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ABSTRACT

This thesis discusses two approaches to enhancing the performance of

intelligent autonomous agents in a computer combat simulation environment

so that their performances more closely model the tactical decisions made by

human players. The first approach addresses incorporating a genetic

algorithm (GA) into the NPSNET Autonomous Force Expert System

(NPSNET AF), while the second approach focuses on enriching the existing

rule base and decision strategies. First, we develop a functional genetic

algorithm with the intent of providing dynamic, real-time learning within the

NPSNET AF. However, we conclude that the GA is better suited for a static

problem, such as artillery battery registering of fires, rather than for the

dynamic battlefield of the NPSNET. Second, we enrich the NPSNET AF

expert system by enabling it to choose from among four formations and by

providing a mechanism for transitioning between them. We enable the expert

system to make formation decisions based upon general terrain characteristics

and target location.
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I. INTRODUCTION

The requirements of modem warfare demand that battlefield commanders

be capable of making increasingly complex decisions. In order to make these

decisions, these commanders need extensive training support. The real-world

training required by the commanders can be extremely expensive and

dangerous. Computer simulation in which players compete against

autonomous agents can provide a cost-effective and less hazardous training

medium. In order for this training to be of value, though, autonomous agents

must have tactical decision-making capabilities similar to the human players.

A. OBJECTIVES

The goal of our work is to enhance the performance of intelligent

autonomous agents in a combat simulation environment so that their

performances more closely model the tactical decisions made by human

players. We focus our efforts on the NPSNET autonomous forces system

(NPSNET AF) (Bhargava and Culpepper, 1992). Specifically, we attempt to

improve the human-like qualities of the NPSNET AF by providing it with the

capability to learn from its actions through the application of a genetic

algorithm (GA) (Goldberg, 1989) and by improving its existing rule base in

three ways. First, we provide agents with more formation choices. Second,

we provide the agents with the ability to transition between formations. Last,

we provide the agents with a decision-making strategy for selecting a

particular formation.



B. MOTIVATION

1. Intelligent Agents

Combat simulation with autonomous forces can be a cost-effective and

safe training aid. Full scale battlefield maneuvers require a dedicated military

force complete with combat equipment. Such maneuvers are generally very

costly. Computer simulation provides a possible avenue for reducing these

costs. Computer simulation also provides a safe learning environment in

which the participants can train and make mistakes without the serious health

risks associated with live weapons fire and personnel and machine maneuvers

(Braudaway, 1993). An autonomous system requires fewer users to operate it

than either a semi-autonomous system or a non-automated system. With an

autonomous system, the user can simulate training scenarios in which the user

competes with a hostile force without the need for extra personnel to assume

the role of the opposing force.

In order for an autonomous system to be credible, though, it must

depict computer-generated agents in a way humans consider realistic (SikSik,

1993). Though rule-based systems provide a means of emulating human

decision making, they generally do not learn from their actions. In other

words, if a non-stochastic, rule-based system is given the same set of stimuli

over and over, it repeats the exact same actions, no matter what the

consequences of those actions are. People, on the other hand, learn from

their actions. The results of the action provide feedback to the person who

initiates the action. If the results are favorable, the person tends to continue

with the same action given the same response. If the results are only partially

favorable, the person attempts to improve his performance by altering the
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actions he/she undertakes given the particular set of stimuli. If the results are

unfavorable, the person generally tries something completely different. For

an autonomous force system to be truly credible and of a realistic training

value, it should be capable of learning from its actions. An autonomous force

system based solely upon the use of an expert system is not ideal. The

system should also include a machine learning methodology which gives the

system the ability to learn new actions based upon feedback it receives from

its previous actions.

2. Mature Rule Base

Combat simulation requires a realistic environment in which agents

within the environment display plausible behavior. Agent behavior within the

NPSNET AF is maintained within its rule base. Therefore, a mature rule base

that captures realistic behavior and capabilities is essential. One of our goals

is to provide the system with the ability to perform more realistically, through

an expanded or "matured" set of rules.

C. PROPOSED SOLUTION

1. Apply Genetic Algorithm (GA) As A Machine Learning Tool

For the NPSNET AF to be a worthwhile training environment, it should

be capable of learning through some machine learning technique. Without

learning, the NPSNET AF does not emulate human behavior to its fullest

potential because it currently does not learn from its past actions. We address

the use of a GA as a machine learning tool for the NPSNET AF. We do so

because the GA is a machine learning technique in which the system may

learn new actions based upon feedback from previous actions. We initially

chose to use a GA to provide real-time learning in a dynamic environment.
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However, we conclude that this approach is incorrect. We believe that

providing the NPSNET AF with the ability to emulate battlefield learning

through a genetic algorithm learning system such as the anytime learning

system proposed by Grefenstette and Ramsey (1992) will eventually enhance

the realism of the NPSNET AF training environment.

2. Add Formation Control Rules to the Rule Base

Not only must the NPSNET AF be capable of making intelligent

decisions, but it must also be capable of performing believable actions based

on its decision rules. Therefore, we enhance the NPSNET AF rule base in a

three step approach. We make these enhancements in the area of

platoon/tank movement. First we give the AF the power to choose between

four formations based upon target location and general terrain characteristics.

Second we provide a mechanism, which we call the echelon n, for

transitioning between formations. Last, we give the system the ability to

properly maneuver the AF in the selected formation.

D. THESIS ORGANIZATION

In Chapter II, we discuss the importance of computer simulation and

provide background information on the NPSNET autonomous forces, on

natural evolution, on genetic algorithms, and on expert systems and machine

learning. In Chapter III, we discuss static vs. dynamic systems and the

applicability of dynamic, real-time learning capabilities to the NPSNET AF.

In Chapter IV, we analyze autonomous force movement and describe changes

we make to the NPSNET AF, including our echelon (n) formation transition

algorithm. In Chapter V we discuss how genetic algorithms work and our

reasons for not implementing a genetic algorithm within the NPSNET AF.

4



Lastly, in Chapter VI, we summarize our work and address possible future

efforts for enhancing the NPSNET AF.
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II. BACKGROUND

A. SIMULATION

1. Importance of Simulation

One of the greatest values of automation lies in using a computer to

study the performance of real-world systems without the expense or hazards

normally associated with these systems. Computer simulations can help us

predict and understand events in the real world if the model is sufficiently

accurate and believable. Of five basic reasons for using automated simulation

systems (Reddy, 1993) - optimization, "what-if' scenarios, proof-of-

capability, requirements analysis, and personnel training -- we address the last

in this thesis. Anderson et al. (1991), believe that computer simulations can,

in fact, produce a more efficient and/or effective model of the real-world

system.

Although all training can be computer-simulated in some manner or

another, we believe that not all training should be. The spectrum of

practicality in computer simulation, specifically, runs from the trivial to the

nearly critical. At one end of the continuum, it is hard to imagine preparing

troops for combat by using a computer to simulate running or lifting weights.

However, at the other end of the spectrum, some tasks practically mandate

the need for simulation. A good example is that of flight training simulators,

which are used to prevent loss of life and aircraft due to the inexperience of

student pilots.

Personnel training simulators run from systems for training individuals

to systems for conducting staff-level training. Although the benefits from
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simulation are often hard to quantify, few would disagree as to the need for

improving combat simulators. Our work focuses on making the simulation of

the NPSNET AF more realistic by attempting to give the user a more

intelligent and believable opponent force against which to fight.

2. Types of Autonomous Simulation

A simulation which uses autonomous forces can call for a variety of

methods in which a user may interact with the system and play against an AF.

The least interactive method is a fully autonomous simulation in which there

is no human interaction. The user generally watches a scenario but provides

no controlling input. This requires a scripted battle, perhaps based on actual

past battles, to be programmed into the autonomous behavior of the system,

and it is generally meant to teach a specific lesson to the user without his

input. These types of simulators can be found in state parks and museums.

They serve a military purpose by providing a means to analyze and learn from

previous battles.

The second, or semi-autonomous (Gat, 1993) method of interaction lets

the user control some elements. This method calls for a "man-in-the-loop"

and and the agents in this environment are called semi-autonomous forces

(SAF). At this level, the user can direct the actions of agents, or he can

relinquish control to the computer, at which time the vacated agent becomes

autonomous.

NPSNET AF allows both autonomous and semi-autonomous scenarios.

The user may either control his own vehicle or simply ride in an autonomous

vehicle which he may not control. The NPSNET AF forces are autonomous

agents over which a human player has no control.
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B. BACKGROUND OF NPSNET AF

The NPSNET AF is the expert system which controls a computer-

generated autonomous force (AF). NPSNET AF was developed by Captain

Michael E. Culpepper, USA, (Culpepper, 1992), and Captain William C.

Branley, USA, (Branley, 1992) to further the goal of producing a viable

personnel training system. This autonomous force runs on Silicon Graphics

workstations in the NPS Computer Science laboratory. NPSNET AF directs

the movement of autonomous agents throughout the NPSNET battlefield with

no human interaction required for controlling the movement of the AF.

NPSNET is a three-dimensional, virtual-world, combat modeling system.

It uses a backbone ethernet system which the autonomous force can tap into.

NPSNET provides a 3-D graphical environment representing the training area

at Fort Hunter-Liggett, CA. It uses a flat-world model which does not

simulate earth curvature (Pratt, 1992). The NPSNET code is responsible for

tracking and displaying all vehicles a user sees at his terminal, whether they

be generated by the NPSNET AF, by other player programs, or by a local

SIMNET database.

The NPSNET AF is one of many independent processes (or player

programs) running on a network that communicates with the NPSNET.

Communication between the NPSNET AF and the NPSNET is done by

sending and receiving vehicle state messages via a communications routine

known as the network demon (Pratt, 1992).

Culpepper developed a tactical decision-making module, which is used in

the NPSNET AF. The principles and heuristics used by the module are

implemented in CLIPS, and the module is fully integrated with NPSNET. It
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tells NPSNET where the AF vehicles are, where they are going, and what the

status of each vehicle is. The tactical decision-making module is divided into

three sub-modules. They are 1) tactical command and control, 2) movement

and route planning, and 3) target engagement. The command and control

sub-module generates mission-oriented goals for the other two sub-modules

(movement and route planning, and target engagement).

Once the command and control sub-module generates a movement

objective, the movement and route planning sub-module determines the action

necessary to move the vehicle towards the objective in the following three

stages: establish a march route to the objective, make platoon movement

decisions, and make decisions as to individual tank movements (Culpepper,

1992).

Battlefield decisions are made at three basic levels: individual, crew, and

unit. These are distinct decisions on the battlefield, and they are distinct

within the tactical decision making module of the computer simulation

environment. Generally, as one progresses from individual to unit, the level

of decision making becomes more complex. Issues of what must be done

supersede concerns for how things must be done (Culpepper, 1992). We feel

this higher level of decision-making should be the focus of improvements to

C NPSNET AF. Accordingly, our rule-base-enhancement work focuses on

the tactical command and control sub-module.

