
Services / Parsoid Quarterly
Review

Wikimedia Foundation - Q2 of FY14-15

All content of these slides is (c) Wikimedia Foundation and available under a CC BY-SA 3.0 license, unless noted otherwise.

Agenda

Team intro - 1-2 minutes
Parsoid - 10-12 mins
Services - 10-12 mins
Discussion - 5-10 mins

Team and staffing numbers slide

Q1 Q2 Q3 Q4Q4 Q1

Subbu

ArloC. Scott

Marc

FY 2013-2014 FY 2015-2016FY 2014-2015

Gabriel

James, since Nov 17 Marko, since Dec 15

Services

Parsoid

What we said + What we did

Background: High level objectives

● Work towards read views served by Parsoid HTML
○ Long term goal: replace PHP parser

● Continue improving editing support for VE (and other clients)
● Code cleanup, technical debt, testing infrastructure
● Research new applications

Objective Measure of success Dependency ETA Status

Integrate with
RESTbase

--- Services Done V2 API ready and tested with
RESTbase

CSS based
customization of Cite
extension

Site-specific customizations
replicated in CSS in modern
browsers w/ fallback for
older browsers

Community,
Core, VE

End of
Q3

CSS and HTML changes ready
with customizations for 3 wikis;
Final pieces being worked on for
deploy

Support a subset of
complex templates

Clean visual diff on
previously dirty pages

 --- Done Finished by end of Dec;
Deployed Jan 28, 2014

Add stable id support VE can switch between
HTML and WT editing

--- Q4 Initial work done;
Postponed to Q3/Q4

Objective Measure of success Dependency ETA Status

Improvements to
<nowiki> insertion
(Unplanned)

Fewer nowikis in tests,
Fewer complaints from
frwiki and other wikis

--- Done Quote and link handling vastly
improved

Use Promises API --- --- Ongoing First pass: API is promises-
based

Improve tests More tests; Fewer failures;
Better coverage

-- Ongoing More parser tests; more mocha
tests; added code coverage
monitoring

Fixes to core PHP
parser (Unplanned)

Improved compatibility
between Parsoid and PHP
parser

-- Ongoing Improved link parsing and
serialization

Objective Measure of success Dependency ETA Status

Language variant
support

Identical rendering as
core parser; passing
tests

--- Q3 Initial work done; Postponed

Maintain RT testing
infrastructure

--- --- Q4 Some fixes to keep it
operational; More work needed

Get wikilint production-
ready

--- --- ?? Postponed (not enough
resources)

Research new
applications

--- --- ?? Postponed (not enough
resources)

What we learned

What we learned

● Important to prioritize work based on Parsoid client
requirements -- easy to get sucked into fixing edge cases ..

● <nowiki> insertion is surprisingly hard to get right (to be robust,
correct, and insert as few as necessary).

● Among mediawiki devs, CSS-based customization for Cite was
not as controversial as we feared.

● We are spread a little too thin for all that needs to get done.
● Documentation & blog posts are important but always get de-

prioritized.

Metrics & other key accomplishments

Key accomplishments

● Two major areas of rendering diffs fixed / close to being fixed.
● RESTBase integration completed.
● Regular deploys (1-2 times a week) without incident.
● Testing (Oct ‘13 → today):

● 84% code coverage (higher if tracing & debugging is also tested)
● More parser tests (2% more tests; 23K+ total across 6 modes)
● More passing tests (87.5% → 88.2%; lots of false failures)
● RT testing improved

○ zero char diffs went from 85.2% → 85.28%
○ zero semantic diffs still at 99.84%

What’s next

Background: High level objectives

● Primary Focus: Supporting VE goals this quarter
● Push forward towards Parsoid-HTML read views
● Initiate work to properly scope output of templates

○ Easier to reason about for editors
○ Removes WYSIWYG surprises from VE
○ Enables incremental parsing

⇒ faster parsing
⇒ reduced load on API cluster

Objective Measure of success Dependency ETA Status

Support for upright
images

VE Q3 Various WIPs

Experiment improving
efficiency of data-mw,
data-parsoid encoding

Reduces raw size of HTML
in common and
pathological cases

VE and other
clients

Q3,
Ongoing

Several ideas to try

Implement stable id
support

VE can switch between
HTML and WT editing

VE, Services Q4 WIP in place

Any additional API
support required for
data-parsoid stripping

Q3

Objective Measure of success Dependency ETA Status

Language variant
rendering

Identical rendering as core
parser; passing tests

Q3 Several patches up for
review

CSS based
customization of Cite
extension

Site-specific customizations
replicated in CSS in
modern browsers w/
fallback for older browsers

Community,
Core, VE

End of
Q3

CSS and HTML changes
ready with customizations
for 3 wikis; Final pieces
being worked on for deploy

