
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2015-09

Neural detection of malicious network

activities using a new direct parsing and

feature extraction technique

Low, Cheng Hong

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/47298

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

NEURAL DETECTION OF MALICIOUS NETWORK
ACTIVITIES USING A NEW DIRECT PARSING AND

FEATURE EXTRACTION TECHNIQUE

by

Cheng Hong Low

September 2015

Thesis Advisor: Phillip Pace
Co-Advisor Monique P. Fargues

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2015

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
NEURAL DETECTION OF MALICIOUS NETWORK ACTIVITIES USING A
NEW DIRECT PARSING AND FEATURE EXTRACTION TECHNIQUE

5. FUNDING NUMBERS

6. AUTHOR(S) Low, Cheng Hong
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Center for Joint Services Electronic Warfare
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The aim of this thesis is to develop an intrusion detection system (IDS) software, which learns to detect
and classify network attacks and intrusions through prior training data. With the added criteria of operating
in real-time applications, ways of improving the efficiency of the IDS without sacrificing the probability of
correct classification (PCC) are also considered. Knowledge Data and Discovery Cup 99 data is used to
evaluate the IDS architecture. Two neural network (NN) architectures were designed and compared
through simulation; the first architecture uses a single NN, while the second uses the merged output of
three NNs in parallel. Results show that a three-parallel NN implementation has similar classification
performance and a shorter training time than with a single NN implementation. PCC is on the order of
93% for denial-of-service attacks and 96% for normal traffic. The classification results for the R2L and
U2R attacks are poor due to the lack of available training data.

14. SUBJECT TERMS
intrusion detection systems, neural networks

15. NUMBER OF
PAGES

75
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

NEURAL DETECTION OF MALICIOUS NETWORK ACTIVITIES USING A
NEW DIRECT PARSING AND FEATURE EXTRACTION TECHNIQUE

Cheng Hong Low
Civlian, ST Aerospace, Singapore

M.Sc., National University of Singapore, 2012

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2015

Approved by: Phillip Pace
Thesis Advisor

Monique P. Fargues
Co-Advisor

Clark Robertson
Chair, Department of Electrical And Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The aim of this thesis is to develop an intrusion detection system (IDS) software,

which learns to detect and classify network attacks and intrusions through prior training

data. With the added criteria of operating in real-time applications, ways of improving the

efficiency of the IDS without sacrificing the probability of correct classification (PCC)

are also considered. Knowledge Data and Discovery Cup 99 data is used to evaluate the

IDS architecture. Two neural network (NN) architectures were designed and compared

through simulation; the first architecture uses a single NN, while the second uses the

merged output of three NNs in parallel. Results show that a three-parallel NN

implementation has similar classification performance and a shorter training time than

with a single NN implementation. PCC is on the order of 93% for denial-of-service

attacks and 96% for normal traffic. The classification results for the R2L and U2R attacks

are poor due to the lack of available training data.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1

1. Feature Extraction Background ...3
2. Classification Background ..4

B. PRINCIPAL CONTRIBUTIONS ..5
C. THESIS OUTLINE ..6

II. THE NN-BASED IDS ..7
A. OVERVIEW OF PROCESS FLOW IN IDS...7
B. KNOWLEDGE AND DATA DISCOVERY (KDD) CUP 99

DATA ..10
C. RAW DATA PRE-PROCESSING ...11
D. FEATURE EXTRACTION ..12

1. Removal of Features with Small Variations12
2. Removal of Highly Correlated Features13

E. NN IMPLEMENTATIONS ..13
1. The Supervised Learning NN ...13
2. Single NN Classification Module ..17
3. Three-Parallel NN Classification Module18

III. SIMULATION RESULTS AND DISCUSSION ...21
A. BASELINE CLASSIFIER WITHOUT FEATURE

EXTRACTION ..21
1. Probability of Correct Classification Results22
2. Timing Results ..22

B. REDUCED FEATURE SIZE CLASSIFIER
IMPLEMENTATION ...23
1. Probability of Correct Classification Results24
2. Timing Results ..24

C. DISCUSSION OF RESULTS ...25
1. Feature Extraction Impacts on Training-Stage Execution

Time ...25
2. Comparison of NN Implementations ...25
3. Effects of the Training Dataset ...26

IV. CONCLUSIONS AND RECOMMENDATIONS ...27

 viii

APPENDIX A. TYPES OF NETWORK ATTACKS FOR KDD CUP
TRAINING DATA ...29

APPENDIX B. FEATURES LIST FOR KDD CUP DATA ...31

APPENDIX C. ENUMERATION USED FOR SYMBOLIC FEATURES33

APPENDIX D. HISTOGRAM OF FEATURES PER OUTCOME TYPE37

APPENDIX E. CONFUSION MATRIX RESULTS FOR BASELINE
SCENARIO WITHOUT FEATURE EXTRACTION41

APPENDIX F. CONFUSION MATRIX RESULTS FOR SCENARIO
UTILIZING FEATURE EXTRACTION ..47

LIST OF REFERENCES ..53

INITIAL DISTRIBUTION LIST ...57

 ix

LIST OF FIGURES

Figure 1. The TCP/IP Internet model as described in [2]. ..2

Figure 2. Single NN-based IDS process flow. ..8

Figure 3. Three-parallel NN-based IDS process flow. ..9

Figure 4. Flowchart of KDD cup 99 data processing prior to classification
stage. ..15

Figure 5. Forty-one input pattern recognition feed-forward NN structure.21

Figure 6. Thirty-three input pattern recognition feed-forward NN structure.23

Figure 7. Features of KDD cup 99 data for dos attack; histogram of features
values. ..37

Figure 8. Features of KDD cup 99 data for u2r attack; histogram of features
values. ..38

Figure 9. Features of KDD cup 99 data for r2l attack; histogram of features
values. ..38

Figure 10. Features of KDD cup 99 data for probe attack; histogram of features
values. ..39

Figure 11. Features of KDD cup 99 data for normal; histogram of features
values. ..39

Figure 12. Confusion matrix for single NN – test dataset. ..41

Figure 13. Confusion matrix for sub NN #1 – test dataset. ...42

Figure 14. Confusion matrix for sub NN #2 – test dataset. ...43

Figure 15. Confusion matrix for sub NN #3 – test dataset. ...44

Figure 16. Confusion matrix for merged output of three-parallel NN – test
dataset. ...45

Figure 17. Confusion matrix for single NN – test dataset. ..47

Figure 18. Confusion matrix for sub NN #1 – test dataset. ...48

Figure 19. Confusion matrix for sub NN #2 – test dataset. ...49

Figure 20. Confusion matrix for sub NN #3 – test dataset. ...50

Figure 21. Confusion matrix for merged output of three-parallel NN – test
dataset. ...51