C. NATURAL EVOLUTION

English Evolutionist Charles L. Darwin (1809-1882) applied evolution

theory to the natural world. Plants and animals, he theorized, are in a

constant struggle for food, water, space, and protection against predators and
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the environment itself. In his first book (Darwin, 1859), he fortified the then-

current theory on evolution and natural selection, espousing two main

premises: 1) some species stay in their environment and crowd others out,

and 2) other species will find new environments in which they can flourish.

From Darwin's work, it follows that when the environment changes

significantly, an organism must do one of three things: 1) adapt to survive in

the new environment, 2) move to a new environment where conditions are

relatively similar to the old one prior to the change, or 3) perish.

We note numerous similarities between real combat and natural evolution.

In both of these cases, the fittest individuals survive, while lesser ones either

move to a favorable environment or perish. We note that since a genetic

algorithm is based on the principles of natural evolution, which encompass

genetic "learning" from generation to generation, a GA seems to be a good

candidate to provide machine learning to the NPSNET AF battlefield

simulator.

Genetic learning depends, in large part, on the notion of fitness. Fitness is

the measure of an individual's likelihood of survival in a given environment.

On fitness, John Holland (1992) states:

Roughly, the fitness of a phenotype [individual] is the number of
its offspring which survive to reproduce in the next generation...
The fitness of an individual is clearly related to its influence
upon the future development of the population.

The purpose of the genetic algorithm is to constantly evolve toward the

best or fittest problem solution, moving from one population to another, and

remembering the best of each population as it goes. In the GA, one set of

10



input parameters (one possible solution set) to a problem under study is

represented as an individual. The individual's fitness is the suitability of these

inputs to solve the problem.

Darwin proposed that competition is an inherent part of survival of a

species. Following this competition theory, the genetic algorithm arrives at

its recommended solutions to a problem - the strongest solutions survive and

are "memorized" and the weak solutions "perish"- as the GA migrates

toward its best recommendation.

D. GENETIC ALGORITHMS

The "father of genetic algorithms," John Holland (1992), describes a

genetic algorithm as a programming technique for solving complex problems

which most humans cannot even begin to understand. The GA manipulates

strings of input parameters, which are encodings of solution sets to a problem,

and its goal is to find the best probable solution to the problem in question,

given a certain amount of time. While classical search techniques start with

an initial solution set and perform exhaustive searches for all possible

solutions, the GA conducts a guided, stochastic search through the solution

space.

A classical problem which can be solved by a search algorithm such as the

GA is the fifty-city Traveling Salesman Problem (TSP). This problem

involves a salesman who must visit each of fifty cities, and he wishes to travel

along the shortest possible path. According to Goldberg, "...[the TSP] is a

member of a class of problems believed to be unsolvable in polynomial time."

(Goldberg, 1989). The brute-force, exhaustive search method of finding the

best answer to this problem is to search every possible path. Since there are
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roughly 50 factorial, or 3.04 x 1064. ways for the salesman to complete his

task, some method of guiding the search is necessary. The average human

can find a solution to this problem intuitively by simply connecting the city

points on a map and measuring the distance along his chosen path. He does

so by informally guiding his own search. He makes his best guess by

discounting seemingly unreasonable solutions and focusing on what he

believes to be the most likely route. Though he has chosen a path, he can

never be sure that it is the best one.

Like the human, a genetic algorithm also conducts a guided search for an

optimal solution. A genetic algorithm uses an iterative search process.

During the first iteration, it initially selects a number of random solutions from

the search space and evaluates their ability to meet the shortest-distance

criteria of the TSP. On each iteration thereafter, the GA guides its search by

emphasizing the better probable solutions and deemphasizing the lesser ones.

The GA continues to search until it has met some pre-defined search criteria,

or until time expires on the search. At this point the GA arrives at its best

probable solution. However, one cannot say for certain that this solution is

the absolute optimal solution to the problem. It is what the GA believes to be

the most-likely optimal solution. Though there is no guarantee that the GA

will find the optimal solution to a problem, the GA will most likely find

solutions which are approximately optimal or "good enough" (Michalewicz,

1992).

E. EXPERT SYSTEMS AND MACHINE LEARNING

The NPSNET AF system is an expert system. It manipulates rules and

considers facts to move agents on the battlefield. To understand the
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NPSNET AF system, it is useful to know something of the background of

expert systems in general. In the 1970's, researchers focused their efforts on

modeling the knowledge of "experts." Knowledge engineering, as it has

come to be known, has its roots in the belief that human expertise can be

captured in computer programs. A human expert possesses vast knowledge

and uses intuitive reasoning to arrive at quick solutions based on only relevant

facts. Expert systems reach a decision based on a focused and probabilistic

search of known facts and rules. The expert system selects only the pertinent

rules for a given problem (focusing) and reaches the solution most likely to be

the "best" (probabilistic solution-finding) (Forsyth, 1989). This focusing

ability is an important strength of expert systems and is vital to computer

simulations, because the less time a system spends in making decisions, the

more computational effort it can devote to making graphic representations of

a simulated battle more realistic, and realism is an important aspect of

graphical computer simulation.

Machine leaning is the concept of developing computer systems that

simulate intelligence (Winston, 1984). The goal is not to replace humans

with computers, but merely to make computers that are capable of learning

new behaviors based upon certain input stimuli. One aspect of machine

learning, called cognitive computing, denotes a set of problem solving

methodologies which mimic the learning processes found in nature (Johnson,

1993). One such cognitive computing technique is the genetic algorithm. We

look at GAs because we view battlefield learning as an evolutionary process,

and the GA uses the precepts of natural evolution in conducting its search for

an optimal problem solution.
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III. MACHINE LEARNING FOR THE AUTONOMOUS FORCE

The NPSNET AF operates in a dynamic environment. NPSNET AF

agents operating within the environment elicit stimulus-response behavior as

defined by the system rule-base. Though the agents respond to their

environment, they do not learn new behaviors in response to a changing

environment or as a result of previous undersirable performance. We believe

that in order for autonomous agents to provide realistic responses in a

computer combat simulation environment, the agents need to be able to learn

how their actions affect their environment and how to tailor their actions in

response to a dynamic environment. There is not, however, only one method

of building a machine learning element into a computer system. The

methodology depends on the environment in which the machine will operate.

Next we discuss the concepts of static and dynamic systems as well as real-

time and historical learning. These concepts are important considerations

when devising a learning system.

A. STATIC AND DYNAMIC SYSTEMS

Static systems generally use a pre-defined, scripted approach to solving a

problem. Agents within a static system usually perform projective planning,

and such planning involves global evaluation of the environment. Dynamic

systems, however, are not scripted. They are locally oriented and utilize

reactive planning, responding to local stimuli (Schultz, 1991). Both types of

systems have benefits and weaknesses.

The predefined nature of a static system is both a strength and a weakness

of the system. Predictability and/or reliability is a strength. These systems

14



generally perform a specified task, or when given a particular input, they

produce a specific output. Such behavior is beneficial for conducting

repetitive, well-understood tasks. Static systems may also be used for

training people to respond correctly in a given situation or for testing required

specifications in a design. However, battle situations, including those

encountered by the NPSNET AF within the NPSNET, are often ambiguous

and require a degree of flexibility which static systems usually do not provide.

The pre-defined nature of a static system also limits the system in another

way. By its very nature, a static system does does not rely on feedback from

the environment for tailoring its actions. It does not care about the

consequences of its actions. The actions for the system are always the same

for a particular input. The NPSNET AF continually interacts with its

environment and needs to be aware of input/output relationships (Henderson,

1991).

The finite nature of a static system enables the system to look at its global

state and analyze all available inputs. Such behavior, though beneficial in

solving problems, often requires significant CPU resources and detracts from

simulation realism (Maigret, 1991). It is not plausible to temporarily freeze a

dynamic battlefield while a static, global analysis is performed. A battlefield

is a dynamic environment. For computer simulation to be realistic, the

computer simulation of the battlefield should also be dynamic. Consequently,

if a learning element which uses static environment data is added to the

NPSNET AF, the learning element should operate in such a manner so as not

to interrupt they system's dynamic combat simulation.
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The need to tailor outputs in response to a changing environment requires

that the NPSNET AF be a dynamic system. The actions taken by a dynamic

system are based upon feedback from the environment. A dynamic system,

therefore, requires environmental sensory input. It also needs an algorithm

for determining future actions based upon the sensory data. Because a

dynamic system relies upon sensory data, its concerns are generally localized

to the area within reach of its sensors, and it generally limits its analysis

efforts to localized, reactive planning (Maigret, 1991).

The NPSNET AF is a dynamic system that operates in an environment in

which future decisions rely heavily upon environmental inputs. The survival

of the autonomous agents within the NPSNET AF depends upon the agents'

abilities to alter their performances based upon feedback from the

environment. Because the system is dynamic, there is only limited time for

analyzing past performance and altering it. Changes in performance must

occur fairly rapidly. Consequently, local reaction to environmental stimuli is

generally more important than is response planning. Planning in a dynamic

environment is often a difficult problem and usually requires more time to

perform than does a preplanned reactive response. Consequently, NPSNET

AF agents execute preplanned responses in response to environmental stimuli

instead of first trying to learn what the best response is. This means that the

response they elicit may not be the correct response. Only a historical review

of environmental reactions can verify the correctnesss of responses.

B. REAL-TIME AND HISTORICAL LEARNING

Should machine learning take place as an after-action analysis or should it

take place during the execution of a simulation? In real combat, learning
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occurs during battle as well as after the battle is complete. Though we

acknowledge that real-time learning is an integral part of battle, we believe

that historical learning is a more fiuitful approach for machine learning within

the NPSNET AF. In a real-time learning environment, an autonomous agent

analyzes the current environment to determine the best course of action.

However, in a dynamic world, an action which seems appropriate at time T

may not be appropriate at time T+J if the environment has changed

signficantly. If this is the case, then the real-time learning mechanism needs

to re-evaluate the environment and determine a new course of actions before

it can react. This re-evaluation process can cause a system to delay

responding to environemtal stimuli.

In a dynamic simulation such as within the NPSNET, prompt response in

generally more important than is real-time learning. Since the NPSNET AF

vehicle operate in reactive manner, looking only at local stimuli, delays in

responding to environmental stimuli can have negative consequences. The

autonomous vehicles within the NPSNET AF are involved in battle

simulations. These agents need to be able to rapidly change their actions in

order to survive (Kwak, 1992). We believe that reactive planning based upon

historical learning will provide the agents with the ability to respond rapidly

to their environment and still provide them with the ability to learn new

behaviors over time.
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IV. ANALYSIS OF AUTONOMOUS FORCE MOVEMENT

In order for autonomous force realism to be accomplished, the AF must

move as a real force moves. Our work focuses on improving the AF

movement in three ways. First we provide the NPSNET AF vehicles the

ability to move in line, column, left echelon, and right echelon formations.

