domains. A region-matching technique allows formulation of
the continuity conditions at the domain boundaries as a linear equation system for the expansion
coefficients. Point-wise matching (collocation) may be used, or some Galerkin-type method involving
transformation and translation formulae between the different wave functions (e.g. Graf’s addition
theorem).

An advantage with the coupled-mode approach, compared to the other methods referred to, is the
direct applicability of addition rules for R/T matrices to isolate multiply scattered wavefield
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components. Compared to the other (semi-)analytical methods mentioned, which are specially designed

for particular kinds of anomalies, there is no restriction on the anomaly shapes.
The plan of the paper is as follows. Section 2 introduces wavefield decomposition with partial waves

in a medium invariant in one of the horizontal directions. The partial waves isolate various types of
multiple scattering among laterally displaced medium anomalies. They are defined using discrete
coupled-mode theory and combination of R/T matrices. This field decomposition is valid for
combined P-SV (primary, shear vertical) and SH waves. The remaining text only deals with the pure
SH case, however. Section 3 provides a representation of a vertically or obliquely incident plane wave
by a horizontal source array. An extension of a Fourier-transform relation involving Bessel functions
from Watson [45] appears as a by-product. Section 4 presents details of the discrete coupled-mode
method. In essence, this is an adaptation to the 2D SH case of the recent coupled-mode method for
2D fluid media with a three-dimensional (3D) point source in [46, Sec. V]. The adaptation involves, in
particular, handling of an incident plane wave by a horizontal source array, and design of the artificial
medium termination. Section 5 continues the discussion from §2 of field decomposition into partial
waves, allowing isolation of individual (multiply) scattered waves. Reflection-matrix recursion with
successive restarts is here an essential ingredient. Section 6 shows how to obtain the full field in a
periodic medium efficiently with computations restricted to a single unit cell. A few computational
variants are briefly indicated in §7, before some concluding remarks in §8. Two short appendices
provide some additions concerning §4.2 for a different type of upper boundary and [46, Sec. V],
respectively.

Examples appear in §§4.4, 5.3, 5.4 and 6.2. For convenience, all of them are taken from the recent study
of scattering by multiple alluvial valleys in [41]. With the exception of the broad-band example in §5.4,
handled by frequency synthesis, a harmonic time dependence according to the typically omitted factor
exp(−iωt), where ω is the angular frequency and t is the time, is assumed throughout the paper.
2. Wavefield decomposition in a medium invariant in one of the
horizontal directions

Consider a solid medium that is invariant in the y-direction, where x, y, z are Cartesian coordinates
increasing to the east, north and downward, respectively. Below an upper free boundary, the medium
agrees, for simplicity, with a certain laterally homogeneous reference structure, except in a number of
laterally displaced anomaly regions, denoted A, B, … and defined by x�A , x , xþA, x

�
B , x , xþB , …,

respectively. Except in the anomaly regions, the upper boundary is horizontal at a fixed depth. The
medium is homogeneous below a certain depth, from where a plane time-harmonic upwards directed
wave with direction vector (kx, ky, kz) is incident. Figure 1a gives an illustration. The anomalies, i.e.
irregularities in the x-direction, can involve variations of surface topography or medium parameters
(density and velocities) or a combination of both. For ease of illustration, figure 1 shows the first case.

Between two consecutive anomaly regions, possibly also at the left end and at the right end, there is a
connection region agreeing, for simplicity, with the reference structure. Denoting the displacement field
by u(x) = (u(x), v(x), w(x))T, where x = (x, y, z) and u, v, w are the components in the x-, y-, z-directions,
respectively, the idea is now to separate different wavefield components or partial waves. A basic
partial wave, denoted u0, is in each anomaly or connection region as if this medium part was
embedded within the reference structure. (A laterally homogeneous medium obviously results for a
connection region.) Additionally, each anomaly region A, B, … provides an excitation of its left and
right connection regions. In figure 1a these excitations, to be more carefully defined in §2.1, are
denoted bX and �aX, where X = A, B, … In effect, each anomaly region provides sources for additional
partial waves, to be obtained by multiple scattering among the anomaly regions.

Coupled-mode theory provides a useful method to extract these effective sources and additional
partial waves. For the discrete variant, consider a discretization of the y-independent solid medium by
N + 1 laterally homogeneous strip regions. With N≥ 0 vertical interfaces x1 < x2 < · · · < xN, strip n
covers xn−1 < x < xn for n = 2, 3, …, N, while (when N > 0) strips 1 and N + 1 include x < x1 and xN < x,
respectively. (When N = 0, strip 1 covers the whole x-axis.) The corresponding density, P-wave velocity
and shear-wave velocity functions are denoted ρn(z), αn(z) and βn(z), respectively, for n = 1, 2, …, N + 1.
With absorption in the medium, the velocity functions are complex-valued. Since the upper medium
boundary is free, free upper horizontal and vertical boundary segments of the strip regions are also
appropriate at the medium discretization, cf. [46, the first two paragraphs of Sec. IV]. The upper
horizontal surface of strip n is at z = za;n. Figure 1b provides an illustration, with varying z = za;n to
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Figure 1. Vertical xz-plane with three anomaly regions, A, B and C, in the y-independent solid medium. (a) An incident plane wave,
which is generated by sources at depth z = zs in (b). As indicated in (a), each anomaly region provides an excitation of its left and
right connection regions, producing partial waves for a wavefield decomposition. The anomaly regions are discretized with laterally
homogeneous strip regions in (b). Strip n extends vertically between z = za;n and z = zb, n = 1, 2, …, N + 1. Vertical interfaces at
x = x1, x2, …, xN, indicated by dotted lines, separate the strip regions. The medium anomalies as well as the receivers are above
zs−. Below zs−, the medium is typically homogeneous except for the artificial medium truncation.
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mimic the surface topography in figure 1a. The required fineness of the x-discretization is related to the
wavelength and the incidence directions of the waves [47]. Of course, only the anomaly regions A, B, …
need to be further discretized in this way, each connection region being a single connection strip. For
simplicity, the za;n of the connection strips agree.

To allow a mode representation of the displacement field in each strip region, the medium is
artificially truncated with a free horizontal boundary at a finite lower depth z = zb. This is the locked-
mode medium approximation, used by, e.g. [48,49]. As detailed in §4.1, the medium absorption
increases gradually towards the truncation boundary to minimize undesired reflections from it. There
is a horizontal plane source array at depth z = zs, below all receivers and below all anomalies, to
produce the incident plane wave. As indicated in figure 1b, the source array also produces a
downwards directed plane wave. Below zs−, the medium is laterally homogeneous. Except for the
artificial medium truncation, it is even homogeneous there.
2.1. Modal coefficient vectors
In each strip region, the wavefield is expanded in terms of normal modes, with coefficient column vectors
a or �a for waves to the right (direction of increasing x) and b or �b for waves to the left (direction of
decreasing x). The coefficient vectors are �a, �b and a, b at the left and right ends of the strip, respectively.

In terms of modal coefficient vectors, each anomaly region X = A, B, … provides an excitation of its
surroundings with a vector bX to its connection strip to the left and a vector �aX to its connection strip to
the right. These vectors are obtained as the difference between the corresponding coefficient vectors
computed for the anomaly region embedded within the reference structure and for the reference
structure throughout, in both cases ignoring the other anomaly regions. Figure 1a gives an illustration.

In effect, these bX and �aX vectors, one pair for each of the anomaly regions, provide sources for
additional partial waves to be computed without further consideration of the sources at zs. Upon
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propagation through its connection strip, bX becomes a vector �bX and �aX becomes a vector aX, for
excitation of the neighbouring anomaly regions, respectively.
.Open
Sci.10:230352
2.2. Anomaly regions as two-ports
Disregarding the sources at z = zs, consider each anomaly region between two surrounding connection
strips as a two-port with input field vectors a and �b from the left and right connection strip,
respectively, and corresponding output field vectors b and �a to the left and right connection strip,
respectively; cf. figure 2. For the application to a particular partial wave, only one of a and �b is non-
vanishing. With appropriate reflection matrices R, �R and transmission matrices T, �T, expressing mode
conversions,

b ¼ R � aþ �T � �b and �a ¼ T � aþ �R � �b: ð2:1Þ

Still disregarding the sources at z = zs, consider two consecutive anomaly regions, A and B for
example, with surrounding and intermediate connection strips. The corresponding R/T matrices are
RA, �RA, TA, �TA and RB, �RB, TB, �TB, respectively, and Ê denotes the diagonal transmission matrix of the
intermediate connection strip. Figure 2 gives an illustration of this composite structure, with input
vectors a and �b, and output vectors b and �a. These vectors are field vectors in the surrounding
connection strips, while �ac and b c denote field vectors in the intermediate connection strip. Lateral
homogeneity of a connection strip allows unambiguous specification of x-direction for the waves
there. (With corresponding �ac ¼ 0 or b c = 0, a connection strip could be one of the end strips n = 1 or
n =N + 1, respectively, of the medium.)