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

 Breakdown of outcome types in the KDD cup 99 training and test
datasets. ..10

 List of features used for the classification stage.14

 PCC for baseline scenario on test dataset. ...22

 NN training execution time (average over 30 Runs) – baseline
scenario. ...23

 PCC for reduced feature size classifier on test dataset.24

 NN training execution time (average over 30 runs) – reduced feature
size scenario. ..25

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

IDS Intrusion Detection System

KDD Knowledge Discovery and Data Mining

NN Neural Network

PCC Probability of Correct Classification

RAM Random Access Memory

SVM Support Vector Machines

TCP/IP Transmission Control Protocol/Internet Protocol

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

My sincere thanks go to Professor Phillip Pace and Professor Monique Fargues,

who have provided me with ample learning opportunities through their patience,

motivation, enthusiasm, and immense knowledge. Their valuable guidance has been

instrumental in making this thesis possible. Special thanks to Dr. Martin Kruger, Office

of Naval Research, ONR Code 30, Arlington, VA.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Background into the development of an intrusion detection system software

prototype and the principal contributions of this thesis are discussed in this thesis

A. BACKGROUND

The growing threat of malicious network activities and intrusion attempts makes

intrusion detection systems (IDS) a necessity. Network traffic includes attacker packets,

normal packets, and victim packets; thus, IDS must work in a dynamic environment and

requires continuous tuning to react against the evolving new attacks that exploit newly

discovered security weaknesses. Examples of network attacks include:

• MAC layer denial-of-service (DOS) attacks

• ChopChop attacks

• Passive eavesdropping

• Deauthentication attacks

• Fragmentation attacks

• Duration attacks

• Probing (probe)

• Remote-to-local (R2L)

• User-to-root (U2R)

Typical approaches to intrusion detection include anomaly detection, misuse

detection, and combined anomaly/misuse detection [1]. Anomaly detection works by

identifying unusual (often malicious) activities which differ from typical user patterns.

Misuse detection compares and contrasts a user’s activities with known attackers’

behavior when attempting to access a network. The hybrid or combined approach uses a

mix of anomaly and misuse detection.

In the Transmission Control Protocol/Internet Protocol (TCP/IP) Internet model,

there are typically four protocol layers used in the communication process between

 2

computers within a network. A detailed description of the respective layers can be found

in [2]. These layers are shown in Figure 1.

Figure 1. The TCP/IP Internet model as described in [2].

Network data can be collected from any of these protocol layers by various

monitoring techniques and then passed to the IDS for analysis and categorization. The

IDS first extracts the relevant features of the network data to construct a feature vector;

the network data are typically captured from the network TCP/IP header and lower level

protocol frames. Further information about headers and protocol frames can be found in

Part I of [2]. The feature vector is then processed by a nonlinear network to identify the

presence of attack (unauthorized intrusion or misuse) or normal traffic. The results

produced by the IDS may then be used by a management system to negate the attack and

identify its source.

Typically, the IDS handles a high-dimensionality input feature space, and the

testing of the different feature-extraction and classification algorithms is often conducted

using the KDD Cup 99 dataset [3]. This dataset was derived from the DARPA IDS

evaluation dataset (1998) and has approximately “5 million connection records,” each

representing a TCP/IP connection made up of 41 features. Each feature can either be

qualitative or quantitative in nature.

 3

In this thesis, the KDD Cup 99 data are enumerated, parsed and normalized to

form a set of raw feature vectors used by the feature-extraction process. The feature-

extraction process then extracts relevant features to derive a processed feature vector as

an input to the classifier. A nonlinear network then uses these feature vectors to detect

and classify the intrusion types (DoS, Probe, U2R, R2L, unknown). The training dataset,

which consists of a combination of feature vectors with their associated output types is

used to globally train and compute the classifier parameters. The probability of correct

classification (PCC) is evaluated using the test dataset.

1. Feature Extraction Background

Features used for training and testing of the IDS must retain the anomalies and

misuse information critical to the performance of the classifier. Network traffic data may

also contain redundant and irrelevant features that can overwhelm and disable the IDS.

Consequently, the key goal of feature-extraction is to identify and remove irrelevant,

inconsistent, and redundant features, reducing the feature vector size. Also important is to

preserve the optimal features to characterize the network data (e.g., normal traffic or

attack traffic) while simultaneously maintaining the classifier accuracy.

A significant body of research exists on the process of feature-extraction.

In [4], a hybrid model (wrapper model and filter models) was explored to select

an optimal feature vector. The wrapper model “uses the predictive accuracy of the

classifier” to evaluate the quality of the feature vector. The filter model uses the

“information, consistency or distance measures” to determine the relevance of the feature

vector. The two methods are then combined to select an optimal feature vector [4].

Principal component analysis (PCA) and independent component analysis (ICA)

were explored in [5]. The PCA transforms a set of features to a lower dimensional space

while retaining the variability of the original data; however, the use of PCA to handle

dynamic changes in the behavior of the network data was not addressed. To handle such

changes, a hybrid data mining technique using a dynamic principle component analysis

(DPCA) and a latent semantic analysis (LSA) were combined in [6].

 4

In [7], a feature selection algorithm based on “Mahalanobis distance feature

ranking” was used with an exhaustive search to identify appropriate features for

identifying each attack type.

A feature selection approach based on a Bayesian network classifier was proposed

in [8] and an optimal selection of features using genetic algorithm was presented in [9].

In [10], genetic k-means clustering methods were used to detect unknown attack

patterns and remove irrelevant features in order to derive a smaller feature set while

giving a higher classification accuracy of attacks.

A multivariate correlation detection system for DoS attack was presented in [11,

12]. This technique was able to detect “known and unknown DoS attacks” by considering

“triangle-area-based multivariate correlation analysis” and geometrical correlations

between traffic patterns of legitimate network traffic. Another flooding-based DoS attack

detection which uses a feature subset selection algorithm was discussed in [13].

In [14], a correlation-based feature extraction method was used to reduce the size

of the input feature space through the use of a partial-decision tree that parses out normal

and abnormal behaviors. The assumption is that a good feature set contains features that

are only highly correlated with the respective outcome types. In [15], irrelevant features

are removed from a “ranked feature list based on the mutual information between each

feature and the decision variable.” The decision variable refers to the detection and

classification of network attacks.

2. Classification Background

Typical IDS tools (for example, SNORT) use rule-based filter techniques, which

must be manually configured by a network analyzer for the detection of network attacks;

however; the large number of inputs and the complexity of relationships between inputs

makes it difficult for the network analyzer to be manually programmed with a

comprehensive set of rules.

