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ABSTRACT 

The aim of this thesis is to develop an intrusion detection system (IDS) software, 

which learns to detect and classify network attacks and intrusions through prior training 

data. With the added criteria of operating in real-time applications, ways of improving the 

efficiency of the IDS without sacrificing the probability of correct classification (PCC) 

are also considered. Knowledge Data and Discovery Cup 99 data is used to evaluate the 

IDS architecture. Two neural network (NN) architectures were designed and compared 

through simulation; the first architecture uses a single NN, while the second uses the 

merged output of three NNs in parallel. Results show that a three-parallel NN 

implementation has similar classification performance and a shorter training time than 

with a single NN implementation. PCC is on the order of 93% for denial-of-service 

attacks and 96% for normal traffic. The classification results for the R2L and U2R attacks 

are poor due to the lack of available training data. 
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I. INTRODUCTION 

Background into the development of an intrusion detection system software 

prototype and the principal contributions of this thesis are discussed in this thesis 

A. BACKGROUND 

The growing threat of malicious network activities and intrusion attempts makes 

intrusion detection systems (IDS) a necessity. Network traffic includes attacker packets, 

normal packets, and victim packets; thus, IDS must work in a dynamic environment and 

requires continuous tuning to react against the evolving new attacks that exploit newly 

discovered security weaknesses. Examples of network attacks include: 

• MAC layer denial-of-service (DOS) attacks 

• ChopChop attacks 

• Passive eavesdropping 

• Deauthentication attacks 

• Fragmentation attacks 

• Duration attacks 

• Probing (probe) 

• Remote-to-local (R2L) 

• User-to-root (U2R) 

Typical approaches to intrusion detection include anomaly detection, misuse 

detection, and combined anomaly/misuse detection [1]. Anomaly detection works by 

identifying unusual (often malicious) activities which differ from typical user patterns. 

Misuse detection compares and contrasts a user’s activities with known attackers’ 

behavior when attempting to access a network. The hybrid or combined approach uses a 

mix of anomaly and misuse detection.  

In the Transmission Control Protocol/Internet Protocol (TCP/IP) Internet model, 

there are typically four protocol layers used in the communication process between 



 2 

computers within a network. A detailed description of the respective layers can be found 

in [2]. These layers are shown in Figure 1.  

 

Figure 1.  The TCP/IP Internet model as described in [2]. 

 

Network data can be collected from any of these protocol layers by various 

monitoring techniques and then passed to the IDS for analysis and categorization. The 

IDS first extracts the relevant features of the network data to construct a feature vector; 

the network data are typically captured from the network TCP/IP header and lower level 

protocol frames. Further information about headers and protocol frames can be found in 

Part I of [2]. The feature vector is then processed by a nonlinear network to identify the 

presence of attack (unauthorized intrusion or misuse) or normal traffic. The results 

produced by the IDS may then be used by a management system to negate the attack and 

identify its source.  

Typically, the IDS handles a high-dimensionality input feature space, and the 

testing of the different feature-extraction and classification algorithms is often conducted  

using the KDD Cup 99 dataset [3]. This dataset was derived from the DARPA IDS 

evaluation dataset (1998) and has approximately “5 million connection records,” each 

representing a TCP/IP connection made up of 41 features. Each feature can either be 

qualitative or quantitative in nature.  
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In this thesis, the KDD Cup 99 data are enumerated, parsed and normalized to 

form a set of raw feature vectors used by the feature-extraction process. The feature-

extraction process then extracts relevant features to derive a processed feature vector as 

an input to the classifier. A nonlinear network then uses these feature vectors to detect 

and classify the intrusion types (DoS, Probe, U2R, R2L, unknown). The training dataset, 

which consists of a combination of feature vectors with their associated output types is 

used to globally train and compute the classifier parameters. The probability of correct 

classification (PCC) is evaluated using the test dataset. 

1. Feature Extraction Background 

Features used for training and testing of the IDS must retain the anomalies and 

misuse information critical to the performance of the classifier. Network traffic data may 

also contain redundant and irrelevant features that can overwhelm and disable the IDS. 

Consequently, the key goal of feature-extraction is to identify and remove irrelevant, 

inconsistent, and redundant features, reducing the feature vector size. Also important is to 

preserve the optimal features to characterize the network data (e.g., normal traffic or 

attack traffic) while simultaneously maintaining the classifier accuracy.  

A significant body of research exists on the process of feature-extraction. 

In [4], a hybrid model (wrapper model and filter models) was explored to select 

an optimal feature vector. The wrapper model “uses the predictive accuracy of the 

classifier” to evaluate the quality of the feature vector. The filter model uses the 

“information, consistency or distance measures” to determine the relevance of the feature 

vector. The two methods are then combined to select an optimal feature vector [4]. 

Principal component analysis (PCA) and independent component analysis (ICA) 

were explored in [5]. The PCA transforms a set of features to a lower dimensional space 

while retaining the variability of the original data; however, the use of PCA to handle 

dynamic changes in the behavior of the network data was not addressed. To handle such 

changes, a hybrid data mining technique using a dynamic principle component analysis 

(DPCA) and a latent semantic analysis (LSA) were combined in [6].  
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In [7], a feature selection algorithm based on “Mahalanobis distance feature 

ranking” was used with an exhaustive search to identify appropriate features for 

identifying each attack type.  