There are well-known addition rules for R/T matrices [16, Sec. 6.1]. In some texts, they are called
Redheffer star products. Concerning R, �R, T, �T for the composite structure in figure 2, one obtains

R ¼ RA þ �TA � Ê � RB � (I� Ê � �RA � Ê � RB)
�1 � Ê � TA

¼ RA þ �TA � Ê � RB � Ê � (I� �RA � Ê � RB � Ê)�1 � TA,
ð2:2Þ

T ¼ TB � (I� Ê � �RA � Ê � RB)
�1 � Ê � TA

¼ TB � Ê � (I� �RA � Ê � RB � Ê)�1 � TA,
ð2:3Þ

�R ¼ �RB þ TB � Ê � �RA � (I� Ê � RB � Ê � �RA)
�1 � Ê � �TB

¼ �RB þ TB � Ê � �RA � Ê � (I� RB � Ê � �RA � Ê)�1 � �TB

ð2:4Þ

and �T ¼ �TA � (I� Ê � RB � Ê � �RA)
�1 � Ê � �TB

¼ �TA � Ê � (I� RB � Ê � �RA � Ê)�1 � �TB:
ð2:5Þ

Concerning the field in the intermediate connection strip, �ac ¼ TA � aþ �RA � Ê � bc and
bc ¼ �TB � �bþ RB � Ê � �ac. It follows that

�ac ¼ (I� �RA � Ê � RB � Ê)�1 � (TA � aþ �RA � Ê � �TB � �b) ð2:6Þ
and

bc ¼ (I� RB � Ê � �RA � Ê)�1 � (�TB � �bþ RB � Ê � TA � a): ð2:7Þ
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Note the appearance of the same reverberation operators as in the latter alternatives of equations

(2.2)–(2.5). Expansion of the reverberation operators, i.e. expansion of the inverse matrices in
geometric series [16], provides the basis for the additional partial waves of the field.

With several consecutive anomaly regions, together with surrounding and intermediate laterally
homogeneous connection strips, recursive application of equations (2.2)–(2.5) provides R/T matrices
for the composite structure in terms of elementary R/T matrices for the individual anomaly regions
and diagonal transmission matrices for the connection strips. Reflections back and forth between
adjacent composite anomaly region structures are readily incorporated. Again, expansion of the
reverberation operators provides the basis for the additional partial waves of the field.
/journal/rsos
R.Soc.Open
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2.3. Notation for the additional partial waves
As already mentioned, the basic partial wave is denoted u0. The additional partial waves are denoted
u j0s

jl ,...,j2,j1
where s ¼ � or þ and j0, j1, …, jl denote anomaly regions (A, B, …). A u j0�

jl ,...,j2,j1
wave starts

with a bX¼j0 source vector to the left in the connection strip to the left of anomaly region j0, while a
u j0þ

jl ,...,j2,j1
wave starts with an �aX¼j0 source vector to the right in the connection strip to the right of

anomaly region j0; cf. figure 1a. If l≥ 1, the partial wave u j0s
jl ,...,j2,j1

is subsequently reflected when
reaching the anomaly regions j1, j2, …, jl in this order, and each of these reflections only involves a
single anomaly region. Note that non-adjacent anomaly region indices may here coincide to include
all multiple reflections (scattering back and forth).

After its last reflection, the partial wave proceeds by transmission through connection strips and
anomaly regions towards the left or right end of the medium, thereby contributing to the field. In a
connection strip, only waves to the left or right contribute; waves in the opposite direction appear in
other partial waves. Within an anomaly region, however, the transmission gives rise to interior
reflections which contribute as well.

The total field in a particular anomaly region or connection strip appears by summing the
contributions there by u0 and the additional partial waves. There is no high-frequency ray
approximation, and the field decomposition is mathematically exact.
2.4. The pure SH case
So far, the discussion of the waves in the y-independent solid medium has been rather general. For
simplicity, however, the following development is restricted to the pure SH wave case without
conversions between SH (Love) and P-SV (Rayleigh) modes at the vertical x = xn interfaces.
Specifically, ky = 0 for the incident plane wave and u(x) = u(x,z) = (0, v(x,z), 0)T. Denoting the medium
density and shear-wave velocity by ρ(x,z) and β(x,z), respectively, and introducing the corresponding
Lamé parameter μ(x,z) = ρ(x,z) β2(x,z), the y-component v(x,z) of the displacement satisfies the SH-
wave Helmholtz equation:

Dvþ m�1 grad m � grad vþ v

b

� �2

v ¼ �m�1f : ð2:8Þ

Here, f (x,z) is the y-component of the body force per unit volume, Δ is the Laplacian, and grad is the
gradient operator. Moreover, the components τxy and τyz of the stress tensor τ appear as τxy = μ ∂v/∂x
and τyz = μ ∂v/∂z. This follows readily from basic linear elasticity theory (e.g. [50, ch. 2]). The medium
velocity β may be complex-valued to accommodate absorption.

The coupled-mode SH-wave method of the present paper is related to the method for the fluid case in
[46, Sec. V]. Actually, a fluid-medium analogy of the SH case appears by setting the density to 1/μ
(possibly complex-valued), the sound speed to β, and the pressure to v. A free/rigid solid-medium
boundary (with vanishing body force) with normal in the xz-plane then corresponds to a rigid/free
fluid-medium boundary.
3. Generating a plane SH wave by a line array of line sources
The development in [46, Sec. V] concerns a 3D point source (or line source), while SH papers
such as [27,41] typically prescribe an incident plane wave. Generation of a plane wave by an
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array of point or line sources in a homogeneous solid medium with shear-wave velocity β is now

considered.
At first, consider equation (2.8) with its right-hand side replaced by r2refdðx� xsÞdðy� ysÞdðz� zsÞ for a

3D point source at xs = (xs, ys, zs). Here, δ is the one-dimensional Dirac delta function with dimension m−1,
and rref is a reference length, introduced to achieve consistency of dimensions. The solution for v(x,y,z),
now depending on y as well because of the 3D point source, becomes (e.g. [51, Sec. 4-3])

vðxÞ ¼ �r2ref
expðijx� xsjv=bÞ

4pjx� xsj : ð3:1Þ

Next, consider a horizontal line source in the y-coordinate direction, according to rref δ(x− xs) δ(z− zs)
in the right-hand side of equation (2.8). The solution for the displacement v(x,z) in the y-direction
becomes

vðx, zÞ ¼ � i
4
rrefH

ð1Þ
0

vr
b

� �
, ð3:2Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xsÞ2 þ ðz� zsÞ2

q
(e.g. [4, Sec. 5.2.2]). A verification can be obtained by integrating point-

source solutions according to equation (3.1) over ys and applying an integral representation of the Hankel
function [52, 9.1.24].

The solution for a horizontal plane source according to exp(ikxx) δ(z− zs) in the right-hand side of
equation (2.8) is

vðx, zÞ ¼ � i
2

exp iðkxxþ jz� zsj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=b2 � k2x

q
Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=b2 � k2x

q , ð3:3Þ

where the square root is taken with a non-negative imaginary part. This is readily seen by isolating the
dependence on x according to the factor exp(ikxx), applying the radiation conditions and observing the
implied step discontinuity of ∂v/∂z across z = zs. Originating from z = zs, cf. figure 1b, there is obviously
an upwards directed plane wave and a downwards directed one.

The solution according to equation (3.3) can be obtained in two other ways: by integration of line
sources over a line or point sources over a plane. Concerning the first alternative, an application of

eikxxdðz� zsÞ ¼
ðþ1

�1
eikxxsdðx� xsÞdðz� zsÞdxs ð3:4Þ

and equation (3.2) yields

vðx, zÞ ¼ � i
4

ðþ1

�1
Hð1Þ

0
v

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xsÞ2 þ ðz� zsÞ2

q� �
eikxxs dxs: ð3:5Þ

Together with equation (3.3), and the inverse Fourier transform, equation (3.5) verifies an instance of
Bostrőm et al. [53, eqn (4.13)].

