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PREFACE TO 'THE F.OURTH EDLTION.

“ THe Mechanidal Euclid” 1s a title whxchlpel..
-haps requires some apology, since "the word Euclid”
is here used to signify, not a person, but a system of
elementary propositions, connected and demonstrated
with a rigour llke that of the Plements of Geometry.
The work was undertaken from a copvigtion that, if
it could be properly executed, the scieyces” of Me-
chanics and Hydrostatics might be employed, as’ well
as Geometry, in that discipline of the mind which is
an essential part of a sound education, and of which
rigorous mathematical reasoning is 50 important and
valuable an instrument. eAnd since the University of
Cambridge has recently declared itself of .this opinion,
by appointing the elementaty portions of Mechanics
and Hydrostatics as a necessary part of the ordinary
examinations for degrees, the work has been carafully:
adapted to the scheme thus laid down by authority.

In an elementary science thus intended® to be em-«
ployed as a discipline of the intellect, it ilee
that the matter to be studied should be reduced tOw
certain distinct and fixed Propositions, as is done in.
.Geometry.‘ I have therefore, in this Editiop, adopted
;the list of Propositions in Mechanics and Hydrostatics,
required by the University in the examination above
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rmentioned ; and 'haVe preserved the -ﬁumbers of that
list without change ; markihg the few additional Pro-
positions which I have introduced with ibe letters of
the alphabet, as is done by~ Simson in his Euclid.
When the existing scheme of University Examination
has been continued a few years longer, it may be
oped that this list of Elementary Propositions in
Mechanics and Hydrostatics will become classical, as
the Propositions of Euclid’s Elements are: so that
¢ the eighth Proposition of Mechanics,” or * the sixth
of Hydrostutics,” may be expressions as familiarly
understood .as “the forty-seventh of Eutlid’s First
Book,” or ¢ the fourth of his Second.”

So far as I have learnt, the Examination in the
Elements of Mechanics and Hydrostatics thus ap-
pointed by be University, has, in its operation,
shewn a highl/ satisfactory prospect of the beneficial
effects which it is likely tc produce when its course
shall have been well determined by practice. Perhaps
I may be allowed to make here one or two remarks
bearing upon this¢subject.

One ground on which some persons may perhaps
for a moment doubt the efficacy of this examination
as an intellectual discipline, is this:—that the list d?
Projins..;ons being thus limited and known'beforehand,
there seems to be nothing 4o prevent the student from
learning the demonstrations by rote, and delivering
them to the examiner without understanding them.,
And to this I reply, that the same argument might,
be urged, with Aat least equal forct, against the value.
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"

of Ewclid’s fFeotuetry as a part of our examinations
and yet I believe every. one practically ,acquainted\
with University and College examinations and their
effects, will agree with, me ‘that Euclid’s Geometry
is the most effective and the most valuable, portion
of our mathematical edircation. If the examinations in
Mechanics and Hydrostatics be assimilated as wluch
as possible to the evaminations in Euclid,fthey will
have the same kind of effect, as a discipline of strict
reasoning ; and the study of these additional sciences
will bring with it additional advantages, arising from
the more extehsive dnd varied nature of the subjects
thus presented to the student’s mind. '

In introducing these additional scicnces intd the’
study for the usual degr'ec, the portion which Algebra
occupied in the examinations was rather diminished
than increased. So far as this chan,g“n was requisite
to facilitate the introductign of the new portions of the
examination, it will not, I think, be deemed an evil by
any one who wishes the sturdies of the ﬁqiversity to
be so selected and arranged as to, be an intellectual
discipline. For the knowledge of Algebra which is:
geuerally acquired by those who study that subject
merely with a view to the ordinary degree, must be «
so scanty as to be of small value for theyps rffbse
just mentioned ; especially when we take into accounfw
the very imperfect acquaintance with Arithmetic which
students in general, according to the present practice
"of many places of previous education, bring to the

.University. Even in the hands of those who are able
' as
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use it wmh faclllty and certainty,eas, a language
and an instrument, the great charm of Algebra* is that
it expresses reasomngs, and obtains the result of them,
without the exercise of the reason : .and when students
are required to follow in a general form relations and
combinatioes of numbers which they cannot deal with
in particular cases, their appreherfsion of the meaning
and groux:ds of the processes must be so obscure, as
to prevent the mind receiving any portion of the
salutary effect which a complete mastcry of the science
might prodece.

There ave indeed a few smple algebraical terms
and operations which occur so familiarly 1n mathema-
‘tical ‘feasonings, that the student cannot conveniently
remain ignorant of them; and accordingly, the Uni-
versity has directed that the examination above men-
tioned shall inplude questions of this kind. These
parts of algebra, extracted from Dr. Wood’s Algebra
by perm:ssmn of the author, are given in the Intro-
duction tQ the present work, along with a few other
portions of Pure -Mathematics, to which it is con-
venient to be able to refer in a succeeding part of
the book.

Some *of the enunciations of theorems contained
in WeShedule sanctioned by the University, (in con-
r;;equence, I conceive, of the wish felt by the framers of
the plan that the document should be as brief as pos-
sible,) coptain Propositions edch of which may conve-
mently be separated into two or more; for gnstance,
Prop. VIII, an:i XVI, of the Mechanics ; and Prop. I,
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II, V,*VI, X, of the Hydrostatics. _ =Perhags it might*
be convetient, when these Propositions are required in
an examination, to s.tate which Case is intended,

In order that the prasent little work may ‘serve as
guide to the student in preparing for the examination
to which I have referred, I have inserted +in an A}‘»
pendix the Grace of Feb. 22, 1837, (by which thie i)art
of the examination was founded,) as modified by the
Grace of May 11, 1842.

Tain Coryp
March 13, %843
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IN this edition I have restored to their places the
Third Book of Mechanics, which contairbsthe Laws
of Motion, and the Rema.;ks on Matkemati‘cal Jea-
soning, and on the Logic of Induction ; both which
portions were, with a view to brevity, omitted in the
fourth edition; but are, it appears, desired by many
readers. I have also inserted the Questiohs on Me-
chanics and Hy:irostatlcs proposed in the.Eaaminations
for the present year; and the modificatjons’ of.the .
Regulations respecting the examinations which were
introduced by the Grace of March 20, 1846.

.
1]

It has been noticed to te that the demonstration
of Prop. viir. B. 1, may be somewhat simplified in
[ ]
this manner .

After the words “and therefore DAq is a straight
line,” go on thus:

And therefore D4 is parallel to Cp. Also since
CAr is a straight line, C4 is parallel to Dp. s H-..ee
DC is a parallelogram, and therefore C4 = D}i But\
sincé pr also is a parallelogram, Dp = 4r; therefore
CA = Ar.

Triv, CoLL
March 23, 1849.
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INTROBUCTION.

ELEMENTARY PURE MATHEMATJOS.

e e
]
.

ALGEBRA.
*¥(1). To define and explawn Algebraical Signs.

ArT. 1. THE method of representing the rel~-
tion of abstract quantities by Iktters and .Characters,
which are made the signs of such quantities and their
relations, is called ALGEBRA. T,

Known or determined quantities are usually rgpre-
sented by the first lettergof the alphabet a, b, ¢, d, &c.
and unknown or undetermined quantities by the last
Y, &, w, &e.

The following signs are made use of to express
the relations which the quantities begr to each other.

2.+ Plus, signifies that the quantlty to which
it is prefixed must be added. Thus e + b signifies
that the quantity represented by b is to be "added to
the quantity represented by a; if a represent 5, and
b, 7, then o + b represents 12.

If no sign be placed before a quantity, the sign
+is understood. Thus a signifies + @. Sich quan-
tities are called positive quantities. i B

8. — Minus, signifies that the quantity to which
it is prefixed must be subtracted. Thus ¢ - b sig-
nifies that b must be taken from a; if a be 7, and b, 5,
% — b expremes 7 diminished by 5, or 2.

Quantities to which the sign — is prefixed are

called, tive quantltlem .
m&gﬂ ' “ 1
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4. x Jnto, signifies that the quantities between
which it stands are to be multlphed together. Thus
@ x b sigpifies that the quantity represented by a is
to be multiplied by the yuantity represented by b*.

This sign is frequently omitted ; thus a b ¢ signi-
fies @ x b X ¢ or a full point is used instead of it;
thus 1 x 2° 3, and 1.2.8 signify the same thing.

5. If in multiplication the same quantity be
repeated any number of times, the product is usually
expressed by placing above the quantity the number
which represents how often it is repeated; thus a,
axa,axaxaaxaxaxa,and a',a’ ad at, have
respectively the same significatibn. These quantities
are call.d powers; thus a', is called the first power
of av; a*, the second power, or square of a; a’, the
third power, or cube of a; 2*, the fourth power, or
biquadrate of a. The succeeding powers have no names
in common use except those which are expressed by
means of number; thus o’ is the seventh power of a,
or a o the seventh power ; .and a"is a to the n™ power.

The numbers 1, 2, 3, &c. are called the indices of
a; or expanents of the powers of a.

¢

6. = Divided by, signifies that the former of
the . quantities between which it is placed is to be
divided by the latter. Thus a - b signifies that
the quantity e is to be divided by b.

The division of one quantity by another is fre-
ﬁuenﬂy. represented by placing the dividend over the
divisor with a line between them, in which case the

. - . w . 3
expression is called a fraction. Thus, 5 signifies a
* By quantities, we understand such magnitudes as c#n be repre:

sented by numbers; we may therefore witheut impropriety speak of the
multiplication, division, &c. of quantiies by each other,
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divided by b*; *and a is the numerator, end b the deno-
minator of the fraction ; also atbte sxgmﬁes that
e+f+

a, b, and ¢ added toge,ther, are to be dxvxded by e,
ia and & added together o

7. A quantity jd the denominator of% fraction i is
also expressed by placmg it in the numerator, and
prefixing the negative sign to its index; "thus at,
1 1
@’ o’
these are called the megative powers of J.

. s T | 1 .
a? a3 a~" signify -, et respectively ;
a [ ]

. )
8. The reciprocal of a fraction d"s'the fraction
b
inverted. Thus ; is the reciprocal of -, and--— i’
the reciprocal of a.

9. A line drawn over several quantities signifies
that they aie to be taken collectively, and it is called
a vinculum. Thus @ —% + ¢ x d— e signifies that
the quantity represented by @ — b + ¢ is to be multi-
plied by the quantity représented by d —. Let a
stand for 6; b, 5; ¢, 43 d, 3; and & 1; thena - b +¢
is6—-54+4,0r5; andd—eis3—1, or 2; thergforee
a-b+exd—-eis5x2, or 10, eb—-cd x ab -cd
or ;5_-?@] signifies that the quantity represented by
ab — cd is to be multiplied by itself. .

Instead of a line, brackets are sometinfts usA
as (ab-cd), Ja-b+c}.{d-e}.

10. = Egual to, signifies that the quantities be-
*tween which it is placed are equal to each other, thus
aa - by '=cd + ad, signifies that the quantity az — by
is equal to the quantity cd + ad. ¢

1—2
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11.  The square root of any propoted quantity is
that quantity whose square, ‘or second power, gives the
proposed guantlty The cube root, is that quantity
whose cube gives the proposed quantity, &c.

The signs 4/, or VERVE \7, &c. are used to
express the square, cube, biquadrate, &c. roots of the
quantities before which they are placed.

«/a =a, “ a = a, \/a‘_a, &c.

These roots are all represented by the fractions {;, 3, 1,
&e. Placed a little above the quantitics, to the right.
1 1

1 1 L
Thus o', 2°, @*, a” represent the square, cube,

r\ 7 8
fourth and »™ root of a, respectively ; @, @, @°, re-
[present the square root of the fifth power, the cube
‘root uf the seventh power, the fifth root of the cube
of a.

12. If these roots cannot be exactly determined,
the quantities are called irrational or surds.

13. Points are made ute of to denote proportion,
thus a : b : d, signities that « bears the same
proportion to b that c bears to d.

14. . The number preﬁxed to any quanut_), and
" which shews how often it is to be taken, is called its
coefficient. 'Thus, in the quantities 7aa, 6 by, and
3d:x, 7, 6, and 38 are called the coefficients of ax, by,
; vd dg Eespectlvely

When no number is prefixed, the quantity is to
be taken once, or the coefficient 1 is understood.

These numbers are sometimes represented by
(Jetters, which are called coefficients.

+15. Similar, or like algebraical quantities are
r,such as differ ¢nly in their coefficients; 4a, 6 abd, 9a®
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3a%e, are fe§pectwely similar to 15@, Sab, 1243
15 azbr, &e. « °

Unlike quantqlties are different combjnations of
letters ; thus, ab, .a,gb,.abg, ‘abe, &c: are wnlike.

16. A quantity is said to be a multiple of an-
other, when it containg it a certain nufber of times
exactly : thus 16a ¥s a multiple of 4@, as it contains
it exactly four times. .

17. A qnantity is called a measure of another,
when the former is contained in the latter a ceftain
number of times exactly; tlhus, 4a is,Sa measure
of 16a. . .

B
18. When two numbers have no commoh measure
but unity, they are said to be prime to each other.
L]

19. A simple algebraical quantity is one which
consists of a single term, as a%.c.

20. A binomial is a quantity consisting of two
terms, as @ + b, or 2a — Pba. A tiinomial is a quan-
tity consisting of three terms, as 2 a + bd + 3e.

21. The following examples will serve to illus-
trate the method of representing quantities alge-
braically :— -7

Leta=8,b=7¢=6,d=5ande=1; then

3a-2b+4c—e=24—14+24-"1 =33
abyce—bd=56+6-85=27. %
a+b Sb-2c 8+7 21-12°

c-e+~a—d =6—1+ 8-5
15 O
. =—5—+—=6 .
'xa-¢c—3c+d =25x2-18 +125 -
=50 —18 4+ 125 = 157.¢
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*(2). Tp -add and subtract simple Algebraical
. Quantities.

22. 'Fhe addition of algebraical quantities is
performed by connecting thosz that are wumlike with
their proper signs, and collecting those that are similar

into one sum.* .
Examples : .
Add Add
42 S5ax
‘ w3® —-—ax
Ta by °
—‘Qa‘ —cy
Sum 7z +5a Su—m4aw+by—cy
a+2bx-y° a+3b
b—-bw + 3y° a+n-4b
Sum e + b + ba + 2y Sum Qa—:n*—_rl;

23. Subtraction, or the taking away of one
quantity from another, is performed by changing the
sign of the quantity to be subtracted, and then
adding it to the other by the rules laid down in
Art. 22.

From 7T From Tx+ 3a

[“’ubtracf @ Subtract 5¢ — @

Diff 7a#-xor6as Diff. Tw+a+5a-38a
or 8m9+ 2a

From 42*+5a2-y¢°
Subtract 84° -8aw + ¢

Diff, ¥+ 8aw - 2y°
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*@3). To multiply simple Algebraical Quantities.
24. The myltipkication of simple algebraical
quantities must be represented according go the no-
tation pointed out m Art. 4 ‘and 5. Thus,‘a x b, or
ab, reprcsents the product of e multipligd by b;
abe, the product of tlle.three quantities n, b, and ¢:
It is also indiffevent in what order they are placed,
@ x b and b x a being equal. . .

25. If the quantities to be multiplied have co-
cfficients, these must be multiplied together as in com-
mon arithmetic; the literal product bclng deternfined
by the precedjng rules.

Thus, 3a x 5b =15 ab; because ¢ o

Sxax5xb=3x5x%xaxb=15ab.

26. The powers of the same quantity are multi-
plied together by adding the indices: thus, @ x a*=a’;
for aa x aaa =aaaaa. In the same manner,

™ x @*=a"*"; and 3a*2® x 5axy’
= 12a’2*y’.

27. If the multiplier or multiplicand consist of
several tcrms, each term of the latter must be mul-
tiplied by every term of the former, and the sum of
all the products taken, for the whole product ef the
two quantities.

L]

*(4). To divide simple Algebraical Quantztzes

28. To divide one quantlty by anotBer is
determine how often the latter is contained in the
former, or what quantity multiplied by the latter will
produce the former. °

Thus} to divide ab by a is to determme hot/
often @ must be taken to make up ab; that is, wh.
quantity multiplied by a will give abs which we knoy
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. c

is b. From this consideration are derived all the rules
for the division of algebraical gnantities.

If only a part of the pnoduct which forms the
divisor be contained in” the dividend, the division
must be represented accordmg to the direction in
Ast. 6, and the quantities contained both in the

divisor and ‘dividend expunged.
15a°p

.. . 15 .
Thus i54*b’c divided by 3a*ba is 4 a)b , which
-

) 5be ) )

is equal to —, expunging from the dividend and
@

from the dévisor the quantitics 8, a?, and b.

*(5). To réduce Fractions to others of equal value
which have a common denominator.

29. Fractions are changed to others of equal value
with a common denominator, by multiplying each nu-
merator by every denominator except its own, for the
new numerator ; and all the denominators together for
the common denominator. .

a

Let b,Ad f
adf chf edb
bdf’ bdf’ bdf
the former, have the common denominator bdf.

For 290 _ %, O _ 0 0a 295 _ % (A, 25);

. bdf b’ bdf rk bdf f
t/t numetator and denominator of each fraction having
been multiplied by the same quantity viz.—the pro-
duct of the denominators of all the other fractions.

; be the proposed fractions; then

, are fractions of the same value with

80. When the denominators of the proposed frac-
ons.are not prime to each other, find their greatest
ommon measure ; multiply both the numerator and
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denominator of each fraction by the dendminators of
all the rest, divided respectively by their greatest com-
mon mcasure; and the fractigns will be reduced to a
common denominatqr in dower terms* than tl)ey would
have been by proceeding according to the former rule.

. a b «<° ‘e
Thus y  — g , reduced to a common de-
may’ my ms .
ays bz cry

nominator are )
merys MIYs murys

*(6). To add together simple {Jlgebraical ¥ractidns.

31. Ifthe fractipus to be added have a common
denominator their sum is found by additg the nunic-
1ators together and retaining the common deuouunator

Thus, .
2a a 3a
+_
5 5
a+2r a-— 2a
.__._+__=._.
3 34 3
Te+y 2y-—-5&x 2x -4y
a a

32. If the fractions have nbt a common de-
nominator, they must be transformed to others of the
same value which have a common denominator, (by
Art. 29), and then the addition may take placc as

before. Thus, .
a a 5a 3a 8a
st:Tnts
e a aw.ab ax+ab
£+‘;}=ﬁ+b—; Y

To obtain them 1n the lowest terms, each must be reduced to(
another of equal value, with the denominator which «s the least common )
multiple of all the denominators. 1

—4
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+1 a+b ,a+bd
- = — — ——
b b b b’
( a 6y-a
2—'—"'—‘ .
S 3o

*(D.  To multiply simple Algebraical Fractions.

33. To multiply a fraction by any quantity,
multiply the numerator by that quantity and rctain
the denominator.

Thus'.x% x ¢ =£1b_c. For if the quantity to be

divided be ¢ times as great as before, and the divisor
the same, the quoticnt must be ¢ times as great.

34. The product of two fractions is found by
multiplying the numerators together for a new nu-
merator, and the denominators for a new denominator.

a ¢ ac
Let 7 2 and 7 be the twc fractions: then P RITh
For if -’; =z, and % ¥, by multiplying the equal

quantltles% and @ by b, a = ba (Art. 28), in the

same manner ¢ = dy; therefore, by the same axiom,
ac =bdtmy; dividing tl;ecse equal guanctxtles, ac and
day by bd, we have pd=%=3 %3

}(8). To divide simple Algebraical Fractions.

85. To divide a fraction by any qu"ansity, mul-

tiply the denommator by that yuantity, and retain
the numerator,
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The fraction’% divided by ¢, is bic' Because

;;l-= 50, and a ¢ part of this is b'—ac; the quantity
to be divided being a ¢'® part of what it was before,

and the divisor the sam. .
L]
36. Todivide a quantity by gny fraction, multiply
the quantity by the reciprocal of the fraction. (Art. 8).

If we divide ¢ by g we obtain °°. For if
(L .

a a ax bc
¢c— =7 re=x x-,0rc=—, and =

b b

*(9). Aligebraical definition of Prop3rtion.

37. Four quantitigs are said to be proportit;nals,
when the first is the same multiple, part, or parts of
the second, that the third is of the fourth.

Thus the four quantities 8, 12, 6 6, 9, are propor-
tionals; for 8 is 3 of 12, and 6 is } of 9.

In this case &=25; and generally ay by, ¢, d are

LL

proportionals if Z = ((z This is usually éxpressed by

saying @ is to b, as ¢ to d; and thus represented,

¢ :bue:d . .
The terms @ and d are called the evtremes, and
b and ¢ the means. .

The fraction - is called the ratio of % togb.

[N

*(10). Algebrai(-al consequences of Proportion.

38. When — = E, if @ be equal to b, ¢ is equa.l

to d, and if a be less than b, c is less than d, and 1
a be greater than b, ¢ is greater than’d.

(

¥
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39. When four quantitics arc proportiopals, the
product of the extremes is equal to the product of the
means.

Let a, b, ¢, d be the four quantities; then, since
they are .proportionals, ;—f = El,; and by multiplying
both sides i)y bd, ad =be. e

Any three terms in a proportion @ : b : e : d
being given, the fourth may be determnined from the

equation ad = be.

40. 1f the fir<t be to the sccond as the sccond to
the third, the product of the extremes is equal to the
square of the mean.

« TFor (Art.89) if ¢ : @ :: @ : b, ab=2a’.

‘

41. If the product of two quantities be cqual to
the product of two others, the four are proportionals,
making the terms of one product the mecans, and the
terms of the other the extremes.

oo b
Let vy = ab, then dividing by ay, 7 -
. [ a y

or, x : a = b: .

42. Ifa:b:c:d,andec:d ::e: f, then
will @ : b:e: f

Becal\lsé g = % and :i; =‘;‘, thercfore g =;; or
. : a:b:e:f

43. If four quantities be proportionals, they are
also proportionals when taken {nversely.
If a:b:c:d then b:a::d-.'c.. For

'=§, and dividing unity by each of these equal
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- . . . b d-
quantltles',' or taking thei reeiprocals, - = —; (Art. 36)
. a 4

that is, b : @ = d : ., .

44. If four qu:;ntities be proportionals, they are
proportmna]s when taken.alternately .
Ifa:b:c:dythena:c:b:d

o . e @ c
Because the quantitics are proportlonals, ;=2 .
a b
—=-,ora:c:=b:d
c d

b
and multiplying by 1 .

45. TUnless the four quantities are of the same
kind, the alternation cannot take place,‘ 'because this
operation supposes the first to be some multiple, part,
or parts, of the third.

One line may have to another line the same ratio
that onc weight has to another weight, but a line has
no 1elation in respect of magnitude to a weight. In
cases of this kind, if the four quantitigs be represented
by numbers or other quantmes which are similar, the
ulternation may take place, and the conclusipns drawn
from it will be just.

46. If a : b :: ¢ : d, then c(;mponendo,
a+b:0b:c+d: d

a ¢
For 3 therefore 5 +1= 7 +7;

Q"IQ
&.IQ

.
L3

a+b c+d * e

b d ;
therefore a+b.: b:c+d : d.

47. .Also dividendo, ¢ =b : b :: c—d : d.

therefore

e c a c
For - = —; therefore - -1=2-1;

b d b U
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a-b c-d
heref
therefore b d
therefore ¢ ~b : b :: ¢ -d : d.

48, Also convertendo, a : a —=b :: ¢ : ¢ —d.

. b d
For g—=§; theretorea_—.z;
b
therefore l--=1_§;
a c
thereforea-b c_d;therefore a-b:a:b0-d:c;
a 4

and by A1t. 48, @ : a=b :z c: ¢~ d.

. 49.° If we have any number of scts of propor-
tionals, and if the corresponding terms be multiplied
together, the products are proportionals,
Ifa:b:xc:dyandp:gq:ur:s
and v : v a4 : oy,
then apu : bqov :: cra : dsy.

For E=E, andE = T—, and —=£;
b d g s vy
c
and multiplying together equals Isg— dg

therefore apu : bgv :: cra : dsy.

50. If the same quantities occur in the antece-
fents o:" onu sct of proportionals and the consequents
of another set, the resulting proportionals will be
reduced.

fa:bc:damdb:e:d:f
thena:e::c:f. .

b d
2.8 and d; therefore o= = =

For d f b‘é = d—f’
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‘.
fe

b
For g-:f, and - =—, ahd§=;;'
abe @z
therefore od =. W ;

and expunging,common factors in the numerators and
denominators, -

zE

ISH R
<

*(11). Of Variation.

51, Quantities of the same kind assume different
values under constant conditions, and when these dif-
ferent values arc compared, the quantities are spoken
of as wvariable, and the puoportion of the diflerent
values may be expressed by two terms of a proportion
instead of four.

Thus if a man travel with a constant velocity
(for example 4 miles an hour,) the space tmvellcd over
in any one time is to the space travelled OVCI in any
other time as the first time is to the secomd ﬂmc and
this may be expressed by saying that the space varies
as the time, or is as the time.

52.  One quantity is said to vary direetly as an-
other when the two quantitics depend wholly upon each
other, in such a manner that if the one be changed the
other is changed in the same proportion.

4
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If the altitude of a trlanfrle be mvarmbla, the area
varies as the base. For if the base be increased or
diminished in any propertion, the area is increased or
diminished in the same proportion, (Eue. v1. 1))

53. "One quantity is said to vary zmersely as
another, when the former cannog be changed in any
manner, but the reciprocal of the latter is changed in
the same manner.

If the area of a triangle be given the base varies
as the perpendicular altitude.

"If Ay a represent the altitudes, B, b the bascs of
two triangles, since a triangle is half the rectangle on
the same bas:;and of the same altitude, and the tri-
angles art equal, L AB =1 ab. (See Geometry.)

* 'Therefore ,
. . 1 1
A:a.:b:B,orA:a..ﬁzz.

54. One quantity is said to vary as others jointly,
if, when the former is changed in any manner, the pro-
duct of the others is changed in the same proportion.

The afea of a triangle varies as its altitude and
base jointly. .

Let 4, B, a, b be the altitudes and bases of two
trianérles as before, and S, s the areas; then

S=2dB,s=%ab and § : s :: AB : ab

L Y
« N 8
’ B5. ¢In the same manner 4 : a :: Z : Z; and

4 varies as § directly and B inversely.

56. 'The symbol « is often used for variation. _
Thus the above variations may be expressed

. S
ot — 5 B.Jac
ABSA
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57. thn the increase or decreasc of pne quan-
tity depends upon  the .increase or decrease of two
others, and it appears that if either of these latter be
constant, the first varies as the “other, when they both
vary, the first varies as their product.

Thus, if V be the velocny of a body moving
uniformly, 7" the time "of motion, and S”the space
described ; if 7" be constant S« V,; if V be constant
S « T ; but if neither be constant § < 7T'V.

Let s, v, ¢ be any other velocity, space and time;
and let X be the space described with the veloc1ty v
~in the time 7" : then ’

S : X V': v, because T is the same in both,
X : s = T : t because v is the same in both,

Thercfore (Art. 50) .
S :8:2 TV : to; thatis, §« TV.

(12). Of Arithmetical Progression.

. .
58. Quantities are said to be in arithmetical pro-
gression, when they increase or decrease by § common
difference.
Thus 1, 3, 5, 7, 9, &c., where the ificrease is by the
difference 2;
a, a + b, a +2b, a + 3b, &c., where the increase
is by the difference b
9a + 72, 8a + 62, 7a + 52, &c., wlfere;he de-
crease is by the difference a + a3

are in arithmetical progression.
59. [To find any term of an arithmetical pro-

gressmn, multxpl) the_difference by the number of the
term minus one, and add the product tcthe first term,
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if the progression be an increasing ‘oné, or subtract the
product, if a decreasing oue.

Thys the 10™ term of 1, 3, 5, &ec. is 1+ 9 x 2 =19.

The n™ term of @, @ + b, a +2b, &c. is ¢ + 7 — 1b.

The 6“‘ term of 9a + 7@, 8a + G, &e. is
9a+7w—5(a+m) 9a + 72~ 5a — 52 = 4a + 2.

" 60. To find the sum of an arithmetical pro-

gression, multiply the sum of the first and last terms
by half the number of terms.

" Thiis the sum of 10 terms of 1, 8, 5, &e. is
. (1 + 19) x 5 = 100.
Forif 1+ 3+ 5+ &c. to 19 (10 terms) = s,
) 19+ 17 + 15 + &c. to 1(10 terms) =s;
therefore 20 + 20 + 20 + &ec. to 20 (10 terms) = 2s,’

or 20 x 10=2s, or 20 x 5 =s.

Also n terms of a, a + b, a + 2b, &c.
n
= (Qrzl+n—1b)-§.

For if « + (@ +b) + (¢ + 20) + &e.
toa +n — 1b(n terms) = 8
(e +7n - 1b) + (a + n — 2b) + &e.
to a (» terms) = s;
therefore (2a + 7 — 1b) + (2a + n — 1b) + &e.
(n terms) = 2s;
therefore (2a +n —1b) x n =2s

S n
and (za‘+ 7n —1b) x i S.
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(13). "Of Geometrical Progression:

L]

61. Quantities 4re said to be in geometrical pro-
gression, or continual proportion, when the fisst is to
the second as the sccond to the third, and as the third
to the fourth, &c.

Or when every succeeding term is a ceptain mul-
tiple or part of the preteding term. -

Thus 8, 12, 18, 27 are in continled proportion or
in geometric progression. In this case the terms are

3 3 3 3 3

3
8, 8x—, 8x=X=y, 8X-x=X_—, o
2 2 2 2 2 %2 -

*3 . /3\°* 3\
orS,Sx—,Sx(—), BX(—)q
9 2] 2 9

~ ~

-~

In like manner, a, ar, ar’y ar®are in geomettic
progression.

62. The multiplier by which cach term is ob-
tained from the preceding is called the common ratio.

63. 'To find any term of.a gecometrical progression,
multiply the first term by that power of the, common
difference which has for its eaponent the number of
the term minus onc. .

Thus the 5th term of the progression 8, 12, 18,

&e. is,
3\* 81 81
8(=]=8x—=—=10].
2 16 2 .
And the 2™ term of a, ar, ar’, &c. is ar®~,

64. 'To find the sum of an increasing geometrical
progression, multiply the’ last term by the common
ratio, subgratt from the product the first term, and
divide the remainder by the excess of the commen
ratio above unity. .
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Thus, the sum of 5 terms of 8, 12, 18. &c. is

And the sum of n terms of a, ar, ar?, &ec. is
ar-'xr—a ar'-a
TrTT T T rea
For if @ + ar 4+ ar® + &e.
+ ar*~! (n terms) = s,
multiplying by 7, ar + ar® + &e.
‘ + ar*~! + ar* (n terms) = rs,
and -subtracting, ar" —a=rs—s=(r - 1),
ar"—a

whence
r-—1

- GEOMETRY.

FremMENTs oF GEoMETRY. Eucrip, Books *I,
*11, ¥*111, 1V,

Book v." *Definition of Proportion.

The first of four magnitudes is said to have the
same ratjo to the second which the third has to the
fourth when—any equi-multiples whatsoever of the
Jirst ard third being taken, and any equi-multiples
whatsoever of the second and fourth,—if the multiple
of the first be Jess than that of the second, the multiple
of the third is also less than that of the fourth; or if
the mulfiple of the first be equal to the multiple of the
second, the multiple of the third is also equal to that
of the fourth;cor if the multiple of the first be greater
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than that of th¢ second, the multiple of the third is
also greater than that of the fourth.

Ratio is the relation of quantities in respect of pro-

. . * . .
portion, so that if a, b, ¢, d be proportional, the ratio
of a to b is equal to the ratio of ¢ to d.

*Lemma 1. If magnittides be proportionals accord-
ing to the algebraical’ definition of proportion, they
‘are also proportionals according td the gedmetrical
definition.

If magnitudes a, b, ¢, d be proportionals alge-
ki m_c, whete m.a,
nb nd
mec are any equi-mulfiples whats'oever of a, ¢, and
nb, nd, any equi-multiples whatsoever of b, ¥; and
if ma be less than 2206, me is less than nd; and if
cqual, cqual; and if grlater, greater. (Art. 38.)
Therefore the magnitudes a, b, ¢, d are proportionals
according to the geometrical definition.

braically, %s s; thercfore

Lemma 2. If magnitudes be proportionals ac-
cording to the geometrical definition, they are also
proportionals according to the algebraical dgfinition,

If a : b:: ¢ : d according to the geometrical defini-
tion, suppose, first, @ to be any multiple, part, or parts

n .
of b, so that @ = —b; therefore ma = nb; therefore
m

by the definition mc=nd; therefore £=%; but
a n a ¢ ¢
=0 therefore e

Hence ‘l_zs= s, whenever a is any multiple, part,

or parts of b. But when the quantities a, b, ¢, d are
determined by any geometrical conditions, the fractions
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% and f—i will be equal or unequal according to those

condltlons, and the algebraical equation will express the
results of these conditions generally, without regard to
magnitude. Therefore the equality cannot depend
upon that particular magnitude of @ or b, which makes
a some multiple, part, or parts of b. Therefore, since,
for those magnitudes of @ and & for which a is a mul-

. a, ¢ .
tiple, part, or parts of b, 7 cqual to 7 thesc fractions
must be equal without any such restriction, and we

shall have in all cases %: S{

Ilence when q’uantities have been proved to be
geometrically proportional, we may apply to them all
those results of algebraical proportion which have been
already proved, in Arts, 38 to 50.

EUCLID, Book VI

¢

)

DeriniTion 1. The altitude of any figure is the
straight line drawn from the vertex perpendicular to
the base.

Der. 2. Similar rectilineal figures are those which
have their several angles respectively equal, and the
sides about the equal angles respectively proportion-
als.

*Paor. 1. Triangles and parallelograms of the
same altitude are to one another as their bases.