Second, we provide them with the capability of transitioning between

formations. Last, we establish a rudimentary decision strategy for

determining when to transition between formations. This strategy is

dependent upon target location and terrain characteristics.

With respect to movement techniques and strategies, we look at both

single and multiple agent movement and address items which affect transition

strategies. The final transition strategy we propose is by no means elaborate

or complete. Our intent is to build a basic transition strategy module upon

which future improvements can be made. Our transition methodologies for

changing between formations focus on simplicity. We use simple algorithms

which provide a sense of realism.

Below, we discuss our concerns about AF movement and formation

selection and transition strategies. After these discussions, we provide an in-

depth explanation of the improvements we made to the NPSNET AF.

A. SINGLE-AGENT MOVEMENT

Single-agent movement was the concern of autonomous force experts

when the concept of computer generated forces was in its infant stages. With

a single-agent, programmers did not worry about formation movements. Each

agent acted independently of other agents, and steps were therefore required
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to prevent collisions between agents. Generally, agents were provided with a

mechanism which gave them the capability to sense their surroundings.

However, single-agent movement was of limited use for military applications,

since military forces tend to act in concert with numerous squadrons,

platoons, divisions, companies, and brigades. Therefore, in order for

computer generated forces to provide any significant value to the military,

multiple autonomous agents moving in concert had to evolve.

B. MULTIPLE AGENT MOVEMENT

When agents move together, three fundamental concerns arise. The first

concern is how to keep the agents in a formation. The second concern is to

determine when the unit should change formation. The third concern is to

determine how to transition the agents from one formation to another.

Culpepper (1992) provided us with the methodology for keeping the agents in

a line formation. We provide the autonomous forces with various formation

choices, the means to transition between formations, and a transition strategy.

C. SELECTING THE BEST FORMATION

There are many factors which affect the choice of platoon formation.

Some of these factors include the terrain and other environmental stimuli, the

intended objective of the platoon, and the location, number, and type of

enemy vehicles and weapons.

1. Movement of Agents in Response to Environmental Stimuli

In order for autonomous agents to fully realize their training value, they

must, in one sense, act human-like. Consequently, they must respond to their

environment. In order for agents to respond to their environment, they must

be able to sense their environment and determine which perceptions are
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important and which are trivial. To date, the autonomous forces in our work

cannot sense their environment with respect to the terrain or the presence of

objects such as roads and bridges. However, we identify certain factors which

should be accounted for when building the capability to sense the

environment into the autonomous forces project.

2. Sufficient Sampling

The method of sampling terrain data impacts upon the realism of a

computer simulation. Terrain and environmental data for the NPSNET AF is

stored in the NPSNET database. In order for an autonomous vehicle to be
"aware" of its surroundings, it must read in data from a database. The vehicle

may choose to read in all of the database or a certain portion of the database.

The more data it reads, the greater the computer resources and time required

by the agent. As the number of agents increases, these increased

requirements may make reading of the entire database impractical and

undesireable. Consequently, sampling of only portions of the database may

be more prudent than reading in the entire database.

There are many different techniques for sampling a database, however,

our concern is: "'How much sampling is enough sampling?" If we are

searching for a concrete item such as a tree, tank, or building, only limited

sampling may be necessary. But, when we want to search for something

more abstract, such as a hill, the question becomes more complex. What

constitutes a hill will depend upon the resolution desired. If we can only see

the world as a series of triangles that measure 100 meters on a side, then a

hill, or at least part of a hill, can be determined by sampling the elevation at

each of the three corners of the triangle to determine if one corner is higher
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than any of the others. If one point is higher, then a hill, or at least part of a

hill, exists. However, we still do not know definitively how large the hill is,

nor do we know what the terrain looks like between the corners. How fine a

resolution one uses will depend upon the computing resources and time

available, since finer resolution requires greater resources and more

processing time.

The sampling requirement, though, is not determined solely by the

resolution needs of the autonomous forces. It is also affected by how far

beyond the current agent location the autonomous forces need to sample.

When one doubles the look-ahead distance from 8,000 meters to 16,000

meters, there is a corresponding quadrupling of the amount of terrain data

which must be processed (from 64,000 square meters to 256,000 square

meters). Also, how an autonomous force responds to the environment will

depend upon how much of the environment the force can see. In the

example above, the agents will most likely respond differently to the

environment depending on whether they can see ahead 8000 meters or 16000

meters.

As we improve the AF, we are concerned with using computer

resources economically. The more clearly we measure our surroundings, the

greater is our need for computer resources. This need to clearly define our

surroundings competes with the planned machine learning element of the

NPSNET AF for computer resources. Sampling the environment too often,

means having a crisp, clear, environmental picture at the expense of learning

capabilities. Likewise, sampling too infrequently, allows more assets for

learning, but it causes the picture of our world to be hazy and unrealistic.
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3. Mission Objectives

The formation which autonomous agents travel in may be affected by

their mission or task. Though current autonomous forces work identifies the

mission at the start of the program, no provision exists to allow the user of the

system, or the system itself, to change the mission. Since the actions of

humans depend upon their objectives, and since one of the goals of

autonomous forces is to more closely model the behavior and actions of

humans, then it seems logical to suggest that the formation of multiple agents

should depend upon the mission objectives of the agents.

4. Enemy Agents

Since one of the goals of our autonomous forces is to have them

operate and survive in a hostile environment that contains enemy autonomous

or semi-autonomous agents, we believe that the formation chosen by the

autonomous forces should depend upon the number, location, and type of

hostile enemy forces, in addition to the mission. Current capabilities of the

autonomous forces program provide information on targets which are within a

pre-defined attack range. The information does not distinguish between

varying possibilities of enemies, and no rules exist within the rule base which

make formation decisions based upon number and type of targets.

5. Selecting The Best Formation by Applying a Genetic Algorithm

We build into the NPSNET AF a basic, rule-based, formation selection

strategy with fixed formation choices based upon specific inputs. The

formation choices are line, column, left echelon, or right echelon. The inputs

to the decision are the location of targets and a general terrain characteristic.
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Currently there is no scoring mechanism within the NPSNET AF to

measure the effectiveness of our formation choices. There is also no

feedback on how a chosen formation affects the survivability of the AF.

Implementation of a genetic algorithm to optimize formation decisions by

assigning weights to various battlefield factors, relies on the use of a scoring

mechanism. In Chapter V, we discuss a method for implementing a GA

learning system within the NPSNET AF. This system can be used for

determining which formation selection is best in a given situation. However,

before it can do this, the AF system needs a technique for scoring the

performance of the AF.

D. MOVEMENT THROUGH A TURN

Culpepper's original AF (1992) maneuvers toward goals by moving a

platoon base point and the platoon vehicles. Culpepper uses this arbitrary

base point to control the movement of each of three platoons. Each tank

within each platoon is offset from the base point. The base point serves as

the reference point from which the agents within each platoon are offset.

Culpepper places two agents to either side of the base point. The distance of

these agents from the base point is fixed at 25 meters and 75 meters to the

right and left of the base point. The base point for each platoon to the right

and left of the center platoon is placed at a fixed distance from the base point

of the center platoon, eiter (+200) meters or (-200) meters, depending on

whether the platoon is to obcý right or left, respectively, of the center platoon.

This results in all of the agents in each platoon being in a line formation as

depicted in Figure 1.
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When a turn is necessary, Culpepper's algorithm calculates the maximum

possible turn and the maximum possible turning rate. A limiting system

prevents the agents from exceeding either the maximum turn or the maximum

turning rate. The algorithm assumes that the AF vehicles are in a line

formation as depicted in Figure 1. The vehicles maneuver around the pivot

point, offset a predetermined distance along the baseline of the line formation.

PIVOT
POINT

BASE
POINT

25 METERS

Figure 1. Line Formation With Base Point.

This algorithm works well for the line formation, but it is insufficient for

other formations (left echelon, right echelon, and column). In these other

formations, the turning distance of a vehicle and the speed it requires for the

turn are affected by the echelon type and the direction of the turn. Therefore,

we make the pivot point a dynamic point. Instead of placing it at a fixed

distance from the outside vehicle, we allow its distance from the outside

vehicle to vary, depending on the formation type. We also adjust the pivot
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point so that it falls along the imaginary line running through the vehicles,

regardless of the formation type.

E. KEEPING AGENTS IN FORMATION

Two possible methods for maintaining agents in a formation are a) move

each agent independently and keep track of its position relative to the position

of the other agents, perhaps guiding off of one of the agents and b) move an

arbitrary point through space and have the agents offset from this point. The

first method allows for greater flexibility in movement and allows agents to

more readily switch to independent operation. However, the greater

independence also requires increased control over the agents, which translates

into more involved and complex rule sets and computer code. The second

method drastically constrains the freedom of each individual agent, but

provides a means for easily maintaining the agents in formation. Culpepper

(1992) uses the second method for maintaining his autonomous agents in

formation.

Our efforts expand upon the work of Culpepper. We provide the

capability for the agents to operate in and to transition between any one of the

following formations:

* Line

e Right Echelon

* Left Echelon

* Column.

F. FORMATION SELECTION

Deciding when to change formation, is a simple implementation of a

decision matrix which can easily be expanded. As seen in Figures 2 and 3,
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we made formation decisions as to the correct formation based on only two

criteria: the nature of the terrain ahead of the agent, and the targets (if any) it

faces.

TARGET UADRANTS
D A

C B

DIRECTION OF TRAVEL

Figure 2. Target Quadrants and Direction of Travel.

Decision Matrix For AF Formations
IF Terrain is AND Targets are in the THEN The recommended (new)
as follows: following quadrants: formation is:
Narrow None Column

I1 right echelon then stay there, else go to
Narrow A and D left echelon

Else go to left echelon
Narrow A only Right Echelon
Narrow D only Left Echelon
Wide None Current Formation (no change)
Wide A and D Line
Wide A only Right Echelon
Wide D only Left Echelon

Figure 3. Decision Matrix for Formation Selection.

26



The direction of travel is described above as 000 or "North" between

quadrants D and A. From Figure 3, one can see that if the terrain is narrow

and there are no known targets to the front of the agent, then the

recommended new formation is a column. If targets are present in quadrants

D, A, or both, then the expert system directs a change to the left or right

echelon, respectively. If the terrain is wide, then the overriding factor

becomes the location of targets, with any formation possible in the absence of

targets.

Since there is no current mechanism in the NPSNET AF for determining

what constitutes narrow or wide terrain, and since manipulation of the terrain

database to determine what constitutes a hill, ridge, finger, draw, etc., is

beyond the scope of this thesis, we artificially generate the first factor

(narrow or wide terrain) based on game cycles. However, we use current

capabilities of the AF for target location information, making this a realistic

and important input to the formation decision. When the mechanism is in

place to glean high-level terrain information, as opposed to low-level terrain

data values, from the database, then the terrain criteria may be easily

expanded to include hills, rivers, roads, bridges, and impassable terrain, by

simply adding rules (which we prototype) in the expert system rule base.