A feature selection approach based on a Bayesian network classifier was proposed 

in [8] and an optimal selection of features using genetic algorithm was presented in [9].  

In [10], genetic k-means clustering methods were used to detect unknown attack 

patterns and remove irrelevant features in order to derive a smaller feature set while 

giving a higher classification accuracy of attacks. 

A multivariate correlation detection system for DoS attack was presented in [11, 

12]. This technique was able to detect “known and unknown DoS attacks” by considering 

“triangle-area-based multivariate correlation analysis” and geometrical correlations 

between traffic patterns of legitimate network traffic. Another flooding-based DoS attack 

detection which uses a feature subset selection algorithm was discussed in [13]. 

In [14], a correlation-based feature extraction method was used to reduce the size 

of the input feature space through the use of a partial-decision tree that parses out normal 

and abnormal behaviors. The assumption is that a good feature set contains features that 

are only highly correlated with the respective outcome types. In [15], irrelevant features 

are removed from a “ranked feature list based on the mutual information between each 

feature and the decision variable.” The decision variable refers to the detection and 

classification of network attacks. 

2. Classification Background 

Typical IDS tools (for example, SNORT) use rule-based filter techniques, which 

must be manually configured by a network analyzer for the detection of network attacks; 

however; the large number of inputs and the complexity of relationships between inputs 

makes it difficult for the network analyzer to be manually programmed with a 

comprehensive set of rules.  

One possible IDS approach uses a nonlinear network to classify and identify the 

presence of a network attack (or normal traffic) as discussed in [16]. Specifically, Neural 



 5 

Networks (NN) were found to be useful for IDS applications, where there is a need to 

differentiate between different types of network attacks. NNs are described in [17] as 

statistical and recursive learning models which “fit” a function based on a training dataset 

that has defined inputs and desired outputs; thus, NNs are suitable for tackling 

complicated problems which cannot be solved using rule-based or logic-based 

techniques. The large dimensionality of the network features makes the classification of 

network attacks complex and creates the case for the use of a NN.  

B. PRINCIPAL CONTRIBUTIONS 

An IDS software prototype was developed with the following design goals: 

• Handle known classes of attacks; 

• Handle unknown classes of attacks and classify accordingly; 

• Operate in near real-time to classify continuous network traffic; 

• Retrain based on new network data with minimal disruption to real-time 
operations. 

The Knowledge Discovery and Data Mining (KDD) Cup 99 data was selected to 

test and numerically the IDS. The source of the KDD Cup 99 data is based on the NSL-

KDD dataset as described in [3]. A raw data preprocessing software module, as described 

in Section II.C, was developed to parse the raw training and testing network features into 

a usable format for the subsequent feature-extraction module. 

A feature-extraction software module, as described in Section II.D, was 

considered to reduce the network features, resulting in lower training times needed for the 

NN implementations.  

A classification software module, as described in Section II.E was developed to 

detect the intrusion using the feature vector output from the feature-extraction software 

module. The classification software module uses NNs for training and classification of 

different types of network attacks. In addition, the classification software module was 

developed to test two different NN implementations and their performance was compared 

in terms of the PCC and efficiency. 
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C. THESIS OUTLINE 

This thesis is organized as follows. In Chapter II, an overview of the process flow 

in the IDS and a description of each component of the IDS is detailed. In Chapter III, the 

results and implications of the IDS are discussed. Finally, conclusions and 

recommendations for future work are given in Chapter IV. 
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II. THE NN-BASED IDS 

The implementation and design considerations of the NN-based IDS is described 

in this thesis. 

A. OVERVIEW OF PROCESS FLOW IN IDS 

The IDS implementation was developed using MATLAB 2014b and is divided 

into three software modules: raw data pre-processing, feature extraction and 

classification. 

Each software module was designed to work independently with other modules, 

producing a set of output files used by the subsequent modules in the process flow. Any 

of the software modules in the process flow can be replaced provided the required inputs 

are available and in the correct format and syntax. With this built-in flexibility in mind, it 

is possible to adapt the raw data pre-processing module to allow the IDS to be trained 

with network traffic data other than the KDD Cup 99 dataset.  

For this thesis research, two different classification architectures were explored 

and compared in terms of accuracy and computing times. The first architecture utilized a 

single NN for the classification process and is illustrated as a block diagram shown in 

Figure 2.  The second architecture utilized three separate NNs for the classification 

process and is illustrated as a block diagram in Figure 3. This second structure was 

inspired by [18], where the training data was randomly separated into an arbitrary number 

of subsets for the purpose of temporal analysis of network traffic data, and each subset 

was used to train an individual classifier separately. In this thesis, the training data was 

split into three subsets, and each NN trains with each subset, respectively. The outputs 

from each of the three separate NNs were combined to produce the final output. Further 

details are provided in Section E. 
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Figure 2.  Single NN-based IDS process flow. 
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Figure 3.  Three-parallel NN-based IDS process flow. 
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B. KNOWLEDGE AND DATA DISCOVERY (KDD) CUP 99 DATA 

The KDD Cup 99 data set was developed for use in the Third International 

Knowledge Discovery and Data Mining Tools Competition. The dataset was created 

through a raw TCP data dump of a simulated U.S. Air Force local-area network (LAN), 

where the network was subjected to deliberate network attacks.  