*Pror. 1. If a straight line be drawn parallel
to one Of the sides of a triangle, it shall cut the
other sides, or those produced, proportionally; and
if the sides, er the sides produced, be cut propor-
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tionally, the straight line which joins the points of
section shall be parallel to.the remaining side of the
triangle. ‘
[ [ ]

*Pror. 111.  If the angle of a triangle be bisected
by a straight line cutting the base, the segments of
the bhase shall have the same ratio as the Gther sides
of the triangle; and if the segments of the base are
"to each other as the other sides of the triabgle, the
straight line drawn from the vertex to the point of
section, bisects the vertical angle.

Pror. A. If the exterior angle of a triangle,
made by producing onk of its sides, be bisected by
a straight line, which also cuts the basc prdduced ;
the segments between the dividing line and the exfre-
mitics of the base are to cach other as the other sides
of the triangle; and if the segments of the base pro-
duced are to cach other as the other sides of the
triangle, the straight line draw from the vertex to
the point of section divide$ the extefior angle of the
triangle into two equal angles.

]

*Prop. 1v. The sides about the equal angles
of equiangular triangles are proportionals; and those
which are opposite to the equal angles are homologous
sides ; that is, are thc antecedents or consequents of
the ratios. -

Cor. to Prop. 1v. Since it has been shewn
(Lemma 2) that when quantities are proportionals
geometrically, they are .proportionals algebraically ;
all the consequences which are proved of algebraical
proportion (Arts. 87 to 50) may be asserted of the
proportionals in Props. 1, 11, 111, 4, 1v of this Book vI.
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EUCLID, Book XI. «

- . . .f‘
DEF. 1. A straight line is perpendicular or at
right angles to a plane, when it makes right angles
with every straight line meeting it in that plane.

DeF. 2. A plane is parallel to another plane when
they do not meet, though both are indefinitely pro-
duced. .

Der. 5. A piane is parallel to a straight line when
they do not meet, though both are indefinitely pro-
duced.

Der. 4. A prism is a solid figure contained by
two parallel plaues, and by a number of other planes
all parallel to one straight line, and cutting the first
two planes so as to form polygons.

The first two planes ar~ called the ends or bases
of the prism, and the intermediate portion of the
straight line to which all the other planes are parallel
is the length of the prism.

The following Lemmas will be taken for granted :
(straight lines, surfaces and solids being measured
by numbers.)

Lemuma 3. The arcs which subtend equal angles

at the centers of two circles are as the radii of the

circles.
Let the two circles be placed

~
so that their centers coincide at C: / Na
and so ¢hat one of the lines C. l’/A
containiig the angle 4Ca in one LA
of the circles coincides with the

corresponding line CB in, the /
other cirde. Then the other lines —

containing the angles, namely Ca, Cb, will coincide ;
and it will e tgue that 4o : Bb':: CA : CB.
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LEmuMA 4 The area of a rectangle is equal to
the produtt of the two sideg. '
If 4, B be the two'sides, the rectangle is = 4 x B.

Cor. If B be the base &nd 4 the altifude of a
triangle, the area of*the friangle is =14 x B.

Lemma 5. If a prism be cut by plgnes perpen-
dicular to its length at different points, the areas of the
sections are all similar and equal. -« .

Lemma 6. The solid content of a prism is equal
to the product of its length and of the area of a section
perpendicular to the length. . . °

If A be the arca of the section and H the length,
the solid content is = A x H. In this case, solid con-
tents are measured by the number of times they con-

tain a unit of solid content. . !
¢

Cor. In a uniform prism the weight is as the
solid content; hence the weight of any poition of a
umform prism is proportional to its length.

Lemma 7. If a’ prismebe cut by two planes pass-
ing through any point

of its length, one of the . .

planes being perpendi- 7 i =

cular to the length and e —
the other oblique to it ; i L~ P

and if a line be drawn at the point, perpendicular to the
oblique section and intercepted by a line perpendicular
to the length; the oblique section is to the pgrpejidicular
section as the portion of the perpendicular lifie inter-
cepted is to the portion of the length intercepted.

Let LI, LM be the perpendicular and the oblique
section of the prism, of which the length is QL LK per-
pendicular fo the section LM, and KH perpendicular to
the length QL. Thon area LM : area L{:: KL : HL.

M,E. 2
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MECHANICS.

° BOOK I. STATICS.
DEFINITIONS AND FUNDAMEINTAL NOTIONS.

1. Mecuanics is the science which treats of the
laws of the motion and rest of bodies.

2. hny cause wnich moves or tends to move a
body, or which changes or tends to change its motion.
is called Fourck.

3. Bopy or MaTTER is any thing extended, and
possessing the power of resis€ng the action of force.

A rigid body is one in which the force applied at
one part of the body is transferred to another part, the
relative positions of the parts of the body not being
capable of any change. . :

4. All bodies within our observation fall or tend
to fall to the earth: andthe force which they exert in
consequence of this tendency, is called their weicHT.

5. Forces may produce cither rest or motion in
bodies. When forces produce rest, they balance each
other; they are in eguilibrium ; they destroy each
other’s .effects.

6. Srarics is the science which treats of the laws
of forces in equilibrium.

7. Two directly opposite forces which balance
each other are equal.

Forces are directly oppositc when they act in the
same straight line in oppasite directions.
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8. Forces aré capable of addition. Thus, when
two men pull at g string ih the same direction, their
forces are added ; and when two heavy bodigs are put
in the same vessel suspended by a strig, their weights
are added, and are supported by the string.

9. A force is fwice as great as a givemforce, when
it is the sum of two ‘others, each equal to the given
force ; a force is three times as great, when*it is the
sum of three such forces; and so on.

10. Forces (in Statics) may be measured by the
weights which they would suppoxt. .

11.  The Quantities of Matter of bodies are mea-
sured by the proportion of their mechanical effect.

12. The quantities of matter of two bodies sare
as their weight at the same place.

12, The Density of a body is mecasured by the
quantity of matter contained in a given space.
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SECTION L

THE LEVER.

DLFINITIONS.

2

1. A Lever is a rigid rod, moveable, in one
planc, about a point, which is called the fulcrum o
centre 6f motwn, by means of forces which tend tc
turn it round the fulcrum.

2. The portions of the rod between the fulerum
and the pomts where the forces are applied, are called
the arms. '

3. When the arms are two portions of the same
straight line, the lever is called a straight lever;
otherwise it is called a bent lever.

4. The lever is supnosed ¢o be without weight,
unless the contrary be expressed.

13

AXIOMS.

1. If two equal forces act perpendicularly at the
extremities of equal arms of a straight lever to turn
it opposite ways, they will keep each other in equi-
librivm.

If 41C= BC, and P and Q be two equal forces

acting perpendlcularly on C4 and p pe R
CB at 4 and B, they will balance l‘ A 1
each other. P Q

2. If forces keep each other in equi‘ibrium, and
if any force be added to one of them, it will pre-
ponderate. ¢
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Cor.s Hence the converse of Axiom § is true; if
two forces P, Q acting perpendicularly at equal arms
balance, they are equal. For if they are unequal, let
P+ X = Q; then P + X will balance: Q, by‘Axiom 1;
but since P balances Q, P + X will preponderate by
Axiom 2: which is ab.sm‘d. Therefore I.J = Q.

3. If two equal weights balance each other upon
a horizontal straight lever, the prbssurc upen the ful-
crum is equal to the sum of the weights, whatever be
the length of the lever.

If P, Q be two equal weights which balgncc gach
other upon the horizontal lever c 3
AB, the pressure upon (' is . l
P+ Q : P e

Cor. If two equal, forces acting perpendicularly®
on the arm of a straight lever balance, the pressure on
the fulcrum is equal to the sum of the forces. For
(Def. 10) all statical forces are cqual to the weights
which they would support; and hence, if for the
weights, be substituted the forces which would sup-
port them, the pressure on the fulcrum is not altered.

4. If two equal weigins be supporfed upon a
straight lever on two fulcrums Ae
at equal distances from the . i
weights, the pressures upon the ¥ Q

D
two fulcrums are together equal %ﬁ‘!\.
to the sum of the weights. p‘

If P, Q be two cqual weights whiclf arc sup-
ported upon the line 4B on two fulcrums C, D, so that
AC, BD are equal; the, pressures upon C, D are toge-
ther equal to the sum of the weights P + Q.

5. "On the same suppositions, the pressures qn the
two fulerums are equal. .



30 MECHANICS.

6. If a force act perpendicularly on the straight
arm of a bent lever at its extremity, the effect to turn
the lever round the fulerum will be the same, whatever
be the angle which the arm makcs with the other arm,
so long as the length is the same.

If a foyce Q act perpendicularly on CB at its
extremity B, C being the fulerum, B
and an equal force R act perpen- Y
dicularly on an equal arm CD, at
its extremity, the effect to turn P
the lever round C in the two
cases is ‘cqual. ]

N

R

' . 3 . .
7. When a force acts upon a rigid body it will
 produce the same effect to urge the body in the line
“of its own direction, at whateyer point of the dircction
it acts.

8. If a body which is movcable about an axis
be acted upon by two equal forces, in two planes per-
pendicular to the dxis, the fdices being perpendicular at
the extremities of two straight arms of equal length from
the axis; the two forces will produce equal effects to
turn the body, at whatever points the arms meet
.the axis.

9. If astretched string pass freely round a fixed
body, so that the dircction of the string is altered,
any fox‘t’e exerted at one extremlty of the string wxll
produce at the other extremity the same effect as if
the for ce had acted directly.

10. If in a system which is in equilibrium, there
be substituted for the force acting at any poin, an im-
moveable fulcrum at that point, the equilibrium will
not be disturbed,
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11. of in a system which is in equilibrium there
be substituted foran immoveable point or fulerum the
force which the fulcrum exerts, the ethbnum will
not be disturbed. .

Cor Ifa wemht be supported on a horizontal
rod by two forces a(.tmg' vertically at equal distances
from the weight, the Torces are equal to cach other, and

their sum is cqml to the weight.” p y

For let two forces P, Q balance %
each other, acting perpendicularly “

on the equal arms of a lever 4]: E .

then by Cor. fo Ax. 2, they are equal.  Also by Cor.

to Ax. 3, the pressure upon the fulcrum s equal to the
sum of the forces P, Q. Hence by Ax. 11, if instead
of a fulerum, there be a force R, acting at C perpen-*
dicular to the lever, and®%qual to the sum of P and Q,
this force will balance the pressure at C, just as the
fulerum does, and there will be an equilibrium ; that
is, a vertical force, or weight R, will be supported by
two forces equal to P, @3 acting vertically at equal
distances C4, CB; and the weight R is equal to

P+Q . .

12, A perfectly hard and smooth surface, acted
on at any point by any force, exerts a reaction whiche
is perpendicular to the surface at that point; and if
the surface be supposed to be immoveable, the force

will be supported, whatever be its magnitude.

13. A heavy material straight line, zprism, or
cylinder, of uniform density, may be supposed to be
composed of a row of Jheavy points of equal weight,
uniformly, distributed along the line.

14. A heavy .material plane of uniform density
may be supposed to be composed of a collection of
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parallel straight lines of equal densi'ty, ’uniformly dis-
tributed along the plane.

15. <A heayy solid body of uniform density may
be supposed to be composed of a cullection of particles,
the weight of each of which is as the portion of the
body which~it occupics; and which particles may be
considered as heavy points.

POSTULATES.

1. A prism or cylinder of uniform density, and
of given length, may be taken, which is equal to any
given welght

2. A force may be taken equal to the excess of a
“gredter given force over a less.

3. A force may be taken in a given ratio to a
given force.

REMARKS ON THE AXIOMS OF STATICS.

1 Tur Axioms of Statics jn the preceding pages arc simply
stated, without addition or explanation ; in the same¢ manner in
which the Axioms of,Geometry are stated in Treatises on Geo-
Jnetry. As the Axioms of Geometry arc derived from the idca
of space, so the Axioms of Statics.are derived from the idea of sia-
tical force or pressure, and the idea of body or matter, as that which
receives and transmits pressure. The student must possess dis-
tinctly tms idea of force acting upon body, and body sustaining
force ;—of Yody resisting the action of force, and while it resists,
transmitting this action ;—of body with this mechanical property,
existing in the various forms of rigid straight line, lever, planc,
solid, flexible line, flexible surface ;7—and when he has this dis-
tinct possessien of these elementary ideas, the truth of the Axioms
of Statics will be seen as self-evidgnt, and he will be i in a condition
to go vn with the reasonings by which the following Propositions
are established. “
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But we may make a few Remarks tending to illustrate the
self-cviden®character of the above Axioms. .

2. We shall begln with the consideration of the First Axiom
of Statics (see p. 28); which is, “JIf two equal foyges act per-
pendicularly at the extremities of equal aris of a straight line
to turn it opposite wrws, they will keep each other in equili-
Drium.” This is often, and properly, further confirmed, by
observing that there is po *reason why one of the forces should
preponderate rather than the other, and that, as both cannot
preponderate, neither will do so.  All the'circumstanees on which
the result (equilibrium or preponderance) can depend, are equal
on the two sides;—equal arms, equal angles, equal forces. If
the forces are not in equilibrium, which will preponderate? No
answer can be given, because there «is no circumstcnce left by
which either cande distinguished.

3. The argument which we have just used, is often appli-
cable, and may be expressed by the formula, “ there is no reason
why onc of the two opposite cases should occur, which & not”
equally valid for the other; ;&nd as both cannot occur (for they
are opposite cases) neither mll occur.” This argument is called
“the principle of sufficient reason;” it puts in a general form
the considerations on which several of our axioms depend; and
to persons who are nccustomed to such generahty, it may make
their truth more clear.

The same principle might be applied to other cases, for ex-
ample, to Axiom 6, that the effect produced on a bent lever does
not depend on the direction of the arm.  For if we suppose two
forces acting perpendicularly on two equal arms of a bent lever,
to turn it opposite ways, these forces will balance, whatéver be
the angle which they make, since there is no reason why either
should preponderate: it thus appears, that the fomce which, act-
ing at 4, would be balanced by Q in the figure to sxiom 6, *
would also be balanced by R, and therefore thesetws forces pro-
duce the same effect ; which is what the axiom asserts,

4. The samo reasoning might be applied to Axiom 8; for
if two equal forces act at right angles at equal arms, in planes
perpendlcular to the axis of a rigid body, and tefd to turn it
opposite Wways, they will balance each other, since all the con-
ditions are the same for both forces.

2—5
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5. Nearly the same may be said of Axiom 9 ;—if a stretched
string pass freciy round a fixed body, equal forces actinlg at its two
ends will balance each other; for if it pass with perfect freedom,
its passing round the point cannot give an advantage to either
force. Thétefore the force which will be balanced by the string
at its second extremity is exactly &qual o the force which acts
at its first extremity. The same principle may be applied to
prove Ax. 5. .

6 The axioms which are perhaps least obvious are Axioms
3 and 4 ; for instance, the former ;—that “the pressure upon the
fulerum is equal to the sum of the weights,” Yet this becomes
evident when we consider it steadily. It will then be secn that
we conceive pressure or weight as something which must be
supported; 30 that the whele support must be equal to the whole
pressure. The two weights which act upon the lever must be
somehow balanced and counteracted, and the length of the lever
cannot at all remove or alter this necessity. Their pressure will
be the same as if the two arms of the lever were shortened till
the weights coincided at the fulerum ; but in this case, it is clear
that the pressure on the fulcrum would be equal to the sum of
the weights : therefore it will be so in every other case.

7. This principle, that in cases of statical equilibrium, a force
is necessarily supported by an cqual force, is sometimes expressed
as an Axiom, by saying that “Action is always accompanied by
an equal and opposite Re-action.” Thig principle thus stated may
be considered as an expression of the conception of equality as
applicd to forces; or as a Definition of equal forces. This prin-
ciple is imuplied in the conception of any comparison of forces;
Jor equilibrium and addition of forces are modes in which forces
arc co'mpared, as superposition and addition of spaccs are modes
in which geometrical quantities are compared.

‘We may further observe, that this fundamental conception of
action ara re-action is equivalent to the conception of force and
matter, whyh‘are ideas necessarily connceted and correlative.
Matter, as stated in page 24, is that which can resist the action
of force. In Mechanics at least, we know matter only as the
subjcct on which force acts.

8. But fhatter not only receives, it also transmits the action
of force ; and it is impossible to reason respecting the mechanical
results of such transmission, without laying down the fundamental



BOOK I. STATICS. SECTION I, 35

principle by whtch ib operates. And this accordmgly is the pu-
pose of Afioms G, 7, 8, 9,10,12. When the body is supposed
to he perfectly rigid, it ttansmits force without any change or
yielding This rigidity of a body is contemplated un.der different
aspects, in the Axioms just referred to. In Axiom 7, it is the
rigidity of a rod pustfed endways; in Axiom 6, the rigidity of
a plane turned about a fixed point; in Axiom 8, the rigidity
of a solid twisted about an ‘axis. Axiom 9 deftnes the manner
in which a flexible string tranemits pressure, and in like manner
we shall have Axioms in Hydrostatics,*dcfining the manner in
which a fluid transmits pressure. We may call Axioms 6, 7, 8,
collectively, the Definition of & rigid body The place of these
principles in our reasoning will not be thereby altered ; nor will
the necessity of their being accompagied by distinct anechanical
conceptions be superseded.

9. Anxioms 13, 14, 15, of the Statics, are alb included in the
general consideration, that material bodies may be supposed to
consist of material parts, and that the weight of the whole iw
cqual to the weight of all #he parts; but they arc stated sepa-
rately, because they are used separately, and because they are at
least as evident in these more particular cascs as they are in the
more peneral form.

By considerations of this nature it appears, that the axioms,
as above stated, arc evident i® their nattire, in virtue of the
coniceptions which we nceessarily form, in order to reason upon
mechanical subjects. . .

10. Some persons may be surprised to find the Axioms of
Mechanics represented as so numerous; vspecially if they look
for analogy to Geometry, where the necessary axioms are con+
fesscdly few, and according to some writers, none ; and they may
be led to think that many of the axiors here given must be
superfluous, by observing that in most mechanical wgrks the
fundamental principles are stated as much fevger than these.
But very few of those which are here stated are superﬂuous in
effect. From the very circumstance that they are axioms, they
are assented to when they are adduced in the reasoning, whether
they have been before asserted or not ; but to make our reason-
ing formalls correct every proposition which is asshmed should
be previofsly stated. And when we consider carefully, we see
that the various modifications and combinations of the ideas of

a
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force, body, and equilibrium, along with the ideas of space of one,
two, or three dimensions, readily branch out into as ‘many heads
as appear in this part of the present work. «

11. Some persons may e disposed at first to say, that our
knowledge of such elementary truths as pre stated in the Axioms
of Statics and Hydrostatics, is collected from observation and
experience. But in refutation of this we may remark, that we
cannot experimentally verify these elemrntary truths, without as-
suming other principles, which require proof as much as these do.
If, for instance, Archimedes had wished to ascertain by trial whe-
ther two cqual weights at the equal arms of a lever would balance
each other, how could he know that the weights were equal, hy
any more simple criterion than that they did halance? But in
fact, it is“perfectly certair' that of the thousands of persons who
from the time of Archimedes to the present -Jay have studied
Statics a8 a maihematical science, a very few have received or
required any confirmation of his axioms from experiment; and

“those who have needed such help have undoubtedly been those
in whom the apprehicnsion of thefreal naturc and force of the
evidence of the subject was most obscure.

12. We do not assert that the axioms as stated in this
Treatise are given in the only exact form; or that they may
not be improved, simplified, and,reduced in number. But it does
not seem likely that this can be dohe to any great cxtent, con-
sistently with the rigour of deductive proof. The Fourth Axiom
of Statics is one which attempts have heen made to supersede:
for example, Lagrange* has endeavoured to deduce it from the
preceding ones. But it will be found that his proof, if dis-
tinctly stated, involves some such axiom as this:—that “If two
forces, acting at the cxtremitics of a straight line, and a single
force, acting a¢ an intermediate point of the straight line, produce
the same.effect to turn a hody about another line, the two forces
produce ato,.thc intermediate point an effect equal to the single
force.” And though this axiom may be sclf-evident, it will hardly
be considered as more simple than that which it replaces.

13. Thus, the science of Statics, like Geometry, rests upon
axioms which are neither derived directly from experience, nor
capable of being superseded by definitions, nor by suupler prin-

* Micanique Analytique. Iatroduction.
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ciples. In this sience, as in Geometry, the evidence of thgse
fundamentaP truths resides in those convictions to which an at-
tentive and steady consideration of the subject necessarily leads
us. The axioms with regard to pregsures, action, ang re-action,
equilibrium and preponderancg, rigid and fléxible bodies, result
necessarily from the corfteptions which are involved in all exact
reasoning on such matters. The axioms do not flow from the
definitions, but they flow isredistibly along with The definitions,
from the distinctness of odr ideas upon the subjects thus brought
into view. These axioms are not arbitrafy assumptions, nor se-
lected hypotheses; but truths which we must see to be neces-
sarily and universally true, before we can reason on to any thing
elsc; and in Mechanics, as in Geometry, the capacity of seeing
that they arc thus true, is required in the student, in ceder that
he and the wiiter may be able to procecd together.
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PROPOSITIONS.

N B. Thi Propositions required by the University for the
degree of B.A are thosc which are marked by numbers; and
the Enunclations are minted in larger type

Pror. I. A horizontal prism or cylinder of
uniform density will produce the same effect by
its weight as if it were collected at its middle
point.

Let AB be the prism or cylinder, and C its middle

point. Let P,Rbeany  EAPR C SQBG
points in 4C, and let CQ

be taken equal to CP, A p ¥ R S G QB
and CS cqual to CR.

The half 4C of the prism may (by Ax.13.) be sup-
posed to be made up of ‘small equal weights, distri-
buted along the whole of the line 4C, as at P, IZ;
and the half BC may in like manner be coaceived to
be made up of small equal weights distributed along
BC; as at Q, S; of which the weight at Q is equal to
the weight at P, that at §' to that at R, and so on,

Let F be a fulcrum about which the prism 4B
tends<to turn by its weight. In CB, produced if ne-
cessary, take CG equal to CF, and suppose a fulerum
placed at G.

Let the weights at P, Q, R, § be denoted by
P, Q, R, §.

The two weights P and Q produce upon the ful-
crums F and G pressures which together ate equal to
the sum of theweights P + Q, (AX.4,) or to the double
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of P, sincg P tnd Q are equal. But the pressure upon
each of these fulgrumg is vqual (Ax. 5,) hence the
pressure upon each of them is P; therefore the pres-
sure upon the fulerum G, arising from*the twd weights
P and Q, is P; in ltke manner the pressurc upon the
fulerum G, arising from B and S, is R ; and so of the
rest : and the whole pressure on G, arxsmg from the
whole prism AB, is the sum of all the weights P, R,
&c. from 4 to C; that is, it is half the weight of
the prism.

But if the whole prism be collected in its middle
point C, the pressure upon the ¢wo fulcrums *F and
G will be the whole weight of the prism, and the
pressures on the two fulcrums are equal; by Cor. to
Ax. 11. Therefore, in this case also, the pressure
on the fulcrum G is equal to half the weight of the
prism. Theicfore the pnsm, when collected at its
middle point, produces the same pressure on the ful-
crum G as it did before.

Therefore, when a uniform prism is collected at
its middle point, it produces the same cffect by its
weight as it did before, Q.E.D.

Cor. 1. A uniform prlsm or cylinder w1ll balance
itself upon its middle point. *

Cok. 2. When a prism or cylinder thus balances

“upon its middle point, the pressure upon the fulcrum
'is equal to the weight of the prism.

Pror. II! If two weights acting pérgendicu-
larly at the extremities of the arms of a [hori-
zontal] straight lever on opposite sides of the
fulerum balance each other, they are inversely as
their distfhces from the fulerum, and the pressure
on the fulerum is equal to their sum.
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Let P, Q be the two weights, -+ *®

Let there be a uniform o, M p ¢ N B
prism of the length AB, ® " a

equal in'weight to P + Q (Post. 1), and let 4D : DB
: P: Q. 'Thercfore, componendo, 4D + BD : AD
@ P+ Q:P. But 4D + BD is cqual in weight to
P + Q, and the prism is uniferm; thercfore by Cor.
to Lemma 6, the prism 471 is equal in weight to P.
In like ‘manner the prism BD is equal in weight
to Q.

Let Cbe the middle point of 4B ; A, the middle
point of AD; N, tha middle point of DB. By Prop. L.
Cor. 1 and 2, the prism 4B will balance on the point
C, and the pressure on that point will be equal to the
weight of the prism, that is to P + Q.

* But by Prop. I. the prism 4D will produce the
same effect as if it be collected at its middle point 27
that is, the same effect as the weight P at Af. And
in like manner the prism DB will produce the same
effect as the weight Q at N. Therefore the whole
prism 4B will produce the same effect as the weight
P at M, and the weight Q at N ; that is, the weight
P at M,%and @ at N wiil balance on C.

But since M,D is half 4D, and DN is half DB,
the sum MN is half the sum 4B, and is therefore
equal to 4C. Hence taking away the common part
MC, the remainder CN is equal to 4AM, or MD.
And go MD and CN adding the common part DC,
MC is¢qual to DN. »

Now P :Q:: AD : DB by construction; that is,

P:Q::2MD:2DN; or :: MD : DN ;
hence, by what has been pr(;Vcd,
P:Q: CN: MC
Therefore she weights P, Q‘are inversely as their
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. .
distances from the point C' on which thty balance.
Q. E. D. . *

Also the weights P, Q collected at M, N, produce
the same effect on the fulerum C as the prisms 4D,
DB; that is, as the pmm AB; that is, they produce
a pressure P+ Q, as has been shewn. q.&.p.

Cor. If two fofces acting perpendicularly on a
straight lever on opposite sides of tle fulcrum balance
cach other, they are inversely as their distances from
the fulcrum, and the pressure on the fulerum is equal
to the sum of the forces. .

For any forces may be represented by weights ;
and what is true of the weights is true of the forces.

Pror. A. If two weights acting perpendicularly
at the extremities of the arms of a straight horizontal
lever on opposite sides of ®he fulcrum are inversely as
their distances from the fulcrum, they will balance
<ach other.

As in the last Proposition, let there be a uniform
prism 4B, equal in weight ¢o the sum of thc weights
P + Q; and let it be divided in D, so that 4D : DB
:* P: @Q; then, as before, 4D.is equal in weight to P,
and BD to Q.

f.et M be the middle point of AD; N, of DB.
And let C be a point, such that CN': MC:: P: Q.

Then CN : MC :: AD : DB . .
::2MD :2DN :: MD : DN,
whence MC + CN : CN :: MD + DN'¢ MD,

and the first and third are equal; therefore CV is
equal to MD.

¥ Hence adding DC to' both, MC is equal to DN
or NB; ape hence AM and MC together are equal
to CN and NB together; that is, AC is equal Yo
CB; and C is the middle point of AB.
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Therefore the prism 4B will balance on C; and
by Prop. L if the part 4D, thatis, P, be collected at
M, and the part DB, that is, Q, be collected at N,
the effect will still be the same; that is, P and Q will
balance on C. Therefore, &c. Q. E.D.

Cor. 1. In this case also the pressure upon the
fulerum C is equal to P + Q.
)

Cor. 2. If for weights be put any forces, the
lever being in any position, the same proposition is
true.

Pror. III. If two forces acting perpendicu-
larly on a straight lever in opposite dircctions
and on the same side of the fulcrum balance cach
other, they are inversely as their distances from
the fulerum ; and the pressure on the fulcrum is
equal to the difference of the forces.

Let MCN be the lever on which the two forces
P and Q acting perpendicularly
at M and N in opposite direc-
tions balance each other. Let B T N
be a force such that P+ R is M T
equal to Q, and let MNC be 0
supposed to be a lever on which two forces P, R,
acting perpendig‘u]arly at M, C on opposite sides of
the fuleram, balance each other. Then, by Prop. II.
the pressure upon the fulcrum N is equal to P + R,
that i$ to Q, and is in the direction of the forces
P and R. Hence if a force P + R, that is Q, act
perpendicularly to the lever MC at N in the direc-
tion opposite to P and R, it will supply the placé of
the fulcrum, and the forces, P, Q, R wilkgtill balance
euch other by Ax. 11. And if we place an immove-
able fulerum ‘at C, it will supply the place of the
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force R, and the forces P, Q, will still balance each
other by Ax.10. « .

But since P, B balance on the lLVEl‘ llINC we
have by Prop. II. .

R:P:: MN: NC; and therefore
R+P:P::111N+.NC: NC; that is*®
Q:P:MC: NC; .

the forces P, Q arc inversely as their distances from
the fulerum C.

Also the pressure on the fulcrum C, which ye-
places the force I is equal to the®force R, that is to
the difference of the forces P and Q. <. E.p.

Pror. IV. To explain the different klnds
of levers.

When material ]evors are used, the two forces
which have been spoken of, as balancing cach other
upon the lever, are exemplified by the weight to be
raised or the resistance to be overcope, as the one
force, and tlre pressure, weight, or force of any kind,
employed for the purpose, as_the other force. The
former of these forces is called the Weight, the latter
is called the Power. .

The preceding Propositions give the proportion
of the Power and Weight in the case of equilibrium,
that is, when the weight is not raised, but enly sup-
ported ; or when the resistance is not overcome, but
only neutralized. But knowing the Powerg which
will produce equilibrium with the weight, we know
that any additional force will make the Power pre-
ponderate, (Ax. 2.) .

Straight,devers are divided into three kinds," ac-
cording to the position of the Power and Weight. -

1. The Lever of the First kind is Yhat in which
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the Power‘and Weight are on opposite sidesrof the Ful-
crum, as in Proposition Il. and A.

Wq have an example of a lever of this kind,
when a bar is-used to raise a heavy stone by pressing
down one end of the bar with the hand, so as to raise
the stone with the other end: the Power is the force
of the hand, the Fulcrum is the obstacle on which the
bar rests, the Weight is the weight of the stone.

We have an example of a double lever of this
kind in a pair of pincers used for holding or cutting;
the Power is the force of the hand or hands at the
handle, the Weight is the resistance overcome by the
pinching edges of the instrument, the Fulcrum is the
pin on which the two pieces of the instrument move.

“ 2, The Lever of the Second kind is that in which
the Power and the Weight are on the same side of the
Fulcrum, the Weight being the nearer to the Fulcrum.

We have an example of a lever of this kind,
when a bar is used to raise a heavy stone by raising
one end of the par with the hand, while the other end
rests on the ground, and the stonme is raised by an
intermeaiate part of tne bar. The Fulcrum is the
ground, the Power is the force exerted by the hand,
the Weight is the weight of the stone.

"We have an example of a double lever of this
kind in a pair of nutcrackers. The Power is the
force of the hand exerted at the handles; the Weight
is the force with which the nut resists crushing;
the Fu‘lcrum is the pin which connects the two pieces
of the instrument.

3. . The Lever of the Third kind is that in which
the Power and the Weight are on the sams side of the
fulerum, and the Weight is the further from the fulcrum.

In this kihd of lever, the Power must be greater
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than the Weight in' order to produce equikbrium, by
Prop. II1. 'Therqfore by the use of such a lever, force
is lost. 'The advantage gained by the lever is, that
the force exerted producgs its effect ut an ithcreased
distance from the fulcrum.

We have an example of a lever of this kind in the
anatomy of the fore-arm of a man, when he raises a
load with it, turning at the elbow. «The elbow is the
Fulcrum, the Power is the force of the muscle which,
coming from the upper arm is inserted into the fore-
arm near the elbow, the Weight is the load raised.

We have an example of a double lever Jf~This
kind in a pair of tongs used to hold a coal. The
Fulerum is the pin on which the two parts of the
instrument turn, the Power is the force of the ﬁn-
gers, the Weight is the pressure caerted by the coal
upon the ends of the tongs.

Pror. V. If two forces acting perpendicu-
larly at the extremities of the arms of any lever
balance each other, they ate inversely as the arms.

Let MCN be any lever: and let P, Q acting per-
pendicularly on the arms CM,'CN balance eath other ;
then P: Q :: CN : CM.

Produce NC to 0, taking CO equal to CM ; and
at O let a force R equal to P act perpendicularly on the
lever NCO, to turn it in the same direetion as . Then
since CM is equal to CO,and N
therefore P to the force R, ¥ ‘-
both acting perpendicularly o * NP
to the arms, by Axiom 6, P l’ A ¥
and R will produce the same R Q
effect to turn the lever round
the fuleruf C; and therefore © C ﬁ .

Q

since P balances Q¢ R will i . N
balance Q.
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But sirce forces R and Q balahce on the straight
lever OCN, by Prop. II. B:Q:: CN: CO; and
since P is equal to B, and CO to CM, P:Q :
CN : Cif; or the forces P, Q are inversely as thur
arms. Q.E.D.

Pror."VI. If two forccs acting at any angles
on the arms of any lever balance each other, they
are inversely as the perpendiculars drawn from the
fulerum to the directions in which the forces act.

+Tat ACB be the lever on which the forces P, Q
acting at any angles balance cach other; and let CM,
CN be the perpendiculars from the fulerum (' in the
directions of the forces ; then P: Q :: CN : CM.

¢ The lever ACB is supposed to be rigid, so that the
arms AC, BC cannot alter their respective positions.
Hence we may suppose the M
plane ACB w ue a rgiu
indefinite plane, moveable PA/
about the point C, and 4C,
BC to be lines in this plane.
Therefore the forces P, Q, A
which act at the ppints 4, B,
will by Axiom 7, produce the
- same effect as if they act at
thepoints M, Nrespectively: — P'
therefore if they act at these points M, N they will
still balgpe-.

Hence by Prop. V. P:Q:CN:CM;
or the forces are inversely as the perpendiculars CM,

CN. Q.E.D. .

Cor. 1. The converse is true, that if 2: Q :: CN
: CM, the forces will balance.

Cor. 2. If P, Q, CM, CN be expressed in num-

D
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bers when P, @ balance, Px CM=Q x CN s and when
P x CM = Q x CN, P and Q balance.

Definition of the moment of a force. If lines be
expressed in numbers, the product which arids when
a force acting on a lever is multiplied by the perpen-
dicular from the fulcrum of the lever upon the direc-
tion of the force is called the moment of the force.