G. THE ECHELON N FORMATION TRANSITION

In order for our multiple autonomous agents moving in formation to

transition between allowed formations, we develop a formation transition

algorithm, which we call the echelon n formation. The goal of the echelon n

formation is to provide a relatively straight-forward method for transitioning

between various autonomous platoon formations. Agents within our platoons
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can be in any one of the following formations: a) line, b) column, c) left

echelon, or d) right echelon.

When the agents within the platoon need to transition from one formation

to another, two pieces of information are necessary. First, the system must

know the current formation. Second, it must know the final desired

formation. If we assume that these two pieces of information are available,

then a transition algorithm from one formation to another is necessary.

One way to solve the transition dilemma would be to have a different

transition algorithm for each transition. In other words, there would be a

separate transition strategy for the transition between each formation X and

each formation Y. Using this methodology, though, would require twelve

different transition strategies, assuming we have the four possible formations

of line, column, right echelon, and left echelon.

Another way to view the formations is to consider each formation as a

special case of one particular formation. We call this one particular formation

the echelon n formation. With the echelon n formation, we consider all

formations to be a special case of an echelon formation. The "n" in the name
"echelon n" is to annotate the angle above or below the horizontal. For

example, a line formation is an echelon 0 formation. A left echelon formation

is an echelon 45 formation. A right echelon is an echelon (-45) formation.

Figure 4 illustrates the echelon n concept.
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Figure 4. Echelon 45 Formation.

The motivation for using the echelon n formation is simplicity. By using

the echelon n formation algorithm, instead of using twelve different transition

formulas, we reduce the transition problem to a single algorithm. We choose

simplicity over sophistication to keep the CPU-intensive algorithms to a

minimum. In doing so, we reduce the likelihood of unnecessarily slowing

down the simulation, since an unduly slow simulation provides little realism.

H. REALISTIC TRANSITION

When agents move in formation, the goal of simulation is to make that

movement look as realistic as possible. The same is true when agents

transition from one formation to another. Therefore, when considering
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formation changes, it is important to consider the rate of agent movement.

Each agent must have sufficient speed to move down the path of intended

movement and also be able to smoothly transition from one formation to

another. The agents cannot be moving at their top rated speed prior to

formation transition, since no agent would have sufficient remaining speed to

make the transition. We address this concern by limiting the top speed of the

agent in any formation to a value slightly less than that of the top rated

unclassified speed of the agent. Given a top-rated speed of S meters per

second and a limited speed of L meters per second, the excess speed, E, is:

E = S - L. Equation 1.

To calculate the excess speed available for formation transition in the

autonomous forces program, we need to know the maximum speed of the

MIAI tank and the limiting speed imposed upon the tanks when moving in

formation. Culpepper (1992) and Branley (1992) set the highest allowable

speed of any tank moving in formation at 20 meters/second. We establish the

top rated speed of the MIA1 tank to be 50 mph, which is equivalent to 22.4

meters/second. We calculate an excess speed of 2.4 meters/second which the

tanks can use for formation transition.

Given an excess speed of E, we then estimate the maximum distance that

each autonomous agent can transition during a given time frame. The time

frame used by the autonomous forces is referred to as the average time. It is

based upon the average time required to cycle through each run of the rule
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base. We calculate the maximum possible transition distance, Tmax, as

follows:

Tmax = E * average time. Equation 2.

Given Tmax, we determine how many iterations of the echelon n are

necessary to ensure a smooth transition between formations. Thus, to go

from echelon 0 to echelon 45, the autonomous vehicles step through the

intermediate echelon values. How many intermediate steps are necessary

depends upon the maximum distance that the outer most agents need to travel

during a particular transition. This maximum distance of travel, Dmax, is

calculated using the geometric relation between the angle of movement in

radians, 0, and the distance of an object from the center about which it is

moving, which we call radius, R. The equation is:

Dmax 0 R Equation 3.

The minimum number of necessary iterations, Imin, is:

Imin = Dmax / Tmax. Equation 4.

Thus, if the average cycle time increases, then Tmax increases, which means

that Imin decreases. If Tmax becomes large enough, then Imin becomes so

small that the autonomous vehicles tend to jump from one formation to

another instead of making a smooth transition. In order to assure a sense of

realism, Tmax cannot grow without bound. Because the average cycle time is

directly dependent upon the computational complexity of the underlying rule

base, it is necessary to limit computationally intensive code in the rule base.
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Therefore, our efforts reflect a trade-off between simplistically transitioning

between two formations and transitioning in a manner which looks realistic.

I. CONSTRAINING THE TURN

Because the AF can assume any of four possible formations, we update

the turn-limiting algorithm developed by Culpepper (1992). He turned his

autonomous vehicle platoons about a pivot point which was located a fixed

distance from the outermost tank in the line formation. This distance was set

at 25 meters and is illustrated in Figure 1. By using a pivot point, Culpepper

could determine what the constraining turn would be and then limit the turn

rate of the platoon to a value less than the limiting rate. His method,

however, worked only for platoons operating in a line formation. We modify

his pivot point and the limiting turn calculations so that we control the turn

rate of the autonomous forces in any echelon n formation. Instead of placing

the pivot point at a fixed distance from the platoon, we allow the pivot point

to vary from a minimum of 25 meters up to a maximum of 50 meters. As

depicted in Figure 5, we calculated the pivot point distance as a function of

the echelon angle. Given an echelon angle of 0, we establish a new pivot

point using the formula:

Pivot Point = 25 meters/ cos(0) Equation 5.

For an echelon 45, which is what we call our left echelon, the pivot point is

35.35 meters. As 0 increases towards 90 degrees, the value for the pivot

approaches infinity. Consequently, we limit the use of this particular

constraining algorithm to the line, left echelon, and right echelon formations,

as depicted in Figure 5.
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Figure 5. Pivot Point Distance.
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V. APPLICATION OF GENETIC ALGORITHMS TO
AUTONOMOUS FORCES

A. THE GENETIC ALGORITHM

1. Definition Of A Genetic Algorithm

What is a Genetic Algorithm? It is simply a method of programming a

computer to simulate that which occurs in nature - survival of the fittest.

That is, finding solutions to difficult problems through a computer-guided,

probability-based search of the "landscape" of all possible answers to the

problem at hand. In the words of John Holland (1992): "Computer programs

that 'evolve' in ways that resemble natural selection can solve complex

problems even their creators do not fully understand."

2. Reasons For Using A Genetic Algorithm

There are some problems whose optimal solutions are not solvable by

most humans. In these problems a human can merely hope to gain a "good

enough" solution. Often what prevents him from finding an optimal solution

is an inability, due to a time constraint, to search all possible solutions. The

implicitly parallel nature of a GA provides it with the ability to conduct a

rapid, stochastic search through a vast number of possible solutions for the

most likely optimal or "good enough" solution(Goldberg, 1989). Because the

guided search technique that a GA uses can significantly reduce search times,

a GA is a potentially powerful search methodology when most likely optimal

or "good enough" solutions are sufficient.
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3. The Mechanics Of A Genetic Algorithm

To conduct a search of the solution space for a given problem, a

genetic algorithm selects possible solutions using selection, evaluation, and

optimization methods similar to those used in nature. In nature, a random

selection of parents produces offspring, and the offspring appear as a

representation of their individual genetic codes or genotypes. This genetic

makeup is stored on strips of DNA, called chromosomes. Each individual's

phenotype is the physical result of a particular genotype and is simply "what

the individual looks like," or perhaps "how the individual performs."

Individual offspring may have arbitrarily undesirable traits such as being ugly,

slow, or Rickly; or, they may have more desirable traits such as being

beautiful, powerful, healthy, and fast. In nature those individuals with

desirable traits tend to survive, while those with undesirable traits tend to die

off or at least grow fewer in number.

A GA copies from nature. A simple GA relies upon three operators

known as selection, mutation, and crossover (Davis, 1991). As with nature,

parents (binary strings of problem input values, for example) are selected and

mated, and the characteristics of the parents are transferred to the children

using crossover of the chromosomes which occurs stochastically. Sometimes,

during mating, mutation occurs. Mutation of certain characteristics also plays

a part in the evolutionary process by randomly changing a value along the

chromosome and thereby allowing offspring to significantly differ from their

parents. These differences may be either beneficial or detrimental. The

beneficial effects tend to increase an individual's chance of survival, while the

detrimental ones tend to reduce it. These three operators, selection, mutation,
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and crossover, are used in the genetic algorithm much the way they occur in

nature, and they are summarized in Figure 6.

Mutation
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Figure 6. The Three Operators: Selection, Mutation, Crossover.

4. Details of the Functioning GA

We develop a filly functioning GA in the C programming language

which is heavily patterned after Goldberg's Simple GA, written in Pascal

(1989). We name ours INTEGER2, because it solves a backward search for

two integers, which produce a certain known float value when one integer is

divided by the other. We provide this GA for later use with the NPSNET AF.

The source code for INTEGER2 is contained in Appendix A and can be

obtained on disk through Professor Bhargava at the Naval Postgraduate

School, code AS/BH. Sample performance characteristics of INTEGER2 are

summarized in Appendix B.

The following discussion applies to the generic GA functions

summarized in Figure 7.
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1. Initialize the first population of individuals (chromosomes).

2. Evaluate the fitness of each individual. (EVALUATION)

3. Select the parents (in pairs) best suited to mate. (SELECTION)

4. Mate the parents (applying MUTATION & CROSSOVER in the process)

and produce the new generation.

5. Repeat steps 2 through 4 until you run out of time.

6. When the time is up, return the best chromosome found (best solution to

the problem).

Figure 7. Operational Steps Of A Simple Genetic Algorithm.

INTEGER2 follows a pattern similar to all genetic algorithms in its

search. The program starts with a random sample of a population of

individuals. For this discussion, we will assume that a population consists of

100 individuals, and each individual is represented by one chromosome of

length eight. That is, there are eight positions along the chromosome which

hold input values, and, collectively, the values on one chromosome constitute

one solution to the problem under study. The position of each I or 0 along

the chromosome is called a locus. Each chromosome is an individual, and

there is no limit to the number of individuals in a population. However, for

most implementations of the GA, this number is assumed to be evenly

divisible by two (Goldberg, 1989).

This first step is initialization of the first population. At the very start

of the program, the composition of each of eight loci along each of the

chromosomes is determined using a function which generates random

numbers. Although there is no such thing as an algorithm which generates
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purely random numbers, the function we use to generate pseudo-random

numbers in our GA provides us with sufficiently "random" numbers.

After the initial population is generated, the next step the GA follows is

to evaluate all members of the current population to determine the fitness of

each member. Fitness is a measure of how well a particular random solution

satisfies an objective function. The fitness is the basis for order-ranking the

individuals in the population (Goldberg, 1989).