One possible IDS approach uses a nonlinear network to classify and identify the

presence of a network attack (or normal traffic) as discussed in [16]. Specifically, Neural

 5

Networks (NN) were found to be useful for IDS applications, where there is a need to

differentiate between different types of network attacks. NNs are described in [17] as

statistical and recursive learning models which “fit” a function based on a training dataset

that has defined inputs and desired outputs; thus, NNs are suitable for tackling

complicated problems which cannot be solved using rule-based or logic-based

techniques. The large dimensionality of the network features makes the classification of

network attacks complex and creates the case for the use of a NN.

B. PRINCIPAL CONTRIBUTIONS

An IDS software prototype was developed with the following design goals:

• Handle known classes of attacks;

• Handle unknown classes of attacks and classify accordingly;

• Operate in near real-time to classify continuous network traffic;

• Retrain based on new network data with minimal disruption to real-time
operations.

The Knowledge Discovery and Data Mining (KDD) Cup 99 data was selected to

test and numerically the IDS. The source of the KDD Cup 99 data is based on the NSL-

KDD dataset as described in [3]. A raw data preprocessing software module, as described

in Section II.C, was developed to parse the raw training and testing network features into

a usable format for the subsequent feature-extraction module.

A feature-extraction software module, as described in Section II.D, was

considered to reduce the network features, resulting in lower training times needed for the

NN implementations.

A classification software module, as described in Section II.E was developed to

detect the intrusion using the feature vector output from the feature-extraction software

module. The classification software module uses NNs for training and classification of

different types of network attacks. In addition, the classification software module was

developed to test two different NN implementations and their performance was compared

in terms of the PCC and efficiency.

 6

C. THESIS OUTLINE

This thesis is organized as follows. In Chapter II, an overview of the process flow

in the IDS and a description of each component of the IDS is detailed. In Chapter III, the

results and implications of the IDS are discussed. Finally, conclusions and

recommendations for future work are given in Chapter IV.

 7

II. THE NN-BASED IDS

The implementation and design considerations of the NN-based IDS is described

in this thesis.

A. OVERVIEW OF PROCESS FLOW IN IDS

The IDS implementation was developed using MATLAB 2014b and is divided

into three software modules: raw data pre-processing, feature extraction and

classification.

Each software module was designed to work independently with other modules,

producing a set of output files used by the subsequent modules in the process flow. Any

of the software modules in the process flow can be replaced provided the required inputs

are available and in the correct format and syntax. With this built-in flexibility in mind, it

is possible to adapt the raw data pre-processing module to allow the IDS to be trained

with network traffic data other than the KDD Cup 99 dataset.

For this thesis research, two different classification architectures were explored

and compared in terms of accuracy and computing times. The first architecture utilized a

single NN for the classification process and is illustrated as a block diagram shown in

Figure 2. The second architecture utilized three separate NNs for the classification

process and is illustrated as a block diagram in Figure 3. This second structure was

inspired by [18], where the training data was randomly separated into an arbitrary number

of subsets for the purpose of temporal analysis of network traffic data, and each subset

was used to train an individual classifier separately. In this thesis, the training data was

split into three subsets, and each NN trains with each subset, respectively. The outputs

from each of the three separate NNs were combined to produce the final output. Further

details are provided in Section E.

 8

Figure 2. Single NN-based IDS process flow.

 9

Figure 3. Three-parallel NN-based IDS process flow.

 10

B. KNOWLEDGE AND DATA DISCOVERY (KDD) CUP 99 DATA

The KDD Cup 99 data set was developed for use in the Third International

Knowledge Discovery and Data Mining Tools Competition. The dataset was created

through a raw TCP data dump of a simulated U.S. Air Force local-area network (LAN),

where the network was subjected to deliberate network attacks.

Each training sample in the training dataset represents a connection summary, and

there are a total of 25,192 samples in the training dataset. Each sample can be classified

as one of the 22 training attack types and can be further categorized as one of the general

five outcome types: DOS, U2R, R2L, Probe or Normal. Refer to Appendix A for the full

list of outcome types, and a detailed description of each of the outcome types can be

found in [3]. Each connection summary is described using 41 features as listed in

Appendix B, which the NN classifier uses as inputs for both training and testing.

In the test dataset, each sample is similarly a connection summary, and there are a

total of 22,543 samples in the test dataset. In addition, there are 15 types of attacks which

are not found in the training dataset. For the purpose of testing the ability of the IDS to

handle unknown attack types, these 15 types of attacks are classified as unknown types in

the performance evaluation phase.

A breakdown of the number of outcome types for the testing and training dataset

is shown in Table 1.

 Breakdown of outcome types in the KDD cup 99 training and test
datasets.

Dataset Type Number of Samples per Outcome Type
DOS U2R R2L Probe Normal Unknown

Training 9234 11 209 2289 13449 0
Testing 5651 37 2199 1106 9710 3750

The KDD Cup 99 dataset was downloaded from a Git repository [19], which uses

the NSL-KDD dataset. The NSL-KDD dataset, as discussed in [3], is a corrected version

 11

of KDD Cup 99 dataset, which addresses issues and problems in the original KDD Cup

99 dataset.

It must be noted that the KDD Cup 99 dataset is solely used for the purpose of

developing the IDS software. It was noted by Brugger [20] that the KDD Cup 99 data is

outdated and not fully representative of network traffic attacks; thus, there is a need for

the IDS to be validated with updated and more representative network data in future

projects.

C. RAW DATA PRE-PROCESSING

The raw data pre-processing stage takes the KDD Cup 99 training data and

converts it into a matrix of representative numerical data for the feature-extraction and

classification stage. This stage performs the pre-processing described in the following

paragraphs.

Transforming semantic features into enumeration allows subsequent stages to

process these features as numerical values. In addition, the same set of conversion rules

applies to both training and test dataset; thus, both training and test dataset must use the

same set of semantics for the respective features. For the “protocol_type,” “service,” and

“flag” fields, the enumerations used are shown in Appendix C.

Normalizing features scales features in the range 0 to 1, preventing the training

process from being affected by large variations in the feature values.

Formatting raw data for MATLAB input saves the processed raw data in a

suitable format for the feature-extraction and classification stage. For example, in this

simulation setup, 25,192 training samples were in the raw data, each training sample has

41 features, and each training sample has one of five possible general outcomes; thus, a

single training data matrix that encompasses the features and outcomes for every one of

the 25,192 training samples was produced as an output.

Calculating mean, standard deviation, and histogram of features per outcome type

provides data for the feature-extraction stage to determine if the feature is useful for

classification. In this case, the software module calculates the mean and standard

 12

deviation of each feature for each outcome type. For example, a 5-by-41 matrix is

generated for the mean of the features per outcome type, where there are five outcome

types and 41 features. In addition, the histogram of the feature values, for each feature per

outcome type, is also created for visual analysis purposes. The histograms generated are

shown in Appendix D.