It appears by the last Corollary, that when two
‘forces balance on a lever, their moments are equal ;
and when their moments are equal they balance.

Also if the moment of one force be the greater,
that force will preponderate. . -

Cor. 3. If X be any force acting on the lever
ACB, and CO the perpendicular upon its direc-
tion, and if X x CO =P x CM, the force X wjli
produce upon the lever the same effect as P. For
X x CO=Q xCN; therefore, by this Proposition,
A" will balance Q; which is what P does.

Con. 4. If the two forces P, Q act at the same
point D, the proposition is still true. *

Pror. VII. If two weights balance each other
on a straight lever when it is horizontal, they will
balance each other in every positioh of the lever.

Let it be supposed that the weights P, Q, acting
at 4, B, balance each other upon thelever when it is
in the horizontal position ACB ; the weights P, Q will
balance each other upon the same lever in.'zg.y other
position, as DCE. o

Draw DM, EN vertical, c //?_
meeting the horizontalline4CB. &~
Then, in the triangles DCM, ‘\
ECN,thevértical angles DCM, || -

ECN arc equal; and DMC, P e
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ENC areccqual, being right angles$ therefore the
remaining angles of the triangles are equal, and the -
triangles are equiangular and similar. Therefore DC
: CM :£ EC  CN, and alternately DC : EC :: CM
: CN. But since P, Q balance each other on 4B,
Q: P :: AC : CB; and AC is cqual to DC, and
CB to EC, because 4CB" and DCE are the same
lever; t'herefore Q: P : DC: EC; therefore by
what precedes, Q : P :: CM : CN; therefore, by’
Prop. VI. the weights P, Q, acting at the points D,
E, will balance each other. a.E.pn.

Cor. The pressure upon the fulerum C in every
position of the lever DE is equal to the sum of the
weights P and Q. For in every position the effect of
the weights P, Q is the same as if they acted at M, N,
by Axiom 7. Butin this case, by Prop. II. the pres~
sure on the fulcrum C is the sum of the weights.

Pror. B. If any number of forces act upon a
lever, and tend to turn it opposite ways, and if the
sum of the morents of the forces which tend to turn
the lever one way be equal to the sum of the moments
of the forces which tend to turn it the other way, the
forces will balance each other.

. Let the forces P, Q, R, tend to turn the lever
one way, and let CM, CN,
CO be the perpendiculars
on their éirections; and let
the forges p, g, tend to
turn the lever the other
way, and let Cm, Cn be
the perpendiculars on their
directions; and let Px CM
% Q x CN + R x CO be equal to p x Cmi+ g x Cms
the forces will, balance each othar.
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Let ayy two limes CO, Co be taken, ard let forces
act at O and o, perpepdicalarly to CO, Co, to turn
the lever opposite ways, namely, at O, a force X,
such that CO : CM :: P : X, by Post:.3. that is, such
that X x CO=P x CM; and also a force ¥, such that
Yx CO=Qx CN, and a force R; and also ato, a
force «, such that # x Co =p x Cm, and a force Y,
such that y x Co=g¢q x Cn. .

" Then, by Cor. 3 to Prop. VI, the force X" will pro-
duce the same cffect as the force P, and the force }
will produce the same effect as the force Q ; and there-
fore the forces P, Q, R will prodace the same efeet as
.Y, ¥, R acting at O. In like manner the forces p,
g will produce the same cffect as z, y, acting at o.

But the forces X, ¥, R, acting at O, will balance
the forces r, g, acting at o, if (X + ¥+ R) x CObe
cqual to (2 +y) x Co, by Prop. VI; that is, if
XA xCO+YxCO+RxCO be cqual to @ x Co
+y x Co; that is, by the construction, if P x CM
+QxCN + R xCO be e(lual topx Cm+ qx Cn.
Thercfore, &ec. a.E.D. *

Cor. 1. If the forces be weights actjng on a
straight horizontal lever, the same is true, putting for
the perpendiculars on the directions ®f the forces, the
portions of the lever CM, CN, &c. intercepted between
the fulerum and the weights. (See next figurc).

Cor. 2. The converse of this Proposifion and of
Cor. 1 are true. -~

Pror. C. If any forces act pcrpendicula‘rly upon
a lever, the pressure on the fulcrum is equal to the
sum of the forces. .

It will first be proved that if any number of forces
acting perpendicularly upon a lever balance each other,
they may be separated into parts, soethat, retaining

M. E. 3



50 .  MECHANICS.

their positions, they form pairs, each of which pairs
would balance on the fulcyum separately.

Let P, Q R, pq be any forces which balance
each other on the lever O N C w  m
NCmn. If each force on one T
side of the fulcrum has itsmo- ® P @ Pt
ment equal to that of a corresponding force on the
other side, it is clear that each force will balance the -
corresponding one on the other side, and the forces
are already in such pairs as are mentioned above.
But if not, let any moment on one side, as P x CJ,
be less than a moment on the other side, as p x Cm.
Assume a force  such that Cm : CM :: P : u, by
Post. 8: therefore P x CM = u x Cm; therefore
+ % &« Cm is less than p x Cm, and w is less than p; lot
p =wu+ x. Then if p be s parated into parts % and
@, the pair P and » will balance each other separately,
because their moments are equal.

In the same manner, of the forces Q, R, x, q,
take any other as Q, of Wwhich the moment Q x CN
is less than the moment of ¢ x Cn of a force ¢ on
the other'side of the fulerum. Assume a force v such,
that Cn : CN :. Q : v, therefore Q x CN = v x Cn;
and let g=v+y. Then if ¢ be separated into »
and y, the pair Q and v will balance each other
separately, for the same reason as before.

And of the forces R, @, y, the moment 2 x Cm
must bd less than R x CO. Assume X x CO=x
x Cm; and let R =X+ Y. The pair X, « will ba-
lance each other separately, as before.

But because the forces#, Q, R, p, q balance on the
lever, it follows (by Cor. 2 to Prop. B) that

PxCM+QxCN+RxCOLpxCm+qxCn;
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and hence? since
R=X+7T, andp=z2+.z', and g =v +y,
PxCM+QxCN+X%xCO+YxGO
=uxCm+awCm+vxCn+yxCn;
and it has been supposed, that .
PxCM=uxCm and Q x CN=v x Cn,
and X x CO=a2 x Cm; .
hence the remainder
Yx COis=yx Cn;
and the pair Y, y will balance calh other. "
Therefore the forces have been separated into pairs,
Pou; Quv; X,a; Y,y; .

which balance each other separately.
L ]

AJso it is plain that the same proof may be applied
in any case; for at each step the number of forces
which are not in pairs is diminished by onc; and
therefore the reduction may,always be effected by as
many steps as there are forces, wanting one.

IIence the Proposition is manifest; for she pres-
surc upon the fulerum aiising from eachepair is equal
to the sum of the two forces of that pair (Prop. II);
therefore the whole pressure is equal to the sum of all
the pairs; that is, to the sum of all the forc(_es.

3—2
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SECTIQN II.

COMPOSITION AND RESOLGTION OF FORCES.

DEFINITIONS.

1. WHEN two forces act at the same point, they
preduce the same stgtical effect as a certain single force,
acting at that point. This single force is called the
resultant of the two; they are called its components.
Thetwo forces produce the single force by being com-
pounded, and it may be resolved into the two.

.

2. Straight lines may represent forces in digection
and magnitude, when they are taken in the direction of
the forces and proportional to their magnitude. When
forces are so represented, if 4B represcnt any foree,
BA represents an equal and opposite force. A force
represented by any line, as 4B, is often called *the
force AB.” .

3. Forces ‘may be represented by lines parallel
to them in direction and proportional to them in mag-
nitude. , €

Prop. VIII. If the adjacent sides of a
parallclogram represent the component forces in
dircction and magnitude, the diagonal will repre-
sent the resultint forcerin direction and magni-
tude. . .

The proof will consist of two parts; for the di-
rection, and for the magnitude.
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First, ghe Hdiagonal will represent the resultant
force in direction. ,

Let Ap, A q represent in mag- a
nitude and direction thae forces
P, Q, acting at 4; c.omplote the
paral]elogram ApCq; and draw
AC; draw also CM, €N perpen- 7
-dicular upon 4p, 4q.

The triangles Cp M, CqN
have right angles at Af and N,
and the angles MpC, CqN are P
cqual, cach being equal to MAN; therefore the triangles
CpM, CqN are equiangular and similar. Therefore
CM:CN ::Cp:Cq; thatis, CM : CN-:: Aq : Ap.
But 4p, Aq rcpresent the forces P, Q in magpi-
tude; therefore CM: CY :: Q : P. 'Therefore, by
Prop. VI, Cor. 4, if the forces P, @ act on the plane
PAQ, supposed to be moveable about the point C,
they will balance each other, producing a pressure
on the fulerum C.

Therefore the single force which produces the
same effect as P, Q will produce a pressure ipon the
point C, but will not turn the plane about C. But
this cannot be the case except the single force act in
the line 4C; for if it acted in any other direction,
a perpendicular might be drawn from C upon the
direction, and the force would produce thotion, by
Axiom 2. Therefore the resultant acts in_the direc-
tion 4C. .

Hence if a point, acted upon by two forces 4p,
Aq, be kept at rest by a third force, this force must
act in the direction C4. For otherwise it would not
balance the force in the direction AC, to which the
forces Ap, Aq are equivalent. .
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Hence slso if three forces act on a point, and keep
each other in equilibrium, each of them is in the direc-
tion of the diagonal of the parallelogram whose sides
represent the other two.

Secondly, the diagonal will represent the resultant
force in magnitude, .

By the proof of the former part the two forces
Ap, 4q will be kept in equilibrium by a force in the
direction C4. Let A7 represent this force in magni-
tude. Therefore the three forces Ap, 4q, Ar keep
each ather in equilibrium. Complete the parallelogram
4Ap Dr, and draw its diagonal DA4. Then by the
proof of the former part, the force 4 ¢ is in the direc-
tion DA ; and therefore D4q is a straight line.

* Hence in the triangles CA4q, DAr, the vertical
angles CAq, DAr arcequal;
and Cgq, Dr are parallel to
each other, because Cq and '\ .
D1 are both parallel to 4p;
and Cr meets them ; there-
fore the angle gC4 isequal
to the alternate angle DrA.
Thereforethetriangles C4q, A
DArare equiangular, Also
Cq and Dr are equal, for
each is equal to 4p, being

opposite sides of parallelo- P

grams pg - pr. Therefore c
(Euc. vi. 8) the other sides \

of the triangles CAq, DAr P

are equal; therefore C4 is.equal to Ar. But 4r
represents in magnitude the force which kceps in equi-
librium 4p, Aq; and since 47 acting in the opposite
direction would balance 47, the force which produces
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the same effect as #p, 4q, is Ar acting in the opposite
direction. 'Therefore 4C, Which is equal to 4, repre-
sents in magnitude the force which produces the same
effect as Ap, Aq; that is, the resultant of 4p, 4q.

Hence, if the components be represented in mag-
nitude and direction by. the sides of a paralleloorram,
the resultant is represented in magnitude and direction

"by the diagonal of the parallelogram Q.E. D,

Pror., IX. If three forces represented in
magnitude and direction by the sides of a trizngle
taken in order, act on a point, they will keep it in
cquilibrium.

Let three forces, represented in magnitude and
direction by the three Bines 4B, B
BC, C4, act on the point 4,
they will keep it in equilibrium. ¢
Complete the parallelogram A BCD,
then the force which is® repre-
sented by BC is also represented D
by AD, (Def. 8 of this Sect.) and acts at the point 4.
And the resultant of the forces 4B, AD is represcnted

in magnitude and direction by AC (Prop. VIII);,

therefore the forces 4B, BC produce the same effect
as AC; and therefore the forces AR, BC, CA produce
the same effect as 4C, C4; that is, they will keep the

point A in equilibrium. -
L4

Cor. 1. If three forces which keep a point in equi-
librium be in the direction of three lines forming a
triangle, they are proportional to those lines,

Cor. 2. Any two forces 4B, BC, which act at a
point 4, are equivalent to a force ACh
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Pror. D. If any number of forces, ropresented
in magnitude and direction” by the sides of a polygon
taken in order, act on a point, they will keep it in
equilibridm, ¢

Let forces AB, BC, CD, DE, EA act upon a point
4; they will keep it in equili-
brium. By Prop. IX, Cor. 2, the
forces AR, B( are equivalent to a
force AC; therefore the forces D
ADB, BC, CD are equivalent to the A
forcggs AC, CD; that is, by the f
same corollary, to a force 4D. Therefore again, the
forces 4B, BC, CD, DE are equivalent to the forces
AD, DE; that is, again by the same corollary, to a
force 4E. Thercfore, finally, the forces 4B, BE,
CD, DE, EA are equivalent to forces 4E, EA, and
therefore will keep the point 4 in equilibrium.
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SECTION IIL

MECHANICAL POWERS.

THOE WHEEL AND AXLE.

Der. Tue Wheel dnd A«le is a rigid machine,
which is moveable about an axis, and on which two
forces, tending to turn it opposite ways, act in two
planes perpendicular to the axis; the one force (the
Power) acting by means of a string stretched® and
wrapt on the circumference of a circle perpendicular
to the axis, called the Wheel; the other force (the
Weight) acting by means of a string wrapt on the
surface of a cylinder having the axis of motion for its
axis, and called the Axle. '

Prop. X. There is an cquilibfium upon
the wheel and axle, when the power is to the
weight as the radius of the axle to the radiud

of the wheel.

Let 4B be the wheel, and DEB the axle, the
whole being moveable about the axis #2ECDK ; the
power P, acting at 4, perpendicular to C4, the radius
of the wheel; and the weight W, acting at X, perpen-
dicular to DE, the radius of the axle. Also let P: W
:: DE : CA; then there will be an equilibrium.

In the plane of the wheel 4B, Jet CB be drawn
3—s

i
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from the axis, equal to DE
the radius of the axle; and
let a force Q, equal to W,
act at B perpendicular to
CB. Then, by Axiom 8,
the two forces Q, W pro-
duce equal effects in turn-
ing the machine. But the
force Q will balance P, by
Prop. VI, Cor. 1, because
P: W : DE: CA, and therefore P: Q :: CB: CA,
Q being equal to W, aad CB to DE- thercfore W will
balance P, and there will be an equilibrium. q.E.p.

Cor. 1. On the wheel and axle when there is
gquilibrium, the moments of the power and weight
are equal.

Cor. 2. If the power and weight do not act per-
pendicularly to the radii of the wheel and axle, it will
appear, by the reasoning of Prop. VI, that there will
still be an equilibrium if their moments are equal.

Cor. 8. If several forces acting upon a body
moveable about a fixed axis, and acting in planes per-
pendicular to the axis, tend to turn it opposite ways,
there will be an equilibrium when the sum of the mo-
ments of the forces which tend to turn the body one
way is equal to the sum of the moments of the forces
which tend to turn the body the other way. This may
be proved Qi reasoning similar to that of Prop. B.

Cor. 4. If a heavy body be moveable about any
axis, it will be in equilibrium when the moments of
the weights of the two parts into which it is divided
by a vertical plane passing through the axis, are
equal: for these two parts will tend to turn it oppo-
site ways. . |



BOOK I, STATICS. SECTION III 59

In th& case, the moment of each pdrticle of the
body is found by drawing ‘from the particle a vertical
line meeting a horizontal line which is perpendicular to
the axis. The length of this perpendicular,’measured
from the vertical to the axis, multiplied into the weight
of the pa*rticle, is the mqment of the pgarticle, if the
axis is horizontal ; and is proportional to the moment
if the axis be in any other position?

L]
Cor. 5. Conversely, if these moments are not
cqual, there cannot be equilibrium.

THE PULLEY.

Drr. A Pulley is a machine in which one part,
(the Block) being stationary, a stretched string can
pass freely round another part, (the Sherwe) .

A pulley is fired when the block is fixed, and
moveable when the block is moveable.

The Power is the force which acts at the string ;
the Weight is the weight supported.

Prop. XI. In thé single moveable pulley,
where the strings are parallel, there is an equili-
brium when the power is to the weight as 1 to 2.

Let ABC represent a pulley fn which B is the
block, 4C the sheave, and in which the strings :1 .
P4, HC are parallel : there is an equilibrium
when P: W :: 1 : 2. * .

By Asiom 9, since the string passes
freely round the sheave AC, the forc® P,
which is exerted on the string P4, is cqual
to that which the string CH exerts on the C( (7] )A
fixed point H; and therefore the reaction B
which the fixed point H exerts by means of
the string HC, is also equal to P. And the <%
two forces, each equal to P, which’ act by means of

P
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the parallel strings 4P, CH, may be considered as
balancing each other upon a lever AC, the fulerum
of which is in the point of the block B, by which
the weight W is supported. Therefore by Prop. II,
the pressure on the fulcrum is the sum of thcsc forces,
that is, it is the double of P; and this presqure on
the fulerum of the block B is balanced by the pressure
or weight of W upen the block in the opposite direc-
tion, in the case of equilibrium ; therefore, in the case
of equilibrium, W is double of P,or P : W ::1:2.

Prop. XII. In a system in which the
same string passes round any number of pulleys,
and the parts of it between the pulleys are
parallel, there is an cquilibrium when power
(P) : weight (W) = 1 :-the number of strings
at the lower block.

Let AC rcpresent the system of pulleys; the
string ABCDEF@IIK passing round all the
pulleys, and the portions CB, DF, GF B
HEK, being all parallel. By Axiom 9, the
forces exerted by each of these strings will
be equal to P; therefore the forces which
they .exert upon the lower block will each
be equal to P. And these forces may be
considered, s actinig upon a lever, the ful-
crum of}hich is in the point of the block
Z, by whica the weight W is supported.
Therefore’ by Prop. C, the pressure upon z
this fulecrum is equal to the sum of the
forces of the strings, that is, it is as many \§
times P as there are strings at the lower block. And
this pressure on the fulcrum in the lower block is
balanced by the pressure or weight of W in the
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opposite difection in the cgse of equilibri'um; there-
forc in the case of equilibrium, P: W :: 1 : number

of strings in the lower block.« @.E.D. .

Pror. XIII. *In a system in which cach
pulley hangs by a separate string, and She strings
are parallel, there*is an equilibrium when P
: W i 1 : that power of 2 whose index is the
number of moveable pulleys.

Let AL represent the system of pulleys; each pulley
4, C, E hanging by a separate stsing, and | .
the strings being all parallel. It appears
by the roasoning of Prop. XI, that
P : force of string BC :: 1:2;
force of string BC : force of string DE
*u1:e;
force of string DE  force of string FW
w2
And there will be as many such propor-
tions as there are moveable plleys 4, C, E.
Also in compounding these proportions
the proportion compounded of the former
ratios in each proportion will be P : force
of string F'W; and the proportion com-
pounded of the latter ratios in each propor- W
tion will be 1 : 2 raised to that pewer whose index
is the number of ratios. Therefore
P : force of string FW :: 1 : 2 raisel to that
power. And the force of the string FIV is®equal to
the weight W, because it supports it in the case of
equilibrium. Therefore, &c. . E.D.

THE INCLINED PLANE.

Der. The Inclmed Plane, when spoken of as a
mechanical power, is‘a plane supposed to be perfectly
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smooth and hard. The ipclined plane is Yrepresented
by a line drawn in a vertical plane, and is supposed
to pass through this line and to be perpendicular to
the vertical plane. A vertieal line is supposed to be
draw in the vertical plane from the upper extremity
of the inclired plane; and both this vertical line, and
the line which represents the fhclined plane, are cut
by a horizontal line or base, drawn in the same ver-
tical plane. The portion of the inclined line and of
the vertical line intercepted between the upper point
of the plane and its horjzontal base, are the length
and the height of the inclined plane respectively.

Prop. XIV. The weight (W) being on an
inclined plane, and the force (P) acting parallel
to the plane, there is an equilibrium when
P : W : the height of the plane : its length.

Let AC be an inclined plane of which AC is the
length, and let W be,a

weight on the inclined plane P//}I;
supported by a force P, ).
acting in the direction EF
parallel to 4C. < H
"The force of the weight P 4 G B

W acts in a vertical direction ; draw EG vertical to
represent “this force. Also draw EH perpendicular
and GH parallel to the plane A4C. )

The Yorce EG is equivalent to the two forces
EH, HG, (Prop. IX, Cor. 2); of these, the force
EH is balanced by the reaction of the plane 4C,
which will balance any force perpendicular to AC,
by Axiom 12; and the weight W will be kept at
rest, if the force JIG be counteracted by an equal
and opposite force P, acting gh the direction EF.
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Therefore there will be equilibrium if P be repre-
sented by GH, when W is represented by EG; that
is, P: W :: GH : EG. ,

But since EH is perpendicular and GH parallel
to the plane 4C, EHG is a right angle and therefore
equal to 4BC. Also the angle EGH is, by parallels,
equal to GED, that is, to BFD, that is, to BCA.
Therefore the two triangles ABC, 'EHG, have two
angles equal, each to each, and are therefore equi-
angular, and therefore also similar. Hence GH : EG
it BC : AC, and therefore, by what has been proved
already, P : W :» BC : AC, that'is, P : W :: height
of plane : length of plane. Thercfore, &c. Q.E.D.

VELOCITY.

*

Der. If two points pass through certain spaces

respectively in the same time, the Velocities of the two

points are to each other in the proportion of these
two spaces.

Pror. XV. If P and*W balatice each other
on the wheel and axle, and the whole be put in
motion, P : W i Vs velocity : P’s velocity.

The construction being the same ‘as in Prop. X,
let the machine turn
round its axle CD
through an angle 4Ca,
or EDe; so that the
radius of the wheel
at which the power
acted, moves out of
the position Ce into
the position C4 ; and
so that the radius of
the axle at which the¢ W
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power acted, moves out of the position De into the
position DE. Then the string by which the power
P acts will be unwrapt from the portion a4 of the
circumference of the wheel,.and therefore P will move
through a space equal to @ 4. Also in the same time
the string at which W acts will be wrapt upon the
axle by a space equal to e£, and therefore T will
move through a space equal to eE. Thercfore by
the definition of velocity, a 4, e E are as the veloci-
tieg of P and W.

But since the wheel and axle is a rigid body,
turning about the axis CD, all the parts move in
planes perpendicular to the axis, and turn through the
same angle; and since the plane of the wheel ACa,
and of the axle EDe are both perpendicular to the
axis, the angles 4Ca, El)e are the angles through
which the radii C4, DE turn. Therefore the angles
ACa, EDe, at the centers of the circles 4Ca, EDe¢
are equal ; and therefore, by the Lemma 3, DE : C4

: Ee: da. .

But by Prop. X, DE : CA P W and by
what has been just shewn, Ee : 2 W's velocity
: P’s velocity ; therefore P : W:: W’s velocity : P’s
velocity. Q.E.D.

" Pror. XVI. To shew that if P and W
balance each other in the machines described in
Propositions XI, XII, XIII, and XIV, and thc
whole pt put in motion, P : W :: W’s velocity
in the direction of gravity : P’s velocity.

Part first: proof for the systems of pulleys de-
scribed in Propositions X1, XII, XIII.

In Prop. XI, if W be raised through any space,
as one inch, the string on cach side of the pulley 4
will be liberated for one mcb‘ and therefore P will
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be at liberly to descend two inches; thetefore W’s
velocity : P’s velocity ::1 : 2 ; and since by Prop. XI,
P:W:1:2, P: W: Wsvelocity : Ps velocity.

In Prop. X1I, if, /¥ bt raised through an.y space,
as one inch, each string at the lower block will be
liberated one inch, and, therefore as mamty inches of
string will be liberated as there are strings at the
lower block ; and P will be at liberty to .descend
through a space equal to the whole of this. There-
fore the space described by TV - space described by
P :: 1 : number of strings,at th.e lower block ; and
hence by Prop. XII, and by the definition of velocity,
P : W i Ws vélocity : P's velocity.

In Prop. XIII, if I¥ be raised througil any space,
as onc inch, each of the two strings at the lowebt
pulley I will be liberated one inch; therefore the’
pulley C will be liberated 2 inches, and will rise
thiough 2 inches; thereforc on each side the block

, 2 inches of string will be liberated ; therefore the
pulley A will be liberated °2 x 2 inches; therefore
the string on each side the pulley 4 will be libcrated
2 x 2 inches; therefore the string at whiclk® P acts
will be liberated 2 x 2 x 2 inches, and since this hap-

4

pens in the same time that W is liberated one inch, .

W’s velocity : P’s velecity = 1:2 x 2 x 2. And
it is clear that the last term is that power of 2 whose
index is the number of movcable pulleys.

But by Prop. XIII, P : W 1 : 23 x2 as
beforé ; therefore, by what has been proved, P : W
i W's velocity : P's velocity. v

Part second : proof for. the Inclined Plane described
in Prop. XIV.

Let AC be the .inclined plane, the weight W
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being supported by the

force P acting parallel to cye
the plane. Let W move to
w, and P to p'in the same
time; and draw Wwo hori-
zontal and wov vertical.
Then wv is the space
through which W2 moves in the direction of gravity,
while P moves through the space Pp, or Ww, which
is equal to Pp, because the string w P is always of
the same length. 'Therefore by the definition of
velocity, W’s velocity in'the direction of gravity :
Ps velocity :: wv : Ww.

But since Wv is horizontal, or parallel to AB,

and wv vertical, or parallel to CB, the triangle
; Wwv is similar to ACB. Thercfore wv : Ww :: BC
: AC, that is, wv : Ww :: height of the plane:
length of the plane. But by Prop. XIV, this pro-
portion is that of P : W; therefore by what has
been proved, P : W :: IW’s velocity in the direction
of gravity : P’s velocity.

Cor. In the case of the inclined plane, if the
string by which W is supported pass over a point
C and hang vertically, as WCQ, and if Q balance IV,
Q will descend through a space Qq equal to Ww,
when W descends through a space Ww; and we may
prove, ascbefore,’Q@ : W :: W’s velocity in the direc-
tion of gravity : P’s velocity.
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SECTION IV

THE CENTER OI' GRAVITY.

Drr. Tuc Center of Gravity of agpy body or
system of bodics is the’ pont about which the body
or the system will balance itself in all positions.

Cor. If a straight line pass through the center of
gravity of a body, the body will balance itself on this
linc in all positions. TFor gince the body will balance
itself in all positions upon the center of gravity, if this
center be supported, the body will be supported in all
positions, But if the line passing through the center
of gravity be supported, the center will be supported ;
and therefore 1f the Iinc passing through the center of
gravity be supported, the body will be supported in
all positions; therefore it will balance itself on this
line in all positions.

It is assumed that cveyy body has a center of
gravity.

Pror. XVII. If a body balance -upon a
straight line in all positions, the center of gravity

is in that line.

Let HK be a line on which the system balances
itself in all positions; and
since every system has a
center of gravity, if possible
let G, which is not in HK,
be the center of gravity.

Let GF bedrawn para-llel
to HK ; then, if any line in
the plane FGHK as LM, or ON, be perpendlcular
to ane of these parallels, it will be perpendicular to
the other. Let the body, with these lines, be turned
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round the line "HK, till LM is horizontal, in which
case any other perpendic'hlar, as ON, will also be
horizontal. Let P be a particle, the vertical line from
which meets the horizontal line ML, produced if neces-
sary, in 4; let @ be a particle, the vertical line from
which mects the horizontal Jine ON in B; and in like
manner let vertical lines be drawn from the other par-
ticles of the body; mecting horizontal lines which are
perpendicular to G and HK. Also let P, Q, be the
weights of particles from which the vertical lines* P4,
QB are on opposite sides of the lines GrF, HK.

Since the body’ balances on the line HX, the
sum of all such moments as P x AM on the one side
of the line IK must be cqual to the sum of all such
moments as Q@ x BN on the other side of the line
by Prop. X, Cor. +. And since, by the corollary
to the Definition of the center of gravity, the body
balances on the line GF, the sum of all such moments
as P x AL on the oue side of the line GF must, for
the same reason. be equal to the sum of all such mo-
ments as Q x BO on the other side of the line GF.

But when we take the moments of the particles
of the body with respect to the line GF, instcad of
HEK, each of the taoments on the side 4, as P x AM, is
diminished by P x LM, so as to become P x AL; and
each of the moments on the side B, as Q x BN, is in-

. creased by Q x IVO, so as to become Q x BO: besides
which there are particles, the vertical lines from which
fall between the lines HEK, GF, which are on the
side 4 of the line HK, and on the side B of the
line GF; and of which the moments still further
diminish the sum of the motnents on the side 4, and
increase the sum of the moments on the side B, when
we exchange the line HK for the line GF.

Therefore If the sums of the anoments on the sides
A and B of the lines HK be equal, the sums cannot
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be equal when Wwe inove the line into the pbsition GF,
and therefore by Prop. X Cor. 5, the equilibrium
cannot subsist for this sccond line also.

Therefore the point @, out of HE, canmot be the
center of gravity; ahd therefore the center of gravity
must be in JK. QE.D.

Prop. XVIIL.* To find the center of gra-
vity of two heavy points. y
Let 4, B, be the two heavy points; their weights
being I’ and Q. Join 4B; and Q
take in AB a point C, such that %
PrQ:Q:=AB : AC; C will /
be the center of gravity of 4, B.
Since P+ Q : Q :: AR : AC,
by division P : Q = BC : AC.
Thercfore by Prop. IT, 4@nd B will balance each other
on the line 4B in a horizontal position, because in
that casc the weights act perpendicularly to the lever,
Therefore by Prop. VII, 4, B will balance each other
on C in cvery other positiop of the line 4B. There-
fore by the definition of the center of gravity, C is
the center of gravity of the heavy points 4, B.
Cor. The pressurc upon the center C in every

position is cqual to P + Q, by °the Corollary to
Prop. VIIL. .
Pror. XIX. To find the center of gravity

of any number of heavy points. .
Let 4, B, C, D be any number of heavy points;

their weights being P, Q, B,Q °

R, S. Join 4B, and

take a point E in AB F

such that P+Q : Q°: e CR

4B : AE; join EC, and A
take a point F in EC, g
such that P+ Q+ R : R

@ EC : EF; join FD, S
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and take a point G in FD, such that P+ Q+ R + §
: 82 FD : FG; G will be the center of gravity
of P, Q, R, S.

Since P+Q : Q :: AB : AE, by Prop. XVIII, and
Cor. E is the center of gravity of the points 4, B; and
in every position of 4B the pressure upon E is equal
to P+ Q. ButsinceP+Q+ L : R :: EC: EF, by
division P+ Q : ‘R :: CF : EF; therefore P + Q at
E and R at C will balance upon F' when EC is hori-
zontal by Prop. I1, and when EC is in any other
position by Prop. VII; and the pressure upon F' in
any position will be P + @ + R, by the Cor. to Prop.
VII. Therefore in any position P, Q, R will balance
upon F, and F is the center of gravity of P, Q, R.

. Again, since P+Q+ R+ S8 : § = FD : FG,
by division, P+ Q+R : § :: DG : FG; and P+Q+R
at F, and §' at D, will balance in every position of
FD, by Propositions IT and VII. And the pressure
upon G will, in every position of FD, be P+ Q+R +.,
by Cor. to Prop. VII.

Therefore in every position of D, EC, and B4,
the points 4, B, C, D will balance upon G; and
therefore G is the center of gravity of 4, B, C, D.

Cor. 1. It has been shewn that in every position
of 4, B, Cy D the pressure upon G, the center of
gravity, is equal to the sum of the weights.

Cor. 2. Every system of heavy points has a
center of gravity; for the above construction is
always possible.

Pror. XX. To find the center of gravity
of a straight line.

Let 4B be the straight line ; bisect it in C'; C will
be the center of gravity. 5



BOOK I. STATICS. SECTION IV, 71

Take CY and CN equal, and the " B,
line may be considered .as composed
of pairs of equal particles, plgced
at points such as M, N, hy Axiom ’
13, But the two particles at M, N A,
balance each other upon thg point C in all positions, by
Prop. IT and VII. And‘all the other pairs of particles
will balance for the like reasons. Therefore the whole
line will balance upon C in all positions. Therefore
the point C is the center of gravity of the wholc line.

Pror. XXI. To find the center of gravity
of a plane triangle.

Let ABC be the triangle; ¢
bisect BC in D, and join 4D; and
bisect AC in E, and join BE;
let G be the point of intefection
of AD, BE; G is the center of
gravity of the triangle. £ P B

Draw any line PQ parallel to BC, meeting 4D in
O; it is easily seen that the triangles AOP, 4DB
are similar, as also 40Q, ADC.

Hence OP : O4 :: DB : DA
and 04 : 0Q :: D4 ; DC;
therefore OP : 0Q :: DB : DC.
But DB is equal to DC, thereforc OP is equal to OQ,
and O bisects PQ.

By Axiom 14, the triangle A BC may be cons1dered
as made up of straight lines PQ, parallel to BC. And
the center of gravity of any one of these lines, as PQ,
is at O in the line 4D ; therefore each of these lines
will balance upon 4D in.any position; therefore the
whole triangle, which is made up of these lines, will
balance upon 4D in any position, and therefore the
center of gravity of the triangle is in the line 4D.
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In like manner, the triangle may be cbnsidered as
made up of straight lines' pamllel to 4C, and it may
be proved by similar reasoning that the center of
gravity ‘of the triangle is in the line BE.

Therefore the center of gratity of the triangle is
at G, the ivtersection of 4D and BC. a.E.p.

Cor. If we join DE, it % easily shewn that the
triangles CBA, CDE are similar as also AGB, DGE,

therefore DE : AB :: CD : CB;
but by construction CD : CB :: 1 : 2;
therefore JDE : AB :: 1 : 2.
Again GD : AG :: DE : AB,
thereforc GD : AG = 1 : 2;
and by composmon AD : AG :: 8 : 2;
AG is two-thirds of 4D, and DG is one-third of 4D.

In like manner BG, and GE, are two-thirds and

one-third of BC respectively.

Pror. E. Any body will have the same effect in
producing equilibrium about a given fixed line, as if
it were collected at its center of gravity.