Next, the GA makes a selection of the individuals to mate, producing

offspring for the next generation, and these become the new population. As

with nature, those individuals (chromosomes) with the highest fitness

evaluations have the greatest chance of mating and producing the next

generation, and those with the lowest fitness have little or no chance of

producing members of the next generation. This selection process is one of

three common "operators" (selection, crossover, and mutation) which act on

each of the chromosomes in the population during reproduction (Goldberg,

1989).

After two parents are selected, they are mated. The next operator,

mutation, comes into play in the mating process (Goldberg, 1989). The basic

premise for this operator is that there is always a chance (usually a very small

chance) that the mating process will have a random error, represented by

changing a I to a 0, or vice versa. The basic reason for mutation is diversity.

This operator can cause two good solutions to become pronouncedly bad in

the next generation, and vice versa. The third operator in reproduction is

crossover. When crossover occurs, it does so between the strings of two

parent chromosomes during mating. The result is two child chromosomes
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(Goldberg, 1989). Crossover, like mutation, is probabalistic, though it occurs

much more frequently than mutation. If it does occur, two parent

chromosomes exchange genetic material, and hence their genetic code, at a

random exchange site, producing offspring which are made up of genetic

material from each parent. Crossover may occur at one point along the two

parent chromosomes, at multiple points, or not at all. Our GA uses single-

point crossover with a probability of crossover equal to 50%.

5. Tailoring the GA

Genetic Algorithms can be enhanced to improve their efficiency. A

more efficient GA tends toward the optimal solution more quickly than will a

less efficient algorithm. However, there is a tradeoff for the increased

efficiency. As the GA becomes tailored for the problem at hand, it tends to

lose robustness (Davis, 1991). The solution set must be more clearly defined,

and the ability to use the GA with different fitness functions is reduced. We

use a technique known as selective reproduction (Koza, 1992) in our GA.

Other GA tailoring methods include multi-point crossover, hybridization, and

creep (Schultz and Grefenstette, 1992). We discuss selective reproduction as

well as the other methods below.

Selective reproduction is a slight twist on the normal reproduction

process. Instead of replacing all of the parent chromosomes with children

using the crossover process, children are created directly from the parents.

One way in which this is done ;.s to select the two best parents from the

population (those which generate the highest fitness fimction value) and then

map each parent directly into a child. This ensures that the current

"strongest" members survive. We use this mating scheme because it is
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relatively simple to code and provides a relatively rapid optimization

capability, while minimizing CPU requirements over other schemes we

consider.

In the GA, survival is never guaranteed since the model is stochastic.

Consequently, even though the strongest member of the population has the

greatest likelihood of survival through reproduction, reproduction is not

guaranteed. Reproduction is based upon a weighted probability, simulated

through "roulette wheel" spins. Our version of selective reproduction alters

this process by ensuring that the chromosomes of the two best parents are

always passed onto the next generation.

Multi-point crossover is another process for enhancing the algorithm.

As the name implies, instead of performing crossover at one point along the

chromosome, more than one crossover point can be selected. For simplicity,

we use only one crossover point for INTEGER2.

In a simple GA, the initial population from which the search for optima

begins is usually selected at random. This is part of the inherent appeal of

GA's. No knowledge of possible solutions is necessary. However, if some

initial information is know, then it makes sense to use this information when

selecting the initial population. For instance, if we know that positive

numbers tend to work better than negative numbers, it is more prudent to

select an initial population composed of only positive numbers. Placing

negative numbers within the population only adds unwanted noise and

increases the required search time to reach optima. This process of using

known information about beneficial characteristics of possible solutions to

help establish the initial population set is known as hybridization. Our
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approach is a straight-forward randomization of the initial population and

does not use hybridization.

Creep is similar to mutation. Whereas mutation can randomly flip any

particular bit within a string, creep is limited to the lower order bits (Schultz

and Grefenstette, 1992). For example, under mutation, the string 11000010

could be mutated to 01000010, which is a change from 194 to 66. If 194 is

fairly close to optimal, then the optimum solution may be lost. With creep,

however, 11000010 might only be changed to 11000011, which is a change

from 194 to 195. Creep provides a means for fine tuning a solution. The

INTEGER2 problem does not use creep, but we discuss it here because this

concept may be useful for later implementations of the GA. Instead of creep,

INTEGER2 relies on mutation, which is very important in preventing false

solutions. A false solution could occur if the GA focuses its search around a

local optima instead of a global optima.

B. BENEFITS

An important benefit to developing autonomous forces capable of learning

is to provide the user of the NPSNET simulator with an adversary which

emulates the actions of a realistic opponent. With an intelligent AF, one

human trainee can use the system without having to have another human

driving the opposing force. But in order to make the simulation truly

believable, the AF should be able to learn. Providing the AF with the ability

to learn from its past actions is the primary benefit to be gained by using a

genetic algorithm.

The GA is basically perceived as a tool for optimization or as a

methodology for rapidly searching a solution space for a possible best
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solution. It optimizes a search for a solution by remembering those

characteristics of a set of solutions which makes it better than other solution

sets. These characteristics are then passed on to the next generation. In other

words, the program learns which solutions from the last generation produce

the best outcomes. It then uses this information to guide its search in the next

generation as it searches for possible solutions.

A battlefield commander certainly learns as the battle progresses. Some

of the commander's actions are based on reaction, and this is analogous to the

pre-programmed script some autonomous forces play out. However, the

commander may try an action which defies established procedures and

previous experience. With the AF, this is where the expert system, alone,

falls short, and the GA may be useful. Implementing the GA allows the AF to

try new approaches and learn from them, as opposed to carrying out only

stimulus-response actions to pre-programmed decision rules.

By using a machine learning methodology, it is no longer necessary to pre-

program all possible behaviors (stimulus-response rules). Instead, a system

capable of machine learning can learn new reactive behaviors. This reduces

the amount of pre-programmed information required from domain experts and

reduces the knowledge acquisition bottleneck (Schultz and Grefenstette,

1992).

C. LIMITATIONS

We discover that a GA has the potential for inordinately slowing down

any real-time computer simulation if placed in series with an expert system

which interacts with a dynamic environment. Applying a GA to the NPSNET

AF can possibly degrade the performance and believability of the simulation.
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Specifically, if a GA consumes excessive computer resources as it searches

for a near-optimal problem solution, it can interrupt the normal flow of

vehicle information and thereby degrade the realism of the computer

simulation.

D. APPROACHES

1. Our Approach

We develop a stand-alone simple genetic algorithm which uses

selective reproduction to optimize an answer to a generic algebraic problem.

Although the objective or fitness function of INTEGER2 is a simplistic one, it

demonstrates the ability of the algorithm to learn better solutions from

generation to generation of program execution. INTEGER2 can be easily

integrated into the NPSNET AF once a mechanism to support historical

learning through fitness evaluation is added to the AF system.

2. Reason For Delaying Integration Of The GA With NPSNET

The current state of development of the NPSNET AF is depicted in

Figure 8. This figure shows the relationship between the NPSNET AF expert

system and the execution code.
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Epr System

I ~ Exeaft~n Code (-C code-)

Current NPSNET AF

Figure 8. Current NPSNET AF Hierarchy.

We attempted to implement our GA in series with the expert system and

the execution code. Our attempted approach is depicted in Figure 9.

L~Iz
ExwutnCode (TC codS)

Our Approach to Implementing
the GA in the NPSNET AF

EMBEDEDGA

Figure 9. NPSNET AF Embedded GA Hierarchy.
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We believe that a better way for the GA to work with the NPSNET AF

without disrupting the dynamic performance of the AF agents is to allow the

GA to work independently from, and in parallel with, the expert system, as

shown in Figure 10 below. Using this method, the GA and expert system can

communicate via messages. In doing so, the GA acts as a truly independent

player program which sends messages to the AF expert system. A GA can

take considerable time to reach a solution when searching a complex solution

space. By making the GA an independent, parallel learning system, however,

regardless of how much time the GA takes to conduct machine learning, the

expert system continues to operate, using its most recent information from the

GA.

One potentially effective GA implementation hierarchy is displayed in

Figure 10 below. In Figure 10, the execution system (NPSNET AF - left side

of diagram) cannot be slowed by occasionally long processing cycles of the

learning system (GA-right side of diagram) (Grefenstette and Ramsey, 1992).

I ,,Ex elW i $,-A-. ILenngSte

Recommended GA Implementation

PARALLEL PROCESS

Figure 10. Recommended NPSNET AF Hierarchy.
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In Figure 10, the expert system and operational code of the NPSNET AF,

together, comprise the execution system. The GA is the learning system. We

feel that the GA on the execution side of the NPSNET AF could slow down

the simulation and diminish realism. Grefenstette and Ramsey (1992) find

that a dynamic execution system which operates in a changing environment

cannot be routinely disrupted to allow static or historical learning to take

place. A dynamic system is, by its very nature, reactive. It responds to its

environment. Its exec,:tion speed must keep pace with the tempo of

environmental changes. If a dynamic system does not keep abreast of

environmental changes, it cannot compute appropriate reactions in response

to the current environmental stimuli (Paquet and Lamontagne, 1993). Agents

such as those within the NPSNET AF will most likely fail in their efforts if

they cannot accurately respond to environmental situations.
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VI. CONCLUSION

Useful combat simulation requires simulation that is realistic. When

autonomous forces are used within the simulation, their actions and behavior

should be human-like. They should be capable of learning new techniques

from their experiences. Our goal is to improve the NPSNET AF so that its

autonomous vehicles operate more realistically.

We look at improving the sense of realism within the NPSNET AF in two

areas. First we attempt to provide the AF with a machine learning capability

by trying to integrate a GA into the NPSNET AF. Second, we enrich the

underlying rule base of the NPSIET AF. Our changes include providing the

AF with a choice of four possible formations, providing it with the echelon n

mechanism for transitioning between formations, and by providing the

NPSNET AF with a decision strategy for deciding which formation in which

to place the AF.

Though we develop a functional GA, called INTEGER2, we do not

integrate it with the NPSNET AF for the following reason. Embedding the

GA into the current expert system. in a serial manner is disruptive to the

normal control flow between the expert system and the execution code of the

NPSNET AF. Originally, we built INTEGER2 to provide dynamic, real-time

learning. Our intent was to place INTEGER2 in series between the expert

system and the execution code of the AF, but this approach did not support

the dynamic environment of the NPSNET AF. A potentially better approach

is to implement the GA as an independent, parallel process that is capable of
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conducting historical learning and routinely updating the NPSNET AF expert

system, without degrading the performance of the execution system.

As the NPSNET AF matures, we see four possible areas for further work.

These areas are:

"* Implement a GA as an independent, parallel learning system

"• Enrich data input/output

"* Build an AF scoring algorithm

"* Document the NPSNET AF to assist future programming efforts

In order for the NPSNET AF system to learn, it needs a learning

mechanism. A genetic algorithm is one such mechanism. If placed in an

independent, parallel hierarchy, it can potentially provide historical learning

which will improve the NPSNET AF expert system's ability to react to its

environment. Another problem for which INTEGER2 might prove adept is

that of artillery registering of fires. In this problem, multiple guns have

multiple munition types with multiple stockpiles to lay on multiple targets.