D. FEATURE EXTRACTION

This software module uses the properties of each feature per outcome type to

evaluate the features that are useful at the training stage. For this application, an array of

1s and 0s is generated, where a value of 1 indicates to the classification stage that the

respective feature is to be used for training, while a value of 0 means the opposite.

The feature-extraction stage uses two methods to remove redundant or irrelevant

features.

1. Removal of Features with Small Variations

The first filtering mechanism removes all features which remain relatively

constant across different outcome types. For a feature to be considered “constant,” the

conditions described in the following paragraphs must be satisfied.

The mean of a feature is approximately the same for all outcome types. In such a

case, the classification stage is not able to use this feature to differentiate between

different outcome types during the training stage. The mean of the five outcome types are

tabulated, and the standard deviation of the five means are then calculated. If this

standard deviation is less than the empirical threshold value of 0.0001, the mean values of

the five outcome types are considered to be similar.

The standard deviation value of the feature is small for all outcome types. In such

a case, features vary within a relatively small range, making this feature useless for

training purposes. The standard deviation of the five outcome types are first tabulated. If

all five standard deviation values are less than the empirical threshold value of 0.001, this

means that the feature does not vary significantly for all outcome types.

 13

2. Removal of Highly Correlated Features

In this step, the correlation coefficient matrix of the features is calculated, and

pairs of features which have a correlation coefficient value larger than or equal to 0.97

are identified. For each pair of highly correlated features, only one of the features is

selected for the feature vector and used at the classification stage. The correlation

coefficient matrix is calculated by

 (,)(,)
(,) (,)
C i jR i j

C i i C j j
= (1)

where i and j represent one of the 41 features and (,)C i j is the corresponding

covariance matrix. The covariance matrix (,)C i j is defined as

 1
()()

(,)

N

k k
k

i i j j
C i j

N
=

− −
=
∑

 (2)

where i and j represents the mean of the respective features and N is the number of

training samples in the training dataset. The mean i is defined as

 1

N

k
k

i
i

N
==
∑

 (3)

and j is also defined similarly.

To summarize, a flow chart of the raw data pre-processing and feature-extraction

processes for the KDD Cup 99 data before the classification stage is illustrated in Figure

4, and the list of features used for the classification stage is shown in Table 2.

E. NN IMPLEMENTATIONS

1. The Supervised Learning NN

The NN is a nonlinear process that is trained to perform a particular task

(filtering, predicting, identifying patterns, etc.). In this thesis, the NN is implemented

using the MATLAB software.

 14

 List of features used for the classification stage.

S/N Name
1 duration
2 protocol_type
3 service
4 flag
5 src_bytes
6 dst_bytes
7 wrong_fragment
8 urgent
9 hot
10 num_failed_logins
11 logged_in
12 root_shell
13 su_attempted
14 num_root
15 num_file_creations
16 num_shells
17 num_access_files
18 is_guest_login
19 count
20 srv_count
21 srv_rerror_rate
22 same_srv_rate
23 diff_srv_rate
24 srv_diff_host_rate
25 dst_host_count
26 dst_host_srv_count
27 dst_host_same_srv_rate
28 dst_host_diff_srv_rate
29 dst_host_same_src_port_rate
30 dst_host_srv_diff_host_rate
31 dst_host_srv_serror_rate
32 dst_host_rerror_rate
33 dst_host_srv_rerror_rate

 15

Figure 4. Flowchart of KDD cup 99 data processing prior to classification stage.

The NN consists of an interconnected network of basic computing blocks called

neurons. Inter-neuron connections contain synaptic weights, and the synaptic weights are

used to retain knowledge obtained through the training process. Through the training

process, the synaptic weights are tuned to achieve the training objective. In the NN

toolbox provided by MATLAB [21], training functions are defined explicitly as global

algorithms for the synaptic weights tuning process. In addition to the training algorithm,

the NN toolbox also allows the definition of post-processing algorithms to evaluate the

network performance after the training process. A defined proportion of the training

dataset also needs to be allocated for validation purposes in the training process,

preventing overfitting of the NN to the training dataset.

In this thesis, the NN type of interest is the multi-layer feedforward network. In

such networks, the neurons are arranged in layers. The most basic form is the single-layer

feedforward network, where the input source nodes directly project to a layer of output

nodes. The multi-layer feedforward network extends the single-layer feedforward

network through the addition of one or more hidden layers in the network. The NN used

in this thesis consists of one hidden layer and one output layer. The hidden layer creates

an additional set of synaptic connections between the input nodes and output layer of

 16

neurons, which allows the derivation of higher-order statistics and relationships; this is

especially important in applications where the inputs have large dimensions.

Each neuron in its respective layer is connected to every other node in the

adjacent forward layer. The number of neurons in the single hidden layer is derived based

on a rule-of-thumb from [22], where the number of neurons is the sum of two-thirds the

number of features and the number of outcome types. If the value calculated is a decimal

number, the decimal number is rounded up.

The NN output ky can be mathematically described as [23]

1 1

() [(())]
H I

k s kh sh hi i
h i

y l f w f w x l
= =

= ∑ ∑ (4)

where k is the respective outcome type, ix is the input, i is the respective feature of the

input, I represents the total number of features per input sample and the sample number

of the input is l . The total number of hidden layers is H , and h represents the

respective hidden layer. The weights from neuron i to neuron h and the weights from

neuron h to neuron k are, respectively, defined as hiw and khw . The hidden layer

activation function and the output layer activation function are defined, respectively, as

shf and sf . The hidden layer activation function shf uses the tangent sigmoid function

2

2() 1
1sh zf z

e−= −
+

, (5)

where z is the input to the activation function. The output layer activation function sf

uses the normalized exponential function

1

()
k

z

s K
z

k

ef z
e

=

=

∑
 (6)

where K is the total number of outcome types.

The reader can also refer to [17] for further details on the multi-layer feedforward

NN.

 17

2. Single NN Classification Module

The NN is trained using 25,192 training samples. The IDS must classify each

network event as one of the five known outcome types or an unknown type. The NN

chosen for this module has the characteristics discussed in the following paragraphs.

The NN has a single hidden layer, and the MATLAB “patternnet” function was

used to create the NN. For the scenarios in Section III, the number of neurons in the

hidden layer is described as follows. In the baseline scenario without feature-extraction,

the hidden layer uses 33 neurons, which is calculated based on 2/3(41) + 5 (41 input

features and five NN outcome types). In the scenario utilizing feature-extraction, the

hidden layer uses 27 neurons, which is calculated based on 2/3(33) + 5 (33 input features

and five NN outcome types).