Let" EF be the given fixed line, and G the center
of gravity of the body. Let
PAd, QB vertical lines from
any particles P, Q of the
body, meet horizontal lines
AM, BN, which are per- 1 e
pendicula: to EF'; and let
GH be'a vertical line which
meets the horizontal line HK
which is also perpendicular ¢o EF.

The effect of the body in producing equilibrium
depends upon the excess of the moments such as
P x AM, on oe side of the line EF, above the moments
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such as Q# BN, on the other side of the‘line ; and is
the same so long as this excess is the same. This fol-
lows from Prop. X, Cor. 3.

Now since G is in the center of gravity,#the body
balances on the potit G, and therefore on the line
HL; for if HL be supported, G is supporged. There-
fore the sum of all the Moments, such as P x 4L, on the
one side, is equal to the sum of all the moments such as
Q x BO, on the other side. And Q x BO is equal to
Q x BN + Q x NO. Therefore adding P x LM to both,
the sum of moments such as P x AL + P x EM, or
P x AM, is equal to the' sum®of moments such as
Qx BN 4+ Q x NO + P x LM. Therefore the excess
of moments such as P x AM over moments such as
Q x BN is the sum of moments such as @ x NO + P x LJ!I;
that is, such as Q x HK 4P x HK, or (Q+ P)x HK ;
because LM and NO are each equal HK.

Now if all particles such as P and Q be trans-
ferred to G, thcir effect in producing equilibrium
depends upon the sum of moments,,such as (P + Q)
x HK ; thercfore it is the same as before.

Hence if all the particles P, Q be transferred to
the center of gravity G, the effect in producing equi-
librium is the same as before. Bt the«whole body
may be considered as made up of such particles; by
Axiom 15. Therefore if a body be collected at its
center of gravity, its effect in producing djuilibrium
will not be altered. @.E.D.

Cor. 1. The effect of the body to dlsﬁ.lrb equi-
librium about a line will be the same as if the body
were collected at its cepter of gravity G. For the
effect to disturb equilibrium is the effect to produce
equilibrium when an adequate force is applied to
counteract the tende.ncy to disturb equilibrium.

M. E, 4
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Cor. 2. The effect of a body to prodice or dis-
turb equilibrium about a point, is the same as if the
body were collected at the center of gravity. For any
line being drawn through the point, the cffect is the
same about this line, by Cor. 1; and the equilibrium
cannot be disturbed about a pomt, without being dis-
turbed about some line passing through that point.

Nore. If the‘fixed line be horizontal, the moment
of each particle, which measures its effect in producing
equilibrium, is the product of the weight of the par-
ticle multiplied by the horizontal line perpendicular to
the fixed line and intércepted by a vertical line drawn
from the particle.

If the fixed line be not horizontal, take in it any

. point Z, draw ZY vertical, and YX pcrpendicular to
the fixed line. Then the moment of any particle about
the fixed line will be less than the above product in
the proportion of Y.X to ¥Z. TYor the force arising
from the weight of the particle being represented by
the vertical line ZY, may be resolved into forces Z.Y,
XY; of which ZX will not produce any effect to turn
the body about the fixed line, and XY only will be
effective.

Der. By the Base of a body is meant a side
of it, touching another body, and on which its direct
pressure is supported.

If the'body fall over, it tends to turn round one
edge of ltsL base, whether the base slide or not.

ProP. XXII. When a body is placed upon
a ,horlzontal plane, it will stand or fall, accord-
1ng as the vertical line, drawn from its center
of gravity, falls within or without its base. -

Let ABCD be the body, AB its base, G its center



BOOK I. STATICS, SECTION IV, 75

of gravity. First let
GF, the vertical line
drawn from the center
of gravity, fall upen
the horizontal plane B4
without the base, as at . g B : B
F. Takein GF any Tine GH to represent the weight
of the body, and draw GK perpendicular to 4G and
HK parallel to 4G.

(Fig. 1) Ifthe body fall over the edge 4 of the base,
it will tend to turn round the edge 4 of the base, that
is, to describe the arc GE of which the radius is 4G.
Now by Prop. E, the effect of the body is the same
as if it were collected at the point G. Thercfore the
force exerted to produce this effect may be represented
by the vertical line GH. ®And the force GH is equi-
valent to the forces GK, and KH, (acting at G).
Of these, the force KII acts in the line G4, passing
through 4, and therefore produces no tendency to
motion about 4. But the force GK'tends to make
the body move in the direction GK, which is a tangent
to the arc GE; and thus to make the base 4B turn
round the point 4, quitting the plane at B. And there
is no force to counteract this tendency, therefore the
body will turn round the edge 4, on the side on which
the perpendicular GF falls.

(Fig.2.) Butif the perpendlcular G H fall between
4 and B, as before, the effect may be reprgsented by
the vertical line GH, and the force GH is equivalent
to the forces GK, KH. Of these KH (which acts
at @) passes through 4 and does not tend to make
the body turn round the edge A; but the force GK,
which is a tangent to the arc GE, tends to make the
body turn round 4 in the direction GE. But since
the body is rigid, and*4B is in contact with the sup-

. 4—2
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porting plane, the body cannot turn round ‘the point
4 in the direction GE, for the pressure thus pro-
duced on the horizonial plane is resisted and sup-
ported. In like manner the body cannot turn round
the edge B by the action of the force GH ; there-
fore in this ‘case the body cannot fall.

Prop. XXIH. When a body is suspended
from a fixed point, it will rest only with its
center of gravity in the vertical linc passing
through the point of svspension.

Let 4B be a body suspended from a fixed point C,
and G its center of gravity. If CG be not vertical, draw
GII vertical, and (in the vertical plane CGH,) GK per-
péndicular to C'G, and HK parallcl to CG. The weight
of the body will produce the same effect as if it were
collected at the point G, and may be represented by the
line GH. But the force GH is equivalent to GK, KH;
and of these, the force X H (which
acts at G) is in the line CG, and is
supported by the fixed point at C;
and the force GK tends to make
the body move in GK, which is a
tangent to GE, the path in which the
point G can move round the fixed
point C;_and there is no force to
counteract this tendency, thcrefore
the body will move in this path; and will not rest
in the position 4B.

;ﬂ But if CG be vertical, the weight will be sup-

rted by the fixed point C, and there will be no

orce to produce “‘motion ; therefore the body will rest
in that position.

Therefore ,the body will rest only when CG is
vertical. Q.E.D.
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Peor.”F. *If two forces tending to‘turn a body
about a fixed point, .and ‘acting in a.plane perpen-
dicular to the axis of motiop, balance each other,
the pressure on the fixed point is’the sfme as it
would be if the two forces were transferred to the
point retaining their diregtion and magnifude.

Let F, Q, be two forces, acting to turn a body about
a fixed point C. Draw C4
parallel to the force P, and CB
parallel to the force Q; the
pressure on C is the same as /7
if the forces P, Q, acted in the* g
lines 4C, BC. Q

Produce the directions of the .
forces to meet in D, and com- t
plete the parallelogram {4DB.

The force P produces the same effect as if it acted at
the point 1 in P’s direction by Axiom 7; and similarly
the force Q produces the same effect asif it acted at D.
And if Dp, Dqg represent, the forces P, Q, and the
parallelogram D prg be completed, the diagonal Dr will
represent the force at D to which P and Q are equiva-
lent. But the direction of the force Dr ‘must pass
through the point C, as in Prop. VIII, and will pro-
duce the same effect as if it acted at C; and the.force
Dr acting at C is equivalent to the forces g7, pr, act-
ing in directions parallel to g7, pr, by Brop. VIII:
that is, the force Dr is equivalent to the forces Dp,
Dag, acting in the lines 4C, BC; that is,ethe forces P,
Q, acting in the lines BP, 4Q are equivalent to forces
P, Q acting in AC, BC. Therefore the pressure upon
the fixed point C is the same as if the forces P, Q were
transferred to that point. Q.E.D.

Cor. 1. If, instead of the fixed point at C, we
substitute the pressure which that point exerts, there

C
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will be equilibrium by Axiom 11. Hence, it a body be
acted upon by three forces in the same plane, of which
one passes through the intersection of the other two,
and is egnal to’the resultant of the other two, the
body will be in equilibrium.

Cogr. 2.  Conversely if there be equilibrium, these
conditions obtain. This follows from Axiom 2.

Pror. G. If two forces tending to turn a body
round a fixed axis, and acting in two planes perpen-
dicular to the axis, balance each other, (as in the
Wheel and Axle,) the pressures upon the points of the
axis where the body is supported, are the same as they
would be, if the two forces, retaining their direction
and magnitude, were transferred to the axis, at the
points where the perpendicular planes meet it.

Let P, Q, be two forces acting perpendicularly
at the arms C4, DE,
to turn a body round
the axis HK, the
planes CAP, DEQ
being  perpendicular py

to HK; and let the E K
forces balance. Let T
X, ¥ be the pres- Q’ Y
sures exerted by the Q

fulerums at H ard
K. which pressures
balance the forces P, Q Then X and Y are the

s if> the forces P and Q, continuing parallel
to themselves, were transferred to C and D.

Let AC be produced to F, CF being equal to CA4,
and at F in the plane PAC, and perpendicular to AF;
let two forces P', P, each equal to P, act in opposite
directions, These forces will balance each other and
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will be equwa'lent to no force; and therefore if the
forccs P, P’ are added fo the system, the equili-
brium will not be disturbed.,

In like manner prqduce ED to G, &G being
equal to ED, and 2t G, in the plane QED, and per-
pendicular to DG, let two forces @', Q”, each equal
to Q, act in opposité directions: these forces will
not disturb the equilibrium. Therefore the six forces
P, P, P, Q, Q, Q' acting in the manner described, °
will be suppmted by the forces X, Y; that is, the
eight forces P, P, P", Q, Q Q X, ¥, balance each
other

The forces P”, Q", are snuated in exactly the
same manner with regard to vertical lines and planes
drawn upwards, as P, Q are, with regard to vertxcal
lines and planes drawn,downwards, Therefore P,
Q", would balance each other on the axis HK,
and would produce at H and K pressures equal and
opposite to those which P, Q produce. But the forces
X, Y are equal and opposite to the pressures which
P, Q produce, for thcy balance " those pressures.
Therefore the forces P”, Q" produce at H K the
pressures X, Y.

The forces P, P' are equivalent to a force double
of P acting at C, parallel to P; and the forces Q, Q' are-
equivalent to a force at D double of Q, parallel to Q.

Hence the six forces P, P/, P4 Q, @, Q" are equi-
valent to X, Y, at H, K, and to 2P, 2Q at C, D.
And the eight forces P, P, P”, Q,Q, ", X, Y are
equivalent to 2.X, 27 at H K and to 2P, 2Q, at
C, D.

But these eight forees balance each other; there-
fore 2 X, 27, acting at H, K, balance 2 P, 2Q, acting at
C, D: and therefore X, ¥, which balance P, @, acting
at 4, E, would bal.ance P, Q, acting-at C, D. Q.E.D.

&
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BOOK . II.

‘

HYDROSTATICS.

DEFINITIONS AND FUNDAMENTAL NOTIONS.
«

\

1. HryprostaTics is the science which treats of
the laws of equilibrium and pressure of fluids.

+2. Fluids are bodies the parts of which are move-
able amongst each other by very small forces, and
which when pressed in one part transmit the pressure
to another part,

3. Some fluids are coxmpressible and elastic ; that
is, they are capable of being made to occupy a smaller
space by, pressure applied to the boundary within
which they are contained, and when thus compressed,
they resist the coripressing forces and exert an effort
“to expand themselves into a larger space. Air is such
a fluid.

[
|

4. Other fluids are incompressible and inelastic;
not admittirfg of being pressed into a smaller space nor
exerting any force to occupy a larger. Water is consi-
dered as such a fluid in most hydrostatical reasonings.

1

5. In all fluids which have weight, the weight of
the whole is compased of the sum of the weights of all
the parts.
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AXIQMS.
1. If a fluid of which the parts have no weight
be contained in a tube of .

which the two ends &re

similar and equal planes, two

equal pressures applied , per- B

pendicularly at the two ends A

will balance each other. D Q
Let ABCD be the tube,

4B, CD its two equal ends: L%

the equal forces P, Q, acting .

perpendicularly on these ends will balance each other.

2. If two forces acting upon two portions of the
boundary of a fluid balance each other, and if a force
be added to one of them, it will prevail, and drive
out the fluid at the part of the surface acted an by
the other force.

Cor. Hence if P and Q in Axiom 1 balance,
they are equal. . .

3. If a fluid be at rest in any vessel, and if any
forces, acting on two portions of the boundary of the
fluid, balance each other, they will also balance each
other if any portions of the fluid béogme rigid with~
out pltering the magnitude, position, dr weight of any
of their parts. .

Thus if the two forces P, Q, acting on®4 B, CD,

parts of the surface P Q
of a vessel containing B » .
fluid, balance each ~

other; they will also ¢

balance each other if
the parts E and F of the fluid be supposed to
become rigid, the magnitude, position and weight,
of ajl the parts of E,F, remaining unaltered.

4—5
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1
4. Any plane surface pressed by a éuid may be
divided into any number of particles, and the pressure
on the whole is equal to the sum of the pressures
on each of the particles,

5. When a plane surface is pressed by a fluid,
the pressure exerted on the sprface, and the pressure
of the surface op the fluid, are perpendicular to the
plane.

6. We may reason concerning fluids supposing
them to be without weight: and we shall obtain the
pressures which exist in heavy fluids, if we add, to
the pressures which would take place if the fluids had
no weight, the pressures which arise from the weight.

« 7. When a finite mass of fluid is considered as
consisting of small particles of any form or size, and
when the consequences of our reasoning do not depend
upon the magnitude of the particles, we may, in our
reasoning, neglect the magnitude or weight of any
" single particle, mnd the consequences will still be true
in a heavy fluid.

REMARKS ON THE AXIOMS OF HYDROSTATICS.

1. As the Axioms of Geometry are derived from the idea of
space, and the Axioms of Statics from the ideas of pressure and
of solid coherent matter; the Axioms of Hydrostatics are derived
from the idea of pressure, and from the idea of fluid matter ;}—
matter which, without coherence or rigidity, can still sustain
pressure and transmit it in all directions ; or, as we may express
it more briefly, from the idea of fluid pressure. 1t is not emough
10 conceive a fluid as a body the parts of which are perfectly
,movegble: for the mere notion of mobility includes no concep-
* tion of force or pressure. We must conceive fluid as transmitting
"pressure, in order to perceive the evidence of the Axioms of

Hydrostatics.
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2. The Hirst Axiom of our Hydrostatics,—that if a fluid be
contained in a tube of which thestwo ends are similar and equal
planes acted on by equal ptessures, it will be kept in equilibrium
—follows from the principle of sufficient reason, for there is no
reason why either pressure shoyld preponderate. If, §r example,
the curvature of the tubedor any such cause, affected the pressure
at cither end, this conditien would be a limitation of the property
of transmitting pressure ip gll*directions, and would imply im-
perfect luidily ; whereas the fluidity is suplmosed to be perfect

3 For the like reasons, we might assume as an e4ziom the
First Propositwn of the Hydrostatics, that fluids transmit pressure
equally in all directions, from one part of their boundary to the
other ; for if the pressure transmitted were different according to
the direction, this difference might be Yeferred to some cohesion
or viscosity of the fluid; and the fluidity might be made more
perfect, by conceiving the difference removed Therefore the
proposition would be nccessarily and evidently true of a perfect
fluid. s

4. But instead of laying.down this a3 an axiom, Axiom 3
is introduced—that any part of a fluid which is in equilibrium,
may be supposed to become rigid. This axiom leads immediately
to Proposition I, and it is, besides, of great use in all parts of
Hydrostatics. . .

If we had to reason concerning flexible bodies, we might
conveniently and properly assume a corresponding axiom for
them ;—namely, that, of a flexible body which is in equilibrium,
any part may be supposed to be¢ome rigid. And we might give
a reason for this, by saying that rigidity’ implies forces which
resist 8 tendency to change of form, when any such temdency’
occurs ; but in a body which is in equilibrium, there is no tend-
ency to change of form, and therefore tht resistinggforces vanish.
It is of no consequence what forces would act if there were a stress
to bend the body : since there is not any such strgss, the rigidity
is not called into play, and therefore it makes o differefice
whether we suppose it to exist or not.

The same kind of reasons may be given, in order to shew,
what Axiom 3 asserts, the®admissibility of introducing, in the
case of equilibrium of a fluid, rigidity, instead of that susceptibility
of change of figure, (still greater than flexibility,) which fluidity
implies. Since the mass is perfectly fluid, its particles exertno
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constraint on -each other's motions; but then; becduse they are
in equilibrium, no constraint is necded to keep them in their
places. They ate as steadily kept there (so long as the same
forces continue to act) as if ¢hey were held by the insurmountable
forces whide, connect the parts of a perfectly rigid body. We
may therefore suppose the inoperative forces of rigidity to be
present or absent among the particles, without altering the other
forces or their relations®. And heice we see the truth of Axiom 3
of the Hydrostatics.

5. The last axiom of Hydrostatics (Ax. 7) is introduced in
order that we may be able to reason concerning the quantity of
fluid pressure, by supposing the fluid divided into small particles.
To speak of the particles as finite would lead us into error, since
they are not of any known finite magnitude; and to speak of
them as indefinitely small, would involve us in the difficulties
of the Higher Geometry, in which the Ideas of Limits or Differ-
entials are introduced. The Axiom will be self-cvident if we

, consider the particles as microscopic in magnitude, and of cor-
responding weight. .

* This Axiom is employed familiarly by Newton and many other
eminent mathematicians.
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SECTION, I
PRESSURE QF NON-ELASTIC FLUISS.

—_—
.

PROPOSITIONS.

Pror. I. Fruips press equally in all direc-
tions.

First, a fluid at rest presses equally in all direc-
tions on equal plane portions of the vessel which
contains it, if we neglect the weight of the fuid.

Let LMN be the clgse vessel, 4B, CD, EF, GH, '
similar and cqual plane por- s
tions of the surface of the
vessel; let two forces P, Q P
acting on 4B, CD, portlons
of the boundary of the fluid, *
balance each other; and let
a tube 4CBD be imagined,
passing from 4B to CD.
Let the portions of the R
fluid, ACL, BDN become rigid ; then, by Axiom 3 the
forces P, Q still balance each other; but by Cor to
Ax. 2, in this case the forces P, Q are equal. And in
like manner it may be shewn that the forees P, R are
equal, as also the forces P, . And P, @ R, § the
forces which act on the boundary of the fluid and
balance each other, are.the pressures on similar and
equal portions of the containing vessel. Therefore the
pressures exerted on all such portions are equal.

Secondly, in a fluid at rest any particle is equally
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pressed in all directions upon similar dnd equal plane
surfaces. ¢

Let A be any point,in a ﬂuld and let AM, AN be
any two &rections. Let 4B, be a

plane perpendicular to 4M, and
AC asimilar,and equal plane per- l/ \
pendicular to AN. Let the (geo- &

metrical) solid, of which the B

planes AB, AC are boundaries,

be completed, and be considered

as a particle of the fluid. And M

let P, Q be the forces which act on the planes 4B,
AC, and preserve the equilibrium. Let the whole
of the fluid, which surrouuds the solid 4BC be sup-
posed to become rigid: therefore, by Axiom 3, the
* forces P, Q still balance each other.

Let the portion BAC of fluid have no weight; there-
fore, by the proof of the first part, the forces P, Q are
equal to each other.

But by Axiom 7, since this consequence docs not
depend upon the magnitude of the particle ABC, we
may neglect the weight of the particle 4BC, and the
consequence will be true.

Therefore, in a fluid at rest, the pressures P, Q,

* which act upon a particle in the two directions M4,
N4, are equal. Q.E.D.

Coe. “A parti::le of fluid is equally pressed on
any two eqxfal and similar portions of its surface.

Prop. II. The pressure upon any particle
of a [heavy] fluid of uniform density is propor-
tional to its depth below the surface of the fluid.

Ffirst, when there is a vertical column of fluid
reaching from the particle to the upper surface.
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When the surface pressed is horizontal, let 4B
be the horizontal surface pressed, and ABCD the
column reaching to the surfage, the sides
AD, BC being vertical. ,

Let the column ABCD be dlvlded
into any number of equal particles Ry
horizonta] planes, dmawn at equal vertical
intervals. And each of these partieles will
sustain the pressure of the particle above
it, and will transmit this pressure to the X
particle below it, by Prop. I; and will also press upon
the particle below with its weight, by Ax. 6. There-
fore the pressurcs on the particles at the distances of
1, 2, 38, &c. intervals below the surfacg will be as
1, 2, 3, &c.: that is, they will be as the depths.

When the surface pressed is mot horizontal, "let
AX be another plane surface of the particle pressed,
equal to the plane 4B. By Prop. I, the pressure
upon 4X is equal to the pressure upon 4B; therefore
it is as the depth AD.

Sccondly, when there is mot a vertical column
reaching from the particle to the upper surface.

Let AB be the horizontal surface pressed, OP the
surface of the fluid, OD horizontal ; " and 4D vertlcal

Draw AH vertical till it P O ¢ D
meets the side of the vessel; = &
take IIE = AB, and draw \
EN horizontal till it meets \M
the opposite side of the ves- .
sel ; Poke NK - AB, and NN K H [
draw KO vertical ; and,so on
if necessary ; we shall in this B A
way arrive at the upper sur-

face of the fluid. Draw HM, NP, so as to coms
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plete the z‘igzag tube ABEMO which passes from
the plane 4B to the upper surface of the fluid. Also
the surfaces GH, EF, .LM, are all equal to 4B.

Let the column MP, and also the column BC be
divided into equal particles by horizontal planes at
equal vertical intervals, as in the former part of the
proof. Then the pressure upsn EF is eqral to the
pressure upon GH, together with the weight of the
particle GE, by Axiom 6. But the pressure upon
GH is equal to the pressure upon ML, by Prop. I,
because GH is equal to ML. Therefore the pressure
upon EF is the same as if a column ED extended to
the surface: and therefore, as in the proof of the former
part, the pressure on any particle in AF is the same as
if a column 4D extended to the surface; that is, by
‘the former proof, it is as the depth 4D. a.E.p.

Cor. 1. Hence it appears that if a heavy fluid be
contained in a vessel of which some parts are over the
fluid, any particle of such a part exerts a pressure
downward upon the fluid, 2qual to that which would
exist if there were, instead of the particle of the vessel,
a vertical column of fluid extending to the horizontal
surface of the fluid.

Thus the particle of the side of the vessel which is
‘over GH, presses downwards with the same force as if,
instead of that particle of the vessel, there were a
vertical column of fluid GZIDC.

Cox. 2. Any portion of the side of a vessel which
is over the fluid, presses downwards upon the fluid
with the same force as if there were a vertical column
of fluid over that part, and the side of the vessel were
removed.

The part OH of the side of the vessel presses
downwards with the same force as if the side OH were
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removed, and thére were a column of fluid OHD over
the fluid OLH. .

For the pressure of the part pf the s1de OH down-
wards is the sum of the pressures of éach particle of
OH downwards; which is, by Cor. 1, the sum of
vertical columus, reaching, to the horizongal surface,
and standing upon each particle of OH : and the sum
of these vertical columns, is a column standing on the
part OH, and reaching to the surface. Therefore
the whole downward pressure is equal to the whole
column.

Pror. III. The upI;er surface of a heavy
fluid of uniform density, and at rest, is hori-
zontal.

Let PQ be the uppe surface of a heavy fluid.
If possible, let P, Q not be in a horizontal plane.
Let 4 be any point in the fluid, 4X the plane sur-
face of a particle. Draw PC, QD horizontal, and
ACD vertical.

By Prop. II. the pressure upon Ax arising from
the weight of the fluid is as 4C
on the side P; and for the same
reason it is as AD on the side @:
and these are opposite pressures -
upon the plane 4X. Therefore
the fluid cannot be at rest ex-
cept these are equal; that is,
except AC = AD; therefore PQ is not othorwme than
horizontal. q.E.D.

Prop. IV. If a vessel, the bottom of which
is horizontal, and the sides vertical, contain a
heavy fluid, the pressure upon the bottom is equal
to the weight of the fluid.
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The pressures of the vertical sides are horizontal,
and do not. increase or diminish the pressure do
wards. Therefore the whole weight of the fluid will
be sustained in the same manner as if there were no
forces acting on the sides. Let ¢he whole fluid become
rigid. Then since it is now a solid (rigid) body, the
pressure upon the base is equal to the weight of the
body. But by Axiom 3, the pressure is the same
as before; therefore the préssure of the fluid on the
base is cqual to the weight. @.E.D.

Cor. 1. The pressure of a vertical column of
height H on its horizontal base B is as B x H : for
this is the content of the column.

. Cor. 2. If AX (fig. p. 87) be a particle of the
bottom which is not horizcatal, the pressure on AX
is as AX x AD: for if AB = AX be horizontal, the
pressure on AB is as AB x AD, by Cor. 1: and the
pressure on 4X is cqual to the pressurc on 4B, by
Prop. 1. c .

Prop. V. To construct and explain the
hydrostatic paradoxes.

. The hydrostatic paradoxes are,

1. That any pressure P, however small, may, by
means of a fluid, be made to balance any other pressure
W, however great.

2. That any quantity of fluid, however small,
may, by means of its weight, be made to balance a
weight W, however great.

1. The ratio of W to P, however great, may
be expressed by a number n.
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Let two planes, AB, CD be taken, "such that
1: n:: AB : CD; ang let'a close ma- . p
chine be constructed in which these
planes are moveable, so as they can alls C
exert pressure on the fluid: as, for
example, if AB be a pisfon, or plug
sliding in g tube, which enters a ves-
sel, and if CD be a rigid plane clos-
ing a flexible part of thc vessel, like x‘
the board of a pair of bellows; and
let P act on 4B, and let the fluid be
in equilibrium. Then the’plane CD
may be divided into » surfaces, each (MN) equal to
AB. By Prop. L., the pressure upon each of these sur-
faces is P, and hence the whole pressure on CD is (B. 1.
Prop. C.) the sum of all these pressures: that is, it i8
n times P; and if therefore W be n times P, W act-
ing at the surface CD will be balanced by P acting
at 4B.

2. Let the glven quantity of fluid be a column
of which the base is B and the L .
height H, and let the given O -—(’———
weight W be equal to » times the e
weight of this column. Take a d i
plane CD equal to » times B,
and let a machine be constructed
in which there is a vertical tube
LM, of which the horizontal
section 4B is the surface B, and
which enters a vessel ; and let CD
be a horizontal plane moveably connected with the vessel,
as before. And let the yessel LMND be filled with
the fluid up to the plane CD, and let the weight W be
Placed on the plane CD, and the tube LM be filled
with fluid to the point O at the height H above CD,
so that ABCD being*horizontal, 40 is equal to H.

W

D
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The Huid BO and the weight W will balance each
other.

For the plane « CD may be divided into =
particles as EF, each equal to the plane B; and
OG being horizontal, the pressure of the fluid up-
wards on.each of these is equal to a column of
fluid of base B and height “40 or H, by Prop. IV.
and its Cors. 'Therefore the whole pressure upwards
is m times this column, Therefore, if the weight W
be n times this column, the pressures downwards and
upwards will balance each other, and there will be
an equilibrium. *

Prop. VI. If a body floats in a fluid it
displaces as much of the fluid as is equal in
‘weight to the body; and it presses downwards
and is pressed upwards with a force equal to
the weight of fluid displaced.

First, if the fluid be entirely under the body.

Let LM be a particle of the surface of the body ;
and on LM let a vertical column be erected, meeting the
upper surface of the fluid in DE. Draw the horizontal
section L1 of the column; and take KL perpendicu-
lar to LM to represent the pressure on LM, and
draw K H perpendicular on the ver-
tical lina DL. «

The force KL may be resolved into
KH, HL, of which HL represents the
vertical Yorce; and the whole force on
LM istothe vertical force on LM as KL
to HL; that is, by Lemma.7, as LM
to Ll; or as DL x LM to DL x Ll. AlL

But the whole force on LM is equal to M i
H K

Ex

a column of fluid DL x LM, by Cor. 2.
toProp. IV.; therefore the vertical force
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1
on LM is equal to a column_of fluid DL x "L1; that
is, to the column EDLI, by Lemma 6; that is, to
the column EDLM, because the, smgle partlcle iy
may be neglected by Axiom 7.

And, in like manwer, the vertical pressure upon
any other particle of the surface of the flgating body
is the weight of fluid équal to the vertical column
which stands upon that particle, reaching up to the
surface of the fluid.

And the whole vertical pressure upwards is equal
to the sum of all these columns, that is, to the weight
of the fluid displaced. ) .

Secondly, if the fluid be above any part of the body,
the excess of the vertical pressures upwards above the
vertical pressures downwards is equal to the weight of
the fluid displaced. . *

Let ABC be a vertical section of the body, EF
the upper suiface of the fluid, LM any particle of
one of the lower surfaces of the body.

Draw the column LDME vertical, meeting the
upper surface of the fluid
in DE, and cuttingoffapar- — £ _<~_E D
ticle QR in the upper sur-
face of the body. It may
be proved, as in the for-
mer part, that the vertical
pressure upwards on the par-
ticle LM is equal to the
weight of the column of fluid A
LDEM. And in the same .
manner it may be proved that the vertical pres-
sure downwards on the particle QR is equal to
the weight of the column of fluid QDER. There-
fore the excess of the pressures upwards above the
pressures downwards on this vertical column is the
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excess of the weight of the column of fluid LDEM
over that of QDER; that is, it is the weight of the
column LQRM. .

In th same manner, in'any other vertical column,
the excess of the pressure upwatds above the pressure
downwardssis the weight of a quantity of fluid equal
to the vertical column intercepted withm the body.
And the whole excess of the vertical pressures upwards
is the sum of all such interccpted columns ; that is, 1t
is the weight of the fluid displaced by the body.

Therefore in all cases, the weight which can be
supported by the pressure upwards, o1 by the excess of
the pressure upwards, 15 the wcight of the fluid dis-
placed. Bat if a body float the weight of the body

_ must be supported. Therefore the weight of the fluid
displaced must be equal to the weight of the body.

And in this case the body presses downwards with
its weight, that is, with the weight of the fluid dis-
placed ; and it is supported by an equal pressure
upwards. Q.k.D.

Pror. A. If any horizoutal prism be wholly or

partially immersed in a fluid of umform density, the

. horizontal pressures of the fluid on the sides of the
prism destroy each other.

Let ABC be & vertical section of the prism per-

spendicular to its length, C
+ EF the uppcr surface of FG /\\
the fluid; ‘LM any par- L N

ticle of one of the sur-

faces of the prism. Draw O3
» LQ, MR horizontal, cut- * A A X
' ting off QR, a particle
, of, the opposite surface A

S N E
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of the prism. Draw LD, ME, QF, RG, vertical, to
the upper surface of the fluid. .

Since the plane ABC is pgrpendicular to the
length of the prism, the pressures on the sides of
the prism, which, by dxiom 5, are perpendicular to
the sides, are in the plane ABC. Take KL, perpen-
dicular and jequal to LM, to rcpresent the pressure
on LM, and draw NLH horizontal, and KH vertical,

By Prop. IV. Cor. 2, the pressures on the p‘articles
LM, QR are as LM x LD and QR x QF'; that is,
as LM and QR, because LD and QF are equal.
Therefore, if a line KL, equal to*LM, represent the
force on LM, a line equal to QR will represent the
force on QR. Let, therefore, PQ, perpendicular and
equal to QR, represent the force on QR, and draw
SQO horizontal and PO yertical. *

Since MLK, LHK are right angles, the angles
MLN, LKH are equal: and hence, LK being equal
to LM, the triangles KHL, LNM are equal in all
respects, so that LH = MN ;,also in like manner the
triangles POQ, QSR are equal in all respects, so that
0Q=RS. But MN is= RS ; therefore LH = 0oQ.

The force KL may be resolved into XH, HL, of
which HL is the horizontal part ; and the force PQ
may be resolved into PO, 0Q: of which 0Q is the
horizontal part ; and 0Q, HL have heen shew:n to be
equal : therefore the horizontal forces on the two par-
ticles LM, QR are equal and opposite ; ther.efore they
destroy each other. o

In the same manner, if any other lines be drawn
horizontally in the plane of the figure, they will cut off,
in the surface of the prism, opposite particles, on which
the horizontal forces will destroy each other; and the
horizontal forces on all such particles are the whole
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horizontal pressures of the fluid on the sides of the
prism.  Therefore the whole horizontal pressures de-
stroy each other. q.E.p.

Pror. B. If a body bounded by plane surfaces
be wholly or partially immersed in a fluid, the hori-
zontal prescures of the fluid on the sides of the body,
in any direction and its opposite, destroy 2ach other.

Let LM be a particle of the immersed surface of
the body, and on LM let a horizontal prism be con-
stituted, (of which QL is one of the edges,) meeting

R D

I,

pd

= o

L
M

K

the opposite surface of the body, and cutting off the
particle QR. Draw LD, QF, vertical lines, to the
upper surface of the flmd. Take KL to represcnt
the pressure on LM, and draw KH perpendicular on
QL produced. And let L7, Qq be the sections of the
horizontal column by vertical planes.

The force KL may be resolved into KH, HL, of
which HL is the horizontal force parallel to the line
LQ. Angd the whole force on LM is to this horizontal
force as KL to HL ; that is, by Lemma 7, as LM to
Lioras LD x LM is to LD x Li, But the whole
pressure on LM is the weight of the column of fluid
LD x LM, by Prop. IV, Cor.2. Therefore the hori-
zontal force on LM parallel to LQ is the column
LD x LL
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In like manner, it may be shewn that the’ hori-
zontal force 6n QR, parallel to QL, is the weight of
the column of fluid QF x Qg,,which is equal to the
column LD x LI, becausg, by Lemma 5, LI, Qq arg'
equal. ,

Therefore the horizontal pressures pn LM and
QR, parallel to the line LQ, are equal and opposite,
and therefore they destroy each other.

And, in the same manner, the horizontal 'pressures
on any other two opposite particles, parallel to the line
I.Q, destroy each other. And the sum of all such
horizontal pressures on opposite sparticles is the whole
pressure on the surface of the body parallel to LQ.
Therefore the whole of the horizontal pressyres parallel
to LQ destroy each other.