This is a good historical learning problem because it is a linear programming

dilemma in which the results are easy to measure and the problem is

sufficiently difficult to warrant computer assisted optimization.

The current NPSNET AF system knows relatively little about the

environment in which it operates. A major reason for this is that the AF

receives almost no environmental information from the NPSNET. The

information it receives concerns the status of other vehicles, but no

information is provided about terrain or obstacle characteristics. Before the

AF can make better decisions, it must be capable of accepting data about the

world in which it operates.
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One concern we have with the NPSNET AF is that the current system

provides no means for measuring AF performance and assigning credit for

that performance to a rule or particular set of rules. In order for a GA to pick

the best solution or rule strategy, the ability must exist to assign credit to the

rules which lead to better strategies. Before credit can be assigned, a

performance measure and the ability to correlate the performance to a rule or

set of rules are necessary.

Lastly, as the NPSNET AF grows in complexity, documentation of its

capabilities and structure will minimize development problems and provide

continuity between the efforts of individuals working on the system (Page-

Jones, 1988).
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APPENDIX A

/* FILENAME: A:\SGA\WEGER2.C */
/* John Steiner and Robert Jacobs */
/* Curriculum code: 37
/* Section: PM21 *
/* 23 August, 1993
/* Description: This is a genetic algorithm which conducts a probabalistic
search for two unknown integers which, when the first is divided by the
second, produced a known float Target value such as 3.61538, for example

(user enters this). */
/* This GA is patterned after Dr. D. E. Goldberg's SIMPLE GA, coded in
PASCAL, as described in: Goldberg, David E., Genetic Algorithms in
Search. Optimization. and Machine Learning, Addison-Wesley Publishing
Co., Reading, Mass, 1989. /
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
/* #define RAND-MAX 32767 */
#define MAXPOP 50 /* THE DESIRED POPULATION MUST BE
EVEN-NUMBERED*/
#define COLSDESIRED 8 /* SPECIFIES NO. OF CHROMOSOME
LOCI*/
#define SEED 45
#define INITIAL 0
#define PCROSS 0.0 /* NORMALLY .5 EXCEPT FOR TIHS
APPLICATION */
#define MAXGEN 2000

/* FUNCTION DECLARATIONS ZZZZZ7777T7777777'7'7Z 7TZZ*/

float statisticsO;
float initializeO;
float decodeO;
float chdecodeO;
float objfuncO;
int generationO;
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int select 0;
void genstatso;
void popstatso;

/* TYPE DECLARATIONS 11111i11111111 /TTT
struct chromosome_type

(int CHROM[COLSDESIRED+4J;}
CHROMOS,MATEI,MATE2,CHILDI,CHILD2, *p, *pI, *ml, *m2,
*clI *c2;

typedef struct (mit CHROMO[COLS-DESIRED+4];
float X;
float FITNESS;
int PARENT 1;
mnt PARENT2;
int XSITE;
) individual type,

typedef struct {individual tye POP[MIAXPOP+4J ; )population _type;

I. INSTANTIATIONS OF TYPES IIIIIIIlIIIIIIIIIIIlllHIIJIIIIIIIIIIIIIII*/
individual tpe INDIV, lNDIV2, INDIV3, INDIV4, *q, *q2p *q3, *q4,
*qtest;
population,_type OLDPOP, NEWPOP, TEMPPOP, *op, *np, *tp;

/* VARIAB3LES FOR MAIN AND GLOBAL USAGE VVVVVVVVV/

int COLNUM = 0; /* COLUMN COUNTER VARIABLE FOR ARRAYS

int ROWNUM = 0; /* ROW COUNTER VARIABLE FOR ARRAYS/

int POPSIZE=10; /* TO KEEP TRACK OF THE CURRENT SIZE OF THE
POPULATION *
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int LCHROM-7; /* ANOTHER VARIABLE FOR CHROM. LENGTH -
SEE ALSO COLSDESIRED*/

int GEN-O; /* TO KEEP TRACK OF THE CURRENT
GENERATION */

int NMUTATION=O; /* INITIAL VALUE FOR THE NUMBER OF
MUTATIONS / GENERATION */

int NCROSS=0; /* INITIAL VALUE FOR THE NUMBER OF CROSSES

PER GENERATION */

int JCROSS=O; /* COUNTER FOR THE CROSSOVER POSITION /

int SELPARI; /* A COUNTER VARIABLE FOR THE PARENT
SELECTION ROUTINE */

int SELPAR2; /* A COUNTER VARIABLE FOR THE PARENT
SELECTION ROUTINE */

int POPMUTATIONSO0; /* THE NUMBER OF MUTATIONS IN TOTAL
FOR THE POPULATION */

int POPCROSSES-O; /* THE NUMBER OF CROSSOVERS FOR THE
WHOLE POPULATION /

int POPMAXGEN--O;

int POPMINGEN=O;

int k=O; /* COUNTER VARIABLE FOR GEN. STATISTICS
(GENSTATS) */

int 7HILD NO;

int SHOWME = 1; /* set to 0 if you want to see generational stats only
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anything other than 0 will give you verbose performance

infomation */

int MAX-PARENT = 0; /* counter to keep track of the highest-fit parent*/

int NEXTMAXPARENTO; /* counter to keep track of the 2nd highest
parent*/

float TARGET = 0.0; /* THE TARGET FLOAT VALUE FOR WHOSE
PARENTS WE SEARCH */

float CEILING = 512.000; /* should be col num raised one more power of 2
*/

float MAXMIN [MAXGEN] [6]; /* Array to hold MAX, MIN, AVG,
LIKELYPARI, LIKELYPAR2 for each gen */

float PMUTATION = 0.00; /* THE GLOBAL PROBABILITY OF
MUTATION,

NORM--0.03 /

float SUMFITNESS = 0.0; /* INITIAL VALUE FOR SUM OF EACH
GEN.'S FITNESS */

float X = 0.0; /* VALUE OF EACH CHROMOSOME PRIOR TO
OBJ.

FUNCTION */

float FITNESS = 0.0; /* THE FITNESS VALUE OF EACH
CHROMOSOME AFTER OBJECTIVE FUNTION */

float AVG=0.0; /* AVERAGE FITNESS FOR ALL CHROMS. IN A
GENERATION */

53



float MAX=0.0; /* MAXIMUM FITNESS FOR ALL CHROMS.

IN A GENERATION */

float NEXT MAX-0.0;

float LIKELY PARI - 0.2;/* The X value of the most likely parent #1
don' set this to 0.0 */

float LIKELYPAR2 = 0.2;/* The X value of the most likely parent #2
don't set this to 0.01/

float BESTPOP_.PARI = 0.0; /* Stores highest X value of LIKELYPARI
from generation to generation */

float BESTPOPPAR2 = 0.0;/* Stores highest X value of LIKELYPAR2
from generation to generation */

float MIN=0.0; /* MINIMUM FITNESS FOR ALL CHROMS. IN A
GENERATION */
float POPMAX=0.0;
float POPMIN=0.0;
float MATINGDOMINANCE = 0.2;/* frequency at which fittest parents
will be forced to mate for the next generation */

time t t; /* Initialize variable "t", which will be taken

from the O/S time clock */

/* N1TMIMNFU MAIN FUNCTION N&*MMM /

void main 0
(

srand((unsigned) time(&t)); /* initialize the random number generator /
printf("\nPlease enter the probability of mutation (float value only): ");
scanf("%f', &PMUTATION);
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printf("\nYour selected value was: 0/4.2f', PMUTATION);
printf("\nEnter 'l'to view chromosomes and stats. 'O' for summary only.");
scanf("%d", &SHOWME);
printf("VnEnter the target float value: ");
scanf("%', &TARGET);

opI&OLDPOP;
np=&NEWPOP;
GEN - 0;

/* RR Remove Intialization of DOS specific random function RR /
/* randomize 0; RRRRRRR /

initialize(GEN);

while (GEN < MAXGEN)
{
GEN++;
generation0;
if(SHOWME) printf("\Wn");
}

popstatsO;

/* IUIMIIIIIIIIIIIIIIIIIIIU INITIALIZE HIIIIIIIIIIIIIIIIIIIIIIIIIIIUI

float initialize(GEN)

int GEN;

f

mnt RANDNUM; /* random number between 0 and 100 /
mnt ALLELE; /* value at each locus on the chromosome: either I or 0 /
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p-&CHROMOS; /* ASSIGN THE chromosomejype POINTER TO 1 ST
POS. OF CHROMOS */

q-&INDIV; /* ASSIGN THE individual type POINTER TO 1 ST POS. OF
INDIV */

op=&OLDPOP;
np=&NEWPOP;
qtest=&INDIV;

header(GEN); /* Set up the initial printout information *

/* GENERATE MATRIX AND FILL OUT POPULATION */
for (ROWNUM=0; ROW_NUM < MAXPOP; ROWNUM++)

{
if(SHOWME) printf ("&d1t", (ROWNUM+I));
for (COLNUM=0; COL_NUM < COLSDESIRED;COLNUM++)

{
/* GENERATE RANDOM NUMBER O<X<100 WITH FAIR COIN

TOSS*/
/* RRRRRR Remove DOS specific random and replace with ANSI specific
randO RRRRRRRR */

/* RRRRRR if (random(100) < 50) ALLELE = 0; RRRRRRR /

if ((rand0 % 100) < 50) ALLELE = 0;
else ALLELE = 1;

/* FILL OUT CHROMOSOME WITH RANDOM I'S AND O'S /

p->CHROM[COLNUM] = ALLELE;
q->CHROMO[COLNUM] = p->CHROM[COLNUM];
if(SHOWME) printf ("/od ", q->CHROMO[COLNUM]);
)

q->X = decode(0, COLSJ -.iRED);
q->FITNESS = 1.0; /* First generation parents will have no

real fitness value, but this cannot be
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0.0 to prevent divide by zero error ~
I. q->fITNESS = objfunc(q->X); *

q->PARENTI =0;
q->PARENT2-0;
q7>XSITE=0;
op->POP[ROWýNIMJ= INDIV; /* populationbJ gets INDIV/

if(SHOWME) printf("\t%69.5f 1,q->X);
if(SHOWME) prnnt("%I0.5f ", q->FITNESS);
if(SHOWME) printf(%\tod ",q->PARENT1I);

if(SHOWME) printf("\t0/od "q->PARENT2);
if(SHOWME) printf("\t/od W1', q->XSITE);

statistics(MAX, 101N); /* PASS MAX AND MIN AND RECEIVE
SUMFITNESS,~
return 69.0;

1* IUUHlllllllu HEADER FUNCTION HUUUlllllllHHH

mnt header (GEN)
mnt GEN;