Concerning the second alternative, an application of

eikxxdðz� zsÞ ¼
ðþ1

�1
eikxxs dxs

ðþ1

�1
dðx� xsÞdðy� ysÞdðz� zsÞdys ð3:6Þ

and equation (3.1) together with a polar transformation of variables (xs = x + r cosθ, ys = y + r sinθ) yields

vðx, zÞ ¼ � 1
2
eikxx

ðþ1

0
J0ðkxrÞ

exp½iðv=bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� zsÞ2

q
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðz� zsÞ2
q rdr: ð3:7Þ

Proposition 3.1. With k = ω/β, equations (3.3) and (3.7) apparently show that

ðþ1

0
J0ðkxrÞ

exp ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p rdr ¼
ðþ1

jzj
J0 kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � z2

p	 

eikt dt

¼ i
exp iðjzj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2x
p Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x

p :

ð3:8Þ

By analytic continuation, this relation is valid for complex k and kx such that |Im(kx)| < Im(k). It is also
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valid when |Im(kx)| = Im(k), provided that kx≠ ±k and that Re(k) > 0 if Im(k) = 0. As before, the square

roots are taken with non-negative imaginary parts.

Equation (3.8) represents an extension, to non-vanishing z, of Watson [45, eqn (1) in §13.2].
cietypublishing.org/journal/rsos
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4. Coupled-mode SH-wave computations
Consider figure 1b with a discretization of the y-independent solid medium into N + 1 laterally
homogeneous strip regions. Let mnðzÞ ¼ rnðzÞb2

nðzÞ, n = 1, 2, …, N + 1. Before returning to the partial
waves in §5, the present §4 deals with coupled-mode computation of the full wavefield.

There is a horizontal plane source array at z = zs corresponding to the right-hand side

wðxÞdðz� zsÞ ¼
ðþ1

�1
wðxsÞdðx� xsÞdðz� zsÞdxs ð4:1Þ

in equation (2.8). This is a slight generalization of the particular choice w(x) = exp(ikxx) in §3. As in §2, the
depth zs is below all receivers and below all anomalies (irregularities in the x-direction), such that the
medium is laterally homogeneous below zs−.

For n = 1, 2, …, N + 1, let km,n and Zm,n(z), m = 1, 2, …, denote the modal horizontal wavenumbers and
normalized mode functions, respectively, for SH modes in strip region n. The wavenumbers km,n appear
in the upper complex plane but not on the negative real axis. It is appropriate to order them according to
decreasing real parts and (close to the imaginary axis) increasing imaginary parts. The mode
normalization means that Zm,n(z) denotes the original mode function Z0

m,nðzÞ divided by
½Ð zbza;n mnðzÞðZ0

m,nðzÞÞ2 dz�1=2. According to Sturm–Liouville theory, the modes in strip n are orthogonal
with respect to the weight function μn(z). Well established methods exist to compute the km,n and the
Zm,n(z) (e.g. [4,54]). For robust and automatic computations of the km,n with winding-number integrals,
it can be convenient to use quadruple precision.

Introduce row vectors Fnðx, zÞ ¼ fðFnðx, zÞÞmg and Cnðx, zÞ ¼ fðCnðx, zÞÞmg for basic solutions of
the homogeneous version of equation (2.8) in the different strips n = 1, 2, …, N + 1. Specifically,

ðFnðx, zÞÞm ¼ 1
km,n

Zm,nðzÞÊð1Þ
m,nðxÞ ð4:2Þ

and

ðCnðx, zÞÞm ¼ Zm,nðzÞÊð2Þ
m,nðxÞ, ð4:3Þ

where

Êð1Þ
m,nðxÞ ¼ exp (ikm,nðx� xn�1Þ) with Êð1Þ

m,nðxn�1Þ ¼ 1 ð4:4Þ

and

Êð2Þ
m,nðxÞ ¼ exp (� ikm,nðx� xnÞ) with Êð2Þ

m,nðxnÞ ¼ 1, ð4:5Þ

x0 = x1, and xN+1 = xN. (When N = 0, x1 = 0 m.) The factor 1/km,n in the definition of ðFnðx, zÞÞm is a kind of
normalization, cf. the normalization of the modes. It leads to different dimensions of Fnðx, zÞ and
Cnðx, zÞ, but it simplifies some forthcoming equations and it makes the appearing reflection matrices
(see §4.2) symmetric. Additionally, introduce the diagonal matrices Ên ¼ diagmðÊð1Þ

m,nðxnÞÞ ¼
diagmðÊð2Þ

m,nðxn�1ÞÞ for transmission, or transfer of x-reference, between the sides of strip region n. Note
that Ê1 ¼ ÊNþ1 ¼ I.

At each x, expand the field in terms of the local modes there. It follows, cf. [46, eqns (35)–(36)], that
there are coefficient column vectors �an ¼ fð�anÞmg, �aLn ¼ fð�aLnÞmg, �aRn ¼ fð�aRn Þmg for waves to the right
(increasing x) with x-reference at xn−1, and bn = {(bn)m}, b

L
n ¼ fðbLnÞmg, bR

n ¼ fðbRn Þmg for waves to the
left (decreasing x) with x-reference at xn, such that, within strip region n,

vðx, zÞ ¼ Fnðx, zÞ � ð�an þ �aLn þ �aRn Þ þCnðx, zÞ � ðbn þ bL
n þ bR

n Þ

þ
X
m

am,sZm,nðzÞ
ð
Jn
wðxsÞ exp (ikm,njx� xsj)

km,n
dxs,

ð4:6Þ

where Jn = (xn−1, xn) for n = 2, 3, …, N, J1 = (−∞, x1) and JN+1 = (xN, +∞) when N > 0, J1 = (−∞, +∞) when
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N = 0, and

am,s ¼ � i
2
mnðzsÞZm,nðzsÞ: ð4:7Þ

In equation (4.6), �aLn and bL
n represent contributions from sources to the left of strip n, while �aRn and bR

n
represent contributions from sources to the right of strip n. Hence, �aL1 ¼ bL

1 ¼ �aRNþ1 ¼ bR
Nþ1 ¼ 0.

Moreover, �a1 ¼ �aR1 ¼ bNþ1 ¼ bL
Nþ1 ¼ 0 are boundary conditions. The mode sum in equation (4.6) follows

by equation (4.1) and integration over xs of basic modal line-source solutions according to, e.g. [4, Sec. 5.2.2].
Section 4.1 gives some details on the medium truncation. Subsequently, essentially generalizing the

development in [46, Sec. V] to a continuous source array, §§4.2 and 4.3 present a coupled-mode
method to determine the column vectors �an, �aLn, �a

R
n and bn, b

L
n, b

R
n . Of course, only a finite number of

modes is kept in each strip at the actual computations.
 sos
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4.1. Artificial medium truncation
The issue here, cf. [46, Sec. IV E], is to design an artificial medium truncation, ending at z = zb, providing
negligible reflections. Recalling figure 1b and equation (3.3), the reflections from the downwards directed
plane wave must be minimized. Moreover, there are undesired reflections at depth from the downwards
directed surface reflections of the upwards directed plane wave. Because of the medium anomalies, these
waves may have a slightly different incidence angle onto the artificial medium truncation. Finally, waves
are of course scattered downwards in various directions from the anomalies.

The most important incidence angle, or kx, to be handled by the artificial medium truncation is
obviously that of the downwards directed plane wave. For rapid truncation-design computations,
consider two related variants of the medium, with source array according to exp(ikxx) δ(z− zs) in the
right-hand side of equation (2.8): (i) a homogeneous medium with density ρ0, shear-wave velocity β0

and v(x,z) given by equation (3.3) with β = β0, and (ii) its modification with laterally homogeneous
artificial medium truncation including absorption between z = zs and z = zb.

For medium (ii), β (and μ) depend on z below z= zs. It follows that v(x,z) = exp(ikxx) Z(z), where Z(z) fulfils

ZðzÞ ¼ �g
i
2

expðijz� zsj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=ðb0Þ2 � k2x

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2=ðb0Þ2 � k2x

q ð4:8Þ

and

Z00ðzÞ þ m0ðzÞ
mðzÞ Z

0ðzÞ þ v2

b2ðzÞ � k2x

� �
ZðzÞ ¼ 0 ð4:9Þ

for z< zs and zs< z< zb, respectively. Here, μ(z) = ρ0 β2(z). In addition, allowing numerical determination of
the constant γ for specified complex-valued β(z) and a real kx, there is the source-discontinuity condition
Z0(zs+)−Z0(zs−) = 1 and the free-boundary condition Z0(zb) = 0.