And, in like manner,, the whole of the horizontal
pressures parallel to any other horizontal line destroy
each other.

Therefore the whole of the horizontal pressures
in any direction and .its opposite destroy each other.
Q.E D.

SCHOLIUM.

The last two Propositions are® true of bodies
bounded by curvilinear, as well as by plane surfaces.
For the curvilinear figure is the limit of a polyhedral
figure of a great number of sides. ‘And wlifdt is true

up to the limit is true of the limit.
L]

Pror. C. When a bod} floats in a fluid, the'
centers of gravity of the body and of the fluid dis-
placed are in the same wertical line.

When a body floats, its weight is balanced by the
vertical pressures of the fluid on each particle of the
immersed surface of the body; and these latter pre-

M. E, B
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sures, by Prop. VI, are equal to ‘the weight of
vertical columns which would make up the fluid dis-
placed. And the weights of these vertical columns
will prodyce thé same effect as if they were collected
at their center of gravity, and ,acted upwards there,
(Book I. Prop. E.), that is, at the center of gravity
of the fluid displaced. And ¢he weight of the body
produces the same effect as if it were collectcd at
its center of gravity, and acted downwards there.
Therefore the two equal forces, one acting vertically
upwards at the center of gravity of the fluid displaccd,
and the other acting vertically downwards at the center
of gravity of the body, balance cach other. But
this cannot be, except they act in the same vertical
line; therefore the two centers of gravity are in the

’ . .
same vertical line. .ED. |
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SECTION II

bPD(‘IF)G GRAVITIES.

Der.1. The Speczﬁc Gravify of a substance is
the proportion of the weight of any magmtude of that
substance to the weight of the same magnitude of a
certain standard substance (pure water).

For example, if a cubic foot of stone be three times
as heavy as a cubic foot of pure water, the specific
gravity of the stone is 3. -

Dur. 2. The density is as the quantity of matter.
in a given magnitude, (I» 1. Art. 18), and the quantity
of matter is concgived to be as the weight: therefore
the density of a body is as the specific gravity.

Der. 3. When a body lighter than water is en-
tirely immersed in water, itetends to*ascend by a cer-
tain force which is called its levity.

Prop. VII. If DI be the magnitude of a
body, § its specific gravity, and W its weight, IV
varies as MS.

If the specific gravity increase in anyeratio, the
weight of a given magnitude increases in the same
ratio, by the Definition of specific gravity ;ethat is, the
.weight W yaries as the specific gravity §'; 8lso if the'
specific gravity be given, the weight W increases as the
',.magmtude M ; therefore by the Introduction, Art. 57,
‘ﬁf nenher S nor M be given, W varies as MS.

Cox If 4 be the weight of a unit of magnitude
" "of the standard substance (pure water), W = 4MS.
" - 5”2
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For W is equal to M§ with some multiplier, whole
or fractional, by the Proposition. And when M is 1,
and § is 1, by suppositien W = 4; therefore W= AMS
in all cases,

SCHOLIUM.

o0
The weight of a cubic foot of water (4) is 63
pounds avoirdupois nearly.
The following is a list of the specific gravity of va-
rious substances; the standard (1) being pure water :—
Gold......... rerene weens 19.3
Mercury ....coveveeie.. 136
Lead .......c.ccooiiien 118

. Silver weeevieiinecanes . 105
Copper...... SO ceee 89
Iron eceieiveenenvennennes 7.3
Marble ....eeuun....... . 27
Water ...oevvevnnnnn.. . 1.0
Oak ..oovvvviienenvenes. 1.2
Fir ceveevennn.... .50
(00) 3 S 2%
. 1
Air Lo ceenen .00125 or
800
EXAMPLES.

. To find the weight of a cubic inch of silver.
The formula W= AM.S being applied in this case,

. . 1 .
4 is 63 pounds, M is 1 inch, or 78 foot, § is 10.5;

63 x 10.5 ) 16 x 661.5
whence W= -- ounds = —- ounces
1728 P 17

= 0.1 ounces.
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2. To find the weighf of 10 feet square of gold
leaf one thousandth of an inch thick. *

N i 3 1215,
§ =19.3, IV=—1X 190 =1 >9

M =100 x g
120 120

12000
1 3
= 10.1 pounds.
3. T.o find the we}ght of a cubical block of
marble 1000 feet in the side.
W = 63 x 1000° x 2.7 = 130100000000 pounds
= 58531250 tons.
4. To find the weight.of a golumn of air one inch
base and 5 miles high.

§ 5 x 5280 63 x 5 x 110
W 063 x —- x 00125 = —e——
14% 3 x 800

= 14 poundb.'

Provr. VIII. When a body of uniform density
floats on a fluid, the part immersed is to the whole
body as the specific gravity of the body is to the
specific gravity of the flufd. ’

For the magnitude of the part immersed is to that
of the whole body as the fluid equal in bulk to the part
immersed is to the fluid equal in bulk-to the whole body.
But the fluid equal in bulk to the part immersed is equal *
in weight to the whole body, hy Prop. VI. Therefore
the part immersed is to the whole @ the wcight of the
body is to the weight of an equal bulk of fluid; that
is, by the Definition of specific gravity, a¢ the specific
gravity of the body to that of the fluid. Q7E.p.

Pror. IX. When a body is immersed in a
fluid, the weight lost in the fluid is to the whole
weight of the body as the specific gravity of the
fluid is to the specific gravity of the body.
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When_the body is wholly immersed, the pressure
of the fluid vertically upwards 3s cqual to the weight
of a bulk of fluid equal (o the body, by Prop. VI. But
this pressur> upwards diminisbes the weight of the body
when it is immersed in the fluid, ard so much weight is
lost.  Thercfore the weight lost in the fluid is equal
to the weight of a bulk of fluid equal to the body.
And the specific gravity of the fluid is to the specific
gravity of the body, as the weight of a bulk of Huid
equal to_the body is to the weight of the body (Def);
that is, as the weight lost is to the whole wecight.
Q.E.D.

Pror. X. To deseribe the hydrostatic ba-
lance, and its usc in finding the specific gravity of
a body.

First, when the body is heavier than the fluid in
which it is weighed (water).

The hydrostatic balance is a balance in which a
body (P) can be weigheld, |
either out of water, in the
scale 4, in the usual manner, l&
or in the water (as at ). lA

In order to find the spe-
cific’ gravity of any body, R w @3
let it be weighed out of i
water, and in water; the difference is the weight
lost in water; and hence the specific gravity is known
by the last Proposition.

Cor. If U be the weight of the body out of
water, V the wecight in water, W the weight of an
equal bulk of water, and . the specific gravity,

v
w o U-V

W=U-V, and §=



BOOK II. HYDROSTATICS, SECTION IIL 103

Sccondly, when the body is lighter than water.

Let the proposed body be weighed out of water ;
also let it be fastencd to a sinker of which the weight
in water is known, ands let the compound body be
weighed in water.

The excess of the weight in water f the sinker,
above tha weight iif water of the compound body,
is the levity of the proposed body : for by attach-
ing the proposed body, its levity or tendency up-
wards in water diminishes the weight in water of the
sinker, .

The levity of the proposed body, together with its
weight out of water, are equal to the weight of an
equal bulk of fluid; for the levity of the body in
water is the excess of the pressure upwards above the,
pressure downwards ; that is, the cxcess of weight of
an equal bulk of fluid above the weight (out of water)
of the body.

Ience the weight of an equal bulk of water is
known, and hence the spegific gravity, by the Defi-
nition of specific gravity.

Cor. If U be the weight of the body out of
water, @ the weight of the sinker in water, and R the
weight of the compound body in water.  The levity of
the proposed body is @ — R.« Hence Q - B + U is
the weight of an cqual bulk of fluid ; and

U
§= Q-R+U .

Ex. The weight of the body is 2, and.by attach-
ing to it a sinker which weighs 4 in water, the com-
pound body weighs 8 in® water. Therefore the levity
of the body is 4 — 3 or 1, and the weight of an equal
bulk of fluid is 2 + 1 or 3. Hence the specific gravity
is £,
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Prop. XI. To describe the common hydro-
meter, and to shew how to ‘compare the specific
gravities of two fluids by means of it.

The common Hydrometer is an instrument con-
sisting of a body and a slender stem, and
of such specific gravity that in the fluids,
for which it is to be used, it floats with
the body wholly immersed and the stem
partially immersed.

The part immersed is to the whole as the
specific gravity of the body is to the specific
gravity of the fluid (Prop. VIII); andif the
specific gravity of the fluid vary, the part
, immersed will vary in the inverse ratio of
the specific gravity. ,

But since the stem is slender, small
variations of the part immersed will occupy
a considerable <pacc in the stem, and will
be very easily ascertained.

If the magmtudc of the whole instrument be repre-
sented by 4000 parts and each of the divisions of the
stem by 1 such part; and if the whole length of the
stem contain 100 such parts, the instrument will mea-
sure with great accuracy specific gravitics of fluids
within certain limits.

Let ti-o fluids De compared with a certain ¢ proof™
standard, as 50, in the middle of the scale. If the
instrument .ink to 30, the specific gravity of the fluid
is known. For the part immersed is 4000 — 30, or
3970: and the ¢ proof” fluid, the part immersed is
4000 - 50, or 3950. Therefore the specific gravity
of the fluid is to that of % proof fluid” as 3950 to
3970, or as 395 to 397.
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SECTION® III.

LLASTIC I'LUIDS. ~
. L
Pror. D. Inpucrivi Princieie I. Water and

other liquids have weight in all situations.

The facts included in this induction are such as
the following -—

(1). Water falls in air as solid bodies do.

(2)- A bucket of water held in air is heavy and
requires to be supported in the same madust as a
solid body. .

L]

(°y A bucket of water held in water appears less
heavy than in air, and may be immersed so far as
not to appear heavy at all.

(1). A lighter liquid, remains, at rest above a
hcavier, as oil of turpentine upon water.

(5).  The bodies of divers plants, and other T organ-
ised bodies, though soft, are not compressed or JnJured
under a (ousld(.rable depth of water.

The different effects (2) and (3) led to the' doc-
trine that all the elements have their propesr places, the
place of earth and heavy solids being lowest, of heavy
fluids next above, of light fluids next, of air next; and
that the clements do not gravitate when they are in
their proper places, as water in water ; but that water
in air, being out of its proper place, gravitates, or is
heavy. In this way alsb (1) and (%) were explained.

But it was found that this explanation was not
capable of being made satisfactory ; for—(6) a solid
body of the same size and weight as the bucket of water

) 5—5
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in (8) gave rise to the same results; and these could
not be explained by saying that the solid body was
in its proper place.

These facts can be distinctly explained and rigor-
ously deduced, by introducing the Idea of Fluid
Pressure ; and the Principle that water is a heavy
fluid, its weight producing effec.s according to the
laws of fluid pressure.

Yor on this supposition (1) and (2) are explained,
because water is heavy; and (3) is explained by the
pressure of the fluid upwards against the bucket,
according to Propositions I., TI., IV.

Also it may be shewn by experiment that in such
a casc as (1) the lighter fluid increases the pressure
‘which is inserted in the lower fluid.

Tacts of the naturc of (5) are explained by con-
sidering than an equal pressure is exerted on all parts
of the organised structure, in opposite directions ;
such pressures balance cach other, and no injury re-
sults to the structure, except in some cases a gencral
contraction of dimensions. If there be a communi-
cation between the fluids which are within the struc-
ture and the fluid in which it is placed, these pressures
are exerted from within as well as from without, and
the balance is still more complete.

Also all the otker observed facts were found to
confirm the idea of fluids, considered as heavy bodies
exerting fluid pressure: thus it was found—(7) that
a fluid presses downwards on a lighter body which is
entirely immersed ; and presses upwards on a heavier
body which is partially imimer'sed ; and presses in all
directions against surfaces, according to the deduc-
tive Propositions which we have demonstrated to
obtain in a heavy fluid.

<
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Pror. XII. Ingucrive Princiree II.
Air has weight.

The facts included in this induction are such as

the following :—

(1). JWe, existing in air, are not sensible of any

weight l)elongmrr to it. .
L4

(2). Bubbles of air rise in water till they come
to the surface.

(3). If we open a cavity, as in a pair of bellows,
the air rushes in.

(+#). Ifin such a case air cannot entcr »~4 water
can, the water is drawn in; as when we draw wateg
into a tube by suction} or into a pump by raising
the piston.

(5). If a cavity be opened and nothing be allowed
to enter, a strong preswu is exerted to crush the
sides of the cavity togetlier.

If facts (1) and (2) were e\plamed at ﬁrst by
saying that the proper place of air is above water ;
that when it is in its proper place, as in (1), it does
not gravitate (as.in Prop. D.), but that when' it is
below its proper place, as in (0), it tend upwards to
its place ; the facts (8) (4) (5) were explamed by say-

ing that nature abhors a vacuum.
.

But it was found by experiment :—

(6). That water could not by suction or by a
pump be raised more than 34 feet; and stood at that
height with a vacuum above it.

(7). 'That mercury was supported in a tube with-
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a vacuum above it, at the helght of 30 1nches (Torri-
celli’s experiment).

(8). That at the top of a high hill this column of
mercury was less than 30 inches (Pascal’s experiment).

These facts overturned the explanation derived
from nature’s horror of a vacuum.; for men gould not
suppose that nature abhorred a vacuum less at the
top of a hill than at the bottom, or less over 34 feet
of water than over one foot.

But all the facts were distinctly explained and
rigorously deduced by adopting the fdea of fluid
pressure, and the Pr mmpla that air has weight, its
weight. praducing its cffects according to the laws of
fluid pressure. This will be seen in the Deductive
Propositions which we shall demonstrate as the con-
sequences of assuming that air has weight.

The Inductive Proposition was further confirmed
by—(9) experiments with the air-pump; for it ap-
peared that as the‘receiver was exhausted the mercury
in the Torricellian experiment fell.

Prop. XII1. Inpucrive Privcrere 111.
Air is elastic; and the elastic force of air at a
giveri temperaturé varies as the density.

The facts which shew air to be clastic are such
as follow :—

(1). A 9ladder containing air may be contracted
by pressuré, and expands again when the pressure
is removed.

(2). A tube closed above and open below, and con-
taining air, being immersed in water, the air contracts
as the immersion is deeper, and expands again when
the tube is brought to. the surfage.
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(8). If a close vessel, containing water and air,
fitted with a tube making a communication between
the water and the exterior, be placed in the exhausted
receiver, the water is cxpelled through the tube.

The principle that the elastic force increases in
proportion to the density, was experimentally proved
(first by Boyle™) in® the following manner :—

A uniform tube 4BCD was taken,
closed at A and open at D, and bent
so that B4 and CD were upright at
the same time. Quicksilvep was poured
in, so that its ends stood at A and
P. Again, more quicksilver was poured
in, so that its ends stood at N and
Q. And Pp, Qg Dbcing horizontal,
AQ and Ng were measurdd.

And the observations of the results
of this cxperiment were registered as
in the two first columns of the aunexed
table, . *

W @ 6 @
AQ | Ng i Barom, | Press.
in. i in. in.

n
12! 0] 30 30
10| 6] 30 30

6 | 30 30 Go
4 | 60 30 90

8 | 15 30 - 45 T

F |

N4

9

)

axN

The whole pre‘ssure on the air 4Q at Q is the
pressure of the column Jf mercury Ng, together with
the pressure of the atmosphere upon N. The latter
pressure being taken to be equal to 30 inches of mer-

* Shaw’s,Bgyle, Vol. 11. p. 671.
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cury, as in column (3), and added to Ngq, we have, as
in column (4), the pressure upon the air 4Q. And it
appears by comparing columns (1) and (4) that this
pressure is always inversely as the space occupied by
the air ;

for 10 : 6 :: 650 : 30,

and so for any other of the observations.

Now the pressure on the air AQ at Q is balanced
by the elastic force of the air in 4Q ; these two forees
acting upon the same surface, namely the surface of
the mercury at Q. And the pressure upon Q has
been found to be inverscly as 4Q; therefore the elas-
ticity"of=the air in AQ is inversely as AQ; that is,
inversely as the space occu'picd.

The quantity of air remaining the same, the den-
sity is inversely as the space occupied: therefore the
clastic force is as the density.

Pror. XIV. Inpucrive Princirre 1V,
The elastic force of air is increased by an increase
of tefiiperature.

The facts included in this induction are such as
the followmg —_—

m. It g bladder partly full of air be warmed it
becomes more completely full.

(2). IY an inverted vessel confining air in water
be warmed the air escapes in bubbles

It was experimentally cascertamed how much
the elastic force of air is"increased by heat (first
by Amontons*) in the following manner :—

* Mem, de1’Acad. Roy. des Sciences de Paris. 1699. p 113.
¢ ¢
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A bent tube 4BC, wish a bulb D con-
taining common air, Was filled yith mercury
from B to E, B.being 3 inches higher than
the horizontal plane E¢. *The bulb was thef
placed in boiling water, and it was found
that a small portion of*the mercury was
driven outof the bulb, so that the extremity
of the column was clevated to ¥, BF being+
11 inches.

. . B/
The air occupied very nearly the same

space in the last case as In tht first; for

the bore of the tube was very small, and o
the surface of the mercury continued nearly ©
in the same position at k. The pressure
on the air in D at first is the pressure of the atmosphere
(30 inches of mercury,) together with the weight of
the column Be (3 inches;) therefore it is 33 inches.
And the pressure on the air in D when immersed in
boiling water is, in the same manner 39 inches, together
with the weight of the column F'e (which is 14 inches ;)
that is, it is 44 inches; that is, air, in this experiment,
has its elasticity increased from 33 to 44, by Tieating
the water to boiling: that is, the clasticity was in-
creased one third.

W
Propr. XV. To describe tlie construction of
the air-pump and its operation.

L

A wvalve is an appendage to an orifice, tlosing it,
and opening in such a manuer as to allow fluid to pass
through the orifice in one dircction and not in the
opposite direction.

A piston is a plug capable of sliding in an orifice
or tube so as to prod‘u?e or remove fluid pressure.
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The Adir-pump consist: of a barrel and piston with
valves, the suction-pipe com-

municating with a close vessel .
called the receiver.
Let AB be the barrel, B E

the inwards-opening valve at,
the bottom of the barrel, D C ‘G "_E
the pistéa with its outwards- ——=
opening valve, BC the pipe, E the recciver.

The piston D being in its lowest position, is raised
to its blghost position by the handle /7. During the
rise no air is admitted at D; and the air in (’]), by
its elasticity, expands and follows the piston in its

.gscent, passing through the valve B; and thus air i
drawn out of the receiver £

The piston is then made to descend again to its
lowest position: no air returns through the valve 73,
and the air in BD escapes by the valve at D.

The piston is again raised, and more air is drawn
out of E as before: and so on without limit.

Pror. E. To cxplain the construction of the
siphon-guage.

The Siphon-gauge is a twice-bent tube, closed at
one end, containing fluid, fixed to an L
air-pump C or other machine, to detecrmine
the degree of rarcfaction of the air.

Let GHKL, closed at L, be the siphon-
gauge, (fixed to G in the last or in the next
Proposition), and let MAN.be a portion of
the tube filled with mercury, LN being a
vacuum. Then the vertical height of N G
above M measures the density pf the air in GHM.

3 1 *
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If GHM were a vacuum (that is, if the exhaustion
in the air-pump were complete) M, N -would be at
the same level.

Pror. XVI. To describe the condenser and
its operation. . .

The C8ndenser consists of a barrel and piston with
valves, opening the contrary way from <
thosc of the air-pump, and communicating
by a pipe with a closed receiver.

Let AB be the barrel, B the outwards-
opening valve at the bottom of the barrel,
D the piston with its inwards-opening
valve, BC the pipe, E the receiver.

.

The piston D being in its highest |
position, is forced to its lowest position
by the handle Z{. During the descent ———
no air escapes through D, and the air in BD is driven
through the valve B, and "increases the quantity in
the recciver E.

E

The piston is then made to ascend, and ‘no air
enters the barrel at B, because the valve opens out-
wards; but air enters the barrel BD by the valve D.

The piston is again forced down, and mgre air is
diiven into the receiver E as before: and so on with-
out limit. .

The pipe BC has a stop-cock F, and when this is
closed, the pump may be screwed off, after the con-
densation is made. .

’
Prop. XVII. To explain the construction

of the common barometer, and to shew that the
o
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mercury in the tube is sustained l;y the pressure
of the air on the surfacc of the mercury in the
basin. ) ’

A Baiometer is a (glass) tube, closed t
at one end and open at the other, which,
being filled“with a fluid (as mercury) is

inverted with its open end in a basin, In A
any place, the fluid stands at a certain
height (if the tube be long enough,) leav- IrH

ing a vacuum above.

Since the air has weight, it presses upon
the surface CD of the mercury in the
basin, and this pressure is resisted by the
pressurc of the column of mercury PAf,

-warising from its weight.  The mercury in
the tube is sustained by the pressure of
the mercury in the basin ¢'D, which pres-
sure again is sustained by the pressure of

the atmosphere on the surface of the mer- , .
mp o b
cury in the basin. C N

Pror. XVIII. In the common barometer,
“the ‘pressure of the atmosphere is measured by
the height of the column of mercury above the
surface of the mecrcury in the basin.
Let 4.M be the vertical tube, 4 its closed end, CD
the basin and M P the height at which the fluid stunds.
The upper parts of the atmosphere are less dense
than the lower ; but so long as the whole is in cqui-
librium, this condition does not affect the laws of fluid
pressure; and Propositions Iv, 1L, IIL, IV, V., VL,
of this Book will be still tr ie.
Take, on the surface of the basin, NO equal to

- NM, the horizontal section of the tube; and suppose
( v
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a tube HN, with vertical sides, standing on the base
NO, to be continued upwards to the limits of the
atmosphere. By Axiom 3, if all the rest of the atmo-
sphere become rigid the pressure is not altgred ; and
hence by Prop. 1V., the pressure upon NO is equal
to the weight of the colugn ZZN. But on this sup-
position, the pressures on AN, NO are cqual, by
Prop. I.  And the pressure on AN is equal to the
weight of the vertical colomn of mercury M P.  There-
fore the weight of the column of mercury is cqual
to the weight of the column of atmosphere on the
sume base. Therefore the 'woight of the column of
atmosphere is measured by the weight of the column
of mercury ; that is, the pressure of the atmosphere
on a surface equal to the section of the tube made at_
the surface of the mercury in the basih, is equal to
the weight of the vertical column of mercury which
stands on the sanic section.

Thercfore the pressure of the atmosphere is mea-
sured by the weight of the golumn of mercury, that
is, by the height, if the section and the density con-
tinue constant; for the weight of a column is as
section x height x density. o

Cor. 1. If, instcad of mercury, the tube be filled
with any other fluid, as water, the fluid will stand at
such a height as to support the wejght of the atmo-
sphere ; and the height will be greater as the density
of the fluid is less. <y

The mean height of the mercury-barometer being
30 inches, and the specific gravity of mercury 13.6,
the mean height of the svater-barometer is 13.6 x 30
inches = 408 inches = 34 f(’:t.

Cor. 2. If the tube AM be not vertical, the

Proposition is still true, the vertical height of 4 above
1
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M Dbeing still taken for the height of the fluid; for
the pressuré on MN is the same as if AM were
vertical, by Prop. II.

Cor. 3. If the portion of the tube 4P*, instead
of being empty, contain air”of less density than
the atmmphete, a column of fluid PM will still be
sustained, smaller than the column where 4P is a
vacuum'; for if P were to descend to B, the pressure
on MN would be less than the pressure on NO, which
is impossible.

Cor. 4. If a tube 4M+, inclined or vertical,
having its lower end, A/, immersed in a fluid, and its
upper end, 4, closed, be full of water; the water will be
supported if the vertical height of 4 above A be less
than the height of the watc.-barometer.

In this case if HM be the height of the water-
barometer, and if AP, drawn horizontal, mecet I1/M
in P, the pressure upwards on the fluid at M would
support a column of watcr of the vertical height HM.
The pressure arising from the water in 4M is equi-

. valent,to the weight of a column of the height PM
(Prop. 1V). Thercfore the pressure upwards at M
will support the column AM ; and will, besides, pro-
duce at 4, a pressure upwards equal to the weight
of a column HP.

Cor. 5. If the interior of a tube AM +, inclined
or verticaly havmg its lower end M immersed in water,
and its upper end 4 closed, become a vacwum, (that
is, empty of air as well as other fluids) the fluid will
rise in the tube; and will fili the whole tube or part of
it, according as the vertica*height of the closed end is
less or greater than the height of the water-barometer.

* See fig. p. 114, t See fig. p. 119,
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TFor when thé surface within the tube is not pressed
by the column of fluid reduisite to produce cquili-
brium, the pressure on the other parts of the surface

will prevail, and drive the fluid into thc. vacuuni.
(Axiom 3.)

[

Pror. X1X. Tq deseribe the construction
of the comimon pump, and its operation.

The Common Pump consists of a cylind rical barrel
AB, closed at bottom with an up-
wards-opening valve B, and of a
piston ) with an upwards-opcning
valve, which moves up and down
in the barrel. A suction-pipe BC
passes downwards from the valve
B to the well at C, and the water
which rises above the piston is de-
livered by the spowt E.

The operation of the pump is
as follows. The piston D being in
its lowest position, is raised to its lc
highest position by means of the lever HKL. Since
the valve D opens upwards, no air is admittegt at D
during this risc; and since the valve B opens up-
wards, the air which occupied CD follows the piston in
its ascent; in consequence of its elasticity (Prop. XIIT)
it expands, and its pressure on the water ataC is di-
minished. Hence the water in the suction-pipe rises
by the pressure of the atmosphere on the ssurface of
the well to some point F. (Cor. 3 to Prop. XVIII).

The piston is then made to descend to its lowest
position, the valve B is closed, and therefore the quan-
tity of air in F'B is not chelyged, and the water remains
at F, while the air in ZD escapes by the valve at D.

The piston is then again raised, the air in DF
)
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expands as before, and the surface of the water at F
comes to a new position at G.

The same movements being repeated, the water will
again rise; avd so on, till it rcaches the piston D,
.1f't(,r which time the piston in its ascent will lift the
water, and when it has lifted it high enough, will
deliver it out at the spout .-

Cor. 'The water in the common pump is raised
by the weight of the atmosphere, and cannot be raised
to a height greater than that of the water-baromcter.
(See Prop. XII.) The height of the water-barowmeter
is 34 feet (Prop. XVIII. Cor. 1.)

Pror. ‘Q.i To deseribe the construction of
the’ forcing pump and its operation.

The Forcing Pump ccnsists of a cylindrical bar-
rel A, closed at bottom with an upwards-opening
valve B; of a piston D with no valve; and of a
spout I£ with an outwards-opening valve. The pis-
ton moves up and down, and the suction-pipe de-
scends from the bottom of the barrel to the well, as
before, and the spout carries the water upwards.

Tt operation of the pump is -
as follows. The piston D, in as-
cending from its lowest to its high- {A\k
est pasition, draws the water after it
as in the.common pump. When the
piston descends, the air is forced g L
out at the valve £; and after a B
certain number of ascents, the water
comes into the barrcl 4AB. When
the piston next descends it forces
“the water through the valyy, E, and
continues afterwards to draw the
water through the valve B in its
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rise, and to exfrude it through the valve E in its
descent, by which means 1t is forced into the tube
EF, which may be upright, or !n any other position.

Coxr. By means of the, forcing g pump water may be
raised to any height; the tube EF being prolonged
upwards, and an adequatg force applied o force the
piston dowpwards. e *

Pror. XXI. To describe the siphon and
its action.

A Siphon is a bent tube, open at both ends, and
capable of heing placed with one end in a vessel of
fluid, and the other end lower than the upper surface
of the fluid in the vessel.

’ Let BAC be the bent tube placed so that the

end B is immersed in éhe water FED, and the

outer end (' is below the surface ED.

If the tube BAC be filled with water, and if the
vertical height of the portion A4 1
be less than the height of the water-
barometer, the tube will act as a
siphon, that is, the water will con-
stantly run through the tube BAC
and out at C.

For the tube being filled with
water, let the end (' be stopped; and
let J1M be the height of the water-¢
barometer'; AP, CQ horizontal.
Suppose HM to be a column of water of !he height
of the water-barometcr; and supposc the Swater in
the tube HMAC to remain fluid, while all the rest
becomes rigid: the pressures at M, 4, and C will
not be altered by this su'yposition (Axiom 3). But
on this supposition the pressure downwards at C
is equal to the height of a vertical column HQ
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(Prop. IL) And the pressure of ‘the atmosphere
upwards at.C is cqual ‘to the weight of a vertical
column AM (Prop. XVIIIL. Cor. 2). Therefore the
column AC, being acted upon by a pressure down-
wards equal to the weight of a column HQ, and a
pressure upwards equal to the weight of a column
HM, if the tube be opencd at C, the former will
prevail and the column AC will descend. 4

Also the column A7 4 will ascend, so that no inter-
val shall exist in the fluid at 4. Tor the interval,
if any should take place, must be a vacuum, since
the air has no access to it. And since the vertical
height of M4 is less than that of the water-barometer,
by Cor. 5 to Prop. XVIIL, the fluid will rise in
_the tube and will fill this vacaum.

Therefore the whole fliid MAC will move along
the tube and flow out at C.

Cor. 1. The fluid in the siphon BAC will be urged
in the direction BAC by a force cqual to a column of

fluid MQ.

Cgogr. 2. If the vertical hcight of M4 be greater
than that of the water-barometer, there will be a
vacuum formed above the fluid at 4 (Prop. XVIIL
Cor. 5), and the siphon will not act.

Cora 3. Alwo, if instead of water and the water-
barometer, we had taken any other fluid and the cor-
responding baromcter, the reasoning, and the result,
would have been the same as above.

Pror. F. Inoverive Privarie V.  Many (or
all) fluids expand by heaty and the amount of expan-
sion at the heat at which water boils, and at the heat
which ice melts, are each a fixed quantity.
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The former part of this proposition is proved by

including the fluids in Bulbs, which- open into a

.slender tube; for a small expunsion of the fluid in

the bulb is easily scen, when it takes place in the
slender tube.

L ]

It was at first supposed, that when & fluid is ex-
posed to heat, (as, fof instance, when a vessel of water
is placed on the fire,) a constant addition of beat takes
place, increasing with the time during which the fire
operates.

But it appeared, that when a tube containing air is
placed in water thus exposed to heat, the expansion of
the air (observed in the way described in Prop. XIII)
goes on till the fluid boils, after which no additional
cxpansion takes place. . :

This fact is explained by assuming the expansion
of air as the Measure of heat, and by adopting the
Principle that the heat of boiling water is a fixed
quantity.

. .

"T'his principle was first experimentally established
by Amontons. Afterwards it was ascertained by,
Fahrenheit (1711), and others, that the cxpansion of
oil, spirit of*wine, mercury, at the heat at which water
boils, is a fixed quantity ; and hence Fahrenheit made
the boiling point of water one of the fived points of his
thermometers, which were filled with spirlt’ of wine
or with mercury.

For another fixed point he took the cold, produced
by a mixture of ice, water and salt; and he assumed
this to be the point of ab.solute cold.

But it was found by*.Reaumur (1730), that the
JSreeving point of water, or the melting point of ice, is
more fixed than the point of absolute cold determined

M. E. e 6
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in the above manner. This was proved in the same
manner in which the heat®of boiling water had becn
proved to be a fixed point. The freexing point was
then adopted as one of the fixed points of the measure
of heat.

Pror. XXII. To shew_how to rrraduate a
common thermometer.

The common Thermomeler is an mstlumcnt con-
sisting of a bulb and a slender tube of uniform thick-
ness, containing a fluid (as mercury or spirits of wine)
which expands by heat and contracts by cold, so that
its surface is always in the tube*.

Let the instrument be placed in boiling water, and

«lot the point to which the surface of the fluid expands
in the tube be marked as thée* boiling point.

Let the instrument be immersed in melting icc,
and let the point to which the surface of the fluid con-
tracts in the tube be marked as the freesing point.

For Fahrenheit’s divdsion, divide the interval be-
tween the freezing point and the boiling point into 180
*equal parts ; and continue the scale of equal parts up-
wards and downwards. Place 0 at 32 parts below the
freezing point, 32 at the freezing point, 212 at the boil-
ing point ; and the other numbers of the series at other
conveniet points, and the scale is graduated, the num-
bers expressing degrees of heat according to the place
of the surface of the fluid in the tube. -

For the centigrade division, divide the interval
between the freezing and boiling points into 100 equal
parts ; mark the freezing pojnt as 0 degrees, the boil-

_ing point as 100 degrecs, a:l;l so on as before.

* In practice, the part of the thermomecter not occupied by the thermo-
metrical fluid is rendered a vacuum.
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Pror. XXIII. To reduce the indications of
Fahrenheit’s thermometer to the centigrade scale,
*and the converse. .

.o & .
To reduce Fahrenheit to centigrade, subtract 32,
which gives the numb®r of degrees abave the freezing

point: and multiply 'bS’ ;—), becaus¢ 180 degrees of

Fahrenheit are cqual to 100 centigrade.
Thus
. ‘ 5 % 27° .
590°F =27F above 320F = — 5 centig. above 0
= 15° cent.
To reduce centigrade to Fahrenheit, multiply by

9 . . .
=, which gives the numlfer of Fahrenheit’s degrees
Ie)

above the freczing point, and add 32, which gives the
number above Fahrenheit’s zero.

Thus . .
6o centig. = 90F above freczing = 0F + 32F = 122 F.

62
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NOTES RESPECTING TIIE EXAMINATIONS }N
THE PRECEDING SUBJECTS. .

UNIVERSITY REGULATIONS.

PLAN® OF EXAMINATION FOR QUESTIONISTS WHO ARE NOT
CANDIDATES FOR HONORS.