/* PRINT HEADER AND INITIAL INFORMATION *
if(SHOWMvE) printf("\t\tThis is generation: /Od\n", GEN);
iI(SHOWMB) printf("Number of Individuals per generation =-/d~"
MAXPOP);

if(SHOWMB) printf("Nwnber of Alleles per chromosome = Oo~"
COLSDESIRED);

if(SHOWME) printf("Number of Generations Requested = oft'J",
MAXGEN);

if(SHOWME) printf("Probability of Mutation per Allele =%1 .4fn",
PMUTATION);
if(SHOWME) printf(CHROM#\t");

57



if(SHOWME) printf('CHROMOSOMEV\tI");
if(SHOWME) printf(-X VALUE
FITNESS\t\tPARENT I\tPARENT2\tXSITE\n')

return 69;

I. DDDDDDDDD DECODE FUNCTION DDDDDDDDDDD1
float decode(ij)
int i;
nt j;

float X =0.0;
float POWEROF_2 = 1.0;
p = &CHROMOS;
/* pl &CHROMOS + COLSDESIRED;/
q = &INDIV;

while (i < j)

if(p->CHROMUj- I ]== 1) /* if allele is a 1, increment pwr of 2/

X =X +POWEROF_2;

POWER OF 2 = POWER OF 2 *2;

)-
return X;

1* 000000000 OBJECTIVE FUNCTION 000000000/
float objfunc(SELPAR1, SELPAR2)
int SELPAR I, SELPAR2;
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float SELPARIX, SELPAR2-X;
/0 test 0/
float PARENTRATIO = 0.0;

op - &OLDPOP;
INDIV3 = op->POP[SELPARIJ;
INDIV4 - op->POP[SELPAR2J;
q3 = &INDIV3;
0 = &INIV4;

SELPARIX = q3->X;
SELPAR2X = q4->X;

1* test
printl("\nSELPARIX is: %/9.5fin ",SELPARIX);

printf("\nSELPAR2 X is: %9.5f~n\n ", SELPAR.2_X); *

/* error trap */
if (SELPAR2_X - 0.0)

PARENT-RATIO = 77.00;
printl("SELPAR2_X WAS 0.0"); /* TEST/

else
PARENTRATIO = (SELPAR IX / SELPAR2-X);

1* test
printf("\nPARENT RATIO (1.X /2-.X) is: 0/9.5f ", PARENTRATIO);
printf("\nTARGET is: %9.St\n\n ",TARGET); *

if (PARENT_RATIO, >-- TARGET)
FITNESS = (CEILING - (PARENTRATIO - TARGET))

else
FITNESS = (CEILIN103 - (TARGET - PARENTRATIO));

/* TEST
printf("\nITNESS is: %/9.5t\n\n ", FITNESS); *
/* FITNESS = X*X; */
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/* FITNESS -(X*X*X*X*X)-(1O.O*X*XX*X)+(20.O*X*X*X)-
(4.*X*X)+10000.O; ~
return FITNESS;

I. SSSSSSSSSSSSSSS STATISTICS SSSSSSSSSSSSSSSSSSSSSS/
float statistics(MAX, MIN)
float MAX;
float MIN;

nt j=0;
int MOM =7;
int DAD =7;
op =&OLDPOP;

tp =&TEMPPOP;

1* INITIALIZE THE VARIABLES WITH THE FIRST ELEMENT OF THE
ARRAY */

SUJMITNESS = op->POPjjJ.FITNESS;
MIN - op->POPUjJ.FITNESS;
MAX - op->POPUjJ.FITNESS;
MAXPARENT = 0;
NEXTMAX = -5.5; 1* -5.5 used to show errors - could also be 0.0 *

NEXTMAXPARENT = 0;

/* START SUMMVING FROM THE SECOND ELEMIENT OF THE
ARRAY */
for 6j=1; j < MAXPOP; j++)

SUMFITNESS = SLIMFITNESS + op->POPUjJ.FITNESS;
if(op->POPWj.FITNESS >-- MAX)

NEXTMAX = MAX;
NEXT-MAX-PARENT = MAXPARENT;
MAX = op->POPU].FITNESS;
MAXPARENT = j+I1;
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MOM =op->POPUI.PARENT1;

/* TEST
printf("\n\nMom is: /od ", MM);/

DAD =op->POPUJ.PARENT2;

1* TEST
printf("\n\nDAD is: O/od ", DAD);*

LIKELYPARI = tp->POP[MOM].X; /*FIRST LIKELY X VALUE

LIKELY_-PAR2 = tp->POP[DAD].X; /*SECOND LIKELY X
VALUE *

if(op->POPU].FITNESS > NEXTMAX && op->POPUj].FITNESS <
MAX)

NEXTMAX = op->POPU].FITNESS;
NEXT_-MAX_-PARENT = j+1;

if(op->POPU].FITNESS < MIN) MIN = op->POPfj].FITNESS;

AVG = SIJMFITNESS/((float)MAXPOP);
genstats(GEN, MAX, MhIN, AVG, LIKELYPARI, LIKELYPAR2);
if(SHOWME) printf("\nThe AVG for the generation was: %9.5f', AVG);

/*TEST*/
if(SHOWME) printf("\nThe MAX was: #WVod, %/9.5f', MAX-PARENT,
MAX);

/*TEST*/
if(SHOWME) printf("\nThe NEXTMAX was: #0/od, %9.5f",
NEXTMAXPARENT,
NEXTM.AX); /*TEST*/
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if(SHOWME) printf("\nlhe NUN at the end of statistics loop was: %.f

/*TEST*/
if(SHOWME) printfr'\nThe Most Likely Parent I was: %9.5f',
LIKELY PAR 1);
I*TESTI-
if(SHOWME) printf("\nThe Most Likely Parent 2 was: %9.5f',
LIKELY PAR2);
/*TESTý/
if(SHOWME) printf("\n\n\n\n"); /*TEST*/
return SUMFITNESS;

/* GGGGGGGGGQGGGGGG GENERATION GGGGGGGGGG3*
1* TFUS FUNCTION ASSUMES AN EVEN-NUMBERED POPULATION

int generationo

nt j =ROWNUM 0;
int COLNUM=O;

ci = &CHILD1;
c2 = &CHILD2;
q =&INDIV;
q2 =&INDIV2;

op =&OLDPOP;

np =&NEWPOP;

tp =&TEMPPOP;

while < MAXPOP)

ijf~j < (int)MAXPOP *MATINGDOMINANCE)

SELPARI = MAXPARENT-i;
SELPAR2 = NEXTMAXPARENT-i;
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else

SELPAR.I = selectO;
do

SELPAR2 = selectO;
while ((SELPAR2 =-- SELPARI) 11 (op->POP[SELPAR2J.X = 0.0));

/* KEEP TRYING TO SELECT PARENT 2 UNTIL YOUR ANSWER IS
OTHER
THAN PARENT ONE AND AS LONG AS THE PARENT 2 HAS AN X
VALUE
NOT EQUAL TO ZERO *

JCROSS=crossover(SELPARI, SELPAR2);
COLNUM=O;
if(SH-OWME) printf("\nCHJLDO/od IS: ", j+l1); /* TEST*/1
for(COL -NUM=0O; COLNUM < COLSDESIRED; COLNUM++)

q->CHROMO[COLNUM]l = cl-CHROM[COL-NUM];
if(SHOWME) printf("0/od", q->CHROMO[COLNUMDl;

q->X =chdecode(I); 1* CALL TO CHDECODE FOR CHILD ONE

q2->FITNESS = objfimc(SELPARI, SELPAR2);
I. q->FITNESS = objfunc(q->X);/
q->PAR.ENTI= SELPARI;
q->PARENT2= SELPAR2;
q->XSITE=JCROSS;
np->POP51 INDIV;
tp->POPW = op->POP5W;

if(SHOWME) printf("\t%9.5f ",q->X);
if(SHOWME) printf("%l0.5f ", q->FITNESS);
if(SHOWME) printf("\t0/od ',(q->PARENTI)-+- );
if(SHOWME) printf("\tO/od ,(q->PARENT2)+I1);
if(SHOWME) printf("\tO/od ",q->XSITE);
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if(SHOWMIE) printf("\nCHILDO/d IS: ", j+2); /* TEST*/
COL-NLM-O;
for(COL-NUM-O; COL NUM < COLS DESIRED; COLNUM++)

q2->CHROMO[COLNUM]l = c2->CHROM[COLNUNM];
if(SHOWME) printf("4Vod". q2->CHROMO[CO LYLM);

q2->X =chdecode(2); /* CALL TO CHDECODE FOR CHILD TWO

q2->FITNESS = objfunc(SELPARI, SELPAR2);
I. q2->FITNESS = objfune(q2->X); *
q2->PAR.ENTI=SELPARI;
q2->PARENT2=SELPAR2;
q2->XSITE=JCROSS;
np->POPj+ I]I INDIV2;
tp->POPj+ IJI op->POPD+ 11;

if(SHOWME) printf('\09.5f l",q2->X);
if(SHOWME) printf("%IO.5f ", q2->FITNESS);
it(SHOWM4E) printf("\tO/od ",(q2->PARENTI1)+ 1);
if(SHOWME) printf("\tO/od ",(q2->PARENT2)+1);

if(SHOWME) printf("\tl/od \n", q2->XSITE);
/* RESET THE PARENT VARIABLES FOR THE NEXT SELECTION

o/
SELPARI = 0;
SELPAR = 0;
j =j+2;

/* ADVANCE THE GENERATION/
for (ROWNUM=0; ROWNUM < MAXPOP; ROWNUM++)

I
op->POP[ROWNUM] = np->POP[ROWKNUM],

statistics(MAX, MN);

return 69;
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1* SSSSSSSSSSS SELECT FUNCTION SSSSSSSSSSSSSSS/

int select 0

float RAND=O.O;
float PARTSUM=0.0;
mnt SELVAL=0;
op- &OLDPOP;
1* RRRRRR Replace the DOS specific random with ANSI rando./

/* RRRRRR RAND = ((((float)random(I00))/I 00.00) * SUMFITNESS);
RRRRRRR */
RAND = ((((:float)randQ)/((float)RANDý_MAX)) * SUMFITNESS);

for(SELVAL=0; (SELVAL+1 < MAXPOP) && (PARTSUM < RAND);
SELVAL-H-)

PARTSUM = PARTSUM + op->POP[SEL VAL].FITNESS;

PARTSUM = 0.0;
return SELVAL;

/* CCCCCCCCC CROSSOVER CCCCCCCCCCCCC *
int crossover (SELPAR1,SELPAR2)
mnt SELPARI;
int SELPAR2;

nt j=0;
int JCROSS = 0;
cl=&CHILDI;
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c2-&CHIL-D2;

q- &INDIV;
q2= &INDIV2;
op- &OLDPOP;
np= &NEWPOP;

/* RRRRR Replace DOS specific random with ANSI randO. RRR/

I' RRRR. if(((float)random(100))<(PCROSS* 100.00)) RRRRRRR *

if(((floatXrando % 100)) < (PCROSS * 100.00))