For an appropriate medium truncation, γ should apparently be close to 1, making the solutions for
media (i) and (ii) similar for z < zs. For a trial zb, evolutionary optimization algorithms, such as
differential evolution, are useful to minimize |γ − 1| by varying β(z). It is thereby convenient to
specify the complex-valued function β(z) by the following three design parameters: the depth between
zs and zb for onset of artificial absorption, β(zb), and the polynomial degree of the change towards zb
(1 for linear change) of β−2(z). Of course, a large zb allows small artificial reflections, but it necessitates
a large number of normal modes for the field representation. Hence, zb (as well as zs) should be
reasonably small, while still providing a negligible |γ− 1| at the minimization.

Numerical experiments with different zb are useful. Small incidence angles (close to normal incidence)
may allow a small zb with a large absorption gradient from a shallow onset, while large incidence angles
(close to grazing incidence) may require a large zb with a smooth absorption increase. Recalling that
waves from the anomalies may be scattered in various directions onto the artificial medium
truncation, it is a good idea to include several incidence angles, i.e. several kx and γ, in the minimization.
4.2. Reflection-matrix recursion
By physical arguments, considering Fn waves to the right and Cn waves to the left, there must exist
modal reflection matrices Rn with x-reference at xn and �Rn with x-reference at xn−1, which are
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independent of the sources, such that, for n = 1, 2, …, N + 1,

bL
n ¼ Rn � Ên � �aLn and bn ¼ Rn � an ð4:10Þ

and

�aRn ¼ �Rn � Ên � bR
n and �an ¼ �Rn � �bn: ð4:11Þ

Accounting for changes of x-reference from xn−1 to xn and vice versa, cf. [46, eqns (37)–(38)],

an ¼ Ên � �an � i
2
mnðzsÞ

ð
Jn
wðxsÞCT

nðxs, zsÞdxs ð4:12Þ

and

�bn ¼ Ên � bn � i
2
mnðzsÞ

ð
Jn
wðxsÞFT

nðxs, zsÞdxs, ð4:13Þ

respectively. Note that equations (4.12) and (4.13) are irrelevant when n =N + 1 and n = 1, respectively,
since RNþ1 ¼ �R1 ¼ 0. With the chosen normalization of the normal modes and the basic wave
functions, reciprocity arguments of the same type as in [46, Sec. VI] show that all modal reflection
matrices Rn and �Rn are symmetric.

The integrals in equations (4.6) and (4.12)–(4.13) are easy to compute analytically when w(x) = exp(ikxx).
Note that the wavenumbers km,n have positive imaginary parts because of the artificial absorption above zb.

Corresponding to the Riccati-equation solutions for the related continuous coupled-mode approach
in [7], the modal reflection matrices Rn and �Rn may be computed recursively, for decreasing n starting
with RN+1 = 0 and for increasing n starting with �R1 ¼ 0, respectively. The recursion equations are
derived, by a Galerkin approach, from the continuity of v and τxy at the vertical interfaces separating
the strip regions, cf. [55, Secs. III A,D; 46, Secs. IV A-D]. Specifically, let In denote the depth interval
[za;n, zb]. Introduce the mode-coupling matrices Fn, Gn and �Fn, �Gn with elements (m, m0) given by

ðFnÞm,m0 ¼
ð
Inþ1>In

mnþ1ðzÞZm,nþ1ðzÞZm0 ,nðzÞdz, ð4:14Þ

ðGnÞm,m0 ¼ km0 ,n

km,nþ1

ð
Inþ1>In

mnðzÞZm,nþ1ðzÞZm0 ,nðzÞdz, ð4:15Þ

ð�FnÞm,m0 ¼
ð
In�1>In

mn�1ðzÞZm,n�1ðzÞZm0 ,nðzÞdz ð4:16Þ

and ð�GnÞm,m0 ¼ km0 ,n

km,n�1

ð
In�1>In

mnðzÞZm,n�1ðzÞZm0 ,nðzÞdz: ð4:17Þ

Note that In+1 > In ¼ ½maxðza;n+1, za;nÞ, zb�. In addition, define the diagonal matrices Kn by Kn = diagm
(km,n).
4.2.1. Recursion of Rn for decreasing n

By the boundary conditions, τxy = μ ∂v/∂x vanishes when x = xn and min(za;n, za;n+1) < z <max(za;n, za;n+1).
Introduce the notation

aLþn ¼ an þ Ên � �aLn and bLþ
n ¼ bn þ bL

n, ð4:18Þ

and disregard temporarily sources to the right of x = xn.
When Inþ1 $ In, equation (4.6) provides, together with depth integrations over In and In+1,

�Fnþ1 � (K�1
nþ1 � �aLnþ1 þ Ênþ1 � bL

nþ1) ¼ K�1
n � aLþn þ bLþ

n ð4:19Þ

and

K�1
nþ1 � �aLnþ1 � Ênþ1 � bL

nþ1 ¼ Gn � (K�1
n � aLþn � bLþ

n ) ð4:20Þ

for continuity at xn of v after multiplication with μn(z)Zm,n(z) and τxy after multiplication with Zm,n+1(z),
respectively. Insertion of the relation bL

nþ1 ¼ Rnþ1 � Ênþ1 � �aLnþ1 from equation (4.10) yields, after
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elimination of bLþ

n ,

K�1
nþ1 � �aLnþ1 ¼ 2W�1

n �Gn �K�1
n � aLþn where ð4:21Þ

Wn ¼ IþGn � �Fnþ1 � (I�Gn � �Fnþ1) � Ênþ1 � Rnþ1 �Knþ1 � Ênþ1: ð4:22Þ
Together with bLþ

n ¼ Rn � aLþn , equation (4.19) subsequently provides the reflection-matrix recursion
equation:

Rn �Kn ¼ �Iþ 2�Fnþ1 � (Iþ Ênþ1 � Rnþ1 �Knþ1 � Ênþ1) �W�1
n �Gn: ð4:23Þ

When In+1⊆ In, on the other hand, integrations over In+1 and In provide

K�1
nþ1 � �aLnþ1 þ Ênþ1 � bL

nþ1 ¼ Fn � (K�1
n � aLþn þ bLþ

n ) ð4:24Þ
and

�Gnþ1 � (K�1
nþ1 � �aLnþ1 � Ênþ1 � bL

nþ1) ¼ K�1
n � aLþn � bLþ

n ð4:25Þ
for continuity of v after multiplication with μn+1(z)Zm,n+1(z) and τxy after multiplication with Zm,n(z),
respectively. This yields

K�1
nþ1 � �aLnþ1 ¼ 2W�1

n � Fn �K�1
n � aLþn where now ð4:26Þ

Wn ¼ Iþ Fn � �Gnþ1 þ (I� Fn � �Gnþ1) � Ênþ1 � Rnþ1 �Knþ1 � Ênþ1: ð4:27Þ
The equation for reflection-matrix recursion follows from equation (4.25) as

Rn �Kn ¼ I� 2 �Gnþ1 � (I� Ênþ1 � Rnþ1 �Knþ1 � Ênþ1) �W�1
n � Fn: ð4:28Þ

When In+1 = In, a third option is possible by combining equations (4.24) and (4.20). This leads to, cf.
[55, Sec. III A],

K�1
nþ1 � �aLnþ1 ¼

1
2
[Fn þGn þ ðFn �GnÞ � Rn �Kn] �K�1

n � aLþn ð4:29Þ

and

Rn �Kn ¼ �[Fn þGn � Ênþ1 � Rnþ1 �Knþ1 � Ênþ1 � ðFn �GnÞ]�1

� [Fn �Gn � Ênþ1 � Rnþ1 �Knþ1 � Ênþ1 � ðFn þGnÞ]:
ð4:30Þ

This third option is more efficient computationally, but it requires that the kept finite numbers of modes
in the two adjacent strips are equal.

4.2.2. Recursion of �Rn for increasing n

By the boundary conditions, τxy vanishes when x = xn−1 and min(za;n, za;n−1) < z <max(za;n, za;n−1).
Introduce the notation

�bRþ
n ¼ �bn þ Ên � bR

n and �aRþn ¼ �an þ �aRn , ð4:31Þ
and disregard now temporarily sources to the left of x = xn−1.