Initiate work for
template scoping

ECT, VE,
Core

Q4 Several ideas and outlines
in place; Initial discussions
happened last 2 weeks

Asks

Asks

● Additional engineer(s)
● Community liaison:

- Cite CSS styling
- Wikitext linting / template fixes

● CSS help:
- Reduce rendering diffs to allow image-based testing
- Validate mobile rendering of HTML page views
- Prepare for Parsoid-based “Printable page”

Services

What we said & what we did

Objective Measure of success Dependency ETA Status

RESTBase v1
deployment

Test, stabilize and deploy
RESTBase with basic
Parsoid HTML &
metadata storage & API

Parsoid,
Ops

Q2 Delayed
Deploy ETA: Mid-
February

Performance < 15ms 95th for small
(<10k) resources,
<250ms 95th for 2mb
resources

Before
deploy

Achieved
93ms 95th percentile
across 3½ day random
read run over all of
enwiki

Build the team Hire at least two
awesome engineers &
onboard them

end Q2 Done
One more req open

Objective Measure of success Dependency ETA Status

Mathoid roll-out Mathoid SVG +
MathML rendering
mode in production

Q2 Achieved
Released Math 2.0 Oct
23, worked with
community

Work with Chris &
core team on
requirements for
auth service

Develop minimal API,
clarify architectural
background

Core Done. Core plans still
unclear, but MVP (PHP
API authz & CSRF end
point) as fall-back.

Tooling and
Service
infrastructure

Work with ops &
release engineering
on better deploy
pipeline, guidelines
for services

ops, release
engineering

Q3+ Ongoing
Some momentum on
tooling at dev summit;
exchange of ideas &
code between services,
but no formal guidelines
yet

Things we didn't originally plan

● Wikidata Query Service bootstrapping: proposed graph dbs &
Titan, investigating public API using MQL

● Handled production issues (including security incident) with
OCG / PDF renderer
○ Service isolation great for security
○ Apparmor fails unsafe

● Good amount of prep work for SOA track at dev summit

RESTBase background

● Swagger-spec-driven API proxy backed by Cassandra storage
and internal services

● Focus on content, performance, enabling fast iteration for
mobile & others

● Provide shared service infrastructure: consistent API with
HTTPS & (eventually) SPDY, monitoring, logging, throttling,
authorization, security checks (CSRF, sanitization) & -headers

● Product goals:
○ Speed up content API / Parsoid clients incl. VE
○ Enable section editing & micro-contributions on mobile

What we learned

What we learned: Collaboration, Org

● Working closely with ops was & is critical
○ hampered by lack of resources in ops, difficult to tackle deeper ops

issues from our end (access, responsibility)
● Need third-party distribution strategy for SOA acceptance
● Dev Summit consensus: we should be moving forward wrt SOA

○ Discussions show general concerns around technical details
○ We lack a common language to discuss the problems that Services

is/will be solving
● Need guidelines, requirements, and improved infrastructure for

services: development, deployment, orchestration, API docs

What we learned: Technical Side

● Can slim down HTML to current mobile size, but need to strip
data-mw too

● Researched strategy for efficient section editing / micro-
contributions
○ granularity should probably be section-based; current element ids have

~20% size penalty
● Apps have need for flexible HTML rewriting (currently done on

client, perf hit)
● Demand for HTML dumps from Kiwix, Google & others

Metrics & other key accomplishments

RESTBase random read latency (enwiki)

98ms 95th percentile
max over three-day
run at 1250 req/s,
random enwiki reads;
mean ~15ms

Testing & code coverage

CR on GitHub, Travis testing of full stack incl. Cassandra & Parsoid
API spec driven testing
● RESTBase: 81%
● RESTBase-cassandra: 83%
● Parsoid: 84%

What’s next

Our next challenges

● Support edit performance work with fast content API exposing
lean HTML

● Support micro contributions & fast VE edits with section edit
API

● Accelerate API and service development via generic solutions
to common problems
○ consistent API, monitoring, logging, caching / storage, auth, throttling,

validation, security headers
● Common guidelines for service development and deployment
● Encourage move towards state / stateless separation

Objective Measure of success Dependency ETA Status

RESTBase deployment production deploy of RESTBase
with basic Parsoid HTML and
metadata storage

Ops 2015/02/1
5

VE speed-up HTML size matching current mobile
output (~ ⅓ current size on large
pages);
separate data-mw API;
direct access to HTML without PHP
API proxying

Parsoid, VE,
Ops

End Q3

“Fast” section editing and
retrieval on mobile and
desktop.

Prototype section-level edit & view
API, collab with mobile & VE

Mobile, VE End Q3

Asks

● DevOps capacity
○ Distributed storage / Cassandra skills (also for WDQ)
○ SOA architecture / infrastructure planning &

implementation
● RelEng capacity

○ Need to work out a solid distribution strategy for SOA
acceptance