JCROSS = rando % COLSDESIRED;
NCROSS++;

else JCROSS = COLSDESIRED;
/* FIRST CROSSOVER - ITO IAND 2TO 2
for6j=0; j < JCROSS; j-H-)

*q= op->POP[SELPARIJ;
cI->CHROMUJ = mutation(q->CHROMOUj]);
*q2 = op->POP[SELPAR2J;

c2->CHROMIJJ = mnutation(q2->CHROMO5]);

/* SECOND CROSSOVER - I TO 2 AND 2 TO I/
if (JCROSS < COLSDESIRED)

for j=.JCROSS; j < COLS DESIRED; j-H-)

*q- op->POP[SELPAR2J;
cl->CHROMDJ = mutation(q->CHROMOU]);
*q2 = op->POP[SELPAR1JI;
c2->CHROMUJ = mutation(q2->CHROMOjJ]);
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cl=&CHILDI;
c2=&CHILD2;
return JCROSS;
)
/P MMMMtI[M! MUTATION MMNOAMA"M/

int mutation(ALLELE)
mtt ALLELE;
{
int MUTATE =0;
/* IF MUTATION RATE < PMUTATION, CHANGE 1->0 OR 0->1 I
if (((floatXrando% 100)) < (PMUTATION * 100.00))

{
NMUTATION++;
if (ALLELE =-- 1)

{
MUTATE =0;
}

if (ALLELE = 0)
{
MUTATE =1;
}

}
else MUTATE = ALLELE;

/* ERROR TRAP - IN CASE THE MUTATED BIT IS NOT AN INTEGER
I ORO */

if (MUTATE<0 II MUTATE>1)
(

if(SHOWME) printf("\nWnYou have been hit by the big whammie!!
MUTATE: VOdn",
MUTATE);

}
return MUTATE;
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/* DDDDD CHDECODE FUNCTION DDDDDDDDDDD */
float chdecode(CHILDNO)
int CHILDNO;

int i-0;
int j-COLSDESIRED;
float X = 0.0;
float POWEROF_2 = 1.0;

q= &INDIV;
q2- &INDIV2;

/* TURN THE CHROMOSOME l's and O's INTO A FLOAT VALUE FOR
"X' */

if (CHILD NO==I) /* DECODE CHILD-NO.-ONE'S CHROMOSOME /(
X=0.0;
while (i < j)

(
/* if allele is a 1, increment pwr of 2 */
if(q->CHROMO[b-I l=1)

(
X = X + POWER_OF_2;I

POWEROF_2 = POWEROF_2 * 2.0;
j-;

)

if (CHILD_NO==2) /* else DECODE CHROMOSOME FOR CHILD NO.
TWO /

X=0.0;
while (i < j)

(
/* if allele is a 1, increment pwr of 2 */
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if(q2->CHROMObj- I = 1)

X=-X +POWEROF_2;

POWEROF_2 - POWEROF_2 2.0

return X;
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I. GGGGGCK300000 GENSTATS GOGGOGOGGGGOGGGG
void genstats(GENMAXMIN,AVG, LIKELYPAR I, LIKELYPAR.2)
int GEN;
float MAX;
float MIN;
float AVG;
float LIKELYPARI;
float LIKELY PAR2;

if(SHOWME) printf("\n\t\t\t GENERATION O/od IS NOW COMPLETE",
GEN);
if(SHOWME) printf("\nThe number of crossovers for this gen:\Atlt/od",
NCROSS);
if(SHOWME) printf("\nThe number of mutations for this gen:\t\t0/od",
NMUTATION);
if(SHOWME) printf("\nThe CUM. FITNESS (SUMFITNESS)
was:\t\t%8.5f',
SUMFITNESS);
POPMUTATIONS=POPMUTATIONS + NMUTATION;
POPCROSSES=POPCROSSES + NCROSS;
MAXM1N [(GEN-I)J 10] = MAX;
MIAXMIN [(GEN-1)J [1] = MIN;
M4AXMIN [(GEN-I)J [2] = AVG;
M4AXNHIN [(GEN-1)J [3] = LIKELYPARI;
MAXMvIN [(GEN-I)J [4] = LIKELYPAR2;

/* DETERMINE IF ThB GEN. MlAX'MN ARE THE POP M4AXMIN
ALSO 1/

if (MlAX > POPMAX)

POPMAX = MAX,
POPMAXGEN = GEN;
BESTPOPPAR 1 = LIKELY-PARI;
BESTPOPPAR2 = LIKELYPAR2;
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if (MIN < POPMIN)
{
POPMIN = MIN;
POPMINGEN = GEN;
}

P* RESET GENERATION VARIABLES AND COUNTERS*/
MAX=0.0;
MIN=0.0;
AVG=O.0;
LIKELYPARI = 0.0;
LIKELY PAR2 = 0.0;
NMUTATION=0;
NCROSS=0;

7
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/* PPPPPPPPPPPPP POPSTATS PPPPPPPPPPPP */

void popstatsO
I

int 1=0;/0 counter for printing the rows of MAX, MIN, and AVG history /
int m=O; /* counter for printing the cols. of MAX, MIN, AND AVG */
int POPMAXGEN = 0;/* the generation in which the pop. max. occurs. */
float VALUE;/* temp variable to assist in printing array /
float POPULATION MAX=0.0;
float GUESS RATIO = 0.0;
if(SHOWME) printf("\n\nThe Maximum Fitness for the Population was:
%10.5fin",
POPMAX);
if(SHOWME) printf("\n\t\t\tand occurred in Generation %d\n",
POPMAXGEN);
if(SHOWME) printf("\nThe Minimum Fitness for the Population was:
%10.5f',
POPMIN);
if(SHOWME) printf("\n\t\t\tand occurred in generation 0/%'o",
POPMINGEN);
if(SHOWME) printf("\n\n\tThe MAX, MIN, AND AVG FOR EACH
GENERATION
FOLLOWS:");

if(SHOWME) printf("\nGEN");
printf("\n\t\tMAX\t\tM1N~t\tAVG\tLIKELY PARENT I \tLIKELY
PARENT2");

for 0=0; I<MAXGEN; l++)
{
if(MAXMIN [1] [0] > POPULATIONMAX)

{
POPULATION MAX = MAXMIN[I] [0];
POPMAX_GEN = + I;

printfC'"n7);
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if(SHOWME) printf("%d", 1+ 1);
for (m=0; m<5; m++)

(
VALUE = MAXMIN [V] [m];
printf(""4/l 0.5f', VALUE);
)

printf("\n\n The Population Max was /8.5f and occurred in gen. Vod.\n",
POPULATIONMAX, POPMAX_GEN);

printf("\n Therefore, my best rough guess of the source integers is:");
printf("\n %5.2f and %5.2f', BESTPOPPARI, BESTPOPPAR2);
GUESSRATIO = BESTPOPPARI / BESTPOPPAR2;
printf("\n And the ratio is: %9.5f", GUESSRATIO);
printf("\n Reminder: your target value was: %9.5f", TARGET);

7
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APPENDIX B

PERFORMANCE OF THE INTEGER2 GENETIC ALGORITHM

The 2000-generation runs of INTEGER2.EXE depicted in this appendix

were each completed in roughly 26 seconds on an Intel 80486 / 33 Mhz, IBM

compatible computer running MSDOS 5.0 and operating in the Windows

environment. The size of the population (MAXPOP) was set to 100

individuals, and the number of generations (MAXGEN) was set to 2000. The

chromosome length was eight.

Experimentation with the Genet: - Algorithm supported the literature in

that some degree of mutation was necessary to provide diversity within the

population, but there is a limit at which the mutation rate becomes destructive

to the optimization search. We found that we achieved the best performance

when we set the probability of mutation to be 3%. The other values we

looked at were 8%, 10%, and 50%, respectively, but our best results came

from using a 3% mutation rate.

The first five of the following diagrams represent runs with no crossover

and 3% mutation rate (runs I through 4). The next four are sample runs with

probability of crossover of 50% and mutation rate of 3%. The first diagram

shows the text output of INTEGERI when the user enters a "0" when

prompted for type of output desired.

The following graphs represent the value of having crossover. Our best

results came with 50% probability of crossover. (Note: the only generations

graphed are those in which the max fitness changed - other X axis points

were omitted for clarity of the graphs).
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This is the first run output (subsequent outputs are shown as graphs).RUN 0NE I ProbabilitV of Crossover - 0.0
Please enter the probability of mutation (float value only):
Your selected value was: 0.30 1
Enter '1' to view chromosomes and stats. '0' for summary only.
Enter the target float value:
GEN MAX MIN AVG

1 509.4912 1 253.8391 132 46
23 510.6805 0 1 315.9073 207 51
3 511,3784 1 386.2252 18 3

,, 51 511.83 498.6641 508.4904 250 48
13 511,9133 506.6862 509.1095 127 24
27 511.9216 444.8784 506.7358 53 10
34 511.9498 501.7355 508.6539 76 14
49 511.9645 505.8784 508.5961 187 35

77 511.9966 497.7117 507.9379 215 40_
724 511.9991 361.3784 505.8761 156 29

The Population Max was 511 .99905 and occurred in gen. 724.

Therefore, my best rough guess of the source integers is:
156.00 and 29.00 1 1
And the ratio is: 5.37931 _

Reminder: your target value was: 5.37837

This is the chart for the first run, probability of mutation is 3%, no crossover.

2000 GENERATIONS - RUN 1

Chromosome Fitness
60

Chri 
M IN

-. 200.
M. i AVG

GENERATION .N
r7
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This is the diagramn for the second run, pmutation is 3%, no crossover.

2000 GENERATIONS - Run Two

Crmsome Fitness

600 0JMAX

400 U MIN

2 0 AVG

0

12 31 38n

GENERATION 3 61279

This is the chart for the third run, pmutation is 3%, no crossover.

2000 GENERATIONS - Run Three

Chromosome Fitness

EJMAX

200*AVG

0

0n0
(D L

GENERATIONN
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This is the chart for the fourth run, pmutation is 3%, no crossover.

2000 GENERATIONS - RUN 4
Chromosome Fitness

600 --

EMAX
S400 •MIN

200 . AVG

C, 4 C r) (

GENERATION 4 CV)
7n
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This is the chart for the first run with new probability of crossover of 0.5.

2000 GENERATIONS - RUN 5

SChromosome Fitness

3 JMAX

200 M MIN

0

GENERATION C14

This is the diagram for the second run with new probability of cross of .5

2000 GENERATIONS - RUN 6
Chroffmosme Fi..ntu

0 MAX

200- AVG

0
*1

69
676

GENERATION 1042
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This is the chart for the third run of probability of crossover of .5.

2000 GENERATIONS - RUN 7

Chromosome Fitness

400JMAX

UMIN
200 0*AVG

0
(N

0

GENERATION in
C14

This is the fourth run of new probability of crossover of .5.

2000 GENERATIONS - RUN 8

Chromosome Fitness

400 ElMAX

NEAVG

N' to

GENERATION
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