When In�1 $ In, equation (4.6) provides, together with depth integrations over In and In−1,

Fn�1 � (bR
n�1 þ Ên�1 �K�1

n�1 � �aRn�1) ¼ �bRþ
n þK�1

n � �aRþn ð4:32Þ
and

bR
n�1 � Ên�1 �K�1

n�1 � �aRn�1 ¼ �Gn � (�bRþ
n �K�1

n � �aRþn ) ð4:33Þ
for continuity at xn−1 of v after multiplication with μn(z)Zm,n(z) and τxy after multiplication with Zm,n−1(z),
respectively. Insertion of the relation �aRn�1 ¼ �Rn�1 � Ên�1 � bR

n�1 from equation (4.11) yields, after
elimination of K�1

n � �aRþn ,

bR
n�1 ¼ 2W�1

n � �Gn � �bRþ
n where now ð4:34Þ

Wn ¼ Iþ �Gn � Fn�1 � (I� �Gn � Fn�1) � Ên�1 �K�1
n�1 � �Rn�1 � Ên�1: ð4:35Þ
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Since �aRþn ¼ �Rn � �bRþ

n , the equation for reflection-matrix recursion follows as

K�1
n � �Rn ¼ �Iþ 2Fn�1 � (Iþ Ên�1 �K�1

n�1 � �Rn�1 � Ên�1) �W�1
n � �Gn: ð4:36Þ

When In−1⊆ In, on the other hand, integrations over In−1 and In provide

bR
n�1 þ Ên�1 �K�1

n�1 � �aRn�1 ¼ �Fn � (�bRþ
n þK�1

n � �aRþn ) ð4:37Þ
and

Gn�1 � (bR
n�1 � Ên�1 �K�1

n�1 � �aRn�1) ¼ �bRþ
n �K�1

n � �aRþn ð4:38Þ
for continuity of v after multiplication with μn−1(z)Zm,n−1(z) and τxy after multiplication with Zm,n(z),
respectively. This yields

bR
n�1 ¼ 2W�1

n � �Fn � �bRþ
n where now ð4:39Þ

Wn ¼ Iþ �Fn �Gn�1 þ (I� �Fn �Gn�1) � Ên�1 �K�1
n�1 � �Rn�1 � Ên�1: ð4:40Þ

The equation for reflection-matrix recursion becomes

K�1
n � �Rn ¼ I� 2Gn�1 � (I� Ên�1 �K�1

n�1 � �Rn�1 � Ên�1) �W�1
n � �Fn: ð4:41Þ

When In−1 = In, and the numbers of modes kept in the two strips n− 1 and n are equal, a third option
is possible by combining equations (4.37) and (4.33). This leads to, cf. [55, Sec. III D],

bR
n�1 ¼

1
2
[�Fn þ �Gn þ ð�Fn � �GnÞ �K�1

n � �Rn] � �bRþ
n ð4:42Þ

and

K�1
n � �Rn ¼ �[�Fn þ �Gn � Ên�1 �K�1

n�1 � �Rn�1 � Ên�1 � ð�Fn � �GnÞ]�1

� [�Fn � �Gn � Ên�1 �K�1
n�1 � �Rn�1 � Ên�1 � ð�Fn þ �GnÞ]:

ð4:43Þ
4.3. Stabilized back-propagation
To compute �an and bn for equation (4.6), substitution of their reflection-matrix expressions from equations
(4.10)–(4.11) into equations (4.12)–(4.13) yields an equation system with the solution

an ¼ � i
2
mnðzsÞ(I� �Sn � Sn)

�1 �
ð
Jn
wðxsÞ[CT

nðxs, zsÞ þ �Sn �FT
nðxs, zsÞ] dxs ð4:44Þ

and

�bn ¼ � i
2
mnðzsÞ(I� Sn � �Sn)

�1 �
ð
Jn
wðxsÞ[FT

nðxs, zsÞ þ Sn �CT
nðxs, zsÞ] dxs, ð4:45Þ

where Sn ¼ Ên � Rn and �Sn ¼ Ên � �Rn. This solution is of course completely analogous to the one in [46, eqns
(39)–(40)]. Obvious simplifications, with vanishing terms, appear when n= 1 and when n=N+ 1.

To compute the y-component displacement field v(x,z) according to equation (4.6), it remains to compute
the column vectors �aLn, b

L
n and �aRn , b

R
n for n= 1, 2, …, N+ 1. Considering the computation of the reflection

matrices Rn and �Rn as forward propagation steps, this is done by two passes of stabilized back-
propagation. Starting from �aL1 ¼ 0, successive matrix-vector multiplications according to the transmission
equations (4.21), (4.26) and/or (4.29) yield �aLn for increasing n. Analogously, starting from bR

Nþ1 ¼ 0,
successive matrix-vector multiplications according to the transmission equations (4.34), (4.39) and/or
(4.42) yield bR

n for decreasing n. Note that these computations involve decreasing exponentials by
multiplications with Ên when aLþn and �bRþ

n are formed according to equations (4.18) and (4.31), respectively.
At the same time, to avoid multiplications with Ê�1

n and spurious exponential magnification of round-
off errors, bL

n and �aRn are computed according to equations (4.10) and (4.11), respectively, using
stabilization with the reflection matrices. In effect, the boundary conditions bNþ1 ¼ bL

Nþ1 ¼ 0 (RN+1 = 0)
and �a1 ¼ �aR1 ¼ 0 (�R1 ¼ 0), respectively, safely control these computations.
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Figure 3. Coupled-mode surface-displacement amplitude curves for an example with three alluvium-valley anomalies as described
in the text. A plane SH wave is incident from below at three different propagation angles relative to the positive x-axis: (a) 5°, (b)
45° and (c) 90°. The amplitude results are given relative to the incident-wave amplitude, and the star symbols indicate
corresponding results from Zhang et al. [41, fig. 5].
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4.4. Example
Figure 3 concerns an example from Zhang et al. [41, Sec. 4.2]. The medium, without absorption and with
a flat surface at z = 0 (km), is homogeneous except for three similar semicircular alluvial valleys with
radius a, centred at (x,z) = (−4a,0), (0,0) and (4a,0), respectively. With ρ and β denoting alluvium
density and shear-wave velocity, and ρ0 and β0 denoting corresponding values for the surrounding
bedrock, ρ/ρ0 = 2/3 and β/β0 = 1/3. A plane SH wave with frequency β0/2a is incident from below at
three different angles to the horizontal plane: (a) 5°, (b) 45° and (c) 90° (vertical incidence). In (a) and
(b), the wave direction is to the right (increasing x).

For all numerical results, there are certain control parameters affecting the trade-off between accuracy
and efficiency. The main ones for the present coupled-mode computations are the number of strip
regions (N + 1), zb and the other parameters for the artificial medium truncation, and the number of
included normal modes in each strip region. For figure 3, each alluvial valley is discretized with about
70 strip regions of varying thickness. Compared to the wavelength (2a in the bedrock), a fine x-
discretization is needed, adapted to the local alluvium–bedrock interface slope [47]. Furthermore, zb =
50a for figure 3a and zb = 15a for figure 3b,c. In each case, differential-evolution optimization according
to §4.1, with zs = 3a, provides suitable parameters for the artificial absorption at depth. The number of
included normal modes in each strip region is 503 for figure 3a and 200 for figure 3b,c.

The surface-displacement amplitude results show satisfactory agreement with the corresponding
ones (without absorption) in [41, fig. 5], indicated by star symbols in figure 3. Note the significant
ground-motion amplification within the soft valleys. Also note the clear wave shielding of the middle
valley by the left one in figure 3a with almost horizontal incidence from the left. The shielding of the
right valley is less effective because of the slightly non-horizontal incidence, the greater distance from
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the left valley, and the shielding of the middle one. Using partial-wave decomposition, this example is

revisited in §5.3 for quantitative assessment of (multiple) scattering by the alluvial valleys.
After the design of the artificial medium truncation, the computations involve the following four

steps: computation of the modal horizontal wavenumbers km,n, computation of the normalized mode
functions Zm,n(z), computation of the mode-coupling matrices Fn, Gn and �Fn, �Gn, and the actual
coupled-mode computations with reflection-matrix recursion and stabilized back-propagation
according to §§4.2 and 4.3. The first step is typically the most time-consuming. Note that the results
from the first three steps can be reused for computations with other directions of plane-wave
incidence, for example.

Assume, for simplicity, that the finite number of modes included in the computations, denoted NM, is
about the same in all strip regions. In general, the needed N and NM are both roughly proportional to the
frequency. For the last of the four computation steps, the computational work is roughly proportional to
NN3

M, since the reflection-matrix recursions involve inversions of matrices of size NM ×NM. Some
variations may of course occur, depending on the particular recursion option from §4.2 and the
number of receivers. For figure 3, with a standard serial home personal computer, the corresponding
CPU times are 481 s for figure 3a, and 27 s for each of figure 3b,c. The root-mean-square deviations
from results obtained by doubling N and NM are less than 1% of the maximum amplitude, indicating
the accuracy.
i.10:230352
5. Field decomposition into partial SH waves
The partial waves from §2 are now simply denoted v0 (the basic one), and v j0s

jl ,...,j2,j1
(the additional ones).