Each training sample in the training dataset represents a connection summary, and 

there are a total of 25,192 samples in the training dataset. Each sample can be classified 

as one of the 22 training attack types and can be further categorized as one of the general 

five outcome types: DOS, U2R, R2L, Probe or Normal. Refer to Appendix A for the full 

list of outcome types, and a detailed description of each of the outcome types can be 

found in [3]. Each connection summary is described using 41 features as listed in 

Appendix B, which the NN classifier uses as inputs for both training and testing. 

In the test dataset, each sample is similarly a connection summary, and there are a 

total of 22,543 samples in the test dataset. In addition, there are 15 types of attacks which 

are not found in the training dataset. For the purpose of testing the ability of the IDS to 

handle unknown attack types, these 15 types of attacks are classified as unknown types in 

the performance evaluation phase.  

A breakdown of the number of outcome types for the testing and training dataset 

is shown in Table 1.   

 Breakdown of outcome types in the KDD cup 99 training and test 
datasets. 

Dataset Type Number of Samples per Outcome Type 
DOS U2R R2L Probe Normal Unknown 

Training 9234 11 209 2289 13449 0 
Testing 5651 37 2199 1106 9710 3750 

 

The KDD Cup 99 dataset was downloaded from a Git repository [19], which uses 

the NSL-KDD dataset. The NSL-KDD dataset, as discussed in [3], is a corrected version 
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of KDD Cup 99 dataset, which addresses issues and problems in the original KDD Cup 

99 dataset.  

It must be noted that the KDD Cup 99 dataset is solely used for the purpose of 

developing the IDS software. It was noted by Brugger [20] that the KDD Cup 99 data is 

outdated and not fully representative of network traffic attacks; thus, there is a need for 

the IDS to be validated with updated and more representative network data in future 

projects. 

C. RAW DATA PRE-PROCESSING 

The raw data pre-processing stage takes the KDD Cup 99 training data and 

converts it into a matrix of representative numerical data for the feature-extraction and 

classification stage. This stage performs the pre-processing described in the following 

paragraphs. 

Transforming semantic features into enumeration allows subsequent stages to 

process these features as numerical values. In addition, the same set of conversion rules 

applies to both training and test dataset; thus, both training and test dataset must use the 

same set of semantics for the respective features. For the “protocol_type,” “service,” and 

“flag” fields, the enumerations used are shown in Appendix C. 

Normalizing features scales features in the range 0 to 1, preventing the training 

process from being affected by large variations in the feature values. 

Formatting raw data for MATLAB input saves the processed raw data in a 

suitable format for the feature-extraction and classification stage. For example, in this 

simulation setup, 25,192 training samples were in the raw data, each training sample has 

41 features, and each training sample has one of five possible general outcomes; thus, a 

single training data matrix that encompasses the features and outcomes for every one of 

the 25,192 training samples was produced as an output. 

Calculating mean, standard deviation, and histogram of features per outcome type 

provides data for the feature-extraction stage to determine if the feature is useful for 

classification. In this case, the software module calculates the mean and standard 
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deviation of each feature for each outcome type. For example, a 5-by-41 matrix is 

generated for the mean of the features per outcome type, where there are five outcome 

types and 41 features. In addition, the histogram of the feature values, for each feature per 

outcome type, is also created for visual analysis purposes. The histograms generated are 

shown in Appendix D. 

D. FEATURE EXTRACTION 

This software module uses the properties of each feature per outcome type to 

evaluate the features that are useful at the training stage. For this application, an array of 

1s and 0s is generated, where a value of 1 indicates to the classification stage that the 

respective feature is to be used for training, while a value of 0 means the opposite.  

The feature-extraction stage uses two methods to remove redundant or irrelevant 

features. 

1. Removal of Features with Small Variations  

The first filtering mechanism removes all features which remain relatively 

constant across different outcome types. For a feature to be considered “constant,” the 

conditions described in the following paragraphs must be satisfied. 

The mean of a feature is approximately the same for all outcome types. In such a 

case, the classification stage is not able to use this feature to differentiate between 

different outcome types during the training stage. The mean of the five outcome types are 

tabulated, and the standard deviation of the five means are then calculated. If this 

standard deviation is less than the empirical threshold value of 0.0001, the mean values of 

the five outcome types are considered to be similar. 

The standard deviation value of the feature is small for all outcome types. In such 

a case, features vary within a relatively small range, making this feature useless for 

training purposes. The standard deviation of the five outcome types are first tabulated. If 

all five standard deviation values are less than the empirical threshold value of 0.001, this 

means that the feature does not vary significantly for all outcome types. 
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2. Removal of Highly Correlated Features 

In this step, the correlation coefficient matrix of the features is calculated, and 

pairs of features which have a correlation coefficient value larger than or equal to 0.97 

are identified. For each pair of highly correlated features, only one of the features is 

selected for the feature vector and used at the classification stage. The correlation 

coefficient matrix is calculated by  

 ( , )( , )
( , ) ( , )
C i jR i j

C i i C j j
=   (1) 

where i  and j  represent one of the 41 features and ( , )C i j  is the corresponding 

covariance matrix. The covariance matrix ( , )C i j  is defined as  

 1
( )( )

( , )

N

k k
k

i i j j
C i j

N
=

− −
=
∑

  (2) 

where i  and j  represents the mean of the respective features and N  is the number of 

training samples in the training dataset. The mean i  is defined as 

 1

N

k
k

i
i

N
==
∑

  (3) 

and j is also defined similarly. 