1. Tuar the subjects of the Examination shall be the first
fourteen, or the last fourteen Chapters of the Acts of the Apos-
tles, and onc of the longer, or two or more of the shorter
Epistles of the New Testament, in the original Greek, one of the
Greek and onc of the Latin Classics, three of the six Books of

_Paley’s Moral Philosophy, the History of the Christian Church
from its Origin to the assembliny of the Council of Nice, the
History of the English Reformation, and such mathematical Sub-
jects as are prescribed by the Grace of April 19, 1837, at pre-
sent in force.

2. That in rcgard to these Subjects, the appointment of the
Division of the Acts—of the f£pistle or Epistles—of the Books
of Paley’s Moral Philosophy, and both of the Classical Authors
and of the portions of their Works, which it may be expedient
to select, “shall be with the persons who appoint the Classical
Subjects for the Previous Examination.

8. That public notice of the Subjects so selected for any year
shall be issued in the last week of the Lent Term of the ycar

next but dne preceding. .

4. That the Examination shall commence on the Wednesday
preceding the first Monday in the Lent Term.

5. That on the Monday previous to the commencement of
the Examination the Examiners shall publish the names of the
persons to be examined, arranged’in alphabetical order, and sepa-
rated into two divisions. ¢ .

6. That the distribution of the Subjects and Times of Ex-
amination shall be according to the following Table:
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!Div. 9to12. | Div. 12} to 3.
'Wednesduu.;: 1 |Euclid.. =M 2 |Greek Subject. [
Thursday... 1 |Greek gubject .. 2 {Euchd...
Frday......| 1 |Mechanicsand llyﬂrostutxcs 2 |Latin Splﬂect ..
Saturday 1 |Latin Subjecs.....cccueee veeeee 2 |Mechanicsand Hydlo:t&t)cs
Monday..... j 1 Paley and Eecles. lfistory."] 2 |Actsand Epistle or Epistles.
Tuesday .. 1 Actsand Epgtle or Episties.] 2 |Paley and Eccles, History...
w rdnesduq 1 |Arithmetic and Algebra...... 2  Arithmetic and Algebra..... |

7. 'lhat thL Examination shall be conducted cntu-ely by
printed papers.

8. That the Papers in the Classical Subjects and in the
Acts and Epistles shall consist of passages to be translated, accom-
panicd with such plain questions in Grammar, History, and
Geography, as arise immediately out of those passages.

9. That the Papers in the Mathematical subjects shall consist
of questions in Arithmetic and Algebra, and_of Propositions in
Euclid, Mechanics, and Hyd?osmtlcs, ucoordmw to the annexed
schedule.

10. That no person shall be approved by the Examiners,
unless he shew a competent knowledge of all the subjects of the
Examination.

11. That there shall be tiree additional Examinations in
cvery year; the first commencing on the Thursday preceding
Ash-Wednesday, the second on the Thursday precedmg the Divj-
sion of the Easter Term, and the third on the Thurscfuy prcwdmg
the Division of the Michaclmas Term.

12. That in thesc additional Examinations the distribution of
the subjects and the hours of the Examination shall be at the
discretion of the Examiners, the subjectsebeing the same as at the
Examination in the preceding January.

13. That no person shall be allowed to attend any Examina-~
tion whose name is not sent by the Preelector of his College to the
Examiners before the commencement of the Examination.

14. That in every year at the first Congregation after the
10th day of October, the Senate shall elect four Examiners, (who
shall be Members of the Scate, and nominated by the several
Jolleges according to the cycle of Proctors and Taxors) to assist
in conducting the Examinations of the three following terms.
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15. That two of these Examiners shall confine themselves to
the Classical Subjects, and twe to Paley’s Moral Philosophy,
Ecclesiastical History, the Acts of the Apostles, and the Epistles.

16. That the two Examiners in the Mathematical Subjects, at
the Examination in January, be as hitherto the Moderators of the
year next but ohe preceding ; and that at the other three Examina-
tions the Moderators for the time beiﬁg examine in the Mathe-
matical Subjects. .

17. That cach of the six Examiners shall receive £ 20 from
the University Chest.

18. That the Pro-Proctors and two at least of the Examiners
attend in the Senate-House during each portion of the Examina-
tion in January.

19. That the first Exwminafion, under the Regulations now
proposed, [that is, in the theological subjects] shall take place
in the Lent Term of 1846.

ScuEDULE oF MATHEMATICAL Sunseers of Examination, for the
= degree of B.A of Persons not Candidates for Honors.
Anrvromuric,

Addition, subtraction, multiplication, division, reduction, rule of
three ; the same rules in vulgar and decimal fractions : practice,
simple and compound interest, discount, extraction of square
and cuhe roots, duodecimals: tqgether with the proofs of the rules
and the reusons Jor the processes employed *.

ALGEBRA.
* 1. Definitions and explanation of algebraical signs and terms.

2. Addition, subtraction, multiplication and division of simple
algebraical quantities and simple algebraical fractions.

8. Algebraical definitions of ratio and proportion.

4, Ifa : b = ¢ : d then ad=be, and the converse:

v alsobta:nd:e
anda:ec b:d

sgpda+db:bic+d i d
5. Ifa:b:c:d
andc:dz:ue:f
thene: b e f
G. Ifa:b:xc:d,
andb:e ud:f,
thena:e :c: f

" Added by Grace, March 20, 1846,
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7. Geomctrical definition of proportion. (Euc. Book v. Def. 5.)

8. If quantities be proportional according to the algebraical
dcfinition, they are proportional agcording to the geometrical
definition.

9. Definition of a quantity varying as m.]othcr,.dircctly, or in-
versely, or as two others Jgintly.

10.  Easy equations of a degree mot higher than the second in-
rolving ong or two unknown quantztle.s and questions producmy
such equatwns

Eucrin's Emmmms.
Book 1. 1. 1L
Book vi. Props. 1. 2. 3. 4. 5. 6.
Mecianies.
Definition of Foree, Weight, Quantity of Matter, Density,
Mecasure of Force.
. The Lever.
Definition of the Lever. .
. Axioms.

Prop. 1. A horizontal pYism or cylinder' of uniform density
will preduce the same effect by its weight as if it were collected at
its middle point.

Prop. 2. If two weights acting perpendicularly on a straight
Iever on opposite sides of the fulcrum halance each other, they are
inversely as their distances fromethe fulcrum ; and the pressnre on
the fulerum is equal to their sum.

Prop. 3. If two forces acting perpendicularly on a straight
lever in opposite directions and on the same side of%he fulerum
balance each other, they are inversely as their distances from the
fulerum; and the pressure on the fulerum is equal to the difference
of the forces.

Prop. 4. To cxplain the kind of l:vcrs

Prop. 5. If two forces acting pu'pendxcularl& at the extre-
mities of the arms of any lever balance each other, they are in-
versely as the arms. .

Prop. 6. If two forces acting at any angles on she arms of any
lever balance cach other, they are inversely as the perpendiculars
drawn from the fulerum to.the directions in which the forces act.

Prop. 7. If two weightssbalance each other on a straight lever
when it is horizontal, they will balance each other in every position

of the lever.
* Added by Grace, March 20, 1846.
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Composition and Resolution of Forces.

Definition of Component and' Resultant Forces.

Prop. 8. If the adjacent sides of a parallelogram represent the
component forces in direction and magnitude, the diagonal will
represent the resultant force in direstion and magnitude.

Prop. 9. If three forces, represented in magnitude and direc-
tion by the sides of a triangle, act on a point, they will Leep
it at pest. ‘ .

Mechanical Powers. '

Definition of Whecl and Axle.

Prop. 10. There is an equilibrium upon the wheel and axle
when the power is to the weight as the radius of the axle to the
radius of the wheel.

Definition of Pulley.

Prop. 11.  In the single moveable pulley where the strings

are parallel, there is an equilibrium when the power is to the
weight as 7 to 2.
-- Prop. 12. In a,system in whicl, the same string passes round
any number of pulleys and the parts of it between the pulleys
are parallel, there is an equilibrium when power (P7) @ weight
(W) = 1 : the number of strings at the lower bloch.

Prop. 13. Ina system in which cach pulley hangs by a sepa-
rate string and the strings are parallel, there is an equilibvium
when P : W i 1 : that power of 2 whose index is the number
of moveable pulleys.

. Prop. 14, 'The weight (7”) being on an inclined plane and the
force (P) acting parallel to the plane, there is an cquilibrium
when P : W :: the height of the plane : its length.

Definition of Velocity.

Prop. 15. Assuming that the arcs which subtend equal
angles at the eontres of “wo circles arc as the radii of the circles,
to shew that if P and W balance each other on the wheel and
axle, and the whole be put in motion, P : W :: W’s velocity :
P’s velocity.

Prop. 18> To shew that if 7> and W balance each other in the
machines “described in Propositions 11, 12, 13, and 14, and the
whole be put in motion, P : W :: W’s vclocity in the direction
of gravity : P’s velocity. )

The Centre of Gravity.

Definition of Centre of Gravity.
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Prop 17. Ifa body halance itself on a line in all positions, the
centre of gravity is in that line.

* DProp.18 To find the centre of qmvity of two heavy points;
and to shew that the pressure at the centre of gruvny is equal to
the sum of the weights in allpositions.

Prop 19. To find thé centre of gravity of any number of
heavy points; and to h]l("W tlat the pressure at the centre of
gravity is cfual to the sum of the “elghts in all positions.

Prop 20. To find the centre of gravity of a straight line.

Prop. 21 To find the centie of gravity of a triangle.

Trop. 22 When a body is placed on a horizontal plane, it will
stand or fall, according as the vertical line, drawn from its centre
of gravity, falls within or withouf its hase.

Prop. 23. When a hody is suspended from a point, it will rest
with its centre of gravity in the vertical line passing through the
pomnt of suspension.

HypgosraTics. .

Detinitions of Fluid ; of elastic and non-clastic Fluids.

Prop. 1. Fluids press cqually in all directions.

Prop. 2. The pressure upon any particle of a fluid of uniform
density is proportional to ity depth below the surface of the fluid.

Prop. 3. The surface ot every fluid at re8t is horizontal.

Prop. 4. If a veseel, the bottom of which is horizontal and the
sides vertical, be filled with fluid, the pressure upon the bottom
will be equal to the weight of the fluid. o

Prop. 5. To explain the kydrostatee paradoz.

Prop. 6. If a body floats on a fluid, it displaces as much of the
fluid a~ 15 equal in weight to the weight of the body ; and it presses
downwards and is pressed upwards withga force qgual to the
weight of the fluid displaced.

Specific Gravities. .

Definition of Specific Gravity.

Prop. 7 If M be the magnitude of a body, § its specific gra-
vity, and W its weight, W= }{S.

Prop. 8. When a body of uhiform density floats on a fluid, the
part immersed : the whole body :: specific gravity of the body :
the specific gravity of the fluid,

6—s5



t
130 NOTES.

Prop. 9. When a body is immersed in a fluid, the weight lost :
whole weight of the body :- the specific gravity of the fluid : the
specific gravity of the body. ‘

Prop. 10, To describe the hydrostatic balunce, and to shew
how to find the specific gravity of a body by means of it, Ist,
when its specific gravity is greater than that of the fluid in which
it is weighed ; 2ndly, when it is less.

Prop. 11. To dezeribe the common hydrometer, and to shew
how to compare the specific gravities of two fluids by means of it.

. Elastic Fluids.

Prop. 12. Air has wecight.

Prop. 13. The elastic force of air at a given temperature
varies as to the density.

Prop. 14.  The elastic force of air is inercased by an inerease of
temperature.

Prop. 15. To describe the construction of the common air-
pump, and its operation,

Prop. 16.  To describe the construction of the condenser, and
its operation.

Prop. 17. To cxplain the construction of the common baro-
meter, and to shew that the mercury is sustained in it by the
pressure of the air on the surface of the mercury in the basin,

Prop..18.  The pressure of the atmosphere is accurately mea-
sured by the weight of the column of mercury in the barometer.

Prop. 19.  To deseribe the construction of the common pump,
and its opcration.

Prop. 20. To describe the construction of the forcing-pump,
and its operation.

Prop. 21. To explain the action of the siphon.

Prop. 22. To shew how to graduate a common thermometer.

Prop. 23. Having given the number of degrees on Fuhren-
heit’s thermometer, to find the corresponding number on the
centigrade thermometer. ¢

Also such Questions and applications us arise directly out of the
aforementioned Propositions of Mechanics und Ilydrostatics *,

* Added by Grace, March 20, 1846,
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EXAMINATION PAPERS.

Y .
*MECHANICS AND HYDRQSTATICS.

Sll.\\ - I-lv_n:l:- —l‘:num_\i_. _.ﬂhl r.r._iz.l,‘lﬂ-’:‘)._ 9 lé.

FIRST DIVISION.

(4)

1. Derixe force, shew how density is measured.

2. If two forces acting gerpendicularly on a straight lever
in opposite directions and on the same side of the fulerum halance
cach other, they are inversely as their distances from the fulerum
and the pressure on the fulerun is equal to the difference of the
forces.

3. Oune end of a given straight lever rests upon a fulerum, and
the other end is sustained by a force of 3lbs. acting upwards,
where must a weight of 121bs. be placed in order that there may
be equilibrium ? o °

4. Assuming that the resultant of two forces acting on a
point lies along the diagonal of the parallclogram whose sides
represent the forces in magnitude and direction, shew that it is
represented in magnitude by the diagonaly "

Find the magnitude and direction of the resultant of two equal
forces at right angles to onc another,

5. In that system of pulleys in which cach f)ullcy hangs by
a separate string, shew that P : IV 2 W7s velocity : P's velocity.

6. When a body is placed on a horizontal plane, it will stand
or fall, according as the vegtical line, drawn from its centre of
gravity, falls within or witholit its base.

Construct a triangle upon a given horizontal base such that
the vertical line through the centre of gravity shall pass through
an angle at the base.
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7. Fluids press equally in all directions.

8. A given cubical vessel resting on one side in a horizontal
position contains a given quantity of fluid, a body is placed in it
which floats, the weight of the body being given, find the pressure
on the basc, and the height to which the fluid rises in the vessel.

9. When a body of uniform {ensity floats on a fluid} the
part immersed : the whole body :: the specific gravity of the body
: the specific gravity ofsthe fluid.

" 10. If a‘cubic inch of iron weigh 4] ounces, and a cubic foot
of water 1000 ounces, what is the specific gravity of iron?
* 11 Explain the construction of the common harometer, and
shew that the mercury is sustained in it by the pressure of the
air on the surface of the mercury in the basin.

12. If a barometer stands at 30 inches, what is the greatest
vertical length of the suction-pipe of a common pump that will
pump up mercury ¥

13. Shew how a common thermometer is graduated.

“Temperate” is marked on Fahrenheit’s thermometer at 56°,
what is its height on the centigrade ?

MECHANICS AND HYDROSTATICS.

Sinarr-Hovsre Fuapay, Jan. 12, 1849, 9. 12.

FIRST DIVISION.
" o®
1. Drring weight, and shew how a statical force is measured.

2. If twe weights acting perpendicularly on a straight lever
on opposite sides of the fulerum balance each other, they are
inversely as their distances from the fulerum ; and the pressure
on the fulerum is equal to their sum).

3. Two forces of 3 and 51bs respectively act upon a given
straight lever, where must the fulcrum be placed for equilibrium,
supposing the forces to act in opposite directions ?
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4. If two forces acting on a point are represented in’ mag-
nitude and direction by the two sidep of a parallelogram, shew
sthat their resultant is represented in direction by the diagonal
of the paralellogram. !

. o
If three forces acting on a point will keep it at rest, shew
that they will also when their insensity is doubled

5 If Pand W balané® éach other on the inclined plane, shew
that P : W s velodity in direction of gravity : P’s velocity,

6. Find the centre of gravity of two heavy points; <upposing
the two points rigidly connectcd and a fulcrum placed under the
centre of gravity, what is the pressure on the fulerum? would

the hodies be in cquilibrium ? .

7. If a vessel, the bottom of which is horizontal and the sides
vertical, be fillcd with fluid, the pressure upon the bottom will he
equal to the weight of the fluid.

8 A crooked horn is fillll with fluid, and’a Iid being placed
over the top it is then inverted and made to rest upon its top;
find the amount of pressure upon the lid

9 When a body is immersed in o fluid, the weight lost
: whole weight of the body :: the specific grayity of the fluid : the
specific gravity of the body. ¢

10. A piece of wood which weighs 31bs. and whose specific
gravity . that of water :: 3 : 4 floats in water, wMat weighf
placed upon it would just sink it 2

11.  The pressure of the atmosphere is accurately measured
by the weight of the column of mercury in the barometer

12 What difference will be produc®d in the®action of a
siphon by taking it to the top of a mountain where the barometer
is 26 inches, the barometer below being at 30 inchese?

13. Shew how a centigrade thermometer is graduated.
A centigrade thermometer stands at 35° what is the height
of Fahrenheit’s ? .
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MECHANICS AND HYDROSTATICS.

Srna1i-lovse.  Fripay, .LG. 12, 1849. 123...34.

€ ¢

. . SECOND DIVISION.
(A)

l. Ir two weights acting perpendicularly on a straight lever
on opposite sides of the fulerum balance each other, they are
inversely as their distances from the fulerum ; and the pressure
on the fulerum is equal to their sum

The arms of a straight lever are 12 and 18 inches respectively ;
and a weight of 3ibs. is suspended at the extremity of the shorter
arm, what is the pressure on the fulcrum ?

2. If two weights balance cach other on a straight Iever when
it is horizontal, they will balance cach other in every position of
the lever.

Is the converse ‘nccessarilys true? Why does the common
balance not rest in all positions ?

« 3, If hree forces represented in magnitude and direction
by the sides of a triangle act on a point they will keep it at rest.
If two forces of 51bs. and 121bs. act at right angles upon a point,
find the magnitude of the force which will keep the point at rest.
Find also the dircctions in which the two given forces must be
applied, in tader that #he point may be kept at rest by the least
possible force, and find its magnitude.

4. In a System of pulleys in which each pulley hangs by a
separate string, and the strings are parallel, there is an cqui-
librium when P : W :: 1 : that power of 2 whose index is the
number of moveable pulleys.

5. If the weight W be suppox‘:ted on an inclined plane by a
force P acting parallel to the plane, and the whole be put in
motion, shew that P : W :i W’s velocity in the direction of
gravity : P’s velocity.
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6. Find the centre of gravity of any number of heavy points,
and shew that the pressure on the ceptre of gravity is equal to the
sum of the weights in all positions.

Three weights 11b., 21bs., 31bs. are placed in & straight line
at equal distances of 12 inches, find the distance of the common
centre of gravity from thé middle weight.

7. Wihen a body is wuspended from a point, it will rest with
its centre of gravity in the vertical line pasing tlu'ou;:,h the pomt
of suspension.

8. If a body floats in a fluid it displaces as much of the fluid
as is equal in weight to the weight of the body ; and it presses
downwards and is pressed upwards with a force eqwal to the
weight of the fluid displaced.

A prismatic solid whose height is five inches floats at a depth of
three inches in a fluid, compare the specific gravitics of tlte solid
and fluid.

M L]
9. Describe the hydrostatic halance, and shew how to find
by means of it the specific gravity of a solid lighter than the fluid
in which it is weighed.

10. The elastic force of air at a given temperature varies as
the density. . '

11.  Describe the eonstruction of the condenser and its opera-

tion, N "
12. Explain the construction of the common baromcter, and
shew that the mercury is sustained in it by the pressure of the air
on the surface of the megeury in the basin.
What would be the cffeet 1st of a hole at the bgttom of the

tube ; 2nd at the top ?

13. Two vertical tubes arc connected by a hqrizontal tube of
2 inches ; supposing 12 inches of mercury poured ipto one tube,
and 26 inches of water into the other; find the altitudes of the
water and mcreury in the two branches, the specific. gr.mty of,
mercury being supposed 13 t\mes the specific gravity of water.
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MECHANICS AND HYDROSTATICS.

Sexare-Hovse, Fraowy, Jan. 12, 1849, 123 ... 34,

SECOND DIVISION.
B '

Ay

1. Ir two forces acting perpendicularly on a straight lever in
opposite dircctions and on the same side of the fulerum halance
cach other, they are inversely as their distances from the fulerum ;
and the pressurc on the fulerum is equal to the difference of the
forces. . ‘
If the arms of the lever are 12 and 18 inches respectively, and
a weight of 41bs. is suspended at the extremity of the longer
arm, what is the magnitude and direction of the pressure on the
fulcrum ?

©

2. If two forces acting ‘at an;f‘ angles on the arms of any
lever balance each other, they are inverscly as the perpendiculars
drawn from the fulcrum to the directions in which the forces act.

P and Q are two forces whose dircctions make cqual angles
with the arms of a bent lever ; the lengths of the arms are 6 and
8 inches respectively ; find the relation between P and Q when
they balance cach other.
¢ 3. If three equal forces act upon a point and keep it at rest,
find the inclinations of their directions to each other. Find also
the directions in which three forces represented by 31bs., 51bs. and
81bs. must be applied to a point so as to keep it in equilibrium.

4. Tnagystem of pyJleys in which the same string passes round
any number of pulleys, and the parts of it between the pulleys are
parallcl, there is an equilibrium when the power : the weight
:: 1 : the nuriber of strings at the lower block.

5. Shew that if P and W balance cach other on the whecl

. and axle and the whole be put in motion, P : W :: W’s vclocity
: P’s velocity. ‘
' [ 4

6. If a body balance itself on & line in all positions, the centre
of gravity is in that line. If a body balance itself on a lineina
certain position, what will be the position of the centre of gravity ?
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7. Find the centre of gravity of a triangle, and also of three
equal weights placed at three angular points and shew that they
¢incide.

8. The surface of every fluid at rest is horizontal. .

9. Define a fluid, and prove that the pressure upon any
particle of fluid of uniform density is proportional to its depth
below the surface of the flpid. Two vessels are filled with fluid
and placed ufon a horizontal plane. The bases are 1 square foot
and 2 square fect respectively, and altitudes 9 and*6 inches,
compare the pressures upon the bases of the vesscls.

10. When a body is immersed,in a fluid, the weight lost
: whole weight :: the specific gravity of the body : the specific
gravity of the fluid.

If the specific gravities of iron and gold be 8 and 19 times the
specific gravity of water respectively ; find the weight in water
of a substance combined of 11h. of irom and 11b. of gold.

L]

.

11. A weight of 41bs. when placed upon a piece of wood

whose specific gravity : that of water :: 3 : 5 just causes it tq
sink ; find the weight of the wood.

12, Describe the construction of the common air-pumnp, and
its operation. . ’

13. The pressurc of the atmosphere is accurately measured
by the weight of the column of mercury in the barometer,

If 13 inches of water be inserted in the tube upon the mercury,
what will be the altitude of the upper surface of the water when
the common barometer stands at 30 inches, the specific gravity of
mercury being supposed 13 times that of water? How much will
the top’ of the water fall, when the mercudal baromefer sinks
an inch ?
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BOOK III

TIIE LAWS OF MOTION.

. .
DEFINITIONS AND FUNDAMENTAL PRINCIPLES.

1. Tur science which treatg of Force prnducmg
Motion, and of the Laws of the Motion produced is
l)ynamlcs

2. In Dynamlcs, we adopt the Ideas, Definifions,
Axioms, and Propositiong of Statics. «

3. We require also several new Ideas, Definitions,
and Principles, which are obtained by Induction, and
will be stated in the succeeding Propositions.

4. Velocity is the degree in which a body moves
quickly or slowly : thus, if a body describes a greater
space than another in the same time, it has a greater
velocity. o

5. 'The velocity of a body is wniform when it
describes equal spaces in all equal times.

6. The velocitics of bodies, vuhen umform, are
as the spaces which they describe i in equal fimes.

Der. 1. The velocity of a body_goving uni-
formly is measured by the space described, in a unit
of time.

When the velocities of bodies are not uniform,
they are increasing or d@creasing.

Axiom 1. If a body move with an increasing ve-
locity, the space described in any time is greater than
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the space which would have been described in the
same time, if the velocity had continued uniform for
the same time and the same as it was at the beginning
of that tim-.

And the space described in any time is less than
the space which would have been described in the
same time, if the velocity had veen uniform for the
.same time and the same as it is at the end of that
time, .

Axrom 2. If a body move with a decreasing ve-
locity the above Axiom is true, putting “less” for
s greater,” and ¢ greater” for ¢ less.”

Axtom 3. If two bodies move, having their velo-
citie, at every instant in a constant ratio, the spacce
described in any time by one body and by the other
will be in the same ratio.

Axiom 4. If several detached material points,
acted upon by any forces, move in parallel lincs,
parallel to the forces, in such a manner as to retain
always the same distances from cach other, and the
same rclative positions; they may be supposed to be
.rigidly connected, and acted upon by the same forces,
and their motions will not be altered on this suppo-
sition.

Axiom 5. On the same supposition, the parallel
forces mey be supnosed to be added together so as to
become one force, and the motions will not be altered.

Axtom ”  When bodies in motion exert pressure
upon each other, b’y means of strings, rods, or in any
other way, the reaction is equal and opposite to the
action at each point. ,

Definition*2 (of Force), Def. 3 (of the Direction
of Torce), stand after Prop. 3; Def. 4 (of Uniform
Force), stands after Prop. 3; Def, 5 (of Composition



'BOOK II. THE LAWS OF MOTION. 143
of Motions), after Prop. 8; Def. 6 (of Accelerating
Torce), after Prop. 135 Def. 7 (0" Momentum), Def. 8
(of Elastic and Inclastic Bodies), Def. 9 (of Direct
Impact) after Prop. 17 of this Book.

Axiom 7 stands after Pmp 2; Axiom 8 and 9
after Prop. 17 of this Buoj-. -

Pror.’1. In uniform motion, the space de-
scribed with a velocity v in a time ¢ is ¢0.’

For (Def. 1.) v is the space described in each unit
of time, and ¢ the numbcr of units; therefore the

whole space described is tv. -

Pror: 1. Invpuvcrive Privciere 1. First
Law of Motion.

. . . .
A body in motion, not acted upon by aay
force, will go on for ever with a uniform velocity.

The facts which are included in this induction are
such as the following : —

(1) All motions which we pmduce as the motions
of a body thrown along the ground, of a whecl revolv-
ing freely, go on for a certain time and then stop.

(2) Bodies falling downwards go on moving
quicker and quicker as they fall farther.

It was attempted to explain these facts, by saying
that motions such as (1) are forced motions, and
motions such as (2) are mafural motionsg and that
forced motions decay and cease by their natyre, while
natural motions, by their nature, increase and become
stronger.

But this explanation Yas found to be untenable;
for it was scen—(3) that forced motions decayed less
‘and less by diminishing the obvious obstacles. Thus a
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body thrown along the ground goes farther as we di-
minish the roughnes{ of the surface; it goes farther
and farther as the ground is smoother, and farther stil!
on a shee;f of ice. The wheel revolves longer as we
diminish the roughness of the axis; and longer still,
il we diminish the resistance of the air by putting
the wheel in an exhausted receiver.

Thus a decdy of the motion in the cases (1) is
constantly produced by the obstacles. Also an increase
of the motion in the cascs (2) is constantly produced
by the weight of the body.

Theiefore there is in thesc facts nothing to show
that any motion decays or incrcases by its nature,
independent of the action of external causes.

w

(8) By more exact experiments, and by further
diminishing the obstacles, the decay of motion was
found to be less and less; and there was in no case
any remaining decay of motion which was not capable
of being ascribed to the remaining obstacles.

Hence the facts are explained by introducing the
Idea of force, as that which causes change in the mo-

"tion of @ body ; and the Principle, that when a body
is not acted upon by any forde, it will move with a
uniform velocity.

Cor. 1. When a body moves freely (not bemg
retained by any akis or any other restramt), and is not
acted upon by any force, it will move in a straight
line. “ .

For since it is not acted on by any force, there
is nothing to cause it to deviate from the straight line
on any one side. ,

Der. 2. Force is that which causes change in the
state of rest or motion of a body.
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Der. 3. When a Force dfts upon a body, and
puts it in motion, the line of direction of the motion
Yis the direction of the force.

Axiom 7. When a Force acts upon"\t body in
motion, so that the djrection of the force is the di-
rection of the motion, the force will not alter™the
direction of the motidn’

A ]
Provr. IIl. Inpvucrive Princiere FI. Gra-"
vity ts @ uniform force.
The facts which are included in this induction are
such as the following:— *

(1). Bodies falling directly downwards fall quicker
and quicker as they descend .

It was inferred, as we have seen in the last Pro-
position, that the additiols of velocity in the falling
bodies are caused by gravity.

An attempt was made to assign the law of the
increase of velotity conjecturally, by introducing the
Definition, that a uniform forge is a fonce which, acting
in the direction of a body’s motion, adds equal veloci-
ties in equal spaces, and the Proposition that ﬂ'ravxty
is a uniform force.

The Definition is self-contradictory. But if it had
not been so, the Proposition could only have been con-
firmed by experiment.

(2). It appearcd by experiment that when bodies
fall (down inclined planes) the spaces descrikgd are as the
squares of the times from the beginning of “thg motion.

This was distinctly explained and rigorously de-
duced by introducing the Definition of uniform force ;
that it is a force which, acting in the direction of the
body’s motion, adds equal vélocities in equal #imes ;

And the Principle.that gravity (on inclined planes)
isa umform force.

M. E. . 7
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For it may be proved deductively, as we shall see,
that this definition beifg taken, the spaces deseribed in
consequence of the action of a uniform force are as thes
squares of ofie times from the beginning of the motion.
And if the force be other than uniform, the spaces will
not Jollow this law. Thercfore the Proposition, that
gravity on inclined planes is a uniform force, is the only
one which will account for the results of experiment.

Also if the force of gravity on inclined planes be a
uniform force, the force of gravity when bodies fall
freely is uniform, for when the inclined plane becomes
vertical, the law must remain the same.

(8). 'The Proposition is further confirmed by shew-
ing that its results, obtained deductively, agree with
experiments made upon two bodies which draw cach
other over a fixed pulley (Atwood's Machine) 5 and—
(4) by the times of oscillation of pendulums.

Also it appears that when gravity acts in a di-
rection opposite to that of a body’s motion, it subtracts
equal velocities in cqual times.

Hence we introduce the following Definition.

Der. 4. A uniform force is that which, acting in
the direéiion of the body’s motion, adds (and in the
opposite direction, subtracts,) equal velocities in equal
times.

Prop. IV. If a uniform force act upon a
body, moving it from rest, and if @ be the velocity
at the enl of a unit of time, », the velocity at
the end of # units of time, is Za.

For the body will move in the direction of the
force (Def. 3), and therefore the force is in the
direction of the motion; and therefore by Axiom 7,

the direction of the motion is not altered by the
action of the force. Hence by Def. 4, the velocity
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added to the velocity in cach? second is @, and in ¢
seconds from the beginning of the motion it is ¢a.

1 .
Cox. 1. At the end of - of a unit of time the

oo .
velocity is " -
L]

Coe.%2. At the end of 22 wmits of tlmc, the

. . mn n
velocity is - - -,
- n

Con. 8. If » bethe wcloc:ty at thc end of tj)e time

¢, the velocity at the end of the time — ¢ will be 0.
n n

Pror. V. If a uniform force act upon a body
moving it from rest, and if a be the velocity
at the end of a unit of time, s, the space de-
scribed at the end of 7 units of time, is Ja#®.

Let cach unit of time be divided into 7 equal

. 1e
portions ; each of thesc wil be —3 and the whole

2"
number will be £%; and the velocity at the leginning -
of the first, second, third, fourth, &c. of these portions
will be, by P’rop. 1, Cor. 2,
a 2a 3a

0, —, » &e. (fn terms).
n -

Suppose spaces to be described in these portions of
time with the velocity at the beginning ui each por-
tion continued uniform during that portich; these’
spaces are by Prop. 1,

1 e 1 Z2a.1 a

O0X =y —=X—=5 —Xg, — x-—(tnterms)

n n n n n n
which form an arithmetical series, And the last
term of this series is

—2
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And the sufn of it is (Introd. Art. 60)
(fn-1)a 1 in
: —— x —:
N n n 2
(tn-1)at ~ 'af® at
or -- - or .
v 2n 2 2n

In the same manner the velocity at the end of
the first, second, third, &c. of these portions is
a 2a 8a

Ny —, — c. (¢n terms).
n’ n ’ n, & ( )

Suppose spaces to be described in these portions of
time with the velocity at the end of each portion con-
tinued uniform during the ticie.  These are as before

a 1 2¢ 1 3a 1 4a
—X =y — X -, — x—, —-x—(tnterms)
nm n n nw o n N n

an arithmetical progression, of which the last term

. tna 1 2 tna 1 a N tn
15 _‘X—,andthcsumls L x— 4 —x =)—
n n n n n nle

~

’

(tn+1) at at® at
r or — 4 —,
2n 2 2n
But in this case the body moves with a constantly
increasing velocity. Therefore by Axiom 1, the

]

. . . 1,
space described in each of the times ;> is greater
2

than the sfrice described on the former of the above

suppositions ; and less than the space described on the

latter of the above suppositions. Hence the whole
. 2 at

space s is greater than -q—z— ~ and less than

at2+ at
2 2n’
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- at .
Therefore it is equal to =t for if: not, let it be

at?
equal to a greater quantity, as vy + b, and let
. [

at at
n = é—: then i b; and therefore the spage. de-
n

. . at*  at o .
scribed is equal to ~ ton but it is less, than thig;

which is impossible. Therefore the space is not equal

2

. at . qe .
to a greater quantity than, . and in like manner it

may be shewn that it is not equal to a less. There-

ta
fore the space is equal to — . Q.E.D. .

Cor. Hence if ¢, T, be any two times from the
beginning of the motion and s, § the spaces through
which a body falls in those times, s : 8 =z £ : T=

Pror. VI. The space described in any
time from rest by the action of a uniform force
is equal to half the space described by the last-
acquired velocity continued uniform for the time.

As in last Proposition, let ¢ be the whole time,
and a the velocity acquired in one unit of time.
Then at is the veloclty acquired th the whole time .
And a body moving with this velocity for the time ¢
would describe thaspace a#* by Prop. 1. But a body
moving from rest by a uniform force ddscribes the
space 3af® by Prop. 5. Therefore the latter space,
is half the former. a.®.D.