As before, s ¼ � or þ and j0, j1, …, jl denote anomaly regions (A, B, …). A v j0�
jl ,...,j2,j1

wave starts with a
bX¼j0 source vector to the left involving a C function, while a v j0þ

jl ,...,j2,j1
wave starts with an �aX¼j0 source

vector to the right involving a F function.

5.1. Reflection-matrix recursion with successive restarts
It is in fact easy to adapt a computer program for computation of the full field to computation of partial
waves for specified anomaly regions and corresponding connection strips. Still apply the reflection-
matrix recursions according to equations (4.23), (4.28), (4.30) and (4.36), (4.41), (4.43) throughout the
whole medium, from n =N to n = 1 and from n = 2 to n =N + 1, respectively. Now, however, restart the
recursion with a vanishing reflection matrix in the right-hand side upon entry to an anomaly region
from one of the connection strips. This procedure automatically provides the elementary reflection
matrices RA, RB, … and �RA, �RB, … for the anomaly regions, cf. figure 2.

It is not necessary to compute the transmission matrices TA, TB, … and �TA, �TB, … explicitly. Typically,
transmission is best handled by sequential matrix-vector multiplications according to the technique with
stabilized back-propagation from §4.3.

5.2. Computation of the additional partial waves
The transmission of a v j0s

jl ,...,j2,j1
wave through a connection strip is easily done, using the appropriate Ên

matrix. In particular, the pertinent bX¼j0 or �aX¼j0 vector is initially transmitted in this way. The
transmission through the involved anomaly regions is done with stabilized back-propagation,
incorporating the backward-going waves; cf. §4.3. The reflection matrices obtained by recursion with
successive restarts according to §5.1 are the appropriate ones for this purpose, as well as for the
reflections from the anomaly regions. Since the additional partial waves do not include source terms,
except for the initial bX or �aX vector, the involved equations (4.18) and (4.31) are simplified.

Concerning the reflections from the anomaly regions, it is instructive to consider a medium with
two anomaly regions, A and B, separated by connection strip n. In strip n, vðx, zÞ ¼ v0ðx, zÞþ
Fnðx, zÞ � ð�aA þ D�aÞ þCnðx, zÞ � ðbB þ DbÞ, where D�a ¼ �Rn � Ên � ðbB þ DbÞ and Db ¼ Rn � Ên � ð�aA þ D�aÞ.
It follows that

D�a ¼ �Rn � (I� Sn � �Sn)
�1 � Ên � (Rn � Ên � �aA þ bB) ð5:1Þ

and

Db ¼ Rn � (I� �Sn � Sn)
�1 � Ên � (�aA þ �Rn � Ên � bB): ð5:2Þ
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Note the appearance of the same inverse matrices as in equations (4.44) and (4.45). Expansion of the
inverse matrices in geometric series provides the additional partial waves. When A and/or B are split,
with more anomaly regions and connection strips, the corresponding refined partial-wave
decomposition follows from the two-port algebra according to §2.2 together with the elementary
reflection matrices according to §5.1.
5.3. Narrow-band example
Returning to the example case from §4.4, introduce three anomaly regions: A for x <−3a, B for |x| < a
and C for x > 3a. Note that each anomaly region covers one of the alluvium-valley anomalies. There
are two intermediate connection strips: one for −3a < x <−a, and one for a < x < 3a. Restriction is now
made to the case from figure 3b, with incident-wave propagation angle 45°.

Figure 4a shows the corresponding basic partial wave v0. Note the constant relative amplitude 2 in the
two connection strips, resulting from the reflection of the plane SH wave at the free surface. Some
modulation of the relative amplitude 2 appears for x <−5a in anomaly region A and for x > 5a in
anomaly region C, because of scattering from the alluvial valley in A and C, respectively. There is
some asymmetry in the field because of the oblique incidence. As expected, the v0 fields within the
three alluvial valleys agree.

Figure 4b shows the (coherent) sum of all essential additional partial waves v j0s
jl ,...,j2,j1

. This field results
from remaining effects of single and multiple scattering by the alluvial valleys. (As already noted, some
single-scattering effects appear in figure 4a, for |x| > 5a there, because of the extension of anomaly
regions A and C beyond their pertinent alluvial valleys.) In each anomaly region, particularly the
middle one B, the scattering contributions from the other anomaly regions are significant. The
scattering into the two connection strips is also essential. The (coherent) sum of the waves in figure
4a,b agrees very well with figure 3b.

As a complement to figure 4, with a different amplitude scale, figure 5 shows some individual
additional partial waves v j0s

jl ,...,j2,j1
. Except vA+ and vC−, in figure 5a,e, respectively, all of them involve

multiple scattering (reflections) by the alluvial valleys. Note the successively decreasing amplitudes in
each of the two upper rows, because of the increasing number of reflections. Figure 5k–n shows, cf.
vAþA,B,A,B and vC�C,B,C,B in figure 5o,p with five reflections, that transmission through anomaly regions may
imply larger amplitude losses than reflections.
5.4. Broad-band example
For a broad-band example, consider [41, Sec. 5] with another case with a flat surface at z = 0 km and three
similar semicircular alluvial valleys. This time, as illustrated in [41, fig. 9(b)], the valleys have radius 1 km
and they are centred at (x,z) = (− 8,0) km, (0,0) km, and (8,0) km, respectively. With ρ and ρ0 denoting the
density in the alluvium and in the surrounding homogeneous bedrock, ρ/ρ0 = 2/3. The shear-wave
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Figure 5. Some individual additional partial waves included in the sum in figure 4b. The first row shows the partial waves (a) vA+,
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velocities in the alluvium (with some absorption) and in the bedrock are 0.5 (1− 0.1i)1/2≈ 0.501−
0.025i km s−1 and 1 km s−1, respectively.

A plane SH wave is incident from below at the propagation angle 45° relative to the positive x-axis.
The spectrum of the source pulse, not exactly as in [41, Sec. 5], is limited to the frequency band (0.07,
1.53) Hz. Coupled-mode computations for time-domain results are performed with Fourier synthesis
using about 50 discrete frequencies within this band. Each alluvial valley is thereby discretized with
about 35 strip regions, for simplicity the same number for all frequencies. The source-array depth zs is
2 km, while the depth zb varies from 5 km for the highest frequencies to 21 km for the lowest ones. As
in the previous example, differential-evolution optimization according to §4.1 furnishes appropriate
parameters for the artificial absorption. In this broad-band case, good results are obtained with only
45 normal modes in each strip region, for each frequency. With averaging over frequencies, fewer
modes are apparently needed than for narrow-band cases.

Figure 6a shows 100 time traces for the surface displacements between x =−10 km and x = 10 km and
a certain time window of length 30 s. The arrivals within |x| < 4 km can be favourably compared to
those in [41, fig. 10(e)].

To aid the interpretation of the arrivals, using partial waves, introduce three anomaly regions: A for
x <−7 km, B for |x| < 1 km and C for x > 7 km. Note that each anomaly region covers one of the
alluvium-valley anomalies. There are two intermediate connection strips: one for −7 km < x <−1 km,
and one for 1 km < x < 7 km.

Figure 6b shows the corresponding basic partial wave v0. Within the connection strips, there is of
course only one arrival, the direct one as doubled by the surface reflection. Within an alluvial valley,
there is a delayed direct arrival followed by a later reflection from the semicircular valley boundary;
cf. [41, fig. 10(b)] for |x| < 1 km. Of course, the v0 fields within the three alluvial valleys agree.
Because of the extension of anomaly regions A and C beyond their pertinent alluvial valleys, there is a
reflected arrival from the valley in A for x <−9 km, and a scattered arrival from the valley in C for
x > 9 km. For the middle valley, the corresponding arrivals are clearly seen in the total field of figure
6a. In [41, fig. 10(b,e)], they are denoted SL01 and SR01, respectively.
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Figure 6c shows the (coherent) sum of all essential additional partial waves v j0s
jl ,...,j2,j1

. The (coherent)
sum of the waves in figure 6b,c agrees very well with figure 6a. Note the rather strong waves at (x,
t)≈ (−6.9 km,−1 s) and (x, t)≈ (1.1 km, 4.5 s) in figure 6c, caused by scattering by the right ends of
the left and middle alluvial valleys, respectively. By destructive interference with the corresponding
displacements in figure 6b, some slight wave shielding appears in figure 6a. This wave shielding is of
course more significant at more horizontal incidence [41, Sec. 5].