To summarize, a flow chart of the raw data pre-processing and feature-extraction 

processes for the KDD Cup 99 data before the classification stage is illustrated in Figure 

4, and the list of features used for the classification stage is shown in Table 2.  

E. NN IMPLEMENTATIONS 

1. The Supervised Learning NN 

The NN is a nonlinear process that is trained to perform a particular task 

(filtering, predicting, identifying patterns, etc.). In this thesis, the NN is implemented 

using the MATLAB software.   
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 List of features used for the classification stage. 

S/N Name 
1 duration 
2 protocol_type 
3 service 
4 flag 
5 src_bytes 
6 dst_bytes 
7 wrong_fragment 
8 urgent 
9 hot 
10 num_failed_logins 
11 logged_in 
12 root_shell 
13 su_attempted 
14 num_root 
15 num_file_creations 
16 num_shells 
17 num_access_files 
18 is_guest_login 
19 count 
20 srv_count 
21 srv_rerror_rate 
22 same_srv_rate 
23 diff_srv_rate 
24 srv_diff_host_rate 
25 dst_host_count 
26 dst_host_srv_count 
27 dst_host_same_srv_rate 
28 dst_host_diff_srv_rate 
29 dst_host_same_src_port_rate 
30 dst_host_srv_diff_host_rate 
31 dst_host_srv_serror_rate 
32 dst_host_rerror_rate 
33 dst_host_srv_rerror_rate 
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Figure 4.  Flowchart of KDD cup 99 data processing prior to classification stage. 

 

The NN consists of an interconnected network of basic computing blocks called 

neurons. Inter-neuron connections contain synaptic weights, and the synaptic weights are 

used to retain knowledge obtained through the training process. Through the training 

process, the synaptic weights are tuned to achieve the training objective. In the NN 

toolbox provided by MATLAB [21], training functions are defined explicitly as global 

algorithms for the synaptic weights tuning process. In addition to the training algorithm, 

the NN toolbox also allows the definition of post-processing algorithms to evaluate the 

network performance after the training process. A defined proportion of the training 

dataset also needs to be allocated for validation purposes in the training process, 

preventing overfitting of the NN to the training dataset. 

In this thesis, the NN type of interest is the multi-layer feedforward network. In 

such networks, the neurons are arranged in layers. The most basic form is the single-layer 

feedforward network, where the input source nodes directly project to a layer of output 

nodes. The multi-layer feedforward network extends the single-layer feedforward 

network through the addition of one or more hidden layers in the network. The NN used 

in this thesis consists of one hidden layer and one output layer. The hidden layer creates 

an additional set of synaptic connections between the input nodes and output layer of 
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neurons, which allows the derivation of higher-order statistics and relationships; this is 

especially important in applications where the inputs have large dimensions. 

Each neuron in its respective layer is connected to every other node in the 

adjacent forward layer. The number of neurons in the single hidden layer is derived based 

on a rule-of-thumb from [22], where the number of neurons is the sum of two-thirds the 

number of features and the number of outcome types. If the value calculated is a decimal 

number, the decimal number is rounded up. 

The NN output ky  can be mathematically described as [23] 

 
1 1

( ) [ ( ( ))]
H I

k s kh sh hi i
h i

y l f w f w x l
= =

= ∑ ∑   (4) 

where k  is the respective outcome type, ix  is the input, i  is the respective feature of the 

input, I  represents the total number of features per input sample and the sample number 

of the input is l  . The total number of hidden layers is H , and h  represents the 

respective hidden layer. The weights from neuron i  to neuron h  and the weights from 

neuron h  to neuron k  are, respectively, defined as hiw  and khw . The hidden layer 

activation function and the output layer activation function are defined, respectively, as 

shf  and sf . The hidden layer activation function shf  uses the tangent sigmoid function 

 
2
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1sh zf z

e−= −
+

, (5) 

where z  is the input to the activation function. The output layer activation function sf  

uses the normalized exponential function  
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k

ef z
e

=

=

∑
  (6) 

where K  is the total number of outcome types. 

The reader can also refer to [17] for further details on the multi-layer feedforward 

NN. 
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2. Single NN Classification Module 

The NN is trained using 25,192 training samples. The IDS must classify each 

network event as one of the five known outcome types or an unknown type. The NN 

chosen for this module has the characteristics discussed in the following paragraphs. 

The NN has a single hidden layer, and the MATLAB “patternnet” function was 

used to create the NN. For the scenarios in Section III, the number of neurons in the 

hidden layer is described as follows. In the baseline scenario without feature-extraction, 

the hidden layer uses 33 neurons, which is calculated based on 2/3(41) + 5 (41 input 

features and five NN outcome types). In the scenario utilizing feature-extraction, the 

hidden layer uses 27 neurons, which is calculated based on 2/3(33) + 5 (33 input features 

and five NN outcome types). 