Cor. 1. A body falling from rest by the uniform
force of gravity, describes 16 feet' in one second.
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Therefore with the velocity acquired it would de-
scribe 32 feet in one second.  Therefore gravity gene-
rates a velocity of 32 fcet in one second of time.

Cor. 2./ If g represent 22 feet, the space through
which a body falls in ¢ seconds by the action of

graviy, is dg2.

Prop. VII. When a body is projected in
a direction opposite to the direction of a uniform
force, with a velocity », the whole time (#) of
its motion till its velocity is destroyed, and the
space (s) described in that time, are known by
the equations v = at, s = Jat’.

For by the Definition of uniform force, the force,
acting in a dircction opposite to the motion, subtracts
In equal times the samc velocities which the same
force adds when it acts in the direction of the motion.
Therefore at a series of units of time the velocities
will bev, v — @, v — 2a, v ~ ta, till v = ¢a becomes 0,
when all the velocity is destroyed; and when this
‘eecurs, v = ta =0, or v = ta.

Also by Ax. 2, the same reasoning would hold as
in Prop. 5, putting less for greater and greater for
less; and therefore the same conclusion is true,
namely, s« Lat’. .

Prov. VIII. Inpucrive Princirie I11.
Second Luw of Motion. When any force acts
Jupon a body in motion, the motior. which the
force would produce in the body at rest is
compounded vuth the previous motion of the

body.
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The facts which the Indugtion includes are, in
the first place, such as the following :—

(1). A stone dropped by a person in motion, is
soon left behind him. , .

From (1) it was inferred that if the earth were in
motion, bodies dropt.og thrown would be left béhind.

But if appeared that the stone was not left behind
while it was moving in free space, and *was only
stopt when it came to the ground.  Again it was found
by experiment,

(2). That a stone dropt by a person in"motion
describes such a path that, rclatively to him, it falls
vertically. .

(3). A man throwing objects and catching them
again uses the same effrt whether It be at rest or
in motion.

Again, such facts as the following were considered:

(+). A stone thrown horizontally or obliquely de-
seribes a bent path and coimes to the ground.

It was at first supposed that the stone does not
fall to the ground till the original velocity is expended.
But when the First Law of Motion was understood,
it was seen that the gravity of the stone must, from
the first, produce a change in the motion, and dcflect
the stone from the line in which it jwas thrqwn. And
by more exact cxamination it appecared that (making
allowance for the resistance of the air),—(5) the stone
falls below the line"of projection by exactly, the space
through whlch gravity in the same time would draw
it from rest, *

These facts were distinctly explained and rigor-
ously deduced by introducing the Definition of Compo-
sition of Motions ;—that two motions are compounded
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when each produces its separate effect in a direction
parallel to itself;

And the Principle, that when a force acts upon a
body in m‘;\*lon, the motion which the force would
produce in the body at rest is compounded with
the- previous motion of the body.

The Proposition is confirnied by shewing that its
results, deduced by demonstration, agree with the facts.

Der. 5. Two motions are compounded when cach
produces its separate effectin adirection parallel to itself.

Pror. IX. If 4 body be projected in any
direction and acted upon by gravity, in any time
it will deseribe a curve line of which, the tangent
intercepted by the vertical line, and the vertical
distance from the tangent, are respectively the
spaces due to the original velocity and to the
action of gravity in that time.

Let AR be the direction of projection ; and in any
time, let AR be the space which
the body would have described
with the velocity of projection in
that time, and AM the space
through which the body would
have fallen in the same time.
Then, coinpleting the parallel-
ogram AMPR, the body will,
by the Second Law of Motion ,
(Prop. 8) be found at P, and RP
is equal to AM. Also AR is a
tangent to the curve at A, be-
cause at A4 the body is moving
in the direction 4R. ‘There-
fore, &c. Q.E.p. N
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Cor. If P, Q be the ppints at which the pro-
jectile is found, at any two times #, 7' from its being
at 4, and if PR, QS be vertical lines, meeting the
tangent at 4 in R, S, then

PR : QY :: AR® : 48"
For PR : QS ::»# : T* by Cor. to PTop. "5
But ¢ : T ' AR : AS8; whence
o T? 2 AR : AS™ .
Thercfore PR : QS :: AR? : AS™
Proe. X. A body,is projected from a given
point in a given direction ; to find the range upon
a horizontal plane, and the time of flight.
The range is the distance from the point of pro-

jection to the point whtre the * S

projectile (or body projected)
again _strike: a plane passing
through the point of projec-

tion. . K
Let a body be pmlcctcd in /
a direction 4K, such that, 4H, , i Q_
HK being horizontal #nd ver- - -
tical, A : HK :: m : n. Hence
AH m AK® AMr? m*  n'+ m?
—— =y ——==1l+— o =1+—F -
HK =«  HK? HK* n? .
HK n AH m Hi m

AK " i am AK "0’ AK  A/nt i md’
Let v be the velocity of projection, 4#Q the pafh
described, Q§ vertical ; and let the time of descrlbmg
AQ be ¢.  Thercfore, by the last Propos1tlon, AS, the”
space described with velocity v in the time #, will be
vt. Also SQ, the space fallen by gravity in the time £,
will be L g#, by Prop. 6, Cor. 2. .
. —5
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SQ HK . Lgr n
And :—@=——;; that is, 28 _ iy
AS AR ) '\/ﬂ: + m®
14 n 2v n C s .
g— = — ===, t=—, —— — - H “’hlchls the time
20 A nt+m? g Vm+nt

of 8ight.
AQ AH 4AQ ©om

Also -~ =~ -,or —~ = ————, AQ =
AST AR ot T w18
Qv mn . '
Ut‘)\—/"éff_?'—”‘) ; AQ=— i which is the range.
m* + n* g

Pror. XI. If :fny particles, moving in pa-
rallel dircctions, and acted upon each by a cer-
tain force in the direction of its motion, move
with velocitics which are cqual for all the par-
ticles at every instant, the motions of the par-
ticles will be the same if we suppose them to be
connected so as to form a single rigid body, and
the forces to be added together so as to form a
single force.

" Let 4,"B, C, be any particles acted upon by any
forces, and moving in parallel

a
directions with velocities which _é\—\ N
are equal at every instant. B b
Since the Wvelocitics' at every —~ _
instant are equal, the spaces ¢ ¢

described in the same time are equal for all the par-
ticles, by Axiom 3.

Let Aa, Bb, Ce be the spaces described in any
time, which are therefore equal and parallel. There-
fore ab is equal and parallel to 4B, and be to BC,
and so on. Therefore the relative positions and dis-
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tances of the particles 4, BsC are ngdt altered by
their motion into the places a, b, ¢

Thercfore, by Axiom 4, if we suppose the par-
ticles 4, B, C to be rigidly connected, thgir motions
will not be altered ;. that is, the motions will not be
altered if 4, B, C arc supposed to be partidies of
a single yigid body

Also by Axiom 5, if we suppose the forces which
act upon the particles, 4, I3, C, to be added together
so as to form a single force, the motion will not be
altered. .

Therefore, &c.  Q.E.D.

Pror. XII. If, on two bodies, two pressures
act, which are proportloual to the quantities of
matter in the two bodies, the velodities produced.
in equal times in the two bodies are cqual.

Let P, Q, be two pressures, and m, n two bodies,
measured by the number of units of guautlty of matter
which each contains; and et P: Q ::m:n.

Let the pressure P be divided mto m parts, each

P ° ‘0 .
of which will be —, and let each of these parts of
m

the force act upon a separate one of the m units into
which the body m can be divided, and let it produce
°®
in a time ¢ a velocity v. Each of the pressures .2
will produce in the unit upon which it acts for the
time #, an equal velocity v, in a direction paral]el to
P. Therefore, if all the m pressures act for the same
time ¢ upon the m units of the body respectively, all
the units will move with velocities which are equal at
every instant. Therefore, by Prop. 11, if we suppose
the m units to be connected so as to form one rigid
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body m, and. the forces to be added so as to form a
single force P, the motion will still be the same. That
is, the pressure P acting upon the body m, will pro-
duce the velocity v in the time ¢.

In the same manner it mav be shewn that the
presm...e Q acting upon the body n will produce the

same velocity which a pl’ﬁsure e produces in‘a body 1.

D

. Q I G
But since P : Q = m : n, — = —; thercfore —{
n m n

acting apon a body 1 will produce a velocity v in a
time £, Therefore Q acting on » will produce a
velocity © in a time #; the same which P produces in
m. Q.E.D

Pror. XI1il. Inpucrve Privcierie IV.
The Third Law of Molion. When pressure
generates (or destroys) motion in a given body,
the accelerating force is as the pressure.

The facts included in this Induction are such as
the following :—

(1). When pressure produces motion, the velocity
produced is greater when the pressure is greater.

In order to determine in what proportion the
velocity increases with the pressure, further consider-
ation and-inquiry 2ve necessary.

It appeared that,

(2). On an inclined plane the velocity acquired
by falling down the plane is the same as that acquired
by falling freely down the vertical height of the plane
* (Galileo’s experiment).

(3). When two bodies.P, @* hang over a fixed

pulley, the heavier P descends, and the velocity gene-

* See figure to Prop. 17.
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rated in a given timeisas P - @ directly,/and as P+Q
inversely (Atwood’s Machine).

(4).  The small oscillations of pendulums are per-
formed in times which are as the square reots of the
lengths of the pendulums. .

(5). Inthe impacts of bodies the momentum éained
by the ont body is equal to the momentumn lost by
the other (Newton’s Expcriments).

(6). In the mutual attractions of bodies the center
of gravity remains at rest.

These results are dletmctly “explained and rigor-
ously deduced by introducing the Definition of uni-
form Accelerating Force,—-that it is as the velocity
gencrated (or dcstroved) in a given time;

And the Prmczple that the Accelerating Force |
for a given body is as the pressure.

Most of these consequences will be proved in the
succeeding Propositions, (14, 15, 16, 17, 18), and thus
this Inductive Proposition is confirmed.

Der. 6. Uniform Accelerating Force is measured

by the velocity generated in a unit of matger in g
unit of time.

Hence in the formulain Prop. 4 and 5, @ represents
the Accelerating 1'orce.

Axtom 8. If two bodies moveeso that®their ve-
locities at every instant are equal, the Accelerating
Forces of the two podies at every instant are equal ;
and converscly. .

AxioM 9. oIf two bodies move so that their Acce-
lerating Forces at every instant are in a constant
ratio, and are in the diréction of the motion, the
velocities added or subtracted in any time are in the
ratio of the Accelerating Forces.
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Prop.\XIV. {In different bodies, the Ac-
celerating Force is as the pressure which pro-
duces motion directly, and as the quantity of
matter nfoved inversely. *

* - Let two pressures P, Q, produce motion in two
bodies of which the quantities «of matter are M, N.
Let M : N = P: X; therefore, by Pmp 12, the
force X would in a given time, ploducc in N the
same velocity which I would produce in AM; that is,
the Accelerating Force on M arising from the pres-
sure P, is equal to* the * Acceleratmg Force on N
arising from the pressure .Y.

But by the Third Law of Motion (Prop. 13)
the Accelerating Force on N arising from the pres-
sure X is to tlte Accelerating Force on the same body
N arising from the pressure Q as X is to Q.

Thercfore, the Accelerating Force on M arising
from P is to the Accclerating Force on N arising
from Q as X i to Q. |

But M : N :: P: X; therefore X = {]"JZ\T’ and
' . PN | P Q
therefore X is to @, as T3 is to @, or as T to N
Therefore the Acceleratmg Forces of P on M and
.'n P
of Qon N are as i and % Q.E.D.

Prop. XV. On the inclined plane, the time
of falling down the plane is to the time of falling
freely down the vertical height of the plane as
the length of the planer to its height.

Let L be the length of the plane, H its height.
The pressure which urges a body down an inclined
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plane is equal to the pressure which would support
it acting in the opposite direction; but this pressure
*» W, the weight of the body :: H : L (B. 1. Prop. 20.)
Therefore the pressure which produces motign on the

WH

lane is — — .
panels L

The quantity of matter of the body is as W.

Hence, since by the last Proposition the Accede- °
rating Force on the inclined plane is as the pressure
directly and the quantity of matter inversely; therefore
Accelerating Force on Inclived Plane : Accelezating

e of body falling freely :: WH- v, :H: L.
Force of body falling freely :: WL W

Now the force on the inclined plane is a uniform
accelerating force; and therefore the velecity acquired
in a unit of time measures it, by Def. 6. 'There-
fore, if La be the velocity acquired in a unit of time
by a body falling freely, Ha will be the velocity
acquired in a unit of time down the, inclined plane.
And the rule of Prop. 5 is apphcable Thercfore,
if # and ¢ be the times of falling down L, and of
falling vertically down I&, . .

L : H = LHat : —%Lat"’;
or L*: H* = £t
or L. : H :: t <t

Prop. XVI. On the inclined plane, the velo-
city acquired by falling down the inclined plane -
is equal to the velocity acquired by falhug freely
down the vertital height of the plane.

As before, the accelerating force on the plane is to

the accelerating force of a body falling freely
w H: L,
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Also s'= ] vt, by Prop. 6; whence as before, v
being the veloc1ty acquired by fallmg freely down H
L:H: Jot: ot vt :
But. H : L . 1t by Prop. 15,

’

Thercfore 1 : 1 vuo v

Whence » = v'; the velocify acquired down the
plane is equal te the velocity acquired do'wn the ver-
" tical height. a.E.D. -

Prop. XVII. When two bodies P, @ hang
over a fixed pulley, and move by their own weight
merely*, the heavier P descends, and the lighter
Q ascends, by the action of an accelerating force

... P-Q
which is as Q-

The string which connects P and Q exerts
an equal pressure in opposite directions upon (U\
P and upon Q, (Axiom 6). Let this pres-
sure be X. 'Then sincc P is urged down-
wards by a force P and upwards by a force

. X, it is on the whole urged downwards by %
a force P—X. And the quantity of mat-
ter is P. Therefore, by Prop. 14, the
Accelerating Force upon P downwards is "3

P - ~ .
as P"X. In the same manner, since X acts up-

wards upon Q and the weight of Q acts downwards,

X-Q

the accelerating force upon Q upwards is as

But the accelerating force upon Q upwards and upon
P downwards must be equal, because they move at
every point with equal velocities, by Axiom 8,

® That is, neglecting the effect of the matter in the pulley and the string.
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Therefore X; Q is equal' to P ; X

X .
that is, 6-1 is equal to 1 -i:;

or — + — is cqual to 2.

Q P
Therefore E%J—Q) is eﬁual to 2;
. 2PQ
and X is equal to .
TR Prq
Hence P-X is P - 2PQ P -Pq

; and the

or
P+Q P+Q
. c P-X .

accelerating force upon P, which is as Tp Is as
P-q - .
PrqQ And, in like manner, the accelerating force
-Q
+Q

DEr. 7. The momentum of a body is the product
of the numbers which express its velocity and 2ts quan--
tity of matter.

. P
upon Q is as P

Drr. 8. Elastic bodies are those which separate -
when one impinges upon another ; inelastic badies are
those which do not separate after impact. »

"Der. 9. The impact of two bodies is direct, when
the bodics, before impact, either moving in the same
direction or one of them being at rest, the pressure
which cach exests upon the other is in the direction of
the motion.

Pror. XVIIL In the direct impact of two
bodies the momenta gained and lost are equal.
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Let P impinge unon Q directly, and let X be the
pressure which each exerts upon the other at any
instant. Therefore the accelerating forces which act

upon P 2nd @ in opposite directions are as ) and

.

Q—; and are therefore at cvery instant in the constant
. 1 1

rudo of B to @ or of Q to P. Thercfore, by Ax. 9,

the velocities generated in Q and destroyed in P, in
any time, are in the sanmc constant ratio of Q to P.
And the quantitics of matter arc as P and Q. There-
fore, by Def. 7, the momentum generated in Q and the
momentum destroyed in P, in any time, are as PQ to
PQ; that is, 'the‘y are equal.  Q.E.D.

Cor. 1. If P and Q are elastic, they will separate
after the impact; and the momenta generated and de-
stroyed in Q and P by the clasticity will still be equal,
for the same reasons as before,

Coxr. 2. The velocity destroyed in P, according
to Cor. 1, may be greater than its whole velocity.
“In this'-case, P will, after the impact, move in
the opposite direction with a velocity which is
the excess of the veclocity lost over the original
velocity: )

Cox. 3. Belore the impact, Q may move in a di-
rection. opposite to P.  In this case the velocity gained
by @Q.is to be understood as including the velocity in
the opposite direction, which is destroyed.

Cor. 4, If two bodies P and Q, move in oppo-
site directions with velocities which are in the ratio of
Q to P, they will be at rest after impact if they are
inelastic. For since they are inelastic, they will not
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separate after impact: therefore they will either be at
rest or move on together. But if they move in the
direction of P’s motion, P has lost less than its whole
velocity, and Q has gained more than its own velocity.
But this is impossible, for the velocities lost ad gained
are in the ratio of @ to“P; that is, in the ratio of Ps
velocity to Q's velocitys « Therefore the hodies do not
move in thé direction of P’s motion. And, in like
manner, it may be shown that they do not move in ke
dircction of Qs motion. Therefore they remain at
rest.

Pror. XIX. The mutual pressure, attraction,
or repulsion, or direct impact of two bodies, can-
not put in motion their center of gravity.

Let two bodies P, Q, act upon cach other by pres-
sure, attraction, or repulsion, the force which each ex-
crts upon the other (Axiom 6) being X. Therefore
(Prop. 14) the aceclerating forges which.act on P and Q

X - . . .
are as — and Q respectively, or in the constant ratio

of Q to P. Therefore the velocities acquired by P and
Q in any equal times are in this ratio by Axiom 9,
and therefore the spaces are in the same ratio by~
Axiom 3. . s
L

Let P, Q, be any two bodies of which the center
of gravity is C, which is )

y : ’ A —L ] 7 &
at first at rest. Thetefore *———% " 4
by B. 1, Prop. 24, Q: P : CP: CQ, and CQ

?

=g CP. Andif Pp, Qq be any spaces described in

equal times, by the mutual pressure, attraction, or re-

pulsion of the bodies, it has been proved that Q : P
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= Pp: Qé; and thérefore Qq = gPp. Hence, sub-

tractmg, it follows that Cq =£ Cp,orQ: P: ()'p

: Cq. And therefore Cis stﬂJ the center of gravity of
the Lodies P, Q, when they are come into the positions
P, q; that is, the center of gravity has ngt been put
in motion.

Also if the two bodies P, Q, not attracting or re-
pelling each other, move towards each other with uni-
form' velocities which are in the ratio of Q to P, and
impinge; the spaces described in any time (as Pp, Qq)
will be in the same ratio of Q to P, and, as above, the
center of gravity will be at rest. And when the bodics
impinge on each other, the r7elocities of each will cither
be destroyed, or destroyed and generated in an oppo-
site direction; and in either case, since the mutnal
pressure is equal on both, the acceler dting forces which
destroy and generate velocity, will be in the ratio of
Q to P, as in Prop 17. ' Therefore the velocities de-
stroyed and generated are in the same ratio as the
. ongma]. velocities. Therefore if the whole velocity of
one body is destroyed, the whole velocity of the other
_body also is destroyed, and the bodies are both at
rest, and their center of gravity is still at rest after
impactss . )

But if the velocities be destroyed, and velocities
generated in an opposite direction, these new velocities
will alse be in'the ratio of the driginal velocities, be-
cause the accelerating forces at every instant are so,
(Ax. 9); and therefore the spaces described in any
time by the new velocitigs will be in the same ratio ;
and thercfore, as before, it may be shown that C is
still the center of gravity of P, Q.
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Therefore, under all the circamstances stated, the
center of gravity remains at rest. Q.E.D.

Lzamples to Propo.sztums 4, 5, 6, 7, 10, 17, 18.

By means of these Propositions, we ‘can solve
such Examples as the folowing:— .

When a body falls’ freely by the action of gravity,
the quantity @ in Prop. 4 is 32_feet the unit, of time «.
being one second, and v = g#.  Also (Prop. 6, Cor. 2)

v —-7jgt

Ex. 1. To find the velecity,acquired by a*body

whichy falls by gravity for 30 seconds.
v =gt =32 x 50 =960 feet per second.

2. To find the space fallen through in the same
time, § =4 =16 x 30° = 14400 feet. o

5. To find in what time a body falls through °
1024 feet.

1024 = 16 x £, £# = 64, ¢ = 8 seconds.

4. To find the velocify acquived in the same
space, v = gt = 32 x 8 = 256 fect per second.

5. A body is proy:ctcd directly upwards, with a
velocity of 1000 feet a sccond ; how high will it go;‘ -

By Prop. 7, the height will be that through which

a body must fall to acquire the same Vclocny -
Now since . .
o
s 1000 “125 _
v =gl 1000 = 32¢, ¢ = ——=—= = 31}".

(~.

= 2gt2 =16 42 = = (125)* = 15625 feet.

6. A body is prOJectcd with a velocity of 32
feet a second in a direction which makes with the
horizon half a right angle: to find the flight and the
range.



166 "MECHANICS,

In this case m =n; therefore, by Prop. 10,
n 1 2v 1 2 x 32

-~ t=—,—=--—-» - -
\/n +m8 Ve’ g A2 382x4/2
=4/2=14 seconds;
) 2 2 x (32
the range = — - —— <] (52)°1 = 32 feet.
g m +nt 32 2
. 7. -A cannon Dbell is projected with a velocity
of 1600 feet a second, in a direction which rises 3 feet
in 4 feet horizontal : find the time of flight and the
range. .
n 3

3 ; 2 x 1600 3
) - —_— = - = —— X —
AV emt V9+16 5
= 75 scconds
‘9t am 2(1600)* L2
the range = — - =N
g m'+ nt 32 25

= 76800 feet.

8. An inclastic body 4 impinges directly on an-
other inelastic body B af rest, with a velocity of 10
feet a second; A being 3 and B 2 ounces, find the
velocity efter impact. .

If « be the velocity of both after impact, the
veloclty lost by 4 is 10 — @, and the velocity galned
“by B is w. Hence the momentum lost by 4 is
3 x (10 -. 2); and that' gained by B is 2 x #; and
these arc equal by Prop. 18; thcrefore

3(10 - ) =2, 30 =32 + 2a, @ = 6.

9. The bodies being perfectly elastic, find the
motions after impact.

In perfectly elastic bodies, the velocity lost by 4
and the velocity gained Ly B in the restitution of .
the figure are equal to the velocity lost by 4 and
gained by B in the compression.
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Now the velocity lost by 4 # the compression is
10 — 6 or 4; therefore the whole velocity lost by 4 is
8, and its remaining velocity 2.

And the velocity gained by B in the compression
is 6, and therefore the ..who]e velocity gainecf by B is
12, which is B’s velocity after impact. .

10. A body 4 (3 (.)u;lces) draws B (2 ounces) over
a fixed pulley: find the space dgscribed in one secand
from rest.

. . 3-2
By Prop. 17, the accelerating f?rce isas .3 that

R | . . .

s, it is = of gravity; and the space in a second is as
‘) .

the force: therefore the space described in one second

. 16
is —, or 3} feet.
5 i)






REMARKS

.
ON

MATHEMATICAL REASONING,

AND ON o

TIIE LOGIC OF INDUCTION.

Secr. I. On the Grounds of Mathematical
Reasoning. *

1. Tne study of a science, treated according to
a rigorous system of mathematical reasoning, is use-
ful, not only on account ¢f the pasitive knowledge
which may be acquired on the subjects which belong
to the science, but also on account of the collateral
cffects and general bearings of such a study; as a dis"_
cipline of the mind and an illustration of philosophical
principles. : -

Considering the study of the mathematicalssciences
with reference to these latter objeets, we Tﬁay note
two ways in which it may promote them ;—Dby habi-
tuating the mind tQ strict reasoning,—and by afford-
ing an occasion of contemplating some of*the most
important menfal processes and some of the most dis-
tinct forms of truth, Thus mathematical studies may
be useful in teaching practical logic and theoretical
metaphysics. We shall make a few remarks on each
of these topics.

M.E, 8
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2. The study of Mathematics teaches strict rea-
soning—Dby bringing under the student’s noticc promi-
nent and. clear examples of trains of demonstration ;—
by exercising him in the habits of attentive and con-
nected thoutrht which are requisite in order to follow
these trains ,——and by familiarizing him with the pe-
culiar and distinctive conviction which demonstration
.produces, and with the rigorous exclusion of all con-
siderations which do not enter into the demonstration.

3., Logic is a system of doctrinc which lays
down rules for determining in what cases pretended
reasonings are and arc not demonstrative. And ac-
cordingly, the teaching of strict rcasoning by means
of the study of logic is often recommended and prac-
‘tised. But in' order to shew the superiority of the
study of mathematics for this purpose, we may con-
sider,—that reasoning, as a practical process, must be
learnt by practice, in the same manner as any other
practical art, for.example, riding, or fencing ;—that
we are not secured from committing fdl]aues by such
a classification of fallacics as logic supplies, as a rider
would not be secured from: falls by a classification
“of them;—and that the habit of attmdmg to our
urcittal processes while we are rLasomng, rather inter-
feres with than assists our reasoning well, as the horsc-
man would ride worse rather than better, if he were to
fix his attention upon his muscles when he is using
them. .

4. To this it may be added, that the peculiar
habits which enable any one to follow a chain of
reasoning are excellently taught by mathematical study,
and are hardly at all taught by logic. These habits
consist in not only apprehending distinctly the demon-
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stration of a single propositiod when it i§ proved, but
in retaining all the propositions thus proved, and using
them in the ulterior steps of the argument with the
same clear conviction, readiness, and familiarity, as if
they were self-evideng principles. WriteTs on Logic
scldom give examples of reasoning in whiche several
syllogismg follow cicli other; and they never give
cxamples in which this progressive reasoping Js, so
exemplified as to make the process familiar. Their
chains gencrally consist only of two or three links.
In Mathematics, on the contrary, every theerem is
an cxample of such a chain; évery proof consists of
a series of asscrtions, of which each depends on the
preceding, but of which the last inferences are ne less
evident or less casily applied than the simplest first
principles. The language contains a onstant succes,
sion of short and rapid references to what has been
proved already ; and it is justly assumed that cach of
these brief movements helps the reasoner forwards in
a course of infalliblc certainty and security. Each of
these hasty glances must possess the clearness of in-
tuitive evidence, and the certainty of mature reflection ;
and yet must leave the reasoner’s mind cntir'el_y free tg
turn instantly to the next point of his progress. The
faculty of performing such mental processes well md
readily is of great value, and is in no way-fostcred
by the study of logic. .

5. Tt is sometimes objected to the study of
Mathematics as a discipline of reasoning, that it
tends to render men insensible to all reasoning
which is not mathematical, and leads them to de-
mand, in other subjccts, proofs such as the subject
does not admit of, or such as are not appropriate to

the matter,
8—2
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To this it may be fcplied, that these evil results,
so far as they occur, arise either from the student
pursuing too exclusively onc particular line of mathe-
matical studv, or from erronepus notions of the nature
of demonstration.

The present volume is mtended to assist, in some
measure, in remedying the too éxclusive pursuit of
ane_particular line of Mathematics, by shewing that
the same simplicity and ‘evidence which are scen in the
Elements of Geometry may be introduced into the
treatment of another subject of a kind very different ;
and it is hoped that'we may thus bring the sub-
ject within the reach of those who cultnatc the
study- of Mathematics as a discipline only. The re-
marks now offered to the reader are intended to aid
him in forming'a just judgment of the analocry be-
tween mathematical and other proof; which is to be
done by pointing out the true grounds of the evi-
dence of Geometry, and by exhibiting the views which
are suggested by .the extension of mathematical rca-
soning to sciences concerned about physical facts.

— 6. We shall therefore now proceed to make some
remarks on the nature and principles of reasoning,
edyrecially as far as they are illustrated by the mathe-
matical eciences.

Some of the leding principles which bear upon this
subject are brought into view by the consideration
of the question, * What is the forndation of the cer-
tainty arising from mathematical demonstration ?” and
in this question it is implied that mathematical de-
monstration is recognised as a kind of reasoning
posscssing a peculiar character 'and evidence, which
make it a definite and instructive sulgect of con-
sideration.
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7. Perhaps the most bbvious answer to the
question respecting the conclusiveness of mathema-
tical decmonstration is thia,-—that the certainty
of such demonstration arises from ‘its being founded
upon Awioms ; and, conducted by stegs, of which
cach might, if requlred be stated as a origordus
Syllogism. ° -

This answer might give rise to the further ques-
tions, What is tlle f()undatlon of the concluSivéness
of a Syllogism? and, What is the foundation of t
certainty of an Axiom? And if we suppose, the for-
mer enqiry to be Jeft to*Logic, as being the subject
of that science, the latter question still remains to
be considered. We may also remark upon this gnswer,
that mathematical demonstration appears to depend
upon Definitions, at 1%ast as mucheas upon Axioms.
And thus we are led to these questions :— Whether
mathematical demonstration is founded upon Defini-
tions, or upon Axioms, or upon both? and, What is
the real nature of Definitjons and of Axioms?

8. The question, What is the foundation of
mathematical demonsfration ? was discusded at cobsi-
derable length by Dugald Stewart*; and the opinion
at which he arrived was, that the certainty of mmihe-
metical reasoning arises from its deendlnD’ upon
definitions.  He expresses this further, By declaring
that mathematical truth is hypothetical, and must be
understood as asserting only, that if the definitions are
assumed, the conclusion follows. The ame opinion
has, I think, prevailed widely among other modem
speculators on the same subject, espeually among
mathematicians themselves.

* Eleméhts of the Philosophy of the Human Mind, Vol. 11.
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9. In opposition to this opinion, I urge, in the
first place, that no one has yet been able to construct a
system of mathematical truth by means of definitions
alone, to the exclusion of axioms; although attempts
having this tendency have been made constantly and
earnestly. It is, for instance, well known to most
readers, that many mathematicians have endeavoured
to get rid of Tuclid’s ¢ Axioms™ respecting straight lines
and parallef lines; but that none of these essays has
Loen generally considered satisfactory. If these ax-
ioms could be superseded, by definition or otherwise,
it was conceived that the wnole structure of* Elcmen-
tary Geometry would rest merely upon definitions ;
and it was held by those who made such essays, that
this would render the science more pure, simple, and
homogeneons.  If these attempts had succeeded,
Stewart’s doctrine might have required a further
consideration; but it appears strange to assert that
Geometry is supported by definitions, and not by
axioms, when she cannot stir four steps without rest-
ing her foot upon an axiom.

10. Bat Iet us consider further the nature of
these attempts to supersede the axioms above men-
tionad  They have usually consisted in cndeavours so
to frame the definitions, that these might hold the
place whict the axioms hold in Euclid’s reasoning.
Thus the axiom, that ¢“two straight lines canuot en-
close a space,” would be superfluous, if we were to
take the following dcfinition:—*“A line is said to be
straight, when two such lines cannot coincide in Zwo
points without coinciding alfogether.”

But when such a method of trcating the subject is
proposed, we are unavoidably led to ask,—whether it
is allowable to lay down such a definition'? It cannot
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be maintained that we may propound qny form of
words whatever as a definition, without any consider-
ation whether or not it suggests to the mind any in-
telligible or possible conception. What would be said,
for instance, if we were to state the following as a de-
finition, « A line is qmd to be straight (or agy other
term) when two such lines cannot coincide in one point
without Coinciding altogether ™ Tt would mev1tably
be remarked, that no such linfs cxist; or that Such’a
property of lines cannot hold good without othce
conditions than those which this definition expresses;
or, more gencrally, that the definition does not corre-
spond to any conception which we can call up in our
minds, and therefore can be of no use in our reason-
ings. And thus it would appear, that a definition,
to be admissible, must®necessarily rafer to and agree
with some conception which we can distinctly framn®
in our thoughts.

11. 'This is obvious, also, by considering that the
dcfinition of a straight line could not be of any use,
except we were cntltlcd to apply it in the cases to
which our geometrical spropositions refer. « No defini-
tion of straight lines could be employed in Gcometf¥y,
unless it were in some way certain that the lings so
defined are thase by which angles are (ontamed those
by which triangles are bounded, those of which paral-
lelism may be predicated, and the like.

12. The same necessity for some genaral concep-
tion of such lines accompanying the dcfinition, is im-
plied in the terms of the definition above suggested.’
For what is there .meant by such lines?” Appa-
rently, lines having some general character in which the
property is ecessarily involved. But how does it ap-
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pear that lines may have such a character? And if it
be self-evident that there may be such lines, this evi-
dence is a necessary condition of this (or any equiva-
lent) definition. And since this sclf-cvident truth is
the ground‘on which the course of reasoning must pro-
cted, the simple and obvious method is, to state the
property as a self-evident truth; that is, as an axiom.
Similar remarhs would apply to the other axiom above
‘mentioned; and to any others which could be proposed
»wn any subject of rigorous demonstration.

13. If it be conceded that such a conception
accompanying the defimtion is necessary to justify it,
we shall have made a step in our investigation of the
grounds of mathematical evidence.  But such an ad-
mission does not appear to be commonly contemplated
by those who maintain that the conclusiveness of ma-
thematical proof results from its depending on defi-
nitions. They gencerally appear to understand their
tenet as if it implied arbitrary definitions. And <ome-
thing like this scems to be held by Stewart, when he
says that mathcmatical truths are true hypothetically.
Yor we understand by an hypothesis a supposition,
not only which we may make, but may abstain from
making, or may replace by a different supposition.

14. “That the fundamental conceptions of Geo-
metry are not arbitrary definitions, or selected hypo-
theses, will, T think, be clear to anv one who reasons
geometrically at all. It is impossible to follow the
steps of any single proposition of Geometry without
‘conceiving a straight line and its properties, whether
or not such a line be defined, and whether or not its
properties be stated. That a straight line should be
distinguished from all other lines, and tHat the axiom
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respecting it should be seen ko be true, are circum-
stances indispensable to any clear thought on the
subject of lines. Nor would it be possible to frame
any coherent scheme of Geometry 1 which straight
lines should be excluded, or their properes changed.
Any one who should make the attempt, would bctra‘y,
in his fi rst proposmons, to all men who can reason
acomcmcally, a reference to stramht lines.