The NN utilizes a supervised learning approach with the training function as

scaled conjugate gradient and the performance function as cross-entropy. The training

proportion of the training dataset is 90%, and the validation proportion of the training

dataset is 10%. The division of the training dataset into training and validation sets was

performed randomly. A separate test dataset was used to test the NN.

The NN takes in two input matrices at the training stage: a training feature matrix

that contains the feature vectors and a training outcome matrix that indicates the

respective output type for every feature vector.

For every test input to the NN, the NN outputs a vector of five numbers, where

each element represents one of the five known outcome types. The maximum value of

any element is one, and the output of the NN is indicated by the element with the

maximum value.

As a result of the supervised learning approach implemented, the NN is unable to

classify unknown events type in the test dataset as unknown; thus, an additional

capability was included to classify unknown output types. First, a sixth element was

added to the NN output vector as a placeholder for the unknown outcome type. The

unknown type was determined through the use of a threshold value; if the maximum

output value of the NN is below the empirical threshold value of 0.8, this means that the

 18

NN is not able to match its output with one of the known output types with high

confidence. In this case, the NN output defaults to the unknown type.

3. Three-Parallel NN Classification Module

The next architecture is comprised of three separate NN modules, where each NN

is trained using 1/3 of the 25,192 training samples. Each NN has the same properties as

those described in Section 2.

The training set used for each NN is exclusive, and the three NNs work in

parallel. To classify unknown event types, the output of each NN is subjected to the same

processing as described in Section 2.

Separate outputs are combined based on the number of samples within the

training set of the respective NNs. If no training samples of an outcome type are used to

train a NN, that respective NN is given a weight of zero in influencing the joint decision

of the three NNs. Conversely, if all training samples of an outcome type are used to train

a NN, that NN has a maximum weight of one in influencing the joint decision of the three

NNs and the other two NNs have no influence on the joint decision.

The weight used for each of the smaller NN module is calculated based on the

following:

• For each NN, the number of training samples per outcome type is
tabulated as , where represents one of the three NNs and represents
an outcome type.

• The total number of training samples per outcome type in the full training
set is tabulated as , where represents a specific outcome type.

• The weight applied to each outcome type for the respective NN is ,
where represents one of the three NNs and represents one outcome
type. The respective weight is calculated by .

• For unknown outcome types, the default weight is the inverse of the
number of NNs used in decision fusion process, i.e. 1/3.

The output of a respective NN for a particular outcome type is , where

represents one of the three NNs and represents an outcome type. The outputs of each

 19

NN are then multiplied by the respective weights and summed together to create the final

output. The fused outcome , where represents one of the outcome types, is obtained

from

3

1
j ij ij

i
O W o

=

=∑ . (7)

Similarly to the single NN architecture, the final NN output is indicated by the

element with the highest value in the output vector.

The IDS implementation and performance is discussed in the next chapter.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

III. SIMULATION RESULTS AND DISCUSSION

Simulation results obtained for the IDS architectures are discussed in this chapter;

the PCC and timing results obtained for the respective scenarios are presented in Sections

A and B, and a discussion of the results is given in Section C. To allow comparison and

benchmarking of results, all experiments were performed on a MacBook Pro (Retina, 15-

inch, Early 2013) with 2.8 GHz Intel Core i7 Processor that was installed with 16 GB

16000 MHz DDR3 Random Access Memory (RAM), and the Operating System used

was MAC OS X Yosemite (Version 10.10.3). The MATLAB version used was 2014b.

A. BASELINE CLASSIFIER WITHOUT FEATURE EXTRACTION

This scenario was conducted as a baseline for comparison.

The feature-extraction stage is bypassed, and all 41 features were used to train and test

the NN.

The same pattern recognition feedforward NN structure was used for the single

NN and the three-parallel NN implementation. The NN uses 41 inputs, 33 hidden neurons

and five neurons for the output layer. The training samples have five different outcome

types, which results in five output neurons. The sixth “unknown” type output is

determined by the logic as described earlier in Section II.E.2. An illustration of the NN

implemented in MATLAB is shown in Figure 5.

Figure 5. Forty-one input pattern recognition feed-forward NN structure.

 22

1. Probability of Correct Classification Results

Each NN was tested individually with the test dataset. The single NN output was

compared with the desired outcome via the “plotconfusion” function provided by

MATLAB; detailed confusion matrix results are shown in Appendix E. For the respective

three-parallel NN classification module, each parallel NN output and the merged output

of the three NNs were compared with the desired outcome via the same method. PCC

results are shown in Table 3. Due to the use of random seeds in the training process of the

NN, the PCC results vary slightly, but results shown here are representative of the NN

average classification performance.

 PCC for baseline scenario on test dataset.

NN Type PCC (%)
DOS U2R R2L Probe Normal Unknown

Sub NN #1 91.0 0.0 0.9 72.6 95.6 34.9
Sub NN #2 93.5 0.0 0.1 73.9 96.6 24.2
Sub NN #3 92.7 0.0 5.2 74.3 96.6 8.6
Merged output
of three-parallel
NN

93.2 0.0 0.4 73.5 96.5 20.8

Single 91.8 0.0 0.0 73.0 95.8 27.5

2. Timing Results

To measure the amount of time taken to train the respective NN, 30 runs were

conducted to find the mean-training time and associated standard deviation for the

respective NN implementations. It is also noted that the time taken by the NN to produce

the output from the test dataset is almost negligible; for a test dataset of 22,543 samples,

the NN takes less than one second to produce the output. Training times for the respective

NNs are presented in Table 4. It is also observed that MATLAB has sufficient RAM to

execute each simulation run without impacting timing measurements.

 23

 NN training execution time (average over 30 Runs) – baseline
scenario.

NN Type Average (seconds) Standard Deviation
(Seconds)

Sub NN #1 2.8092 0.6242
Sub NN #2 2.5920 0.7613
Sub NN #3 2.5597 0.7307
Total time for three-parallel NN
Implementation (Sequential)

7.9609 2.1162

Single 10.8496 3.636

B. REDUCED FEATURE SIZE CLASSIFIER IMPLEMENTATION

The effects of feature-extraction on classifier performance and the results

compared with those from the baseline scenario are considered in this scenario. Recall,

the feature-extraction stage keeps only 33 of the 41 original features.

The same pattern recognition feedforward NN structure was used for the single

NN and the three-parallel NN implementations. The NN uses 33 inputs, 27 hidden

neurons and five neurons for the output layer. The training samples have five different

outcome types, which results in five output neurons. The sixth “unknown” type output is

determined by the logic as described in Section II.E.2. An illustration of the NN

implemented in MATLAB is shown in Figure 6.