The NN utilizes a supervised learning approach with the training function as 

scaled conjugate gradient and the performance function as cross-entropy. The training 

proportion of the training dataset is 90%, and the validation proportion of the training 

dataset is 10%. The division of the training dataset into training and validation sets was 

performed randomly. A separate test dataset was used to test the NN. 

The NN takes in two input matrices at the training stage: a training feature matrix 

that contains the feature vectors and a training outcome matrix that indicates the 

respective output type for every feature vector.  

For every test input to the NN, the NN outputs a vector of five numbers, where 

each element represents one of the five known outcome types. The maximum value of 

any element is one, and the output of the NN is indicated by the element with the 

maximum value.  

As a result of the supervised learning approach implemented, the NN is unable to 

classify unknown events type in the test dataset as unknown; thus, an additional 

capability was included to classify unknown output types. First, a sixth element was 

added to the NN output vector as a placeholder for the unknown outcome type. The 

unknown type was determined through the use of a threshold value; if the maximum 

output value of the NN is below the empirical threshold value of 0.8, this means that the 
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NN is not able to match its output with one of the known output types with high 

confidence. In this case, the NN output defaults to the unknown type.  

3. Three-Parallel NN Classification Module  

The next architecture is comprised of three separate NN modules, where each NN 

is trained using 1/3 of the 25,192 training samples. Each NN has the same properties as 

those described in Section 2. 

The training set used for each NN is exclusive, and the three NNs work in 

parallel. To classify unknown event types, the output of each NN is subjected to the same 

processing as described in Section 2.  

Separate outputs are combined based on the number of samples within the 

training set of the respective NNs. If no training samples of an outcome type are used to 

train a NN, that respective NN is given a weight of zero in influencing the joint decision 

of the three NNs. Conversely, if all training samples of an outcome type are used to train 

a NN, that NN has a maximum weight of one in influencing the joint decision of the three 

NNs and the other two NNs have no influence on the joint decision. 

The weight used for each of the smaller NN module is calculated based on the 

following:  

• For each NN, the number of training samples per outcome type is 
tabulated as , where  represents one of the three NNs and  represents 
an outcome type. 

• The total number of training samples per outcome type in the full training 
set is tabulated as , where  represents a specific outcome type.  

• The weight applied to each outcome type for the respective NN is , 
where  represents one of the three NNs and  represents one outcome 
type. The respective weight is calculated by . 

• For unknown outcome types, the default weight is the inverse of the 
number of NNs used in decision fusion process, i.e. 1/3. 

The output of a respective NN for a particular outcome type is , where  

represents one of the three NNs and  represents an outcome type. The outputs of each 
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NN are then multiplied by the respective weights and summed together to create the final 

output. The fused outcome , where  represents one of the outcome types, is obtained 

from 

 
3

1
j ij ij

i
O W o

=

=∑  . (7) 

Similarly to the single NN architecture, the final NN output is indicated by the 

element with the highest value in the output vector. 

The IDS implementation and performance is discussed in the next chapter. 
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III. SIMULATION RESULTS AND DISCUSSION 

Simulation results obtained for the IDS architectures are discussed in this chapter; 

the PCC and timing results obtained for the respective scenarios are presented in Sections 

A and B, and a discussion of the results is given in Section C. To allow comparison and 

benchmarking of results, all experiments were performed on a MacBook Pro (Retina, 15-

inch, Early 2013) with 2.8 GHz Intel Core i7 Processor that was installed with 16 GB 

16000 MHz DDR3 Random Access Memory (RAM), and the Operating System used 

was MAC OS X Yosemite (Version 10.10.3). The MATLAB version used was 2014b. 

A. BASELINE CLASSIFIER WITHOUT FEATURE EXTRACTION 

This scenario was conducted as a baseline for comparison.  

The feature-extraction stage is bypassed, and all 41 features were used to train and test 

the NN. 

The same pattern recognition feedforward NN structure was used for the single 

NN and the three-parallel NN implementation. The NN uses 41 inputs, 33 hidden neurons 

and five neurons for the output layer. The training samples have five different outcome 

types, which results in five output neurons. The sixth “unknown” type output is 

determined by the logic as described earlier in Section II.E.2. An illustration of the NN 

implemented in MATLAB is shown in Figure 5. 

 

Figure 5.  Forty-one input pattern recognition feed-forward NN structure. 
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1. Probability of Correct Classification Results 

Each NN was tested individually with the test dataset. The single NN output was 

compared with the desired outcome via the “plotconfusion” function provided by 

MATLAB; detailed confusion matrix results are shown in Appendix E. For the respective 

three-parallel NN classification module, each parallel NN output and the merged output 

of the three NNs were compared with the desired outcome via the same method. PCC 

results are shown in Table 3. Due to the use of random seeds in the training process of the 

NN, the PCC results vary slightly, but results shown here are representative of the NN 

average classification performance. 

 PCC for baseline scenario on test dataset. 