. m— e

15, If, therefore, we say that Geometry depende

on definitions, we must add, that they are necessary,

not ar bltraly definitions,—%suche definitions as we must

have in our minds, so far as we have elements of

reasoning at all.  And the elementary hypotheses of

Geometry, if they are to be so termed, are not hypo-

theses which are requisi®e to enable us to reach this or

that conclusion; but hypotheses which are requisite fot
any excrcise of our thoughts on such subjects.

16. Before I notice the bearing of this remark on
the question of the nee es:ny of axioms, I may obscrve
that Stewmt’s disposition to consider definitions, and
not axioms, as the true foundation of Gepmetry, ap-
pears to have resulted, in part, from an arbitrary selec-
tion of certain axioms, as specimens of all. Ile takes,
as his examples, the a\loms, ¢ that if equals be added
to equals the wholes are equal,? that ‘kihe whole
is greater than its part;” and the like. If he had,
instead of these, considered the more properly geome-
trical axwms,—such as those which I havednentloued
¢ that two straight lines cannot enclose a space;™ or
any of the axioms which have bcen made the basis of
the doctrine of parallels; for instance, Playfair’s axiom,
“that two straight lines which intersect each other
cannot both “0of them be parallel to a third straight

8—s5
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{
line ;” it would have bebn impossible for him to have
considered axioms as holding a different place from
definitions in geometrical reasoning. Tor the proper-
ties of triangles are proved from the axiom respecting
straight linen, as distinctly and directly, as the proper-
ties of apgles are proved from the definition of a right
angle.  Of the many attempts 1aade to prove the doc-
trine of parallels, almost all professedly, all really,
assumle suinc axiom or' axioms which are the basis

of the

17. It is therefore very surprising that Stewart
should so exclusively have fixed his attention upon the
more general axioms, as to assert, following Locke,
¢¢ that from [mathematical] Axioms it is not possible for
human ingenuity to draw a ‘single inference *;” and
even to make this the ground of a contrast between geo-
metrical Axioms and Definitions. The slightest exami-
nation of any treatise of Geometry might have shewn
him that there is no sense in which this can be asserted
of Axioms, in which it is not cqually truc of Detini-
tions; or rather, that while Eucid’s Definition of a
straight linc leads to no truth whatever, his Axiom re-
specting straight lines is the foundation of the whole
of (Geometry; and that, though we can draw some
infercnces from the Definition of parallcl straight lines,
we strive iu vain tq complete the geometrical doctrine
of such lines, without assuming some Axiom which en-
ables us to prove the converse of our first propositions.
Thus, that, which Stewart proposes as the distinctive
character of Axioms, fails altogether ; and with it, as I
-conceive, the whole of his doctrine respecting mathe-
matical evidence. ) )

* Elements of the Philosophy of the Hluman Mind,Vol. 11. p. 38,
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18. That Geometry (ardd other dciences when
treated in a method equally rioorous) depends upon
axioms as well as definitions, is supposed by the form
in which it is commonly presented. And after what
we have said, we shall assume this formsto be a just
representation of the” "real foundations of such sciences,
till we can find a senable distinction between axioms
and defiditions, in their nature, and in their usé; and
till we have before us a satisfactory systettSF Geo-
metry without Axioms. And this system, we may re
mark, ought to include the Higher. as well as the
Elementary Geometry, before it can be held to prove
that axioms are needless; for it will hardly be main-
tained, that the properties of circles depend upon defi-
nitions and hypotheses only, while those of ellipses
require some additional® foundation : er that the com-
parison of curve lines requires axioms, while tHe
relations of straight lines are independent of such
principles.

19. Taving then, I.trust, leared away the as-
sertion, that mathematical reasoning rests ultimately
upon definitions only, and that this is the groundeof

its peculiar cogency, T have to examine the real evidGiice
of the truth of such axioms as are employed_in, the
cxact Mathematical Sciences. And we are, I think,
alrcady brought within view of theanswer 6 this ques-
tion. Tor if the definitions of Mathematics are not
.lrlntmry, but necessary, and must, in order to be ap-
plicable in reasomn , be accompanied by a conception
of the mind ulrough whi(-h this necessity is seen ; it is
clear that this apprehension of the necessity of the pro-’
perties which we contemplate, is really the ground of our
reasonings and the source of their irresistible evidence.
And where 4ve clearly apprehend such nccessary rela-
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tions, it can make no dilference whatever in the nature
of our reasoning, whether we express them by means
of definitions or of axioms. We define a straight
line vaguely ;—that it is that line which lies evenly
between twe points: but we forthwith remedy this
vidgueness, by the axiom respecting straight lines:
and thus we express our conception of a straight
line, %o far as is mecessary for reasoning’upon it.
We mhgwiy in like manner, begin by defining a right
~angle to be the angle made by a line which stands
evenly between the two portions of another line;
and we might add an axiom, that all right angles
are equal. Instead of this, we define a right angle
to be that which a linc makes with another when
the two angles on the two sides of it arc equal. But
in all these cases, we express our conception of a
necessary relation of lines; and whether this be done
in the form of definitions or axioms, is a matter of
no importance.

20. But it may be asked, If it be thus unimpor-
tant whether we state our fundamental principles as
axéoms or ccfinitions, why note«reduce them all to de-
filons, and thus give to our system that aspect of
independence which many would admire, and with
which none nced be displeased?  And to this we an-
swer, that 1f such a mode of treating the subject were
attempted, our definitions would be so complex, and
so obviously dependent on somcthing not expressed,
that they would be admired by none. We should
have to put into cach definition, as conditions, all the
‘axioms which refer to the things defined. For in-
stance, who would think it a gain to escape the
difficulties of the doctrinc of parallels by such a
definition as this: ¢ Parallel straight lis are those
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"4
which being produced indcﬁnit‘ely both ways do not
mect 5 and which are such that if a straight line
intersects one of them it must somewhere mect the
other ?” And in other cases, the accumulation of neces-
sary properties would .be'still more cumbgrsome and

more manifestly heterogeneous. . .

e o

21. ‘The reason of this difficulty is, that our fun-
damental conceptions of lines and other relwions &F °
space, are capable of being contemplated under severad
various aspects, and more than one of these aspects
are needed in our reasoniﬁ'g's.. We may take one
such aspect of the conception for a definition; and
then we must introduce the others by means of ax-
ioms.  We may define parallels by their not meeting ;
but we must have sonfe positive pgoperty, besides
this ncgative one, in order to complete our reason®
ings respecting such lines. We have, in fact, our
choice of scveral such sclf-cvident properties, any of
which we may employ for our purpose, as geometers
well know; but with our naked definition, as they
also know, we cannot proceed to the end. And in
other cases, in like manaer, our fundamensal concep-
_ltion gives rise to various clementary truths, the com-
nexion of which is the basis of our reasonings: but
this connexion resides in our thoughts, and gannot be
made to follow, as a logical Tesult, from any assumed
form of words, presented as a dcfinition,

92, If it be further demanded, What ishe nature
of this bond iy our thoughts by which various proper-
ties of lines are connected ? perhaps the simplest an-
swer is to say, that itiresides in the idea of space. We
cannot conceive things in space without being led to
consider them’as determined and related in some way
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or other to.straight lines, right angles, and the like;
and we cannot contemplate these determinations and
relations distinctly, without assuming those properties
of straight lines, of right angles, and of the rest, which
are the basis of our Geometry. We cannot conceive
or perceive objects at all, except as existing in space ;
we caonot contemplate them: geometrically, without
conceiving them in space which is subjected to geome-
+ trical “cunditions ; and this mode of contemplation is,
-by language, analysed into definitions, axioms, or

both. .

23. The truths thus seen and known, may be said
to be known by infuition. In English writers this
term has, of late, been vaguely used, to express all
convictions which arc arrived at without conscious rea-
soning, whether referring to relations among our pri-
mary perceptions, or to conceptions of the most deri-
vative and complex nature. But if we were allowed
to 1estrict the use of this term, we might conveniently
confine it to those cases in which we necessarily appre-
hend relations of things truly, as soon as we conceive
the objecte distinctly, In this sense aaioms may be
sald to be known by intuition ; but this phraseology
is yot essential to our purpose.

24. ‘It appears, then, that the evidence of the
arioms of Geometry depends upon a distinct posses-
sion of the idea of space. These axioms are stated in
the beginring of our Treatises, not as something which
the reader is to learn, but as something which he al-
ready knows. No proof is offered of them ; for they
are the beginning not the cad of demonstrations. The
student’s clear apprehension of the truth of these is a
condition of the possibility of his pursumg the reason-
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ings on which he is invited to bater*. Without this
mental capacity, and the power of referring to it, in the
reader, the writer’s assertions and arguments arc empty
and unmeaning words; but then, thls capacity and
power are what all rational creatures alike possess,
though habit may have developed it in very yarious
degrees in different persons.
L]

25. It has been common in’the school of Metaphy- ,
sicians of which I have spoken, to describe some of the
elcmentary convictions of our minds as fundamental
laws of belief ; and it appeafs tohave been considered
that this might be taken as a final and sufficient account
of such convictions. I do not know whether any per-
sons would be tempted to apply this formula, as a so-
lution of our question redpecting the nature of axioms.
If this were proposed, I should observe, that this form®
of expression scems to me, in such a case, highly un-
satisfactory.  For laws require and enjoin a conjunc-
tion of things which can be contemplated separately,
and which would be disjoined if the law did not exist.
It is a law of nature that terrestrial bodies, when free,

. L -

* In this statement respecting the nature of Axinms,.l find mep.eif
wgreeing with the acute author of ¢ Sematology.” See the ¢ Sequcl to
Sematolosy,”™ p. 103. ¢ An Axiom does not account for an intclke.on;
it does but describe the requisite competency for it.”” It appears to nle
that this view is not fannhar among English metaphysicigns. I may
here quote what 1 said at a former period, “However we may define
force, 1t 15 nccessary, in order to understand the elementary reasonings of
this portion of science, that we should concerve it distinctly. Do we wish
for a test of the distmctneds of our conceptions ? The test js, our being
able to see the necessary truth of the Axioms on which our reasonings
rest .. These principjes (the Axioms of Statics) are all perfectly evident
as soon as we have formed the general conception of pressure ; but with-
out that act of thought, they £an have no evidence whatever given them
by any form of words, or reference to other truths;—by definitions, or
by illustrations from other kinds of quantity,—" Thoughis on the Study
of Mathematics, p. o5,
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fall downwards; for we can easily conceive such bodies
divested of such a property. But we cannot say, in the
same sense, that the imposeibility of two straight lines
inclosing a space arises from a law; for if they are
straight liwes, thcy need no ]zuy to compel this result.
e cqnnot conceive straight lines exempt from such
a law. To speak of this prbpérty as lmposed by a
law, is to convey an madequate and erroncous notion
of the (lose necessity, inviolable even in thought, by
<which the truth clings to the conception of the Tines 5

&

26. 'This cxpreaaion: of ¢ laws of belief,” appears
to have found favour, on this account among others,
that it rccognises a kind of analogy between the
grounds of our reasoning on very abstract subjccts,
and the principles to which We have recourse in other

“cases when we manifestly derive our fundamental
truths from facts, and when it is supposed to be the
ultimate and satisfactory account of them to say, that
they are laws of nature learnt by obscrvation. But
such an analogy can hardly be considercd as a real
recommendation by the metaphysician; since it con-
sists in tehing a case in which our knowledge is
obviously imperfect and its grounds obscure, and in
ereeting this case into an authorlty which shall direct
the progess and control the enquiry of a much more
profounad® and penetrating kind of speculation. It
cannot be doubted that we are likely to see the true
grounds and ecvidence of our doctrines much more
clearly ir the case of Geometry and other rigorous
systems of reasoning, than in collections of merc em-
pirical knowledge, or of what is supposed to be such.
It is both an unphilosophical and an indolent pro-
ceeding, to take the latter cases as a standard for the
former.



ON MATHEMATICAL REASONING, i85
* e
. .

247. T shall therefore consider it as gstablished,
that in Geometry our rcasoning depends upon axioms
as well as definitions,—that the evidence of the
truth of the axioms and ()f' the pmprlety of the defi-
nitions resides in the ldea of space,—anal that the
distinet possession of this idea, and the congequent
d})pl‘C])Cl]blOll of the truth of the axioms which are
its various aspects, is supposed in the student who is
to pursuc the path of geometrical reasoningt This
being understood, T have little further to observe o
the subject of Geometry, 1 will only remark—that
all the conclusions which ocCur Wn the science follow
purcly from those first prmclp]es of which we have
spoken ;—that cach proposition is rigorously proved
from those which have been proved previously from
such principles ;—that tis process of successive proof
is termed Deduction ;—and that the rules which se-°
cure the rigorous conclusivencss of cach step are the
rules of Logic, which I need not here dwell upon!

28. But I now pmccc.d to consider some cther
questions to which our examination of the evidence of
Geometry was intendede to be preparatory ;—How
far do the statements hitherto made apply to otfier
sciences ? for instance, to such sciences as are trpatpd
of iu the present volume, Mcchanics and Ilydrpstatics.

To this I reply, that some*such scieryes at le€t, as for
example the scicnce of Statics, appear to me to rest on
foundations exactly similar to Geometry :—that is to
say, that thcy depend upon axioms,—self-evident prin-
ciples, not derived in any 1mmed1ate manner from
experiment, but involved in thc very nature of the
conceptions which weemust possess, in order to reason
upon such subjects at all. The proof of this doctrine
must consist of several steps, which I shall take in order.
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29. In the first place, I say that the axioms
of Statics are self-evidently true. In the beginning
of the preceding Treatise I have stated these barely
as axioms, without addition or explanation, as the
axioms of. Geometry are stated in treatiscs on that
subjecf. And such is the proper and orderly mode
of exhibiting axioms; for, as has been said, they arc
to be understood as an expression of the condition of
concepuion of the student. They are not to be learnt
-from without, but from within. They necessarily and
immediately flow from the distinct possession of that
idea, which if the student do not possess distinetly,
all conclusive reasoning on the subject under notice is
impossible. It is not the business of the dednctive
reasoner to communicate the apprehension of these
truths, but ta. deduce others from them.

30. But though it may not be the author’s busi-
ness to elucidate the truth of the axioms as a deduc-
tive reasoner, it may still be desirable that he should
do so as a philosophical teacher; and though it may
not be possible to add anything to their evidence in
the mind, of him who posiesses distinctly the idea
trom which they flow, it may be in our power to
assist the beginner in obtaining distinct possession
of this idea and unfolding it into its consequences.
Accordingly T bave made some Remarks of this
kind, tending to illustrate the sclf-evident nature
of the “ Axioms” of Statics and of Hydrostatics;
and havz inserted them in Book 1. and Book 11
respectively.

31. Some of the Axioms which are stated in
Book 111, on the Laws of Motion, give occasion to re-
marks similar to those already made. “Thus Axiom 4,



ON MATHEMATICAL REASONING., 187

L
Py ]

which asscrts that if particles move in su¢h a man-
ner as always to preserve the same relative distances
and posmons, their motions will not be altered by
supposing them rigidly connccted, is evident by the
same considerations as the Axioms concermrg flexible
and fluid bodies, alroady noticed in Book 11. , For *
the forces of rigidity® are forces which would pre-
vent a change of the distances and relative positions_
of the particles if there were a tendency to ady such™
change ; and if there be no such tendency, it makes -
no difference whether the potengal resistance to it be
present or absent.

32. The 5th Axiom of Book 111, which asserts
that forces producing parallel and equal velocities at
the same time, may be cdnceived to bg added ; and
the Gth Axiom, which asserts that in systems in mo-
tion the action and re-action are equal and opposite,
are applications of what is stated in the second sen-
tence of this third Book ;—that the Definitions and
Axioms of Staties are adopted'and assumed in the case
of bodies in motion. In the third Book, as in the
first, forces are conceived as capable of addision, and-
matter is conceived as that which can resist force, ami
transmit it unaltercd:

The 8d, 8th, and 9th A‘uoms of Book 11y, hke
the 7th of Book 11, are 1mroduced tp avoid the rea-
soning which depends on Limits.

33. In the case.of Mechanics, as in thescase of
Geometry, the gdistinctness of the idea is nccessary
to a full apprchension of the truth of the axioms ;
and in the case of mcthanical notions it is far more
common than in Geometry, that the axioms are im-
perfectly compnehended, in consequence of the want
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of distinctness and exactness in men’s ideas. Indeed
this indistinctness of mechanical notions has not only
prevailed in many individuals at all periods, but we
can point out whole centuries, in which it has been,
so far a¢+ we can trace, universal.  And the conse-
quence of this was, that the science of Statics, after
being once established upon cicar and sound princi-

ples, again fell into confusion, and was not understood

“point L, and let E be its cefiter.
Let EG be a horizontal radius,

" meets git Take a welg,ht B

as an“exact science for two thousand years, from the
time of Archimedes to that of Galileo and Stevinus.
34. In order 'to illustrate this indistinctness of
mechanical ideas, I shall take from an ancient Greek
writer an attempt to solve a mechanical problem;
namely, the Problem of the Inclined Plane. The
following is the mode in which Pappus professes*® to
answer this question :— To find the force which will
support a given weight 4 upon an inclined plane.”
Let HK be the planc; let the weight 4 be formed
into a sphere :«let this.sphere
be placed in contact with the
plane HK, touching it in the

and: LF a vertical line which

which Ts to 4 s EF tc' FG.
"T'hen if 4 and B be suspended
at E and G to the lever EFG
of which the center of motion is F, they will balance;
being supported, as it were, by the fulerum LF.
And the sphere, which is equal to the weight 4, may

* Pappus, B. virr. Prop. ix. l purposely omit the confusion produced
by this anthor’s mode of treating the question, i which he inquires the
force which will draw a body wn the inclined planex



ON MATHEMATICAL REASONING., 189

be supposed to be collected at its center. % If there-
fore B act at G, the weight 4 will be supported.

It may be observed that in this_attempt, the
confusion of ideas is such, that the author assumes a
weight which acts at G, perpcnduular]y ongthe lever
EFG, and which is therefure a vertical force, as igenti- *
cal with a force which %icth at G, to support the body

in the inclined plane, and which is para]lul to the plane.

35. When this kind of confusion was remedied,
and when men again acquired distinct netions of pres-
sure, and of the transmissioh oM pressure from one
point to another, the scicnce of Statics was formed by
Stevinus, Galileo, and their successors ¥,

The fundamental idea of Mechanics being thus
acquired, and the requiite consequeyces of them
stated in axioms, our reasonings proceed by the same
rigorous line of demonstration, and under the same
logical rules as the reasonings of Geometry ; and'we
hme a scienee of Statics wlnch is, like Geometry, an
exact deductive science.

Sect. II.  On the Logic of Inductign. .

* 86. There are other portions of Mechanics which
require to be considered in another manner ; for in
these there occur prmcq)]es which arg dcllVed'dlrect]y
and prufessodly from cxperiment and observation. The
derivation of prmc1p]eq by roa@omng from facts is per-
formed by a process’ which is termed Inductign, which
is very different from the process of Deduction already
noticed, and of 'which we shall attempt to point out
the character and method. |

* See History of the Inductive Sciences, B, vI. chap. 1. sect. 2,
On the Revival of the Scientific Idea of Pressure.
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It has been usual to say of any general truths,
established by the consideration and comparison of
several facts, that they are obtained by Induction;
but the distinctive character of this process has not
been welly pointed out, nor have any rules been lai’
down which may prescribe the forin and ensure th.
validity of the process, as has been done for Deductive
reasoning by common Logic. The Logic of Induction
has nov yet been constructed ; a few remaiks on this
subjcct are all that can be offered here.

37. The Inductive ’ropositions, to which we shall
here principally refer as examples of their class, are
those elementary principles which oceur in considering
the motion of bodies, and of which some are called the
Laws of Motion*. They aic such as these ;—a body
not acted on by any force will move on for cver uni-
formly in a straight line ;—gravity is a uniform force;—
if @ body in motion be acted upon by any force, the
effect of the force will be compounded with the pre-
vious motion ;—when a body communicates motion
to another directly, the momentum lost by the first
Fody is egual to the momentum gained by the second.
Aud T remark, in the first place, that in collecting
such propositions from facts, there occurs a step
(,orlcspondmo to the term * Induction,” ({raywryy,
mductw, Some notion in .wpermduced upon the
observed facts. In each inductive process, there is
some genceral idea introduced, which is given, not by
the phenomena, but by the mind. The conclusion
is not contained in the premises, but includes them
by the introduction of a new generality. In order to
obtain our inference, we travel beyond the cases we

* Inductive Propositions in this work are, Book 7. Propositions 25,26
32, 36, 37 : Book 111, Prop. 2, 3, 8, 13.
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have before us; we consider them as exemplifications
of, or deviations from, some ideal case in which the
relations are complete and intelligible, We take a
standard, and mecasure thc facts by it; and this
standard is created by us, not offered Ly Nature.
Thus we assert, that a body left to itsclf will, move®
on with uualtered velocity, not Dbecause our senses
ever disclosed to us a body doing this, but because
(taking this as our idcal case) we find fhat all
actual cases are intelligible and txplicable by means®
of the notion of forces which cguse change of mption,
and which are exerted by surfourMing bodies. In like
manner, we sce bodies striking each other, and thus
moving, accclcmtiug, retarding, and stopping cach
other ; but in all this, Jve do not, by our senses,
perceive that abstract quautlty, momentum, which is
always lost by one as it is gained by another. This *
momentum is a creation of the mind, brought in among
the facts, in order to convert their apparent confusion
into order, their seeming chance intg certainty, their
perplexing varicty into simplicity. This the idea of
momentum gained and lost does ; and, in like manner
in any other case in which inductive truths, are esta-
blished, some idea is introduced, as the means of pfss-
mg from the facts to the truth. . o

38. The process of m‘i.nd.of whigh we héfe speak
can only be described by suggestion and comparison.
One of the most common of such comparisons, espe-
cially since the time of Bacon, is that whioh speaks
of induction as the interpretation of facts. Such an
expression is appropriate; and it may easily be seen
that it includes the circumstance which we are now
noticing ;—the superinduction of an idea upon the
facts by the intérpreting mmd For when we read a
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page, we have before our cyes only black and white,
form and colour; but by an act of the mind, we
transform these perceptions into thought and emotion.
The letters are nothing of themselves; they contain
no truth, ¢f the mind does nat contribute its share:
for instance, if we do not know the language in which
the words arc written. And 1f we are imperfectly
acquainted with the Janguage, we become very clearly
aware llow much a certain activity of the mind is
requisite in order to convert the words into propo-
sitions, by thc extrcme effort which the business of
interpretation requites.© Induction, then, may be
conveniently described as the inferpretation of phe-
nomena.

39. But J obscrve furt(hor, that in thus inferring
truths from facts, it is not only necessary that the
mind should contribute to the task its own idea, but,
in order that the propositious thus obtained may have
any exact import and scientific value, it is requisite
that the idea be perfectly distinct and precise. If it
be possible to obtain some vague apprehension of
tiuths, while the ideas in which they are expressed
remain indistinct and ill-defincd, such knowledge can-
nat he available for the purposes we here contem-
plate. .In order to construct a scicnce, all our funda-
mental 1deas must be distinét ; and ameng them, those
which Induction introduces.

40. This necessity for distinctness in the ideas
which we employ in Induction, makes,it proper to de-
fine, in a precise and exact manner, each idca when it
is thus brought forwards. Thus, in establishing the
propositions which we have stated as our examples in
these cases, we have to define force in gencral ; uni-
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form force; compounding of motions;* momentum.
The construction of these definitions is an essential
part of the process of Induction, np less than the
assertion of the inductiye truth itself.

o ’

41. But in order to justify and establish the in-
ference which we make, the ideas which we introduce
most not only be distinct, but also approprzate They,
must be exactly and closdy app]ltable to thé facts; s6
that when the idea is in our possession, and the facts
under our notice, we perceive that thé former includes
and takes up the latter. "The 1dea is only a more pre-
cise mode of apprehending the facts, and it is empty
and unmeaning if it be anything clse; but if it be thus
applicable, the propasifion which is asserted by means
of it is true, precisely because thesfacts are facts.
When we have defined foree to be the cause of change
of motion, we scc that, as’we remove eaternal fprces,
we do, in actual experiments, remove all the change of
motion ; und therefore the, proposition that there is in
bodies no internal cause of change of motion, is true,
When we have defined momentum to be the product
of the velocity and qudntity of matier, we sce tha't in
the actions of bodies, the effect increases as the mo-
mentum increases; and by measurement, we findethat
the effect may consletently, be measured by the mo-
mentum. Bhe ideas hére cmp]oytd are not only dis-
tinct in the mind, but applicable in the world ; they
are the elements, pot only of relations of thought but
of laws of nature.

(]

42, Thus an inductive inference requires an idea
from dvithin, facts from without, and a coincidence of
the two. The idea must be distinct, otherwise we ob-
tain no scientific truth; it must be appropriate, other-

M., E. . .
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wise the facts cannot be steadily contemplated by means
of it; and when they are so contemplated, the Induc-
tive Proposition must be scen to be verified by the
evidence of sense.

It appe:rs from what has beon said, that in esta-
blishing a proposition by Induction, the definition of
the idea and the assertion of the #ruth, are not only
both requisite, but they are correlative.  Each of the
‘Lwo steps contains the verification and justification of
the other.  The proposition derives its meaning from
the defnition; the defi-ition derives its reahty from
the proposition. If the_', arc scp.tratcd the definition is
arbitrary or empty, the proposition is vague or verbal.

43. Ience we gather, that in the Inductive
Sciences, our Definitions and our Elementary Inductive
Truths ought to be introduccd together. There is no
value or meaning in definitions, except with reference
to the truths which they are to express. Discussions
about the definitions of any science, taken separately,
cannot thercfore be profitable, if the discussion do not
refer, tacitly or expressly, to the fundamental truths
of the scierce; and in all such discussions, it should
be stated what are taken as the fundamental truths,
With such a reference to Elementary Inductive Truths
clearly urderstood, the discussion of Definitions may
be the best methed of arriving at that- clearness of
thought, and that arrangement of facts, which In-
duction requires.

I will now note some of the differences which exist
between Inductive and Deductive Reasoning, in the

‘ modes in which they are presented.
t

44. One leadmg difference in these two kinds
of reasoning is, that in Deduction we infer particular
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from general truths; in Induction, on the contrary,
we infer general from particular. Deductive proof
consists of many steps, in each of which we apply
known gencral propositians in particular cases ;—* all
triangles have their gngles equal to two sight angles,
therefore this triangle has; therefore, &c.” *In In-
duction, gn the other hand, we have a single step in
which we pass from many parpcular Propositions to.
one general proposition; “This stone falls down-
wards; so do those others:—all stones fall.down-
wards.” And the former infevence flows necessarily
from the relation of gcncral and particular ; but the
latter, as we have scen, derives its power of convincing
from the introduction of a new idea, which is distinct
and appropriate, andayghich supplies that generality
which the particulars cannot themselves offer. .

45. I observe also that this difference of pracess
in inductive and deductive proofs, may be most pro-
perly marked by a difference in the form in which
they are stated. In Deduction, the Definition stands
at the beginning of the proposition ; in Induction, it
may most suitably stand” at or near the chd. Thus
the definition of a uniform force is introduced in Y the -
course of the psoposition that gravity is a usiform
force. And this arrangement, represents tr ulvjthe real
order of proofs; for, historically speaking, it was taken
for granted that gravity was a uniform force ; but the
question remained,,what was the right definition of a
uniform force. And in the establishment®of other
inductive principles, in like manner, definitions cannot
be laid down for any useful purpose, till we know the
proposgtions in which’they are to be used. They may
therefore properly come each at the conclusion of its
corresponding.proposition.
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46. The ideas and definitions to which we are
thus led by our inductive process, may bring with them
Axioms, Such.iAxioms may be self-evident as soon
as the inductive idea has been distinctly apprehended,
in the samehmanner as was explained respecting the
fundamcntal ideas of Geometry 'and Statics. And
thus Axioms, as well as Deﬁmtlom may come at the
-end of our Inductive, Propositions; and thoy thus
“assume their proper place at the beginning of the
deductive propositions which follow them, and are
proved: from them. Thus, in Book 111, Axioms 8
and 9, come after the dcf’ nition of Accclerating Force,
and stand between Props. 13 and 14.

47. Another peculiarity i» inductive reasoning
may be noticed. In a deductive demonstration, the
reference is always to what has been already proved ;
in establishing an Inductive Principle, it is most con-
venient that the reference should be to subsequent
propositions. For the proof of the Inductive Prin-
ciple consists in this ;—that the principle being adopt-
ed, consequences follow which agree with fact ; but the
démonstration of these conscqiiences may require many
steps, and scveral special propositions. Thus the Ip-
ductive Principle, that gravity is a uniform force, is
establishod by shewing that the law of descent, which
falling bodies follew in fact; is explained by means of
this principle ; namely, the law that the space is as
the square of the time from the beginning of the
motion. " But the proof of such a property, from
the definition of a uniform force, requires many steps,
as may be seen in the preceding Treatise, Book 111.
Prop. 5: and this proof must be referred to, alo, g with
several others, in order to establish the truth, that
gravity is a uniform force. .
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48. It may.bo suggested, that, this being the case,
the propositions might be transposed, so that the in-
ductive proof might come after those propositions to
which it refers. But if this were done, all the pro-
positions which depend upon the laws of motion must
be proved hypothetiid‘lly only. For instance, we must
say, “If, in the comimubication of motion, the mo-
mentum st and gained be equal, the velocity acquired
by a body falling down an inclitted plane, will be equal?
to that acquired by falling down the hcight.,” This
would Dbe inconvenient, and even if it .were dotfe,/ that
completeness in the line of demdnstration w hich is the
object of the change, could not be obtained 5 for the
transition from the particular cases to the general
truth, which must occur in the Inductive Proposition,
could not be in any™Why justified according to rules
of Deductive Logic. .

I have, therefore, in the preceding pages, placed
the Inductive Principle first in each line of rea-
soning, and have ranged after it the Deductions from
it, which justify and establish it, as their first office,
but which arec more important as its consequences
and applications, after, it is supposed $o be esta-
blished. ' -
S . -

49. I have used one common formula in p.rcs;ent-
ing the proof of cach of the Pnductive Princidles which
I have introduced ; nam'el_y, after stating or exem-
plifying the facts which the induction includes, I have
added ¢ These retults can be clearly explained and
rigorously deduced by introducing the Idea or the
Definition,” which belongs to each case, ‘“‘and the
Principle,” which expresses the inductive truth. I
do nf)menn to assert that this formula is the only
right one, or ¢ven the best; but it appears to me to

’ 9—s
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bring under notice the main circumstances which ren-
der an induction systematic and valid.

50. Tt may be observed, however, that this
formula docs not express the Yull cogency of the proof.
It declares only that the results _can be clearly ex-
plained ‘and rigorously deducéd b¥ the employment of
a certain definition and a certain proposition. But in
“order to make the conclusion demonstrative, we ought
to bt able to declare that the results can be clearly ex-
plaincd wd rigorously deduced only by the definition
and proposition which “we adopt. Aud, in reality, the
mathematician’s conviction of the truth of the Laws
of Motion does depend upon his seeing that they (or
laws equivalent to them) afford the om/y means of
clearly expressing and deducirfy whe actual facts.. But
this conviction, that no other law than those proposed
can account for the known facts. finds its place in
the mind gradually, as the contemplatmn of the con-
sequences of the law and the various relations of the
facts becomes steady and familiar. I have therefore
not thought it proper to require such a conviction
along with the first assent to the inductive truths
whick I have here stated.

‘51, The propositions established by Induction
are termvd Prmmples becan se they are the starting
points of trains of deductive reasoning. In the sys-
tem of deduction, they occupy the same place as
axioms; and accordingly they are termed so by
Newton—* Axiomata sive leges motus.” Stewart ob-
jects strongly to this cxpression*: and it would be
difficult to justify it; although to draw the l\‘Pe be-

*® Elem. Phil. Human Mind. Vol. 11. p. 44.
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twcen Axioms and inductive principles may'be a harder
task than at first appcars.

52. But from the consideration that our Inductive
Propositions are the principles or l)eﬂinnings of our de-
ductive reasoning, ayd so far at least stand in the place
of axioms, we may gather this lesson,—that they are
vot to be*multiplied without necessity.  For instance,
if in a treatise on Hydrostatics, we should state as t
scparate propositions, that <air has weight ;™Yard
that ¢ the mcrcury in the barometer is—susi@ipdl by
the weight of the air :” and shoiild prove both the one
and the other by reference to experiment; we should
offoud against the maxims of Logic.  These proposi-
tions are connected ; the latter may be demonstrated
deductively from the*Totmer; the forpper may be in-
feried inductively from the facts which prove thé
latter. One of these two couwses ought to be adopted
¢ vught not to have two ends of our reasoning up-
w.mls. or two beginnings of' our reasoning downwards.

53. T shall not now extend these Remarks further.,
They may appcar to many barren and wnprofitable
speculations ; but those who are familiar with Such
sitbjects, will perhaps find in them something which, if
well founded, is not without some novelty for the
English reader. Such will, 1 think, be the fse, if I
have satisficd him ,—that ‘mathematical truth depends
on Axioms as well as Definitions,—that the evidence of
geometrical Axiom? is to be found only in the distinet
possession of the 1dca of Space,—that other branches
of mathematics ‘also depend on Axmms,—and that the
evidencg of these Axioms is,to be sought in some ap-
propriZe Idea ;—that the evidence of the Axioms of
Statics, for instance, resides in the Ideas of Force and
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Matter ;—that in the process of Induction the mind
must supply an Idea in addition to the Facts appre-
hended by the senses;—that in each such process we
must introduce one or more Definitions, as well as a
Proposition ;—that the Definition and the Proposition
dre correlative, neither being usgful or valid without
the other ;—and that the Formult of inductive reason-
ing must be in many respects the reverse of'the com-

< mon logical formulx of deduction.

THE END
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