Figure 6. Thirty-three input pattern recognition feed-forward NN structure.

 24

1. Probability of Correct Classification Results

Similar to the baseline scenario, each NN was tested individually with the test

dataset using the same methods as described earlier; detailed confusion matrix results are

shown in Appendix F. The PCC results are presented in Table 5. Due to the use of

random seeds in the training process of the NN, the PCC results vary slightly, but results

shown here are representative of the NN average classification performance.

 PCC for reduced feature size classifier on test dataset.

NN Type PCC (%)
DOS U2R R2L Probe Normal Unknown

Sub NN #1 91.4 2.7 0.0 71.8 95.0 14.8
Sub NN #2 92.0 0.0 0.0 73.9 96.1 24.1
Sub NN #3 91.6 0.0 0.1 73.3 95.7 34.8
Merged output
of three-parallel
NN

91.9 0.0 0.0 73.1 96.1 25.2

Single 94.2 0.0 0.2 73.9 96.9 17.3

2. Timing Results

Similar to the baseline scenario, training times for the respective NNs are shown

in Table 6. To get the reduction in average training time in Table 6, the new average

training time is divided by the baseline average training time to get the percentage

equivalent. The reduction percentage is then obtained by subtracting this value from

100%. It is also observed that MATLAB has sufficient RAM to execute each simulation

run without impacting timing measurements.

 25

 NN training execution time (average over 30 runs) – reduced
feature size scenario.

NN Type Average
(seconds)

Standard
Deviation
(Seconds)

Percentage Reduction in Average
Training Time as compared to

Baseline Scenario (%)

Sub NN #1 2.1874 0.6282 22.2
Sub NN #2 1.8743 0.4059 27.6
Sub NN #3 2.0267 0.5745 20.82
Total time for three-parallel
NN Implementation
(Sequential)

6.0884 1.6086 23.5

Single 8.6757 2.4317 20

C. DISCUSSION OF RESULTS

Results obtained in this study raise the following discussion points.

1. Feature Extraction Impacts on Training-Stage Execution Time

Reducing the feature size does not degrade classification performances in either

NN implementation; the feature-extraction stage successfully removed irrelevant features

which did not serve to improve the NN classification capabilities.

The main benefit is a reduction in the training time for both NN implementations,

as shown in Table 6. This characteristic is beneficial when there is a need to retrain NNs

with new network data while minimizing disruption to real-time detection of network

intrusions.

2. Comparison of NN Implementations

The overall training time is shorter for the three-parallel NN implementation, and

the three-parallel NN implementation has comparable PCC performance to the single NN

implementation. This is seen in Table 4 and Table 6, where the overall training time is

shorter than that required for the single NN implementation, when all three sub NNs are

trained sequentially.

 26

The training time for the three-parallel NN implementation can be further

improved when three parallel computing threads are used to train each sub NN. In such a

case, the total training time is based on that obtained for the sub NN with the longest

training time.

The retraining time for the three-parallel NN implementation can improve further

if the feature-extraction stage determines that new training data uses the same set of

features as the original training data. In this case, a three-parallel NN only needs to train

one sub NN with the latest network data and replace either the oldest or worst performing

sub NN. In comparison, a single NN implementation needs to retrain the whole NN with

the old and new data.

3. Effects of the Training Dataset

Results show that U2R and R2L outcome types have low PCC for both NN

implementations. U2R and R2L outcome types have fewer training samples than DOS,

Probe and Normal training samples, as seen from Table 1. As a result, the training dataset

is imbalanced, which may have led to insufficient training of the NN in classifying the

U2R and R2L outcome types in the testing database.

Classification results obtained for DOS, Probe and Normal outcome types are

better. This is due to the large number of training samples for the DOS, Probe and

Normal outcome types, which allows the NN to be sufficiently trained.

The use of the threshold method as described in Section II.E.2 to determine

unknown outcome types is only able to generate approximately 20% PCC. It is noted that

the threshold can be set higher to allow more unknown events to be classified

successfully; a higher threshold that the NN output needs to be larger to be classified as

one of the five known outcome types. This also comes with the downside of having more

of the known outcome types being classified as unknown outcome types.

Results obtained with the NN based classifier considered in this study were

presented in this section. Conclusions and recommendations for future work are provided

in the next chapter.

 27

IV. CONCLUSIONS AND RECOMMENDATIONS

Conclusions and recommendations for future work are given in this chapter.

The main purpose of this thesis was to develop an NN-based supervised IDS. The

IDS considered contains three interchangeable modular software components. The first

module pre-processes the raw training and testing data, the second module applies

feature-extraction, and the last module performs the NN training and the classification of

network events. Single NN and three-parallel NN implementations were developed in the

classification module for comparison of PCC and timing performances.

The performance of the IDS implementation was tested using the KDD Cup 99

dataset using separate testing and training sets. Simulations were conducted to investigate

the effects of feature-extraction and compute performances obtained with the single NN

and three-parallel NN implementations.

Results show the feature-extraction stage removes irrelevant features without

impacting PCC while reducing the training time.

While the three-parallel NN implementation is comparable in PCC performance

to the single NN implementation, it was shown to be superior in terms of training time.

This makes the three-parallel NN implementation a possible candidate for use in real-

time applications, when the IDS needs to frequently retrain to handle new types of

network attacks.

The following areas are recommended for further work.

Further analysis of the histogram obtained for each feature on a per outcome basis

can be performed and used for additional processing in the feature-extraction module.

The IDS considered in this thesis is a signature-based IDS, which detects network

attacks or intrusions through patterns in the features. Other approaches such as anomaly-

based IDS can be considered to complement signature based IDS, as suggested in [24],

where anomaly-based IDS are used to detect behavioral deviations from normal network

 28

behavior. Future projects may include the development of a separate anomaly-based IDS

to complement the results of the IDS considered in this study.

The IDS can be configured based on the number of sub-NNs present in a parallel

NN implementation, threshold values to remove unneeded features, number of neurons in

the hidden layer, number of hidden layers, testing-to-validation ratio used for NN training

and threshold values to determine unknown outcome types; thus, future work should

consider optimizing these parameters.