NN Type PCC (%) 
DOS U2R R2L Probe Normal Unknown 

Sub NN #1 91.0 0.0 0.9 72.6 95.6 34.9 
Sub NN #2 93.5 0.0 0.1 73.9 96.6 24.2 
Sub NN #3 92.7 0.0 5.2 74.3 96.6 8.6 
Merged output 
of three-parallel 
NN 

93.2 0.0 0.4 73.5 96.5 20.8 

Single 91.8 0.0 0.0 73.0 95.8 27.5 

 

2. Timing Results 

To measure the amount of time taken to train the respective NN, 30 runs were 

conducted to find the mean-training time and associated standard deviation for the 

respective NN implementations. It is also noted that the time taken by the NN to produce 

the output from the test dataset is almost negligible; for a test dataset of 22,543 samples, 

the NN takes less than one second to produce the output. Training times for the respective 

NNs are presented in Table 4. It is also observed that MATLAB has sufficient RAM to 

execute each simulation run without impacting timing measurements. 
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 NN training execution time (average over 30 Runs) – baseline 
scenario. 

NN Type Average (seconds) Standard Deviation 
(Seconds) 

  
Sub NN #1 2.8092 0.6242 
Sub NN #2 2.5920 0.7613 
Sub NN #3 2.5597 0.7307 
Total time for three-parallel NN 
Implementation (Sequential) 

7.9609 2.1162 

Single 10.8496 3.636 

 

B. REDUCED FEATURE SIZE CLASSIFIER IMPLEMENTATION 

The effects of feature-extraction on classifier performance and the results 

compared with those from the baseline scenario are considered in this scenario. Recall, 

the feature-extraction stage keeps only 33 of the 41 original features. 

The same pattern recognition feedforward NN structure was used for the single 

NN and the three-parallel NN implementations. The NN uses 33 inputs, 27 hidden 

neurons and five neurons for the output layer. The training samples have five different 

outcome types, which results in five output neurons. The sixth “unknown” type output is 

determined by the logic as described in Section II.E.2. An illustration of the NN 

implemented in MATLAB is shown in Figure 6. 

 

Figure 6.  Thirty-three input pattern recognition feed-forward NN structure. 
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1. Probability of Correct Classification Results 

Similar to the baseline scenario, each NN was tested individually with the test 

dataset using the same methods as described earlier; detailed confusion matrix results are 

shown in Appendix F. The PCC results are presented in Table 5. Due to the use of 

random seeds in the training process of the NN, the PCC results vary slightly, but results 

shown here are representative of the NN average classification performance. 

 PCC for reduced feature size classifier on test dataset. 

NN Type PCC (%) 
DOS U2R R2L Probe Normal Unknown 

Sub NN #1 91.4 2.7 0.0 71.8 95.0 14.8 
Sub NN #2 92.0 0.0 0.0 73.9 96.1 24.1 
Sub NN #3 91.6 0.0 0.1 73.3 95.7 34.8 
Merged output 
of three-parallel 
NN 

91.9 0.0 0.0 73.1 96.1 25.2 

Single 94.2 0.0 0.2 73.9 96.9 17.3 

 

2. Timing Results 

Similar to the baseline scenario, training times for the respective NNs are shown 

in Table 6. To get the reduction in average training time in Table 6, the new average 

training time is divided by the baseline average training time to get the percentage 

equivalent. The reduction percentage is then obtained by subtracting this value from 

100%. It is also observed that MATLAB has sufficient RAM to execute each simulation 

run without impacting timing measurements. 
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 NN training execution time (average over 30 runs) – reduced 
feature size scenario. 

NN Type Average 
(seconds) 

Standard 
Deviation 
(Seconds) 

Percentage Reduction in Average 
Training Time as compared to 

Baseline Scenario (%) 
   

Sub NN #1 2.1874 0.6282 22.2 
Sub NN #2 1.8743 0.4059 27.6 
Sub NN #3 2.0267 0.5745 20.82 
Total time for three-parallel 
NN Implementation 
(Sequential) 

6.0884 1.6086 23.5 

Single 8.6757 2.4317 20 

 

C. DISCUSSION OF RESULTS 

Results obtained in this study raise the following discussion points. 

1. Feature Extraction Impacts on Training-Stage Execution Time 

Reducing the feature size does not degrade classification performances in either 

NN implementation; the feature-extraction stage successfully removed irrelevant features 

which did not serve to improve the NN classification capabilities. 

The main benefit is a reduction in the training time for both NN implementations, 

as shown in Table 6. This characteristic is beneficial when there is a need to retrain NNs 

with new network data while minimizing disruption to real-time detection of network 

intrusions.  

2. Comparison of NN Implementations 

The overall training time is shorter for the three-parallel NN implementation, and 

the three-parallel NN implementation has comparable PCC performance to the single NN 

implementation. This is seen in Table 4 and Table 6, where the overall training time is 

shorter than that required for the single NN implementation, when all three sub NNs are 

trained sequentially.  
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The training time for the three-parallel NN implementation can be further 

improved when three parallel computing threads are used to train each sub NN. In such a 

case, the total training time is based on that obtained for the sub NN with the longest 

training time.  