Magnified compared to the previous figure, figure 7 shows some individual additional partial waves
v j0s
jl ,...,j2,j1

. It is clear that the rather strong waves at (x, t)≈ (−6.9 km,−1 s) and (x, t)≈ (1.1 km, 4.5 s) in
figure 6c belong to vA+ shown in figure 7a and vB+ shown in figure 7b, respectively. Reflections from
the front as well as back sides of an alluvial valley give rise to a clear doublet structure of the partial
waves in figure 7c–f. A doublet structure, albeit weak, can be discerned in figure 7a,b too. It is caused
by reflections back and forth within anomaly regions A and B, respectively. Forward scattering from
the alluvial valley within anomaly region j0 causes prolongation of the initial arrival for v j0þ

jl ,...,j2,j1
. This

is clearly seen for vA+, vB+ and vBþC in figure 7.
Within a traversed alluvial valley, reflections from its far side appear for each of the additional partial

waves in figure 7. Note that the multiply scattered (reflected) waves vB�A and vBþC , significantly magnified
in figure 7e,f, are weak and barely notable in figure 6c. Effects of multiple scattering can be larger when
the anomalies are closer together.
6. SH waves in periodic media
Assume that N≥ 2 and modify the y-independent solid medium from §4 for x < x1 and x > xN, such that
the resulting medium is periodic with period d = xN− x1. In particular, za;1 = za;N, ρ1(z) = ρN(z), β1(z) =
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βN(z), za;2 = za;N+1, ρ2(z) = ρN+1(z) and β2(z) = βN+1(z). Furthermore, the source function w(x) satisfies w(x +
d ) = w(x).

For computation of the full field, the aim is now to reduce the computations to a single period or unit
cell: the one between x1 and xN. To that end, regard this part of the medium as a two-port with input field
vectors a and �b from the strip regions to the left and right, respectively, and corresponding output field
vectors b and �a to these strip regions, respectively. Figure 8 gives an illustration.

6.1. Computations for the unit cell with one medium period
A difference from the two-port discussion in §2.2 is that the sources at z = zs within the two-port now
contribute. In the present case, cf. equation (2.1),

b ¼ R � aþ �T � �bþ bS and �a ¼ T � aþ �R � �bþ �aS ð6:1Þ
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Figure 8. Vertical xz-plane as in figure 1b, but for the periodic medium with unit cell between x1 and xN. The vectors a and �b
provide input from the surrounding strip regions, with corresponding output vectors b and �a.
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with bS and �aS representing the contributions from the sources. These source vectors are readily
computed according to §4 for the related non-periodic medium with strip regions 1 and N + 1
extending to x =−∞ and x =∞, respectively, and with the source function w(x) set to zero outside the
unit cell.

Assume, for simplicity, that the periodic medium is laterally continuous across x = x1 and x = xN, such
that za;1 = za;2 = za;N = za;N+1, ρ1(z) = ρ2(z) = ρN(z) = ρN+1(z) and β1(z) = β2(z) = βN(z) = βN+1(z), and that w(x) is
a regular function at x = x1 and x = xN. Then it follows by periodicity that

�a ¼ E � a and �b ¼ E � b, ð6:2Þ
where E = diagm (exp(ikxd )) = exp(ikxd ) I. Solution of equations (6.1) and (6.2) yields

b ¼ [I� (�Tþ R � ðE� TÞ�1 � �R) � E]�1 � [R � ðE� TÞ�1 � �aS þ bS] ð6:3Þ
and

a ¼ [E� T� �R � E � ðI� �T � EÞ�1 � R]�1 � [�R � E � ðI� �T � EÞ�1 � bS þ �aS]: ð6:4Þ

The field in the unit cell follows by summing the solution for the related non-periodic medium and
the transmitted fields arising from the vectors a from the left and �b from the right, respectively. These
transmitted fields are efficiently computed by stabilized back-propagation, this time using the
reflection matrices available from the handling of the related non-periodic medium.

Explicit computation of the transmission matrices T and �T is actually needed in this case, to compute
b and a from equations (6.3) and (6.4). Concerning T, matrices from equations (4.21), (4.26) and (4.29)
must be multiplied, while �T involves matrices from equations (4.34), (4.39) and (4.42).
6.2. Example
Figure 9 concerns an example from Zhang et al. [41, Sec. 3.2], originally treated in [56, Sec. 5.2]. The
medium, without absorption, is now homogeneous with a flat and free surface at z = 0 (km)
interrupted by an infinite number of periodically distributed down-going semicircular rigid (!)
boundaries with radius a, centred at (x,z) = (8la,0) for l = 0, ±1, ±2, …. As in §4.4, a plane SH wave
with frequency β0/2a, where β0 is the shear-wave velocity, is incident from below at three different
angles to the horizontal plane: (a) 5°, (b) 45° and (c) 90° (vertical incidence). In (a) and (b), the wave
direction is to the right (increasing x).

So far, the upper (solid-)medium boundary has been assumed to be free. As detailed in appendix A,
the rigid case necessitates some modifications of §§4.2 and 3.

The coupled-mode computations for figure 9 are restricted to the unit cell with |x| < 4a, and the
involved semicircular anomaly at |x| < a is discretized with about 70 strip regions of varying
thickness; cf. the x-discretization in §4.4. The depths zb and zs, as well as the parameters for artificial
absorption, are as in §4.4, for each of the three incidence-angle cases.

The surface-displacement amplitude results in figure 9 agree well with the corresponding ones in [41,
fig. 3] and [56, fig. 9], which are indicated by star symbols in figure 9. Note the vanishing coupled-mode



3

4(a)

2

re
l s

ur
f-

di
sp

l a
m

pl

1

0
–4 –2 2 40

x/a

3

4
(b)

2

re
l s

ur
f-

di
sp

l a
m

pl

1

0
–4 –2 2 40

x/a

3

4
(c)

2

re
l s

ur
f-

di
sp

l a
m

pl

1

0
–4 –2 2 40

x/a

Figure 9. Coupled-mode surface-displacement amplitude curves for the example with peridically distributed semicircular rigid
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displacements at the semicircular boundary. The results in the two previous papers were obtained using
high-velocity semicircular inclusions to mimic the desired rigid case, leading to non-vanishing
corresponding displacements.

Using the technique with partial waves from §§2 and 5, it would be easy to investigate how the
response in figure 9 arises from multiple scattering among the down-going semicircular rigid-
boundary anomalies. Result curves of the same type as in figures 4 and 5 would appear.
7. Computational variants
The present paper focuses on modal reflection matrices as a convenient tool to transport boundary
conditions along the x-axis: R = 0 from the right end, and �R ¼ 0 from the left end. These reflection
matrices relate coefficient column vectors for an expansion of v(x, z) in each strip n in terms of the
row vectors Fnðx, zÞ and Cnðx, zÞ; cf. equations (4.6), (4.10) and (4.11).

By the definition of Fnðx, zÞ and Cnðx, zÞ, expansions of μn(z) ∂v(x,z)/∂x and −iωv(x,z) in each strip n
in terms of the corresponding row vector Zn(z) = {Zm,n(z)} follow from the previous expansion of v(x, z).
Linear relations between the corresponding coefficient column vectors appear with so-called impedance
and admittance matrices, which are easy to relate to the reflection matrices; cf. [57, eqn (13)]. Obviously,
related recursions for impedance matrices could be used instead of the reflection-matrix recursions in
§4.2, and the boundary conditions could be transported using impedance matrices. Some texts, e.g.
[57] for shape optimization of acoustic horns and [58] for acoustic simulation of the vocal tract, apply
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the impedance-matrix approach. Just as for the reflection matrices [7], differential equations of Riccati

type appear in the continuous case without medium discretization.
It is also natural to compare to well-known methods for computation of seismic P-SV waves in

multilayered laterally homogeneous media. After Fourier- or Hankel-transformation of a horizontal
coordinate to the wavenumber domain, a two-point boundary-value problem appears for a system of
ordinary differential equations in the depth variable z. Several numerical methods have been
proposed to solve this problem in an unconditionally stable way. For example, Kennett [16] combines
2 × 2 R/T matrices for the different layers recursively, while Wang & Rokhlin [59] compute a 4 × 4
global stiffness matrix recursively from individual layer stiffness matrices. Stiffness and compliance
matrices relate stresses to displacements, and vice versa, combining both sides of a (composite) layer.
Concerning v(x, z) in the present paper, a corresponding stiffness-matrix method would obviously
relate the two expansion column vectors for μn(z) ∂v(x,z)/∂x at two different x-values, with
corresponding n-values, to the two expansion column vectors for v(x, z) at these two x-values.
Equation (2.1) would be useful to relate stiffness and compliance matrices to R/T matrices, but these
things are not pursued here.