 29

APPENDIX A. TYPES OF NETWORK ATTACKS FOR KDD CUP
TRAINING DATA

Name Type
Back dos
buffer_overflow u2r
ftp_write r2l
guess_passwd r2l
imap r2l
ipsweep probe
land dos
loadmodule u2r
multihop r2l
neptune dos
nmap probe
perl u2r
phf r2l
pod dos
portsweep probe
rootkit u2r
satan probe
smurf dos
spy r2l
teardrop dos
warezclient r2l
warezmaster r2l

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

APPENDIX B. FEATURES LIST FOR KDD CUP DATA

S/N Name Type
1 duration continuous
2 protocol_type symbolic
3 service symbolic
4 flag symbolic
5 src_bytes continuous
6 dst_bytes continuous
7 land continuous
8 wrong_fragment continuous
9 urgent continuous
10 hot continuous
11 num_failed_logins continuous
12 logged_in continuous
13 num_compromised continuous
14 root_shell continuous
15 su_attempted continuous
16 num_root continuous
17 num_file_creations continuous
18 num_shells continuous
19 num_access_files continuous
20 num_outbound_cmds continuous
21 is_host_login continuous
22 is_guest_login continuous
23 count continuous
24 srv_count continuous
25 serror_rate continuous
26 srv_serror_rate continuous
27 rerror_rate continuous
28 srv_rerror_rate continuous
29 same_srv_rate continuous
30 diff_srv_rate continuous
31 srv_diff_host_rate continuous
32 dst_host_count continuous
33 dst_host_srv_count continuous
34 dst_host_same_srv_rate continuous
35 dst_host_diff_srv_rate continuous
36 dst_host_same_src_port_rate continuous

 32

37 dst_host_srv_diff_host_rate continuous
38 dst_host_serror_rate continuous
39 dst_host_srv_serror_rate continuous
40 dst_host_rerror_rate continuous
41 dst_host_srv_rerror_rate continuous

 33

APPENDIX C. ENUMERATION USED FOR SYMBOLIC
FEATURES

Enumeration Types for “protocol_type”
Name Enumeration Value
‘tcp’ 1
‘udp’ 2
‘icmp’ 3

Enumeration Types for “service”
Name Enumeration Value
‘ftp_data’ 1
‘other’ 2
‘private’ 3
‘http’ 4
‘remote_job’ 5
‘name’ 6
‘netbios_ns’ 7
‘eco_i’ 8
‘mtp’ 9
‘telnet’ 10
‘finger’ 11
‘domain_u’ 12
‘supdup’ 13
‘uucp_path’ 14
‘Z39_50’ 15
‘smtp’ 16
‘csnet_ns’ 17
‘uucp’ 18
‘netbios_dgm’ 19
‘urp_i’ 20
‘auth’ 21
‘domain’ 22
‘ftp’ 23
‘bgp’ 24
‘ldap’ 25
‘ecr_i’ 26
‘gopher’ 27
‘vmnet’ 28

 34

‘systat’ 29
‘http_443’ 30
‘efs’ 31
‘whois’ 32
‘imap4’ 33
‘iso_tsap’ 34
‘echo’ 35
‘klogin’ 36
‘link’ 37
‘sunrpc’ 38
‘login’ 39
‘kshell’ 40
‘sql_net’ 41
‘time’ 42
‘hostnames’ 43
‘exec’ 44
‘ntp_u’ 45
‘discard’ 46
‘nntp’ 47
‘courier’ 48
‘ctf’ 49
‘ssh’ 50
‘daytime’ 51
‘shell’ 52
‘netstat’ 53
‘pop_3’ 54
‘nnsp’ 55
‘IRC’ 56
‘pop_2’ 57
‘printer’ 58
‘tim_i’ 59
‘pm_dump’ 60
‘red_i’ 61
‘netbios_ssn’ 62
‘rje’ 63
‘X11’ 64
‘urh_i’ 65
‘http_8001’ 66

 35

Enumeration Types for “flag”
Name Enumeration Value
‘SF’ 1
‘S0’ 2
‘REJ’ 3
‘RSTR’ 4
‘SH’ 5
‘RSTO’ 6
‘S1’ 7
‘RSTOS0’ 8
‘S3’ 9
‘S2’ 10
‘OTH’ 11

 36

THIS PAGE INTENTIONALLY LEFT BLANK

 37

APPENDIX D. HISTOGRAM OF FEATURES PER OUTCOME
TYPE

Figure 7. Features of KDD cup 99 data for dos attack; histogram of features
values.

 38

Figure 8. Features of KDD cup 99 data for u2r attack; histogram of features
values.

Figure 9. Features of KDD cup 99 data for r2l attack; histogram of features
values.

 39

Figure 10. Features of KDD cup 99 data for probe attack; histogram of features
values.

Figure 11. Features of KDD cup 99 data for normal; histogram of features values.

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

APPENDIX E. CONFUSION MATRIX RESULTS FOR BASELINE
SCENARIO WITHOUT FEATURE EXTRACTION

The lowest horizontal row of the confusion matrix indicates the percentage of the

respective outcome class which was correctly classified for the test dataset. The rightmost

vertical column indicates the probability that a given output of an outcome type is correct

(True Positive). The diagonal of the matrix indicates the proportion of the respective

outcome type in the full testing set. The cell in the rightmost column and the bottom row

indicates the overall PCC regardless of outcome type.

Figure 12. Confusion matrix for single NN – test dataset.

 42

Figure 13. Confusion matrix for sub NN #1 – test dataset.

 43

Figure 14. Confusion matrix for sub NN #2 – test dataset.

 44

Figure 15. Confusion matrix for sub NN #3 – test dataset.

 45

Figure 16. Confusion matrix for merged output of three-parallel NN – test
dataset.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

APPENDIX F. CONFUSION MATRIX RESULTS FOR SCENARIO
UTILIZING FEATURE EXTRACTION

The lowest horizontal row of the confusion matrix indicates the percentage of the

respective outcome class which was correctly classified for the test dataset. The rightmost

vertical column indicates the probability that a given output of an outcome type is correct

(True Positive). The diagonal of the matrix indicates the proportion of the respective

outcome type in the full testing set. The cell in the rightmost column and the bottom row

indicates the overall PCC regardless of outcome type.

Figure 17. Confusion matrix for single NN – test dataset.

 48

Figure 18. Confusion matrix for sub NN #1 – test dataset.

 49

Figure 19. Confusion matrix for sub NN #2 – test dataset.

 50

Figure 20. Confusion matrix for sub NN #3 – test dataset.

 51

Figure 21. Confusion matrix for merged output of three-parallel NN – test
dataset.

 52

THIS PAGE INTENTIONALLY LEFT BLANK

 53

LIST OF REFERENCES

[1] I. Ahmad, A. B. Abdullah, and A. S. Alghamdi, “Remote to local attack detection
using supervised neural network,” in Int. Conf. for Internet Technol. and Secured
Trans. (ICITST), 2010, pp. 1–6.

[2] S. Northcutt and J. Novak, Network Intrusion Detection: An Analyst’s Handbook,
3rd ed. Indianapolis, IN: New Riders, 2002, pp. 3–21.

[3] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the
KDD CUP 99 data set,” in Computational Intell. for Security and Defense Appl.,
2009, pp. 1–6.