The retraining time for the three-parallel NN implementation can improve further 

if the feature-extraction stage determines that new training data uses the same set of 

features as the original training data. In this case, a three-parallel NN only needs to train 

one sub NN with the latest network data and replace either the oldest or worst performing 

sub NN. In comparison, a single NN implementation needs to retrain the whole NN with 

the old and new data. 

3. Effects of the Training Dataset 

Results show that U2R and R2L outcome types have low PCC for both NN 

implementations. U2R and R2L outcome types have fewer training samples than DOS, 

Probe and Normal training samples, as seen from Table 1. As a result, the training dataset 

is imbalanced, which may have led to insufficient training of the NN in classifying the 

U2R and R2L outcome types in the testing database. 

Classification results obtained for DOS, Probe and Normal outcome types are 

better. This is due to the large number of training samples for the DOS, Probe and 

Normal outcome types, which allows the NN to be sufficiently trained. 

The use of the threshold method as described in Section II.E.2 to determine 

unknown outcome types is only able to generate approximately 20% PCC. It is noted that 

the threshold can be set higher to allow more unknown events to be classified 

successfully; a higher threshold that the NN output needs to be larger to be classified as 

one of the five known outcome types. This also comes with the downside of having more 

of the known outcome types being classified as unknown outcome types.  

Results obtained with the NN based classifier considered in this study were 

presented in this section. Conclusions and recommendations for future work are provided 

in the next chapter. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

Conclusions and recommendations for future work are given in this chapter. 

The main purpose of this thesis was to develop an NN-based supervised IDS. The 

IDS considered contains three interchangeable modular software components. The first 

module pre-processes the raw training and testing data, the second module applies 

feature-extraction, and the last module performs the NN training and the classification of 

network events. Single NN and three-parallel NN implementations were developed in the 

classification module for comparison of PCC and timing performances. 

The performance of the IDS implementation was tested using the KDD Cup 99 

dataset using separate testing and training sets. Simulations were conducted to investigate 

the effects of feature-extraction and compute performances obtained with the single NN 

and three-parallel NN implementations. 

Results show the feature-extraction stage removes irrelevant features without 

impacting PCC while reducing the training time.  

While the three-parallel NN implementation is comparable in PCC performance 

to the single NN implementation, it was shown to be superior in terms of training time. 

This makes the three-parallel NN implementation a possible candidate for use in real-

time applications, when the IDS needs to frequently retrain to handle new types of 

network attacks. 

The following areas are recommended for further work. 

Further analysis of the histogram obtained for each feature on a per outcome basis 

can be performed and used for additional processing in the feature-extraction module. 

The IDS considered in this thesis is a signature-based IDS, which detects network 

attacks or intrusions through patterns in the features. Other approaches such as anomaly-

based IDS can be considered to complement signature based IDS, as suggested in [24], 

where anomaly-based IDS are used to detect behavioral deviations from normal network 
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behavior. Future projects may include the development of a separate anomaly-based IDS 

to complement the results of the IDS considered in this study. 

The IDS can be configured based on the number of sub-NNs present in a parallel 

NN implementation, threshold values to remove unneeded features, number of neurons in 

the hidden layer, number of hidden layers, testing-to-validation ratio used for NN training 

and threshold values to determine unknown outcome types; thus, future work should 

consider optimizing these parameters. 
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APPENDIX A. TYPES OF NETWORK ATTACKS FOR KDD CUP 
TRAINING DATA 

Name Type 
Back dos 
buffer_overflow u2r 
ftp_write r2l 
guess_passwd r2l 
imap r2l 
ipsweep probe 
land dos 
loadmodule u2r 
multihop r2l 
neptune dos 
nmap probe 
perl u2r 
phf r2l 
pod dos 
portsweep probe 
rootkit u2r 
satan probe 
smurf dos 
spy r2l 
teardrop dos 
warezclient r2l 
warezmaster r2l 
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APPENDIX B. FEATURES LIST FOR KDD CUP DATA 

S/N Name Type 
1 duration continuous 
2 protocol_type symbolic 
3 service symbolic 
4 flag symbolic 
5 src_bytes continuous 
6 dst_bytes continuous 
7 land continuous 
8 wrong_fragment continuous 
9 urgent continuous 
10 hot continuous 
11 num_failed_logins continuous 
12 logged_in continuous 
13 num_compromised continuous 
14 root_shell continuous 
15 su_attempted continuous 
16 num_root continuous 
17 num_file_creations continuous 
18 num_shells continuous 
19 num_access_files continuous 
20 num_outbound_cmds continuous 
21 is_host_login continuous 
22 is_guest_login continuous 
23 count continuous 
24 srv_count continuous 
25 serror_rate continuous 
26 srv_serror_rate continuous 
27 rerror_rate continuous 
28 srv_rerror_rate continuous 
29 same_srv_rate continuous 
30 diff_srv_rate continuous 
31 srv_diff_host_rate continuous 
32 dst_host_count continuous 
33 dst_host_srv_count continuous 
34 dst_host_same_srv_rate continuous 
35 dst_host_diff_srv_rate continuous 
36 dst_host_same_src_port_rate continuous 
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37 dst_host_srv_diff_host_rate continuous 
38 dst_host_serror_rate continuous 
39 dst_host_srv_serror_rate continuous 
40 dst_host_rerror_rate continuous 
41 dst_host_srv_rerror_rate continuous 
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APPENDIX C. ENUMERATION USED FOR SYMBOLIC 
FEATURES 