To avoid spurious reflections from down-going waves, an artificial medium truncation involving a
classical absorbing layer is carefully designed using global optimization in §4.1. It is a convenient
choice, since standard methods for mode expansion with computation of modal wavenumbers and
mode functions are directly applicable. There are good alternatives, however, which should be able to
remove the spurious reflections with a much thinner artificial layer. Givoli [60] describes some
milestones in the development of absorbing boundaries and layers, including Dirichlet-to-Neumann
boundary conditions, PML (perfectly matched layer), and high-order absorbing boundary conditions.
The main interest has concerned applications for purely numerical methods, such as finite elements
and finite differences. This is true for the PML approach too, with a recent review in [61], but this
technique has attracted some interest within a modal framework as well.

With PML, so-called PML modes appear in addition to trapped and leaky modes [62]. These PML
modes are significant mainly within the PML region. The inclusion of PML modes in the modal basis
may need some care, however. For a Pekeris waveguide, Zhu & Lu [63] provide approximate
solutions for the PML modes, which replace the pertinent branch-cut integral. According to Zhu &
Zhang [64], the eigenfunctions of the modified Helmholtz operator have no orthogonality in a
bounded domain with a PML, and the authors derive pertinent conjugate eigenfunctions for the case
of a Pekeris waveguide.
8. Concluding remarks
For a solid medium that is invariant in the horizontal y-coordinate direction, §2 presents a
mathematically exact decomposition of the seismic wavefield with partial waves. With §§3 and 4 as
additional background, details and examples for the scalar case with pure SH waves follow in §5. The
decomposition is defined using discrete coupled-mode theory and combination of elementary
reflection matrices, conveniently computed by recursion with successive restarts. It facilitates physical
interpretation and allows detailed assessment of multiple scattering among horizontally displaced
anomaly regions. Related field decompositions into partial waves have been briefly indicated at the
ends of [55, Sec. V B] and [46, Sec. VI]. The emphasis there is on reflections (or scattering) from the
interiors and exteriors, or sides, of particular source and receiver regions.

Essentially as an adaptation of the 3D point-source case in [46, Sec. V], §4 develops the details of a
discrete coupled-mode computation method for 2D SH-wave scattering at plane-wave incidence from
below. The medium is discretized into a number of laterally homogeneous strip regions separated by
vertical interfaces. A horizontal source array generates the incident plane SH wave according to
equation (3.3) in §3. There is an artificial boundary at depth zb, allowing a normal-mode
representation of the field in each strip region. Global optimization techniques are applied to design
artificial absorption in a layer above this boundary to minimize reflections from it (§4.1).

Recursion of modal reflection matrices and stabilized back-propagation of modal expansion-
coefficient vectors are essential features of the computation method. Compared to the coupled-mode
method for a 3D point source in [46, Sec. V], the introduction of a horizontal source array necessitates
a double pass of the stabilized back-propagation: a full pass in each direction (§4.3), to pick up source
contributions from the left and from the right, respectively. To add a lot of point- or line-source
contributions, with stabilized back-propagation in both directions from each, would not be efficient.
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As a consequence, the �ans and bns vectors from Ivansson [46, eqn (35)] are split in equation (4.6) into �an,

�aLn, �a
R
n and bn, b

L
n, b

R
n , respectively. The source distribution within each x-segment is handled analytically

by integration. Modifications to handle a periodic medium efficiently appear in §6.
For the related continuous coupled-mode method of Kennett [7], the stabilized back-propagation

would correspond to integration of equation (3.1) there as modified by insertion of equation (3.4)
there. Note that the stabilized back-propagation avoids explicit computation of transmission matrices
by matrix multiplications. Transmission through a sequence of strip regions, with corresponding field
computations, only involves sequential matrix-vector multiplications according to equations (4.21),
(4.26), (4.29), (4.34), (4.39), (4.42), (4.10) and (4.11). Composite transmission matrices are only needed
in §6, for computation of the full field in a periodic medium with restriction to a single unit cell.

Note that the plane wave according to equation (3.3) breaks down if kx = ω/β. To handle a
horizontally incident plane wave, either make an approximation with a slightly sloping incidence, or
use a point source or vertical source array, cf. [54, Sec. 3.3.3], at a far range. A comparatively large zb
may be needed (§4.1).

The illustrative examples (§§4.4, 5.3, 5.4 and 6.2) are all taken from Zhang et al. [41], focusing on multiple
semicircular anomalies. Compared to the (semi-)analytical method in [41], the presented coupled-mode
approach allows direct application of addition rules for R/T matrices to isolate partial waves and
handling of anomalies of arbitrary shape, for computation of the total field as well as partial waves.
Applications to (multiple) canyons, basins, tunnels, layered inclusions, etc., and combinations thereof, are
straightforward. To handle a cavity in the 2D medium, use strip regions with two parts, one above and
one below the cavity. Calculate modes separately for each of two such parts. Let a mode for an upper
part vanish in the corresponding lower part, and vice versa. The method is particularly convenient for a
medium with rectangular anomalies, without any need for discretization of a sloping boundary.

Except for §2, only the pure SH case is treated in the present paper. Extension to the case with a y-
coordinate dependence of the waves, according to a factor exp(ikyy), would be possible, however.
Conversions between SH (Love) and P-SV (Rayleigh) modes would appear at the vertical x = xn
interfaces. In equation (4.6), v would be replaced by the displacement vector u = (u, v, w)T, with
components u, v, w in the x-, y-, z-directions, respectively. Correspondingly, Fn and Cn would be
matrices with three rows, and the Zm,n would be column vectors Zm,n. As shown in [9], appropriate
orthogonality relations exist for the modes. Actually, the reflection-matrix formalism in §§4.2 and 4.3
would be applicable with minor changes, but the mode-coupling matrices would of course be
different. They would involve Rayleigh–Rayleigh, Love–Love, as well as Rayleigh–Love coupling.
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Appendix A. Modification of §4.2 for a different type of upper boundary
When part of the upper solid-medium boundary is rigid rather than free, some modifications are needed.
This is relevant for the example in §6.2. Of course, the computation of the modal horizontal
wavenumbers km,n and normalized mode functions Zm,n must respect the free or rigid-boundary
condition at za;n for each strip region n.

Concerning §4.2, the integrations over the pertinent depth intervals must be reconsidered; cf. the
difference between Secs IV and III in [46]. In §4.2.1, equations (4.19)–(4.23) and (4.24)–(4.28) now
apply when In+1⊆ In and Inþ1 $ In, respectively. In §4.2.2, equations (4.32)–(4.36) and equations
(4.37)–(4.41) now apply when In−1⊆ In and In�1 $ In, respectively. Of course, these interchanges of the
equations also apply when they are used in connection with the stabilized back-propagation
according to §4.3.

https://oalib-acoustics.org/
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Appendix B. Addition to Ivansson [46, Sec. V]
Note that, after division with the reference length rref, the integrand p̂ðx, z; kÞ cosðkðy� ysÞÞ in [46, eqn
(29)] solves the physical line-source problem with body force per unit volume given by −(M/
2πrref ) grad[δ(x− xs) cos(κ(y− ys)) δ(z− zs)]. The inclusion of the ‘normalization factor’
p�1ðk2m,n � k2Þ�1=2 in [46, eqn (30)], implying a variable transformation for the appearing column
vectors an and �ans , necessitates addition of the following paragraph at the end of Ivansson [46, Sec. V
A]. It was unfortunately forgotten there. Some of the resulting equations are similar to corresponding
ones in §4.2 of the present paper.

Finally, the normalization factor in eqn (30) necessitates some additional changes. With
Kn ¼ diagmðpðk2m,n � k2Þ1=2Þ, replace An with Knþ1 �An �K�1

n , Bn with Kn+1 ·Bn, and Cn with Cn �K�1
n .

Furthermore, replace �Bn with �Bn �K�1
n , �Cn with Kn�1 � �Cn, and �Dn with Kn�1 � �Dn �K�1

n . In eqns (9) and
(13), replace an+1 with K�1

nþ1 � anþ1 and an with K�1
n � an. In eqns (10)–(11) and (14)–(15), replace Rn+1

with Rn+1 ·Kn+1 and Rn with Rn ·Kn. In eqns (18)–(19) and (22)–(23), replace �Rn�1 with K�1
n�1 � �Rn�1 and

�Rn with K�1
n � �Rn.
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