[4] K. El-Khatib, “Impact of feature reduction on the efficiency of wireless intrusion
detection systems,” IEEE Trans. Parallel and Distributed Syst., vol. 21, no. 8, pp.
1143–1149, 2010.

[5] L. Xie and J. Li, “A novel feature extraction method assembled with PCA and
ICA for Network Intrusion Detection,” in Int. Forum Comput. Sci.-Technol. and
Appl., 2009, pp. 31–34.

[6] I. K. Gbashi, S. H. Hashem, and S. K. Majeed, “Proposed vision for Network
Intrusion Detection System using Latent Semantic Analysis and data mining,” in
6th Comput. Sci. and Electron. Eng. Conf., 2014, pp. 11–16.

[7] Z. Yongli, Z. Yungui, T. Weiming, and C. Hongzhi, “An improved feature
selection algorithm based on MAHALANOBIS distance for Network Intrusion
Detection,” in Int. Conf. on Sensor Network Security Technol. and Privacy
Commun. System, 2013, pp. 69–73.

[8] F. Zhang and D. Wang, “An effective feature selection approach for Network
Intrusion Detection,” in IEEE Eighth Int. Conf. Networking, Architecture and
Storage, 2013, pp. 307–311.

[9] Y. S. Chen, G. Hui, Y. G. Xian, J. X. Ling, Z. L. Nang, and S. T. Jun, “The
Solution to How to Select an Optimal Set of Features from Many Features Used
to Intrusion Detection System in Wireless Sensor Network,” Second WRI Global
Congress, 2010, pp. 368–371

[10] G. Sandhya, A. Julian, “Intrusion detection in wireless sensor network using
genetic K-means algorithm,” in Int. Conf. Advanced Commun. Control and
Computing Technol., 2014, pp. 1791–1794.

 54

[11] Zhiyuan Tan, A. Jamdagni, Xiangjian He, P. Nanda and Ren Ping Liu, “Triangle-
area-based multivariate correlation analysis for effective denial-of-service attack
detection,” in IEEE 11th Int. Conf. on Trust, Security and Privacy in Computing
and Commun. (TrustCom), 2012, pp. 33–40.

[12] Zhiyuan Tan, A. Jamdagni, Xiangjian He, P. Nanda and Ren Ping Liu, “A system
for denial-of-service attack detection based on multivariate correlation
analysis,” Parallel and Distributed Syst., IEEE Trans., vol. 25, pp. 447–456, Feb.
2014.

[13] A. H. S. Aborujilah, S. Musa, A. Shahzad, M. Nazri, and A. Alsharafi, “Flooding
based DoS attack feature selection using remove correlated features algorithm,” in
Int. Conf. Advanced Comput. Sci. Appl. and Technol. 2013, pp. 93–96.

[14] F. Lydia Catherine, R. Pathak and V. Vaidehi, “Efficient host based intrusion
detection system using partial decision tree and correlation feature selection
algorithm,” in Int. Conf. Recent Trends Inform. Technol. (ICRTIT), 2014, pp. 1–6.

[15] Q. Guangzhi, S. Hariri, M. Yousif, “A new dependency and correlation analysis
for features,” IEEE Trans. Knowledge and Data Eng., vol. 17, no. 9, pp. 1199–
1207, 2005.

[16] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using neural
networks and support vector machines,” in Proc. Int. Joint Conf. Neural
Networks, pp. 1702–1707, 2002.

[17] S. Haykin, Neural Networks: A Comprehensive Foundation. 2nd ed. Upper Saddle
River, NJ: Pearson Prentice Hall, 2005, pp. 23–59.

[18] M. A. Hogo, “Temporal analysis of intrusion detection,” in Int. Carnahan Conf.
on Security Technol., 2014, pp. 1–6.

[19] The NSL KDD dataset. (n.d.). GitHub. [Online]. Available:
https://github.com/defcom17/NSL_KDD.git. Accessed Sep. 14, 2015.

[20] KDD Cup ‘99 dataset (Network Intrusion) considered harmful. KDnuggets.
[Online]. Available: http://www.kdnuggets.com/news/2007/n18/4i.html. Accessed
Aug. 16, 2015.

[21] Neural Network Toolbox. (n.d.). Mathworks. [Online]. Available:
http://www.mathworks.com/products/neural-network/features.html#training-
algorithms. Accessed Sep. 14, 2015.

[22] Estimating the number of neurons and number of layers of an artificial neural
network. (n.d.). StackOverflow. [Online]. Available:
http://stackoverflow.com/questions/3345079/estimating-the-number-of-neurons-
and-number-of-layers-of-an-artificial-neural-ne. Accessed Aug. 16, 2015.

 55

[23] Pace, P. E., Detecting and Classifying Low Probability of Intercept Radar. 2nd
ed. Norwood, MA: Artech House, 2009, pp. 624–633.

[24] A. Tartakovsky, I. Nikiforov, and M. Basseville. Sequential Analysis: Hypothesis
Testing and Changepoint Detection, 1st ed. Boca Raton, FL: CRC Press, 2014, pp.
534–546.

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. BACKGROUND
	1. Feature Extraction Background
	2. Classification Background

	B. PRINCIPAL CONTRIBUTIONS
	C. THESIS OUTLINE

	II. the NN-based IDS
	A. overview of process flow in IDS
	B. KNOWLEDGE AND DATA DISCOVERY (KDD) CUP 99 DATA
	C. Raw Data pre-processing
	D. FEATURE EXTRACTION
	1. Removal of Features with Small Variations
	2. Removal of Highly Correlated Features

	E. NN implementations
	1. The Supervised Learning NN
	2. Single NN Classification Module
	3. Three-Parallel NN Classification Module

	III. SIMULATION results and discussion
	A. BASELINE CLASSIFIER without feature extraction
	1. Probability of Correct Classification Results
	2. Timing Results

	B. REDUCED feature SIZE CLASSIFIER IMPLEMENTATION
	1. Probability of Correct Classification Results
	2. Timing Results

	C. DISCUSSION of results
	1. Feature Extraction Impacts on Training-Stage Execution Time
	2. Comparison of NN Implementations
	3. Effects of the Training Dataset

	IV. CONCLUSIONS AND RECOmmendations
	appendix A. types of network attacks FOR KDD CUP TRAINING DATA
	appendix B. FEATURES LIST FOR KDD CUP DATA
	appendix C. ENUMERATION USED for SYMBOLIC FEATURES
	appendix D. HISTOGRAM OF FEATURES PER OUTCOME TYPE
	appendix E. CONFUSION MATRIX RESULTS for BASELINE scenario without feature extraction
	appendix F. CONFUSION MATRIX RESULTS for scenario UTILIZING feature extraction
	List of References
	initial distribution list