Enumeration Types for “protocol_type” 
Name Enumeration Value 
‘tcp’ 1 
‘udp’ 2 
‘icmp’ 3 

 

Enumeration Types for “service” 
Name Enumeration Value 
‘ftp_data’ 1 
‘other’ 2 
‘private’ 3 
‘http’ 4 
‘remote_job’ 5 
‘name’ 6 
‘netbios_ns’ 7 
‘eco_i’ 8 
‘mtp’ 9 
‘telnet’ 10 
‘finger’ 11 
‘domain_u’ 12 
‘supdup’ 13 
‘uucp_path’ 14 
‘Z39_50’ 15 
‘smtp’ 16 
‘csnet_ns’ 17 
‘uucp’ 18 
‘netbios_dgm’ 19 
‘urp_i’ 20 
‘auth’ 21 
‘domain’ 22 
‘ftp’ 23 
‘bgp’ 24 
‘ldap’ 25 
‘ecr_i’ 26 
‘gopher’ 27 
‘vmnet’ 28 
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‘systat’ 29 
‘http_443’ 30 
‘efs’ 31 
‘whois’ 32 
‘imap4’ 33 
‘iso_tsap’ 34 
‘echo’ 35 
‘klogin’ 36 
‘link’ 37 
‘sunrpc’ 38 
‘login’ 39 
‘kshell’ 40 
‘sql_net’ 41 
‘time’ 42 
‘hostnames’ 43 
‘exec’ 44 
‘ntp_u’ 45 
‘discard’ 46 
‘nntp’ 47 
‘courier’ 48 
‘ctf’ 49 
‘ssh’ 50 
‘daytime’ 51 
‘shell’ 52 
‘netstat’ 53 
‘pop_3’ 54 
‘nnsp’ 55 
‘IRC’ 56 
‘pop_2’ 57 
‘printer’ 58 
‘tim_i’ 59 
‘pm_dump’ 60 
‘red_i’ 61 
‘netbios_ssn’ 62 
‘rje’ 63 
‘X11’ 64 
‘urh_i’ 65 
‘http_8001’ 66 
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Enumeration Types for “flag” 
Name Enumeration Value 
‘SF’ 1 
‘S0’ 2 
‘REJ’ 3 
‘RSTR’ 4 
‘SH’ 5 
‘RSTO’ 6 
‘S1’ 7 
‘RSTOS0’ 8 
‘S3’ 9 
‘S2’ 10 
‘OTH’ 11 
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APPENDIX D. HISTOGRAM OF FEATURES PER OUTCOME 
TYPE 

 

Figure 7.  Features of KDD cup 99 data for dos attack; histogram of features 
values. 
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Figure 8.  Features of KDD cup 99 data for u2r attack; histogram of features 
values. 

 

 

Figure 9.  Features of KDD cup 99 data for r2l attack; histogram of features 
values. 
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Figure 10.  Features of KDD cup 99 data for probe attack; histogram of features 
values. 

 

 

Figure 11.  Features of KDD cup 99 data for normal; histogram of features values. 
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APPENDIX E. CONFUSION MATRIX RESULTS FOR BASELINE 
SCENARIO WITHOUT FEATURE EXTRACTION 

The lowest horizontal row of the confusion matrix indicates the percentage of the 

respective outcome class which was correctly classified for the test dataset. The rightmost 

vertical column indicates the probability that a given output of an outcome type is correct 

(True Positive). The diagonal of the matrix indicates the proportion of the respective 

outcome type in the full testing set. The cell in the rightmost column and the bottom row 

indicates the overall PCC regardless of outcome type. 

 

Figure 12.  Confusion matrix for single NN – test dataset. 
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Figure 13.  Confusion matrix for sub NN #1 – test dataset. 
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Figure 14.  Confusion matrix for sub NN #2 – test dataset. 
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Figure 15.  Confusion matrix for sub NN #3 – test dataset. 
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Figure 16.  Confusion matrix for merged output of three-parallel NN – test 
dataset. 
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APPENDIX F. CONFUSION MATRIX RESULTS FOR SCENARIO 
UTILIZING FEATURE EXTRACTION 

The lowest horizontal row of the confusion matrix indicates the percentage of the 

respective outcome class which was correctly classified for the test dataset. The rightmost 

vertical column indicates the probability that a given output of an outcome type is correct 

(True Positive). The diagonal of the matrix indicates the proportion of the respective 

outcome type in the full testing set. The cell in the rightmost column and the bottom row 

indicates the overall PCC regardless of outcome type. 

 

Figure 17.  Confusion matrix for single NN – test dataset. 
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Figure 18.  Confusion matrix for sub NN #1 – test dataset. 
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Figure 19.  Confusion matrix for sub NN #2 – test dataset. 
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Figure 20.  Confusion matrix for sub NN #3 – test dataset. 
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Figure 21.  Confusion matrix for merged output of three-parallel NN – test 
dataset. 
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